Energy Technology Data Exchange (ETDEWEB)
Bibergal, A V; Leshchinsky, N I; Margulis, U Ya; Khrushev, V G [Academy of Sciences of the USSR, Moscow, Union of Soviet Socialist Republics (Russian Federation)
1960-07-15
installations et reduisant le cout de la construction et de l'exploitation. (author) [Spanish] En este informe se indican los requisitos esenciales que deben reunir las instalaciones de irradiacion gamma destinadas a distintos usos. Se describen varios metodos para calcular campos de distintas intensidades en funcion de la forma de la fuente de cobalto-60 y cesio-137 empleada y se facilitan graficos, nomogramas y formulas que permiten determinar el valor de la dosis de rayos gamma absorbida por el objeto irradiado. Algunos de los datos calculados se han confirmado experimentalmente. Se examinan los usos mas convenientes de una serie de dispositivos de irradiacion de distintas configuraciones en instalaciones experimentales e industriales. Los autores estudian asimismo los procedimientos de irradiacion de diferentes muestras, que se aplican con el proposito de poder elegir unas condiciones de irradiacion optimas (coeficiente de aprovechamient o de la radiacion, uniformidad del campo de irradiacion, etc.), La memoria describe tambien algunos sistemas racionales de proteccion que simplifican las operaciones de irradiacion, asi como los dispositivos que permiten cambiar la carga y reducir de este modo los costos de construccion y de explotacion de las instalaciones. (author) [Russian] V doklade sformulirovan y osnovnye trebovaniya, pred{sup y}avlyaemye k gamma-ustanovkam razlichnogo naznacheniya. Provodyatsya nekotorye metody rascheta doznykh polej dlya razlichnykh form obluchatelej, a takzhe grafiki, nomogrammy i formuly, pozvolyayushchie poluchit' znacheniya pogloshchennoj dozy gamma-luchej kobal'ta-60 i tseziya-137 v obluchaemom ob{sup e}kte. Nekotorye raschetnye dannye podtverzhdayutsya ehksperimentami. Rassmatrivaets ya tselesoobraznost ' ispol'zovani ya obluchatelej razlichnykh konfiguratsij , primenyaemykh v ehksperimental'nykh i proizvodstvennykh ustanovkakh. Obsuzhdaetsya tekhnologiya oblucheniya razlichnykh ob{sup e}ktov s tsel'yu vybora optimal'nykh uslovij
International Nuclear Information System (INIS)
Yanqiu Zhu, Y.; Ma, R.; Whitby, R.; Acquah, S.
2013-01-01
We witnessed an initial hyped period and enthusiasm on carbon nano tubes in the 1990s later went through a significant expansion into nano tubes of other materials (metal di chalcogenides, boron nitride, etc.) as well as various nano wires and nano rods. While much of the hype might have gone, the research on one-dimensional (1D) nano materials has matured as one of the most active research areas within the nano science and nano technology community, flourishing with ample, exciting, and new research opportunities. Just like any other research frontier, researchers working in the 1D nano materials field are constantly striving to develop new fundamental science as well as potential applications. It remains a common belief that versatility and tunability of 1D nano materials would challenge many new rising tasks coming from our resource and energy demanding modern society. The traditional semiconductor industry has produced so many devices and systems from transistors, sensors, lasers, and LEDs to more sophisticated solar panels, which are now part of our daily lives. By down sizing the core components or parts to 1D form, one might wonder how fundamentally the dimensionality and morphology would impact the device performance, this is, as always, requiring us to fully understand the structure-property relationship in 1D nano materials. It may be equally crucial in connecting discovery-driven fundamental science to market-driven technology industry concerning potentially relevant findings derived from these novel materials. The importance of a platform that allows active researchers in this field to present their new development in a timely and efficient manner is therefore self-evident. Following the success of two early special issues devoted to 1D nano materials, this is the third one in a row organized by the same group of guest editors, attesting that such a platform has been well received by the readers
Energy Technology Data Exchange (ETDEWEB)
Marchuk, G I [Akademiya Nauk, Moskva, Union of Soviet Socialist Republics (Russian Federation)
1962-03-15
de ecuaciones fundamentales y conjugadas de la teoria de los multigrupos. Expone luego diversas aplicaciones de la teoria de la perturbacion a los problemas del calculo fisico del reactor. Examina los metodos numericos de resolucion de las ecuaciones fundamentales y conjugadas que expresan el funcionamiento del reactor sobre la base del metodo de los armonicos esfericos. Explica asimismo como se utiliza el metodo de las caracteristicas en la solucion de problemas relativos a la masa critica del reactor. Describe los metodos de calculo de los reactores con moderadores que contienen hidrogeno y, por fin, expone las bases de un modelo efectivo fundado en la teoria de un solo grupo, aplicable al reactor. (author) [Russian] Obsuzhdaetsya razvitie metodov rascheta yadernykh reaktorov na promezhutochnykh i bystrykh nejtronakh. Rassmatrivayuts ya razlichnye postanovki zadach fizicheskogo rascheta. Obsuzhdaetsya uchet rezonansnykh ehffektov. Vvodyatsya v rassmotrenie mnogogruppovy e sistemy 'osnovnykh i sopryazhennykh uravnenij. Daetsya razlichnoe primenenie teorii vozmushchenij k zadacham fizicheskogo rascheta reaktora. Rassmatrivayuts ya chislennye metody resheniya osnovnykh i sopryazhennykh uravnenij reaktora v priblizhenii metoda sfericheskikh garmonik. Daetsya primenenie metoda kharakteristik k resheniyu zadach na kriticheskuyu massu reaktora. Izlagayutsya metody rascheta reaktorov s vodorodsoderzhashchim i zamedlitelyami . Izlagayutsya osnovy ehffektivnoj odnogruppovoj modeli reaktora. (author)
Energy Technology Data Exchange (ETDEWEB)
Loewenstein, W B; Meneghetti, D [Argonne National Laboratory, Argonne, IL (United States)
1962-03-15
dannye po fakticheskim ehnergeticheskim reaktoram-razmnozhitelya m na bystrykh nejtronakh. EHti sistemy slishkom slozhny dlya prove- deniya prostogo teoreticheskogo analiza. Oni svidetel'stvuyut o slozhnosti fakticheskogo reaktora po sravneniyu s bolee idealizirovanny m i legko analiziruemym kriticheskim opytom. Integral'nye fizicheskie dannye dlya rascheta reaktora polucheny v rezul'tate provedennykh na reaktornykh sistemakh kriticheskikh ili nekriticheskikh izmerenij, razlichnykh velichin reaktornoj fiziki, imeyushchikh prakticheskoe j teoreticheskoe znacheniya, ili to ili drugoe znachenie. Oni kharakterizuyut i pozvolyayut ponyat' sistemu. Dany izmereniya kriticheskoj massy, koehffitsienta formy aktivnoj zony, koehffitsientov detektorov, spektrov nejtronov, opytov s zamenoj materiala, otrazhatel'noj dobavki, vremeni zhizni nejtronov, Rossi-{alpha} i podobnykh kharakteristik i velichin. V doklade rassmatrivayuts ya ehti dannye i opisyvayutsya oblasti ikh primeneniya. Pokazano, chto sushchestvuyut ogranicheniya i v ehksperimental'ny kh i v analiticheskikh rezultatakh pri analizakh spektra i kritichnosti sistemy. Dany nametki budushchikh ehksperimental'ny kh i analiticheskikh issledovanij. Ehti issledovaniya pomogut umen'shit' razryv mezhdu teoriej i opytom dlya 'izvestnykh' sistem. Namechayutsya takzhe issledovaniya po 'podkrepleniyu' dannykh fiziki krupnykh ehnergeticheskikh reaktorov-razmnozhitelej na bystrykh nejtronakh. (author)
Social exploration of 1D games
DEFF Research Database (Denmark)
Valente, Andrea; Marchetti, Emanuela
2013-01-01
In this paper the apparently meaningless concept of a 1 dimensional computer game is explored, via netnography. A small number of games was designed and implemented, in close contact with online communities of players and developers, providing evidence that 1 dimension is enough to produce...... interesting gameplay, to allow for level design and even to leave room for artistic considerations on 1D rendering. General techniques to re-design classic 2D games into 1D are also emerging from this exploration....
Synthesis of 1-D ZnO nanorods and polypyrrole/1-D ZnO ...
Indian Academy of Sciences (India)
1-D ZnO nanorods and PPy/1-D ZnO nanocomposites were prepared by the surfactant-assisted precipitation and in situ polymerization method, respectively. The synthesized nanorods and nanocomposites were characterized by UV–Vis spectrophotometer, Fourier transform-infrared spectroscopy (FTIR), X-ray diffraction ...
1D Printing of Recyclable Robots
DEFF Research Database (Denmark)
Cellucci, Daniel; MacCurdy, Robert; Lipson, Hod
2017-01-01
Recent advances in 3D printing are revolutionizing manufacturing, enabling the fabrication of structures with unprecedented complexity and functionality. Yet biological systems are able to fabricate systems with far greater complexity using a process that involves assembling and folding a linear...... string. Here, we demonstrate a 1D printing system that uses an approach inspired by the ribosome to fabricate a variety of specialized robotic automata from a single string of source material. This proof-ofconcept system involves both a novel manufacturing platform that configures the source material...... using folding and a computational optimization tool that allows designs to be produced from the specification of high-level goals. We show that our 1D printing system is able to produce three distinct robots from the same source material, each of which is capable of accomplishing a specialized...
1D-VAR Retrieval Using Superchannels
Liu, Xu; Zhou, Daniel; Larar, Allen; Smith, William L.; Schluessel, Peter; Mango, Stephen; SaintGermain, Karen
2008-01-01
Since modern ultra-spectral remote sensors have thousands of channels, it is difficult to include all of them in a 1D-var retrieval system. We will describe a physical inversion algorithm, which includes all available channels for the atmospheric temperature, moisture, cloud, and surface parameter retrievals. Both the forward model and the inversion algorithm compress the channel radiances into super channels. These super channels are obtained by projecting the radiance spectra onto a set of pre-calculated eigenvectors. The forward model provides both super channel properties and jacobian in EOF space directly. For ultra-spectral sensors such as Infrared Atmospheric Sounding Interferometer (IASI) and the NPOESS Airborne Sounder Testbed Interferometer (NAST), a compression ratio of more than 80 can be achieved, leading to a significant reduction in computations involved in an inversion process. Results will be shown applying the algorithm to real IASI and NAST data.
1-D hybrid code for FRM dynamics
International Nuclear Information System (INIS)
Stark, R.A.; Miley, G.H.
1985-01-01
A 1-D radial hybrid code has been written to study the start-up of the FRM via neutral-beam injection. This code, named FROST (Field Reversed One-dimensional STart-up), models the plasma as azimuthal symmetric with no axial dependence. A multi-group method in energy and canonical angular momentum describes the large-orbit ions from the beam. This method is designed to be more efficient than those employing particle tracking, since the characteristic timescale of the simulation is the ion slowing down time, rather than the much shorter cyclotron period. A time-differentiated Grad-Shafranov equation couples the ion current to massless fluid equations describing electrons and low energy ions. Flux coordinates are used in this fluid model, in preference to an Eulerian framework, so that coupling of plasma at the two different radii of a closed flux surface may be treated with ease. Since a fluid treatment for electrons is invalid near a field null, a separate model for the electron current has been included for this region, a unique feature. Results of simulation of injection into a 2XIIB-like plasma are discussed. Electron currents are found to retard, but not prevent reversal of the magnetic field at the plasma center
Quantum entanglement in inhomogeneous 1D systems
Ramírez, Giovanni
2018-04-01
The entanglement entropy of the ground state of a quantum lattice model with local interactions usually satisfies an area law. However, in 1D systems some violations may appear in inhomogeneous systems or in random systems. In our inhomogeneous system, the inhomogeneity parameter, h, allows us to tune different regimes where a volumetric violation of the area law appears. We apply the strong disorder renormalization group to describe the maximally entangled state of the system in a strong inhomogeneity regime. Moreover, in a weak inhomogeneity regime, we use a continuum approximation to describe the state as a thermo-field double in a conformal field theory with an effective temperature which is proportional to the inhomogeneity parameter of the system. The latter description also shows that the universal scaling features of this model are captured by a massless Dirac fermion in a curved space-time with constant negative curvature R = h2, providing another example of the relation between quantum entanglement and space-time geometry. The results we discuss here were already published before, but here we present a more didactic exposure of basic concepts of the rainbow system for the students attending the Latin American School of Physics "Marcos Moshinsky" 2017.
DEFF Research Database (Denmark)
van der Laan, Paul; Sørensen, Niels N.
2017-01-01
A one-dimensional version of EllipSys, labeled as EllipSys1D is presented. Three atmospheric boundary layer test cases are used to show that results of EllipSys1D are exactly the same or very similar as results of EllipSys3D, while EllipSys1D uses 3 to 4 orders of magnitude less CPU hours compared...
Energy Device Applications of Synthesized 1D Polymer Nanomaterials.
Huang, Long-Biao; Xu, Wei; Hao, Jianhua
2017-11-01
1D polymer nanomaterials as emerging materials, such as nanowires, nanotubes, and nanopillars, have attracted extensive attention in academia and industry. The distinctive, various, and tunable structures in the nanoscale of 1D polymer nanomaterials present nanointerfaces, high surface-to-volume ratio, and large surface area, which can improve the performance of energy devices. In this review, representative fabrication techniques of 1D polymer nanomaterials are summarized, including electrospinning, template-assisted, template-free, and inductively coupled plasma methods. The recent advancements of 1D polymer nanomaterials in energy device applications are demonstrated. Lastly, existing challenges and prospects of 1D polymer nanomaterials for energy device applications are presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Energy Technology Data Exchange (ETDEWEB)
Popovic, Marta; Zaja, Roko [Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10 000 Zagreb (Croatia); Fent, Karl [University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Swiss Federal Institute of Technology (ETH Zürich), Department of Environmental System Sciences, Institute of Biogeochemistry and Pollution Dynamics, CH-8092 Zürich (Switzerland); Smital, Tvrtko, E-mail: smital@irb.hr [Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10 000 Zagreb (Croatia)
2014-10-01
Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towards perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. - Highlights: • We optimized a novel assay for determination of Oatp1d1 interactors • Oatp1d1 is the first SLC characterized fish xenobiotic transporter • PFOS, nonylphenol, diclofenac, EE2, caffeine are high affinity Oatp1d1substrates • PFOA, chlorpyrifos
International Nuclear Information System (INIS)
Popovic, Marta; Zaja, Roko; Fent, Karl; Smital, Tvrtko
2014-01-01
Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towards perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. - Highlights: • We optimized a novel assay for determination of Oatp1d1 interactors • Oatp1d1 is the first SLC characterized fish xenobiotic transporter • PFOS, nonylphenol, diclofenac, EE2, caffeine are high affinity Oatp1d1substrates • PFOA, chlorpyrifos
ATR kinase regulates its attenuation via PPM1D phosphatase ...
Indian Academy of Sciences (India)
Debadrita Bhattacharya
2018-02-07
Feb 7, 2018 ... generated in response to ultraviolet and ionizing radiation (Lu et al. 2005a, b; Cha ... nocopy' each other's effects by uncovering persistent ATR signalling that in ...... been shown to indirectly stabilize PPM1D by mediating the.
Severe Hypertriglyceridemia in Glut1D on Ketogenic Diet.
Klepper, Joerg; Leiendecker, Baerbel; Heussinger, Nicole; Lausch, Ekkehart; Bosch, Friedrich
2016-04-01
High-fat ketogenic diets are the only treatment available for Glut1 deficiency (Glut1D). Here, we describe an 8-year-old girl with classical Glut1D responsive to a 3:1 ketogenic diet and ethosuximide. After 3 years on the diet a gradual increase of blood lipids was followed by rapid, severe asymptomatic hypertriglyceridemia (1,910 mg/dL). Serum lipid apheresis was required to determine liver, renal, and pancreatic function. A combination of medium chain triglyceride-oil and a reduction of the ketogenic diet to 1:1 ratio normalized triglyceride levels within days but triggered severe myoclonic seizures requiring comedication with sultiam. Severe hypertriglyceridemia in children with Glut1D on ketogenic diets may be underdiagnosed and harmful. In contrast to congenital hypertriglyceridemias, children with Glut1D may be treated effectively by dietary adjustments alone. Georg Thieme Verlag KG Stuttgart · New York.
TBC1D24 genotype–phenotype correlation
Balestrini, Simona; Milh, Mathieu; Castiglioni, Claudia; Lüthy, Kevin; Finelli, Mattea J.; Verstreken, Patrik; Cardon, Aaron; Stražišar, Barbara Gnidovec; Holder, J. Lloyd; Lesca, Gaetan; Mancardi, Maria M.; Poulat, Anne L.; Repetto, Gabriela M.; Banka, Siddharth; Bilo, Leonilda; Birkeland, Laura E.; Bosch, Friedrich; Brockmann, Knut; Cross, J. Helen; Doummar, Diane; Félix, Temis M.; Giuliano, Fabienne; Hori, Mutsuki; Hüning, Irina; Kayserili, Hulia; Kini, Usha; Lees, Melissa M.; Meenakshi, Girish; Mewasingh, Leena; Pagnamenta, Alistair T.; Peluso, Silvio; Mey, Antje; Rice, Gregory M.; Rosenfeld, Jill A.; Taylor, Jenny C.; Troester, Matthew M.; Stanley, Christine M.; Ville, Dorothee; Walkiewicz, Magdalena; Falace, Antonio; Fassio, Anna; Lemke, Johannes R.; Biskup, Saskia; Tardif, Jessica; Ajeawung, Norbert F.; Tolun, Aslihan; Corbett, Mark; Gecz, Jozef; Afawi, Zaid; Howell, Katherine B.; Oliver, Karen L.; Berkovic, Samuel F.; Scheffer, Ingrid E.; de Falco, Fabrizio A.; Oliver, Peter L.; Striano, Pasquale; Zara, Federico
2016-01-01
Objective: To evaluate the phenotypic spectrum associated with mutations in TBC1D24. Methods: We acquired new clinical, EEG, and neuroimaging data of 11 previously unreported and 37 published patients. TBC1D24 mutations, identified through various sequencing methods, can be found online (http://lovd.nl/TBC1D24). Results: Forty-eight patients were included (28 men, 20 women, average age 21 years) from 30 independent families. Eighteen patients (38%) had myoclonic epilepsies. The other patients carried diagnoses of focal (25%), multifocal (2%), generalized (4%), and unclassified epilepsy (6%), and early-onset epileptic encephalopathy (25%). Most patients had drug-resistant epilepsy. We detail EEG, neuroimaging, developmental, and cognitive features, treatment responsiveness, and physical examination. In silico evaluation revealed 7 different highly conserved motifs, with the most common pathogenic mutation located in the first. Neuronal outgrowth assays showed that some TBC1D24 mutations, associated with the most severe TBC1D24-associated disorders, are not necessarily the most disruptive to this gene function. Conclusions: TBC1D24-related epilepsy syndromes show marked phenotypic pleiotropy, with multisystem involvement and severity spectrum ranging from isolated deafness (not studied here), benign myoclonic epilepsy restricted to childhood with complete seizure control and normal intellect, to early-onset epileptic encephalopathy with severe developmental delay and early death. There is no distinct correlation with mutation type or location yet, but patterns are emerging. Given the phenotypic breadth observed, TBC1D24 mutation screening is indicated in a wide variety of epilepsies. A TBC1D24 consortium was formed to develop further research on this gene and its associated phenotypes. PMID:27281533
Impact of CD1d deficiency on metabolism.
Directory of Open Access Journals (Sweden)
Maya E Kotas
Full Text Available Invariant natural killer T cells (iNKTs are innate-like T cells that are highly concentrated in the liver and recognize lipids presented on the MHC-like molecule CD1d. Although capable of a myriad of responses, few essential functions have been described for iNKTs. Among the many cell types of the immune system implicated in metabolic control and disease, iNKTs seem ideally poised for such a role, yet little has been done to elucidate such a possible function. We hypothesized that lipid presentation by CD1d could report on metabolic status and engage iNKTs to regulate cellular lipid content through their various effector mechanisms. To test this hypothesis, we examined CD1d deficient mice in a variety of metabolically stressed paradigms including high fat feeding, choline-deficient feeding, fasting, and acute inflammation. CD1d deficiency led to a mild exacerbation of steatosis during high fat or choline-deficient feeding, accompanied by impaired hepatic glucose tolerance. Surprisingly, however, this phenotype was not observed in Jα18⁻/⁻ mice, which are deficient in iNKTs but express CD1d. Thus, CD1d appears to modulate some metabolic functions through an iNKT-independent mechanism.
Thermoelectric Power Factor Limit of a 1D Nanowire
Chen, I.-Ju; Burke, Adam; Svilans, Artis; Linke, Heiner; Thelander, Claes
2018-04-01
In the past decade, there has been significant interest in the potentially advantageous thermoelectric properties of one-dimensional (1D) nanowires, but it has been challenging to find high thermoelectric power factors based on 1D effects in practice. Here we point out that there is an upper limit to the thermoelectric power factor of nonballistic 1D nanowires, as a consequence of the recently established quantum bound of thermoelectric power output. We experimentally test this limit in quasiballistic InAs nanowires by extracting the maximum power factor of the first 1D subband through I -V characterization, finding that the measured maximum power factors conform to the theoretical limit. The established limit allows the prediction of the achievable power factor of a specific nanowire material system with 1D electronic transport based on the nanowire dimension and mean free path. The power factor of state-of-the-art semiconductor nanowires with small cross section and high crystal quality can be expected to be highly competitive (on the order of mW /m K2 ) at low temperatures. However, they have no clear advantage over bulk materials at, or above, room temperature.
Valley-symmetric quasi-1D transport in ballistic graphene
Lee, Hu-Jong
We present our recent studies on gate-defined valley-symmetric one-dimensional (1D) carrier guiding in ballistic monolayer graphene and valley-symmetry-protected topological 1D transport in ballistic bilayer graphene. Successful carrier guiding was realized in ballistic monolayer graphene even in the absence of a band gap by inducing a high distinction ( more than two orders of magnitude) in the carrier density between the region of a quasi-1D channel and the rest of the top-gated regions. Conductance of a channel shows quantized values in units of 4e2/ h, suggesting that the valley symmetry is preserved. For the latter, the topological 1D conduction was realized between two closely arranged insulating regions with inverted band gaps, induced under a pair of split dual gating with polarities opposite to each other. The maximum conductance along the boundary channel showed 4e2/ h, again with the preserved valley symmetry. The 1D topological carrier guiding demonstrated in this study affords a promising route to robust valleytronic applications and sophisticated valley-associated functionalities based on 2D materials. This work was funded by the National Research Foundation of Korea.
A model with isospin doublet U(1)D gauge symmetry
Nomura, Takaaki; Okada, Hiroshi
2018-05-01
We propose a model with an extra isospin doublet U(1)D gauge symmetry, in which we introduce several extra fermions with odd parity under a discrete Z2 symmetry in order to cancel the gauge anomalies out. A remarkable issue is that we impose nonzero U(1)D charge to the Standard Model Higgs, and it gives the most stringent constraint to the vacuum expectation value of a scalar field breaking the U(1)D symmetry that is severer than the LEP bound. We then explore relic density of a Majorana dark matter candidate without conflict of constraints from lepton flavor violating processes. A global analysis is carried out to search for parameters which can accommodate with the observed data.
Quantum electrodynamics with 1D arti cial atoms
DEFF Research Database (Denmark)
Javadi, Alisa
A 1D atom, a single quantum emitter coupled to a single optical mode, exhibits rich quantum electrodynamic (QED) e_ects and is thought to be the key ingredient for many applications in quantuminformation processing. Single quantum dots (QD) in photonic-crystal waveguides (PCW) constitute a robust...... as expected from the theory. The value of g(2)(0) is around 1.08. The results con_rm the observation of an on-chip giant optical nonlinearity and the 1D atom behavior. Another direction in this thesis has been to investigate the e_ect of Anderson localization on the electrodynamics of QDs in PCWs. A large...
Diffusion and particle mobility in 1D system
International Nuclear Information System (INIS)
Borman, V.D.; Johansson, B.; Skorodumova, N.V.; Tronin, I.V.; Tronin, V.N.; Troyan, V.I.
2006-01-01
The transport properties of one-dimensional (1D) systems have been studied theoretically. Contradictory experimental results on molecular transport in quasi-1D systems, such as zeolite structures, when both diffusion transport acceleration and the existence of the diffusion mode with lower particle mobility (single-file diffusion ( 2 >∼t 1/2 )) have been reported, are consolidated in a consistent model. Transition from the single-file diffusion mode to an Einstein-like diffusion 2 >∼t with diffusion coefficient increasing with the density has been predicted to occur at large observation times
Nonreciprocity of edge modes in 1D magnonic crystal
International Nuclear Information System (INIS)
Lisenkov, I.; Kalyabin, D.; Osokin, S.; Klos, J.W.; Krawczyk, M.; Nikitov, S.
2015-01-01
Spin waves propagation in 1D magnonic crystals is investigated theoretically. Mathematical model based on plane wave expansion method is applied to different types of magnonic crystals, namely bi-component magnonic crystal with symmetric/asymmetric boundaries and ferromagnetic film with periodically corrugated top surface. It is shown that edge modes in magnonic crystals may exhibit nonreciprocal behaviour at much lower frequencies than in homogeneous films. - Highlights: • Magnetostatic surface spin waves in 1D magnonic crystals were studied theoretically. • Mathematical model is based on plane wave method. • Mathematical model was applied to different types of magnonic crystals. • Stop band formation and nonreciprocity were obtained
Flood hazard assessment using 1D and 2D approaches
Petaccia, Gabriella; Costabile, Pierfranco; Macchione, Francesco; Natale, Luigi
2013-04-01
The EU flood risk Directive (Directive 2007/60/EC) prescribes risk assessment and mapping to develop flood risk management plans. Flood hazard mapping may be carried out with mathematical models able to determine flood-prone areas once realistic conditions (in terms of discharge or water levels) are imposed at the boundaries of the case study. The deterministic models are mainly based on shallow water equations expressed in their 1D or 2D formulation. The 1D approach is widely used, especially in technical studies, due to its relative simplicity, its computational efficiency and also because it requires topographical data not as expensive as the ones needed by 2D models. Even if in a great number of practical situations, such as modeling in-channel flows and not too wide floodplains, the 1D approach may provide results close to the prediction of a more sophisticated 2D model, it must be pointed out that the correct use of a 1D model in practical situations is more complex than it may seem. The main issues to be correctly modeled in a 1D approach are the definition of hydraulic structures such as bridges and buildings interacting with the flow and the treatment of the tributaries. Clearly all these aspects have to be taken into account also in the 2D modeling, but with fewer difficulties. The purpose of this paper is to show how the above cited issues can be described using a 1D or 2D unsteady flow modeling. In particular the Authors will show the devices that have to be implemented in 1D modeling to get reliable predictions of water levels and discharges comparable to the ones obtained using a 2D model. Attention will be focused on an actual river (Crati river) located in the South of Italy. This case study is quite complicated since it deals with the simulation of channeled flows, overbank flows, interactions with buildings, bridges and tributaries. Accurate techniques, intentionally developed by the Authors to take into account all these peculiarities in 1D and 2
Crystal structure, characterization and magnetic properties of a 1D ...
Indian Academy of Sciences (India)
Crystal structure, characterization and magnetic properties of a 1D copper(II) polymer incorporating a Schiff base with carboxylate side arm. SHYAMAPADA SHIT MADHUSUDAN NANDY CORRADO RIZZOLI CÉDRIC DESPLANCHES SAMIRAN MITRA. Regular Article Volume 128 Issue 6 June 2016 pp 913-920 ...
Quantitative 1D saturation profiles on chalk by NMR
DEFF Research Database (Denmark)
Olsen, Dan; Topp, Simon; Stensgaard, Anders
1996-01-01
Quantitative one-dimensional saturation profiles showing the distribution of water and oil in chalk core samples are calculated from NMR measurements utilizing a 1D CSI spectroscopy pulse sequence. Saturation profiles may be acquired under conditions of fluid flow through the sample. Results reveal...
Anti-cytokine therapies in T1D
DEFF Research Database (Denmark)
Nepom, Gerald T; Ehlers, Mario; Mandrup-Poulsen, Thomas
2013-01-01
Therapeutic targeting of proinflammatory cytokines is clinically beneficial in several autoimmune disorders. Several of these cytokines are directly implicated in the pathogenesis of type 1 diabetes, suggesting opportunities for design of clinical trials in type 1 diabetes that incorporate select...... suitable for modulating the immune response in T1D....
Non-cooperative Brownian donkeys: A solvable 1D model
Jiménez de Cisneros, B.; Reimann, P.; Parrondo, J. M. R.
2003-12-01
A paradigmatic 1D model for Brownian motion in a spatially symmetric, periodic system is tackled analytically. Upon application of an external static force F the system's response is an average current which is positive for F 0 (absolute negative mobility). Under suitable conditions, the system approaches 100% efficiency when working against the external force F.
Inverse parameter identification for a branching 1 D arterial network
CSIR Research Space (South Africa)
Bogaers, Alfred EJ
2012-07-01
Full Text Available In this paper we investigate the invertability of a branching 1 D arterial blood flow network. We limit our investigation to a single bifurcating vessel, where the material properties, unloaded areas and variables characterizing the input and output...
Two-phase 1D+1D model of a DMFC: development and validation on extensive operating conditions range
Energy Technology Data Exchange (ETDEWEB)
Casalegno, A.; Marchesi, R.; Parenti, D. [Dipartimento di Energetica, Politecnico di Milano (Italy)
2008-02-15
A two-phase 1D+1D model of a direct methanol fuel cell (DMFC) is developed, considering overall mass balance, methanol transport in gas phase through anode diffusion layer, methanol and water crossover. The model is quantitatively validated on an extensive range of operating conditions, 24 polarisation curves. The model accurately reproduces DMFC performance in the validation range and, outside this, it is able to predict values under feasible operating conditions. Finally, the estimations of methanol crossover flux are qualitatively and quantitatively similar to experimental measures and the main local quantities' trends are coherent with results obtained with more complex models. (Abstract Copyright [2008], Wiley Periodicals, Inc.)
Sandia reactor kinetics codes: SAK and PK1D
International Nuclear Information System (INIS)
Pickard, P.S.; Odom, J.P.
1978-01-01
The Sandia Kinetics code (SAK) is a one-dimensional coupled thermal-neutronics transient analysis code for use in simulation of reactor transients. The time-dependent cross section routines allow arbitrary time-dependent changes in material properties. The one-dimensional heat transfer routines are for cylindrical geometry and allow arbitrary mesh structure, temperature-dependent thermal properties, radiation treatment, and coolant flow and heat-transfer properties at the surface of a fuel element. The Point Kinetics 1 Dimensional Heat Transfer Code (PK1D) solves the point kinetics equations and has essentially the same heat-transfer treatment as SAK. PK1D can address extended reactor transients with minimal computer execution time
Developing 1D nanostructure arrays for future nanophotonics
Directory of Open Access Journals (Sweden)
Cooke DG
2006-01-01
Full Text Available AbstractThere is intense and growing interest in one-dimensional (1-D nanostructures from the perspective of their synthesis and unique properties, especially with respect to their excellent optical response and an ability to form heterostructures. This review discusses alternative approaches to preparation and organization of such structures, and their potential properties. In particular, molecular-scale printing is highlighted as a method for creating organized pre-cursor structure for locating nanowires, as well as vapor–liquid–solid (VLS templated growth using nano-channel alumina (NCA, and deposition of 1-D structures with glancing angle deposition (GLAD. As regards novel optical properties, we discuss as an example, finite size photonic crystal cavity structures formed from such nanostructure arrays possessing highQand small mode volume, and being ideal for developing future nanolasers.
Partial breaking of N = 1, D = 10 supersymmetry
International Nuclear Information System (INIS)
Bellucci, S.
1999-01-01
In this paper is described the spontaneous partial breaking of N =1, D =10 supersymmetry to N = (1, 0), d = 6 and its dimensionally-reduced versions in the framework of nonlinear realizations. The basic Goldstone superfield is N = (1, 0), d = 6 hyper multiplet superfield satisfying a nonlinear generalization of the standard hyper multiplet constraint. It is here interpreted the generalized constraint as the manifestly world volume supersymmetric form of equations of motion of the type 1 super 5-brane in D 10. The related issues here addressed are a possible existence of brane extension of off-shell hyper multiplet actions, the possibility to utilize vector N = (1, 0), d =6 supermultiplet as the Goldstone one, and the description of 1/4 breaking of N =1, D = 11 supersymmetry
Development of 1D Liner Compression Code for IDL
Shimazu, Akihisa; Slough, John; Pancotti, Anthony
2015-11-01
A 1D liner compression code is developed to model liner implosion dynamics in the Inductively Driven Liner Experiment (IDL) where FRC plasmoid is compressed via inductively-driven metal liners. The driver circuit, magnetic field, joule heating, and liner dynamics calculations are performed at each time step in sequence to couple these effects in the code. To obtain more realistic magnetic field results for a given drive coil geometry, 2D and 3D effects are incorporated into the 1D field calculation through use of correction factor table lookup approach. Commercial low-frequency electromagnetic fields solver, ANSYS Maxwell 3D, is used to solve the magnetic field profile for static liner condition at various liner radius in order to derive correction factors for the 1D field calculation in the code. The liner dynamics results from the code is verified to be in good agreement with the results from commercial explicit dynamics solver, ANSYS Explicit Dynamics, and previous liner experiment. The developed code is used to optimize the capacitor bank and driver coil design for better energy transfer and coupling. FRC gain calculations are also performed using the liner compression data from the code for the conceptual design of the reactor sized system for fusion energy gains.
Applications of AMPS-1D for solar cell simulation
Zhu, Hong; Kalkan, Ali Kaan; Hou, Jingya; Fonash, Stephen J.
1999-03-01
The AMPS-1D PC computer program is now used by over 70 groups world-wide for detector and solar cell analysis. It has proved to be a very powerful tool in understanding device operation and physics for single crystal, poly-crystalline and amorphous structures. For example, AMPS-1D has been successful in explaining the "red kink" [1] and the "transient effect" in CdS/CIGS poly-crystalline solar cells. It has been used to show that thin film poly-Si structures, with reasonable light trapping, are capable of competitive solar cell conversion efficiencies. In the case of a-Si:H structures, it has been used, for example, to settle the discrepancies in bandgap measurement, to predict the effective QE>1 phenomenon later seen in these materials [2], to determine the relative roles of interface and bulk properties, and to point the direction toward 16% triple junction structures. In general AMPS-1D is used for cell and detector design, material parameter sensitivity studies, and parameter extraction. Recently we have shown that it can be used to determine optimum structure and light and voltage biasing conditions in the material parameter extraction function. Information on AMPS can be found at www.psu.edu/dept/AMPS/amps_web/AMPS.html and at other web sites set up by user groups.
Coupling of Nod1D and HOTCHANNEL: static case
International Nuclear Information System (INIS)
Gomez T, A.M.; Ovando C, R.
2003-01-01
In this work the joining of the programs Nod1D and HOTCHANNEL, developed in the National Polytechnic Institute (IPN) and in the Electrical Research Institute (IIE) respectively is described. The first one allows to study the neutronic of a nuclear reactor and the second one allows to carry out the analysis of hot channel of a Boiling Water Reactor (BWR). Nod1 D is a program that it solves by nodal methods type finite element those diffusion equations in multigroup, and it is the static part of Nod Kin that it solves the diffusion equation in their time dependent part. For another side HOTCHANNEL is based on a mathematical model constituted by four conservation equations (two of mass conservation, one of motion quantity and one of energy), which are solved applying one discretization in implicit finite differences. Both programs have been verified in independent form using diverse test problems. In this work the modifications that were necessary to carry out to both for obtaining a coupled program that it provides the axial distribution of the neutron flux, the power, the burnup and the void fraction, among others parameters as much as neutronic as thermal hydraulics are described. Those are also mentioned limitations, advantages and disadvantages of the final product to which has been designated Nod1 D-HotChn. Diverse results for the Cycle 1 of the Laguna Verde Unit 1 reactor of the Nucleo electric central comparing them with those obtained directly with the CoreMasterPresto code are provided. (Author)
MARG1D: One dimensional outer region matching data code
International Nuclear Information System (INIS)
Tokuda, Shinji; Watanabe, Tomoko.
1995-08-01
A code MARG1D has been developed which computes outer region matching data of the one dimensional Newcomb equation. Matching data play an important role in the resistive (and non ideal) Magneto-hydrodynamic (MHD) stability analysis in a tokamak plasma. The MARG1D code computes matching data by using the boundary value method or by the eigenvalue method. Variational principles are derived for the problems to be solved and a finite element method is applied. Except for the case of marginal stability, the eigenvalue method is equivalent to the boundary value method. However, the eigenvalue method has the several advantages: it is a new method of ideal MHD stability analysis for which the marginally stable state can be identified, and it guarantees numerical stability in computing matching data close to marginal stability. We perform detailed numerical experiments for a model equation with analytical solutions and for the Newcomb equation in the m=1 mode theory. Numerical experiments show that MARG1D code gives the matching data with numerical stability and high accuracy. (author)
Coupling of Nod1D and HOTCHANNEL: static case; Acoplamiento de Nod1D y HOTCHANNEL: caso estatico
Energy Technology Data Exchange (ETDEWEB)
Gomez T, A.M. [IPN-ESFM, 07738 Mexico D.F. (Mexico); Ovando C, R. [IIE-Gcia. de Energia Nuclear, Cuernavaca, Morelos (Mexico)]. e-mail: rovando@iie.org.mx
2003-07-01
In this work the joining of the programs Nod1D and HOTCHANNEL, developed in the National Polytechnic Institute (IPN) and in the Electrical Research Institute (IIE) respectively is described. The first one allows to study the neutronic of a nuclear reactor and the second one allows to carry out the analysis of hot channel of a Boiling Water Reactor (BWR). Nod1 D is a program that it solves by nodal methods type finite element those diffusion equations in multigroup, and it is the static part of Nod Kin that it solves the diffusion equation in their time dependent part. For another side HOTCHANNEL is based on a mathematical model constituted by four conservation equations (two of mass conservation, one of motion quantity and one of energy), which are solved applying one discretization in implicit finite differences. Both programs have been verified in independent form using diverse test problems. In this work the modifications that were necessary to carry out to both for obtaining a coupled program that it provides the axial distribution of the neutron flux, the power, the burnup and the void fraction, among others parameters as much as neutronic as thermal hydraulics are described. Those are also mentioned limitations, advantages and disadvantages of the final product to which has been designated Nod1 D-HotChn. Diverse results for the Cycle 1 of the Laguna Verde Unit 1 reactor of the Nucleo electric central comparing them with those obtained directly with the CoreMasterPresto code are provided. (Author)
Cell Migration in 1D and 2D Nanofiber Microenvironments.
Estabridis, Horacio M; Jana, Aniket; Nain, Amrinder; Odde, David J
2018-03-01
Understanding how cells migrate in fibrous environments is important in wound healing, immune function, and cancer progression. A key question is how fiber orientation and network geometry influence cell movement. Here we describe a quantitative, modeling-based approach toward identifying the mechanisms by which cells migrate in fibrous geometries having well controlled orientation. Specifically, U251 glioblastoma cells were seeded onto non-electrospinning Spinneret based tunable engineering parameters fiber substrates that consist of networks of suspended 400 nm diameter nanofibers. Cells were classified based on the local fiber geometry and cell migration dynamics observed by light microscopy. Cells were found in three distinct geometries: adhering two a single fiber, adhering to two parallel fibers, and adhering to a network of orthogonal fibers. Cells adhering to a single fiber or two parallel fibers can only move in one dimension along the fiber axis, whereas cells on a network of orthogonal fibers can move in two dimensions. We found that cells move faster and more persistently in 1D geometries than in 2D, with cell migration being faster on parallel fibers than on single fibers. To explain these behaviors mechanistically, we simulated cell migration in the three different geometries using a motor-clutch based model for cell traction forces. Using nearly identical parameter sets for each of the three cases, we found that the simulated cells naturally replicated the reduced migration in 2D relative to 1D geometries. In addition, the modestly faster 1D migration on parallel fibers relative to single fibers was captured using a correspondingly modest increase in the number of clutches to reflect increased surface area of adhesion on parallel fibers. Overall, the integrated modeling and experimental analysis shows that cell migration in response to varying fibrous geometries can be explained by a simple mechanical readout of geometry via a motor-clutch mechanism.
Extended-Range Ultrarefractive 1D Photonic Crystal Prisms
Ting, David Z.
2007-01-01
A proposal has been made to exploit the special wavelength-dispersive characteristics of devices of the type described in One-Dimensional Photonic Crystal Superprisms (NPO-30232) NASA Tech Briefs, Vol. 29, No. 4 (April 2005), page 10a. A photonic crystal is an optical component that has a periodic structure comprising two dielectric materials with high dielectric contrast (e.g., a semiconductor and air), with geometrical feature sizes comparable to or smaller than light wavelengths of interest. Experimental superprisms have been realized as photonic crystals having three-dimensional (3D) structures comprising regions of amorphous Si alternating with regions of SiO2, fabricated in a complex process that included sputtering. A photonic crystal of the type to be exploited according to the present proposal is said to be one-dimensional (1D) because its contrasting dielectric materials would be stacked in parallel planar layers; in other words, there would be spatial periodicity in one dimension only. The processes of designing and fabricating 1D photonic crystal superprisms would be simpler and, hence, would cost less than do those for 3D photonic crystal superprisms. As in 3D structures, 1D photonic crystals may be used in applications such as wavelength-division multiplexing. In the extended-range configuration, it is also suitable for spectrometry applications. As an engineered structure or artificially engineered material, a photonic crystal can exhibit optical properties not commonly found in natural substances. Prior research had revealed several classes of photonic crystal structures for which the propagation of electromagnetic radiation is forbidden in certain frequency ranges, denoted photonic bandgaps. It had also been found that in narrow frequency bands just outside the photonic bandgaps, the angular wavelength dispersion of electromagnetic waves propagating in photonic crystal superprisms is much stronger than is the angular wavelength dispersion obtained
D1/D5 systems in N=4 string theories
International Nuclear Information System (INIS)
Gava, Edi; Hammou, Amine B.; Morales, Jose F.; Narain, Kumar S.
2001-01-01
We propose CFT descriptions of the D1/D5 system in a class of freely acting Z 2 orbifolds/orientifolds of type IIB theory, with sixteen unbroken supercharges. The CFTs describing D1/D5 systems involve N=(4,4) or N=(4,0) sigma models on (R 3 xS 1 xT 4 x(T 4 ) N /S N )/Z 2 , where the action of Z 2 is diagonal and its precise nature depends on the model. We also discuss D1(D5)-brane states carrying non-trivial Kaluza-Klein charges, which correspond to excitations of two-dimensional CFTs of the type (R 3 xS 1 xT 4 ) N /S N xZ 2 N . The resulting multiplicities for two-charge bound states are shown to agree with the predictions of U-duality. We raise a puzzle concerning the multiplicities of three-charge systems, which is generically present in all vacuum configurations with sixteen unbroken supercharges studied so far, including the more familiar type IIB on K3 case: the constraints put on BPS counting formulae by U-duality are apparently in contradiction with any CFT interpretation. We argue that the presence of RR backgrounds appearing in the symmetric product CFT may provide a resolution of this puzzle. Finally, we show that the whole tower of D-instanton corrections to certain 'BPS saturated couplings' in the low energy effective actions match with the corresponding one-loop threshold corrections on the dual fundamental string side
1D energy transport in a strongly scattering laboratory model
International Nuclear Information System (INIS)
Wijk, Kasper van; Scales, John A.; Haney, Matthew
2004-01-01
Radiative transfer (RT) theory is often invoked to describe energy propagation in strongly scattering media. Fitting RT to measured wave field intensities is rather different at late times, when the transport is diffusive, than at intermediate times (around one extinction mean free time), when ballistic and diffusive behavior coexist. While there are many examples of late-time RT fits, we describe ultrasonic multiple scattering measurements with RT over the entire range of times--from ballistic to diffusive. In addition to allowing us to retrieve the scattering and absorption mean free paths independently, our results also support theoretical predictions in 1D that suggest an intermediate regime of diffusive (nonlocalized) behavior
ESO science data product standard for 1D spectral products
Micol, Alberto; Arnaboldi, Magda; Delmotte, Nausicaa A. R.; Mascetti, Laura; Retzlaff, Joerg
2016-07-01
The ESO Phase 3 process allows the upload, validation, storage, and publication of reduced data through the ESO Science Archive Facility. Since its introduction, 2 million data products have been archived and published; 80% of them are one-dimensional extracted and calibrated spectra. Central to Phase3 is the ESO science data product standard that defines metadata and data format of any product. This contribution describes the ESO data standard for 1d-spectra, its adoption by the reduction pipelines of selected instrument modes for in-house generation of reduced spectra, the enhanced archive legacy value. Archive usage statistics are provided.
1D-transport properties of single superconducting lead nanowires
DEFF Research Database (Denmark)
Michotte, S.; Mátéfi-Tempfli, Stefan; Piraux, L.
2003-01-01
of the nanowire is small enough to ensure a 1D superconducting regime in a wide temperature range below T. The non-zero resistance in the superconducting state and its variation caused by fluctuations of the superconducting order parameter were measured versus temperature, magnetic field, and applied DC current......We report on the transport properties of single superconducting lead nanowires grown by an electrodeposition technique, embedded in a nanoporous track-etched polymer membrane. The nanowires are granular, have uniform diameter of ̃40 nm and a very large aspect ratio (̃500). The diameter...
1-D blood flow modelling in a running human body.
Szabó, Viktor; Halász, Gábor
2017-07-01
In this paper an attempt was made to simulate blood flow in a mobile human arterial network, specifically, in a running human subject. In order to simulate the effect of motion, a previously published immobile 1-D model was modified by including an inertial force term into the momentum equation. To calculate inertial force, gait analysis was performed at different levels of speed. Our results show that motion has a significant effect on the amplitudes of the blood pressure and flow rate but the average values are not effected significantly.
1D equation for toroidal momentum transport in a tokamak
International Nuclear Information System (INIS)
Rozhansky, V A; Senichenkov, I Yu
2010-01-01
A 1D equation for toroidal momentum transport is derived for a given set of turbulent transport coefficients. The averaging is performed taking account of the poloidal variation of the toroidal fluxes and is based on the ambipolar condition of the zero net radial current through the flux surface. It is demonstrated that taking account of the Pfirsch-Schlueter fluxes leads to a torque in the toroidal direction which is proportional to the gradient of the ion temperature. This effect is new and has not been discussed before. The boundary condition at the separatrix, which is based on the results of the 2D simulations of the edge plasma, is formulated.
1D models for condensation induced water hammer in pipelines
International Nuclear Information System (INIS)
Bloemeling, Frank; Neuhas, Thorsten; Schaffrath, Andreas
2013-01-01
Condensation induced water hammer (CIWH) are caused by contact of steam and subcooled water. Thus, modeling the direct contact condensation is a crucial step towards the simulation of condensation induced water hammer with 1D pressure surge codes. Therefore, also the TUeV NORD SysTec GmbH and Co. KG inhouse pressure surge code DYVRO has been equipped with a new contact condensation model. The validation of DYVRO against an experiment dealing with CIWH is presented in this contribution. (orig.)
1D models for condensation induced water hammer in pipelines
Energy Technology Data Exchange (ETDEWEB)
Bloemeling, Frank; Neuhas, Thorsten; Schaffrath, Andreas [TUEV NORD SysTec GmbH und Co. KG, Hamburg (Germany)
2013-03-15
Condensation induced water hammer (CIWH) are caused by contact of steam and subcooled water. Thus, modeling the direct contact condensation is a crucial step towards the simulation of condensation induced water hammer with 1D pressure surge codes. Therefore, also the TUeV NORD SysTec GmbH and Co. KG inhouse pressure surge code DYVRO has been equipped with a new contact condensation model. The validation of DYVRO against an experiment dealing with CIWH is presented in this contribution. (orig.)
Constitutive modeling and control of 1D smart composite structures
Briggs, Jonathan P.; Ostrowski, James P.; Ponte-Castaneda, Pedro
1998-07-01
Homogenization techniques for determining effective properties of composite materials may provide advantages for control of stiffness and strain in systems using hysteretic smart actuators embedded in a soft matrix. In this paper, a homogenized model of a 1D composite structure comprised of shape memory alloys and a rubber-like matrix is presented. With proportional and proportional/integral feedback, using current as the input state and global strain as an error state, implementation scenarios include the use of tractions on the boundaries and a nonlinear constitutive law for the matrix. The result is a simple model which captures the nonlinear behavior of the smart composite material system and is amenable to experiments with various control paradigms. The success of this approach in the context of the 1D model suggests that the homogenization method may prove useful in investigating control of more general smart structures. Applications of such materials could include active rehabilitation aids, e.g. wrist braces, as well as swimming/undulating robots, or adaptive molds for manufacturing processes.
Blood flow quantification using 1D CFD parameter identification
Brosig, Richard; Kowarschik, Markus; Maday, Peter; Katouzian, Amin; Demirci, Stefanie; Navab, Nassir
2014-03-01
Patient-specific measurements of cerebral blood flow provide valuable diagnostic information concerning cerebrovascular diseases rather than visually driven qualitative evaluation. In this paper, we present a quantitative method to estimate blood flow parameters with high temporal resolution from digital subtraction angiography (DSA) image sequences. Using a 3D DSA dataset and a 2D+t DSA sequence, the proposed algorithm employs a 1D Computational Fluid Dynamics (CFD) model for estimation of time-dependent flow values along a cerebral vessel, combined with an additional Advection Diffusion Equation (ADE) for contrast agent propagation. The CFD system, followed by the ADE, is solved with a finite volume approximation, which ensures the conservation of mass. Instead of defining a new imaging protocol to obtain relevant data, our cost function optimizes the bolus arrival time (BAT) of the contrast agent in 2D+t DSA sequences. The visual determination of BAT is common clinical practice and can be easily derived from and be compared to values, generated by a 1D-CFD simulation. Using this strategy, we ensure that our proposed method fits best to clinical practice and does not require any changes to the medical work flow. Synthetic experiments show that the recovered flow estimates match the ground truth values with less than 12% error in the mean flow rates.
Modeling atrazine transport in soil columns with HYDRUS-1D
Directory of Open Access Journals (Sweden)
John Leju Celestino Ladu
2011-09-01
Full Text Available Both physical and chemical processes affect the fate and transport of herbicides. It is useful to simulate these processes with computer programs to predict solute movement. Simulations were run with HYDRUS-1D to identify the sorption and degradation parameters of atrazine through calibration from the breakthrough curves (BTCs. Data from undisturbed and disturbed soil column experiments were compared and analyzed using the dual-porosity model. The study results show that the values of dispersivity are slightly lower in disturbed columns, suggesting that the more heterogeneous the structure is, the higher the dispersivity. Sorption parameters also show slight variability, which is attributed to the differences in soil properties, experimental conditions and methods, or other ecological factors. For both of the columns, the degradation rates were similar. Potassium bromide was used as a conservative non-reactive tracer to characterize the water movement in columns. Atrazine BTCs exhibited significant tailing and asymmetry, indicating non-equilibrium sorption during solute transport. The dual-porosity model was verified to best fit the BTCs of the column experiments. Greater or lesser concentration of atrazine spreading to the bottom of the columns indicated risk of groundwater contamination. Overall, HYDRUS-1D successfully simulated the atrazine transport in soil columns.
Analytic study of 1D diffusive relativistic shock acceleration
Energy Technology Data Exchange (ETDEWEB)
Keshet, Uri, E-mail: ukeshet@bgu.ac.il [Physics Department, Ben-Gurion University of the Negev, POB 653, Be' er-Sheva 84105 (Israel)
2017-10-01
Diffusive shock acceleration (DSA) by relativistic shocks is thought to generate the dN / dE ∝ E{sup −p} spectra of charged particles in various astronomical relativistic flows. We show that for test particles in one dimension (1D), p {sup −1}=1−ln[γ{sub d}(1+β{sub d})]/ln[γ{sub u}(1+β{sub u})], where β{sub u}(β{sub d}) is the upstream (downstream) normalized velocity, and γ is the respective Lorentz factor. This analytically captures the main properties of relativistic DSA in higher dimensions, with no assumptions on the diffusion mechanism. Unlike 2D and 3D, here the spectrum is sensitive to the equation of state even in the ultra-relativistic limit, and (for a J(üttner-Synge equation of state) noticeably hardens with increasing 1<γ{sub u}<57, before logarithmically converging back to p (γ{sub u→∞})=2. The 1D spectrum is sensitive to drifts, but only in the downstream, and not in the ultra-relativistic limit.
A Framework for Low-Communication 1-D FFT
Directory of Open Access Journals (Sweden)
Ping Tak Peter Tang
2013-01-01
Full Text Available In high-performance computing on distributed-memory systems, communication often represents a significant part of the overall execution time. The relative cost of communication will certainly continue to rise as compute-density growth follows the current technology and industry trends. Design of lower-communication alternatives to fundamental computational algorithms has become an important field of research. For distributed 1-D FFT, communication cost has hitherto remained high as all industry-standard implementations perform three all-to-all internode data exchanges (also called global transposes. These communication steps indeed dominate execution time. In this paper, we present a mathematical framework from which many single-all-to-all and easy-to-implement 1-D FFT algorithms can be derived. For large-scale problems, our implementation can be twice as fast as leading FFT libraries on state-of-the-art computer clusters. Moreover, our framework allows tradeoff between accuracy and performance, further boosting performance if reduced accuracy is acceptable.
Traveling waves in a continuum model of 1D schools
Oza, Anand; Kanso, Eva; Shelley, Michael
2017-11-01
We construct and analyze a continuum model of a 1D school of flapping swimmers. Our starting point is a delay differential equation that models the interaction between a swimmer and its upstream neighbors' wakes, which is motivated by recent experiments in the Applied Math Lab at NYU. We coarse-grain the evolution equations and derive PDEs for the swimmer density and variables describing the upstream wake. We study the equations both analytically and numerically, and find that a uniform density of swimmers destabilizes into a traveling wave. Our model makes a number of predictions about the properties of such traveling waves, and sheds light on the role of hydrodynamics in mediating the structure of swimming schools.
MX chains: 1-D analog of CuO planes?
International Nuclear Information System (INIS)
Gammel, J.T.; Batistic, I.; Bishop, A.R.; Loh, E.Y. Jr.; Marianer, S.
1989-01-01
We study a two-band Peierls-Hubbard model for halogen-bridged mixed-valence transition metal linear chain complexes (MX chains). We include electron-electron correlations (both Hubbard and PPP-like expressions) using several techniques including calculations in the zero-hopping limit, exact diagonalization of small systems, mean field approximation, and a Gutzwiller-like Ansatz for quantum phonons. The adiabatic optical absorption and phonon spectra for both photo-excited and doping induced defects (kinks, polarons, bipolarons, and excitons) are discussed. A long period phase which occurs even at commensurate filling for certain parameter values may be related to twinning. The effect of including the electron-phonon in addition to the electron-electron interaction on the polaron/bipolaron (pairing) competition is especially interesting when this class of compounds is viewed as a 1-D analog of high-temperature superconductors. 6 refs., 4 figs
Quadratic Finite Element Method for 1D Deterministic Transport
International Nuclear Information System (INIS)
Tolar, D R Jr.; Ferguson, J M
2004-01-01
In the discrete ordinates, or SN, numerical solution of the transport equation, both the spatial ((und r)) and angular ((und (Omega))) dependences on the angular flux ψ(und r),(und (Omega))are modeled discretely. While significant effort has been devoted toward improving the spatial discretization of the angular flux, we focus on improving the angular discretization of ψ(und r),(und (Omega)). Specifically, we employ a Petrov-Galerkin quadratic finite element approximation for the differencing of the angular variable (μ) in developing the one-dimensional (1D) spherical geometry S N equations. We develop an algorithm that shows faster convergence with angular resolution than conventional S N algorithms
Axial turbomachine modelling with a 1D axisymmetric approach
International Nuclear Information System (INIS)
Tauveron, Nicolas; Saez, Manuel; Ferrand, Pascal; Leboeuf, Francis
2007-01-01
This work concerns the design and safety analysis of direct cycle gas cooled reactor. The estimation of compressor and turbine performances in transient operations is of high importance for the designer. The first goal of this study is to provide a description of compressor behaviour in unstable conditions with a better understanding than the models based on performance maps ('traditional' 0D approach). A supplementary objective is to provide a coherent description of the turbine behaviour. The turbomachine modelling approach consists in the solution of 1D axisymmetric Navier-Stokes equations on an axial grid inside the turbomachine: mass, axial momentum, circumferential momentum and total-enthalpy balances are written. Blade forces are taken into account by using compressor or turbine blade cascade steady correlations. A particular effort has been developed to generate or test correlations in low mass flow and negative mass flow regimes, based on experimental data. The model is tested on open literature cases of the gas turbine aircraft community. For compressor and turbine, steady situations are fairly described, especially for medium and high mass flow rate. The dynamic behaviour of compressor is also quite well described, even in unstable operation (surge): qualitative tendencies (role of plenum volume and role of throttle) and some quantitative characteristics (frequency) are in a good agreement with experimental data. The application to transient simulations of gas cooled nuclear reactors is concentrated on the hypothetical 10 in. break accident. The results point out the importance of the location of the pipe rupture in a hypothetical break event. In some detailed cases, compressor surge and back flow through the circuit can occur. In order to be used in a design phase, a simplified model of surge has also been developed. This simplified model is applied to the gas fast reactor (GFR) and compared quite favourably with 1D axisymmetric simulation results
Thermalization threshold in models of 1D fermions
Mukerjee, Subroto; Modak, Ranjan; Ramswamy, Sriram
2013-03-01
The question of how isolated quantum systems thermalize is an interesting and open one. In this study we equate thermalization with non-integrability to try to answer this question. In particular, we study the effect of system size on the integrability of 1D systems of interacting fermions on a lattice. We find that for a finite-sized system, a non-zero value of an integrability breaking parameter is required to make an integrable system appear non-integrable. Using exact diagonalization and diagnostics such as energy level statistics and the Drude weight, we find that the threshold value of the integrability breaking parameter scales to zero as a power law with system size. We find the exponent to be the same for different models with its value depending on the random matrix ensemble describing the non-integrable system. We also study a simple analytical model of a non-integrable system with an integrable limit to better understand how a power law emerges.
Three-field modeling for MARS 1-D code
International Nuclear Information System (INIS)
Hwang, Moonkyu; Lim, Ho-Gon; Jeong, Jae-Jun; Chung, Bub-Dong
2006-01-01
In this study, the three-field modeling of the two-phase mixture is developed. The finite difference equations for the three-field equations thereafter are devised. The solution scheme has been implemented into the MARS 1-D code. The three-field formulations adopted are similar to those for MARS 3-D module, in a sense that the mass and momentum are treated separately for the entrained liquid and continuous liquid. As in the MARS-3D module, the entrained liquid and continuous liquid are combined into one for the energy equation, assuming thermal equilibrium between the two. All the non-linear terms are linearized to arrange the finite difference equation set into a linear matrix form with respect to the unknown arguments. The problems chosen for the assessment of the newly added entrained field consist of basic conceptual tests. Among the tests are gas-only test, liquid-only test, gas-only with supplied entrained liquid test, Edwards pipe problem, and GE level swell problem. The conceptual tests performed confirm the sound integrity of the three-field solver
XBWR, 1-D Xe Transients for BWR in Axial Geometry
International Nuclear Information System (INIS)
Forti, G.
1980-01-01
1 - Nature of the physical problem solved: 1-D xenon transients for BWRs in axial geometry. 2 - Method of solution: XBWR couples a two group neutron diffusion calculation in plane geometry with a two phase flow cooling channel calculation and the heat conduction in the typical fuel rod. The program allows following any given power time schedule, such as shut-down and restart, day-night power variation etc., while the reactor is being kept critical by control rod movement, variable poisoning of the core, or coolant flow recirculation rate. The xenon and iodine concentrations variation is evaluated pointwise (up to 100 points) by analytical solution for successive fixed time steps. At the end of each time step a new distribution of fluxes, power, voids and temperatures is obtained, which is consistent with the reactor critical condition as it is got by variation of the control parameter taking into account the feedbacks. The new flux distribution is used as input for xenon and iodine concentrations evolution in the next time step
The molecular spin filter constructed from 1D organic chain
International Nuclear Information System (INIS)
Chen, Wei; Xu, Ning; Wang, Baolin; Bian, Baoan
2014-01-01
We proposed a molecular spin filter, which is constructed from the 1D metallic organic chain (Fe n+1 (C 6 H 4 ) n ). The spin-polarized transport properties of the molecular spin filter are explored by combining density functional theory with nonequilibrium Green's function formalism. Theoretical results reveal that Fe n+1 (C 6 H 4 ) n molecular chain exhibits robust spin filtering effect, and only the spin-down electrons can transmit through the molecular chain. At the given bias voltage window [−1 eV,1 eV], the calculated spin filter efficiency is close to 100% in the case of n≥3. We find that the effect of spin polarization origin from both Fe n+1 and (C 6 H 4 ) n . In addition, negative difference resistance behavior appears in Fe n+1 (C 6 H 4 ) n molecular chain. The results can help us understand the spin transport properties of organic molecular chain. - Highlights: • Theoretical results reveal that Fe n+1 (C 6 H 4 ) n molecular chain exhibits robust spin filtering effect. • The effect of spin polarization origin from both of Fe n+1 and (C 6 H 4 ) n . • Negative difference resistance behavior appears in Fe n+1 (C 6 H 4 ) n molecular chain
Parallelization of elliptic solver for solving 1D Boussinesq model
Tarwidi, D.; Adytia, D.
2018-03-01
In this paper, a parallel implementation of an elliptic solver in solving 1D Boussinesq model is presented. Numerical solution of Boussinesq model is obtained by implementing a staggered grid scheme to continuity, momentum, and elliptic equation of Boussinesq model. Tridiagonal system emerging from numerical scheme of elliptic equation is solved by cyclic reduction algorithm. The parallel implementation of cyclic reduction is executed on multicore processors with shared memory architectures using OpenMP. To measure the performance of parallel program, large number of grids is varied from 28 to 214. Two test cases of numerical experiment, i.e. propagation of solitary and standing wave, are proposed to evaluate the parallel program. The numerical results are verified with analytical solution of solitary and standing wave. The best speedup of solitary and standing wave test cases is about 2.07 with 214 of grids and 1.86 with 213 of grids, respectively, which are executed by using 8 threads. Moreover, the best efficiency of parallel program is 76.2% and 73.5% for solitary and standing wave test cases, respectively.
Giant magnons in the D1-D5 system
International Nuclear Information System (INIS)
David, Justin R.; Sahoo, Bindusar
2008-01-01
We study giant magnons in the the D1-D5 system from both the boundary CFT and as classical solutions of the string sigma model in AdS 3 x S 3 x T 4 . Re-examining earlier studies of the symmetric product conformal field theory we argue that giant magnons in the symmetric product are BPS states in a centrally extended SU(1|1) x SU(1|1) superalgebra with two more additional central charges. The magnons carry these additional central charges locally but globally they vanish. Using a spin chain description of these magnons and the extended superalgebra we show that these magnons obey a dispersion relation which is periodic in momentum. We then identify these states on the string theory side and show that here too they are BPS in the same centrally extended algebra and obey the same dispersion relation which is periodic in momentum. This dispersion relation arises as the BPS condition for the extended algebra and is similar to that of magnons in N = 4 Yang-Mills
Cellular reprogramming dynamics follow a simple 1D reaction coordinate
Teja Pusuluri, Sai; Lang, Alex H.; Mehta, Pankaj; Castillo, Horacio E.
2018-01-01
Cellular reprogramming, the conversion of one cell type to another, induces global changes in gene expression involving thousands of genes, and understanding how cells globally alter their gene expression profile during reprogramming is an ongoing problem. Here we reanalyze time-course data on cellular reprogramming from differentiated cell types to induced pluripotent stem cells (iPSCs) and show that gene expression dynamics during reprogramming follow a simple 1D reaction coordinate. This reaction coordinate is independent of both the time it takes to reach the iPSC state as well as the details of the experimental protocol used. Using Monte-Carlo simulations, we show that such a reaction coordinate emerges from epigenetic landscape models where cellular reprogramming is viewed as a ‘barrier-crossing’ process between cell fates. Overall, our analysis and model suggest that gene expression dynamics during reprogramming follow a canonical trajectory consistent with the idea of an ‘optimal path’ in gene expression space for reprogramming.
Modeling of 1D Anomalous Diffusion in Fractured Nanoporous Media
Directory of Open Access Journals (Sweden)
Albinali Ali
2016-07-01
Full Text Available Fractured nanoporous reservoirs include multi-scale and discontinuous fractures coupled with a complex nanoporous matrix. Such systems cannot be described by the conventional dual-porosity (or multi-porosity idealizations due to the presence of different flow mechanisms at multiple scales. More detailed modeling approaches, such as Discrete Fracture Network (DFN models, similarly suffer from the extensive data requirements dictated by the intricacy of the flow scales, which eventually deter the utility of these models. This paper discusses the utility and construction of 1D analytical and numerical anomalous diffusion models for heterogeneous, nanoporous media, which is commonly encountered in oil and gas production from tight, unconventional reservoirs with fractured horizontal wells. A fractional form of Darcy’s law, which incorporates the non-local and hereditary nature of flow, is coupled with the classical mass conservation equation to derive a fractional diffusion equation in space and time. Results show excellent agreement with established solutions under asymptotic conditions and are consistent with the physical intuitions.
Effective theory of black holes in the 1/D expansion
International Nuclear Information System (INIS)
Emparan, Roberto; Shiromizu, Tetsuya; Suzuki, Ryotaku; Tanabe, Kentaro; Tanaka, Takahiro
2015-01-01
The gravitational field of a black hole is strongly localized near its horizon when the number of dimensions D is very large. In this limit, we can effectively replace the black hole with a surface in a background geometry (e.g. Minkowski or Anti-deSitter space). The Einstein equations determine the effective equations that this ‘black hole surface’ (or membrane) must satisfy. We obtain them up to next-to-leading order in 1/D for static black holes of the Einstein-(A)dS theory. To leading order, and also to next order in Minkowski backgrounds, the equations of the effective theory are the same as soap-film equations, possibly up to a redshift factor. In particular, the Schwarzschild black hole is recovered as a spherical soap bubble. Less trivially, we find solutions for ‘black droplets’, i.e. black holes localized at the boundary of AdS, and for non-uniform black strings.
Energy Technology Data Exchange (ETDEWEB)
Starik, I E; Rudenko, S I; Artem' ev, V V; Butomo, S V; Drozhzhin, V M; Romanova, E N
1962-01-15
5500 ans represente, pour des quantites de 40 et 70 ml de scintillateur, 65 et 25 ans respectivement. Les auteurs ont effectue des mesures sur des specimens archeologiques provenant de diverses regions de l'URSS. (author) [Spanish] Con el objeto de determinar mediante carbono radiactivo la edad absoluta de muestras arqueologicas, los autores utilizan un contador de centelleo sencillo con un fotomultiplicador, sin refrigeracion. Consiguen reducir la actividad de fondo empleando un blindaje formado por laminas de acero y de plomo, procediendo a una seleccion de los impulsos segun su amplitud y construyendo el detector con materiales seleccionados y ''purificados''. A partir del carbono contenido en la muestra arqueologica, se sintetiza etil benceno. Para efectuar las mediciones, se han utilizado de 18 a 72 ml de centelleador liquido, cantidad que corresponde de 3 a 12 g de carbono en la muestra. Empleando 40 ml de centelleador, la velocidad de recuento de la actividad de fondo y la del carbono contemporaneo (sin fondo) fueron respectivamente de 23,5 y 37 impulsos/min; con 70 ml, estas velocidades fueron de 28 y 57 impulsos/min. El error estadistico correspondiente a mediciones de 48 horas de duracion de muestras de 5500 anos de edad asciende a 65 y 35 anos cuando se emplean 40 ml y 70 ml de centelleador, respectivamente. Se midieron muestras arqueologicas procedentes de diversas regiones de la Union Sovietica. (author) [Russian] Dlya opredeleniya absolyutnogo vozrasta arkheologicheskikh obraztsov po radiouglerodu ispol'zuetsya prostoj stsintillyatsionnyj schetchik s odnim fotoumnozhitelem bez okhlazhdeniya. Snizhenie fona dostigaetsya primeneniem zashchity iz sloev stali i svintsa, amplitudnoj selektsii impul'sov i vyborom ''chistykh'' materialov dlya izgotovleniya detektora. Iz ugleroda, soderzhashchegosya v arkheologicheskom obraztse, sinteziruetsya ehtilbenzol. Pri izmereniyakh ispol'zovalos' ot 18 do 72 ml zhidkogo stsintillyatora, chto sootvetstvovalo vvedeniyu ot 3
Treebak, Jonas T; Pehmøller, Christian; Kristensen, Jonas M; Kjøbsted, Rasmus; Birk, Jesper B; Schjerling, Peter; Richter, Erik A; Goodyear, Laurie J; Wojtaszewski, Jørgen F P
2014-01-15
We investigated the phosphorylation signatures of two Rab-GTPase activating proteins TBC1D1 and TBC1D4 in human skeletal muscle in response to physical exercise and physiological insulin levels induced by a carbohydrate rich meal using a paired experimental design. Eight healthy male volunteers exercised in the fasted or fed state and muscle biopsies were taken before and immediately after exercise. We identified TBC1D1/4 phospho-sites that (1) did not respond to exercise or postprandial increase in insulin (TBC1D4: S666), (2) responded to insulin only (TBC1D4: S318), (3) responded to exercise only (TBC1D1: S237, S660, S700; TBC1D4: S588, S751), and (4) responded to both insulin and exercise (TBC1D1: T596; TBC1D4: S341, T642, S704). In the insulin-stimulated leg, Akt phosphorylation of both T308 and S473 correlated significantly with multiple sites on both TBC1D1 (T596) and TBC1D4 (S318, S341, S704). Interestingly, in the exercised leg in the fasted state TBC1D1 phosphorylation (S237, T596) correlated significantly with the activity of the α2/β2/γ3 AMPK trimer, whereas TBC1D4 phosphorylation (S341, S704) correlated with the activity of the α2/β2/γ1 AMPK trimer. Our data show differential phosphorylation of TBC1D1 and TBC1D4 in response to physiological stimuli in human skeletal muscle and support the idea that Akt and AMPK are upstream kinases. TBC1D1 phosphorylation signatures were comparable between in vitro contracted mouse skeletal muscle and exercised human muscle, and we show that AMPK regulated phosphorylation of these sites in mouse muscle. Contraction and exercise elicited a different phosphorylation pattern of TBC1D4 in mouse compared with human muscle, and although different circumstances in our experimental setup may contribute to this difference, the observation exemplifies that transferring findings between species is problematic.
Synthesis, characterization, and physical properties of 1D nanostructures
Marley, Peter Mchael
The roster of materials exhibiting metal---insulator transitions with sharply discontinuous switching of electrical conductivity close to room temperature remains rather sparse despite the fundamental interest in the electronic instabilities manifested in such materials and the plethora of potential technological applications, ranging from frequency-agile metamaterials to electrochromic coatings and Mott field-effect transistors. Vanadium oxide bronzes with the general formula MxV2O 5, provide a wealth of compositions and frameworks where strong electron correlation can be systematically (albeit thus far only empirically) tuned. Charge fluctuations along the quasi-1D frameworks of MxV 2O5 bronzes have evinced much recent interest owing to the manifestation of colossal metal---insulator transitions and superconductivity. We start with a general review on the phase transitions, both electronic and structural, of vanadium oxide bronzes in Chapter 1. In Chapter 2, we demonstrate an unprecedented reversible transformation between double-layered (delta) and tunnel (beta) quasi-1D geometries for nanowires of a divalent vanadium bronze CaxV2O5 (x ˜0.23) upon annealing-induced dehydration and hydrothermally-induced hydration. Such a facile hydration/dehydration-induced interconversion between two prominent quasi-1D structures (accompanied by a change in charge ordering motifs) has not been observed in the bulk and is posited to result from the ease of propagation of crystallographic slip processes across the confined nanowire widths for the delta→beta conversion and the facile diffusion of water molecules within the tunnel geometries for the beta→delta reversion. We demonstrate in Chapter 3 unprecedented pronounced metal-insulator transitions induced by application of a voltage for nanowires of a vanadium oxide bronze with intercalated divalent cations, beta-PbxV 2O5 (x ˜0.33). The induction of the phase transition through application of an electric field at room
From nonfinite to finite 1D arrays of origami tiles.
Wu, Tsai Chin; Rahman, Masudur; Norton, Michael L
2014-06-17
average solution structures for blocks is more readily achieved using computer models than using direct imaging methods. The development of scalable 1D-origami arrays composed of uniquely addressable components is a logical, if not necessary, step in the evolution of higher order fully addressable structures. Our research into the fabrication of arrays has led us to generate a listing of several important areas of future endeavor. Of high importance is the re-enforcement of the mechanical properties of the building blocks and the organization of multiple arrays on a surface of technological importance. While addressing this short list of barriers to progress will prove challenging, coherent development along each of these lines of inquiry will accelerate the appearance of commercial scale molecular manufacturing.
DEFF Research Database (Denmark)
Jacque, C M; Baumann, N A; Bock, E
1976-01-01
Seven antigens specific to the nervous tissue were measured in both Jimpy and control mice. The D5 and the GFA protein, both components of the glia, are strongly increased in the mutant while the neuronal components 14-3-2, synaptin C1, D1, D2 and D3 are unchanged....
DEFF Research Database (Denmark)
Treebak, Jonas Thue; Pehmøller, Christian; Kristensen, Jonas Møller
2014-01-01
We investigated the phosphorylation signatures of two Rab GTPase activating proteins TBC1D1 and TBC1D4 in human skeletal muscle in response to physical exercise and physiological insulin levels induced by a carbohydrate rich meal using a paired experimental design. Eight healthy male volunteers e...
Subrahmanyam, Priyanka B; Carey, Gregory B; Webb, Tonya J
2014-09-01
NKT cells are a unique subset of T cells that recognize glycolipid Ags presented in the context of CD1d molecules. NKT cells mount strong antitumor responses and are a major focus in developing effective cancer immunotherapy. It is known that CD1d molecules are constantly internalized from the cell surface, recycled through the endocytic compartments, and re-expressed on the cell surface. However, little is known about the regulation of CD1d-mediated Ag processing and presentation in B cell lymphoma. Prosurvival factors of the Bcl-2 family, such as Bcl-xL, are often upregulated in B cell lymphomas and are intimately linked to sphingolipid metabolism, as well as the endocytic compartments. We hypothesized that Bcl-xL can regulate CD1d-mediated Ag presentation to NKT cells. We found that overexpression or induction of Bcl-xL led to increased Ag presentation to NKT cells. Conversely, the inhibition or knockdown of Bcl-xL led to decreased NKT cell activation. Furthermore, knockdown of Bcl-xL resulted in the loss of CD1d trafficking to lysosome-associated membrane protein 1(+) compartments. Rab7, a late endosomal protein, was upregulated and CD1d molecules accumulated in the Rab7(+) late endosomal compartment. These results demonstrate that Bcl-xL regulates CD1d-mediated Ag processing and presentation to NKT cells by altering the late endosomal compartment and changing the intracellular localization of CD1d. Copyright © 2014 by The American Association of Immunologists, Inc.
Forming a complex with MHC class I molecules interferes with mouse CD1d functional expression.
Directory of Open Access Journals (Sweden)
Renukaradhya J Gourapura
Full Text Available CD1d molecules are structurally similar to MHC class I, but present lipid antigens as opposed to peptides. Here, we show that MHC class I molecules physically associate with (and regulate the functional expression of mouse CD1d on the surface of cells. Low pH (3.0 acid stripping of MHC class I molecules resulted in increased surface expression of murine CD1d on antigen presenting cells as well as augmented CD1d-mediated antigen presentation to NKT cells. Consistent with the above results, TAP1-/- mice were found to have a higher percentage of type I NKT cells as compared to wild type mice. Moreover, bone marrow-derived dendritic cells from TAP1-/- mice showed increased antigen presentation by CD1d compared to wild type mice. Together, these results suggest that MHC class I molecules can regulate NKT cell function, in part, by masking CD1d.
Energy Technology Data Exchange (ETDEWEB)
Giles, Jr., R. H.; Peterle, T. J. [Ohio Co-Operative Wildlife Research Unit, Columbus, OH (United States)
1963-09-15
The distribution of malathion (0,0-dimethyl dithiophosphate of diethyl mercaptosuccinate) in a forested area of east-central Ohio was studied during the summer of 1962. This broad-spectrum insecticide was selected for study on the basis of its increased use in the control of many important forest insect pests in deciduous and coniferous forests of the United States. The need for greater knowledge of the ecology of a forested area, coupled with the need for a more complete understanding of the effects of an insecticide on the fauna, provided the unique possibility of studying the problems simultaneously through the utilization of an isotope-labelled insecticide. S{sup 35} was selected because of its low beta energy (0.167 MeV) and the adequate half-life (87.1 d). Preliminary one-tenth-acre plot studies in the summer of 1961 provided us with potential application rates in terms of total radiation and also allowed the development of sample preparation technique. A faunal survey of two 20-acre watersheds was conducted during the summer of 1961. In May of 1962, one of the watersheds was treated with an application of 2 lb technical-grade malathion per acre in a formulation of xylene, triton X-155 emulsifier and water. Themalathion was synthesized with S{sup 35} by the Radiochemical Centre, Amersham, England. 1 c of activity was aerially applied to one of the 20-acre forested areas on 15 May and 25 May 1962. The specific activity of the synthesized malathion was 17. 5 m c/mM. The distribution of components of the aerial spray within the forest was measured. Electrically-operated air samplers provided estimates of drift off the area; helium-filled balloons bearing frosted-glass discs measured above-canopy application; glass discs suspended vertically as well as bark sampler, measured quantities settling out at different layers in the canopy; glass discs and spotting-enamel paper not only allowed a measure of horizontal distribution but a check of a standard spray
Contraction regulates site-specific phosphorylation of TBC1D1 in skeletal muscle.
Vichaiwong, Kanokwan; Purohit, Suneet; An, Ding; Toyoda, Taro; Jessen, Niels; Hirshman, Michael F; Goodyear, Laurie J
2010-10-15
TBC1D1 (tre-2/USP6, BUB2, cdc16 domain family member 1) is a Rab-GAP (GTPase-activating protein) that is highly expressed in skeletal muscle, but little is known about TBC1D1 regulation and function. We studied TBC1D1 phosphorylation on three predicted AMPK (AMP-activated protein kinase) phosphorylation sites (Ser231, Ser660 and Ser700) and one predicted Akt phosphorylation site (Thr590) in control mice, AMPKα2 inactive transgenic mice (AMPKα2i TG) and Akt2-knockout mice (Akt2 KO). Muscle contraction significantly increased TBC1D1 phosphorylation on Ser231 and Ser660, tended to increase Ser700 phosphorylation, but had no effect on Thr590. AICAR (5-aminoimidazole-4-carboxyamide ribonucleoside) also increased phosphorylation on Ser231, Ser660 and Ser700, but not Thr590, whereas insulin only increased Thr590 phosphorylation. Basal and contraction-stimulated TBC1D1 Ser231, Ser660 and Ser700 phosphorylation were greatly reduced in AMPKα2i TG mice, although contraction still elicited a small increase in phosphorylation. Akt2 KO mice had blunted insulin-stimulated TBC1D1 Thr590 phosphorylation. Contraction-stimulated TBC1D1 Ser231 and Ser660 phosphorylation were normal in high-fat-fed mice. Glucose uptake in vivo was significantly decreased in tibialis anterior muscles overexpressing TBC1D1 mutated on four predicted AMPK phosphorylation sites. In conclusion, contraction causes site-specific phosphorylation of TBC1D1 in skeletal muscle, and TBC1D1 phosphorylation on AMPK sites regulates contraction-stimulated glucose uptake. AMPK and Akt regulate TBC1D1 phosphorylation, but there must be additional upstream kinases that mediate TBC1D1 phosphorylation in skeletal muscle.
Exercise increases TBC1D1 phosphorylation in human skeletal muscle
Jessen, Niels; An, Ding; Lihn, Aina S.; Nygren, Jonas; Hirshman, Michael F.; Thorell, Anders
2011-01-01
Exercise and weight loss are cornerstones in the treatment and prevention of type 2 diabetes, and both interventions function to increase insulin sensitivity and glucose uptake into skeletal muscle. Studies in rodents demonstrate that the underlying mechanism for glucose uptake in muscle involves site-specific phosphorylation of the Rab-GTPase-activating proteins AS160 (TBC1D4) and TBC1D1. Multiple kinases, including Akt and AMPK, phosphorylate TBC1D1 and AS160 on distinct residues, regulating their activity and allowing for GLUT4 translocation. In contrast to extensive rodent-based studies, the regulation of AS160 and TBC1D1 in human skeletal muscle is not well understood. In this study, we determined the effects of dietary intervention and a single bout of exercise on TBC1D1 and AS160 site-specific phosphorylation in human skeletal muscle. Ten obese (BMI 33.4 ± 2.4, M-value 4.3 ± 0.5) subjects were studied at baseline and after a 2-wk dietary intervention. Muscle biopsies were obtained from the subjects in the resting (basal) state and immediately following a 30-min exercise bout (70% V̇o2 max). Muscle lysates were analyzed for AMPK activity and Akt phosphorylation and for TBC1D1 and AS160 phosphorylation on known or putative AMPK and Akt sites as follows: AS160 Ser711 (AMPK), TBC1D1 Ser231 (AMPK), TBC1D1 Ser660 (AMPK), TBC1D1 Ser700 (AMPK), and TBC1D1 Thr590 (Akt). The diet intervention that consisted of a major shift in the macronutrient composition resulted in a 4.2 ± 0.4 kg weight loss (P < 0.001) and a significant increase in insulin sensitivity (M value 5.6 ± 0.6), but surprisingly, there was no effect on expression or phosphorylation of any of the muscle-signaling proteins. Exercise increased muscle AMPKα2 activity but did not increase Akt phosphorylation. Exercise increased phosphorylation on AS160 Ser711, TBC1D1 Ser231, and TBC1D1 Ser660 but had no effect on TBC1D1 Ser700. Exercise did not increase TBC1D1 Thr590 phosphorylation or TBC1D1/AS160 PAS
The Planar Sandwich and Other 1D Planar Heat Flow Test Problems in ExactPack
Energy Technology Data Exchange (ETDEWEB)
Singleton, Jr., Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-01-24
This report documents the implementation of several related 1D heat flow problems in the verification package ExactPack [1]. In particular, the planar sandwich class defined in Ref. [2], as well as the classes PlanarSandwichHot, PlanarSandwichHalf, and other generalizations of the planar sandwich problem, are defined and documented here. A rather general treatment of 1D heat flow is presented, whose main results have been implemented in the class Rod1D. All planar sandwich classes are derived from the parent class Rod1D.
Energy Technology Data Exchange (ETDEWEB)
Ozaki, N.; Lappalainen, J.; Linnoila, M. [National Institute on Alcohol Abuse and Alcoholism, Rockville, MD (United States)] [and others
1995-04-24
Serotonin (5-HT){sub ID} receptors are 5-HT release-regulating autoreceptors in the human brain. Abnormalities in brain 5-HT function have been hypothesized in the pathophysiology of various psychiatric disorders, including obsessive-compulsive disorder, autism, mood disorders, eating disorders, impulsive violent behavior, and alcoholism. Thus, mutations occurring in 5-HT autoreceptors may cause or increase the vulnerability to any of these conditions. 5-HT{sub 1D{alpha}} and 5-HT{sub 1D{Beta}} subtypes have been previously localized to chromosomes 1p36.3-p34.3 and 6q13, respectively, using rodent-human hybrids and in situ localization. In this communication, we report the detection of a 5-HT{sub 1D{alpha}} receptor gene polymorphism by single strand conformation polymorphism (SSCP) analysis of the coding sequence. The polymorphism was used for fine scale linkage mapping of 5-HT{sub 1D{alpha}} on chromosome 1. This polymorphism should also be useful for linkage studies in populations and in families. Our analysis also demonstrates that functionally significant coding sequence variants of the 5-HT{sub 1D{alpha}} are probably not abundant either among alcoholics or in the general population. 14 refs., 1 fig., 1 tab.
International Nuclear Information System (INIS)
Linderoth, T R; Horch, S; Petersen, L; Laegsgaard, E; Stensgaard, I; Besenbacher, F
2005-01-01
The technique of scanning tunnelling microscopy (STM) uniquely allows dynamic processes on surfaces to be followed directly in real space and at atomic resolution. Results for the 551225 surface diffusion of Pt adatoms and clusters on the anisotropic, missing row reconstructed Pt(110)-(1 x 2) surface are briefly reviewed. Mass transport in this system is entirely one-dimensional (1D) since, at low adatom coverage, atoms and clusters are confined to the missing row troughs. In this paper, we therefore address the question if Pt/Pt(110)-(1 x 2) is a 1D model system to study late stage growth phenomena such as island ripening? From STM measurements, we quantify the morphology changes resulting from annealing a surface configuration with small 1D Pt islands in the missing row troughs to temperatures in the interval 369-395 K. Interestingly, the resulting increase in island sizes (ripening) cannot be accounted for by the known island and adatom mobilities within a 1D model. An explanation is provided from dynamic, time-resolved 'STM-movies' that directly reveal two novel island-mediated mechanisms for inter-trough mass transport which cause the Pt/Pt(110)-(1 x 2) system not to be purely 1D at the higher surface coverage used in the annealing experiments
Modeling of 1D motion of interstitial clusters in iron under HVEM irradiation
International Nuclear Information System (INIS)
Satoh, Y.; Hamaoka, T.; Matsui, H.
2007-01-01
Full text of publication follows: We examined 1D motion of interstitial clusters in Fe under electron irradiation at room temperature using high voltage electron microscopy (HVEM). We found that some impurities have essential effects on the experimental 1D motion behavior. The characteristics of experimental 1D motion were obtained as follows: 1) 1D motion appears as discrete jumps (namely, stepwise positional changes) at irregular intervals. 2) Sometimes a set of several successive jumps occurs between certain two points (back and forth motion). 3) The frequency of 1D jumps is almost proportional to the electron beam intensity, while the distribution of 1D jump distance does not change much with the intensity. Very few 1D jumps are observed with a 200 kV TEM at room temperature. 4) The distance and the frequency of 1D jumps are greatly reduced in a specimen of low purities. Taking account for effects of impurities, we propose a mechanism of the experimental 1D jumps, as follows. Small interstitial clusters are regarded to be essentially mobile as crowdion bundles. Then interstitial clusters in a stationary state are trapped by impurity atom(s), due to elastic interactions between impurities and crowdion bundle. The electron irradiation changes the cluster into a mobile state by a detrapping: for example, the impurity atom is displaced to apart from the crowdion bundle. Then the crowdion bundle makes a free 1D migration until it is trapped by another impurity atom. Because of small activation energy for 1D migration, we cannot observe the detailed 1D random walk process, but a stepwise positional change from an impurity to another impurity. The average size of interstitial clusters observed in the present experiments was around 5 nm, corresponding to a bundle of 300 crowdions. In a rough estimate assuming that an impurity atom on any crowdion in the crowdion bundle prevent the migration of the bundle, the mean free path is about 75 nm and 7.5 nm at the impurity
Potent neutralizing anti-CD1d antibody reduces lung cytokine release in primate asthma model.
Nambiar, Jonathan; Clarke, Adam W; Shim, Doris; Mabon, David; Tian, Chen; Windloch, Karolina; Buhmann, Chris; Corazon, Beau; Lindgren, Matilda; Pollard, Matthew; Domagala, Teresa; Poulton, Lynn; Doyle, Anthony G
2015-01-01
CD1d is a receptor on antigen-presenting cells involved in triggering cell populations, particularly natural killer T (NKT) cells, to release high levels of cytokines. NKT cells are implicated in asthma pathology and blockade of the CD1d/NKT cell pathway may have therapeutic potential. We developed a potent anti-human CD1d antibody (NIB.2) that possesses high affinity for human and cynomolgus macaque CD1d (KD ∼100 pM) and strong neutralizing activity in human primary cell-based assays (IC50 typically <100 pM). By epitope mapping experiments, we showed that NIB.2 binds to CD1d in close proximity to the interface of CD1d and the Type 1 NKT cell receptor β-chain. Together with data showing that NIB.2 inhibited stimulation via CD1d loaded with different glycolipids, this supports a mechanism whereby NIB.2 inhibits NKT cell activation by inhibiting Type 1 NKT cell receptor β-chain interactions with CD1d, independent of the lipid antigen in the CD1d antigen-binding cleft. The strong in vitro potency of NIB.2 was reflected in vivo in an Ascaris suum cynomolgus macaque asthma model. Compared with vehicle control, NIB.2 treatment significantly reduced bronchoalveolar lavage (BAL) levels of Ascaris-induced cytokines IL-5, IL-8 and IL-1 receptor antagonist, and significantly reduced baseline levels of GM-CSF, IL-6, IL-15, IL-12/23p40, MIP-1α, MIP-1β, and VEGF. At a cellular population level NIB.2 also reduced numbers of BAL lymphocytes and macrophages, and blood eosinophils and basophils. We demonstrate that anti-CD1d antibody blockade of the CD1d/NKT pathway modulates inflammatory parameters in vivo in a primate inflammation model, with therapeutic potential for diseases where the local cytokine milieu is critical.
CD1d-Restricted Type II NKT Cells Reactive With Endogenous Hydrophobic Peptides.
Nishioka, Yusuke; Masuda, Sakiko; Tomaru, Utano; Ishizu, Akihiro
2018-01-01
NKT cells belong to a distinct subset of T cells that recognize hydrophobic antigens presented by major histocompatibility complex class I-like molecules, such as CD1d. Because NKT cells stimulated by antigens can activate or suppress other immunocompetent cells through an immediate production of a large amount of cytokines, they are regarded as immunological modulators. CD1d-restricted NKT cells are classified into two subsets, namely, type I and type II. CD1d-restricted type I NKT cells express invariant T cell receptors (TCRs) and react with lipid antigens, including the marine sponge-derived glycolipid α-galactosylceramide. On the contrary, CD1d-restricted type II NKT cells recognize a wide variety of antigens, including glycolipids, phospholipids, and hydrophobic peptides, by their diverse TCRs. In this review, we focus particularly on CD1d-restricted type II NKT cells that recognize endogenous hydrophobic peptides presented by CD1d. Previous studies have demonstrated that CD1d-restricted type I NKT cells usually act as pro-inflammatory cells but sometimes behave as anti-inflammatory cells. It has been also demonstrated that CD1d-restricted type II NKT cells play opposite roles to CD1d-restricted type I NKT cells; thus, they function as anti-inflammatory or pro-inflammatory cells depending on the situation. In line with this, CD1d-restricted type II NKT cells that recognize type II collagen peptide have been demonstrated to act as anti-inflammatory cells in diverse inflammation-induction models in mice, whereas pro-inflammatory CD1d-restricted type II NKT cells reactive with sterol carrier protein 2 peptide have been demonstrated to be involved in the development of small vessel vasculitis in rats.
A rational route to SCM materials based on a 1-D cobalt selenocyanato coordination polymer.
Boeckmann, Jan; Näther, Christian
2011-07-07
Thermal annealing of a discrete complex with terminal SeCN anions and monodentate coligands enforces the formation of a 1D cobalt selenocyanato coordination polymer that shows slow relaxation of the magnetization. Therefore, this approach offers a rational route to 1D materials that might show single chain magnetic behaviour. This journal is © The Royal Society of Chemistry 2011
Influence of lipid rafts on CD1d presentation by dendritic cells
DEFF Research Database (Denmark)
Peng, Wei; Martaresche, Cecile; Escande-Beillard, Nathalie
2011-01-01
corresponding to lipid rafts and we describe that alpha-GalCer enhanced CD1d amount in the low density detergent insoluble fraction. We conclude that the membrane environment of CD1d can influence antigen presentation mainly when the endocytic pathway is required. Flow cytometry analysis can provide additional...
Development of a 3D consistent 1D neutronics model for reactor core simulation
International Nuclear Information System (INIS)
Lee, Ki Bog; Joo, Han Gyu; Cho, Byung Oh; Zee, Sung Quun
2001-02-01
In this report a 3D consistent 1D model based on nonlinear analytic nodal method is developed to reproduce the 3D results. During the derivation, the current conservation factor (CCF) is introduced which guarantees the same axial neutron currents obtained from the 1D equation as the 3D reference values. Furthermore in order to properly use 1D group constants, a new 1D group constants representation scheme employing tables for the fuel temperature, moderator density and boron concentration is developed and functionalized for the control rod tip position. To test the 1D kinetics model with CCF, several steady state and transient calculations were performed and compared with 3D reference values. The errors of K-eff values were reduced about one tenth when using CCF without significant computational overhead. And the errors of power distribution were decreased to the range of one fifth or tenth at steady state calculation. The 1D kinetics model with CCF and the 1D group constant functionalization employing tables as a function of control rod tip position can provide preciser results at the steady state and transient calculation. Thus it is expected that the 1D kinetics model derived in this report can be used in the safety analysis, reactor real time simulation coupled with system analysis code, operator support system etc.
Meier-Abt, F; Hammann-Hänni, A; Stieger, B; Ballatori, N; Boyer, J L
2007-02-01
Organic anion transporting polypeptides (rodent Oatp; human OATP) mediate cellular uptake of numerous organic compounds including xenobiotic toxins into mammalian hepatocytes. In the little skate Leucoraja erinacea a liver-specific Oatp (Oatp1d1, also called sOatp) has been identified and suggested to represent an evolutionarily ancient precursor of the mammalian liver OATP1B1 (human), Oatp1b2 (rat), and OATP1B3 (human). The present study tested whether Oatp1d1 shares functional transport activity of the xenobiotic oligopeptide toxins phalloidin and microcystin with the mammalian liver Oatps/OATPs. The phalloidin analogue [(3)H]-demethylphalloin was taken up into skate hepatocytes with high affinity (Km approximately 0.4 microM), and uptake could be inhibited by phalloidin and a variety of typical Oatp/OATP substrates such as bromosulfophthalein, bile salts, estrone-3-sulfate, cyclosporine A and high concentrations of microcystin-LR (Ki approximately 150 microM). When expressed in Xenopus laevis oocytes Oatp1d1 increased uptake of demethylphalloin (Km approximately 2.2 microM) and microcystin-LR (Km approximately 27 microM) 2- to 3-fold over water-injected oocytes, whereas the alternative skate liver organic anion transporter, the dimeric Ostalpha/beta, exhibited no phalloidin and only minor microcystin-LR transport. Also, the closest mammalian Oatp1d1 orthologue, the human brain and testis OATP1C1, did not show any phalloidin transport activity. These results demonstrate that the evolutionarily ancient Oatp1d1 is able to mediate uptake of cyclic oligopeptide toxins into skate liver. The findings support the notion that Oatp1d1 is a precursor of the liver-specific mammalian Oatps/OATPs and that its transport properties are closely associated with certain forms of toxic liver injury such as for example protein phosphatase inhibition by the water-borne toxin microcystin.
International Nuclear Information System (INIS)
Meier-Abt, F.; Hammann-Haenni, A.; Stieger, B.; Ballatori, N.; Boyer, J.L.
2007-01-01
Organic anion transporting polypeptides (rodent Oatp; human OATP) mediate cellular uptake of numerous organic compounds including xenobiotic toxins into mammalian hepatocytes. In the little skate Leucoraja erinacea a liver-specific Oatp (Oatp1d1, also called sOatp) has been identified and suggested to represent an evolutionarily ancient precursor of the mammalian liver OATP1B1 (human), Oatp1b2 (rat), and OATP1B3 (human). The present study tested whether Oatp1d1 shares functional transport activity of the xenobiotic oligopeptide toxins phalloidin and microcystin with the mammalian liver Oatps/OATPs. The phalloidin analogue [ 3 H]-demethylphalloin was taken up into skate hepatocytes with high affinity (Km ∼ 0.4 μM), and uptake could be inhibited by phalloidin and a variety of typical Oatp/OATP substrates such as bromosulfophthalein, bile salts, estrone-3-sulfate, cyclosporine A and high concentrations of microcystin-LR (Ki ∼ 150 μM). When expressed in Xenopus laevis oocytes Oatp1d1 increased uptake of demethylphalloin (Km ∼ 2.2 μM) and microcystin-LR (Km ∼ 27 μM) 2- to 3-fold over water-injected oocytes, whereas the alternative skate liver organic anion transporter, the dimeric Ostα/β, exhibited no phalloidin and only minor microcystin-LR transport. Also, the closest mammalian Oatp1d1 orthologue, the human brain and testis OATP1C1, did not show any phalloidin transport activity. These results demonstrate that the evolutionarily ancient Oatp1d1 is able to mediate uptake of cyclic oligopeptide toxins into skate liver. The findings support the notion that Oatp1d1 is a precursor of the liver-specific mammalian Oatps/OATPs and that its transport properties are closely associated with certain forms of toxic liver injury such as for example protein phosphatase inhibition by the water-borne toxin microcystin
Energy Technology Data Exchange (ETDEWEB)
Lambe, J [Physics Department, Ford Motor Company, Scientific Laboratory, Dearborn, MI (United States)
1962-01-15
moleculaire solide. Les experiences effectuees montrent que l'emploi de ce procede est tout a fait possible et devrait convenir plus particulierement a la production de radicaux libres dans les matieres organiques dont la radioresistance est assez forte. (author) [Spanish] El estudio de los defectos que aparecen en los cristales casi perfectos constituye uno de los capitulos mas interesantes de la fisica del estado solido. Por lo tanto, la creacion controlada de los defectos deseados representa un aspecto primordial de esos estudios. Dos de los metodos que mas se emplean para introducir defectos de esta clase consisten en agregar deliberadamente impurezas quimicas y en radioinducir danos. El autor ha estudiado la posililidad de valerse de la desintegracion radiactiva para crear defectos en los solidos, La tecnica se basa simplemente en obtener un material lo mas perfecto posible, pero en el que algunos de los atomos del cristal consistan en isotopos radiactivos del mismo elemento. Al desintegrarse estos atomos, el elemento descendiente origina un defecto. A fin de comprobar la posibilidad de aplicar esta tecnica, el autor preparo atomos de tritio incorporados en cristales de tritio molecular solido. Los experimentos indican que el metodo es viable, y que deberia poder aplicarse ante todo a la separacion de aquellos radicales libres contenidos en sustancias organicas que sean bastante resistentes a los danos ocasionados por las radiaciones. (author) [Russian] Odnoj iz naibolee interesnykh oblastej fiziki tverdogo sostoyaniya yavlyaetsya izuchenie defektov v pochti sovershennykh kristallakh. Takim obrazom, umyshlennoe obrazovanie takikh defektov yavlyaetsya vazhnym aspektom ehtikh issledovanij. Dlya proizvodstva takikh defektov byli shiroko rasprostraneny metody khimicheskikh dobavlenij i povrezhdeniya radiatsiej. V nastoyashchem trude rassmatrivayutsya nekotorye vozmozhnosti ispol'zovaniya radioaktivnogo raspada dlya obrazovaniya defektov v tverdykh telakh. Metod ehtot
Directory of Open Access Journals (Sweden)
Sujan Chowdhury
2011-01-01
Full Text Available Novel one-dimensional (1D ceria nanostructure has been investigated as a promising and practical approach for the reforming of methanol reaction. Size and shape of the ceria nanomaterials are directly involved with the catalytic activities. Several general synthesis routes as including soft and hard template-assemble phenomenon for the preparation of 1D cerium oxide are discussed. This preparation phenomenon is consisting with low cost and ecofriendly. Nanometer-sized 1D structure provides a high-surface area that can interact with methanol and carbon-monoxide reaction. Overall, nanometer-sized structure provides desirable properties, such as easy recovery and regeneration. As a result, the use of 1D cerium has been suitable for catalytic application of reforming. In this paper, we describe the 1D cerium oxide syntheses route and then summarize their properties in the field of CO oxidation and steam reforming of methanol approach.
Non-thermal distribution of O(1D) atoms in the night-time thermosphere
Yee, Jeng-Hwa
1988-01-01
The 6300 A O(1D-3P) emission has been used for many years to remotely monitor the thermospheric temperature from the Doppler width of its line profile. The O(1D) atoms in the nighttime thermosphere are initially produced by the dissociative recombination of O2(+) ions with kinetic energy much greater than the thermal energy of the ambient neutrals. The validity of the technique to monitor neutral ambient temperature by measuring O(1D) 6300 A emission depends on the degree of thermalization of the O(1D) atoms. The object of this study is to calculate the velocity distribution of the O(1D) atoms and to examine the effect of nonthermal distribution on the nighttime thermospheric neutral temperature determined.
Energy Technology Data Exchange (ETDEWEB)
Perette, J; Maugest, J [Compagnie d' Applications et Recherches Atomiques, Saint-Denis (France)
1962-01-15
los rayos alfa para llevar a cabo mediciones industriales del peso por unidad de superficie de materiales de espesor reducido. El aprovechamiento industrial de estas tecnicas pudo desarrollarse gracias al perfeccionamiento de nuevos aparatos que, si bien aplican tecnicas tradicionales, fueron especialmente disenados para el empleo de rayos alfa. Para compensar las variaciones de la capacidad de absorcion en el intervalo que media entre la fuente y el detector, es indispensable emplear un metodo diferencial de dos recorridos. La alimentacion de las camaras de ionizacion con corriente alterna permite utilizar circuitos de amplificacion y de deteccion alternos sin necesidad de transformar previamente la corriente de ionizacion. El intervalo de medicion abarca de 6 a 55 gramos por metro cuadrado, con una aproximacion del 1 por ciento en condiciones de perfecta estabilidad. Los autores describen el dispositivo completo utilizado para efectuar mediciones continuas en las maquinas industriales. La tecnica descrita puede adaptarse igualmente a los rayos beta. (author) [Russian] Vozmozhnosti ispol'zovaniya al'fa-oblucheniya dlya promyshlennogo izmereniya vesa naruzhnogo pokrova tonkikh materialov uzhe neodnokratno izlagalis'. Primenenie ehtikh metodov v promyshlennosti stalo vozmozhno blagodarya issledovaniyam, proizvedennym s pomoshch'yu novoj apparatury, kotoraya naryadu s ispol'zovaniem ee v obychnykh usloviyakh spetsial'no prisposoblena dlya primeneniya al'fa-oblucheniya. Primenenie differentsial'nogo metoda s dvumya kanalami neobkhodimo dlya uravnoveshivaniya kolebanij, kotorye mogut byt' pogloshcheny rasstoyaniem mezhdu istochnikom i detektorom. Peremennoe snabzhenie ionizatsionnykh kamer pozvolyaet ispol'zovat' pere- mennye usilitel'nye kontury i provodit' obnaruzhenie bez predvaritel'nogo prevrashcheniya ionizatsionnogo toka. Izmerenie provoditsya shkaloj s deleniem ot shesti do 55 grammov na kvadratnyj metr s tochnost'yu do odnogo protsenta v usloviyakh khoroshej
Energy Technology Data Exchange (ETDEWEB)
Syrkus, N P; Breger, A K; Weinstein, B I [Karpov Physicochemical Institute, Moscow, USSR (Russian Federation)
1960-07-15
, Q {approx} W{sub 0}{sup 0'5}. (author) [Spanish] Se propone un metodo de evaluacion de la efectividad de los aparatos, cualquiera que sea su construccion, comparandola con la productividad de un aparato infinitamente grande que tenga la misma fuente de radiaciones. Se indican las caracteristicas tecnologicas de un aparato destinado a la polimerizacion del etileno mediante radiaciones (a presion de 200 atmosferas y temperatura de 25{sup o} C{sup 4} empleando como fuente principal radiaciones gamma de cobalto-60 a distintas actividades. Se pueden calcular los datos tecnicos de tal aparato segun el valor medio de la intensidad de las dosis, fijado segun la magnitud del coeficiente de rendimiento energetico del aparato. Se indica en el trabajo que, siendo las demas condiciones iguales, la productividad (Q) del aparato es funcion exponencial de la intensidad (W{sub 0}) de las radiaciones gamma del mismo. Para el aparato que se estudia en el trabajo la formula es: Q{approx}W{sub 0}{sup 0'5}. (author) [Russian] V doklade rassmotreny v obshchem vide otdel'nye naibolee vazhnye tekhnologicheskie kharakteristiki apparatov (na primere sfericheskogo apparata) dlya provedeniya radiatsionno-khimicheskikh protsessov v promyshlennom masshtabe. Predlozhen metod otsenki ehffektivnosti apparata lyuboj konstruktsii putem sravneniya s proizvoditel'nost' yu beskonechno bol'shogo apparata, imeyushchego tot zhe istochnik izlucheniya. Priveden raschet tekhnologicheskoj kharakteristiki apparata dlya radiatsionnoj polimerizatsii ehtilena (davlenie 200 atm, temperatura 25{sup o} C{sup 3} so sterzhnevym istochnikom gamma-izlucheni ya Co{sup 60} razlichnoj aktivnosti. Takoj apparat mozhno rasschityvat' po srednim znacheniyam moshchnostej doz, opredelyaemym po velichine ehnergeticheskogo KPD apparata. Pokazano, chto proizvoditel'nost'apparata (Q), pri prochikh ravnykh usloviyakh, yavlyaetsya stepennoj funktsiej moshchnosti (W{sub 0}) gamma-izlucheniya apparata. Dlya rassmotrennogo apparata : Q
Use of optimized 1D TOCSY NMR for improved quantitation and metabolomic analysis of biofluids
International Nuclear Information System (INIS)
Sandusky, Peter; Appiah-Amponsah, Emmanuel; Raftery, Daniel
2011-01-01
One dimensional selective TOCSY experiments have been shown to be advantageous in providing improved data inputs for principle component analysis (PCA) (Sandusky and Raftery 2005a, b). Better subpopulation cluster resolution in the observed scores plots results from the ability to isolate metabolite signals of interest via the TOCSY based filtering approach. This report reexamines the quantitative aspects of this approach, first by optimizing the 1D TOCSY experiment as it relates to the measurement of biofluid constituent concentrations, and second by comparing the integration of 1D TOCSY read peaks to the bucket integration of 1D proton NMR spectra in terms of precision and accuracy. This comparison indicates that, because of the extensive peak overlap that occurs in the 1D proton NMR spectra of biofluid samples, bucket integrals are often far less accurate as measures of individual constituent concentrations than 1D TOCSY read peaks. Even spectral fitting approaches have proven difficult in the analysis of significantly overlapped spectral regions. Measurements of endogenous taurine made over a sample population of human urine demonstrates that, due to background signals from other constituents, bucket integrals of 1D proton spectra routinely overestimate the taurine concentrations and distort its variation over the sample population. As a result, PCA calculations performed using data matrices incorporating 1D TOCSY determined taurine concentrations produce better scores plot subpopulation cluster resolution.
1D Piezoelectric Material Based Nanogenerators: Methods, Materials and Property Optimization.
Li, Xing; Sun, Mei; Wei, Xianlong; Shan, Chongxin; Chen, Qing
2018-03-23
Due to the enhanced piezoelectric properties, excellent mechanical properties and tunable electric properties, one-dimensional (1D) piezoelectric materials have shown their promising applications in nanogenerators (NG), sensors, actuators, electronic devices etc. To present a clear view about 1D piezoelectric materials, this review mainly focuses on the characterization and optimization of the piezoelectric properties of 1D nanomaterials, including semiconducting nanowires (NWs) with wurtzite and/or zinc blend phases, perovskite NWs and 1D polymers. Specifically, the piezoelectric coefficients, performance of single NW-based NG and structure-dependent electromechanical properties of 1D nanostructured materials can be respectively investigated through piezoresponse force microscopy, atomic force microscopy and the in-situ scanning/transmission electron microcopy. Along with the introduction of the mechanism and piezoelectric properties of 1D semiconductor, perovskite materials and polymers, their performance improvement strategies are summarized from the view of microstructures, including size-effect, crystal structure, orientation and defects. Finally, the extension of 1D piezoelectric materials in field effect transistors and optoelectronic devices are simply introduced.
Use of optimized 1D TOCSY NMR for improved quantitation and metabolomic analysis of biofluids
Energy Technology Data Exchange (ETDEWEB)
Sandusky, Peter [Eckerd College, Department of Chemistry (United States); Appiah-Amponsah, Emmanuel; Raftery, Daniel, E-mail: raftery@purdue.edu [Purdue University, Department of Chemistry (United States)
2011-04-15
One dimensional selective TOCSY experiments have been shown to be advantageous in providing improved data inputs for principle component analysis (PCA) (Sandusky and Raftery 2005a, b). Better subpopulation cluster resolution in the observed scores plots results from the ability to isolate metabolite signals of interest via the TOCSY based filtering approach. This report reexamines the quantitative aspects of this approach, first by optimizing the 1D TOCSY experiment as it relates to the measurement of biofluid constituent concentrations, and second by comparing the integration of 1D TOCSY read peaks to the bucket integration of 1D proton NMR spectra in terms of precision and accuracy. This comparison indicates that, because of the extensive peak overlap that occurs in the 1D proton NMR spectra of biofluid samples, bucket integrals are often far less accurate as measures of individual constituent concentrations than 1D TOCSY read peaks. Even spectral fitting approaches have proven difficult in the analysis of significantly overlapped spectral regions. Measurements of endogenous taurine made over a sample population of human urine demonstrates that, due to background signals from other constituents, bucket integrals of 1D proton spectra routinely overestimate the taurine concentrations and distort its variation over the sample population. As a result, PCA calculations performed using data matrices incorporating 1D TOCSY determined taurine concentrations produce better scores plot subpopulation cluster resolution.
Tunable Design of Structural Colors Produced by Pseudo-1D Photonic Crystals of Graphene Oxide.
Tong, Liping; Qi, Wei; Wang, Mengfan; Huang, Renliang; Su, Rongxin; He, Zhimin
2016-07-01
It is broadly observed that graphene oxide (GO) films appear transparent with a thickness of about several nanometers, whereas they appear dark brown or almost black with thickness of more than 1 μm. The basic color mechanism of GO film on a sub-micrometer scale, however, is not well understood. This study reports on GO pseudo-1D photonic crystals (p1D-PhCs) exhibiting tunable structural colors in the visible wavelength range owing to its 1D Bragg nanostructures. Striking structural colors of GO p1D-PhCs could be tuned by simply changing either the volume or concentration of the aqueous GO dispersion during vacuum filtration. Moreover, the quantitative relationship between thickness and reflection wavelength of GO p1D-PhCs has been revealed, thereby providing a theoretical basis to rationally design structural colors of GO p1D-PhCs. The spectral response of GO p1D-PhCs to humidity is also obtained clearly showing the wavelength shift of GO p1D-PhCs at differently relative humidity values and thus encouraging the integration of structural color printing and the humidity-responsive property of GO p1D-PhCs to develop a visible and fast-responsive anti-counterfeiting label. The results pave the way for a variety of potential applications of GO in optics, structural color printing, sensing, and anti-counterfeiting. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
1D to 3D diffusion-reaction kinetics of defects in crystals
DEFF Research Database (Denmark)
Trinkaus, H.; Heinisch, H.L.; Barashev, A.V.
2002-01-01
Microstructural features evolving in crystalline solids from diffusion-reaction kinetics of mobile components depend crucially on the dimension of the underlying diffusion process which is commonly assumed to be three-dimensional (3D). In metals, irradiation-induced displacement cascades produce...... clusters of self-interstitials performing 1D diffusion. Changes between equivalent 1D diffusion paths and transversal diffusion result in diffusion-reaction kinetics between one and three dimensions. An analytical approach suggests a single-variable function (master curve) interpolating between the 1D...
The Rab-GTPase-activating protein TBC1D1 regulates skeletal muscle glucose metabolism
DEFF Research Database (Denmark)
Szekeres, Ferenc; Chadt, Alexandra; Tom, Robby Z
2012-01-01
The Rab-GTPase-activating protein TBC1D1 has emerged as a novel candidate involved in metabolic regulation. Our aim was to determine whether TBC1D1 is involved in insulin as well as energy-sensing signals controlling skeletal muscle metabolism. TBC1D1-deficient congenic B6.SJL-Nob1.10 (Nob1.10(SJL...... be explained partly by a 50% reduction in GLUT4 protein, since proximal signaling at the level of Akt, AMPK, and acetyl-CoA carboxylase (ACC) was unaltered. Paradoxically, in vivo insulin-stimulated 2-deoxyglucose uptake was increased in EDL and tibialis anterior muscle from TBC1D1-deficient mice......)) and wild-type littermates were studied. Glucose and insulin tolerance, glucose utilization, hepatic glucose production, and tissue-specific insulin-mediated glucose uptake were determined. The effect of insulin, AICAR, or contraction on glucose transport was studied in isolated skeletal muscle. Glucose...
Kim, Wun-gwi; Nair, Sankar
2013-01-01
strategies to process these materials into membranes and thin films with high performance. This work provides the first comprehensive review of this emerging area. We first discuss approaches for the synthesis and structural characterization of nanoporous 1D
Human CD1d-Restricted Natural Killer T (NKT) Cell Cytotoxicity Against Myeloid Cells
National Research Council Canada - National Science Library
Chen, Xiuxu; Gumperz, Jenny E
2006-01-01
CD1d-restricted natural killer T cells (NKT cells) are a unique subpopulation of T lymphocytes that have been shown to be able to promote potent anti-tumor responses in a number of different murine (mouse...
Experimental Conditions: SE24_S1_M1_D1 [Metabolonote[Archive
Lifescience Database Archive (English)
Full Text Available rometry with 13C‑Labeling for Chemical Assignment of Sulfur-Containing Metabolites ...SE24_S1_M1_D1 SE24 Combination of Liquid Chromatography-Fourier Transform Ion Cyclotron Resonance-Mass Spect
Recent ARPES experiments on quasi-1D bulk materials and artificial structures.
Grioni, M; Pons, S; Frantzeskakis, E
2009-01-14
The spectroscopy of quasi-one-dimensional (1D) systems has been a subject of strong interest since the first experimental observations of unusual line shapes in the early 1990s. Angle-resolved photoemission (ARPES) measurements performed with increasing accuracy have greatly broadened our knowledge of the properties of bulk 1D materials and, more recently, of artificial 1D structures. They have yielded a direct view of 1D bands, of open Fermi surfaces, and of characteristic instabilities. They have also provided unique microscopic evidence for the non-conventional, non-Fermi-liquid, behavior predicted by theory, and for strong and singular interactions. Here we briefly review some of the remarkable experimental results obtained in the last decade.
TBC1D24 genotype-phenotype correlation: Epilepsies and other neurologic features.
Balestrini, Simona; Milh, Mathieu; Castiglioni, Claudia; Lüthy, Kevin; Finelli, Mattea J; Verstreken, Patrik; Cardon, Aaron; Stražišar, Barbara Gnidovec; Holder, J Lloyd; Lesca, Gaetan; Mancardi, Maria M; Poulat, Anne L; Repetto, Gabriela M; Banka, Siddharth; Bilo, Leonilda; Birkeland, Laura E; Bosch, Friedrich; Brockmann, Knut; Cross, J Helen; Doummar, Diane; Félix, Temis M; Giuliano, Fabienne; Hori, Mutsuki; Hüning, Irina; Kayserili, Hulia; Kini, Usha; Lees, Melissa M; Meenakshi, Girish; Mewasingh, Leena; Pagnamenta, Alistair T; Peluso, Silvio; Mey, Antje; Rice, Gregory M; Rosenfeld, Jill A; Taylor, Jenny C; Troester, Matthew M; Stanley, Christine M; Ville, Dorothee; Walkiewicz, Magdalena; Falace, Antonio; Fassio, Anna; Lemke, Johannes R; Biskup, Saskia; Tardif, Jessica; Ajeawung, Norbert F; Tolun, Aslihan; Corbett, Mark; Gecz, Jozef; Afawi, Zaid; Howell, Katherine B; Oliver, Karen L; Berkovic, Samuel F; Scheffer, Ingrid E; de Falco, Fabrizio A; Oliver, Peter L; Striano, Pasquale; Zara, Federico; Campeau, Phillipe M; Sisodiya, S M
2016-07-05
To evaluate the phenotypic spectrum associated with mutations in TBC1D24. We acquired new clinical, EEG, and neuroimaging data of 11 previously unreported and 37 published patients. TBC1D24 mutations, identified through various sequencing methods, can be found online (http://lovd.nl/TBC1D24). Forty-eight patients were included (28 men, 20 women, average age 21 years) from 30 independent families. Eighteen patients (38%) had myoclonic epilepsies. The other patients carried diagnoses of focal (25%), multifocal (2%), generalized (4%), and unclassified epilepsy (6%), and early-onset epileptic encephalopathy (25%). Most patients had drug-resistant epilepsy. We detail EEG, neuroimaging, developmental, and cognitive features, treatment responsiveness, and physical examination. In silico evaluation revealed 7 different highly conserved motifs, with the most common pathogenic mutation located in the first. Neuronal outgrowth assays showed that some TBC1D24 mutations, associated with the most severe TBC1D24-associated disorders, are not necessarily the most disruptive to this gene function. TBC1D24-related epilepsy syndromes show marked phenotypic pleiotropy, with multisystem involvement and severity spectrum ranging from isolated deafness (not studied here), benign myoclonic epilepsy restricted to childhood with complete seizure control and normal intellect, to early-onset epileptic encephalopathy with severe developmental delay and early death. There is no distinct correlation with mutation type or location yet, but patterns are emerging. Given the phenotypic breadth observed, TBC1D24 mutation screening is indicated in a wide variety of epilepsies. A TBC1D24 consortium was formed to develop further research on this gene and its associated phenotypes. © 2016 American Academy of Neurology.
Chong Li; Xiaoyong Hu; Hong Yang; Qihuang Gong
2017-01-01
We propose a scheme of unidirectional transmission in a 1D nonlinear topological photonic crystal based on the topological edge state and three order optical nonlinearity. The 1D photonic crystals consists of a nonlinear photonic crystal L and a linear photonic crystal R. In the backward direction, light is totally reflected for the photons transmission prohibited by the bandgap. While in the forward direction, light interacts with the nonlinear photonic crystal L by optical Kerr effect, brin...
User's manual of the REFLA-1D/MODE4 reflood thermo-hydrodynamic analysis code
International Nuclear Information System (INIS)
Hojo, Tsuneyuki; Iguchi, Tadashi; Okubo, Tsutomu; Murao, Yoshio; Sugimoto, Jun.
1986-01-01
REFLA-1D/MODE4 code has been developed by incorporating local power effect model and fuel temperature profile effect model into REFLA-1D/MODE3 code. This code can calculate the temperature transient of local rod by considering radial power profile effect in core and simulate the thermal characteristics of the nuclear fuel rod. This manual describes the outline of incorporated models, modification of the code with incorporating models and provides application information required to utilize the code. (author)
Energy Technology Data Exchange (ETDEWEB)
Kong, Chen; Lange, Jeffrey J.; Samovski, Dmitri [Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110 (United States); Su, Xiong [Department of Internal Medicine, Center for Human Nutrition Washington University School of Medicine, St. Louis, MO 63110 (United States); Liu, Jialiu [Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110 (United States); Sundaresan, Sinju [Department of Internal Medicine, Center for Human Nutrition Washington University School of Medicine, St. Louis, MO 63110 (United States); Stahl, Philip D., E-mail: pstahl@wustl.edu [Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110 (United States)
2013-05-03
Highlights: •Hominoid-specific oncogene TBC1D3 is targeted to plasma membrane by palmitoylation. •TBC1D3 is palmitoylated on two cysteine residues: 318 and 325. •TBC1D3 palmitoylation governs growth factors-induced TBC1D3 degradation. •Post-translational modifications may regulate oncogenic properties of TBC1D3. -- Abstract: Expression of the hominoid-specific oncoprotein TBC1D3 promotes enhanced cell growth and proliferation by increased activation of signal transduction through several growth factors. Recently we documented the role of CUL7 E3 ligase in growth factors-induced ubiquitination and degradation of TBC1D3. Here we expanded our study to discover additional molecular mechanisms that control TBC1D3 protein turnover. We report that TBC1D3 is palmitoylated on two cysteine residues: 318 and 325. The expression of double palmitoylation mutant TBC1D3:C318/325S resulted in protein mislocalization and enhanced growth factors-induced TBC1D3 degradation. Moreover, ubiquitination of TBC1D3 via CUL7 E3 ligase complex was increased by mutating the palmitoylation sites, suggesting that depalmitoylation of TBC1D3 makes the protein more available for ubiquitination and degradation. The results reported here provide novel insights into the molecular mechanisms that govern TBC1D3 protein degradation. Dysregulation of these mechanisms in vivo could potentially result in aberrant TBC1D3 expression and promote oncogenesis.
Barker, H. W.; Stephens, G. L.; Partain, P. T.; Bergman, J. W.; Bonnel, B.; Campana, K.; Clothiaux, E. E.; Clough, S.; Cusack, S.; Delamere, J.; Edwards, J.; Evans, K. F.; Fouquart, Y.; Freidenreich, S.; Galin, V.; Hou, Y.; Kato, S.; Li, J.; Mlawer, E.; Morcrette, J.-J.; O'Hirok, W.; Räisänen, P.; Ramaswamy, V.; Ritter, B.; Rozanov, E.; Schlesinger, M.; Shibata, K.; Sporyshev, P.; Sun, Z.; Wendisch, M.; Wood, N.; Yang, F.
2003-08-01
The primary purpose of this study is to assess the performance of 1D solar radiative transfer codes that are used currently both for research and in weather and climate models. Emphasis is on interpretation and handling of unresolved clouds. Answers are sought to the following questions: (i) How well do 1D solar codes interpret and handle columns of information pertaining to partly cloudy atmospheres? (ii) Regardless of the adequacy of their assumptions about unresolved clouds, do 1D solar codes perform as intended?One clear-sky and two plane-parallel, homogeneous (PPH) overcast cloud cases serve to elucidate 1D model differences due to varying treatments of gaseous transmittances, cloud optical properties, and basic radiative transfer. The remaining four cases involve 3D distributions of cloud water and water vapor as simulated by cloud-resolving models. Results for 25 1D codes, which included two line-by-line (LBL) models (clear and overcast only) and four 3D Monte Carlo (MC) photon transport algorithms, were submitted by 22 groups. Benchmark, domain-averaged irradiance profiles were computed by the MC codes. For the clear and overcast cases, all MC estimates of top-of-atmosphere albedo, atmospheric absorptance, and surface absorptance agree with one of the LBL codes to within ±2%. Most 1D codes underestimate atmospheric absorptance by typically 15-25 W m-2 at overhead sun for the standard tropical atmosphere regardless of clouds.Depending on assumptions about unresolved clouds, the 1D codes were partitioned into four genres: (i) horizontal variability, (ii) exact overlap of PPH clouds, (iii) maximum/random overlap of PPH clouds, and (iv) random overlap of PPH clouds. A single MC code was used to establish conditional benchmarks applicable to each genre, and all MC codes were used to establish the full 3D benchmarks. There is a tendency for 1D codes to cluster near their respective conditional benchmarks, though intragenre variances typically exceed those for
Noncoherent Spectral Optical CDMA System Using 1D Active Weight Two-Code Keying Codes
Directory of Open Access Journals (Sweden)
Bih-Chyun Yeh
2016-01-01
Full Text Available We propose a new family of one-dimensional (1D active weight two-code keying (TCK in spectral amplitude coding (SAC optical code division multiple access (OCDMA networks. We use encoding and decoding transfer functions to operate the 1D active weight TCK. The proposed structure includes an optical line terminal (OLT and optical network units (ONUs to produce the encoding and decoding codes of the proposed OLT and ONUs, respectively. The proposed ONU uses the modified cross-correlation to remove interferences from other simultaneous users, that is, the multiuser interference (MUI. When the phase-induced intensity noise (PIIN is the most important noise, the modified cross-correlation suppresses the PIIN. In the numerical results, we find that the bit error rate (BER for the proposed system using the 1D active weight TCK codes outperforms that for two other systems using the 1D M-Seq codes and 1D balanced incomplete block design (BIBD codes. The effective source power for the proposed system can achieve −10 dBm, which has less power than that for the other systems.
Alterations in cellular metabolism modulate CD1d-mediated NKT-cell responses.
Webb, Tonya J; Carey, Gregory B; East, James E; Sun, Wenji; Bollino, Dominique R; Kimball, Amy S; Brutkiewicz, Randy R
2016-08-01
Natural killer T (NKT) cells play a critical role in the host's innate immune response. CD1d-mediated presentation of glycolipid antigens to NKT cells has been established; however, the mechanisms by which NKT cells recognize infected or cancerous cells remain unclear. 5(')-AMP activated protein kinase (AMPK) is a master regulator of lipogenic pathways. We hypothesized that activation of AMPK during infection and malignancy could alter the repertoire of antigens presented by CD1d and serve as a danger signal to NKT cells. In this study, we examined the effect of alterations in metabolism on CD1d-mediated antigen presentation to NKT cells and found that an infection with lymphocytic choriomeningitis virus rapidly increased CD1d-mediated antigen presentation. Hypoxia inducible factors (HIF) enhance T-cell effector functions during infection, therefore antigen presenting cells pretreated with pharmacological agents that inhibit glycolysis, induce HIF and activate AMPK were assessed for their ability to induce NKT-cell responses. Pretreatment with 2-deoxyglucose, cobalt chloride, AICAR and metformin significantly enhanced CD1d-mediated NKT-cell activation. In addition, NKT cells preferentially respond to malignant B cells and B-cell lymphomas express HIF-1α. These data suggest that targeting cellular metabolism may serve as a novel means of inducing innate immune responses. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The D1-D2 region of the large subunit ribosomal DNA as barcode for ciliates.
Stoeck, T; Przybos, E; Dunthorn, M
2014-05-01
Ciliates are a major evolutionary lineage within the alveolates, which are distributed in nearly all habitats on our planet and are an essential component for ecosystem function, processes and stability. Accurate identification of these unicellular eukaryotes through, for example, microscopy or mating type reactions is reserved to few specialists. To satisfy the demand for a DNA barcode for ciliates, which meets the standard criteria for DNA barcodes defined by the Consortium for the Barcode of Life (CBOL), we here evaluated the D1-D2 region of the ribosomal DNA large subunit (LSU-rDNA). Primer universality for the phylum Ciliophora was tested in silico with available database sequences as well as in the laboratory with 73 ciliate species, which represented nine of 12 ciliate classes. Primers tested in this study were successful for all tested classes. To test the ability of the D1-D2 region to resolve conspecific and congeneric sequence divergence, 63 Paramecium strains were sampled from 24 mating species. The average conspecific D1-D2 variation was 0.18%, whereas congeneric sequence divergence averaged 4.83%. In pairwise genetic distance analyses, we identified a D1-D2 sequence divergence of DNA amplification of single cells and voucher deposition. In conclusion, the presented data pinpoint the D1-D2 region as an excellent candidate for an official CBOL barcode for ciliated protists. © 2013 John Wiley & Sons Ltd.
VES/TEM 1D joint inversion by using Controlled Random Search (CRS) algorithm
Bortolozo, Cassiano Antonio; Porsani, Jorge Luís; Santos, Fernando Acácio Monteiro dos; Almeida, Emerson Rodrigo
2015-01-01
Electrical (DC) and Transient Electromagnetic (TEM) soundings are used in a great number of environmental, hydrological, and mining exploration studies. Usually, data interpretation is accomplished by individual 1D models resulting often in ambiguous models. This fact can be explained by the way as the two different methodologies sample the medium beneath surface. Vertical Electrical Sounding (VES) is good in marking resistive structures, while Transient Electromagnetic sounding (TEM) is very sensitive to conductive structures. Another difference is VES is better to detect shallow structures, while TEM soundings can reach deeper layers. A Matlab program for 1D joint inversion of VES and TEM soundings was developed aiming at exploring the best of both methods. The program uses CRS - Controlled Random Search - algorithm for both single and 1D joint inversions. Usually inversion programs use Marquadt type algorithms but for electrical and electromagnetic methods, these algorithms may find a local minimum or not converge. Initially, the algorithm was tested with synthetic data, and then it was used to invert experimental data from two places in Paraná sedimentary basin (Bebedouro and Pirassununga cities), both located in São Paulo State, Brazil. Geoelectric model obtained from VES and TEM data 1D joint inversion is similar to the real geological condition, and ambiguities were minimized. Results with synthetic and real data show that 1D VES/TEM joint inversion better recovers simulated models and shows a great potential in geological studies, especially in hydrogeological studies.
Vitamin D Receptor Gene Polymorphisms Influence T1D Susceptibility among Pakistanis
Directory of Open Access Journals (Sweden)
Maryam Mukhtar
2017-01-01
Full Text Available Background. The vitamin D receptor (VDR gene regulates insulin secretion from the pancreas and acts as a mediator of the immune response through vitamin D. Polymorphism in VDR causes alterations in the functioning of vitamin D, leading to type 1 diabetes (T1D predisposition. The aim of the present study was to determine VDR gene polymorphism in association with T1D in Pakistanis. Methods. The association was evaluated by selecting rs2228570 (FokΙ, rs7975232 (ApaΙ, and rs731236 (TaqΙ polymorphic sites in 102 patients and 100 controls. Genotypes were identified by DNA sequencing and PCR-RFLP. Results. The allelic and genotypic frequencies of FokΙ and ApaI were significantly associated with T1D (p0.05. CCGC, CCGG, CCTC, and CCTG haplotypes were significantly associated with disease development (p<0.05. However, CTGG haplotype was protective towards T1D (p<0.01. Conclusion. VDR polymorphisms were identified as susceptible regions for T1D development in the Pakistani population.
Deconvolution of Complex 1D NMR Spectra Using Objective Model Selection.
Directory of Open Access Journals (Sweden)
Travis S Hughes
Full Text Available Fluorine (19F NMR has emerged as a useful tool for characterization of slow dynamics in 19F-labeled proteins. One-dimensional (1D 19F NMR spectra of proteins can be broad, irregular and complex, due to exchange of probe nuclei between distinct electrostatic environments; and therefore cannot be deconvoluted and analyzed in an objective way using currently available software. We have developed a Python-based deconvolution program, decon1d, which uses Bayesian information criteria (BIC to objectively determine which model (number of peaks would most likely produce the experimentally obtained data. The method also allows for fitting of intermediate exchange spectra, which is not supported by current software in the absence of a specific kinetic model. In current methods, determination of the deconvolution model best supported by the data is done manually through comparison of residual error values, which can be time consuming and requires model selection by the user. In contrast, the BIC method used by decond1d provides a quantitative method for model comparison that penalizes for model complexity helping to prevent over-fitting of the data and allows identification of the most parsimonious model. The decon1d program is freely available as a downloadable Python script at the project website (https://github.com/hughests/decon1d/.
Synthesis of Hollow Sphere and 1D Structural Materials by Sol-Gel Process.
Li, Fa-Liang; Zhang, Hai-Jun
2017-08-25
The sol-gel method is a simple and facile wet chemical process for fabricating advanced materials with high homogeneity, high purity, and excellent chemical reactivity at a relatively low temperature. By adjusting the processing parameters, the sol-gel technique can be used to prepare hollow sphere and 1D structural materials that exhibit a wide application in the fields of catalyst, drug or gene carriers, photoactive, sensors and Li-ion batteries. This feature article reviewed the development of the preparation of hollow sphere and 1D structural materials using the sol-gel method. The effects of calcination temperature, soaking time, pH value, surfactant, etc., on the preparation of hollow sphere and 1D structural materials were summarized, and their formation mechanisms were generalized. Finally, possible future research directions of the sol-gel technique were outlined.
1-D Compression Behaviour of Acid Sulphate Soils Treated with Alkali-Activated Slag
Directory of Open Access Journals (Sweden)
Shahidul Islam
2016-04-01
Full Text Available Improvements of soft soils by mechanically mixing cementitious additives have been widely practised for construction of infrastructure. Mixing of additives improves strength and compressibility properties of soils through the development of soil structure. This study investigates the 1-D compression behaviour of alkali-activated slag treated acid sulphate soils (ASS cured up to 365 days. The void ratio-logarithm of pressure (e-logσ′ behaviour of treated ASS, including the destructuration behaviour, with additive contents and curing time have been analysed. X-ray diffraction (XRD and scanning electron microscopy (SEM analyses have been undertaken to explain the observed variations of the 1-D compression behaviour. This paper presents the results of these analyses in view of obtaining an insight into the 1-D compression behaviour of treated ASS with the help of mineralogical analysis.
1-D Compression Behaviour of Acid Sulphate Soils Treated with Alkali-Activated Slag.
Islam, Shahidul; Haque, Asadul; Bui, Ha Hong
2016-04-15
Improvements of soft soils by mechanically mixing cementitious additives have been widely practised for construction of infrastructure. Mixing of additives improves strength and compressibility properties of soils through the development of soil structure. This study investigates the 1-D compression behaviour of alkali-activated slag treated acid sulphate soils (ASS) cured up to 365 days. The void ratio-logarithm of pressure (e-logσ') behaviour of treated ASS, including the destructuration behaviour, with additive contents and curing time have been analysed. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses have been undertaken to explain the observed variations of the 1-D compression behaviour. This paper presents the results of these analyses in view of obtaining an insight into the 1-D compression behaviour of treated ASS with the help of mineralogical analysis.
Periodic Properties of 1D FE Discrete Models in High Frequency Dynamics
Directory of Open Access Journals (Sweden)
A. Żak
2016-01-01
Full Text Available Finite element discrete models of various engineering 1D structures may be considered as structures of certain periodic characteristics. The source of this periodicity comes from the discontinuity of stress/strain field between the elements. This behaviour remains unnoticeable, when low frequency dynamics of these structures is investigated. At high frequency regimes, however, its influence may be strong enough to dominate calculated structural responses distorting or even falsifying them completely. In this paper, certain computational aspects of structural periodicity of 1D FE discrete models are discussed by the authors. In this discussion, the authors focus their attention on an exemplary problem of 1D rod modelled according to the elementary theory.
A comparison of 1D and 2D LSTM architectures for the recognition of handwritten Arabic
Yousefi, Mohammad Reza; Soheili, Mohammad Reza; Breuel, Thomas M.; Stricker, Didier
2015-01-01
In this paper, we present an Arabic handwriting recognition method based on recurrent neural network. We use the Long Short Term Memory (LSTM) architecture, that have proven successful in different printed and handwritten OCR tasks. Applications of LSTM for handwriting recognition employ the two-dimensional architecture to deal with the variations in both vertical and horizontal axis. However, we show that using a simple pre-processing step that normalizes the position and baseline of letters, we can make use of 1D LSTM, which is faster in learning and convergence, and yet achieve superior performance. In a series of experiments on IFN/ENIT database for Arabic handwriting recognition, we demonstrate that our proposed pipeline can outperform 2D LSTM networks. Furthermore, we provide comparisons with 1D LSTM networks trained with manually crafted features to show that the automatically learned features in a globally trained 1D LSTM network with our normalization step can even outperform such systems.
Vertically integrated ZnO-Based 1D1R structure for resistive switching
International Nuclear Information System (INIS)
Zhang Yang; Duan Ziqing; Li Rui; Ku, Chieh-Jen; Reyes, Pavel I; Ashrafi, Almamun; Zhong Jian; Lu Yicheng
2013-01-01
We report a ZnO-based 1D1R structure, which is formed by a vertical integration of a FeZnO/MgO switching resistor (1R) and an Ag/MgZnO Schottky diode (1D). The multifunctional ZnO and its compounds are grown through MOCVD with in situ doping. For the R element, the current ratio of the high-resistance state (HRS) over the low-resistance state (LRS) at 1 V is 2.4 × 10 6 . The conduction mechanisms of the HRS and LRS are Poole–Frenkel emission and resistive conduction, respectively. The D element shows the forward/reverse current ratio at ±1 V to be 2.4 × 10 7 . This 1D1R structure exhibits high R HRS /R LRS ratio, excellent rectifying characteristics and robust retention. (paper)
Targeted disruption of CD1d prevents NKT cell development in pigs.
Yang, Guan; Artiaga, Bianca L; Hackmann, Timothy J; Samuel, Melissa S; Walters, Eric M; Salek-Ardakani, Shahram; Driver, John P
2015-06-01
Studies in mice genetically lacking natural killer T (NKT) cells show that these lymphocytes make important contributions to both innate and adaptive immune responses. However, the usefulness of murine models to study human NKT cells is limited by the many differences between mice and humans, including that their NKT cell frequencies, subsets, and distribution are dissimilar. A more suitable model may be swine that share many metabolic, physiological, and growth characteristics with humans and are also similar for NKT cells. Thus, we analyzed genetically modified pigs made deficient for CD1d that is required for the development of Type I invariant NKT (iNKT) cells that express a semi-invariant T-cell receptor (TCR) and Type II NKT cells that use variable TCRs. Peripheral blood analyzed by flow cytometry and interferon-γ enzyme-linked immuno spot assays demonstrated that CD1d-knockout pigs completely lack iNKT cells, while other leukocyte populations remain intact. CD1d and NKT cells have been shown to be involved in shaping the composition of the commensal microbiota in mice. Therefore, we also compared the fecal microbiota profile between pigs expressing and lacking NKT cells. However, no differences were found between pigs lacking or expressing CD1d. Our results are the first to show that knocking-out CD1d prevents the development of NKT cells in a non-rodent species. CD1d-deficient pigs should offer a useful model to more accurately determine the contribution of NKT cells for human immune responses. They also have potential for understanding how NKT cells impact the health of commercial swine.
Modelling turbulent vertical mixing sensitivity using a 1-D version of NEMO
Reffray, G.; Bourdalle-Badie, R.; Calone, C.
2015-01-01
Through two numerical experiments, a 1-D vertical model called NEMO1D was used to investigate physical and numerical turbulent-mixing behaviour. The results show that all the turbulent closures tested (k+l from Blanke and Delecluse, 1993, and two equation models: generic length scale closures from Umlauf and Burchard, 2003) are able to correctly reproduce the classical test of Kato and Phillips (1969) under favourable numerical conditions while some solutions may diverge depending on the degradation of the spatial and time discretization. The performances of turbulence models were then compared with data measured over a 1-year period (mid-2010 to mid-2011) at the PAPA station, located in the North Pacific Ocean. The modelled temperature and salinity were in good agreement with the observations, with a maximum temperature error between -2 and 2 °C during the stratified period (June to October). However, the results also depend on the numerical conditions. The vertical RMSE varied, for different turbulent closures, from 0.1 to 0.3 °C during the stratified period and from 0.03 to 0.15 °C during the homogeneous period. This 1-D configuration at the PAPA station (called PAPA1D) is now available in NEMO as a reference configuration including the input files and atmospheric forcing set described in this paper. Thus, all the results described can be recovered by downloading and launching PAPA1D. The configuration is described on the NEMO site (PAPA">http://www.nemo-ocean.eu/Using-NEMO/Configurations/C1D_PAPA). This package is a good starting point for further investigation of vertical processes.
Regulation of DNA methylation on EEF1D and RPL8 expression in cattle.
Liu, Xuan; Yang, Jie; Zhang, Qin; Jiang, Li
2017-10-01
Dynamic changes to the epigenome play a critical role in a variety of biology processes and complex traits. Many important candidate genes have been identified through our previous genome wide association study (GWAS) on milk production traits in dairy cattle. However, the underlying mechanism of candidate genes have not yet been clearly understood. In this study, we analyzed the methylation variation of the candidate genes, EEF1D and RPL8, which were identified to be strongly associated with milk production traits in dairy cattle in our previous studies, and its effect on protein and mRNA expression. We compared DNA methylation profiles and gene expression levels of EEF1D and RPL8 in five different tissues (heart, liver, mammary gland, ovary and muscle) of three cows. Both genes showed the highest expression level in mammary gland. For RPL8, there was no difference in the DNA methylation pattern in the five tissues, suggesting no effect of DNA methylation on gene expression. For EEF1D, the DNA methylation levels of its first CpG island differed in the five tissues and were negatively correlated with the gene expression levels. To further investigate the function of DNA methylation on the expression of EEF1D, we collected blood samples of three cows at early stage of lactation and in dry period and analyzed its expression and the methylation status of the first CpG island in blood. As a result, the mRNA expression of EEF1D in the dry period was higher than that at the early stage of lactation, while the DNA methylation level in the dry period was lower than that at the early stage of lactation. Our result suggests that the DNA methylation of EEF1D plays an important role in the spatial and temporal regulation of its expression and possibly have an effect on the milk production traits.
Escape of O(3P), O(1D), and O(1S) from the Martian atmosphere
Fox, Jane L.; Hać, Aleksander B.
2018-01-01
We have computed here the escape probabilities, fluxes and rates for hot O atoms that are initially produced in the ground state and the first two excited metastable states, O(1D)and O(1S), in the Martian thermosphere by dissociative recombination of O2+. In order to compare our results with those of our previous calculations and with those of others, we have employed here the pre-MAVEN models that we have used previously. To compute the escape probabilities, we have employed the Monte Carlo escape code that has been described previously, but we here use for the first time energy-dependent elastic cross sections for collisions of the energetic O atoms with each of the twelve background species in our model. We also incorporate three mechanisms that interchange identities of the O(3P) and O(1D) atoms, including collisional excitation of O(3P) to O(1D), quenching of O(1D) to O(3P), and excitation exchange of O(1D) with O(3P). We find that the escape probabilities of O atoms that are produced initially as O(1D) are reduced compared to those in which these processes are not included, but the escape probabilities of O atoms that are initially produced as O(3P) are not significantly reduced. As a guide for our future research and those of other investigators, we review here what is known about the interactions of O atoms with other species in which the energies of the O atoms are altered, and several other sources of hot and escaping O, many of which have been suggested by other investigators. We will incorporate these data in a future MAVEN-like model.
Wong, Chi Ho
In this PhD project, the feasibility of establishing a state with vanishing resistance in quasi-1D superconductors are studied. In the first stage, extrinsic quasi-1D superconductors based on composite materials made by metallic nanowire arrays embedded in mesoporous silica substrates, such as Pb-SBA-15 and NbN-SBA-15 (fabricated by a Chemical Vapor Deposition technique) are investigated. Two impressive outcomes in Pb-SBA-15 are found, including an enormous enhancement of the upper critical field from 0.08T to 14T and an increase of the superconducting transition temperature onset s from 7.2 to 11K. The second stage is to apply Monte Carlo simulations to model the quasi-1D superconductor, considering its penetration depth, coherence length, defects, electron mean free path, tunneling barrier and insulating width between the nanowires. The Monte Carlo results provide a clear picture to approach to stage 3, which represents a study of the intrinsic quasi-1D superconductor Sc3CoC4, which contains parallel arrays of 1D superconducting CoC4 ribbons with weak transverse Josephson or Proximity interaction, embedded in a Sc matrix. According to our previous work, a BKT transition in the lateral plane is believed to be the physics behind the vanishing resistance of quasi-1D superconductors, because it activates a dimensional crossover from a 1D fluctuating superconductivity at high temperature to a 3D bulk phase coherent state in the entire material at low temperatures. Moreover, we decided to study thin 1D Sn nanowires without substrate, which display very similar superconducting properties to Pb-SBA-15 with a strong critical field and Tc enhancement. Finally, a preliminary research on a novel quasi-2D superconductor formed by parallel 2D mercury sheets that are separated by organic molecules is presented. The latter material may represent a model system to study the effect of a layered structure, which is believed to be an effective ingredient to design high temperature
Energy Technology Data Exchange (ETDEWEB)
Trott, N G; Bentley, R E; Burton, L K [Physics Department, Institute of Cancer Research, Royal Cancer Hospital, London, S. W. 3 (United Kingdom)
1960-06-15
propre, du premier. Construit en acier inoxidable, il a ete initialement concu pour l'essai de faibles activites dans les materiaux biologiques. Il peut cependant etre adapte a la mesure absolue de sources de faible niveau d'activite ( {<=} 100 cpm) car, avec une gaine de compteurs cosmiques en anticoincidence son mouvement propre s'abaisse jusqu'a 1-2 cpm. (author) [Spanish] Los autores dan cuenta de algunos perfeccionamiento s introducidos en la construccion de contadores Geiger-Mueller 4 {pi} y estudian las aplicaciones de estos aparatos en la medicion de patrones radiactivos utilizados en trabajos de radiologia. En los dos modelos de contadores Geiger-Mueller 4 {pi} que los autores describen los alambres anodicos pueden desmontarse facilmente, lo cual facilita su limpieza. Uno de los modelos de contadores se viene utilizando con exito desde hace varios anos para normalizar radionuclidos {beta}; se exponen algunos resultados de las comparaciones efectuadas con los patrones de otros laboratorios. Estos contadores tambien se han empleado, en combinacion con un dispositivo de ionizacion {gamma}, para determinar la emision {gamma} especifica (factor k) del Fe{sup 59}, Cs{sup 137} y Ir{sup 192}. El segundo modelo, de acero inoxidable, es una copia del primero, en menor escala; esta disenado para trabajar con bajas actividades ambiente y se destina principalmente a la determinacion cuantitativa de pequenas cantidades de substancias radiactivas contenidas en materiales biologicos. Tambien puede adaptarse para la medicion absoluta de fuentes radiactivas de bajo indice de recuento ({<=} 100 impulsos por minuto), pues si se le rodea de contadores de rayos cosmicos, montados en anticoincidencia , es posible estabilizar la actividad de fondo en 1 a 2 impulsos por minuto. (author) [Russian] Izlagayutsya nekotorye rezul'taty raboty po konstruirovani yu schetchikov Gejgera-Myuller a na 4 {pi}, a takzhe voprosa ikh ispol'zovaniya dlya izmereniya standartov radioaktivnost i v rabote s
DEFF Research Database (Denmark)
Davidsen, Steffen; Löwe, Roland; Thrysøe, Cecilie
2017-01-01
Evaluation of pluvial flood risk is often based on computations using 1D/2D urban flood models. However, guidelines on choice of model complexity are missing, especially for one-dimensional (1D) network models. This study presents a new automatic approach for simplification of 1D hydraulic networ...
Modeling of 1-D nitrate transport in single layer soils | Dike | Journal ...
African Journals Online (AJOL)
The transport of nitrate in laboratory single soil columns of sand, laterite and clay were investigated after 21 days. The 1-D contaminant transport model by Notodarmojo et al (1991) for single layer soils were calibrated and verified using field data collected from a refuse dump site at avu, owerri, Imo state. The experimental ...
An analytical calculation of the axial density profile for 1-d slab expansion
International Nuclear Information System (INIS)
Ho, D
1999-01-01
Obtaining an analytical expression for the axial density profile can provide us with a quick and convenient way to evaluate the density evolution for targets with different densities and dimensions. In this note, we show that such an analytical expression can be obtained based on the self-similar solutions and the method of characteristics for 1-D slab expansion
Construction and analysis of lattice Boltzmann methods applied to a 1D convection-diffusion equation
International Nuclear Information System (INIS)
Dellacherie, Stephane
2014-01-01
To solve the 1D (linear) convection-diffusion equation, we construct and we analyze two LBM schemes built on the D1Q2 lattice. We obtain these LBM schemes by showing that the 1D convection-diffusion equation is the fluid limit of a discrete velocity kinetic system. Then, we show in the periodic case that these LBM schemes are equivalent to a finite difference type scheme named LFCCDF scheme. This allows us, firstly, to prove the convergence in L∞ of these schemes, and to obtain discrete maximum principles for any time step in the case of the 1D diffusion equation with different boundary conditions. Secondly, this allows us to obtain most of these results for the Du Fort-Frankel scheme for a particular choice of the first iterate. We also underline that these LBM schemes can be applied to the (linear) advection equation and we obtain a stability result in L∞ under a classical CFL condition. Moreover, by proposing a probabilistic interpretation of these LBM schemes, we also obtain Monte-Carlo algorithms which approach the 1D (linear) diffusion equation. At last, we present numerical applications justifying these results. (authors)
The immunoregulatory role of CD1d-restricted natural killer T cells in disease.
Vliet, van der HJ; Molling, J.W.; Blomberg - van der Flier, von B.M.E.; Nishi, N.; Kolgen, W; Eertwegh, van den A.J.M.; Pinedo, H.M.; Giaccone, G.; Scheper, R.J.
2004-01-01
Natural killer T (NKT) cells constitute a T cell subpopulation that shares several characteristics with NK cells. NKT cells are characterized by a narrow T cell antigen receptor (TCR) repertoire, recognize glycolipid antigen in the context of the monomorphic CD1d antigen-presenting molecule, and
Unveiling the Role of CNTs on the Phase Formation of 1D Ferroelectrics
Mahajan, Amit; Reaney, I. M.; Da Costa, Pedro M. F. J.; Kingon, Angus I.; Kó nya, Zoltá n; Kukovecz, Akos; Vilarinho, P. M.
2015-01-01
nature of MWCNT/PZT synthesised at 500 ºC for 1 h was proved. Although further work is required to prove the concept of 3D capacitor arrays, our result suggests that it is feasible to utilise MWCNTs as templates/electrodes for the formation of 1D PZT nano
Characterizing diabetes burnout in parents of youth with type 1 diabetes (T1D)[abstract
Managing T1D is complex and requires round-the-clock attention, much of which falls to parents. Parental stress and family conflict about diabetes are associated with suboptimal youth self management and glycemic outcomes, yet little research has described parents' experiences with burnout or tested...
Characterizing diabetes burnout in parents of youth with type 1 diabetes (T1D)
Managing type 1 diabetes (T1D) is complex and requires round-the-clock attention, much of which falls to parents. Parental stress and family conflict about diabetes are associated with suboptimal youth self-management and glycemic outcomes, yet little research has described parents' experiences with...
Canonical decomposition of magnetotelluric responses: Experiment on 1D anisotropic structures
Guo, Ze-qiu; Wei, Wen-bo; Ye, Gao-feng; Jin, Sheng; Jing, Jian-en
2015-08-01
Horizontal electrical heterogeneity of subsurface earth is mostly originated from structural complexity and electrical anisotropy, and local near-surface electrical heterogeneity will severely distort regional electromagnetic responses. Conventional distortion analyses for magnetotelluric soundings are primarily physical decomposition methods with respect to isotropic models, which mostly presume that the geoelectric distribution of geological structures is of local and regional patterns represented by 3D/2D models. Due to the widespread anisotropy of earth media, the confusion between 1D anisotropic responses and 2D isotropic responses, and the defects of physical decomposition methods, we propose to conduct modeling experiments with canonical decomposition in terms of 1D layered anisotropic models, and the method is one of the mathematical decomposition methods based on eigenstate analyses differentiated from distortion analyses, which can be used to recover electrical information such as strike directions, and maximum and minimum conductivity. We tested this method with numerical simulation experiments on several 1D synthetic models, which turned out that canonical decomposition is quite effective to reveal geological anisotropic information. Finally, for the background of anisotropy from previous study by geological and seismological methods, canonical decomposition is applied to real data acquired in North China Craton for 1D anisotropy analyses, and the result shows that, with effective modeling and cautious interpretation, canonical decomposition could be another good method to detect anisotropy of geological media.
Effective potential in N=1, d=4 supergravity coupled to the Volkov-Akulov field
International Nuclear Information System (INIS)
Jasinschi, R.S.; Smith, A.W.
1984-01-01
The only-loop effective potential for N=1, d=4 supergravity theory coupled to the Volkov-Akulov field is calculated. Then it is shown that after an ajustment of some parameters the local supersymmetry is dynamically broken and as a consequence the gravitino acquires mass. (Author) [pt
Quantum group random walks in strongly correlated 2+1 D spin systems
International Nuclear Information System (INIS)
Protogenov, A.P.; Rostovtsev, Yu.V.; Verbus, V.A.
1994-06-01
We consider the temporal evolution of strong correlated degrees of freedom in 2+1 D spin systems using the Wilson operator eigenvalues as variables. It is shown that the quantum-group diffusion equation at deformation parameter q being the k-th root of unity has the polynomial solution of degree k. (author). 20 refs, 1 tab
Insulin stimulation regulates AS160 and TBC1D1 phosphorylation sites in human skeletal muscle
DEFF Research Database (Denmark)
Middelbeek, R J W; Chambers, M A; Tantiwong, P
2013-01-01
Individuals with obesity and type 2 diabetes (T2D) are typically insulin resistant, exhibiting impaired skeletal muscle glucose uptake. Animal and cell culture experiments have shown that site-specific phosphorylation of the Rab-GTPase-activating proteins AS160 and TBC1D1 is critical for GLUT4 tr...
Comparison between 3D and 1D simulations of a regenerative blower for fuel cell applications
International Nuclear Information System (INIS)
Badami, M.; Mura, M.
2012-01-01
Highlights: ► A hydrogen recirculation blower for automotive fuel cells applications is studied. ► A 3D CFD analysis has been carried out to better understand the internal flows of the machine. ► The CFD results are compared to a 1D model set up by the authors in previous works. ► The main hypotheses put forward for the theoretical 1D model are compatible with the 3D analysis. - Abstract: A 3D Computational Fluid Dynamics (CFD) analysis has been carried out to better understand the internal fluid dynamics of a regenerative blower used for hydrogen recirculation in a Proton Exchange Membrane (PEM), Fuel Cell (FC) utilized for automotive applications. The obtained results are used to highlight the motion of the fluid in the vanes and in the side channel of the machine and to verify the main hypotheses put forward concerning the theoretical 1D model set up by the authors in previous works on the basis of the momentum exchange theory. Finally, the CFD analysis has been used to point out the effect of the slope of the vanes on the performance of the regenerative blower, and the results have been compared with those obtained using of the 1D model.
International Nuclear Information System (INIS)
Tit, N.; Kumar, N.; Pradhan, P.
1993-07-01
Exact numerical calculation of ensemble averaged length-scale dependent conductance for the 1D Anderson model is shown to support an earlier conjecture for a conductance minimum. Numerical results can be understood in terms of the Thouless expression for the conductance and the Wigner level-spacing statistics. (author). 8 refs, 2 figs
Induced deformation of the canonical structure and UV/IR duality in (1+1)D
International Nuclear Information System (INIS)
Grigorio, L. S.; Guimaraes, M. S.; Wotzasek, C.
2008-01-01
The purpose of this work is twofold. Working in the framework of (1+1)D Lorentz violating field theories, we will investigate first the general claim that fermionic interactions may be equivalent to a deformation of the canonical structure of the theory. Second, the deformed theory will be studied using duality reasoning to address the behavior of the infrared and ultraviolet regimes
Refractive index sensor based on a 1D photonic crystal in a microfluidic channel
DEFF Research Database (Denmark)
Rodrigues de Sousa Nunes, Pedro André; Mortensen, Asger; Kutter, Jörg Peter
2010-01-01
A refractive index sensor has been fabricated in silicon oxynitride by standard UV lithography and dry etching processes. The refractive index sensor consists of a 1D photonic crystal (PhC) embedded in a microfluidic channel addressed by fiber-terminated planar waveguides. Experimental...
A simple 1D model with thermomechanical coupling for superelastic SMAs
International Nuclear Information System (INIS)
Zaki, W; Morin, C; Moumni, Z
2010-01-01
This paper presents an outline for a new uniaxial model for shape memory alloys that accounts for thermomechanical coupling. The coupling provides an explanation of the dependence of SMA behavior on the loading rate. 1D simulations are carried in Matlab using simple finite-difference discretization of the mechanical and thermal equations.
A South American Prehistoric Mitogenome: Context, Continuity, and the Origin of Haplogroup C1d
Sans, Mónica; Figueiro, Gonzalo; Hughes, Cris E.; Lindo, John; Hidalgo, Pedro C.; Malhi, Ripan S.
2015-01-01
Based on mitochondrial DNA (mtDNA), it has been estimated that at least 15 founder haplogroups peopled the Americas. Subhaplogroup C1d3 was defined based on the mitogenome of a living individual from Uruguay that carried a lineage previously identified in hypervariable region I sequences from ancient and modern Uruguayan individuals. When complete mitogenomes were studied, additional substitutions were found in the coding region of the mitochondrial genome. Using a complete ancient mitogenome and three modern mitogenomes, we aim to clarify the ancestral state of subhaplogroup C1d3 and to better understand the peopling of the region of the Río de la Plata basin, as well as of the builders of the mounds from which the ancient individuals were recovered. The ancient mitogenome, belonging to a female dated to 1,610±46 years before present, was identical to the mitogenome of one of the modern individuals. All individuals share the mutations defining subhaplogroup C1d3. We estimated an age of 8,974 (5,748–12,261) years for the most recent common ancestor of C1d3, in agreement with the initial peopling of the geographic region. No individuals belonging to the defined lineage were found outside of Uruguay, which raises questions regarding the mobility of the prehistoric inhabitants of the country. Moreover, the present study shows the continuity of Native lineages over at least 6,000 years. PMID:26509686
Solvent-free porous framework resulted from 3D entanglement of 1D zigzag coordination polymer
Kole, Goutam Kumar Umar
2010-01-01
A solvent-free porous metal organic framework is constructed by the 3D entanglement of 1D zigzag coordination polymeric chains. The role of solvents and the effect of reaction conditions on such unique entanglement are addressed. © 2010 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.
Ckmeans.1d.dp: Optimal k-means Clustering in One Dimension by Dynamic Programming.
Wang, Haizhou; Song, Mingzhou
2011-12-01
The heuristic k -means algorithm, widely used for cluster analysis, does not guarantee optimality. We developed a dynamic programming algorithm for optimal one-dimensional clustering. The algorithm is implemented as an R package called Ckmeans.1d.dp . We demonstrate its advantage in optimality and runtime over the standard iterative k -means algorithm.
Divide and Conquer-Based 1D CNN Human Activity Recognition Using Test Data Sharpening.
Cho, Heeryon; Yoon, Sang Min
2018-04-01
Human Activity Recognition (HAR) aims to identify the actions performed by humans using signals collected from various sensors embedded in mobile devices. In recent years, deep learning techniques have further improved HAR performance on several benchmark datasets. In this paper, we propose one-dimensional Convolutional Neural Network (1D CNN) for HAR that employs a divide and conquer-based classifier learning coupled with test data sharpening. Our approach leverages a two-stage learning of multiple 1D CNN models; we first build a binary classifier for recognizing abstract activities, and then build two multi-class 1D CNN models for recognizing individual activities. We then introduce test data sharpening during prediction phase to further improve the activity recognition accuracy. While there have been numerous researches exploring the benefits of activity signal denoising for HAR, few researches have examined the effect of test data sharpening for HAR. We evaluate the effectiveness of our approach on two popular HAR benchmark datasets, and show that our approach outperforms both the two-stage 1D CNN-only method and other state of the art approaches.
Divide and Conquer-Based 1D CNN Human Activity Recognition Using Test Data Sharpening
Directory of Open Access Journals (Sweden)
Heeryon Cho
2018-04-01
Full Text Available Human Activity Recognition (HAR aims to identify the actions performed by humans using signals collected from various sensors embedded in mobile devices. In recent years, deep learning techniques have further improved HAR performance on several benchmark datasets. In this paper, we propose one-dimensional Convolutional Neural Network (1D CNN for HAR that employs a divide and conquer-based classifier learning coupled with test data sharpening. Our approach leverages a two-stage learning of multiple 1D CNN models; we first build a binary classifier for recognizing abstract activities, and then build two multi-class 1D CNN models for recognizing individual activities. We then introduce test data sharpening during prediction phase to further improve the activity recognition accuracy. While there have been numerous researches exploring the benefits of activity signal denoising for HAR, few researches have examined the effect of test data sharpening for HAR. We evaluate the effectiveness of our approach on two popular HAR benchmark datasets, and show that our approach outperforms both the two-stage 1D CNN-only method and other state of the art approaches.
Divide and Conquer-Based 1D CNN Human Activity Recognition Using Test Data Sharpening †
Yoon, Sang Min
2018-01-01
Human Activity Recognition (HAR) aims to identify the actions performed by humans using signals collected from various sensors embedded in mobile devices. In recent years, deep learning techniques have further improved HAR performance on several benchmark datasets. In this paper, we propose one-dimensional Convolutional Neural Network (1D CNN) for HAR that employs a divide and conquer-based classifier learning coupled with test data sharpening. Our approach leverages a two-stage learning of multiple 1D CNN models; we first build a binary classifier for recognizing abstract activities, and then build two multi-class 1D CNN models for recognizing individual activities. We then introduce test data sharpening during prediction phase to further improve the activity recognition accuracy. While there have been numerous researches exploring the benefits of activity signal denoising for HAR, few researches have examined the effect of test data sharpening for HAR. We evaluate the effectiveness of our approach on two popular HAR benchmark datasets, and show that our approach outperforms both the two-stage 1D CNN-only method and other state of the art approaches. PMID:29614767
Minimal representations of supersymmetry and 1D N-extended σ-models
International Nuclear Information System (INIS)
Toppan, Francesco
2008-01-01
We discuss the minimal representations of the 1D N-Extended Supersymmetry algebra (the Z 2 -graded symmetry algebra of the Supersymmetric Quantum Mechanics) linearly realized on a finite number of fields depending on a real parameter t, the time. Their knowledge allows to construct one-dimensional sigma-models with extended off-shell supersymmetries without using superfields (author)
[Biodegradation characteristics of o-chlorophenol with photosynthetic bacteria PSB-1D].
Hu, Xiao-min; Dong, Yi-hu; Li, Liang; Lu, Juan; He, Ying-dian; Gao, Yang
2010-07-01
A strain of photosynthetic bacteria named PSB-1D with degradation of o-chlorophenol (2-CP) was isolated and screened from the shallow substrate sludge in downstream side of the sewage outfall of an insecticide factory. The PSB-1D is identified preliminarily as Rhodopseudomonas sp. according to its colony and cell morphological properties, physiological biochemical characteristics and absorption spectrum analysis of living cells. The experiments results of relationship between PSB-1D growth and o-chlorophenol degradation showed that the degradation rate of o-chlorophenol was up to 57.26% after 7 days cultural time. The main environmental factors including way of illumination and oxygen, initial pH, cultural temperature, illumination intensity had distinctly influenced on the o-chlorophenol degradation with PSB-1D. The results showed that the optimum conditions were as following: an anaerobic light, pH 7.0, temperature 30 degrees C, illumination intensity 4000 lx,initial o-chlorophenol concentration 50 mg/L. Under that cultural condition, the degradation rate of o-chlorophenol could reach to 62.08%. The degradation kinetic data fitted the Andrews model well. In addition, the biodegradation process of o-chlorophenol can be well described by enzymatic reaction of high concentration inhibition, with the maximum substrate utilization rate 0.309 d(-1), Michaelis-Menten constant 2.733 mg/L, inhibitory constant 230.15 mg/L respectively.
Lozano, Reymundo; Herman, Kristin; Rothfuss, Melanie; Rieger, Hillary; Bayrak-Toydemir, Pinar; Aprile, Davide; Fruscione, Floriana; Zara, Federico; Fassio, Anna
2016-12-01
TBC1D24-related disorders include a wide phenotypic ranging from mild to lethal seizure disorders, non-syndromic deafness, and composite syndromes such as DOORS (deafness, onychodystrophy, osteodystrophy, mental retardation, and seizures). The TBC1D24 gene has a role in cerebral cortex development and in presynaptic neurotransmission. Here, we present a familial case of a lethal early-onset epileptic encephalopathy, associated with two novel compound heterozygous missense variants on the TBC1D24 gene, which were detected by exome sequencing. The detailed clinical data of the three siblings is summarized in order to support the variability of the phenotype, severity, and progression of this disorder among these family members. Functional studies demonstrated that the identified novel missense mutations result in a loss of expression of the protein, suggesting a correlation between residual expression, and the disease severity. This indicates that protein expression analysis is important for interpreting genetic results when novel variants are found, as well as for complementing clinical assessment by predicting the functional impact. Further analysis is necessary to delineate the clinical presentation of individuals with TBC1D24 pathogenic variants, as well as to develop markers for diagnosis, prognosis, and potential targeted treatments. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Fresnel Lenses fabricated by femtosecond laser micromachining on Polymer 1D Photonic Crystal
Directory of Open Access Journals (Sweden)
Guduru Surya S.K.
2013-11-01
Full Text Available We report the fabrication of micro Fresnel lenses by femtosecond laser surface ablation on polymer 1D photonic crystals. This device is designed to focus the transmitted wavelength of the photonic crystal and filter the wavelengths corresponding to the photonic band gap region. Integration of such devices in a wavelength selective light harvesting and filtering microchip can be achieved.
Probing the dispersion properties of 1D nanophotonic waveguides with far-field Fourier optics
DEFF Research Database (Denmark)
Le Thomas, N.; Jágerská, J.; Houdré, R.
2008-01-01
We present an advanced Fourier space imaging technique to probe guided light in nanophotonic structures with an effective numerical aperture of 2.5. This superresolution technique allows us to successfully investigate the dispersive properties of 1D nanowaveguides such as photonic crystal W1...
Clifford algebras and the minimal representations of the 1D N-extended supersymmetry algebra
International Nuclear Information System (INIS)
Toppan, Francesco
2008-01-01
The Atiyah-Bott-Shapiro classification of the irreducible Clifford algebra is used to derive general properties of the minimal representations of the 1D N-Extended Supersymmetry algebra (the Z 2 -graded symmetry algebra of the Supersymmetric Quantum Mechanics) linearly realized on a finite number of fields depending on a real parameter t, the time. (author)
Solvent-free porous framework resulted from 3D entanglement of 1D zigzag coordination polymer
Kole, Goutam Kumar Umar; Cairns, Amy J.; Eddaoudi, Mohamed; Vittal, Jagadese J.
2010-01-01
A solvent-free porous metal organic framework is constructed by the 3D entanglement of 1D zigzag coordination polymeric chains. The role of solvents and the effect of reaction conditions on such unique entanglement are addressed. © 2010 The Royal
Bagnara, Davide; Ibatici, Adalberto; Corselli, Mirko; Sessarego, Nadia; Tenca, Claudya; De Santanna, Amleto; Mazzarello, Andrea; Daga, Antonio; Corvò, Renzo; De Rossi, Giulio; Frassoni, Francesco; Ciccone, Ermanno; Fais, Franco
2009-07-01
CD1d is a monomorphic antigen presentation molecule expressed in several hematologic malignancies. Alpha-galactosylceramide (alpha-GalCer) is a glycolipid that can be presented to cytotoxic CD1d-restricted T cells. These reagents represent a potentially powerful tool for cell mediated immunotherapy. We set up an experimental model to evaluate the use of adoptively transferred cytotoxic CD1d-restricted T cells and alpha-GalCer in the treatment of mice engrafted with CD1d(+) lymphoid neoplastic cells. To this end the C1R cell line was transfected with CD1c or CD1d molecules. In addition, upon retroviral infection firefly luciferase was expressed on C1R transfected cell lines allowing the evaluation of tumor growth in xenografted immunodeficient NOD/SCID mice. The C1R-CD1d cell line was highly susceptible to specific CD1d-restricted T cell cytotoxicity in the presence alpha-GalCer in vitro. After adoptive transfer of CD1d-restricted T cells and alpha-GalCer to mice engrafted with both C1R-CD1c and C1R-CD1d, a reduction in tumor growth was observed only in CD1d(+) masses. In addition, CD1d-restricted T-cell treatment plus alpha-GalCer eradicated small C1R-CD1d(+) nodules. Immunohistochemical analysis revealed that infiltrating NKT cells were mainly observed in CD1d nodules. Our results indicate that ex vivo expanded cytotoxic CD1d-restricted T cells and alpha-GalCer may represent a new immunotherapeutic tool for treatment of CD1d(+) hematologic malignancies.
International Nuclear Information System (INIS)
West, W.P.; Evans, T.E.; Brooks, N.H.
1996-10-01
NEWT1D, a one dimensional multifluid model of the scrape-off layer and divertor plasma, has been used to model the plasma including the distribution of carbon ionization states in the SOL and divertor of ELMing H-mode at two injected power levels in DIII-D. Comparison of the code predictions to the measured divertor and scrape-off layer (SOL) plasma density and temperature shows good agreement. Comparison of the predicted line emissions to the spectroscopic data suggests that physically sputtered carbon from the strike point is not transported up the flux tube; a distributed source of carbon a few centimeters up the flux tube is required to achieve reasonable agreement
Energy Technology Data Exchange (ETDEWEB)
Sproull, R L; Slack, G A; Moss, M; Pohl, R O; Krumhansl, J A [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY (United States)
1962-01-15
indicadores anadidos. La segunda aplicacion consiste en introducir en los haluros alcalinos pequenas cantidades de iones-impureza a fin de poder estudiar la dispersion de fonones causada por dichas impurezas, o por los huecos que crean en la red cristalina; los autores efectuan las mediciones correspondientes a temperaturas muy bajas, ya que en tales condiciones las imperfecciones de la red imponen limitaciones al libre recorrido medio de los fonones. En estos trabajos han empleado generalmente el radioisotopo {sup 45}Ca. Los autores pasan revista a los resultados de su labor, citan algunas aplicaciones actuales de los radioisotopos en este campo y formulan observaciones sobre sus posibles aplicaciones en lo futuro. (author) [Russian] Radioizotopy byli ispol'zovany v dvukh vazhnykh napravleniyakh dlya izucheniya defektov v shchelochnykh galoidnykh kristallakh. Zonal'noe rafinirovanie soedinenij proveryalos' izotopnymi indikatorami, a koehffitsienty izolyatsii opredelyalis' iz poluchennykh dannykh. Drugoe primenenie zaklyuchalos' v vvedenii nebol'shikh kontsentratsij primesej ionov v shchelochnye galoidy s tem, chtoby izuchit' rasseyanie fononov takimi defektami ili vakansiyami, imi vyzyvaemymi; ehti izmereniya proizvodyatsya pri ochen' nizkikh temperaturakh, pri kotorykh srednyaya velichina svobodnogo probega fonona ogranichivaetsya defektami reshetki. Radioizotopom, poluchivshim naibolee shirokoe primenenie, yavlyaetsya kal'tsij-45. (author)
Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies
Energy Technology Data Exchange (ETDEWEB)
Stojanović, Zoran S.; Ignjatović, Nenad [Centre for Fine Particles Processing and Nanotechnologies, Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/4, 11000 Belgrade (Serbia); Wu, Victoria [Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, 851 South Morgan Street, Chicago, IL 60607-7052 (United States); Žunič, Vojka [Advanced Materials Department, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Veselinović, Ljiljana [Centre for Fine Particles Processing and Nanotechnologies, Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/4, 11000 Belgrade (Serbia); Škapin, Srečo [Advanced Materials Department, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Miljković, Miroslav [Laboratory for Electron Microscopy, Faculty of Medicine University of Niš, Dr. Zoran Đinđić Boulevard 81, 18 000 Niš (Serbia); Uskoković, Vuk [Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, 851 South Morgan Street, Chicago, IL 60607-7052 (United States); Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, 9401 Jeronimo Road, Irvine, CA 92618-1908 (United States); and others
2016-11-01
Recent developments in bone tissue engineering have led to an increased interest in one-dimensional (1D) hydroxyapatite (HA) nano- and micro-structures such as wires, ribbons and tubes. They have been proposed for use as cell substrates, reinforcing phases in composites and carriers for biologically active substances. Here we demonstrate the synthesis of 1D HA structures using an optimized, urea-assisted, high-yield hydrothermal batch process. The one-pot process, yielding HA structures composed of bundles of ribbons and wires, was typified by the simultaneous occurrence of a multitude of intermediate reactions, failing to meet the uniformity criteria over particle morphology and size. To overcome these issues, the preparation procedure was divided to two stages: dicalcium phosphate platelets synthesized in the first step were used as a precursor for the synthesis of 1D HA in the second stage. Despite the elongated particle morphologies, both the precursor and the final product exhibited excellent biocompatibility and caused no reduction of viability when tested against osteoblastic MC3T3-E1 cells in 2D culture up to the concentration of 2.6 mg/cm{sup 2}. X-ray powder diffraction combined with a range of electron microscopies and laser diffraction analyses was used to elucidate the formation mechanism and the microstructure of the final particles. The two-step synthesis involved a more direct transformation of DCP to 1D HA with the average diameter of 37 nm and the aspect ratio exceeding 100:1. The comparison of crystalline domain sizes along different crystallographic directions showed no signs of significant anisotropy, while indicating that individual nanowires are ordered in bundles in the b crystallographic direction of the P6{sub 3/m} space group of HA. Intermediate processes, e.g., dehydration of dicalcium phosphate, are critical for the formation of 1D HA alongside other key aspects of this phase transformation, it must be investigated in more detail in the
Energy Technology Data Exchange (ETDEWEB)
Costrell, L; Brueckmann, R E [National Bureau of Standards, Washington, DC (United States)
1962-04-15
investigaciones realizadas en el National Bureau of Standards (NBS). Los autores han construido un analizador de almacenamiento de cargas que se esta empleando con el sincrotron de 180 MeV del NBS en un experimento de absorcion nuclear que, sin ese aparato, presentaria obstaculos considerables. El analizador almacena temporalmente por medios electrostaticos los datos de amplitud de impulsos durante las rafagas del acelerador y en los intervalos entre rafagas, analiza el contenido del almacenamiento temporal, para pasarlos seguidamente a una memoria convencional de nucleo magnetico. Los datos presentados confirman la posibilidad de emplear esta tecnica para impulsos del orden del nanosegundo. (author) [Russian] Nizkie rabochie tsikly mnogikh impul'snykh uskoritelej delayut neobkhodimymi vysokie chastoty sledovaniya impul'sov vo vspyshkakh dlya sbora dostatochnykh dannykh v techenie razumnogo perioda vremeni. Ne tol'ko soobrazheniya ehkonomii, na kotorye vliyaet dorogostoyashchee mashinnoe vremya, zastavlyayut ispol'zovat' vysokie chastoty sledovaniya impul'sov, no i chisto tekhnicheskie soobrazheniya chasto delayut nevozmozhnymi ehksperimenty, esli chastota sledovaniya impul'sov na vspyshku nedostatochno velika dlya togo, chtoby isklyuchit' Nizkie rabochie tsikly mnogikh impul'snykh uskoritelej delayut neobkhodimymi vysokie chastoty sledovaniya impul'sov vo vspyshkakh dlya sbora dostatochnykh dannykh v techenie razumnogo perioda vremeni. Ne tol'ko soobrazheniya ehkonomii, na kotorye vliyaet dorogostoyashchee mashinnoe vremya, zastavlyayut ispol'zovat' vysokie chastoty sledovaniya impul'sov, no i chisto tekhnicheskie soobrazheniya chasto delayut nevozmozhnymi ehksperimenty, esli chastota sledovaniya impul'sov na vspyshku nedostatochno velika dlya togo, chtoby isklyuchit' ispol'zovanie obychnykh amplitudnykh analizatorov impul'sov. Po ehtim prichinam mnogo usilij udeleno razrabotke vysokoskorostnykh amplitudnykh analizatorov impul'sov dlya ispol'zovaniya s impul'snymi uskoritelyami
B Cells Promote Th1- Skewed NKT Cell Response by CD1d-TCR Interaction.
Shin, Jung Hoon; Park, Se-Ho
2013-10-01
CD1d expressing dendritic cells (DCs) are good glyco-lipid antigen presenting cells for NKT cells. However, resting B cells are very weak stimulators for NKT cells. Although α-galactosylceramide (α-GalCer) loaded B cells can activate NKT cells, it is not well defined whether B cells interfere NKT cell stimulating activity of DCs. Unexpectedly, we found in this study that B cells can promote Th1-skewed NKT cell response, which means a increased level of IFN-γ by NKT cells, concomitant with a decreased level of IL-4, in the circumstance of co-culture of DCs and B Cells. Remarkably, the response promoted by B cells was dependent on CD1d expression of B cells.
Experimental validation of Villain's conjecture about magnetic ordering in quasi-1D helimagnets
Energy Technology Data Exchange (ETDEWEB)
Cinti, F., E-mail: fabio.cinti@fi.infn.i [CNISM and Department of Physics, University of Florence, 50019 Sesto Fiorentino (Italy); CNR-INFM S3 National Research Center, I-41100 Modena (Italy); Rettori, A. [CNISM and Department of Physics, University of Florence, 50019 Sesto Fiorentino (Italy); CNR-INFM S3 National Research Center, I-41100 Modena (Italy); Pini, M.G. [ISC-CNR, Via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); Mariani, M.; Micotti, E. [Department of Physics A. Volta and CNR-INFM, University of Pavia, Via Bassi 6, I-27100 Pavia (Italy); Lascialfari, A. [Department of Physics A. Volta and CNR-INFM, University of Pavia, Via Bassi 6, I-27100 Pavia (Italy); Institute of General Physiology and Biological Chemistry, University of Milano, Via Trentacoste 2, I-20134 Milano (Italy); CNR-INFM S3 National Research Center, I-41100 Modena (Italy); Papinutto, N. [CIMeC, University of Trento, Via delle Regole, 101 38060 Mattarello (Italy); Department of Physics A. Volta and CNR-INFM, University of Pavia, Via Bassi 6, I-27100 Pavia (Italy); Amato, A. [Paul Scherrer Institute, CH-5232 Villingen PSI (Switzerland); Caneschi, A.; Gatteschi, D. [INSTM R.U. Firenze and Department of Chemistry, University of Florence, Via della Lastruccia 3, I-50019 Sesto Fiorentino (Italy); Affronte, M. [CNR-INFM S3 National Research Center, I-41100 Modena (Italy); Department of Physics, University of Modena and Reggio Emilia Via Campi 213/A, I-41100 Modena (Italy)
2010-05-15
Low-temperature magnetic susceptibility, zero-field muon spin resonance and specific heat measurements have been performed in the quasi-one-dimensional (1D) molecular helimagnetic compound Gd(hfac){sub 3}NITEt. The specific heat presents two anomalies at T{sub 0}=2.19(2)K and T{sub N}=1.88(2)K, while susceptibility and zero-field muon spin resonance show anomalies only at T{sub N}=1.88(2)K. The results suggest an experimental validation of Villain's conjecture of a two-step magnetic ordering in quasi-1D XY helimagnets: the paramagnetic phase and the helical spin solid phases are separated by a chiral spin liquid, where translational invariance is broken without violation of rotational invariance.
Experimental validation of Villain's conjecture about magnetic ordering in quasi-1D helimagnets
International Nuclear Information System (INIS)
Cinti, F.; Rettori, A.; Pini, M.G.; Mariani, M.; Micotti, E.; Lascialfari, A.; Papinutto, N.; Amato, A.; Caneschi, A.; Gatteschi, D.; Affronte, M.
2010-01-01
Low-temperature magnetic susceptibility, zero-field muon spin resonance and specific heat measurements have been performed in the quasi-one-dimensional (1D) molecular helimagnetic compound Gd(hfac) 3 NITEt. The specific heat presents two anomalies at T 0 =2.19(2)K and T N =1.88(2)K, while susceptibility and zero-field muon spin resonance show anomalies only at T N =1.88(2)K. The results suggest an experimental validation of Villain's conjecture of a two-step magnetic ordering in quasi-1D XY helimagnets: the paramagnetic phase and the helical spin solid phases are separated by a chiral spin liquid, where translational invariance is broken without violation of rotational invariance.
Membranes having aligned 1-D nanoparticles in a matrix layer for improved fluid separation
Revanur, Ravindra; Lulevich, Valentin; Roh, Il Juhn; Klare, Jennifer E.; Kim, Sangil; Noy, Aleksandr; Bakajin, Olgica
2015-12-22
Membranes for fluid separation are disclosed. These membranes have a matrix layer sandwiched between an active layer and a porous support layer. The matrix layer includes 1-D nanoparticles that are vertically aligned in a porous polymer matrix, and which substantially extend through the matrix layer. The active layer provides species-specific transport, while the support layer provides mechanical support. A matrix layer of this type has favorable surface morphology for forming the active layer. Furthermore, the pores that form in the matrix layer tend to be smaller and more evenly distributed as a result of the presence of aligned 1-D nanoparticles. Improved performance of separation membranes of this type is attributed to these effects.
Could we understand the 1 D2 → pp-bar charmonium decay?
International Nuclear Information System (INIS)
Anselmino, M.; Negrao, M.R.
1994-01-01
Massless perturbative QCD forbids, at leading order, the exclusive annihilation of proton-antiproton into charmonium states, which, however, have been observed in the pp-bar channel, indicating the significance of higher order and non perturbative effects in the few GeV energy region. The most well known cases are those of the 1 S 0 (η c ) and the 1P 1 . We consider here the 1 D 2 state, whose coupling to pp-bar in equally forbidden in p QCD, and study several possible non perturbative contributions. It turns out that the observation of the pp-bar → 1 D 2 process would be very intriguing indeed. (author)
Assessment of core thermo-hydrodynamic models of REFLA-1D with CCTF data
International Nuclear Information System (INIS)
Okubo, Tsutomu; Murao, Yoshio
1983-07-01
In order to assess the core thermo-hydrodynamic models of REFLA-1D/MODE3, which is the latest version of REFLA-1D, several calculations of the core thermo-hydrodynamics have been performed for the CCTF Core-I series tests. The measured initial and boundary conditions were used for these calculations. The calculational results showed that the water accumulation model of Case 2 could predict the CCTF results fairly well as it could for the JAERI small scale facility. The calculated results for the base case and the EM tests were in good agreement with the CCTF data. The parameter effects, such as system pressure, initial clad temperature, Acc injection rate, LPCI injection rate and initial down-comer wall temperature, were predicted correctly, except for the high system pressure and the high LPCI injection rate tests. (author)
Design, implementation and analysis of fully digital 1-D controllable multiscroll chaos
Mansingka, Abhinav S.; Radwan, Ahmed G.; Salama, Khaled N.
2011-01-01
This paper introduces the fully digital implementation of a 1-D multiscroll chaos generator based on a staircase nonlinearity in the 3rd-order jerk system using the Euler approximation. For the first time, digital design is exploited to provide real-time controllability of (i) number of scrolls, (ii) position in 1-D space, (iii) Euler step size and (iv) system parameter. The effect of variations in these fields on the maximum Lyapunov exponent (MLE) is analyzed. The system is implemented using Verilog HDL and synthesized on an Xilinx Virtex 4 FPGA, exhibiting area utilization less than 3.5% and high performance with experimentally verified throughput up to 3.33 Gbits/s. This fully digital system enables applications in modulation schemes and chaos-based cryptosystems without analog to digital conversion. © 2011 IEEE.
(3+1)D Quasiparticle Anisotropic Hydrodynamics for Ultrarelativistic Heavy-Ion Collisions.
Alqahtani, Mubarak; Nopoush, Mohammad; Ryblewski, Radoslaw; Strickland, Michael
2017-07-28
We present the first comparisons of experimental data with phenomenological results from (3+1)D quasiparticle anisotropic hydrodynamics (aHydroQP). We compare particle spectra, average transverse momentum, and elliptic flow. The dynamical equations used for the hydrodynamic stage utilize aHydroQP, which naturally includes both shear and bulk viscous effects. The (3+1)D aHydroQP evolution obtained is self-consistently converted to hadrons using anisotropic Cooper-Frye freeze-out. Hadron production and decays are modeled using a customized version of therminator 2. In this first study, we utilized smooth Glauber-type initial conditions and a single effective freeze-out temperature T_{FO}=130 MeV with all hadronic species in full chemical equilibrium. With this rather simple setup, we find a very good description of many heavy-ion observables.
Optical coherence tomography based 1D to 6D eye-in-hand calibration
DEFF Research Database (Denmark)
Antoni, Sven Thomas; Otte, Christoph; Savarimuthu, Thiusius Rajeeth
2017-01-01
and based on this introduce pivot+d, a new 1D to 6D eye-in-hand calibration. We provide detailed results on the convergence and accuracy of our method and use translational and rotational ground truth to show that our methods allow for submillimeter positioning accuracy of an OCT beam with a robot.......e., it can be easily integrated with instruments. However, to use OCT for intra-operative guidance its spatial alignment needs to be established. Hence, we consider eye-in-hand calibration between the 1D OCT imaging and a 6D robotic position system. We present a method to perform pivot calibration for OCT....... For pivot calibration we observe a mean translational error of 0.5161 ± 0.4549 mm while pivot+d shows 0.3772 ± 0.2383 mm. Additionally, pivot+d improves rotation detection by about 8° when compared to pivot calibration....
Design, implementation and analysis of fully digital 1-D controllable multiscroll chaos
Mansingka, Abhinav S.
2011-12-01
This paper introduces the fully digital implementation of a 1-D multiscroll chaos generator based on a staircase nonlinearity in the 3rd-order jerk system using the Euler approximation. For the first time, digital design is exploited to provide real-time controllability of (i) number of scrolls, (ii) position in 1-D space, (iii) Euler step size and (iv) system parameter. The effect of variations in these fields on the maximum Lyapunov exponent (MLE) is analyzed. The system is implemented using Verilog HDL and synthesized on an Xilinx Virtex 4 FPGA, exhibiting area utilization less than 3.5% and high performance with experimentally verified throughput up to 3.33 Gbits/s. This fully digital system enables applications in modulation schemes and chaos-based cryptosystems without analog to digital conversion. © 2011 IEEE.
Directory of Open Access Journals (Sweden)
Chong Li
2017-02-01
Full Text Available We propose a scheme of unidirectional transmission in a 1D nonlinear topological photonic crystal based on the topological edge state and three order optical nonlinearity. The 1D photonic crystals consists of a nonlinear photonic crystal L and a linear photonic crystal R. In the backward direction, light is totally reflected for the photons transmission prohibited by the bandgap. While in the forward direction, light interacts with the nonlinear photonic crystal L by optical Kerr effect, bringing a topological phase reversal and results the topological edge mode arising at the interface which could transmit photons through the bandgaps both of the photonic crystal L and R. When the signal power intensity larger than a moderate low threshold value of 10.0 MW/cm2, the transmission contrast ratio could remain at 30 steadily.
Na-ion dynamics in Quasi-1D compound NaV2O4
International Nuclear Information System (INIS)
Månsson, M; Umegaki, I; Nozaki, H; Higuchi, Y; Sugiyama, J; Kawasaki, I; Watanabe, I; Sakurai, H
2014-01-01
We have used the pulsed muon source at ISIS to study high-temperature Na-ion dynamics in the quasi-one-dimensional (Q1D) metallic antiferromagnet NaV 2 O 4 . By performing systematic zero-field and longitudinal-field measurements as a function of temperature we clearly distinguish that the hopping rate increases exponentially above T diff ≈ 250 K. The data is well fitted to an Arrhenius type equation typical for a diffusion process, showing that the Na-ions starts to be mobile above T diff . Such results make this compound very interesting for the tuning of Q1D magnetism using atomic-scale ion-texturing through the periodic potential from ordered Na-vacancies. Further, it also opens the door to possible use of NaV 2 O 4 and related compounds in energy related applications
TBC1D24 Mutations in a Sibship with Multifocal Polymyoclonus
Directory of Open Access Journals (Sweden)
Adeline Ngoh
2017-04-01
Full Text Available Background: Advances in molecular genetic technologies have improved our understanding of genetic causes of rare neurological disorders with features of myoclonus.Case Report: A family with two affected siblings, presenting with multifocal polymyoclonus and neurodevelopmental delay, was recruited for whole-exome sequencing following unyielding diagnostic neurometabolic investigations. Compound heterozygous mutations in TBC1D24, a gene previously associated with various epilepsy phenotypes and hearing loss, were identified in both siblings. The mutations included a missense change c.457G>A (p.Glu157Lys, and a novel frameshift mutation c.545del (p.Thr182Serfs*6.Discussion: We propose that TBC1D24-related diseases should be in the differential diagnosis for children with polymyoclonus.
Hydrogen-Bonding Interactions in Luminescent Quinoline-Triazoles with Dominant 1D Crystals
Directory of Open Access Journals (Sweden)
Shi-Qiang Bai
2017-09-01
Full Text Available Quinoline-triazoles 2-((4-(diethoxymethyl-1H-1,2,3-triazol-1-ylmethylquinoline (1, 2-((4-(m-tolyl-1H-1,2,3-triazol-1-ylmethylquinoline (2 and 2-((4-(p-tolyl-1H-1,2,3-triazol-1-ylmethylquinoline (3 have been prepared with CuAAC click reactions and used as a model series to probe the relationship between lattice H-bonding interaction and crystal direction of growth. Crystals of 1–3 are 1D tape and prism shapes that correlate with their intermolecular and solvent 1D lattice H-bonding interactions. All compounds were thermally stable up to about 200 C and blue-green emissive in solution.
Magnetic Anticrossing of 1D Subbands in Coupled Ballistic Double Quantum Wires
International Nuclear Information System (INIS)
Blount, Mark A.; Moon, Jeong-Sun; Simmons, Jerry A.; Lyo, Sungkwun K.; Wendt, Joel R.; Reno, John L.
2000-01-01
We study the low-temperature in-plane magnetoconductance of vertically coupled double quantum wires. Using a novel flip-chip technique, the wires are defined by two pairs of mutually aligned split gates on opposite sides of a s 1 micron thick AlGaAs/GaAs double quantum well heterostructure. We observe quantized conductance steps due to each quantum well and demonstrate independent control of each ID wire. A broad dip in the magnetoconductance at -6 T is observed when a magnetic field is applied perpendicular to both the current and growth directions. This conductance dip is observed only when 1D subbands are populated in both the top and bottom constrictions. This data is consistent with a counting model whereby the number of subbands crossing the Fermi level changes with field due to the formation of an anticrossing in each pair of 1D subbands
Pressure-controlled terahertz filter based on 1D photonic crystal with a defective semiconductor
Qinwen, XUE; Xiaohua, WANG; Chenglin, LIU; Youwen, LIU
2018-03-01
The tunable terahertz (THz) filter has been designed and studied, which is composed of 1D photonic crystal (PC) containing a defect layer of semiconductor GaAs. The analytical solution of 1D defective PC (1DDPC) is deduced based on the transfer matrix method, and the electromagnetic plane wave numerical simulation of this 1DDPC is performed by using the finite element method. The calculated and simulated results have confirmed that the filtering transmittance of this 1DDPC in symmetric structure of air/(Si/SiO2) N /GaAs/(SiO2/Si) N /air is far higher than in asymmetric structure of air/(Si/SiO2) N /GaAs/(Si/SiO2) N /air, where the filtering frequency can be tuned by the external pressure. It can provide a feasible route to design the external pressure-controlled THz filter based on 1DPC with a defective semiconductor.
Quantum theory for 1D X-ray free electron laser
Anisimov, Petr M.
2018-06-01
Classical 1D X-ray Free Electron Laser (X-ray FEL) theory has stood the test of time by guiding FEL design and development prior to any full-scale analysis. Future X-ray FELs and inverse-Compton sources, where photon recoil approaches an electron energy spread value, push the classical theory to its limits of applicability. After substantial efforts by the community to find what those limits are, there is no universally agreed upon quantum approach to design and development of future X-ray sources. We offer a new approach to formulate the quantum theory for 1D X-ray FELs that has an obvious connection to the classical theory, which allows for immediate transfer of knowledge between the two regimes. We exploit this connection in order to draw quantum mechanical conclusions about the quantum nature of electrons and generated radiation in terms of FEL variables.
Static sign language recognition using 1D descriptors and neural networks
Solís, José F.; Toxqui, Carina; Padilla, Alfonso; Santiago, César
2012-10-01
A frame work for static sign language recognition using descriptors which represents 2D images in 1D data and artificial neural networks is presented in this work. The 1D descriptors were computed by two methods, first one consists in a correlation rotational operator.1 and second is based on contour analysis of hand shape. One of the main problems in sign language recognition is segmentation; most of papers report a special color in gloves or background for hand shape analysis. In order to avoid the use of gloves or special clothing, a thermal imaging camera was used to capture images. Static signs were picked up from 1 to 9 digits of American Sign Language, a multilayer perceptron reached 100% recognition with cross-validation.
D1/D2 domain of large-subunit ribosomal DNA for differentiation of Orpinomyces spp.
Dagar, Sumit S; Kumar, Sanjay; Mudgil, Priti; Singh, Rameshwar; Puniya, Anil K
2011-09-01
This study presents the suitability of D1/D2 domain of large-subunit (LSU) ribosomal DNA (rDNA) for differentiation of Orpinomyces joyonii and Orpinomyces intercalaris based on PCR-restriction fragment length polymorphism (RFLP). A variation of G/T in O. intercalaris created an additional restriction site for AluI, which was used as an RFLP marker. The results demonstrate adequate heterogeneity in the LSU rDNA for species-level differentiation.
Type II NKT cells: a distinct CD1d-restricted immune regulatory NKT cell subset.
Dasgupta, Suryasarathi; Kumar, Vipin
2016-08-01
Type II natural killer T cells (NKT) are a subset of the innate-like CD1d-restricted lymphocytes that are reactive to lipid antigens. Unlike the type I NKT cells, which express a semi-invariant TCR, type II NKT cells express a broader TCR repertoire. Additionally, other features, such as their predominance over type I cells in humans versus mice, the nature of their ligands, CD1d/lipid/TCR binding, and modulation of immune responses, distinguish type II NKT cells from type I NKT cells. Interestingly, it is the self-lipid-reactivity of type II NKT cells that has helped define their physiological role in health and in disease. The discovery of sulfatide as one of the major antigens for CD1d-restricted type II NKT cells in mice has been instrumental in the characterization of these cells, including the TCR repertoire, the crystal structure of the CD1d/lipid/TCR complex, and their function. Subsequently, several other glycolipids and phospholipids from both endogenous and microbial sources have been shown to activate type II NKT cells. The activation of a specific subset of type II NKT cells following administration with sulfatide or lysophosphatidylcholine (LPC) leads to engagement of a dominant immunoregulatory pathway associated with the inactivation of type I NKT cells, conventional dendritic cells, and inhibition of the proinflammatory Th1/Th17 cells. Thus, type II NKT cells have been shown to be immunosuppressive in autoimmune diseases, inflammatory liver diseases, and in cancer. Knowing their relatively higher prevalence in human than type I NKT cells, understanding their biology is imperative for health and disease.
Resistivity structure of Sumatran Fault (Aceh segment) derived from 1-D magnetotelluric modeling
Nurhasan, Sutarno, D.; Bachtiar, H.; Sugiyanto, D.; Ogawa, Y.; Kimata, F.; Fitriani, D.
2012-06-01
Sumatran Fault Zone is the most active fault in Indonesia as a result of strike-slip component of Indo-Australian oblique convergence. With the length of 1900 km, Sumatran fault was divided into 20 segments starting from the southernmost Sumatra Island having small slip rate and increasing to the north end of Sumatra Island. There are several geophysical methods to analyze fault structure depending on physical parameter used in these methods, such as seismology, geodesy and electromagnetic. Magnetotelluric method which is one of geophysical methods has been widely used in mapping and sounding resistivity distribution because it does not only has the ability for detecting contras resistivity but also has a penetration range up to hundreds of kilometers. Magnetotelluric survey was carried out in Aceh region with the 12 total sites crossing Sumatran Fault on Aceh and Seulimeum segments. Two components of electric and magnetic fields were recorded during 10 hours in average with the frequency range from 320 Hz to 0,01 Hz. Analysis of the pseudosection of phase and apparent resistivity exhibit vertical low phase flanked on the west and east by high phase describing the existence of resistivity contras in this region. Having rotated the data to N45°E direction, interpretation of the result has been performed using three different methods of 1D MT modeling i.e. Bostick inversion, 1D MT inversion of TM data, and 1D MT inversion of the impedance determinant. By comparison, we concluded that the use of TM data only and the impedance determinant in 1D inversion yield the more reliable resistivity structure of the fault compare to other methods. Based on this result, it has been shown clearly that Sumatra Fault is characterized by vertical contras resistivity indicating the existence of Aceh and Seulimeum faults which has a good agreement with the geological data.
Scaling of localization length of a quasi 1D system with longitudinal boundary roughness
International Nuclear Information System (INIS)
Abhijit Kar Gupta; Sen, A.K.
1994-08-01
We introduce irregularities on one of the longitudinal boundaries of a quasi 1D strip which has no bulk disorder. We calculate the localization length of such a system within the scope of tight-binding formalism and see how it behaves with the roughness introduced on the boundary and with the strip-width. We find that localization length scales with a composite one parameter. (author). 6 refs, 4 figs
Finite difference approximation of control via the potential in a 1-D Schrodinger equation
Directory of Open Access Journals (Sweden)
K. Kime
2000-04-01
Full Text Available We consider the problem of steering given initial data to given terminal data via a time-dependent potential, the control, in a 1-D Schrodinger equation. We determine a condition for existence of a transferring potential within our approximation. Using Maple, we give equations for the control and also examples in which the potential is restricted to be centralized and to be a step potential.
Comments on global symmetries, anomalies, and duality in (2+1)d
Energy Technology Data Exchange (ETDEWEB)
Benini, Francesco [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); SISSA & INFN,via Bonomea 265, 34136 Trieste (Italy); Hsin, Po-Shen [Department of Physics, Princeton University,Princeton, NJ 08544 (United States); Seiberg, Nathan [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States)
2017-04-21
We analyze in detail the global symmetries of various (2+1)d quantum field theories and couple them to classical background gauge fields. A proper identification of the global symmetries allows us to consider all non-trivial bundles of those background fields, thus finding more subtle observables. The global symmetries exhibit interesting ’t Hooft anomalies. These allow us to constrain the IR behavior of the theories and provide powerful constraints on conjectured dualities.
Towards an Automatic Parking System using Bio-Inspired 1-D Optical Flow Sensors
Mafrica , Stefano; Servel , Alain; Ruffier , Franck
2015-01-01
International audience; Although several (semi-) automatic parking systems have been presented throughout the years [1]–[12], car manufacturers are still looking for low-cost sensors providing redundant information about the obstacles around the vehicle, as well as efficient methods of processing this information, in the hope of achieving a very high level of robustness. We therefore investigated how Local Motion Sensors (LMSs) [13], [14], comprising only of a few pixels giving 1-D optical fl...
TBC1D24, an ARF6-interacting protein, is mutated in familial infantile myoclonic epilepsy.
Falace, Antonio; Filipello, Fabia; La Padula, Veronica; Vanni, Nicola; Madia, Francesca; De Pietri Tonelli, Davide; de Falco, Fabrizio A; Striano, Pasquale; Dagna Bricarelli, Franca; Minetti, Carlo; Benfenati, Fabio; Fassio, Anna; Zara, Federico
2010-09-10
Idiopathic epilepsies (IEs) are a group of disorders characterized by recurrent seizures in the absence of detectable brain lesions or metabolic abnormalities. IEs include common disorders with a complex mode of inheritance and rare Mendelian traits suggesting the occurrence of several alleles with variable penetrance. We previously described a large family with a recessive form of idiopathic epilepsy, named familial infantile myoclonic epilepsy (FIME), and mapped the disease locus on chromosome 16p13.3 by linkage analysis. In the present study, we found that two compound heterozygous missense mutations (D147H and A509V) in TBC1D24, a gene of unknown function, are responsible for FIME. In situ hybridization analysis revealed that Tbc1d24 is mainly expressed at the level of the cerebral cortex and the hippocampus. By coimmunoprecipitation assay we found that TBC1D24 binds ARF6, a Ras-related family of small GTPases regulating exo-endocytosis dynamics. The main recognized function of ARF6 in the nervous system is the regulation of dendritic branching, spine formation, and axonal extension. TBC1D24 overexpression resulted in a significant increase in neurite length and arborization and the FIME mutations significantly reverted this phenotype. In this study we identified a gene mutation involved in autosomal-recessive idiopathic epilepsy, unveiled the involvement of ARF6-dependent molecular pathway in brain hyperexcitability and seizures, and confirmed the emerging role of subtle cytoarchitectural alterations in the etiology of this group of common epileptic disorders. 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yingjie, E-mail: yzx@ansto.gov.au [Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Bhadbhade, Mohan [Mark Wainwright Analytical Centre, University of New South Wales, Kensington, NSW 2052 (Australia); Karatchevtseva, Inna [Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Price, Jason R. [Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168 (Australia); Liu, Hao [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW 2007 (Australia); Zhang, Zhaoming; Kong, Linggen [Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Čejka, Jiří [Department of Mineralogy, National Museum, Václavské náměstí, 68, Prague 1, 115 79-CZ (Czech Republic); Lu, Kim; Lumpkin, Gregory R. [Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)
2015-03-15
Three new coordination polymers of uranium(VI) with pyromellitic acid (H{sub 4}btca) have been synthesized and structurally characterized. (ED)[(UO{sub 2})(btca)]·(DMSO)·3H{sub 2}O (1) (ED=ethylenediammonium; DMSO=dimethylsulfoxide) has a lamellar structure with intercalation of ED and DMSO. (NH{sub 4}){sub 2}[(UO{sub 2}){sub 6}O{sub 2}(OH){sub 6}(btca)]·~6H{sub 2}O (2) has a 3D framework built from 7-fold coordinated uranyl trinuclear units and btca ligands with 1D diamond-shaped channels (~8.5 Å×~8.6 Å). [(UO{sub 2}){sub 2}(H{sub 2}O)(btca)]·4H{sub 2}O (3) has a 3D network constructed by two types of 7-fold coordinated uranium polyhedron. The unique μ{sub 5}-coordination mode of btca in 3 enables the formation of 1D olive-shaped large channels (~4.5 Å×~19 Å). Vibrational modes, thermal stabilities and fluorescence properties have been investigated. - Graphical abstract: Table of content: three new uranium(VI) coordination polymers with pyromellitic acid (H{sub 4}btca) have been synthesized via room temperature and hydrothermal synthesis methods, and structurally characterized. Two to three dimensional (3D) frameworks are revealed. All 3D frameworks have unique 1D large channels. Their vibrational modes, thermal stabilities and photoluminescence properties have been investigated. - Highlights: • Three new coordination polymers of U(VI) with pyromellitic acid (H{sub 4}btca). • Structures from a 2D layer to 3D frameworks with unique 1D channels. • Unusual µ{sub 5}-(η{sub 1}:η{sub 2}:η{sub 1}:η{sub 2:}η{sub 1}) coordination mode of btca ligand. • Vibrational modes, thermal stabilities and luminescent properties reported.
High Density Nodes in the Chaotic Region of 1D Discrete Maps
Directory of Open Access Journals (Sweden)
George Livadiotis
2018-01-01
Full Text Available We report on the definition and characteristics of nodes in the chaotic region of bifurcation diagrams in the case of 1D mono-parametrical and S-unimodal maps, using as guiding example the logistic map. We examine the arrangement of critical curves, the identification and arrangement of nodes, and the connection between the periodic windows and nodes in the chaotic zone. We finally present several characteristic features of nodes, which involve their convergence and entropy.
International Nuclear Information System (INIS)
Lee, H. W.
1999-01-01
Wh study phase coherent transport in a single channel system using the scattering matrix approach. It is show that the Friedel sum rule and the time-reversal symmetry result in the generic appearance of transmission zeros in quasi-1d systems. The transmission zeros naturally lead to abrupt phase changes (without any intrinsic energy scale) and in-phase resonances, thus providing insights to recent experiments on phase coherent transport through a quantum dot
1D-Var temperature retrievals from microwave radiometer and convective scale model
Directory of Open Access Journals (Sweden)
Pauline Martinet
2015-12-01
Full Text Available This paper studies the potential of ground-based microwave radiometers (MWR for providing accurate temperature retrievals by combining convective scale numerical models and brightness temperatures (BTs. A one-dimensional variational (1D-Var retrieval technique has been tested to optimally combine MWR and 3-h forecasts from the French convective scale model AROME. A microwave profiler HATPRO (Humidity and Temperature PROfiler was operated during 6 months at the meteorological station of Bordeaux (Météo France. MWR BTs were monitored against simulations from the Atmospheric Radiative Transfer Simulator 2 radiative transfer model. An overall good agreement was found between observations and simulations for opaque V-band channels but large errors were observed for channels the most affected by liquid water and water vapour emissions (51.26 and 52.28 GHz. 1D-Var temperature retrievals are performed in clear-sky and cloudy conditions using a screening procedure based on cloud base height retrieval from ceilometer observations, infrared radiometer temperature and liquid water path derived from the MWR observations. The 1D-Var retrievals were found to improve the AROME forecasts up to 2 km with a maximum gain of approximately 50 % in root-mean-square-errors (RMSE below 500 m. They were also found to outperform neural network retrievals. A static bias correction was proposed to account for systematic instrumental errors. This correction was found to have a negligible impact on the 1D-Var retrievals. The use of low elevation angles improves the retrievals up to 12 % in RMSE in cloudy-sky in the first layers. The present implementation achieved a RMSE with respect to radiosondes within 1 K in clear-sky and 1.3 K in cloudy-sky conditions for temperature.
INFIL1D: a quasi-analytical model for simulating one-dimensional, constant flux infiltration
International Nuclear Information System (INIS)
Simmons, C.S.; McKeon, T.J.
1984-04-01
The program INFIL1D is designed to calculate approximate wetting-front advance into an unsaturated, uniformly moist, homogeneous soil profile, under constant surface-flux conditions. The code is based on a quasi-analytical method, which utilizes an assumed invariant functional relationship between reduced (normalized) flux and water content. The code uses general hydraulic property data in tabular form to simulate constant surface-flux infiltration. 10 references, 4 figures
Ground-state energy for 1D (t,U,X)-model at low densities
International Nuclear Information System (INIS)
Buzatu, F.D.
1992-09-01
In describing the properties of quasi-1D materials with a highly-screened interelectronic potential, an attractive hopping term has to be added to the Hubbard Hamiltonian. The effective interaction and the ground-state energy in ladder approximation are analyzed. At low electronic densities, the attractive part of the interaction, initially smaller than the repulsive term, can become more effective, the ground-state energy decreasing below the unperturbed value. (author). 12 refs, 4 figs
Low band gap frequencies and multiplexing properties in 1D and 2D mass spring structures
International Nuclear Information System (INIS)
Aly, Arafa H; Mehaney, Ahmed
2016-01-01
This study reports on the propagation of elastic waves in 1D and 2D mass spring structures. An analytical and computation model is presented for the 1D and 2D mass spring systems with different examples. An enhancement in the band gap values was obtained by modeling the structures to obtain low frequency band gaps at small dimensions. Additionally, the evolution of the band gap as a function of mass value is discussed. Special attention is devoted to the local resonance property in frequency ranges within the gaps in the band structure for the corresponding infinite periodic lattice in the 1D and 2D mass spring system. A linear defect formed of a row of specific masses produces an elastic waveguide that transmits at the narrow pass band frequency. The frequency of the waveguides can be selected by adjusting the mass and stiffness coefficients of the materials constituting the waveguide. Moreover, we pay more attention to analyze the wave multiplexer and DE-multiplexer in the 2D mass spring system. We show that two of these tunable waveguides with alternating materials can be employed to filter and separate specific frequencies from a broad band input signal. The presented simulation data is validated through comparison with the published research, and can be extended in the development of resonators and MEMS verification. (paper)
Emergent 1d Ising Behavior in AN Elementary Cellular Automaton Model
Kassebaum, Paul G.; Iannacchione, Germano S.
The fundamental nature of an evolving one-dimensional (1D) Ising model is investigated with an elementary cellular automaton (CA) simulation. The emergent CA simulation employs an ensemble of cells in one spatial dimension, each cell capable of two microstates interacting with simple nearest-neighbor rules and incorporating an external field. The behavior of the CA model provides insight into the dynamics of coupled two-state systems not expressible by exact analytical solutions. For instance, state progression graphs show the causal dynamics of a system through time in relation to the system's entropy. Unique graphical analysis techniques are introduced through difference patterns, diffusion patterns, and state progression graphs of the 1D ensemble visualizing the evolution. All analyses are consistent with the known behavior of the 1D Ising system. The CA simulation and new pattern recognition techniques are scalable (in both dimension, complexity, and size) and have many potential applications such as complex design of materials, control of agent systems, and evolutionary mechanism design.
Coupled 1D-2D hydrodynamic inundation model for sewer overflow: Influence of modeling parameters
Directory of Open Access Journals (Sweden)
Adeniyi Ganiyu Adeogun
2015-10-01
Full Text Available This paper presents outcome of our investigation on the influence of modeling parameters on 1D-2D hydrodynamic inundation model for sewer overflow, developed through coupling of an existing 1D sewer network model (SWMM and 2D inundation model (BREZO. The 1D-2D hydrodynamic model was developed for the purpose of examining flood incidence due to surcharged water on overland surface. The investigation was carried out by performing sensitivity analysis on the developed model. For the sensitivity analysis, modeling parameters, such as mesh resolution Digital Elevation Model (DEM resolution and roughness were considered. The outcome of the study shows the model is sensitive to changes in these parameters. The performance of the model is significantly influenced, by the Manning's friction value, the DEM resolution and the area of the triangular mesh. Also, changes in the aforementioned modeling parameters influence the Flood characteristics, such as the inundation extent, the flow depth and the velocity across the model domain. Keywords: Inundation, DEM, Sensitivity analysis, Model coupling, Flooding
[Sulfatide-loaded CD1d tetramer to detect typeII NKT cells in mice].
Zhang, Gu-qin; Nie, Han-xiang; Yang, Jiong; Yu, Hong-ying
2012-07-01
To create a method of detecting typeII natural killer T (NKT) cells of mice. Biotinylated mouse CD1d monomers were mixed with sulfatide at a molar ratio of 1:3 (protein:lipid) and incubated at room temperature overnight, and then 80 μg of streptavidin-PE was added into 200 μg of the CD1d-sulfatide mixture and incubated at room temperature for 4 h to get sulfatide/CD1d tetramer. Flow cytometry was used to detect the percentage of typeII NKT cells in mononuclear cells (MNCs) of lung and spleen of normal mice, as well as the percentage of typeII NKT cells in spleen MNCs of mice after stimulated with sulfatide. In normal mice, the percentage of typeII NKT cells accounted for (0.875±0.096)% and (1.175±0.263)% in MNCs of spleen and lung; the percentage in spleen MNCs after activated with sulfatide was (2.75±0.603)%, which significantly increased as compared with that in normal mice (PNKT cells in mice.
Köhler, T.; Schumann, O.; Biebl, F.; Kramer, S.; Kehrein, S.; Manmana, S.; Rajpurohit, S.; Sotoudeh, M.; Blöchl, P.
We investigate 1D correlated systems following a photoexcitation by combining ab-initio methods, time-dependent matrix product state (MPS) approaches, analytical insights from linearized quantum Boltzmann equations (LBE), and molecular dynamics (MD) simulations to describe the dynamics on different time scales ranging from femto- up to nanoseconds. This is done for manganite systems in the material class Pr1-xCaxMnO3. We derive 1D ab-initio model Hamiltonians for which we compute the ground states at different values of the doping using MD simulations. At half doping, we obtain a magnetic microstructure of alternating dimers from which we derive a 1D Hubbard-type model. The dynamics is analyzed concerning the formation and lifetime of such quasiparticles via a LBE. We find that the magnetic microstructure strongly enhances the lifetime of the excitations. In this way, our work constitutes a first step to building a unifying theoretical framework for the description of photoexcitations in strongly correlated materials over a wide range of time scales, capable of making predictions for ongoing experiments investigating pump-probe situations and unconventional photovoltaics. Financial support from the Deutsche Forschungsgemeinschaft (DFG) through SFB/CRC1073 (Projects B03 and C03) is gratefully acknowledged.
Directory of Open Access Journals (Sweden)
Gijs H M van Puijvelde
Full Text Available An abdominal aortic aneurysm (AAA is a dilatation of the abdominal aorta leading to serious complications and mostly to death. AAA development is associated with an accumulation of inflammatory cells in the aorta including NKT cells. An important factor in promoting the recruitment of these inflammatory cells into tissues and thereby contributing to the development of AAA is angiotensin II (Ang II. We demonstrate that a deficiency in CD1d dependent NKT cells under hyperlipidemic conditions (LDLr-/-CD1d-/- mice results in a strong decline in the severity of angiotensin II induced aneurysm formation when compared with LDLr-/- mice. In addition, we show that Ang II amplifies the activation of NKT cells both in vivo and in vitro. We also provide evidence that type I NKT cells contribute to AAA development by inducing the expression of matrix degrading enzymes in vSMCs and macrophages, and by cytokine dependently decreasing vSMC viability. Altogether, these data prove that CD1d-dependent NKT cells contribute to AAA development in the Ang II-mediated aneurysm model by enhancing aortic degradation, establishing that therapeutic applications which target NKT cells can be a successful way to prevent AAA development.
Floodplain simulation for Musi River using integrated 1D/2D hydrodynamic model
Directory of Open Access Journals (Sweden)
Al Amin Muhammad B.
2017-01-01
Full Text Available This paper presents the simulation of floodplain at Musi River using integrated 1D and 2D hydrodynamic model. The 1D flow simulation was applied for the river channel with flow hydrograph as upstream boundary condition. The result of 1D flow simulation was integrated into 2D flow simulation in order to know the area and characteristics of flood inundation. The input data of digital terrain model which was used in this research had grid resolution of 10m×10m, but for 2D simulation the resolution was with grid resolution 50 m × 50 m so as to limit simulation time since the model size was big enough. The result of the simulation showed that the inundated area surrounding Musi River is about 107.44 km2 with maximum flood depth is 3.24 m, water surface velocity ranges from 0.00 to 0.83 m/s. Most of floodplain areas varied from middle to high flood hazard level, and only few areas had very high level of flood hazard especially on river side. The structural flood control measurement to be recommended to Palembang is to construct flood dike and flood gate. The non structural measurement one is to improve watershed management and socialization of flood awareness.
Neutronic analysis of the 1D and 1E banks reflux detection system
Energy Technology Data Exchange (ETDEWEB)
Blanchard, A.
1999-12-21
Two H Canyon neutron monitoring systems for early detection of postulated abnormal reflux conditions in the Second Uranium Cycle 1E and 1D Mixer-Settle Banks have been designed and built. Monte Carlo neutron transport simulations using the general purpose, general geometry, n-particle MCNP code have been performed to model expected response of the monitoring systems to varying conditions.The confirmatory studies documented herein conclude that the 1E and 1D neutron monitoring systems are able to achieve adequate neutron count rates for various neutron source and detector configurations, thereby eliminating excessive integration count time. Neutron count rate sensitivity studies are also performed. Conversely, the transport studies concluded that the neutron count rates are statistically insensitive to nitric acid content in the aqueous region and to the transition region length. These studies conclude that the 1E and 1D neutron monitoring systems are able to predict the postulated reflux conditions for all examined perturbations in the neutron source and detector configurations. In the cases examined, the relative change in the neutron count rates due to postulated transitions from normal {sup 235}U concentration levels to reflux levels remain satisfactory detectable.
1D ferromagnetic edge contacts to 2D graphene/h-BN heterostructures
Karpiak, Bogdan; Dankert, André; Cummings, Aron W.; Power, Stephen R.; Roche, Stephan; Dash, Saroj P.
2018-03-01
We report the fabrication of one-dimensional (1D) ferromagnetic edge contacts to two-dimensional (2D) graphene/h-BN heterostructures. While aiming to study spin injection/detection with 1D edge contacts, a spurious magnetoresistance signal was observed, which is found to originate from the local Hall effect in graphene due to fringe fields from ferromagnetic edge contacts and in the presence of charge current spreading in the nonlocal measurement configuration. Such behavior has been confirmed by the absence of a Hanle signal and gate-dependent magnetoresistance measurements that reveal a change in sign of the signal for the electron- and hole-doped regimes, which is in contrast to the expected behavior of the spin signal. Calculations show that the contact-induced fringe fields are typically on the order of hundreds of mT, but can be reduced below 100 mT with careful optimization of the contact geometry. There may be an additional contribution from magnetoresistance effects due to tunneling anisotropy in the contacts, which needs further investigation. These studies are useful for optimization of spin injection and detection in 2D material heterostructures through 1D edge contacts.
Low-Temperature Experimental and Theoretical Rate Constants for the O(1D) + H2 Reaction.
Hickson, Kevin M; Suleimanov, Yury V
2017-03-09
In the present joint experimental and theoretical study, we report thermal rate constants for the O( 1 D) + H 2 reaction within the 50-300 K temperature range. Experimental kinetics measurements were performed using a continuous supersonic flow reactor coupled with pulsed laser photolysis for O( 1 D) production and pulsed laser-induced fluorescence in the vacuum ultraviolet wavelength range (VUV LIF) for O( 1 D) detection. Theoretical rate constants were obtained using the ring polymer molecular dynamics (RPMD) approach over the two lowest potential energy surfaces 1 1 A' and 1 1 A″, which possess barrierless and thermally activated energy profiles, respectively. Both the experimental and theoretical rate constants exhibit a weak temperature dependence. The theoretical results show the dominant role of the 1 1 A' ground state and that contribution of the 1 1 A″ excited state to the total thermal rate decreases dramatically at lower temperature. Agreement between the experimental and theoretical results is good, and the discrepancy does not exceed 25%. It is argued that these differences are likely to be due to nonadiabatic couplings between the 1 1 A' and 2 1 A' surfaces.
Holographic memory system based on projection recording of computer-generated 1D Fourier holograms.
Betin, A Yu; Bobrinev, V I; Donchenko, S S; Odinokov, S B; Evtikhiev, N N; Starikov, R S; Starikov, S N; Zlokazov, E Yu
2014-10-01
Utilization of computer generation of holographic structures significantly simplifies the optical scheme that is used to record the microholograms in a holographic memory record system. Also digital holographic synthesis allows to account the nonlinear errors of the record system to improve the microholograms quality. The multiplexed record of holograms is a widespread technique to increase the data record density. In this article we represent the holographic memory system based on digital synthesis of amplitude one-dimensional (1D) Fourier transform holograms and the multiplexed record of these holograms onto the holographic carrier using optical projection scheme. 1D Fourier transform holograms are very sensitive to orientation of the anamorphic optical element (cylindrical lens) that is required for encoded data object reconstruction. The multiplex record of several holograms with different orientation in an optical projection scheme allowed reconstruction of the data object from each hologram by rotating the cylindrical lens on the corresponding angle. Also, we discuss two optical schemes for the recorded holograms readout: a full-page readout system and line-by-line readout system. We consider the benefits of both systems and present the results of experimental modeling of 1D Fourier holograms nonmultiplex and multiplex record and reconstruction.
Numerical simulation of Ge solar cells using D-AMPS-1D code
Energy Technology Data Exchange (ETDEWEB)
Barrera, Marcela, E-mail: barrera@tandar.cnea.gov.ar [Comision Nacional de Energia Atomica, Avenida General Paz 1499, San Martin 1650, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Rubinelli, Francisco [Instituto de Desarrollo Tecnologico para la Industria Quimica (INTEC)-CONICET, Gueemes 3450, Santa Fe 3000 (Argentina); Rey-Stolle, Ignacio [Instituto de Energia Solar, Universidad Politecnica de Madrid, Avenida Complutense 30, Madrid 28040 (Spain); Pla, Juan [Comision Nacional de Energia Atomica, Avenida General Paz 1499, San Martin 1650, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina)
2012-08-15
A solar cell is a solid state device that converts the energy of sunlight directly into electricity by the photovoltaic effect. When light with photon energies greater than the band gap is absorbed by a semiconductor material, free electrons and free holes are generated by optical excitation in the material. The main characteristic of a photovoltaic device is the presence of internal electric field able to separate the free electrons and holes so they can pass out of the material to the external circuit before they recombine. Numerical simulation of photovoltaic devices plays a crucial role in their design, performance prediction, and comprehension of the fundamental phenomena ruling their operation. The electrical transport and the optical behavior of the solar cells discussed in this work were studied with the simulation code D-AMPS-1D. This software is an updated version of the one-dimensional (1D) simulation program Analysis of Microelectronic and Photonic Devices (AMPS) that was initially developed at The Penn State University, USA. Structures such as homojunctions, heterojunctions, multijunctions, etc., resulting from stacking layers of different materials can be studied by appropriately selecting characteristic parameters. In this work, examples of cells simulation made with D-AMPS-1D are shown. Particularly, results of Ge photovoltaic devices are presented. The role of the InGaP buffer on the device was studied. Moreover, a comparison of the simulated electrical parameters with experimental results was performed.
Numerical simulation of Ge solar cells using D-AMPS-1D code
International Nuclear Information System (INIS)
Barrera, Marcela; Rubinelli, Francisco; Rey-Stolle, Ignacio; Plá, Juan
2012-01-01
A solar cell is a solid state device that converts the energy of sunlight directly into electricity by the photovoltaic effect. When light with photon energies greater than the band gap is absorbed by a semiconductor material, free electrons and free holes are generated by optical excitation in the material. The main characteristic of a photovoltaic device is the presence of internal electric field able to separate the free electrons and holes so they can pass out of the material to the external circuit before they recombine. Numerical simulation of photovoltaic devices plays a crucial role in their design, performance prediction, and comprehension of the fundamental phenomena ruling their operation. The electrical transport and the optical behavior of the solar cells discussed in this work were studied with the simulation code D-AMPS-1D. This software is an updated version of the one-dimensional (1D) simulation program Analysis of Microelectronic and Photonic Devices (AMPS) that was initially developed at The Penn State University, USA. Structures such as homojunctions, heterojunctions, multijunctions, etc., resulting from stacking layers of different materials can be studied by appropriately selecting characteristic parameters. In this work, examples of cells simulation made with D-AMPS-1D are shown. Particularly, results of Ge photovoltaic devices are presented. The role of the InGaP buffer on the device was studied. Moreover, a comparison of the simulated electrical parameters with experimental results was performed.
Transient dynamic and modeling parameter sensitivity analysis of 1D solid oxide fuel cell model
International Nuclear Information System (INIS)
Huangfu, Yigeng; Gao, Fei; Abbas-Turki, Abdeljalil; Bouquain, David; Miraoui, Abdellatif
2013-01-01
Highlights: • A multiphysics, 1D, dynamic SOFC model is developed. • The presented model is validated experimentally in eight different operating conditions. • Electrochemical and thermal dynamic transient time expressions are given in explicit forms. • Parameter sensitivity is discussed for different semi-empirical parameters in the model. - Abstract: In this paper, a multiphysics solid oxide fuel cell (SOFC) dynamic model is developed by using a one dimensional (1D) modeling approach. The dynamic effects of double layer capacitance on the electrochemical domain and the dynamic effect of thermal capacity on thermal domain are thoroughly considered. The 1D approach allows the model to predict the non-uniform distributions of current density, gas pressure and temperature in SOFC during its operation. The developed model has been experimentally validated, under different conditions of temperature and gas pressure. Based on the proposed model, the explicit time constant expressions for different dynamic phenomena in SOFC have been given and discussed in detail. A parameters sensitivity study has also been performed and discussed by using statistical Multi Parameter Sensitivity Analysis (MPSA) method, in order to investigate the impact of parameters on the modeling accuracy
Neutronic analysis of the 1D and 1E banks reflux detection system
International Nuclear Information System (INIS)
Blanchard, A.
1999-01-01
Two H Canyon neutron monitoring systems for early detection of postulated abnormal reflux conditions in the Second Uranium Cycle 1E and 1D Mixer-Settle Banks have been designed and built. Monte Carlo neutron transport simulations using the general purpose, general geometry, n-particle MCNP code have been performed to model expected response of the monitoring systems to varying conditions.The confirmatory studies documented herein conclude that the 1E and 1D neutron monitoring systems are able to achieve adequate neutron count rates for various neutron source and detector configurations, thereby eliminating excessive integration count time. Neutron count rate sensitivity studies are also performed. Conversely, the transport studies concluded that the neutron count rates are statistically insensitive to nitric acid content in the aqueous region and to the transition region length. These studies conclude that the 1E and 1D neutron monitoring systems are able to predict the postulated reflux conditions for all examined perturbations in the neutron source and detector configurations. In the cases examined, the relative change in the neutron count rates due to postulated transitions from normal 235 U concentration levels to reflux levels remain satisfactory detectable
Energy Technology Data Exchange (ETDEWEB)
Rodrigues, Bruno de O.; Oliveira, Sergio A.M. de [Universidade Estadual do Norte Fluminense (UENF), Macae, RJ (Brazil). Lab. de Engenharia e Exploracao do Petroleo (LENEP)
2004-07-01
For a processing and an interpretation of correct seismic data, it is necessary to recognize and to know as the factors act that influence in the propagation of the seismic waves, as the attenuation and the dispersion, constituting in the biggest practical impediment for the use of seismic for targets the big depths, limiting the resolution of the method. However these phenomena little are taken in consideration in the analysis of the data, thus the necessity of its bigger agreement, because if attenuation and dispersion they confuse the application of the seismic, if convenient understood and measures, can be valuable sources of information about the constitution of the rocks. Therefore, in this work the effect of the attenuation and dispersion in the data of reflection seismic had been simulated on a program, in Mat-Lab. Being able to generate 1-D seismograms, in the domain of the time, considering the normal incidence of plain wave in a package of plain, horizontal and isotropic layers, taking in account the physical attributes of the way, being able to simulate the effects of ghost and of multiples of free surface, if considering the source in the water. (author)
Computational Study and Analysis of Structural Imperfections in 1D and 2D Photonic Crystals
Energy Technology Data Exchange (ETDEWEB)
Maskaly, Karlene Rosera [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
2005-06-01
Dielectric reflectors that are periodic in one or two dimensions, also known as 1D and 2D photonic crystals, have been widely studied for many potential applications due to the presence of wavelength-tunable photonic bandgaps. However, the unique optical behavior of photonic crystals is based on theoretical models of perfect analogues. Little is known about the practical effects of dielectric imperfections on their technologically useful optical properties. In order to address this issue, a finite-difference time-domain (FDTD) code is employed to study the effect of three specific dielectric imperfections in 1D and 2D photonic crystals. The first imperfection investigated is dielectric interfacial roughness in quarter-wave tuned 1D photonic crystals at normal incidence. This study reveals that the reflectivity of some roughened photonic crystal configurations can change up to 50% at the center of the bandgap for RMS roughness values around 20% of the characteristic periodicity of the crystal. However, this reflectivity change can be mitigated by increasing the index contrast and/or the number of bilayers in the crystal. In order to explain these results, the homogenization approximation, which is usually applied to single rough surfaces, is applied to the quarter-wave stacks. The results of the homogenization approximation match the FDTD results extremely well, suggesting that the main role of the roughness features is to grade the refractive index profile of the interfaces in the photonic crystal rather than diffusely scatter the incoming light. This result also implies that the amount of incoherent reflection from the roughened quarterwave stacks is extremely small. This is confirmed through direct extraction of the amount of incoherent power from the FDTD calculations. Further FDTD studies are done on the entire normal incidence bandgap of roughened 1D photonic crystals. These results reveal a narrowing and red-shifting of the normal incidence bandgap with
Nested 1D-2D approach for urban surface flood modeling
Murla, Damian; Willems, Patrick
2015-04-01
Floods in urban areas as a consequence of sewer capacity exceedance receive increased attention because of trends in urbanization (increased population density and impermeability of the surface) and climate change. Despite the strong recent developments in numerical modeling of water systems, urban surface flood modeling is still a major challenge. Whereas very advanced and accurate flood modeling systems are in place and operation by many river authorities in support of flood management along rivers, this is not yet the case in urban water management. Reasons include the small scale of the urban inundation processes, the need to have very high resolution topographical information available, and the huge computational demands. Urban drainage related inundation modeling requires a 1D full hydrodynamic model of the sewer network to be coupled with a 2D surface flood model. To reduce the computational times, 0D (flood cones), 1D/quasi-2D surface flood modeling approaches have been developed and applied in some case studies. In this research, a nested 1D/2D hydraulic model has been developed for an urban catchment at the city of Gent (Belgium), linking the underground sewer (minor system) with the overland surface (major system). For the overland surface flood modelling, comparison was made of 0D, 1D/quasi-2D and full 2D approaches. The approaches are advanced by considering nested 1D-2D approaches, including infiltration in the green city areas, and allowing the effects of surface storm water storage to be simulated. An optimal nested combination of three different mesh resolutions was identified; based on a compromise between precision and simulation time for further real-time flood forecasting, warning and control applications. Main streets as mesh zones together with buildings as void regions constitute one of these mesh resolution (3.75m2 - 15m2); they have been included since they channel most of the flood water from the manholes and they improve the accuracy of
Sexual behavior modulates contextual fear memory through dopamine D1/D5 receptors.
Bai, Hua-Yi; Cao, Jun; Liu, Na; Xu, Lin; Luo, Jian-Hong
2009-03-01
Traumatic events always lead to aversive emotional memory, i.e., fear memory. In contrast, positive events in daily life such as sex experiences seem to reduce aversive memory after aversive events. Thus, we hypothesized that post-traumatic pleasurable experiences, especially instinctive behaviors such as sex, might modulate traumatic memory through a memory competition mechanism. Here, we first report that male rats persistently expressed much lower fear responses when exposed to females, but not when exposed to males, for 24 h immediately after contextual fear conditioning. Remarkably, this effect of sexual behavior was blocked by either systemic or intrahippocampal injection of the dopamine D1/D5 receptor antagonist R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH23390) and was mimicked by systemic but not intrahippocampal injection of the D1/D5 receptor agonist R(+)-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine-7,8-diol hydrochloride (SKF39393). Furthermore, as a candidate mechanism underlying contextual fear memory, the impaired induction of hippocampal long-term potentiation (LTP) elicited by conditioned fear was rescued in male rats immediately exposed to female but not male rats for 24 h. Systemic injection of the dopamine D1/D5 receptor antagonist SCH23390 or agonist SKF38393 prevented or mimicked the effect of sexual behavior on the impaired induction of hippocampal LTP. Thus, our finding suggests that dopaminergic functions may, at least partially, govern competition between contextual fear and enjoyable memories through the modulation of hippocampal LTP.
NMR 1D-imaging of water infiltration into mesoporous matrices.
Le Feunteun, Steven; Diat, Olivier; Guillermo, Armel; Poulesquen, Arnaud; Podor, Renaud
2011-04-01
It is shown that coupling nuclear magnetic resonance (NMR) 1D-imaging with the measure of NMR relaxation times and self-diffusion coefficients can be a very powerful approach to investigate fluid infiltration into porous media. Such an experimental design was used to study the very slow seeping of pure water into hydrophobic materials. We consider here three model samples of nuclear waste conditioning matrices which consist in a dispersion of NaNO(3) (highly soluble) and/or BaSO(4) (poorly soluble) salt grains embedded in a bitumen matrix. Beyond studying the moisture progression according to the sample depth, we analyze the water NMR relaxation times and self-diffusion coefficients along its 1D-concentration profile to obtain spatially resolved information on the solution properties and on the porous structure at different scales. It is also shown that, when the relaxation or self-diffusion properties are multimodal, the 1D-profile of each water population is recovered. Three main levels of information were disclosed along the depth-profiles. They concern (i) the water uptake kinetics, (ii) the salinity and the molecular dynamics of the infiltrated solutions and (iii) the microstructure of the water-filled porosities: open networks coexisting with closed pores. All these findings were fully validated and enriched by NMR cryoporometry experiments and by performing environmental scanning electronic microscopy observations. Surprisingly, results clearly show that insoluble salts enhance the water progression and thereby increase the capability of the material to uptake water. Copyright © 2011 Elsevier Inc. All rights reserved.
Group-decoupled multi-group pin power reconstruction utilizing nodal solution 1D flux profiles
International Nuclear Information System (INIS)
Yu, Lulin; Lu, Dong; Zhang, Shaohong; Wang, Dezhong
2014-01-01
Highlights: • A direct fitting multi-group pin power reconstruction method is developed. • The 1D nodal solution flux profiles are used as the condition. • The least square fit problem is analytically solved. • A slowing down source improvement method is applied. • The method shows good accuracy for even challenging problems. - Abstract: A group-decoupled direct fitting method is developed for multi-group pin power reconstruction, which avoids both the complication of obtaining 2D analytic multi-group flux solution and any group-coupled iteration. A unique feature of the method is that in addition to nodal volume and surface average fluxes and corner fluxes, transversely-integrated 1D nodal solution flux profiles are also used as the condition to determine the 2D intra-nodal flux distribution. For each energy group, a two-dimensional expansion with a nine-term polynomial and eight hyperbolic functions is used to perform a constrained least square fit to the 1D intra-nodal flux solution profiles. The constraints are on the conservation of nodal volume and surface average fluxes and corner fluxes. Instead of solving the constrained least square fit problem numerically, we solve it analytically by fully utilizing the symmetry property of the expansion functions. Each of the 17 unknown expansion coefficients is expressed in terms of nodal volume and surface average fluxes, corner fluxes and transversely-integrated flux values. To determine the unknown corner fluxes, a set of linear algebraic equations involving corner fluxes is established via using the current conservation condition on all corners. Moreover, an optional slowing down source improvement method is also developed to further enhance the accuracy of the reconstructed flux distribution if needed. Two test examples are shown with very good results. One is a four-group BWR mini-core problem with all control blades inserted and the other is the seven-group OECD NEA MOX benchmark, C5G7
Optimized efficiency in InP nanowire solar cells with accurate 1D analysis
Chen, Yang; Kivisaari, Pyry; Pistol, Mats-Erik; Anttu, Nicklas
2018-01-01
Semiconductor nanowire arrays are a promising candidate for next generation solar cells due to enhanced absorption and reduced material consumption. However, to optimize their performance, time consuming three-dimensional (3D) opto-electronics modeling is usually performed. Here, we develop an accurate one-dimensional (1D) modeling method for the analysis. The 1D modeling is about 400 times faster than 3D modeling and allows direct application of concepts from planar pn-junctions on the analysis of nanowire solar cells. We show that the superposition principle can break down in InP nanowires due to strong surface recombination in the depletion region, giving rise to an IV-behavior similar to that with low shunt resistance. Importantly, we find that the open-circuit voltage of nanowire solar cells is typically limited by contact leakage. Therefore, to increase the efficiency, we have investigated the effect of high-bandgap GaP carrier-selective contact segments at the top and bottom of the InP nanowire and we find that GaP contact segments improve the solar cell efficiency. Next, we discuss the merit of p-i-n and p-n junction concepts in nanowire solar cells. With GaP carrier selective top and bottom contact segments in the InP nanowire array, we find that a p-n junction design is superior to a p-i-n junction design. We predict a best efficiency of 25% for a surface recombination velocity of 4500 cm s-1, corresponding to a non-radiative lifetime of 1 ns in p-n junction cells. The developed 1D model can be used for general modeling of axial p-n and p-i-n junctions in semiconductor nanowires. This includes also LED applications and we expect faster progress in device modeling using our method.
1-D and 2-D electrophoresis protein profiles of the scorpion venom from Brotheas amazonicus
Energy Technology Data Exchange (ETDEWEB)
Higa, A.M.; Noronha, M.D.N. [Universidade do Estado do Amazonas (UEA), Manaus, AM (Brazil). Rede Proteomica do Amazonas (Proteam). Lab. de Genomica e Proteomica; Rocha-Oliveira, F.; Lopez-Lozano, J.L.L. [Universidade Federal do Amazonas (UFAM), Manaus, AM (Brazil). Pos-Graduacao em Biotecnologia
2008-07-01
Full text: Introduction: Scorpions venoms show specific neurotoxins to insect or mammals. These toxins are very important molecular tools to development of news drugs or bioinsecticides. Brotheas amazonicus scorpion is an endemic specie in Amazonian Rain Forest, but your venom do not show toxicity in humans. Information about biological specific activity on insect of this venom is not known yet. Objectives: Molecular protein toxins profiles of the venom from Brotheas amazonicus scorpion by 1-D and 2-D electrophoresis methods to detected toxins with potential biotech applications. Results: Several spots 'families' with {approx} 60, 70 and 80 kDa were detected in gel acidic region with pI {approx} 4,5 - 6 range, in the same region 1-D zimography showed proteolytic activity on gelatin and fibrinogen and proteolytic activity was inhibited by PMSF, suggesting scorpion serine proteinases. 50 kDa proteins were detected with pI {approx} 6,5 - 7 range. In 23 - 50 kDa gel acid region were observed some proteins. In 23 - 14 kDa gel acidic region were detected proteins with pI 4 - 7 range. 1-D Tris-tricine gel showed proteins with {approx} 7 kDa, suggesting scorpion neurotoxins. In gel basic region only 14 kDa proteins were observed with pI {approx} 9 - 10 range. Conclusion: Molecular profile of the scorpion venom from B. amazonicus showed proteins with high and low molecular masses, mainly with acidic pI. Proteolytic activity suggest serine proteinases with high molecular masses and 7 kDa proteins in B. amazonicus venom suggest scorpion neurotoxins. Purification and molecular characterization of these toxins are in course.
1-D and 2-D electrophoresis protein profiles of the scorpion venom from Brotheas amazonicus
International Nuclear Information System (INIS)
Higa, A.M.; Noronha, M.D.N.; Rocha-Oliveira, F.; Lopez-Lozano, J.L.L.
2008-01-01
Full text: Introduction: Scorpions venoms show specific neurotoxins to insect or mammals. These toxins are very important molecular tools to development of news drugs or bioinsecticides. Brotheas amazonicus scorpion is an endemic specie in Amazonian Rain Forest, but your venom do not show toxicity in humans. Information about biological specific activity on insect of this venom is not known yet. Objectives: Molecular protein toxins profiles of the venom from Brotheas amazonicus scorpion by 1-D and 2-D electrophoresis methods to detected toxins with potential biotech applications. Results: Several spots 'families' with ∼ 60, 70 and 80 kDa were detected in gel acidic region with pI ∼ 4,5 - 6 range, in the same region 1-D zimography showed proteolytic activity on gelatin and fibrinogen and proteolytic activity was inhibited by PMSF, suggesting scorpion serine proteinases. 50 kDa proteins were detected with pI ∼ 6,5 - 7 range. In 23 - 50 kDa gel acid region were observed some proteins. In 23 - 14 kDa gel acidic region were detected proteins with pI 4 - 7 range. 1-D Tris-tricine gel showed proteins with ∼ 7 kDa, suggesting scorpion neurotoxins. In gel basic region only 14 kDa proteins were observed with pI ∼ 9 - 10 range. Conclusion: Molecular profile of the scorpion venom from B. amazonicus showed proteins with high and low molecular masses, mainly with acidic pI. Proteolytic activity suggest serine proteinases with high molecular masses and 7 kDa proteins in B. amazonicus venom suggest scorpion neurotoxins. Purification and molecular characterization of these toxins are in course
Investigation of reflood models by coupling REFLA-1D and multi-loop system model
International Nuclear Information System (INIS)
Sugimoto, Jun; Murao, Yoshio
1983-09-01
A system analysis code REFLA-1DS was developed by coupling reflood analysis code REFLA-1D and a multi-loop primary system model. The reflood models in the code were investigated for the development of the integral system analysis code. The REFLA-1D, which was developed with the small scale reflood experiment at JAERI, consists of one-dimensional core model and a primary system model with a constant loop resistance. The multi-loop primary system model was developed with the Cylindrical Core Test Facility of JAERI's large scale reflood tests. The components modeled in the code are the upper plenum, the steam generator, the coolant pump, the ECC injection port, the downcomer and the broken cold leg nozzle. The coupling between the two models in REFLA-1DS is accomplished by applying the equivalent flow resistance calculated with the multiloop model to the REFLA-1D. The characteristics of the code is its simplicity of the system model and the solution method which enables the fast running and the easy reflood analysis for the further model development. A fairly good agreement was obtained with the results of the Cylindrical Core Test Facility for the calculated water levels in the downcomer, the core and the upper plenum. A qualitatively good agreement was obtained concerning the parametric effects of the system pressure, the ECC flow rate and the initial clad temperature. Needs for further code improvements of the models, however, were pointed out. These include the problem concerning the generation rate of the steam and water droplets in the core in an early period, the effect of the flow oscillation on the core cooling, the heat release from the downcomer wall, and the stable system calculation. (author)
Test of 1D carbon-carbon composite prototype tiles for the SPIDER diagnostic calorimeter
Serianni, G.; Pimazzoni, A.; Canton, A.; Palma, M. Dalla; Delogu, R.; Fasolo, D.; Franchin, L.; Pasqualotto, R.; Tollin, M.
2017-08-01
Additional heating will be provided to the thermonuclear fusion experiment ITER by injection of neutral beams from accelerated negative ions. In the SPIDER test facility, under construction at Consorzio RFX in Padova (Italy), the production of negative ions will be studied and optimised. To this purpose the STRIKE (Short-Time Retractable Instrumented Kalorimeter Experiment) diagnostic will be used to characterise the SPIDER beam during short operation (several seconds) and to verify if the beam meets the ITER requirement regarding the maximum allowed beam non-uniformity (below ±10%). The most important measurements performed by STRIKE are beam uniformity, beamlet divergence and stripping losses. The major components of STRIKE are 16 1D-CFC (Carbon matrix-Carbon Fibre reinforced Composite) tiles, observed at the rear side by a thermal camera. The requirements of the 1D CFC material include a large thermal conductivity along the tile thickness (at least 10 times larger than in the other directions); low specific heat and density; uniform parameters over the tile surface; capability to withstand localised heat loads resulting in steep temperature gradients. So 1D CFC is a very anisotropic and delicate material, not commercially available, and prototypes are being specifically realised. This contribution gives an overview of the tests performed on the CFC prototype tiles, aimed at verifying their thermal behaviour. The spatial uniformity of the parameters and the ratio between the thermal conductivities are assessed by means of a power laser at Consorzio RFX. Dedicated linear and non-linear simulations are carried out to interpret the experiments and to estimate the thermal conductivities; these simulations are described and a comparison of the experimental data with the simulation results is presented.
Kim, Wun-gwi
2013-12-01
Membranes utilizing nanoporous one-dimensional (1D) and two-dimensional (2D) materials are emerging as attractive candidates for applications in molecular separations and related areas. Such nanotubular and nanolayered materials include carbon nanotubes, metal oxide nanotubes, layered zeolites, porous layered oxides, layered aluminophosphates, and porous graphenes. By virtue of their unique shape, size, and structure, they possess transport properties that are advantageous for membrane and thin film applications. These materials also have very different chemistry from more conventional porous 3D materials, due to the existence of a large, chemically active, external surface area. This feature also necessitates the development of innovative strategies to process these materials into membranes and thin films with high performance. This work provides the first comprehensive review of this emerging area. We first discuss approaches for the synthesis and structural characterization of nanoporous 1D and 2D materials. Thereafter, we elucidate different approaches for fabrication of membranes and thin films from these materials, either as multiphase (composite/hybrid) or single-phase membranes. The influence of surface chemistry and processing techniques on the membrane morphology is highlighted. We then discuss the applications of such membranes in areas relating to molecular transport and separation, e.g. gas and liquid-phase separations, water purification, and ion-conducting membranes. The review concludes with a discussion of the present outlook and some of the key scientific challenges to be addressed on the path to industrially applicable membranes containing nanoporous 1D and 2D materials. © 2013 Elsevier Ltd.
NMR 1D-imaging of water infiltration into meso-porous matrices
International Nuclear Information System (INIS)
Le Feunteun, St.; Diat, O.; Podor, R.; Le Feunteun, St.; Poulesquen, A.; Poulesquen, A.
2011-01-01
It is shown that coupling nuclear magnetic resonance (NMR) 1D-imaging with the measure of NMR relaxation times and self-diffusion coefficients can be a very powerful approach to investigate fluid infiltration into porous media. Such an experimental design was used to study the very slow seeping of pure water into hydrophobic materials. We consider here three model samples of nuclear waste conditioning matrices which consist in a dispersion of NaNO 3 (highly soluble) and/or BaSO 4 (poorly soluble) salt grains embedded in a bitumen matrix. Beyond studying the moisture progression according to the sample depth, we analyze the water NMR relaxation times and self-diffusion coefficients along its 1D-concentration profile to obtain spatially resolved information on the solution properties and on the porous structure at different scales. It is also shown that, when the relaxation or self-diffusion properties are multimodal, the 1D-profile of each water population is recovered. Three main levels of information were disclosed along the depth-profiles. They concern (i) the water uptake kinetics, (ii) the salinity and the molecular dynamics of the infiltrated solutions and (iii) the microstructure of the water-filled porosities: open networks coexisting with closed pores. All these findings were fully validated and enriched by NMR cryo-poro-metry experiments and by performing environmental scanning electronic microscopy observations. Surprisingly, results clearly show that insoluble salts enhance the water progression and thereby increase the capability of the material to uptake water. (authors)
Energy Technology Data Exchange (ETDEWEB)
Brynjolfsson, A; Holm, N W [Danish Atomic Energy Commission, Establishment Riso (Denmark)
1960-07-15
. En la memoria se facilitan detalles relativos a su construccion y a las normas de seguridad que se han observado en el proyecto. Las determinaciones dosimetricas se han efectuado con ayuda de cuatro tipos de aparatos diferentes: 1. Camaras de ionizacion 2. Calorimetros 3. Dosimetros de Fricke 4. Peliculas fotograficas. En la memoria se hace asimismo una descripcion general del campo de irradiacion gamma y se dan detalles referentes a la posicion de la fuente. La intensidad de irradiacion es de unos 100 roentgens/hora a una distancia de 1 m. Las plantas sometidas a la irradiacion se cultivan en un campo de 15 m de radio. Se indican brevemente los diferentes productos que se han sometido a irradiacion en las dos instalaciones. (author) [Russian] V doklade opisyvayutsya ustanovka dlya obluchenij na Co{sup 60} i pole gammaluchej v Otdelenii sel'skogo khozyajstva Nauchno-issledovatel'skogo tsentra v Rizo. Ustanovka dlya obluchenij na Co{sup 60} soderzhit 1800 kyuri Co{sup 60}. Dayutsya detali konstruktsii, a takzhe ukazyvayutsya mery bezopasnosti, kotorye uchteny v konstruktsii ustanovki. Dozimetriya proizvoditsya pri pomoshchi chetyrekh razlichnykh metodov: 1. Ionizatsionnykh kamer; 2. Kalorimetrii 3. Dozimetra Frikke 4. Fotograficheskikh plenok Daetsya obshchee opisanie polya gamma-izluchenij, vklyuchaya detali raspolozheniya istochnikov. Norma dozirovaniya - priblizitel'no 100r/ch na rasstoyanii v odin metr. Dlya vyrashchivaniya obluchaemykh rastenij beretsya pole s radiusom v 15 metrov. Daetsya kratkoe ukazanie kategorii produktov, podvergaemykh oblucheniyu v dvukh ustanovkakh. (author)
Exponentially-convergent Monte Carlo for the 1-D transport equation
International Nuclear Information System (INIS)
Peterson, J. R.; Morel, J. E.; Ragusa, J. C.
2013-01-01
We define a new exponentially-convergent Monte Carlo method for solving the one-speed 1-D slab-geometry transport equation. This method is based upon the use of a linear discontinuous finite-element trial space in space and direction to represent the transport solution. A space-direction h-adaptive algorithm is employed to restore exponential convergence after stagnation occurs due to inadequate trial-space resolution. This methods uses jumps in the solution at cell interfaces as an error indicator. Computational results are presented demonstrating the efficacy of the new approach. (authors)
A 1D radiative transfer benchmark with polarization via doubling and adding
Ganapol, B. D.
2017-11-01
Highly precise numerical solutions to the radiative transfer equation with polarization present a special challenge. Here, we establish a precise numerical solution to the radiative transfer equation with combined Rayleigh and isotropic scattering in a 1D-slab medium with simple polarization. The 2-Stokes vector solution for the fully discretized radiative transfer equation in space and direction derives from the method of doubling and adding enhanced through convergence acceleration. Updates to benchmark solutions found in the literature to seven places for reflectance and transmittance as well as for angular flux follow. Finally, we conclude with the numerical solution in a partially randomly absorbing heterogeneous medium.
International Nuclear Information System (INIS)
Polat, Orhan; Özer, Çaglar
2016-01-01
In this study; we examined one dimensional crustal velocity structure of Izmir gulf and surroundings. We used nearly one thousand high quality (A and B class) earthquake data which recorded by Disaster and Emergency Management Presidency (AFAD) [1], Bogazici University (BU-KOERI) [2] and National Observatory of Athens (NOA) [3,4]. We tried several synthetic tests to understand power of new velocity structure, and examined phase residuals, RMS values and shifting tests. After evaluating these tests; we decided one dimensional velocity structure and minimum 1-D P wave velocities, hypocentral parameter and earthquake locations from VELEST algorithm. Distribution of earthquakes was visibly improved by using new minimum velocity structure.
Transport of a Bose gas in 1D disordered lattices at the fluid-insulator transition.
Tanzi, Luca; Lucioni, Eleonora; Chaudhuri, Saptarishi; Gori, Lorenzo; Kumar, Avinash; D'Errico, Chiara; Inguscio, Massimo; Modugno, Giovanni
2013-09-13
We investigate the momentum-dependent transport of 1D quasicondensates in quasiperiodic optical lattices. We observe a sharp crossover from a weakly dissipative regime to a strongly unstable one at a disorder-dependent critical momentum. In the limit of nondisordered lattices the observations suggest a contribution of quantum phase slips to the dissipation. We identify a set of critical disorder and interaction strengths for which such critical momentum vanishes, separating a fluid regime from an insulating one. We relate our observation to the predicted zero-temperature superfluid-Bose glass transition.
B Cells Promote Th1- Skewed NKT Cell Response by CD1d-TCR Interaction
Shin, Jung Hoon; Park, Se-Ho
2013-01-01
CD1d expressing dendritic cells (DCs) are good glyco-lipid antigen presenting cells for NKT cells. However, resting B cells are very weak stimulators for NKT cells. Although ?-galactosylceramide (?-GalCer) loaded B cells can activate NKT cells, it is not well defined whether B cells interfere NKT cell stimulating activity of DCs. Unexpectedly, we found in this study that B cells can promote Th1-skewed NKT cell response, which means a increased level of IFN-? by NKT cells, concomitant with a d...
Design of a potent CD1d-binding NKT cell ligand as a vaccine adjuvant
Li, Xiangming; Fujio, Masakazu; Imamura, Masakazu; Wu, Douglass; Vasan, Sandhya; Wong, Chi-Huey; Ho, David D.; Tsuji, Moriya
2010-01-01
The glycolipid α-galactosylceramide (α-GalCer) has been shown to bind CD1d molecules to activate invariant natural killer T (iNKT) cells, and subsequently induce activation of various immune-competent cells, including dendritic cells, thereby providing a significant adjuvant effect for various vaccines. However, in phase I clinical trials, α-GalCer was shown to display only marginal biological activity. In our search for a glycolipid that can exert more potent stimulatory activity against iNK...
Comparison and analysis of 1D/2D/3D neutronics modeling for a fusion reactor
International Nuclear Information System (INIS)
Li, J.; Zeng, Q.; Chen, M.; Jiang, J.; Wu, Y.
2007-01-01
During the course of analyzing the characteristics for fusion reactors, the refined calculations are needed to confirm that the nuclear design requirements are met. Since the long computational time is consumed, the refined three-dimensional (3D) representation has been used primarily for establishing the baseline reference values, analyzing problems which cannot be reduced by symmetry considerations to lower dimensions, or where a high level of accuracy is desired locally. The two-dimensional (2D) or one-dimensional (1D) description leads itself readily to resolve many problems, such as the studies for the material fraction optimization, or for the blanket size optimization. The purpose of this paper is to find out the differences among different geometric descriptions, which can guide the way to approximate and simplify the computational model. The fusion power reactor named FDS-II was designed as an advanced fusion power reactor to demonstrate and validate the commercialization of fusion power by Institute of Plasma Physics, Chinese Academy of Science. In this contribution, the dual-cooled lithium lead (DLL) blanket of FDS-II was used as a reference for neutronics comparisons and analyses. The geometric descriptions include 1D concentric sphere model, 1D, 2D and 3D cylinder models. The home-developed multi-functional neutronics analysis code system VisualBUS, the Monte Carlo transport code MCNP and nuclear data library HENDL have been used for these analyses. The neutron wall loading distribution, tritium breeding ratio (TBR) and nuclear heat were calculated to evaluate the nuclear performance. The 3D calculation has been used as a comparison reference because it has the least errors in the treatment of geometry. It is suggested that the value of TBR calculated by the 1D approach should be greater than 1.3 to satisfy the practical need of tritium self-sufficiency. The distribution of nuclear heat based on the 2D and 3D models were similar since they all consider
Correlation versus surface effects in photoemission of quasi-1D organic conductors
DEFF Research Database (Denmark)
Claessen, R.; Schwingenschlogl, U.; Sing, M.
2002-01-01
The absence of spectral weight at the Fermi level in photoemission spectra of quasi-1D organic conductors has been interpreted as possible evidence for an unusual many-body state. We demonstrate that great care must be exercised to draw this conclusion exclusively on the basis of a pseudogap....... A detailed surface characterization of the charge transfer salts (TMTSF)(2)PFt(6) and TTF-TCNQ shows that signatures of electronic correlations in the valence band spectra are strongly affected by surface effects and may even be completely obscured....
Review of Zero-D and 1-D Models of Blood Flow in the Cardiovascular System
2011-01-01
Background Zero-dimensional (lumped parameter) and one dimensional models, based on simplified representations of the components of the cardiovascular system, can contribute strongly to our understanding of circulatory physiology. Zero-D models provide a concise way to evaluate the haemodynamic interactions among the cardiovascular organs, whilst one-D (distributed parameter) models add the facility to represent efficiently the effects of pulse wave transmission in the arterial network at greatly reduced computational expense compared to higher dimensional computational fluid dynamics studies. There is extensive literature on both types of models. Method and Results The purpose of this review article is to summarise published 0D and 1D models of the cardiovascular system, to explore their limitations and range of application, and to provide an indication of the physiological phenomena that can be included in these representations. The review on 0D models collects together in one place a description of the range of models that have been used to describe the various characteristics of cardiovascular response, together with the factors that influence it. Such models generally feature the major components of the system, such as the heart, the heart valves and the vasculature. The models are categorised in terms of the features of the system that they are able to represent, their complexity and range of application: representations of effects including pressure-dependent vessel properties, interaction between the heart chambers, neuro-regulation and auto-regulation are explored. The examination on 1D models covers various methods for the assembly, discretisation and solution of the governing equations, in conjunction with a report of the definition and treatment of boundary conditions. Increasingly, 0D and 1D models are used in multi-scale models, in which their primary role is to provide boundary conditions for sophisticate, and often patient-specific, 2D and 3D models
Synthesis, Characterization, and Application of 1-D Cerium Oxide Nanomaterials: A Review
Directory of Open Access Journals (Sweden)
Kuen-Song Lin
2010-09-01
Full Text Available The present work provides a comprehensive overview of the recent progress of research work toward developing new one dimensional (1-D ceria (CeO2 nanomaterials. The review has been classified into three parts: the preparation procedures with identification of the existing different dimensional ceria nanomaterials, the formation mechanisms, and an analysis of their applications. From literature survey, it is inaugurated that the fundamental structures of the ceria nanomaterials constructively dominate their properties and applications. In addition, this work will also provide a perspective on the future technical trends for the development of different dimensional CeO2 nanomaterials.
Energy Technology Data Exchange (ETDEWEB)
Polat, Orhan, E-mail: orhan.polat@deu.edu.tr [Dokuz Eylul University, Faculty of Engineering, Geophysical Engineering Department, Izmir (Turkey); Özer, Çaglar, E-mail: caglar.ozer@deu.edu.tr [Dokuz Eylul University, Faculty of Engineering, Geophysical Engineering Department, Izmir (Turkey); Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Department of Geophysical Engineering, Izmir-Turkey (Turkey)
2016-04-18
In this study; we examined one dimensional crustal velocity structure of Izmir gulf and surroundings. We used nearly one thousand high quality (A and B class) earthquake data which recorded by Disaster and Emergency Management Presidency (AFAD) [1], Bogazici University (BU-KOERI) [2] and National Observatory of Athens (NOA) [3,4]. We tried several synthetic tests to understand power of new velocity structure, and examined phase residuals, RMS values and shifting tests. After evaluating these tests; we decided one dimensional velocity structure and minimum 1-D P wave velocities, hypocentral parameter and earthquake locations from VELEST algorithm. Distribution of earthquakes was visibly improved by using new minimum velocity structure.
Statistical mechanics of a one-component fluid of charged hard rods in 1D
International Nuclear Information System (INIS)
Vericat, F.; Blum, L.
1986-09-01
The statistical mechanics of a classical one component system of charged hard rods in a neutralizing background is investigated in 1D stressing on the effects of the hard core interactions over the thermodynamic and the structure of the system. The crystalline status of the system at all temperatures and densities and the absence of phase transitions is shown by extending previous results of Baxter and Kunz on the one-component plasma of point particles. Explicit expressions for the thermodynamic functions and the one-particle correlation function are given in the limits of small and strong couplings. (author)
Effect of low transverse magnetic field on the confinement strength in a quasi-1D wire
International Nuclear Information System (INIS)
Kumar, Sanjeev; Thomas, K. J.; Smith, L. W.; Farrer, I.; Ritchie, D. A.; Jones, G. A. C.; Griffiths, J.; Pepper, M.
2013-01-01
Transport measurements in a quasi-one dimensional (1D) quantum wire are reported in the presence of low transverse magnetic field. Differential conductance shows weak quantised plateaus when the 2D electrons are squeezed electrostatically. Application of a small transverse magnetic field (0.2T) enhances the overall degree of quantisation due to the formation of magneto-electric subbands. The results show the role of magnetic field to fine tune the confinement strength in low density wires when interaction gives rise to double row formation
Multi-level methods for solving multigroup transport eigenvalue problems in 1D slab geometry
International Nuclear Information System (INIS)
Anistratov, D. Y.; Gol'din, V. Y.
2009-01-01
A methodology for solving eigenvalue problems for the multigroup neutron transport equation in 1D slab geometry is presented. In this paper we formulate and compare different variants of nonlinear multi-level iteration methods. They are defined by means of multigroup and effective one-group low-order quasi diffusion (LOQD) equations. We analyze the effects of utilization of the effective one-group LOQD problem for estimating the eigenvalue. We present numerical results to demonstrate the performance of the iteration algorithms in different types of reactor-physics problems. (authors)
Thermal impedance at the interface of contacting bodies: 1-D examples solved by semi-derivatives
Directory of Open Access Journals (Sweden)
Hristov Jordan
2012-01-01
Full Text Available Simple 1-D semi-infinite heat conduction problems enable to demonstrate the potential of the fractional calculus in determination of transient thermal impedances of two bodies with different initial temperatures contacting at the interface ( x = 0 at t = 0 . The approach is purely analytic and uses only semi-derivatives (half-time and semi-integrals in the Riemann-Liouville sense. The example solved clearly reveals that the fractional calculus is more effective in calculation the thermal resistances than the entire domain solutions.
Adapting HYDRUS-1D to Simulate Overland Flow and Reactive Transport During Sheet Flow Deviations
Liang, J.; Bradford, S. A.; Simunek, J.; Hartmann, A.
2017-12-01
The HYDRUS-1D code is a popular numerical model for solving the Richards equation for variably-saturated water flow and solute transport in porous media. This code was adapted to solve rather than the Richards equation for subsurface flow the diffusion wave equation for overland flow at the soil surface. The numerical results obtained by the new model produced an excellent agreement with the analytical solution of the kinematic wave equation. Model tests demonstrated its applicability to simulate the transport and fate of many different solutes, such as non-adsorbing tracers, nutrients, pesticides, and microbes. However, the diffusion wave or kinematic wave equations describe surface runoff as sheet flow with a uniform depth and velocity across the slope. In reality, overland water flow and transport processes are rarely uniform. Local soil topography, vegetation, and spatial soil heterogeneity control directions and magnitudes of water fluxes, and strongly influence runoff characteristics. There is increasing evidence that variations in soil surface characteristics influence the distribution of overland flow and transport of pollutants. These spatially varying surface characteristics are likely to generate non-equilibrium flow and transport processes. HYDRUS-1D includes a hierarchical series of models of increasing complexity to account for both physical equilibrium and non-equilibrium, e.g., dual-porosity and dual-permeability models, up to a dual-permeability model with immobile water. The same conceptualization as used for the subsurface was implemented to simulate non-equilibrium overland flow and transport at the soil surface. The developed model improves our ability to describe non-equilibrium overland flow and transport processes and to improves our understanding of factors that cause this behavior. The HYDRUS-1D overland flow and transport model was additionally also extended to simulate soil erosion. The HYDRUS-1D Soil Erosion Model has been verified by
Robust 1D inversion and analysis of helicopter electromagnetic (HEM) data
DEFF Research Database (Denmark)
Tølbøll, R.J.; Christensen, N.B.
2006-01-01
but can resolve layer boundary to a depth of more than 100 m. Modeling experiments also show that the effect of altimeter errors on the inversion results is serious. We suggest a new interpretation scheme for HEM data founded solely on full nonlinear 1D inversion and providing layered-earth models...... supported by datamisfit parameters and a quantitative model-parameter analysis. The backbone of the scheme is the removal of cultural coupling effects followed by a multilayer inversion that in turn provides reliable starting models for a subsequent few-layer inversion. A new procedure for correlation...
Partial Internal Control Recovery on 1-D Klein-Gordon Systems
Directory of Open Access Journals (Sweden)
Iwan Pranoto
2010-03-01
Full Text Available In this exposition, a technique to recover internal control on a distributed parameter system is reported. The system is described by 1-D Klein-Gordon partial differential equation with a time-varying parameter. We would like to recover the internal control applied to the system if we know some limited information about the output. We use a method called sentinel method to recover the internal control. It involves some construction of a linear functional, and we show that this construction relates closely to the exact controllability problem.
Characteristics of the FTU scrape-off layer (SOL) determined by a simple 1-D model
International Nuclear Information System (INIS)
Ferro, C.
1994-12-01
A simple 1-D model analytical model has been developed to determine the SOL characteristics from the parameters of the main plasma. The solutions are compared with FTU experimental data. The solutions fit quite well the experimental data and their trend. Moreover the model suggests the presence of a critical density related to the non isothermal power flux and the corresponding maximum power which can be safely removed by volumetric sinks. Differences between a limiter-like configuration and a divertor-like configuration are described
Silva. EDF two-phase 1D annular model of a CFB boiler furnace
Energy Technology Data Exchange (ETDEWEB)
Montat, D.; Fauquet, Ph. [Electricite de France (EDF), 78 - Chatou (France). Researckh and Development Div.; Lafanechere, L.; Bursi, J.M. [Electricite de France (EDF) (France). Construction Div.
1997-01-01
SILVA computer code is used for the modelling of the thermal-hydraulics and of the combustion of a coal-fired CFBC solid loop. In a first step, only the furnace is considered. The model is based on a 1D annular two phases description of the hydrodynamics. The model is based on particle mass balances and pressure drop calculations. A basic combustion model is incorporated into this model. The coal combustion is divided in two phases, the combustion of volatile matter and the heterogeneous combustion. The model has been developed within LEGO software and can be included into the global model of the solid loop developed by EDF. (author) 26 refs.
Design for manufacturability from 1D to 4D for 90-22 nm technology nodes
Balasinski, Artur
2013-01-01
This book explains integrated circuit design for manufacturability (DfM) at the product level (packaging, applications) and applies engineering DfM principles to the latest standards of product development at 22 nm technology nodes.Â It is a valuable guide for layout designers, packaging engineers and quality engineers, covering DfM development from 1D to 4D, involving IC design flow setup, best practices, links to manufacturing and product definition, for process technologies down to 22 nm node, and product families including memories, logic, system-on-chip and system-in-package.
Investigation of associations between NR1D1, RORA and RORB genes and bipolar disorder.
Directory of Open Access Journals (Sweden)
Yin-Chieh Lai
Full Text Available Several genes that are involved in the regulation of circadian rhythms are implicated in the susceptibility to bipolar disorder (BD. The current study aimed to investigate the relationships between genetic variants in NR1D1 RORA, and RORB genes and BD in the Han Chinese population. We conducted a case-control genetic association study with two samples of BD patients and healthy controls. Sample I consisted of 280 BD patients and 200 controls. Sample II consisted of 448 BD patients and 1770 healthy controls. 27 single nucleotide polymorphisms in the NR1D1, RORA, and RORB genes were genotyped using GoldenGate VeraCode assays in sample I, and 492 markers in the three genes were genotyped using Affymetrix Genome-Wide CHB Array in sample II. Single marker and gene-based association analyses were performed using PLINK. A combined p-value for the joining effects of all markers within a gene was calculated using the rank truncated product method. Multifactor dimensionality reduction (MDR method was also applied to test gene-gene interactions in sample I. All markers were in Hardy-Weinberg equilibrium (P>0.001. In sample I, the associations with BD were observed for rs4774388 in RORA (OR = 1.53, empirical p-value, P = 0.024, and rs1327836 in RORB (OR = 1.75, P = 0.003. In Sample II, there were 45 SNPs showed associations with BD, and the most significant marker in RORA was rs11639084 (OR = 0.69, P = 0.002, and in RORB was rs17611535 (OR = 3.15, P = 0.027. A combined p-value of 1.6×10-6, 0.7, and 1.0 was obtained for RORA, RORB and NR1D1, respectively, indicting a strong association for RORA with the risk of developing BD. A four way interaction was found among markers in NR1D1, RORA, and RORB with the testing accuracy 53.25% and a cross-validation consistency of 8 out of 10. In sample II, 45 markers had empirical p-values less than 0.05. The most significant markers in RORA and RORB genes were rs11639084 (OR = 0.69, P = 0.002, and rs17611535 (OR = 3
Synthesis of 1D Bragg gratings by a layer-aggregation method.
Capmany, José; Muriel, Miguel A; Sales, Salvador
2007-08-15
We present what we believe to be a novel method for the synthesis of complex 1D (fiber and waveguide) Bragg gratings, which is based on an impedance reconstruction layer aggregation technique. The main advantage brought by the method is the possibility of synthesizing structures containing defects or discontinuities of the size of the local period, a feature that is not possible with prior reported methods. In addition, this enhanced spatial resolution allows the synthesis of very strong fiber Bragg grating devices providing convergent solutions. The method directly renders the refractive index profile n(z) as it does not rely on the coupled-mode theory.
Light-induced switching in pDTE-FICO 1D photonic structures
Kriegel, Ilka; Scotognella, Francesco
2018-03-01
We propose the design of 1D photonic crystals and microcavities in which fluorine-indium codoped cadmium oxide (FICO) nanocrystal based layers and layers of diarylethene-based polyester (pDTE) are alternated or embedded in a microcavity. The irradiation with UV light results in two different behaviours: (i) it dopes the FICO nanocrystals inducing a blue shift of their plasmonic resonances; (ii) it changes the real part of the refractive index of the photochromic pDTE polymer. These two behaviours are combined in the proposed photonic structures and can be useful for switchable filters and cavities for light emission.
Prediction of car cabin environment by means of 1D and 3D cabin model
Directory of Open Access Journals (Sweden)
Jícha M.
2012-04-01
Full Text Available Thermal comfort and also reduction of energy requirements of air-conditioning system in vehicle cabins are currently very intensively investigated and up-to-date issues. The article deals with two approaches of modelling of car cabin environment; the first model was created in simulation language Modelica (typical 1D approach without cabin geometry and the second one was created in specialized software Theseus-FE (3D approach with cabin geometry. Performance and capabilities of this tools are demonstrated on the example of the car cabin and the results from simulations are compared with the results from the real car cabin climate chamber measurements.
Prediction of car cabin environment by means of 1D and 3D cabin model
Fišer, J.; Pokorný, J.; Jícha, M.
2012-04-01
Thermal comfort and also reduction of energy requirements of air-conditioning system in vehicle cabins are currently very intensively investigated and up-to-date issues. The article deals with two approaches of modelling of car cabin environment; the first model was created in simulation language Modelica (typical 1D approach without cabin geometry) and the second one was created in specialized software Theseus-FE (3D approach with cabin geometry). Performance and capabilities of this tools are demonstrated on the example of the car cabin and the results from simulations are compared with the results from the real car cabin climate chamber measurements.
Maximizing 1D “like” implosion performance for inertial confinement fusion science
Energy Technology Data Exchange (ETDEWEB)
Kline, John L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-07-15
While the march towards achieving indirectly driven inertial confinement fusion at the NIF has made great progress, the experiments show that multi-dimensional effects still dominate the implosion performance. Low mode implosion symmetry and hydrodynamic instabilities seed by capsule mounting features appear to be two key limiting factors for implosion performance. One reason these factors have a large impact on the performance of ICF implosions is the high convergence required to achieve high fusion gains. To tackle these problems, a predictable implosion platform is needed meaning experiments must trade-off high gain for performance. To this end, LANL has adopted three main approaches to develop a 1D implosion platform where 1D means high yield over 1D clean calculations. Taking advantage of the properties of beryllium capsules, a high adiabat, low convergence platform is being developed. The higher drive efficiency for beryllium enables larger case-to-capsule ratios to improve symmetry at the expense of drive. Smaller capsules with a high adiabat drive are expected to reduce the convergence and thus increase predictability. The second approach is liquid fuel layers using wetted foam targets. With liquid fuel layers, the initial mass in the hot spot can be controlled via the target fielding temperature which changes the liquid vapor pressure. Varying the initial hot spot mass via the vapor pressure controls the implosion convergence and minimizes the need to vaporize the dense fuel layer during the implosion to achieve ignition relevant hot spot densities. The last method is double shell targets. Unlike hot spot ignition, double shells ignite volumetrically. The inner shell houses the DT fuel and the convergence of this cavity is relatively small compared to hot spot ignition. Radiation trapping and the longer confinement times relax the conditions required to ignite the fuel. Key challenges for double shell targets are coupling the momentum of the outer shell to
Inverse problems in 1D hemodynamics on systemic networks: a sequential approach.
Lombardi, D
2014-02-01
In this work, a sequential approach based on the unscented Kalman filter is applied to solve inverse problems in 1D hemodynamics, on a systemic network. For instance, the arterial stiffness is estimated by exploiting cross-sectional area and mean speed observations in several locations of the arteries. The results are compared with those ones obtained by estimating the pulse wave velocity and the Moens-Korteweg formula. In the last section, a perspective concerning the identification of the terminal models parameters and peripheral circulation (modeled by a Windkessel circuit) is presented. Copyright © 2013 John Wiley & Sons, Ltd.
TBC1D24 regulates neuronal migration and maturation through modulation of the ARF6-dependent pathway
Falace, Antonio; Buhler, Emmanuelle; Fadda, Manuela; Watrin, Françoise; Lippiello, Pellegrino; Pallesi-Pocachard, Emilie; Baldelli, Pietro; Benfenati, Fabio; Zara, Federico; Represa, Alfonso; Fassio, Anna; Cardoso, Carlos
2014-01-01
Alterations in the formation of brain networks are associated with several neurodevelopmental disorders. Mutations in TBC1 domain family member 24 (TBC1D24) are responsible for syndromes that combine cortical malformations, intellectual disability, and epilepsy, but the function of TBC1D24 in the brain remains unknown. We report here that in utero TBC1D24 knockdown in the rat developing neocortex affects the multipolar-bipolar transition of neurons leading to delayed radial migration. Furthermore, we find that TBC1D24-knockdown neurons display an abnormal maturation and retain immature morphofunctional properties. TBC1D24 interacts with ADP ribosylation factor (ARF)6, a small GTPase crucial for membrane trafficking. We show that in vivo, overexpression of the dominant-negative form of ARF6 rescues the neuronal migration and dendritic outgrowth defects induced by TBC1D24 knockdown, suggesting that TBC1D24 prevents ARF6 activation. Overall, our findings demonstrate an essential role of TBC1D24 in neuronal migration and maturation and highlight the physiological relevance of the ARF6-dependent membrane-trafficking pathway in brain development. PMID:24469796
REFLA-1D/MODE3: a computer code for reflood thermo-hydrodynamic analysis during PWR-LOCA
International Nuclear Information System (INIS)
Murao, Yoshio; Okubo, Tsutomu; Sugimoto, Jun; Iguchi, Tadashi; Sudoh, Takashi.
1985-02-01
This manual describes the REFLA-1D/MODE3 reflood system analysis code. This code can solve the core thermo-hydrodynamics under forced flooding conditions and gravity feed conditions in a system similar to FLECHT-SET Phase A. This manual describes the REFLA-1D/MODE3 models and provides application information required to utilize the code. (author)
Potential role of TBC1D4 in enhanced post-exercise insulin action in human skeletal muscle
DEFF Research Database (Denmark)
Treebak, Jonas Thue; Frøsig, Christian; Pehmøller, Christian
2009-01-01
.01). However, TBC1D4 phosphorylation on Ser-318, Ser-341, Ser-588 and Ser-751 was higher in the previously exercised leg, both in the absence and in the presence of insulin (p power = 0.39). 14-3-3 binding capacity for TBC1D4 increased equally (p
Bogoliubov coefficients for the twist operator in the D1D5 CFT
Directory of Open Access Journals (Sweden)
Zaq Carson
2014-12-01
Full Text Available The D1D5 CFT is a holographic dual of a near-extremal black hole in string theory. The interaction in this theory involves a twist operator which joins together different copies of a free CFT. Given a large number of D1 and D5 branes, the effective length of the circle on which the CFT lives is very large. We develop a technique to study the effect of the twist operator in the limit where the wavelengths of excitations are short compared to this effective length, which we call the ‘continuum limit’. The method uses Bogoliubov coefficients to compute the effect of the twist operator in this limit. For bosonic fields, we use the method to reproduce recent results describing the effect of the twist operator when it links together CFT copies with windings M and N, producing a copy of winding M+N. We also comment on possible generalizations of our results. The methods developed here may help in understanding the twist interaction at higher orders. This in turn should provide insight into the thermalization process in the D1D5 CFT, which gives a holographic description of black hole formation.
Boundary value problems of holomorphic vector functions in 1D QCs
International Nuclear Information System (INIS)
Gao Yang; Zhao Yingtao; Zhao Baosheng
2007-01-01
By means of the generalized Stroh formalism, two-dimensional (2D) problems of one-dimensional (1D) quasicrystals (QCs) elasticity are turned into the boundary value problems of holomorphic vector functions in a given region. If the conformal mapping from an ellipse to a circle is known, a general method for solving the boundary value problems of holomorphic vector functions can be presented. To illustrate its utility, by using the necessary and sufficient condition of boundary value problems of holomorphic vector functions, we consider two basic 2D problems in 1D QCs, that is, an elliptic hole and a rigid line inclusion subjected to uniform loading at infinity. For the crack problem, the intensity factors of phonon and phason fields are determined, and the physical sense of the results relative to phason and the difference between mechanical behaviors of the crack problem in crystals and QCs are figured out. Moreover, the same procedure can be used to deal with the elastic problems for 2D and three-dimensional (3D) QCs
Fernandes, Ana Clara; Uytterhoeven, Valerie; Kuenen, Sabine; Wang, Yu-Chun; Slabbaert, Jan R; Swerts, Jef; Kasprowicz, Jaroslaw; Aerts, Stein; Verstreken, Patrik
2014-11-24
Synaptic demise and accumulation of dysfunctional proteins are thought of as common features in neurodegeneration. However, the mechanisms by which synaptic proteins turn over remain elusive. In this paper, we study Drosophila melanogaster lacking active TBC1D24/Skywalker (Sky), a protein that in humans causes severe neurodegeneration, epilepsy, and DOOR (deafness, onychdystrophy, osteodystrophy, and mental retardation) syndrome, and identify endosome-to-lysosome trafficking as a mechanism for degradation of synaptic vesicle-associated proteins. In fly sky mutants, synaptic vesicles traveled excessively to endosomes. Using chimeric fluorescent timers, we show that synaptic vesicle-associated proteins were younger on average, suggesting that older proteins are more efficiently degraded. Using a genetic screen, we find that reducing endosomal-to-lysosomal trafficking, controlled by the homotypic fusion and vacuole protein sorting (HOPS) complex, rescued the neurotransmission and neurodegeneration defects in sky mutants. Consistently, synaptic vesicle proteins were older in HOPS complex mutants, and these mutants also showed reduced neurotransmission. Our findings define a mechanism in which synaptic transmission is facilitated by efficient protein turnover at lysosomes and identify a potential strategy to suppress defects arising from TBC1D24 mutations in humans. © 2014 Fernandes et al.
A facile route for 3D aerogels from nanostructured 1D and 2D materials
Jung, Sung Mi; Jung, Hyun Young; Dresselhaus, Mildred S.; Jung, Yung Joon; Kong, Jing
2012-01-01
Aerogels have numerous applications due to their high surface area and low densities. However, creating aerogels from a large variety of materials has remained an outstanding challenge. Here, we report a new methodology to enable aerogel production with a wide range of materials. The method is based on the assembly of anisotropic nano-objects (one-dimensional (1D) nanotubes, nanowires, or two-dimensional (2D) nanosheets) into a cross-linking network from their colloidal suspensions at the transition from the semi-dilute to the isotropic concentrated regime. The resultant aerogels have highly porous and ultrafine three-dimensional (3D) networks consisting of 1D (Ag, Si, MnO2, single-walled carbon nanotubes (SWNTs)) and 2D materials (MoS2, graphene, h-BN) with high surface areas, low densities, and high electrical conductivities. This method opens up a facile route for aerogel production with a wide variety of materials and tremendous opportunities for bio-scaffold, energy storage, thermoelectric, catalysis, and hydrogen storage applications. PMID:23152940
Coupled 0D-1D CFD Modeling of Right Heart and Pulmonary Artery Morphometry Tree
Dong, Melody; Yang, Weiguang; Feinstein, Jeffrey A.; Marsden, Alison
2017-11-01
Pulmonary arterial hypertension (PAH) is characterized by elevated pulmonary artery (PA) pressure and remodeling of the distal PAs resulting in right ventricular (RV) dysfunction and failure. It is hypothesized that patients with untreated ventricular septal defects (VSD) may develop PAH due to elevated flows and pressures in the PAs. Wall shear stress (WSS), due to elevated flows, and circumferential stress, due to elevated pressures, are known to play a role in vascular mechanobiology. Thus, simulating VSD hemodynamics and wall mechanics may facilitate our understanding of mechanical stimuli leading to PAH initiation and progression. Although 3D CFD models can capture detailed hemodynamics in the proximal PAs, they cannot easily model hemodynamics and wave propagation in the distal PAs, where remodeling occurs. To improve current PA models, we will present a new method that couples distal PA hemodynamics with RV function. Our model couples a 0D lumped parameter model of the RV to a 1D model of the PA tree, based on human PA morphometry data, to characterize RV performance and WSS changes in the PA tree. We will compare a VSD 0D-1D model and a 0D-3D model coupled to a mathematical morphometry tree model to quantify WSS in the entire PA vascular tree.
Martinez, Antonio; Barker, John R; Di Prieto, Riccardo
2018-06-13
A methodology describing Coulomb blockade in the Non-equilibrium Green Function formalism is presented. We carried out ballistic and dissipative simulations through a 1D quantum dot using an Einstein phonon model. Inelastic phonons with different energies have been considered. The methodology incorporates the short-range Coulomb interaction between two electrons through the use of a two-particle Green's function. Unlike previous work, the quantum dot has spatial resolution i.e. it is not just parameterized by the energy level and coupling constants of the dot. Our method intends to describe the effect of electron localization while maintaining an open boundary or extended wave function. The formalism conserves the current through the nanostructure. A simple 1D model is used to explain the increase of mobility in semi-crystalline polymers as a function of the electron concentration. The mechanism suggested is based on the lifting of energy levels into the transmission window as a result of the local electron-electron repulsion inside a crystalline domain. The results are aligned with recent experimental findings. Finally, as a proof of concept, we present a simulation of a low temperature resonant structure showing the stability diagram in the Coulomb blockade regime. . © 2018 IOP Publishing Ltd.
CD1d expression and invariant NKT cell responses in herpesvirus infections
Directory of Open Access Journals (Sweden)
Rusung eTan
2015-06-01
Full Text Available Invariant natural killer T (iNKT cells are a highly conserved subset of unconventional T lymphocytes that express a canonical, semi-invariant T cell receptor (TCR and surface markers shared with the natural killer cell lineage. iNKT cells recognize exogenous and endogenous glycolipid antigens restricted by non-polymorphic CD1d molecules, and are highly responsive to the prototypical agonist, α-galactosylceramide. Upon activation, iNKT cells rapidly coordinate signaling between innate and adaptive immune cells through the secretion of proinflammatory cytokines, leading to the maturation of antigen-presenting cells and expansion of antigen-specific CD4+ and CD8+ T cells. Because of their potent immunoregulatory properties, iNKT cells have been extensively studied and are known to play a pivotal role in mediating immune responses against microbial pathogens including viruses. Here, we review evidence that herpesviruses manipulate CD1d expression to escape iNKT cell surveillance and establish lifelong latency in humans. Collectively, published findings suggest that iNKT cells play critical roles in anti-herpesvirus immune responses and could be harnessed therapeutically to limit viral infection and viral-associated disease.
Design of a potent CD1d-binding NKT cell ligand as a vaccine adjuvant.
Li, Xiangming; Fujio, Masakazu; Imamura, Masakazu; Wu, Douglass; Vasan, Sandhya; Wong, Chi-Huey; Ho, David D; Tsuji, Moriya
2010-07-20
The glycolipid alpha-galactosylceramide (alpha-GalCer) has been shown to bind CD1d molecules to activate invariant natural killer T (iNKT) cells, and subsequently induce activation of various immune-competent cells, including dendritic cells, thereby providing a significant adjuvant effect for various vaccines. However, in phase I clinical trials, alpha-GalCer was shown to display only marginal biological activity. In our search for a glycolipid that can exert more potent stimulatory activity against iNKT cells and dendritic cells and produce an adjuvant effect superior to alpha-GalCer, we performed step-wise screening assays on a focused library of 25 alpha-GalCer analogues. Assays included quantification of the magnitude of stimulatory activity against human iNKT cells in vitro, binding affinity to human and murine CD1d molecules, and binding affinity to the invariant t cell receptor of human iNKT cells. Through this rigorous and iterative screening process, we have identified a lead candidate glycolipid, 7DW8-5, that exhibits a superior adjuvant effect than alpha-GalCer on HIV and malaria vaccines in mice.
Rigorous RG Algorithms and Area Laws for Low Energy Eigenstates in 1D
Arad, Itai; Landau, Zeph; Vazirani, Umesh; Vidick, Thomas
2017-11-01
One of the central challenges in the study of quantum many-body systems is the complexity of simulating them on a classical computer. A recent advance (Landau et al. in Nat Phys, 2015) gave a polynomial time algorithm to compute a succinct classical description for unique ground states of gapped 1D quantum systems. Despite this progress many questions remained unsolved, including whether there exist efficient algorithms when the ground space is degenerate (and of polynomial dimension in the system size), or for the polynomially many lowest energy states, or even whether such states admit succinct classical descriptions or area laws. In this paper we give a new algorithm, based on a rigorously justified RG type transformation, for finding low energy states for 1D Hamiltonians acting on a chain of n particles. In the process we resolve some of the aforementioned open questions, including giving a polynomial time algorithm for poly( n) degenerate ground spaces and an n O(log n) algorithm for the poly( n) lowest energy states (under a mild density condition). For these classes of systems the existence of a succinct classical description and area laws were not rigorously proved before this work. The algorithms are natural and efficient, and for the case of finding unique ground states for frustration-free Hamiltonians the running time is {\\tilde{O}(nM(n))} , where M( n) is the time required to multiply two n × n matrices.
International Nuclear Information System (INIS)
Foda, O.
1984-12-01
The effective potential of components of the curl of an antisymmetric tensor coupled to gravity in D dimensions is evaluated in a 1/D expansion. For large D, only highest-rank propagators contribute to leading order, while multiloop diagrams are suppressed by phase-space factors. Divergences are regulated by a cut-off LAMBDA, that we interpret as the mass-breaking scale of a larger theory that is finite. As an application we consider the bosonic sector of D=11, N=1 supergravity. If the full theory is finite, then LAMBDA is msub(SUSY): the scale below which the fermion sector decouples. For m 9 sub(SUSY)>1/akappa 2 , (kappa 2 : the D=11 Newton's coupling, a approx.= O(1)) the 11-dimensional symmetric vacuum is unstable under compactification. For m 9 sub(SUSY) 2 , it is metastable. To leading order in 1/D, all gauge dependence cancels identically, while ghosts as well as the graviton decouple. (author)
Electrophoresis gel image processing and analysis using the KODAK 1D software.
Pizzonia, J
2001-06-01
The present article reports on the performance of the KODAK 1D Image Analysis Software for the acquisition of information from electrophoresis experiments and highlights the utility of several mathematical functions for subsequent image processing, analysis, and presentation. Digital images of Coomassie-stained polyacrylamide protein gels containing molecular weight standards and ethidium bromide stained agarose gels containing DNA mass standards are acquired using the KODAK Electrophoresis Documentation and Analysis System 290 (EDAS 290). The KODAK 1D software is used to optimize lane and band identification using features such as isomolecular weight lines. Mathematical functions for mass standard representation are presented, and two methods for estimation of unknown band mass are compared. Given the progressive transition of electrophoresis data acquisition and daily reporting in peer-reviewed journals to digital formats ranging from 8-bit systems such as EDAS 290 to more expensive 16-bit systems, the utility of algorithms such as Gaussian modeling, which can correct geometric aberrations such as clipping due to signal saturation common at lower bit depth levels, is discussed. Finally, image-processing tools that can facilitate image preparation for presentation are demonstrated.
Ident 1D - a novel software tool for an easy identification of material constitutive parameters
International Nuclear Information System (INIS)
Le Ber, L.; Cotoni, V.; Nicola, L.; Sainte Catherine, C.
1998-01-01
Non-linear finite element computations make use of very sophisticated constitutive equations for description of materials behaviour. The first difficulty encountered by potential users is the gap existing between raw material characterisation on uniaxial specimens and the knowledge of the required equation's parameters. There are very few software for this particular task. IDENT 1D is a special software developed under Matlab language in our laboratory, which is able to provide a complete optimised parameters set for implemented models. The originality of IDENT 1D is that no initial estimation of the material parameters is requested of the user. Two main examples are described in this article: the Lemaitre and Chaboche creep law coupled with damage and a non unified cyclic law proposed by Contesti and Cailletaud with a separation of plastic and viscous strain terms which is called DDI model. For both laws, the identification method is completely described. Each method is then applied to a set of experimental data. In both cases, the results of the parameters identification show a very good agreement with experimental data. (authors)
Unveiling the Role of CNTs on the Phase Formation of 1D Ferroelectrics
Mahajan, Amit
2015-05-21
Carbon nanotubes (CNTs) have the potential to act as templates or bottom electrodes for three dimension (3D) capacitor arrays, which utilise one dimension (1D) ferroelectric nanostructures to increase memory size and density. However, growing a ferroelectric on the surface of CNTs is non-trivial. Here, we demonstrate that multi-walled (MW) CNTs decrease the time and temperature for formation of lead zirconium titanate Pb(Zr1-xTix)O3 (PZT) by ~100 ºC commensurate with a decrease in activation energy from 68±15 kJ/mol to 27±2 kJ/mol. As a consequence, monophasic PZT was obtained at 575 ºC for MWCNTs/PZT whereas for pure PZT traces of pyrochlore were still present at 650 ºC, where PZT phase formed due to homogeneous nucleation. The piezoelectric nature of MWCNT/PZT synthesised at 500 ºC for 1 h was proved. Although further work is required to prove the concept of 3D capacitor arrays, our result suggests that it is feasible to utilise MWCNTs as templates/electrodes for the formation of 1D PZT nano ferroelectrics.
Tanaka, Hiroaki; Inaka, Koji; Sugiyama, Shigeru; Takahashi, Sachiko; Sano, Satoshi; Sato, Masaru; Yoshitomi, Susumu
2004-01-01
We developed a new protein crystallization method has been developed using a simplified counter-diffusion method for optimizing crystallization condition. It is composed of only a single capillary, the gel in the silicon tube and the screw-top test tube, which are readily available in the laboratory. The one capillary can continuously scan a wide range of crystallization conditions (combination of the concentrations of the precipitant and the protein) unless crystallization occurs, which means that it corresponds to many drops in the vapor-diffusion method. The amount of the precipitant and the protein solutions can be much less than in conventional methods. In this study, lysozyme and alpha-amylase were used as model proteins for demonstrating the efficiency of this method. In addition, one-dimensional (1-D) simulations of the crystal growth were performed based on the 1-D diffusion model. The optimized conditions can be applied to the initial crystallization conditions for both other counter-diffusion methods with the Granada Crystallization Box (GCB) and for the vapor-diffusion method after some modification.
Ojo, A. O.; Xie, Jun; Olorunfemi, M. O.
2018-01-01
To reduce ambiguity related to nonlinearities in the resistivity model-data relationships, an efficient direct-search scheme employing the Neighbourhood Algorithm (NA) was implemented to solve the 1-D resistivity problem. In addition to finding a range of best-fit models which are more likely to be global minimums, this method investigates the entire multi-dimensional model space and provides additional information about the posterior model covariance matrix, marginal probability density function and an ensemble of acceptable models. This provides new insights into how well the model parameters are constrained and make assessing trade-offs between them possible, thus avoiding some common interpretation pitfalls. The efficacy of the newly developed program is tested by inverting both synthetic (noisy and noise-free) data and field data from other authors employing different inversion methods so as to provide a good base for comparative performance. In all cases, the inverted model parameters were in good agreement with the true and recovered model parameters from other methods and remarkably correlate with the available borehole litho-log and known geology for the field dataset. The NA method has proven to be useful whilst a good starting model is not available and the reduced number of unknowns in the 1-D resistivity inverse problem makes it an attractive alternative to the linearized methods. Hence, it is concluded that the newly developed program offers an excellent complementary tool for the global inversion of the layered resistivity structure.
Testing a 1-D Analytical Salt Intrusion Model and the Predictive Equation in Malaysian Estuaries
Gisen, Jacqueline Isabella; Savenije, Hubert H. G.
2013-04-01
Little is known about the salt intrusion behaviour in Malaysian estuaries. Study on this topic sometimes requires large amounts of data especially if a 2-D or 3-D numerical models are used for analysis. In poor data environments, 1-D analytical models are more appropriate. For this reason, a fully analytical 1-D salt intrusion model, based on the theory of Savenije in 2005, was tested in three Malaysian estuaries (Bernam, Selangor and Muar) because it is simple and requires minimal data. In order to achieve that, site surveys were conducted in these estuaries during the dry season (June-August) at spring tide by moving boat technique. Data of cross-sections, water levels and salinity were collected, and then analysed with the salt intrusion model. This paper demonstrates a good fit between the simulated and observed salinity distribution for all three estuaries. Additionally, the calibrated Van der Burgh's coefficient K, Dispersion coefficient D0, and salt intrusion length L, for the estuaries also displayed a reasonable correlations with those calculated from the predictive equations. This indicates that not only is the salt intrusion model valid for the case studies in Malaysia but also the predictive model. Furthermore, the results from this study describe the current state of the estuaries with which the Malaysian water authority in Malaysia can make decisions on limiting water abstraction or dredging. Keywords: salt intrusion, Malaysian estuaries, discharge, predictive model, dispersion
A woven 2D touchpad sensor and a 1D slide sensor using soft capacitor fibers
International Nuclear Information System (INIS)
Gorgutsa, Stephan; Gu, Jian Feng; Skorobogatiy, Maksim
2012-01-01
Recently reported soft conductive-polymer-based capacitor fibers are used to build a fully woven 2D touchpad sensor and a 1D slide sensor. An individual capacitor fiber features a swiss-roll like structure having two dielectric and two conductive polymer films rolled together in a classic multilayer capacitor configuration. The soft fibers of sub-1 mm outer diameter are fabricated using a fiber drawing procedure from a macroscopic polymeric preform. An individual capacitor fiber is then demonstrated to act as a distributed sensor that allows the touch position to be determined by measuring the fiber’s AC response. In other words, a single fiber acts as a 1D slide sensor. Furthermore, we develop an electrical ladder network model to predict the distributed sensor properties of an individual fiber and show that this model describes the experimental measurements very well. Finally, a two-dimensional touchpad sensor is presented. The sensor is built by weaving a one-dimensional array of capacitor fibers in parallel to each other. The performance of the touchpad sensor is then characterized. (paper)
Solar photolysis of ozone to singlet D oxygen atoms, O(1D)
International Nuclear Information System (INIS)
Blackburn, T.E.
1984-01-01
Ground level solar photolysis rate coefficients (jO 3 ) were measured for the photolysis of ozone by sunlight, (O 3 + hnu( 2 + O( 1 D)). The O( 1 D) atoms produced react with nitrous oxide (N 2 O) carrier gas to form higher oxides of nitrogen (NOx). Computer model predictions show that these are mainly N 2 O 5 and NO 3 . Seventy five days of data were taken during the summer of 1983, at Ann Arbor, Michigan, and are presented in the appendix. Over 390 clear air jO 3 values are correlated with effective ozone column densities, and 500 nm aerosol optical depths. The solar direct beam component of ozone photolysis was measured for the different aerosol optical depths, over two entire days from sun-up to sun-down. Temperature dependence of jO 3 was measured from 10 0 C to 39 0 C with good agreement to models. Comparison of jO 3 versus global and ultraviolet radiation are made under various ozone column densities and aerosol optical depths. A jO 3 -photometer was built using an interference filter to pass only ozone photolyzing light. Improvements to instrumental parts are shown for balloon and aircraft flyable payloads
488-1D Ash Basin closure cap help modeling- Microdrain® liner option
Energy Technology Data Exchange (ETDEWEB)
Dyer, J. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
2017-08-03
At the request of Area Completion Engineering and in support of the 488-1D Ash Basin closure, the Savannah River National Laboratory (SRNL) performed hydrologic simulations of the revised 488-1D Ash Basin closure cap design using the Hydrologic Evaluation of Landfill Performance (HELP) model. The revised design substitutes a MicroDrain Liner®—60-mil low-density polyethylene geomembrane structurally integrated with 130-mil drainage layer—for the previously planned drainage/barrier system—300-mil geosynthetic drainage layer (GDL), 300-mil geosynthetic clay liner (GCL), and 6-inch common fill soil layer. For a 25-year, 24-hour storm event, HELP model v3.07 was employed to (1) predict the peak maximum daily hydraulic head for the geomembrane layer, and (2) ensure that South Carolina Department of Health and Environmental Control (SCDHEC) requirements for the barrier layer (i.e., ≤ 12 inches hydraulic head on top of a barrier having a saturated hydraulic conductivity ≤ 1.0E-05 cm/s) will not be exceeded. A 25-year, 24-hour storm event at the Savannah River Site (SRS) is 6.1 inches rainfall (Weber 1998). HELP model v3.07 results based upon the new planned cap design suggest that the peak maximum daily hydraulic head on the geomembrane barrier layer will be 0.15 inches for a minimum slope equal to 3%, which is two orders of magnitude below the SCDHEC upper limit of 12 inches.
Excellent microwave response derived from the construction of dielectric-loss 1D nanostructure
Dai, Sisi; Quan, Bin; Liang, Xiaohui; Lv, Jing; Yang, Zhihong; Ji, Guangbin; Du, Youwei
2018-05-01
Increasing efforts have recently been devoted to the artificial design and function of nanostructures for their application prospects in catalysis, drug delivery, energy storage, and microwave absorption. With the advantages of natural abundance, low cost, and environment friendliness, a one-dimensional (1D) MnO2 nanowire (MW) is the representative dielectric-loss absorber for its special morphology and crystalline structure. However, its low reflection loss (RL) value due to its thin thickness limits its wide development and application in the microwave absorption field. In this work, artificially designed MnO2@AIR@C (MCs), namely, 1D hollow carbon nanotubes filled with nano-MnO2, were designed and synthesized. It is found that the RL value of the MC is almost lower than -10 dB. Furthermore, the RL value was able to achieve -18.9 dB with an effective bandwidth (-10 dB) of 5.84 GHz at 2.25 mm. Simultaneously, the dielectric and interfacial polarization became stronger while the impedance matching was much better than in the single MWs. Hence, the rational design and fabrication of micro-architecture are essential and MC has great potential to be an outstanding microwave absorber.
1-D Air-snowpack modeling of atmospheric nitrous acid at South Pole during ANTCI 2003
Directory of Open Access Journals (Sweden)
W. Liao
2008-12-01
Full Text Available A 1-D air-snowpack model of HONO has been developed and constrained by observed chemistry and meteorology data. The 1-D model includes molecular diffusion and mechanical dispersion, windpumping in snow, gas phase to quasi-liquid layer phase HONO transfer and quasi-liquid layer nitrate and interstitial air HONO photolysis. Photolysis of nitrate is important as a dominant HONO source inside the snowpack, however, the observed HONO emission from the snowpack was triggered mainly by the equilibrium between quasi liquid layer nitrite and firn air HONO deep down the snow surface (i.e. 30 cm below snow surface. The high concentration of HONO in the firn air is subsequently transported above the snowpack by diffusion and windpumping. The model uncertainties come mainly from lack of measurements and the interpretation of the QLL properties based on the bulk snow measurements. One critical factor is the ionic strength of QLL nitrite, which is estimated here by the bulk snow pH, nitrite concentration, and QLL to bulk snow volume ratio.
Directory of Open Access Journals (Sweden)
Nicolae Tudoroiu
2017-09-01
Full Text Available The objective of this paper is to investigate the use of the 1-D wavelet analysis to extract several patterns from signals data sets collected from healthy and faulty input-output signals of control systems as a preliminary step in real-time implementation of fault detection diagnosis and isolation strategies. The 1-D wavelet analysis proved that is an useful tool for signals processing, design and analysis based on wavelet transforms found in a wide range of control systems industrial applications. Based on the fact that in the real life there is a great similitude between the phenomena, we are motivated to extend the applicability of these techniques to solve similar applications from control systems field, such is done in our research work. Their efficiency will be demonstrated on a case study mainly chosen to evaluate the impact of the uncertainties and the nonlinearities of the sensors and actuators on the overall performance of the control systems. The proposed techniques are able to extract in frequency domain some pattern features (signatures of interest directly from the signals data set collected by data acquisition equipment from the control system.
On the inversion of geodetic integrals defined over the sphere using 1-D FFT
García, R. V.; Alejo, C. A.
2005-08-01
An iterative method is presented which performs inversion of integrals defined over the sphere. The method is based on one-dimensional fast Fourier transform (1-D FFT) inversion and is implemented with the projected Landweber technique, which is used to solve constrained least-squares problems reducing the associated 1-D cyclic-convolution error. The results obtained are as precise as the direct matrix inversion approach, but with better computational efficiency. A case study uses the inversion of Hotine’s integral to obtain gravity disturbances from geoid undulations. Numerical convergence is also analyzed and comparisons with respect to the direct matrix inversion method using conjugate gradient (CG) iteration are presented. Like the CG method, the number of iterations needed to get the optimum (i.e., small) error decreases as the measurement noise increases. Nevertheless, for discrete data given over a whole parallel band, the method can be applied directly without implementing the projected Landweber method, since no cyclic convolution error exists.
Energy Technology Data Exchange (ETDEWEB)
Von Buttlar, H; Stahl, W [Technische Hochschule, Darmstadt (Germany)
1962-01-15
pour controler la stabilite a long terme du systeme. (author) [Spanish] Contador Geiger de baja actividad de fondo para tritio. Los autores construyeron un tubo contador cilindrico de 11 l que contiene una serie de conductores de anticoincidencia en torno a un contador central de 2,9 l de volumen efectivo. La seccion de anticoincidencia esta separada del contador central por una delgada hoja de Hostaphan aluminizada. En el trabajo figura una serie de detalles constructivos. El gas que llena el contador consiste en una mezcla de etileno a 30 mm, de argon a 40 mm y la muestra de hidrogeno hasta 700 mm. Un circuito de extincion externo, cuyo tiempo muerto es de 7 ms, elimina eficazmente todos los impulsos demorados. Con un blindaje de hierro de 30 cm, el indice de recuento del contador central con hidrogeno gaseoso inerte es de 350 impulsos/min cuando el circuito de anticoincidencia no funciona y de unos 3 impulsos/min en el caso contrario. Suponiendo que un valor de 1 impulso/min por encima de la actividad de fondo sea significativo, resulta posible medir razones T/H muy pequenas, hasta 10{sup -16}, sin necesidad de proceder a un enriquecimiento isotopico. Se siguen realizando experimentos para verificar la estabilidad a largo plazo del dispositivo. (author) [Russian] Byla skonstruirovan a tsilindricheskaya trubka s ob{sup e}mom v 11 litrov, kotoraya soderzhit ryad provodov antisovpadeniya, okhvatyvayushchikh tsentral'nuyu chast' schetchika emkost'yu v 2,9 litra. TSentral'naya chast' schetchika otdelena ot sektsii antisovpadeniya tonkoj alyuminirovannoj Gostafanovoj fol'goj. Privodyatsya podrobnye dannye konstruktsii. Gaz dlya napolneniya schetchika sostoit iz 30 torr ehtilena, 40 torr argona i do 700 torr obraztsa vodoroda. Vneshnyaya tsep' gasheniya s mertvym vremenem v 7 msek. uspeshno ustranyaet posleduyushchie impul'sy. V 30 cm zheleznom ehkrane skorost' otcheta tsentral'noj chasti schetchika s ''mertvym'' vodorodnym gazom sostavlyaet 350 otschetov v minutu bez
A reversible-jump Markov chain Monte Carlo algorithm for 1D inversion of magnetotelluric data
Mandolesi, Eric; Ogaya, Xenia; Campanyà, Joan; Piana Agostinetti, Nicola
2018-04-01
This paper presents a new computer code developed to solve the 1D magnetotelluric (MT) inverse problem using a Bayesian trans-dimensional Markov chain Monte Carlo algorithm. MT data are sensitive to the depth-distribution of rock electric conductivity (or its reciprocal, resistivity). The solution provided is a probability distribution - the so-called posterior probability distribution (PPD) for the conductivity at depth, together with the PPD of the interface depths. The PPD is sampled via a reversible-jump Markov Chain Monte Carlo (rjMcMC) algorithm, using a modified Metropolis-Hastings (MH) rule to accept or discard candidate models along the chains. As the optimal parameterization for the inversion process is generally unknown a trans-dimensional approach is used to allow the dataset itself to indicate the most probable number of parameters needed to sample the PPD. The algorithm is tested against two simulated datasets and a set of MT data acquired in the Clare Basin (County Clare, Ireland). For the simulated datasets the correct number of conductive layers at depth and the associated electrical conductivity values is retrieved, together with reasonable estimates of the uncertainties on the investigated parameters. Results from the inversion of field measurements are compared with results obtained using a deterministic method and with well-log data from a nearby borehole. The PPD is in good agreement with the well-log data, showing as a main structure a high conductive layer associated with the Clare Shale formation. In this study, we demonstrate that our new code go beyond algorithms developend using a linear inversion scheme, as it can be used: (1) to by-pass the subjective choices in the 1D parameterizations, i.e. the number of horizontal layers in the 1D parameterization, and (2) to estimate realistic uncertainties on the retrieved parameters. The algorithm is implemented using a simple MPI approach, where independent chains run on isolated CPU, to take
Assessing the impact of different sources of topographic data on 1-D hydraulic modelling of floods
Ali, A. Md; Solomatine, D. P.; Di Baldassarre, G.
2015-01-01
Topographic data, such as digital elevation models (DEMs), are essential input in flood inundation modelling. DEMs can be derived from several sources either through remote sensing techniques (spaceborne or airborne imagery) or from traditional methods (ground survey). The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), the Shuttle Radar Topography Mission (SRTM), the light detection and ranging (lidar), and topographic contour maps are some of the most commonly used sources of data for DEMs. These DEMs are characterized by different precision and accuracy. On the one hand, the spatial resolution of low-cost DEMs from satellite imagery, such as ASTER and SRTM, is rather coarse (around 30 to 90 m). On the other hand, the lidar technique is able to produce high-resolution DEMs (at around 1 m), but at a much higher cost. Lastly, contour mapping based on ground survey is time consuming, particularly for higher scales, and may not be possible for some remote areas. The use of these different sources of DEM obviously affects the results of flood inundation models. This paper shows and compares a number of 1-D hydraulic models developed using HEC-RAS as model code and the aforementioned sources of DEM as geometric input. To test model selection, the outcomes of the 1-D models were also compared, in terms of flood water levels, to the results of 2-D models (LISFLOOD-FP). The study was carried out on a reach of the Johor River, in Malaysia. The effect of the different sources of DEMs (and different resolutions) was investigated by considering the performance of the hydraulic models in simulating flood water levels as well as inundation maps. The outcomes of our study show that the use of different DEMs has serious implications to the results of hydraulic models. The outcomes also indicate that the loss of model accuracy due to re-sampling the highest resolution DEM (i.e. lidar 1 m) to lower resolution is much less than the loss of model accuracy due
Structural and population-based evaluations of TBC1D1 p.Arg125Trp.
Directory of Open Access Journals (Sweden)
Tom G Richardson
Full Text Available Obesity is now a leading cause of preventable death in the industrialised world. Understanding its genetic influences can enhance insight into molecular pathogenesis and potential therapeutic targets. A non-synonymous polymorphism (rs35859249, p.Arg125Trp in the N-terminal TBC1D1 phosphotyrosine-binding (PTB domain has shown a replicated association with familial obesity in women. We investigated these findings in the Avon Longitudinal Study of Parents and Children (ALSPAC, a large European birth cohort of mothers and offspring, and by generating a predicted model of the structure of this domain. Structural prediction involved the use of three separate algorithms; Robetta, HHpred/MODELLER and I-TASSER. We used the transmission disequilibrium test (TDT to investigate familial association in the ALSPAC study cohort (N = 2,292 mother-offspring pairs. Linear regression models were used to examine the association of genotype with mean measurements of adiposity (Body Mass Index (BMI, waist circumference and Dual-energy X-ray absorptiometry (DXA assessed fat mass, and logistic regression was used to examine the association with odds of obesity. Modelling showed that the R125W mutation occurs in a location of the TBC1D1 PTB domain that is predicted to have a function in a putative protein:protein interaction. We did not detect an association between R125W and BMI (mean per allele difference 0.27 kg/m(2 (95% Confidence Interval: 0.00, 0.53 P = 0.05 or obesity (odds ratio 1.01 (95% Confidence Interval: 0.77, 1.31, P = 0.96 in offspring after adjusting for multiple comparisons. Furthermore, there was no evidence to suggest that there was familial association between R125W and obesity (χ(2 = 0.06, P = 0.80. Our analysis suggests that R125W in TBC1D1 plays a role in the binding of an effector protein, but we find no evidence that the R125W variant is related to mean BMI or odds of obesity in a general population sample.
Influence of the flip-flop interaction on a single plasmon transport in 1D waveguide
Ko, Myong-Chol; Kim, Nam-Chol; Ho, Nam-Chol; Ryom, Ju-Song; Hao, Zhong-Hua; Li, Jian-Bo; Wang, Qu-Quan
2017-12-01
Transport of a single plasmon in the 1D waveguide coupled to two emitters with the flip-flop interaction is discussed theoretically via the real-space approach. We showed that the transmission and reflection of a single plasmon could be changeable by adjusting the flip-flop coupling strength of the QDs, the interaction of QDs with the metallic nanowaveguide, interparticle distance of the QDs and detuning. Setting the interparticle distances properly results in the switching between the complete transmission and the complete reflection. Especially, our results show that the QDs with the flip-flop interaction play important role in the transport of the propagating single plasmon, which is relevant to the Förster resonance energy transfer from donor QD to acceptor QD.
Pressure Sensor via Optical Detection Based on a 1D Spin Transition Coordination Polymer
Jureschi, Cătălin M.; Linares, Jorge; Rotaru, Aurelian; Ritti, Marie Hélène; Parlier, Michel; Dîrtu, Marinela M.; Wolff, Mariusz; Garcia, Yann
2015-01-01
We have investigated the suitability of using the 1D spin crossover coordination polymer [Fe(4-(2′-hydroxyethyl)-1,2,4-triazole)3]I2·H2O, known to crossover around room temperature, as a pressure sensor via optical detection using various contact pressures up to 250 MPa. A dramatic persistent colour change is observed. The experimental data, obtained by calorimetric and Mössbauer measurements, have been used for a theoretical analysis, in the framework of the Ising-like model, of the thermal and pressure induced spin state switching. The pressure (P)-temperature (T) phase diagram calculated for this compound has been used to obtain the P-T bistability region. PMID:25621610
Cooperative microexcitations in 2+1D chain-bundle dusty plasma liquids
International Nuclear Information System (INIS)
Io, C.-W.; Chan, C.-L.; Lin I
2010-01-01
Through direct visualization at the discrete level, the microexcitations in cold 2+1D dusty plasma liquids formed by negatively charged dusts suspended in low pressure gaseous discharges were experimentally investigated, in which the downward ion flow wake field induces strong vertical coupling and chain bundle structure. It is found that the horizontal structure and motion are similar to those of the two-dimensional liquid. Different types of basic cooperative chain excitations: straight vertical chains with small amplitude jittering, chain tilting-restraightening, bundle twisting-restraightening, and chain breaking-reconnection, are observed. The region with good (poor) horizontal structural order prefers the straight (tilted or broken) chains with little (large) titling and tilting rate.
Harnessing the Efficiency of 0(1D) Insertion Reactions for Prebiotic Astrochemistry
Widicus Weaver, Susanna
We propose a THz spectroscopic study of the small prebiotic molecules aminomethanol, methanediol, and methoxymethanol. These target molecules are predicted as the dominant products of photo-driven grain surface chemistry in interstellar environments, and are precursors to important prebiotic molecules like sugars and amino acids. These molecules are also expected to be major contributors to the spectral line density in the submillimeter spectral surveys from the Herschel and SOFIA observatories. We will use our custom mixing source to produce these molecules through O(1D) insertion reactions with the precursor molecules methyl amine, methanol, and dimethyl ether, respectively. We will then record their rotational spectra across the THz frequency range using our existing submillimeter spectrometer. This research will increase the science return from NASA missions because the target molecules serve as tracers of the simplest organic chemistry that can occur in starforming regions. This chemistry begins with methanol, which is the predominant organic molecule observed in interstellar ices. Methanol photodissociation leads to small organic radicals such as CH3O, CH2OH, and CH3. These radicals can undergo combination reactions on interstellar ices to form many of the complex organic molecules that are routinely observed in star-forming regions. Our target molecules aminomethanol, methanediol, and methoxymethanol are some of the simplest molecules that can form from this type of chemistry, and serve as tracers of ice mantle liberation in star-forming regions. These molecules also participate in gas-phase reactions that lead to amino acids and sugars, and as such are fundamentally important prebiotic molecules in interstellar environments. These types of small organic molecules also have high spectral line density, and are major contributors to line confusion in observational spectral surveys such as those conducted by Herschel and SOFIA. Therefore, the proposed research
Quantum simulation of 2D topological physics in a 1D array of optical cavities.
Luo, Xi-Wang; Zhou, Xingxiang; Li, Chuan-Feng; Xu, Jin-Shi; Guo, Guang-Can; Zhou, Zheng-Wei
2015-07-06
Orbital angular momentum of light is a fundamental optical degree of freedom characterized by unlimited number of available angular momentum states. Although this unique property has proved invaluable in diverse recent studies ranging from optical communication to quantum information, it has not been considered useful or even relevant for simulating nontrivial physics problems such as topological phenomena. Contrary to this misconception, we demonstrate the incredible value of orbital angular momentum of light for quantum simulation by showing theoretically how it allows to study a variety of important 2D topological physics in a 1D array of optical cavities. This application for orbital angular momentum of light not only reduces required physical resources but also increases feasible scale of simulation, and thus makes it possible to investigate important topics such as edge-state transport and topological phase transition in a small simulator ready for immediate experimental exploration.
16-channel DWDM based on 1D defect mode nonlinear photonic crystal
Kalhan, Abhishek; Sharma, Sanjeev; Kumar, Arun
2018-05-01
We propose a sixteen-channel Dense Wavelength Division Multiplexer (DWDM), using the 1-D defect mode nonlinear photonic crystal which is a function of intensity as well as wavelength. Here, we consider an alternate layer of two semiconductor materials in which we found the bandgap of materials when defect layer is introduced then 16-channel dense wavelength division multiplexer is obtained within bandgap. From the theoretical analysis, we can achieve average quality factor of 7800.4, the uniform spectral line-width of 0.2 nm, crosstalk of -31.4 dB, central wavelength changes 0.07 nm/(1GW/cm2) and 100% transmission efficiency. Thus, Sixteen-channel DWDM has very high quality factor, low crosstalk, near 100% power transmission efficiency and small channel spacing (1.44 nm).
A new picture on the (3+1)D topological mass mechanism
International Nuclear Information System (INIS)
Ventura, O S; Amaral, R L P G; Costa, J V; Buffon, L O; Lemes, V E R
2004-01-01
We present a class of mappings between the fields of the Cremmer-Sherk and pure BF models in 4D. These mappings are established by two distinct procedures. First, a mapping of their actions is produced iteratively resulting in an expansion of the fields of one model in terms of progressively higher derivatives of the other model fields. Second, an exact mapping is introduced by mapping their quantum correlation functions. The equivalence of both procedures is shown by resorting to the invariance under field scale transformations of the topological action. Related equivalences in 5D and 3D are discussed. The mapping in (2+1)D from the Maxwell-Chern-Simons to pure Chern-Simons models is investigated from a similar perspective
Mixed-mode crack tip loading and crack deflection in 1D quasicrystals
Wang, Zhibin; Scheel, Johannes; Ricoeur, Andreas
2016-12-01
Quasicrystals (QC) are a new class of materials besides crystals and amorphous solids and have aroused much attention of researchers since they were discovered. This paper presents a generalized fracture theory including the J-integral and crack closure integrals, relations between J1, J2 and the stress intensity factors as well as the implementation of the near-tip stress and displacement solutions of 1D QC. Different crack deflection criteria, i.e. the J-integral and maximum circumferential stress criteria, are investigated for mixed-mode loading conditions accounting for phonon-phason coupling. One focus is on the influence of phason stress intensity factors on crack deflection angles.
Photo-Thermal Effects in 1D Gratings of Gold Nanoparticles
Directory of Open Access Journals (Sweden)
Giovanna Palermo
2017-01-01
Full Text Available This work investigates the heat delivered by a mono-layer 1D grating of gold nanoparticles (GNPs created by photo-reduction through two-photon direct laser writing (2P-DLW in a poly-vinyl alcohol (PVA matrix doped with HAuCl4, under resonant laser radiation. We drop cast a film of a PVA + HAuCl4 mixture onto a glass substrate, in which we create gratings of 1 mm2 made by stripes of GNPs characterized by high polydispersivity. We demonstrate that, by controlling the pitch of the GNP stripes, we obtain different values of the photo-induced temperature variations. In the framework of thermo-plasmonics, the experimental investigation of the heat generation from a monolayer of gold nanoparticles represents a key element as a starting point to design thermo-smart platforms for sensing, solar energy harvesting and thermo-catalysis.
Structural transformation in monolayer materials: a 2D to 1D transformation.
Momeni, Kasra; Attariani, Hamed; LeSar, Richard A
2016-07-20
Reducing the dimensions of materials to atomic scales results in a large portion of atoms being at or near the surface, with lower bond order and thus higher energy. At such scales, reduction of the surface energy and surface stresses can be the driving force for the formation of new low-dimensional nanostructures, and may be exhibited through surface relaxation and/or surface reconstruction, which can be utilized for tailoring the properties and phase transformation of nanomaterials without applying any external load. Here we used atomistic simulations and revealed an intrinsic structural transformation in monolayer materials that lowers their dimension from 2D nanosheets to 1D nanostructures to reduce their surface and elastic energies. Experimental evidence of such transformation has also been revealed for one of the predicted nanostructures. Such transformation plays an important role in bi-/multi-layer 2D materials.
Fluid friction and wall viscosity of the 1D blood flow model.
Wang, Xiao-Fei; Nishi, Shohei; Matsukawa, Mami; Ghigo, Arthur; Lagrée, Pierre-Yves; Fullana, Jose-Maria
2016-02-29
We study the behavior of the pulse waves of water into a flexible tube for application to blood flow simulations. In pulse waves both fluid friction and wall viscosity are damping factors, and difficult to evaluate separately. In this paper, the coefficients of fluid friction and wall viscosity are estimated by fitting a nonlinear 1D flow model to experimental data. In the experimental setup, a distensible tube is connected to a piston pump at one end and closed at another end. The pressure and wall displacements are measured simultaneously. A good agreement between model predictions and experiments was achieved. For amplitude decrease, the effect of wall viscosity on the pulse wave has been shown as important as that of fluid viscosity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Holographic two-point functions for Janus interfaces in the D1/D5 CFT
Energy Technology Data Exchange (ETDEWEB)
Chiodaroli, Marco [Department of Physics and Astronomy, Uppsala University, SE-75108 Uppsala (Sweden); Estes, John [Department of Physics, Long Island University,1 University Plaza, Brooklyn, NY 11201 (United States); Korovin, Yegor [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, 14476 Golm (Germany)
2017-04-26
This paper investigates scalar perturbations in the top-down supersymmetric Janus solutions dual to conformal interfaces in the D1/D5 CFT, finding analytic closed-form solutions. We obtain an explicit representation of the bulk-to-bulk propagator and extract the two-point correlation function of the dual operator with itself, whose form is not fixed by symmetry alone. We give an expression involving the sum of conformal blocks associated with the bulk-defect operator product expansion and briefly discuss finite-temperature extensions. To our knowledge, this is the first computation of a two-point function which is not completely determined by symmetry for a fully-backreacted, top-down holographic defect.
32nm 1-D regular pitch SRAM bitcell design for interference-assisted lithography
Greenway, Robert T.; Jeong, Kwangok; Kahng, Andrew B.; Park, Chul-Hong; Petersen, John S.
2008-10-01
As optical lithography advances into the 45nm technology node and beyond, new manufacturing-aware design requirements have emerged. We address layout design for interference-assisted lithography (IAL), a double exposure method that combines maskless interference lithography (IL) and projection lithography (PL); cf. hybrid optical maskless lithography (HOMA) in [2] and [3]. Since IL can generate dense but regular pitch patterns, a key challenge to deployment of IAL is the conversion of existing designs to regular-linewidth, regular-pitch layouts. In this paper, we propose new 1-D regular pitch SRAM bitcell layouts which are amenable to IAL. We evaluate the feasibility of our bitcell designs via lithography simulations and circuit simulations, and confirm that the proposed bitcells can be successfully printed by IAL and that their electrical characteristics are comparable to those of existing bitcells.
1 D analysis of Radiative Shock damping by lateral radiative losses
Busquet, Michel; Audit, Edouard
2008-11-01
We have demonstrated the effect of the lateral radiative losses in radiative shocks propagative in layered quasi-planar atmospheres.[1,2] The damping of the precursor is sensitive to the fraction of self-emitted radiation reflected by the walls (called albedo) We have given recently an experimental determination of the wall albedo.[2] For parametric analysis of this effect, we implement lateral losses in the 1D hydro-rad code MULTI [3] and compared results with 2D simulations. [1] S.Leygnac, et al., Phys. Plasmas 13, 113301 (2006) [2] M.Busquet, et al, High Energy Density Plasmas 3, 8-11 (2007); M.Gonzalez, et al, Laser Part. Beams 24, 1-6 (2006) [3] Ramis et al, Comp. Phys. Comm., 49, 475 (1988)
A 1D coordination polymer of UF{sub 5} with HCN as a ligand
Energy Technology Data Exchange (ETDEWEB)
Scheibe, Benjamin; Rudel, Stefan S.; Buchner, Magnus R.; Kraus, Florian [Fachbereich Chemie, Philipps-Universitaet Marburg (Germany); Karttunen, Antti J. [Department of Chemistry, Aalto University (Finland)
2017-01-05
β-Uranium(V) fluoride was reacted with liquid anhydrous hydrogen cyanide to obtain a 1D coordination polymer with the composition {sup 1}{sub ∞}[UF{sub 5}(HCN){sub 2}], {sup 1}{sub ∞}[UF{sub 4/1}F{sub 2/2}-(HCN){sub 2/1}], revealed by single-crystal X-ray structure determination. The reaction system was furthermore studied by means of vibrational and NMR spectroscopy, as well as by quantum chemical calculations. The compound presents the first described polymeric HCN Lewis adduct and the first HCN adduct of a uranium fluoride. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)
Vitamin D receptor B1 and exon 1d: functional and evolutionary analysis.
Gardiner, Edith M; Esteban, Luis M; Fong, Colette; Allison, Susan J; Flanagan, Judith L; Kouzmenko, Alexander P; Eisman, John A
2004-05-01
The vitamin D receptor (VDR) shares a conserved structural and functional organization with other nuclear receptor (NR) superfamily members. For many NRs, N-terminal variant isoforms that display distinct cell-, stage- and promoter-specific actions have been identified. The novel VDR isoform VDRB1, with a 50 amino acid N-terminal extension, is produced from low abundance transcripts that contain exon 1d of the human VDR locus. There is evidence for the conservation of this exon in other mammalian and avian species. The transactivation differences between VDRB1 and the original VDR, clarified here, provide insights into mechanisms that may contribute to functional differences and potentially distinct physiological roles for these two VDR isoforms.
MODICO, 1-D Time-Dependent 1 Group, 2 Group Neutron Diffusion with Delayed Neutron Precursors
International Nuclear Information System (INIS)
Camiciola, P.; Cundari, D.; Montagnini, B.
1992-01-01
1 - Description of program or function: The program solves the 1-D time-dependent one and two group coarse-mesh neutron diffusion equations, coupled with the equations for the delayed-neutron precursor, in plane geometry. 2 - Method of solution: The program is based on a simple coarse-mesh cubic approximation formula for the spatial behaviour of the flux inside each interval. An implicit scheme (the time-integrated method) is used for the advancement of the solution. The resulting (block three-diagonal) matrix is inverted at each time step by Thomas' method. 3 - Restrictions on the complexity of the problem: Number of coarse- mesh intervals LE 80; number of material regions LE 10; number of delayed-neutron precursor groups LE 10. Typical mesh sizes range from 5 cm to 20 cm; typical step length (non-prompt critical transients) ranges from 0.005 to 0.1 seconds
Quantum propagation and confinement in 1D systems using the transfer-matrix method
International Nuclear Information System (INIS)
Pujol, Olivier; Carles, Robert; Pérez, José-Philippe
2014-01-01
The aim of this article is to provide some Matlab scripts to the teaching community in quantum physics. The scripts are based on the transfer-matrix formalism and offer a very efficient and versatile tool to solve problems of a physical object (electron, proton, neutron, etc) with one-dimensional (1D) stationary potential energy. Resonant tunnelling through a multiple-barrier or confinement in wells of various shapes is particularly analysed. The results are quantitatively discussed with semiconductor heterostructures, harmonic and anharmonic molecular vibrations, or neutrons in a gravity field. Scripts and other examples (hydrogen-like ions and transmission by a smooth variation of potential energy) are available freely at http://www-loa.univ-lille1.fr/~pujol in three languages: English, French and Spanish. (paper)
Waveguide modes of 1D photonic crystals in a transverse magnetic field
Energy Technology Data Exchange (ETDEWEB)
Sylgacheva, D. A., E-mail: sylgacheva.darjja@physics.msu.ru; Khokhlov, N. E.; Kalish, A. N.; Belotelov, V. I. [Moscow State University, Physics Department (Russian Federation)
2016-11-15
We analyze waveguide modes in 1D photonic crystals containing layers magnetized in the plane. It is shown that the magnetooptical nonreciprocity effect emerges in such structures during the propagation of waveguide modes along the layers and perpendicularly to the magnetization. This effect involves a change in the phase velocity of the mode upon reversal of the direction of magnetization. Comparison of the effects in a nonmagnetic photonic crystal with an additional magnetic layer and in a photonic crystal with magnetic layers shows that the magnitude of this effect is several times larger in the former case in spite of the fact that the electromagnetic field of the modes in the latter case is localized in magnetic regions more strongly. This is associated with asymmetry of the dielectric layers contacting with the magnetic layer in the former case. This effect is important for controlling waveguide structure modes with the help of an external magnetic field.
Bian, He-Dong; Yang, Xiao-E.; Yu, Qing; Chen, Zi-Lu; Liang, Hong; Yan, Shi-Ping; Liao, Dai-Zheng
2008-01-01
Two helical coordination polymeric copper(II) complexes bearing amino acid Schiff bases HL or HL', which are condensed from 2-hydroxy-1-naphthaldehyde with 2-aminobenzoic acid or L-valine, respectively, have been prepared and characterised by X-ray crystallography. In [CuL] n ( 1) the copper(II) atoms are bridged by syn- anti carboxylate groups giving infinite 1-D right-handed helical chains which are further connected by weak C-H⋯Cu interactions to build a 2-D network. While in [CuL'] n ( 2) the carboxylate group acts as a rare monatomic bridge to connect the adjacent copper(II) atoms leading to the formation of a left-handed helical chain. Magnetic susceptibility measurements indicate that 1 exhibits weak ferromagnetic interactions whereas an antiferromagnetic coupling is established for 2. The magnetic behavior can be satisfactorily explained on the basis of the structural data.
Refining the classification of irreps of the 1D N-extended supersymmetry
International Nuclear Information System (INIS)
Kuznetsova, Zhanna; Toppan, Francesco.
2007-01-01
In hep-th/0511274 the classification of the fields content of the linear finite irreducible representations of the algebra of the 1D N-Extended Supersymmetric Quantum Mechanics was given. In hep-th/0611060 it was pointed out that certain irreps with the same fields content can be regarded as inequivalent. This result can be understood in terms of the 'connectivity' properties of the graphs associated to the irreps. We present here a classification of the connectivity of the irreps, refining the hep-th/0511274 classification based on fields content. As a byproduct, we find a counterexample to the hep-th/0611060 claim that the connectivity is uniquely specified by the sources and targets of an irrep graph. We produce one pair of N=5 irreps and three pairs of N=6 irreps with the same number of sources and targets which, nevertheless, differ in connectivity. (author)
Robust 1D inversion and analysis of helicopter electromagnetic (HEM) data
DEFF Research Database (Denmark)
Tølbøll, R.J.; Christensen, N.B.
2006-01-01
but can resolve layer boundary to a depth of more than 100 m. Modeling experiments also show that the effect of altimeter errors on the inversion results is serious. We suggest a new interpretation scheme for HEM data founded solely on full nonlinear 1D inversion and providing layered-earth models...... of test flights were performed using a frequency-domain, helicopter-borne electromagnetic (HEM) system. We perform a theoretical examination of the resolution capabilities of the applied system. Quantitative model parameter analyses show that the system only weakly resolves conductive, near-surface layers...... supported by datamisfit parameters and a quantitative model-parameter analysis. The backbone of the scheme is the removal of cultural coupling effects followed by a multilayer inversion that in turn provides reliable starting models for a subsequent few-layer inversion. A new procedure for correlation...
Smooth non-extremal D1-D5-P solutions as charged gravitational instantons
International Nuclear Information System (INIS)
Chakrabarty, Bidisha; Rocha, Jorge V.; Virmani, Amitabh
2016-01-01
We present an alternative and more direct construction of the non-super-symmetric D1-D5-P supergravity solutions found by Jejjala, Madden, Ross and Titchener. We show that these solutions — with all three charges and both rotations turned on — can be viewed as a charged version of the Myers-Perry instanton. We present an inverse scattering construction of the Myers-Perry instanton metric in Euclidean five-dimensional gravity. The angular momentum bounds in this construction turn out to be precisely the ones necessary for the smooth microstate geometries. We add charges on the Myers-Perry instanton using appropriate SO(4,4) hidden symmetry transformations. The full construction can be viewed as an extension and simplification of a previous work by Katsimpouri, Kleinschmidt and Virmani.
Canonical quantization of nonlocal theories related to bosonization in 2 + 1D
International Nuclear Information System (INIS)
Amaral, R.L.P.G. do; Marino, E.C.
1991-08-01
We present a canonical formulation for theories whose actions contain non-integer powers of the d'Alembertian operator and which were recently shown to play a central role in 2 + 1D bosonization. We show that these theories possess an infinite number of constraints and use the Dirac method in order to obtain the classical brackets. The casual and classical Green functions are obtained and their meaning in terms of field expectation values is discussed. The Wightman functions are introduced and shown to lead to the microcausality principle. A mode expansion for the field is obtained. This permits the reobtention of the Wightman functions as vacuum expectation values of products of the basic fields. Creation and annihilation operators are naturally introduced but, as shown, they are not related to definite mass particle states. This is also confirmed by the spectral decomposition of the Wightman functions. (author). 16 refs, 1 fig
Absence of ballistic charge transport in the half-filled 1D Hubbard model
Carmelo, J. M. P.; Nemati, S.; Prosen, T.
2018-05-01
Whether in the thermodynamic limit of lattice length L → ∞, hole concentration mηz = - 2 Sηz/L = 1 -ne → 0, nonzero temperature T > 0, and U / t > 0 the charge stiffness of the 1D Hubbard model with first neighbor transfer integral t and on-site repulsion U is finite or vanishes and thus whether there is or there is no ballistic charge transport, respectively, remains an unsolved and controversial issue, as different approaches yield contradictory results. (Here Sηz = - (L -Ne) / 2 is the η-spin projection and ne =Ne / L the electronic density.) In this paper we provide an upper bound on the charge stiffness and show that (similarly as at zero temperature), for T > 0 and U / t > 0 it vanishes for mηz → 0 within the canonical ensemble in the thermodynamic limit L → ∞. Moreover, we show that at high temperature T → ∞ the charge stiffness vanishes as well within the grand-canonical ensemble for L → ∞ and chemical potential μ →μu where (μ -μu) ≥ 0 and 2μu is the Mott-Hubbard gap. The lack of charge ballistic transport indicates that charge transport at finite temperatures is dominated by a diffusive contribution. Our scheme uses a suitable exact representation of the electrons in terms of rotated electrons for which the numbers of singly occupied and doubly occupied lattice sites are good quantum numbers for U / t > 0. In contrast to often less controllable numerical studies, the use of such a representation reveals the carriers that couple to the charge probes and provides useful physical information on the microscopic processes behind the exotic charge transport properties of the 1D electronic correlated system under study.
Variational Assimilation of Sparse and Uncertain Satellite Data For 1D Saint-Venant River Models
Garambois, P. A.; Brisset, P.; Monnier, J.; Roux, H.
2016-12-01
Profusion of satellites are providing increasingly accurate measurements of continental water cyle, and water bodies variations while in situ observability is declining. The future Surface Water and Ocean Topography (SWOT) mission will provide maps of river surface elevations widths and slopes with an almost global coverage and temporal revisits. This will offer the possibility to address a larger variety of inverse problems in surface hydrology. Data assimilation techniques, that are broadly used in several scientific fields, aim to optimally combine models, system observations and prior information. Variational assimilation consists in iterative minimization of a discrepency measure between model outputs and observations, here for retrieving boundary conditions and parameters of a 1D Saint Venant model. Nevertheless, inferring river discharge and hydraulic parameters thanks to the observation of river surface is not straightforward. This is particularly true in the case of sparse and uncertain observations of flow state variables since they are governed by nonlinear physical processes. This paper investigates the identifiability of hydraulic controls given sparse and uncertain satellite observations of a river. The identifiability of river discharge alone and with roughness is tested for several spatio temporal patterns of river observations, including SWOT like observations. A new 1D Shallow water model with variational data assimilation, within the DassFlow chain is presented as well as postprocessing and observation operator dedicated to the future SWOT and SWOT simulator data. In view to decrease inverse problem dimensionality discharge is represented in a reduced basis. Moreover we introduce an original and reduced parametrization of the flow resistance that can account for various flow regimes along with a cross section design dedicated to remote sensing. We show which discharge temporal frequencies can be identified w.r.t observation ones and at which
Effects of polyamine inhibitors on zinc uptake by COMMA-1D mammary epithelial cells
Energy Technology Data Exchange (ETDEWEB)
Allen, J.C.; Haedrich, L.H. (North Carolina State Univ., Raleigh (United States))
1991-03-15
Zn uptake or transport is stimulated by glucocorticoids in many types of epithelial cells, including the COMMA-1D mouse mammary cell line. The current objective was to determine whether polyamines also mediate glucocorticoid stimulation of Zn-uptake. Initially, cells grown in lactogenic hormone supplemented-media had approximately 65% greater {sup 65}Zn-uptake over 24 h than cells in nonsupplemented growth media (GM). {sup 65}Zn-uptake from HM with 10{sup {minus}5}M methylglyoxal-bis(guanylhydrazone) (MGBG) (s-adenosyl-methionine decarboxylase inhibitor to block polyamine synthesis) added was less than from GM. Exogenous spermidine added to the MGBG-HM media increased {sup 65}Zn-uptake. However, up to 10mM difluoromethylornithine (DFMO), a more specific inhibitor of sperimidine synthesis, had no significant effect on 24-h {sup 65}Zn-uptake by cells in HM. In GM, DFMO caused a slight dose-dependent decrease in {sup 65}Zn-uptake over the range 10{sup {minus}6} to 5 {times} 10{sup 3}M. Also, with 8 h of incubation, DFMO tended to decrease {sup 65}Zn-uptake in HM-stimulated cells. These data cannot yet distinguish between the possibilities that DFMO is inactivated during the 24-h incubation or that the dramatic effects of MGBG on {sup 65}Zn-uptake in these mammary-derived cells is not related to its inhibition of polyamine synthesis. Because COMMA-1D cells alter Zn uptake in response to lactogenic hormones and MGBG, the model system is suitable for further studies of the mechanisms of zinc transport in epithelia.
Photochemical and photocatalytic evaluation of 1D titanate/TiO{sub 2} based nanomaterials
Energy Technology Data Exchange (ETDEWEB)
Conceição, D.S.; Ferreira, D.P. [Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Graça, C.A.L. [Universidade de São Paulo, Avenida Prof. Luciano Gualberto, tr. 3, 380 São Paulo (Brazil); Júlio, M.F.; Ilharco, L.M. [Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Velosa, A.C. [Instituto Nacional de Tecnologia, Av. Venezuela 82, Rio de Janeiro (Brazil); Santos, P.F. [Centro de Química, Vila Real Universidade de Trás-os-Montes e Alto Douro, 5001-801 Vila Real (Portugal); Vieira Ferreira, L.F., E-mail: lfvieiraferreira@tecnico.ulisboa.pt [Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais, 1049-001 Lisboa (Portugal)
2017-01-15
Highlights: • 1D titanate based nanomaterials were prepared via a hydrothermal approach. • The structural and photochemical evaluation of the nanomaterials was performed. • A fluorescent dye was used as a surface probe in visible excitation conditions. • Amicarbazone was used as the model contaminant for photodegradation studies. - Abstract: One-dimensional (1D) titanate based nanomaterials were synthesized following an alkaline hydrothermal approach of commercial TiO{sub 2} nanopowder. The morphological features of all materials were monitored by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and also Brunauer-Emmett-Teller (BET) technique. In addition the photochemical behaviour of these nanostructured materials were evaluated with the use of laser induced luminescence (LIL), ground-state diffuse reflectance (GSDR), and laser-flash photolysis in diffuse reflectance mode (DRLFP). The mixed titanate/TiO{sub 2} nanowires presented the least intense fluorescence spectra, suggesting the presence of surficial defects that can extend the lifetime of the excited charge carriers. A fluorescent ‘rhodamine-like’ dye was adsorbed onto different materials and examined via photoexcitation in the visible range to study the self-photosensitization mechanism. The presence of the radical cation of the dye and the degradation kinetics, when compared with a neutral substrate—cellulose, provided significant evidences regarding the photoactivity of the different materials. Regarding all the materials under study, the nanowires exhibited a strong photocatalytic efficiency, for the adsorbed fluorescent probe. The photocatalytic mechanism was also considered by studying the photodegradation capability of the titanate based materials in the presence of an herbicide, Amicarbazone, after ultraviolet (UVA) photoexcitation.
CRA Control Logic Realization for MARS 1-D/MASTER coupled Code System
International Nuclear Information System (INIS)
Han, Soonkyoo; Jeong, Sungsu; Lee, Suyong
2013-01-01
Both Multi-dimensional Analysis Reactor Safety (MARS) code and Multi-purpose Analyzer for Static and Transient Effects of Reactors (MASTER) code, developed by Korea Atomic Energy Research Institute (KAERI), can be coupled for various simulations of nuclear reactor system. In the MARS 1-D/MASTER coupled code system, MARS is used for the thermal hydraulic calculations and MASTER is used for reactor core calculations. In case of using this coupled code system, the movements of control rod assembly (CRA) are controlled by MASTER. MASTER, however, has a CRA control function which is inputted by user as a form of time dependent table. When simulations related to sequential CRA insertion or withdrawal which are not ejection or drop are performed, this CRA control function is not sufficient to demonstrate the process of CRA movements. Therefore an alternative way is proposed for realization of CRA control logic in MASTER. In this study, the manually realized CRA control logic was applied by inputting the time dependent CRA positions into MASTER. And the points of CRA movements were decided by iterations. At the end of CRA movement, the reactor power difference and the average coolant temperature difference were not out of the range of their dead bands. Therefore it means that this manually realized CRA control logic works appropriately in the dead bands of the logic. Therefore the proper CRA movement points could be decided by using this manually realized CRA control logic. Based on these results, it is verified that the proper CRA movement points can be chosen by using the proposed CRA control logic in this article. In conclusion, it is expected that this proposed CRA control logic in MASTER can be used to properly demonstrate the process related to CRA sequential movements in the MARS 1-D/MASTER coupled code system
Cocaine Inhibits Dopamine D2 Receptor Signaling via Sigma-1-D2 Receptor Heteromers
Navarro, Gemma; Moreno, Estefania; Bonaventura, Jordi; Brugarolas, Marc; Farré, Daniel; Aguinaga, David; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carmen; Ferre, Sergi
2013-01-01
Under normal conditions the brain maintains a delicate balance between inputs of reward seeking controlled by neurons containing the D1-like family of dopamine receptors and inputs of aversion coming from neurons containing the D2-like family of dopamine receptors. Cocaine is able to subvert these balanced inputs by altering the cell signaling of these two pathways such that D1 reward seeking pathway dominates. Here, we provide an explanation at the cellular and biochemical level how cocaine may achieve this. Exploring the effect of cocaine on dopamine D2 receptors function, we present evidence of σ1 receptor molecular and functional interaction with dopamine D2 receptors. Using biophysical, biochemical, and cell biology approaches, we discovered that D2 receptors (the long isoform of the D2 receptor) can complex with σ1 receptors, a result that is specific to D2 receptors, as D3 and D4 receptors did not form heteromers. We demonstrate that the σ1-D2 receptor heteromers consist of higher order oligomers, are found in mouse striatum and that cocaine, by binding to σ1 -D2 receptor heteromers, inhibits downstream signaling in both cultured cells and in mouse striatum. In contrast, in striatum from σ1 knockout animals these complexes are not found and this inhibition is not seen. Taken together, these data illuminate the mechanism by which the initial exposure to cocaine can inhibit signaling via D2 receptor containing neurons, destabilizing the delicate signaling balance influencing drug seeking that emanates from the D1 and D2 receptor containing neurons in the brain. PMID:23637801
Signal-noise separation based on self-similarity testing in 1D-timeseries data
Bourdin, Philippe A.
2015-08-01
The continuous improvement of the resolution delivered by modern instrumentation is a cost-intensive part of any new space- or ground-based observatory. Typically, scientists later reduce the resolution of the obtained raw-data, for example in the spatial, spectral, or temporal domain, in order to suppress the effects of noise in the measurements. In practice, only simple methods are used that just smear out the noise, instead of trying to remove it, so that the noise can nomore be seen. In high-precision 1D-timeseries data, this usually results in an unwanted quality-loss and corruption of power spectra at selected frequency ranges. Novel methods exist that are based on non-local averaging, which would conserve much of the initial resolution, but these methods are so far focusing on 2D or 3D data. We present here a method specialized for 1D-timeseries, e.g. as obtained by magnetic field measurements from the recently launched MMS satellites. To identify the noise, we use a self-similarity testing and non-local averaging method in order to separate different types of noise and signals, like the instrument noise, non-correlated fluctuations in the signal from heliospheric sources, and correlated fluctuations such as harmonic waves or shock fronts. In power spectra of test data, we are able to restore significant parts of a previously know signal from a noisy measurement. This method also works for high frequencies, where the background noise may have a larger contribution to the spectral power than the signal itself. We offer an easy-to-use software tools set, which enables scientists to use this novel technique on their own noisy data. This allows to use the maximum possible capacity of the instrumental hardware and helps to enhance the quality of the obtained scientific results.
488-1D Ash basin closure cap help modeling-Microdrain® liner option
Energy Technology Data Exchange (ETDEWEB)
Dyer, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
2017-09-06
At the request of Area Completion Engineering and in support of the 488-1D Ash Basin closure, the Savannah River National Laboratory (SRNL) performed hydrologic simulations of the revised 488-1D Ash Basin closure cap design using the Hydrologic Evaluation of Landfill Performance (HELP) model. The revised design substitutes a MicroDrain Liner®—50-mil linear low-density polyethylene geomembrane structurally integrated with 130-mil drainage layer—for the previously planned drainage/barrier system—300-mil geosynthetic drainage layer (GDL), 300-mil geosynthetic clay liner (GCL), and 6-inch common fill soil layer. For a 25-year, 24-hour storm event, HELP model v3.07 was employed to (1) predict the peak maximum daily hydraulic head for the geomembrane layer, and (2) ensure that South Carolina Department of Health and Environmental Control (SCDHEC) requirements for the barrier layer (i.e., ≤ 12 inches hydraulic head on top of a barrier having a saturated hydraulic conductivity ≤ 1.0E-05 cm/s) will not be exceeded. A 25-year, 24-hour storm event at the Savannah River Site (SRS) is 6.1 inches rainfall (Weber 1998). HELP model v3.07 results based upon the new planned cap design suggest that the peak maximum daily hydraulic head on the geomembrane barrier layer will be 0.179 inches for a minimum slope equal to 3%, which is approximately two orders of magnitude below the SCDHEC upper limit of 12 inches.
Analytical solutions for quantum walks on 1D chain with different shift operators
International Nuclear Information System (INIS)
Xu, Xin-Ping; Zhang, Xiao-Kun; Ide, Yusuke; Konno, Norio
2014-01-01
In this paper, we study the discrete-time quantum walks on 1D Chain with the moving and swapping shift operators. We derive analytical solutions for the eigenvalues and eigenstates of the evolution operator U -hat using the Chebyshev polynomial technique, and calculate the long-time averaged probabilities for the two different shift operators respectively. It is found that the probability distributions for the moving and swapping shift operators display completely different characteristics. For the moving shift operator, the probability distribution exhibits high symmetry where the probabilities at mirror positions are equal. The probabilities are inversely proportional to the system size N and approach to zero as N→∞. On the contrary, for the swapping shift operator, the probability distribution is not symmetric, the probability distribution approaches to a power-law stationary distribution as N→∞ under certain coin parameter condition. We show that such power-law stationary distribution is determined by the eigenstates of the eigenvalues ±1 and calculate the intrinsic probability for different starting positions. Our findings suggest that the eigenstates corresponding to eigenvalues ±1 play an important role for the swapping shift operator. - Highlights: • QWs on 1D chain with the moving and swapping operators are studied for the first time. • We derive analytical results for the probability distribution for the two operators. •We compare the dynamics of QWs with two different shift operators. • We find the particular eigenvalues ±1 play an important role for the dynamics. • We use the Chebyshev technique to treat the problem
A PIC-MCC code RFdinity1d for simulation of discharge initiation by ICRF antenna
Tripský, M.; Wauters, T.; Lyssoivan, A.; Bobkov, V.; Schneider, P. A.; Stepanov, I.; Douai, D.; Van Eester, D.; Noterdaeme, J.-M.; Van Schoor, M.; ASDEX Upgrade Team; EUROfusion MST1 Team
2017-12-01
Discharges produced and sustained by ion cyclotron range of frequency (ICRF) waves in absence of plasma current will be used on ITER for (ion cyclotron-) wall conditioning (ICWC, Te = 3{-}5 eV, ne 18 m-3 ). In this paper, we present the 1D particle-in-cell Monte Carlo collision (PIC-MCC) RFdinity1d for the study the breakdown phase of ICRF discharges, and its dependency on the RF discharge parameters (i) antenna input power P i , (ii) RF frequency f, (iii) shape of the electric field and (iv) the neutral gas pressure pH_2 . The code traces the motion of both electrons and ions in a narrow bundle of magnetic field lines close to the antenna straps. The charged particles are accelerated in the parallel direction with respect to the magnetic field B T by two electric fields: (i) the vacuum RF field of the ICRF antenna E_z^RF and (ii) the electrostatic field E_zP determined by the solution of Poisson’s equation. The electron density evolution in simulations follows exponential increase, {\\dot{n_e} ∼ ν_ion t } . The ionization rate varies with increasing electron density as different mechanisms become important. The charged particles are affected solely by the antenna RF field E_z^RF at low electron density ({ne < 1011} m-3 , {≤ft \\vert E_z^RF \\right \\vert \\gg ≤ft \\vert E_zP \\right \\vert } ). At higher densities, when the electrostatic field E_zP is comparable to the antenna RF field E_z^RF , the ionization frequency reaches the maximum. Plasma oscillations propagating toroidally away from the antenna are observed. The simulated energy distributions of ions and electrons at {ne ∼ 1015} m-3 correspond a power-law Kappa energy distribution. This energy distribution was also observed in NPA measurements at ASDEX Upgrade in ICWC experiments.
Formation of Gd coordination polymer with 1D chains mediated by Bronsted acidic ionic liquids
Energy Technology Data Exchange (ETDEWEB)
Luo, Qianqian; Han, Ying [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai (China); Lin, Hechun, E-mail: hclin@ee.ecnu.edu.cn [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai (China); Zhang, Yuanyuan; Duan, Chungang [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai (China); Peng, Hui, E-mail: hpeng@ee.ecnu.edu.cn [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 (China)
2017-03-15
One dimensional coordination polymer Gd[(SO{sub 4})(NO{sub 3})(C{sub 2}H{sub 6}SO){sub 2}] (1) is prepared through the mediation of Bronsted acid ionic liquid, which crystallized in the monoclinic space of C2/c. In this polymer, adjacent Gd atoms are linked by two SO{sub 4}{sup 2-} ions to generate a 1-D chain, and all oxygen atoms in SO{sub 4}{sup 2-} groups are connected to three nearest Gd atoms in µ{sup 3}:η{sup 1}:η{sup 1}:η{sup 2} fashion. Gd, S and N from SO{sub 4}{sup 2-} and NO{sub 3}{sup -} are precisely coplanar. The planar is coordinated by a pair of DMSO molecules, which is parallel and linked by hydrogen bonding to form a three-dimensional supramolecular network. Magnetic susceptibility measurement of 1 reveals weak antiferromagnetic interactions between the Gd (III) ions. It exhibits relatively large magneto-caloric effect with –ΔS{sub m}=28.8 J Kg{sup −1} K{sup −1} for ΔH=7 T. - Graphical abstract: Coordination polymer Gd[(SO{sub 4})(NO{sub 3})(C{sub 2}H{sub 6}SO){sub 2}] was obtained mediated by Bronsted acid Ionic Liquid, which presents a 1-D chains collected by SO{sub 4}{sup 2-} groups. Magnetic susceptibility of the polymer reveals weak antiferromagnetic interactions between the Gd(III) ions with the relatively large magneto-caloric effect of –ΔS{sub m}=28.8 J Kg{sup −1} K{sup −1} for ΔH= 7T.
Lysophospholipid presentation by CD1d and recognition by a human Natural Killer T-cell receptor
Energy Technology Data Exchange (ETDEWEB)
López-Sagaseta, Jacinto; Sibener, Leah V.; Kung, Jennifer E.; Gumperz, Jenny; Adams, Erin J. (UC); (UW-MED)
2014-10-02
Invariant Natural Killer T (iNKT) cells use highly restricted {alpha}{beta} T cell receptors (TCRs) to probe the repertoire of lipids presented by CD1d molecules. Here, we describe our studies of lysophosphatidylcholine (LPC) presentation by human CD1d and its recognition by a native, LPC-specific iNKT TCR. Human CD1d presenting LPC adopts an altered conformation from that of CD1d presenting glycolipid antigens, with a shifted {alpha}1 helix resulting in an open A pocket. Binding of the iNKT TCR requires a 7-{angstrom} displacement of the LPC headgroup but stabilizes the CD1d-LPC complex in a closed conformation. The iNKT TCR CDR loop footprint on CD1d-LPC is anchored by the conserved positioning of the CDR3{alpha} loop, whereas the remaining CDR loops are shifted, due in part to amino-acid differences in the CDR3{beta} and J{beta} segment used by this iNKT TCR. These findings provide insight into how lysophospholipids are presented by human CD1d molecules and how this complex is recognized by some, but not all, human iNKT cells.
Energy Technology Data Exchange (ETDEWEB)
Ichimiya, Toeao; Baba, Hideo; Nozaki, Tadashi [Electrical Communication Laboratory, Musashino-Shi, Tokyo (Japan)
1962-01-15
concentracion de yodo en la corriente de gas empleado para la yoduracion, hallandose que este procedimiento podia aplicarse al control automatico de la reaccion de yoduracion a condicion de perfeccionar la tecnica utilizada. (author) [Russian] Radiokhimicheskie issledovaniya protsessa polucheniya kremniya vysokoj chistoty dlya ego ispol'zovaniya v kachestve poluprovodnika obespechili priobretenie razlichnogo roda poleznoj informatsii i metodov dlya razvitiya dannogo protsessa. Povedenie fosfora v kachestve primesi na ochistitel'noj stadii rekristallizatsii i na urovne zonal'noj ochistki izuchalos' putem ispol'zovaniya radioaktivnogo fosfora v kachestve mechenykh atomov i bylo vyyasneno, chto na kazhdoj stadii produkty gidroliza, nakhodyashchiesya v vzvesi s chetyrekhjodistym kremniem, igrayut vazhnuyu rol' v udalenii ne tol'ko fosfora, no i drugikh primesej. Byl ispol'zovan aktivatsionnyj analiz dlya opredeleniya kontsentratsii mysh'yaka na protyazhenii vsego protsessa i bylo ukazano, chto posle fraktsionnoj peregonki ona mozhet byt' snizhena do 10-13 chastej na million. Ukazyvalos' takzhe na osnovanii nejtronnogo aktivatsionnogo analiza, chto ehlementarnyj kremnij posle termicheskogo razlozheniya joda obychno soderzhit neskol'ko chastej joda na million, no ego kontsentratsiya mozhet byt' s pomoshch'yu prostogo sinteza snizhena na odin poryadok velichiny. Pogloshchenie myagkikh luchej bylo primeneno dlya opredeleniya kontsentratsii joda v jodistom potoke gaza i bylo najdeno, chto takoj printsip mozhet byt' primenen k avtomaticheskomu kontrolyu nad jodistoj reaktsiej s posleduyushchim razvitiem sootvetstvuyushchikh metodov. (author)
DEFF Research Database (Denmark)
Löwe, Roland; Davidsen, Steffen; Thrysøe, Cecilie
We present an algorithm for automated simplification of 1D pipe network models. The impact of the simplifications on the flooding simulated by coupled 1D-2D models is evaluated in an Australian case study. Significant reductions of the simulation time of the coupled model are achieved by reducing...... the 1D network model. The simplifications lead to an underestimation of flooded area because interaction points between network and surface are removed and because water is transported downstream faster. These effects can be mitigated by maintaining nodes in flood-prone areas in the simplification...... and by adjusting pipe roughness to increase transport times....
Energy Technology Data Exchange (ETDEWEB)
Crossley, Jr., D. A. [Radiation Ecology Section, Health Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN (United States)
1963-09-15
habian pasaco la hibernacion de los adultos nuevos, porque la eliminacion del cesio en los primeros era mas rapida. En los estudios sobre poblaciones formadas por varias especies, la relacion entre el tamano del insecto y el indice de eliminacion sirvio para calcular el periodo medio biologico para la eliminacion del radiocesio por insectos harbivoros en una zona tratada con {sup 137}Ce. Este periodo medio y los datos sobre las masas biologicas vegetales e insectiles y sobre las concentraciones de radiocesio han permitido calcular el consumo de vegetales de una poblacion entera de insectos. Del mismo modo, se ha podido calcular el consumo de insectos de los artropodos depredadores basandose en las concentraciones estacionarias de radiocesio en los depredadores y en las victimas, las masas biologicas y el indice medio de eliminacion. (author) [Russian] Pri bolee rannem ispol'zovanii radioaktivnykh indikatorov v ehkologicheskikh issledovaniyakh nasekomykh-vreditelej ikh rasseyaniya i migratsii izuchalis' pri pomoshchi radioizotopov, kotorymi markirovalis' otdel'nye nasekomye. V poslednee vremya poluchilo rasprostranenie ispol'zovanie radioizotopov dlya izucheniya biologicheskoj assotsiatsii nasekomykh i rastenij, a takkhe khishchnykh nasekomykh i ikh dobychi, iskhodya iz opredeleniya potrebleniya imi pishchi. Biologicheskoe vydelenie radioizotopov, kotoroe meshaet izucheniyu rasseyaniya nasekomykh, ispol'zuetsya v nastoyashchee vremya dlya izmereniya kolichestva potrebleniya pishchi. Kak v polevykh issledovaniyakh, tak i v laboratornykh ehksperimentakh nasekomym daetsya vozmozhnost' dostich' v protsesse pitaniya sostoyaniya ustojchivoj kontsentratsii radioizotopov. V ehtikh usloviyakh temp pogloshcheniya dannogo radioizotopa raven tempu ego vydeleniya: (temp pogloshcheniya) = (velichine ustojchivogo sostoyaniya) x (skorost' poteri); Izmereniya tempov vydeleniya (biologicheskogo poluraspada) pozvolyayut perevodit' sostoyaniya ustojchivoj kontsentratsii v funktsii tempov
TU-EF-BRA-01: NMR and Proton Density MRI of the 1D Patient
International Nuclear Information System (INIS)
Wolbarst, A.
2015-01-01
NMR, and Proton Density MRI of the 1D Patient - Anthony Wolbarst Net Voxel Magnetization, m(x,t). T1-MRI; The MRI Device - Lisa Lemen ‘Classical’ NMR; FID Imaging in 1D via k-Space - Nathan Yanasak Spin-Echo; S-E/Spin Warp in a 2D Slice - Ronald Price Magnetic resonance imaging not only reveals the structural, anatomic details of the body, as does CT, but also it can provide information on the physiological status and pathologies of its tissues, like nuclear medicine. It can display high-quality slice and 3D images of organs and vessels viewed from any perspective, with resolution better than 1 mm. MRI is perhaps most extraordinary and notable for the plethora of ways in which it can create unique forms of image contrast, reflective of fundamentally different biophysical phenomena. As with ultrasound, there is no risk from ionizing radiation to the patient or staff, since no X-rays or radioactive nuclei are involved. Instead, MRI harnesses magnetic fields and radio waves to probe the stable nuclei of the ordinary hydrogen atoms (isolated protons) occurring in water and lipid molecules within and around cells. MRI consists, in essence, of creating spatial maps of the electromagnetic environments around these hydrogen nuclei. Spatial variations in the proton milieus can be related to clinical differences in the biochemical and physiological properties and conditions of the associated tissues. Imaging of proton density (PD), and of the tissue proton spin relaxation times known as T1 and T2, all can reveal important clinical information, but they do so with approaches so dissimilar from one another that each is chosen for only certain clinical situations. T1 and T2 in a voxel are determined by different aspects of the rotations and other motions of the water and lipid molecules involved, as constrained by the local biophysical surroundings within and between its cells – and they, in turn, depend on the type of tissue and its state of health. Three other common
TU-EF-BRA-01: NMR and Proton Density MRI of the 1D Patient
Energy Technology Data Exchange (ETDEWEB)
Wolbarst, A. [Univ Kentucky (United States)
2015-06-15
NMR, and Proton Density MRI of the 1D Patient - Anthony Wolbarst Net Voxel Magnetization, m(x,t). T1-MRI; The MRI Device - Lisa Lemen ‘Classical’ NMR; FID Imaging in 1D via k-Space - Nathan Yanasak Spin-Echo; S-E/Spin Warp in a 2D Slice - Ronald Price Magnetic resonance imaging not only reveals the structural, anatomic details of the body, as does CT, but also it can provide information on the physiological status and pathologies of its tissues, like nuclear medicine. It can display high-quality slice and 3D images of organs and vessels viewed from any perspective, with resolution better than 1 mm. MRI is perhaps most extraordinary and notable for the plethora of ways in which it can create unique forms of image contrast, reflective of fundamentally different biophysical phenomena. As with ultrasound, there is no risk from ionizing radiation to the patient or staff, since no X-rays or radioactive nuclei are involved. Instead, MRI harnesses magnetic fields and radio waves to probe the stable nuclei of the ordinary hydrogen atoms (isolated protons) occurring in water and lipid molecules within and around cells. MRI consists, in essence, of creating spatial maps of the electromagnetic environments around these hydrogen nuclei. Spatial variations in the proton milieus can be related to clinical differences in the biochemical and physiological properties and conditions of the associated tissues. Imaging of proton density (PD), and of the tissue proton spin relaxation times known as T1 and T2, all can reveal important clinical information, but they do so with approaches so dissimilar from one another that each is chosen for only certain clinical situations. T1 and T2 in a voxel are determined by different aspects of the rotations and other motions of the water and lipid molecules involved, as constrained by the local biophysical surroundings within and between its cells – and they, in turn, depend on the type of tissue and its state of health. Three other common
Energy Technology Data Exchange (ETDEWEB)
Williams, J. [Atomic Energy Research Establishment, Harwell (United Kingdom)
1963-11-15
incorporarlas en matrices de elevada densidad. Los trabajos sobre metodos de elaboracion en escala experimental se hallan bastante avanzados. (author) [Russian] Daetsya obzor vozmozhnosti primeneniya dispersij PuO{sub 2},UO{sub 2}, ThO{sub 2} v matritsakh iz BeO, Al{sub 2}O{sub 3}, MgO i SiO{sub 2} s tochki zreniya sokhraneniya tselostnosti takogo topliva i sposobov ego izgotovleniya. Neizmennost' razmerov i sposobnost' uderzhaniya produktov deleniya yavlyayutsya naibolee vazhnymi svojstvami s tochki zreniya sokhraneniya tselostnosti topliva. Sovmestimost' sostavnykh ehlementov topliva drug s drugom i s teplonositelem okazyvayut vliyanie na neizmennost' razmerov, no v ehtom otnoshenii okislovye vidy topliva obladayut znachitel'nymi preimushchestvami. Na izmenenie razmerov pod dejstviem oblucheniya okazyvayut vliyanie: povrezhdeniya matritsy pod dejstviem nejtronov i oskolkov deleniya; radiatsionnoe povrezhdenie fazy delyashchikhsya veshchestv vosproizvodyashchikh materialov i nakoplenie produktov deleniya v gazoobraznom sostoyanii. Termicheskie napryazheniya takzhe mogut vyzyvat' izmeneniya formy. Odnako svedeniya o mekhanizme relaksatsii napryazhenij slishkom ogranicheny, chtoby mozhno bylo dat' kakuyu-libo priemlimuyu teoreticheskuyu otsenku povedeniyu topliva. Issledovaniya vykhoda produktov deleniya kak v sluchae legkogo oblucheniya, tak i pri sil'nom vygoranii okisej delyashchikhsya veshchestv/vosproizvodyashchikh materialov ogranichivalis' glavnym obrazom gazoobraznymi produktami deleniya, preimushchestvenno ksenonom. Dannye o vykhode drugikh produktov deleniya, a takzhe svedeniya o prokhozhdenii produktov deleniya voobshche cherez vozmozhnye materialy dlya matrits ochen' ogranicheny. Issledovaniya pronitsaemosti chistykh spekshikhsya okisej pokazyvayut, chto dlya ustraneniya otkrytoj poristosti takikh matrits potrebovalos' by dostizhenie plotnostej, dokhodyashchikh po men'shej mere do 95, a to i do 98% ot teoreticheski osushchestvimoj. Dlya izgotovleniya chastits
An interesting charmonium state formation and decay: p p-bar → 1 D2 → 1 P1γ
International Nuclear Information System (INIS)
Anselmino, M.; Caruso, F.; Universidade do Estado, Rio de Janeiro, RJ; Murgia, F.; Negrao, M.R.
1994-01-01
Massless perturbative QCD forbids, at leading order, the exclusive annihilation of proton-antiproton into some charmonium states, which however, have been observed in the pp channel, indicating the significance of higher order and non perturbative effects in the few GeV energy region. The most well known cases are those of the 1 S 0 (η c ) and the 1 P 1 . The case of the 1 D 2 is considered here and a way of detecting such a state through its typical angular distribution in the radiative decay 1 D 2 -> 1 D 2 -> 1 P 1 γ is suggested. Estimates of the branching ratio BR( 1 D 2 ->pp), as given by a quark-diquark model of the nucleon, mass corrections and an instanton induced process are presented. (author). 15 refs
Design, synthesis, and characterization of 0-D, 1-D, and 2-D Zinc–Adeninate coordination assemblies
Energy Technology Data Exchange (ETDEWEB)
An, Ji Hyun [Dept. of Chemistry Education, Seoul National University, Seoul (Korea, Republic of); Geib, Steven J. [Dept. of Chemistry, University of Pittsburgh, Pittsburgh (United States); Kim, Myung Gil [Dept. of Chemistry, Chungang University, Seoul (Korea, Republic of)
2015-08-15
In this study, we demonstrate the synthesis and characterization of zinc– adeninate coordination polymers with 0-D, 1-D, and 2-D structures. We describe methods for controlling the structure of these materials by applying different synthetic conditions and discuss their structural relationships. 0-D, 1-D, and 2-D zinc–adeninate coordination polymers with the same metal–adeninate coordination mode were synthesized and characterized. By controlling the temperature, a material with 0-D macrocycle or 1-D chain coordination polymer was prepared. A replacement of pyridine with bipyridine formed 2-D sheet structure by connecting 1-D chains with each other. They exhibited an interesting relationship between synthetic methods and structures. Further study of metal–adeninate coordination chemistry will render a precise control of the structure in synthesis and will open a new venue to new materials with fascinating properties.
Fully digital 1-D, 2-D and 3-D multiscroll chaos as hardware pseudo random number generators
Mansingka, Abhinav S.; Radwan, Ahmed Gomaa; Salama, Khaled N.
2012-01-01
This paper introduces the first fully digital implementation of 1-D, 2-D and 3-D multiscroll chaos using the sawtooth nonlinearity in a 3rd order ODE with the Euler approximation. Systems indicate chaotic behaviour through phase space boundedness
Ds1*(2860) and Ds3*(2860): candidates for 1D charmed-strange mesons
International Nuclear Information System (INIS)
Song, Qin-Tao; Chen, Dian-Yong; Liu, Xiang; Matsuki, Takayuki
2015-01-01
Newly observed two charmed-strange resonances, D s1 * (2860) and D s3 * (2860), are investigated by calculating their Okubo-Zweig-Iizuka-allowed strong decays, which shows that they are suitable candidates for the 1 3 D 1 and 1 3 D 3 states in the charmed-strange meson family. Our study also predicts other main decay modes of D s1 * (2860) and D s3 * (2860), which can be accessible at the future experiment. In addition, the decay behaviors of the spin partners of D s1 * (2860) and D s3 * (2860), i.e., 1D(2 - ) and 1D'(2 - ), are predicted in this work, which are still missing at present. The experimental search for the missing 1D(2 - ) and 1D'(2 - ) charmed-strange mesons is an intriguing and challenging task for further experiments. (orig.)
A potent adjuvant effect of a CD1d-binding NKT cell ligand in human immune system mice.
Li, Xiangming; Huang, Jing; Kaneko, Izumi; Zhang, Min; Iwanaga, Shiroh; Yuda, Masao; Tsuji, Moriya
2017-01-01
A CD1d-binding invariant natural killer T (iNKT)-cell stimulatory glycolipid, namely 7DW8-5, is shown to enhance the efficacy of radiation-attenuated sporozoites (RAS)-based malaria vaccine in mice. In the current study, we aim to determine whether 7DW8-5 can display a potent adjuvant effect in human immune system (HIS) mice. HIS-A2/hCD1d mice, which possess both functional human iNKT cells and CD8+ T cells, were generated by the transduction of NSG mice with adeno-associated virus serotype 9 expressing genes that encode human CD1d molecules and HLA-A*0201, followed by the engraftment of human hematopoietic stem cells. The magnitudes of human iNKT-cell response against 7DW8-5 and HLA-A*0201-restricted human CD8+ T-cell response against a human malaria antigen in HIS-A2/hCD1d mice were determined by using human CD1d tetramer and human HLA-A*0201 tetramer, respectively. We found that 7DW8-5 stimulates human iNKT cells in HIS-A2/hCD1d mice, as well as those derived from HIS-A2/hCD1d mice in vitro. We also found that 7DW8-5 significantly increases the level of a human malarial antigen-specific HLA-A*0201-restricted human CD8+ T-cell response in HIS-A2/hCD1d mice. Our study indicates that 7DW8-5 can display a potent adjuvant effect on RAS vaccine-induced anti-malarial immunity by augmenting malaria-specific human CD8+ T-cell response.
The Implications of 3D Thermal Structure on 1D Atmospheric Retrieval
Energy Technology Data Exchange (ETDEWEB)
Blecic, Jasmina; Dobbs-Dixon, Ian [NYU Abu Dhabi, Abu Dhabi (United Arab Emirates); Greene, Thomas, E-mail: jasmina@nyu.edu [NASA Ames Research Center, Space Sciece and Astrobiology Division, M.S. 245-6, Moffett Field, CA 94035 (United States)
2017-10-20
Using the atmospheric structure from a 3D global radiation-hydrodynamic simulation of HD 189733b and the open-source Bayesian Atmospheric Radiative Transfer (BART) code, we investigate the difference between the secondary-eclipse temperature structure produced with a 3D simulation and the best-fit 1D retrieved model. Synthetic data are generated by integrating the 3D models over the Spitzer , the Hubble Space Telescope ( HST ), and the James Web Space Telescope ( JWST ) bandpasses, covering the wavelength range between 1 and 11 μ m where most spectroscopically active species have pronounced features. Using the data from different observing instruments, we present detailed comparisons between the temperature–pressure profiles recovered by BART and those from the 3D simulations. We calculate several averages of the 3D thermal structure and explore which particular thermal profile matches the retrieved temperature structure. We implement two temperature parameterizations that are commonly used in retrieval to investigate different thermal profile shapes. To assess which part of the thermal structure is best constrained by the data, we generate contribution functions for our theoretical model and each of our retrieved models. Our conclusions are strongly affected by the spectral resolution of the instruments included, their wavelength coverage, and the number of data points combined. We also see some limitations in each of the temperature parametrizations, as they are not able to fully match the complex curvatures that are usually produced in hydrodynamic simulations. The results show that our 1D retrieval is recovering a temperature and pressure profile that most closely matches the arithmetic average of the 3D thermal structure. When we use a higher resolution, more data points, and a parametrized temperature profile that allows more flexibility in the middle part of the atmosphere, we find a better match between the retrieved temperature and pressure profile and
Improving 1D Site Specific Velocity Profiles for the Kik-Net Network
Holt, James; Edwards, Benjamin; Pilz, Marco; Fäh, Donat; Rietbrock, Andreas
2017-04-01
recorded data from the Kik-Net network. First, using a reliable subset of sites, the empirical surface to borehole (S/B) ratio is calculated in the frequency domain using all events recorded at that site. In a subsequent step, we use numerical simulation to produce 1D SH transfer function curves using a suite of stochastic velocity models. Comparing the resulting amplification with the empirical S/B ratio we find optimal 1D velocity models and their uncertainty. The method will be tested to determine the level of initial information required to obtain a reliable Vs profile (e.g., starting Vs model, only Vs30, site-class, H/V ratio etc.) and then applied and tested against data from other regions using site-to-reference or empirical spectral model amplification.
The Implications of 3D Thermal Structure on 1D Atmospheric Retrieval
Blecic, Jasmina; Dobbs-Dixon, Ian; Greene, Thomas
2017-10-01
Using the atmospheric structure from a 3D global radiation-hydrodynamic simulation of HD 189733b and the open-source Bayesian Atmospheric Radiative Transfer (BART) code, we investigate the difference between the secondary-eclipse temperature structure produced with a 3D simulation and the best-fit 1D retrieved model. Synthetic data are generated by integrating the 3D models over the Spitzer, the Hubble Space Telescope (HST), and the James Web Space Telescope (JWST) bandpasses, covering the wavelength range between 1 and 11 μm where most spectroscopically active species have pronounced features. Using the data from different observing instruments, we present detailed comparisons between the temperature-pressure profiles recovered by BART and those from the 3D simulations. We calculate several averages of the 3D thermal structure and explore which particular thermal profile matches the retrieved temperature structure. We implement two temperature parameterizations that are commonly used in retrieval to investigate different thermal profile shapes. To assess which part of the thermal structure is best constrained by the data, we generate contribution functions for our theoretical model and each of our retrieved models. Our conclusions are strongly affected by the spectral resolution of the instruments included, their wavelength coverage, and the number of data points combined. We also see some limitations in each of the temperature parametrizations, as they are not able to fully match the complex curvatures that are usually produced in hydrodynamic simulations. The results show that our 1D retrieval is recovering a temperature and pressure profile that most closely matches the arithmetic average of the 3D thermal structure. When we use a higher resolution, more data points, and a parametrized temperature profile that allows more flexibility in the middle part of the atmosphere, we find a better match between the retrieved temperature and pressure profile and the
Deformed D1D5 CFT: A Holographic Probe of Quantum Gravity
Jardine, Ian Theodore
One of the big unsolved questions in gravity research is the black hole information problem. This problem, which pits the unitarity of quantum field theory against smooth classical spacetime, must have a solution in a complete theory of quantum gravity. This thesis will explore aspects of one approach to this problem in the context of string theory. The approach imagines black hole microstates as string theoretic objects. We look at a prototype system, the D1D5 system, and exploit holography to examine the dual conformal field theory (CFT). Specifically, we examine the CFT deformed from the free orbifold point, dual to a very stringy bulk, using a twisted operator that will take us towards the point with the supergravity description. The effects of twisted operators in the CFT are key to understanding physical processes such as emission and thermalization in black hole microstates. We will propose a component twist method for examining the effects of bare twist operators for higher twists in the continuum limit. Our method builds higher twists from simple 2-cycle twists, whose effects are known. We will find that, in this limit, the coefficients describing general states will follow a conjectured general functional form. We then explore the deformed CFT directly by examining operator mixing for untwisted operators. We will exploit the operator product expansion on the covering space, where twist operators of the orbifold are resolved. We use this to examine the mixing of a general supergravity operator, specifically examine the dilaton, and finish with the mixing of a non-supersymmetric candidate operator. We conjecture that this method could be extended to include twisted operators. We will also examine the mixing of the non-supersymmetric candidate operator by examining three point functions. To automate the lengthy and repetitive computations, we wrote a Mathematica package to compute correlation functions and OPEs in the D1D5 CFT. We will explain some of the
Sensitivity of groundwater recharge using climatic analogues and HYDRUS-1D
Directory of Open Access Journals (Sweden)
B. Leterme
2012-08-01
Full Text Available The sensitivity of groundwater recharge to different climate conditions was simulated using the approach of climatic analogue stations, i.e. stations presently experiencing climatic conditions corresponding to a possible future climate state. The study was conducted in the context of a safety assessment of a future near-surface disposal facility for low and intermediate level short-lived radioactive waste in Belgium; this includes estimation of groundwater recharge for the next millennia. Groundwater recharge was simulated using the Richards based soil water balance model HYDRUS-1D and meteorological time series from analogue stations. This study used four analogue stations for a warmer subtropical climate with changes of average annual precipitation and potential evapotranspiration from −42% to +5% and from +8% to +82%, respectively, compared to the present-day climate. Resulting water balance calculations yielded a change in groundwater recharge ranging from a decrease of 72% to an increase of 3% for the four different analogue stations. The Gijon analogue station (Northern Spain, considered as the most representative for the near future climate state in the study area, shows an increase of 3% of groundwater recharge for a 5% increase of annual precipitation. Calculations for a colder (tundra climate showed a change in groundwater recharge ranging from a decrease of 97% to an increase of 32% for four different analogue stations, with an annual precipitation change from −69% to −14% compared to the present-day climate.
Theoretical limits of the multistacked 1D and 2D microstructured inorganic solar cells
Yengel, Emre; Karaagac, Hakan; VJ, Logeeswaran; Islam, M. Saif
2015-09-01
Recent studies in monocrystalline semiconductor solar cells are focused on mechanically stacking multiple cells from different materials to increase the power conversion efficiency. Although, the results show promising increase in the device performance, the cost remains as the main drawback. In this study, we calculated the theoretical limits of multistacked 1D and 2D microstructered inorganic monocrstalline solar cells. This system is studied for Si and Ge material pair. The results show promising improvements in the surface reflection due to enhanced light trapping caused by photon-microstructures interactions. The theoretical results are also supported with surface reflection and angular dependent power conversion efficiency measurements of 2D axial microwall solar cells. We address the challenge of cost reduction by proposing to use our recently reported mass-manufacturable fracture-transfer- printing method which enables the use of a monocrystalline substrate wafer for repeated fabrication of devices by consuming only few microns of materials in each layer of devices. We calculated thickness dependent power conversion efficiencies of multistacked Si/Ge microstructured solar cells and found the power conversion efficiency to saturate at 26% with a combined device thickness of 30 μm. Besides having benefits of fabricating low-cost, light weight, flexible, semi-transparent, and highly efficient devices, the proposed fabrication method is applicable for other III-V materials and compounds to further increase the power conversion efficiency above 35% range.
Guelpa, Valérian; Laurent, Guillaume J; Sandoz, Patrick; Zea, July Galeano; Clévy, Cédric
2014-03-12
This paper presents a visual measurement method able to sense 1D rigid body displacements with very high resolutions, large ranges and high processing rates. Sub-pixelic resolution is obtained thanks to a structured pattern placed on the target. The pattern is made of twin periodic grids with slightly different periods. The periodic frames are suited for Fourier-like phase calculations-leading to high resolution-while the period difference allows the removal of phase ambiguity and thus a high range-to-resolution ratio. The paper presents the measurement principle as well as the processing algorithms (source files are provided as supplementary materials). The theoretical and experimental performances are also discussed. The processing time is around 3 µs for a line of 780 pixels, which means that the measurement rate is mostly limited by the image acquisition frame rate. A 3-σ repeatability of 5 nm is experimentally demonstrated which has to be compared with the 168 µm measurement range.
One-loop transition amplitudes in the D1D5 CFT
Energy Technology Data Exchange (ETDEWEB)
Carson, Zaq; Hampton, Shaun; Mathur, Samir D. [Department of Physics, The Ohio State University,191 West Woodruff Ave, Columbus, OH 43210 (United States)
2017-01-02
We consider the issue of thermalization in the D1D5 CFT. Thermalization is expected to correspond to the formation of a black hole in the dual gravity theory. We start from the orbifold point, where the theory is essentially free, and does not thermalize. In earlier work it was noted that there was no clear thermalization effect when the theory was deformed off the orbifold point to first order in the relevant twist perturbation. In this paper we consider the deformation to second order in the twist, where we do find effects that can cause thermalization of an initial perturbation. We consider a 1-loop process where two untwisted copies of the CFT are twisted to one copy and then again untwisted to two copies. We start with a single oscillator excitation on the initial CFT, and compute the effect of the two twists on this state. We find simple approximate expressions for the Bogoliubov coefficients and the behavior of the single oscillator excitation in the continuum limit, where the mode numbers involved are taken to be much larger than unity. We also prove a number of useful relationships valid for processes with an arbitrary number of twist insertions.
Specifications of ZnO growth for heterostructure solar cell and PC1D based simulations
Directory of Open Access Journals (Sweden)
Babar Hussain
2015-12-01
Full Text Available This data article is related to our recently published article (Hussain et al., in press [1] where we have proposed a new solar cell model based on n-ZnO as front layer and p-Si as rear region. The ZnO layer will act as an active n-layer as well as antireflection (AR coating saving considerable processing cost. There are several reports presenting use of ZnO as window/antireflection coating in solar cells (Mansoor et al., 2015; Haq et al., 2014; Hussain et al., 2014; Matsui et al., 2014; Ding et al., 2014 [2–6] but, here, we provide data specifically related to simultaneous use of ZnO as n-layer and AR coating. Apart from the information we already published, we provide additional data related to growth of ZnO (with and without Ga incorporation layers using MOCVD. The data related to PC1D based simulation of internal and external quantum efficiencies with and without antireflection effects of ZnO as well as the effects of doping level in p-Si on current–voltage characteristics have been provided.
Galisteo-López, Juan F.
2017-02-01
Controlling the emission of a light source demands acting on its local photonic environment via the local density of states (LDOS). Approaches to exert such control on large scale samples, commonly relying on self-assembly methods, usually lack from a precise positioning of the emitter within the material. Alternatively expensive and time consuming techniques can be used to produce samples of small dimensions where a deterministic control on emitter position can be achieved. In this work we present a full solution process approach to fabricate photonic architectures containing nano-emitters which position can be controlled with nanometer precision over squared milimiter regions. By a combination of spin and dip coating we fabricate one-dimensional (1D) nanoporous photonic crystals, which potential in different fields such as photovoltaics or sensing has been previously reported, containing monolayers of luminescent polymeric nanospheres. We demonstrate how, by modifying the position of the emitters within the photonic crystal, their emission properties (photoluminescence intensity and angular distribution) can be deterministically modified. Further, the nano-emitters can be used as a probe to study the LDOS distribution within these systems with a spatial resolution of 25 nm (provided by the probe size) carrying out macroscopic measurements over squared milimiter regions. Routes to enhance light-matter interaction in this kind of systems by combining them with metallic surfaces are finally discussed.
FFT-BM, Code Accuracy Evaluations with the 1D Fast Fourier Transform (FFT) Methodology
International Nuclear Information System (INIS)
D'Auria, F.
2004-01-01
1 - Description of program or function: FFT-BM is an integrated version of the programs package performing code accuracy evaluations with the 1D Fast Fourier Transform (FFT) methodology. It contains two programs: - CASEM: Takes care of the complete manipulation of data in order to evaluate the quantities through which the FFT method quantifies the code accuracy. - AAWFTO completes the evaluation of the average accuracy (AA) and related weighted frequency (WF) values in order to obtain the AAtot and WFtot values characterising the global calculation performance. 2 - Methods: The Fast Fourier Transform, or FFT, which is based on the Fourier analysis method is an optimised method for calculating the amplitude Vs frequency, of functions or experimental or computed data. In order to apply this methodology, after selecting the parameters to be analyzed, it is necessary to choose the following parameters: - number of curves (exp + calc) to be analyzed; - number of time windows to be analyzed; - sampling frequency; - cut frequency; - time begin and time end of each time window. 3 - Restrictions on the complexity of the problem: Up to 30 curves (exp + calc) and 5 time windows may be analyzed
Singular Solutions to a (3 + 1-D Protter-Morawetz Problem for Keldysh-Type Equations
Directory of Open Access Journals (Sweden)
Nedyu Popivanov
2017-01-01
Full Text Available We study a boundary value problem for (3 + 1-D weakly hyperbolic equations of Keldysh type (problem PK. The Keldysh-type equations are known in some specific applications in plasma physics, optics, and analysis on projective spaces. Problem PK is not well-posed since it has infinite-dimensional cokernel. Actually, this problem is analogous to a similar one proposed by M. Protter in 1952, but for Tricomi-type equations which, in part, are closely connected with transonic fluid dynamics. We consider a properly defined, in a special function space, generalized solution to problem PK for which existence and uniqueness theorems hold. It is known that it may have a strong power-type singularity at one boundary point even for very smooth right-hand sides of the equation. In the present paper we study the asymptotic behavior of the generalized solutions of problem PK at the singular point. There are given orthogonality conditions on the right-hand side of the equation, which are necessary and sufficient for the existence of a generalized solution with fixed order of singularity.
Improving Selectivity of 1D Bragg Resonator Using Coupling of Propagating and Trapped Waves
Ginzburg, N S; Peskov, Nikolay Yu; Sergeev, A S
2004-01-01
A novel 1D Bragg resonator based on coupling propagated and locked (quasi cut-off) modes should be tested in a JINR- IAP FEM-oscillator to improve selectivity over the transverse mode index. In this scheme the electron beam interacts with only propagating wave, and the latter is coupled with a quasi cut-off mode. This coupling can be realized by either helical or azimuthally-symmetric corrugation. The quasi cut-off mode provides the feedback in the system leading to the absolute instability and the self-excitation of the whole system while efficiency in the steady-state regime of generation is almost completely determined by the propagating mode, synchronous to the beam. Analytical consideration and numerical simulation show that the efficiency of such an FEM can be rather high. The main advantage of this scheme is provision of higher selectivity over the transverse mode index than traditional scheme of Bragg FEL that encourage increasing operating frequency for fixed transverse size of the interaction space.
Numerical Analysis of Copper-Indium-Gallium-Diselenide-Based Solar Cells by SCAPS-1D
Directory of Open Access Journals (Sweden)
S. Ouédraogo
2013-01-01
Full Text Available We used a one-dimensional simulation program Solar Cell Capacitance Simulator in 1 Dimension (SCAPS-1D to investigate Copper-Indium-Gallium-Diselenide- (CIGS- based solar cells properties. Starting with a conventional ZnO-B/i-ZnO/CdS/CIGS structure, we simulated the parameters of current-voltage characteristics and showed how the absorber layer thickness, hole density, and band gap influence the short-circuit current density (Jsc, open-circuit voltage (Voc, fill factor (FF, and efficiency of solar cell. Our simulation results showed that all electrical parameters are greatly affected by the absorber thickness (w below 1000 nm, due to the increase of back-contact recombination and very poor absorption. Increasing hole density (p or absorber band gap (Eg improves Voc and leads to high efficiency, which equals value of 16.1% when p = 1016 cm−3 and Eg=1.2 eV. In order to reduce back-contact recombination, the effect of a very thin layer with high band gap inserted near the back contact and acting as electrons reflector, the so-called back-electron reflector (EBR, has been investigated. The performances of the solar cells are significantly improved, when ultrathin absorbers (w < 500 nm are used; the corresponding gain of Jsc due to the EBR is 3 mA/cm2. Our results are in good agreement with those reported in the literature from experiments.
B Cell Help by CD1d-Rectricted NKT Cells
Directory of Open Access Journals (Sweden)
Livia Clerici
2015-10-01
Full Text Available B cell activation and antibody production against foreign antigens is a central step of host defense. This is achieved via highly regulated multi-phase processes that involve a variety of cells of both innate and adaptive arms of the immune system. MHC class II-restricted CD4+ T cells specific for peptide antigens, which acquire professional follicular B cell helper functions, have been long recognized as key players in this process. Recent data, however, challenge this paradigm by showing the existence of other helper cell types. CD1d restricted NKT cells specific for lipid antigens are one such new player and can coopt bona fide follicular helper phenotypes. Their role in helping antigen-specific B cell response to protein antigens, as well as to the so called “help-less” antigens that cannot be recognized by T follicular helper cells, is being increasingly elucidated, highlighting their potential pathophysiological impact on the immune response, as well as on the design of improved vaccine formulations.
Lamb, M.; Toniolo, H.; Parker, G.
2001-12-01
The slope of the continental margin of the northern Gulf of Mexico is riddled with small basins resulting from salt tectonics. Each such minibasin is the result of local subsidence due to salt withdrawal, and is isolated from neighboring basins by ridges formed due to compensational uplift. The minibasins are gradually filled by turbidity currents, which are active at low sea stand. Experiments in a 1-D minibasin reveal that a turbidity current flowing into a deep minibasin must undergo a hydraulic jump and form a muddy pond. This pond may not spill out of the basin even with continuous inflow. The reason for this is the detrainment of water across the settling interface that forms at the top of the muddy pond. Results of both experiments and numerical modeling of the flow and the evolution of the deposit are presented. The numerical model is the first of its kind to capture both the hydraulic jump and the effect of detrainment in ponded turbidity currents.
Efficient 3D/1D self-consistent integral-equation analysis of ICRH antennae
International Nuclear Information System (INIS)
Maggiora, R.; Vecchi, G.; Lancellotti, V.; Kyrytsya, V.
2004-01-01
This work presents a comprehensive account of the theory and implementation of a method for the self-consistent numerical analysis of plasma-facing ion-cyclotron resonance heating (ICRH) antenna arrays. The method is based on the integral-equation formulation of the boundary-value problem, solved via a weighted-residual scheme. The antenna geometry (including Faraday shield bars and a recess box) is fairly general and three-dimensional (3D), and the plasma is in the one-dimensional (1D) 'slab' approximation; finite-Larmor radius effects, as well as plasma density and temperature gradients, are considered. Feeding via the voltages in the access coaxial lines is self consistently accounted throughout and the impedance or scattering matrix of the antenna array obtained therefrom. The problem is formulated in both the dual space (physical) and spectral (wavenumber) domains, which allows the extraction and simple handling of the terms that slow the convergence in the spectral domain usually employed. This paper includes validation tests of the developed code against measured data, both in vacuo and in the presence of plasma. An example of application to a complex geometry is also given. (author)
Quantum cosmological relational model of shape and scale in 1D
International Nuclear Information System (INIS)
Anderson, Edward
2011-01-01
Relational particle models are useful toy models for quantum cosmology and the problem of time in quantum general relativity. This paper shows how to extend existing work on concrete examples of relational particle models in 1D to include a notion of scale. This is useful as regards forming a tight analogy with quantum cosmology and the emergent semiclassical time and hidden time approaches to the problem of time. This paper shows furthermore that the correspondence between relational particle models and classical and quantum cosmology can be strengthened using judicious choices of the mechanical potential. This gives relational particle mechanics models with analogues of spatial curvature, cosmological constant, dust and radiation terms. A number of these models are then tractable at the quantum level. These models can be used to study important issues (1) in canonical quantum gravity: the problem of time, the semiclassical approach to it and timeless approaches to it (such as the naive Schroedinger interpretation and records theory) and (2) in quantum cosmology, such as in the investigation of uniform states, robustness and the qualitative understanding of the origin of structure formation.
The analytical solution to the 1D diffusion equation in heterogeneous media
International Nuclear Information System (INIS)
Ganapol, B.D.; Nigg, D.W.
2011-01-01
The analytical solution to the time-independent multigroup diffusion equation in heterogeneous plane cylindrical and spherical media is presented. The solution features the simplicity of the one-group formulation while addressing the complication of multigroup diffusion in a fully heterogeneous medium. Beginning with the vector form of the diffusion equation, the approach, based on straightforward mathematics, resolves a set of coupled second order ODEs. The analytical form is facilitated through matrix diagonalization of the neutron interaction matrix rendering the multigroup solution as a series of one-group solutions which, when re-assembled, gives the analytical solution. Customized Eigenmode solutions of the one-group diffusion operator then represent the homogeneous solution in a uniform spatial domain. Once the homogeneous solution is known, the particular solution naturally emerges through variation of parameters. The analytical expression is then numerically implemented through recurrence. Finally, we apply the theory to assess the accuracy of a second order finite difference scheme and to a 1D slab BWR reactor in the four-group approximation. (author)
Implications on 1 + 1 D Tsunami Runup Modeling due to Time Features of the Earthquake Source
Fuentes, M.; Riquelme, S.; Ruiz, J.; Campos, J.
2018-04-01
The time characteristics of the seismic source are usually neglected in tsunami modeling, due to the difference in the time scale of both processes. Nonetheless, there are just a few analytical studies that intended to explain separately the role of the rise time and the rupture velocity. In this work, we extend an analytical 1 + 1 D solution for the shoreline motion time series, from the static case to the kinematic case, by including both rise time and rupture velocity. Our results show that the static case corresponds to a limit case of null rise time and infinite rupture velocity. Both parameters contribute in shifting the arrival time, but maximum runup may be affected by very slow ruptures and long rise time. Parametric analysis reveals that runup is strictly decreasing with the rise time while is highly amplified in a certain range of slow rupture velocities. For even lower rupture velocities, the tsunami excitation vanishes and for larger, quicker approaches to the instantaneous case.
Bayesian deconvolution and quantification of metabolites in complex 1D NMR spectra using BATMAN.
Hao, Jie; Liebeke, Manuel; Astle, William; De Iorio, Maria; Bundy, Jacob G; Ebbels, Timothy M D
2014-01-01
Data processing for 1D NMR spectra is a key bottleneck for metabolomic and other complex-mixture studies, particularly where quantitative data on individual metabolites are required. We present a protocol for automated metabolite deconvolution and quantification from complex NMR spectra by using the Bayesian automated metabolite analyzer for NMR (BATMAN) R package. BATMAN models resonances on the basis of a user-controllable set of templates, each of which specifies the chemical shifts, J-couplings and relative peak intensities for a single metabolite. Peaks are allowed to shift position slightly between spectra, and peak widths are allowed to vary by user-specified amounts. NMR signals not captured by the templates are modeled non-parametrically by using wavelets. The protocol covers setting up user template libraries, optimizing algorithmic input parameters, improving prior information on peak positions, quality control and evaluation of outputs. The outputs include relative concentration estimates for named metabolites together with associated Bayesian uncertainty estimates, as well as the fit of the remainder of the spectrum using wavelets. Graphical diagnostics allow the user to examine the quality of the fit for multiple spectra simultaneously. This approach offers a workflow to analyze large numbers of spectra and is expected to be useful in a wide range of metabolomics studies.
Experimental method for laser-driven flyer plates for 1-D shocks
International Nuclear Information System (INIS)
Paisley, D. L.; Luo, S. N.; Swift, D. C.; Loomis, E.; Johnson, R.; Greenfield, S.; Peralta, P.; Koskelo, A.; Tonks, D.
2007-01-01
One-dimensional shocks can be generated by impacting flyer plates accelerated to terminal velocities by a confined laser-ablated plasma. Over the past few years, we have developed this capability with our facility-size laser, TRIDENT, capable of ≥500 Joules at multi-microsecond pulse lengths to accelerate 1-D flyer plates, 8-mm diameter by 0.1-2 mm thick. Plates have been accelerated to terminal velocities of 100 to ≥500 m/s, with full recovery of the flyer and target for post mortem metallography. By properly tailoring the laser temporal and spatial profile, the expanding confined plasma accelerates the plate away from the transparent sapphire substrate, and decouples the laser parameters from shock pressure profile resulting from the plate impact on a target. Since the flyer plate is in free flight on impact with the target, minimal collateral damage occurs to either. The experimental method to launch these plates to terminal velocity, ancillary diagnostics, and representative experimental data is presented
Gauging of 1D-space translations for nonrelativistic matter - Geometric bags
International Nuclear Information System (INIS)
Stichel, P.C.
2000-01-01
We develop in a systematic fashion the idea of gauging 1D-space translations with fixed Newtonian time for nonrelativistic matter (particles and fields). By starting with a nonrelativistic free theory we obtain its minimal gauge invariant extension by introducing two gauge fields with a Maxwellian self interaction. We fix the gauge so that the residual symmetry group is the Galilei group and construct a representation of the extended Galilei algebra. The reduced N-particle Lagrangian describes geodesic motion in a (N-1)-dimensional (Pseudo-) Riemannian space. The singularity of the metric for negative gauge coupling leads in classical dynamics to the formation of geometric bags in the case of two or three particles. The ordering problem within the quantization scheme for N-particles is solved by canonical quantization of a pseudoclassical Schroedinger theory obtained by adding to the continuum generalization of the point-particle Lagrangian an appropriate quantum correction. We solve the two-particle bound state problem for both signs of the gauge coupling. At the end we speculate on the possible physical relevance of the new interaction induced by the gauge fields
Variable-range hopping in 2D quasi-1D electronic systems
International Nuclear Information System (INIS)
Teber, S.
2005-12-01
A semi-phenomenological theory of variable-range hopping (VRH) is developed for two-dimensional (2D) quasi-one-dimensional (quasi-1D) systems such as arrays of quantum wires in the Wigner crystal regime. The theory follows the phenomenology of Efros, Mott and Shklovskii allied with microscopic arguments. We first derive the Coulomb gap in the single-particle density of states, g(ε), where ε is the energy of the charge excitation. We then derive the main exponential dependence of the electron conductivity in the linear (L), i.e. σ(T) ∼ exp [-(T L /T) γL ], and current in the non-linear (NL), i.e. j(E) ∼ [-(E NL /E) γNL ], response regimes (E is the applied electric field). Due to the strong anisotropy of the system and its peculiar dielectric properties we show that unusual, with respect to known results, Coulomb gaps open followed by unusual VRH laws, i.e. with respect to the disorder-dependence of T L and E NL and the values of γ L and γ NL . (author)
Lossless Geometry Compression Through Changing 3D Coordinates into 1D
Directory of Open Access Journals (Sweden)
Yongkui Liu
2013-08-01
Full Text Available A method of lossless geometry compression on the coordinates of the vertexes for grid model is presented. First, the 3D coordinates are pre-processed to be transformed into a specific form. Then these 3D coordinates are changed into 1D data by making the three coordinates of a vertex represented by only a position number, which is made of a large integer. To minimize the integers, they are sorted and the differences between two adjacent vertexes are stored in a vertex table. In addition to the technique of geometry compression on coordinates, an improved method for storing the compressed topological data in a facet table is proposed to make the method more complete and efficient. The experimental results show that the proposed method has a better compression rate than the latest method of lossless geometry compression, the Isenburg-Lindstrom-Snoeyink method. The theoretical analysis and the experiment results also show that the important decompression time of the new method is short. Though the new method is explained in the case of a triangular grid, it can also be used in other forms of grid model.
The optimization of high resolution topographic data for 1D hydrodynamic models
International Nuclear Information System (INIS)
Ales, Ronovsky; Michal, Podhoranyi
2016-01-01
The main focus of our research presented in this paper is to optimize and use high resolution topographical data (HRTD) for hydrological modelling. Optimization of HRTD is done by generating adaptive mesh by measuring distance of coarse mesh and the surface of the dataset and adapting the mesh from the perspective of keeping the geometry as close to initial resolution as possible. Technique described in this paper enables computation of very accurate 1-D hydrodynamic models. In the paper, we use HEC-RAS software as a solver. For comparison, we have chosen the amount of generated cells/grid elements (in whole discretization domain and selected cross sections) with respect to preservation of the accuracy of the computational domain. Generation of the mesh for hydrodynamic modelling is strongly reliant on domain size and domain resolution. Topographical dataset used in this paper was created using LiDAR method and it captures 5.9km long section of a catchment of the river Olše. We studied crucial changes in topography for generated mesh. Assessment was done by commonly used statistical and visualization methods.
Building 1D resonance broadened quasilinear (RBQ) code for fast ions Alfvénic relaxations
Gorelenkov, Nikolai; Duarte, Vinicius; Berk, Herbert
2016-10-01
The performance of the burning plasma is limited by the confinement of superalfvenic fusion products, e.g. alpha particles, which are capable of resonating with the Alfvénic eigenmodes (AEs). The effect of AEs on fast ions is evaluated using a resonance line broadened diffusion coefficient. The interaction of fast ions and AEs is captured for cases where there are either isolated or overlapping modes. A new code RBQ1D is being built which constructs diffusion coefficients based on realistic eigenfunctions that are determined by the ideal MHD code NOVA. The wave particle interaction can be reduced to one-dimensional dynamics where for the Alfvénic modes typically the particle kinetic energy is nearly constant. Hence to a good approximation the Quasi-Linear (QL) diffusion equation only contains derivatives in the angular momentum. The diffusion equation is then one dimensional that is efficiently solved simultaneously for all particles with the equation for the evolution of the wave angular momentum. The evolution of fast ion constants of motion is governed by the QL diffusion equations which are adapted to find the ion distribution function.
Monte Carlo Uncertainty Quantification Using Quasi-1D SRM Ballistic Model
Directory of Open Access Journals (Sweden)
Davide Viganò
2016-01-01
Full Text Available Compactness, reliability, readiness, and construction simplicity of solid rocket motors make them very appealing for commercial launcher missions and embarked systems. Solid propulsion grants high thrust-to-weight ratio, high volumetric specific impulse, and a Technology Readiness Level of 9. However, solid rocket systems are missing any throttling capability at run-time, since pressure-time evolution is defined at the design phase. This lack of mission flexibility makes their missions sensitive to deviations of performance from nominal behavior. For this reason, the reliability of predictions and reproducibility of performances represent a primary goal in this field. This paper presents an analysis of SRM performance uncertainties throughout the implementation of a quasi-1D numerical model of motor internal ballistics based on Shapiro’s equations. The code is coupled with a Monte Carlo algorithm to evaluate statistics and propagation of some peculiar uncertainties from design data to rocker performance parameters. The model has been set for the reproduction of a small-scale rocket motor, discussing a set of parametric investigations on uncertainty propagation across the ballistic model.
The 1D Richards' equation in two layered soils: a Filippov approach to treat discontinuities
Berardi, Marco; Difonzo, Fabio; Vurro, Michele; Lopez, Luciano
2018-05-01
The infiltration process into the soil is generally modeled by the Richards' partial differential equation (PDE). In this paper a new approach for modeling the infiltration process through the interface of two different soils is proposed, where the interface is seen as a discontinuity surface defined by suitable state variables. Thus, the original 1D Richards' PDE, enriched by a particular choice of the boundary conditions, is first approximated by means of a time semidiscretization, that is by means of the transversal method of lines (TMOL). In such a way a sequence of discontinuous initial value problems, described by a sequence of second order differential systems in the space variable, is derived. Then, Filippov theory on discontinuous dynamical systems may be applied in order to study the relevant dynamics of the problem. The numerical integration of the semidiscretized differential system will be performed by using a one-step method, which employs an event driven procedure to locate the discontinuity surface and to adequately change the vector field.
The response matrix discrete ordinates solution to the 1D radiative transfer equation
International Nuclear Information System (INIS)
Ganapol, Barry D.
2015-01-01
The discrete ordinates method (DOM) of solution to the 1D radiative transfer equation has been an effective method of solution for nearly 70 years. During that time, the method has experienced numerous improvements as numerical and computational techniques have become more powerful and efficient. Here, we again consider the analytical solution to the discrete radiative transfer equation in a homogeneous medium by proposing a new, and consistent, form of solution that improves upon previous forms. Aided by a Wynn-epsilon convergence acceleration, its numerical evaluation can achieve extreme precision as demonstrated by comparison with published benchmarks. Finally, we readily extend the solution to a heterogeneous medium through the star product formulation producing a novel benchmark for closed form Henyey–Greenstein scattering as an example. - Highlights: • Presents a new solution to the RTE called the response matrix DOM (RM/DOM). • Solution representations avoid the instability common in exponential solutions. • Explicit form in terms of matrix hyperbolic functions. • Extreme accuracy through Wynn-epsilon acceleration checked by published benchmarks. • Provides a more transparent numerical evaluation than found previously
A 1-D Study of the Ignition Space for Magnetic Indirect (X-ray) Drive Targets
Energy Technology Data Exchange (ETDEWEB)
Cobble, James Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sinars, Daniel Brian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-06-02
The ICF program today is investigating three approaches to achieving multi-MJ fusion yields and ignition: (1) laser indirect (x-ray) drive on the National Ignition Facility (NIF), (2) laser direct drive (primarily on the Omega laser facility at the University of Rochester), and (3) magnetic direct drive on the Z pulsed power facility. In this white paper we briefly consider a fourth approach, magnetic indirect drive, in which pulsedpower- driven x-ray sources are used in place of laser driven sources. We first look at some of the x-ray sources studied on Z prior to 2007 before the pulsed power ICF program shifted to magnetic direct drive. We then show results from a series of 1D Helios calculations of double-shell capsules that suggest that these sources, scaled to higher temperatures, could be a promising path to achieving multi-MJ fusion yields and ignition. We advocate here that more detailed design calculations with widely accepted 2D/3D ICF codes should be conducted for a better assessment of the prospects.
Directory of Open Access Journals (Sweden)
Chin Wei Lai
2015-01-01
Full Text Available One-dimensional (1D titanate nanotubes (TNT were successfully synthesized using alkaline hydrothermal treatment of commercial TiO2 nanopowders in a Teflon lined stainless steel autoclave at 150°C. The minimum time required for the formation of the titanate nanotubes was 9 h significantly. After the hydrothermal processing, the layered titanate was washed with acid and water in order to control the amount of Na+ ions remaining in the sample solutions. In this study, the effect of different reaction durations in a range of 3 h to 24 h on the formation of nanotubes was carried out. As the reaction duration is extended, the changes in structure from particle to tubular shapes of alkaline treated TiO2 were obtained via scanning electron microscope (SEM. Also, the significant impact on the phase transformation and crystal structure of TNT was characterized through XRD and Raman analysis. Indeed, the photocatalytic activity of TNT was investigated through the degradation of methyl orange aqueous solution under the ultraviolet light irradiation. As a result, TNT with reaction duration at 6 h has a better photocatalytic performance than other samples which was correlated to the higher crystallinity of the samples as shown in XRD patterns.
The optimization of high resolution topographic data for 1D hydrodynamic models
Ales, Ronovsky; Michal, Podhoranyi
2016-06-01
The main focus of our research presented in this paper is to optimize and use high resolution topographical data (HRTD) for hydrological modelling. Optimization of HRTD is done by generating adaptive mesh by measuring distance of coarse mesh and the surface of the dataset and adapting the mesh from the perspective of keeping the geometry as close to initial resolution as possible. Technique described in this paper enables computation of very accurate 1-D hydrodynamic models. In the paper, we use HEC-RAS software as a solver. For comparison, we have chosen the amount of generated cells/grid elements (in whole discretization domain and selected cross sections) with respect to preservation of the accuracy of the computational domain. Generation of the mesh for hydrodynamic modelling is strongly reliant on domain size and domain resolution. Topographical dataset used in this paper was created using LiDAR method and it captures 5.9km long section of a catchment of the river Olše. We studied crucial changes in topography for generated mesh. Assessment was done by commonly used statistical and visualization methods.
Optimization of the Silver Nanoparticles PEALD Process on the Surface of 1-D Titania Coatings.
Radtke, Aleksandra; Jędrzejewski, Tomasz; Kozak, Wiesław; Sadowska, Beata; Więckowska-Szakiel, Marzena; Talik, Ewa; Mäkelä, Maarit; Leskelä, Markku; Piszczek, Piotr
2017-07-24
Plasma enhanced atomic layer deposition (PEALD) of silver nanoparticles on the surface of 1-D titania coatings, such as nanotubes (TNT) and nanoneedles (TNN), has been carried out. The formation of TNT and TNN layers enriched with dispersed silver particles of strictly defined sizes and the estimation of their bioactivity was the aim of our investigations. The structure and the morphology of produced materials were determined using X-ray photoelectron spectroscopy (XPS) and scanning electron miscroscopy (SEM). Their bioactivity and potential usefulness in the modification of implants surface have been estimated on the basis of the fibroblasts adhesion and proliferation assays, and on the basis of the determination of their antibacterial activity. The cumulative silver release profiles have been checked with the use of inductively coupled plasma-mass spectrometry (ICPMS), in order to exclude potential cytotoxicity of silver decorated systems. Among the studied nanocomposite samples, TNT coatings, prepared at 3, 10, 12 V and enriched with silver nanoparticles produced during 25 cycles of PEALD, revealed suitable biointegration properties and may actively counteract the formation of bacterial biofilm.
Stochastic analysis of 1D and 2D surface topography of x-ray mirrors
Tyurina, Anastasia Y.; Tyurin, Yury N.; Yashchuk, Valeriy V.
2017-08-01
The design and evaluation of the expected performance of new optical systems requires sophisticated and reliable information about the surface topography for planned optical elements before they are fabricated. The problem is especially complex in the case of x-ray optics, particularly for the X-ray Surveyor under development and other missions. Modern x-ray source facilities are reliant upon the availability of optics with unprecedented quality (surface slope accuracy quality optics. The uniqueness of the optics and limited number of proficient vendors makes the fabrication extremely time consuming and expensive, mostly due to the limitations in accuracy and measurement rate of metrology used in fabrication. We discuss improvements in metrology efficiency via comprehensive statistical analysis of a compact volume of metrology data. The data is considered stochastic and a new statistical model called Invertible Time Invariant Linear Filter (InTILF) is developed now for 2D surface profiles to provide compact description of the 2D data additionally to 1D data treated so far. The model captures faint patterns in the data and serves as a quality metric and feedback to polishing processes, avoiding high resolution metrology measurements over the entire optical surface. The modeling, implemented in our Beatmark software, allows simulating metrology data for optics made by the same vendor and technology. The forecast data is vital for reliable specification for optical fabrication, to be exactly adequate for the required system performance.
Directory of Open Access Journals (Sweden)
Xi-Shi Tai
2015-11-01
Full Text Available A new 1D chained coordination polymer of Zn(II, {[Zn(L2(4,4′-bipy]·(H2O}n(1 (HL = N-acetyl-l-phenylalanine; 4,4′-bipy = 4,4′-bipyridine has been synthesized and characterized by elemental analysis, IR and X-ray single crystal diffraction analysis. Theresults show that each asymmetric unit of Zn(II complex belongs to monoclinic, space group P21 with a = 11.421(2 Å, b = 9.2213(17 Å, c = 15.188(3 Å,β = 106.112(3°, V = 1536.7(5 Å3, Z = 2, Dc = 1.444 g·cm−3, µ = 0.857 mm−1, F(000 = 696, and final R1 = 0.0439, ωR2 = 0.1013. The molecules form one-dimensional chained structure by its the bridging 4,4′-bipyridine ligands. The antitumor activities and luminescent properties of Zn(II coordination polymer have also been investigated.
Boundary Control of Linear Uncertain 1-D Parabolic PDE Using Approximate Dynamic Programming.
Talaei, Behzad; Jagannathan, Sarangapani; Singler, John
2018-04-01
This paper develops a near optimal boundary control method for distributed parameter systems governed by uncertain linear 1-D parabolic partial differential equations (PDE) by using approximate dynamic programming. A quadratic surface integral is proposed to express the optimal cost functional for the infinite-dimensional state space. Accordingly, the Hamilton-Jacobi-Bellman (HJB) equation is formulated in the infinite-dimensional domain without using any model reduction. Subsequently, a neural network identifier is developed to estimate the unknown spatially varying coefficient in PDE dynamics. Novel tuning law is proposed to guarantee the boundedness of identifier approximation error in the PDE domain. A radial basis network (RBN) is subsequently proposed to generate an approximate solution for the optimal surface kernel function online. The tuning law for near optimal RBN weights is created, such that the HJB equation error is minimized while the dynamics are identified and closed-loop system remains stable. Ultimate boundedness (UB) of the closed-loop system is verified by using the Lyapunov theory. The performance of the proposed controller is successfully confirmed by simulation on an unstable diffusion-reaction process.
The optimization of high resolution topographic data for 1D hydrodynamic models
Energy Technology Data Exchange (ETDEWEB)
Ales, Ronovsky, E-mail: ales.ronovsky@vsb.cz; Michal, Podhoranyi [IT4Innovations National Supercomputing Center, VŠB-Technical University of Ostrava, Studentská 6231/1B, 708 33 Ostrava (Czech Republic)
2016-06-08
The main focus of our research presented in this paper is to optimize and use high resolution topographical data (HRTD) for hydrological modelling. Optimization of HRTD is done by generating adaptive mesh by measuring distance of coarse mesh and the surface of the dataset and adapting the mesh from the perspective of keeping the geometry as close to initial resolution as possible. Technique described in this paper enables computation of very accurate 1-D hydrodynamic models. In the paper, we use HEC-RAS software as a solver. For comparison, we have chosen the amount of generated cells/grid elements (in whole discretization domain and selected cross sections) with respect to preservation of the accuracy of the computational domain. Generation of the mesh for hydrodynamic modelling is strongly reliant on domain size and domain resolution. Topographical dataset used in this paper was created using LiDAR method and it captures 5.9km long section of a catchment of the river Olše. We studied crucial changes in topography for generated mesh. Assessment was done by commonly used statistical and visualization methods.
Numerical solution of the 1D kinetics equations using a cubic reduced nodal scheme
International Nuclear Information System (INIS)
Gomez T, A.M.; Valle G, E. del; Delfin L, A.; Alonso V, G.
2003-01-01
In this work a finite differences technique centered in mesh based on a cubic reduced nodal scheme type finite element to solve the equations of the kinetics 1 D that include the equations corresponding to the concentrations of precursors of delayed neutrons is described. The technique of finite elements used is that of Galerkin where so much the neutron flux as the concentrations of precursors its are spatially approached by means of a three grade polynomial. The matrices of rigidity and of mass that arise during this discretization process are numerically evaluated using the open quadrature non standard of Newton-Cotes and that of Radau respectively. The purpose of the application of these quadratures is the one of to eliminate in the global matrices the couplings among the values of the flow in points of the discretization with the consequent advantages as for the reduction of the order of the matrix associated to the discreet problem that is to solve. As for the time dependent part the classical integration scheme known as Θ scheme is applied. After carrying out the one reordering of unknown and equations it arrives to a reduced system that it can be solved but quickly. With the McKin compute program developed its were solved three benchmark problems and those results are shown for the relative powers. (Author)
Implications on 1 + 1 D Tsunami Runup Modeling due to Time Features of the Earthquake Source
Fuentes, M.; Riquelme, S.; Ruiz, J.; Campos, J.
2018-02-01
The time characteristics of the seismic source are usually neglected in tsunami modeling, due to the difference in the time scale of both processes. Nonetheless, there are just a few analytical studies that intended to explain separately the role of the rise time and the rupture velocity. In this work, we extend an analytical 1 + 1 D solution for the shoreline motion time series, from the static case to the kinematic case, by including both rise time and rupture velocity. Our results show that the static case corresponds to a limit case of null rise time and infinite rupture velocity. Both parameters contribute in shifting the arrival time, but maximum runup may be affected by very slow ruptures and long rise time. Parametric analysis reveals that runup is strictly decreasing with the rise time while is highly amplified in a certain range of slow rupture velocities. For even lower rupture velocities, the tsunami excitation vanishes and for larger, quicker approaches to the instantaneous case.
Hyperbranched quasi-1D nanostructures for solid-state dye-sensitized solar cells.
Passoni, Luca; Ghods, Farbod; Docampo, Pablo; Abrusci, Agnese; Martí-Rujas, Javier; Ghidelli, Matteo; Divitini, Giorgio; Ducati, Caterina; Binda, Maddalena; Guarnera, Simone; Li Bassi, Andrea; Casari, Carlo Spartaco; Snaith, Henry J; Petrozza, Annamaria; Di Fonzo, Fabio
2013-11-26
In this work we demonstrate hyperbranched nanostructures, grown by pulsed laser deposition, composed of one-dimensional anatase single crystals assembled in arrays of high aspect ratio hierarchical mesostructures. The proposed growth mechanism relies on a two-step process: self-assembly from the gas phase of amorphous TiO2 clusters in a forest of tree-shaped hierarchical mesostructures with high aspect ratio; oriented crystallization of the branches upon thermal treatment. Structural and morphological characteristics can be optimized to achieve both high specific surface area for optimal dye uptake and broadband light scattering thanks to the microscopic feature size. Solid-state dye sensitized solar cells fabricated with arrays of hyperbranched TiO2 nanostructures on FTO-glass sensitized with D102 dye showed a significant 66% increase in efficiency with respect to a reference mesoporous photoanode and reached a maximum efficiency of 3.96% (among the highest reported for this system). This result was achieved mainly thanks to an increase in photogenerated current directly resulting from improved light harvesting efficiency of the hierarchical photoanode. The proposed photoanode overcomes typical limitations of 1D TiO2 nanostructures applied to ss-DSC and emerges as a promising foundation for next-generation high-efficiency solid-state devices comprosed of dyes, polymers, or quantum dots as sensitizers.
One-loop transition amplitudes in the D1D5 CFT
Carson, Zaq; Hampton, Shaun; Mathur, Samir D.
2017-01-01
We consider the issue of thermalization in the D1D5 CFT. Thermalization is expected to correspond to the formation of a black hole in the dual gravity theory. We start from the orbifold point, where the theory is essentially free, and does not thermalize. In earlier work it was noted that there was no clear thermalization effect when the theory was deformed off the orbifold point to first order in the relevant twist perturbation. In this paper we consider the deformation to second order in the twist, where we do find effects that can cause thermalization of an initial perturbation. We consider a 1-loop process where two untwisted copies of the CFT are twisted to one copy and then again untwisted to two copies. We start with a single oscillator excitation on the initial CFT, and compute the effect of the two twists on this state. We find simple approximate expressions for the Bogoliubov coefficients and the behavior of the single oscillator excitation in the continuum limit, where the mode numbers involved are taken to be much larger than unity. We also prove a number of useful relationships valid for processes with an arbitrary number of twist insertions.
Rajapitamahuni, Anil; Zhang, Le; Singh, Vijay; Burton, John; Koten, Mak; Shield, Jeffrey; Tsymbal, Evgeny; Hong, Xia
We report a unusual giant enhancement of in-plane magnetocrystalline anisotropy (MCA) in ultrathin colossal magnetoresistive oxide films due to 1D nanoscale periodic depth modulation. High quality epitaxial thin films of La0.67Sr0.33MnO3 (LSMO) of thickness 6 nm were grown on (001) SrTiO3 substrates via off-axis radio frequency magnetron sputtering. The top 2 nm of LSMO films are patterned into periodic nano-stripes using e-beam lithography and reactive ion etching. The resulting structure consists of nano-stripes of 2 nm height and 100-200 nm width on top of a 4 nm thick continuous base layer. We employed planar Hall effect measurements to study the in-plane magnetic anisotropy of the unpatterned and nanopatterned films. The unpatterned films show a biaxial anisotropy with easy axis along [110]. The extracted anisotropy energy density is ~1.1 x 105 erg/cm3, comparable to previously reported values. In the nanopatterned films, a strong uniaxial anisotropy is developed along one of the biaxial easy axes. The corresponding anisotropy energy density is ~5.6 x 106 erg/cm3 within the nano-striped volume, comparable to that of Co. We attribute the observed uniaxial MCA to MnO6 octahedral rotations/tilts and the enhancement in the anisotropy energy density to the strain gradient within the nano-stripes.
The effect of longitudinal fluctuations in (3+1)D viscous hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Pang, Long-Gang; Karpenko, Yuri [FIAS, Frankfurt (Germany); Petersen, Hannah [FIAS, Frankfurt (Germany); ITP, Goethe University, Frankfurt (Germany); GSI, Darmstadt (Germany); Huovinen, Pasi [ITP, University of Wroclaw (Poland); Wang, Xin-Nian [CCNU, Wuhan (China); LBNL, Berkeley (United States)
2016-07-01
The energy density fluctuations of the quark gluon plasma (QGP) in the transverse plane are studied in detail and found to be important to explain the high order harmonic flow v{sub n} at RHIC and LHC. However, the energy density fluctuations along longitudinal direction (space-time rapidity η{sub s}) have not been fully investigated yet, even though they should exist as well. Previous studies show that the longitudinal fluctuations strongly depend on the initial entropy deposition mechanisms. In this work AMPT initial conditions are used where HIJING introduces longitudinal fluctuations originating from the asymmetry between forward and backward going participants, string length fluctuations and finite number of partons at different collision energies. The longitudinal fluctuations have been found to be responsible for the de-correlation of anisotropic flow and twist of event planes along rapidity. We study the effect of longitudinal fluctuations on the QGP expansion in both transverse and longitudinal direction within CLVisc, a (3+1)D viscous hydrodynamic code parallelized on GPU using OpenCL, to check whether the anisotropic flow is affected by longitudinal fluctuations and to determine appropriate shear viscosity over entropy density coefficients η/s in comparison with experiments at RHIC and LHC.
Non-supersymmetric Wilson loop in N = 4 SYM and defect 1d CFT
Beccaria, Matteo; Giombi, Simone; Tseytlin, Arkady A.
2018-03-01
Following Polchinski and Sully (arXiv:1104.5077), we consider a generalized Wilson loop operator containing a constant parameter ζ in front of the scalar coupling term, so that ζ = 0 corresponds to the standard Wilson loop, while ζ = 1 to the locally supersymmetric one. We compute the expectation value of this operator for circular loop as a function of ζ to second order in the planar weak coupling expansion in N = 4 SYM theory. We then explain the relation of the expansion near the two conformal points ζ = 0 and ζ = 1 to the correlators of scalar operators inserted on the loop. We also discuss the AdS5 × S 5 string 1-loop correction to the strong-coupling expansion of the standard circular Wilson loop, as well as its generalization to the case of mixed boundary conditions on the five-sphere coordinates, corresponding to general ζ. From the point of view of the defect CFT1 defined on the Wilson line, the ζ-dependent term can be seen as a perturbation driving a RG flow from the standard Wilson loop in the UV to the supersymmetric Wilson loop in the IR. Both at weak and strong coupling we find that the logarithm of the expectation value of the standard Wilson loop for the circular contour is larger than that of the supersymmetric one, which appears to be in agreement with the 1d analog of the F-theorem.
Method of coupling 1-D unsaturated flow with 3-D saturated flow on large scale
Directory of Open Access Journals (Sweden)
Yan Zhu
2011-12-01
Full Text Available A coupled unsaturated-saturated water flow numerical model was developed. The water flow in the unsaturated zone is considered the one-dimensional vertical flow, which changes in the horizontal direction according to the groundwater table and the atmospheric boundary conditions. The groundwater flow is treated as the three-dimensional water flow. The recharge flux to groundwater from soil water is considered the bottom flux for the numerical simulation in the unsaturated zone, and the upper flux for the groundwater simulation. It connects and unites the two separated water flow systems. The soil water equation is solved based on the assumed groundwater table and the subsequent predicted recharge flux. Then, the groundwater equation is solved with the predicted recharge flux as the upper boundary condition. Iteration continues until the discrepancy between the assumed and calculated groundwater nodal heads have a certain accuracy. Illustrative examples with different water flow scenarios regarding the Dirichlet boundary condition, the Neumann boundary condition, the atmospheric boundary condition, and the source or sink term were calculated by the coupled model. The results are compared with those of other models, including Hydrus-1D, SWMS-2D, and FEFLOW, which demonstrate that the coupled model is effective and accurate and can significantly reduce the computational time for the large number of nodes in saturated-unsaturated water flow simulation.
Modelling hydrology of a single bioretention system with HYDRUS-1D.
Meng, Yingying; Wang, Huixiao; Chen, Jiangang; Zhang, Shuhan
2014-01-01
A study was carried out on the effectiveness of bioretention systems to abate stormwater using computer simulation. The hydrologic performance was simulated for two bioretention cells using HYDRUS-1D, and the simulation results were verified by field data of nearly four years. Using the validated model, the optimization of design parameters of rainfall return period, filter media depth and type, and surface area was discussed. And the annual hydrologic performance of bioretention systems was further analyzed under the optimized parameters. The study reveals that bioretention systems with underdrains and impervious boundaries do have some detention capability, while their total water retention capability is extremely limited. Better detention capability is noted for smaller rainfall events, deeper filter media, and design storms with a return period smaller than 2 years, and a cost-effective filter media depth is recommended in bioretention design. Better hydrologic effectiveness is achieved with a higher hydraulic conductivity and ratio of the bioretention surface area to the catchment area, and filter media whose conductivity is between the conductivity of loamy sand and sandy loam, and a surface area of 10% of the catchment area is recommended. In the long-term simulation, both infiltration volume and evapotranspiration are critical for the total rainfall treatment in bioretention systems.
HELIOS-CR - A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling
International Nuclear Information System (INIS)
MacFarlane, J.J.; Golovkin, I.E.; Woodruff, P.R.
2006-01-01
HELIOS-CR is a user-oriented 1D radiation-magnetohydrodynamics code to simulate the dynamic evolution of laser-produced plasmas and z-pinch plasmas. It includes an in-line collisional-radiative (CR) model for computing non-LTE atomic level populations at each time step of the hydrodynamics simulation. HELIOS-CR has been designed for ease of use, and is well-suited for experimentalists, as well as graduate and undergraduate student researchers. The energy equations employed include models for laser energy deposition, radiation from external sources, and high-current discharges. Radiative transport can be calculated using either a multi-frequency flux-limited diffusion model, or a multi-frequency, multi-angle short characteristics model. HELIOS-CR supports the use of SESAME equation of state (EOS) tables, PROPACEOS EOS/multi-group opacity data tables, and non-LTE plasma properties computed using the inline CR modeling. Time-, space-, and frequency-dependent results from HELIOS-CR calculations are readily displayed with the HydroPLOT graphics tool. In addition, the results of HELIOS simulations can be post-processed using the SPECT3D Imaging and Spectral Analysis Suite to generate images and spectra that can be directly compared with experimental measurements. The HELIOS-CR package runs on Windows, Linux, and Mac OSX platforms, and includes online documentation. We will discuss the major features of HELIOS-CR, and present example results from simulations
Mesoporous 1D TiO_2 nanostructures obtained by the hydrothermal method
International Nuclear Information System (INIS)
Cabrera, Julieta; Vilchez, Ricardo; Alarcon, Hugo; Rodriguez, Juan; Lopez, Alcides
2014-01-01
Mesoporous one dimensional nanostructures (1D) such as nanotubes/nanorods of TiO_2 were synthesized by alkaline hydrothermal treatment of TiO_2 nanoparticles obtained by Sol Gel process (SG-TiO_2). The electronic microscopy images revealed the nanotubes formation of approximately 8 nm in diameter and more than around 400 nm long after hydrothermal treatment of 18 h and 24 h. These tube-like structures were maintained after acid treatment but after annealing at 400 °C during 2 hours these turn into rod-like structures of crystalline TiO_2 corresponding to anatase phase as revealed the diffraction patterns obtained by X-Ray Diffraction (XRD). The conversion of nanoparticles into nanotubes and afterward into rodlike shape was also confirmed by the variations in the BET surface area from 201, 269 and 97 m"2/g around, respectively. The adsorption-desorption isotherms also revealed hysteresis loop typical of mesoporous materials. These qualities are attractive to use these materials for the treatment of pollutants in water, for example. (author)
Microencapsulation of Islets for the Treatment of Type 1 Diabetes Mellitus (T1D).
Calafiore, Riccardo; Basta, Giuseppe; Montanucci, Pia
2017-01-01
Microencapsulation technology, based on use of alginic acid biopolymers, has been devised many years ago. However, when intended for enveloping human islets for transplantation purposes, the method needs to be up-scaled and implemented with care being taken to comply with simple but important measures. It is almost indispensable to rely on an ultrapurified alginic polymers: in fact, any, even minimal, alginate contamination with endotoxins, pyrogens, and proteins could provoke the host's inflammatory reaction upon graft, with heavy adverse consequences on the capsules immunoprotective properties, hence on graft survival per se. Care should be taken in ensuring fabrication of reproducible microspheres, in terms not only of shape and size, but also consistency of the peripheral layers around the central alginate gel core, where the islets are immobilized. Once the product is well defined and stable, care should also be taken in accurately selecting patients with T1D that are candidate for encapsulated islet cell transplantation with no general immunosuppression. A series of pre- and post-intraperitoneal transplant metabolic, chemical, and immunological parameters are to be monitored, in conjunction with image analysis of the abdomen, in order to assess efficacy of the intervention according to well defined grading scale.
A theory of general solutions of 3D problems in 1D hexagonal quasicrystals
International Nuclear Information System (INIS)
Gao Yang; Xu Sipeng; Zhao Baosheng
2008-01-01
A theory of general solutions of three-dimensional (3D) problems is developed for the coupled equilibrium equations in 1D hexagonal quasicrystals (QCs), and two new general solutions, which are called generalized Lekhnitskii-Hu-Nowacki (LHN) and Elliott-Lodge (E-L) solutions, respectively, are presented based on three theorems. As a special case, the generalized LHN solution is obtained from our previous general solution by introducing three high-order displacement functions. For further simplification, considering three cases in which three characteristic roots are distinct or possibly equal to each other, the generalized E-L solution shall take different forms, and be expressed in terms of four quasi-harmonic functions which are very simple and useful. It is proved that the general solution presented by Peng and Fan is consistent with one case of the generalized E-L solution, while does not include the other two cases. It is important to note that generalized LHN and E-L solutions are complete in z-convex domains, while incomplete in the usual non-z-convex domains
Sensitivity of transpiration to subsurface properties: Exploration with a 1-D model
Vrettas, Michail D.; Fung, Inez Y.
2017-06-01
The amount of moisture transpired by vegetation is critically tied to the moisture supply accessible to the root zone. In a Mediterranean climate, integrated evapotranspiration (ET) is typically greater in the dry summer when there is an uninterrupted period of high insolation. We present a 1-D model to explore the subsurface factors that may sustain ET through the dry season. The model includes a stochastic parameterization of hydraulic conductivity, root water uptake efficiency, and hydraulic redistribution by plant roots. Model experiments vary the precipitation, the magnitude and seasonality of ET demand, as well as rooting profiles and rooting depths of the vegetation. The results show that the amount of subsurface moisture remaining at the end of the wet winter is determined by the competition among abundant precipitation input, fast infiltration, and winter ET demand. The weathered bedrock retains ˜30% of the winter rain and provides a substantial moisture reservoir that may sustain ET of deep-rooted (>8 m) trees through the dry season. A small negative feedback exists in the root zone, where the depletion of moisture by ET decreases hydraulic conductivity and enhances the retention of moisture. Hence, hydraulic redistribution by plant roots is impactful in a dry season, or with a less conductive subsurface. Suggestions for implementing the model in the CESM are discussed.
Korrodi-Gregório, Luís; Vieira, Sandra I.; Esteves, Sara L. C.; Silva, Joana V.; Freitas, Maria João; Brauns, Ann-Kristin; Luers, Georg; Abrantes, Joana; Esteves, Pedro J.; da Cruz e Silva, Odete A. B.; Fardilha, Margarida; da Cruz e Silva, Edgar F.
2013-01-01
Summary Reversible phosphorylation plays an important role as a mechanism of intracellular control in eukaryotes. PPP1, a major eukaryotic Ser/Thr-protein phosphatase, acquires its specificity by interacting with different protein regulators, also known as PPP1 interacting proteins (PIPs). In the present work we characterized a physiologically relevant PIP in testis. Using a yeast two-hybrid screen with a human testis cDNA library, we identified a novel PIP of PPP1CC2 isoform, the T-complex testis expressed protein 1 domain containing 4 (TCTEX1D4) that has recently been described as a Tctex1 dynein light chain family member. The overlay assays confirm that TCTEX1D4 interacts with the different spliced isoforms of PPP1CC. Also, the binding domain occurs in the N-terminus, where a consensus PPP1 binding motif (PPP1BM) RVSF is present. The distribution of TCTEX1D4 in testis suggests its involvement in distinct functions, such as TGFβ signaling at the blood–testis barrier and acrosome cap formation. Immunofluorescence in human ejaculated sperm shows that TCTEX1D4 is present in the flagellum and in the acrosome region of the head. Moreover, TCTEX1D4 and PPP1 co-localize in the microtubule organizing center (MTOC) and microtubules in cell cultures. Importantly, the TCTEX1D4 PPP1BM seems to be relevant for complex formation, for PPP1 retention in the MTOC and movement along microtubules. These novel results open new avenues to possible roles of this dynein, together with PPP1. In essence TCTEX1D4/PPP1C complex appears to be involved in microtubule dynamics, sperm motility, acrosome reaction and in the regulation of the blood–testis barrier. PMID:23789093
Hassan, Kazi; Allen, Deonie; Haynes, Heather
2016-04-01
This paper considers 1D hydraulic model data on the effect of high flow clusters and sequencing on sediment transport. Using observed flow gauge data from the River Caldew, England, a novel stochastic modelling approach was developed in order to create alternative 50 year flow sequences. Whilst the observed probability density of gauge data was preserved in all sequences, the order in which those flows occurred was varied using the output from a Hidden Markov Model (HMM) with generalised Pareto distribution (GP). In total, one hundred 50 year synthetic flow series were generated and used as the inflow boundary conditions for individual flow series model runs using the 1D sediment transport model HEC-RAS. The model routed graded sediment through the case study river reach to define the long-term morphological changes. Comparison of individual simulations provided a detailed understanding of the sensitivity of channel capacity to flow sequence. Specifically, each 50 year synthetic flow sequence was analysed using a 3-month, 6-month or 12-month rolling window approach and classified for clusters in peak discharge. As a cluster is described as a temporal grouping of flow events above a specified threshold, the threshold condition used herein is considered as a morphologically active channel forming discharge event. Thus, clusters were identified for peak discharges in excess of 10%, 20%, 50%, 100% and 150% of the 1 year Return Period (RP) event. The window of above-peak flows also required cluster definition and was tested for timeframes 1, 2, 10 and 30 days. Subsequently, clusters could be described in terms of the number of events, maximum peak flow discharge, cumulative flow discharge and skewness (i.e. a description of the flow sequence). The model output for each cluster was analysed for the cumulative flow volume and cumulative sediment transport (mass). This was then compared to the total sediment transport of a single flow event of equivalent flow volume
Radio haloes in nearby galaxies modelled with 1D cosmic ray transport using SPINNAKER
Heesen, V.; Krause, M.; Beck, R.; Adebahr, B.; Bomans, D. J.; Carretti, E.; Dumke, M.; Heald, G.; Irwin, J.; Koribalski, B. S.; Mulcahy, D. D.; Westmeier, T.; Dettmar, R.-J.
2018-05-01
We present radio continuum maps of 12 nearby (D ≤ 27 Mpc), edge-on (i ≥ 76°), late-type spiral galaxies mostly at 1.4 and 5 GHz, observed with the Australia Telescope Compact Array, Very Large Array, Westerbork Synthesis Radio Telescope, Effelsberg 100-m, and Parkes 64-m telescopes. All galaxies show clear evidence of radio haloes, including the first detection in the Magellanic-type galaxy NGC 55. In 11 galaxies, we find a thin and a thick disc that can be better fitted by exponential rather than Gaussian functions. We fit our SPINNAKER (SPectral INdex Numerical Analysis of K(c)osmic-ray Electron Radio-emission) 1D cosmic ray transport models to the vertical model profiles of the non-thermal intensity and to the non-thermal radio spectral index in the halo. We simultaneously fit for the advection speed (or diffusion coefficient) and magnetic field scale height. In the thick disc, the magnetic field scale heights range from 2 to 8 kpc with an average across the sample of 3.0 ± 1.7 kpc; they show no correlation with either star formation rate (SFR), SFR surface density (ΣSFR), or rotation speed (Vrot). The advection speeds range from 100 to 700 km s - 1 and display correlations of V∝SFR0.36 ± 0.06 and V∝ Σ _SFR^{0.39± 0.09}; they agree remarkably well with the escape velocities (0.5 ≤ V/Vesc ≤ 2), which can be explained by cosmic ray-driven winds. Radio haloes show the presence of disc winds in galaxies with ΣSFR > 10 - 3 M⊙ yr - 1 kpc - 2 that extend over several kpc and are driven by processes related to the distributed star formation in the disc.
Bayesian sensitivity analysis of a 1D vascular model with Gaussian process emulators.
Melis, Alessandro; Clayton, Richard H; Marzo, Alberto
2017-12-01
One-dimensional models of the cardiovascular system can capture the physics of pulse waves but involve many parameters. Since these may vary among individuals, patient-specific models are difficult to construct. Sensitivity analysis can be used to rank model parameters by their effect on outputs and to quantify how uncertainty in parameters influences output uncertainty. This type of analysis is often conducted with a Monte Carlo method, where large numbers of model runs are used to assess input-output relations. The aim of this study was to demonstrate the computational efficiency of variance-based sensitivity analysis of 1D vascular models using Gaussian process emulators, compared to a standard Monte Carlo approach. The methodology was tested on four vascular networks of increasing complexity to analyse its scalability. The computational time needed to perform the sensitivity analysis with an emulator was reduced by the 99.96% compared to a Monte Carlo approach. Despite the reduced computational time, sensitivity indices obtained using the two approaches were comparable. The scalability study showed that the number of mechanistic simulations needed to train a Gaussian process for sensitivity analysis was of the order O(d), rather than O(d×103) needed for Monte Carlo analysis (where d is the number of parameters in the model). The efficiency of this approach, combined with capacity to estimate the impact of uncertain parameters on model outputs, will enable development of patient-specific models of the vascular system, and has the potential to produce results with clinical relevance. © 2017 The Authors International Journal for Numerical Methods in Biomedical Engineering Published by John Wiley & Sons Ltd.
Use of (N-1)-D expansions for N-D phase unwrapping in MRI
Bones, Philip J.; King, Laura J.; Millane, Rick P.
2017-09-01
In MRI the presence of metal implants causes severe artifacts in images and interferes with the usual techniques used to separate fat signals from other tissues. In the Dixon method, three images are acquired at different echo times to enable the variation in the magnetic field to be estimated. However, the estimate is represented as the phase of a complex quantity and therefore suffers from wrapping. High field gradients near the metal mean that the phase estimate is undersampled and therefore challenging to unwrap. We have developed POP, phase estimation by onion peeling, an algorithm which unwraps the phase along 1-D paths for a 2-D image obtained with the Dixon method. The unwrapping is initially performed along a closed path enclosing the implant and well separated from it. The recovered phase is expanded using a smooth periodic basis along the path. Then, path-by-path, the estimate is applied to the next path and then the expansion coefficients are estimated to best fit the wrapped measurements. We have successfully tested POP on MRI images of specially constructed phantoms and on a group of patients with hip implants. In principle, POP can be extended to 3-D imaging. In that case, POP would entail representing phase with a suitably smooth basis over a series of surfaces enclosing the implant (the "onion skins"), again beginning the phase estimation well away from the implant. An approach for this is proposed. Results are presented for fat and water separation for 2-D images of phantoms and actual patients. The practicality of the method and its employment in clinical MRI are discussed.
Testing the early Mars H2-CO2 greenhouse hypothesis with a 1-D photochemical model
Batalha, Natasha; Domagal-Goldman, Shawn D.; Ramirez, Ramses; Kasting, James F.
2015-09-01
A recent study by Ramirez et al. (Ramirez, R.M. et al. [2014]. Nat. Geosci. 7(1), 59-63. http://www.nature.com/doifinder/10.1038/ngeo2000 (accessed 16.09.14)) demonstrated that an atmosphere with 1.3-4 bar of CO2 and H2O, in addition to 5-20% H2, could have raised the mean annual and global surface temperature of early Mars above the freezing point of water. Such warm temperatures appear necessary to generate the rainfall (or snowfall) amounts required to carve the ancient martian valleys. Here, we use our best estimates for early martian outgassing rates, along with a 1-D photochemical model, to assess the conversion efficiency of CO, CH4, and H2S to CO2, SO2, and H2. Our outgassing estimates assume that Mars was actively recycling volatiles between its crust and interior, as Earth does today. H2 production from serpentinization and deposition of banded iron-formations is also considered. Under these assumptions, maintaining an H2 concentration of ˜1-2% by volume is achievable, but reaching 5% H2 requires additional H2 sources or a slowing of the hydrogen escape rate below the diffusion limit. If the early martian atmosphere was indeed H2-rich, we might be able to see evidence of this in the rock record. The hypothesis proposed here is consistent with new data from the Curiosity Rover, which show evidence for a long-lived lake in Gale Crater near Mt. Sharp. It is also consistent with measured oxygen fugacities of martian meteorites, which show evidence for progressive mantle oxidation over time.
Hydrothermal synthesis of 1D TiO2 nanostructures for dye sensitized solar cells
International Nuclear Information System (INIS)
Tacchini, I.; Ansón-Casaos, A.; Yu, Youhai; Martínez, M.T.; Lira-Cantu, M.
2012-01-01
Highlights: ► Hydrothermal synthesis allows the preparation of different 1D TiO 2 nanostructures easily. ► Nanotubular morphology demonstrates the highest photovoltaic efficiencies in dye sensitized cells (DSCs). ► Morphology at the nanoscale level is as decisive for DSC efficiency as it is TiO 2 crystal structure and surface area. - Abstract: Mono-dimensional titanium oxide nanostructures (multi-walled nanotubes and nanorods) were synthesized by the hydrothermal method and applied to the construction of dye sensitized solar cells (DSCs). First, nanotubes (TiNTs) and nanotubes loaded with titanium oxide nanoparticles (TiNT/NPs) were synthesized with specific surface areas of 253 m 2 /g and 304 m 2 /g, respectively. After that, thermal treatment of the nanotubes at 500 °C resulted in their transformation into the corresponding anatase nanorods (TiNT-Δ and TiNT/NPs-Δ samples). X-ray diffraction and Raman spectroscopy data indicated that titanium oxide in the pristine TiNT and TiNT/NP samples was converted into anatase phase TiO 2 during the heating. Additionally, specific surface areas and water adsorption capacities decreased after the heat treatment due to the sample agglomeration and the collapse of the inner nanotube channels. DSCs were fabricated with the nanotube TiNT and TiNT/NP samples and with the anatase nanorod TiNT-Δ and TiNT/NPs-Δ samples as well. The highest power conversion efficiency of η = 3.12% was obtained for the TiNT sample, despite its lower specific surface compared with the corresponding nanoparticle-loaded sample (TiNT/NP).
Influence of 3D effects on 1D aerosol retrievals in synthetic, partially clouded scenes
International Nuclear Information System (INIS)
Stap, F.A.; Hasekamp, O.P.; Emde, C.; Röckmann, T.
2016-01-01
An important challenge in aerosol remote sensing is to retrieve aerosol properties in the vicinity of clouds and in cloud contaminated scenes. Satellite based multi-wavelength, multi-angular, photo-polarimetric instruments are particularly suited for this task as they have the ability to separate scattering by aerosol and cloud particles. Simultaneous aerosol/cloud retrievals using 1D radiative transfer codes cannot account for 3D effects such as shadows, cloud induced enhancements and darkening of cloud edges. In this study we investigate what errors are introduced on the retrieved optical and micro-physical aerosol properties, when these 3D effects are neglected in retrievals where the partial cloud cover is modeled using the Independent Pixel Approximation. To this end a generic, synthetic data set of PARASOL like observations for 3D scenes with partial, liquid water cloud cover is created. It is found that in scenes with random cloud distributions (i.e. broken cloud fields) and either low cloud optical thickness or low cloud fraction, the inversion algorithm can fit the observations and retrieve optical and micro-physical aerosol properties with sufficient accuracy. In scenes with non-random cloud distributions (e.g. at the edge of a cloud field) the inversion algorithm can fit the observations, however, here the retrieved real part of the refractive indices of both modes is biased. - Highlights: • An algorithm for retrieval of both aerosol and cloud properties is presented. • Radiative transfer models of 3D, partially clouded scenes are simulated. • Errors introduced in the retrieved aerosol properties are discussed.
Reassessment of the Goiânia radioactive waste repository in Brazil using HYDRUS-1D
Directory of Open Access Journals (Sweden)
Pontedeiro Elizabeth M.
2018-06-01
Full Text Available In September 1987 an accident occurred with a cesium chloride (CsCl teletherapy source taken from a cancer therapy institute in Goiânia, Brazil. Misuse of the abandoned source caused widespread contamination of radioactive material (about 50 TBq of 137Cs in the town of Goiânia. Decontamination of affected areas did lead to about 3,500 m3 of solid radioactive wastes, which were disposed in two near-surface repositories built in concrete in 1995. This paper documents a safety assessment of one of the low-level radioactive waste deposits containing 137Cs over a time period of 600 years. Using HYDRUS-1D, we first obtained estimates of water infiltrating through the soil cover on top of the repository into and through the waste and its concrete liners and the underlying vadose zone towards groundwater. Calculations accounted for local precipitation and evapotranspiration rates, including root water uptake by the grass cover, as well as for the effects of concrete degradation on the hydraulic properties of the concrete liners. We next simulated long-term water fluxes and 137Cs transport from the repository towards groundwater. Simulations accounted for the effects of 137Cs sorption and radioactive decay on radionuclide transport from the waste to groundwater, thus permitting an evaluation of potential consequences to the environment and long-term exposure to the public. Consistent with previous assessments, our calculations indicate that very little if any radioactive material will reach the water table during the lifespan of the repository, also when accounting for preferential flow through the waste.
Linking 1D coastal ocean modelling to environmental management: an ensemble approach
Mussap, Giulia; Zavatarelli, Marco; Pinardi, Nadia
2017-12-01
The use of a one-dimensional interdisciplinary numerical model of the coastal ocean as a tool contributing to the formulation of ecosystem-based management (EBM) is explored. The focus is on the definition of an experimental design based on ensemble simulations, integrating variability linked to scenarios (characterised by changes in the system forcing) and to the concurrent variation of selected, and poorly constrained, model parameters. The modelling system used was previously specifically designed for the use in "data-rich" areas, so that horizontal dynamics can be resolved by a diagnostic approach and external inputs can be parameterised by nudging schemes properly calibrated. Ensembles determined by changes in the simulated environmental (physical and biogeochemical) dynamics, under joint forcing and parameterisation variations, highlight the uncertainties associated to the application of specific scenarios that are relevant to EBM, providing an assessment of the reliability of the predicted changes. The work has been carried out by implementing the coupled modelling system BFM-POM1D in an area of Gulf of Trieste (northern Adriatic Sea), considered homogeneous from the point of view of hydrological properties, and forcing it by changing climatic (warming) and anthropogenic (reduction of the land-based nutrient input) pressure. Model parameters affected by considerable uncertainties (due to the lack of relevant observations) were varied jointly with the scenarios of change. The resulting large set of ensemble simulations provided a general estimation of the model uncertainties related to the joint variation of pressures and model parameters. The information of the model result variability aimed at conveying efficiently and comprehensibly the information on the uncertainties/reliability of the model results to non-technical EBM planners and stakeholders, in order to have the model-based information effectively contributing to EBM.
Evaluation of the entropy consistent euler flux on 1D and 2D test problems
Roslan, Nur Khairunnisa Hanisah; Ismail, Farzad
2012-06-01
Perhaps most CFD simulations may yield good predictions of pressure and velocity when compared to experimental data. Unfortunately, these results will most likely not adhere to the second law of thermodynamics hence comprising the authenticity of predicted data. Currently, the test of a good CFD code is to check how much entropy is generated in a smooth flow and hope that the numerical entropy produced is of the correct sign when a shock is encountered. Herein, a shock capturing code written in C++ based on a recent entropy consistent Euler flux is developed to simulate 1D and 2D flows. Unlike other finite volume schemes in commercial CFD code, this entropy consistent flux (EC) function precisely satisfies the discrete second law of thermodynamics. This EC flux has an entropy-conserved part, preserving entropy for smooth flows and a numerical diffusion part that will accurately produce the proper amount of entropy, consistent with the second law. Several numerical simulations of the entropy consistent flux have been tested on two dimensional test cases. The first case is a Mach 3 flow over a forward facing step. The second case is a flow over a NACA 0012 airfoil while the third case is a hypersonic flow passing over a 2D cylinder. Local flow quantities such as velocity and pressure are analyzed and then compared with mainly the Roe flux. The results herein show that the EC flux does not capture the unphysical rarefaction shock unlike the Roe-flux and does not easily succumb to the carbuncle phenomenon. In addition, the EC flux maintains good performance in cases where the Roe flux is known to be superior.
Application of the CCD Fabry-Perot Annular Summing Technique to Thermospheric O(1)D.
Coakley, Monica Marie
1995-01-01
This work will detail the verification of the advantages of the Fabry-Perot charge coupled device (CCD) annular summing technique, the development of the technique for analysis of daysky spectra, and the implications of the resulting spectra for neutral temperature and wind measurements in the daysky thermosphere. The daysky spectral feature of interest is the bright (1 kilo-Rayleigh) thermospheric (OI) emission at 6300 A which had been observed in the nightsky in order to determine winds and temperatures in the vicinity of the altitude of 250 km. In the daysky, the emission line sits on top of a bright Rayleigh scattered continuum background which significantly complicates the observation. With a triple etalon Fabry-Perot spectrometer, the continuum background can be reduced while maintaining high throughput and high resolution. The inclusion of a CCD camera results in significant savings in integration time over the two more standard scanning photomultiplier systems that have made the same wind and temperature measurements in the past. A comparable CCD system can experience an order of magnitude savings in integration time over a PMT system. Laboratory and field tests which address the advantages and limitations of both the Fabry-Perot CCD annular summing technique and the daysky CCD imaging are included in Chap. 2 and Chap. 3. With a sufficiently large throughput associated with the spectrometer and a CCD detector, rapid observations (~4 minute integrations) can be made. Extraction of the line width and line center from the daysky near-continuum background is complicated compared to the nightsky case, but possible. Methods of fitting the line are included in Chap. 4. The daysky O ^1D temperatures are consistent with a lower average emission height than predicted by models. The data and models are discussed in Chap. 5. Although some discrepancies exist between resulting temperatures and models, the observations indicate the potential for other direct measurements
Patil, Jyoti V.; Mali, Sawanta S.; Kamble, Archana S.; Hong, Chang K.; Kim, Jin H.; Patil, Pramod S.
2017-11-01
One dimensional (1D) metal oxide nanostructures (1D-MONS) play a key role in the development of functional devices including energy conversion, energy storage and environmental devices. They are also used for some important biomedical products like wound dressings, filter media, drug delivery and tissue engineering. The electrospinning (ES) is the versatile technique for making of 1D growth of nanostructured nanofibers, an experimental approach and its applications. The present review is focused on the 1D growth of nanostructured nanofibers in different applications like dye sensitized solar cells, perovskite solar cells, fuel cells, lithium ion batteries, redox flow batteries, supercapacitor, photocatalytic, and gas sensors based on ZnO, TiO2, MnO2, WO3, V2O5, NiO, SnO2, Fe2O3 etc. metal oxides, their composites and carbon. This review article presents an introduction to various types of ES techniques and their technical details. Also, the advantages and disadvantages of each ES technique are summarized. The various technical details such as preparative parameters, post-deposition methods, applied electric field, solution feed rate and a distance between a tip to the collector are the key factors in order to obtain exotic 1D nanostructured materials. Also, the lucid literature survey on the growth of nanostructures of various metal oxides and application in different fields are covered in this review. Further, the future perspectives has also been discussed.
Sáinz, Neira; Rodríguez, Amaia; Catalán, Victoria; Becerril, Sara; Ramírez, Beatriz; Lancha, Andoni; Burgos-Ramos, Emma; Gómez-Ambrosi, Javier; Frühbeck, Gema
2012-01-01
Leptin improves insulin sensitivity in skeletal muscle. Our goal was to determine whether proteins controlling GLUT4 traffic are altered by leptin deficiency and in vivo leptin administration in skeletal muscle of wild type and ob/ob mice. Leptin-deficient ob/ob mice were divided in three groups: control, leptin-treated (1 mg/kg/d) and leptin pair-fed ob/ob mice. Microarray analysis revealed that 1,546 and 1,127 genes were regulated by leptin deficiency and leptin treatment, respectively. Among these, we identified 24 genes involved in intracellular vesicle-mediated transport in ob/ob mice. TBC1 domain family, member 1 (Tbc1d1), a negative regulator of GLUT4 translocation, was up-regulated (P = 0.001) in ob/ob mice as compared to wild types. Importantly, leptin treatment reduced the transcript levels of Tbc1d1 (P<0.001) and Tbc1d4 (P = 0.004) in the leptin-treated ob/ob as compared to pair-fed ob/ob animals. In addition, phosphorylation levels of TBC1D1 and TBC1D4 were enhanced in leptin-treated ob/ob as compared to control ob/ob (P = 0.015 and P = 0.023, respectively) and pair-fed ob/ob (P = 0.036 and P = 0.034, respectively) mice. Despite similar GLUT4 protein expression in wild type and ob/ob groups a different immunolocalization of this protein was evidenced in muscle sections. Leptin treatment increased GLUT4 immunoreactivity in gastrocnemius and extensor digitorum longus sections of leptin-treated ob/ob mice. Moreover, GLUT4 protein detected in immunoprecipitates from TBC1D4 was reduced by leptin replacement compared to control ob/ob (P = 0.013) and pair-fed ob/ob (P = 0.037) mice. Our findings suggest that leptin enhances the intracellular GLUT4 transport in skeletal muscle of ob/ob animals by reducing the expression and activity of the negative regulators of GLUT4 traffic TBC1D1 and TBC1D4. PMID:22253718
Study of the band-gap structure of a 1D-photonic crystal by using different numerical approaches
International Nuclear Information System (INIS)
Chen, Jian-Bo; Chen, Yue-Rui; Shen, Yan; Zhou, Wei-Xi; Ren, Jiu-Chun; Zheng, Yu-Xiang; Chen, Liang-Yao
2010-01-01
Comparative studies between the transfer matrices method (TMM) and plane wave method (PWM) approaches have been performed on 1D photonics crystal under different conditions to show the differences between these two kinds of calculations. TMM is suitable for the design of 1D photonic crystal device with high precision and is in good agreement with experimental results, but is not suitable for the 2D and 3D photonic structures which are limited by the complicated boundary conditions at micro interfaces. The result based on the PWM approach to deal approximately with the photonic structure in approximation has not yet been strictly verified by experiment, not even for 1D photonic crystal structures. More efforts will be required to explore its validation under all physical conditions to enhance its application.
TCRα-TCRβ pairing controls recognition of CD1d and directs the development of adipose NKT cells.
Vieth, Joshua A; Das, Joy; Ranaivoson, Fanomezana M; Comoletti, Davide; Denzin, Lisa K; Sant'Angelo, Derek B
2017-01-01
The interaction between the T cell antigen receptor (TCR) expressed by natural killer T cells (NKT cells) and the antigen-presenting molecule CD1d is distinct from interactions between the TCR and major histocompatibility complex (MHC). Our molecular modeling suggested that a hydrophobic patch created after TCRα-TCRβ pairing has a role in maintaining the conformation of the NKT cell TCR. Disruption of this patch ablated recognition of CD1d by the NKT cell TCR but not interactions of the TCR with MHC. Partial disruption of the patch, while permissive to the recognition of CD1d, significantly altered NKT cell development, which resulted in the selective accumulation of adipose-tissue-resident NKT cells. These results indicate that a key component of the TCR is essential for the development of a distinct population of NKT cells.
Tbc1d1 mutation in lean mouse strain confers leanness and protects from diet-induced obesity
DEFF Research Database (Denmark)
Chadt, Alexandra; Leicht, Katja; Deshmukh, Atul
2008-01-01
We previously identified Nob1 as a quantitative trait locus for high-fat diet-induced obesity and diabetes in genome-wide scans of outcross populations of obese and lean mouse strains. Additional crossbreeding experiments indicated that Nob1 represents an obesity suppressor from the lean Swiss Jim...... Lambert (SJL) strain. Here we identify a SJL-specific mutation in the Tbc1d1 gene that results in a truncated protein lacking the TBC Rab-GTPase-activating protein domain. TBC1D1, which has been recently linked to human obesity, is related to the insulin signaling protein AS160 and is predominantly...... and reduced glucose uptake in isolated skeletal muscle. Our data strongly suggest that mutation of Tbc1d1 suppresses high-fat diet-induced obesity by increasing lipid use in skeletal muscle....
Effects of GWAS-associated genetic variants on lncRNAs within IBD and T1D candidate loci
DEFF Research Database (Denmark)
Mirza, Aashiq H; Kaur, Simranjeet; Brorsson, Caroline A
2014-01-01
-nucleotide polymorphisms (SNPs) identified by genome-wide association studies (GWAS) lie outside of the protein coding regions, and map to the non-coding intervals. However, the relationship between phenotype-associated loci and the non-coding regions including the long non-coding RNAs (lncRNAs) is poorly understood. Here......, we systemically identified all annotated IBD and T1D loci-associated lncRNAs, and mapped nominally significant GWAS/ImmunoChip SNPs for IBD and T1D within these lncRNAs. Additionally, we identified tissue-specific cis-eQTLs, and strong linkage disequilibrium (LD) signals associated with these SNPs...... within and in close proximity (+/-5 kb flanking regions) of IBD and T1D loci-associated candidate genes, suggesting that these RNA conformation-altering polymorphisms might be associated with diseased-phenotype. Disruption of lncRNA secondary structure due to presence of GWAS SNPs provides valuable...
Validation of a 3D/1D Simulation Tool for ICRF Antennas
International Nuclear Information System (INIS)
Maggiora, R.; Lancellotti, V.; Milanesio, D.; Vecchi, G.; Kyrytsya, V.; Parisot, A.; Wukitch, S. J.
2005-01-01
TOPICA is an innovative tool for the simulation of the Ion Cyclotron Radio Frequency (ICRF) antenna systems that incorporates commercial-grade graphic interfaces into a fully 3D self-consistent description of the antenna geometry and an accurate description of the plasma; it can be considered as a 'Virtual Prototyping Laboratory' to assist the detailed design phase of the antenna system. Recent theoretical and computational advances of the TOPICA code has allowed to incorporate a CAD drawing capability of the antenna geometry, with fully 3D geometrical modeling, and to combine it with a 1D accurate plasma description that takes into account density and temperature profiles, and FLR effects; the profiles are inserted directly from measured data (when available), or specified analytically by the user. The coaxial feeding line is modeled as such; computation and visualization of relevant parameters (input scattering parameters, current and field distributions, etc.) complete the suite. The approach to the problem is based on an integral-equation formulation for the self-consistent evaluation of the current distribution on the conductors. The environment has been subdivided in two coupled region: the plasma region and the vacuum region. The two problems are linked self-consistently by representing the field continuity in terms of equivalent (unknown) sources. In the vacuum region all the calculations are executed in the spatial (configuration) domain, and this allows triangular-facet description of the arbitrarily shaped conductors and associated currents; in the plasma region a spectral representation of the fields is used, which allows to enter the plasma effect via a surface impedance matrix; for this reason any plasma model can be used, and at present the FELICE code has been adopted; special techniques have been adopted to increase the numerical efficiency. The TOPICA suite has been previously tested against assessed codes and against measurements of mock-ups and
SILLi 1.0: a 1-D numerical tool quantifying the thermal effects of sill intrusions
Directory of Open Access Journals (Sweden)
K. Iyer
2018-01-01
Full Text Available Igneous intrusions in sedimentary basins may have a profound effect on the thermal structure and physical properties of the hosting sedimentary rocks. These include mechanical effects such as deformation and uplift of sedimentary layers, generation of overpressure, mineral reactions and porosity evolution, and fracturing and vent formation following devolatilization reactions and the generation of CO2 and CH4. The gas generation and subsequent migration and venting may have contributed to several of the past climatic changes such as the end-Permian event and the Paleocene–Eocene Thermal Maximum. Additionally, the generation and expulsion of hydrocarbons and cracking of pre-existing oil reservoirs around a hot magmatic intrusion are of significant interest to the energy industry. In this paper, we present a user-friendly 1-D finite element method (FEM-based tool, SILLi, which calculates the thermal effects of sill intrusions on the enclosing sedimentary stratigraphy. The model is accompanied by three case studies of sills emplaced in two different sedimentary basins, the Karoo Basin in South Africa and the Vøring Basin off the shore of Norway. An additional example includes emplacement of a dyke in a cooling pluton which forgoes sedimentation within a basin. Input data for the model are the present-day well log or sedimentary column with an Excel input file and include rock parameters such as thermal conductivity, total organic carbon (TOC content, porosity and latent heats. The model accounts for sedimentation and burial based on a rate calculated by the sedimentary layer thickness and age. Erosion of the sedimentary column is also included to account for realistic basin evolution. Multiple sills can be emplaced within the system with varying ages. The emplacement of a sill occurs instantaneously. The model can be applied to volcanic sedimentary basins occurring globally. The model output includes the thermal evolution of the sedimentary
SILLi 1.0: a 1-D numerical tool quantifying the thermal effects of sill intrusions
Iyer, Karthik; Svensen, Henrik; Schmid, Daniel W.
2018-01-01
Igneous intrusions in sedimentary basins may have a profound effect on the thermal structure and physical properties of the hosting sedimentary rocks. These include mechanical effects such as deformation and uplift of sedimentary layers, generation of overpressure, mineral reactions and porosity evolution, and fracturing and vent formation following devolatilization reactions and the generation of CO2 and CH4. The gas generation and subsequent migration and venting may have contributed to several of the past climatic changes such as the end-Permian event and the Paleocene-Eocene Thermal Maximum. Additionally, the generation and expulsion of hydrocarbons and cracking of pre-existing oil reservoirs around a hot magmatic intrusion are of significant interest to the energy industry. In this paper, we present a user-friendly 1-D finite element method (FEM)-based tool, SILLi, which calculates the thermal effects of sill intrusions on the enclosing sedimentary stratigraphy. The model is accompanied by three case studies of sills emplaced in two different sedimentary basins, the Karoo Basin in South Africa and the Vøring Basin off the shore of Norway. An additional example includes emplacement of a dyke in a cooling pluton which forgoes sedimentation within a basin. Input data for the model are the present-day well log or sedimentary column with an Excel input file and include rock parameters such as thermal conductivity, total organic carbon (TOC) content, porosity and latent heats. The model accounts for sedimentation and burial based on a rate calculated by the sedimentary layer thickness and age. Erosion of the sedimentary column is also included to account for realistic basin evolution. Multiple sills can be emplaced within the system with varying ages. The emplacement of a sill occurs instantaneously. The model can be applied to volcanic sedimentary basins occurring globally. The model output includes the thermal evolution of the sedimentary column through time and
1-D Two-phase Flow Investigation for External Reactor Vessel Cooling
International Nuclear Information System (INIS)
Kim, Jae Cheol
2007-02-01
During a severe accident, when a molten corium is relocated in a reactor vessel lower head, the RCF(Reactor Cavity Flooding) system for ERVC (External Reactor Vessel Cooling) is actuated and coolants are supplied into a reactor cavity to remove a decay heat from the molten corium. This severe accident mitigation strategy for maintaining a integrity of reactor vessel was adopted in the nuclear power plants of APR1400, AP600, and AP1000. Under the ERVC condition, the upward two-phase flow is driven by the amount of the decay heat from the molten corium. To achieve the ERVC strategy, the two-phase natural circulation in the annular gap between the external reactor vessel and the insulation should be formed sufficiently by designing the coolant inlet/outlet area and gap size adequately on the insulation device. Also the natural circulation flow restriction has to be minimized. In this reason, it is needed to review the fundamental structure of insulation. In the existing power plants, the insulation design is aimed at minimizing heat losses under a normal operation. Under the ERVC condition, however, the ability to form the two-phase natural circulation is uncertain. Namely, some important factors, such as the coolant inlet/outlet areas, flow restriction, and steam vent etc. in the flow channel, should be considered for ERVC design. T-HEMES 1D study is launched to estimate the natural circulation flow under the ERVC condition of APR1400. The experimental facility is one-dimensional and scaled down as the half height and 1/238 channel area of the APR1400 reactor vessel. The air injection method was used to simulate the boiling at the external reactor vessel and generate the natural circulation two-phase flow. From the experimental results, the natural circulation flow rate highly depended on inlet/outlet areas and the circulation flow rate increased as the outlet height as well as the supplied water head increased. On the other hand, the simple analysis using the drift
Comparison of the 1D flux theory with a 2D hydrodynamic secondary settling tank model.
Ekama, G A; Marais, P
2004-01-01
The applicability of the 1D idealized flux theory (1DFT) for design of secondary settling tanks (SSTs) is evaluated by comparing its predicted maximum surface overflow (SOR) and solids loading (SLR) rates with that calculated from the 2D hydrodynamic model SettlerCAD using as a basis 35 full scale SST stress tests conducted on different SSTs with diameters from 30 to 45m and 2.25 to 4.1 m side water depth, with and without Stamford baffles. From the simulations, a relatively consistent pattern appeared, i.e. that the 1DFT can be used for design but its predicted maximum SLR needs to be reduced by an appropriate flux rating, the magnitude of which depends mainly on SST depth and hydraulic loading rate (HLR). Simulations of the sloping bottom shallow (1.5-2.5 m SWD) Dutch SSTs tested by STOWa and the Watts et al. SST, all with doubled SWDs, and the Darvill new (4.1 m) and old (2.5 m) SSTs with interchanged depths, were run to confirm the sensitivity of the flux rating to depth and HLR. Simulations with and without a Stamford baffle were also done. While the design of the internal features of the SST, such as baffling, have a marked influence on the effluent SS concentration for underloaded SSTs, these features appeared to have only a small influence on the flux rating, i.e. capacity, of the SST, In the meantime until more information is obtained, it would appear that from the simulations so far that the flux rating of 0.80 of the 1DFT maximum SLR recommended by Ekama and Marais remains a reasonable value to apply in the design of full scale SSTs--for deep SSTs (4 m SWD) the flux rating could be increased to 0.85 and for shallow SSTs (2.5 m SWD) decreased to 0.75. It is recommended that (i) while the apparent interrelationship between SST flux rating and depth suggests some optimization of the volume of the SST, that this be avoided and that (ii) the depth of the SST be designed independently of the surface area as is usually the practice and once selected, the
Directory of Open Access Journals (Sweden)
Todd C. Pataky
2017-07-01
Full Text Available The unit of experimental measurement in a variety of scientific applications is the one-dimensional (1D continuum: a dependent variable whose value is measured repeatedly, often at regular intervals, in time or space. A variety of software packages exist for computing continuum-level descriptive statistics and also for conducting continuum-level hypothesis testing, but very few offer power computing capabilities, where ‘power’ is the probability that an experiment will detect a true continuum signal given experimental noise. Moreover, no software package yet exists for arbitrary continuum-level signal/noise modeling. This paper describes a package called power1d which implements (a two analytical 1D power solutions based on random field theory (RFT and (b a high-level framework for computational power analysis using arbitrary continuum-level signal/noise modeling. First power1d’s two RFT-based analytical solutions are numerically validated using its random continuum generators. Second arbitrary signal/noise modeling is demonstrated to show how power1d can be used for flexible modeling well beyond the assumptions of RFT-based analytical solutions. Its computational demands are non-excessive, requiring on the order of only 30 s to execute on standard desktop computers, but with approximate solutions available much more rapidly. Its broad signal/noise modeling capabilities along with relatively rapid computations imply that power1d may be a useful tool for guiding experimentation involving multiple measurements of similar 1D continua, and in particular to ensure that an adequate number of measurements is made to detect assumed continuum signals.
Sillé, Fenna C M; Martin, Constance; Jayaraman, Pushpa; Rothchild, Alissa; Besra, Gurdyal S; Behar, Samuel M; Boes, Marianne
2011-09-30
The development and maturation of Vα14 invariant (i)NKT cells in mice requires CD1d-mediated lipid antigen presentation in the thymus and the periphery. Cortical thymocytes mediate positive selection, while professional APCs are involved in thymic negative selection and in terminal maturation of iNKT cells in the periphery. CD1d requires entry in the endosomal pathway to allow antigen acquisition for assembly as lipid/CD1d complexes for display to iNKT cells. This process involves tyrosine-based sorting motifs in the CD1d cytoplasmic tail and invariant chain (Ii) that CD1d associates with in the endoplasmic reticulum. The function of Ii in iNKT cell thymic development and peripheral maturation had not been fully understood. Using mice deficient in Ii and the Ii-processing enzyme cathepsin S (catS), we addressed this question. Ii(-/-) mice but not catS(-/-) mice developed significantly fewer iNKT cells in thymus, that were less mature as measured by CD44 and NK1.1 expression. Ii(-/-) mice but not catS(-/-) mice developed fewer Vβ7(+) cells in their iNKT TCR repertoire than WT counterparts, indicative of a change in endogenous glycolipid antigen/CD1d-mediated iNKT cell selection. Finally, using a Mycobacterium tuberculosis infection model in macrophages, we show that iNKT developed in Ii(-/-) but not catS(-/-) mice have defective effector function. Our data support a role for professional APCs expressing Ii, but no role for catS in the thymic development and peripheral terminal maturation of iNKT cells. Copyright © 2011 Elsevier B.V. All rights reserved.
Angular distributions of autoionization electrons from Ne(2p43s2) 1D in Li+-Ne collisions
International Nuclear Information System (INIS)
Oud, M.; Pas, S.F. te; Westerveld, W.B.; Niehaus, A.
1993-01-01
Angular distributions of autoionization electrons from Ne(2p 4 3s 2 ) 1 D due to Li + -Ne collisions measured in coincidence with the scattered projectile ions are presented. The measurements are performed at four different collision energies between 1.0 keV and 3.0 keV, and the complex population amplitudes for the excited 1 D state are determined. A nearly pure M = O sublevel population is found with respect to an axis coinciding with the direction of the angular distribution. The direction of the angular distribution is found to deviate from the final direction of the asymptotic internuclear axis. (author)
The yields of 1P and 1D resonances in the He(e,2e)He+ reaction
International Nuclear Information System (INIS)
Lhagva, O.; Badamdamdin, R.; Strakhova, S.I.; Hehnmedeh, L.
1991-01-01
In the first Born approximation the dependence of the yields of the 1 P and 1 D resonances in the He(e,2e)He + reaction on the momentum transfer in the recoil peak region at incident energies E 0 =1000 eV is studied. It is shown that in a certain range of the ejection angle and for the large momentum transfer the yield of the 1 D resonance dominates over the 1 P resonance one. 12 refs.; 4 figs
Comparison of 1D and 2D CSR Models with Application to the FERMI(at)ELETTRA Bunch Compressors
International Nuclear Information System (INIS)
Bassi, G.; Ellison, J.A.; Heinemann, K.
2011-01-01
We compare our 2D mean field (Vlasov-Maxwell) treatment of coherent synchrotron radiation (CSR) effects with 1D approximations of the CSR force which are commonly implemented in CSR codes. In our model we track particles in 4D phase space and calculate 2D forces (1). The major cost in our calculation is the computation of the 2D force. To speed up the computation and improve 1D models we also investigate approximations to our exact 2D force. As an application, we present numerical results for the Fermi(at)Elettra first bunch compressor with the configuration described in (1).
Energy Technology Data Exchange (ETDEWEB)
Hansen, G E [Los Alamos Scientific Laboratory, University of California, Los Alamos, NM (United States)
1962-03-15
conjuntos de {sup 233}U en geometria esferica sin reflector o con un reflector constituido por una espesa capa de uranio. El autor expondra correlaciones directas entre los datos experimentales, para indicar que existe a priori la posibilidad de alcanzar correlaciones satisfactorias con los datos calculados. Tambien presentara, para diversos conjuntos tipicos y a fin de establecer los detalles de calculo necesarios la sensitividad de los espestros calculados y de los tamanos criticos a los modelos de transporte nsutronico (aproximaciones de transporte e hipotesis de proporcionalidad) y a las aproximacione s aritmeticas (hipotesis de la segmentacion angular finita y representacione s de grupos multiples). Las comparaciones entre los resultados experimentales y las evaluasiones se refieren a los indices espectrales y a los tamanos criticos, asi como a los periodos de semidesintegracion y a las razones correspondientes a los neutrones retardados. (author) [Russian] Novye sistemy i uluchshennaya izmeritel'naya tekhnika predusmatrivayu t periodicheskij peresmotr sostoyaniya vychislenij v zavisimosti ot ehksperimenta. Sleduet podcherknut' vazhnost' nejtronno-spektral'nykh kharakteristik iz-za osobenno trudnorazreshimykh problem, svyazannykhs absolyutnym izmereniem spektral'nykh indeksov i neobkhodimost'yu proverok vychislenij sverkh prostogo kriticheskogo razmera. Postoyannoe uluchshenie izmereniya spektral'nykh indeksov vmeste s uvelicheniem tochnosti kak mikroskopicheskikh dannykh dlya detektora i materialov sborok, tak i vychislitel'noj tekhniki, privodit k postepennomu proyasneniyu kharakteristik gruppy kriticheskikh sistem na bystrykh nejtronakh. Ehta gruppa sejchas vklyuchaet aktivnye zony s U{sup 233} bez otrazhatelya i s tolstym uranovym otrazhatelem. Pryamaya korrelyatsiya sredi ehksperimental'ny kh dannykh budet predstavlena s tsel'yu ukazat' predshestvuyushchi e vozmozhnosti dlya uspeshnykh korrelyatsij s vychisleniem. Budet predstavlena chuvstvitel
Energy Technology Data Exchange (ETDEWEB)
Courtois, G [Centre d' Etudes Nucleaires de Saclay (France); Jaeery, P; Heuzel, M [Laboratoire National d' Hydraulique de Chatou (France)
1962-01-15
aplicacion de los indicadores radiactivos a los estudios sobre modelos a escala reducida con el doble proposito de: a) disponer de un procedimiento de investigacion comun para los estudios efectuados sobre el terreno y en los modelos a escala reducida, con el objeto de poder controlar la fidelidad del modelo durante los ensayos de calibracion; b) aprovechar las ventajas que ofrecen los modelos a escala reducida en cuanto a facilidad de observacion y mediciones directas, para estudiar las posibilidades de mejorar el metodo de los indicadores, especialmente en lo que se refiere a la obtencion de datos cuantitativos. (author) [Russian] Natsional'naya gidravlicheskaya laboratoriya, vyrabotavshaya v sotrudnichestve s TSentrom yadernykh issledovanij v Sakle pribory i metody izucheniya dvizheniya donnykh otlozhenij pri pomoshchi metoda radioaktivnykh indikatorov, prilagaet v nastoyashchee vremya usiliya k tomu, chtoby osushchestvit' dejstvitel'no kolichestvennyj sposob issledovanij. Za poslednee vremya bylo provedeno dva opyta v prirodnykh usloviyakh v rekakh; pervyj iz nikh byl posvyashchen izucheniyu uvlecheniya gal'ki vodami Rony, a drugoj - izucheniyu peremeshcheniya peska v reke Niger. Parallel'no s poslednim opytom byli provedeny identichnye ispytaniya na makete reki Niger, sozdannom v laboratorii v SHatu. V ehtikh opytakh bylo ispol'zovano izluchenie margantsa-56 i natriya-24, vyzvannoe neposredstvennoj aktivatsiej tolchenoj kostochki abrikosa, izobrazhavshej v ispytaniyakh na makete prirodnye donnye otlozheniya Nigera. Sovmestnye usiliya laboratorii v SHatu i TSentra yadernykh issledovanij v Sakle napravleny v nastoyashchee vremya na primenenie metoda radioaktivnykh indikatorov k opytam na maketakh s dvojnoj tsel'yu: a) Vyrabotat' odinakovye metody issledovaniya v prirodnykh usloviyakh i na makete dlya proverki tochnosti maketa v stadii opytov po ehtalonirovaniyu; b) Ispol'zovat' legkost' vedeniya nablyudenij i proizvodstva neposredstvennykh izmerenij na maketakh dlya
DEFF Research Database (Denmark)
Goldstone, J.V.; Jönsson, M.E.; Behrendt, Lars
2009-01-01
Enzymes in the cytochrome P450 1 family oxidize many common environmental toxicants. We identified a new CYP1, termed CYP1D1, in zebrafish. Phylogenetically, CYP1D1 is paralogous to CYP1A and the two share 45% amino acid identity and similar gene structure. In adult zebrafish, CYP1D1 is most high...
This technical report describes the new one-dimensional (1D) hydrodynamic and sediment transport model EFDC1D. This model that can be applied to stream networks. The model code and two sample data sets are included on the distribution CD. EFDC1D can simulate bi-directional unstea...
Super-ionic conductivity in (1D) nanofibrous TlGaTe2
International Nuclear Information System (INIS)
Sardarly, R.M.; Samedov, O.A.; Abdullaev, A.P.; Salmanov, F.T.; Urbanovic, A.; Garet, F.; Coutaz, J.-L.
2010-01-01
Full text : Nanodimension topologic-disorder materials constitute an important feature in the development of modern electronics. Among such materials, TlGaTe 2 is a p-type semiconductor with a nanofibrous structure Ga 3 +Te 2 - 2 groups form chains extending along the c-axis of the material. These negatively charged chains are bonded together by Tl+ ions. The resulting tetragonal lattice is characterized by a 18 D4h group symmetry. Recently, much attention has been paid to systems that behave as if they had less than 3 spatial dimensions. Such materials are often called quasi-one-dimensional (1D) nanorods, nanofibrous or nanochains. It was already studied the temperature dependence of conductivity σ (T) and current-voltage (I-V) characteristics of TlGaTe 2 . In the ohmic region of the I -V curve, σ (T) exhibits a behavior typical of hopping conductivity, which can be modeled in the framework of the Mott approximation. Moreover, it was determined the values of the density of localized states, the activation energy, the hop lengths, and the difference between the energies of states and the concentration of deep traps. The abrupt variation of the I-V curve is ascribed to the Pool-Frenkel thermal-field effect, which allows to obtain the concentration of ionized centers, the free-path lengths, the Frenkel coefficients and the shape of the potential well of TlGaTe 2 . For T>300 K, TlGaTe 2 crystals present interesting nonlinear electrical behaviors, such as switching effects and a negative-differential-resistance (NDR) region in their S-type I-V characteristics. In the NDR region, self-excited oscillations of the voltage were also observed. Here, it was investigated the temperature dependence of TlGaTe 2 crystals conductivity σ (T) in two experimental geometries, i.e. parallel and perpendicularly to the tetragonal c-axis of the crystal. The observed sharp increase of TlGaTe 2 conductivity results from a strong change of the number of the high-mobility ions. The
1D and 2D urban dam-break flood modelling in Istanbul, Turkey
Ozdemir, Hasan; Neal, Jeffrey; Bates, Paul; Döker, Fatih
2014-05-01
Urban flood events are increasing in frequency and severity as a consequence of several factors such as reduced infiltration capacities due to continued watershed development, increased construction in flood prone areas due to population growth, the possible amplification of rainfall intensity due to climate change, sea level rise which threatens coastal development, and poorly engineered flood control infrastructure (Gallegos et al., 2009). These factors will contribute to increased urban flood risk in the future, and as a result improved modelling of urban flooding according to different causative factor has been identified as a research priority (Gallegos et al., 2009; Ozdemir et al. 2013). The flooding disaster caused by dam failures is always a threat against lives and properties especially in urban environments. Therefore, the prediction of dynamics of dam-break flows plays a vital role in the forecast and evaluation of flooding disasters, and is of long-standing interest for researchers. Flooding occurred on the Ayamama River (Istanbul-Turkey) due to high intensity rainfall and dam-breaching of Ata Pond in 9th September 2009. The settlements, industrial areas and transportation system on the floodplain of the Ayamama River were inundated. Therefore, 32 people were dead and millions of Euros economic loses were occurred. The aim of this study is 1 and 2-Dimensional flood modelling of the Ata Pond breaching using HEC-RAS and LISFLOOD-Roe models and comparison of the model results using the real flood extent. The HEC-RAS model solves the full 1-D Saint Venant equations for unsteady open channel flow whereas LISFLOOD-Roe is the 2-D shallow water model which calculates the flow according to the complete Saint Venant formulation (Villanueva and Wright, 2006; Neal et al., 2011). The model consists a shock capturing Godunov-type scheme based on the Roe Riemann solver (Roe, 1981). 3 m high resolution Digital Surface Model (DSM), natural characteristics of the pond
DEFF Research Database (Denmark)
Liu, Yawei; Teige, Anna; Mondoc, Emma
2011-01-01
NKT cells in the mouse recognize antigen in the context of the MHC class I-like molecule CD1d and play an important role in peripheral tolerance and protection against autoimmune and other diseases. NKT cells are usually activated by CD1d-presented lipid antigens. However, peptide recognition...... in the context of CD1 has also been documented, although no self-peptide ligands have been reported to date. Here, we have identified an endogenous peptide that is presented by CD1d to activate mouse NKT cells. This peptide, the immunodominant epitope from mouse collagen type II (mCII707-721), was not associated...... with either MHC class I or II. Activation of CD1d-restricted mCII707-721-specific NKT cells was induced via TCR signaling and classical costimulation. In addition, mCII707-721-specific NKT cells induced T cell death through Fas/FasL, in an IL-17A-independent fashion. Moreover, mCII707-721-specific NKT cells...
Yuan, H S; Stevens, R C; Bau, R; Mosher, H S; Koetzle, T F
1994-12-20
The absolute configuration of (+)-neopentyl-1-d alcohol, prepared by the reduction of 2,2-dimethylpropanal-1-d by actively fermenting yeast, has been determined to be S by neutron diffraction. The neutron study was carried out on the phthalate half ester of neopentyl-1-d alcohol, crystallized as its strychnine salt. The absolute configuration of the (-)-strychninium cation was first determined by an x-ray anomalous dispersion study of its iodide salt. The chiral skeleton of strychnine then served as a reference from which the absolute configuration of the -O-CHD-C(CH3)3 group of neopentyl phthalate was determined. Difference Fourier maps calculated from the neutron data showed unambiguously that the -O-CHD-C(CH3)3 groups of both independent molecules in the unit cell had the S configuration. This work proves conclusively that the yeast system reduces aldehydes by delivering hydrogen to the re face of the carbonyl group. Crystallographic details: (-)-strychninium (+)-neopentyl-1-d phthalate, space group P2(1) (monoclinic), a = 18.564(6) A, b = 7.713(2) A, c = 23.361(8) A, beta = 94.18(4) degrees, V = 3336.0(5) A3, Z = 2 (T = 100 K). Final agreement factors are R(F) = 0.073 for 2768 reflections collected at room temperature (x-ray analysis) and R(F) = 0.144 for 960 reflections collected at 100 K (neutron analysis).
Effects of 6q bags in the 1D2 pp scattering amplitude and the problem of dibaryon resonances
International Nuclear Information System (INIS)
Grach, I.L.; Kalashnikova, Yu.S.; Narodetskij, I.M.
1987-01-01
It is shown that the short-range NN forces in the quark compound bag method reproduce the energy dependence of the 1 D 2 pp-scattering amplitude predicted by existing phaseshift analyses. The parameters of the six-quark bag wave function obtained by description of the experimental data are in agreement with the theoretical predictions of the MIT bag model
Raick, C.; Delhez, E.J.M.; Soetaert, K.E.R.; Grégoire, M.
2005-01-01
A one-dimensional coupled physical–biogeochemical model has been built to study the pelagic food web of the Ligurian Sea (NW Mediterranean Sea). The physical model is the turbulent closure model (version 1D) developed at the GeoHydrodynamics and Environmental Laboratory (GHER) of the University of
Multiple tissue-specific isoforms of sulfatide activate CD1d-restricted type II NKT cells
DEFF Research Database (Denmark)
Blomqvist, Maria; Rhost, Sara; Teneberg, Susann
2009-01-01
The glycosphingolipid sulfatide (SO(3)-3Galbeta1Cer) is a demonstrated ligand for a subset of CD1d-restricted NKT cells, which could regulate experimental autoimmune encephalomyelitis, a murine model for multiple sclerosis, as well as tumor immunity and experimental hepatitis. Native sulfatide...
Magnetic ordering of quasi-1 D S=1/2 Heisenberg antiferromagnet Cu benzoate at sub-mK temperatures
International Nuclear Information System (INIS)
Karaki, Y.; Masutomi, R.; Kubota, M.; Ishimoto, H.; Asano, T.; Ajiro, Y.
2003-01-01
We have measured the AC susceptibility of quasi-1D S=1/2 Heisenberg antiferromagnet Cu benzoate at temperatures down to 0.2 mK. A sharp susceptibility peak is observed at 0.8 mK under an earth field. This fact indicates a 3D ordering of linear chains coupled by a weak magnetic interaction between chains
Lenartz, F.; Raick, C.; Soetaert, K.E.R.; Grégoire, M.
2007-01-01
The Ensemble Kalman filter (EnKF) has been applied to a 1-D complex ecosystem model coupled with a hydrodynamic model of the Ligurian Sea. In order to improve the performance of the EnKF, an ensemble subsampling strategy has been used to better represent the covariance matrices and a pre-analysis
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard
2010-01-01
Results are presented for optimal layout of materials in the spatial and temporal domains for a 1D structure subjected to transient wave propagation. A general optimization procedure is outlined including derivation of design sensitivities for the case when the mass density and stiffness vary...
Directory of Open Access Journals (Sweden)
Juventino López-Barroso
2018-03-01
Full Text Available A hybrid nanocomposites based on epoxy reinforced with a combination of 1D and 2D carbon nanomaterials for improving impact resistance are reported. Multi-walled carbon nanotubes and oxidized-multi-walled carbon nanotubes are used as 1D nanoreinforcements, and graphene derivative materials such as graphene oxide and reduced graphene oxide are utilized as 2D nanoreinforcements. In this research, the impact resistance of epoxy matrix reinforced with 1D or 2D and the mixture of both nanomaterials is studied. The research is focused on evaluation of the influence of adding different combinations of nanomaterials into epoxy resin and their Izod impact response. Moreover, fracture surface of nanocomposites is observed by scanning electron microscopy. Images show differences between the surfaces of brittle nature on thermoset epoxy polymer and tough nanocomposites. Synergy created with 1D and 2D nanomaterials produces stable dispersions in the processing, reflected in the interface. The interactions in nanocomposites are evidenced by infrared spectra, principally on the peaks related to oxygenated functional groups present in nanomaterials and absent in polymer matrix. Consequently, an increase of 138% in fracture strength of nanocomposites is exhibited, in comparison to the neat epoxy matrix. In addition, hybrid nanocomposites were synthesized in two different methods to evaluate the influence of manufacturing method on final properties of nanocomposites.
DEFF Research Database (Denmark)
Ingeman-Nielsen, Thomas; Baumgartner, François
2006-01-01
We have constructed a forward modelling code in Matlab, capable of handling several commonly used electrical and electromagnetic methods in a 1D environment. We review the implemented electromagnetic field equations for grounded wires, frequency and transient soundings and present new solutions...
Generalized model development for a cryo-adsorber and 1-D results for the isobaric refueling period
Energy Technology Data Exchange (ETDEWEB)
Kumar, V. Senthil [India Science Lab, General Motors Global R and D, Creator Building, International Technology Park, Bangalore 560066 (India); Kumar, Sudarshan [Chemical Sciences and Material Systems Lab, General Motors Global R and D, Warren Technical Center Campus, 30500 Mound Road, Warren, MI 48090 (United States)
2010-04-15
We have developed 3-D model equations for a cryo-adsorption hydrogen storage tank, where the energy balance accommodates the temperature and pressure variation of all the thermodynamic properties. We then reduce the 3-D model to the 1-D isobaric system and study the isobaric refueling period, for simplified geometry and charging conditions. The hydrogen capacity evolution predicted by the 1-D axial bed model is significantly different than that predicted by the lumped-parameter model because of the presence of sharp temperature gradients during refueling. The 1-D model predicts a higher hydrogen capacity than the lumped-parameter model. This observation can be rationalized by the fact that a bed with temperature gradients on equilibration should desorb gas, whenever the adsorbed phase entropy is lower than the gas phase entropy. The 1-D analysis of the isobaric refueling period does not show any significant difference in hydrogen capacity evolution among the axial, single and multicartridge annular bed designs. Hence, a multicartridge annular design, though giving a slightly lower pressure drop, does not offer any heat and mass transfer enhancement over the single cartridge design. And, the single cartridge annular design appears to be optimal. (author)
Wang, Zhanhua; Shen, Huaizhong; Wu, Yuxin; Fang, Liping; Ye, Shunsheng; Wang, Zhaoyi; Liu, Wendong; Cheng, Zhongkai; Zhang, Junhu; Yang, Bai
2015-01-01
A rapid and cost effective method has been developed to fabricate 3 dimensional (3D) ordered structures by photo-generating silver networks inside a 1D layered heterogeneous laminate composed of poly(vinyl alcohol) (PVA) and poly(methyl methacrylate) (PMMA). By designing the photo-mask meticulously,
DEFF Research Database (Denmark)
Breinbjerg, Olav; Yaghjian, Arthur D.
2014-01-01
-Bloch space harmonics. We discuss how space harmonic permittivity and permeability can be expressed in seemingly different though equivalent forms, and we investigate these parameters of the zeroeth order space harmonic for a particular 1D periodic structure that is based on a previously reported 3D periodic...
Ito, Y.; Honda, R.; Takesako, H.; Ozawa, K.; Kita, E.; Kanno, M.; Noborio, K.
2017-12-01
A fertile surface layer, contaminated with radiocesium resulting from the accident of the Fukushima Daiichi Nuclear Power Plant in 2011, was removed and replaced by non-fertile soil in Fukushima farmlands. In a greenhouse, we used a commercially-available cloud-based fertigation system (CBFS) for regulating an application rate of liquid fertilizer to bell pepper grown in the non-fertile soil. Although the CBFS regulates the application rate based on a weekly trend of volumetric water content (Θw) remotely measured at the soil surface using a soil moisture sensor if all applied water being consumed by plants in a greenhouse is not known. Evapotranspiration of green pepper grown with the CBFS was estimated by HYDRUS-1D. Experiments in a greenhouse were conducted in Fukushima, Japan, from September 1st to October 31st in 2016. Bell pepper plants were transplanted in the begging of June in 2016. The Penman-Monteith equation was used to estimate evapotranspiration, representing transpiration since the soil surface was covered with plastic mulch. Time domain reflectometry (TDR) probes were horizontally installed to monitor changes in Θw at 5, 10, 20, and 30 cm deep from the soil surface. The van Genuchten-Mualem hydraulic model for water and heat flow in soil was used for HYDRUS-1D. A precipitation rate for the upper boundary condition was given as an irrigation rate. We assumed wind speed was always 0.6 m s-1 for the Penman-Monteith equation. The amount of evapotranspiration estimated with the Penman-Monteith equation agreed well with the amount of irrigated water measured. The evapotranspiration simulated with HYDRUS-1D agreed well with that estimated with the Penman-Monteith equation. However, Θw at all depth were underestimated with Hydrus-1D by approximately 0.05 m3 m-3 and differences of Θw between measured and estimated with HYDRYS-1D became larger at deeper the soil depths. This might be attributed to larger water flow occurred because of a free drainage used
Energy Technology Data Exchange (ETDEWEB)
Fischer, G.; Barts, E. W.; Kapil, S.; Tomabechi, K. [Argonne National Laboratory, Argonne, IL (United States)
1962-03-15
autores explican como han adaptado la clave AX-I para calculos neutronico-hidro-dinamicos al caso de un gas que se ajusta a la ecuacion de Van der Waals. Otra modificacion importante introducida en la ecuacion de estado utilizada en la clave, consiste en emplear una ecuacion del tipo de Mie-Gruneisen, derivada de la teoria del estado solido. Esta modificacion permite evaluar de manera mas satisfactoria del termino de presion para el caso de cuerpos de composicion variable. Dado que en un conjunto de potencia cero las placas de uranio fuertemente enriquecido en el isotopo-235, se calentaran con mas rapidez que las de uranio empobrecido, la posibilidad de que se produzca un efecto Doppler positivo neto es mucho mayor en un conjunto experimental que en el reactor de potencia reproductor equivalente. Se ha estudiado este peligro en el caso de diferentes conjuntos posibles. Los calculos indican que en un conjunto de potencia cero el coeficiente Doppler solo alcanza un valor peligroso en los sistemas que poseen un espectro de energias neutronicas muy blando, caracteristico de los grandes reactores de potencia reproductores, alimentados con oxido de uranio. (author) [Russian] Provedeno issledovanie vozmozhnosti, mekhanizma i posledstvij rasplavleniya, a takzhe drugikh krupnykh yadernykh intsidentov dlya ehksperimental'nog o reaktora nulevoj moshchnosti na bystrykh nejtronakh tipa ZPR-III dvukhpolovinchatog o tipa. V dopolnenie k ehtomu issledovaniyu provedena otsenka znacheniya ehffekta Dopplera dlya mnogikh yadernykh reaktornykh ustanovok takogo reaktora. V doklade budet pokazano, chto yavlenie rasplavleniya maloveroyatno vvidu ogranichennogo kolichestva yavlenij, kotorye nuzhno postulirovat'. Posle rassmotreniya mekhanizma razrusheniya budut dany rezul'taty raschetov, svyazannykh s nejtronnoj fizikoj i gidro-dinamikoj , dlya dvukh reaktornykh ustanovok nulevoj moshchnosti. Provedeno issledovanie aktivnoj zony emkost'yu 1200 litrov, kharakternoj dlya otnositel'no bol
Dreano, Denis; Tsiaras, Kostas; Triantafyllou, George; Hoteit, Ibrahim
2017-01-01
Forecasting the state of large marine ecosystems is important for many economic and public health applications. However, advanced three-dimensional (3D) ecosystem models, such as the European Regional Seas Ecosystem Model (ERSEM), are computationally expensive, especially when implemented within an ensemble data assimilation system requiring several parallel integrations. As an alternative to 3D ecological forecasting systems, we propose to implement a set of regional one-dimensional (1D) water-column ecological models that run at a fraction of the computational cost. The 1D model domains are determined using a Gaussian mixture model (GMM)-based clustering method and satellite chlorophyll-a (Chl-a) data. Regionally averaged Chl-a data is assimilated into the 1D models using the singular evolutive interpolated Kalman (SEIK) filter. To laterally exchange information between subregions and improve the forecasting skills, we introduce a new correction step to the assimilation scheme, in which we assimilate a statistical forecast of future Chl-a observations based on information from neighbouring regions. We apply this approach to the Red Sea and show that the assimilative 1D ecological models can forecast surface Chl-a concentration with high accuracy. The statistical assimilation step further improves the forecasting skill by as much as 50%. This general approach of clustering large marine areas and running several interacting 1D ecological models is very flexible. It allows many combinations of clustering, filtering and regression technics to be used and can be applied to build efficient forecasting systems in other large marine ecosystems.
Dreano, Denis
2017-05-24
Forecasting the state of large marine ecosystems is important for many economic and public health applications. However, advanced three-dimensional (3D) ecosystem models, such as the European Regional Seas Ecosystem Model (ERSEM), are computationally expensive, especially when implemented within an ensemble data assimilation system requiring several parallel integrations. As an alternative to 3D ecological forecasting systems, we propose to implement a set of regional one-dimensional (1D) water-column ecological models that run at a fraction of the computational cost. The 1D model domains are determined using a Gaussian mixture model (GMM)-based clustering method and satellite chlorophyll-a (Chl-a) data. Regionally averaged Chl-a data is assimilated into the 1D models using the singular evolutive interpolated Kalman (SEIK) filter. To laterally exchange information between subregions and improve the forecasting skills, we introduce a new correction step to the assimilation scheme, in which we assimilate a statistical forecast of future Chl-a observations based on information from neighbouring regions. We apply this approach to the Red Sea and show that the assimilative 1D ecological models can forecast surface Chl-a concentration with high accuracy. The statistical assimilation step further improves the forecasting skill by as much as 50%. This general approach of clustering large marine areas and running several interacting 1D ecological models is very flexible. It allows many combinations of clustering, filtering and regression technics to be used and can be applied to build efficient forecasting systems in other large marine ecosystems.
A novel cryogenic magnetic refrigerant metal-organic framework based on 1D gadolinium(III) chain
Energy Technology Data Exchange (ETDEWEB)
Tang, Qun; Li, Peng-Fei [Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541004 (China); Zou, Zhi-Ming, E-mail: 2014005@glut.edu.cn [Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541004 (China); Liu, Zheng [Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, Guangxi 541004 (China); Liu, Shu-Xia, E-mail: liusx@nenu.edu.cn [Key Laboratory of Polyoxometalate Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024 (China)
2017-02-15
A metal-organic framework (MOF) based on gadolinium ion (Gd{sup 3+}) and tricarboxylate ligand, [Gd(BTPCA)(H{sub 2}O)]·2DMF·3H{sub 2}O (Gd-BTPCA) (H{sub 3}BTPCA =1,1′,1′-(benzene-1,3,5-triyl)tripiperidine-4-carboxylic acid; DMF=dimethylformamide), was synthesized and structurally characterized. The adjacent Gd{sup 3+} ions are intraconnected by the carboxylate groups of the BTPCA{sup 3-} ligands to form a 1D Gd{sup 3+} ion chain. The 1D Gd{sup 3+} ion chains are interconnected by the BTPCA{sup 3-} ligands, giving rise to a 3D framework with 1D open channel. The magnetic studies indicate that Gd-BTPCA exhibits weak ferromagnetic interactions, and acts as a cryogenic magnetic refrigerant having the magnetic entropy change (−ΔS{sub m}) of 20.40 J kg{sup −1} K{sup −1} for ΔH =7 T at 3 K. - Graphical abstract: A 1D gadolinium(III) chains-based metal-organic framework performed ferromagnetic coupling on the magnetic property. Magnetic investigation reveals that Gd-BTPCA exhibits the entropy change (−ΔS{sub m}) of 20.40 J kg{sup −1} K{sup −1} for ΔH =7 T at 3 K. - Highlights: • The MOF based on gadolinium ion and tricarboxylate ligand was synthesized. • This MOF is connected with 1D Gd{sup 3+} ions chain and the carboxylate groups of BTPCA{sup 3-} ligands. • The magnetic studies indicate that the MOF exhibits the weak ferromagnetic interactions. • Magnetic investigation reveals that the MOF exhibits the high entropy change.
Final COMPASS results on the deuteron spin-dependent structure function g1d and the Bjorken sum rule
Directory of Open Access Journals (Sweden)
C. Adolph
2017-06-01
Full Text Available Final results are presented from the inclusive measurement of deep-inelastic polarised-muon scattering on longitudinally polarised deuterons using a 6LiD target. The data were taken at 160 GeV beam energy and the results are shown for the kinematic range 1(GeV/c24GeV/c2 in the mass of the hadronic final state. The deuteron double-spin asymmetry A1d and the deuteron longitudinal-spin structure function g1d are presented in bins of x and Q2. Towards lowest accessible values of x, g1d decreases and becomes consistent with zero within uncertainties. The presented final g1d values together with the recently published final g1p values of COMPASS are used to again evaluate the Bjorken sum rule and perform the QCD fit to the g1 world data at next-to-leading order of the strong coupling constant. In both cases, changes in central values of the resulting numbers are well within statistical uncertainties. The flavour-singlet axial charge a0, which is identified in the MS‾ renormalisation scheme with the total contribution of quark helicities to the nucleon spin, is extracted at next-to-leading order accuracy from only the COMPASS deuteron data: a0(Q2=3(GeV/c2=0.32±0.02stat±0.04syst±0.05evol. Together with the recent results on the proton spin structure function g1p, the results on g1d constitute the COMPASS legacy on the measurements of g1 through inclusive spin-dependent deep inelastic scattering.
Turbine trip transient analysis in peach bottom NPP with TRAC-BF1 code and Simtab-1D methodology
International Nuclear Information System (INIS)
Barrachina, T.; Miro, R.; Verdu, G.; Collazo, I.; Gonzalez, P.; Concejal, A.; Ortego, P.; Melara, J.
2010-01-01
In TRAC-BF1 nuclear cross-sections are specified in the input deck in as a polynomial expansion. Therefore, it is necessary to obtain the coefficients of this polynomial function. One of the methods proposed in the literature is the KINPAR methodology. This methodology uses the results from different perturbations of the original state to obtain the coefficients of the polynominal expansion. The simulations are performed using the SIMULATE3 code. In this work, a new methodology to obtain the cross-sections set in 1D is presented. The first step consists of the application of the SIMTAB methodology, developed in UPV, to obtain the 3D cross-sections sets from CASMO4/SIMULATE3. These 3D cross-sections sets are collapsed to 1D, using as a weighting factor the 3D thermal and rapid neutron fluxes obtained from SIMULATE3. The 1D cross-sections obtained are in the same format as the 3D sets, hence, it has been necessary to modify the TRAC-BF1 code in order to be able to read and interpolate between these tabulated 1D cross-sections. With this new methodology it is not necessary to perform simulations of different perturbations of the original state, and also the variation range of the moderator density can be higher than using the former KINPAR methodology. This is important for simulating severe accidents in which the variables vary in a wide range. This new methodology is applied to the simulation of the turbine trip transient Benchmark in Peach Bottom NPP using the TRAC-BF1 code. The results of the transient simulation in TRAC-BF1 using the KINPAR methodology and the new methodology, SIMTAB-1D, are compared. (author)
Energy Technology Data Exchange (ETDEWEB)
Walker, Lawrence R. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Hoyt, David W. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Walker, S. Michael [Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence KS 66045 USA; Ward, Joy K. [Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence KS 66045 USA; Nicora, Carrie D. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Bingol, Kerem [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA
2016-09-16
We present a novel approach to improve accuracy of metabolite identification by combining direct infusion ESI MS1 with 1D 1H NMR spectroscopy. The new approach first applies standard 1D 1H NMR metabolite identification protocol by matching the chemical shift, J-coupling and intensity information of experimental NMR signals against the NMR signals of standard metabolites in metabolomics library. This generates a list of candidate metabolites. The list contains false positive and ambiguous identifications. Next, we constrained the list with the chemical formulas derived from high-resolution direct infusion ESI MS1 spectrum of the same sample. Detection of the signals of a metabolite both in NMR and MS significantly improves the confidence of identification and eliminates false positive identification. 1D 1H NMR and direct infusion ESI MS1 spectra of a sample can be acquired in parallel in several minutes. This is highly beneficial for rapid and accurate screening of hundreds of samples in high-throughput metabolomics studies. In order to make this approach practical, we developed a software tool, which is integrated to Chenomx NMR Suite. The approach is demonstrated on a model mixture, tomato and Arabidopsis thaliana metabolite extracts, and human urine.
Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT
International Nuclear Information System (INIS)
Collins, Benjamin; Stimpson, Shane; Kelley, Blake W.; Young, Mitchell T.H.; Kochunas, Brendan; Graham, Aaron; Larsen, Edward W.; Downar, Thomas; Godfrey, Andrew
2016-01-01
A consistent “2D/1D” neutron transport method is derived from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. This paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. Several applications have been performed on both leadership-class and industry-class computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.
Quasi-1D s=1/2 antiferromagnet Cs2CuCl4 in a magnetic field
DEFF Research Database (Denmark)
Coldea, R.; Tennant, D.A.; Cowley, R.A.
1997-01-01
than the field (similar or equal to 8 T) required to fully align the spins, are observed to decouple the chains, and the system enters a disordered intermediate-field phase (IFP). The IFP excitations are in agreement with the predictions of Muller et al. for the 1D S = 1/2 HAF, and Talstra and Haldane......Magnetic excitations of the quasi-1D S = 1/2 Heisenberg antiferromagnet (HAF) Cs2CuCl4 have beer measured as a function of magnetic field using neutron scattering. For T Fields greater than B-c = 1.66 T, but less...... for the related l/r(2) chain (the Haldane-Shastry model). This behavior is inconsistent with linear spin-wave theory....
International Nuclear Information System (INIS)
Sato, Hiroaki
2014-01-01
In the Niigata area, which suffered from several large earthquakes such as the 2007 Chuetsu-oki earthquake, geographical observation that elucidates the S-wave structure of the underground is advancing. Modeling of S-wave velocity structure in the subsurface is underway to enable simulation of long-period ground motion. The one-dimensional velocity model by inverse analysis of micro-tremors is sufficiently appropriate for long-period site response but not for short-period, which is important for ground motion evaluation at NPP sites. The high-frequency site responses may be controlled by the strength of heterogeneity of underground structure because the heterogeneity of the 1D model plays an important role in estimating high-frequency site responses and is strongly related to the damping factor of the 1D layered velocity model. (author)
Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT
Energy Technology Data Exchange (ETDEWEB)
Collins, Benjamin, E-mail: collinsbs@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Stimpson, Shane, E-mail: stimpsonsg@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Kelley, Blake W., E-mail: kelleybl@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Young, Mitchell T.H., E-mail: youngmit@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Kochunas, Brendan, E-mail: bkochuna@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Graham, Aaron, E-mail: aarograh@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Larsen, Edward W., E-mail: edlarsen@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Downar, Thomas, E-mail: downar@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Godfrey, Andrew, E-mail: godfreyat@ornl.gov [Oak Ridge National Laboratory, One Bethel Valley Rd., Oak Ridge, TN 37831 (United States)
2016-12-01
A consistent “2D/1D” neutron transport method is derived from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. This paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. Several applications have been performed on both leadership-class and industry-class computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.
International Nuclear Information System (INIS)
Harley, P; Spence, S; Early, J; Filsinger, D; Dietrich, M
2013-01-01
Single-zone modelling is used to assess different collections of impeller 1D loss models. Three collections of loss models have been identified in literature, and the background to each of these collections is discussed. Each collection is evaluated using three modern automotive turbocharger style centrifugal compressors; comparisons of performance for each of the collections are made. An empirical data set taken from standard hot gas stand tests for each turbocharger is used as a baseline for comparison. Compressor range is predicted in this study; impeller diffusion ratio is shown to be a useful method of predicting compressor surge in 1D, and choke is predicted using basic compressible flow theory. The compressor designer can use this as a guide to identify the most compatible collection of losses for turbocharger compressor design applications. The analysis indicates the most appropriate collection for the design of automotive turbocharger centrifugal compressors
International Nuclear Information System (INIS)
Zhen-Gang, Shi; Xiong-Wen, Chen; Xi-Xiang, Zhu; Ke-Hui, Song
2009-01-01
This paper proposes a simple scheme for realizing one-qubit and two-qubit quantum gates as well as multiqubit entanglement based on dc-SQUID charge qubits through the control of their coupling to a 1D transmission line resonator (TLR). The TLR behaves effectively as a quantum data-bus mode of a harmonic oscillator, which has several practical advantages including strong coupling strength, reproducibility, immunity to 1/f noise, and suppressed spontaneous emission. In this protocol, the data-bus does not need to stay adiabatically in its ground state, which results in not only fast quantum operation, but also high-fidelity quantum information processing. Also, it elaborates the transfer process with the 1D transmission line. (general)
D1/D2 Domain of Large-Subunit Ribosomal DNA for Differentiation of Orpinomyces spp.▿
Dagar, Sumit S.; Kumar, Sanjay; Mudgil, Priti; Singh, Rameshwar; Puniya, Anil K.
2011-01-01
This study presents the suitability of D1/D2 domain of large-subunit (LSU) ribosomal DNA (rDNA) for differentiation of Orpinomyces joyonii and Orpinomyces intercalaris based on PCR-restriction fragment length polymorphism (RFLP). A variation of G/T in O. intercalaris created an additional restriction site for AluI, which was used as an RFLP marker. The results demonstrate adequate heterogeneity in the LSU rDNA for species-level differentiation. PMID:21784906
Liu, Yawei; Teige, Anna; Mondoc, Emma; Ibrahim, Saleh; Holmdahl, Rikard; Issazadeh-Navikas, Shohreh
2011-01-01
NKT cells in the mouse recognize antigen in the context of the MHC class I-like molecule CD1d and play an important role in peripheral tolerance and protection against autoimmune and other diseases. NKT cells are usually activated by CD1d-presented lipid antigens. However, peptide recognition in the context of CD1 has also been documented, although no self-peptide ligands have been reported to date. Here, we have identified an endogenous peptide that is presented by CD1d to activate mouse NKT cells. This peptide, the immunodominant epitope from mouse collagen type II (mCII707-721), was not associated with either MHC class I or II. Activation of CD1d-restricted mCII707-721-specific NKT cells was induced via TCR signaling and classical costimulation. In addition, mCII707-721-specific NKT cells induced T cell death through Fas/FasL, in an IL-17A-independent fashion. Moreover, mCII707-721-specific NKT cells suppressed a range of in vivo inflammatory conditions, including delayed-type hypersensitivity, antigen-induced airway inflammation, collagen-induced arthritis, and EAE, which were all ameliorated by mCII707-721 vaccination. The findings presented here offer new insight into the intrinsic roles of NKT cells in health and disease. Given the results, endogenous collagen peptide activators of NKT cells may offer promise as novel therapeutics in tissue-specific autoimmune and inflammatory diseases.
Energy Technology Data Exchange (ETDEWEB)
Yuan, H.S.H.; Stevens, R.C.; Bau, R. (Univ. of Southern California, Los Angeles, CA (United States)); Mosher, H.S. (Stanford Univ., CA (United States)); Koetzle, T.F. (Brookhaven National Lab., Upton, NY (United States))
1994-12-20
The absolute configuration of (+)-neopentyl-1-d alcohol, prepared by the reduction of 2,2-dimethylpropanol-1-d by actively fermenting yeast, has been determined to be S by neutron diffraction. The neutron study was carried out on the phthalate half ester of neopentyl-1-d alcohol, crystallized as its strychnine salt. The absolute configuration of the (-)-strychninium cation was first determined by an x-ray anomalous dispersion study of its iodide salt. The chiral skeleton of strychnine then served as a reference from which the absolute configuration of the -O-CHD-C(CH[sub 3])[sub 3] group of neopentyl phthalate was determined. Difference Fourier maps calculated from the neutron data showed unambiguously that the -O-CHD-C(CH[sub 3])[sub 3] groups of both independent molecules in the unit cell had the S configuration. This work proves conclusively that the yeast system reduces aldehydes by delivering hydrogen to the re face of the carbonyl group. Crystallographic details: (-)-strychninium (+)-neopentyl-1-d phthalate, space group P2[sub 1] (monoclinic), a = 18.564(6) [angstrom], b = 7.713(2) [angstrom], c = 23.361(8) [angstrom], [beta] = 94.18(4)[degrees], V = 3336.0(5) [angstrom][sup 3], Z = 2 (T = 100 K). Final agreement factors are R(F) = 0.073 for 2768 reflections collected at room temperature (x-ray analysis) and R(F) = 0.144 for 960 reflections collected at 100 K (neutron analysis). 49 refs., 7 figs., 2 tabs.
André, Marion Agnès Emma; Manahan-Vaughan, Denise
2015-01-01
Dopamine contributes to the regulation of higher order information processing and executive control. It is important for memory consolidation processes, and for the adaptation of learned responses based on experience. In line with this, under aversive learning conditions, application of dopamine receptor antagonists prior to extinction result in enhanced memory reinstatement. Here, we investigated the contribution of the dopaminergic system to extinction and memory reinstatement (renewal) of an appetitive spatial learning task in rodents. Rats were trained for 3 days in a T-maze (context "A") to associate a goal arm with a food reward, despite low reward probability (acquisition phase). On day 4, extinction learning (unrewarded) occurred, that was reinforced by a context change ("B"). On day 5, re-exposure to the (unrewarded) "A" context took place (renewal of context "A", followed by extinction of context "A"). In control animals, significant extinction occurred on day 4, that was followed by an initial memory reinstatement (renewal) on day 5, that was, in turn, succeeded by extinction of renewal. Intracerebral treatment with a D1/D5-receptor antagonist prior to the extinction trials, elicited a potent enhancement of extinction in context "B". By contrast, a D1/D5-agonist impaired renewal in context "A". Extinction in the "A" context on day 5 was unaffected by the D1/D5-ligands. Treatment with a D2-receptor antagonist prior to extinction had no overall effect on extinction in context "B" or renewal in context "A", although extinction of the renewal effect was impaired on day 5, compared to controls. Taken together, these data suggest that dopamine acting on the D1/D5-receptor modulates both acquisition and consolidation of context-dependent extinction. By contrast, the D2-receptor may contribute to context-independent aspects of this kind of extinction learning.
Directory of Open Access Journals (Sweden)
Marion Agnes Emma Andre
2016-01-01
Full Text Available Dopamine contributes to the regulation of higher order information processing and executive control. It is important for memory consolidation processes, and for the adaptation of learned responses based on experience. In line with this, under aversive learning conditions, application of dopamine receptor antagonists prior to extinction result in enhanced memory reinstatement. Here, we investigated the contribution of the dopaminergic system to extinction and memory reinstatement (renewal of an appetitive spatial learning task in rodents. Rats were trained for 3 days in a T-maze (context ‘A’ to associate a goal arm with a food reward, despite low reward probability (acquisition phase. On day 4, extinction learning (unrewarded occurred, that was reinforced by a context change (‘B’. On day 5, re-exposure to the (unrewarded ‘A’-context took place (renewal of context ‘A’, followed by extinction of context ‘A’. In control animals, significant extinction occurred on day 4, that was followed by an initial memory reinstatement (renewal on day 5, that was, in turn, succeeded by extinction of renewal. Intracerebral treatment with a D1/D5-receptor antagonist prior to the extinction trials, elicited a potent enhancement of extinction in context ‘B’. By contrast, a D1/D5-agonist impaired renewal in context ’A’. Extinction in the ‘A’ context on day 5 was unaffected by the D1/D5-ligands. Treatment with a D2-receptor antagonist prior to extinction had no overall effect on extinction in context ‘B or renewal in context ‘A’, although extinction of the renewal effect was impaired on day 5, compared to controls.Taken together, these data suggest that dopamine acting on the D1/D5-receptor modulates both acquisition and consolidation of context-dependent extinction. By contrast, the D2-receptor may contribute to context-independent aspects of this kind of extinction learning.
KCNE1 D85N polymorphism — a sex-specific modifier in type 1 long QT syndrome?
Directory of Open Access Journals (Sweden)
Marjamaa Annukka
2011-01-01
Full Text Available Abstract Background Long QT syndrome (LQTS is an inherited ion channel disorder manifesting with prolongation of the cardiac repolarization phase and severe ventricular arrhythmias. The common KCNE1 D85N potassium channel variant prolongs QT interval by inhibiting IKs (KCNQ1 and IKr (KCNH2 currents and is therefore a suitable candidate for a modifier gene in LQTS. Methods We studied the effect of D85N on age-, sex-, and heart rate-adjusted QT-interval duration by linear regression in LQTS patients carrying the Finnish founder mutations KCNQ1 G589D (n = 492, KCNQ1 IVS7-2A>G (n = 66, KCNH2 L552S (n = 73, and KCNH2 R176W (n = 88. We also investigated the association between D85N and clinical variables reflecting the severity of the disease. Results D85N was associated with a QT prolongation by 26 ms (SE 8.6, p = 0.003 in males with KCNQ1 G589D (n = 213, but not in females with G589D (n = 279. In linear regression, the interaction between D85N genotype and sex was significant (p = 0.028. Within the KCNQ1 G589D mutation group, KCNE1 D85N carriers were more often probands of the family (p = 0.042 and were more likely to use beta blocker medication (p = 0.010 than non-carriers. The number of D85N carriers in other founder mutation groups was too small to assess its effects. Conclusions We propose that KCNE1 D85N is a sex-specific QT-interval modifier in type 1 LQTS and may also associate with increased severity of disease. Our data warrant additional studies on the role of KCNE1 D85N in other genetically homogeneous groups of LQTS patients.
Control region variability of haplogroup C1d and the tempo of the peopling of the Americas.
Directory of Open Access Journals (Sweden)
Gonzalo Figueiro
Full Text Available BACKGROUND: Among the founding mitochondrial haplogroups involved in the peopling of the Americas, haplogroup C1d has been viewed as problematic because of its phylogeny and because of the estimates of its antiquity, apparently being much younger than other founding haplogroups. Several recent analyses, based on data from the entire mitochondrial genome, have contributed to an advance in the resolution of these problems. The aim of our analysis is to compare the conclusions drawn from the available HVR-I and HVR-II data for haplogroup C1d with the ones based on whole mitochondrial genomes. METHODOLOGY/PRINCIPAL FINDINGS: HVR-I and HVR-II sequences defined as belonging to haplogroup C1d by standard criteria were gathered from the literature as well as from population studies carried out in Uruguay. Sequence phylogeny was reconstructed using median-joining networks, geographic distribution of lineages was analyzed and the age of the most recent common ancestor estimated using the ρ-statistic and two different mutation rates. The putative ancestral forms of the haplogroup were found to be more widespread than the derived lineages, and the lineages defined by np 194 were found to be widely distributed and of equivalent age. CONCLUSIONS/SIGNIFICANCE: The analysis of control region sequences is found to still harbor great potential in tracing microevolutionary phenomena, especially those found to have occurred in more recent times. Based on the geographic distributions of the alleles of np 7697 and np 194, both discussed as possible basal mutations of the C1d phylogeny, we suggest that both alleles were part of the variability of the haplogroup at the time of its entrance. Moreover, based on the mutation rates of the different sites stated to be diagnostic, it is possible that the anomalies found when analyzing the haplogroup are due to paraphyly.
DEFF Research Database (Denmark)
Rakhshandehroo, Maryam; Gijzel, Sanne M W; Siersbæk, Rasmus
2014-01-01
-dependent fashion, but little is known about the lipid antigen presentation machinery in adipocytes. Here we show that CD1d, as well as the lipid antigen loading machinery genes pro-saposin (Psap), Niemann Pick type C2 (Npc2), α-galactosidase (Gla), are upregulated in early adipogenesis, and are transcriptionally...... presenting cells (APCs), which may present an important aspect of adipocyte-immune cell communication in the regulation of whole body energy metabolism and immune homeostasis....
Energy Technology Data Exchange (ETDEWEB)
Cristaldi, Alice; Ermolli, Ilaria, E-mail: alice.cristaldi@oaroma.inaf.it [INAF Osservatorio Astronomico di Roma, via Frascati 33, Monte Porzio Catone, I-00078 (Italy)
2017-06-01
Present-day semi-empirical models of solar irradiance (SI) variations reconstruct SI changes measured on timescales greater than a day by using spectra computed in one dimensional atmosphere models (1D models), which are representative of various solar surface features. Various recent studies have pointed out, however, that the spectra synthesized in 1D models do not reflect the radiative emission of the inhomogenous atmosphere revealed by high-resolution solar observations. We aimed to derive observation-based atmospheres from such observations and test their accuracy for SI estimates. We analyzed spectropolarimetric data of the Fe i 630 nm line pair in photospheric regions that are representative of the granular quiet-Sun pattern (QS) and of small- and large-scale magnetic features, both bright and dark with respect to the QS. The data were taken on 2011 August 6, with the CRisp Imaging Spectropolarimeter at the Swedish Solar Telescope, under excellent seeing conditions. We derived atmosphere models of the observed regions from data inversion with the SIR code. We studied the sensitivity of results to spatial resolution and temporal evolution, and discuss the obtained atmospheres with respect to several 1D models. The atmospheres derived from our study agree well with most of the 1D models we compare our results with, both qualitatively and quantitatively (within 10%), except for pore regions. Spectral synthesis computations of the atmosphere obtained from the QS observations return an SI between 400 and 2400 nm that agrees, on average, within 2.2% with standard reference measurements, and within −0.14% with the SI computed on the QS atmosphere employed by the most advanced semi-empirical model of SI variations.
International Nuclear Information System (INIS)
Roman, E.; Wiecko, C.
1985-08-01
We study and characterize the eigenstates near the centre of the band of a 1-d tight binding model with off-diagonal disorder Wsub(T). We find a new exponent for the localization length lambda on an energy-dependent range of disorder Wsub(T). We correlate this feature with a change of structure of the wave-function displayed by the behaviour of its fractal dimensionality. (author)
Zhao, Huzi; Zhang, Lina; Zhang, Yongchen; Zhao, Lei; Wan, Qing; Wang, Bei; Bu, Xiaodong; Wan, Meiling; Shen, Chuanlu
2017-05-30
The hominoid oncoprotein TBC1D3 enhances growth factor (GF) signaling and GF signaling, conversely, induces the ubiquitination and subsequent degradation of TBC1D3. However, little is known regarding the regulation of this degradation, and the role of TBC1D3 in the progression of tumors has also not been defined. In the present study, we demonstrated that calmodulin (CaM), a ubiquitous cellular calcium sensor, specifically interacted with TBC1D3 in a Ca2+-dependent manner and inhibited GF signaling-induced ubiquitination and degradation of the oncoprotein in both cytoplasm and nucleus of human breast cancer cells. The CaM-interacting site of TBC1D3 was mapped to amino acids 157~171, which comprises two 1-14 hydrophobic motifs and one lysine residue (K166). Deletion of these motifs was shown to abolish interaction between TBC1D3 and CaM. Surprisingly, this deletion mutation caused inability of GF signaling to induce the ubiquitination and subsequent degradation of TBC1D3. In agreement with this, we identified lysine residue 166 within the CaM-interacting motifs of TBC1D3 as the actual site for the GF signaling-induced ubiquitination using mutational analysis. Point mutation of this lysine residue exhibited the same effect on TBC1D3 as the deletion mutant, suggesting that CaM inhibits GF signaling-induced degradation of TBC1D3 by occluding its ubiquitination at K166. Notably, we found that TBC1D3 promoted the expression and activation of MMP-9 and the migration of MCF-7 cells. Furthermore, interaction with CaM considerably enhanced such effect of TBC1D3. Taken together, our work reveals a novel model by which CaM promotes cell migration through inhibiting the ubiquitination and degradation of TBC1D3.
Looringh van Beeck, Frank A; Reinink, Peter; Hermsen, Roel; Zajonc, Dirk M; Laven, Marielle J; Fun, Axel; Troskie, Milana; Schoemaker, Nico J; Morar, Darshana; Lenstra, Johannes A; Vervelde, Lonneke; Rutten, Victor P M G; van Eden, Willem; Van Rhijn, Ildiko
2009-04-01
CD1d-restricted invariant natural killer T cells (NKT cells) have been well characterized in humans and mice, but it is unknown whether they are present in other species. Here we describe the invariant TCR alpha chain and the full length CD1d transcript of pig and horse. Molecular modeling predicts that porcine (po) invariant TCR alpha chain/poCD1d/alpha-GalCer and equine (eq) invariant TCR alpha chain/eqCD1d/alpha-GalCer form complexes that are highly homologous to the human complex. Since a prerequisite for the presence of NKT cells is the expression of CD1d protein, we performed searches for CD1D genes and CD1d transcripts in multiple species. Previously, cattle and guinea pig have been suggested to lack CD1D genes. The CD1D genes of European taurine cattle (Bos taurus) are known to be pseudogenes because of disrupting mutations in the start codon and in the donor splice site of the first intron. Here we show that the same mutations are found in six other ruminants: African buffalo, sheep, bushbuck, bongo, N'Dama cattle, and roe deer. In contrast, intact CD1d transcripts were found in guinea pig, African elephant, horse, rabbit, and pig. Despite the discovery of a highly homologous NKT/CD1d system in pig and horse, our data suggest that functional CD1D and CD1d-restricted NKT cells are not universally present in mammals.
The effect of intracellular trafficking of CD1d on the formation of TCR repertoire of NKT cells.
Shin, Jung Hoon; Park, Se-Ho
2014-05-01
CD1 molecules belong to non-polymorphic MHC class I-like proteins and present lipid antigens to T cells. Five different CD1 genes (CD1a-e) have been identified and classified into two groups. Group 1 include CD1a-c and present pathogenic lipid antigens to αβ T cells reminiscence of peptide antigen presentation by MHC-I molecules. CD1d is the only member of Group 2 and presents foreign and self lipid antigens to a specialized subset of αβ T cells, NKT cells. NKT cells are involved in diverse immune responses through prompt and massive production of cytokines. CD1d-dependent NKT cells are categorized upon the usage of their T cell receptors. A major subtype of NKT cells (type I) is invariant NKT cells which utilize invariant Vα14-Jα18 TCR alpha chain in mouse. The remaining NKT cells (type II) utilize diverse TCR alpha chains. Engineered CD1d molecules with modified intracellular trafficking produce either type I or type II NKT cell-defects suggesting the lipid antigens for each subtypes of NKT cells are processed/generated in different intracellular compartments. Since the usage of TCR by a T cell is the result of antigen-driven selection, the intracellular metabolic pathways of lipid antigen are a key in forming the functional NKT cell repertoire.
Selective up-regulation of 5-HT(1B/1D) receptors during organ culture of cerebral arteries
DEFF Research Database (Denmark)
Hoel, N L; Hansen-Schwartz, J; Edvinsson, L
2001-01-01
5-Hydroxytryptamine (5-HT) is thought to be involved in migraine headache and the pathophysiology of cerebrovascular diseases. Previous data show that organ culture induces a phenotypic change in cerebral vessels. Therefore we investigated if these changes also applied for the vasoconstrictive 5-HT......(cultured) 6.8+/-0.4). The response was inhibited by the 5-HT(1B/1D) selective antagonist GR55562 (pEC50(fresh) 5.1+/-0.2 and pEC50(cultured) 6.0+/-0.3). The organ model might mimic the phenotypic changes during cerebrovascular diseases....... receptors. Rat cerebral arteries express 5-HT2 receptors. Using organ culture we observed a phenotypic change with a selective up-regulation of 5-HT(1B/1D) receptors. This was revealed by an increased sensitivity to the selective 5-HT(1B/1D) agonist 5-CT after organ culture (pEC50(fresh) 5.6+/-0.2 and pEC50...
International Nuclear Information System (INIS)
Kolbun, N.; Lund, E.; Adolfsson, E.; Gustafsson, H.
2014-01-01
Electron paramagnetic resonance imaging (EPRI) was performed to visualise 2D dose distributions of homogeneously irradiated potassium dithionate tablets and to demonstrate determination of 1D dose profiles along the height of the tablets. Mathematical correction was applied for each relative dose profile in order to take into account the inhomogeneous response of the resonator using X-band EPRI. The dose profiles are presented with the spatial resolution of 0.6 mm from the acquired 2D images; this value is limited by pixel size, and 1D dose profiles from 1D imaging with spatial resolution of 0.3 mm limited by the intrinsic line-width of potassium dithionate. In this paper, dose profiles from 2D reconstructed electron paramagnetic resonance (EPR) images using the Xepr software package by Bruker are focussed. The conclusion is that using potassium dithionate, the resolution 0.3 mm is sufficient for mapping steep dose gradients if the dosemeters are covering only ±2 mm around the centre of the resonator. (authors)
Directory of Open Access Journals (Sweden)
Shenghan Jiang
2014-09-01
Full Text Available In topologically ordered quantum states of matter in (2+1D (spacetime dimensions, the braiding statistics of anyonic quasiparticle excitations is a fundamental characterizing property that is directly related to global transformations of the ground-state wave functions on a torus (the modular transformations. On the other hand, there are theoretical descriptions of various topologically ordered states in (3+1D, which exhibit both pointlike and looplike excitations, but systematic understanding of the fundamental physical distinctions between phases, and how these distinctions are connected to quantum statistics of excitations, is still lacking. One main result of this work is that the three-dimensional generalization of modular transformations, when applied to topologically ordered ground states, is directly related to a certain braiding process of looplike excitations. This specific braiding surprisingly involves three loops simultaneously, and can distinguish different topologically ordered states. Our second main result is the identification of the three-loop braiding as a process in which the worldsheets of the three loops have a nontrivial triple linking number, which is a topological invariant characterizing closed two-dimensional surfaces in four dimensions. In this work, we consider realizations of topological order in (3+1D using cohomological gauge theory in which the loops have Abelian statistics and explicitly demonstrate our results on examples with Z_{2}×Z_{2} topological order.
International Nuclear Information System (INIS)
Lu, Pengyu; Gao, Qing; Wang, Yan
2016-01-01
Highlights: • A 1D/3D collaborative computing simulation method for vehicle thermal management. • Analyzing the influence of the thermodynamic systems and the engine compartment geometry on the vehicle performance. • Providing the basis for the matching energy consumptions of thermodynamic systems in the underhood. - Abstract: The vehicle integrated thermal management containing the engine cooling circuit, the air conditioning circuit, the turbocharged inter-cooled circuit, the engine lubrication circuit etc. is the important means of enhancing power performance, promoting economy, saving energy and reducing emission. In this study, a 1D/3D collaborative simulation method is proposed with the engine cooling circuit and air conditioning circuit being the research object. The mathematical characterizations of the multiple thermodynamic systems are achieved by 1D calculation and the underhood structure is described by 3D simulation. Through analyzing the engine compartment integrated heat transfer process, the model of the integrated thermal management system is formed after coupling the cooling circuit and air conditioning circuit. This collaborative simulation method establishes structured correlation of engine-cooling and air conditioning thermal dissipation in the engine compartment, comprehensively analyzing the engine working process and air condition operational process in order to research the interaction effect of them. In the calculation examples, to achieve the integrated optimization of multiple thermal systems design and performance prediction, by describing the influence of system thermomechanical parameters and operating duty to underhood heat transfer process, performance evaluation of the engine cooling circuit and the air conditioning circuit are realized.
A comparative study of 1D and 3D hemodynamics in patient-specific hepatic portal vein networks
Directory of Open Access Journals (Sweden)
Jonášová A.
2014-12-01
Full Text Available The development of software for use in clinical practice is often associated with many requirements and restrictions set not only by the medical doctors, but also by the hospital’s budget. To meet the requirement of reliable software, which is able to provide results within a short time period and with minimal computational demand, a certain measure of modelling simplification is usually inevitable. In case of blood flow simulations carried out in large vascular networks such as the one created by the hepatic portal vein, simplifications are made by necessity. The most often employed simplification includes the approach in the form of dimensional reduction, when the 3D model of a large vascular network is substituted with its 1D counterpart. In this context, a question naturally arises, how this reduction can affect the simulation accuracy and its outcome. In this paper, we try to answer this question by performing a quantitative comparison of 3D and 1D flow models in two patient-specific hepatic portal vein networks. The numerical simulations are carried out under average flow conditions and with the application of the three-element Windkessel model, which is able to approximate the downstream flow resistance of real hepatic tissue. The obtained results show that, although the 1D model can never truly substitute the 3D model, its easy implementation, time-saving model preparation and almost no demands on computer technology dominate as advantages over obvious but moderate modelling errors arising from the performed dimensional reduction.
A new numerical treatment based on Lucas polynomials for 1D and 2D sinh-Gordon equation
Oruç, Ömer
2018-04-01
In this paper, a new mixed method based on Lucas and Fibonacci polynomials is developed for numerical solutions of 1D and 2D sinh-Gordon equations. Firstly time variable discretized by central finite difference and then unknown function and its derivatives are expanded to Lucas series. With the help of these series expansion and Fibonacci polynomials, matrices for differentiation are derived. With this approach, finding the solution of sinh-Gordon equation transformed to finding the solution of an algebraic system of equations. Lucas series coefficients are acquired by solving this system of algebraic equations. Then by plugginging these coefficients into Lucas series expansion numerical solutions can be obtained consecutively. The main objective of this paper is to demonstrate that Lucas polynomial based method is convenient for 1D and 2D nonlinear problems. By calculating L2 and L∞ error norms of some 1D and 2D test problems efficiency and performance of the proposed method is monitored. Acquired accurate results confirm the applicability of the method.
A 1D-2D coupled SPH-SWE model applied to open channel flow simulations in complicated geometries
Chang, Kao-Hua; Sheu, Tony Wen-Hann; Chang, Tsang-Jung
2018-05-01
In this study, a one- and two-dimensional (1D-2D) coupled model is developed to solve the shallow water equations (SWEs). The solutions are obtained using a Lagrangian meshless method called smoothed particle hydrodynamics (SPH) to simulate shallow water flows in converging, diverging and curved channels. A buffer zone is introduced to exchange information between the 1D and 2D SPH-SWE models. Interpolated water discharge values and water surface levels at the internal boundaries are prescribed as the inflow/outflow boundary conditions in the two SPH-SWE models. In addition, instead of using the SPH summation operator, we directly solve the continuity equation by introducing a diffusive term to suppress oscillations in the predicted water depth. The performance of the two approaches in calculating the water depth is comprehensively compared through a case study of a straight channel. Additionally, three benchmark cases involving converging, diverging and curved channels are adopted to demonstrate the ability of the proposed 1D and 2D coupled SPH-SWE model through comparisons with measured data and predicted mesh-based numerical results. The proposed model provides satisfactory accuracy and guaranteed convergence.
International Nuclear Information System (INIS)
Lee, Gil Soo
2006-02-01
To describe power distribution and multiplication factor of a reactor core accurately, it is necessary to perform calculations based on neutron transport equation considering heterogeneous geometry and scattering angles. These calculations require very heavy calculations and were nearly impossible with computers of old days. From the limitation of computing power, traditional approach of reactor core design consists of heterogeneous transport calculation in fuel assembly level and whole core diffusion nodal calculation with assembly homogenized properties, resulting from fuel assembly transport calculation. This approach may be effective in computation time, but it gives less accurate results for highly heterogeneous problems. As potential for whole core heterogeneous transport calculation became more feasible owing to rapid development of computing power during last several years, the interests in two and three dimensional whole core heterogeneous transport calculations by deterministic method are increased. For two dimensional calculation, there were several successful approaches using even parity transport equation with triangular meshes, S N method with refined rectangular meshes, the method of characteristics (MOC) with unstructured meshes, and so on. The work in this thesis originally started from the two dimensional whole core heterogeneous transport calculation by using MOC. After successful achievement in two dimensional calculation, there were efforts in three-dimensional whole-core heterogeneous transport calculation using MOC. Since direct extension to three dimensional calculation of MOC requires too much computing power, indirect approach to three dimensional calculation was considered.Thus, 2D/1D fusion method for three dimensional heterogeneous transport calculation was developed and successfully implemented in a computer code. The 2D/1D fusion method is synergistic combination of the MOC for radial 2-D calculation and S N -like methods for axial 1
Energy Technology Data Exchange (ETDEWEB)
Auriol, A.; David, C. [Battelle Memorial Institute, Geneve (Switzerland); Fillatre, A.; Kurka, G.; Le Boulbin, E.; Rappeneau, J. [Commissariat a l' Energie Atomique (France)
1963-11-15
A method of depositing pyrolytic carbon, which adheres well to a graphite support and is gas-tight, was developed and the physical properties of the deposit were evaluated. The fluidized bed technique was used in applying this method of coating to fissile granules of uranium oxide and uranium carbide. After explaining the conditions for coating the granules, the authors examined their macrostructure, microstructure and permeability. Their behaviour at high temperature was investigated with a view to using them in a reactor. (author) [French] Une methode de deposition de carbone pyrolydque adherant bien au graphite support et etanche aux gaz a ete mise au point. Les proprietes physiques du depot ont ete evaluees. Cette methode de revetement a ete transposee a des granules fissiles d'oxyde et de carbure d'uranium en utilisant la technique du lit fluidise. Apres avoir precise les conditions de revetement de ces granules, on etudie leur macrostructure, leur microstructure, ainsi que leur permeabilite. Le comportement de ces granules a haute temperature a ete examine en vue de leur utilisation eventuelle dans un reacteur. (author) [Spanish] Los autores han elaborado un metodo para depositar carbono pirolitico que se adhiere fuertemente al soporte de grafito y es estanco a los gases. Han determinado las propiedades de dicho deposito. Este metodo de revestimiento fue aplicado a granulos fisionables de oxido y de carburo de uranio, utilizando la tecnica del lecho fluidificado. Despues de determinar las condiciones en que se efectua el revestimiento de esos granulos, los autores estudiaron su macroestructura y su microestructura, asi como su permeabilidad. Examinaron tambien su comportamiento a temperatura elevada, con miras a utilizarlos oportunamente en los reactores. (author) [Russian] Razrabotan metod osazhdeniya piroliticheskogo ugleroda, khorosho pokryvayushchego grafitovuyu osnovu s polucheniem nepronitsaemogo dlya gazov pokrytiya. Otseneny fizicheskie svojstva
International Nuclear Information System (INIS)
Murao, Yoshio; Sugimoto, Jun; Okubo, Tsutomu
1981-01-01
This manual describes the REFLA-1D/MODE 1 reflood system analysis code. This code can solve the core thermo-hydrodynamics under forced flooding conditions and gravity feed conditions in a system similar to FLECHT-SET phase A. This manual describes the REFLA-1D/MODE 1 models and provides application information required to utilize REFLA-1D/MODE 1. (author)
He, Yafei; Gehrig, Dominik; Zhang, Fan; Lu, Chenbao; Zhang, Chao; Cai, Ming; Wang, Yuanyuan; Laquai, Fré dé ric; Zhuang, Xiaodong; Feng, Xinliang
2016-01-01
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.One-dimensional (1D) porous materials have shown great potential for gas storage and separation, sensing, energy storage, and conversion. However, the controlled approach for preparation of 1D porous materials, especially porous organic materials, still remains a great challenge due to the poor dispersibility and solution processability of the porous materials. Here, carbon nanotube (CNT) templated 1D conjugated microporous polymers (CMPs) are prepared using a layer-by-layer method. As-prepared CMPs possess high specific surface areas of up to 623 m2 g-1 and exhibit strong electronic interactions between p-type CMPs and n-type CNTs. The CMPs are used as precursors to produce heteroatom-doped 1D porous carbons through direct pyrolysis. As-produced ternary heteroatom-doped (B/N/S) 1D porous carbons possess high specific surface areas of up to 750 m2 g-1, hierarchical porous structures, and excellent electrochemical-catalytic performance for oxygen reduction reaction. Both of the diffusion-limited current density (4.4 mA cm-2) and electron transfer number (n = 3.8) for three-layered 1D porous carbons are superior to those for random 1D porous carbon. These results demonstrate that layered and core-shell type 1D CMPs and related heteroatom-doped 1D porous carbons can be rationally designed and controlled prepared for high performance energy-related applications.
He, Yafei
2016-10-11
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.One-dimensional (1D) porous materials have shown great potential for gas storage and separation, sensing, energy storage, and conversion. However, the controlled approach for preparation of 1D porous materials, especially porous organic materials, still remains a great challenge due to the poor dispersibility and solution processability of the porous materials. Here, carbon nanotube (CNT) templated 1D conjugated microporous polymers (CMPs) are prepared using a layer-by-layer method. As-prepared CMPs possess high specific surface areas of up to 623 m2 g-1 and exhibit strong electronic interactions between p-type CMPs and n-type CNTs. The CMPs are used as precursors to produce heteroatom-doped 1D porous carbons through direct pyrolysis. As-produced ternary heteroatom-doped (B/N/S) 1D porous carbons possess high specific surface areas of up to 750 m2 g-1, hierarchical porous structures, and excellent electrochemical-catalytic performance for oxygen reduction reaction. Both of the diffusion-limited current density (4.4 mA cm-2) and electron transfer number (n = 3.8) for three-layered 1D porous carbons are superior to those for random 1D porous carbon. These results demonstrate that layered and core-shell type 1D CMPs and related heteroatom-doped 1D porous carbons can be rationally designed and controlled prepared for high performance energy-related applications.
Energy Technology Data Exchange (ETDEWEB)
Moore, J. [United Kingdom Atomic Energy Authority (United Kingdom)
1964-04-15
metodos de medicion de los efectos de la reactividad en APEX, HERO y AGR, y para determinar los datos relativos a la estructura fina y a la distribucion de la potencia en los conjuntos combustibles complejos. Los trabajos se concentran principalmente en el desarrollo de un metodo capaz de sustituir al 'hetrecontrol' y al 'FTD2' , para los cuerpos de reactor cuando el combustible haya alcanzado un grado de combustion considerable. La finalidad del programa experimental con la instalacion HERO es precisamente comprobar estos metodos con cuerpos complejos, inclusive con combustible que contenga plutonio. La explotacion del reactor AGR y las mediciones fisicas que se realicen con el combustible despues de la irradiacion permitiran obtener datos adicionales sobre el efecto del plutonio. (author) [Russian] Rassmatrivaetsja tshhatel'naja jeksperimental'naja i teoreticheskaja rabota, provedennaja pri konstruirovanii, stroitel'stve i vvode v jekspluataciju Uindskejlskogo usovershenstvovannogo reaktora s gazovym ohlazhdeniem i pri okazanii obshhej pomoshhi pri razrabotke usovershenstvovannogo reaktora s gazovym ohlazhdeniem (AGR) dla proizvodstva jenergii dlja grazhdanskih celej. Daetsja opisanie znachitel'nogo ob{sup e}ma rabot, kotorye byli neobhodimy dlja razrabotki prigodnyh teoreticheskih metodov rascheta: 1) raspredelenija potoka i balansa reaktivnosti v slozhnoj aktivnoj zone reaktora; 2) raspredelenija jenergii v toplive so slozhnoj geometriej i 3) vlijanija obluchenija na toplivnye cikly i raspredelenie jenergii. V kachestve vvedenija delaetsja ssylka na jeksperimental'nye dannye i teoreticheskie metody, poluchennye v rezul'tate rabot nad uranovo-magnoksovymi sistemami, i na jeksperimental'nye dannye, poluchennye v rezul'tate Sovmestnoj jeksperimental'noj programmy Britanskoj promyshlennosti (BICEP), kotorye javilis' otpravnym momentom v razrabotke teoreticheskih metodov, primenimyh k usovershenstvovannym reaktoram s gazovym ohlazhdeniem. Dlja opredelenija parametrov
Lambe, Andrew; Massoli, Paola; Zhang, Xuan; Canagaratna, Manjula; Nowak, John; Daube, Conner; Yan, Chao; Nie, Wei; Onasch, Timothy; Jayne, John; Kolb, Charles; Davidovits, Paul; Worsnop, Douglas; Brune, William
2017-06-01
Oxidation flow reactors that use low-pressure mercury lamps to produce hydroxyl (OH) radicals are an emerging technique for studying the oxidative aging of organic aerosols. Here, ozone (O3) is photolyzed at 254 nm to produce O(1D) radicals, which react with water vapor to produce OH. However, the need to use parts-per-million levels of O3 hinders the ability of oxidation flow reactors to simulate NOx-dependent secondary organic aerosol (SOA) formation pathways. Simple addition of nitric oxide (NO) results in fast conversion of NOx (NO + NO2) to nitric acid (HNO3), making it impossible to sustain NOx at levels that are sufficient to compete with hydroperoxy (HO2) radicals as a sink for organic peroxy (RO2) radicals. We developed a new method that is well suited to the characterization of NOx-dependent SOA formation pathways in oxidation flow reactors. NO and NO2 are produced via the reaction O(1D) + N2O → 2NO, followed by the reaction NO + O3 → NO2 + O2. Laboratory measurements coupled with photochemical model simulations suggest that O(1D) + N2O reactions can be used to systematically vary the relative branching ratio of RO2 + NO reactions relative to RO2 + HO2 and/or RO2 + RO2 reactions over a range of conditions relevant to atmospheric SOA formation. We demonstrate proof of concept using high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) measurements with nitrate (NO3-) reagent ion to detect gas-phase oxidation products of isoprene and α-pinene previously observed in NOx-influenced environments and in laboratory chamber experiments.
Poulat, Anne-Lise; Ville, Dorothée; de Bellescize, Julitta; André-Obadia, Nathalie; Cacciagli, Pierre; Milh, Mathieu; Villard, Laurent; Lesca, Gaetan
2015-03-01
Mutations in the TBC1D24 gene were first reported in an Italian family with a unique epileptic phenotype consisting of drug-responsive, early-onset idiopathic myoclonic seizures. Patients presented with isolated bilateral or focal myoclonia, which could evolve to long-lasting attacks without loss of consciousness, with a peculiar reflex component, and were associated with generalized tonic-clonic seizures. This entity was named "familial infantile myoclonic epilepsy" (FIME). More recently, TBC1D24 mutations have been shown to cause a variable range of disorders, including epilepsy of various seizure types and severity, non-syndromic deafness, and DOORS syndrome. We report on the electro-clinical features of two brothers, born to first-cousin parents, affected with infantile-onset myoclonic epilepsy. The peculiar epileptic presentation prompted us to perform direct sequencing of the TBC1D24 gene. The patients had very early onset of focal myoclonic fits with variable topography, lasting a few minutes to several hours, without loss of consciousness, which frequently evolved to generalized myoclonus or myoclonic status. Reflex myoclonia were noticed in one patient. Neurological outcome was marked by moderate intellectual disability. Despite the high frequency of seizures, repeated EEG recordings showed normal background rhythm and rare interictal spikes and waves. We found a homozygous missense mutation, c.457G>A/p.Glu153Lys, in the two affected brothers. This observation combined with recent data from the literature, suggest that mutations in TBCD24 cause a pathological continuum, with FIME at the "benign" end and severe drug-refractory epileptic encephalopathy on the severe end. Early-onset myoclonic epilepsy with focal and generalized myoclonic seizures is a common characteristic of this continuum. Copyright © 2015 Elsevier B.V. All rights reserved.
In vivo 1D and 2D correlation MR spectroscopy of the soleus muscle at 7T
Ramadan, Saadallah; Ratai, Eva-Maria; Wald, Lawrence L.; Mountford, Carolyn E.
2010-05-01
AimThis study aims to (1) undertake and analyse 1D and 2D MR correlation spectroscopy from human soleus muscle in vivo at 7T, and (2) determine T1 and T2 relaxation time constants at 7T field strength due to their importance in sequence design and spectral quantitation. MethodSix healthy, male volunteers were consented and scanned on a 7T whole-body scanner (Siemens AG, Erlangen, Germany). Experiments were undertaken using a 28 cm diameter detunable birdcage coil for signal excitation and an 8.5 cm diameter surface coil for signal reception. The relaxation time constants, T1 and T2 were recorded using a STEAM sequence, using the 'progressive saturation' method for the T1 and multiple echo times for T2. The 2D L-Correlated SpectroscopY (L-COSY) method was employed with 64 increments (0.4 ms increment size) and eight averages per scan, with a total time of 17 min. ResultsT1 and T2 values for the metabolites of interest were determined. The L-COSY spectra obtained from the soleus muscle provided information on lipid content and chemical structure not available, in vivo, at lower field strengths. All molecular fragments within multiple lipid compartments were chemically shifted by 0.20-0.26 ppm at this field strength. 1D and 2D L-COSY spectra were assigned and proton connectivities were confirmed with the 2D method. ConclusionIn vivo 1D and 2D spectroscopic examination of muscle can be successfully recorded at 7T and is now available to assess lipid alterations as well as other metabolites present with disease. T1 and T2 values were also determined in soleus muscle of male healthy volunteers.
International Nuclear Information System (INIS)
Yuan, X.H.; Zhao, G.P.; Yue, Ming; Ye, L.N.; Xia, J.; Zhang, X.C.; Chang, J.
2013-01-01
In this paper, the magnetic reversal process, hysteresis loops and energy products for exchange-coupled Nd 2 Fe 14 B/α-Fe bilayers are studied systematically by a three-dimensional (3D) model. The 3D calculations are numerically solved using the finite difference method, where the results are carefully compared with those calculated by one-dimensional (1D) model. It is found that the calculated hysteresis loops and energy products based on the two methods are consistent with each other. Both nucleation fields and coercivities decrease monotonically as the soft layer thickness L s increases. In addition, the calculated spatial distributions of magnetization orientations in the thickness direction at various applied fields based on both methods signify a three-step magnetic reversal process, which are nucleation, growth and displacement of the domain wall. The calculated magnetic orientations within the film plane, however, are totally different according to the two methods. The 3D calculation exhibits a process of vortex formation and annihilation. On the other hand, the 1D calculation gives a quasi-coherent one, where magnetization orientation is coherent in the film plane and varies in the thickness direction. This new reversal mechanism displayed in the film plane has a systematic influence on the nucleation fields, coercivity and energy products. - Highlights: • Consistent hysteresis loops and energy products for 3D and 1D calculation. • Domain wall formation, evolution and displacement perpendicular to the film plane. • Vortex formation, annihilation and better loop squareness in 3D calculation. • Larger nucleation fields, remanence and smaller coercivity in 3D calculation
Directory of Open Access Journals (Sweden)
Xavier Laurent
2014-11-01
Full Text Available A number of potentially bioactive molecules can be found in nature. In particular, marine organisms are a valuable source of bioactive compounds. The activity of an α-galactosylceramide was first discovered in 1993 via screening of a Japanese marine sponge (Agelas mauritanius. Very rapidly, a synthetic glycololipid analogue of this natural molecule was discovered, called KRN7000. Associated with the CD1d protein, this α-galactosylceramide 1 (KRN7000 interacts with the T-cell antigen receptor to form a ternary complex that yields T helper (Th 1 and Th2 responses with opposing effects. In our work, we carried out molecular dynamics simulations (11.5 µs in total involving eight different ligands (conducted in triplicate in an effort to find out correlation at the molecular level, if any, between chemical modulation of 1 and the orientation of the known biological response, Th1 or Th2. Comparative investigations of human versus mouse and Th1 versus Th2 data have been carried out. A large set of analysis tools was employed including free energy landscapes. One major result is the identification of a specific conformational state of the sugar polar head, which could be correlated, in the present study, to the biological Th2 biased response. These theoretical tools provide a structural basis for predicting the very different dynamical behaviors of α-glycosphingolipids in CD1d and might aid in the future design of new analogues of 1.
Directory of Open Access Journals (Sweden)
Abd Rahman Mohd Yusri
2011-01-01
Full Text Available Abstract A simple method for the synthesis of ZnO nanofilms composed of vertical array of quasi-1D ZnO nanostructures (quasi-NRs on the surface was demonstrated via a 1D crystal growth of the attached nanoseeds under a rapid hydrolysis process of zinc salts in the presence of ammonia at room temperature. In a typical procedure, by simply controlling the concentration of zinc acetate and ammonia in the reaction, a high density of vertically oriented nanorod-like morphology could be successfully obtained in a relatively short growth period (approximately 4 to 5 min and at a room-temperature process. The average diameter and the length of the nanostructures are approximately 30 and 110 nm, respectively. The as-prepared quasi-NRs products were pure ZnO phase in nature without the presence of any zinc complexes as confirmed by the XRD characterisation. Room-temperature optical absorption spectroscopy exhibits the presence of two separate excitonic characters inferring that the as-prepared ZnO quasi-NRs are high-crystallinity properties in nature. The mechanism of growth for the ZnO quasi-NRs will be proposed. Due to their simplicity, the method should become a potential alternative for a rapid and cost-effective preparation of high-quality ZnO quasi-NRs nanofilms for use in photovoltaic or photocatalytics applications. PACS: 81.07.Bc; 81.16.-c; 81.07.Gf.
International Nuclear Information System (INIS)
Ahmadi, B.; Chazal, H.; Waeckerle, T.; Roudet, J.
2008-01-01
Multilayer cores are suitable for integrated planar magnetic components. We proposed here to investigate the frequency behavior of multilayer nanocrystalline cores in the frame of a one-dimensional (1-D) electromagnetic propagation model. Electromagnetic wave equations are considered to explain the phenomena from the macroscopic point of view. A domain wall description is considered to take into account non-homogeneity of magnetic media. This mesoscopic model is correlated to macroscopic model through complex permeability. The scope of validity of the model is determined by means of indirect permeability measurement. Finally, the behavior of the multilayer core is predicted by using an equivalent electrical circuit and will interest component designers
Styrylpyrylium Salts: 1H and 13C NMR High-Resolution Spectroscopy (1D and 2D
Directory of Open Access Journals (Sweden)
Jean Claude W. Ouédraogo
2010-01-01
Full Text Available 1H and 13C NMR high-resolution spectroscopy (1D and 2D (1H, 1H-COSY, HSQC, HMBC for four styrylpyrylium perchlorates were carried out and signal attributions are reported. Chemical shifts observed on 13C NMR spectra for the styrylpyrylium salts were compared with net atomic charge for carbon obtained by AM1 semiempirical calculations. The position of the styryl group present low effect on chemical shifts for carbon atoms, while the presence of methyl group led to the unshielding of the substituted carbon.
Directory of Open Access Journals (Sweden)
Lia Romano
2009-03-01
Full Text Available Determination of Ofanto river flood risk areas through a 1D/2D Lidar hydraulic model The national emergency management services should lean on flood risk areas thematic maps in order to manage an eventual catastrophic event. The article, focused on the Ofanto river hydrographic basins, is a clear example of how an accurate knowledge of the terrain, obtained through the latest technological instruments as Lidar, could be important in these situations.
Clinical development of a novel CD1d-binding NKT cell ligand as a vaccine adjuvant
Padte, Neal N.; Li, Xiangming; Tsuji, Moriya; Vasan, Sandhya
2010-01-01
Natural killer T (NKT) cells are known to play a role against certain microbial infections, including malaria and HIV, two major global infectious diseases. Strategies that acn harness and amplify the immunotherapeutic potential of NKT cells can serve as powerful tools in the fight against such diseases. 7DW8-5, a novel glycolipid, may be one such tool. The interaction of 7DW8-5 with CD1d molecules induces activation of NKT cells, thereby activating various immune-competent cells including de...
Energy Technology Data Exchange (ETDEWEB)
Kobayashi, Hirokazu [Department of Chemistry, College of Humanities and Sciences, Nihon University 3-25-40, Sakura-jo-sui, Setagaya-ku, Tokyo, 156-8550 (Japan)
2015-12-31
One-dimensional (1D) molecular chains of 4-substituted-2,2,6,6-tetramethyl-1-piperidinyloxyl (4-X-TEMPO) radicals were constructed in the crystalline 1D nanochannels of 2,4,6-tris(4-chlorophenoxy)-1,3,5-triazine (CLPOT) used as a template. The ESR spectra of CLPOT inclusion compounds (ICs) using 4-X-TEMPO were examined on the basis of spectral simulation using EasySpin program package for simulating and fitting ESR spectra. The ESR spectra of [(CLPOT){sub 2}-(TEMPO){sub 1.0}] IC were isotropic in the total range of temperatures. The peak-to-peak line width (ΔB{sub pp}) became monotonically narrower from 2.8 to 1.3 mT with increase in temperature in the range of 4.2–298 K. The effect of the rotational diffusion motion of TEMPO radicals in the CLPOT nanochannels for the inter-spin interaction of the [(CLPOT){sub 2}-(TEMPO){sub 1.0}] IC was found to be smaller than the case of [(TPP){sub 2}−(TEMPO){sub 1.0}] IC (TPP = tris(o-phenylenedioxy)cyclotriphosphazene) reported in our previous study. The ΔB{sub pp} of the [(CLPOT){sub 2}-(TEMPO){sub 1.0}] IC in the whole range of temperatures was much narrower than the estimation to be based on the Van Vleck’s formula for the second moment of the rigid lattice model where the electron spin can be considered as fixed; 11 mT of Gaussian line-width component. This suggests the possibility of exchange narrowing in the 1D organic-radical chains of the [(CLPOT){sub 2}-(TEMPO){sub 1.0}] IC. On the other hand, the ESR spectra of [(CLPOT){sub 2}-(MeO-TEMPO){sub 0.41}] IC (MeO-TEMPO = 4-methoxy-TEMPO) were reproduced by a superposition of major broad isotropic adsorption line and minor temperature-dependent modulated triplet component. This suggests that the IC has the part of 1D organic-radical chains and MeO-TEMPO molecules isolated in the CLPOT nanochannels.
Static quadrupole moments of first 2+ states in the 2s1d shell: a review of experiment and theory
International Nuclear Information System (INIS)
Spear, R.H.
1981-01-01
Available experimental information on the static electric quadrupole moments Q 2 + of the 2 + first excited states of even-mass nuclei in the 2s-1d shell is tabulated and critically reviewed, and adopted values are presented. The results reveal a well defined pattern for the variation of Q 2 + through the shell. Predictions of Q 2 + made from various nuclear models are tabulated and compared with experiment. For each nucleus the quantity and quality of the existing data for Q 2 + , together with the current theoretical significance of the result, are used as criteria to determine whether new experimental work is desirable
A One-Dimensional (1-D) Three-Region Model for a Bubbling Fluidized-Bed Adsorber
Energy Technology Data Exchange (ETDEWEB)
Lee, Andrew; Miller, David C.
2012-01-01
A general one-dimensional (1-D), three-region model for a bubbling fluidized-bed adsorber with internal heat exchangers has been developed. The model can predict the hydrodynamics of the bed and provides axial profiles for all temperatures, concentrations, and velocities. The model is computationally fast and flexible and allows for any system of adsorption and desorption reactions to be modeled, making the model applicable to any adsorption process. The model has been implemented in both gPROMS and Aspen Custom Modeler, and the behavior of the model has been verified.
International Nuclear Information System (INIS)
Sun Xu; Li Bin; Song Luting; Gong Jian; Zhang Liming
2010-01-01
1D composite nanofibers of poly(vinylpyrrolidone) (PVP, M W ∼60,000) doped with three Er(III) complexes were prepared by electrospinning. They demonstrated strong near-infrared (NIR) photoluminescence (PL) at 1535 nm and ternary Er(TTA) 3 Phen (denoted as Er2, where TTA=2-thenoyltrifluoroacetonate; Phen=1,10-phenanthroline) fibers (Er2/PVP) exhibited maximum PL intensity. The crystal structure of Er2 complex has been determined by X-ray diffraction measurements. Er2 doped in fibers exhibited better thermal stability of NIR PL than the pure Er2 complex. These luminescent composite fibers have potential application in optical amplifiers.
Saha, Srilekha; Maiti, Santanu K.; Karmakar, S. N.
2016-09-01
Electronic behavior of a 1D Aubry chain with Hubbard interaction is critically analyzed in presence of electric field. Multiple energy bands are generated as a result of Hubbard correlation and Aubry potential, and, within these bands localized states are developed under the application of electric field. Within a tight-binding framework we compute electronic transmission probability and average density of states using Green's function approach where the interaction parameter is treated under Hartree-Fock mean field scheme. From our analysis we find that selective transmission can be obtained by tuning injecting electron energy, and thus, the present model can be utilized as a controlled switching device.
International Nuclear Information System (INIS)
Mehdian, H.; Mohammadzahery, Z.; Hasanbeigi, A.
2014-01-01
In this work, we study the defect mode and bistability behavior of 1-D photonic band gap structure with magnetized plasma and coupled nonlinear defects. The transfer matrix method has been employed to investigate the magnetic field effect on defect mode frequency and bistability threshold. The obtained results show that the frequency of defect mode and bistability threshold can be altered, without changing the structure of the photonic multilayer. Therefore, the bistability behavior of the subjected structure in the presence of magnetized plasma can be utilized in manufacturing wide frequency range devices
Using one hybrid 3D-1D-3D approach for the conceptual design of WCCB blanket for CFETR
Energy Technology Data Exchange (ETDEWEB)
Jiang, Kecheng; Zhang, Xiaokang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China); Li, Jia [University of Science and Technology of China, Hefei, Anhui, 230027 (China); Ma, Xuebin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China); Liu, Songlin, E-mail: slliu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230027 (China)
2017-01-15
Highlights: • The Hybrid 3D-1D-3D approach is used for radial building design of WCCB. • Nuclear heat obtained by this method agrees well with 3D neutronics results. • The final results of temperature and TBR satisfy with the requirements. • All the results show that this approach is high efficiency and high reliability. - Abstract: A hybrid 3D-1D-3D approach is proposed for the conceptual design of a blanket. Firstly, the neutron wall loading (NWL) of each blanket module is obtained through a neutronics calculation employing a 3D model, which contains the geometry outline of in-vacuum vessel components and the exact neutron source distribution. Secondly, a 1D cylindrical model with the blanket module containing a detailed radial building is adopted for the neutronics analysis, with the aim of calculating the tritium breeding ratio (TBR) and nuclear heating. Being normalized to the NWL, the nuclear heating is transferred to a 2D model for thermal-hydraulics analysis using the FLUENT code. Through a series analysis of nuclear-thermal iterations that considers the tritium breeding ratio (TBR) and thermal performance as optimization objectives, the optimized radial building of each module surrounding plasma can be obtained. Thirdly, the 3D structural design of each module is established by adding side walls, cover plates, stiffening plates, and other components based on the radial building. The 3D neutronics and thermal-hydraulics using the detailed blanket modules are re-analyzed. This approach has been successfully applied to the design of a water-cooled ceramic breeder blanket for the Chinese Fusion Engineering Test Reactor (CFETR). The radial building of each blanket module surrounding plasma is optimized. The global tritium breeding ratio (TBR) calculated by the 3D neutronics analysis is 1.21, and the temperature of all materials in the 3D blanket structure is below the upper limits. As indicated by the comparison of the 1D and 3D neutronics and thermal
Identification and applications of the Petunia class II Act1/dTph1 transposable element system.
Gerats, Tom; Zethof, Jan; Vandenbussche, Michiel
2013-01-01
Transposable genetic elements are considered to be ubiquitous. Despite this, their mutagenic capacity has been exploited in only a few species. The main plant species are maize, Antirrhinum, and Petunia. Representatives of all three major groups of class II elements, viz., hAT-, CACTA- and Mutator-like elements, have been identified in Petunia. Here we focus on the research "history" of the Petunia two-element Act1-dTph1 system and the development of its application in forward- and reverse-genetics studies.
International Nuclear Information System (INIS)
Husen, S.; Clinton, J. F.; Kissling, E.
2011-01-01
One-dimensional (1D) velocity models are still widely used for computing earthquake locations at seismological centers or in regions where three-dimensional (3D) velocity models are not available due to the lack of data of sufficiently high quality. The concept of the minimum 1D model with appropriate station corrections provides a framework to compute initial hypocenter locations and seismic velocities for local earthquake tomography. Since a minimum 1D model represents a solution to the coupled hypocenter-velocity problem it also represents a suitable velocity model for earthquake location and data quality assessment, such as evaluating the consistency in assigning pre-defined weighting classes and average picking error. Nevertheless, the use of a simple 1D velocity structure in combination with station delays raises the question of how appropriate the minimum 1D model concept is when applied to complex tectonic regions with significant three-dimensional (3D) variations in seismic velocities. In this study we compute one regional minimum 1D model and three local minimum 1D models for selected subregions of the Swiss Alpine region, which exhibits a strongly varying Moho topography. We compare the regional and local minimum 1D models in terms of earthquake locations and data quality assessment to measure their performance. Our results show that the local minimum 1D models provide more realistic hypocenter locations and better data fits than a single model for the Alpine region. We attribute this to the fact that in a local minimum 1D model local and regional effects of the velocity structure can be better separated. Consequently, in tectonically complex regions, minimum 1D models should be computed in sub-regions defined by similar structure, if they are used for earthquake location and data quality assessment. (authors)
Energy Technology Data Exchange (ETDEWEB)
Husen, S.; Clinton, J. F. [Swiss Seismological Service, ETH Zuerich, Zuerich (Switzerland); Kissling, E. [Institute of Geophysics, ETH Zuerich, Zuerich (Switzerland)
2011-10-15
One-dimensional (1D) velocity models are still widely used for computing earthquake locations at seismological centers or in regions where three-dimensional (3D) velocity models are not available due to the lack of data of sufficiently high quality. The concept of the minimum 1D model with appropriate station corrections provides a framework to compute initial hypocenter locations and seismic velocities for local earthquake tomography. Since a minimum 1D model represents a solution to the coupled hypocenter-velocity problem it also represents a suitable velocity model for earthquake location and data quality assessment, such as evaluating the consistency in assigning pre-defined weighting classes and average picking error. Nevertheless, the use of a simple 1D velocity structure in combination with station delays raises the question of how appropriate the minimum 1D model concept is when applied to complex tectonic regions with significant three-dimensional (3D) variations in seismic velocities. In this study we compute one regional minimum 1D model and three local minimum 1D models for selected subregions of the Swiss Alpine region, which exhibits a strongly varying Moho topography. We compare the regional and local minimum 1D models in terms of earthquake locations and data quality assessment to measure their performance. Our results show that the local minimum 1D models provide more realistic hypocenter locations and better data fits than a single model for the Alpine region. We attribute this to the fact that in a local minimum 1D model local and regional effects of the velocity structure can be better separated. Consequently, in tectonically complex regions, minimum 1D models should be computed in sub-regions defined by similar structure, if they are used for earthquake location and data quality assessment. (authors)
Energy Technology Data Exchange (ETDEWEB)
Crawford, C. G. [Johnson' s Ethical Plastics Ltd., Slough (United Kingdom)
1963-11-15
'installation dans une unite d e production exploitee par une entreprise commerciale et la bacteriologie. Il etudie brievement la rentabilite de la sterilisation par les rayons gamma et examine quelles sont les autres possibilites d'utilisation d'une installation de cette nature. (author) [Spanish] En la memoria se describe una instalacion de esterilizacion a base de {sup 60}Co, explotada comercialmente por la Johnson's Ethical Plastics Limited en Slough (Reino Unido). Se trata de una instalacion de tratamiento continuo totalmente automatica equipada con una fuente de 72 000 c. Aprovechando la experiencia adquirida por la Junta de Energfa Atomica del Reino Unido en su Package Irradiation Plant de Wantage, dicha instalacion fue concebida para esterilizar jeringas de material plastico y otros articulos medicos no recuperables de analoga densidad aparente. La instalacion viene funcionando desde noviembre de 1962. En la memoria se indican las principales caracteristicas de construccion, en especial los dispositivos para la seguridad del personal, y el metodo de carga de las varillas de cobalto. Se describe la experiencia adquirida, en particular en lo que atauee a la dosimetria, la integracion de la instalacion en el proceso productivo de una empresa comercial y los resultados bacteriologicos. Por ultimo, se examinan brevemente los aspectos economicos de la esterilizacion por irradiacion gamma y se evaluan las posibles aplicaciones de una instalacion de este tipo en el futuro. (author) [Russian] Tsel' nastoyashchej stat'i - opisanie ustanovki dlya oblucheniya s pomoshch'yu Co{sup 60}, na kotoroj v nastoyashchee vremya proizvoditsya v promyshlennykh masshtabakh sterilizatsiya meditsinskikh materialov (firma ''Dzhonsons ehtikal plastike'' v Slou, Angliya). Ustanovka nepreryvnogo dejstviya snabzhena istochnikom v 72 000 kyuri; vse operatsii polnost'yu avtomatizirovany. Na osnove opyta, poluchennogo v ehtoj oblasti pri ehkspluatatsii sbornoj radiatsionnoj ustanovki v Uontidzhe (pri
Ghostine, Rabih; Hoteit, Ibrahim; Vazquez, Jose; Terfous, Abdelali; Ghenaim, Abdellah; Mose, Robert
2014-01-01
In open channel networks, flow is usually approximated by the one-dimensional (1D) Saint-Venant equations coupled with an empirical junction model. In this work, a comparison in terms of accuracy and computational cost between a coupled 1D-2D
Ilham, N.; Niasari, S. W.
2018-04-01
Tiris village, Probolinggo, East Java, is one of geothermal potential areas in Indonesia. This area is located in a valley flank of Mount Lamongan and Argopuro volcanic complex. This research aimed to identify a geothermal system at Tiris area, particularly the fluid pathways. The geothermal potential can be seen from the presence of warm springs with temperature ranging 35-45°C. The warm spring locations are aligned in the same orientation with major fault structure in the area. The fault structure shows dominant northwest-southeast orientation. We used audio-magnetotelluric data in the frequency range of 10 Hz until 92 kHz. The total magnetotelluric sites are 6. From the data analysis, most of the data orientation were 2-D with geo-electrical direction north-south. We used 1-D inversion using Newton algorithm. The 1-D inversion resulted in low resistive anomaly that corresponds to Lamongan lavas. Additionally, the depth of the resistor are different between the area to the west (i.e. 75 m) and to the east (i.e. 25 m). This indicates that there is a fault around the aligned maar (e.g. Ranu Air).
Directory of Open Access Journals (Sweden)
Mei Wu
2018-01-01
Full Text Available This paper highlights the synthesis of a one-dimensional (1D hierarchical material mesosilica/palygorskite (Pal composite and evaluates its adsorption performance for anionic dye methyl orange (MO in comparison with Pal and Mobile crystalline material-41 (MCM-41. The Mesosilica/Pal composite is consisted of mesosilica coated Pal nanorods and prepared through a dual template approach using cetyltrimethyl ammonium bromide (CTAB and Pal as soft and hard templates, respectively. The composition and structure of the resultant material was characterized by a scanning electron microscope (SEM, transmissionelectron microscopy (TEM, N2 adsorption-desorption analysis, small-angle X-Ray powder diffraction (XRD, and zeta potential measurement. Adsorption experiments were carried out with different absorbents at different contact times and pH levels. Compared with Pal and MCM-41, the mesosilica/Pal composite exhibited the best efficiency for MO adsorption. Its adsorption ratio is as high as 70.4%. Its adsorption equilibrium time is as short as 30 min. Results testify that the MO retention is promoted for the micro-mesoporous hierarchical structure and positive surface charge electrostatic interactions of the mesosilica/Pal composite. The regenerability of the mesosilica/Pal composite absorbent was also assessed. 1D morphology makes it facile to separate from aqueous solutions. It can be effortlessly recovered and reused for up to nine cycles.
Jambrina, P. G.; Lara, Manuel; Menéndez, M.; Launay, J.-M.; Aoiz, F. J.
2012-10-01
Cumulative reaction probabilities (CRPs) at various total angular momenta have been calculated for the barrierless reaction S(1D) + H2 → SH + H at total energies up to 1.2 eV using three different theoretical approaches: time-independent quantum mechanics (QM), quasiclassical trajectories (QCT), and statistical quasiclassical trajectories (SQCT). The calculations have been carried out on the widely used potential energy surface (PES) by Ho et al. [J. Chem. Phys. 116, 4124 (2002), 10.1063/1.1431280] as well as on the recent PES developed by Song et al. [J. Phys. Chem. A 113, 9213 (2009), 10.1021/jp903790h]. The results show that the differences between these two PES are relatively minor and mostly related to the different topologies of the well. In addition, the agreement between the three theoretical methodologies is good, even for the highest total angular momenta and energies. In particular, the good accordance between the CRPs obtained with dynamical methods (QM and QCT) and the statistical model (SQCT) indicates that the reaction can be considered statistical in the whole range of energies in contrast with the findings for other prototypical barrierless reactions. In addition, total CRPs and rate coefficients in the range of 20-1000 K have been calculated using the QCT and SQCT methods and have been found somewhat smaller than the experimental total removal rates of S(1D).
Kesharwani, Manoj K; Manna, Debashree; Sylvetsky, Nitai; Martin, Jan M L
2018-03-01
We have re-evaluated the X40×10 benchmark for halogen bonding using conventional and explicitly correlated coupled cluster methods. For the aromatic dimers at small separation, improved CCSD(T)-MP2 "high-level corrections" (HLCs) cause substantial reductions in the dissociation energy. For the bromine and iodine species, (n-1)d subvalence correlation increases dissociation energies and turns out to be more important for noncovalent interactions than is generally realized; (n-1)sp subvalence correlation is much less important. The (n-1)d subvalence term is dominated by core-valence correlation; with the smaller cc-pVDZ-F12-PP and cc-pVTZ-F12-PP basis sets, basis set convergence for the core-core contribution becomes sufficiently erratic that it may compromise results overall. The two factors conspire to generate discrepancies of up to 0.9 kcal/mol (0.16 kcal/mol RMS) between the original X40×10 data and the present revision.
Bovino, S; Zhang, P; Kharchenko, V; Dalgarno, A
2011-07-14
In this paper, we report our investigation of the translational energy relaxation of fast S((1)D) atoms in a Xe thermal bath. The interaction potential of Xe-S was constructed using ab initio methods. Total and differential cross sections were then calculated. The latter have been incorporated into the construction of the kernel of the Boltzmann equation describing the energy relaxation process. The solution of the Boltzmann equation was obtained and results were compared with those reported in experiments [G. Nan, and P. L. Houston, J. Chem. Phys. 97, 7865 (1992)]. Good agreement with the measured time-dependent relative velocity of fast S((1)D) atoms was obtained except at long relaxation times. The discrepancy may be due to the error accumulation caused by the use of hard sphere approximation and the Monte Carlo analysis of the experimental data. Our accurate description of the energy relaxation process led to an increase in the number of collisions required to achieve equilibrium by an order of magnitude compared to the number given by the hard-sphere approximation.
Li, Juan; Guo, Li-Xin; Jiao, Yong-Chang; Li, Ke
2011-01-17
Finite-difference time-domain (FDTD) algorithm with a pulse wave excitation is used to investigate the wide-band composite scattering from a two-dimensional(2-D) infinitely long target with arbitrary cross section located above a one-dimensional(1-D) randomly rough surface. The FDTD calculation is performed with a pulse wa