WorldWideScience

Sample records for divertor thomson scattering

  1. Upgraded divertor Thomson scattering system on DIII-D

    Science.gov (United States)

    Glass, F.; Carlstrom, T. N.; Du, D.; McLean, A. G.; Taussig, D. A.; Boivin, R. L.

    2016-11-01

    A design to extend the unique divertor Thomson scattering system on DIII-D to allow measurements of electron temperature and density in high triangularity plasmas is presented. Access to this region is selectable on a shot-by-shot basis by redirecting the laser beam of the existing divertor Thomson system inboard — beneath the lower floor using a moveable, high-damage threshold, in-vacuum mirror — and then redirecting again vertically. The currently measured divertor region remains available with this mirror retracted. Scattered light is collected from viewchords near the divertor floor using in-vacuum, high temperature optical elements and relayed through the port window, before being coupled into optical fiber bundles. At higher elevations from the floor, measurements are made by dynamically re-focusing the existing divertor system collection optics. Nd:YAG laser timing, analysis of the scattered light spectrum via polychromators, data acquisition, and calibration are all handled by existing systems or methods of the current multi-pulse Thomson scattering system. Existing filtered polychromators with 7 spectral channels are employed to provide maximum measurement breadth (Te in the range of 0.5 eV-2 keV, ne in the range of 5 × 1018-1 × 1021 m3) for both low Te in detachment and high Te measurement up beyond the separatrix.

  2. Upgraded divertor Thomson scattering system on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Glass, F., E-mail: glassf@fusion.gat.com; Carlstrom, T. N.; Du, D.; Taussig, D. A.; Boivin, R. L. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); McLean, A. G. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States)

    2016-11-15

    A design to extend the unique divertor Thomson scattering system on DIII-D to allow measurements of electron temperature and density in high triangularity plasmas is presented. Access to this region is selectable on a shot-by-shot basis by redirecting the laser beam of the existing divertor Thomson system inboard — beneath the lower floor using a moveable, high-damage threshold, in-vacuum mirror — and then redirecting again vertically. The currently measured divertor region remains available with this mirror retracted. Scattered light is collected from viewchords near the divertor floor using in-vacuum, high temperature optical elements and relayed through the port window, before being coupled into optical fiber bundles. At higher elevations from the floor, measurements are made by dynamically re-focusing the existing divertor system collection optics. Nd:YAG laser timing, analysis of the scattered light spectrum via polychromators, data acquisition, and calibration are all handled by existing systems or methods of the current multi-pulse Thomson scattering system. Existing filtered polychromators with 7 spectral channels are employed to provide maximum measurement breadth (T{sub e} in the range of 0.5 eV–2 keV, n{sub e} in the range of 5 × 10{sup 18}–1 × 10{sup 21} m{sup 3}) for both low T{sub e} in detachment and high T{sub e} measurement up beyond the separatrix.

  3. Thomson scattering from laser plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J D; Alley, W E; De Groot, J S; Estabrook, K G; Glenzer, S H; Hammer, J H; Jadaud, J P; MacGowan, B J; Rozmus, W; Suter, L J; Williams, E A

    1999-01-12

    Thomson scattering has recently been introduced as a fundamental diagnostic of plasma conditions and basic physical processes in dense, inertial confinement fusion plasmas. Experiments at the Nova laser facility [E. M. Campbell et al., Laser Part. Beams 9, 209 (1991)] have demonstrated accurate temporally and spatially resolved characterization of densities, electron temperatures, and average ionization levels by simultaneously observing Thomson scattered light from ion acoustic and electron plasma (Langmuir) fluctuations. In addition, observations of fast and slow ion acous- tic waves in two-ion species plasmas have also allowed an independent measurement of the ion temperature. These results have motivated the application of Thomson scattering in closed-geometry inertial confinement fusion hohlraums to benchmark integrated radiation-hydrodynamic modeling of fusion plasmas. For this purpose a high energy 4{omega} probe laser was implemented recently allowing ultraviolet Thomson scattering at various locations in high-density gas-filled hohlraum plasmas. In partic- ular, the observation of steep electron temperature gradients indicates that electron thermal transport is inhibited in these gas-filled hohlraums. Hydrodynamic calcula- tions which include an exact treatment of large-scale magnetic fields are in agreement with these findings. Moreover, the Thomson scattering data clearly indicate axial stagnation in these hohlraums by showing a fast rise of the ion temperature. Its timing is in good agreement with calculations indicating that the stagnating plasma will not deteriorate the implosion of the fusion capsules in ignition experiments.

  4. LIDAR Thomson scattering for advanced tokamaks. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Molvik, A.W.; Lerche, R.A.; Nilson, D.G. [and others

    1996-03-18

    The LIDAR Thomson Scattering for Advanced Tokamaks project made a valuable contribution by combining LLNL expertise from the MFE Program: tokamak design and diagnostics, and the ICF Program and Physics Dept.: short-pulse lasers and fast streak cameras. This multidisciplinary group evaluated issues involved in achieving a factor of 20 higher high spatial resolution (to as small as 2-3 mm) from the present state of the art in LIDAR Thomson scattering, and developed conceptual designs to apply LIDAR Thomson scattering to three tokamaks: Upgraded divertor measurements in the existing DIII-D tokamak; Both core and divertor LIDAR Thomson scattering in the proposed (now cancelled) TPX; and core, edge, and divertor LIDAR Thomson scattering on the presently planned International Tokamak Experimental Reactor, ITER. Other issues were evaluated in addition to the time response required for a few millimeter spatial resolution. These include the optimum wavelength, 100 Hz operation of the laser and detectors, minimizing stray light - always the Achilles heel of Thomson scattering, and time dispersion in optics that could prevent good spatial resolution. Innovative features of our work included: custom short pulsed laser concepts to meet specific requirements, use of a prism spectrometer to maintain a constant optical path length for high temporal and spatial resolution, the concept of a laser focus outside the plasma to ionize gas and form an external fiducial to use in locating the plasma edge as well as to spread the laser energy over a large enough area of the inner wall to avoid laser ablation of wall material, an improved concept for cleaning windows between shots by means of laser ablation, and the identification of a new physics issue - nonlinear effects near a laser focus which could perturb the plasma density and temperature that are to be measured.

  5. Quantum theory of Thomson scattering

    Science.gov (United States)

    Crowley, B. J. B.; Gregori, G.

    2014-12-01

    The general theory of the scattering of electromagnetic radiation in atomic plasmas and metals, in the non-relativistic regime, in which account is taken of the Kramers-Heisenberg polarization terms in the Hamiltonian, is described from a quantum mechanical viewpoint. As well as deriving the general formula for the double differential Thomson scattering cross section in an isotropic finite temperature multi-component system, this work also considers closely related phenomena such as absorption, refraction, Raman scattering, resonant (Rayleigh) scattering and Bragg scattering, and derives many essential relationships between these quantities. In particular, the work introduces the concept of scattering strength and the strength-density field which replaces the normal particle density field in the standard treatment of scattering by a collection of similar particles and it is the decomposition of the strength-density correlation function into more familiar-looking components that leads to the final result. Comparisons are made with previous work, in particular that of Chihara [1].

  6. Alpha particle collective Thomson scattering in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Machuzak, J.S.; Woskov, P.P.; Rhee, D.Y.; Gilmore, J. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Plasma Fusion Center; Bretz, N.L.; Park, H.K. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Aamodt, R.E.; Cheung, P.Y.; Russell, D.A. [Lodestar Research Corp., Boulder, CO (United States); Bindslev, H. [JET Joint Undertaking, Abingdon (United Kingdom)

    1993-11-01

    A collective Thomson scattering diagnostic is being implemented on TFTR to measure alpha particle, energetic and thermal ion densities and velocity distributions. A 60 GHz, 0.1-1 kW gyrotron will be used as the transmitter source, and the scattering geometry will be perpendicular to the magnetic field in the extraordinary mode polarization. An enhanced scattered signal is anticipated from fluctuations in the lower hybrid frequency range with this scattering geometry. Millimeter wave collective Thomson scattering diagnostics have the advantage of larger scattering angles to decrease the amount of stray light, and long, high power, modulated pulses to obtain improved signal to noise through synchronous detection techniques.

  7. Thomson-scattering systems on TMX

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, R.K.; Clauser, J.F.; Frank, A.M.; Goerz, D.A.; Lang, D.D.

    1982-01-30

    This report summarizes the criteria and designs that were used for the two TMX Thomson-scattering systems. It describes the optical, mechanical, electronic, and computer analysis features of these installations. A brief discussion of general Thomson-scattering principles and sensitivity limits is given. Also included are some plasma electron temperature and density measurements from TMX that were obtained through the use of these systems.

  8. Thomson Scattering in the Solar Corona

    CERN Document Server

    Inhester, Bernd

    2015-01-01

    The fundaments of the application of Thomson scattering to the analysis of coronagraph images has been laid decades ago. Even though the basic formulation is undebated, a discussion has grown in recent years about the spatial distribution of Thomson scatter sensitivity in space. These notes are an attempt to clarify the understanding about this topic. We reformulate the classical calculations in a more transparent way using modern SI-compatible quantities and extend the scattering calculations to the case of relativistic electrons. Many mathematical and some basic physical ingredients are made explicit in several chapters of the appendix.

  9. Double pulse Thomson scattering system at RTP

    NARCIS (Netherlands)

    Beurskens, M. N. A.; Barth, C. J.; Chu, C.C.; Donne, A. J. H.; Herranz, J. A.; Cardozo, N. J. L.; van der Meiden, H. J.; Pijper, F.J.

    1997-01-01

    In this article a double pulse multiposition Thomson scattering diagnostic, under construction at RTP, is discussed. Light from a double pulsed ruby laser (pulse separation: 10-800 mu s, max. 2x12.5 J) is scattered by the free electrons of the tokamak plasma and relayed to a Littrow polychromator fo

  10. Theory of Thomson scattering in inhomogeneous media

    CERN Document Server

    Kozlowski, P M; Gericke, D O; Regan, S P; Gregori, G

    2016-01-01

    Thomson scattering of laser light is one of the most fundamental diagnostics of plasma density, temperature and magnetic fields. It relies on the assumption that the properties in the probed volume are homogeneous and constant during the probing time. On the other hand, laboratory plasmas are seldom uniform and homogeneous on the temporal and spatial dimensions over which data is collected. This is partic- ularly true for laser-produced high-energy-density matter, which often exhibits steep gradients in temperature, density and pressure, on a scale determined by the laser focus. Here, we discuss the modification of the cross section for Thomson scattering in fully-ionized media exhibiting steep spatial inhomogeneities and/or fast temporal fluctuations. We show that the predicted Thomson scattering spectra are greatly altered compared to the uniform case, and may even lead to violations of detailed balance. Therefore, careful interpretation of the spectra is necessary for spatially or temporally inhomogeneous ...

  11. Theory of Thomson scattering in inhomogeneous media

    Science.gov (United States)

    Kozlowski, P. M.; Crowley, B. J. B.; Gericke, D. O.; Regan, S. P.; Gregori, G.

    2016-04-01

    Thomson scattering of laser light is one of the most fundamental diagnostics of plasma density, temperature and magnetic fields. It relies on the assumption that the properties in the probed volume are homogeneous and constant during the probing time. On the other hand, laboratory plasmas are seldom uniform and homogeneous on the temporal and spatial dimensions over which data is collected. This is particularly true for laser-produced high-energy-density matter, which often exhibits steep gradients in temperature, density and pressure, on a scale determined by the laser focus. Here, we discuss the modification of the cross section for Thomson scattering in fully-ionized media exhibiting steep spatial inhomogeneities and/or fast temporal fluctuations. We show that the predicted Thomson scattering spectra are greatly altered compared to the uniform case, and may lead to violations of detailed balance. Therefore, careful interpretation of the spectra is necessary for spatially or temporally inhomogeneous systems.

  12. The Thomson Scattering System at DANTE

    DEFF Research Database (Denmark)

    Gadeberg, M.

    This report describes the construction and operation of the 90 deg Thomson Scattering diagnostic at DANTE. The system is based on a double-pulse ruby laser and a three channel spectrometer. Two single point measurements can be made during each plasma discharge.......This report describes the construction and operation of the 90 deg Thomson Scattering diagnostic at DANTE. The system is based on a double-pulse ruby laser and a three channel spectrometer. Two single point measurements can be made during each plasma discharge....

  13. Pulsed Laser Nonlinear Thomson Scattering for General Scattering Geometries

    Energy Technology Data Exchange (ETDEWEB)

    Geoffrey Krafft; A. Doyuran; James Rosenzweig

    2005-05-01

    In a recent paper it has been shown that single electron Thomson backscatter calculations can be performed including the effects of pulsed high intensity lasers. In this paper we present a more detailed treatment of the problem and present results for more general scattering geometries. In particular, we present new results for 90 degree Thomson scattering. Such geometries have been increasingly studied as X-ray sources of short-pulse radiation. Also, we present a clearer physical basis for these different cases.

  14. Thomson scattering off a pair (electron-positron) plasma

    Institute of Scientific and Technical Information of China (English)

    Zheng Jian

    2006-01-01

    Thomson scattering off a pair (electron-positron) plasma is theoretically investigated in the collisionless and collisional limits respectively. Our calculations show that the power spectrum of the Thomson scattering offa collisionless pair plasma is just proportional to the velocity distribution function of the particles in the plasma. Collective modes in the plasma do not have any effects on the Thomson scattering spectrum because of the correlation between the negatively- and positively-charged particles. In the collisional limit, the power spectrum of the Thomson scattering presents three spikes: two peaks correspond to two contra-propagating sound waves and one peak corresponds to an entropy wave.

  15. MFTF Thomson scattering: a system study

    Energy Technology Data Exchange (ETDEWEB)

    Frank, A.M.

    1980-09-11

    This report documents the design effort for a Thomson scattering diagnostic system for MFTF. The principal problem is obtaining enough photons, in the presence of a poorly known background, to make satisfactory measurements. No currently available laser will yield enough photons to do this. Design concepts for imaging and detection are discussed. The ability of components to survive in the high-radiation environment of MFTF is identified as an important problem. The transition to MFTF-B makes many of the problems identified here more serious.

  16. Operation of the NSTX Thomson Scattering System

    Energy Technology Data Exchange (ETDEWEB)

    LeBlanc, B.P.; Bell, R.E.; Johnson, D.W.; Hoffman, D.E.; Long, D.C.; and Palladino, R.W.

    2002-09-03

    The NSTX multi-point Thomson scattering system has been in operation for nearly two years and provides routine Te(R,t) and ne(R,t) measurements. The laser beams from two 30-Hz Nd:YAG lasers are imaged by a spherical mirror onto 36 fiber-optics bundles. In the present configuration, the output ends of 20 of these bundles are instrumented with filter polychromators and avalanche photodiode detectors. In this paper, we discuss the laser implementation and the installed collection optics. We follow with examples of raw and analyzed data. We close with some comments about calibration.

  17. Thomson Scattering Process in Laser-Produced Plasmas

    Institute of Scientific and Technical Information of China (English)

    YU Quan-Zhi; JIANG Xiao-Hua; LI Wen-Hong; LIU Shen-Ye; ZHENG Zhi-Jian; ZHANG Jie; LI Yu-Tong; ZHENG Jun; YAN Fei; LU Xin; WANG Zhe-Bin; ZHENG Jian; YU Chang-Xuan

    2005-01-01

    @@ We present the evolutions of the electron temperature and plasma expansion velocity with Thomson scattering experiment. The observed time-resolved ion-acoustic image is reproduced by a numerical code which couples the Thomson scattering theory with the output parameters of the one-dimensional hydrocode MEDUSA.

  18. Thomson scattering of polarized photons in an intense laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Byung Yunn

    2006-02-21

    We present a theoretical analysis of the Thomson scattering of linearly and circularly polarized photons from a pulsed laser by electrons. The analytical expression for the photon distribution functions presented in this paper should be useful to designers of Thomson scattering experiments.

  19. Initial operation of the divertor Thompson scattering diagnostic on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Carlstrom, T.N.; Hsieh, C.L.; Stockdale, R.E. [and others

    1996-05-01

    The first Thomson scattering measurements of n{sub e} and T{sub e} in the divertor region of a tokamak are reported. These data are used as input to boundary physics codes such as UEDGE and DEGAS and to benchmark the predictive capabilities of these codes. These measurements have also contributed to the characterization of tokamak disruptions. A Nd:YAG laser (20 Hz, 1 J, 15 ns, 1064 nm) is directed vertically through the lower divertor region of the DIII-D tokamak. A custom, aspherical collection lens (f /6.8) images the laser beam from 1-21 cm above the target plates into eight spatial channels with 1.5 cm vertical and 0.3 cm radial resolution. 2D mapping of the divertor region is achieved by sweeping the divertor X-point location radially through the fixed laser beam location. Fiber optics carry the light to polychromators whose interference filters have been optimized for low T{sub e} measurements. Silicon avalanche photo diodes measure both the scattered and plasma background light. Temperatures and densities are typically in the range of 5-200 eV and 1 - 10 x 10{sup 19} m{sup -3} respectively. Low temperatures, T{sub e} < 1 eV, and high densities, n{sub e} > 8x10{sup 20} m{sup -3} have been observed in detached plasmas. Background light levels have not been a significant problem. Reduction of the laser stray light permits Rayleigh calibration. Because of access difficulties, no in-vessel vacuum alignment target could be used. Instead, an in situ laser alignment monitor provides alignment information for each laser pulse. Results are compared with Langmuir probe measurements where good agreement is found except for regions of high n{sub e} and low T{sub e} as measured by Thomson scattering.

  20. A compact multichannel spectrometer for Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R. [Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2012-10-15

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T{sub e} < 100 eV are achieved by a 2971 l/mm VPH grating and measurements T{sub e} > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated ({approx}2 ns) ICCD camera for detection. A Gen III image intensifier provides {approx}45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  1. A compact multichannel spectrometer for Thomson scattering.

    Science.gov (United States)

    Schoenbeck, N L; Schlossberg, D J; Dowd, A S; Fonck, R J; Winz, G R

    2012-10-01

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T(e) VPH grating and measurements T(e) > 100 eV by a 2072 l∕mm VPH grating. The spectrometer uses a fast-gated (~2 ns) ICCD camera for detection. A Gen III image intensifier provides ~45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  2. Thomson Scattering at FLASH - Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Toleikis, S; Bornath, T; Cao, L; Doppner, T; Dusterer, S; Faustlin, R; Forster, E; Fortmann, C; Glenzer, S H; Gode, S; Gregori, G; Holl, A; Irsig, R; Laarmann, T; Lee, H J; Meiwes-Broer, K H; Przystawik, A; Radcliffe, P; Redmer, R; Reinholz, H; Ropke, G; Thiele, R; Tiggesbaumker, J; Truong, N X; Tschentscher, T; Uschmann, I; Zastrau, U

    2007-11-28

    The basic idea is to implement Thomson scattering with free electron laser (FEL) radiation at near-solid density plasmas as a diagnostic method which allows the determination of plasma temperatures and densities in the warm dense matter (WDM) regime (free electron density of n{sub e} = 10{sup 21}-10{sup 26} cm{sup -3} with temperatures of several eV). The WDM regime [1] at near-solid density (n{sub e} = 10{sup 21}-10{sup 22} cm{sup -3}) is of special interest because, it is where the transition from an ideal plasma to a degenerate, strongly coupled plasma occurs. A systematic understanding of this largely unknown WDM domain is crucial for the modeling and understanding of contemporary plasma experiments, like laser shock-wave or Z-pinch experiments as well as for inertial confinement fusion (ICF) experiments as the plasma evolution follows its path through this domain.

  3. Experimental challenges of Traveling-wave Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Debus, Alexander; Steiniger, Klaus; Siebold, Mathias; Jochmann, Axel; Irman, Arie; Bussmann, Michael; Schramm, Ulrich; Cowan, Thomas; Sauerbrey, Roland [Forschungzentrum Dresden-Rossendorf, Institute for Radiation Physics, 01328 Dresden (Germany)

    2011-07-01

    Traveling-wave Thomson scattering is a novel interaction design that allows circumventing the Rayleigh limit in optical undulators, which is interesting for possible realizations of Thomson scattering sources with photon yields per pulse that are 2-3 orders of magnitudes beyond current designs. Here we present details on how a Traveling-wave setup has to be implemented in experiment. An emphasis is put on the use of varied-line spacing (VLS) gratings for spatio-temporal beam shaping at large interaction angles to achieve optimal overlap. At the FZD we are using the high-power laser system DRACO (250TW) to realize a Thomson source with electrons from the linear accelerator ELBE or laser-plasma accelerated electrons. We present the current status and further progress towards a head-on Thomson source and a Traveling-Wave Thomson scattering source aiming for high photon yields per pulse.

  4. Dense Matter Characterization by X-ray Thomson Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Landen, O L; Glenzer, S H; Edwards, M J; Lee, R W; Collins, G W; Cauble, R C; Hsing, W W; Hammel, B A

    2000-12-29

    We discuss the extension of the powerful technique of Thomson scattering to the x-ray regime for providing an independent measure of plasma parameters for dense plasmas. By spectrally-resolving the scattering, the coherent (Rayleigh) unshifted scattering component can be separated from the incoherent Thomson component, which is both Compton and Doppler shifted. The free electron density and temperature can then be inferred from the spectral shape of the high frequency Thomson scattering component. In addition, as the plasma temperature is decreased, the electron velocity distribution as measured by incoherent Thomson scattering will make a transition from the traditional Gaussian Boltzmann distribution to a density-dependent parabolic Fermi distribution to. We also present a discussion for a proof-of-principle experiment appropriate for a high energy laser facility.

  5. Thomson Scattering Measurements of Plasma Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Holl, A; Redmer, R; Tschentscher, T; Toleikis, S; Forster, E; Cao, L; Glenzer, S H; Neumayer, P

    2006-03-29

    The authors propose to investigate the dynamics of plasmas in the warm dense matter (WDM) regime on ultra-short time scales. Accessible plasma conditions are in the density range of n = 10{sup 20} - 10{sup 23} cm{sup -3} and at moderate temperatures of T = 1 - 20 eV. These plasmas are of importance for laboratory astrophysics, high energy density science and inertial confinement fusion. They are characterized by a coupling parameter of {Lambda} {approx}> 1, where electromagnetic interactions are of the same order as the kinetic energy. The high density of the plasma makes it opaque to radiation in the visible range and, as a consequence, UV up to x-ray radiation can be used to probe such systems. Therefore a wide range in the temperature-density plane of WDM is presently unexplored and only the VUV-FEL opens for the first time the opportunity for its detailed investigation. In equilibrium, the macroscopic state of the plasma is completely characterized by its density and temperature. In pump-probe experiments however, the plasma is initially in a nonequilibrium state and relaxes towards equilibrium within the relaxation time {tau}{sub R}. For t > {tau}{sub R}, the plasma is in an equilibrium state and expands hydrodynamically on a time scale {tau}{sub H}. The proposed experiment measures the time-resolved Thomson scattering signal with the VUV-FEL radiation characterizing the plasma in equilibrium and nonequilibrium states. Both regimes are extremely interesting and will provide new insight into the following phenomena: (1) details of nonequilibrium correlations, (2) relaxation phenomena, (3) hydrodynamic expansion, (4) recombination kinetics. The time-resolved Thomson scattering signal is obtained in a pump-probe experiment by varying the delay between pump and probe. The final stage of the relaxation process (t {approx} {tau}{sub R}) is of special interest since the plasma components (electrons and ion species) can be assumed to be in quasi-equilibrium. This

  6. Thomson scattering upgrade on Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Leroux, F., E-mail: fabrice.leroux@cea.f [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Manenc, L.; Moreau, M. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France)

    2010-07-15

    The Thomson scattering diagnostic supplies the electron temperature and density of Tore Supra plasmas from the spectrum analysis of scattered light of a very short laser pulse. A new spectrometer has been realized to improve the signal to noise ratio. In order to obtain an efficient noise reduction, a real time calculation is necessary. The current analogue integration of the signal is inadequate. A fast digitalization must be used with a sampling rate of 1 GSamples/s, a bandwidth of 150 MHz and a 12 bits dynamic range. In a first step, fast analogue data acquisition boards for 4 channels were added in 2009 to the VME acquisition system in place. A MATACQ (Matrix for acquisition) board was chosen for sampling analogue data up to 2 GSamples/s over 4 channels with a large bandwidth of 300 MHz and a 14 bits dynamic range. This solution offers a low cost acquisition system that is not available in any other commercial board with this dynamic range. The first results will be obtained on calibration period with a light emitted diode before the summer 2009. This article will present the new data acquisition system and the coming first results.

  7. Plasma Jet Interaction with Thomson Scattering Probe Laser

    Science.gov (United States)

    Byvank, Tom; Banasek, Jacob; Potter, William; Kusse, Bruce

    2016-10-01

    Thomson scattering systems can diagnose plasma temperatures and velocities. When probing a plasma jet with the Thomson scattering laser, we observe a laser-plasma interaction that inputs energy into the plasma jet. The absorbed energy causes a bubble of low density ( 5*1017 cm-2) in the jet (unperturbed 1018 cm-2). A pulsed power machine (1 MA peak current, 100 ns rise time) with a radial foil (15 μm thick Al) configuration generates the plasma jet. We compare the effects of using 10 J and 1 J laser energies, for which the 10 J laser is a larger perturbation. We discuss how the interaction affects the Thomson scattering temperature and velocity measurements. Work supported by National Nuclear Security Administration (NNSA) Stewardship Sciences Academic Programs under Department of Energy (DOE) Cooperative Agreement DE-NA0001836 and National Science Foundation (NSF) Grant PHY-1102471.

  8. Thomson scattering from laser induced plasma in air

    Energy Technology Data Exchange (ETDEWEB)

    Dzierzega, K; Mendys, A [Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Krakow (Poland); Pellerin, S; Thouin, E [GREMI - site de Bourges, Universite d' Orleans, rue Gaston Berger BP 4043, 18028 Bourges (France); Travaille, G; Bousquet, B; Canioni, L [Centre de Physique Moleculaire Optique et Hertzienne, Universite Bordeaux I, 351 Cours de la Liberation, 33405 Talence CEDEX (France); Pokrzywka, B, E-mail: krzysztof.dzierzega@uj.edu.p [Mt. Suhora Observatory, Pedagogical University of Cracow, ul. Podchorazych 2, 30-084 Krakow (Poland)

    2010-05-01

    The laser induced plasma in air produced by 6 ns, 532 nm Nd:YAG pulses with 25 mJ energy was studied using the Thomson scattering method and plasma imaging techniques. Plasma images and Thomson scattered spectra were registered at delay times ranging from 150 ns to 1 {mu}s after the breakdown pulses. The electron density and temperature, as determined in the core of the plasma plume, were found to decrease from 7.4 x 10{sup 17} cm{sup -3} to about 1.03 x 10{sup 17} cm{sup -3} and from 100 900 K to 22 700 K. The highly elevated electron temperatures are the result of plasma heating by the second, probe pulse in the Thomson scattering experiments.

  9. The LIDAR Thomson Scattering Diagnostic on JET

    DEFF Research Database (Denmark)

    Salzmann, H.; Bundgaard, J.; Gadd, A.

    1988-01-01

    By combining the time‐of‐flight or LIDAR principle with a Thomson backscatter diagnostic, spatial profiles of the electron temperature and density are measured in a magnetically confined fusion plasma. This technique was realized for the first time on the JET tokamak. A ruby laser (3‐J pulse energy...

  10. Thomson scattering analysis of large scale fluctuations in the ASDEX Upgrade edge

    Energy Technology Data Exchange (ETDEWEB)

    Kurzan, B; Horton, L D; Murmann, H; Neuhauser, J; Suttrop, W [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany)

    2007-06-15

    Large scale fluctuations in between edge localized modes (ELMs) are the main source for the scatter in plasma edge H mode profiles of electron density and temperature, as measured by high precision, high resolution Thomson scattering. These large scale fluctuations are also observed with electron cyclotron emission. They are quantitatively analysed by 2D poloidal snapshots of electron density and temperature, based on a 5 x 10 matrix of scattering volumes provided by the Thomson scattering system. Fluctuations with a quasi-periodic structure are found in a 2D snapshot with a frequency of about 61%. When interpreted as field-aligned helical structures toroidal quasi-mode numbers of 6-48 are found. The amplitudes of the fluctuations decrease with increasing quasi-mode number and edge profile gradient lengths. The amplitudes of the large scale structures in the steep gradient region are anti-correlated with the divertor D{sub {alpha}}-intensity. The particle loss during an ELM is at least to a significant fraction due to the electron density 'blobs' observed in the scrape-off layer. The large scale fluctuations also perturb the measurement of 1D radial profiles. In the middle of the steep gradient region the perturbations are symmetric, but asymmetric both further inside (more minima) and further outside (more maxima)

  11. A polarization-based Thomson scattering technique for burning plasmas

    CERN Document Server

    Parke, E; Hartog, D J Den

    2013-01-01

    The traditional Thomson scattering diagnostic is based on measurement of the wavelength spectrum of scattered light, where electron temperature measurements are inferred from thermal broadening of the scattered laser light. At sufficiently high temperatures, especially those predicted for ITER and other burning plasmas, relativistic effects cause a change in the polarization state of the scattered photons. The resulting depolarization of the scattered light is temperature dependent and has been proposed elsewhere as a potential alternative to the traditional spectral decomposition technique. Following similar work, we analytically calculate the degree of polarization for incoherent Thomson scattering. For the first time, we obtain exact results valid for the full range of incident laser polarization states and electron temperatures. While previous work focused only on linear polarization, we show that circularly polarized incident light optimizes the degree of depolarization for a wide range of temperatures r...

  12. Warm, Dense Plasma Characterization by X-ray Thomson Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Landen, O L; Glenzer, S H; Cauble, R C; Lee, R W; Edwards, J E; Degroot, J S

    2000-07-18

    We describe how the powerful technique of spectrally resolved Thomson scattering can be extended to the x-ray regime, for direct measurements of the ionization state, density, temperature, and the microscopic behavior of dense cool plasmas. Such a direct measurement of microscopic parameters of solid density plasmas could eventually be used to properly interpret laboratory measurements of material properties such as thermal and electrical conductivity, EUS and opacity. In addition, x-ray Thomson scattering will provide new information on the characteristics of rarely and hitherto difficult to diagnose Fermi degenerate and strongly coupled plasmas.

  13. Gated integrator PXI-DAQ system for Thomson scattering diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Kiran, E-mail: kkpatel@ipr.res.in; Pillai, Vishal; Singh, Neha; Thomas, Jinto; Kumar, Ajai

    2017-06-15

    Gated Integrator (GI) PXI based data acquisition (DAQ) system has been designed and developed for the ease of acquiring fast Thomson Scattered signals (∼50 ns pulse width). The DAQ system consists of in-house designed and developed GI modules and PXI-1405 chassis with several PXI-DAQ modules. The performance of the developed system has been validated during the SST-1 campaigns. The dynamic range of the GI module depends on the integrating capacitor (C{sub i}) and the modules have been calibrated using 12 pF and 27 pF integrating capacitors. The developed GI module based data acquisition system consists of sixty four channels for simultaneous sampling using eight PXI based digitization modules having eight channels per module. The error estimation and functional tests of this unit are carried out using standard source and also with the fast detectors used for Thomson scattering diagnostics. User friendly Graphical User Interface (GUI) has been developed using LabVIEW on Windows platform to control and acquire the Thomson scattering signal. A robust, easy to operate and maintain with low power consumption, having higher dynamic range with very good sensitivity and cost effective DAQ system is developed and tested for the SST-1 Thomson scattering diagnostics.

  14. Thomson scattering at Pilot-PSI and Magnum-PSI

    NARCIS (Netherlands)

    van Rooij, G. J.; van der Meiden, H. J.; Hoen, Mhjt; Koppers, W. R.; Shumack, A. E.; Vijvers, W. A. J.; Westerhout, J.; Wright, G. M.; Rapp, J.

    2009-01-01

    A robust and sensitive Thomson scattering (TS) system has been developed for the high density low temperature plasma in the linear plasma generator Pilot-PSI, which routinely and reproducibly measures electron density and temperature profiles along a detection chord of 25 mm with a spatial

  15. Collective Thomson Scattering from Laser-Produced Plasmas

    Institute of Scientific and Technical Information of China (English)

    白波; 郑坚; 俞昌旋; 刘万东; 蒋小华; 袁晓东; 郑志坚; 徐冰; 向勇; 赵春茁

    2001-01-01

    Time-resolved Thomson scattering was successfully performed to diagnose the parameters (ZTe, Ue and Ui) of laser-produced gold plasma. The results show that the collisionless dynamic form factor is accurate enough to be used for reducing the plasma parameters from the experimental data.

  16. Collective Thomson scattering measurements with high frequency resolution at TEXTOR

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Nielsen, Stefan Kragh; Korsholm, Søren Bang

    2010-01-01

    We discuss the development and first results of a receiver system for the collective Thomson scattering (CTS) diagnostic at TEXTOR with frequency resolution in the megahertz range or better. The improved frequency resolution expands the diagnostic range and utility of CTS measurements in general...

  17. Collective Thomson scattering capabilities to diagnose fusion plasmas

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Bindslev, Henrik; Furtula, Vedran

    2010-01-01

    Collective Thomson scattering (CTS) is a versatile technique for diagnosing fusion plasmas. In particular, experiments on diagnosing the ion temperature and fast ion velocity distribution have been executed on a number of fusion devices. In this article the main aim is to describe the technique...

  18. Calculation of Thomson scattering spectral fits for interpenetrating flows

    Science.gov (United States)

    Swadling, G. F.; Lebedev, S. V.; Harvey-Thompson, A. J.; Rozmus, W.; Burdiak, G. C.; Suttle, L.; Patankar, S.; Smith, R. A.; Bennett, M.; Hall, G. N.; Suzuki-Vidal, F.; Yuan, J.

    2014-12-01

    Collective mode optical Thomson scattering has been used to investigate the interactions of radially convergent ablation flows in Tungsten wire arrays. These experiments were carried out at the Magpie pulsed power facility at Imperial College, London. Analysis of the scattered spectra has provided direct evidence of ablation stream interpenetration on the array axis, and has also revealed a previously unobserved axial deflection of the ablation streams towards the anode as they approach the axis. It is has been suggested that this deflection is caused by the presence of a static magnetic field, advected with the ablation streams, stagnated and accrued around the axis. Analysis of the Thomson scattering spectra involved the calculation and fitting of the multi-component, non-relativistic, Maxwellian spectral density function S (k, ω). The method used to calculate the fits of the data are discussed in detail.

  19. Calculation of Thomson scattering spectral fits for interpenetrating flows

    Energy Technology Data Exchange (ETDEWEB)

    Swadling, G. F., E-mail: george.swadling@imperial.ac.uk; Lebedev, S. V., E-mail: george.swadling@imperial.ac.uk; Burdiak, G. C.; Suttle, L.; Patankar, S.; Smith, R. A.; Bennett, M.; Suzuki-Vidal, F. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Harvey-Thompson, A. J. [Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico 87185-1193 (United States); Rozmus, W. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2JI (Canada); Hall, G. N. [Blackett Laboratory, Imperial College, London, United Kingdom SW7 2BW and Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Yuan, J. [Key Laboratory of Pulsed Power, Institute of Fluid Physics, CAE, Mianyang 621900 (China)

    2014-12-15

    Collective mode optical Thomson scattering has been used to investigate the interactions of radially convergent ablation flows in Tungsten wire arrays. These experiments were carried out at the Magpie pulsed power facility at Imperial College, London. Analysis of the scattered spectra has provided direct evidence of ablation stream interpenetration on the array axis, and has also revealed a previously unobserved axial deflection of the ablation streams towards the anode as they approach the axis. It is has been suggested that this deflection is caused by the presence of a static magnetic field, advected with the ablation streams, stagnated and accrued around the axis. Analysis of the Thomson scattering spectra involved the calculation and fitting of the multi-component, non-relativistic, Maxwellian spectral density function S (k, ω). The method used to calculate the fits of the data are discussed in detail.

  20. Imaging X-ray Thomson Scattering Spectrometer Design and Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Gamboa, E.J. [University of Michigan; Huntington, C.M. [University of Michigan; Trantham, M.R. [University of Michigan; Keiter, P.A [University of Michigan; Drake, R.P. [University of Michigan; Montgomery, David [Los Alamos National Laboratory; Benage, John F. [Los Alamos National Laboratory; Letzring, Samuel A. [Los Alamos National Laboratory

    2012-05-04

    In many laboratory astrophysics experiments, intense laser irradiation creates novel material conditions with large, one-dimensional gradients in the temperature, density, and ionization state. X-ray Thomson scattering is a powerful technique for measuring these plasma parameters. However, the scattered signal has previously been measured with little or no spatial resolution, which limits the ability to diagnose inhomogeneous plasmas. We report on the development of a new imaging x-ray Thomson spectrometer (IXTS) for the Omega laser facility. The diffraction of x-rays from a toroidally-curved crystal creates high-resolution images that are spatially resolved along a one-dimensional profile while spectrally dispersing the radiation. This focusing geometry allows for high brightness while localizing noise sources and improving the linearity of the dispersion. Preliminary results are presented from a scattering experiment that used the IXTS to measure the temperature profile of a shocked carbon foam.

  1. Divertor Plasma Parameters During Radiative Divertor Operation on DIII--D

    Science.gov (United States)

    Allen, S. L.; Fenstermacher, M. E.; Hill, D. N.; Lasnier, C. J.; Meyer, W. H.; Porter, G. D.; Wood, R. D.; Leonard, A. W.; Mahdavi, M. A.; Petrie, T. W.; West, W. P.; Maingi, R.; Wade, M. R.; Whyte, D. G.

    1996-11-01

    A large array of divertor diagnostics has been used to characterize the DIII--D divertor conditions during radiative divertor operation. We have used both D2 and impurities to reduce the divertor heat flux. Several discharge conditions have been obtained, including attached and detached ELMing H-modes. The multi-chord Divertor Thomson Scattering (DTS) system has been used with divertor sweeping to obtain 2-D measurements of ne and Te in the divertor. The Te drops to <= 2 eV with D2 puffing, ne increases, and the electron pressure Pe decreases. The radiation zone, measured by multi-chord bolometry, moves from the inside leg of the divertor to the outside. Comparisons of the 2-D distribution of ne and Te and the radiation distribution will be presented.

  2. Thomson scattering diagnostic for the measurement of ion species fraction

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J S; Park, H S; Amendt, A; Divol, L; Kugland, N L; Rozmus, W; Glenzer, S H

    2012-05-01

    Simultaneous Thomson scattering measurements of collective electron-plasma and ion-acoustic fluctuations have been utilized to determine ion species fraction from laser produced CH plasmas. The CH{sub 2} foil is heated with 10 laser beams, 500 J per beam, at the Omega Laser facility. Thomson scattering measurements are made 4 mm from the foil surface using a 30 J 2{omega} probe laser with a 1 ns pulse length. Using a series of target shots the plasma evolution is measured from 2.5 ns to 9 ns after the rise of the heater beams. Measuring the electron density and temperature from the electron-plasma fluctuations constrains the fit of the two-ion species theoretical form factor for the ion feature such that the ion temperature, plasma flow velocity and ion species fraction are determined. The ion species fraction is determined to an accuracy of {+-}0.06 in species fraction.

  3. Warm dense matter and Thomson scattering at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Faeustlin, Roland Rainer

    2010-05-15

    X-ray free electron lasers are powerful tools to investigate moderately to strongly correlated solid density low temperature plasmas, named warm dense matter. These plasmas are of most interest for astrophysics and laser plasma interaction, particularly inertial confinement fusion. This work utilizes the ultrashort soft x-ray pulse duration and high brilliance of the free electron laser in Hamburg, FLASH, to generate warm dense matter and to study its ultrafast processes. The techniques applied are absorption measurement, emission spectroscopy and Thomson scattering. Radiative hydrodynamics and Thomson scattering simulations are used to investigate the impact of temperature and density gradients in the sample and to fit the experimental data. The measurements result in a comprehensive picture of soft x-ray matter interaction related to warm dense matter and yield insight into ultrafast equilibration and relaxation mechanisms, in particular impact ionization and radiative recombination. (orig.)

  4. Corotational Tomography of Heliospheric Features Using Global Thomson Scattering Data

    Science.gov (United States)

    Jackson, Bernard V.; Hick, P. Paul

    2002-12-01

    The Air Force/NASA Solar Mass Ejection Imager (SMEI) will provide two-dimensional images of the sky in visible light with high (0.1%) photometric precision, and unprecedented sky coverage and cadence. To optimize the information available from these images they must be interpreted in three dimensions. We have developed a Computer Assisted Tomography (CAT) technique that fits a three-dimensional kinematic heliospheric model to remotely-sensed Thomson scattering observations. This technique is designed specifically to determine the corotating background solar wind component from data provided by instruments like SMEI. Here, we present results from this technique applied to the Helios spacecraft photometer observations. The tomography program iterates to a least-squares solution of observed brightnesses using solar rotation, spacecraft motion and solar wind outflow to provide perspective views of each point in space covered by the observations. The corotational tomography described here is essentially the same as used by Jackson et al. (1998) for the analysis of interplanetary scintillation (IPS) observations. While IPS observations are related indirectly to the solar wind density through an assumed (and uncertain) relationship between small-scale density fluctuations and density, Thomson scattering physics is more straightforward, i.e., the observed brightness depends linearly on the solar wind density everywhere in the heliosphere. Consequently, Thomson scattering tomography can use a more direct density-convergence criterion to match observed Helios photometer brightness to brightness calculated from the model density. The general similarities between results based on IPS and Thomson scattering tomography validate both techniques and confirm that both observe the same type of solar wind structures. We show results for Carrington rotation 1653 near solar minimum. We find that longitudinally segmented dense structures corotate with the Sun and emanate from near the

  5. Fast ion collective Thomson scattering diagnostic for ITER: Design elements

    DEFF Research Database (Denmark)

    Tsakadze, Erekle; Bindslev, Henrik; Korsholm, Søren Bang

    2008-01-01

    The proposed fast ion collective Thomson scattering (CTS) diagnostic system for ITER provides the unique capability of measuring the temporally and spatially resolved velocity distribution of the confined fast ions and fusion alpha particles in a burning ITER plasma. The present paper describes t...... in the studies, and new HFS receiver mock-up measurements are presented as well as neutron flux calculations of the influence of the increased slot height....

  6. Enhancing detection sensitivity of SST-1 Thomson scattering experiment

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhari, Vishnu; Patel, Kiran; Thomas, Jinto; Kumar, Ajai, E-mail: ajai@ipr.res.in

    2016-10-15

    Thomson Scattering System (TSS) is the main diagnostic to extract electron temperature and density of steady state superconducting (SST-1) tokamak plasma. Silicon avalanche photo diode is used with low noise and fast signal conditioning electronics (SCE) to detect incoming Thomson scattered laser photons. A stringent requirement for the measurement is to detect high speed and low level light signal (detection of 100 numbers of Thomson scattered photons for 50 ns pulse width at input of active area of detector) in the presence of wide band electro-magnetic interference (EMI) noise. The electronics and instruments for different sub-systems kept in laboratory contribute to the radiated and conductive noise in a complex manner to the experiment, which can degrade the resultant signal to noise ratio (SNR <1). In general a repeated trial method with flexible grounding scheme are used to improve system signal to noise ratio, which is time consuming and less efficient. In the present work a simple, robust, cost-effective instrumentation system is used for the measurement and monitoring with improved ground scheme and shielding method to minimize noise, isolating the internal sub-system generated noise and external interference which leads to an improved SNR.

  7. ITER Fast Ion Collective Thomson Scattering

    DEFF Research Database (Denmark)

    Bindslev, Henrik; Larsen, Axel Wright; Meo, Fernando;

    2005-01-01

    velocities with good spatial and temporal resolution. The present report, which is a continuation of this work, presents a detailed CATIA design of the two antennae systems, modified and extended calculations on beam overlap and scattering, measurements and calculations of the beam transmission through...

  8. Laser Thomson scattering in a pulsed atmospheric arc discharge

    Science.gov (United States)

    Sommers, Bradley; Adams, Steven

    2015-09-01

    Laser scattering measurements, including Rayleigh, Raman, and Thomson scattering have been performed on an atmospheric pulsed arc discharge. Such laser scattering techniques offer a non-invasive diagnostic to measure gas temperature, electron temperature, and electron density in atmospheric plasma sources, particularly those with feature sizes approaching 1 mm. The pulsed discharge is ignited in a pin to pin electrode geometry using a 6 kV pulse with 10 ns duration. The electrodes are housed in a glass vacuum chamber filled with argon gas. The laser signal is produced by a Nd:Yag laser supply, repetitively pulsed at 10 Hz and frequency quadrupled to operate at 266 nm. The scattered laser signal is imaged onto a triple grating spectrometer, which is used to suppress the Rayleigh scatter signal in order to measure the low amplitude Thomson and Raman signals. Preliminary results include measurements of electron temperature and electron density in the plasma column taken during the evolution of the discharge. The laser system is also used to measure the Rayleigh scattering signal, which provides space and time resolved measurements of gas temperature in the arc discharge.

  9. APD detector electronics for the NSTX Thomson scattering system

    Energy Technology Data Exchange (ETDEWEB)

    D.W. Johnson; B.P. LeBlanc; D.L. Long; G. Renda

    2000-08-07

    An electronics system has been installed and tested for the readout of APD detectors for the NSTX Thomson scattering system. Similar to previous designs, it features preamps with a fast and a slow output. The fast output uses pulse shaping to optimize sensitivity for the 8 nsec scattered light pulse while rejecting noise in the intrinsic plasma background. A low readout noise of {approximately}25 photoelectrons is achieved at an APD gain of 75. The design incorporates a number of features to provide flexibility for various modes of calibration.

  10. Development of prototype polychromator system for KSTAR Thomson scattering diagnostic

    Science.gov (United States)

    Lee, J. H.; Lee, S. H.; Son, S. H.; Ko, W. H.; Seo, D. C.; Yamada, I.; Her, K. H.; Jeon, J. S.; Bog, M. G.

    2015-12-01

    A polychromator is widely used by the Thomson scattering system for measuring the electron temperature and density. This type of spectrometer includes optic elements such as band-pass filters, focusing lens, collimating lens, and avalanche photodiodes (APDs). The characteristics of band-pass filters in the polychromator are determined by the measuring range of the Thomson system. KSTAR edge polychromators were developed by co-works at NIFS in Japan, and the KSTAR core polychromators were developed by NFRI in Korea. The power supply system of these polychromators is connected only to one power supply module and can manually control the APD's voltage at the front side of the power supply by using a potentiometer. In this paper, a prototype polychromator is introduced at the KSTAR. The prototype polychromator system has a built-in power supply unit that includes high voltage for the APD and ± 5 V for an op-amp IC. The high voltage for the APD is finely controlled and monitored using a PC with the LabView software. One out of the six band pass-filters has a center wavelength of 523.5 nm with 2-nm bandwidth, which can measure Zeff, and the other five band-pass filters can simultaneously measure the Thomson signal. In addition, we will show the test result of this prototype polychromator system during the KSTAR experiment campaign (2015).

  11. Thomson scattering diagnostic on the Compact Toroidal Hybrid Experiment

    Science.gov (United States)

    Traverso, Peter; Maurer, D. A.; Ennis, D. A.; Hartwell, G. J.

    2016-10-01

    A Thomson scattering system is being commissioned for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH), a five-field period current-carrying torsatron. The system takes a single point measurement at the magnetic axis to both calibrate the two- color soft x-ray Te system and serve as an additional diagnostic for the V3FIT 3D equilibrium reconstruction code. A single point measurement will reduce the uncertainty in the reconstructed peak pressure by an order of magnitude for both current-carrying plasmas and future gyrotron-heated stellarator plasmas. The beam, generated by a frequency doubled Continuum 2 J, Nd:YaG laser, is passed vertically through an entrance Brewster window and a two-aperture optical baffle system to minimize stray light. The beam line propagates 8 m to the CTH device mid-plane with the beam diameter < 3 mm inside the plasma volume. Thomson scattered light is collected by two adjacent f/2 plano-convex condenser lenses and focused onto a custom fiber bundle. The fiber is then re-bundled and routed to a Holospec f/1.8 spectrograph to collect the red-shifted scattered light from 535-565 nm. The system has been designed to measure plasmas with core Te of 100 to 200 eV and densities of 5 ×1018 to 5 ×1019 m-3. Work supported by USDOE Grant DE-FG02-00ER54610.

  12. HT-7 Multipoint Nd Laser Thomson Scattering Apparatus

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A compact, low cost, multipoint Thomson scattering diagnostic system for HT-7 superconducting tokamak has been in operation since 1999. Its capability of measuring electron temperatures is in the range of 200 eV to 2 keV at a density of a few times 1012 cm-3, with a spatial resolution of 2.4 cm for 5 spatial points and a temporal resolution of 1 ms~1 s for 8 time points. The main components of the diagnostic system include a 20~25 J Nd:glass laser with 35 ns pulse width (8 pulses per burst), a KDP frequency-doubling unit, spherical mirrors of multipass input optical system, a wide-angle collection objective, a bandpass glass filter for reducing the stray light to zero, a f/2.5 polychromator, a fiberglass collimator, a photomultiplier's box with electronic preamplifier, high gain and high signal/noise ratio, CAMAC data acquisition and so on.The multipass optical system has been successful at increasing the quantity of scattered photons by passing the probing laser beam 10 times through the plasma under investigation. The HT7 Thomson scattering diagnostic has provided successfully the information on two-dimensional electron temperature in the plasma of HT-7 tokamak with LHCD and IBW.

  13. On the calibration of polarimetric Thomson scattering by Raman polarimetry

    Science.gov (United States)

    Giudicotti, L.; Pasqualotto, R.

    2015-12-01

    Polarimetric Thomson scattering (TS) is an alternative method for the analysis of Thomson scattering spectra in which the plasma temperature T e is determined from the depolarization of the TS radiation. This is a relativistic effect and therefore the technique is suitable only for very hot plasmas (T e  >  10 keV) such as those of ITER. The practical implementation of polarimetric TS requires a method to calibrate the polarimetric response of the collection optics carrying the TS light to the detection system, and in particular to measure the additional depolarization of the TS radiation introduced by the plasma-exposed first mirror. Rotational Raman scattering of laser light from diatomic gases such as H2, D2, N2 and O2 can provide a radiation source of predictable intensity and polarization state from a well-defined volume inside the vacuum vessel and is therefore suitable for these calibrations. In this paper we discuss Raman polarimetry as a technique for the calibration of a hypothetical polarimetric TS system operating in the same conditions of the ITER core TS system and suggest two calibration methods for the measurement of the additional depolarization introduced by the plasma-exposed first mirror, and in general for calibrating the polarimetric response of the detection system.

  14. Imaging Thomson scattering measurements of radiatively heated Xe

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, B; Meinecke, J; Kuschel, S; Ross, J S; Divol, L; Glenzer, S H; Tynan, G R

    2012-05-01

    Uniform density and temperature Xe plasmas have been produced over >4 mm scale-lengths using x-rays generated in a cylindrical Pb cavity. The cavity is 750 {micro}m in depth and diameter, and is heated by a 300 J, 2 ns square, 1054 nm laser pulse focused to a spot size of 200 {micro}m at the cavity entrance. The plasma is characterized by simultaneous imaging Thomson scattering measurements from both the electron and ion scattering features. The electron feature measurement determines the spatial electron density and temperature profile, and using these parameters as constraints in the ion feature analysis allows an accurate determination of the charge state of the Xe ions. The Thomson scattering probe beam is 40 J, 200 ps, and 527 nm, and is focused to a 100 {micro}m spot size at the entrance of the Pb cavity. Each system has a spatial resolution of 25 {micro}m, a temporal resolution of 200 ps (as determined by the probe duration), and a spectral resolution of 2 nm for the electron feature system and 0.025 nm for the ion feature system. The experiment is performed in a Xe filled target chamber at a neutral pressure of 3-10 Torr, and the x-rays produced in the Pb ionize and heat the Xe to a charge state of 20 {+-} 4 at up to 200 eV electron temperatures.

  15. Polychromator for the edge Thomson scattering system in ITER.

    Science.gov (United States)

    Yatsuka, E; Hatae, T; Fujie, D; Kurokawa, A; Kusama, Y

    2012-10-01

    A new type polychromator has been designed for the edge Thomson scattering system in ITER. Signal light is parallelly dispersed into two parts at the first interference filter. Spectral transmissivities for some spectral channels may enhance better than the conventional type polychromator. In the new type polychromator, the misalignment due to the machine accuracy is expected to be within the margin of APD area. In order to calibrate the spectral transmissivity using the dual-laser injection method during the plasma discharge, it is preferred that the spectral channels are separated at the geometric mean of the injected two wavelengths.

  16. Peak intensity measurement of relativistic lasers via nonlinear Thomson scattering

    CERN Document Server

    Har-Shemesh, Omri

    2011-01-01

    The measurement of peak laser intensities exceeding $10^{20}\\;\\text{W/cm$^2$}$ is in general a very challenging task. We suggest a simple method to accurately measure such high intensities up to about $10^{23}\\,\\text{W/cm$^2$}$, by colliding a beam of ultrarelativistic electrons with the laser pulse. The method exploits the specific features of the angular distribution of the radiation emitted by ultrarelativistic electrons via nonlinear Thomson scattering. Initial electron energies well within the reach of laser wake-field accelerators are required, allowing in principle for an all-optical setup. Accuracies of the order of 10% are envisaged.

  17. Collective Thomson scattering data analysis for Wendelstein 7-X

    DEFF Research Database (Denmark)

    Abramovic, I.; Pavone, A.; Svensson, J.

    2017-01-01

    Collective Thomson scattering (CTS) diagnostic is being installed on the Wendelstein 7-X stellarator to measure the bulk ion temperature in the upcoming experimental campaign. In order to prepare for the data analysis, a forward model of the diagnostic (eCTS) has been developed and integrated...... into the Bayesian data analysis framework Minerva. Synthetic spectra have been calculated with the forward model and inverted using Minerva in order to demonstrate the feasibility to measure the ion temperature in the presence of nuisance parameters that also influence CTS spectra. In this paper we report...... on the results of this anlysis and discuss the main sources of uncertainty in the CTS data analysis....

  18. Observation of Thomson Scattering off Entropy Waves in a Laser-Produced Plasma

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jian; BAI Bo; LIU Wan-Dong; YU Chang-Xuan; JIANG Xiao-Hua; YUAN Xiao-Dong; LI Wen-Hong; ZHENG Zhi-Jian

    2001-01-01

    A new feature in the Thomson scattering spectrum is observed from a laser-produced aluminium plasma, which may be the Thomson scattering off entropy waves in the plasma. Such a feature is only observable when the energy of the heater beam is low enough.

  19. Structures in T-e profiles: High resolution Thomson scattering in the Rijnhuizen tokamak project

    NARCIS (Netherlands)

    Beurskens, M. N. A.; Barth, C. J.; Cardozo, N. J. L.; van der Meiden, H. J.; R. T. P. Team,

    1999-01-01

    In the Rijnhuizen tokamak project, the double pulse multiposition Thomson scattering diagnostic is in full operation. Its high spatial resolution enables the measurement of small scale structures in T-e, n(e), and p(e). Thomson scattering profiles during an ordinary sawtooth crash show the displacem

  20. Multipoint Thomson scattering diagnostic for the ETE tokamak

    Science.gov (United States)

    Berni, L. A.; Alonso, M. P.; Oliveira, R. M.

    2004-10-01

    To measure the electron temperature and plasma density profiles on the Experimento Tokamak Esférico tokamak a multiplexed Thomson scattering diagnostic was implemented. The diagnostic is based on a 10 J ruby laser and a single five spectral channel filter polychromator. A collection lens with f/6.3 relay the scattered light from 23 spatial points to optical fibers. The fibers have a monotonous increasing length and are inserted into the polychromator. Between the collection lens and each fiber optic we have a microlens to match the numerical aperture and to enlarge the plasma observation volume. This work describes the project, the simulations, and the preliminary results obtained with the first four optical fibers.

  1. The Thomson scattering system at Wendelstein 7-X

    Science.gov (United States)

    Pasch, E.; Beurskens, M. N. A.; Bozhenkov, S. A.; Fuchert, G.; Knauer, J.; Wolf, R. C.

    2016-11-01

    This paper describes the design of the Thomson scattering system at the Wendelstein 7-X stellarator. For the first operation campaign we installed a 10 spatial channel system to cover a radial half profile of the plasma cross section. The start-up system is based on one Nd:YAG laser with 10 Hz repetition frequency, one observation optics, five fiber bundles with one delay line each, and five interference filter polychromators with five spectral channels and silicon avalanche diodes as detectors. High dynamic range analog to digital converters with 14 bit, 1 GS/s are used to digitize the signals. The spectral calibration of the system was done using a pulsed super continuum laser together with a monochromator. For density calibration we used Raman scattering in nitrogen gas. Peaked temperature profiles and flat density profiles are observed in helium and hydrogen discharges.

  2. Design of Thomson scattering diagnostic system on J-TEXT

    Science.gov (United States)

    Zhou, Yinan; Gao, Li; Huang, Jiefeng; Qiu, Qingshuang; Zhuang, Ge

    2016-11-01

    An infrared multi-channel Thomson scattering diagnostic system is designed from the viewpoint of development of the proposed system on the Joint Texas Experimental Tokamak (J-TEXT). A 3 J/50 Hz Nd:YAG laser, which is injected vertically into plasma in the direction from top to bottom, serves as the power source of the system. The scattering light is then collected horizontally and is transmitted to an interference-filter avalanche photodiode based polychromater for spectrum analysis. The system covers the half plasma cross section, providing 14 spatial points with 2 cm resolution. The proposed system can thus satisfy the requirements of the J-TEXT at present and in the near future. A detailed description of the system design is presented in this paper.

  3. Design of Thomson scattering diagnostic system on J-TEXT.

    Science.gov (United States)

    Zhou, Yinan; Gao, Li; Huang, Jiefeng; Qiu, Qingshuang; Zhuang, Ge

    2016-11-01

    An infrared multi-channel Thomson scattering diagnostic system is designed from the viewpoint of development of the proposed system on the Joint Texas Experimental Tokamak (J-TEXT). A 3 J/50 Hz Nd:YAG laser, which is injected vertically into plasma in the direction from top to bottom, serves as the power source of the system. The scattering light is then collected horizontally and is transmitted to an interference-filter avalanche photodiode based polychromater for spectrum analysis. The system covers the half plasma cross section, providing 14 spatial points with 2 cm resolution. The proposed system can thus satisfy the requirements of the J-TEXT at present and in the near future. A detailed description of the system design is presented in this paper.

  4. Thomson Scattering Diagnostic Data Acquisition Systems for Modern Fusion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ivanenko, S.V.; Khilchenko, A.D. [Budker Institute of Nuclear Physics and Novosibirsk State University, Novosibirsk (Russian Federation); Ovchar, V.K.; Zubarev, P.V.; Kvashnin, A.N.; Puryga, E.A.; Ivanova, A.A.; Kotelnikov, A.I. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation)

    2015-07-01

    Uniquely designed complex data acquisition system for Thomson scattering diagnostic was developed. It allows recording short duration (3-5 ns) scattered pulses with 2 GHz sampling rate and 10-bit total resolution in oscilloscope mode. The system consists up to 48 photo detector modules with 0- 200 MHz bandwidth, 1-48 simultaneously sampling ADC modules and synchronization subsystem. The photo detector modules are based on avalanche photodiodes (APD) and ultra-low noise trans-impedance amplifiers. ADC modules include fast analog to digital converters and digital units based on the FPGA (Field- Programmable Gate Array) for data processing and storage. The synchronization subsystem is used to form triggering pulses and to organize the simultaneously mode of ADC modules operation. (authors)

  5. TFTR 60 GHz alpha particle collective Thomson Scattering diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Machuzak, J.S.; Woskov, P.P.; Gilmore, J. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Bretz, N.L.; Park, H.K. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Aamodt, R.E.; Cheung, P.Y.; Russell, D.A. [Lodestar Research Corp., Boulder, CO (United States); Bindslev, H. [JET Joint Undertaking, Abingdon (United Kingdom)

    1995-03-01

    A 60 GHz gyrotron collective Thomson Scattering alpha particle diagnostic has been implemented for the D-T period on TFM. Gyrotron power of 0.1-1 kW in pulses of up to 1 second can be launched in X-mode. Efficient corrugated waveguides are used with antennaes and vacuum windows of the TFTR Microwave Scattering system. A multichannel synchronous detector receiver system and spectrum analyzer acquire the scattered signals. A 200 Megasample/sec digitizer is used to resolve fine structure in the frequency spectrum. By scattering nearly perpendicular to the magnetic field, this experiment will take advantage of an enhancement of the scattered signal which results from the interaction of the alpha particles with plasma resonances in the lower hybrid frequency range. Significant enhancements are expected, which will make these measurements possible with gyrotron power less than 1 kW, while maintaining an acceptable signal to noise ratio. We hope to extract alpha particle density and velocity distribution functions from the data. The D and T fuel densities and temperatures may also be obtainable by measurement of the respective ion cyclotron harmonic frequencies.

  6. Measurements with the fast repetitive multi-pulse Edge Thomson Scattering system on TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Uzgel, Evren; Pospieszczyk, Albrecht; Unterberg, Bernhard [IEF-Plasmaphysik, Forschungszentrum Juelich, 52425 Juelich (Germany); Kantor, Mikhail [Ioffe Institute, RAS, Saint Petersburg (Russian Federation); Meiden, Hennie van der; Jaspers, Roger [FOM-Institute for Plasma Physics Rijnhuizen, Nieuwegein (Netherlands)

    2008-07-01

    A fast repetitive multi-pulse Edge Thomson Scattering system is in operation since March 2006 and provides a sophisticated tool for the study of transport processes in the edge region of the tokamak TEXTOR. The specially designed viewing optics enables the study of the dynamics of fast plasma phenomena with high spatial resolution at the plasma edge. Various measurements under different plasma conditions were performed where the influence of resonant magnetic perturbations generated by the Dynamic Ergodic Divertor on fast electron transport in the edge region was a point of emphasis. The electron density and temperature profiles obtained are compared with other edge diagnostics based on different measuring principles. The system utilizes a ruby laser delivering bursts of 15 pulses each with a pulse energy of about 15 J. The TEXTOR plasma itself is inside the laser cavity where the double-pass system allows high laser energies of each laser pulse through the plasma. The edge system (170 mm) has 98 spatial channels of 1.7 mm each. The lower detection limit of the edge system for T{sub e} is observed to be 30 eV.

  7. Measurements with the fast repetitive multi-pulse Edge Thomson scattering system on TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Uzgel, Evren; Pospieszczyk, Albrecht; Unterberg, Bernhard [Institut fuer Plasmaphysik, Forschungszentrum Juelich, 52425 Juelich (Germany); Kantor, Mikhail; Kouprienko, Denis [Ioffe Institute, RAS, Saint Petersburg (Russian Federation); Meiden, Hennie van der; Oyevaar, Theo; Jaspers, Roger [FOM-Institute for Plasma Physics Rijnhuizen, Nieuwegein (Netherlands)

    2007-07-01

    A fast repetitive multi-pulse Edge Thomson Scattering system is in operation since March 2006 and provides a sophisticated tool for the study of transport processes in the edge region of the tokamak TEXTOR. The specially designed viewing optics enables the study of the dynamics of fast plasma phenomena with high spatial resolution at the plasma edge. Various measurements under different plasma conditions were performed where the influence of resonant magnetic perturbations generated by the Dynamic Ergodic Divertor on fast electron transport in the edge region was a point of emphasis. The electron density and temperature profiles obtained will be compared with other edge diagnostics based on different measuring principles. The system utilizes a ruby laser delivering bursts of 15 pulses each with a pulse energy of about 15 J. The TEXTOR plasma itself is inside the laser cavity where the double-pass system allows high laser energies of each laser pulse through the plasma. The new edge system (170 mm) has 98 spatial channels of 1.7 mm each. The lower detection limit of the edge system for T{sub e} is observed to be 30 eV.

  8. Thomson scattering measurements from asymmetric interpenetrating plasma flows

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J. S., E-mail: ross36@llnl.gov; Moody, J. D.; Fiuza, F.; Ryutov, D.; Divol, L.; Huntington, C. M.; Park, H.-S. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

    2014-11-15

    Imaging Thomson scattering measurements of collective ion-acoustic fluctuations have been utilized to determine ion temperature and density from laser produced counter-streaming asymmetric flows. Two foils are heated with 8 laser beams each, 500 J per beam, at the Omega Laser facility. Measurements are made 4 mm from the foil surface using a 60 J 2ω probe laser with a 200 ps pulse length. Measuring the electron density and temperature from the electron-plasma fluctuations constrains the fit of the multi-ion species, asymmetric flows theoretical form factor for the ion feature such that the ion temperatures, ion densities, and flow velocities for each plasma flow are determined.

  9. Thomson scattering in high-intensity chirped laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Holkundkar, Amol R., E-mail: amol.holkundkar@pilani.bits-pilani.ac.in [Department of Physics, Birla Institute of Technology and Science, Pilani, Rajasthan 333031 (India); Harvey, Chris, E-mail: christopher.harvey@chalmers.se; Marklund, Mattias, E-mail: mattias.marklund@chalmers.se [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2015-10-15

    We consider the Thomson scattering of an electron in an ultra-intense laser pulse. It is well known that at high laser intensities, the frequency and brilliance of the emitted radiation will be greatly reduced due to the electron losing energy before it reaches the peak field. In this work, we investigate the use of a small frequency chirp in the laser pulse in order to mitigate this effect of radiation reaction. It is found that the introduction of a negative chirp means the electron enters a high frequency region of the field while it still has a large proportion of its original energy. This results in a significant enhancement of the frequency and intensity of the emitted radiation as compared to the case without chirping.

  10. Plasma characterization using ultraviolet Thomson scattering from ion-acoustic and electron plasma waves (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Follett, R. K., E-mail: rfollett@lle.rochester.edu; Delettrez, J. A.; Edgell, D. H.; Henchen, R. J.; Katz, J.; Myatt, J. F.; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)

    2016-11-15

    Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 10{sup 21} cm{sup −3}, which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra to show the improvements in plasma characterization.

  11. Plasma characterization using ultraviolet Thomson scattering from ion-acoustic and electron plasma waves (invited)

    Science.gov (United States)

    Follett, R. K.; Delettrez, J. A.; Edgell, D. H.; Henchen, R. J.; Katz, J.; Myatt, J. F.; Froula, D. H.

    2016-11-01

    Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 1021 cm-3, which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra to show the improvements in plasma characterization.

  12. Conceptual design of a polarimetric Thomson scattering diagnostic in ITER

    Science.gov (United States)

    Giudicotti, L.; Bassan, M.; Orsitto, F. P.; Pasqualotto, R.; Kempenaars, M.; Flanagan, J.

    2016-01-01

    Polarimetric Thomson scattering (TS) is a novel diagnostic technique proposed as an alternative to conventional (spectral) TS, for the measurement of the electron temperature Te and density ne in very hot fusion plasmas. Contrary to spectral TS, which is based on the reconstruction of the Doppler broadened frequency spectrum, in polarimetric TS Te is determined from the depolarization of the scattered radiation. The technique is suitable for ITER, where it is expected to be competitive with conventional spectral TS for measurements in the highest Te range, specially in backward-like conditions with the scattering angle 90° ll θ measured Te and ne that can be obtained with a simple, two-channel polarimeter, and taking into account that only a fraction of the TS wavelength spectrum is detected. In both cases the expected performances are compared with those of the conventional spectral core TS diagnostic to determine the plasma conditions in which the polarimetric technique is more advantageous. A measurement of the depolarization effect of the TS radiation using the JET High Resolution TS system of JET is also discussed.

  13. Design of C-2W Thomson Scattering System

    Science.gov (United States)

    Zhai, Kan; Schindler, Tania; Zhang, Helen; Walters, Kurt; Thompson, Matthew; TAE Team

    2016-10-01

    A suite of multi-point Thomson scattering systems is now being designed and built in parallel with the construction of the C-2W FRC experimental device, which is expected to have a wide range of electron temperature Te and density ne from edge to center region at different operational phases. The suite consists of two sub-systems that measure Te and ne profiles at the C-2W central plane and at the jet region. A high-repetition rate Nd:YAG laser is planned for the central plane subsystem for time-resolved profile measurement at 1 kHz. The central plane and jet region subsystems have their own specially-designed collection optics that image 16 and 5 radial points along the laser-beam path onto corresponding surfaces of fiber bundles, which will then relay the collected laser light into dispersing polychromators. The polychromators are designed with five spectral channels with four channels optimized and dedicated to Te measurement and one channel dedicated to Rayleigh scattering calibration for ne measurement. Detail system design and layout of lasers, beam transportation and stray light control, collection optics and fiber optics, dispersion and detection system and its spectral calibration setup will be presented.

  14. Fast Ion Dynamics in ASDEX Upgrade and TEXTOR Measured by Collective Thomson Scattering

    DEFF Research Database (Denmark)

    Moseev, Dmitry

    Fast ions are an essential ingredient in burning nuclear fusion plasmas: they are responsible for heating the bulk plasma, carry a significant amount of plasma current and moreover interact with various magnetohydrodynamic (MHD) instabilities. The collective Thomson scattering (CTS) diagnostic...

  15. Status of the JET LIDAR Thomson Scattering diagnostic

    CERN Document Server

    Maslov, M; Kempenaars, M; Flanagan, J; contributors, JET EFDA

    2013-01-01

    The LIDAR Thomson scattering concept was proposed in 1983 and then implemented for the first time on the JET tokamak in 1987. A number of modifications were performed and published in 1995, but since then no major changes were made for almost 15 years. In 2010 a refurbishment of the diagnostic was started, with as main goals to improve its performance and to test the potential of new detectors which are considered as candidates for ITER. During the subsequent years a wide range of activities was performed aimed at increasing the diagnostic's light throughput, improvement of signal to noise ratio and amendment of the calibration procedures. Previously used MA-2 detectors were replaced by fast GaAsP detectors with much higher average QE. After all the changes were implemented, a significant improvement of the measured data was achieved. Statistical errors of measured temperature and density were reduced by a factor of 2 or more, depending on plasma conditions, and comfortably surpassed the values requested for ...

  16. Focussing effects in laser-electron Thomson scattering

    CERN Document Server

    Harvey, C; Holkundkar, A R

    2016-01-01

    We study the effects of laser pulse focussing on the spectral properties of Thomson scattered radiation. Modelling the laser as a paraxial beam we find that, in all but the most extreme cases of focussing, the temporal envelope has a much bigger effect on the spectrum than the focussing itself. For the case of ultra-short pulses where the paraxial model is no longer valid, we adopt a sub-cycle vector beam description of the field. It is found that the emission harmonics are blue shifted and broaden out in frequency space as the pulse becomes shorter. Additionally the carrier envelope phase becomes important, resulting in an angular asymmetry in the spectrum. We then use the same model to study the effects of focussing beyond the limit where the paraxial expansion is valid. It is found that fields focussed to sub-wavelength spot sizes produce spectra that are qualitatively similar to those from sub-cycle pulses due to the shortening of the pulse with focussing. Finally, we study high-intensity fields and find ...

  17. Chevron beam dump for ITER edge Thomson scattering system.

    Science.gov (United States)

    Yatsuka, E; Hatae, T; Vayakis, G; Bassan, M; Itami, K

    2013-10-01

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.

  18. Thomson scattering at Pilot-PSI and Magnum-PSI

    Science.gov (United States)

    van Rooij, G. J.; van der Meiden, H. J.; 't Hoen, M. H. J.; Koppers, W. R.; Shumack, A. E.; Vijvers, W. A. J.; Westerhout, J.; Wright, G. M.; Rapp, J.

    2009-12-01

    A robust and sensitive Thomson scattering (TS) system has been developed for the high density low temperature plasma in the linear plasma generator Pilot-PSI, which routinely and reproducibly measures electron density and temperature profiles along a detection chord of 25 mm with a spatial resolution of 0.6 mm. The capabilities of the system are illustrated in this paper by a selection of new results from the research program at Pilot-PSI. TS data are presented that demonstrate the present plasma density record in Pilot-PSI: 5 × 1021 m-3 at a temperature of 3 eV. TS measurements in front of the target are combined with ion saturation current data to determine plasma velocities of 4-5 km s-1, which shows that heat convection is dominating over conduction. Single shot operation of TS is also possible, which is demonstrated by measurements revealing a rotating filamentary return current channel to the source anode. Finally, the TS system upgrade that will provide real time feedback of electron density and temperature in the larger plasma generator Magnum-PSI is discussed.

  19. Two-wavelength LIDAR Thomson scattering for ITER core plasma

    Science.gov (United States)

    Nielsen, P.; Gowers, C.; Salzmann, H.

    2017-07-01

    Our proposal for a LIDAR Thomson scattering system to measure Te and ne profiles in the ITER core plasma, is based on experience with the LIDAR system on JET, which is still operational after 30 years. The design uses currently available technology and complies with the measurement requirements given by ITER. In addition, it offers the following advantages over the conventional imaging approach currently being adopted by ITER: 1) No gas fill of the vessel required for absolute calibration. 2) Easier alignment. 3) Measurements over almost the complete plasma diameter. 4) Two mirrors only as front optics. For a given laser wavelength the dynamic range of the Te measurements is mainly limited by the collection optics' transmission roll-off in the blue and the range of spectral sensitivity of the required fast photomultipliers. With the originally proposed Ti:Sapphire laser, measurements of the envisaged maximum temperature of 40 keV are marginally possible. Here we present encouraging simulation results on the use of other laser systems and on the use of two lasers with different wavelength. Alternating two wavelengths was proposed already in 1997 as a method for calibrating the transmission of the collection system. In the present analysis, the two laser pulses are injected simultaneously. We find that the use of Nd:YAG lasers operated at fundamental and second harmonic, respectively, yields excellent results and preserves the spectral recalibration feature.

  20. Chevron beam dump for ITER edge Thomson scattering system

    Science.gov (United States)

    Yatsuka, E.; Hatae, T.; Vayakis, G.; Bassan, M.; Itami, K.

    2013-10-01

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.

  1. The upgraded Collective Thomson Scattering diagnostics of FTU

    Energy Technology Data Exchange (ETDEWEB)

    Bin, W., E-mail: wbin@ifp.cnr.it [Istituto di Fisica del Plasma – CNR, Milano (Italy); Bruschi, A. [Istituto di Fisica del Plasma – CNR, Milano (Italy); D’Arcangelo, O. [ENEA Unità Tecnica Fusione, C.R. Frascati, Frascati, Roma (Italy); Grosso, G. [Istituto di Fisica del Plasma – CNR, Milano (Italy); Lubiako, L. [Institute of Applied Physics – RAS, Nizhny Novgorod (Russian Federation); Tartari, U.; Figini, L.; Garavaglia, S. [Istituto di Fisica del Plasma – CNR, Milano (Italy); Grossetti, G. [Institute for Applied Materials – KIT, Karlsruhe (Germany); Moro, A. [Istituto di Fisica del Plasma – CNR, Milano (Italy); Orsitto, F.; Centioli, C. [ENEA Unità Tecnica Fusione, C.R. Frascati, Frascati, Roma (Italy); Galperti, C.; Granucci, G.; Mellera, V.; Minelli, D.; Nardone, A.; Simonetto, A. [Istituto di Fisica del Plasma – CNR, Milano (Italy); Vellucci, M. [ENEA Unità Tecnica Fusione, C.R. Frascati, Frascati, Roma (Italy)

    2015-10-15

    Highlights: • The new 140 GHz CTS diagnostics recently installed on the FTU device is presented. • The CTS transmission line is described in detail. • The potential of the new CTS configuration is shown with the aid of simulations. • The radiometric and data acquisition systems are described. • The new code TCSC is described for the first time. - Abstract: The 140 GHz Collective Thomson Scattering (CTS) diagnostics installed on the Frascati Tokamak Upgrade (FTU) has been upgraded. The new system now is ready both to detect the thermal CTS radiation (for the first time with the probe frequency below the 1st harmonic electron cyclotron resonance) and to study the impact of possible parametric decay instability (PDI) processes on the received signals. The EC front-steering antenna and transmission system have been complemented with a receiving line that matches a quasi-optical line feeding the homodyne multi-channel radiometer. The scattering volume can be placed in a wide range of locations by means of fast poloidal and toroidal rotations of the two plasma-facing mirrors that have an up–down symmetry with respect to the equatorial plane of the torus. The data acquisition system has been improved adding a new digitizer, with a bandwidth of 5 GHz and a maximum sampling rate of 12.5 GS/s. The possibility of directly sampling and Fourier transforming the down-converted signals greatly improves the suitability of the new diagnostics to carry out thermal ion temperature measurements and to study the competing PDI processes whenever present.

  2. On velocity space interrogation regions of fast-ion collective Thomson scattering at ITER

    DEFF Research Database (Denmark)

    Salewski, Mirko; Nielsen, Stefan Kragh; Bindslev, Henrik;

    2011-01-01

    The collective Thomson scattering (CTS) diagnostic proposed for ITER is designed to measure projected 1D fast-ion velocity distribution functions at several spatial locations simultaneously. The frequency shift of scattered radiation and the scattering geometry place fast ions that caused the col...

  3. Characterizing the Outer Divertor Leg Transition to Full Detachment

    Science.gov (United States)

    McLean, A. G.; Allen, S. L.; Fenstermacher, M. E.; Lasnier, C. J.; Meyer, W. H.; Porter, G. D.; Soukhanovskii, V. A.; Bray, B. D.; Carlstrom, T. N.; Leonard, A. W.; Liu, C.; Eldon, D.; Groth, M.; Stangeby, P. C.; Tsui, C. K.

    2013-10-01

    Experiments at DIII-D have explored the transition from an attached to fully detached divertor condition in L- and H-mode with an unprecedented level of detail. Improved divertor Thomson scattering capturing Te operation in future devices. This work supported in part by the US Department of Energy under DE-AC52-07NA27344 and DE-FC02-04ER54698.

  4. Fast ion millimeter wave collective Thomson scattering diagnostics on TEXTOR and ASDEX upgrades

    DEFF Research Database (Denmark)

    Michelsen, S.; Korsholm, Søren Bang; Bindslev, H.

    2004-01-01

    Collective Thomson scattering (CTS) diagnostic systems for measuring fast ions in TEXTOR and ASDEX Upgrade are described in this article. Both systems use millimeter waves generated by gyrotrons as probing radiation and the scattered radiation is detected with heterodyne receivers having 40...

  5. Resolving the bulk ion region of millimeter-wave collective Thomson scattering spectra at ASDEX Upgrade

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Nielsen, Stefan Kragh; Jacobsen, Asger Schou

    2014-01-01

    Collective Thomson scattering (CTS) measurements provide information about the composition and velocity distribution of confined ion populations in fusion plasmas. The bulk ion part of the CTS spectrum is dominated by scattering off fluctuations driven by the motion of thermalized ion populations...

  6. Fast-ion dynamics in the TEXTOR tokamak measured by collective Thomson scattering

    DEFF Research Database (Denmark)

    Bindslev, H.; Nielsen, S.K.; Porte, L.;

    2006-01-01

    Here we present the first measurements by collective Thomson scattering of the evolution of fast-ion populations in a magnetically confined fusion plasma. 150 kW and 110 Ghz radiation from a gyrotron were scattered in the TEXTOR tokamak plasma with energetic ions generated by neutral beam injecti...

  7. The spectrometer of the High-Resolution Multi position Thomson Scattering Diagnostic for TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, J.; Barth, C.J.; Castejon, F.; Lopez-Sanchez, A.; Mirones, E.; Pastor, I.; Perez, D.; Rodriguez, C.

    2001-07-01

    Since 1998, a high-resolution multiposition thompson scattering system is in operation at the stellarator TJ-II, combining high accuracy and excellent spatial resolution. A description of the diagnostic spectrometer is presented. The main characteristics of the spectrometer that allow YJ-II Thomson scattering diagnostic to have high spatial and spectral resolution are described in this paper. (Author)

  8. Non-Maxwellian Electron Velocity Distributions Observed with Thomson Scattering in the Tortur Tokamak

    NARCIS (Netherlands)

    van Lammeren, A. C. A. P.; Barth, C. J.; Vanest, Q. C.; Schüller, F. C.

    1992-01-01

    The Thomson scattering spectrum represents the projection of the three-dimensional electron velocity distribution on the scattering vector. From this the local electron temperature and density can be derived. To determine the three-dimensional electron velocity distribution it is necessary to have s

  9. Iterative noise removal from temperature and density profiles in the TJ-II Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Farias, G., E-mail: gonzalo.farias@ucv.cl [Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, Valparaíso (Chile); Dormido-Canto, S., E-mail: sebas@dia.uned.es [Departamento de Informática y Automática, UNED, 28040 Madrid (Spain); Vega, J., E-mail: jesus.vega@ciemat.es [Asociación EURATOM/CIEMAT para Fusión, Avd. Complutense 22, 28040 Madrid (Spain); Santos, M., E-mail: msantos@ucm.es [Departamento de Arquitectura de Computadores y Automática, Universidad Complutense de Madrid, 28040 Madrid (Spain); Pastor, I., E-mail: ignacio.pastor@ciemat.es [Asociación EURATOM/CIEMAT para Fusión, Avd. Complutense 22, 28040 Madrid (Spain); Fingerhuth, S., E-mail: sebastian.fingerhuth@ucv.cl [Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, Valparaíso (Chile); Ascencio, J., E-mail: j_ascencio21@hotmail.com [Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, Valparaíso (Chile)

    2014-05-15

    TJ-II Thomson Scattering diagnostic provides temperature and density profiles of plasma. The CCD camera acquires images that are corrupted with some kind of noise called stray-light. This noise degrades both image contrast and measurement accuracy, which could produce unreliable profiles of the diagnostic. So far, several approaches have been applied in order to decrease the noise in the TJ-II Thomson scattering images. Since the presence of the noise is not global but located in some particular regions of the image, advanced processing techniques are needed. However such methods require of manual fine-tuning of parameters to reach a good performance. In this contribution, an iterative image processing approach is applied in order to reduce the stray light effects in the images of the TJ-II Thomson scattering diagnostic. The proposed solution describes how the noise can be iteratively reduced in the images when a key parameter is automatically adjusted during the iterative process.

  10. Advanced Thomson scattering system for high-flux linear plasma generator

    Energy Technology Data Exchange (ETDEWEB)

    Meiden, H. J. van der; Lof, A. R.; Berg, M. A. van den; Brons, S.; Eck, H. J. N. van; Koelman, P. M. J.; Koppers, W. R.; Kruijt, O. G.; Oyevaar, T.; Prins, P. R.; Rapp, J.; Scholten, J.; Smeets, P. H. M.; Star, G. van der; Zeijlmans van Emmichoven, P. A. [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Donne, A. J. H.; Schram, D. C. [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Eindhoven University of Technology, Eindhoven (Netherlands); Naumenko, N. N. [IPh NASB, Minsk (Belarus); Tugarinov, S. N. [SRC TRINITI, Troitsk, Moscow Reg. (Russian Federation)

    2012-12-15

    An advanced Thomson scattering system has been built for a linear plasma generator for plasma surface interaction studies. The Thomson scattering system is based on a Nd:YAG laser operating at the second harmonic and a detection branch featuring a high etendue (f /3) transmission grating spectrometer equipped with an intensified charged coupled device camera. The system is able to measure electron density (n{sub e}) and temperature (T{sub e}) profiles close to the output of the plasma source and, at a distance of 1.25 m, just in front of a target. The detection system enables to measure 50 spatial channels of about 2 mm each, along a laser chord of 95 mm. By summing a total of 30 laser pulses (0.6 J, 10 Hz), an observational error of 3% in n{sub e} and 6% in T{sub e} (at n{sub e}= 9.4 Multiplication-Sign 10{sup 18} m{sup -3}) can be obtained. Single pulse Thomson scattering measurements can be performed with the same accuracy for n{sub e} > 2.8 Multiplication-Sign 10{sup 20} m{sup -3}. The minimum measurable density and temperature are n{sub e} < 1 Multiplication-Sign 10{sup 17} m{sup -3} and T{sub e} < 0.07 eV, respectively. In addition, using the Rayleigh peak, superimposed on the Thomson scattered spectrum, the neutral density (n{sub 0}) of the plasma can be measured with an accuracy of 25% (at n{sub 0}= 1 Multiplication-Sign 10{sup 20} m{sup -3}). In this report, the performance of the Thomson scattering system will be shown along with unprecedented accurate Thomson-Rayleigh scattering measurements on a low-temperature argon plasma expansion into a low-pressure background.

  11. Simulated performance of the optical Thomson scattering diagnostic designed for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J. S., E-mail: ross36@llnl.gov; Datte, P.; Divol, L.; Galbraith, J.; Hatch, B.; Landen, O.; Manuel, A. M.; Molander, W.; Moody, J. D.; Swadling, G. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Froula, D. H.; Katz, J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Kilkenny, J. [General Atomics, San Diego, California 92186 (United States); Montgomery, D. S. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Weaver, J. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-11-15

    An optical Thomson scattering diagnostic has been designed for the National Ignition Facility to characterize under-dense plasmas. We report on the design of the system and the expected performance for different target configurations. The diagnostic is designed to spatially and temporally resolve the Thomson scattered light from laser driven targets. The diagnostic will collect scattered light from a 50 × 50 × 200 μm volume. The optical design allows operation with different probe laser wavelengths. A deep-UV probe beam (λ{sub 0} = 210 nm) will be used to Thomson scatter from electron plasma densities of ∼5 × 10{sup 20} cm{sup −3} while a 3ω probe will be used for plasma densities of ∼1 × 10{sup 19} cm{sup −3}. The diagnostic package contains two spectrometers: the first to resolve Thomson scattering from ion acoustic wave fluctuations and the second to resolve scattering from electron plasma wave fluctuations. Expected signal levels relative to background will be presented for typical target configurations (hohlraums and a planar foil).

  12. A high spatial resolution double-pulse Thomson scattering diagnostic; description, assessment of accuracy and examples of applications

    NARCIS (Netherlands)

    Beurskens, M. N. A.; Barth, C. J.; Cardozo, N. J. L.; van der Meiden, H. J.

    1999-01-01

    A high spatial resolution (3 mm full width half maximum, i.e. 2% of the minor radius) double-pulse multiposition Thomson scattering system was in operation at the Rijnhuizen tokamak project RTP from March 1996 until September 1998. It upgrades the previously installed single-pulse Thomson scattering

  13. First results from the Thomson scattering diagnostic on Proto-MPEX

    Energy Technology Data Exchange (ETDEWEB)

    Biewer, Theodore M [ORNL; Meitner, Steven J [ORNL; Rapp, Juergen [ORNL

    2016-01-01

    A Thomson scattering diagnostic has been successfully implemented on the prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory. The diagnostic collects the light scattered by plasma electrons and spectroscopically resolves the Doppler shift imparted to the light by the velocity of the electrons. The spread in velocities is proportional to the electron temperature, while the total number of photons is proportional to the electron density. Thomson scattering is a technique used on many devices to measure the electron temperature (Te) and electron density (ne) of the plasma. A challenging aspect of the technique is to discriminate the small number of Thomson scattered photons against the large peak of background photons from the high-power laser used to probe the plasma. A variety of methods are used to mitigate the background photons in Proto-MPEX, including Brewster angled windows, viewing dumps, and light baffles. With these methods, first results were measured from Argon plasmas in Proto-MPEX, indicating Te ~ 2 eV and ne ~ 1x1019 m-3. The configuration of the Proto-MPEX Thomson scattering diagnostic will be described and plans for improvement will be given.

  14. Improvement in data processing of Thomson scattering diagnostic on HL-2A tokamak

    Science.gov (United States)

    Liu, C. H.; Wang, Y. Q.; Feng, Z.; Huang, Y.

    2015-12-01

    There are two types of digitizers to acquire the values of Thomson scattering signals in HL-2A tokamak. One is charge-sensitive analogue-to-digital converters (Q-ADCs) which simply integrates the signal over a gate interval, and the other is transient recorders with 12 bits resolution and 1 GHz sampling rate at each channel. Because the Thomson scattering diagnostic is prone to electrical noisy environment, in which Q-switched Nd:YAG lasers and polychromators are located closely to the HL-2A device, the high speed transient digitizers are found helpful to reduce noise overlapped in Thomson scattering signals. After triggered by the front of TTL pulse generated by laser light, data acquisition is fulfilled from -250 ns to 250 ns, so that the temporal evolution of Thomson scattering signals is obtained. A Gaussian function is utilized to fit the pulse shape of the digitized scattering signal by nonlinear least square methods. By pulse fitting and data processing, the influence of background perturbations is substantially reduced.

  15. Double-confocal resonator for X-ray generation via intracavity Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Xie, M. [Lawrence Berkeley Lab., CA (United States)

    1995-12-31

    There has been a growing interest in developing compact X-ray sources through Thomson scattering of a laser beam by a relativistic electron beam. For higher X-ray flux it is desirable to have the scattering to occur inside an optical resonator where the laser power is higher. In this paper I propose a double-confocal resonator design optimized for head-on Thomson scattering inside an FEL oscillator and analyze its performance taking into account the diffraction and FEL gain. A double confocal resonator is equivalent to two confocal resonators in series. Such a resonator has several advantages: it couples electron beam through and X-ray out of the cavity with holes on cavity mirrors, thus allowing the system to be compact; it supports the FEL mode with minimal diffraction loss through the holes; it provides a laser focus in the forward direction for a better mode overlap with the electron beam; and it provides a focus at the same location in the backward direction for higher Thomson scattering efficiency; in addition, the mode size at the focal point and hence the Rayleigh range can be adjusted simply through intracavity apertures; furthermore, it gives a large mode size at the mirrors to reduce power loading. Simulations as well as analytical results will be presented. Also other configurations of intracavity Thomson scattering where the double-confocal resonator could be useful will be discussed.

  16. Antenna design for fast ion collective Thomson scattering diagnostic for the international thermonuclear experimental reactor

    DEFF Research Database (Denmark)

    Leipold, Frank; Furtula, Vedran; Salewski, Mirko

    2009-01-01

    Fast ion physics will play an important role for the international thermonuclear experimental reactor (ITER), where confined alpha particles will affect and be affected by plasma dynamics and thereby have impacts on the overall confinement. A fast ion collective Thomson scattering (CTS) diagnostic...

  17. Collective Thomson scattering of a high power electron cyclotron resonance heating beam in LHD

    DEFF Research Database (Denmark)

    Kubo, S.; Nishiura, M.; Tanaka, K.

    2010-01-01

    Collective Thomson scattering (CTS) system has been constructed at LHD making use of the high power ECRH system in LHD. The necessary features for CTS, high power probing beams and receiving beams, both with well defined Gaussian profile and with the fine controllability, are endowed in the ECRH...

  18. Commissioning activities and first results from the collective Thomson scattering diagnostic on ASDEX Upgrade (invited)

    DEFF Research Database (Denmark)

    Meo, Fernando; Bindslev, Henrik; Korsholm, Søren Bang

    2008-01-01

    The collective Thomson scattering (CTS) diagnostic installed on ASDEX Upgrade uses millimeter waves generated by the newly installed 1 MW dual frequency gyrotron as probing radiation at 105 GHz. It measures backscattered radiation with a heterodyne receiver having 50 channels (between 100 and 110...

  19. Temporally resolved plasma composition measurements by collective Thomson scattering in TEXTOR

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Korsholm, Søren Bang; Nielsen, Stefan Kragh

    2012-01-01

    Fusion plasma composition measurements by collective Thomson scattering (CTS) were demonstrated in recent proof-of-principle measurements in TEXTOR [S. B. Korsholm et al., Phys. Rev. Lett. 106, 165004 (2011)]. Such measurements rely on the ability to resolve and interpret ion cyclotron structure...

  20. Design and performance of the collective Thomson scattering receiver at ASDEX Upgrade

    DEFF Research Database (Denmark)

    Furtula, Vedran; Salewski, Mirko; Leipold, Frank

    2012-01-01

    Here we present the design of the fast-ion collective Thomson scattering receiver for millimeter wave radiation installed at ASDEX Upgrade, a tokamak for fusion plasma experiments. The receiver can detect spectral power densities of a few eV against the electron cyclotron emission background...

  1. The prospect for fuel ion ratio measurements in ITER by collective Thomson scattering

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Korsholm, Søren Bang; Nielsen, Stefan Kragh

    2012-01-01

    We show that collective Thomson scattering (CTS) holds the potential to become a new diagnostic principle for measurements of the fuel ion ratio, nT/nD, in ITER. Fuel ion ratio measurements will be important for plasma control and machine protection in ITER. Measurements of ion cyclotron structures...

  2. Recent development of collective Thomson scattering for magnetically confined fusion plasmas

    Science.gov (United States)

    Nielsen, S. K.; Michelsen, P. K.; Hansen, S. K.; Korsholm, S. B.; Leipold, F.; Rasmussen, J.; Salewski, M.; Schubert, M.; Stejner, M.; Stober, J.; Wagner, D.; The ASDEX Upgrade Team

    2017-02-01

    Here we review recent experimental developments within the field of collective Thomson scattering with a focus on the progress made on the devices TEXTOR and ASDEX Upgrade. We discuss recently discovered possibilities and limitations of the diagnostic technique. Diagnostic applications with respect to ion measurements are demonstrated. Examples include measurements of the ion temperature, energetic ion distribution function, and the ion composition.

  3. Recent development of collective Thomson scattering for magnetically confined fusion plasmas

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Michelsen, Poul; Hansen, S.K.;

    2017-01-01

    Here we review recent experimental developments within the field of collective Thomson scattering with a focus on the progress made on the devices TEXTOR and ASDEX Upgrade. We discuss recently discovered possibilities and limitations of the diagnostic technique. Diagnostic applications with respect...

  4. Collective Thomson scattering system for determination of ion properties in a high flux plasma beam

    NARCIS (Netherlands)

    van der Meiden, H. J.; Vernimmen, J. W. M.; Bystrov, K.; Jesko, K.; Kantor, M. Y.; De Temmerman, G.; Morgan, T. W.

    2016-01-01

    A collective Thomson scattering system has been developed for measuring ion temperature, plasma velocity and impurity concentration in the high density magnetized Magnum-PSI plasma beam, allowing for measurements at low temperature (<5 eV) and high electron density >4 × 1020 m−3, while

  5. Comparison of fast ion collective Thomson scattering measurements at ASDEX Upgrade with numerical simulations

    DEFF Research Database (Denmark)

    Salewski, Mirko; Meo, Fernando; Stejner Pedersen, Morten

    2010-01-01

    Collective Thomson scattering (CTS) experiments were carried out at ASDEX Upgrade to measure the one-dimensional velocity distribution functions of fast ion populations. These measurements are compared with simulations using the codes TRANSP/NUBEAM and ASCOT for two different neutral beam injection...

  6. Dynamics of fast ions during sawtooth oscillations in the TEXTOR tokamak measured by collective Thomson scattering

    NARCIS (Netherlands)

    Nielsen, S.K.; Salewski, M.; Bindslev, H.; Burger, A.; Furtula, V.; Kantor, M.; Korsholm, S. B.; Koslowski, H. R.; Kramer-Flecken, A.; Leipold, F.; Meo, F.; Michelsen, P. K.; Moseev, D.; Oosterbeek, J. W.; Stejner, M.; Westerhof, E.

    2011-01-01

    Experimental investigations of sawteeth interaction with fast ions measured by collective Thomson scattering on TEXTOR are presented. Time-resolved measurements of localized 1D fast-ion distribution functions allow us to study fast-ion dynamics during several sawtooth cycles. Sawtooth oscillations

  7. Measurements of Intrinsic Ion Bernstein Waves in a Tokamak by Collective Thomson Scattering

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Stejner Pedersen, Morten; Bindslev, Henrik;

    2011-01-01

    In this Letter we report measurements of collective Thomson scattering (CTS) spectra with clear signatures of ion Bernstein waves and ion cyclotron motion in tokamak plasmas. The measured spectra are in accordance with theoretical predictions and show clear sensitivity to variation in the density...

  8. Investigations of laser-induced plasma in argon by Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Mendys, A., E-mail: agata.mendys@uj.edu.pl [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Dzierzega, K.; Grabiec, M. [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Pellerin, S. [GREMI - site de Bourges, Universite d' Orleans, CNRS, rue Gaston Berger BP 4043, 18028 Bourges (France); Pokrzywka, B. [Obserwatorium Astronomiczne na Suhorze, Uniwersytet Pedagogiczny, ulica Podchorazych 2, 30-084 Krakow (Poland); Travaille, G.; Bousquet, B. [Centre de Physique Moleculaire Optique et Hertzienne, Universite Bordeaux 1, 351 Cours de la Liberation, 33405 Talence CEDEX (France)

    2011-09-15

    The Thomson scattering method was applied to quantify the electron number density and temperature of a laser spark formed in argon. The laser spark was generated by focusing a 15 mJ beam from the second harmonic ({lambda}{sub L} = 532 nm) of a nanosecond Nd:YAG laser with an 80 mm focal length lens. Images of the spark emission were obtained for times between 1 ns and 20 {mu}s after the laser pulse in order to characterize its spatial evolution. The electron density and temperature for the core of the plasma plume at different instants of its evolution were determined from the Thomson scattered spectra of another nanosecond Nd:YAG laser (532 nm, 10 to 60 mJ/pulse). In the time interval between 400 ns and 10 {mu}s between the laser induced plasma and Thomson scattering probe pulses, we found n{sub e} and T{sub e} to decrease from 4.3 Multiplication-Sign 10{sup 23} m{sup -3} to 2.4 Multiplication-Sign 10{sup 22} m{sup -3} and from 50 700 K to 11 100 K, respectively. Special care was paid to the plasma disturbance by the probe laser pulse in Thomson scattering experiments due to absorption of laser photons by electrons through the inverse bremsstrahlung process.

  9. Dynamics of fast ions during sawtooth oscillations in the TEXTOR tokamak measured by collective Thomson scattering

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Salewski, Mirko; Bindslev, Henrik

    2011-01-01

    Experimental investigations of sawteeth interaction with fast ions measured by collective Thomson scattering on TEXTOR are presented. Time-resolved measurements of localized 1D fast-ion distribution functions allow us to study fast-ion dynamics during several sawtooth cycles. Sawtooth oscillation...

  10. Preliminary project of s Thomson scattering system for the ETE tokamak; Projeto preliminar de um sistema de espalhamento Thomson para o Tokamak ETE

    Energy Technology Data Exchange (ETDEWEB)

    Berni, Luiz Angelo

    1997-12-31

    This report presents the preliminary project of the injection and laser light block system for the Thomson (ET) scattering diagnostic to be implanted at the ETE spheric tokamak of the Instituto Nacional de Pesquisas Espaciais (INPE/LAP). Also, a scanning system for the optics of scattered light 4 refs., 26 figs.

  11. Soft X-Ray Thomson Scattering in Warm Dense Hydrogen at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Faustlin, R R; Toleikis, S; Bornath, T; Doppner, T; Dusterer, S; Forster, E; Fortmann, C; Glenzer, S H; Gode, S; Gregori, G; Irsig, R; Laarmann, T; Lee, H J; Li, B; Meiwes-Broer, K; Mithen, J; Przystawik, A; Redlin, H; Redmer, R; Reinholz, H; Ropke, G; Tavella, F; Thiele, R; Tiggesbaumker, J; Uschmann, I; Zastrau, U; Tschentscher, T

    2009-07-15

    We present collective Thomson scattering with soft x-ray free electron laser radiation as a method to track the evolution of warm dense matter plasmas with {approx}200 fs time resolution. In a pump-probe scheme an 800 nm laser heats a 20 {micro}m hydrogen droplet to the plasma state. After a variable time delay in the order of ps the plasma is probed by an x-ray ultra violet (XUV) pulse which scatters from the target and is recorded spectrally. Alternatively, in a self-Thomson scattering experiment, a single XUV pulse heats the target while a portion of its photons are being scattered probing the target. From such inelastic x-ray scattering spectra free electron temperature and density can be inferred giving insight on relaxation time scales in plasmas as well as the equation of state. We prove the feasibility of this method in the XUV range utilizing the free electron laser facility in Hamburg, FLASH. We recorded Thomson scattering spectra for hydrogen plasma, both in the self-scattering and in the pump-probe mode using optical laser heating.

  12. Stray light analysis for the Thomson scattering diagnostic of the ETE Tokamak

    Science.gov (United States)

    Berni, L. A.; Albuquerque, B. F. C.

    2010-12-01

    Thomson scattering is a well-established diagnostic for measuring local electron temperature and density in fusion plasma, but this technique is particularly difficult to implement due to stray light that can easily mask the scattered signal from plasma. To mitigate this problem in the multipoint Thomson scattering system implemented at the ETE (Experimento Tokamak Esférico) a detailed stray light analysis was performed. The diagnostic system was simulated in ZEMAX software and scattering profiles of the mechanical parts were measured in the laboratory in order to have near realistic results. From simulation, it was possible to identify the main points that contribute to the stray signals and changes in the dump were implemented reducing the stray light signals up to 60 times.

  13. Stray light analysis for the Thomson scattering diagnostic of the ETE Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Berni, L. A. [Instituto Nacional de Pesquisas Espaciais (INPE), Laboratorio Associado de Sensores e Materiais (LAS), 12.227-010 Sao Jose dos Campos, SP (Brazil); Albuquerque, B. F. C. [Instituto Nacional de Pesquisas Espaciais (INPE), Engenharia e Tecnologia Espaciais, Divisao de Eletronica Aeroespacial, 12.227-010 Sao Jose dos Campos, SP (Brazil)

    2010-12-15

    Thomson scattering is a well-established diagnostic for measuring local electron temperature and density in fusion plasma, but this technique is particularly difficult to implement due to stray light that can easily mask the scattered signal from plasma. To mitigate this problem in the multipoint Thomson scattering system implemented at the ETE (Experimento Tokamak Esferico) a detailed stray light analysis was performed. The diagnostic system was simulated in ZEMAX software and scattering profiles of the mechanical parts were measured in the laboratory in order to have near realistic results. From simulation, it was possible to identify the main points that contribute to the stray signals and changes in the dump were implemented reducing the stray light signals up to 60 times.

  14. Control and automation of the Pegasus multi-point Thomson scattering system.

    Science.gov (United States)

    Bodner, G M; Bongard, M W; Fonck, R J; Reusch, J A; Rodriguez Sanchez, C; Schlossberg, D J

    2016-11-01

    A new control system for the Pegasus Thomson scattering diagnostic has recently been deployed to automate the laser operation, data collection process, and interface with the system-wide Pegasus control code. Automation has been extended to areas outside of data collection, such as manipulation of beamline cameras and remotely controlled turning mirror actuators to enable intra-shot beam alignment. Additionally, the system has been upgraded with a set of fast (∼1 ms) mechanical shutters to mitigate contamination from background light. Modification and automation of the Thomson system have improved both data quality and diagnostic reliability.

  15. Tokamak Plasmas : Electron temperature $(T_{e})$ measurements by Thomson scattering system

    Indian Academy of Sciences (India)

    R Rajesh; B Ramesh Kumar; S K Varshney; Manoj Kumar; Chhaya Chavda; Aruna Thakkar; N C Patel; Ajai Kumar; Aditya Team

    2000-11-01

    Thomson scattering technique based on high power laser has already proved its superoirity in measuring the electron temperature (e) and density (e) in fusion plasma devices like tokamaks. The method is a direct and unambiguous one, widely used for the localised and simultaneous measurements of the above parameters. In Thomson scattering experiment, the light scattered by the plasma electrons is used for the measurements. The plasma electron temperature is measured from the Doppler shifted scattered spectrum and density from the total scattered intensity. A single point Thomson scattering system involving a -switched ruby laser and PMTs as the detector is deployed in ADITYA tokamak to give the plasma electron parameters. The system is capable of providing the parameters e from 30 eV to 1 keV and e from 5 × 1012 cm-3-5× 1013 cm-3. The system is also able to give the parameter profile from the plasma center ( = 0 cm) to a vertical position of = +22 cm to = -14 cm, with a spatial resolution of 1 cm on shot to shot basis. This paper discusses the initial measurements of the plasma temperature from ADITYA.

  16. Spectral characterization of Compact Toroidal Hybrid plasmas in preparation for Thomson scattering measurements

    Science.gov (United States)

    Goforth, M. M.; Loch, S. D.; Maurer, D. A.; Pearce, A. J.; Traverso, P. J.

    2014-10-01

    A Thomson scattering system is in development for the Compact Toroidal Hybrid (CTH) experiment to provide localized, internal electron temperature and density measurements. Thomson scattering yields accurate information on the internal plasma electron pressure profile, which will aid in the equilibrium reconstruction of CTH plasmas using the V3FIT code. The expected Thomson scattered signal is approximately 1015 times less than the incident laser light, and can be overwhelmed by stray laser light, background plasma emission, and intrinsic detector noise. Background plasma emission measurements in the visible spectral region near the planned laser wavelength of 532 nm are underway using a Holospec f/1.8 spectrometer and an And or iStar image intensified CCD camera to quantify line and continuum background levels. In addition, impurity line identification and plans for a separate line-of-sight averaged impurity temperature and density measurement capability employing the Thomson spectrometer are in progress. This work is supported by US DOE Grant DE-FG-02-00ER54610 and by the Auburn University Undergraduate Research Fellowship.

  17. A high-power spatial filter for Thomson scattering stray light reduction

    Science.gov (United States)

    Levesque, J. P.; Litzner, K. D.; Mauel, M. E.; Maurer, D. A.; Navratil, G. A.; Pedersen, T. S.

    2011-03-01

    The Thomson scattering diagnostic on the High Beta Tokamak-Extended Pulse (HBT-EP) is routinely used to measure electron temperature and density during plasma discharges. Avalanche photodiodes in a five-channel interference filter polychromator measure scattered light from a 6 ns, 800 mJ, 1064 nm Nd:YAG laser pulse. A low cost, high-power spatial filter was designed, tested, and added to the laser beamline in order to reduce stray laser light to levels which are acceptable for accurate Rayleigh calibration. A detailed analysis of the spatial filter design and performance is given. The spatial filter can be easily implemented in an existing Thomson scattering system without the need to disturb the vacuum chamber or significantly change the beamline. Although apertures in the spatial filter suffer substantial damage from the focused beam, with proper design they can last long enough to permit absolute calibration.

  18. Scattering of strong electromagnetic wave by relativistic electrons: Thomson and Compton regimes

    Science.gov (United States)

    Potylitsyn, A. P.; Kolchuzhkin, A. M.

    2017-04-01

    The processes of the nonlinear Compton and the nonlinear Thomson scattering in a field of intense plane electromagnetic wave in terms of photon yield have been considered. The quantum consideration of the Compton scattering process allows us to calculate the probability of a few successive collisions k of an electron with laser photons accompanied by the absorption of n photons (nonlinear regime) when the number of collisions and the number of absorbed photons are of random quantities. The photon spectrum of the nonlinear Thomson scattering process was obtained from the classical formula for intensity using the Planck's law. The conditions for which the difference between the classical and the quantum regimes is manifested was obtained. Such a condition is determined by a discrete quantum radiation mechanism, namely, by the mean number of photons k bar emitted by an electron passing through the laser pulse.

  19. Coherent and incoherent Thomson scattering on an argon/hydrogen microwave plasma torch with transient behaviour

    Science.gov (United States)

    Obrusník, A.; Synek, P.; Hübner, S.; van der Mullen, J. J. A. M.; Zajíčková, L.; Nijdam, S.

    2016-10-01

    A new method of processing time-integrated coherent Thomson scattering spectra is presented, which provides not only the electron density and temperature but also information about the transient behaviour of the plasma. Therefore, it is an alternative to single-shot Thomson scattering measurements as long as the scattering is coherent. The method is applied to a microwave plasma torch operating in argon or a mixture of argon with hydrogen at atmospheric pressure. Electron densities up to 8\\cdot {{10}21} m-3 (ionization degree above 10-3) were observed, which is more than two times higher than presented in earlier works on comparable discharges. Additionally, a parametric study with respect to the argon/hydrogen ratio and the input power was carried out and the results are discussed together with earlier Stark broadening measurements on the same plasma.

  20. Implementation of a high throughput spectrograph for Thomson scattering measurements on the Compact Toriodal Hybrid

    Science.gov (United States)

    Goforth, Matthew; Traverso, Peter; Maurer, David

    2013-10-01

    To better understand the equilibrium and stability of Compact Toroidal Hybrid (CTH) plasmas, a multipoint Thomson scattering system is under development at Auburn University. Thomson scattering will be performed at 532 nm using a frequency doubled Continuum PL DLS Nd:YAG laser. The Thomson scattered light will be measured using a high throughput HoloSpec f/1.8i imaging spectrograph with in-line interference filter for spectral discrimination of stray laser light. An image intensified charge coupled device (ICCD) camera employing a Gen III photocathode with quantum efficiency of approximately 50% near the frequency doubled laser line is planned as the detection element for the scattered light. Bench and CTH impurity line emission measurements will be presented quantifying spectrometer and ICCD performance and suitability for scattering measurements over the visible spectral region near 532 nm. This work has been supported by US Department of Energy Grant No. DE-FG02-00ER54610 and the Auburn University Undergraduate Research Fellowship Program.

  1. Dielectric effects on Thomson scattering in a relativistic magnetized plasma

    DEFF Research Database (Denmark)

    Bindslev, H.

    1991-01-01

    the absorption is small. Symmetry between variables relating to incident and scattered fields is demonstrated and shown to be in agreement with the reciprocity relation. Earlier results are confirmed in the cold plasma limit. Significant relativistic effects, of practical importance to the scattering......The effects of the dielectric properties of a relativistic magnetized plasma on the scattering of electromagnetic radiation by fluctuations in electron density are investigated. The origin of the density fluctuations is not considered. Expressions for the scattering cross-section and the scattered...... power accepted by the receiving antenna are derived for a plasma with spatial dispersion. The resulting expressions allow thermal motion to be included in the description of the plasma and remain valid for frequencies of the probing radiation in the region of omega(p) and omega(ce), provided...

  2. Electron kinetic effects on interferometry, polarimetry and Thomson scattering measurements in burning plasmas (invited).

    Science.gov (United States)

    Mirnov, V V; Brower, D L; Den Hartog, D J; Ding, W X; Duff, J; Parke, E

    2014-11-01

    At anticipated high electron temperatures in ITER, the effects of electron thermal motion on Thomson scattering (TS), toroidal interferometer/polarimeter (TIP), and poloidal polarimeter (PoPola) diagnostics will be significant and must be accurately treated. The precision of the previous lowest order linear in τ = Te/mec(2) model may be insufficient; we present a more precise model with τ(2)-order corrections to satisfy the high accuracy required for ITER TIP and PoPola diagnostics. The linear model is extended from Maxwellian to a more general class of anisotropic electron distributions that allows us to take into account distortions caused by equilibrium current, ECRH, and RF current drive effects. The classical problem of the degree of polarization of incoherent Thomson scattered radiation is solved analytically exactly without any approximations for the full range of incident polarizations, scattering angles, and electron thermal motion from non-relativistic to ultra-relativistic. The results are discussed in the context of the possible use of the polarization properties of Thomson scattered light as a method of Te measurement relevant to ITER operational scenarios.

  3. Electron kinetic effects on interferometry, polarimetry and Thomson scattering measurements in burning plasmas (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Mirnov, V. V.; Hartog, D. J. Den; Duff, J.; Parke, E. [Physics Department, University of Wisconsin - Madison and the Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, Madison, Wisconsin 53706 (United States); Brower, D. L.; Ding, W. X. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095 (United States)

    2014-11-15

    At anticipated high electron temperatures in ITER, the effects of electron thermal motion on Thomson scattering (TS), toroidal interferometer/polarimeter (TIP), and poloidal polarimeter (PoPola) diagnostics will be significant and must be accurately treated. The precision of the previous lowest order linear in τ = T{sub e}/m{sub e}c{sup 2} model may be insufficient; we present a more precise model with τ{sup 2}-order corrections to satisfy the high accuracy required for ITER TIP and PoPola diagnostics. The linear model is extended from Maxwellian to a more general class of anisotropic electron distributions that allows us to take into account distortions caused by equilibrium current, ECRH, and RF current drive effects. The classical problem of the degree of polarization of incoherent Thomson scattered radiation is solved analytically exactly without any approximations for the full range of incident polarizations, scattering angles, and electron thermal motion from non-relativistic to ultra-relativistic. The results are discussed in the context of the possible use of the polarization properties of Thomson scattered light as a method of T{sub e} measurement relevant to ITER operational scenarios.

  4. Electron beam final focus system for Thomson scattering at ELBE

    Science.gov (United States)

    Krämer, J. M.; Budde, M.; Bødker, F.; Irman, A.; Jochmann, A.; Kristensen, J. P.; Lehnert, U.; Michel, P.; Schramm, U.

    2016-09-01

    The design of an electron beam final focus system (FFS) aiming for high-flux laser-Thomson backscattering X-ray sources at ELBE is presented. A telescope system consisting of four permanent magnet based quadrupoles was found to have significantly less chromatic aberrations than a quadrupole doublet or triplet as commonly used. Focusing properties like the position of the focal plane and the spot size are retained for electron beam energies between 20 and 30 MeV by adjusting the position of the quadrupoles individually on a motorized stage. The desired ultra-short electron bunches require an increased relative energy spread up to a few percent and, thus, second order chromatic effects must be taken into account. We also present the design and test results of the permanent magnet quadrupoles. Adjustable shunts allow for correction of the field strength and compensation of deviations in the permanent magnet material. For a beam emittance of 13 mm mrad, we predict focal spot sizes of about 40 μm (rms) and divergences of about 10 mrad using the FFS.

  5. Electron beam final focus system for Thomson scattering at ELBE

    Energy Technology Data Exchange (ETDEWEB)

    Krämer, J.M., E-mail: jmkr@danfysik.dk [Danfysik A/S, Gregersensvej 8, 2630 Taastrup (Denmark); Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstrasse 400, 01328 Dresden (Germany); Technische Universität Dresden, 01069 Dresden (Germany); Budde, M.; Bødker, F. [Danfysik A/S, Gregersensvej 8, 2630 Taastrup (Denmark); Irman, A.; Jochmann, A. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstrasse 400, 01328 Dresden (Germany); Kristensen, J.P. [Danfysik A/S, Gregersensvej 8, 2630 Taastrup (Denmark); Lehnert, U.; Michel, P. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstrasse 400, 01328 Dresden (Germany); Schramm, U. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstrasse 400, 01328 Dresden (Germany); Technische Universität Dresden, 01069 Dresden (Germany)

    2016-09-11

    The design of an electron beam final focus system (FFS) aiming for high-flux laser-Thomson backscattering X-ray sources at ELBE is presented. A telescope system consisting of four permanent magnet based quadrupoles was found to have significantly less chromatic aberrations than a quadrupole doublet or triplet as commonly used. Focusing properties like the position of the focal plane and the spot size are retained for electron beam energies between 20 and 30 MeV by adjusting the position of the quadrupoles individually on a motorized stage. The desired ultra-short electron bunches require an increased relative energy spread up to a few percent and, thus, second order chromatic effects must be taken into account. We also present the design and test results of the permanent magnet quadrupoles. Adjustable shunts allow for correction of the field strength and compensation of deviations in the permanent magnet material. For a beam emittance of 13 mm mrad, we predict focal spot sizes of about 40 μm (rms) and divergences of about 10 mrad using the FFS.

  6. Electron beam final focus system for Thomson scattering at ELBE

    CERN Document Server

    Krämer, J.M.; Bødker, F.; Irman, A.; .Jochmann A.; Kristensen, J.P.; Lehnert U., HZDR; Michel, P.; Schrammb, U.; 10.1016/j.nima.2015.10.067

    2016-01-01

    The design of an electron beam final focus system (FFS) aiming for high-flux laser-Thomson backscattering X-ray sources at ELBE is presented. A telescope system consisting of four permanent magnet based quadrupoles was found to have significantly less chromatic aberrations than a quadrupole doublet or triplet as commonly used. Focusing properties like the position of the focal plane and the spot size are retained for electron beam energies between 20 and 30 MeV by adjusting the position of the quadrupoles individually on a motorized stage. The desired ultra-short electron bunches require an increased relative energy spread up to a few percent and, thus, second order chromatic effects must be taken into account. We also present the design and test results of the permanent magnet quadrupoles. Adjustable shunts allow for correction of the field strength and compensation of deviations in the permanent magnet material. For a beam emittance of 13 mm mrad, we predict focal spot sizes of about 40 μm (rms) and diverg...

  7. Electron Beam Final Focus System For Thomson Scattering At Elbe

    CERN Document Server

    Krämer, J.M.; Bødkera, F.; Irman, A.; Jochmann, A.; Kristensena, J.P.; Lehnert, U.; Michel, P.; Schramm, U.; 10.1016/j.nima.2015.10.067

    2016-01-01

    The design of an electron beam final focus system (FFS) aiming for high-flux laser-Thomson backscattering X-ray sources at ELBE is presented. A telescope system consisting of four permanent magnet based quadrupoles was found to have significantly less chromatic aberrations than a quadrupole doublet or triplet as commonly used. Focusing properties like the position of the focal plane and the spot size are retained for electron beam energies between 20 and 30 MeV by adjusting the position of the quadrupoles individually on a motorized stage. The desired ultra-short electron bunches require an increased relative energy spread up to a few percent and, thus, second order chromatic effects must be taken into account. We also present the design and test results of the permanent magnet quadrupoles. Adjustable shunts allow for correction of the field strength and compensation of deviations in the permanent magnet material. For a beam emittance of 13 mm mrad, we predict focal spot sizes of about 40 μm (rms) and diverg...

  8. A new dump system design for stray light reduction of Thomson scattering diagnostic system on EAST

    Science.gov (United States)

    Xiao, Shumei; Zang, Qing; Han, Xiaofeng; Wang, Tengfei; Yu, Jin; Zhao, Junyu

    2016-07-01

    Thomson scattering (TS) diagnostic is an important diagnostic for measuring electron temperature and density during plasma discharge. However, the measurement of Thomson scattering signal is disturbed by the stray light easily. The stray light sources in the Experimental Advanced Superconducting Tokamak (EAST) TS diagnostic system were analyzed by a simulation model of the diagnostic system, and simulation results show that the dump system is the primary stray light source. Based on the optics theory and the simulation analysis, a novel dump system including an improved beam trap was proposed and installed. The measurement results indicate that the new dump system can reduce more than 60% of the stray light for the diagnostic system, and the influence of stray light on the error of measured density decreases.

  9. Modular Python-based Code for Thomson Scattering System on NSTX-U

    Science.gov (United States)

    Horowitz, Benjamin; Diallo, Ahmed; Feibush, Eliot; Leblanc, Benoit

    2013-10-01

    Fast accurate and reliable measurements of electron temperature and density profiles within magnetically confined plasmas are essential for full operation of fusion devices. We detail the design and implementation of a modular Pythonbased code for the Thomson Scattering diagnostic system of NSTX-U which offers improvements in speed by making full use of the Python's architecture, open-source module packages, and ability to be parallelized across many processors. SciPy's weave package allows the implementation of C/C++ code within our program to clear up bottlenecks in data fitting while not loosing the flexibility and clarity of Python, while Numpy and MatplotLib allow calculations and plotting of the processed data. Using the standard MDSplus input, we create a flexible and expandable algorithm structure which can be implemented on any fusion device utilizing polychromator-based Thomson scattering diagnostic system. Supported by DOE SULI Fellowship at Princeton Plasma Physics Lab.

  10. Material Assessment for ITER’s Collective Thomson Scattering first mirror

    DEFF Research Database (Denmark)

    Santos, R.; Policarpo, H.; Gonçalves, B.

    2015-01-01

    ITER’s Collective Thomson Scattering (CTS) system is a diagnostic instrument that will measure the plasma density and velocity through Thomson scattering of microwave radiation. Some of the key components of the CTS are quasioptical mirrors used to produce astigmatic beam patterns, which have....... In this work, three different materials (molybdenum (Mo), stainless steel 316L (SS-316L) and tungsten (W)) are considered for the first mirror of the CTS. The objective is to assess the suitability of these materials for this mirror and to provide a first ranking, considering the neutron radiation loads...... Element Analysis (FEA) of the mirror over a 400s discharge (reasonable number for computational tests, since an ITER discharge will be between 200 s and 1000 s) , with and without mirror cooling, is performed. The results obtained in this preliminary analysis show that of the tested materials Mo and W...

  11. A new dump system design for stray light reduction of Thomson scattering diagnostic system on EAST.

    Science.gov (United States)

    Xiao, Shumei; Zang, Qing; Han, Xiaofeng; Wang, Tengfei; Yu, Jin; Zhao, Junyu

    2016-07-01

    Thomson scattering (TS) diagnostic is an important diagnostic for measuring electron temperature and density during plasma discharge. However, the measurement of Thomson scattering signal is disturbed by the stray light easily. The stray light sources in the Experimental Advanced Superconducting Tokamak (EAST) TS diagnostic system were analyzed by a simulation model of the diagnostic system, and simulation results show that the dump system is the primary stray light source. Based on the optics theory and the simulation analysis, a novel dump system including an improved beam trap was proposed and installed. The measurement results indicate that the new dump system can reduce more than 60% of the stray light for the diagnostic system, and the influence of stray light on the error of measured density decreases.

  12. Velocity-space tomography of fusion plasmas by collective Thomson scattering of gyrotron radiation

    DEFF Research Database (Denmark)

    Salewski, Mirko; Jacobsen, A.S.; Jensen, Thomas;

    2016-01-01

    We propose a diagnostic capable of measuring 2D fast-ion velocity distribution functions 푓2퐷푣 in the MeV-range in magnetized fusion plasmas. Today velocity-space tomography based on fast-ion D훼 spectroscopy is regularly used to measure 푓2퐷푣 for ion energies below 100 keV. Unfortunately, the signal......-tonoise ratio becomes fairly low for MeV-range ions. Ions at any energy can be detected well by collective Thomson scattering of mm-wave radiation from a high-power gyrotron. We demonstrate how collective Thomson scattering can be used to measure 푓2퐷푣 in the MeV-range in reactor relevant plasmas...

  13. 4{omega} Thomson scattering probe for high-density plasma characterization at Titan

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J. S.; Pollock, B. B. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Department of Mechanical and Aerospace Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0411 (United States); Kline, J. L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Yang, S.; Henesian, M.; Weiland, T.; Price, D.; Glenzer, S. H. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

    2010-10-15

    In preparation for the upcoming experiments on the Titan laser at the Jupiter Laser Facility, a new Thomson scattering system has been designed and implemented. This system allows electron temperature and density measurements in a high-density regime (n{sub e}>10{sup 21} cm{sup -3}). A 263 nm probe has been demonstrated to produce a total energy of 15 J at 4{omega}(263 nm) in a 1 ns square pulse with a focal spot size of 100 {mu}m. This probe has been used for imaging Thomson scattering of the ion feature. The goal of this study is to investigate the heating of a preformed plasma by a short-pulse heater beam.

  14. Development of a YAG laser system for the edge Thomson scattering system in ITER.

    Science.gov (United States)

    Hatae, T; Yatsuka, E; Hayashi, T; Yoshida, H; Ono, T; Kusama, Y

    2012-10-01

    A prototype YAG laser system for the edge Thomson scattering system in ITER has been newly developed. Performance of the laser amplifier was improved by using flow tubes made of samarium-doped glass; the small signal gain reached 20 at its maximum. As a result, an output energy of 7.66 J at 100 Hz was successfully achieved, and the performance exceeded the target performance (5 J, 100 Hz).

  15. Fast ion dynamics in ASDEX upgrade and TEXTOR measured by collective Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Moseev, D.

    2011-11-15

    Fast ions are an essential ingredient in burning nuclear fusion plasmas: they are responsible for heating the bulk plasma, carry a significant amount of plasma current and moreover interact with various magnetohydrodynamic (MHD) instabilities. The collective Thomson scattering (CTS) diagnostic is sensitive to the projection of fast ion velocity distribution function. This thesis is mainly devoted to investigations of fast ion physics in tokamak plasmas by means of CTS. (Author)

  16. Thomson scattering in the EXTRAP-T2 reversed-field pinch

    Energy Technology Data Exchange (ETDEWEB)

    Welander, A.

    1996-11-01

    A Thomson scattering system has been installed on the EXTRAP-T2 RFP experiment. The system measures the electron density and temperature in three radial points using three spectral channels. A description of the system, the calibration techniques and examples of data obtained are given. The error bars for the electron temperature measurements are estimated to be < 10% for typical T2-plasmas. 4 refs.

  17. Edge and core Thomson scattering systems and their calibration on the ASDEX Upgrade tokamak.

    Science.gov (United States)

    Kurzan, B; Murmann, H D

    2011-10-01

    A new 10 channel Thomson scattering (TS) system was installed on the ASDEX Upgrade tokamak to measure radial profiles of electron density and temperature at the plasma edge with high radial resolution. Together with the already existing TS system, which is now used for the core plasma, electron density and temperature profiles extending from the edge to the core are now obtained in a single discharge. The TS systems are relatively calibrated by an optical parametric oscillator.

  18. Edge and core Thomson scattering systems and their calibration on the ASDEX Upgrade tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Kurzan, B.; Murmann, H. D. [Max-Planck Institut fuer Plasmaphysik, EURATOM Association Boltzmannstr.2, 85748 Garching (Germany)

    2011-10-15

    A new 10 channel Thomson scattering (TS) system was installed on the ASDEX Upgrade tokamak to measure radial profiles of electron density and temperature at the plasma edge with high radial resolution. Together with the already existing TS system, which is now used for the core plasma, electron density and temperature profiles extending from the edge to the core are now obtained in a single discharge. The TS systems are relatively calibrated by an optical parametric oscillator.

  19. The preliminary design of the optical Thomson scattering diagnostic for the National Ignition Facility

    Science.gov (United States)

    Datte, P.; Ross, J. S.; Froula, D.; Galbraith, J.; Glenzer, S.; Hatch, B.; Kilkenny, J.; Landen, O.; Manuel, A. M.; Molander, W.; Montgomery, D.; Moody, J.; Swadling, G.; Weaver, J.; Vergel de Dios, G.; Vitalich, M.

    2016-05-01

    The National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion programs. We report on the preliminary design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community's understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beamsplitter and gratings before the shot. A deep-UV probe beam (λ0 between 185-215 nm) will optimally collect Thomson scattered light from plasma densities of 5 x 1020 electrons/cm3 while a 3ω probe will optimally collect Thomson scattered light from plasma densities of 1 x 1019 electrons/cm3. We report the phase I design of a two phase design strategy. Phase I includes the OTS recording system to measure background levels at NIF and phase II will include the integration of a probe laser.

  20. Investigation of first mirror heating for the collective Thomson scattering diagnostic in ITER

    DEFF Research Database (Denmark)

    Salewski, Mirko; Meo, Fernando; Bindslev, Henrik

    2008-01-01

    Collective Thomson scattering (CTS) has the capabilities to measure phase space densities of fast ion populations in ITER resolved in configuration space, in velocity space, and in time. In the CTS system proposed for ITER, probing radiation at 60 GHz generated by two 1 MW gyrotrons is scattered...... in the plasma and collected by arrays of receivers. The transmission lines from the gyrotrons to the plasma and from the plasma to the receivers contain several quasioptical mirrors among other components. These are designed to produce astigmatic beam patterns in the plasma where the beam shapes will have...

  1. ITER fast ion collective Thomson scattering. Conceptual design of 60 GHz system

    DEFF Research Database (Denmark)

    Meo, Fernando; Bindslev, Henrik; Korsholm, Søren Bang

    The collective Thomson scattering diagnostic for ITER at the 60 GHz range is capable of measuring the fast ion distribution parallel and perpendicular to the magnetic field at different radial locations simultaneously. The design is robust technologically with no moveable components near the plasma...... describes the two systems and their main components. Section 3 clarifies the impact of design parameters such as beam widths and scattering angle on the CTS measurements. With this in hand, the ITER measurement requirements are translated into constraints on the CTS system designs. An important result...

  2. Investigation of first mirror heating for the collective Thomson scattering diagnostic in ITER

    DEFF Research Database (Denmark)

    Salewski, Mirko; Meo, Fernando; Bindslev, Henrik;

    2008-01-01

    Collective Thomson scattering (CTS) has the capabilities to measure phase space densities of fast ion populations in ITER resolved in configuration space, in velocity space, and in time. In the CTS system proposed for ITER, probing radiation at 60 GHz generated by two 1 MW gyrotrons is scattered...... modeling of a first mirror on the high field side indicates that the mirror curvature may warp due to heating. This may alter the beam quality, and therefore, thermal effects have to be accounted for during the design of the mirror. The modeling further demonstrates that thin mirrors are superior to thick...

  3. LIGHT SOURCE: TW Laser system for Thomson scattering X-ray light source at Tsinghua University

    Science.gov (United States)

    Yan, Li-Xm; Du, Ying-Chao; Du, Qiang; Li, Ren-Kai; Hua, Jian-Fei; Huang, Wen-Hui; Tang, Chuan-Xiang

    2009-06-01

    A TW (Tera Watt) laser system based on Ti:sapphire mainly for the Tsinghua Thomson scattering X-ray light source (TTX) is being built. Both UV (ultraviolet) laser pulse for driving the photocathode radio-frequency (RF) gun and the IR (infrared) laser pulse as the electron-beam-scattered-light are provided by the system. Efforts have also been made in laser pulse shaping and laser beam transport to optimize the high-brightness electron beam production by the photocathode RF gun.

  4. CO2 laser collective Thomson scattering diagnostics on the HT-7 tokamak

    Institute of Scientific and Technical Information of China (English)

    李亚东; 李建刚; 毛剑珊

    2004-01-01

    A CW CO2 laser collective Thomson scattering diagnostics was developed to measure plasma density fluctuations on the HT-7 tokamak. The design and construction of CO2 laser scattering apparatus is described. The laser source is a continuous-wave CO2 laser with a cavity length of 1.9 m and a power output of about 10 W at 10.6 μm. The k-resolution of the system is △k ≈ 3.2 cm-1. The preliminary data from the diagnostic is presented.

  5. TW Laser system for Thomson scattering X-ray light source at Tsinghua University

    Institute of Scientific and Technical Information of China (English)

    YAN Li-Xin; DU Ying-Chao; DU Qiang; LI Ren-Kai; HUA Jian-Fei; HUANG Wen-Hui; TANG Chuan-Xiang

    2009-01-01

    A TW(Tera Watt)laser system based on Ti:sapphire mainly for the Tsinghua Thomson scattering X-ray light source(TTX)is being built.Both UV(ultraviolet)laser pulse for driving the photocathode radiofrequency(RF)gun and the IR(infrared)laser pulse as the electron-beam-scattered-light are provided by the system.Efforts have also been made in laser pulse shaping and laser beam transport to optimize the high-brightness electron beam production by the photocathode RF gun.

  6. Data Processing and Acquisition System for the HT-7 Multipulse Thomson Scattering Diagnostic

    Institute of Scientific and Technical Information of China (English)

    陈卓天; 赵君煜; 方自深; 李亚东; 杨利

    2003-01-01

    This article describes the data processing and acquisition system for the HT-7 mul-tipulse Thomson scattering diagnostic. An eight-pulse laser is used in the Thomson scatteringsystem to obtain electron temperature profiles at eight different times throughout an entire plasmadischarge. The major components of the diagnostic system consist of a multipulse Nd-glass laser,system. The data processing software along with LeCroy 2250L will perform the data acquisition.In order to simplify the operation and extend the capability of its compatibility with other mathsoftwares, the processing software has been improved by the authors. The new software based onthe VC++ easily utilizes some math softwares to calculate the electron temperature. The newsoftware is simpler and more operational than the old one.

  7. Demonstration of X-ray Thomson Scattering on Shenguang-Ⅱ Laser Facility

    Institute of Scientific and Technical Information of China (English)

    胡广月; 张小丁; 郑坚; 雷安乐; 沈百飞; 徐至展; 张继彦; 杨家敏; 杨国洪; 韦敏习; 李军; 丁永坤

    2012-01-01

    X-ray Thomson scattering technique for diagnosing dense plasma was demonstrated on Shenguang-Ⅱ laser facility. Laser plasma x-ray source of titanium He-a lines (-4.75 keV), generated by laser beam (1.5 kJ/527 nm/2 ns) heated titanium thin foil, was used as x-ray probe beam. The x-ray probe was then scattered by cold CH foam column of 1 g/cm^3 density. The scattered radiation at 90° was diffracted by polyethylene terephthalate (PET) crystal and recorded on x-ray charge-coupled device. Well-defined scattering spectra were obtained with good signal to noise ratio.

  8. Thomson scattering from near-solid density plasmas using soft x-ray free electron lasers

    CERN Document Server

    Höll, A

    2006-01-01

    We propose a collective Thomson scattering experiment at the VUV free electron laser facility at DESY (FLASH) which aims to diagnose warm dense matter at near-solid density. The plasma region of interest marks the transition from an ideal plasma to a correlated and degenerate many-particle system and is of current interest, e.g. in ICF experiments or laboratory astrophysics. Plasma diagnostic of such plasmas is a longstanding issue. The collective electron plasma mode (plasmon) is revealed in a pump-probe scattering experiment using the high-brilliant radiation to probe the plasma. The distinctive scattering features allow to infer basic plasma properties. For plasmas in thermal equilibrium the electron density and temperature is determined from scattering off the plasmon mode.

  9. Thomson scattering from near-solid density plasmas using soft x-ray free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Holl, A; Bornath, T; Cao, L; Doppner, T; Dusterer, S; Forster, E; Fortmann, C; Glenzer, S H; Gregori, G; Laarmann, T; Meiwes-Broer, K H; Przystawik, A; Radcliffe, P; Redmer, R; Reinholz, H; Ropke, G; Thiele, R; Tiggesbaumker, J; Toleikis, S; Truong, N X; Tschentscher, T; Uschmann, I; Zastrau, U

    2006-11-21

    We propose a collective Thomson scattering experiment at the VUV free electron laser facility at DESY (FLASH) which aims to diagnose warm dense matter at near-solid density. The plasma region of interest marks the transition from an ideal plasma to a correlated and degenerate many-particle system and is of current interest, e.g. in ICF experiments or laboratory astrophysics. Plasma diagnostic of such plasmas is a longstanding issue. The collective electron plasma mode (plasmon) is revealed in a pump-probe scattering experiment using the high-brilliant radiation to probe the plasma. The distinctive scattering features allow to infer basic plasma properties. For plasmas in thermal equilibrium the electron density and temperature is determined from scattering off the plasmon mode.

  10. Generation of Attosecond X-Ray Pulse through Coherent Relativistic Nonlinear Thomson Scattering

    CERN Document Server

    Lee, K; Jeong, Y U; Lee, B C; Park, S H

    2005-01-01

    In contrast to some recent experimental results, which state that the Nonlinear Thomson Scattered (NTS) radiation is incoherent, a coherent condition under which the scattered radiation of an incident laser pulse by a bunch of electrons can be coherently superposed has been investigated. The Coherent Relativistic Nonlinear Thomson Scattered (C-RNTS) radiation makes it possible utilizing the ultra-short pulse nature of NTS radiation with a bunch of electrons, such as plasma or electron beams. A numerical simulation shows that a 25 attosecond X-ray pulse can be generated by irradiating an ultra-intense laser pulse of 4x10(19) W/cm2 on an ultra-thin solid target of 50 nm thickness, which is commercially available. The coherent condition can be easily extended to an electron beam from accelerators. Different from the solid target, much narrower electron beam is required for the generation of an attosecond pulse. Instead, this condition could be applied for the generation of intense Compton scattered X-rays with a...

  11. Design and implementation of a Thomson scattering diagnostic for the Compact Toroidal Hybrid

    Science.gov (United States)

    Traverso, P. J.; Maurer, D. A.; Hartwell, G. J.; Knowlton, S. F.; Archmiller, M. C.; Goforth, M. M.

    2013-10-01

    The Compact Toroidal Hybrid (CTH) experiment is investigating the avoidance of disruptions in ohmically driven torsaton plasmas as the ratio of vacuum transform to the total transform is changed. To better characterize these plasmas under this wide range of magnetic configurations, a new Thomson scattering diagnostic is being implemented to measure electron temperature and density profiles. These important internal profile measurements will be incorporated into the V3FIT code to enable better 3D equilibrium reconstruction. The Thomson scattering system uses a frequency doubled Continuum PL DLS 2 J Nd:YaG laser. The incident beam is passed vertically through an entrance Brewster window and a baffle system to minimize stray laser light. The beam exits through another Brewster window to an external beam dump. Polarization optics are planned to maximize the scattered light directed to the collection system for the specific scattering geometry of CTH. This work is supported by the USDoE under grant DE-FG02-00ER54610.

  12. Polarization of x-gamma radiation produced by a Thomson and Compton inverse scattering

    Science.gov (United States)

    Petrillo, V.; Bacci, A.; Curatolo, C.; Drebot, I.; Giribono, A.; Maroli, C.; Rossi, A. R.; Serafini, L.; Tomassini, P.; Vaccarezza, C.; Variola, A.

    2015-11-01

    A systematic study of the polarization of x-gamma rays produced in Thomson and Compton scattering is presented, in both classical and quantum schemes. Numerical results and analytical considerations let us to establish the polarization level as a function of acceptance, bandwidth and energy. Few sources have been considered: the SPARC_LAB Thomson device, as an example of a x-ray Thomson source, ELI-NP, operating in the gamma range. Then, the typical parameters of a beam produced by a plasma accelerator has been analyzed. In the first case, with bandwidths up to 10%, a contained reduction (<10 % ) in the average polarization occurs. In the last case, for the nominal ELI-NP relative bandwidth of 5 ×1 0-3 , the polarization is always close to 1. For applications requiring larger bandwidth, however, a degradation of the polarization up to 30% must be taken into account. In addition, an all optical gamma source based on a plasma accelerated electron beam cannot guarantee narrow bandwidth and high polarization operational conditions required in nuclear photonics experiments.

  13. Measurements of ion temperature and plasma hydrogenic composition by collective Thomson scattering in neutral beam heated discharges at TEXTOR

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Salewski, Mirko; Korsholm, Søren Bang

    2013-01-01

    A method is developed to perform plasma composition and ion temperature measurements across the plasma minor radius in TEXTOR based on ion cyclotron structures in collective Thomson scattering spectra. By gradually moving the scattering volume, we obtain measurements across the outer midplane...

  14. A parallelized Python based Multi-Point Thomson Scattering analysis in NSTX-U

    Science.gov (United States)

    Miller, Jared; Diallo, Ahmed; Leblanc, Benoit

    2014-10-01

    Multi-Point Thomson Scattering (MPTS) is a reliable and accurate method of finding the temperature, density, and pressure of a magnetically confined plasma. Nd:YAG (1064 nm) lasers are fired into the plasma with a frequency of 60 Hz, and the light is Doppler shifted by Thomson scattering. Polychromators on the midplane of the tokamak pick up the light at various radii/scattering angles, and the avalanche photodiode's voltages are added to an MDSplus tree for later analysis. This project ports and optimizes the prior serial IDL MPTS code into a well-documented Python package that runs in parallel. Since there are 30 polychromators in the current NSTX setup (12 more will be added when NSTX-U is completed), using parallelism offers vast savings in performance. NumPy and SciPy further accelerate numerical calculations and matrix operations, Matplotlib and PyQt make an intuitive GUI with plots of the output, and Multiprocessing parallelizes the computationally intensive calculations. The Python package was designed with portability and flexibility in mind so it can be adapted for use in any polychromator-based MPTS system.

  15. Classical Heat-Flux Measurements in Coronal Plasmas from Collective Thomson-Scattering Spectra

    Science.gov (United States)

    Henchen, R. J.; Hu, S. X.; Katz, J.; Froula, D. H.; Rozmus, W.

    2016-10-01

    Collective Thomson scattering was used to measure heat flux in coronal plasmas. The relative amplitude of the Thomson-scattered power into the up- and downshifted electron plasma wave features was used to determine the flux of electrons moving along the temperature gradient at three to four times the electron thermal velocity. Simultaneously, the ion-acoustic wave features were measured. Their relative amplitude was used to measure the flux of the return-current electrons. The frequencies of these ion-acoustic and electron plasma wave features provide local measurements of the electron temperature and density. These spectra were obtained at five locations along the temperature gradient in a laser-produced blowoff plasma. These measurements of plasma parameters are used to infer the Spitzer-Härm flux (qSH = - κ∇Te ) and are in good agreement with the values of the heat flux measured from the scattering-feature asymmetries. Additional experiments probed plasma waves perpendicular to the temperature gradient. The data show small effects resulting from heat flux compared to probing waves along the temperature gradient. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  16. Design and implementation of a Thomson scattering diagnostic for the Compact Toroidal Hybrid Experiment

    Science.gov (United States)

    Traverso, P. J.; Maurer, D. A.; Ennis, D. A.; Hartwell, G. J.; Goforth, M. M.; Loch, S. D.; Pearce, A. J.; Cianciosa, M. R.

    2014-10-01

    A Thomson scattering system using standard commercially available components has been designed for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH). The initial system takes a single point measurement and will be used to assess options for an upgrade to a multi-point system providing electron temperature and density profiles. This single point measurement will reduce the uncertainty in the reconstructed peak pressure by an order of magnitude for both ohmically driven, current-carrying plasmas and future gyrotron-heated stellarator plasmas. A principle design goal is to minimize stray laser light, geometrically on the machine side and spectrally on the collection side, to allow measurements of both full and half Thomson scattered spectral profiles. The beam, generated by a frequency doubled Continuum 2 J Nd:YaG laser, is passed vertically through an entrance Brewster window and an aperturing baffle system to minimize stray light. Light collection, spectral processing, and signal detection are accomplished with an f / # ~ 1 aspheric lens, a Holospec f/1.8 spectrometer, and an Andor iStar DH740-18U-C3 image intensified camera. The estimated number of scattered photons per channel will be of the order of 5 ×103 with a signal to noise ratio of S / N = 19 This work is supported by U.S. Department of Energy Grant No. DE-FG02-00ER54610.

  17. Principles of fuel ion ratio measurements in fusion plasmas by collective Thomson scattering

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Nielsen, Stefan Kragh; Bindslev, Henrik;

    2011-01-01

    ratio. Measurements of the fuel ion ratio will be important for plasma control and machine protection in future experiments with burning fusion plasmas. Here we examine the theoretical basis for fuel ion ratio measurements by CTS. We show that the sensitivity to plasma composition is enhanced......For certain scattering geometries collective Thomson scattering (CTS) measurements are sensitive to the composition of magnetically confined fusion plasmas. CTS therefore holds the potential to become a new diagnostic for measurements of the fuel ion ratio—i.e. the tritium to deuterium density...... by the signatures of ion cyclotron motion and ion Bernstein waves which appear for scattering geometries with resolved wave vectors near perpendicular to the magnetic field. We investigate the origin and properties of these features in CTS spectra and give estimates of their relative importance for fuel ion ratio...

  18. Collective Thomson scattering for ion temperature and velocity measurements on Magnum-PSI: a feasibility study

    Science.gov (United States)

    van der Meiden, H. J.

    2010-04-01

    In this paper, collective Thomson scattering (CTS) is proposed for measuring the ion temperature and axial/rotational velocity of a plasma jet in the linear plasma generator Magnum-PSI, where ITER-relevant plasma conditions will be simulated. CTS is feasible at Magnum-PSI, because high electron densities (ne) can be obtained at low electron temperatures, which means that small Debye lengths are achievable. Calculations show that CTS is possible at the fundamental wavelength (1064 nm) of a Nd : YAG laser. At this wavelength, a scattering angle of 17-35° is sufficiently small to achieve a scattering parameter 1 1.5 × 1021 m-3. The design considerations of the CTS diagnostic are described in this paper.

  19. X-ray Thomson scattering measurements from hohlraum-driven spheres on the OMEGA laser

    Science.gov (United States)

    Saunders, A. M.; Jenei, A.; Döppner, T.; Falcone, R. W.; Kraus, D.; Kritcher, A.; Landen, O. L.; Nilsen, J.; Swift, D.

    2016-11-01

    X-ray Thomson scattering (XRTS) is a powerful diagnostic for probing warm and hot dense matter. We present the design and results of the first XRTS experiments with hohlraum-driven CH2 targets on the OMEGA laser facility at the Laboratory for Laser Energetics in Rochester, NY. X-rays seen directly from the XRTS x-ray source overshadow the elastic scattering signal from the target capsule but can be controlled in future experiments. From the inelastic scattering signal, an average plasma temperature is inferred that is in reasonable agreement with the temperatures predicted by simulations. Knowledge gained in this experiment shows a promising future for further XRTS measurements on indirectly driven OMEGA targets.

  20. Elevation angle alignment of quasi optical receiver mirrors of collective Thomson scattering diagnostic by sawtooth measurements

    DEFF Research Database (Denmark)

    Moseev, D.; Meo, Fernando; Korsholm, Søren Bang;

    2012-01-01

    Localized measurements of the fast ion velocity distribution function and the plasma composition measurements are of significant interest for the fusion community. Collective Thomson scattering (CTS) diagnostics allow such measurements with spatial and temporal resolution. Localized measurements...... require a good alignment of the optical path in the transmission line. Monitoring the alignment during the experiment greatly benefits the confidence in the CTS measurements. An in situ technique for the assessment of the elevation angle alignment of the receiver is developed. Using the CTS diagnostic...

  1. Time evolution analysis of the electron distribution in Thomson/Compton back-scattering

    Energy Technology Data Exchange (ETDEWEB)

    Petrillo, V.; Bacci, A.; Curatolo, C.; Maroli, C.; Serafini, L.; Rossi, A. R. [INFN-Universitá degli Studi Milano, Via Celoria, 16 20133 Milano (Italy)

    2013-07-28

    We present the time evolution of the energy distribution of a relativistic electron beam after the Compton back-scattering with a counter-propagating laser field, performed in the framework of the Quantum Electrodynamics, by means of the code CAIN. As the correct angular distribution of the spontaneous emission is accounted, the main effect is the formation of few stripes, followed by the diffusion of the more energetic particles toward lower values in the longitudinal phase space. The Chapman-Kolmogorov master equation gives results in striking agreement with the numerical ones. An experiment on the Thomson source at SPARC-LAB is proposed.

  2. Time evolution analysis of the electron distribution in Thomson/Compton back-scattering

    Science.gov (United States)

    Petrillo, V.; Bacci, A.; Curatolo, C.; Maroli, C.; Serafini, L.; Rossi, A. R.

    2013-07-01

    We present the time evolution of the energy distribution of a relativistic electron beam after the Compton back-scattering with a counter-propagating laser field, performed in the framework of the Quantum Electrodynamics, by means of the code CAIN. As the correct angular distribution of the spontaneous emission is accounted, the main effect is the formation of few stripes, followed by the diffusion of the more energetic particles toward lower values in the longitudinal phase space. The Chapman-Kolmogorov master equation gives results in striking agreement with the numerical ones. An experiment on the Thomson source at SPARC-LAB is proposed.

  3. Thomson scattering measurement of a shock in laser-produced counter-streaming plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Morita, T.; Kuramitsu, Y.; Moritaka, T. [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Sakawa, Y.; Takabe, H. [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Graduate School of Science, Osaka University, 1-1 Machikane-yama, Toyonaka, Osaka 560-0043 (Japan); Tomita, K.; Nakayama, K.; Inoue, K.; Uchino, K. [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1, Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); Ide, T.; Tsubouchi, K. [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Nishio, K.; Ide, H.; Kuwada, M. [Graduate School of Science, Osaka University, 1-1 Machikane-yama, Toyonaka, Osaka 560-0043 (Japan)

    2013-09-15

    We report the first direct measurement of temporally and spatially resolved plasma temperatures at a shock as well as its spatial structure and propagation in laser-produced counter-streaming plasmas. Two shocks are formed in counter-streaming collisionless plasmas early in time, and they propagate opposite directions. This indicates the existence of counter-streaming collisionless flows to keep exciting the shocks, even though the collisional effects increase later in time. The shock images are observed with optical diagnostics, and the upstream and downstream plasma parameters of one of the shocks are measured using Thomson scattering technique.

  4. Ultrashort hard x-ray pulses generated by 90 degrees Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Chin, A.H. [Univ. of California, Berkeley, CA (United States); Schoenlein, R.W.; Glover, T.E. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Ultrashort x-ray pulses permit observation of fast structural dynamics in a variety of condensed matter systems. The authors have generated 300 femtosecond, 30 keV x-ray pulses by 90 degrees Thomson scattering between femtosecond laser pulses and relativistic electrons. The x-ray and laser pulses are synchronized on a femtosecond time scale, an important prerequisite for ultrafast pump-probe spectroscopy. Analysis of the x-ray beam properties also allows for electron bunch characterization on a femtosecond time scale.

  5. A simulation study of Tsinghua Thomson scattering X-ray source

    Institute of Scientific and Technical Information of China (English)

    TANG Chuan-Xiang; LI Ren-Kai; HUANG Wen-Hui; CHEN Huai-Bi; DU Ying-Chao; DU Qiang; DU Tai-Bin; HE Xiao-Zhong; HUA Jian-Fei; LIN Yu-Zhen; QIAN Hou-Jun; SHI Jia-Ru; XIANG Dao; YAN Li-Xin; Yu Pei-Cheng

    2009-01-01

    Thomson scattering X-ray sources are compact and afrordable facifities that produce short duration,high brightness X-ray pulses enabling new experimental capacities in ultra-fast science studies,and also medical and industrial applications.Such a facility has been built at the Accelerator Laboratory of Tsinghua University,and upgrade is in progress.In this paper,we present a proposed layout of the upgrade with design parameters by simulation,aiming at high X-ray pulses flux and brightness,and also enabling advanced dynamics studies and applications of the electron beam.Design and construction status of main subsystems are also presented.

  6. Fast integrator based data acquisition system for the SST-1 Thomson scattering system

    Science.gov (United States)

    Patel, Kiran; Kumar, Ajai

    2010-04-01

    An operational transconductance amplifier based fast charge-integrating module (FCIM) is designed and developed for an easy acquisition of fast Thomson scattered and background signal. FCIM based data acquisition technique can be used for the measurement of charge pulses of <20 ns duration. The response of the module is tested using a standard pulsed charge-generating module. The measuring charge range of the module depends on the integrating capacitor. Comparison of the performance of FCIM to commercially available module shows that it has better dynamic range with higher sensitivity and less measurement error. The module is quite cost effective and has many new features.

  7. Fast integrator based data acquisition system for the SST-1 Thomson scattering system

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Kiran; Kumar, Ajai [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India)

    2010-04-15

    An operational transconductance amplifier based fast charge-integrating module (FCIM) is designed and developed for an easy acquisition of fast Thomson scattered and background signal. FCIM based data acquisition technique can be used for the measurement of charge pulses of <20 ns duration. The response of the module is tested using a standard pulsed charge-generating module. The measuring charge range of the module depends on the integrating capacitor. Comparison of the performance of FCIM to commercially available module shows that it has better dynamic range with higher sensitivity and less measurement error. The module is quite cost effective and has many new features.

  8. Design of collection optics and polychromators for a JT-60SA Thomson scattering system.

    Science.gov (United States)

    Tojo, H; Hatae, T; Sakuma, T; Hamano, T; Itami, K; Aida, Y; Suitoh, S; Fujie, D

    2010-10-01

    This paper presents designs of collection optics for a JT-60SA Thomson scattering system. By using tangential (to the toroidal direction) YAG laser injection, three collection optics without strong chromatic aberration generated by the wide viewing angle and small design volume were found to measure almost all the radial space. For edge plasma measurements, the authors optimized the channel number and wavelength ranges of band-pass filters in a polychromator to reduce the relative error in T(e) by considering all spatial channels and a double-pass laser system with different geometric parameters.

  9. LIGHT SOURCE: A simulation study of Tsinghua Thomson scattering X-ray source

    Science.gov (United States)

    Tang, Chuan-Xiang; Li, Ren-Kai; Huang, Wen-Hui; Chen, Huai-Bi; Du, Ying-Chao; Du, Qiang; Du, Tai-Bin; He, Xiao-Zhong; Hua, Jian-Fei; Lin, Yu-Zhen; Qian, Hou-Jun; Shi, Jia-Ru; Xiang, Dao; Yan, Li-Xin; Yu, Pei-Cheng

    2009-06-01

    Thomson scattering X-ray sources are compact and affordable facilities that produce short duration, high brightness X-ray pulses enabling new experimental capacities in ultra-fast science studies, and also medical and industrial applications. Such a facility has been built at the Accelerator Laboratory of Tsinghua University, and upgrade is in progress. In this paper, we present a proposed layout of the upgrade with design parameters by simulation, aiming at high X-ray pulses flux and brightness, and also enabling advanced dynamics studies and applications of the electron beam. Design and construction status of main subsystems are also presented.

  10. Fitting of the Thomson scattering density and temperature profiles on the COMPASS tokamak

    Science.gov (United States)

    Stefanikova, E.; Peterka, M.; Bohm, P.; Bilkova, P.; Aftanas, M.; Sos, M.; Urban, J.; Hron, M.; Panek, R.

    2016-11-01

    A new technique for fitting the full radial profiles of electron density and temperature obtained by the Thomson scattering diagnostic in H-mode discharges on the COMPASS tokamak is described. The technique combines the conventionally used modified hyperbolic tangent function for the edge transport barrier (pedestal) fitting and a modification of a Gaussian function for fitting the core plasma. Low number of parameters of this combined function and their straightforward interpretability and controllability provide a robust method for obtaining physically reasonable profile fits. Deconvolution with the diagnostic instrument function is applied on the profile fit, taking into account the dependence on the actual magnetic configuration.

  11. The Design of the Polychromator for Thomson Scattering Measurements on HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    杨利; 赵君煜; 方自深

    2004-01-01

    A five-channel polychromator, utilizing high performance interference filters, has been completed for Thomson scattering measurements on HT-7 tokamak. For our instrument, the range of electron temperature varies from 50 eV to 1.5 keV. According to this, the bandpass of the different interference filters are chosen. Unique features of the polychromator are high throughput,easy alignment, flexibility and compact size when compared with other alternatives. In this article,both the method of designing and the measured transmission curves for the polychromator are given.

  12. The effect of bound states on X-ray Thomson scattering for partially ionized plasmas

    OpenAIRE

    Nilsen, J.; Johnson, W.R.; Cheng, K. T.

    2012-01-01

    X-ray Thomson scattering is being developed as a method to measure the temperature, electron density, and ionization state of high energy density plasmas such as those used in inertial confinement fusion. X-ray laser sources have always been of interest because of the need to have a bright monochromatic x-ray source to overcome plasma emission and eliminate other lines in the background that complicate the analysis. With the advent of the xray free electron laser (X-FEL) at the SLAC Linac Coh...

  13. Impact of beam ions on α-particle measurements by collective Thomson scattering in ITER

    DEFF Research Database (Denmark)

    Egedal, J.; Bindslev, H.; Budny, R.V.

    2005-01-01

    Collective Thomson scattering (CTS) has been proposed as a viable diagnostic for characterizing fusion born a-distributions in ITER. However, the velocities of the planned 1 MeV deuterium heating beam ions in 1TER are similar to that of fusion born a-particles and may therefore mask...... the measurements of the fusion products. We apply a new technique for calculating the orbit averaged source, (S), of beam ions for various ITER scenarios. With the known (S) Fokker-Planck modelling is applied to characterize the beam ions during the slowing down process. Theoretical CTS signals for both beam ions...

  14. Signal processing of Thomson scattering data in a noisy environment in ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Kurzan, B; Jakobi, M; Murmann, H [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)

    2004-01-01

    For the Thomson scattering diagnostic in the ASDEX Upgrade tokamak, new transient recorders for acquiring the time evolution of the scattering pulses are used. Instead of integrating over the scattering pulse, as performed by the usually applied charge-sensitive analogue-to-digital converters (ADCs), a non-Gaussian pulse shape is fitted to the measured scattering signal. Both in this fitting procedure and in determination of the electron density and temperature from the scattering signals, correlated noise is taken into account. The number of outliers due to perturbations of the scattering signal is substantially reduced and the resulting electron density and temperature values are of higher accuracy than those that were obtained with the evaluation method based on charge-sensitive ADCs. The minimum electron density, detectable with a signal-to-noise ratio of 1, is now at n{sub e} = 0.75 x 10{sup 18} m{sup -3}, which is a factor of 3 lower than that obtained with the evaluation based on the integration over the scattering pulse.

  15. Development of laser beam injection system for the Edge Thomson Scattering (ETS) in ITER

    Science.gov (United States)

    Yatsuka, E.; Hatae, T.; Suitoh, S.; Ohara, M.; Hagita, K.; Inoue, K.; Bassan, M.; Walsh, M.; Itami, K.

    2016-01-01

    This paper focuses on the design and development of the laser injection system for the ITER Edge Thomson Scattering system (ETS). The ITER ETS achieves a temporal resolution of 100 Hz by firing two 50 Hz laser beams alternatively. The use of dual lasers enables us to perform the Thomson scattering measurements at a temporal resolution of 50 Hz in case that one of the laser systems stops functioning. A new type of beam combiner was developed to obtain a single beam that is collinear and fixed linearly polarized from two laser beams using a motor-driven rotating half-wave plate. The rotating half-wave plate method does not induce misalignment even if the rotating mechanism malfunctions. The combined beam is relayed from the diagnostic hall to the plasma using mirror optics and is absorbed at the beam dump integrated on the inner blanket. The beam alignment system was designed to direct the laser beam onto the center of the beam dump head. The beam position at the beam dump is monitored by four alignment laser beams which propagate parallel to the diagnostic Nd:YAG laser beam and imaging systems installed outside the diagnostic port.

  16. Detecting non-maxwellian electron velocity distributions at JET by high resolution Thomson scattering.

    Science.gov (United States)

    Beausang, K V; Prunty, S L; Scannell, R; Beurskens, M N; Walsh, M J; de la Luna, E

    2011-03-01

    The present work is motivated by a long standing discrepancy between the electron temperature measurements of Thomson scattering (TS) and electron cyclotron emission (ECE) diagnostics for plasmas with strong auxiliary heating observed at both JET and TFTR above 6–7 keV, where in some cases the ECE electron temperature measurements can be 15%–20% higher than the TS measurements. Recent analysis based on ECE results at JET has shown evidence of distortions to the Maxwellian electron velocity distribution and a correlation with the TS and ECE discrepancies has been suggested. In this paper, a technique to determine the presence of non-Maxwellian behavior using TS diagnostics is outlined. The difficulties and limitations of modern TS system designs to determine the electron velocity distribution are also discussed. It is demonstrated that small deviations such as those suggested by previous ECE analysis could be potentially detected, depending on the spectral layout of the TS polychromators. The spectral layout of the JET high resolution Thomson scattering system is such that it could be used to determine these deviations between 1 and 6 keV, and the results presented here indicate that no evidence of non-Maxwellian behavior is observed in this range. In this paper, a modification to the current polychromator design is proposed, allowing non-Maxwellian distortions to be detected up to at least 10 keV.

  17. Detecting non-Maxwellian electron velocity distributions at JET by high resolution Thomson scattering

    Science.gov (United States)

    Beausang, K. V.; Prunty, S. L.; Scannell, R.; Beurskens, M. N.; Walsh, M. J.; de La Luna, E.; Jet Efda Contributors

    2011-03-01

    The present work is motivated by a long standing discrepancy between the electron temperature measurements of Thomson scattering (TS) and electron cyclotron emission (ECE) diagnostics for plasmas with strong auxiliary heating observed at both JET and TFTR above 6-7 keV, where in some cases the ECE electron temperature measurements can be 15%-20% higher than the TS measurements. Recent analysis based on ECE results at JET has shown evidence of distortions to the Maxwellian electron velocity distribution and a correlation with the TS and ECE discrepancies has been suggested. In this paper, a technique to determine the presence of non-Maxwellian behavior using TS diagnostics is outlined. The difficulties and limitations of modern TS system designs to determine the electron velocity distribution are also discussed. It is demonstrated that small deviations such as those suggested by previous ECE analysis could be potentially detected, depending on the spectral layout of the TS polychromators. The spectral layout of the JET high resolution Thomson scattering system is such that it could be used to determine these deviations between 1 and 6 keV, and the results presented here indicate that no evidence of non-Maxwellian behavior is observed in this range. In this paper, a modification to the current polychromator design is proposed, allowing non-Maxwellian distortions to be detected up to at least 10 keV

  18. Conceptual Design Studies of the KSTAR Bay-Nm Cassette and Thomson Scattering Optics

    Energy Technology Data Exchange (ETDEWEB)

    Feder, R.; Ellis, R.; Johnson, D.; Park, H.; Lee, H. G.

    2005-09-26

    A Multi-Channel Thomson Scattering System viewing the edge and core of the KSTAR plasma will be installed at the mid-plane port Bay-N. An engineering design study was undertaken at PPPL in collaboration with the Korea Basic Science Institute (KBSI) to determine the optimal optics and cassette design. Design criteria included environmental, mechanical and optical factors. All of the optical design options have common design features; the Thomson Scattering laser, an in-vacuum shutter, a quartz heat shield and primary vacuum window, a set of optical elements and a fiber optic bundle. Neutron radiation damage was a major factor in the choice of competing lens-based and mirror-based optical designs. Both the mirror based design and the lens design are constrained by physical limits of the Bay-N cassette and interference with the Bay-N micro-wave launcher. The cassette will contain the optics and a rail system for maintenance of the optics.

  19. Computer data-acquisition and control system for Thomson-scattering measurements

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, K.A.; Foskett, R.D.; Kindsfather, R.R.; Lazarus, E.A.; Thomas, C.E.

    1983-03-01

    The Thomson-Scattering Diagnostic System (SCATPAK II) used to measure the electron temperature and density in the Impurity Study Experiment is interfaced to a Perkin-Elmer 8/32 computer that operates under the OS/32 operating system. The calibration, alignment, and operation of this diagnostic are all under computer control. Data acquired from 106 photomultiplier tubes installed on 15 spectrometers are transmitted to the computer by eighteen 12-channel, analog-to-digital integrators along a CAMAC serial highway. With each laser pulse, 212 channels of data are acquired: 106 channels of signal plus background and 106 channels of background only. Extensive use of CAMAC instrumentation enables large amounts of data to be acquired and control processes to be performed in a time-dependent environment. The Thomson-scattering computer system currently operates in three modes: user interaction and control, data acquisition and transmission, and data analysis. This paper discusses the development and implementation of this system as well as data storage and retrieval.

  20. Material Assessment for ITER's Collective Thomson Scattering first mirror

    Energy Technology Data Exchange (ETDEWEB)

    Santos, R.; Policarpo, H.; Goncalves, B.; Varela, P. [Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Nonboel, E.; Klinkby, E.; Lauritzen, B. [Center for Nuclear Technologies, Technical University of Denmark (Denmark); Romanets, Y.; Luis, R.; Vaz, P. [Centro de Ciencias e Tecnologias Nucleares, Instituto Superior Tecnico, Universidade de Lisboa (Portugal)

    2015-07-01

    The International Thermonuclear Energy Reactor (ITER) Collective Thomson Scattering (CTS) system is a diagnostic instrument that measures plasma density and velocity through Thomson scattering of microwave radiation. Some of the key components of the CTS are quasi-optical mirrors that are used to produce astigmatic beam patterns, which have impact on the strength and spatial resolution of the diagnostic signal. The mirrors are exposed to neutron radiation, which may alter the quality of the signal received. In this work, three different materials (molybdenum (Mo), stainless steel 316 (SS-316) and tungsten (W)) are considered for the first mirror of the CTS. The objective is to access which of the material studied are best suited for this mirror, considering different neutron radiation loads simulated scenarios defined by ITER, based on the resultant stresses and temperature distributions. For it, the neutron irradiation, and subsequent heat-load on the mirrors are simulated using the Monte Carlo N-Particle (MCNP) code. Based on the MCNP heat-load results, transient thermal-structural Finite Element Analysis (FEA) of the mirror over a 400 s discharge, with and without cooling on the rear side, are conducted using in commercial FEA software ANSYS. Results show that of the tested materials Mo and W are the most suitable material for this application. Even though, this study does not yet consider the variation of the material properties with temperature, it presents a quick initial satisfactory assessment that may be considered in subsequent and more complex analysis. (authors)

  1. Conceptual design of the collection optics for the edge Thomson scattering system in ITER.

    Science.gov (United States)

    Yatsuka, E; Hatae, T; Suitoh, S; Aida, Y; Kusama, Y

    2010-10-01

    Neutron and gamma-ray irradiation complicates the design of the edge Thomson scattering (TS) system in ITER. The TS light is relayed through the relaying optics with labyrinth and fiber coupling optics. Electron density of 2×10(19) m(-3) is sufficient to measure T(e) and n(e) within a 10% and 5% margin of error, respectively, with a spatial resolution of 5 mm. This system can cover from 0.85 to 1 of the normalized minor radius. The time resolution is 10 ms, which is determined by the repetition rate of the laser device. A super-Gaussian is the ideal laser profile for the laser injection optics to avoid a breakdown of the filling gas used in density calibration through Raman scattering.

  2. Measurements of plasma composition in the TEXTOR tokamak by collective Thomson scattering

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Korsholm, Søren Bang; Nielsen, Stefan Kragh;

    2012-01-01

    with wave vector components nearly perpendicular to the magnetic field. Under such conditions the sensitivity of the CTS spectrum to plasma composition is enhanced by the spectral signatures of the ion cyclotron motion and of weakly damped ion Bernstein waves. Recent experiments on TEXTOR demonstrated......We demonstrate the use of collective Thomson scattering (CTS) for spatially localized measurements of the isotopic composition of magnetically confined fusion plasmas. The experiments were conducted in the TEXTOR tokamak by scattering millimeter-wave probe radiation off plasma fluctuations...... the ability to resolve these signatures in the CTS spectrum as well as their sensitivity to the ion species mix in the plasma. This paper shows that the plasma composition can be inferred from the measurements through forward modeling of the CTS spectrum. We demonstrate that spectra measured in plasmas...

  3. Resolving the bulk ion region of millimeter-wave collective Thomson scattering spectra at ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Stejner, M., E-mail: mspe@fysik.dtu.dk; Nielsen, S.; Jacobsen, A. S.; Korsholm, S. B.; Leipold, F.; Meo, F.; Michelsen, P. K.; Rasmussen, J.; Salewski, M. [Department of Physics, Association EURATOM-DTU, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Moseev, D. [Max-Planck-Institut für Plasmaphysik, EURATOM-Association, Boltzmannstr. 2, 85748 Garching (Germany); Association Euratom-FOM Institute DIFFER, 3430 BE Nieuwegein (Netherlands); Schubert, M.; Stober, J.; Wagner, D. H. [Max-Planck-Institut für Plasmaphysik, EURATOM-Association, Boltzmannstr. 2, 85748 Garching (Germany)

    2014-09-15

    Collective Thomson scattering (CTS) measurements provide information about the composition and velocity distribution of confined ion populations in fusion plasmas. The bulk ion part of the CTS spectrum is dominated by scattering off fluctuations driven by the motion of thermalized ion populations. It thus contains information about the ion temperature, rotation velocity, and plasma composition. To resolve the bulk ion region and access this information, we installed a fast acquisition system capable of sampling rates up to 12.5 GS/s in the CTS system at ASDEX Upgrade. CTS spectra with frequency resolution in the range of 1 MHz are then obtained through direct digitization and Fourier analysis of the CTS signal. We here describe the design, calibration, and operation of the fast receiver system and give examples of measured bulk ion CTS spectra showing the effects of changing ion temperature, rotation velocity, and plasma composition.

  4. Impact of ICRH on the measurement of fusion alphas by collective Thomson scattering in ITER

    DEFF Research Database (Denmark)

    Salewski, Mirko; Eriksson, L.-G.; Bindslev, Henrik

    2009-01-01

    Collective Thomson scattering (CTS) has been proposed for measuring the phase space distributions of confined fast ion populations in ITER plasmas. This study determines the impact of fast ions accelerated by ion cyclotron resonance heating (ICRH) on the ability of CTS to diagnose fusion alphas......, corresponding to an off-axis resonance. The sensitivities of the results to the He-3 concentration (0.1-4%) and the heating power (20-40 MW) are considered. Fusion born alphas dominate the total CTS signal for large Doppler shifts of the scattered radiation. The tritons generate a negligible fraction...... perpendicular velocities, it may be difficult to draw conclusions about the physics of alpha particles alone by CTS. With this exception, the CTS diagnostic can reveal the physics of the fusion alphas in ITER even under the presence of fast ions due to ICRH....

  5. Development of the so-called third stage laser Thomson scattering diagnostics of plasmas

    Science.gov (United States)

    Muraoka, Katsunori; Yamagata, Yukihiko; Hisano, Taishi; Uchino, Kiichirou; Miyazaki, Koichi

    2003-10-01

    In the recent review article,^1) we indicated that the incoherent laser Thomson scattering (LTS) diagnostics of plasmas for measurements of electron densities and temperatures (or more generally EEDFs) be classified as having evolved from the first stage where a whole Thomson spectrum be obtained during a single laser pulse from plasmas having electron density of above 10^18 m-3, through the second stage where data accumulation be prerequisite for ne below 10^18 m-3, and to the third stage where a strong suppression of stray light in addition to the data accumulation be necessary to measure at an extremely small size of less than 100 μm near to material surfaces. The third stage LTS was first demonstrated for a PDP (plasma display panel)-like discharge three years ago employing a triple grating polychromator. In order to further expand its applicable ranges, we are pursuing a more general approach by taking into account such factors as laser divergence, stray light suppression and other aspects. The present status is presented. 1) K. Muraoka, K. Uchino, Y. Yamagata, Y. Noguchi, M. Mansour, P. Suanpoot, S. Narishige, and M. Noguchi, Plasma Sources Sci. Technol. 11 (2002) A143.

  6. Progress on the multipulse Thomson Scattering diagnostic on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Stockdale, R.E.; Carlstrom, T.N.; Hsieh, C.L.; Makariou, C.C.

    1994-05-01

    The DIII-D Thomson scattering diagnostic, operational since 1990, uses 8 Nd: YAG 20 Hz lasers to measure electron temperature and density profiles (40 spatial points) throughout the plasma discharge. Recent progress has enabled a new set of operating modes to better fullfill varying plasma physics requirements. Custom circuitry for laser control (programmable with los precision) has successfully replaced a previous scheme which used real-time 68030 software. Two new modes of operation have been demonstrated. Burst Mode is useful to study a transient plasma event: a series of laser pulses axe fired at a rate {le}10 kHz after an external asynchronous event trigger. Burst Mode is also useful to synchronize the Thomson lasers with other systems, such as an asynchronous Michelson ECE diagnostic scanning near 40 Hz. Group Mode allows a programmed set of lasers to fire simultaneously into the same (65 nanosecond) data acquisition gate. Improved signal/noise then yields smaller statistical errors in the profile results. This provides profile data for lower density plasmas, such as those anticipated during fast wave current drive experiments. Plans for a new CCD-based laser alignment system for position monitoring and feedback control will also be presented.

  7. Benchmark and combined velocity-space tomography of fast-ion D-alpha spectroscopy and collective Thomson scattering measurements

    DEFF Research Database (Denmark)

    Jacobsen, Asger Schou; Salewski, Mirko; Geiger, B.

    2016-01-01

    We demonstrate the combination of fast-ion D-alpha spectroscopy (FIDA) and collective Thomson scattering (CTS) measurements to determine a common best estimate of the fastion velocity distribution function by velocity-space tomography. We further demonstrate a benchmark of FIDA tomography and CTS...

  8. Experimental and simulated fast ion velocity distributions on collective Thomson scattering diagnostic in the Large Helical Device

    DEFF Research Database (Denmark)

    Nishiura, M.; Kubo, S.; Tanaka, K.

    2012-01-01

    We have developed a collective Thomson scattering diagnostic system in the LHD. The CTS spectrum spread is observed in the frequency region corresponding to the bulk and fast ions during NB injection. The NB originated fast ions are evaluated by the MORH code for understanding the measured CTS sp...

  9. Fast-ion redistribution due to sawtooth crash in the TEXTOR tokamak measured by collective Thomson scattering

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Bindslev, Henrik; Salewski, Mirko;

    2010-01-01

    Here we present collective Thomson scattering measurements of 1D fast-ion velocity distribution functions in neutral beam heated TEXTOR plasmas with sawtooth oscillations. Up to 50% of the fast ions in the centre are redistributed as a consequence of a sawtooth crash. We resolve various directions...

  10. Spectrum response and analysis of 77 GHz band collective Thomson scattering diagnostic for bulk and fast ions in LHD plasmas

    DEFF Research Database (Denmark)

    Nishiura, M.; Kubo, S.; Tanaka, K.

    2014-01-01

    A collective Thomson scattering (CTS) diagnostic was developed and used to measure the bulk and fast ions originating from 180 keV neutral beams in the Large Helical Device (LHD). Electromagnetic waves from a gyrotron at 77 GHz with 1 MW power output function as both the probe and electron cyclot...

  11. Dynamic Thomson Scattering from Nonlinear Electron Plasma Waves in a Raman Plasma Amplifier

    Science.gov (United States)

    Davies, A.; Katz, J.; Bucht, S.; Haberberger, D.; Bromage, J.; Zuegel, J. D.; Froula, D. H.; Trines, R.; Bingham, R.; Sadler, J.; Norreys, P. A.

    2016-10-01

    Electron plasma waves (EPW's) can be used to transfer significant energy from a long-pulse laser to a short-pulse seed laser through the Raman scattering instability. Successful implementation of Raman amplification could open an avenue to producing high-intensity pulses beyond the capabilities of current laser technology ( 1022 W / cm 2). This three-wave interaction takes advantage of the plasma's ability to sustain large-amplitude plasma waves. Having complete knowledge of the EPW amplitude is essential to establishing optimal parameters for high-efficiency Raman amplification. A dynamic Thomson-scattering diagnostic is being developed to spatially and temporally resolve the amplitude of the driven and thermal EPW's. By imaging the scattered probe light onto a novel pulse-front tilt compensated streaked optical spectrometer, the diffraction efficiency of this plasma wave can be measured as a function of space and time. These data will be used in conjunction with particle-in-cell simulations to determine the EPW's spatial and temporal profile. This will allow the effect of the EPW profile on Raman scattering to be experimentally determined. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  12. The progress in development of edge tangential Thomson scattering system on HL-2A tokamak

    Science.gov (United States)

    Liu, C. H.; Huang, Y.; Wang, Y. Q.; Feng, Z.; Hou, Z. P.; Fu, B. Z.

    2016-11-01

    The edge tangential Thomson scattering system (ETTSS) was developed for the first time on a HL-2A tokamak. A Nd:YAG laser with a 1064 nm wavelength, 4 J energy, and 30 Hz repetition rate is employed on the ETTSS. The laser beam injects the plasma in the tangential direction on the mid-plane of the machine, and the angles between the laser injection direction and the scattered light collection direction are in the range from 157.5° to 162.8°. The scattered light collection optics with 0.21-0.47 magnification is utilized to collect the scattered light of measurement range from R = 1900 mm to 2100 mm (the normalized radius is from r/a = 0.625 to 1.125). Spatial resolution of the preliminary design could be up to Δr/a = 0.016. The measurement requirements could be achieved: 10 eV < Te < 1.5 keV, and 0.5 × 1019 m-3 < ne < 3 × 1019 m-3 with errors less than 15% and 10%, respectively.

  13. Conditions for the Observation of Two Ion-Acoustic Waves via Thomson Scattering

    Institute of Scientific and Technical Information of China (English)

    郑坚; 胡广月; 王哲斌; 俞昌旋; 刘万东

    2003-01-01

    Observation of two ion-acoustic waves via Thomson scattering can provide precise measurements of plasma parameters. The conditions for the observation of two ion-acoustic modes in a two-ion plasmaare discussed.The ratio of electron temperature Te to ion temperature Ti is the critical parameter for the presence of two ion-acoustic modes, which should be in the range of 4/ZL(<~)Te/Ti(<~)2AH/ZHAL, where ZL,H are the charge states of light and heavy ions, and AL,H are the atomic numbers of light and heavy ions, respectively. As the temperature ratio varies in this range, the concentration of heavy ions must increase with the ratio Te/Ti so that the two ion-acoustic modes can have the same fluctuation levels.

  14. Question of Acceleration of Universe Examined Within the Framework of Thomson Scattering.

    Science.gov (United States)

    Choudhury, D. C.; Kraft, David W.

    2003-04-01

    Recent observations of Type Ia supernovae appear to suggest that the universe is accelerating. These results are not only surprising but beyond the realm of any standard model of modern cosmology. Most of the new ideas proposed for understanding the acceleration include a new type of matter (dark energy or axions) or Einstein's cosmological constant. Although such attempts are reasonably successful in fitting the observed data, there is as yet no direct evidence to support the existence of such matter or energy. The present work examines whether the question of acceleration can be resolved within the limits of the established laws of physics. For this purpose we have calculated the contributions of Thomson scattering to the dimming of supernovae within the framework of Friedmann-Robertson-Walker cosmology for the special case of flat universe, also consistent with the prediction of the inflationary model. The results and conclusion of our investigation will be presented.

  15. Development of Thomson scattering system on Shenguang-III prototype laser facility

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Tao [CAS Key Laboratory of Geospace Environment and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Li, Zhichao; Jiang, Xiaohua; Ding, Yongkun, E-mail: ding-yk@vip.sina.com; Yang, Dong; Wang, Zhebin; Wang, Fang; Li, Ping; Liu, Shenye; Jiang, Shaoen [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Hu, Guangyue; Zhao, Bin [CAS Key Laboratory of Geospace Environment and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zheng, Jian, E-mail: jzheng@ustc.edu.cn [CAS Key Laboratory of Geospace Environment and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-02-15

    A Thomson scattering diagnostic system, using a 263 nm laser as the probe beam, is designed and implemented on Shenguang-III prototype laser facility. The probe beam is provided by an additional beam line completed recently. The diagnostic system allows simultaneous measurements of both ion feature and red-shifted electron feature from plasmas in a high-temperature (≥2 keV) and high-density (≥10{sup 21} cm{sup −3}) regime. Delicate design is made to satisfy the requirements for successful detection of the electron feature. High-quality ion feature spectra have already been diagnosed via this system in recent experiments with gas-filled hohlraums.

  16. Laser Thomson scattering diagnostics of non-equilibrium high pressure plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Muraoka, K.; Uchino, K.; Bowden, M.D.; Noguchi, Y. [Kyushu Univ., Fukuoka (Japan). Interdisciplinary Graduate School of Engineering Sciences

    2001-07-01

    For various applications of non-equilibrium high pressure plasmas, knowledge of electron properties, such as electron density, electron temperature and/or electron energy distribution function (eedf), is prerequisite for any rational approach to understanding physical and chemical processes occurring in the plasmas. For this purpose, laser Thomson scattering has been successfully applied for the first time to measure the electron properties in plasmas for excimer laser pumping and in microdischarges. Although this diagnostic technique is well established for measurements in high temperature plasmas, its applications to these glow discharge plasmas have had various inherent difficulties, such as a presence of high density neutral particles (>10{sup 21} m{sup -3}) in the excimer laser pumping discharges and an extremely small plasma size (<0.1 mm) and the presence of nearby walls for microdischarges. These difficulties have been overcome and clear signals have been obtained. The measured results are presented and their implications in the respective discharge phenomena are discussed.

  17. Recent results of collective Thomson scattering on TEXTOR and plans for CTS on ITER

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Bindslev, Henrik; Furtula, Vedran;

    Moving towards the era of burning fusion plasmas, a better knowledge of the physics of highly energetic particles, such as fusion born alpha particles, becomes essential. Diagnosing the fast ions in a fusion plasma is a challenging task, but the technique of collective Thomson scattering (CTS......) provides the possibility of revealing the velocity distribution of the confined fast ions along a given direction – resolved both in time and space. Recently, the ITER baseline design has been expanded to include the enabling of the front end of a fast ion CTS diagnostic system resolving dynamics...... perpendicular to the magnetic field. The feasibility study and conceptual design of this diagnostic was provided by the CTS group at Risø DTU. The development of the ITER CTS diagnostic builds on the experiences and expertise gained from the construction and current operation of the CTS diagnostic systems...

  18. Improved Collective Thomson Scattering measurements of fast ions at ASDEX Upgrade

    DEFF Research Database (Denmark)

    Rasmussen, Jesper; Nielsen, Stefan Kragh; Stejner Pedersen, Morten;

    2014-01-01

    Scattering (CTS) is well suited for reactor conditions and offers such an opportunity by providing measurements of the confined fast-ion distribution function resolved in space, time and 1D velocity space. We currently operate a CTS system at ASDEX Upgrade using a gyrotron which generates probing radiation......Understanding the behaviour of the confined fast ions is important in both current and future fusion experiments. These ions play a key role in heating the plasma and will be crucial for achieving conditions for burning plasma in next-step fusion devices. Microwave-based Collective Thomson...... at 105 GHz. A new setup using two independent receiver systems has enabled improved subtraction of the background signal, and hence the first accurate characterization of fast-ion properties. Here we review this new dual-receiver CTS setup and present results on fast-ion measurements based...

  19. Data-driven sensitivity inference for Thomson scattering electron density measurement systems

    Science.gov (United States)

    Fujii, Keisuke; Yamada, Ichihiro; Hasuo, Masahiro

    2017-01-01

    We developed a method to infer the calibration parameters of multichannel measurement systems, such as channel variations of sensitivity and noise amplitude, from experimental data. We regard such uncertainties of the calibration parameters as dependent noise. The statistical properties of the dependent noise and that of the latent functions were modeled and implemented in the Gaussian process kernel. Based on their statistical difference, both parameters were inferred from the data. We applied this method to the electron density measurement system by Thomson scattering for the Large Helical Device plasma, which is equipped with 141 spatial channels. Based on the 210 sets of experimental data, we evaluated the correction factor of the sensitivity and noise amplitude for each channel. The correction factor varies by ≈10%, and the random noise amplitude is ≈2%, i.e., the measurement accuracy increases by a factor of 5 after this sensitivity correction. The certainty improvement in the spatial derivative inference was demonstrated.

  20. Investigation of the local thermodynamic equilibrium of laser-induced aluminum plasma by Thomson scattering technique

    Energy Technology Data Exchange (ETDEWEB)

    Mendys, A., E-mail: agata.mendys@uj.edu.pl [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagielloński, ul. Reymonta 4, 30-059 Kraków (Poland); Kański, M. [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagielloński, ul. Reymonta 4, 30-059 Kraków (Poland); Farah-Sougueh, A. [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagielloński, ul. Reymonta 4, 30-059 Kraków (Poland); GREMI — site de Bourges, Université d' Orléans, CNRS, rue Gaston Berger BP 4043, 18028 Bourges (France); Pellerin, S. [GREMI — site de Bourges, Université d' Orléans, CNRS, rue Gaston Berger BP 4043, 18028 Bourges (France); Pokrzywka, B. [Obserwatorium Astronomiczne na Suhorze, Uniwersytet Pedagogiczny, ul. Podchorażych 2, 30-084 Kraków (Poland); Dzierżęga, K. [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagielloński, ul. Reymonta 4, 30-059 Kraków (Poland)

    2014-06-01

    A laser Thomson scattering method was applied to investigate the local Saha–Boltzmann equilibrium in aluminum laser-induced plasma. Plasma was created in ambient air using 4.5 ns pulses from a Nd:YAG laser at 532 nm, focused on an Al target. Spatially resolved measurements, performed for the time interval between 600 ns and 3 μs, show electron density and temperature to decrease from 3.4 × 10{sup 23} m{sup −3} to 0.5 × 10{sup 23} m{sup −3} and from 61,000 K to 13,000 K in the plasma core. The existence of local thermodynamic equilibria in the plasma was verified by comparing the rates of the collisional to radiative processes (the McWhirter criterion), as well as relaxation times and diffusion lengths of different plasma species, with the appropriate rate of electron density evolution and its gradients at given, experimentally determined, electron temperatures. We found these criteria to be much easier to satisfy for metallic plasma species than for nitrogen. The criteria are also easier to satisfy in the plasma core of higher electron density. - Highlights: • Laser Thomson scattering method was applied to investigate aluminum laser-induced plasma. • Spatio-temporal evolution of electron temperature and density was determined. • Three criteria for existence of local thermodynamic equilibrium were verified. • Criteria are much easier to satisfy for metallic plasma species than for nitrogen. • Criteria are easier to satisfy at earlier times and in the plasma core.

  1. Average-atom treatment of relaxation time in x-ray Thomson scattering from warm dense matter.

    Science.gov (United States)

    Johnson, W R; Nilsen, J

    2016-03-01

    The influence of finite relaxation times on Thomson scattering from warm dense plasmas is examined within the framework of the average-atom approximation. Presently most calculations use the collision-free Lindhard dielectric function to evaluate the free-electron contribution to the Thomson cross section. In this work, we use the Mermin dielectric function, which includes relaxation time explicitly. The relaxation time is evaluated by treating the average atom as an impurity in a uniform electron gas and depends critically on the transport cross section. The calculated relaxation rates agree well with values inferred from the Ziman formula for the static conductivity and also with rates inferred from a fit to the frequency-dependent conductivity. Transport cross sections determined by the phase-shift analysis in the average-atom potential are compared with those evaluated in the commonly used Born approximation. The Born approximation converges to the exact cross sections at high energies; however, differences that occur at low energies lead to corresponding differences in relaxation rates. The relative importance of including relaxation time when modeling x-ray Thomson scattering spectra is examined by comparing calculations of the free-electron dynamic structure function for Thomson scattering using Lindhard and Mermin dielectric functions. Applications are given to warm dense Be plasmas, with temperatures ranging from 2 to 32 eV and densities ranging from 2 to 64 g/cc.

  2. Diagnosing Pulsed Power Produced Plasmas with X-ray Thomson Scattering at the Nevada Terawatt Facility

    Science.gov (United States)

    Valenzuela, J. C.; Krauland, C.; Mariscal, D.; Krasheninnikov, I.; Beg, F. N.; Wiewior, P.; Covington, A.; Presura, R.; Ma, T.; Niemann, C.; Mabey, P.; Gregori, G.

    2015-11-01

    We present experimental results on X-ray Thomson scattering (XRTS) at the Nevada Terawatt Facility (NTF) to study current driven plasmas. Using the Leopard laser, ~ 30 J and pulse width of 0.8 ns, we generated He- α emission (4.75 keV) from a thin Ti foil. Initial parameter scans showed that the optimum intensity is ~ 1015W/cm2 with a foil thickness of 2 μm for forward X-ray production. Bandwidth measurements of the source, using a HAPG crystal in the Von Hamos configuration, were found to be ΔE/E ~ 0.01. Giving the scattering angle of our experimental setup of 129 degrees and X-ray probing energy, the non-collective regime was accessed. The ZEBRA load was a 3 mm wide, 500 μm thick, and 10 mm long graphite foil, placed at one of the six current return posts. Estimates of the plasma temperature, density and ionization state were made by fitting the scattering spectra with dynamic structure factor calculations based on the random phase approximation for the treatment of charged particle coupling. The work was partially funded by the Department of Energy grant number DE-NA0001995.

  3. Demonstration of imaging X-ray Thomson scattering on OMEGA EP

    Science.gov (United States)

    Belancourt, Patrick X.; Theobald, Wolfgang; Keiter, Paul A.; Collins, Tim J. B.; Bonino, Mark J.; Kozlowski, Pawel M.; Regan, Sean P.; Drake, R. Paul

    2016-11-01

    Foams are a common material for high-energy-density physics experiments because of low, tunable densities, and being machinable. Simulating these experiments can be difficult because the equation of state is largely unknown for shocked foams. The focus of this experiment was to develop an x-ray scattering platform for measuring the equation of state of shocked foams on OMEGA EP. The foam used in this experiment is resorcinol formaldehyde with an initial density of 0.34 g/cm3. One long-pulse (10 ns) beam drives a shock into the foam, while the remaining three UV beams with a 2 ns square pulse irradiate a nickel foil to create the x-ray backlighter. The primary diagnostic for this platform, the imaging x-ray Thomson spectrometer, spectrally resolves the scattered x-ray beam while imaging in one spatial dimension. Ray tracing analysis of the density profile gives a compression of 3 ± 1 with a shock speed of 39 ± 6 km/s. Analysis of the scattered x-ray spectra gives an upper bound temperature of 20 eV.

  4. Development of a Thomson scattering diagnostic for the Caltech jet-target experiment

    Science.gov (United States)

    Seo, Byong Hoon; Greig, Amelia; Bellan, Paul

    2016-10-01

    A Thomson scattering diagnostic is being developed for studying the Caltech jet-target impact experiment. This experiment has a high-speed MHD-driven jet impact a dense, high-mass target cloud. The compression of the jet upon impact simulates the compression of an imploding liner. A preliminary bench top system consisting of a low power laser, lenses, a beam rotator, a monochromator, and a PMT is being used for measuring the Rayleigh and eventually Raman scattering signals from atmospheric pressure N2 and O2. The laser is modulated at 500 Hz to 1 kHz and lock-in techniques are used to recover the low-amplitude signal. For the actual pulsed plasma experiment, the low-power laser will be replaced by a high power Nd:YAG laser. The detector will consist of a double monochromator consisting of two single monochromators separated by a mask in the focal plane to block Rayleigh scattered light; detection will be by an intensified, gated camera. The diagnostic will be used to study the compression and heating that occurs when the jet plasma collides with a dense, high mass target cloud. Supported by USDOE Grant DE-AR0000565.

  5. First results of electron temperature measurements by the use of multi-pass Thomson scattering system in GAMMA 10

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, M., E-mail: yosikawa@prc.tsukuba.ac.jp; Nagasu, K.; Shimamura, Y.; Shima, Y.; Kohagura, J.; Sakamoto, M.; Nakashima, Y.; Imai, T.; Ichimura, M. [Plasma Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Yasuhara, R.; Yamada, I.; Funaba, H.; Kawahata, K. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan); Minami, T. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2014-11-15

    A multi-pass Thomson scattering (TS) has the advantage of enhancing scattered signals. We constructed a multi-pass TS system for a polarisation-based system and an image relaying system modelled on the GAMMA 10 TS system. We undertook Raman scattering experiments both for the multi-pass setting and for checking the optical components. Moreover, we applied the system to the electron temperature measurements in the GAMMA 10 plasma for the first time. The integrated scattering signal was magnified by approximately three times by using the multi-pass TS system with four passes. The electron temperature measurement accuracy is improved by using this multi-pass system.

  6. The upgrade of the Thomson scattering system for measurement on the C-2/C-2U devices

    Science.gov (United States)

    Zhai, K.; Schindler, T.; Kinley, J.; Deng, B.; Thompson, M. C.

    2016-11-01

    The C-2/C-2U Thomson scattering system has been substantially upgraded during the latter phase of C-2/C-2U program. A Rayleigh channel has been added to each of the three polychromators of the C-2/C-2U Thomson scattering system. Onsite spectral calibration has been applied to avoid the issue of different channel responses at different spots on the photomultiplier tube surface. With the added Rayleigh channel, the absolute intensity response of the system is calibrated with Rayleigh scattering in argon gas from 0.1 to 4 Torr, where the Rayleigh scattering signal is comparable to the Thomson scattering signal at electron densities from 1 × 1013 to 4 × 1014 cm-3. A new signal processing algorithm, using a maximum likelihood method and including detailed analysis of different noise contributions within the system, has been developed to obtain electron temperature and density profiles. The system setup, spectral and intensity calibration procedure and its outcome, data analysis, and the results of electron temperature/density profile measurements will be presented.

  7. Measurements of Relativistic Effects in Collective Thomson Scattering at Electron Temperatures less than 1 keV

    Energy Technology Data Exchange (ETDEWEB)

    Ross, James Steven [Univ. of California, San Diego, CA (United States)

    2010-01-01

    Simultaneous scattering from electron-plasma waves and ion-acoustic waves is used to measure local laser-produced plasma parameters with high spatiotemporal resolution including electron temperature and density, average charge state, plasma flow velocity, and ion temperature. In addition, the first measurements of relativistic modifications in the collective Thomson scattering spectrum from thermal electron-plasma fluctuations are presented [1]. Due to the high phase velocity of electron-plasma fluctuations, relativistic effects are important even at low electron temperatures (Te < 1 keV). These effects have been observed experimentally and agree well with a relativistic treatment of the Thomson scattering form factor [2]. The results are important for the interpretation of scattering measurements from laser produced plasmas. Thomson scattering measurements are used to characterize the hydrodynamics of a gas jet plasma which is the foundation for a broad series of laser-plasma interaction studies [3, 4, 5, 6]. The temporal evolution of the electron temperature, density and ion temperature are measured. The measured electron density evolution shows excellent agreement with a simple adiabatic expansion model. The effects of high temperatures on coupling to hohlraum targets is discussed [7]. A peak electron temperature of 12 keV at a density of 4.7 × 1020cm-3 are measured 200 μm outside the laser entrance hole using a two-color Thomson scattering method we developed in gas jet plasmas [8]. These measurements are used to assess laser-plasma interactions that reduce laser hohlraum coupling and can significantly reduce the hohlraum radiation temperature.

  8. Upgrades to improve the usability, reliability, and spectral range of the MST Thomson scattering diagnostic

    Science.gov (United States)

    Kubala, S. Z.; Borchardt, M. T.; Den Hartog, D. J.; Holly, D. J.; Jacobson, C. M.; Morton, L. A.; Young, W. C.

    2016-11-01

    The Thomson scattering diagnostic on MST records both equilibrium and fluctuating electron temperature with a range capability of 10 eV-5 keV. Standard operation with two modified commercial Nd:YAG lasers allows measurements at rates of 1 kHz-25 kHz. Several subsystems of the diagnostic are being improved. The power supplies for the avalanche photodiode detectors (APDs) that record the scattered light are being replaced to improve usability, reliability, and maintainability. Each of the 144 APDs will have an individual rack mounted switching supply, with bias voltage adjustable to match the APD. Long-wavelength filters (1140 nm center, 80 nm bandwidth) have been added to the polychromators to improve capability to resolve non-Maxwellian distributions and to enable directed electron flow measurements. A supercontinuum (SC) pulsed white light source has replaced the tungsten halogen lamp previously used for spectral calibration of the polychromators. The SC source combines substantial brightness produced in nanosecond pulses with a spectrum that covers the entire range of the polychromators.

  9. Design of the Collective Thomson scattering (CTS) system by using 170-GHz gyrotron in the KSTAR

    Science.gov (United States)

    Park, Min; Kim, Sun-Ho; Kim, Sung-Kyu; Lee, Kyu-Dong; Wang, Son-Jong

    2014-10-01

    The physics of energetic ions is one of the primary subjects to be understood toward the realization of a nuclear fusion power plant. Collective Thomson scattering (CTS) offers the possibility to diagnose the fast ions and the alpha particles in burning plasmas. Spatially- and temporally-resolved one-dimensional velocity distributions of the fast ions can be obtained from the scattered radiation with fewer geometric constraints by utilizing millimeter waves from a high-power gyrotron as a probe beam. We studied the feasibility of CTS fast-ion measurements in the KSTAR by calculating the spectral density functions. Based on that, we suggest a design for the CTS system that uses the currently-operating 170-GHz gyrotron for electron cyclotron heating (ECH) and electron cyclotron current drive (ECCD) in the KSTAR. The CTS system is presented as two subsystems: the antenna system and the heterodyne receiver system. The design procedure for an off-axis ellipsoidal mirror is described, and the CTS system requirements are discussed.

  10. The design of the optical Thomson scattering diagnostic for the National Ignition Facility

    Science.gov (United States)

    Datte, P. S.; Ross, J. S.; Froula, D. H.; Daub, K. D.; Galbraith, J.; Glenzer, S.; Hatch, B.; Katz, J.; Kilkenny, J.; Landen, O.; Manha, D.; Manuel, A. M.; Molander, W.; Montgomery, D.; Moody, J.; Swadling, G. F.; Weaver, J.

    2016-11-01

    The National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion (ICF) programs. We report on the design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community's understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beam splitter and gratings before the shot. A deep-UV probe beam (λ0-210 nm) will be used to optimize the scattered signal for plasma densities of 5 × 1020 electrons/cm3 while a 3ω probe will be used for experiments investigating lower density plasmas of 1 × 1019 electrons/cm3. We report the phase I design of a two phase design strategy. Phase I includes the OTS telescope, spectrometer, and streak camera; these will be used to assess the background levels at NIF. Phase II will include the design and installation of a probe laser.

  11. Antenna design for fast ion collective Thomson scattering diagnostic for the international thermonuclear experimental reactor.

    Science.gov (United States)

    Leipold, F; Furtula, V; Salewski, M; Bindslev, H; Korsholm, S B; Meo, F; Michelsen, P K; Moseev, D; Nielsen, S K; Stejner, M

    2009-09-01

    Fast ion physics will play an important role for the international thermonuclear experimental reactor (ITER), where confined alpha particles will affect and be affected by plasma dynamics and thereby have impacts on the overall confinement. A fast ion collective Thomson scattering (CTS) diagnostic using gyrotrons operated at 60 GHz will meet the requirements for spatially and temporally resolved measurements of the velocity distributions of confined fast alphas in ITER by evaluating the scattered radiation (CTS signal). While a receiver antenna on the low field side of the tokamak, resolving near perpendicular (to the magnetic field) velocity components, has been enabled, an additional antenna on the high field side (HFS) would enable measurements of near parallel (to the magnetic field) velocity components. A compact design solution for the proposed mirror system on the HFS is presented. The HFS CTS antenna is located behind the blankets and views the plasma through the gap between two blanket modules. The viewing gap has been modified to dimensions 30x500 mm(2) to optimize the CTS signal. A 1:1 mock-up of the HFS mirror system was built. Measurements of the beam characteristics for millimeter-waves at 60 GHz used in the mock-up agree well with the modeling.

  12. Asphericalizing the Light Collection Mirror for the 200-Point Thomson Scattering Diagnostic Installed on the Large Helical Device%Asphericalizing the Light Collection Mirror for the 200-Point Thomson Scattering Diagnostic Installed on the Large Helical Device

    Institute of Scientific and Technical Information of China (English)

    Kazumichi NARIHARA; Hiroshi HAYASHI

    2011-01-01

    Shown is a possibility to make the image of a laser beam over a distance of 2.5 m, formed by the spherical multi-segment mirror installed in LHD, twice sharper by suitably adjusting the inclination of each segment mirror, which is equivalent to making the mirror surface aspherical. This will further enhance the attractiveness of a mirror-based Thomson scattering system.

  13. Thomson scattering laser-electron X-ray source for reduction of patient radiation dose in interventional coronary angiography

    Science.gov (United States)

    Artyukov, I. A.; Dyachkov, N. V.; Feshchenko, R. M.; Polunina, A. V.; Popov, N. L.; Shvedunov, V. I.; Vinogradov, A. V.

    2017-05-01

    It was medical applications that stimulated F. Carrol in the early 1990s to start the research of on relativistic Thomson scattering X-ray sources, as a part of the infrastructure of the future society. The possibility to use such a source in interventional cardiology is discussed in this paper. The replacement of X-ray tube by relativistic Thomson scattering Xray source is predicted to lower the patient radiation dose by a factor of 3 while image quality remains the same. The required general characteristics of accelerator and laser units are found. They can be reached by existing technology. A semiempirical method for simulation of medical and technical parameters of interventional coronary angiography systems is suggested.

  14. Relativistic correction of (v/c)2 to the collective Thomson scattering for high-temperature high-density plasma

    Institute of Scientific and Technical Information of China (English)

    Jiang Chen-Fan-Fu; Zheng Jian; Zhao Bin

    2011-01-01

    Collective Thomson scattering is theoretically investigated with the inclusion of the relativistic correction of (v/c)2.The correction is rather small for the plasma parameters inferred from the spectra of the thermal electron plasma waves in the plasma. Since the full formula of the corrected result is rather complicated,a simplified one is derived for practical use,which is shown to be in good agreement with the un-simplified one.

  15. Impurity ion flow and temperature measured in a detached divertor with externally applied non-axisymmetric fields on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Briesemeister, A.R., E-mail: briesemeister@fusion.gat.com [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Isler, R.C. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Allen, S.L. [Lawrence Livermore National Laboratory, 700 East Ave, Livermore, CA 94550 (United States); Ahn, J.-W. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); McLean, A.G. [Lawrence Livermore National Laboratory, 700 East Ave, Livermore, CA 94550 (United States); Unterberg, E.A.; Hillis, D.L. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Fenstermacher, M.E.; Meyer, W.H. [Lawrence Livermore National Laboratory, 700 East Ave, Livermore, CA 94550 (United States)

    2015-08-15

    Externally applied non-axisymmetric magnetic fields are shown to have little effect on the impurity ion flow velocity and temperature as measured by the multichord divertor spectrometer in the DIII-D divertor for both attached and detached conditions. These experiments were performed in H-mode plasmas with the grad-B drift toward the target plates, with and without n = 3 resonant magnetic perturbations (RMPs). The flow velocity in the divertor is shown to change by as much as 30% when deuterium gas puffing is used to create detachment of the divertor plasma. No measurable changes in the C III flow were observed in response to the RMP fields for the conditions used in this work. Images of the C III emission are used along with divertor Thomson scattering to show that the local electron and C III temperatures are equilibrated for the conditions shown.

  16. Thomson scattering system on the TEXTOR tokamak using a multi-pass laser beam configuration

    Energy Technology Data Exchange (ETDEWEB)

    Kantor, M Yu; Donne, A J H; Jaspers, R; Van der Meiden, H J [FOM-Institute for Plasma Physics Rijnhuizen , Association EURATOM-FOM, PO Box 1207, 3430 BE Nieuwegein (Netherlands)], E-mail: m.kantor@fz-juelich.de

    2009-05-15

    The main challenge for the Thomson scattering (TS) diagnostic on the TEXTOR tokamak is the detailed study of fast plasma events at a high spatial resolution and a high repetition rate of the measurements. The diagnostic uses intra-cavity probing of the plasma with a repetitively pulsed ruby laser and a fast CMOS camera as detectors. Since 2004, the TS system on TEXTOR has been gradually and systematically enhanced for the measurements of fast plasma events. For that it has recently been upgraded to obtain a multi-pass configuration. Two spherical mirrors have been installed that force the laser beam to probe the plasma a specified number of times before it is directed back into the laser medium. The diagnostics with the upgraded probing system have achieved the measurement accuracy of 3% for the electron temperature and 1.5% for the electron density at <1 cm spatial resolution and 3 x 10{sup 19} m{sup -3} plasma density and can measure at 5 kHz during an interval up to 8 ms. This makes it possible to detect, amongst others, fine structures of magnetic islands and variations of the edge pedestal in the ELMy limiter H-mode.

  17. Thomson scattering system on the TEXTOR tokamak using a multi-pass laser beam configuration

    Science.gov (United States)

    Kantor, M Yu; Donné, A J H; Jaspers, R; van der Meiden, H J; TEXTOR Team

    2009-05-01

    The main challenge for the Thomson scattering (TS) diagnostic on the TEXTOR tokamak is the detailed study of fast plasma events at a high spatial resolution and a high repetition rate of the measurements. The diagnostic uses intra-cavity probing of the plasma with a repetitively pulsed ruby laser and a fast CMOS camera as detectors. Since 2004, the TS system on TEXTOR has been gradually and systematically enhanced for the measurements of fast plasma events. For that it has recently been upgraded to obtain a multi-pass configuration. Two spherical mirrors have been installed that force the laser beam to probe the plasma a specified number of times before it is directed back into the laser medium. The diagnostics with the upgraded probing system have achieved the measurement accuracy of 3% for the electron temperature and 1.5% for the electron density at <1 cm spatial resolution and 3 × 1019 m-3 plasma density and can measure at 5 kHz during an interval up to 8 ms. This makes it possible to detect, amongst others, fine structures of magnetic islands and variations of the edge pedestal in the ELMy limiter H-mode.

  18. Development of density measurement method of negative ion in plasmas using laser Thomson scattering

    Science.gov (United States)

    Yamagata, Yukihiko; Saiho, Hiroatsu; Uchino, Kiichiro; Muraoka, Katsunori

    2004-09-01

    Measurements of negative ion density in plasmas have been an important subject for many years. We have proposed a new method to measure the negative ion density in plasmas using laser Thomson scattering (LTS), and successfully measured O^- ion density in an radio frequency inductively coupled plasma [1]. In order to ensure the reliability of this technique and to estimate the accuracy, we have measured O^- ion density in the same experimental conditions using the second (SHG) and third harmonics (THG) of a Nd:YAG laser as different laser sources. The LTS spectra measured at pure argon plasma (500 W, 20 mTorr) fitted in a straight line well in both SHG and THG cases. As for the plasma at 500 W in 20 mTorr with Ar/O_2=95%/5%, a clear bump in LTS spectra, which is caused by photo-detached electrons, was observed below 0.9 eV for the SHG case and 2 eV for the case, as predicted by a difference between the electron affinity of O^- ion and the laser photon energy. The electron temperatures, the electron densities and the O^- ion densities, which were obtained from the spectral shape and intensity of both LTS spectra, were in agreement each other within an experimental error. [1] M. Noguchi, K. Ariga, T. Hirao, P. Suanpoot, Y. Yamagata, K. Uchino, K. Muraoka, Plasma Sources Sci. Technol., 11 (2002) 57.

  19. Spectrometer Development in Support of Thomson Scattering Investigations for the Helicon Plasma Experiment (HPX)

    Science.gov (United States)

    Sandri, Eva; Davies, Richard; Azzari, Phil; Frank, John; Frank, Jackson; James, Royce; Hopson, Jordon; Duke-Tinson, Omar; Paolino, Richard; Sherman, Justin; Wright, Erin; Turk, Jeremy

    2016-10-01

    Now that reproducible plasmas have been created on the Helicon Plasma Experiment (HPX) at the Coast Guard Academy Plasma Laboratory (CGAPL), a high-performance spectrometer utilizing volume-phase-holographic (VPH) grating and a charge coupled device (CCD) camera with a range of 380-1090 nm and resolution of 1024x1024 is being assembled. This spectrometer will collect doppler shifted photons created by exciting the plasma with the first harmonic of a 2.5 J Nd:YAG laser at a wavelength of 1064 nm. Direct measurements of the plasma's temperature and density will be determined using HPX's Thomson Scattering (TS) system as a single spatial point diagnostic. TS has the capability of determining plasma properties on short time scales and will be used to create a robust picture of the internal plasma parameters. A prototype spectrometer has been constructed to explore the Andor CCD camera's resolution and sensitivity. Concurrently, through intensive study of the high energy TS system, safety protocols and standard operation procedures (SOP) for the Coast Guard's largest and most powerful Laser have been developed. The current status of the TS SOP, diagnostic development, and the collection optic's spectrometer will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY15-16.

  20. Improved Collective Thomson Scattering measurements of fast ions at ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, J.; Nielsen, S. K.; Stejner, M.; Salewski, M.; Jacobsen, A. S.; Korsholm, S. B.; Leipold, F.; Meo, F.; Michelsen, P. K. [Association Euratom-DTU, Technical University of Denmark, Department of Physics, DTU Riso/ Campus, DK-4000 Roskilde (Denmark); Moseev, D. [Association Euratom-FOM Institute DIFFER, 3430 BE Nieuwegein (Netherlands); Schubert, M.; Stober, J.; Tardini, G.; Wagner, D.; Collaboration: ASDEX Upgrade Team

    2014-08-21

    Understanding the behaviour of the confined fast ions is important in both current and future fusion experiments. These ions play a key role in heating the plasma and will be crucial for achieving conditions for burning plasma in next-step fusion devices. Microwave-based Collective Thomson Scattering (CTS) is well suited for reactor conditions and offers such an opportunity by providing measurements of the confined fast-ion distribution function resolved in space, time and 1D velocity space. We currently operate a CTS system at ASDEX Upgrade using a gyrotron which generates probing radiation at 105 GHz. A new setup using two independent receiver systems has enabled improved subtraction of the background signal, and hence the first accurate characterization of fast-ion properties. Here we review this new dual-receiver CTS setup and present results on fast-ion measurements based on the improved background characterization. These results have been obtained both with and without NBI heating, and with the measurement volume located close to the centre of the plasma. The measurements agree quantitatively with predictions of numerical simulations. Hence, CTS studies of fast-ion dynamics at ASDEX Upgrade are now feasible. The new background subtraction technique could be important for the design of CTS systems in other fusion experiments.

  1. A compact, low cost, 7 channel polychromator for Thomson scattering measurements

    Energy Technology Data Exchange (ETDEWEB)

    Carlstrom, T.N.; DeBoo, J.C.; Evanko, R.; Greenfield, C.M.; Hsieh, C.-L.; Snider, R.T.; Trost, P.

    1990-10-01

    A seven channel polychromator, utilizing high performance interference filters, has been tested for use in the multi-Nd:YAG laser Thomson scattering system for the DIII-D tokamak. Unique features of this polychromator are the combination of high throughput, easy alignment, flexibility, compact size, and low cost when compared with other alternatives. Light is introduced to the polychromator (f/1.75) via a fiber optic bundle which permits the use of small (3.0 cm dia) optics and leads to a compact design, an important design consideration for multiple polychromator systems. The light is cascaded through a series of different bandpass interference filters and relay lenses which are mounted on two precision parallel rails in such a way that alignment is trivial. The relay lenses are positioned directly in front of the filters so that light reflected from the filter passes through the lens twice. This leads to an efficient, compact design and reduces the angle of incidence (4{degree}) and the cone angle of light (4.5{degree}) seen by the filter, an important factor for narrowband (3.0 nm) filters. The transmission was optimized for 700--1100 nm by using broadband coatings throughout. The output images of each channel (2.3 mm dia) can be directly coupled to large format (3 nm dia) RCA silicon avalanche photodiode detectors, avoiding the losses caused by fiber optic coupling.

  2. Improved Collective Thomson Scattering measurements of fast ions at ASDEX Upgrade

    CERN Document Server

    Rasmussen, J; Stejner, M; Salewski, M; Jacobsen, A S; Korsholm, S B; Leipold, F; Meo, F; Michelsen, P K; Moseev, D; Schubert, M; Stober, J; Tardini, G; Wagner, D

    2013-01-01

    Understanding the behaviour of the confined fast ions is important in both current and future fusion experiments. These ions play a key role in heating the plasma and will be crucial for achieving conditions for burning plasma in next-step fusion devices. Microwave-based Collective Thomson Scattering (CTS) is well suited for reactor conditions and offers such an opportunity by providing measurements of the confined fast-ion distribution function resolved in space, time and 1D velocity space. We currently operate a CTS system at ASDEX Upgrade using a gyrotron which generates probing radiation at 105 GHz. A new setup using two independent receiver systems has enabled improved subtraction of the background signal, and hence the first accurate characterization of fast-ion properties. Here we review this new dual-receiver CTS setup and present results on fast-ion measurements based on the improved background characterization. These results have been obtained both with and without NBI heating, and with the measurem...

  3. Study of Fast, Near-Infrared Photodetectors for the ITER Core LIDAR Thomson Scattering

    Science.gov (United States)

    Giudicotti, L.; Pasqualotto, R.; Alfier, A.; Beurskens, M.; Kempenaars, M.; Walsh, M. J.

    2008-03-01

    A key component for the ITER core LIDAR Thomson Scattering (TS) diagnostic would be a detector with good sensitivity in the 850-1060 nm near infrared (NIR) spectral region. Covering this spectral region becomes necessary if a Nd:YAG laser system operating at λ = 1.06 μm is used as the laser source, which is a very attractive choice in terms of available energy, repetition rate, reliability and cost. In this paper we review the state of the art of two types of detectors available for the above spectral range: the transferred electron (TE) InGaAs/InP hybrid photodiode and the InxGa1-xAs microchannel plate (MCP) image intensifier and we describe the advancements necessary for a possible application in the ITER LIDAR TS. In addition we describe the preliminary characterization of new GaAsP fast MCP photomultipliers (PMTs) suitable for the detection of the visible part of the LIDAR TS spectrum in JET and ITER.

  4. The Thomson Scattering System on the Lithium Tokamak eXperiment (LTX)

    Energy Technology Data Exchange (ETDEWEB)

    T. Strickler, R. Majeski, R. Kaita, B. LeBlanc

    2008-07-31

    The Lithium Tokamak eXperiment (LTX) is a spherical tokamak with R0 = 0.4m, a = 0.26m, BTF ~ 3.4kG, IP ~ 400kA, and pulse length ~ 0.25s. The goal of LTX is to investigate tokamak plasmas that are almost entirely surrounded by a lithium-coated plasma-facing shell conformal to the last closed magnetic flux surface. Based on previous experimental results and simulation, it is expected that the low-recycling liquid lithium surfaces will result in higher temperatures at the plasma edge, flatter overall temperature profiles, centrally-peaked density profiles, and an increased confinement time. To test these predictions, the electron temperature and density profiles in LTX will be measured by a multi-point Thomson scattering system (TVTS). Initially, TS measurements will be made at up to 12 simultaneous points between the plasma center and plasma edge. Later, high resolution edge measurements will be deployed to study the lithium edge physics in greater detail. Technical challenges to implementing the TS system included limited "line of sight" access to the plasma due to the plasma-facing shell and problems associated with the presence of liquid lithium.

  5. Thomson scattering diagnostic system design for the Compact Toroidal Hybrid experiment

    Energy Technology Data Exchange (ETDEWEB)

    Traverso, P. J., E-mail: pjt0002@auburn.edu; Maurer, D. A.; Ennis, D. A.; Hartwell, G. J.; Goforth, M. M.; Loch, S. D.; Pearce, A. J.; Cianciosa, M. R. [Physics Department, Auburn University, Auburn, Alabama 36849 (United States)

    2014-11-15

    A new Thomson scattering system using standard commercially available components has been designed for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH). The beam, generated by a frequency doubled Continuum PL DLS 2 J Nd:YAG laser, is passed vertically through an entrance Brewster window and an aperturing baffle system to minimize the stray laser light that could enter the collection optics. The beam line has been designed with an 8 m propagation distance to the mid-plane of the CTH device with the beam diameter kept less than 3 mm inside the plasma volume. The beam exits the vacuum system through another Brewster window and enters a beam dump, again to minimize the stray light in the vacuum chamber. Light collection, spectral processing, and signal detection are accomplished with an f/#∼ 1 aspheric lens, a commercially available Holospec f/1.8 spectrometer, and an Andor iStar DH740-18U-C3 image intensified camera. Spectral rejection of stray laser light, if needed, can be performed with the use of an optional interference filter at the spectrometer input. The system has been developed for initial single point measurements of plasmas with core electron temperatures of approximately 20–300 eV and densities of 5 × 10{sup 18} to 5 × 10{sup 19} m{sup −3} dependent upon operational scenario.

  6. Installation of a Thomson scattering diagnostic on the Compact Toroidal Hybrid Experiment

    Science.gov (United States)

    Traverso, P. J.; Maurer, D. A.; Ennis, D. A.; Hartwell, G. J.; Cianciosa, M. R.

    2015-11-01

    A Thomson scattering system is being commissioned for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH), a five-field period current-carrying torsatron. The initial system takes a single point measurement on the magnetic axis and will be used to assess options for an expansion to a multi-point system to enable better 3D equilibrium reconstructions using the V3FIT code. A single point measurement will reduce the uncertainty in the reconstructed peak pressure by an order of magnitude for both current-carrying plasmas and future gyrotron-heated stellarator plasmas. The beam, generated by a frequency doubled Continuum 2 J, Nd:YaG laser, is passed vertically through an entrance Brewster window and a two-aperture optical baffle system to minimize stray light. The beam line is designed to propagate ~ 8 m to the mid-plane of the CTH device with the beam diameter < 3 mm inside the plasma volume. An Andor iStar DH740-18U-C3 image intensified CCD camera is used in conjunction with a Holospec f/1.8 spectrograph to collect the red-shifted scattered light from 532-580 nm. A single point system will initially measure plasmas with core electron temperatures of 100 to 200 eV and densities of 5 ×1018 to 5 ×1019 m-3. This work is supported by U.S. Department of Energy Grant No. DE-FG02-00ER54610.

  7. ITER fast ion collective Thomson scattering, conceptual design of 60 GHz system

    Energy Technology Data Exchange (ETDEWEB)

    Meo, F.; Bindslev, H.; Korsholm, S.B.

    2007-08-15

    The collective Thomson scattering diagnostic for ITER at the 60 GHz range is capable of measuring the fast ion distribution parallel and perpendicular to the magnetic field at different radial locations simultaneously. The design is robust technologically with no moveable components near the plasma. The fast ion CTS diagnostic consists of two separate systems. Each system has its own RF launcher and separate set of detectors. The first system measures the perpendicular component of the fast ion velocity distribution. It consists of radially directed RF launcher and receiver, both located in the equatorial port on the low field side (LFS). This system will be referred to by the acronym LFS-BS system referring to the location of the receiver and the fact that it measures backscattered radiation. The second part of the CTS diagnostic measures the parallel component of the fast ion distribution. It consists of an RF launcher located in the mid-plane port on the LFS and a receiver mounted on the inner vacuum vessel wall that views the plasma from between two blanket modules. This system will be referred to as HFS-FS referring to the location of the receivers and that they measure forward scattered radiation. The design of both LFS-BS and HFS-FS receivers is aimed at measuring at different spatial locations simultaneously with no moveable components near the plasma. This report is a preliminary study of the hardware design and engineering constraints for this frequency range. Section 2 conceptually describes the two systems and their main components. Section 3 clarifies the impact of design parameters such as beam widths and scattering angle on the CTS measurements. With this in hand, the ITER measurement requirements are translated into constraints on the CTS system designs. An important result in this section is that systems can be designed inside these constraints. Section 4 outlines the technical feasibility and describes in more detail the design and the engineering

  8. Calculation of the nonlinear relativistic Thomson scattering fields and Its application to electron distribution function diagnostic

    Science.gov (United States)

    Guasp, J.; Pastor, I.; Álvarez-Estrada, R. F.; Castejón, F.

    2015-02-01

    Analytical results obtained recently of the ab-initio classical incoherent Thomson Scattering (TS) spectrum from a single-electron (Alvarez-Estrada et al 2012 Phys. Plasmas 19 062302) have been numerically implemented in a paralelized code to efficiently compute the TS emission from a given electron distribution function, irrespective of its characteristics and/or the intensity of the incoming radiation. These analytical results display certain differences, when compared with other authors, in the general case of incoming linearly and circularly polarized radiation and electrons with arbitrary initial directions. We regard such discrepancies and the ubiquitous interest in TS as motivations for this work. Here, we implement some analytical advances (like generalized Bessel functions for incoming linearly polarized radiation) in TS. The bulk of this work reports on the efficient computation of TS spectra (based upon our analytical approach), for an electron population having an essentially arbitrary distribution function and for both incoming linearly and circularly polarized radiation. A detailed comparison between the present approach and a previous Monte Carlo one (Pastor et al 2011 Nuclear Fusion 51 043011), dealing with the ab-initio computation of TS spectra, is reported. Both approaches are shown to fully agree with each other. As key computational improvements, the analytical technique yields a × 30 to × 100 gain in computation time and is a very flexible tool to compute the scattered spectrum and eventually the scattered electromagnetic fields in the time domain. The latter are computed explicitly here for the first time, as far as we know. Scaling laws for the power integrated over frequency versus initial kinetic energy are studied for the case of isotropic and monoenergetic electron distribution functions and their potential application as diagnostic tools for high-energy populations is briefly discussed. Finally, we discuss the application of these

  9. Initial Thomson Scattering Survey of Local Helicity Injection and Ohmic Plasmas at the Pegasus Toroidal Experiment

    Science.gov (United States)

    Schlossberg, D. J.; Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Winz, G. R.

    2014-10-01

    A multipoint Thomson scattering diagnostic has recently been installed on the Pegasus ST. The system utilizes a frequency-doubled Nd:YAG laser (λ0 ~ 532 nm), spectrometers with volume phase holographic gratings, and a gated, intensified CCD camera. It provides measurements of Te and ne at 8 spatial locations for each spectrometer once per discharge. A new multiple aperture and beam dump system has been implemented to mitigate interference from stray light. This system has provided initial measurements in the core region of plasmas initiated by local helicity injection (LHI), as well as conventional Ohmic L- and H-mode discharges. Multi-shot averages of low-density (ne ~ 3 ×1018 m-3) , Ip ~ 0 . 1 MA LHI discharges show central Te ~ 75 eV at the end of the helicity injection phase. Ip ~ 0 . 13 MA Ohmic plasmas at moderate densities (ne ~ 2 ×1019 m-3) have core Te ~ 150 eV in L-mode. Generally, these plasmas do not reach transport equilibrium in the short 25 ms pulse length available. After an L-H transition, strong spectral broadening indicates increasing Te, to values above the range of the present spectrometer system with a high-dispersion VPH grating. Near-term system upgrades will focus on deploying a second spectrometer, with a lower-dispersion grating capable of measuring the 0.1-1.0 keV range. The second spectrometer system will also increase the available number of spatial channels, enabling study of H-mode pedestal structure. Work supported by US DOE Grant DE-FG02-96ER54375.

  10. Spatially resolved Thomson scattering measurements of the transition from the collective to the non-collective regime in a laser-produced plasma

    Science.gov (United States)

    Schaeffer, D. B.; Constantin, C. G.; Bondarenko, A. S.; Everson, E. T.; Niemann, C.

    2016-11-01

    We present optical Thomson scattering results that image for the first time in a single measurement the spatial transition from collective to non-collective scattering. Data were taken in the Phoenix laser laboratory at the University of California, Los Angeles. The Raptor laser was used to ablate a carbon plasma, which was diagnosed with the frequency-doubled Phoenix laser serving as a Thomson scattering probe. Scattered light was collected from the laser plasma up to 10 cm from the target surface and up to 10 us after ablation, and imaged with high spatial and spectral resolutions. The results show a strong Thomson collective feature close to the target surface that smoothly transitions to a non-collective feature over several mm.

  11. Evidence for out-of-equilibrium states in warm dense matter probed by X-ray Thomson scattering

    CERN Document Server

    Clerouin, J; Robert, G; Ticknor, C; Kress, J; Collins, L

    2014-01-01

    A recent and unexpected discrepancy between \\textit{ab initio} simulations and the interpretation of a laser shock experiment on aluminum, probed by X-ray Thomson scattering (XRTS), is addressed. The ion-ion structure factor deduced from the XRTS elastic peak (ion feature) is only compatible with a strongly coupled out-of-equilibrium state. Orbital free molecular dynamics simulations with ions colder than the electrons are employed to interpret the experiment. The relevance of decoupled temperatures for ions and electrons is discussed. The possibility that it mimics a transient, or metastable, out-of-equilibrium state after melting is also suggested.

  12. Short Pulse High Brightness X-ray Production with the PLEIADES Thomson Scattering Source

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S G; Barty, C P J; Betts, S M; Brown, W J; Crane, J K; Cross, R R; Fittinghoff, D N; Gibson, D J; Hartemann, F V; Kuba, J; LaSage, G P; Rosenzweig, J B; Slaughter, D R; Springer, P T; Tremaine, A M

    2003-07-01

    We describe PLEIADES, a compact, tunable, high-brightness, ultra-short pulse, Thomson x-ray source. The peak brightness of the source is expected to exceed 10{sup 20} photons/s/0.1% bandwidth/mm{sup 2}/mrad{sup 2}. Initial results are reported and compared to theoretical calculations.

  13. Generation of bright attosecond x-ray pulse trains via Thomson scattering from laser-plasma accelerators.

    Science.gov (United States)

    Luo, W; Yu, T P; Chen, M; Song, Y M; Zhu, Z C; Ma, Y Y; Zhuo, H B

    2014-12-29

    Generation of attosecond x-ray pulse attracts more and more attention within the advanced light source user community due to its potentially wide applications. Here we propose an all-optical scheme to generate bright, attosecond hard x-ray pulse trains by Thomson backscattering of similarly structured electron beams produced in a vacuum channel by a tightly focused laser pulse. Design parameters for a proof-of-concept experiment are presented and demonstrated by using a particle-in-cell code and a four-dimensional laser-Compton scattering simulation code to model both the laser-based electron acceleration and Thomson scattering processes. Trains of 200 attosecond duration hard x-ray pulses holding stable longitudinal spacing with photon energies approaching 50 keV and maximum achievable peak brightness up to 1020 photons/s/mm2/mrad2/0.1%BW for each micro-bunch are observed. The suggested physical scheme for attosecond x-ray pulse trains generation may directly access the fastest time scales relevant to electron dynamics in atoms, molecules and materials.

  14. Development of a Thomson scattering system and its use in a rotating magnetic field driven field-reversed configurations plasma

    Science.gov (United States)

    Lee, Kiyong

    The Thomson scattering system has been utilized on the Translation Confinement & Sustainment Upgrade (TCSU) experiment to measure the electron temperature and density. The system uses five polychromators from General Atomics attached with three pre-amplifier modules from Princeton Plasma Physics Laboratory to measure five spatial points during a single plasma discharge. The diagnostic consisting of various mechanical and optical components is introduced, followed by the calibration procedure of the system. For validating measurements, the electron temperature and the relative density obtained from Thomson scattering are compared with measurements from the Langmuir probe. Both measurements are in good agreement. A power scan was conducted by applying different voltages to the rotating magnetic field (RMF) current drive to observe the scaling properties of temperature and density for even-parity and odd-parity RMF operations. Also, a discrepancy is observed when comparing the density based on pressure-balance with localized measurements. Further analysis indicates a possibility of an ion-temperature-gradient, presumably due to ion cyclotron heating, present during steady-state operation.

  15. Simulating x-ray Thomson scattering signals from high-density, millimetre-scale plasmas at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, D. A., E-mail: david.chapman@awe.co.uk [Plasma Physics Group, Radiation Physics Department, AWE plc, Reading RG7 4PR (United Kingdom); Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom); Kraus, D.; Falcone, R. W. [Department of Physics, University of California, Berkeley, California 94720 (United States); Kritcher, A. L.; Bachmann, B.; Collins, G. W.; Gaffney, J. A.; Hawreliak, J. A.; Landen, O. L.; Le Pape, S.; Ma, T.; Nilsen, J.; Pak, A.; Swift, D. C.; Döppner, T. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Gericke, D. O. [Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom); Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94309 (United States); Guymer, T. M. [Plasma Physics Group, Radiation Physics Department, AWE plc, Reading RG7 4PR (United Kingdom); Neumayer, P. [Gesellschaft für Schwerionenforschung, 64291 Darmstadt (Germany); Redmer, R. [Institut für Physik, Universität Rostock, 18051 Rostock (Germany); and others

    2014-08-15

    We have developed a model for analysing x-ray Thomson scattering data from high-density, millimetre-scale inhomogeneous plasmas created during ultra-high pressure implosions at the National Ignition Facility in a spherically convergent geometry. The density weighting of the scattered signal and attenuation of the incident and scattered x-rays throughout the target are included using radial profiles of the density, opacity, ionization state, and temperature provided by radiation-hydrodynamics simulations. These simulations show that the scattered signal is strongly weighted toward the bulk of the shocked plasma and the Fermi degenerate material near the ablation front. We show that the scattered signal provides a good representation of the temperature of this highly nonuniform bulk plasma and can be determined to an accuracy of ca. 15% using typical data analysis techniques with simple 0D calculations. On the other hand, the mean ionization of the carbon in the bulk is underestimated. We suggest that this discrepancy is due to the convolution of scattering profiles from different regions of the target. Subsequently, we discuss modifications to the current platform to minimise the impact of inhomogeneities, as well as opacity, and also to enable probing of conditions more strongly weighted toward the compressed core.

  16. Qualification of a high-efficiency, gated spectrometer for x-ray Thomson scattering on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Döppner, T.; Kritcher, A. L.; Bachmann, B.; Burns, S.; Hawreliak, J.; House, A.; Landen, O. L.; LePape, S.; Ma, T.; Pak, A.; Swift, D. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Neumayer, P. [Gesellschaft für Schwerionenphysik, 64291 Darmstadt (Germany); Kraus, D. [University of California, Berkeley, California 94720 (United States); Falcone, R. W. [University of California, Berkeley, California 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94309 (United States)

    2014-11-15

    We have designed, built, and successfully fielded a highly efficient and gated Bragg crystal spectrometer for x-ray Thomson scattering measurements on the National Ignition Facility (NIF). It utilizes a cylindrically curved Highly Oriented Pyrolytic Graphite crystal. Its spectral range of 7.4–10 keV is optimized for scattering experiments using a Zn He-α x-ray probe at 9.0 keV or Mo K-shell line emission around 18 keV in second diffraction order. The spectrometer has been designed as a diagnostic instrument manipulator-based instrument for the NIF target chamber at the Lawrence Livermore National Laboratory, USA. Here, we report on details of the spectrometer snout, its novel debris shield configuration and an in situ spectral calibration experiment with a Brass foil target, which demonstrated a spectral resolution of E/ΔE = 220 at 9.8 keV.

  17. Identification and mitigation of stray laser light in the Thomson scattering system on the Madison Symmetric Torus (MST)

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, C. M., E-mail: cjacobson@wisc.edu; Borchardt, M. T.; Den Hartog, D. J.; Falkowski, A. F.; Morton, L. A.; Thomas, M. A. [Department of Physics, University of Wisconsin–Madison, 1150 University Avenue, Madison, Wisconsin 53706 (United States)

    2016-11-15

    The Thomson scattering diagnostic on the Madison Symmetric Torus (MST) records excessive levels of stray Nd:YAG laser light. Stray light saturates the 1064 nm spectral channel in all polychromators, which prevents absolute electron density measurements via Rayleigh scattering calibration. Furthermore, stray light contaminates adjacent spectral channels for r/a ≥ 0.75, which renders the diagnostic unable to make electron temperature measurements at these radii. In situ measurements of stray light levels during a vacuum vessel vent are used to identify stray light sources and strategies for reduction of stray light levels. Numerical modeling using Zemax OpticStudio supports these measurements. The model of the vacuum vessel and diagnostic includes synthetic collection optics to enable direct comparison of measured and simulated stray light levels. Modeling produces qualitatively similar stray light distributions to MST measurements, and quantifies the mitigation effects of stray light mitigation strategies prior to implementation.

  18. Diagnosis of energetic ions and ion composition in fusion plasmas by collective Thomson scattering of mm-waves

    DEFF Research Database (Denmark)

    Bindslev, Henrik; Korsholm, Søren Bang; Leipold, Frank;

    2012-01-01

    In fusion plasmas, the dominant heating source will be fusion generated energetic ions slowing down in the plasma. The same ions can also drive waves and instabilities in the plasma. Their distribution in velocity and in space has major impact on plasma dynamics, and plasma dynamics in turn affects...... the energetic ion distributions. The dynamics of energetic ions is thus important to measure in order to understand fusion plasmas, and important to monitor as part of input to plasma control. The collective Thomson scattering of millimeter waves has proven to be a valuable means of diagnosing energetic ion...... distributions in fusion plasmas1,2. A beam of mm-waves with a diameter of 5–10 cm and a power of 150–600 kW is sent through the plasma, and radiation scattered from this probe beam by the microscopic fluctuations in the plasma is detected. These microscopic fluctuations are in part induced by the ion motion...

  19. Quantifying noise sources in the KSTAR 2014 Thomson Scattering system from the measured variation on electron temperature

    CERN Document Server

    Oh, Tae-suk; Lee, J H; Lee, S H; Scannell, R; Field, A R; Cho, K; Bawa'aneh, M S; Ghim, Y -c

    2015-01-01

    With the Thomson scattering (TS) system in KSTAR, temporal evolution of electron temperature ($T_e$) is estimated using a weighted look-up table method with fast sampling ($1.25$ or $2.5$ GS/s) digitizers during the 2014 KSTAR campaign. Background noise level is used as a weighting parameter without considering the photon noise due to the absence of information on absolute photon counts detected by the TS system. Estimated electron temperature during a relatively quiescent discharge are scattered, i.e., $15$\\% variation on $T_e$ with respect to its mean value. We find that this $15$\\% variation on $T_e$ cannot be explained solely by the background noise level which leads us to include photon noise effects in our analysis. Using synthetic data, we have estimated the required photon noise level consistent with the observation and determined the dominant noise source in KSTAR TS system.

  20. Identification and mitigation of stray laser light in the Thomson scattering system on the Madison Symmetric Torus (MST)

    Science.gov (United States)

    Jacobson, C. M.; Borchardt, M. T.; Den Hartog, D. J.; Falkowski, A. F.; Morton, L. A.; Thomas, M. A.

    2016-11-01

    The Thomson scattering diagnostic on the Madison Symmetric Torus (MST) records excessive levels of stray Nd:YAG laser light. Stray light saturates the 1064 nm spectral channel in all polychromators, which prevents absolute electron density measurements via Rayleigh scattering calibration. Furthermore, stray light contaminates adjacent spectral channels for r/a ≥ 0.75, which renders the diagnostic unable to make electron temperature measurements at these radii. In situ measurements of stray light levels during a vacuum vessel vent are used to identify stray light sources and strategies for reduction of stray light levels. Numerical modeling using Zemax OpticStudio supports these measurements. The model of the vacuum vessel and diagnostic includes synthetic collection optics to enable direct comparison of measured and simulated stray light levels. Modeling produces qualitatively similar stray light distributions to MST measurements, and quantifies the mitigation effects of stray light mitigation strategies prior to implementation.

  1. Upgrade of the automatic analysis system in the TJ-II Thomson Scattering diagnostic: New image recognition classifier and fault condition detection

    NARCIS (Netherlands)

    Makili, L.; Vega, J.; Dormido-Canto, S.; Pastor, I.; Pereira, A.; Farias, G.; Portas, A.; Perez-Risco, D.; Rodriguez-Fernandez, M. C.; Busch, P.

    2010-01-01

    An automatic image classification system based on support vector machines (SVM) has been in operation for years in the TJ-II Thomson Scattering diagnostic. It recognizes five different types of images: CCD camera background, measurement of stray light without plasma or in a collapsed discharge, imag

  2. High-transmission 20-channel polychromator for observing non-Maxwellian electron velocity distributions in plasmas by Thomson scattering.

    Science.gov (United States)

    Barth, C J

    1988-07-15

    A high-transmission (~45%) twenty-channel polychromator equipped with near-infrared sensitive photomultipliers has been constructed to record Thomson scattering spectra at the TORTUR tokamak. The high transmission was achieved by the use of mirrors instead of fiber optics to guide the spectrally resolved light to a set of photomultipliers. Spectral analysis is performed with a holographically ruled concave grating. Acceptable dimensions of the wavelength selection mirrors were obtained by magnifying the spectral image by a factor of 5 with a Mangin mirror. Electron temperatures up to 1000 eV at a density of 5 x 10(19) m(-3) can be measured with an accuracy of approximately l%. Both high sensitivity and high resolution enable the detection of irregularities in the velocity distribution. For example, satellites corresponding to partial densities of (5 +/- 1) x 10(17) m(-3) were found at 23 nm from the laser wavelength.

  3. Fast ion measurements by collective Thomson scattering in TEXTOR and ASDEX Upgrade and proposal for the ITER CTS system

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Bindslev, Henrik; Furtula, Vedran;

    Moving towards the era of burning fusion plasmas, a better knowledge of the physics of highly energetic particles, such as fusion born alpha particles, becomes essential. Diagnosing the fast ions in a fusion plasma is a challenging task, but the technique of collective Thomson scattering (CTS......) provides the possibility of revealing the velocity distribution of the confined fast ions along a given direction – resolved both in time and space. Recently, the ITER baseline design has been expanded to include the enabling of the front end of a fast ion CTS diagnostic system resolving dynamics...... perpendicular to the magnetic field. The feasibility study and conceptual design of this diagnostic was provided by the CTS group at Risø DTU. The development of the ITER CTS diagnostic builds on the experiences and expertise gained from the construction and current operation of the CTS diagnostic systems...

  4. Improving a high-efficiency, gated spectrometer for x-ray Thomson scattering experiments at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Döppner, T., E-mail: doeppner1@llnl.gov; Bachmann, B.; Emig, J.; Hardy, M.; Kalantar, D. H.; Kritcher, A. L.; Landen, O. L.; Ma, T.; Wood, R. D. [Lawrence Livermore National Laboratory, Livermore, California 94720 (United States); Kraus, D.; Saunders, A. M. [University of California, Berkeley, California 94720 (United States); Neumayer, P. [Gesellschaft für Schwerionenphysik, Darmstadt (Germany); Falcone, R. W. [University of California, Berkeley, California 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Fletcher, L. B. [SLAC National Accelerator Laboratory, Menlo Park, California 94720 (United States)

    2016-11-15

    We are developing x-ray Thomson scattering for applications in implosion experiments at the National Ignition Facility. In particular we have designed and fielded MACS, a high-efficiency, gated x-ray spectrometer at 7.5–10 keV [T. Döppner et al., Rev. Sci. Instrum. 85, 11D617 (2014)]. Here we report on two new Bragg crystals based on Highly Oriented Pyrolytic Graphite (HOPG), a flat crystal and a dual-section cylindrically curved crystal. We have performed in situ calibration measurements using a brass foil target, and we used the flat HOPG crystal to measure Mo K-shell emission at 18 keV in 2nd order diffraction. Such high photon energy line emission will be required to penetrate and probe ultra-high-density plasmas or plasmas of mid-Z elements.

  5. Operation and beam profiling of an up to 200 kHz pulse-burst laser for Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Young, W. C., E-mail: wcyoung2@wisc.edu; Den Hartog, D. J. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2014-11-15

    A new, high-repetition rate laser is in development for use on the Thomson scattering diagnostic on the Madison Symmetric Torus. The laser has been tested at a rate of 200 kHz in a pulse-burst operation, producing bursts of 5 pulses above 1.5 J each, while capable of bursts of 17 pulses at 100 kHz. A master oscillator-power amplifier architecture is used with a Nd:YVO{sub 4} oscillator, four Nd:YAG amplifiers, and a Nd:glass amplifier. A radial profile over the pulse sequence is measured by using a set of graphite apertures and an energy meter, showing a change in beam quality over a pulsing sequence.

  6. Interaction of relativistic electrons with an intense laser pulse: High-order harmonic generation based on Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Hack, Szabolcs [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Department of Theoretical Physics, University of Szeged, Tisza L. krt. 84-86, H-6720 Szeged (Hungary); Varró, Sándor [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Wigner Research Center for Physics, SZFI, PO Box 49, H-1525 Budapest (Hungary); Czirják, Attila [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Department of Theoretical Physics, University of Szeged, Tisza L. krt. 84-86, H-6720 Szeged (Hungary)

    2016-02-15

    We investigate nonlinear Thomson scattering as a source of high-order harmonic radiation with the potential to enable attosecond light pulse generation. We present a new analytic solution of the electron’s relativistic equations of motion in the case of a short laser pulse with a sine-squared envelope. Based on the single electron emission, we compute and analyze the radiated amplitude and phase spectrum for a realistic electron bunch, with special attention to the correct initial values. These results show that the radiation spectrum of an electron bunch in head-on collision with a sufficiently strong laser pulse of sine-squared envelope has a smooth frequency dependence to allow for the synthesis of attosecond light pulses.

  7. LIGHT SOURCE: RF deflecting cavity for bunch length measurement in Tsinghua Thomson scattering X-ray source

    Science.gov (United States)

    Shi, Jia-Ru; Chen, Huai-Bi; Tang, Chuan-Xiang; Huang, Wen-Hui; Du, Ying-Chao; Zheng, Shu-Xin; Ren, Li

    2009-06-01

    An RF deflecting cavity used for bunch length measurement has been designed and fabricated at Tsinghua University for the Thomson Scattering X-Ray Source. The cavity is a 2856 MHz, π-mode, 3-cell standing-wave cavity, to diagnose the 3.5 MeV beam produced by photocathode electron gun. With a larger power source, the same cavity will again be used to measure the accelerated beam with energy of 50 MeV before colliding with the laser pulse. The RF design using MAFIA for both the cavity shape and the power coupler is reviewed, followed by presenting the fabrication procedure and bench measurement results of two cavities.

  8. Simultaneous measurement of electron and heavy particle temperatures in He laser-induced plasma by Thomson and Rayleigh scattering

    Energy Technology Data Exchange (ETDEWEB)

    Dzierzega, K.; Mendys, A.; Zawadzki, W. [Marian Smoluchowski Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Krakow (Poland); Pokrzywka, B. [Mt. Suhora Observatory, Pedagogical University of Cracow, ul. Podchorazych 2, 30-084 Krakow (Poland); Pellerin, S. [GREMI, site de Bourges, Universite d' Orleans, CNRS, rue Gaston Berger BP 4043, 18028 Bourges (France)

    2013-04-01

    Thomson and Rayleigh scattering methods were applied to quantify the electron and heavy particle temperatures, as well as electron number density, in a laser spark in helium at atmospheric pressure. Plasma was created using 4.5 ns, 25 mJ pulses from Nd:YAG laser at 532 nm. Measurements, performed for the time interval between 20 ns and 800 ns after breakdown, show electron density and temperature to decrease from 7.8 Multiplication-Sign 10{sup 23} m{sup -3} to 2.6 Multiplication-Sign 10{sup 22} m{sup -3} and from 95 900 K to 10 350 K, respectively. At the same time, the heavy particle temperature drops from only 47 000 K down to 4100 K which indicates a two temperature plasma out of local isothermal equilibrium.

  9. The use of ultraviolet Thomson scattering as a versatile diagnostic for detailed measurements of a collisional laser produced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Tracy, M.D.

    1993-01-08

    Collective Thomson scattering from ion-acoustic waves at 266nm is used to obtain spatially resolved, two-dimensional electron density, sound speed, and radial drift profiles of a collisional laser plasma. An ultraviolet diagnostic wavelength minimizes the complicating effects of inverse bremsstrahlung and refractive turning in the coronal region of interest, where the electron densities approach n{sub c}/10. Laser plasmas of this type are important because they model some of the aspects of the plasmas found in high-gain laser-fusion pellets irradiated by long pulse widths where the laser light is absorbed mostly in the corona. The experimental results and LASNEX simulations agree within a percent standard deviation of 40% for the electron density and 50% for the sound speed and radial drift velocity. Thus it is shown that the hydrodynamics equations with classical coefficients and the numerical approximations in LASNEX are valid models of laser-heated, highly collisional plasmas. The versatility of Thomson scattering is expanded upon by extending existing theory with a Fokker-Planck based model to include plasmas that are characterized by (0 {le} k{sub ia}{lambda}{sub ii} {le} {infinity}) and ZT{sub e}/T{sub i}, where k{sub ia} is the ion- acoustic wave number, {lambda}{sub ii} is the ion-ion mean free path, Z is the ionization state of the plasma, and T{sub e}, T{sub i} are the electron and ion temperatures in electron volts respectively. The model is valid for plasmas in which the electrons are approximately collisionless, (k{sub ia}{lambda}{sub ei}, k{sub ia}{lambda}{sub ee} {ge} 1), and quasineutrality holds, ({alpha} {much_gt}1), where {alpha} = 1/k{lambda}{sub DE} and {lambda}{sub DE} is the electron Debye length. This newly developed model predicts the lineshape of the ion-acoustic Thomson spectra and when fit to experimental data provides a direct measurement of the relative thermal flow velocity between the electrons and ions.

  10. Demonstration of space-resolved x-ray Thomson scattering capability for warm dense matter experiments on the Z accelerator

    Science.gov (United States)

    Ao, T.; Harding, E. C.; Bailey, J. E.; Lemke, R. W.; Desjarlais, M. P.; Hansen, S. B.; Smith, I. C.; Geissel, M.; Maurer, A.; Reneker, J.; Romero, D.; Sinars, D. B.; Rochau, G. A.; Benage, J. F.

    2016-03-01

    Experiments on the Sandia Z pulsed-power accelerator have demonstrated the ability to produce warm dense matter (WDM) states with unprecedented uniformity, duration, and size, which are ideal for investigations of fundamental WDM properties. For the first time, space-resolved x-ray Thomson scattering (XRTS) spectra from shocked carbon foams were recorded on Z. The large (>20 MA) electrical current produced by Z was used to launch Al flyer plates up to 25 km/s. The impact of the flyer plate on a CH2 foam target produced a shocked state with an estimated pressure of 0.75 Mbar, density of 0.52 g/cm3, and temperature of 4.3 eV. Both unshocked and shocked portions of the foam target were probed with 6.2 keV x-rays produced by focusing the Z-Beamlet laser onto a nearby Mn foil. The data are composed of three spatially distinct spectra that were simultaneously captured with a single spectrometer with high spectral (4.8 eV) and spatial (190 μm) resolutions. Detailed spectral information from three target locations is provided simultaneously: the incident x-ray source, the scattered signal from unshocked foam, and the scattered signal from shocked foam.

  11. Design and Operation of a Frequency Doubled Nd:YAG Thomson Scattering System with Transmission Grating ICCD Spectrometer

    Science.gov (United States)

    Schoenbeck, N. L.; Dowd, A. S.; Fonck, R. J.; Schlossberg, D. J.; Winz, G. R.

    2012-10-01

    A novel Thomson scattering system has been deployed on the Pegasus Toroidal Experiment. It provides a relatively low-cost, simplified design. Scattering is achieved using a 7 ns, 2 J frequency doubled Nd:YAG laser operating at 532 nm. The laser focuses to ˜3 mm diameter within the plasma via a 7 m beam-line. The beam-line contains cameras as beam finders and remotely adjustable mirrors for shot-to-shot alignment. A custom multi-element lens collects scattered photons from 15 cm 40%) image intensified CCD (ICCD) camera. Three spectrometers provide a total of 24 channels. Two interchangeable gratings exist to cover low (Te = 10--100 eV) and high (Te = 0.10--1 keV) electron temperature regimes on Pegasus. The spectrometer is optimized for ne from mid-10^18 to mid-10^19 m-3. The signal-to-noise expected is ˜0.5 of an equivalent system using Nd:YAG at 1064 nm and avalanche photodiode detectors.

  12. Characterizing the DIII-D divertor conditions during the tungsten ring experiment

    Science.gov (United States)

    Barton, J. L.; Watkins, J. G.; Wang, H. Q.; Nygren, R. E.; McLean, A.; Makowski, M.; Unterberg, E.; Thomas, D. M.; Guo, H. Y.; Guterl, J.; Buchenauer, B.

    2016-10-01

    Tungsten (W) is the leading divertor material in tokamaks, but the core W impurity fraction must be kept below 5 ×10-5 in a reactor. The DIII-D tokamak, having all graphite PFCs, has done a series of experiments with two W-coated molybdenum rings in the lower divertor to track W migration after plasma exposure. We characterize the divertor plasma conditions at the DIII-D target plate in L- and ELMing H-mode, and ELM suppressed plasmas. We will present data from an array of Langmuir probes in the divertor and divertor Thomson-scattering. We also compare the heat flux from fast thermocouples (7.5 mm below the surface of the metal tile inserts) and IRTV heat flux profiles from graphite tiles. The plasma conditions will be used to benchmark ERO modeling to aid in understanding the migration of sputtered W onto other plasma facing surfaces and will be compared to post exposure W distribution measured on the graphite tiles. Supported by US DOE under DE-AC04-94AL85000, DE-FC02-04ER54698, DE-AC05-000R22725, and DE-AC52-07NA27344.

  13. Divertor detachment

    Science.gov (United States)

    Krasheninnikov, Sergei

    2015-11-01

    The heat exhaust is one of the main conceptual issues of magnetic fusion reactor. In a standard operational regime the large heat flux onto divertor target reaches unacceptable level in any foreseeable reactor design. However, about two decades ago so-called ``detached divertor'' regimes were found. They are characterized by reduced power and plasma flux on divertor targets and look as a promising solution for heat exhaust in future reactors. In particular, it is envisioned that ITER will operate in a partly detached divertor regime. However, even though divertor detachment was studied extensively for two decades, still there are some issues requiring a new look. Among them is the compatibility of detached divertor regime with a good core confinement. For example, ELMy H-mode exhibits a very good core confinement, but large ELMs can ``burn through'' detached divertor and release large amounts of energy on the targets. In addition, detached divertor regimes can be subject to thermal instabilities resulting in the MARFE formation, which, potentially, can cause disruption of the discharge. Finally, often inner and outer divertors detach at different plasma conditions, which can lead to core confinement degradation. Here we discuss basic physics of divertor detachment including different mechanisms of power and momentum loss (ionization, impurity and hydrogen radiation loss, ion-neutral collisions, recombination, and their synergistic effects) and evaluate the roles of different plasma processes in the reduction of the plasma flux; detachment stability; and an impact of ELMs on detachment. We also evaluate an impact of different magnetic and divertor geometries on detachment onset, stability, in- out- asymmetry, and tolerance to the ELMs. Supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Sciences under Award Number DE-DE-FG02-04ER54739 at UCSD.

  14. Use of webcams as tools for alignment and supervision of a Thomson scattering system in the near infrared

    Energy Technology Data Exchange (ETDEWEB)

    Andrebe, Y., E-mail: yanis.andrebe@epfl.ch [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, Station 13, 1015 Lausanne (Switzerland); Behn, R.; Duval, B.P.; Etienne, P.; Pitzschke, A. [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, Station 13, 1015 Lausanne (Switzerland)

    2011-10-15

    The alignment stability is a major concern for Thomson scattering systems. Even small angular deviations of the laser beams crossing the plasma lead to a loss of the calibration resulting in unreliable measurements of the electron density profile. For the TCV (Tokamak a Configuration Variable) installation, the beam paths from the laser output to the vacuum chamber are {approx}25 m long and include several optical components. In order to monitor the alignment on a regular basis, a set of 9 cameras has been installed at several locations along the beam path. They view the actual laser beam pattern by recording the scattered light from an intercepting optical surface (mirror or window) together with the position of markers used for reference. Small 'webcams' are used for this purpose; they feature adequate intensity response at the laser wavelength of 1.06 {mu}m, are compact, cheap and several units may be connected to a server PC simultaneously. The real-time images from all the cameras are accessible from a Web browser. This installation has proven to be extremely useful in the early detection of alignment problems and to assist the alignment procedure .

  15. Temporal evolution of confined fast-ion velocity distributions measured by collective Thomson scattering in TEXTOR

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Bindslev, Henrik; Porte, L.

    2008-01-01

    of scattering locations and different resolved velocity components can be measured. The temporal resolution is 4 ms while the spatial resolution is similar to 10 cm depending on the scattering geometry. Fast-ion velocity distributions in a variety of scenarios are measured, including the evolution...

  16. Measurement of electron density of the plasma in the Tokamak TCABR, through Thomson scattering diagnostic; Medida da densidade eletronica do plasma no Tokamak TCABR, atraves do diagnostico Espalhamento Thomson

    Energy Technology Data Exchange (ETDEWEB)

    Jeronimo, Leonardo Cunha

    2013-07-01

    Over the last few years is remarkable, so increasingly evident the need for a new source of energy for mankind. One promising option is through nuclear fusion, where the plasma produced in the reactor can be converted into electrical energy. Therefore, knowing the characteristics of this plasma is very important to control it and understand it so desirable. One of the diagnostic options is called Thomson scattering . This is considered the most reliable method for the determination of important plasma parameters such as temperature and electron density, and may also help in the study and explanation of various internal mechanisms. The great advantage lies in the tact that they consist of a direct measurement and nonperturbative. But it is a diagnosis whose installation and execution is admittedly complex, limiting it only a few laboratories in the fíeld of fusion for the world. Among the main difficulties, wc can highlight the fact that the scattered signal is very small, thus requiring a large increase of the incident power. Moreover, the external physical conditions can cause mechanical vibrations that eliminate or minimize them as much as possible, is a great challenge, considering the optical micrometrically very sensitive and needs involved in the system. This work describes the entire process of installation and operation of Thomson scattering diagnostic in tokamak TCABR and through this diagnosis, we work on results of electron temperature, to finally be able to calculate the electron density of the plasma. (author)

  17. Investigation of thermodynamic equilibrium in laser-induced aluminum plasma using the H{sub α} line profiles and Thomson scattering spectra

    Energy Technology Data Exchange (ETDEWEB)

    Cvejić, M., E-mail: marko.cvejic@ipb.ac.rs, E-mail: krzysztof.dzierzega@uj.edu.pl [Institute of Physics, University of Belgrade, P.O. Box 68, 11080 Belgrade (Serbia); Faculty of Physics, Weizmann Institute of Science, Rehovot 7610001 (Israel); Dzierżęga, K., E-mail: marko.cvejic@ipb.ac.rs, E-mail: krzysztof.dzierzega@uj.edu.pl; Pięta, T. [M. Smoluchowski Institute of Physics, Jagellonian University, ul. Łojasiewicza 11, 30-348 Kraków (Poland)

    2015-07-13

    We have studied isothermal equilibrium in the laser-induced plasma from aluminum pellets in argon at pressure of 200 mbar by using a method which combines the standard laser Thomson scattering and analysis of the H{sub α}, Stark-broadened, line profiles. Plasma was created using 4.5 ns, 4 mJ pulses from a Nd:YAG laser at 1064 nm. While electron density and temperature were determined from the electron feature of Thomson scattering spectra, the heavy particle temperature was obtained from the H{sub α} full profile applying computer simulation including ion-dynamical effects. We have found strong imbalance between these two temperatures during entire plasma evolution which indicates its non-isothermal character. At the same time, according to the McWhirter criterion, the electron density was high enough to establish plasma in local thermodynamic equilibrium.

  18. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic.

    Science.gov (United States)

    Swadling, G F; Ross, J S; Datte, P; Moody, J; Divol, L; Jones, O; Landen, O

    2016-11-01

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ∼8 J cm(-2). This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 10(19) cm(-2) Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  19. An Improved Detector Electronics and Data Acquisition System Design for Thomson Scattering Diagnostic on DIII-D

    Science.gov (United States)

    Liu, C.

    2005-10-01

    The detector electronics and data acquisition system for the Thomson scattering diagnostic on DIII-D is being upgraded to replace the present CAMAC-based system. Besides more modern electronics, the proposed design contains a number of improved features. For instance, to reduce the gain drift with temperature in the avalanche photodiode, the diode will be mounted on a thermally insulated copper block and maintained at an elevated temperature using feedback control. Since the plasma background light plays a dominant role in the measurement noise, a model is used to analyze the noise contribution in regard to the time widths of the electronic output pulse and the signal integration gate. The building blocks of the detector electronics are GHz OpAmps and the ns analog switches. The method of differential gating [1] is used to cancel the charge injection induced by the high speed operation in the analog switch. 0.5em [1] X. Wang, AIP Conf. Proceeding 333, Beam Instrumentation Workshop, Vancouver, Canada (1994).

  20. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    Science.gov (United States)

    Swadling, G. F.; Ross, J. S.; Datte, P.; Moody, J.; Divol, L.; Jones, O.; Landen, O.

    2016-11-01

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ˜8 J cm-2. This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 1019 cm-2 Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  1. Customizable electron beams from optically controlled laser plasma acceleration for γ-ray sources based on inverse Thomson scattering

    Science.gov (United States)

    Kalmykov, S. Y.; Davoine, X.; Ghebregziabher, I.; Shadwick, B. A.

    2016-09-01

    Laser wakefield acceleration of electrons in the blowout regime can be controlled by tailoring the laser pulse phase and the plasma target. The 100 nm-scale bandwidth and negative frequency chirp of the optical driver compensate for the nonlinear frequency red-shift imparted by wakefield excitation. This mitigates pulse self-steepening and suppresses continuous injection. The plasma channel suppresses diffraction of the pulse leading edge, further reducing self-steepening, making injection even quieter. Besides, the channel destabilizes the pulse tail confined within the accelerator cavity (the electron density "bubble"), causing oscillations in the bubble size. The resulting periodic injection generates background-free comb-like beams - sequences of synchronized, low phase-space volume bunches. Controlling the number of bunches, their energy, and energy spacing by varying the channel radius and the pulse length (as permitted by the large bandwidth) enables the design of a tunable, all-optical source of polychromatic, pulsed γ-rays using the mechanism of inverse Thomson scattering. Such source may radiate ~107 quasi-monochromatic 10 MeV-scale photons per shot into a microsteradian-scale observation angle. The photon energy is distributed among several distinct bands, each having sub-25% energy spread dictated by the mrad-scale divergence of electron beam.

  2. Nonlinear coherent Thomson scattering from relativistic electron sheets as a means to produce isolated ultrabright attosecond x-ray pulses

    Directory of Open Access Journals (Sweden)

    H.-C. Wu (武慧春

    2011-07-01

    Full Text Available A new way to generate intense attosecond x-ray pulses is discussed. It relies on coherent Thomson scattering (CTS from relativistic electron sheets. A double layer technique is used to generate planar solid-density sheets of monochromatic high-γ electrons with zero transverse momentum such that coherently backscattered light is frequency upshifted by factors up to 4γ^{2}. Here previous work [H.-C. Wu et al., Phys. Rev. Lett. 104, 234801 (2010PRLTAO0031-900710.1103/PhysRevLett.104.234801] is extended to the regime of high-intensity probe light with normalized amplitude a_{0}>1 leading to nonlinear CTS effects such as pulse contraction and steepening. The results are derived both by particle-in-cell (PIC simulation in a boosted frame and by analytic theory. PIC simulation shows that powerful x-ray pulses (1 keV, 10   gigawatt can be generated. They call for experimental verification. Required prerequisites such as manufacture of nanometer-thick target foils is ready and ultrahigh contrast laser pulses should be within reach in the near future.

  3. JT-60U Thomson scattering system with multiple ruby laser and high spatial resolution for high electron temperature plasma measurement

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Hidetoshi; Naito, Osamu; Yamashita, Osamu; Kitamura, Shigeru; Hatae, Takaki; Nagashima, Akira [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1996-11-01

    This article describes the design and operation of a 60 spatial channel Thomson scattering system as of 1996 with multiple ruby lasers to measure the electron temperature T{sub e} and density n{sub e} profiles of the JT-60U plasmas. The wide spectral range (403-683 nm) of the spectrometer and newly developed two-dimensional detector (high repetition photodiode array) has enabled this system to measure the high electron temperature plasma (5 keV or more) formed at the plasma core during negative magnetic shear discharge with high precision and reliability. The high spatial resolution (8 mm) have provided the precise measurement of steep electron temperature and density gradients formed at the plasma edge and in the scrape-off layer during H-mode discharge. The multilaser operation with the minimum time interval of 2 ms has provided an essential tool for the transient phenomenon measurement like the formation process of edge transport barrier during L- to H-mode transition and internal transport barrier during discharge with negative magnetic shear, the relaxation process of pellet injected plasma and so on. Measurement examples of recent JT-60U T{sub e} and n{sub e} profiles are also presented. (author)

  4. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Swadling, G. F.; Ross, J. S.; Datte, P.; Moody, J.; Divol, L.; Jones, O.; Landen, O. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-11-15

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ∼8 J cm{sup −2}. This is significantly above the expected threshold for the onset of “blanking” effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate “blanking.” Estimates suggest that an areal density of 10{sup 19} cm{sup −2} Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  5. Optical designs of reflection and refraction collection optics for a JT-60SA core Thomson scattering system.

    Science.gov (United States)

    Tojo, H; Hatae, T; Hamano, T; Sakuma, T; Itami, K

    2013-09-01

    Collection optics for core measurements in a JT-60SA Thomson scattering system were designed. The collection optics will be installed in a limited space and have a wide field of view and wide wavelength range. Two types of the optics are therefore suggested: refraction and reflection types. The reflection system, with a large primary mirror, avoids large chromatic aberrations. Because the size limit of the primary mirror and vignetting due to the secondary mirror affect the total collection throughput, conditions that provide the high throughput are found through an optimization. A refraction system with four lenses forming an Ernostar system is also employed. The use of high-refractive-index glass materials enhances the freedom of the lens curvatures, resulting in suppression of the spherical and coma aberration. Moreover, sufficient throughput can be achieved, even with smaller lenses than that of a previous design given in [H. Tojo, T. Hatae, T. Sakuma, T. Hamano, K. Itami, Y. Aida, S. Suitoh, and D. Fujie, Rev. Sci. Instrum. 81, 10D539 (2010)]. The optical resolutions of the reflection and refraction systems are both sufficient for understanding the spatial structures in plasma. In particular, the spot sizes at the image of the optics are evaluated as ~0.3 mm and ~0.4 mm, respectively. The throughput for the two systems, including the pupil size and transmissivity, are also compared. The results show that good measurement accuracy (refraction system.

  6. Pair potentials for warm dense matter and their application to x-ray Thomson scattering in aluminum and beryllium

    Science.gov (United States)

    Harbour, L.; Dharma-wardana, M. W. C.; Klug, D. D.; Lewis, L. J.

    2016-11-01

    Ultrafast laser experiments yield increasingly reliable data on warm dense matter, but their interpretation requires theoretical models. We employ an efficient density functional neutral-pseudoatom hypernetted-chain (NPA-HNC) model with accuracy comparable to ab initio simulations and which provides first-principles pseudopotentials and pair potentials for warm-dense matter. It avoids the use of (i) ad hoc core-repulsion models and (ii) "Yukawa screening" and (iii) need not assume ion-electron thermal equilibrium. Computations of the x-ray Thomson scattering (XRTS) spectra of aluminum and beryllium are compared with recent experiments and with density-functional-theory molecular-dynamics (DFT-MD) simulations. The NPA-HNC structure factors, compressibilities, phonons, and conductivities agree closely with DFT-MD results, while Yukawa screening gives misleading results. The analysis of the XRTS data for two of the experiments, using two-temperature quasi-equilibrium models, is supported by calculations of their temperature relaxation times.

  7. Fast ion collective Thomson scattering - present results and plans for ITER

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Bindslev, Henrik; Furtula, Vedran;

    scattering (CTS) provides the possibility of revealing the velocity distribution of the confined fast ions along a given direction – resolved both in time and space. Recently, the ITER baseline design has been expanded to include a fast ion CTS diagnostic. The design of this diagnostic was provided...... and results, and present the expectations for the ITER CTS diagnostic....

  8. Validations of calibration-free measurements of electron temperature using double-pass Thomson scattering diagnostics from theoretical and experimental aspects

    Science.gov (United States)

    Tojo, H.; Yamada, I.; Yasuhara, R.; Ejiri, A.; Hiratsuka, J.; Togashi, H.; Yatsuka, E.; Hatae, T.; Funaba, H.; Hayashi, H.; Takase, Y.; Itami, K.

    2016-09-01

    This paper evaluates the accuracy of electron temperature measurements and relative transmissivities of double-pass Thomson scattering diagnostics. The electron temperature (Te) is obtained from the ratio of signals from a double-pass scattering system, then relative transmissivities are calculated from the measured Te and intensity of the signals. How accurate the values are depends on the electron temperature (Te) and scattering angle (θ), and therefore the accuracy of the values was evaluated experimentally using the Large Helical Device (LHD) and the Tokyo spherical tokamak-2 (TST-2). Analyzing the data from the TST-2 indicates that a high Te and a large scattering angle (θ) yield accurate values. Indeed, the errors for scattering angle θ = 135° are approximately half of those for θ = 115°. The method of determining the Te in a wide Te range spanning over two orders of magnitude (0.01-1.5 keV) was validated using the experimental results of the LHD and TST-2. A simple method to provide relative transmissivities, which include inputs from collection optics, vacuum window, optical fibers, and polychromators, is also presented. The relative errors were less than approximately 10%. Numerical simulations also indicate that the Te measurements are valid under harsh radiation conditions. This method to obtain Te can be considered for the design of Thomson scattering systems where there is high-performance plasma that generates harsh radiation environments.

  9. The Thomson Surface. II. Polarization

    CERN Document Server

    DeForest, C E; Tappin, S J

    2012-01-01

    The solar corona and heliosphere are visible via sunlight that is Thomson-scattered off of free electrons, yielding a radiance against the celestial sphere. In this second part of a three-article series, we discuss linear polarization of this scattered light parallel and perpendicular to the plane of scatter in the context of heliopheric imaging. The difference between these two radiances, (\\emph{pB}), varies quite differently with scattering angle, compared to the sum that would be detected by a nonpolarizing instrument (\\emph{B}). In particular, the Thomson surface defined by 90\\degr{} scattering angle is a local minimum in scattering efficiency for \\emph{B} measurements, but a local maximum in scattering efficiency for \\emph{pB} measurements. We describe the polarization properties of heliospheric Thomson scattered light and their applications, covering basic scattering physics, signal-to-noise considerations, measurement of 3-D object location, background subtraction, and modeled \\emph{pB} instrument resp...

  10. Final Report LDRD 02-ERD-013 Dense Plasma Characterization by X-ray Thomson Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Landen, O L; Glenzer, S H; Gregori, G; Pollaine, S M; Hammer, J H; Rogers, F; Meezan, N B; Chung, H; Lee, R W

    2005-02-11

    We have successfully demonstrated spectrally-resolved x-ray scattering in a variety of dense plasmas as a powerful new technique for providing microscopic dense plasma parameters unattainable by other means. The results have also been used to distinguish between ionization balance models. This has led to 10 published or to be published papers, 8 invited talks and significant interest from both internal and external experimental plasma physicists and the international statistical plasma physics theory community.

  11. COMPUTING THE CONTINUUM POLARIZATION FROM THOMSON SCATTERING IN GASEOUS CIRCUMSTELLAR DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Halonen, R. J.; Mackay, F. E.; Jones, C. E., E-mail: rhalonen@uwo.ca [Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 (Canada)

    2013-01-15

    We investigate the computation of the intrinsic continuum linear polarization from electron scattering in optically thin and thick circumstellar disks of gas. We present the use of a non-LTE radiative transfer code, along with two different computational methods for obtaining the Stokes parameters, to reproduce the polarization levels that arise from disks of classical Be stars. Since the pioneering work of Poeckert and Marlborough, numerous improvements and refinements have been incorporated into computational radiative transfer models of classical Be stars. We present an assessment of the effect of several improvements on Poeckert and Marlborough's technique for calculating the polarization levels of the classical Be star {gamma} Cas. We find that improvements to the sampling of the disk density and the inclusion of a non-isothermal structure for the gas in the disk yield polarization levels that differ from the levels expected by Poeckert and Marlborough. Principally, the inclusion of the self-consistent calculation of the thermal structure of the disk has a significant impact on the resulting polarization. In addition, we assess the importance of the inclusion of multiple scattering calculations in predicting the continuum polarization in classical Be stars. We confirm that multiple scattering calculations are necessary for studying the linear polarization levels from optically thick gaseous disks around classical Be stars.

  12. Changes in divertor conditions in response to changing core density with RMPs

    Science.gov (United States)

    Briesemeister, A. R.; Ahn, J.-W.; Canik, J. M.; Fenstermacher, M. E.; Frerichs, H.; Lasnier, C. J.; Lore, J. D.; Leonard, A. W.; Makowski, M. A.; McLean, A. G.; Meyer, W. H.; Schmitz, O.; Shafer, M. W.; Unterberg, E. A.; Wang, H. Q.; Watkins, J. G.

    2017-07-01

    The effects of changes in core density on divertor electron temperature, density and heat flux when resonant magnetic perturbations (RMPs) are applied are presented, notably a reduction in RMP induced secondary radial peaks in the electron temperature profile at the target plate is observed when the core density is increased, which is consistent with modeling. RMPs is used here to indicate non-axisymmetric magnetic field perturbations, created using in-vessel control coils, which have at least one but typically many resonances with the rotational transform of the plasma (Evans et al 2006 Phys. Plasmas 13 056121). RMPs are found to alter inter-ELM heat flux to the divertor by modifying the core plasma density. It is shown that applying RMPs reduces the core density and increases the inter-ELM heat flux to both the inner and outer targets. Using gas puffing to return the core density to the pre-RMP levels more than eliminates the increase in inter-ELM heat flux, but a broadening of the heat flux to the outer target remains. These measurements were made at a single toroidal location, but the peak in the heat flux profile was found near the outer strike point where simulations indicate little toroidal variation should exist and tangentially viewing diagnostics showed no evidence of strong asymmetries. In experiments where divertor Thomson scattering measurements were available it is shown that local secondary peaks in the divertor electron temperature profile near the target plate are reduced as the core density is increased, while peaks in the divertor electron density profile near the target are increased. These trends observed in the divertor electron temperature and density are qualitatively reproduced by scanning the upstream density in EMC3-Eirene modeling. Measurements are presented showing that higher densities are needed to induce detachment of the outer strike point in a case where an increase in electron temperature, likely due to a change in MHD activity

  13. Image processing methods for noise reduction in the TJ-II Thomson Scattering diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Dormido-Canto, S., E-mail: sebas@dia.uned.es [Departamento de Informatica y Automatica, UNED, Madrid 28040 (Spain); Farias, G. [Pontificia Universidad Catolica de Valparaiso, Valparaiso (Chile); Vega, J.; Pastor, I. [Asociacion EURATOM/CIEMAT para Fusion, Madrid 28040 (Spain)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer We describe an approach in order to reduce or mitigate the stray-light on the images and show the exceptional results. Black-Right-Pointing-Pointer We analyze the parameters to take account in the proposed process. Black-Right-Pointing-Pointer We report a simplified exampled in order to explain the proposed process. - Abstract: The Thomsom Scattering diagnostic of the TJ-II stellarator provides temperature and density profiles. The CCD camera acquires images corrupted with noise that, in some cases, can produce unreliable profiles. The main source of noise is the so-called stray-light. In this paper we describe an approach that allows mitigation of the effects that stray-light has on the images: extraction regions with connected-components. In addition, the robustness and effectiveness of the noise reduction technique is validated in two ways: (1) supervised classification and (2) comparison of electron temperature profiles.

  14. Optical designs of reflection and refraction collection optics for a JT-60SA core Thomson scattering system

    Energy Technology Data Exchange (ETDEWEB)

    Tojo, H.; Hatae, T.; Hamano, T.; Sakuma, T.; Itami, K. [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka 311-0193 (Japan)

    2013-09-15

    Collection optics for core measurements in a JT-60SA Thomson scattering system were designed. The collection optics will be installed in a limited space and have a wide field of view and wide wavelength range. Two types of the optics are therefore suggested: refraction and reflection types. The reflection system, with a large primary mirror, avoids large chromatic aberrations. Because the size limit of the primary mirror and vignetting due to the secondary mirror affect the total collection throughput, conditions that provide the high throughput are found through an optimization. A refraction system with four lenses forming an Ernostar system is also employed. The use of high-refractive-index glass materials enhances the freedom of the lens curvatures, resulting in suppression of the spherical and coma aberration. Moreover, sufficient throughput can be achieved, even with smaller lenses than that of a previous design given in [H. Tojo, T. Hatae, T. Sakuma, T. Hamano, K. Itami, Y. Aida, S. Suitoh, and D. Fujie, Rev. Sci. Instrum. 81, 10D539 (2010)]. The optical resolutions of the reflection and refraction systems are both sufficient for understanding the spatial structures in plasma. In particular, the spot sizes at the image of the optics are evaluated as ∼0.3 mm and ∼0.4 mm, respectively. The throughput for the two systems, including the pupil size and transmissivity, are also compared. The results show that good measurement accuracy (<10%) even at high electron temperatures (<30 keV) can be expected in the refraction system.

  15. Characterization of x-ray imaging crystal spectrometer for high-resolution spatially-resolved x-ray Thomson scattering measurements in shock-compressed experiments

    Science.gov (United States)

    Lu, J.; Hill, K. W.; Bitter, M.; Pablant, N. A.; Delgado-Aparicio, L. F.; Efthimion, P. C.; Lee, H. J.; Zastrau, U.

    2017-01-01

    We have proposed, designed and built a dual-channel x-ray imaging crystal spectrometer (XICS) for spectrally- and spatially-resolved x-ray Thomson scattering (XRTS) measurements in the Matter in Extreme Conditions (MEC) end station at the Linac Coherent Light Source (LCLS). This spectrometer employs two spherically-bent germanium (Ge) 220 crystals, which are combined to form a large aperture dispersive element with a spectral bandwidth of 300 eV that enables both the elastic and inelastic x-ray scattering peaks to be simultaneously measured. The apparatus and its characterization are described. A resolving power of 1900 was demonstrated and a spatial resolution of 12 μm was achieved in calibration tests. For XRTS measurements, a narrow-bandwidth (ΔE/Ecarbon plasma produced in shock-compressed samples of different forms of carbon. Preliminary results of the scattering experiments from Pyrolytic Graphite samples that illustrate the utility of the instrument are presented.

  16. Thomson Experiment

    CERN Multimedia

    This experiment, conducted by JJ Thomson in 1897, established the existence of the electron. Thomson won the Nobel physics prize for this work in 1906. A beam of electrons crosses the chamber emitting blue light. Adding an electric field (E) or a magnetic field (B) exerts a force on the moving electrons.Use switch E to turn on the electric field in the chamber. Then, by turning knob B, you can increase the current in the coils, generating a magnetic field. By balancing the electric and magnetic fields, Thomson was able to keep the electron beam level and deduce the ratio of the electron's charge to its mass.

  17. Heldi Thomson

    Index Scriptorium Estoniae

    1997-01-01

    Teaduspreemia autorite kollektiivile arstiteaduse alal töö "Vähktõbi Eestis 1968-1992: haigestumus, levimus, elulemus ja suremus" eest - Mati Rahu (kollektiivi juht), Tiiu Aarelaid, Kaja Gornoi, Heldi Thomson

  18. Experimental determination of EEDF and He{sub 2}{sup *} Rydberg-state density by Thomson scattering in a ns-pulsed atmospheric micro-discharge

    Energy Technology Data Exchange (ETDEWEB)

    Schregel, Christian-Georg; Luggenhoelscher, Dirk; Czarnetzki, Uwe [Institute for Plasma and Atomic Physics, Ruhr-University Bochum (Germany)

    2016-07-01

    An open question of major importance for the investigation of atmospheric micro plasmas is the shape of the EEDF. This has been addressed by using incoherent Thomson scattering as a non-invasive diagnostic. The technique has been applied to measure the temporal evolution (Δt=20 ns) of the EVDF for a pure Helium plasma between two plane molybdenum electrodes, 0.95 mm apart. The plasma is pulsed with a repetition rate of 5 kHz at 0.7 bar. Measurements were done by a 532 nm Nd:YAG laser and a triple grating spectrometer with a gated ICCD for detection. The setup allows for detection of electron energies between 0.5 eV and 12 eV with up to three orders of magnitude in the dynamic range. Additionally, time resolved optical emission spectra where recorded and the Helium metastable was density probed by laser absorption. With the different diagnostic data combined, variation of laser energy used in Thomson scattering could additionally be utilized as a probe for the absolute Helium Excimer Rydberg-state density, allowing a unique determination of absolute density values in the early stages of the afterglow. Peak electron densities of 2 . 10{sup 20} m{sup -3} with a peak electron temperature of 2 eV have been observed.

  19. Diagnosing collisions of magnetized, high energy density plasma flows using a combination of collective Thomson scattering, Faraday rotation, and interferometry (invited).

    Science.gov (United States)

    Swadling, G F; Lebedev, S V; Hall, G N; Patankar, S; Stewart, N H; Smith, R A; Harvey-Thompson, A J; Burdiak, G C; de Grouchy, P; Skidmore, J; Suttle, L; Suzuki-Vidal, F; Bland, S N; Kwek, K H; Pickworth, L; Bennett, M; Hare, J D; Rozmus, W; Yuan, J

    2014-11-01

    A suite of laser based diagnostics is used to study interactions of magnetised, supersonic, radiatively cooled plasma flows produced using the Magpie pulse power generator (1.4 MA, 240 ns rise time). Collective optical Thomson scattering measures the time-resolved local flow velocity and temperature across 7-14 spatial positions. The scattering spectrum is recorded from multiple directions, allowing more accurate reconstruction of the flow velocity vectors. The areal electron density is measured using 2D interferometry; optimisation and analysis are discussed. The Faraday rotation diagnostic, operating at 1053 nm, measures the magnetic field distribution in the plasma. Measurements obtained simultaneously by these diagnostics are used to constrain analysis, increasing the accuracy of interpretation.

  20. Diagnosing collisions of magnetized, high energy density plasma flows using a combination of collective Thomson scattering, Faraday rotation, and interferometry (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Swadling, G. F., E-mail: swadling@imperial.ac.uk; Lebedev, S. V.; Hall, G. N.; Patankar, S.; Stewart, N. H.; Smith, R. A.; Burdiak, G. C.; Grouchy, P. de; Skidmore, J.; Suttle, L.; Suzuki-Vidal, F.; Bland, S. N.; Kwek, K. H.; Pickworth, L.; Bennett, M.; Hare, J. D. [Plasma Physics Group, Imperial College, London SW6 7LZ (United Kingdom); Harvey-Thompson, A. J. [Sandia National Laboratory, Albuquerque, New Mexico 87185-1193 (United States); Rozmus, W. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); Yuan, J. [Key Laboratory of Pulsed Power, Institute of Fluid Physics, CAE, Mianyang 621900 (China)

    2014-11-15

    A suite of laser based diagnostics is used to study interactions of magnetised, supersonic, radiatively cooled plasma flows produced using the Magpie pulse power generator (1.4 MA, 240 ns rise time). Collective optical Thomson scattering measures the time-resolved local flow velocity and temperature across 7–14 spatial positions. The scattering spectrum is recorded from multiple directions, allowing more accurate reconstruction of the flow velocity vectors. The areal electron density is measured using 2D interferometry; optimisation and analysis are discussed. The Faraday rotation diagnostic, operating at 1053 nm, measures the magnetic field distribution in the plasma. Measurements obtained simultaneously by these diagnostics are used to constrain analysis, increasing the accuracy of interpretation.

  1. Initial result of collective Thomson scattering using 77 GHz gyrotron for bulk and tail ion diagnostics in the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Nishiura, M; Kubo, S; Tanaka, K; Shimozuma, T; Mutoh, T; Kawahata, K; Watari, T [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Tamura, N [Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 (Japan); Saito, T; Tatematsu, Y [FIR FU, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507 (Japan); Notake, T, E-mail: nishiura@nifs.ac.j [RIKEN, 519-1399 Aoba, Aramaki, Aoba-ku, Sendai, 980-0845 (Japan)

    2010-05-01

    The collective Thomson scattering (CTS) technique has been utilized with the backscattering configuration in the collective scattering regime to diagnose the velocity distribution functions in the Large Helical Device (LHD). The receiver was equipped with 16 channels and the first test has been carried out using the eight channels for scattered radiation and these channels cover a few GHz frequency shift from the 76.95 GHz probe beam. During the discharge, the electron density and temperature at the central region of the LHD are 1x10{sup 19}m{sup -3}, and 1.0 keV, respectively. The probing beam with rectangular wave modulation is injected by 50 Hz in order to be distinct from the background electron cyclotron emission (ECE). The scattered radiation is resolved successfully at each channel of CTS receiver system. The detected signals of bulk ion and electron components are by a factor of 10 {approx} 10{sup 2} larger than the background ECE signal. We found that the measured spectra are in reasonably agreement with the theoretical spectra calculated by using the reliable measured electron temperature and density for input parameters. The CTS receiver system will be improved to obtain more accurate velocity distributions in high temperature plasmas.

  2. THE THOMSON SURFACE. I. REALITY AND MYTH

    Energy Technology Data Exchange (ETDEWEB)

    Howard, T. A.; DeForest, C. E., E-mail: howard@boulder.swri.edu [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States)

    2012-06-20

    The solar corona and heliosphere are visible via sunlight that is Thomson-scattered off free electrons and detected by coronagraphs and heliospheric imagers. It is well known that these instruments are most responsive to material at the 'Thomson surface', the sphere with a diameter passing through both the observer and the Sun. It is less well known that in fact the Thomson scattering efficiency is minimized on the Thomson surface. Unpolarized heliospheric imagers such as STEREO/HI are thus approximately equally responsive to material over more than a 90 Degree-Sign range of solar exit angles at each given position in the image plane. We call this range of angles the 'Thomson plateau'. We observe that heliospheric imagers are actually more sensitive to material far from the Thomson surface than close to it, at a fixed radius from the Sun. We review the theory of Thomson scattering as applied to heliospheric imaging, feature detection in the presence of background noise, geometry inference, and feature mass measurement. We show that feature detection is primarily limited by observing geometry and field of view, that the highest sensitivity for detection of density features is to objects close to the observer, that electron surface density inference is independent of geometry across the Thomson plateau, and that mass inference varies with observer distance in all geometries. We demonstrate the sensitivity results with a few examples of features detected by STEREO, far from the Thomson surface.

  3. The Thomson Surface. I. Reality and Myth

    Science.gov (United States)

    Howard, T. A.; DeForest, C. E.

    2012-06-01

    The solar corona and heliosphere are visible via sunlight that is Thomson-scattered off free electrons and detected by coronagraphs and heliospheric imagers. It is well known that these instruments are most responsive to material at the "Thomson surface," the sphere with a diameter passing through both the observer and the Sun. It is less well known that in fact the Thomson scattering efficiency is minimized on the Thomson surface. Unpolarized heliospheric imagers such as STEREO/HI are thus approximately equally responsive to material over more than a 90° range of solar exit angles at each given position in the image plane. We call this range of angles the "Thomson plateau." We observe that heliospheric imagers are actually more sensitive to material far from the Thomson surface than close to it, at a fixed radius from the Sun. We review the theory of Thomson scattering as applied to heliospheric imaging, feature detection in the presence of background noise, geometry inference, and feature mass measurement. We show that feature detection is primarily limited by observing geometry and field of view, that the highest sensitivity for detection of density features is to objects close to the observer, that electron surface density inference is independent of geometry across the Thomson plateau, and that mass inference varies with observer distance in all geometries. We demonstrate the sensitivity results with a few examples of features detected by STEREO, far from the Thomson surface.

  4. Measurements of the fast-ion distribution function at ASDEX upgrade by collective Thomson scattering (CTS) using active and passive views

    Science.gov (United States)

    Nielsen, S. K.; Stejner, M.; Rasmussen, J.; Jacobsen, A. S.; Korsholm, S. B.; Leipold, F.; Maraschek, M.; Meo, F.; Michelsen, P. K.; Moseev, D.; Salewski, M.; Schubert, M.; Stober, J.; Suttrop, W.; Tardini, G.; Wagner, D.

    2015-03-01

    Collective Thomson scattering (CTS) can provide measurements of the confined fast-ion distribution function resolved in space, time and 1D velocity space. On ASDEX Upgrade, the measured spectra include an additional signal which previously has hampered data interpretation. A new set-up using two independent heterodyne receiver systems enables subtraction of the additional part from the total spectrum, revealing the resulting CTS spectrum. Here we present CTS measurements from the plasma centre obtained in L-mode and H-mode plasmas with and without neutral beam injection (NBI). For the first time, the measured spectra agree quantitatively with the synthetic spectra in periods with and without NBI heating. For the discharges investigated, the central velocity distribution of neutral beam ions can be described by classical slowing down. These results will have a major impact on ITER physics exploration, since CTS is presently the only diagnostic to measure the confined alpha particles produced by the fusion reactions.

  5. Measurement of high-dynamic range x-ray Thomson scattering spectra for the characterization of nano-plasmas at LCLS

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, M. J., E-mail: macdonm@umich.edu [University of Michigan, Ann Arbor, Michigan 48109 (United States); SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Gorkhover, T. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Technische Universität, 10623 Berlin (Germany); Bachmann, B.; Hau-Riege, S. P.; Pardini, T.; Döppner, T. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Bucher, M. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Argonne National Lab, Lemont, Illinois 60439 (United States); Carron, S. [California Lutheran University, Thousand Oaks, California 91360 (United States); Coffee, R. N.; Fletcher, L. B.; Gamboa, E. J.; Glenzer, S. H.; Göde, S.; Krzywinski, J.; O’Grady, C. P.; Osipov, T.; Swiggers, M. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Drake, R. P. [University of Michigan, Ann Arbor, Michigan 48109 (United States); Ferguson, K. R. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Stanford University, Stanford, California 94305 (United States); Kraus, D. [University of California, Berkeley, California 94720 (United States); and others

    2016-11-15

    Atomic clusters can serve as ideal model systems for exploring ultrafast (∼100 fs) laser-driven ionization dynamics of dense matter on the nanometer scale. Resonant absorption of optical laser pulses enables heating to temperatures on the order of 1 keV at near solid density conditions. To date, direct probing of transient states of such nano-plasmas was limited to coherent x-ray imaging. Here we present the first measurement of spectrally resolved incoherent x-ray scattering from clusters, enabling measurements of transient temperature, densities, and ionization. Single shot x-ray Thomson scattering signals were recorded at 120 Hz using a crystal spectrometer in combination with a single-photon counting and energy-dispersive pnCCD. A precise pump laser collimation scheme enabled recording near background-free scattering spectra from Ar clusters with an unprecedented dynamic range of more than 3 orders of magnitude. Such measurements are important for understanding collective effects in laser-matter interactions on femtosecond time scales, opening new routes for the development of schemes for their ultrafast control.

  6. Measurement of high-dynamic range x-ray Thomson scattering spectra for the characterization of nano-plasmas at LCLS

    Science.gov (United States)

    MacDonald, M. J.; Gorkhover, T.; Bachmann, B.; Bucher, M.; Carron, S.; Coffee, R. N.; Drake, R. P.; Ferguson, K. R.; Fletcher, L. B.; Gamboa, E. J.; Glenzer, S. H.; Göde, S.; Hau-Riege, S. P.; Kraus, D.; Krzywinski, J.; Levitan, A. L.; Meiwes-Broer, K.-H.; O'Grady, C. P.; Osipov, T.; Pardini, T.; Peltz, C.; Skruszewicz, S.; Swiggers, M.; Bostedt, C.; Fennel, T.; Döppner, T.

    2016-11-01

    Atomic clusters can serve as ideal model systems for exploring ultrafast (˜100 fs) laser-driven ionization dynamics of dense matter on the nanometer scale. Resonant absorption of optical laser pulses enables heating to temperatures on the order of 1 keV at near solid density conditions. To date, direct probing of transient states of such nano-plasmas was limited to coherent x-ray imaging. Here we present the first measurement of spectrally resolved incoherent x-ray scattering from clusters, enabling measurements of transient temperature, densities, and ionization. Single shot x-ray Thomson scattering signals were recorded at 120 Hz using a crystal spectrometer in combination with a single-photon counting and energy-dispersive pnCCD. A precise pump laser collimation scheme enabled recording near background-free scattering spectra from Ar clusters with an unprecedented dynamic range of more than 3 orders of magnitude. Such measurements are important for understanding collective effects in laser-matter interactions on femtosecond time scales, opening new routes for the development of schemes for their ultrafast control.

  7. A high-energy, high-flux source of gamma-rays from all-optical non-linear Thomson scattering

    Science.gov (United States)

    Corvan, D. J.; Zepf, M.; Sarri, G.

    2016-09-01

    γ-Ray sources are among the most fundamental experimental tools currently available to modern physics. As well as the obvious benefits to fundamental research, an ultra-bright source of γ-rays could form the foundation of scanning of shipping containers for special nuclear materials and provide the bases for new types of cancer therapy. However, for these applications to prove viable, γ-ray sources must become compact and relatively cheap to manufacture. In recent years, advances in laser technology have formed the cornerstone of optical sources of high energy electrons which already have been used to generate synchrotron radiation on a compact scale. Exploiting the scattering induced by a second laser, one can further enhance the energy and number of photons produced provided the problems of synchronisation and compact γ-ray detection are solved. Here, we report on the work that has been done in developing an all-optical and hence, compact non-linear Thomson scattering source, including the new methods of synchronisation and compact γ-ray detection. We present evidence of the generation of multi-MeV (maximum 16-18 MeV) and ultra-high brilliance (exceeding 1020 photons s-1mm-2mrad-2 0.1% BW at 15 MeV) γ-ray beams. These characteristics are appealing for the paramount practical applications mentioned above.

  8. Measurements of Ionic Structure in Shock Compressed Lithium Hydride from Ultra-fast X-ray Thomson Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kritcher, A L; Neumayer, P; Brown, C; Davis, P; Doppner, T; Falcone, R W; Gericke, D O; Gregori, G; Holst, B; Landen, O L; Lee, H J; Morse, E C; Pelka, A; Redmer, R; Roth, M; Vorberger, J; Wunsch, K; Glenzer, S H

    2009-07-14

    We present the first ultrafast temporally, spectrally and angularly resolved x-ray scattering measurements from shock-compressed matter. These laser-compressed lithium-hydride samples are well characterized by inelastic Compton and Plasmon scattering of a K-{alpha} x-ray probe providing independent measurements of temperature and density. The experimental spectra yield the absolute elastic and inelastic scattering intensities from the measured density of free electrons. The data show excellent agreement with the total intensity and structure when using the two-species form factor and accounting for ionic screening.

  9. Nonlinear effects in Thomson backscattering

    Science.gov (United States)

    Maroli, C.; Petrillo, V.; Tomassini, P.; Serafini, L.

    2013-03-01

    We analyze the nonlinear classical effects of the X/γ radiation produced by Thomson/Compton sources. We confirm the development of spectral fringes of the radiation on axis, which comports broadening, shift, and deformation of the spectrum. For the nominal parameters of the SPARC-LAB Thomson scattering and of the European Proposal for the gamma source ELI-NP, however, the radiation, when collected in the suitable acceptance angle, does not reveal many differences from that predicted by the linear model and the nonlinear redshift is subdominant with respect to the quantum recoil. An experiment aimed to the study of the nonlinearities is proposed on the SPARC-LAB source.

  10. High resolution x-ray Thomson scattering measurements from cryogenic hydrogen jets using the linac coherent light source.

    Science.gov (United States)

    Fletcher, L B; Zastrau, U; Galtier, E; Gamboa, E J; Goede, S; Schumaker, W; Ravasio, A; Gauthier, M; MacDonald, M J; Chen, Z; Granados, E; Lee, H J; Fry, A; Kim, J B; Roedel, C; Mishra, R; Pelka, A; Kraus, D; Barbrel, B; Döppner, T; Glenzer, S H

    2016-11-01

    We present the first spectrally resolved measurements of x-rays scattered from cryogenic hydrogen jets in the single photon counting limit. The 120 Hz capabilities of the LCLS, together with a novel hydrogen jet design [J. B. Kim et al., Rev. Sci. Instrum. (these proceedings)], allow for the ability to record a near background free spectrum. Such high-dynamic-range x-ray scattering measurements enable a platform to study ultra-fast, laser-driven, heating dynamics of hydrogen plasmas. This measurement has been achieved using two highly annealed pyrolytic graphite crystal spectrometers to spectrally resolve 5.5 keV x-rays elastically and inelastically scattered from cryogenic hydrogen and focused on Cornell-SLAC pixel array detectors [S. Herrmann et al., Nucl. Instrum. Methods Phys. Res., Sect. A 718, 550 (2013)].

  11. High resolution x-ray Thomson scattering measurements from cryogenic hydrogen jets using the linac coherent light source

    Science.gov (United States)

    Fletcher, L. B.; Zastrau, U.; Galtier, E.; Gamboa, E. J.; Goede, S.; Schumaker, W.; Ravasio, A.; Gauthier, M.; MacDonald, M. J.; Chen, Z.; Granados, E.; Lee, H. J.; Fry, A.; Kim, J. B.; Roedel, C.; Mishra, R.; Pelka, A.; Kraus, D.; Barbrel, B.; Döppner, T.; Glenzer, S. H.

    2016-11-01

    We present the first spectrally resolved measurements of x-rays scattered from cryogenic hydrogen jets in the single photon counting limit. The 120 Hz capabilities of the LCLS, together with a novel hydrogen jet design [J. B. Kim et al., Rev. Sci. Instrum. (these proceedings)], allow for the ability to record a near background free spectrum. Such high-dynamic-range x-ray scattering measurements enable a platform to study ultra-fast, laser-driven, heating dynamics of hydrogen plasmas. This measurement has been achieved using two highly annealed pyrolytic graphite crystal spectrometers to spectrally resolve 5.5 keV x-rays elastically and inelastically scattered from cryogenic hydrogen and focused on Cornell-SLAC pixel array detectors [S. Herrmann et al., Nucl. Instrum. Methods Phys. Res., Sect. A 718, 550 (2013)].

  12. High resolution x-ray Thomson scattering measurements from cryogenic hydrogen jets using the linac coherent light source

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, L. B., E-mail: lbfletch@slac.stanford.edu; Galtier, E.; Gamboa, E. J.; Schumaker, W.; Gauthier, M.; Granados, E.; Lee, H. J.; Fry, A.; Kim, J. B.; Roedel, C.; Mishra, R.; Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Zastrau, U. [European XFEL, Schenefeld (Germany); Goede, S. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); European XFEL, Schenefeld (Germany); Ravasio, A. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Laboratoire pour l’Utilisation des Lasers Intenses, Palaiseau Cedex (France); MacDonald, M. J. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); University of Michigan, Ann Arbor, Michigan 48109 (United States); Chen, Z. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); University of Alberta, Edmonton, Alberta T6G 2R3 (Canada); Pelka, A. [Helmholtz Zentrum Dresden-Rossendorf, Dresden (Germany); Kraus, D. [Helmholtz Zentrum Dresden-Rossendorf, Dresden (Germany); Department of Physics, University of California Berkeley, Berkeley, California 94720 (United States); Barbrel, B. [Department of Physics, University of California Berkeley, Berkeley, California 94720 (United States); and others

    2016-11-15

    We present the first spectrally resolved measurements of x-rays scattered from cryogenic hydrogen jets in the single photon counting limit. The 120 Hz capabilities of the LCLS, together with a novel hydrogen jet design [J. B. Kim et al., Rev. Sci. Instrum. (these proceedings)], allow for the ability to record a near background free spectrum. Such high-dynamic-range x-ray scattering measurements enable a platform to study ultra-fast, laser-driven, heating dynamics of hydrogen plasmas. This measurement has been achieved using two highly annealed pyrolytic graphite crystal spectrometers to spectrally resolve 5.5 keV x-rays elastically and inelastically scattered from cryogenic hydrogen and focused on Cornell-SLAC pixel array detectors [S. Herrmann et al., Nucl. Instrum. Methods Phys. Res., Sect. A 718, 550 (2013)].

  13. Statistical modeling of deconvolution procedures for improving the resolution of measuring electron temperature profiles in tokamak plasmas by Thomson scattering lidar

    Science.gov (United States)

    Dreischuh, Tanja N.; Gurdev, Ljuan L.; Stoyanov, Dimitar V.

    2010-10-01

    The potentialities are investigated, by statistical modeling, of deconvolution techniques for high-resolution restoration of electron temperature profiles in fusion plasma reactors like Joint European Torus (JET) measured by Thomson scattering lidar using the center-of-mass wavelength approach. The sensing laser pulse shape and the receiving-system response function are assumed to be exponentially-shaped. The plasma light background influence is taken into account as well as the Poisson fluctuations of the photoelectron number after the photocathode enhanced in the process of cascade multiplying in the employed microchannel photomultiplier tube. It is shown that the Fourier-deconvolution of the measured long-pulse (lidar-response-convolved) lidar profiles, at relatively high and low signal-to-noise ratios, ensures a higher accuracy of recovering the electron temperature profiles with three times higher range resolution compared to the case without deconvolution. The final resolution scale is determined by the width of the window of an optimum monotone sharp-cutoff digital noise-suppressing (noise-controlling) filter applied to the measured lidar profiles.

  14. Application of Thomson scattering at 1.06{mu}m as a diagnostic for spatial profile measurements of electron temperature and density on the TCV tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Franke, S. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1997-04-01

    The variable configuration tokamak, TCV, in operation at CRPP since the end of 1991, is a particularly challenging machine with regard to the experimental system that must provide essential information regarding properties of confined plasmas with strongly shaped, non-circular cross-sections. The importance of the energy confinement issue in a machine designed specifically for the investigation of the effect of plasma shape on confinement and stability is self-evident, as is the necessity for a diagnostic capable of providing the profiles of electron temperature and density required for evaluation of this confinement. For TCV, a comprehensive Thomson Scattering (TS) diagnostic was the natural choice, specifically owing to the resulting spatially localized and time resolved measurement. The details of the system installed on TCV, together with the results obtained from the diagnostic comprise the subject matter of this thesis. A first version of the diagnostic was equipped with only ten observation volumes. In this case, adequate spatial resolution can only be maintained if measurements are limited to plasmas located in the upper half of the highly elongated TCV vacuum vessel. The system has recently been upgraded through the addition of a further fifteen observation volumes, together with major technical improvements in the scattered light detection system. This new version now permits TS observations in all TCV plasma configurations, including equilibria produced in the lower and upper halves of the vacuum vessel and the highly elongated plasmas now routinely created. Whilst a description of the new detection system along with some results obtained using the extended set of observation volumes are included, this thesis reports principally on the hardware details of and the interpretation of data from the original, ten observation volume system. (author) figs., tabs., 75 refs.

  15. A high-energy, high-flux source of gamma-rays from all-optical non-linear Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Corvan, D.J., E-mail: dcorvan01@qub.ac.uk; Zepf, M.; Sarri, G.

    2016-09-01

    γ-Ray sources are among the most fundamental experimental tools currently available to modern physics. As well as the obvious benefits to fundamental research, an ultra-bright source of γ-rays could form the foundation of scanning of shipping containers for special nuclear materials and provide the bases for new types of cancer therapy. However, for these applications to prove viable, γ-ray sources must become compact and relatively cheap to manufacture. In recent years, advances in laser technology have formed the cornerstone of optical sources of high energy electrons which already have been used to generate synchrotron radiation on a compact scale. Exploiting the scattering induced by a second laser, one can further enhance the energy and number of photons produced provided the problems of synchronisation and compact γ-ray detection are solved. Here, we report on the work that has been done in developing an all-optical and hence, compact non-linear Thomson scattering source, including the new methods of synchronisation and compact γ-ray detection. We present evidence of the generation of multi-MeV (maximum 16–18 MeV) and ultra-high brilliance (exceeding 10{sup 20} photons s{sup −1}mm{sup −2}mrad{sup −2} 0.1% BW at 15 MeV) γ-ray beams. These characteristics are appealing for the paramount practical applications mentioned above. - Highlights: • How synchrotron radiation can be produced in an all optical setting using laser-plasmas. • Generating high-energy, high-flux gamma ray beams. • Presenting results from a recent NLTS experimental campaign. • Reveal insight into the experimental techniques employed.

  16. Application of Thomson scattering at 1.06{mu}m as a diagnostic for spatial profile measurements of electron temperature and density on the TCV tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Franke, S. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1997-04-01

    The variable configuration tokamak, TCV, in operation at CRPP since the end of 1991, is a particularly challenging machine with regard to the experimental system that must provide essential information regarding properties of confined plasmas with strongly shaped, non-circular cross-sections. The importance of the energy confinement issue in a machine designed specifically for the investigation of the effect of plasma shape on confinement and stability is self-evident, as is the necessity for a diagnostic capable of providing the profiles of electron temperature and density required for evaluation of this confinement. For TCV, a comprehensive Thomson Scattering (TS) diagnostic was the natural choice, specifically owing to the resulting spatially localized and time resolved measurement. The details of the system installed on TCV, together with the results obtained from the diagnostic comprise the subject matter of this thesis. A first version of the diagnostic was equipped with only ten observation volumes. In this case, adequate spatial resolution can only be maintained if measurements are limited to plasmas located in the upper half of the highly elongated TCV vacuum vessel. The system has recently been upgraded through the addition of a further fifteen observation volumes, together with major technical improvements in the scattered light detection system. This new version now permits TS observations in all TCV plasma configurations, including equilibria produced in the lower and upper halves of the vacuum vessel and the highly elongated plasmas now routinely created. Whilst a description of the new detection system along with some results obtained using the extended set of observation volumes are included, this thesis reports principally on the hardware details of and the interpretation of data from the original, ten observation volume system. (author) figs., tabs., 75 refs.

  17. Comparison of collective Thomson scattering signals due to fast ions in ITER scenarios with fusion and auxiliary heating

    DEFF Research Database (Denmark)

    Salewski, Mirko; Asunta, O.; Eriksson, L.-G.

    2009-01-01

    to the alpha population in these frequency ranges. The exceptions are limited regions in space with some non-negligible signal due to beam ions or fast He-3 which give rise to about 30% and 10-20% of the CTS signal, respectively. In turn, the dominance of the alpha contribution implies that the effects...... scattering (CTS) signal for the proposed CTS diagnostic in ITER. It is of interest to determine the contributions of these fast ion populations to the CTS signal for large Doppler shifts of the scattered radiation since conclusions can mostly be drawn for the dominant contributor. In this study, distribution...... functions for fast deuterons, fast tritons, fast He-3 and the fusion born alphas are presented, revealing that fusion alphas dominate the measurable signal by an order of magnitude or more in the Doppler shift frequency ranges typical for fast ions. Hence the observable CTS signal can mostly be attributed...

  18. Phase space distribution of an electron beam emerging from Compton/Thomson back-scattering by an intense laser pulse

    Science.gov (United States)

    Petrillo, V.; Chaikovska, I.; Ronsivalle, C.; Rossi, A. R.; Serafini, L.; Vaccarezza, C.

    2013-01-01

    We analyze the energy distribution of a relativistic electron beam after the Compton back-scattering by a counterpropagating laser field. The analysis is performed for parameters in the range of realistic X-γ sources, in the framework of the Quantum Electrodynamics, by means of the code CAIN. The results lead to the conclusion that, in the regime considered, the main effect is the initial formation of stripes, followed by the diffusion of the most energetic particles toward lower values in the longitudinal phase space, with a final increase of the electron energy bandwidth.

  19. Modeling Detached Divertor Plasma Characteristics in the DIII-D Tokamak

    Science.gov (United States)

    Rognlien, T. D.; Joseph, I.; McLean, A. G.; Porter, G. D.; Rensink, M. E.; Umansky, M.; Groth, M.; Pigarov, A. Y.

    2015-11-01

    Detached divertor-plasma operation, where a large fraction of the core exhaust power is radiated before striking the target plates, is attractive for limiting the peak target heat flux. Such plasmas have electron temperature ~ 1 eV near the target. Changing the position of the separatrix strike points on the geometrically varied DIII-D target plates is allowing a systematic study of how plate shape impacts accessibility to detached operation. Reported here are 2D plasma/neutral transport simulations of these configurations using the UEDGE code including cross-field drifts and impurities. Results are given on how the onset of detachment scales with strike-point location, wall pumping of neutrals, separatrix density, and core power. Different initial conditions sometimes yield different steady-state solutions for identical input parameters, one being an attached plasma and the other detached. Comparisons are made of simulation results and experimental measurements, especially divertor Thomson scattering data. Work supported by US DOE, DE-AC52-07NA27344, DE-FC02-04ER54698, DE-FG02-07ER54917.

  20. Edge profile analysis of Joint European Torus (JET) Thomson scattering data: Quantifying the systematic error due to edge localised mode synchronisation.

    Science.gov (United States)

    Leyland, M J; Beurskens, M N A; Flanagan, J C; Frassinetti, L; Gibson, K J; Kempenaars, M; Maslov, M; Scannell, R

    2016-01-01

    The Joint European Torus (JET) high resolution Thomson scattering (HRTS) system measures radial electron temperature and density profiles. One of the key capabilities of this diagnostic is measuring the steep pressure gradient, termed the pedestal, at the edge of JET plasmas. The pedestal is susceptible to limiting instabilities, such as Edge Localised Modes (ELMs), characterised by a periodic collapse of the steep gradient region. A common method to extract the pedestal width, gradient, and height, used on numerous machines, is by performing a modified hyperbolic tangent (mtanh) fit to overlaid profiles selected from the same region of the ELM cycle. This process of overlaying profiles, termed ELM synchronisation, maximises the number of data points defining the pedestal region for a given phase of the ELM cycle. When fitting to HRTS profiles, it is necessary to incorporate the diagnostic radial instrument function, particularly important when considering the pedestal width. A deconvolved fit is determined by a forward convolution method requiring knowledge of only the instrument function and profiles. The systematic error due to the deconvolution technique incorporated into the JET pedestal fitting tool has been documented by Frassinetti et al. [Rev. Sci. Instrum. 83, 013506 (2012)]. This paper seeks to understand and quantify the systematic error introduced to the pedestal width due to ELM synchronisation. Synthetic profiles, generated with error bars and point-to-point variation characteristic of real HRTS profiles, are used to evaluate the deviation from the underlying pedestal width. We find on JET that the ELM synchronisation systematic error is negligible in comparison to the statistical error when assuming ten overlaid profiles (typical for a pre-ELM fit to HRTS profiles). This confirms that fitting a mtanh to ELM synchronised profiles is a robust and practical technique for extracting the pedestal structure.

  1. Design of practical alignment device in KSTAR Thomson diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H., E-mail: jhlee@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); University of Science and Technology (UST), Daejeon (Korea, Republic of); Lee, S. H. [National Fusion Research Institute, Daejeon (Korea, Republic of); Yamada, I. [National Institute for Fusion Science, Toki (Japan)

    2016-11-15

    The precise alignment of the laser path and collection optics in Thomson scattering measurements is essential for accurately determining electron temperature and density in tokamak experiments. For the last five years, during the development stage, the KSTAR tokamak’s Thomson diagnostic system has had alignment fibers installed in its optical collection modules, but these lacked a proper alignment detection system. In order to address these difficulties, an alignment verifying detection device between lasers and an object field of collection optics is developed. The alignment detection device utilizes two types of filters: a narrow laser band wavelength for laser, and a broad wavelength filter for Thomson scattering signal. Four such alignment detection devices have been successfully developed for the KSTAR Thomson scattering system in this year, and these will be tested in KSTAR experiments in 2016. In this paper, we present the newly developed alignment detection device for KSTAR’s Thomson scattering diagnostics.

  2. Rothmund - Thomson Syndrome

    Directory of Open Access Journals (Sweden)

    Sharma N. L

    2003-01-01

    Full Text Available Rothmund-Thomson syndrome is a rare geno-photodermatosis of children. Poikilodermatous cutaneous changes, growth retardation, juvenile cataract and high incidence of malignancy are its classical features. A Thomson type of Rothmund-Thomson syndrome with characteristic poikiloderma congenitale, growth retardation, absence of juvenile cataract and parental non-consanguinity is described in an 8 year old Indian girl.

  3. The Dynamic Ergodic Divertor

    Energy Technology Data Exchange (ETDEWEB)

    Lehnen, M.; Adbullaev, S.; Biel, W.; Bock, M. F. M.; Brezinsek, S.; Busch, C.; Classen, I.; Finken, K. H.; Hartin, D.; Hellermann, M. von; Jachmich, S.; Jakubowski, M.; Jaspers, R.; Koslowski, H. R.; Kramer-Flecken, A.; Kikuchi, Y.; Liang, Y.; Loozen, X.; Pospieszczyk, A.; Rompuy, T. van; Reiter, D.; Samm, U.; Schmitz, O.; Sergienko, G.; Tokar, M.; Unterberg, B.; Wolf, R.; Zimmermann, O.

    2005-07-01

    The concept of the Dynamic Ergodic Divertor (DED) is based on plasma edge ergodisation by a resonant perturbation. Such a divertor concept is closely related to helical or island divertors in stellarators. The base mode of the DED perturbation field can be m/n = 12 /4, 6/2 or 3/1. The 3/1 base mode with its deep penetration of the perturbation field provides the excitation of tearing modes. This topic was presented elsewhere. In this contribution we concentrate on the divertor properties of the DED. We report on the characterisation of the topology, transport properties in ergodic fields, divertor regimes, impurity transport and density limit behaviour. The 12/4 base mode where the perturbation is restricted to the plasma edge is suitable for divertor operation. With increasing perturbation field island chains are built up at the resonance layers. Overlapping islands lead to ergodisation. The plasma is guided in the laminar region via open field lines of short connection length to the divertor target. The magnetic topology is not only controlled by the coil current but especially by the edge safety factor. For appropriate edge safety factor we observe a strong temperature drop in the plasma edge, indicating an expanding laminar region, which is necessary to decouple the divertor plasma from the core plasma. This temperature drop is accompanied by a redistribution of the heat and particle flux on the divertor target which is measured by thermography, visible spectroscopy and Langmuir probes. The modifications of the magnetic topology by the DED are reflected in the distribution of the plasma edge density and temperature measured by atomic beams and can be directly seen for example from carbon emission lines. The magnetic structure is calculated by the ATLAS code and shows good agreement with the experimental findings. The particle and energy transport is modelled with the EMC3-EIRENE code package and is in qualitative agreement with the measured densities and

  4. Compatibility of separatrix density scaling for divertor detachment with H-mode pedestal operation in DIII-D

    Science.gov (United States)

    Leonard, A. W.; McLean, A. G.; Makowski, M. A.; Stangeby, P. C.

    2017-08-01

    The midplane separatrix density is characterized in response to variations in upstream parallel heat flux density and central density through deuterium gas injection. The midplane density is determined from a high spatial resolution Thomson scattering diagnostic at the midplane with power balance analysis to determine the separatrix location. The heat flux density is varied by scans of three parameters, auxiliary heating, toroidal field with fixed plasma current, and plasma current with fixed safety factor, q 95. The separatrix density just before divertor detachment onset is found to scale consistent with the two-point model when radiative dissipation is taken into account. The ratio of separatrix to pedestal density, n e,sep/n e,ped varies from  ⩽30% to  ⩾60% over the dataset, helping to resolve the conflicting scaling of core plasma density limit and divertor detachment onset. The scaling of the separatrix density at detachment onset is combined with H-mode power threshold scaling to obtain a scaling ratio of minimum n e,sep/n e,ped expected in future devices.

  5. Oscillations in the spectrum of nonlinear Thomson-backscattered radiation

    Directory of Open Access Journals (Sweden)

    C. A. Brau

    2004-02-01

    Full Text Available When an electron beam collides with a high-intensity laser beam, the spectrum of the nonlinear Thomson scattering in the backward direction shows strong oscillations like those in the spectrum of an optical klystron. Laser gain on the backward Thomson scattering is estimated using the Madey theorem, and the results suggest that Thomson-backscatter free-electron lasers are possible at wavelengths extending to the far uv using a terawatt laser beam from a chirped-pulse amplifier and a high-brightness electron beam from a needle cathode.

  6. Dual color x-rays from Thomson or Compton sources

    Science.gov (United States)

    Petrillo, V.; Bacci, A.; Curatolo, C.; Ferrario, M.; Maroli, C.; Rau, J. V.; Ronsivalle, C.; Serafini, L.; Vaccarezza, C.; Venturelli, M.

    2015-05-01

    We analyze the possibility of producing two color X or γ radiation by Thomson/Compton back-scattering between a high intensity laser pulse and a two-energy level electron beam, constituted by a couple of beamlets separated in time and/or energy obtained by a photoinjector with comb laser techniques and linac velocity bunching. The parameters of the Thomson source at SPARC_LAB have been simulated, proposing a set of values for a realistic experiments.

  7. Thomson Scattering for Determining Electron Concentrations and Temperatures in an Inductively Coupled Plasma. 1. Assessment of the Technique for a Lo -Flow, Low-Power Plasma.

    Science.gov (United States)

    1988-02-15

    is the spectral density function which describes the frequency dependence of the scattering spectrum. If the electrons in the scattering volume are...stationary, no Doppler shift occurs and the spectral density function is 1 at (w=O (no frequency ,,diihit) and ;zero at all other frequencies. Of...electrons moving in a hot plasma. The spectral density function , which describes this Doppler- shifted spectrum, is very complicated and a description of it

  8. Advanced divertor configurations with large flux expansion

    NARCIS (Netherlands)

    Soukhanovskii, V. A.; R.E. Bell,; Diallo, A.; S. Gerhardt,; S. Kaye,; E. Kolemen,; B.P. LeBlanc,; McLean, A.; Menard, J. E.; S.F. Paul,; Podesta, M.; Raman, R.; D.D. Ryutov,; F. Scotti,; Kaita, R.; Maingi, R.; D.M. Mueller,; Roquemore, A. L.; Reimerdes, H.; G.P. Canal,; Labit, B.; Vijvers, W.; Coda, S.; Duval, B. P.; Morgan, T.; Zielinski, J.; De Temmerman, G.; Tal, B.

    2013-01-01

    Experimental studies of the novel snowflake divertor concept (D. Ryutov, Phys. Plasmas 14 (2007) 064502) performed in the NSTX and TCV tokamaks are reviewed in this paper. The snowflake divertor enables power sharing between divertor strike points, as well as the divertor plasma-wetted area, effecti

  9. The SPARC-LAB Thomson source

    Energy Technology Data Exchange (ETDEWEB)

    Vaccarezza, C., E-mail: cristina.vaccarezza@lnf.infn.it [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Alesini, D.; Anania, M.P. [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Bacci, A. [INFN-MI, Via Celoria 16, 20133 Milan (Italy); Biagioni, A.; Bisesto, F.; Bellaveglia, M. [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Cardarelli, P. [University of Ferrara and INFN-FE, via Saragat 1, 44122 Ferrara (Italy); Cardelli, F. [University La Sapienza and INFN-Roma1, Piazzale Aldo Moro, 2 00161 Rome (Italy); Cianchi, A. [University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Chiadroni, E.; Croia, M.; Curcio, A. [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Delogu, P. [University of Pisa and INFN-PI, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Giovenale, D. Di [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Domenico, G. Di [University of Ferrara and INFN-FE, via Saragat 1, 44122 Ferrara (Italy); Pirro, G. Di [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Drebot, I. [INFN-MI, Via Celoria 16, 20133 Milan (Italy); Ferrario, M. [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Filippi, F. [University La Sapienza and INFN-Roma1, Piazzale Aldo Moro, 2 00161 Rome (Italy); and others

    2016-09-01

    The SPARC-LAB Thomson source is a compact X-ray source based on the Thomson backscattering process presently under its second phase of commissioning at the LNF. The electron beam energy ranges between 30 and 150 MeV, the electrons collide head-on with the Ti:Sapphire FLAME laser pulse the energy of which ranges between 1 and 5 J with pulse lengths in the 25 fs–10 ps range, this provides an X-ray energy tunability in the range of 20–500 keV, with the further capability to generate strongly non-linear phenomena and to drive diffusion processes due to multiple and plural scattering effects. The experimental results of the obtained X-ray radiation are presented.

  10. The SPARC_LAB Thomson source

    Science.gov (United States)

    Vaccarezza, C.; Alesini, D.; Anania, M. P.; Bacci, A.; Biagioni, A.; Bisesto, F.; Bellaveglia, M.; Cardarelli, P.; Cardelli, F.; Cianchi, A.; Chiadroni, E.; Croia, M.; Curcio, A.; Delogu, P.; Giovenale, D. Di; Domenico, G. Di; Pirro, G. Di; Drebot, I.; Ferrario, M.; Filippi, F.; Gallo, A.; Galletti, M.; Gambaccini, M.; Giribono, A.; Golosio, B.; Li, W.; Mostacci, A.; Oliva, P.; Palmer, D.; Petrillo, V.; Petrarca, M.; Pioli, S.; Piersanti, L.; Pompili, R.; Romeo, S.; Rossi, A. R.; Scifo, J.; Serafini, L.; Suliman, G.; Villa, F.

    2016-09-01

    The SPARC_LAB Thomson source is a compact X-ray source based on the Thomson backscattering process presently under its second phase of commissioning at the LNF. The electron beam energy ranges between 30 and 150 MeV, the electrons collide head-on with the Ti:Sapphire FLAME laser pulse the energy of which ranges between 1 and 5 J with pulse lengths in the 25 fs-10 ps range, this provides an X-ray energy tunability in the range of 20-500 keV, with the further capability to generate strongly non-linear phenomena and to drive diffusion processes due to multiple and plural scattering effects. The experimental results of the obtained X-ray radiation are presented.

  11. Theory of Advanced Magnetic Divertors

    Science.gov (United States)

    Kotschenreuther, Michael; Valanju, Prashant; Mahajan, Swadesh; Covele, Brent

    2013-10-01

    The magnetic field structure in the SOL is the most important determinant of divertor physics. A comprehensive analytical and numerical methodology is developed to investigate SOL magnetic fields in the backdrop of two advanced divertor geometries- the X-divertor (XD) proposed and discussed in 2004, and the snowflake divertor (SFD) of 2007-2010. The analysis shows that XD and SFD represent very distinct and readily distinguishable magnetic geometries, epitomized through a differentiating metric, the Divertor Index (DI). In terms of this simple metric, the XD (DI > 1) and the SFD (DI XD flux surfaces are less convergent, in fact, divergent (flaring). These different SOL magnetics imply different physics, particularly with respect to detachment dynamics. It is also shown that some experiments on NSTX and DIII-D match both the prescription and the predictions of the 2004 XD paper. Work supported under US-DOE projects DE-FG02-04ER54742 and DE-FG02-04ER54754.

  12. Bobina de Thomson

    Directory of Open Access Journals (Sweden)

    Horacio Munguía Aguilar

    2014-12-01

    Full Text Available Uno de los instrumentos más didácticos en la enseñanza de las leyes del electromagnetismo es la denominada Bobina de Thomson. Con ella se pueden realizar diferentes experimentos sobre las leyes de Ampere y Faraday. En el presente trabajo se muestra su funcionamiento, se explica el mecanismo de levitación del anillo de inducción, se presenta los detalles de un modelo construido y se mencionan otros experimentos que enriquecen su funcionalidad.

  13. Bobina de Thomson

    OpenAIRE

    2014-01-01

    Uno de los instrumentos más didácticos en la enseñanza de las leyes del electromagnetismo es la denominada Bobina de Thomson. Con ella se pueden realizar diferentes experimentos sobre las leyes de Ampere y Faraday. En el presente trabajo se muestra su funcionamiento, se explica el mecanismo de levitación del anillo de inducción, se presenta los detalles de un modelo construido y se mencionan otros experimentos que enriquecen su funcionalidad.

  14. Cycling Joule Thomson refrigerator

    Science.gov (United States)

    Tward, E.

    1983-01-01

    A symmetrical adsorption pump/compressor system having a pair of mirror image legs and a Joule Thomson expander, or valve, interposed between the legs thereof for providing a, efficient refrigeration cycle is described. The system further includes a plurality of gas operational heat switches adapted selectively to transfer heat from a thermal load and to transfer or discharge heat through a heat projector, such as a radiator or the like. The heat switches comprise heat pressurizable chambers adapted for alternate pressurization in response to adsorption and desorption of a pressurizing gas confined therein.

  15. Design method of divertor in tokamak reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Noriaki (Mitsubishi Atomic Power Industries, Inc., Tokyo (Japan)); Itoh, Sanae; Tanaka, Masaaki; Itoh, Kimitaka

    1991-03-01

    Computational method to design the efficient divertor configuration in tokamak reactor is presented. The two-dimensional code has been developed to analyze the distributions of the plasma and neutral particles for realistic configurations. Using this code, a method to design the efficient divertor configuration is developed. An example of new divertor, which consists of the baffle and fin plates, is analyzed. (author).

  16. Detached divertor plasmas in JET

    Energy Technology Data Exchange (ETDEWEB)

    Horton, L.D.; Borrass, K.; Corrigan, G.; Gottardi, N.; Lingertat, J.; Loarte, A.; Simonini, R.; Stamp, M.F.; Taroni, A. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Stangeby, P.C. [Toronto Univ., ON (Canada). Inst. for Aerospace Studies

    1994-07-01

    In simulations with high radiated power fractions, it is possible to produce the drop in ion current to the divertor targets typical of detached plasmas. Despite the fact that these experiments are performed on beryllium target tiles, radiation from deuterium and beryllium cannot account for the measured power losses. The neutral deuterium levels in the SOL in these plasmas are higher than the model predicts. This may be due to leakage from the divertor or to additional wall sources related to the non-steady nature of these plasmas. In contrast, a surprisingly high level of carbon is present in these discharges; higher even than would be predicted are the divertor target tiles pure carbon. This level may well be large enough to produce the measured radiation. (authors). 6 refs., 2 figs., 1 tab.

  17. Actively convected liquid metal divertor

    Science.gov (United States)

    Shimada, Michiya; Hirooka, Yoshi

    2014-12-01

    The use of actively convected liquid metals with j × B force is proposed to facilitate heat handling by the divertor, a challenging issue associated with magnetic fusion experiments such as ITER. This issue will be aggravated even more for DEMO and power reactors because the divertor heat load will be significantly higher and yet the use of copper would not be allowed as the heat sink material. Instead, reduced activation ferritic/martensitic steel alloys with heat conductivities substantially lower than that of copper, will be used as the structural materials. The present proposal is to fill the lower part of the vacuum vessel with liquid metals with relatively low melting points and low chemical activities including Ga and Sn. The divertor modules, equipped with electrodes and cooling tubes, are immersed in the liquid metal. The electrode, placed in the middle of the liquid metal, can be biased positively or negatively with respect to the module. The j × B force due to the current between the electrode and the module provides a rotating motion for the liquid metal around the electrodes. The rise in liquid temperature at the separatrix hit point can be maintained at acceptable levels from the operation point of view. As the rotation speed increases, the current in the liquid metal is expected to decrease due to the v × B electromotive force. This rotating motion in the poloidal plane will reduce the divertor heat load significantly. Another important benefit of the convected liquid metal divertor is the fast recovery from unmitigated disruptions. Also, the liquid metal divertor concept eliminates the erosion problem.

  18. Advanced divertor configurations with large flux expansion

    Energy Technology Data Exchange (ETDEWEB)

    Soukhanovskii, V.A., E-mail: vlad@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA (United States); Bell, R.E.; Diallo, A.; Gerhardt, S.; Kaye, S.; Kolemen, E.; LeBlanc, B.P. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); McLean, A. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Menard, J.E.; Paul, S.F.; Podesta, M. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Raman, R. [University of Washington, Seattle, WA (United States); Ryutov, D.D. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Scotti, F.; Kaita, R. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Maingi, R. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Mueller, D.M.; Roquemore, A.L. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Reimerdes, H.; Canal, G.P. [Ecole Polytechnique Fédérale de Lausanne, Centre de Recherches en Physique des Plasmas, Association Euratom Confédération Suisse, Lausanne (Switzerland); and others

    2013-07-15

    Experimental studies of the novel snowflake divertor concept (D. Ryutov, Phys. Plasmas 14 (2007) 064502) performed in the NSTX and TCV tokamaks are reviewed in this paper. The snowflake divertor enables power sharing between divertor strike points, as well as the divertor plasma-wetted area, effective connection length and divertor volumetric power loss to increase beyond those in the standard divertor, potentially reducing heat flux and plasma temperature at the target. It also enables higher magnetic shear inside the separatrix, potentially affecting pedestal MHD stability. Experimental results from NSTX and TCV confirm the predicted properties of the snowflake divertor. In the NSTX, a large spherical tokamak with a compact divertor and lithium-coated graphite plasma-facing components (PFCs), the snowflake divertor operation led to reduced core and pedestal impurity concentration, as well as re-appearance of Type I ELMs that were suppressed in standard divertor H-mode discharges. In the divertor, an otherwise inaccessible partial detachment of the outer strike point with an up to 50% increase in divertor radiation and a peak divertor heat flux reduction from 3–7 MW/m{sup 2} to 0.5–1 MW/m{sup 2} was achieved. Impulsive heat fluxes due to Type-I ELMs were significantly dissipated in the high magnetic flux expansion region. In the TCV, a medium-size tokamak with graphite PFCs, several advantageous snowflake divertor features (cf. the standard divertor) have been demonstrated: an unchanged L–H power threshold, enhanced stability of the peeling–ballooning modes in the pedestal region (and generally an extended second stability region), as well as an H-mode pedestal regime with reduced (×2–3) Type I ELM frequency and slightly increased (20–30%) normalized ELM energy, resulting in a favorable average energy loss comparison to the standard divertor. In the divertor, ELM power partitioning between snowflake divertor strike points was demonstrated. The NSTX

  19. ITER Fast Ion Collective Thomson Scattering

    DEFF Research Database (Denmark)

    Bindslev, Henrik; Meo, Fernando; Korsholm, Søren Bang

    for measurements of the confined fusion alpha particles in ITER set by the ITER team. Then we outline the considerations, which enter into the selection and evaluation of CTS systems. System definition includes choice of probe frequency, geometry of probe and receiver beam patterns and probe power, but ultimately...

  20. Magnetic Geometry and Physics of Advanced Divertors: The X-Divertor and the Snowflake

    CERN Document Server

    Kotschenreuther, Mike; Covele, Brent; Mahajan, Swadesh

    2013-01-01

    Advanced divertors are magnetic geometries where a second X-point is added in the divertor region to address the serious challenges of burning plasma power exhaust. Invoking physical arguments, numerical work, and detailed model magnetic field analysis, we investigate the magnetic field structure of advanced divertors in the physically relevant region for power exhaust - the Scrape-Off Layer (SOL). A primary result of our analysis is the emergence of a physical "metric", the Divertor Index DI, that quantifies the flux expansion increase as one goes from the main X-point to the strike point. It clearly separates three geometries with distinct consequences for divertor physics - the Standard Divertor (SD, DI = 1), and two advanced geometries: the X-Divertor (XD, DI > 1) and the Snowflake (SFD, DI < 1). The XD, therefore, cannot be classified as one variant of the Snowflake. By this measure, recent NSTX and DIIID experiments are X-Divertors, not Snowflakes.

  1. Development of divertor remote maintenance system

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Nobukazu; Oka, Kiyoshi; Akou, Kentaro; Takiguchi, Yuji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-04-01

    The ITER divertor is categorized as a scheduled maintenance component because of extreme heat and particle loads it is exposed to by plasma. It is also highly activated by 14 MeV neutrons. Reliable remote handling equipment and tools are required for divertor maintenance under intense gamma radiation. To facilitate remote maintenance, the divertor is segmented into 60 cassettes, and each cassette weighing about 25 tons and maintained and replaced through four maintenance ports each 90 degrees. Divertor cassettes must be transported toroidally and radially for replacement through maintenance ports. Remote handling involving cassette movers and carriers for toroidal and radial transport has been developed. Under the ITER R and D program, technology critical to divertor cassette maintenance is being developed jointly by Japan, E.U., and U.S. home teams. This paper summarizes divertor remote maintenance design and the status of technology development by the Japan Home Team. (author)

  2. Simulation Analysis of Divertor Performance in EAST

    Institute of Scientific and Technical Information of China (English)

    Zhu Sizheng; Zha Xuejun

    2005-01-01

    A detailed study of the divertor performance in the EAST has been conducted for both its double null and single null configurations. The results of the application of the SOLPS (B2/Eirene) code package to the analysis of the EAST divertor are summarized. Here we concentrate on the effects of the increased geometrical closure and variation in the magnetic topology on the behavior of divertor plasmas. The results of numerical predictions for the EAST divertor's operational window are also described in this paper.

  3. Engineering conceptual design of CFETR divertor

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Xuebing, E-mail: pengxb@ipp.cas.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, 230031 Hefei Anhui (China); Ye, Minyou [School of Nuclear Science and Technology, University of Science and Technology of China, Jinzhai Road 96, 230026 Hefei Anhui (China); Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, 230031 Hefei Anhui (China); Song, Yuntao [Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, 230031 Hefei Anhui (China); School of Nuclear Science and Technology, University of Science and Technology of China, Jinzhai Road 96, 230026 Hefei Anhui (China); Mao, Xin [Institute of Plasma Physics, Chinese Academy of Sciences, Shushanhu Road 350, 230031 Hefei Anhui (China); Chen, Peiming; Qian, Xinyuan [School of Nuclear Science and Technology, University of Science and Technology of China, Jinzhai Road 96, 230026 Hefei Anhui (China)

    2015-10-15

    Highlights: • Three divertor structures for two plasma configurations, ITER-like and snowflake. • Property of enlarging wet area for all three divertors is analyzed. • The divertor accommodating with both the plasma configurations is unfeasible. • Divertor cooling system is developed. - Abstract: The China Fusion Engineering Test Reactor (CFETR), which is in conceptual design phase, aims at producing fusion power of 50–200 MW with tritium breeding ratio of ∼1.2 and duty cycle time of 0.3–0.5. Its designed main parameters are major/minor radii of 5.7 m/1.6 m and plasma current of 10 MA. Although the fusion power is lower than the one of ITER, the relative smaller machine dimensions and planed much higher auxiliary heating power of 100–140 MW make that the power exhausting for the CFETR divertor is a very critical issue. To solve this issue, the divertor should be better designed with advanced physical operation mode, advanced configuration/geometry or high efficient cooling structure. In the paper, much effort was put on the divertor configuration and geometry. With designed magnet system, three divertor configurations can be realized, ITER-like, snowflake and super-X. However, considering structural design feasibility and remote handling compatibility, only the first two configurations were selected for the first step of engineering design. Three divertors were designed. They have different first wall geometries to accommodate with different plasma configurations, one for the ITER-like, one for the snowflake and the third one for both the configurations. All three divertors employ the same cassette body as the support and the cooling water manifold for the first wall. This feature simplifies the interface of the divertor to other components in the vacuum vessel. Besides, the cooling structure and the remote maintenance concept are also introduced in the paper.

  4. A large divertor manipulator for ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Albrecht, E-mail: albrecht.herrmann@ipp.mpg.de; Jaksic, Nikola; Leitenstern, Peter; Greuner, Henri; Krieger, Karl; Marné, Pascal de; Oberkofler, Martin; Rohde, Volker; Schall, Gerd

    2015-10-15

    Highlights: • A large divertor manipulator for ASDEX Upgrade is developed and tested. • It allows replacing a relevant part of the divertor by dedicated targets and probes. • Modified solid standard targets. • Electrical and mechanical probes for dedicated investigations. • Test of actively cooled component. - Abstract: In 2013 a new bulk tungsten divertor, Div-III, was installed in ASDEX Upgrade (AUG). During the concept and design phase of Div-III the option of adaptable divertor instrumentation and divertor modification as contribution for divertor investigations in preparation of ITER was given a high priority. To gain flexibility for the test of divertor modifications without affecting the operational space of AUG, the large divertor manipulator, DIM-II, was designed and installed. DIM-II allows to retract 2 out of 128 outer divertor target tiles including the water cooled support structure into a target exchange box and to replace these targets without breaking the vacuum of the AUG vessel. DIM-II is based on a carriage-rail system with a driving rod pushing a front-end with the target module into the divertor position for plasma operation. Three types of front-ends are foreseen for physics investigations: (i) modified standard targets clamped to the standard cooling structure, (ii) dedicated front-ends making use of the whole available volume of about 230 × 160 × 80 mm{sup 3} and (iii) actively cooled/heated targets for cooling water temperatures up to 230 °C. This paper presents the DIM-II design including the FEM calculations for the modified divertor support structure and the front-end options, as well as the test procedure and operation mode.

  5. A compact multichannel spectrometer for Thomson scatteringa)

    Science.gov (United States)

    Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R.

    2012-10-01

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of Te VPH grating and measurements Te > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated (˜2 ns) ICCD camera for detection. A Gen III image intensifier provides ˜45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  6. Moving Divertor Plates in a Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    S.J. Zweben, H. Zhang

    2009-02-12

    Moving divertor plates could help solve some of the problems of the tokamak divertor through mechanical ingenuity rather than plasma physics. These plates would be passively heated on each pass through the tokamak and cooled and reprocessed outside the tokamak. There are many design options using varying plate shapes, orientations, motions, coatings, and compositions.

  7. Rapidly Moving Divertor Plates In A Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    S. Zweben

    2011-05-16

    It may be possible to replace conventional actively cooled tokamak divertor plates with a set of rapidly moving, passively cooled divertor plates on rails. These plates would absorb the plasma heat flux with their thermal inertia for ~10-30 sec, and would then be removed from the vessel for processing. When outside the tokamak, these plates could be cooled, cleaned, recoated, inspected, and then returned to the vessel in an automated loop. This scheme could provide nearoptimal divertor surfaces at all times, and avoid the need to stop machine operation for repair of damaged or eroded plates. We describe various possible divertor plate designs and access geometries, and discuss an initial design for a movable and removable divertor module for NSTX-U.

  8. Septum assessment of the JET gas box divertor

    NARCIS (Netherlands)

    Rapp, J.; Fundamenski, W.; Ingesson, L. C.; Jachmich, S.; Huber, A.; Matthews, G. F.; Morgan, P.; Stamp, M. F.

    2008-01-01

    The influence of the physical isolation of inner and outer divertor volumes by a septum plate of the Mk-II gas box divertor, thus increasing divertor closure and neutral compression, on the plasma and divertor performance has been studied at the Joint European Torus (JET). The septum plate was insta

  9. Rothmund-Thomson syndrome

    Directory of Open Access Journals (Sweden)

    Roversi Gaia

    2010-01-01

    Full Text Available Abstract Rothmund-Thomson syndrome (RTS is a genodermatosis presenting with a characteristic facial rash (poikiloderma associated with short stature, sparse scalp hair, sparse or absent eyelashes and/or eyebrows, juvenile cataracts, skeletal abnormalities, radial ray defects, premature aging and a predisposition to cancer. The prevalence is unknown but around 300 cases have been reported in the literature so far. The diagnostic hallmark is facial erythema, which spreads to the extremities but spares the trunk, and which manifests itself within the first year and then develops into poikiloderma. Two clinical subforms of RTS have been defined: RTSI characterised by poikiloderma, ectodermal dysplasia and juvenile cataracts, and RTSII characterised by poikiloderma, congenital bone defects and an increased risk of osteosarcoma in childhood and skin cancer later in life. The skeletal abnormalities may be overt (frontal bossing, saddle nose and congenital radial ray defects, and/or subtle (visible only by radiographic analysis. Gastrointestinal, respiratory and haematological signs have been reported in a few patients. RTS is transmitted in an autosomal recessive manner and is genetically heterogeneous: RTSII is caused by homozygous or compound heterozygous mutations in the RECQL4 helicase gene (detected in 60-65% of RTS patients, whereas the aetiology in RTSI remains unknown. Diagnosis is based on clinical findings (primarily on the age of onset, spreading and appearance of the poikiloderma and molecular analysis for RECQL4 mutations. Missense mutations are rare, while frameshift, nonsense mutations and splice-site mutations prevail. A fully informative test requires transcript analysis not to overlook intronic deletions causing missplicing. The diagnosis of RTS should be considered in all patients with osteosarcoma, particularly if associated with skin changes. The differential diagnosis should include other causes of childhood poikiloderma

  10. First Divertor Operation on the HL-2A Tokamak

    Institute of Scientific and Technical Information of China (English)

    YANG Qing-Wei; CAO Zeng; LI Xiao-Dong; MAO Wei-Cheng; ZHOU Cai-Pin; WANG En-Yao; YAN Jian-Cheng; LIU Yong; HL-2A team; DING Xuan-Tong; YAN Long-Wen; XUAN Wei-Min; LIU De-Quan; CHEN Liao-Yuan; SONG Xian-Ming; YUAN Bao-Shan; ZHANG Jin-Hua

    2004-01-01

    @@ HL-2A device is the first divertor tokamak in China. One of its main subjects is to study the features of the divertor plasma. In the last campaign, the first divertor configuration has been achieved and sustained on the HL-2A tokamak. Here we give a brief description about the HL-2A tokamak, diagnostics arrangements, and the equilibrium analysis results on divertor configuration. The main results of divertor experiments are also presented.

  11. Dust divertor for a tokamak fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tang, X Z [Los Alamos National Laboratory; Delzanno, G L [Los Alamos National Laboratory

    2009-01-01

    Micron-size tungsten particulates find equilibrium position in the magnetized plasma sheath in the normal direction of the divertor surface, but are convected poloidally and toroidally by the sonic-ion-flow drag parallel to the divertor surface. The natural circulation of dust particles in the magnetized plasma sheath can be used to set up a flowing dust shield that absorbs and exhausts most of the tokamak heat flux to the divertor. The size of the particulates and the choice of materials offer substantial room for optimization.

  12. MAST-Upgrade Divertor Facility and Assessing Performance of Long-Legged Divertors

    CERN Document Server

    Fishpool, G; Cunningham, G; Harrison, J; Katramados, I; Kirk, A; Kovari, M; Meyer, H; Scannell, R

    2013-01-01

    A potentially important feature in a divertor design for a high-power tokamak is an extended and expanded divertor leg. The upgrade to MAST will allow a wide range of such divertor leg geometries to be produced, and hence will allow the roles of greatly increased connection length and flux expansion to be experimentally tested. This will include testing the potential of the Super-X configuration [1]. The design process for the upgrade has required analysis of producing and controlling the magnetic configurations, and has included consideration of the roles that divertor closure and increasing magnetic connection length will play.

  13. Inverse Gibbs-Thomson effect

    Science.gov (United States)

    Gershanov, V. Yu.; Garmashov, S. I.

    2015-01-01

    We prove the existence of an effect inverse to the Gibbs-Thomson effect for mass transfer in systems consisting of a solid phase and the solution of the solid phase material in a certain solvent. The effect involves a change in the shape of the interface due to a variation of the equilibrium concentrations under it, which is induced by external conditions, and exists in the presence of a negative feedback for mass transfer associated with capillary effects.

  14. The Innovative Technique at Thomson

    Directory of Open Access Journals (Sweden)

    Raveesh Agarwal

    2010-01-01

    Full Text Available Problem statement: As we continue to ride out of the current economic recession, employee engagement has become a critical business issue for the organization. It is tough time for Thomson Press to enhance its position as leader in printing industry and stay ahead of competition. Key challenges include identifying the areas of improvement and engaging each and every employee of the organization at an individual level so that everyone benefits-the business, the environment and the workforce. Approach: In order to meet the challenges and to sustain its leadership in the market, Thomson has taken a new initiative “Vaarta-an Employee Engagement survey”. To ensure the objectivity of this process and maintain the confidentiality of the responses, Thomson appointed “hrcraft business consultancy”, an external agency which specializes in conducting such surveys for many reputed organizations. Results: The survey identified areas of strength and weakness of the organization to assess levels of employee engagement and set new priorities for its employees and customer services. It helps officers and managers to gain useful insights, on how their team members engage with their team and then to take specific actions to address areas of concern. Equally, senior leadership will get insights on application of policy of the organization to enhance their motivation and drive. Conclusion: The objective of writing this case is to gain insight into the human resource practices being adopted at Thomson Press. This case described a new initiative-“Vaarta”, which will facilitate the organization through engagement of its employees into a high performance workforce during recession period. This will make a significant contribution to improvements in levels of customer satisfaction and business growth. It will help individual officers and managers in identifying specific and positive action steps towards engaging their team and thereby, enhancing and sustaining

  15. 76 FR 50272 - West, A Thomson Reuters Business, Thomson Reuters Legal Division, Including On-Site Leased...

    Science.gov (United States)

    2011-08-12

    ... Employment and Training Administration West, A Thomson Reuters Business, Thomson Reuters Legal Division... Reuters Business, Thomson Reuters Legal Division, including On-Site Leased Workers from Adecco... applicable to workers and former workers of West, A Thomson Reuters Business, Thomson Reuters...

  16. ARIES-III divertor engineering design

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.P.C.; Schultz, K.R. [General Atomics, San Diego, CA (United States); Cheng, E.T. [TSI Research, Solana Beach, CA (United States); Grotz, S.; Hasan, M.A.; Najmabadi, F.; Sharafat, S. [California Univ., Los Angeles, CA (United States). Dept. of Mechanical, Aerospace and Nuclear Engineering; Brooks, J.N.; Ehst, D.A.; Sze, D.K. [Argonne National Lab., IL (United States); Herring, J.S. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Valenti, M.; Steiner, D. [Rensselaer Polytechnic Inst., Troy, NY (United States). Plasma Dynamics Lab.

    1992-01-01

    This paper reports the engineering design of the ARIES-III double- null divertor. The divertor coolant tubes are made from W-3Re alloy and cooled by subcooled flow boiling of organic coolant. A coating of 4 mm thick tungsten is plasma sprayed onto the divertor surface. This W layer can withstand the thermal deposition of a few disruptions. At a maximum surface heat flux of 5.4 MW/m{sup 2}, a conventional divertor design can be used. The divertor surface is contoured to have a constant heat flux of 5.4 MW/m{sup 2}. The net erosion of the W-surface was found to be negligible at about 0.1 mm/year. After 3 years of operation, the W-3Re alloy ARIES-III divertor can be disposed of as Class A waste. In order to control the prompt dose release at site boundary to less than 200 Rem, isotopic tailoring of the W-alloy will be needed.

  17. Application of the radiating divertor approach to innovative tokamak divertor concepts

    Energy Technology Data Exchange (ETDEWEB)

    Petrie, T.W., E-mail: petrie@fusion.gat.com [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Allen, S.L.; Fenstermacher, M.E. [Lawrence Livermore National Laboratory, 700 East Ave, Livermore, CA 94550 (United States); Groebner, R.J. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Holcomb, C.T. [Lawrence Livermore National Laboratory, 700 East Ave, Livermore, CA 94550 (United States); Kolemen, E. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543-0451 (United States); La Haye, R.J. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Lasnier, C.J. [Lawrence Livermore National Laboratory, 700 East Ave, Livermore, CA 94550 (United States); Leonard, A.W.; Luce, T.C. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); McLean, A.G. [Lawrence Livermore National Laboratory, 700 East Ave, Livermore, CA 94550 (United States); Maingi, R. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543-0451 (United States); Moyer, R.A. [University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0417 (United States); Solomon, W.M. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543-0451 (United States); Soukhanovskii, V.A. [Lawrence Livermore National Laboratory, 700 East Ave, Livermore, CA 94550 (United States); Turco, F. [Columbia University, 2960 Broadway, New York, NY 10027 (United States); Watkins, J.G. [Sandia National Laboratory, PO Box 5800, Albuquerque, NM 87185 (United States)

    2015-08-15

    We survey the results of recent DIII-D experiments that tested the effectiveness of three innovative tokamak divertor concepts in reducing divertor heat flux while still maintaining acceptable energy confinement under neon/deuterium-based radiating divertor (RD) conditions: (1) magnetically unbalanced high performance double-null divertor (DND) plasmas, (2) high performance double-null “Snowflake” (SF-DN) plasmas, and (3) single-null H-mode plasmas having different isolation from their divertor targets. In general, all three concepts adapt well to RD conditions, achieving significant reduction in divertor heat flux (q{sub ⊥p}) and maintaining high performance metrics, e.g., 50–70% reduction in peak divertor heat flux for DND and SF-DN plasmas that are characterized by β{sub N} ≅ 3.0 and H{sub 98(y,2)} ≈ 1.35. It is also demonstrated that q{sub ⊥p} could be reduced ≈50% by extending the parallel connection length (L{sub ||-XPT}) in the scrape-off layer between the X-point and divertor targets over a variety of the RD and non-RD environments tested.

  18. Atomic and molecular processes in JT-60U divertor plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Takenaga, H.; Shimizu, K.; Itami, K. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1997-01-01

    Atomic and molecular data are indispensable for the understanding of the divertor characteristics, because behavior of particles in the divertor plasma is closely related to the atomic and molecular processes. In the divertor configuration, heat and particles escaping from the main plasma flow onto the divertor plate along the magnetic field lines. In the divertor region, helium ash must be effectively exhausted, and radiation must be enhanced for the reduction of the heat load onto the divertor plate. In order to exhaust helium ash effectively, the difference between behavior of neutral hydrogen (including deuterium and tritium) and helium in the divertor plasma should be understood. Radiation from the divertor plasma generally caused by the impurities which produced by the erosion of the divertor plate and/or injected by gas-puffing. Therefore, it is important to understand impurity behavior in the divertor plasma. The ions hitting the divertor plate recycle through the processes of neutralization, reflection, absorption and desorption at the divertor plates and molecular dissociation, charge-exchange reaction and ionization in the divertor plasma. Behavior of hydrogen, helium and impurities in the divertor plasmas can not be understood without the atomic and molecular data. In this report, recent results of the divertor study related to the atomic and molecular processes in JT-60U were summarized. Behavior of neural deuterium and helium was discussed in section 2. In section 3, the comparisons between the modelling of the carbon impurity transport and the measurements of C II and C IV were discussed. In section 4, characteristics of the radiative divertor using Ne puffing were reported. The new diagnostic method for the electron density and temperature in the divertor plasmas using the intensity ratios of He I lines was described in section 5. (author)

  19. Snowflake divertor configuration studies in National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Soukhanovskii, V. A.; McLean, A. G.; Rognlien, T. D.; Ryutov, D. D.; Umansky, M. V. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Bell, R. E.; Diallo, A.; Gerhardt, S.; Kaye, S.; Kolemen, E.; LeBlanc, B. P.; Menard, J. E.; Paul, S. F.; Podesta, M.; Roquemore, A. L.; Scotti, F.; Battaglia, D.; Bell, M. G.; Gates, D. A.; Kaita, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); and others

    2012-08-15

    Experimental results from NSTX indicate that the snowflake divertor (D. Ryutov, Phys. Plasmas 14, 064502 (2007)) may be a viable solution for outstanding tokamak plasma-material interface issues. Steady-state handling of divertor heat flux and divertor plate erosion remains to be critical issues for ITER and future concept devices based on conventional and spherical tokamak geometry with high power density divertors. Experiments conducted in 4-6 MW NBI-heated H-mode plasmas in NSTX demonstrated that the snowflake divertor is compatible with high-confinement core plasma operation, while being very effective in steady-state divertor heat flux mitigation and impurity reduction. A steady-state snowflake divertor was obtained in recent NSTX experiments for up to 600 ms using three divertor magnetic coils. The high magnetic flux expansion region of the scrape-off layer (SOL) spanning up to 50% of the SOL width {lambda}{sub q} was partially detached in the snowflake divertor. In the detached zone, the heat flux profile flattened and decreased to 0.5-1 MW/m{sup 2} (from 4-7 MW/m{sup 2} in the standard divertor) indicative of radiative heating. An up to 50% increase in divertor, P{sub rad} in the snowflake divertor was accompanied by broadening of the intrinsic C III and C IV radiation zones, and a nearly order of magnitude increase in divertor high-n Balmer line emission indicative of volumetric recombination onset. Magnetic reconstructions showed that the x-point connection length, divertor plasma-wetted area and divertor volume, all critical parameters for geometric reduction of deposited heat flux, and increased volumetric divertor losses were significantly increased in the snowflake divertor, as expected from theory.

  20. Snowflake divertor configuration studies for NSTX-Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Soukhanovskii, V A

    2011-11-12

    Snowflake divertor experiments in NSTX provide basis for PMI development toward NSTX-Upgrade. Snowflake configuration formation was followed by radiative detachment. Significant reduction of steady-state divertor heat flux observed in snowflake divertor. Impulsive heat loads due to Type I ELMs are partially mitigated in snowflake divertor. Magnetic control of snowflake divertor configuration is being developed. Plasma material interface development is critical for NSTX-U success. Four divertor coils should enable flexibility in boundary shaping and control in NSTX-U. Snowflake divertor experiments in NSTX provide good basis for PMI development in NSTX-Upgrade. FY 2009-2010 snowflake divertor experiments in NSTX: (1) Helped understand control of magnetic properties; (2) Core H-mode confinement unchanged; (3) Core and edge carbon concentration reduced; and (4) Divertor heat flux significantly reduced - (a) Steady-state reduction due to geometry and radiative detachment, (b) Encouraging results for transient heat flux handling, (c) Combined with impurity-seeded radiative divertor. Outlook for snowflake divertor in NSTX-Upgrade: (1) 2D fluid modeling of snowflake divertor properties scaling - (a) Edge and divertor transport, radiation, detachment threshold, (b) Compatibility with cryo-pump and lithium conditioning; (2) Magnetic control development; and (3) PFC development - PFC alignment and PFC material choice.

  1. 76 FR 27365 - West, A Thomson Reuters Business, Thomson Reuters Legal Division, Including On-Site Leased...

    Science.gov (United States)

    2011-05-11

    ..., Including On-Site Leased Workers From ADECCO, Albuquerque, NM; Notice of Affirmative Determination Regarding... former workers of West, A Thomson Reuters Business, Thomson Reuters Legal Division, Albuquerque,...

  2. First results from the dynamic ergodic divertor at TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Lehnen, M. [Institut fuer Plasmaphysik, Forschungszentrum Juelich GmbH, EURATOM Association, Trilateral Euregio Cluster, 52425 Juelich (Germany)]. E-mail: m.lehnen@fz-juelich.de; Abdullaev, S.S.; Biel, W.; Brezinsek, S.; Finken, K.H.; Harting, D.; Hellermann, M. von; Jakubowski, M.; Jaspers, R.; Kobayashi, M.; Koslowski, H.R.; Kraemer-Flecken, A.; Matsunaga, G.; Pospieszczyk, A.; Reiter, D.; Van Rompuy, T.; Samm, U.; Schmitz, O.; Sergienko, G.; Unterberg, B.; Wolf, R.; Zimmermann, O. [Institut fuer Plasmaphysik, Forschungszentrum Juelich GmbH, EURATOM Association, Trilateral Euregio Cluster, 52425 Juelich (Germany)

    2005-03-01

    Experimental results from the dynamic ergodic divertor (DED) at TEXTOR are given, describing the complex structure of the edge plasma and the properties of the divertor as well as its influence on the plasma rotation.

  3. Impurity-induced divertor plasma oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, R. D., E-mail: rsmirnov@ucsd.edu; Krasheninnikov, S. I.; Pigarov, A. Yu. [University of California, San Diego, La Jolla, California 92093 (United States); Kukushkin, A. S. [NRC “Kurchatov Institute”, Moscow 123182 (Russian Federation); National Research Nuclear University MEPhI, Moscow 115409 (Russian Federation); Rognlien, T. D. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2016-01-15

    Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ion transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. The implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.

  4. Impurity-induced divertor plasma oscillations

    Science.gov (United States)

    Smirnov, R. D.; Kukushkin, A. S.; Krasheninnikov, S. I.; Pigarov, A. Yu.; Rognlien, T. D.

    2016-01-01

    Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ion transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. The implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.

  5. Impact of divertor geometry on radiative divertor performance in JET H-mode plasmas

    Science.gov (United States)

    Jaervinen, A. E.; Brezinsek, S.; Giroud, C.; Groth, M.; Guillemaut, C.; Belo, P.; Brix, M.; Corrigan, G.; Drewelow, P.; Harting, D.; Huber, A.; Lawson, K. D.; Lipschultz, B.; Maggi, C. F.; Matthews, G. F.; Meigs, A. G.; Moulton, D.; Stamp, M. F.; Wiesen, S.; Contributors, JET

    2016-04-01

    Radiative divertor operation in JET high confinement mode plasmas with the ITER-like wall has been experimentally investigated and simulated with EDGE2D-EIRENE in horizontal and vertical low field side (LFS) divertor configurations. The simulations show that the LFS divertor heat fluxes are reduced with N2-injection in similar fashion in both configurations, qualitatively consistent with experimental observations. The simulations show no substantial difference between the two configurations in the reduction of the peak LFS heat flux as a function of divertor radiation, nitrogen concentration, or pedestal Zeff. Consistently, experiments show similar divertor radiation and nitrogen injection levels for similar LFS peak heat flux reduction in both configurations. Nevertheless, the LFS strike point is predicted to detach at 20% lower separatrix density in the vertical than in the horizontal configuration. However, since the peak LFS heat flux in partial detachment in the vertical configurations is shifted towards the far scrape-off layer (SOL), the simulations predict no benefit in the reduction of LFS peak heat flux for a given upstream density in the vertical configuration relative to a horizontal one. A factor of 2 reduction of deuterium ionization source inside the separatrix is observed in the simulations when changing to the vertical configuration. The simulations capture the experimentally observed particle and heat flux reduction at the LFS divertor plate in both configurations, when adjusting the impurity injection rate to reproduce the measured divertor radiation. However, the divertor D α -emissions are underestimated by a factor of 2-5, indicating a short-fall in radiation by the fuel species. In the vertical configuration, detachment is experimentally measured and predicted to start next to the strike point, extending towards the far SOL with increasing degree of detachment. In contrast, in the horizontal configuration, the entire divertor particle flux

  6. Designing divertor targets for uniform power load

    Science.gov (United States)

    Dekeyser, W.; Reiter, D.; Baelmans, M.

    2015-08-01

    Divertor design for next step fusion reactors heavily relies on 2D edge plasma modeling with codes as e.g. B2-EIRENE. While these codes are typically used in a design-by-analysis approach, in previous work we have shown that divertor design can alternatively be posed as a mathematical optimization problem, and solved very efficiently using adjoint methods adapted from computational aerodynamics. This approach has been applied successfully to divertor target shape design for more uniform power load. In this paper, the concept is further extended to include all contributions to the target power load, with particular focus on radiation. In a simplified test problem, we show the potential benefits of fully including the radiation load in the design cycle as compared to only assessing this load in a post-processing step.

  7. Divertor asymmetry and scrape-off layer flow in various divertor configurations in Experimental Advanced Superconducting Tokamak

    DEFF Research Database (Denmark)

    Liu, S. C.; Guo, H. Y.; Xu, Guandong

    2012-01-01

    Divertor asymmetry and its dependence on the ion del B direction has been investigated in the Experimental Advanced Superconducting Tokamak by changing the divertor configuration from lower single null (LSN), via double null (DN), to upper single null (USN) during one single discharge. Divertor p...

  8. Characteristics of divertor detachment for ITER conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kukushkin, A.S., E-mail: andre.kukushkin@iter.org [ITER Organization, St Paul Lez Durance (France); Pacher, H.D. [INRS-EMT, Varennes, Québec (Canada); Pitts, R.A. [ITER Organization, St Paul Lez Durance (France)

    2015-08-15

    The relative role of particle balance vs. momentum balance in the phenomenon of divertor plasma detachment in tokamaks is re-assessed. Ion removal from the plasma flow by volumetric recombination and/or cross-field transport is identified as the key element in the formation of the rollover of the ion saturation current on the targets, whereas “momentum removal” (friction) is responsible for maintaining high plasma pressure upstream. The deterioration of neutral particle confinement in the divertor as particle throughput increases is the primary cause of the solution collapse typically seen when deep detachment is modelled for present day experiments.

  9. Conceptual design of CFETR divertor remote handling compatible structure

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Huaichu, E-mail: yaodm@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei (China); Yao, Damao; Cao, Lei; Zhou, Zibo; Li, Lei [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-11-15

    Highlights: • Conceptual design for the CFETR divertor have been proposed, especially the divertor remote handling compatible structure. • The degrees of freedom of the divertor are analyzed in order to validate the design the divertor supports structure. • Besides the ITER-like scheme, a new scheme for the divertor remote handling compatible supports is proposed, that is the rack and pinion mechanism. • The installation/removel process is verified through simulation in Delmia in order to check design quality for remote handling requirements. - Abstract: Divertor is one of key components of tokamak fusion reactor. The CFETR is China Fusion Engineering Test Reactor. Its divertor will expose to tritium environment and neutron radiation. Materials of the divertor will be radioactived, and cannot be handled by personnel directly. To develop structure which compatible with robots handle for installation, maintenance and removing is required. This paper introduces a conceptual design of CFETR divertor module which compatible with remote handling end-effectors. The divertor module is confined by inner and outer support. The inner support is only confined divertor module radial, toroidal and vertical moving freedom degrees, but not confined rotating freedom degrees. The outer support is the structure that can confine rotating freedom degrees and should also be compatible with remote handling end-effectors.

  10. Small angle slot divertor concept for long pulse advanced tokamaks

    Science.gov (United States)

    Guo, H. Y.; Sang, C. F.; Stangeby, P. C.; Lao, L. L.; Taylor, T. S.; Thomas, D. M.

    2017-04-01

    SOLPS-EIRENE edge code analysis shows that a gas-tight slot divertor geometry with a small-angle (glancing-incidence) target, named the small angle slot (SAS) divertor, can achieve cold, dissipative/detached divertor conditions at relatively low values of plasma density at the outside midplane separatrix. SAS exhibits the following key features: (1) strong enhancement of the buildup of neutral density in a localized region near the plasma strike point on the divertor target; (2) spreading of the cooling front across the divertor target with the slot gradually flaring out from the strike point, thus effectively reducing both heat flux and erosion on the entire divertor target surface. Such a divertor may potentially provide a power and particle handling solution for long pulse advanced tokamaks.

  11. Development of a Thomson X-ray Polarimeter

    CERN Document Server

    V., Rishin P; R., Duraichelvan; James, Marykutty; Devasia, Jincy

    2010-01-01

    We describe the current status of the design and development of a Thomson X-ray polarimeter suitable for a small satellite mission. Currently we are considering two detector geometries, one using rectangular detectors placed on four sides of a scattering element and the other using a single cylindrical detector with the scattering element at the center. The rectangular detector configuration has been fabricated and tested. The cylindrical detector is currently under fabrication. In order to compensate any pointing offset of the satellite, a collimator with a flat topped response has been developed that provides a constant effective area over an angular range. We have also developed a double crystal monochromator/polariser for the purpose of test and calibration of the polarimeter. Preliminary test results from the developmental activities are presented here.

  12. Rothmund–Thomson syndrome: anaesthesia considerations

    African Journals Online (AJOL)

    Rothmund–Thomson syndrome (RTS) or poikiloderma congenitale is a rare autosomal recessive disorder. Approximately ... increased likelihood of osteosarcoma and skin cancer.3. We successfully .... Anesthesia for genetic, metabolic, and.

  13. The development of in-situ calibration method for divertor IR thermography in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, M.; Sugie, T.; Ogawa, H.; Takeyama, S.; Itami, K. [Japan Atomic Energy Agency (Japan)

    2014-08-21

    For the development of the calibration method of the emissivity in IR light on the divertor plate in ITER divertor IR thermography system, the laboratory experiments have been performed by using IR instruments. The calibration of the IR camera was performed by the plane black body in the temperature of 100–600 degC. The radiances of the tungsten heated by 280 degC were measured by the IR camera without filter (2.5–5.1 μm) and with filter (2.95 μm, 4.67 μm). The preliminary data of the scattered light of the laser of 3.34 μm that injected into the tungsten were acquired.

  14. Thomson parabola ion energy analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Cobble, James A [Los Alamos National Laboratory; Flippo, Kirk A [Los Alamos National Laboratory; Letzring, Samuel A [Los Alamos National Laboratory; Lopez, Frank E [Los Alamos National Laboratory; Offermann, Dustin T [Los Alamos National Laboratory; Oertel, John A [Los Alamos National Laboratory; Mastrosimone, Dino [UNIV OF ROCHESTER

    2010-01-01

    A new, versatile Thomson parabola ion energy (TPIE) analyzer has been designed and constructed for use at the OMEGA-EP facility. Multi-MeV ions from EP targets are transmitted through a W pinhole into a (5- or 8-kG) magnetic field and subsequently through a parallel electric field of up to 30 kV/cm. The ion drift region may have a user-selected length of 10, 50, or 80 cm. With the highest fields, 500-Me V C{sup 6+} and C{sup 5+} may be resolved. TPIE is TIM-mounted at OMEGA-EP and is qualified in all existing TIMs. The instrument runs on pressure-interlocked 15-VDC power available in EP TIM carts. It may be inserted to within several inches of the target to attain sufficient flux for a measurement. For additional flux control, the user may select a square-aperture W pinhole of 0.004-inch or 0.010-inch. The detector consists of CR-39 backed by an image plate. The fully relativistic design code and design features are discussed. Ion spectral results from first use at OMEGA-EP are expected.

  15. Development of an Internet-Enabled Tool for NSTX-U Thomson Diagnostic Data

    Science.gov (United States)

    Wallace, William; Diallo, Ahmed

    2016-10-01

    MultiPoint Thomson Scattering (MPTS) is an established, accurate method of finding the temperature, density, and pressure of a magnetically confined plasma. Two Nd:YAG (1064 nm) lasers are fired into the plasma with a effective frequency of 60 Hz, and the light is Doppler shifted by Thomson scattering. Polychromators on the NSTX-U midplane collect the scattered photons at various radii/scattering angles, and the avalanche photodiode voltages are saved to an MDSplus tree for later analysis. IDL code is then used to determine plasma temperature, pressure, and density from the captured polychromator measurements via Selden formulas.[1] OMFIT, from the General Atomics Fusion Theory Team, is a rich data workflow package used on DIII-D, NSTX-U, and other experiments to rapidly investigate and draw conclusions from collated data sets and simulations. OMFIT can also be used as a data access source into other toolkits and fusion analysis software. This project, written in Python and taking advantage of late-generation Internet software technologies, uses OMFIT to rapidly find and visualize Thomson diagnostic plasma characteristics enabling scientists to gain a quick understanding of shot behavior and timeframes.

  16. Development of the NSTX-U Advanced Divertor Control

    Science.gov (United States)

    Vail, Patrick; Kolemen, Egemen

    2016-10-01

    Advanced magnetic divertor configurations such as the snowflake (SF) divertor are being investigated at NSTX-U for reducing the peak heat flux onto plasma-facing components. Initial efforts include development of plasma scenarios incorporating SF configurations using an upgraded set of divertor coils as well as implementation of a feedback control system for real-time detection and manipulation of two closely-spaced magnetic null points. Closed-loop plasma simulations are performed to demonstrate precise control of various SF configurations. The simulations are then used to demonstrate that the controller can be enhanced to regulate additional parameters such as strike point location and divertor flux expansion. The advanced divertor control will be used in the coming years to enable experiments investigating the physics of advanced divertors at NSTX-U. Supported by the US DOE under DE-AC02-09CH11466.

  17. ITER tungsten divertor design development and qualification program

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, T., E-mail: takeshi.hirai@iter.org [ITER Organization, Route de Vinon sur Verdon, F-13115 Saint Paul lez Durance (France); Escourbiac, F.; Carpentier-Chouchana, S.; Fedosov, A.; Ferrand, L.; Jokinen, T.; Komarov, V.; Kukushkin, A.; Merola, M.; Mitteau, R.; Pitts, R.A.; Shu, W.; Sugihara, M. [ITER Organization, Route de Vinon sur Verdon, F-13115 Saint Paul lez Durance (France); Riccardi, B. [F4E, c/ Josep Pla, n.2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Suzuki, S. [JAEA, Fusion Research and Development Directorate JAEA, 801-1 Mukouyama, Naka, Ibaragi 311-0193 (Japan); Villari, R. [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, I-00044 Frascati, Rome (Italy)

    2013-10-15

    Highlights: • Detailed design development plan for the ITER tungsten divertor. • Latest status of the ITER tungsten divertor design. • Brief overview of qualification program for the ITER tungsten divertor and status of R and D activity. -- Abstract: In November 2011, the ITER Council has endorsed the recommendation that a period of up to 2 years be set to develop a full-tungsten divertor design and accelerate technology qualification in view of a possible decision to start operation with a divertor having a full-tungsten plasma-facing surface. To ensure a solid foundation for such a decision, a full tungsten divertor design, together with a demonstration of the necessary high performance tungsten monoblock technology should be completed within the required timescale. The status of both the design and technology R and D activity is summarized in this paper.

  18. Examining Innovative Divertor and Main Chamber Options for a National Divertor Test Tokamak

    Science.gov (United States)

    Labombard, B.; Umansky, M.; Brunner, D.; Kuang, A. Q.; Marmar, E.; Wallace, G.; Whyte, D.; Wukitch, S.

    2016-10-01

    The US fusion community has identified a compelling need for a National Divertor Test Tokamak. The 2015 Community Planning Workshop on PMI called for a national working group to develop options. Important elements of a NDTT, adopted from the ADX concept, include the ability to explore long-leg divertor `solutions for power exhaust and particle control' (Priority Research Direction B) and to employ inside-launch RF actuators combined with double-null topologies as `plasma solution for main chamber wall components, including tools for controllable sustained operation' (PRD-C). Here we examine new information on these ideas. The projected performance of super-X and X-point target long-leg divertors is looking very promising; a stable fully-detached divertor condition handling an order-of-magnitude increase in power handling over conventional divertors may be possible. New experiments on Alcator C-Mod are addressing issues of high-field side versus low-field side heat flux sharing in double-null topologies and the screening of impurities that might originate from RF actuators placed in the high-field side - both with favorable results. Supported by USDoE Awards DE-FC02-99ER54512 and DE-AC52-07NA27344.

  19. Neutral recirculation—the key to control of divertor operation

    Science.gov (United States)

    Kukushkin, A. S.; Pacher, H. D.

    2016-12-01

    Interaction of the plasma with neutral gas in the divertor affects virtually all aspects of divertor functionality (power loading of the targets, pumping and fuelling, sustaining the operational conditions of the core plasma). In the course of ITER design development, this interaction has been the subject of intense modelling analysis, supported by experiments on various tokamaks. Neutral gas puffing is found to be the most effective means of divertor control. The results of those studies are summarized and assessed in the paper.

  20. NSTX Plasma Response to Lithium Coated Divertor

    Energy Technology Data Exchange (ETDEWEB)

    H.W. Kugel, M.G. Bell, J.P. Allain, R.E. Bell, S. Ding, S.P. Gerhardt, M.A. Jaworski, R. Kaita, J. Kallman, S.M. Kaye, B.P. LeBlanc, R. Maingi, R. Majeski, R. Maqueda, D.K. Mansfield, D. Mueller, R. Nygren, S.F. Paul, R. Raman, A.L. Roquemore, S.A. Sabbagh, H. Schneider, C.H. Skinner, V.A. Soukhanovskii, C.N. Taylor, J.R. Timberlak, W.R. Wampler, L.E. Zakharov, S.J. Zweben, and the NSTX Research Team

    2011-01-21

    NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Zeff and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, <0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed.

  1. Module of lithium divertor for KTM tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Lyublinski, I., E-mail: yublinski@yandex.ru [FSUE ' Red Star' , Moscow (Russian Federation); Vertkov, A.; Evtikhin, V.; Balakirev, V.; Ionov, D.; Zharkov, M. [FSUE ' Red Star' , Moscow (Russian Federation); Tazhibayeva, I. [IAE NNC RK, Kurchatov (Kazakhstan); Mirnov, S. [TRINITI, Troitsk, Moscow Region (Russian Federation); Khomiakov, S.; Mitin, D. [OJSC Dollezhal Institute, Moscow (Russian Federation); Mazzitelli, G. [ENEA RC Frascati (Italy); Agostini, P. [ENEA RC Brasimone (Italy)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Problems of PFE degradation, tritium accumulation and plasma pollution can be overcome by the use of liquid lithium-metal with low Z. Black-Right-Pointing-Pointer Capillary-porous system (CPS) - new material in which liquid lithium fill a solid matrix from porous material. Black-Right-Pointing-Pointer Lithium divertor module for KTM tokamak is under development. Black-Right-Pointing-Pointer Lithium filled tungsten felt is offered as the base plasma facing material of divertor. Black-Right-Pointing-Pointer Results of this project addresses to the progress in the field of fusion neutrons source and fusion energy source creation. - Abstract: Activity on projects of ITER and DEMO reactors has shown that solution of problems of divertor target plates and other plasma facing elements (PFEs) based on the solid plasma facing materials cause serious difficulties. Problems of PFE degradation, tritium accumulation and plasma pollution can be overcome by the use of liquid lithium-metal with low Z. Application of lithium will allow to create a self-renewal and MHD stable liquid metal surface of the in-vessel devices possessing practically unlimited service life; to reduce power flux due to intensive re-irradiation on lithium atoms in plasma periphery that will essentially facilitate a problem of heat removal from PFE; to reduce Z{sub eff} of plasma to minimally possible level close to 1; to exclude tritium accumulation, that is provided with absence of dust products and an opportunity of the active control of the tritium contents in liquid lithium. Realization of these advantages is based on use of so-called lithium capillary-porous system (CPS) - new material in which liquid lithium fill a solid matrix from porous material. The progress in development of lithium technology and also activity in lithium experiments in the tokamaks TFTR, T-11M, T-10, FTU, NSTX, HT-7 and stellarator TJ II permits of solving the problems in development of

  2. Divertor Heat Flux Mitigation in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Soukhanovskii, V A; Maingi, R; Gates, D A; Menard, J E; Paul, S F; Raman, R; Roquemore, A L; Bell, M G; Bell, R E; Boedo, J A; Bush, C E; Kaita, R; Kugel, H W; LeBlanc, B P; Mueller, D

    2008-08-04

    Steady-state handling of divertor heat flux is a critical issue for both ITER and spherical torus-based devices with compact high power density divertors. Significant reduction of heat flux to the divertor plate has been achieved simultaneously with favorable core and pedestal confinement and stability properties in a highly-shaped lower single null configuration in the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 2000] using high magnetic flux expansion at the divertor strike point and the radiative divertor technique. A partial detachment of the outer strike point was achieved with divertor deuterium injection leading to peak flux reduction from 4-6 MW m{sup -2} to 0.5-2 MW m{sup -2} in small-ELM 0.8-1.0 MA, 4-6 MW neutral beam injection-heated H-mode discharges. A self-consistent picture of outer strike point partial detachment was evident from divertor heat flux profiles and recombination, particle flux and neutral pressure measurements. Analytic scrape-off layer parallel transport models were used for interpretation of NSTX detachment experiments. The modeling showed that the observed peak heat flux reduction and detachment are possible with high radiated power and momentum loss fractions, achievable with divertor gas injection, and nearly impossible to achieve with main electron density, divertor neutral density or recombination increases alone.

  3. Divertor E X B Plasma Convection in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Boedo, J.A.; Schaffer, M.J.; Maingi, M.; Lasnier, C.J.; Watkins, J.G.

    1999-07-01

    Extensive two-dimensional measurements of plasma potential in the DIII-D tokamak divertor region are reported for standard (ion VB{sub T} drift toward divertor X-point) and reversed B{sub T} directions; for low (L) and high (H) confinement modes; and for partially detached divertor mode. The data are consistent with recent computational modeling identifying E x B{sub T} circulation, due to potentials sustained by plasma gradients, as the main cause of divertor plasma sensitivity to B{sub T} direction.

  4. Magnetic geometry and particle source drive of supersonic divertor regimes

    Science.gov (United States)

    Bufferand, H.; Ciraolo, G.; Dif-Pradalier, G.; Ghendrih, P.; Tamain, Ph; Marandet, Y.; Serre, E.

    2014-12-01

    We present a comprehensive picture of the mechanisms driving the transition from subsonic to supersonic flows in tokamak plasmas. We demonstrate that supersonic parallel flows into the divertor volume are ubiquitous at low density and governed by the divertor magnetic geometry. As the density is increased, subsonic divertor plasmas are recovered. On detachment, we show the change in particle source can also drive the transition to a supersonic regime. The comprehensive theoretical analysis is completed by simulations in ITER geometry. Such results are essential in assessing the divertor performance and when interpreting measurements and experimental evidence.

  5. ADX - Advanced Divertor and RF Tokamak Experiment

    Science.gov (United States)

    Greenwald, Martin; Labombard, Brian; Bonoli, Paul; Irby, Jim; Terry, Jim; Wallace, Greg; Vieira, Rui; Whyte, Dennis; Wolfe, Steve; Wukitch, Steve; Marmar, Earl

    2015-11-01

    The Advanced Divertor and RF Tokamak Experiment (ADX) is a design concept for a compact high-field tokamak that would address boundary plasma and plasma-material interaction physics challenges whose solution is critical for the viability of magnetic fusion energy. This device would have two crucial missions. First, it would serve as a Divertor Test Tokamak, developing divertor geometries, materials and operational scenarios that could meet the stringent requirements imposed in a fusion power plant. By operating at high field, ADX would address this problem at a level of power loading and other plasma conditions that are essentially identical to those expected in a future reactor. Secondly, ADX would investigate the physics and engineering of high-field-side launch of RF waves for current drive and heating. Efficient current drive is an essential element for achieving steady-state in a practical, power producing fusion device and high-field launch offers the prospect of higher efficiency, better control of the current profile and survivability of the launching structures. ADX would carry out this research in integrated scenarios that simultaneously demonstrate the required boundary regimes consistent with efficient current drive and core performance.

  6. Resilient non-resonant divertors for stellarators

    Science.gov (United States)

    Bader, A.; Boozer, A. H.; Hegna, C. C.; Lazerson, S. A.

    2016-10-01

    In this work, we investigate whether resilient non-resonant divertor solutions exist for optimized stellarators. Resiliency is measured by the consistency of performance over a broad range of operational states, such as through bootstrap current and modified plasma pressures. A non-resonant configuration is one where the crucial topological feature is the existence and sharpness of ridges along the last closed flux surface. We develop a modified field-line following method for testing the resiliency of stellarator divertors and apply it to altered HSX configurations generated by varying external coil currents, wall positioning, and internal plasma currents. We compare a magnetic diffusion calculation with a ``zero-diffusion'' calculation that endeavors to measure the first escaping flux tubes. The results from these calculations are corroborated with a more complete edge simulation with EMC3-EIRENE. The EMC3-EIRENE simulations show resilient helical stripes that are consistent with the simpler field line following methods. The goal of the study is to find a metric for edge/divertor optimization of stellarators, a crucial piece that is missing from current optimization schemes. Work supported by DE-SC0006103 and DE-FG02-93ER54222,.

  7. Understanding of Neutral Gas Transport in the Alcator C-Mod Tokamak Divertor

    Energy Technology Data Exchange (ETDEWEB)

    D.P. Stotler; C.S. Pitcher; C.J. Boswell; B. LaBombard; J.L. Terry; J.D. Elder; S. Lisgo

    2002-05-07

    A series of experiments on the effect of divertor baffling on the Alcator C-Mod tokamak provides stringent tests on models of neutral gas transport in and around the divertor region. One attractive feature of these experiments is that a trial description of the background plasma can be constructed from experimental measurements using a simple model, allowing the neutral gas transport to be studied with a stand-alone code. The neutral-ion and neutral-neutral elastic scattering processes recently added to the DEGAS 2 Monte Carlo neutral transport code permit the neutral gas flow rates between the divertor and main chamber to be simulated more realistically than before. Nonetheless, the simulated neutral pressures are too low and the deuterium Balmer-alpha emission profiles differ qualitatively from those measured, indicating an incomplete understanding of the physical processes involved in the experiment. Some potential explanations are examined and opportunities for future exploration a re highlighted. Improvements to atomic and surface physics data and models will play a role in the latter.

  8. Power distribution in the snowflake divertor in TCV

    NARCIS (Netherlands)

    Reimerdes, H.; G.P. Canal,; Duval, B. P.; Labit, B.; Lunt, T.; Vijvers, W. A. J.; Coda, S.; De Temmerman, G.; Morgan, T. W.; Nespoli, F.; Tal, B.; the TCV Team,

    2013-01-01

    TCV experiments demonstrate the basic power exhaust properties of the snowflake (SF) plus and SF minus divertor configurations by measuring the heat fluxes at each of their four divertor legs. The measurements indicate an enhanced transport into the private flux region and a reduction of peak heat f

  9. Divertor plasma physics experiments on the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Mahdavi, M.A.; Allen, S.L.; Evans, T.E. [and others

    1996-10-01

    In this paper we present an overview of the results and conclusions of our most recent divertor physics and development work. Using an array of new divertor diagnostics we have measured the plasma parameters over the entire divertor volume and gained new insights into several divertor physics issues. We present direct experimental evidence for momentum loss along the field lines, large heat convection, and copious volume recombination during detachment. These observations are supported by improved UEDGE modeling incorporating impurity radiation. We have demonstrated divertor exhaust enrichment of neon and argon by action of a forced scrape off layer (SOL) flow and demonstrated divertor pumping as a substitute for conventional wall conditioning. We have observed a divertor radiation zone with a parallel extent that is an order of magnitude larger than that estimated from a 1-D conduction limited model of plasma at coronal equilibrium. Using density profile control by divertor pumping and pellet injection we have attained H-mode confinement at densities above the Greenwald limit. Erosion rates of several candidate ITER plasma facing materials are measured and compared with predictions of a numerical model.

  10. Comparison of ELM heat loads in snowflake and standard divertors

    Energy Technology Data Exchange (ETDEWEB)

    Rognlien, T D; Cohen, R H; Ryutov, D D; Umansky, M V

    2012-05-08

    An analysis is given of the impact of the tokamak divertor magnetic structure on the temporal and spatial divertor heat flux from edge localized modes (ELMs). Two configurations are studied: the standard divertor where the poloidal magnetic field (B{sub p}) varies linearly with distance (r) from the magnetic null and the snowflake where B{sub p} varies quadratrically with r. Both one and two-dimensional models are used to analyze the effect of the longer magnetic field length between the midplane and the divertor plate for the snowflake that causes a temporal dilation of the ELM divertor heat flux. A second effect discussed is the appearance of a broad region near the null point where the poloidal plasma beta can substantially exceed unity, especially for the snowflake configuration during the ELM; such a condition is likely to drive additional radial ELM transport.

  11. RELAP5 MODEL OF THE DIVERTOR PRIMARY HEAT TRANSFER SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Emilian L [ORNL; Yoder Jr, Graydon L [ORNL; Kim, Seokho H [ORNL

    2010-08-01

    This report describes the RELAP5 model that has been developed for the divertor primary heat transfer system (PHTS). The model is intended to be used to examine the transient performance of the divertor PHTS and evaluate control schemes necessary to maintain parameters within acceptable limits during transients. Some preliminary results are presented to show the maturity of the model and examine general divertor PHTS transient behavior. The model can be used as a starting point for developing transient modeling capability, including control system modeling, safety evaluations, etc., and is not intended to represent the final divertor PHTS design. Preliminary calculations using the models indicate that during normal pulsed operation, present pressurizer controls may not be sufficient to keep system pressures within their desired range. Additional divertor PHTS and control system design efforts may be required to ensure system pressure fluctuation during normal operation remains within specified limits.

  12. Edge turbulence and transport studies with ergodic divertor, on Tore Supra ohmic discharges

    Energy Technology Data Exchange (ETDEWEB)

    Payan, J.; Garbet, X.; Clairet, F.; Devynck, P.; Laviron, C.; Chatenet, J.H.; Ghendrih, P.N.; Grosman, A. [Association Euratom-CEA, Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Gervais, F.; Hennequin, P.; Quemeneur, A.; Truc, A. [Ecole Polytechnique, 91 - Palaiseau (France). Lab. de Physique des Milieux Ionises

    1995-12-31

    Edge turbulence and transport studies have been performed when the ergodic divertor is applied on Tore Supra ohmic discharges. A modification of radial electric field profiles is expected. Such a change could influence edge transport and turbulence. A CO{sub 2} laser scattering diagnostic, ALTAIR, has been used to study the turbulence changes at the plasma edge. Reflectometry (used at fixed frequency) gives also access to localized turbulence measurements. Preliminary results from reflectometry are presented and compared to ALTAIR results. (K.A.) 6 refs.; 4 figs.

  13. Genetics Home Reference: Rothmund-Thomson syndrome

    Science.gov (United States)

    ... between osteosarcoma and deleterious mutations in the RECQL4 gene in Rothmund-Thomson syndrome. J Natl Cancer Inst. 2003 May 7;95(9):669-74. Citation on PubMed Wang LL, Levy ML, Lewis RA, Chintagumpala MM, Lev D, Rogers M, Plon ...

  14. Researches on the Neutral Gas Pressure in the Divertor Chamber of the HL-2A Tokamak

    Institute of Scientific and Technical Information of China (English)

    WANGMingxu; LIBo; YANGZhigang; YANLongwen; HONGWenyu; YUANBaoshan; LIULi; CAOZeng; CUIChenghe; LIUYong; WANGEnyao; ZHANGNianman

    2003-01-01

    The neutral gas pressure in divertor chamber is a very basic and important physics parameter because it determines the temperature of charged particles, the thermal flux density onto divertor plates, the erosion of divertor plates, impurity retaining and exhausting, particle transportation and confinement performance of plasma in tokamaks. Therefore, the pressure measurement in divertor chamber is taken into account in many large tokamaks.

  15. Photon trapping effects in DEMO divertor plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, K.; Tokunaga, S.; Asakura, N. [Japan Atomic Energy Agency, Rokkasho, Aomori (Japan); Sawada, K.; Idei, R. [Faculty of Engineering, Shinshu Univ., Nagano (Japan); Shimizu, K. [Japan Atomic Energy Agency, Naka, Ibaraki (Japan); Ohno, N. [Graduate School of Engineering, Nagoya Univ, Aichi (Japan)

    2016-08-15

    In the DEMO divertor, the neutral density becomes high to produce the full detachment and therefore the photon trapping can become important. In this paper, effects of the photon trapping on the DEMO divertor plasma has been studied. The pre-evaluation of the photon trapping effects on the fixed background plasma profile was carried out by using an iterative self-consistent collisional radiative model. The recombining plasma near the inner target and the private region changed to the ionizing plasma by the photon-excitation. Based on the preevaluation result, the database of the effective ionization rate coefficient including the photon transport inside a 2 mm sphere. Advantage of the 2 mm sphere approximation is that the extra calculation cost is not necessary. Iterative calculation of the SONIC including the photon trapping effects was carried out. While the electron density increased and the neutral density decreased in the wide region, the electron density decreases close to the inner strike point. This may be due to decrease in the ionization rate by decrease in the neutral density. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Extinguishing ELMs in detached radiative divertor plasmas

    Science.gov (United States)

    Pigarov, Alexander; Krasheninnikov, Sergei; Rognlien, Thomas

    2016-10-01

    In order to avoid deleterious effects of ELMs on PFCs in next-step fusion devices it has been suggested to operate with small-sized ELMs naturally extinguishing in the divertor. Our modeling effort is focusing at extinguishing type-I ELMs: conditions for expelled plasma dissipation; efficiency of ELM power handling by detached radiative divertors; and the ELM impact on detachment state. Here time-dependent modeling of a sequence of many ELMs was performed with 2-D edge plasma transport code UEDGE-MB-W which incorporates the Macro-Blob (MB) approach to simulate non-diffusive filamentary transport and various ``Wall'' (W) models for time-dependent hydrogen wall inventory and recycling. Three cases were modeled, in which extinguishing ELMs are achieved due to: (i) intrinsic impurities via graphite sputtering, (ii) extrinsic impurity gas puff (Ne), and (iii) =(i) +(ii). For each case, we performed a series of UEDGE-MB-W runs scanning the deuterium and impurity inventories, pedestal losses and ELM frequency. Temporal variations of the degree of detachment, ionization front shape, recombination sink strength, radiated fraction, peak power loads, OSP, impurity charge states, and in/out asymmetries were analyzed. We discuss the onset of extinguishing ELMs, conditions for not burning through and enhanced plasma recombination as functions of scanned parameters. Efficiencies of intrinsic and extrinsic impurities in ELM extinguishing are compared.

  17. Start-to-end simulation of a Thomson source for mammography

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, P., E-mail: oliva@uniss.i [Istituto di Matematica e Fisica dell' Universita degli Studi di Sassari e Sezione INFN di Cagliari (Italy); Bacci, A. [Sezione INFN e Dipartimento di Fisica dell' Universita degli Studi di Milano (Italy); Bottigli, U. [Dipartimento di Fisica dell' Universita degli Studi di Siena e Sezione INFN di Pisa (Italy); Carpinelli, M. [Istituto di Matematica e Fisica dell' Universita degli Studi di Sassari e Sezione INFN di Cagliari (Italy); Delogu, P. [Dipartimento di Fisica dell' Universita degli Studi e Sezione INFN di Pisa (Italy); Ferrario, M. [INFN, Laboratori Nazionali di Frascati (Italy); Giulietti, D. [Dipartimento di Fisica dell' Universita degli Studi e Sezione INFN di Pisa (Italy); Golosio, B. [Istituto di Matematica e Fisica dell' Universita degli Studi di Sassari e Sezione INFN di Cagliari (Italy); Petrillo, V.; Serafini, L. [Sezione INFN e Dipartimento di Fisica dell' Universita degli Studi di Milano (Italy); Tomassini, P. [Sezione INFN di Milano (Italy); Vaccarezza, C.; Vicario, C. [INFN, Laboratori Nazionali di Frascati (Italy); Stefanini, A. [Dipartimento di Fisica dell' Universita degli Studi e Sezione INFN di Pisa (Italy)

    2010-03-21

    Thomson scattering X-ray sources have many features which are of relevance for several applications: the main one is the capability to produce intense, quasi-monochromatic, tunable X-ray beams, after collimation, still with a reasonably small size apparatus. Applications to medical physics are straightforward, in particular in mammography where dose control in screening programs is the main relevant issue. An optimal choice of the X-ray energy to image the breast will result in a best image quality and hence will lead to a dose reduction. A Thomson scattering source is presently under development at the Frascati National Laboratories (LNF) of INFN (Istituto Nazionale di Fisica Nucleare). A complete simulation of the source including electron beam, laser beam, Thomson interaction and X-ray imaging is presented. The X-rays are generated in the energy range suitable for mammography and used to generate images of a mammographic phantom. Image quality is evaluated in terms of dose efficiency and compared to those obtained by monochromatic beams and conventional X-ray tubes.

  18. Start-to-end simulation of a Thomson source for mammography

    Science.gov (United States)

    Oliva, P.; Bacci, A.; Bottigli, U.; Carpinelli, M.; Delogu, P.; Ferrario, M.; Giulietti, D.; Golosio, B.; Petrillo, V.; Serafini, L.; Tomassini, P.; Vaccarezza, C.; Vicario, C.; Stefanini, A.

    2010-03-01

    Thomson scattering X-ray sources have many features which are of relevance for several applications: the main one is the capability to produce intense, quasi-monochromatic, tunable X-ray beams, after collimation, still with a reasonably small size apparatus. Applications to medical physics are straightforward, in particular in mammography where dose control in screening programs is the main relevant issue. An optimal choice of the X-ray energy to image the breast will result in a best image quality and hence will lead to a dose reduction. A Thomson scattering source is presently under development at the Frascati National Laboratories (LNF) of INFN (Istituto Nazionale di Fisica Nucleare). A complete simulation of the source including electron beam, laser beam, Thomson interaction and X-ray imaging is presented. The X-rays are generated in the energy range suitable for mammography and used to generate images of a mammographic phantom. Image quality is evaluated in terms of dose efficiency and compared to those obtained by monochromatic beams and conventional X-ray tubes.

  19. Fast Ion Collective Thomson Scattering Diagnostic for ITER

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Bindslev, Henrik; Furtula, Vedran

    2008-01-01

    In the era of high power and burning plasma fusion experiments with significant populations of fast particles, the diagnosis of fast ion dynamics becomes an important topic. In ITER, populations of fast ions due to ICRH and NBI, as well as fusion born alphas will carry a significant fraction of t...

  20. 105 GHz Notch Filter Design for Collective Thomson Scattering

    DEFF Research Database (Denmark)

    Furtula, Vedran; Michelsen, Poul; Leipold, Frank;

    2011-01-01

    A millimeter-wave notch filter with 105-GHz center frequency, >20-GHz passband coverage, and 1-GHz rejection bandwidth has been constructed. The design is based on a fundamental rectangular waveguide with cylindrical cavities coupled by narrow iris gaps, i.e., small elongated holes of negligible...... thickness. We use numerical simulations to study the sensitivity of the notch filter performance to changes in geometry and in material conductivity within a bandwidth of ±10 GHz. The constructed filter is tested successfully using a vector network analyzer monitoring a total bandwidth of 20 GHz...

  1. Numerical studies on divertor plasmas in helical systems

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Noriaki (Mitsubishi Atomic Power Industries, Inc., Tokyo (Japan)); Itoh, Kimitaka; Itoh, Sanae

    1989-12-01

    Scrape-off layer and divertor plasmas in helical systems are studied by using the two-dimensional (2D) numerical simulation code. Unified edge divertor analysis code (UEDA code) is applied to the straight helical model of torsatron/helical heliotron configurations. 2D profiles of plasma parameter, neutrals and impurities are obtained. Erosion rate and neutral back flow rate to the core plasma are also evaluated. Various shapes of the buffle plate are examined from the view point of the establishment of 'dense-cold divertor plasma' by which we can avoid the damage of the target plate. (author).

  2. A review of ELMs in divertor tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Hill, D.N.

    1996-05-23

    This paper reviews what is known about edge localized modes (ELMs), with an emphasis on their effect on the scrape-off layer and divertor plasmas. ELM effects have been measured in the ASDEX-U, C-Mod, COMPASS-D, DIII-D, JET, JFT-2M,JT-60U, and TCV tokamaks and are reported here. At least three types of ELMs have been identified and their salient features determined. Type-1 giant ELMs can cause the sudden loss of up to 10-15% of the plasma stored energy but their amplitude ({Delta}W/W) does not increase with increasing power. Type- 3 ELMs are observed near the H-mode power threshold and produce small energy dumps (1-3% of the stored energy). All ELMs increase the scrape- off layer plasma and produce particle fluxes on the divertor targets which are as much as ten times larger that the quiescent phase between ELMs. The divertor heat pulse is largest on the inner target, unlike that of L-Mode or quiescent H-mode; some tokamaks report radial structure in the heat flux profile which is suggestive of islands or helical structures. The power scaling of Type-1 ELM amplitude and frequency have been measured in several tokamaks and has recently been applied to predictions of the ELM Size in ITER. Concern over the expected ELM amplitude has led to a number of experiments aimed at demonstrating active control of ELMs. Impurity gas injection with feedback control on the radiation loss in ASDEX-U suggests that a promising mode of operation (the CDH-mode) with a very small type-3 ELMs can be maintained with heating power sell above the H-mode threshold, where giant type-1 ELMs can be maintained with heating power well above the H-mode threshold, where Giant type-1 ELMs are normally observed. While ELMs have many potential negative effects, the beneficial effect of ELMs in providing density control and limiting the core plasma impurity content in high confinement H- mode discharges should not be overlooked.

  3. Manganese Nitride Sorption Joule-Thomson Refrigerator

    Science.gov (United States)

    Jones, Jack A.; Phillips, Wayne M.

    1992-01-01

    Proposed sorption refrigeration system of increased power efficiency combines MnxNy sorption refrigeration stage with systems described in "Regenerative Sorption Refrigerator" (NPO-17630). Measured pressure-vs-composition isotherms for reversible chemisorption of N2 in MnxNy suggest feasibility to incorporate MnxNy chemisorption stage in Joule-Thomson cryogenic system. Discovery represents first known reversible nitrogen chemisorption compression system. Has potential in nitrogen-isotope separation, nitrogen purification, or contamination-free nitrogen compression.

  4. Compatibility of detached divertor operation with robust edge pedestal performance

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, A.W., E-mail: leonard@fusion.gat.com [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Makowski, M.A.; McLean, A.G. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Osborne, T.H.; Snyder, P.B. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States)

    2015-08-15

    The compatibility of detached radiative divertor operation with a robust H-mode pedestal is examined in DIII-D. A density scan produced low temperature plasmas at the divertor target, T{sub e} ⩽ 2 eV, with high radiation leading to a factor of ⩾4 drop in peak divertor heat flux. The cold radiative plasma was confined to the divertor and did not extend across the separatrix in X-point region. A robust H-mode pedestal was maintained with a small degradation in pedestal pressure at the highest densities. The response of the pedestal pressure to increasing density is reproduced by the EPED pedestal model. However, agreement of the EPED model with experiment at high density requires an assumption of reduced diamagnetic stabilization of edge Peeling–Ballooning modes.

  5. Thermal Fatigue Study on the Divertor Plate Materials

    Institute of Scientific and Technical Information of China (English)

    吴继红; 张斧; 许增裕; 严建成

    2002-01-01

    Thermal fatigue property of the divertor plate is one of the key issues that governs the lifetime of the divertor plate. Taking tungsten as surface material, a small-mock-up divertor plate was made by hot isostatic press welding (HIP). A thermal cycling experiment for divertor mock-up was carried out in the vacuum, where a high-heat-flux electronic gun was used as the thermal source. A cyclic heat flux of 9 MW/m2 was loaded onto the mock-up, a heating duration of 20 s was selected, the cooling water flow rate was 80 ml/s. After 1000 cycles, the surface and the W/Cu joint of the mock-up did not show any damage. The SEM was used to analyze the microstructure of the welding joint, where no cracks were found also.

  6. Numerical analysis of divertor plasma for demo-CREST

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, M.; Maeki, K.; Hatayama, A. [Graduate School of Fundamental Science and Technology, Keio University, Yokohama (Japan); Hiwatari, R. [Central Research Institute of Electric Power Industry (CRIEPI), Tokyo (Japan); Bonnin, X. [LIMHP-CNRS, Universite Paris 13, Villetaneuse (France); Zhu, S. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Schneider, R. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Greifswald (Germany); Coster, D. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany)

    2010-05-15

    The numerical analysis of the demonstration fusion reactor Demo-CREST has been carried out; this analysis focuses on impurity seeding. Several design activities for DEMO have been carried out; however, its detailed divertor plasma analysis remains to be carried out. Therefore, in this study, we discuss the possibility of neon puffing in demo-CREST to decrease the power load to the divertor plate by using the B2-EIRENE code. It has been shown that the radiation power loss by neon increases with upstream plasma density and that the peak power load to the divertor plate comes close to the allowable level by using the preliminary divertor configuration (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Plasma detachment with molecular processes in divertor plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, N.; Ezumi, N.; Nishijima, D.; Takamura, S. [Dept. of Energy Engineering and Science, Graduate School of Engineering, Nagoya Univ., Nagoya, Aichi (Japan); Krasheninnikov, S.I.; Pigarov, A.Yu. [MIT Plasma Science and Fusion Center, Cambridge, MA (United States)

    2000-01-01

    Molecular processes in detached recombining plasmas are briefly reviewed. Several reactions with vibrationally excited hydrogen molecule related to recombination processes are described. Experimental evidence of molecular activated recombination observed in a linear divertor plasma simulator is also shown. (author)

  8. Divertor IR thermography on Alcator C-Mod.

    Science.gov (United States)

    Terry, J L; LaBombard, B; Brunner, D; Payne, J; Wurden, G A

    2010-10-01

    Alcator C-Mod is a particularly challenging environment for thermography. It presents issues that will similarly face ITER, including low-emissivity metal targets, low-Z surface films, and closed divertor geometry. In order to make measurements of the incident divertor heat flux using IR thermography, the C-Mod divertor has been modified and instrumented. A 6° toroidal sector has been given a 2° toroidal ramp in order to eliminate magnetic field-line shadowing by imperfectly aligned divertor tiles. This sector is viewed from above by a toroidally displaced IR camera and is instrumented with thermocouples and calorimeters. The camera provides time histories of surface temperatures that are used to compute incident heat-flux profiles. The camera sensitivity is calibrated in situ using the embedded thermocouples, thus correcting for changes and nonuniformities in surface emissivity due to surface coatings.

  9. Divertor IR thermography on Alcator C-Moda)

    Science.gov (United States)

    Terry, J. L.; LaBombard, B.; Brunner, D.; Payne, J.; Wurden, G. A.

    2010-10-01

    Alcator C-Mod is a particularly challenging environment for thermography. It presents issues that will similarly face ITER, including low-emissivity metal targets, low-Z surface films, and closed divertor geometry. In order to make measurements of the incident divertor heat flux using IR thermography, the C-Mod divertor has been modified and instrumented. A 6° toroidal sector has been given a 2° toroidal ramp in order to eliminate magnetic field-line shadowing by imperfectly aligned divertor tiles. This sector is viewed from above by a toroidally displaced IR camera and is instrumented with thermocouples and calorimeters. The camera provides time histories of surface temperatures that are used to compute incident heat-flux profiles. The camera sensitivity is calibrated in situ using the embedded thermocouples, thus correcting for changes and nonuniformities in surface emissivity due to surface coatings.

  10. Evaluation of helium cooling for fusion divertors

    Energy Technology Data Exchange (ETDEWEB)

    Baxi, C.B.

    1993-09-01

    The divertors of future fusion reactors will have a power throughput of several hundred MW. The peak heat flux on the diverter surface is estimated to be 5 to 15 MW/m{sup 2} at an average heat flux of 2 MW/m{sup 2}. The divertors have a requirement of both minimum temperature (100{degrees}C) and maximum temperature. The minimum temperature is dictated by the requirement to reduce the absorption of plasma, and the maximum temperature is determined by the thermo-mechanical properties of the plasma facing materials. Coolants that have been considered for fusion reactors are water, liquid metals and helium. Helium cooling has been shown to be very attractive from safety and other considerations. Helium is chemically and neutronically inert and is suitable for power conversion. The challenges associated with helium cooling are: (1) Manifold sizes; (2) Pumping power; and (3) Leak prevention. In this paper the first two of the above design issues are addressed. A variety of heat transfer enhancement techniques are considered to demonstrate that the manifold sizes and the pumping power can be reduced to acceptable levels. A helium-cooled diverter module was designed and fabricated by GA for steady-state heat flux of 10 MW/m{sup 2}. This module was recently tested at Sandia National Laboratories. At an inlet pressure of 4 MPa, the module was tested at a steady-state heat flux of 10 MW/m{sup 2}. The pumping power required was less than 1% of the power removed. These results verified the design prediction.

  11. 78 FR 8587 - Thomson Reuters, Finance Operations & Technology Division, Including On-Site Leased Workers From...

    Science.gov (United States)

    2013-02-06

    ... Employment and Training Administration Thomson Reuters, Finance Operations & Technology Division, Including... Worker Adjustment Assistance on August 2, 2012, applicable to workers of Thomson Reuters, Finance... that workers of Thomson Reuters, Finance Operations & Technology Division, including on-site...

  12. 75 FR 47632 - Thomson Reuters Legal, Legal Editorial Operations, Cleveland Office, Including Workers Whose...

    Science.gov (United States)

    2010-08-06

    ... Employment and Training Administration Thomson Reuters Legal, Legal Editorial Operations, Cleveland Office..., applicable to workers of Thomson Reuters Legal, Legal Editorial Operations, Cleveland Office, Independence... that some workers separated from employment at the Independence, Ohio location of Thomson Reuters...

  13. Beryllium flux distribution and layer deposition in the ITER divertor

    Science.gov (United States)

    Schmid, K.

    2008-10-01

    The deposition of Be eroded from the main chamber wall on the W surfaces in the ITER divertor could result in the formation of Be rich Be/W mixed layers with a low melting temperature compared with pure W. To predict whether or not these layers form the Be flux distribution in the ITER divertor is required. This paper presents the results of a combination of plasma transport with erosion/deposition simulations that allow one to calculate both the Be flux distribution and the Be layer deposition in the ITER divertor. This model includes the Be source due to Be erosion in the main chamber and the deposition, re-erosion and re-deposition of Be in the ITER divertor. The calculations show that the fraction of Be in the incident particle flux in the divertor ranges from ≈10-3 to ≈5% with a pronounced inner-outer divertor asymmetry. The flux fractions in the inner divertor are on average ten times higher than in the outer divertor. Thick Be layers only form at the inner strike point and the dome baffles. The highest Be layer growth rate is found to be 1.0 nm s-1. Despite the Be deposition the formation of Be rich Be/W mixed layers is not to be expected in ITER. The expected surface temperature at these locations during steady-state operation is too low as to result in Be diffusion into W and thus Be/W mixed layers cannot form. The paper also discusses the influence of off normal events such as ELMs or VDEs on the formation of Be/W mixed layers.

  14. Continued Development of Python-Based Thomson Data Analysis and Associated Visualization Tool for NSTX-U

    Science.gov (United States)

    Wallace, William; Miller, Jared; Diallo, Ahmed

    2015-11-01

    MultiPoint Thomson Scattering (MPTS) is an established, accurate method of finding the temperature, density, and pressure of a magnetically confined plasma. Two Nd:YAG (1064 nm) lasers are fired into the plasma with a effective frequency of 60 Hz, and the light is Doppler shifted by Thomson scattering. Polychromators on the NSTX-U midplane collect the scattered photons at various radii/scattering angles, and the avalanche photodiode voltages are saved to an MDSplus tree for later analysis. IDL code is then used to determine plasma temperature, pressure, and density from the captured polychromator measurements via Selden formulas. [1] Previous work [2] converted the single-processor IDL code into Python code, and prepared a new architecture for multiprocessing MPTS in parallel. However, that work was not completed to the generation of output data and curve fits that match with the previous IDL. This project refactored the Python code into a object-oriented architecture, and created a software test suite for the new architecture which allowed identification of the code which generated the difference in output. Another effort currently underway is to display the Thomson data in an intuitive, interactive format. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Community College Internship (CCI) program.

  15. Turbulent Simulations of Divertor Detachment Based On BOUT + + Framework

    Science.gov (United States)

    Chen, Bin; Xu, Xueqiao; Xia, Tianyang; Ye, Minyou

    2015-11-01

    China Fusion Engineering Testing Reactor is under conceptual design, acting as a bridge between ITER and DEMO. The detached divertor operation offers great promise for a reduction of heat flux onto divertor target plates for acceptable erosion. Therefore, a density scan is performed via an increase of D2 gas puffing rates in the range of 0 . 0 ~ 5 . 0 ×1023s-1 by using the B2-Eirene/SOLPS 5.0 code package to study the heat flux control and impurity screening property. As the density increases, it shows a gradually change of the divertor operation status, from low-recycling regime to high-recycling regime and finally to detachment. Significant radiation loss inside the confined plasma in the divertor region during detachment leads to strong parallel density and temperature gradients. Based on the SOLPS simulations, BOUT + + simulations will be presented to investigate the stability and turbulent transport under divertor plasma detachment, particularly the strong parallel gradient driven instabilities and enhanced plasma turbulence to spread heat flux over larger surface areas. The correlation between outer mid-plane and divertor turbulence and the related transport will be analyzed. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-675075.

  16. X-Divertors on ITER - with no hardware changes

    Science.gov (United States)

    Valanju, Prashant; Covele, Brent; Kotschenreuther, Mike; Mahajan, Swadesh; Kessel, Charles

    2014-10-01

    Using CORSICA, we have discovered that X-Divertor (XD) equilibria are possible on ITER - without any extra PF coils inside the TF coils, and with no changes to ITER's poloidal field (PF) coil set, divertor cassette, strike points, or first wall. Starting from the Standard Divertor (SD), a sequence of XD configurations (with increasing flux expansions at the divertor plate) can be made by reprogramming ITER PF coil currents while keeping them all under their design limits (Lackner and Zohm have shown this to be impossible for Snowflakes). The strike point is held fixed, so no changes in the divertor or pumping hardware will be needed. The main plasma shape is kept very close to the SD case, so no hardware changes to the main chamber will be needed. Time-dependent ITER-XD operational scenarios are being checked using TSC. This opens the possibility that many XDs could be tested and used to assist in high-power operation on ITER. Because of the toroidally segmented ITER divertor plates, strongly detached operation may be critical for making use of the largest XD flux expansion possible. The flux flaring in XDs is expected to increase the stability of detachment, so that H-mode confinement is not affected. Detachment stability is being examined with SOLPS. This work supported by US DOE Grants DE-FG02-04ER54742 and DE-FG02-04ER54754 and by TACC at UT Austin.

  17. Analytic 1D Approximation of the Divertor Broadening S in the Divertor Region for Conductive Heat Transport

    CERN Document Server

    Nille, Dirk; Eich, Thomas

    2016-01-01

    Topic is the divertor broadening $S$, being a result of perpendicular transport in the scrape-off layer and resulting in a better distribution of the power load onto the divertor target. Recent studies show a scaling of the divertor broadening with an inverse power law to the target temperature $T_t$, promising its reduction to be a way of distributing the power entering the divertor volume onto a large surface area. It is shown that for pure conductive transport in the divertor region the suggested inverse power law scaling to $T_t$ is only valid for high target electron temperatures. For decreasing target temperatures ($T_t < 20\\,$eV) the increase of $S$ stagnates and the conductive model results in a finite value of $S$ even for zero target temperature. It is concluded that the target temperature is no valid parameter for a power law scaling, as it is not representative for the entire divertor volume. This is shown in simulations solving the 2D heat diffusion equation, which is used as reference for an ...

  18. John Thomson: Photojournalist in Asia, 1862-1872.

    Science.gov (United States)

    Parker, Elliott S.

    John Thomson was a nineteenth-century British photojournalist who used the wet-plate process to illustrate his explorations of eastern and Southeast Asia. His travels from 1862 to 1872 took him to the following places, among others: Ceylon, Cambodia, Singapore, Thailand, Saigon, Siam, mainland China, and Taiwan. Thomson chose to use the wet-plate…

  19. Basics of Joule-Thomson Liquefaction and JT Cooling

    Science.gov (United States)

    de Waele, A. T. A. M.

    2017-03-01

    This paper describes the basic operation of Joule-Thomson liquefiers and Joule-Thomson coolers. The discussion is based on the first law of thermodynamics mainly using hT-diagrams. It is limited to single-component fluids. A nitrogen liquefier and a helium cooler are discussed as important examples.

  20. Study of the Joule-Thomson effect of Vuktylskiy gas

    Energy Technology Data Exchange (ETDEWEB)

    Buleyko, M.D.; Buleyko, V.M.; Bytsko, L.L.; Starodubtsev, A.M.

    1980-01-01

    Results of studying the effect of the physical chemical-characteristics of formational gas of Vuktylskiy gas-condensate deposit on the integral Joule-Thomson affect and hydraulic resistance in well loops are presented. The effect of the amount of dropping liquid on the value of the integral Joule-Thomson affect is indicated.

  1. Thomson's Theorem of Electrostatics: Its Applications and Mathematical Verification

    Science.gov (United States)

    Bakhoum, Ezzat G.

    2008-01-01

    A 100 years-old formula that was given by J. J. Thomson recently found numerous applications in computational electrostatics and electromagnetics. Thomson himself never gave a proof for the formula; but a proof based on Differential Geometry was suggested by Jackson and later published by Pappas. Unfortunately, Differential Geometry, being a…

  2. New digital circuits at Thomson semiconductor in France

    Science.gov (United States)

    Dellamussia, J. P.

    1985-11-01

    DCS, Thomson Semiconductors' Semi-Standard Circuits Department, has just announced a CMOS gate array with up to 4,200 gates, standard cells, and a unique 900-component, 3 GHz linear gate array. All of Thomson's gate arrays are supported by Daisy, Valid and Mentor workstations. These are the first fruits of a reorganization begun several months ago to distance the department from the actual design and manufacture of integrated circuits, making it more of an archestrator among customers, workstation manufacturers, independent designers and the various Thomson Semiconductors division. Thomson Semiconductors' silicon sales based on DCS contracts totaled 25,000,000 Frances in 1984. This figure should be double in 1985. Thomson Semiconductors plans to offer 120 new integrated circuits this year, twice the number available in 1984. At the same time, the Munich design center and the American subsidiary, VSI, should open new markets in 1985, bringing exports to an estimated 30 percent of sales.

  3. Numerical Simulation of the Neutralized α Particle Transport near the Divertor Plate Region

    Institute of Scientific and Technical Information of China (English)

    李承跃

    2012-01-01

    The statistical random sample technique has been utilized to develop a new Monte-Carlo algorithm MCHET code recently. A large amount of comparative simulation calculation work relating to the neutralized alpha-particle transport has been performed. As a result, we have found the beneficial optimizing plasma density and temperature profiles in the divertor region, with the great resulting improvement of helium ash removal efficiency by the simultaneously externally applied proper RF ponderomotive force potential energy in the vicinity of the divertor plate region. In this work the dominant atomic processes of electron impact ionization and elastic scattering by plasma ions are included. The thermal and streaming motion of the ions along the magnetic field is taken into consideration. Important conclusions are obtained that the probability of neutral helium turning back to the target plate will increase at least by 50% for the optimized combination of the beneficial density, temperature profiles and proper RF perpendicular electric field. For FEB (Fusion Experimental Breeder) reactor design parameters, the RF ponderomotive potential enhancement from 0.5 to 0.9 of ash removal efficiency can be obviously obtained. In the meantime, the tritium inventory may also be reduced to some extent.

  4. Spectroscopic investigations of divertor detachment in TCV

    CERN Document Server

    Verhaegh, K; Duval, B P; Harrison, J R; Reimerdes, H; Theiler, C; Labit, B; Maurizio, R; Marini, C; Nespoli, F; Sheikh, U; Tsui, C K; Vianello, N; Vijvers, W A J

    2016-01-01

    The aim of this work is to provide an understanding of detachment at TCV with emphasis on analysis of the Balmer line emission. A new Divertor Spectroscopy System has been developed for this purpose. Further development of Balmer line analysis techniques has allowed detailed information to be extracted on free-free and three-body recombination. During density ramps, the plasma at the target detaches as inferred from a drop in density at, and ion current to, the target. At the same time the Balmer $6\\rightarrow2$ and $7\\rightarrow2$ line emission near the target is dominated by recombination, indicating that the ionization region has also detached from the target to be replaced by a recombining region with densities more than a factor 2 higher than at the target. As the core density increases further, the density and recombination rate are rising all along the outer leg to the x-point while remaining highest at the target. Even at the highest core densities accessed (Greenwald fraction 0.7) the peaks in recomb...

  5. Efficiency of water coolant for DEMO divertor

    Energy Technology Data Exchange (ETDEWEB)

    Fetzer, Renate, E-mail: renate.fetzer@kit.edu; Igitkhanov, Yuri; Bazylev, Boris

    2015-10-15

    Up to now, water-cooled divertor concepts have been developed for limited incident fluxes without taking into account transient power loadings. In this paper we analyzed the efficiency of water as a coolant for the particular PFC tungsten monoblock shield with a cooling tube made from Cu alloy (Cu OFHC) as a laminate adjacent to W and a low activation martensitic steel (Eurofer) as inner tube contacting the coolant. Thermal analysis is carried out by using the code MEMOS, which simulates W armour damage under the repetitive ELM heat loads. We consider cooling conditions which allow one to keep relatively high material temperatures (in the range 300–600 °C) thus minimizing Eurofer embrittlement under neutron irradiation. Expected DEMO I and DEMO II heat loads including type I ELMs are found to cause melting of the W surface during unmitigated ELMs. By mitigation of the ELMs melting of W is avoided. DEMO I operation under these conditions is save for cooling at water pressure 15.5 MPa and temperature 325 °C, while for DEMO II with mitigated ELMs the critical heat flux is exceeded and safe operation is not provided.

  6. Status of Thomson source at SPARC/PLASMONX

    Energy Technology Data Exchange (ETDEWEB)

    Bacci, A. [INFN-MI/University of Milano (Italy)], E-mail: alberto.bacci@mi.infn.it; Broggi, F.; DeMartinis, C.; Giove, D.; Maroli, C.; Petrillo, V.; Rossi, A.R.; Serafini, L.; Tomassini, P. [INFN-MI/University of Milano (Italy); Cultrera, L.; Di Pirro, G.; Ferrario, M.; Filippetto, D.; Gatti, G.; Pace, E.; Vaccarezza, C.; Vicario, C. [INFN-LNF (Italy); Bosi, F.; Giulietti, D.; Gizzi, L.A. [INFN-Pisa/CNR-IPCF/Pisa and University of Pisa (Italy)] (and others)

    2009-09-01

    The PLasma Acceleration and MONochromatic X-ray generation (PLASMONX) project foresees the installation at LNF of a 0.3 PW (6 J, 20 fs pulse) Ti:Sa laser system, named Frascati Laser for Acceleration and Multidisciplinary Experiments (FLAME), to operate in close connection with the existent SPARC electron photo-injector, allowing for advanced laser/e-beam interaction experiments. Among the foreseen scientific activities, a Thomson scattering experiment between the SPARC electron bunch and the high power laser will be performed. At the present time the linac has been tested and the electron beam characterized up to the maximum operating energy (150 MeV). The beam lines transporting the beam to the interaction chamber with the laser have been designed. The electron final focusing system, featuring a quadrupole triplet and large radius solenoid magnet (ensuring an e-beam waist of 5-10 {mu}m) as well as the whole interaction chamber layout has been defined. The optical transfer line issues: transport up to the interaction; tight focusing; diagnostics and fine positioning; have been solved within the final design. The construction of the building hosting the laser has been completed; delivering and installation of the laser, as much of the beam lines elements will take place in the next months.

  7. Initial Development of the NSTX-U Snowflake Divertor Control

    Science.gov (United States)

    Vail, Patrick; Kolemen, Egemen; Welander, Anders; Lanctot, Matthew

    2015-11-01

    A feedback control system has been implemented at NSTX-U for real-time detection and manipulation of snowflake divertor (SFD) magnetic configurations. The SFD is an alternative magnetic divertor concept that is characterized by a second-order null formed by two x-points in close proximity. The SFD is an attractive option for heat flux mitigation for NSTX-U in which unmitigated peak heat fluxes in standard divertor operation near 20 MW/m2 may compromise plasma-facing components. The real-time control system at NSTX-U is capable of simultaneous control of multiple SFD parameters, such as the separation between the two x-points in the divertor region and their orientation. Control of SFD configurations in NSTX-U has been simulated in TOKSYS using the upgraded sets of poloidal field coils in both the upper and lower divertor regions. Performance of the real-time control system and its effect on plasma performance will be assessed experimentally as an initial step toward the development of the SFD concept at NSTX-U. Supported by the US DOE under DE-AC02-09CH11466.

  8. Hydrogen recycling and transport in the helical divertor of TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Clever, Meike

    2010-07-01

    The aim of this thesis was to investigate the hydrogen recycling at the target plates of the helical divertor in TEXTOR and by this the capability of this divertor configuration to access such favourable operational regimes. In order to study the different divertor density regimes in TEXTOR, discharges were performed in which the total plasma density was increased continuously up to the density limit. The recycling was investigated in a fixed helical divertor structure where four helical strike points with a poloidal width of about 8-10 cm are created at the divertor target plates. The experimental investigation of the hydrogen recycling was carried out using mainly spectroscopic methods supplemented by Langmuir probe, interferometric and atomic beam measurements. In the framework of this thesis a spectroscopic multi camera system has been built that facilitates the simultaneous observation of four different spectral lines, recording images of the divertor target plates and the plasma volume close to the target. The system facilitates the simultaneous measurement of the poloidal and toroidal pattern of the recycling flux at the divertor target without the need for sweeping the plasma structure. The simultaneous observation of different spectral lines reduces the uncertainty in the analysis based on several lines, as the contribution from uncertainties in the reproducibility of plasma parameters in different discharges are eliminated and only the uncertainty of the measurement method limits the accuracy. The spatial resolution of the system in poloidal and toroidal direction (0.8 mm{+-}0.01 mm) is small compared to the separation of the helical strike points, the capability of the measurement method to resolve these structures is therefore limited by the line-of-sight integration and the penetration depth of the light emitting species. The measurements showed that the recycling flux increases linearly with increasing plasma density, a high recycling regime is not

  9. Plasma transport in a simulated magnetic-divertor configuration

    Energy Technology Data Exchange (ETDEWEB)

    Strawitch, C. M.

    1981-03-01

    The transport properties of plasma on magnetic field lines that intersect a conducting plate are studied experimentally in the Wisconsin internal ring D.C. machine. The magnetic geometry is intended to simulate certain aspects of plasma phenomena that may take place in a tokamak divertor. It is found by a variety of measurements that the cross field transport is non-ambipolar; this may have important implications in heat loading considerations in tokamak divertors. The undesirable effects of nonambipolar flow make it preferable to be able to eliminate it. However, we find that though the non-ambipolarity may be reduced, it is difficult to eliminate entirely. The plasma flow velocity parallel to the magnetic field is found to be near the ion acoustic velocity in all cases. The experimental density and electron temperature profiles are compared to the solutions to a one dimensional transport model that is commonly used in divertor theory.

  10. Radiative divertor plasmas with convection in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Leornard, A.W. [General Atomics, San Diego, CA (United States); Porter, G.D.; Wood, R.D. [Lawrence Livermore National Lab., CA (United States)] [and others

    1998-01-01

    The radiation of divertor heat flux on DIII-D is shown to greatly exceed the limits imposed by assumptions of energy transport dominated by electron thermal conduction parallel to the magnetic field. Approximately 90% of the power flowing into the divertor is dissipated through low Z radiation and plasma recombination. The dissipation is made possible by an extended region of low electron temperature in the divertor. A one-dimensional analysis of the parallel heat flux finds that the electron temperature profile is incompatible with conduction dominated parallel transport. Plasma flow at up to the ion acoustic speed, produced by upstream ionization, can account for the parallel heat flux. Modeling with the two-dimensional fluid code UEDGE has reproduced many of the observed experimental features.

  11. A novel approach to magnetic divertor configuration design

    Science.gov (United States)

    Blommaert, M.; Baelmans, M.; Dekeyser, W.; Gauger, N. R.; Reiter, D.

    2015-08-01

    Divertor exhaust system design and analysis tools are crucial to evolve from experimental fusion reactors towards commercial power plants. In addition to material research and dedicated vessel geometry design, improved magnetic configurations can contribute to sustaining the diverted heat loads. Yet, computational design of the magnetic divertor is a challenging process involving a magnetic equilibrium solver, a plasma edge grid generator and a computationally demanding plasma edge simulation. In this paper, an integrated approach to efficient sensitivity calculations is discussed and applied to a set of slightly reduced divertor models. Sensitivities of target heat load performance to the shaping coil currents are directly evaluated. Using adjoint methods, the cost for a sensitivity evaluation is reduced to about two times the simulation cost of one specific configuration. Further, the use of these sensitivities in an optimal design framework is illustrated by a case with realistic Joint European Torus (JET) configurational parameters.

  12. TECXY study of a liquid lithium divertor for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Pelka, G.; Chmielewski, P.; Zagorski, R. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Pericoli-Ridolfini, V.; Viola, B. [ENEA C.R. Frascati, Roma (Italy)

    2016-08-15

    Divertor targets made out of a capillary porous system (CPS) filled with liquid lithium, have been proposed as an alternative to standard, solid state plates. In the current work we simulate the DEMO edge plasma in either a standard single-null or snowflake divertor configuration. Our tool is the 2D code TECXY. Lithium ablated from the target plate surface and released into the plasma is shown here to partially screen the incoming heat flux. Lithium's moderate SOL radiation levels suggest additional seeding to be beneficial. Very high heat fluxes to the divertor need to be avoided, as intensive lithium evaporation might unacceptably pollute the plasma. (copyright 2016 The Authors. Contributions to Plasma Physics published by Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Turbulence during ergodic divertor experiments in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Payan, J.; Garbet, X.; Chatenet, J.H.; Clairet, F.; De Michelis, C.; Devynck, P.; Ghendrih, P.; Gil, C.; Grosman, A.; Guirlet, R. [and others

    1994-12-01

    The level of density fluctuations is shown to decrease during ergodic divertor operation in Tore Supra. This decrease of the turbulence is correlated with the onset of a temperature pedestal and a local improvement of the confinement. This pedestal is located close to the electric shear layer, i.e., within a narrow region between the plasma core and the ergodic layer. The onset of such a pedestal explains why the central electron temperature is not changed when the ergodic divertor is switched on, in spite of an ergodic zone where the temperature is low. (author). 30 refs., 14 figs.

  14. Resonant magnetic perturbations and divertor footprints in poloidally diverted tokamaks

    CERN Document Server

    Cahyna, Pavel

    2010-01-01

    General formula describing both the divertor strike point splitting and width of magnetic islands created by resonant magnetic perturbations (RMPs) in a poloidally diverted tokamak equilibrium is derived. Under the assumption that the RMP is produced by coils at the low-field side such as those used to control edge localized modes (ELMs) it is demonstrated that the width of islands on different magnetic surfaces at the edge and the amount of divertor splitting are related to each other. Explanation is provided of aligned maxima of the perturbation spectra with the safety factor profile - an effect empirically observed in models of many perturbation coil designs.

  15. 用于汤姆孙散射诊断的高重频高光束质量焦耳级Nd:YAG纳秒激光器∗%High rep etition rate and high b eam quality joule level Nd:YAG nanosecond laser for Thomson scattering diagnosis

    Institute of Scientific and Technical Information of China (English)

    邱基斯; 唐熊忻; 樊仲维; 陈艳中; 葛文琦; 王昊成; 刘昊

    2016-01-01

    A joule-level Nd:YAG nanosecond laser of high repetition frequency and high beam quality is developed for Thom-son scattering diagnosis. The laser is designed as a master oscillator power-amplifier system mainly including single longitudinal mode seed, pre-amplifier unit and energy extraction unit. The single-longitudinal-mode Q-switched laser of a high stability is taken as the seed laser of output pulse at µJ level. The pre-amplifier unit amplifies the µJ-level pulse laser beam into hundreds of mJ level. In order to obtain the high-quality laser beam output, phase conjugation is adopted to compensate for the laser beam distortion. The ultra-filtered FC-770 is taken as an SBS gain medium of 0.0011 cm−1 absorption coefficient, 197.9 GW/cm2 optical breakdown threshold and 3.5 cm/GW gain coefficient. The double-pass amplification of SBS phase conjugation could realize a real-time repair towards the non-uniformity, deformation and wavefront aberration caused by thermal distortion of the optical components and the laser amplifier to achieve the uniform amplified beam output of high quality close to the diffraction limit. In the energy extraction unit, the amplifier of large-diameter slab is used for energy amplification. The size of the slab is 7 mm × 35 mm × 138.2 mm of 56◦ cutting angle and 0.6% Nd3+ doping concentration. The slab is plated by a layer of SiO2 against light leak. Horizontal pumping mode is adopted. And the slow axis of the laser diode is almost the same as the length of the slat and the direction of laser transmission. The single-plane array is composed of 8 groups of vertical stacks and each group consists of 12 laser diode bars of power 200 W. At 200 Hz repetition frequency, 250 µs pump pulse width and 140 A pump current, the up to 2.3 J stored energy can be achieved The energy extraction unit achieves high gain amplification and finally outputs high-quality laser beam. Under the condition of 200 Hz high repetition frequency and 8.23 µ

  16. Inversion mechanism of Joule-Thomson effect. Joule-Thomson koka no hannenkiko

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, T.; Echigo, R.; Yoshida, H.; Tada, S. (Tokyo Institute of Technology, Tokyo (Japan))

    1994-05-25

    An analysis by means of a molecular dynamics method using argon gas has been made on the Joule-Thomson effect and its inversion mechanism from a molecular theory viewpoint. System temperature, pressure and enthalpy under different conditions were calculated, individual results were compared, and amount of gaseous body temperature change before and after expansion was derived. As a result, an explanation was given successfully by using temperature change due to expansion of equivalent internal energy (Joule effect) and its inversion mechanism. Further, it was made clear that the temperature change due to expansion of equivalent enthalpy (Joule-Thomson effect) and its inversion are generated by two mechanisms: internal energy change as a result of inter-molecular works, and mutual conversion between motion and potential energies. The result therefrom verified that the molecular dynamics method is highly effective for quantitative analysis of the Joule-Thomson effect. The method is estimated applicable also to more complex molecules or mixed gaseous bodies. 4 refs., 11 figs.

  17. Inconsistency of Carnot's theorem's proof by William Thomson

    CERN Document Server

    Ihnatovych, V

    2013-01-01

    William Thomson proved Carnot's theorem basing on postulate: "It is impossible, by means of inanimate material agency, to derive mechanical effect from any portion of matter by cooling it below the temperature of the coldest of the surrounding objects". The present paper demonstrates that Carnot's theorem can be proved based on the contrary Thomson's postulate: "It is impossible to use the mechanical effect to the heating the coldest of surrounding objects". A conclusion that Carnot's theorem does not follow from the Thomson's postulate has been drawn.

  18. Thermal Analysis of the Divertor Primary Heat Transfer System Piping During the Gas Baking Process

    Energy Technology Data Exchange (ETDEWEB)

    Yoder Jr, Graydon L [ORNL; Harvey, Karen [ORNL; Ferrada, Juan J [ORNL

    2011-02-01

    A preliminary analysis has been performed examining the temperature distribution in the Divertor Primary Heat Transfer System (PHTS) piping and the divertor itself during the gas baking process. During gas baking, it is required that the divertor reach a temperature of 350 C. Thermal losses in the piping and from the divertor itself require that the gas supply temperature be maintained above that temperature in order to ensure that all of the divertor components reach the required temperature. The analysis described in this report was conducted in order to estimate the required supply temperature from the gas heater.

  19. Invariance of divertor retention on external particle flow in detached ASDEX upgrade discharges

    Energy Technology Data Exchange (ETDEWEB)

    Bosch, H.; Dux, R.; Haas, G.; Kallenbach, A.; Kaufmann, M.; Lackner, K.; Mertens, V.; Murmann, H.; Poschenrieder, W.; Salzmann, H.; Schweinzer, J.; Suttrop, W.; Weinlich, M. [Max-Planck-Institut fuer Plasmaphysik, IPP-EURATOM Association, D-85748 Garching (Germany); ASDEX Upgrade team% NI team

    1996-04-01

    Divertor plasmas with strong external gas puffing in ASDEX Upgrade have shown very efficient impurity retention, increasing with the divertor neutral gas density. The experiments presented here use feedback-controlled gas puffs in discharges with different pumping speed to keep the divertor neutral gas flux density the same. This allows for the first time a decoupling of the divertor neutral gas flux density and the external gas flow. The resulting plasmas are almost identical and show identical impurity retention, clearly demonstrating the importance of the divertor neutral gas density over the externally induced flow. {copyright} {ital 1996 The American Physical Society.}

  20. Espalhamento Thomson no tiroide compacto TC-1

    OpenAIRE

    Luiz Angelo Berni

    1996-01-01

    Resumo: Pela primeira vez foi instalado o diagnóstico de espalhamento Thomson no Toróide Compacto TC-1 da Unicamp. Primeiramente o diagnóstico foi realizado com uma única passagem do laser de rubi ( energia: 3 J -duração: 40 ns ) pelo plasma com injeção axial e radial do laser e observado a 90° .Com a injeção axial obtivemos uma densidade de (4,3 ± 0,7)x1021 m-3 e uma temperatura eletrônica de ( 8 ± 3) eV. Estes resultados foram confirmados com a geometria radial de injeção do laser com uma d...

  1. On the integral Joule-Thomson effect

    Science.gov (United States)

    Maytal, B.-Z.; Shavit, A.

    In this paper, the integral inversion curve concept is developed, involving the locus of all points with a vanishing integral Joule-Thomson (J-T) effect ΔTh and isothermal enthalpy change. The structure of the ΔhT surface over the plane of ( pr,T r) is explored. The maximum isothermal J-T effect ΔhT is related to the normal boiling temperature of the gas. The correlation of the integral effect based on real gas data with a low acentric factor is compared with Van der Waals' equation of state closed form predictions. The maximum integral isenthalpic J-T effect ΔTh which does not undergo a phase change during the expansion, is studied via Van der Waals' equation of state.

  2. Non-Linear Compton Scattering of Ultrashort and Ultraintense Laser Pulses

    CERN Document Server

    Seipt, D

    2010-01-01

    The scattering of temporally shaped intense laser pulses off electrons is discussed by means of manifestly covariant quantum electrodynamics. We employ a framework based on Volkov states with a time dependent laser envelope in light-cone coordinates within the Furry picture. An expression for the cross section is constructed, which is independent of the considered pulse shape and pulse length. A broad distribution of scatted photons with a rich pattern of subpeaks like that obtained in Thomson scattering is found. These broad peaks may overlap at sufficiently high laser intensity, rendering inappropriate the notion of individual harmonics. The limit of monochromatic plane waves as well as the classical limit of Thomson scattering are discussed. As a main result, a scaling law is presented connecting the Thomson limit with the general result for arbitrary kinematics. In the overlapping regions of the spectral density, the classical and quantum calculations give different results, even in the Thomson limit. Thu...

  3. Taming the plasma-material interface with the snowflake divertor.

    Energy Technology Data Exchange (ETDEWEB)

    Soukhanovskii, V A

    2015-04-24

    Experiments in several tokamaks have provided increasing support for the snowflake configuration as a viable tokamak heat exhaust concept. This white paper summarizes the snowflake properties predicted theoretically and studied experimentally, and identifies outstanding issues to be resolved in existing and future facilities before the snowflake divertor can qualify for the reactor interface.

  4. Overview of experiments with the dynamic ergodic divertor on TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Finken, K.H.; Abdullaev, S.; Biel, W.; Brezinsek, S.; Busch, C.; Harting, D.; Jakubowski, M.; Koslowski, H.R.; Kraemer-Flecken, A.; Kikuchi, Y.; Lehnen, M.; Liang, Y.; Nicolai, A.; Pospieszczyk, A. [Institut fuer Plasmaphysik, Forschungszentrum Juelich GmbH, EURATOM Association, Trilateral Euregio Cluster, D-52425 Juelich (Germany); Bock, M.F.M. de; Classen, I.; Hellermann, M. von; Jaspers, R. [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box: 1207, NL-3430 BE Nieuwegein (Netherlands); Jachmich, S. [Laboratory for Plasma Physics, Association EURATOM - Belgian State, KMS - ERM, Trilateral Euregio Cluster, B-1000 Brussels (Belgium); Kobayashi, M. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki-shi 509-52 Toki (Japan); Reiter, D.; Rompuy, T. van; Samm, U.; Schmitz, O.; Sergienko, G.; Unterberg, B.; Westerhof, E.; Wolf, R.C.; Zimmermann, O.

    2006-09-15

    The Dynamic Ergodic Divertor (DED) has recently been taken into operation on TEXTOR. The device is rather flexible and allows the investigation of very different questions. In the present context we concentrate on the divertor aspect and on results of the m/n=12/4 base mode. The DED-field generates the proper ergodic zone and an area of open magnetic field lines, the laminar zone and the tangle structure. The properties of the laminar zone resemble the divertor region of a poloidal divertor. However, the distribution of the density and temperature is highly 3D and strongly related to the structure of the laminar and ergodic zones. The structures of the heat and particle fluxes to the wall agree well with the predicted patterns. A prominent feature of the ergodization is the creation of an edge electric field which results in a rotation of the plasma. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Enhancing the DEMO divertor target by interlayer engineering

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, T.R., E-mail: tom.barrett@ccfe.ac.uk [CCFE, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom); McIntosh, S.C.; Fursdon, M.; Hancock, D.; Timmis, W.; Coleman, M. [CCFE, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom); Rieth, M.; Reiser, J. [Karlsruhe Institute for Technology, IMF-I, D-7602 Karlsruhe (Germany)

    2015-10-15

    Highlights: • The European ‘near-term’ DEMO forsees a water-cooled divertor. • Divertor targets typically use an interlayer between the armour and structure. • Engineering the properties of the interlayer can yield large gains in performance. • A response surface based design search and optimisation method is used. • A new design passes linear-elastic code rules up to applied heat flux of 18 MW/m{sup 2}. - Abstract: A robust water-cooled divertor target plate solution for DEMO has to date remained elusive. Common to all contemporary concepts is an interlayer at the boundary between the tungsten armour and the cooling structure. In this paper we show by design optimisation that an effectively designed interlayer can produce dramatic gains in power handling. By engineering the interlayer as part of the design study, it is found that divertor performance is enhanced by either a low conductivity ‘Thermal Break’ interlayer or an ‘Ultra-Compliant’ interlayer. For a 10 MW/m{sup 2} surface heat flux we find that a thermal conductivity of 15 W/mK and elastic modulus of 1 GPa are effective. A design is proposed which passes linear-elastic code rules up to an applied heat flux of 18 MW/m{sup 2}.

  6. Divertor performance on carbon and beryllium targets in JET

    Energy Technology Data Exchange (ETDEWEB)

    Janeschitz, G.; Koenig, R.; Lauro-Taroni, L.; Lingertat, J.; Matthews, G.; Stamp, M.; Vlases, G.; Campbell, D.; Clement, S.; De Kock, L.; Ehrenberg, J.; Gottardi, N.; Harbour, P.; Horton, L.; Jaeckel, H.; Lesourd, M.; Loarte, A.; Lowry, C.; Saibene, G.; Summers, D.; Tagle, J.A.; Thomas, P.R.; Von Hellerman, M. (JET Joint Undertaking, Abingdon (United Kingdom)); Eckstein, W.; Roth, J. (Max Planck Inst. fuer Plasmaphysik, Garching (Germany))

    1992-12-01

    The dependence of impurity production and retention on the divertor density, on the power flow into this region as well as on the X-point to target distance are investigated. Model predictions suggest a good impurity retention above a certain divertor (scrape-off) density threshold, which is dependent on heating power. In our experiments pre-programmed midplane or X-point gas puffs were used to scan the density, as well as to avoid the depletion of particles from the divertor and the scrape-off during H-models. The gas puffs reduce T[sub e] and increase N[sub e] in particular at the outer strike zone. In general the Be as well as the C influx increases with density, which is understood from the T[sub e] (T[sub i]) dependence of the sputtering yields. The impurity retention shows the expected improvement with increasing scrape-off (divertor) density as well as with increasing X-point to target distance (connection length). (orig.).

  7. Dual color x rays from Thomson or Compton sources

    Science.gov (United States)

    Petrillo, V.; Bacci, A.; Curatolo, C.; Ferrario, M.; Gatti, G.; Maroli, C.; Rau, J. V.; Ronsivalle, C.; Serafini, L.; Vaccarezza, C.; Venturelli, M.

    2014-02-01

    We analyze the possibility of producing two-color x or γ radiation by Thomson/Compton backscattering between a high intensity laser pulse and a two-energy level electron beam, constituted by a couple of beamlets separated in time and/or energy obtained by a photoinjector with comb laser techniques and linac velocity bunching. The parameters of the Thomson source at SPARC_LAB have been simulated, proposing a set of realistic experiments.

  8. Diagnostic options for radiative divertor feedback control on NSTX-U.

    Science.gov (United States)

    Soukhanovskii, V A; Gerhardt, S P; Kaita, R; McLean, A G; Raman, R

    2012-10-01

    A radiative divertor technique is used in present tokamak experiments and planned for ITER to mitigate high heat loads on divertor plasma-facing components (PFCs) to prevent excessive material erosion and thermal damage. In NSTX, a large spherical tokamak with lithium-coated graphite PFCs and high divertor heat flux (q(peak) ≤ 15 MW/m(2)), radiative divertor experiments have demonstrated a significant reduction of divertor peak heat flux simultaneously with good core H-mode confinement using pre-programmed D(2) or CD(4) gas injections. In this work diagnostic options for a new real-time feedback control system for active radiative divertor detachment control in NSTX-U, where steady-state peak divertor heat fluxes are projected to reach 20-30 MW/m(2), are discussed. Based on the NSTX divertor detachment measurements and analysis, the control diagnostic signals available for NSTX-U include divertor radiated power, neutral pressure, spectroscopic deuterium recombination signatures, infrared thermography of PFC surfaces, and thermoelectric scrape-off layer current. In addition, spectroscopic "security" monitoring of possible confinement or pedestal degradation is recommended. These signals would be implemented in a digital plasma control system to manage the divertor detachment process via an actuator (impurity gas seeding rate).

  9. Divertor remote handling for DEMO: Concept design and preliminary FMECA studies

    Energy Technology Data Exchange (ETDEWEB)

    Carfora, D., E-mail: dario.carfora@gmail.com [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); ENEA/CREATE/Università degli studi Napoli Federico II, 80125 Napoli (Italy); Di Gironimo, G. [ENEA/CREATE/Università degli studi Napoli Federico II, 80125 Napoli (Italy); Järvenpää, J. [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Huhtala, K. [Tampere University of Technology, Korkeakoulunkatu 6, 33720 Tampere (Finland); Määttä, T.; Siuko, M. [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland)

    2015-10-15

    Highlights: • Concept design of the RH system for the DEMO fusion power plant. • Divertor mover: hydraulic telescopic boom concept design. • An alternative solution to ITER rack and pinion divertor mover (CMM). • Divertor cassettes end effector studies. • FMECA studies started on the DEMO divertor mover. - Abstract: The paper describes a concept design of a remote handling (RH) system for replacing divertor cassettes and cooling pipes in future DEMO fusion power plant. In DEMO reactor design important considerations are the reactor availability and reliable maintenance operations. The proposed divertor mover is a hydraulic telescopic boom driven from the transportation cask through the maintenance tunnel of the reactor. The boom is divided in three sections and it is driving an end-effector in order to perform the scheduled operations of maintenance inside the vacuum vessel. Two alternative designs of the end effector to grip and manipulate the divertor cassette are presented in this work. Both concepts are hydraulically actuated, based on ITER previous studies. The divertor cassette end-effector consists of a lifting arm linked to the divertor mover, a tilting plate, a cantilever arm and a hook-plate. Taking advantage of the ITER RH background and experience, the proposed hydraulic RH system is compared with the rack and pinion system currently designed for ITER and is an object of simulations at Divertor Test Platform (DTP2) in VTT's Labs of Tampere, Finland. Pros and cons will be put in evidence.

  10. Diagnostic options for radiative divertor feedback control on NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Soukhanovskii, V. A.; Gerhardt, S. P.; Kaita, R.; McLean, A. G.; Raman, R.

    2012-10-01

    A radiative divertor technique is used in present tokamak experiments and planned for ITER to mitigate high heat loads on divertor plasma-facing components (PFCs) to prevent excessive material erosion and thermal damage. In NSTX, a large spherical tokamak with lithium-coated graphite PFCs and high divertor heat flux (qpeak ≤ 15 MW/m2), radiative divertor experiments have demonstrated a significant reduction of divertor peak heat flux simultaneously with good core H-mode confinement using pre-programmed D2 or CD4 gas injections. In this work diagnostic options for a new real-time feedback control system for active radiative divertor detachment control in NSTX-U, where steady-state peak divertor heat fluxes are projected to reach 20–30 MW/m2, are discussed. Based on the NSTX divertor detachment measurements and analysis, the control diagnostic signals available for NSTX-U include divertor radiated power, neutral pressure, spectroscopic deuterium recombination signatures, infrared thermography of PFC surfaces, and thermoelectric scrape-off layer current. In addition, spectroscopic “security” monitoring of possible confinement or pedestal degradation is recommended. These signals would be implemented in a digital plasma control system to manage the divertor detachment process via an actuator (impurity gas seeding rate).

  11. Estimation of peak heat flux onto the targets for CFETR with extended divertor leg

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chuanjia; Chen, Bin [School of Nuclear Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Xing, Zhe [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Wu, Haosheng [School of Nuclear Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Mao, Shifeng, E-mail: sfmao@ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Luo, Zhengping; Peng, Xuebing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Ye, Minyou [School of Nuclear Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2016-11-01

    Highlights: • A hypothetical geometry is assumed to extend the outer divertor leg in CFETR. • Density scan SOLPS simulation is done to study the peak heat flux onto target. • Attached–detached regime transition in out divertor occurs at lower puffing rate. • Unexpected delay of attached–detached regime transition occurs in inner divertor. - Abstract: China Fusion Engineering Test Reactor (CFETR) is now in conceptual design phase. CFETR is proposed as a good complement to ITER for demonstrating of fusion energy. Divertor is a crucial component which faces the plasmas and handles huge heat power for CFETR and future fusion reactor. To explore an effective way for heat exhaust, various methods to reduce the heat flux to divertor target should be considered for CFETR. In this work, the effect of extended out divertor leg on the peak heat flux is studied. The magnetic configuration of the long leg divertor is obtained by EFIT and Tokamak Simulation Code (TSC), while a hypothetical geometry is assumed to extend the out divertor leg as long as possible inside vacuum vessel. A SOLPS simulation is performed to study peak heat flux of the long leg divertor for CFETR. D{sub 2} gas puffing is used and increasing of the puffing rate means increase of plasma density. Both peak heat flux onto inner and outer targets are below 10 MW/m{sup 2} is achieved. A comparison between the peak heat flux between long leg and conventional divertor shows that an attached–detached regime transition of out divertor occurs at lower gas puffing gas puffing rate for long leg divertor. While for the inner divertor, even the configuration is almost the same, the situation is opposite.

  12. Fuzzy logic program at SGS-Thomson

    Science.gov (United States)

    Pagni, Andrea; Poluzzi, Rinaldo; Rizzotto, GianGuido

    1993-12-01

    From its conception by Professor Lotfi A. Zadeh in the early '60s, Fuzzy Logic has slowly won acceptance, first in the academic world, then in industry. Its success is mainly due to the different perspective with which problems are tackled. Thanks to Fuzzy Logic we have moved from a numerical/analytical description to a quantitative/qualitative one. It is important to stress that this different perspective not only allows us to solve analysis/control problems at lower costs but can also allow otherwise insoluble problems to be solved at acceptable costs. Of course, it must be stressed that Fuzzy Systems cannot match the computational precision of traditional techniques but seek, instead, to find acceptable solutions in shorter times. Recognizing the enormous importance of fuzzy logic in the markets of the future, SGS-THOMSON intends to produce devices belonging to a new class of machines: Fuzzy Computational Machines. For this purpose a major research project has been established considering the architectural aspects and system implications of fuzzy logic, the development of dedicated VLSI components and supporting software.

  13. Divertor heat and particle control experiments on the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Mahdavi, M.A; Baker, D.R. [General Atomics, San Diego, CA (United States); Allen, S.L. [Lawrence Livermore National Lab., CA (United States)] [and others

    1994-05-01

    In this paper we present a summary of recent DIII-D divertor physics activity and plans for future divertor upgrades. During the past year, DIII-D experimental effort was focused on areas of active heat and particle control and divertor target erosion studies. Using the DIII-D Advanced Divertor system we have succeeded for the first time to control the plasma density and demonstrate helium exhaust in H-mode plasmas. Divertor heat flux control by means of D{sub 2} gas puffing and impurity injection were studied separately and in, both cases up to a factor of five reduction of the divertor peak heat flux was observed. Using the DiMES sample transfer system we have obtained erosion data on various material samples in well diagnosed plasmas and compared the results with predictions of numerical models.

  14. The control of convection by fuelling and pumping in the JET pumped divertor

    Energy Technology Data Exchange (ETDEWEB)

    Harbour, P.J.; Andrew, P.; Campbell, D.; Clement, S.; Davies, S.; Ehrenberg, J.; Erents, S.K.; Gondhalekar, A.; Gadeberg, M.; Gottardi, N.; Von Hellermann, M.; Horton, L.; Loarte, A.; Lowry, C.; Maggi, C.; McCormick, K.; O`Brien, D.; Reichle, R.; Saibene, G.; Simonini, R.; Spence, J.; Stamp, M.; Stork, D.; Taroni, A.; Vlases, G. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    Convection from the scrape-off layer (SOL) to the divertor will control core impurities, if it retains them in a cold, dense, divertor plasma. This implies a high impurity concentration in the divertor, low at its entrance. Particle flux into the divertor entrance can be varied systematically in JET, using the new fuelling and pumping systems. The convection ratio has been estimated for various conditions of operation. Particle convection into the divertor should increase thermal convection, decreasing thermal conduction, and temperature and density gradients along the magnetic field, hence increasing the frictional force and decreasing the thermal force on impurities. Changes in convection in the SOL, caused by gaseous fuelling, have been studied, both experimentally in the JET Mk I divertor and with EDGE2/NIMBUS. 1 ref., 4 figs., 1 tab.

  15. Kinetic effects in edge plasma: kinetic modeling for edge plasma and detached divertor

    Science.gov (United States)

    Takizuka, T.

    2017-03-01

    Detached divertor is considered a solution for the heat control in magnetic-confinement fusion reactors. Numerical simulations using the comprehensive divertor codes based on the plasma fluid modeling are indispensable for the design of the detached divertor in future reactors. Since the agreement in the results between detached-divertor experiments and simulations has been rather fair but not satisfactory, further improvement of the modeling is required. The kinetic effect is one of key issues for improving the modeling. Complete kinetic behaviors are able to be simulated by the kinetic modeling. In this paper at first, major kinetic effects in edge plasma and detached divertor are listed. One of the most powerful kinetic models, particle-in-cell (PIC) model, is described in detail. Several results of PIC simulations of edge-plasma kinetic natures are presented. Future works on PIC modeling and simulation for the deeper understanding of edge plasma and detached divertor are discussed.

  16. Thomson backscattering from laser generated, relativistically moving high-density electron layers

    CERN Document Server

    Paz, Athena E; Rödel, Christian; Schnell, Michael; Jäckel, Oliver; Kaluza, Malte C; Paulus, Gerhard G

    2012-01-01

    We show experimentally that XUV radiation is produced when a laser pulse is Thomson backscattered from sheets of relativistic electrons which are formed at the rear-surface of a foil irradiated on its front side by a high-intensity laser. An all-optical setup is realized using the Jena Titanium:Sapphire TW laser system (JETI). The main pulse is split into two pulses: one to accelerate electrons from thin aluminum foil targets to energies of the order of some MeV and the other, counterpropagating probe pulse is Thomson-backscattered off these electrons when they exit the target rear side. The process produced photons within a wide spectral range of some tens of eV as a result of the broad electron energy distribution. The highest scattering intensity is observed when the probe pulse arrives at the target rear surface 100 fs after the irradiation of the target front side by the pump pulse, corresponding to the maximum flux of hot electrons at the interaction region. These results can provide time-resolved infor...

  17. An automated approach to magnetic divertor configuration design

    Science.gov (United States)

    Blommaert, M.; Dekeyser, W.; Baelmans, M.; Gauger, N. R.; Reiter, D.

    2015-01-01

    Automated methods based on optimization can greatly assist computational engineering design in many areas. In this paper an optimization approach to the magnetic design of a nuclear fusion reactor divertor is proposed and applied to a tokamak edge magnetic configuration in a first feasibility study. The approach is based on reduced models for magnetic field and plasma edge, which are integrated with a grid generator into one sensitivity code. The design objective chosen here for demonstrative purposes is to spread the divertor target heat load as much as possible over the entire target area. Constraints on the separatrix position are introduced to eliminate physically irrelevant magnetic field configurations during the optimization cycle. A gradient projection method is used to ensure stable cost function evaluations during optimization. The concept is applied to a configuration with typical Joint European Torus (JET) parameters and it automatically provides plausible configurations with reduced heat load.

  18. Preparation of the liquid lithium divertor plates for NSTX

    Science.gov (United States)

    Nygren, R. E.; McKee, G. R.; Fordham, J. A.; Lewis, S. A.; Kugel, H.; Ellis, R. A.; Viola, M. E.; O'Dell, J. S.

    2011-10-01

    Each of the four toroidal panels of the liquid lithium divertor being installed in NSTX for operation in the 2010 campaign is a conical section inclined at 22° like the previous graphite divertor tiles. Each panel is a copper plate clad with stainless steel and a surface layer of porous plasma sprayed molybdenum (Mo) that will host lithium deposited from an evaporator. This paper describes the processes in fabrication; these include cutting to rough shape, die pressing into conical sections, machining to near final shape with holes for electrical heaters, thermocouples and a groove for a cooling tube, brazing of the 0.25-mm cladding and vacuum plasma spraying of the Mo coating.

  19. Spectroscopic Characterizations of the DIII--D Divertor

    Science.gov (United States)

    Isler, R. C.; Klepper, C. C.; Wood, R. D.; Fenstermacher, M. E.; Leonard, A. W.

    1996-11-01

    Radiative losses from the DIII--D divertor have been characterized for various types of discharges by making extensive use of vacuum ultraviolet spectral lines in conjunction with a collisional-radiative model. Carbon and hydrogen account for essentially all the emission with the carbon fraction usually between 50% and 80% of the total. Ion densities are estimated from a simplified approach to modeling using a one-dimensional transport code. The concentrations range from 2%--6% of the electron density in partially detached plasmas, but it appears that carbon may supply most of the electrons in the divertor in attached plasmas. Ion temperatures are measured from Doppler broadening of spectral lines after accounting precisely for the Zeeman/Paschen-Back effect. In general, the ion temperatures agree well with the electron temperatures at the location of the radiating ions as deduced from spectral line ratio measurements and from the modeling.

  20. Progress of ITER full tungsten divertor technology qualification in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Ezato, K., E-mail: ezato.koichiro@jaea.go.jp [Japan Atomic Energy Agency, 801-1, Mukoyma, Naka-shi, Ibaraki (Japan); Suzuki, S.; Seki, Y.; Mohri, K.; Yokoyama, K. [Japan Atomic Energy Agency, 801-1, Mukoyma, Naka-shi, Ibaraki (Japan); Escourbiac, F.; Hirai, T. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Kuznetcov, V. [NIIEFA, 3 doroga na Metallostroy, Metallostroy, St. Petersburg 196641 (Russian Federation)

    2015-10-15

    Highlights: • JAEA has demonstrated tungsten monoblock technology for ITER divertor that needs to withstand the repetitive heat load as high as 20 MW/m{sup 2}. This includes as follows; • Bonding technologies between W and Cu interlayer, and between Cu interlayer and CuCrZr tube. • Non-destructive examination techniques, especially, ultrasonic testing method, and. • Load carrying capability of W monoblock attachment to support structure of ITER divertor. - Abstract: Japan Atomic Energy Agency (JAEA) is in progress for technology qualification toward full-tungsten (W) ITER divertor outer vertical target (OVT), especially, tungsten monoblock technology that needs to withstand the repetitive heat load as high as 20 MW/m{sup 2}. To demonstrate the armor heat sink bonding technology and heat removal capability, 6 small-scale W monoblock mock-ups manufactured by different bonding technologies using different W materials in addition to 4 full-scale prototype plasma-facing units (PFUs). After non-destructive test, the W components were tested under high heat flux (HHF) in ITER Divertor Test Facility (IDTF) at NIIEFA. Consequently, all of the W monoblocks endured the repetitive heat load at 20 MW/m{sup 2} for 1000 cycles (requirements 20 MW/m{sup 2} for 300 cycles) without any failure. In addition to the armor to heat sink joints, the load carrying capability test on the W monoblock with a leg attachment was carried out. In uniaxial tensile test, all of the W monoblock attachments with different bonding technologies such as brazing and HIPping withstand the tensile load exceeding 20 kN that is the value more than twice the design value. The failures occurred at the leg attachments or the W monoblocks, rather than the bonding interface of the W monoblocks to the leg attachment.

  1. Comparative studies of inner and outer divertor discharges and a fueling study in QUEST

    Energy Technology Data Exchange (ETDEWEB)

    Mitarai, O., E-mail: omitarai@ktmail.tokai-u.jp [Kumamoto Liberal Arts Education Center, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto 862-8652 (Japan); Nakamura, K.; Hasegawa, M.; Onchi, T.; Idei, H.; Fujisawa, A.; Hanada, K.; Zushi, H.; Higashijima, A.; Nakashima, H.; Kawasaki, S. [Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasugakoen, Kasuga 816-8580 Japan (Japan); Matsuoka, K. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Koike, S.; Takahashi, T. [Division of Electronics and Informatics, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); Tsutsui, H. [Research Laboratory for Nuclear Reactors, Tokyo Inst. Tech, 2-12-1 Ookayama, Tokyo 152-8550 (Japan)

    2016-11-01

    Highlights: • Central solenoid has a small flux in QUEST. • Large plasma current is obtained when the position is shifted to the inboard side. • Two types of divertor operation are compared. • Novel merging fueling methods are proposed. • Coaxial helicity injection (CHI) fueling was examined in QUEST divertor configuration. - Abstract: As QUEST has a small central solenoid (CS), a larger Ohmic discharge current has been obtained when the plasma shifts to the inboard side. This tendency restricts a divertor operation to the smaller plasma current regime. As the inner divertor coil has a smaller mutual inductance, it would be expected that its utilization seems to be better for easier plasma current ramp-up for a divertor operation. In this work, we made comparative studies on the plasma current ramp-up for two divertor coils. It is found that while the inner divertor coil with smaller mutual inductance needs a larger coil current, the outer divertor coil with larger mutual inductance needs a smaller coil current for divertor operation. Thus we have found that the plasma current ramp-up characteristics are almost similar for both configurations. We also propose a new fueling method for spherical tokamak (ST) using the coaxial helicity injection (CHI). The main plasma current would be generated at first, and then the CHI plasma current is created between bottom two electrode plates and merged into the main plasma current for fueling.

  2. The effect of the magnetic topology on particle recycling in the ergodic divertor of TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Lehnen, M. [Institut fuer Plasmaphysik, Forschungszentrum Juelich, Association EURATOM-FZJ (Germany)]. E-mail: m.lehnen@fz-juelich.de; Abdullaev, S.S. [Institut fuer Plasmaphysik, Forschungszentrum Juelich, Association EURATOM-FZJ (Germany); Brezinsek, S. [Institut fuer Plasmaphysik, Forschungszentrum Juelich, Association EURATOM-FZJ (Germany); Finken, K.H. [Institut fuer Plasmaphysik, Forschungszentrum Juelich, Association EURATOM-FZJ (Germany); Harting, D. [Institut fuer Plasmaphysik, Forschungszentrum Juelich, Association EURATOM-FZJ (Germany); Hellermann, M. von [FOM-Rijnhuizen, Association EURATOM-FOM (Netherlands); Jakubowski, M.W. [Institut fuer Plasmaphysik, Forschungszentrum Juelich, Association EURATOM-FZJ (Germany); Jaspers, R. [FOM-Rijnhuizen, Association EURATOM-FOM (Netherlands); Kirschner, A. [Institut fuer Plasmaphysik, Forschungszentrum Juelich, Association EURATOM-FZJ (Germany); Pospieszczyk, A. [Institut fuer Plasmaphysik, Forschungszentrum Juelich, Association EURATOM-FZJ (Germany); Reiter, D. [Institut fuer Plasmaphysik, Forschungszentrum Juelich, Association EURATOM-FZJ (Germany); Samm, U. [Institut fuer Plasmaphysik, Forschungszentrum Juelich, Association EURATOM-FZJ (Germany); Schmitz, O. [Institut fuer Plasmaphysik, Forschungszentrum Juelich, Association EURATOM-FZJ (Germany); Sergienko, G. [Institut fuer Plasmaphysik, Forschungszentrum Juelich, Association EURATOM-FZJ (Germany); Unterberg, B. [Institut fuer Plasmaphysik, Forschungszentrum Juelich, Association EURATOM-FZJ (Germany); Wolf, R. [Institut fuer Plasmaphysik, Forschungszentrum Juelich, Association EURATOM-FZJ (Germany)

    2007-06-15

    The influence of the divertor geometry of the dynamic ergodic divertor (DED) in TEXTOR on particle recycling is discussed. The geometry can be varied by the choice of the base mode, the edge safety factor and the divertor coil current. The divertor volume is split into the upstream and the downstream area. Strong plasma flows in the downstream area, essential for high screening efficiency, are predicted. The source strength of deuterium and carbon in the downstream area is estimated by using the two-dimensional distribution of D{sub {alpha}} and CIII emission in front of the target. The results are compared to EMC3 and ERO-code calculations.

  3. Influence of helium puff on divertor asymmetry in experimental advanced superconducting tokamak

    DEFF Research Database (Denmark)

    Liu, S. C.; Guo, H. Y.; Xu, G. S.

    2014-01-01

    Divertor asymmetries with helium puffing are investigated in various divertor configurations on Experimental Advanced Superconducting Tokamak (EAST). The outer divertor electron temperature decreases significantly during the gas injection at the outer midplane. As soon as the gas is injected......; the power deposition increases slightly at the outer targets while shows no obvious variation at the inner targets in double null configuration. The radiated power measured by the extreme ultraviolet arrays increases significantly due to helium gas injection, especially in the outer divertor. The edge...

  4. L-H power threshold studies with tungsten/carbon divertor on the EAST tokamak

    DEFF Research Database (Denmark)

    Chen, L.; Xu, G. S.; Gao, W.

    2016-01-01

    The power threshold for low (L) to high (H) confinement mode transition achieved by radio-frequency heating and molybdenum first wall with lithium coating has been experimentally investigated on the EAST tokamak for two sets of divertor geometries and materials: tungsten/carbon divertor and full...... configuration, with the ion grad-B drift direction away from the primary X-point, a lower normalized power threshold is observed in EAST with the tungsten/carbon divertor, compared to the carbon divertor after intensive lithium wall coating. A newly installed cryopump increasing the pumping efficiency also...

  5. Hybrid formulation of radiation transport in optically thick divertor plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rosato, J.; Marandet, Y.; Bufferand, H.; Stamm, R. [PIIM, UMR 7345 Aix-Marseille Universite / CNRS, Centre de St-Jerome, Marseille (France); Reiter, D. [IEK-4 Plasmaphysik, Forschungszentrum Juelich GmbH, Juelich (Germany)

    2016-08-15

    Kinetic Monte Carlo simulations of coupled atom-radiation transport in optically thick divertor plasmas can be computationally very demanding, in particular in ITER relevant conditions or even larger devices, e.g. for power plant divertor studies. At high (∝ 10{sup 15} cm{sup -3}) atomic densities, it can be shown that sufficiently large divertors behave in certain areas like a black body near the first resonance line of hydrogen (Lyman α). This suggests that, at least in part, the use of continuum model (radiation hydrodynamics) can be sufficiently accurate, while being less time consuming. In this work, we report on the development of a hybrid model devoted to switch automatically between a kinetic and a continuum description according to the plasma conditions. Calculations of the photo-excitation rate in a homogeneous slab are performed as an illustration. The outlined hybrid concept might be also applicable to neutral atom transport, due to mathematical analogy of transport equations for neutrals and radiation. (copyright 2016 The Authors. Contributions to Plasma Physics published by Wiley-VCH Verlag GmbH and Co. KGaA Weinheim. This)

  6. An Exploration of Advanced X-Divertors on ITER

    CERN Document Server

    Covele, Brent; Kotschenreuther, Mike; Mahajan, Swadesh

    2013-01-01

    It is found that the X-Divertor (XD) configuration [1-3] can be made with the conventional PF coil set on ITER[4], where all PF coils are outside the TF coils. Desirable configurations are possible where the PF currents are below the present maximum design limits on ITER, and where the baseline divertor cassette is used. It is possible that the XD could be used to assist in high-power operation on ITER, but some further issues need examination. Note that the increased major radius of the Super X-Divertor (SXD) [5-8] is not a feature of the XD geometry. In addition, we present an XD configuration for K-DEMO [9], to demonstrate that it is also possible to attain the XD configuration in advanced tokamak reactors with all PF coils outside the TF coils. The results given here for the XD are far more encouraging than recent calculations by Lackner and Zohm [10] for the Snowflake [11,12], where the required high PF currents represent a major technological challenge. The magnetic field structure in the outboard diver...

  7. Divertor plasma conditions and neutral dynamics in horizontal and vertical divertor configurations in JET-ILW low confinement mode plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Groth, M., E-mail: mathias.groth@aalto.fi [Aalto University, Association EURATOM-Tekes, Otakaari 4, Espoo (Finland); Brezinsek, S. [Forschungszentrum Jülich, IEK4 – Plasma Physik, Jülich (Germany); Belo, P. [Institute of Plasmas and Nuclear Fusion, Association EURATOM/IST, Lisbon (Portugal); Culham Centre for Fusion Energy, Association EURATOM-CCFE, Abingdon (United Kingdom); Brix, M. [Culham Centre for Fusion Energy, Association EURATOM-CCFE, Abingdon (United Kingdom); Calabro, G. [Association EURATOM-ENEA, Frascati (Italy); Chankin, A. [Max-Planck Institute for Plasma Physics, EURATOM Association, Garching (Germany); Clever, M.; Coenen, J.W. [Forschungszentrum Jülich, IEK4 – Plasma Physik, Jülich (Germany); Corrigan, G. [Culham Centre for Fusion Energy, Association EURATOM-CCFE, Abingdon (United Kingdom); Drewelow, P. [Max-Planck-Institute for Plasma Physics, EURATOM Association, Greifswald (Germany); Guillemaut, C. [Association EURATOM CEA, CEA/DSM/IRFM, Cadarache (France); Harting, D. [Culham Centre for Fusion Energy, Association EURATOM-CCFE, Abingdon (United Kingdom); Huber, A. [Forschungszentrum Jülich, IEK4 – Plasma Physik, Jülich (Germany); Jachmich, S. [Association ‘Euratom-Belgian state’, Ecole Royale Militaire, Brussels (Belgium); Järvinen, A. [Aalto University, Association EURATOM-Tekes, Otakaari 4, Espoo (Finland); Kruezi, U.; Lawson, K.D. [Culham Centre for Fusion Energy, Association EURATOM-CCFE, Abingdon (United Kingdom); Lehnen, M. [Forschungszentrum Jülich, IEK4 – Plasma Physik, Jülich (Germany); ITER Organisation, 13115 Saint-Paul-Lez-Durance (France); and others

    2015-08-15

    Measurements of the plasma conditions at the low field side target plate in JET ITER-like wall ohmic and low confinement mode plasmas show minor differences in divertor plasma configurations with horizontally and vertically inclined targets. Both the reduction of the electron temperature in the vicinity of the strike points and the rollover of the ion current to the plates follow the same functional dependence on the density at the low field side midplane. Configurations with vertically inclined target plates, however, produce twice as high sub-divertor pressures for the same upstream density. Simulations with the EDGE2D-EIRENE code package predict significantly lower plasma temperatures at the low field side target in vertical than in horizontal target configurations. Including cross-field drifts and imposing a pumping by-pass leak at the low-field side plate can still not recover the experimental observations.

  8. 75 FR 49528 - Thomson Reuters Legal, Legal Editorial Operations Cleveland Office Including Workers Whose...

    Science.gov (United States)

    2010-08-13

    ... Employment and Training Administration Thomson Reuters Legal, Legal Editorial Operations Cleveland Office... Assistance on June 22, 2010, applicable to workers of Thomson Reuters Legal, Legal Editorial Operations... unemployment insurance (UI) tax account under the name West Publishing Corporation, a Thomson Reuters...

  9. Possible Global Minimum Lattice Configurations for Thomson`s Problem of Charges on a Sphere

    Energy Technology Data Exchange (ETDEWEB)

    Altschuler, E.L.; Tipton, R.; Dowla, F. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Williams, T.J. [Los Alamos National Laboratory, MS B256, Los Alamos, New Mexico 87545 (United States); Ratner, E.R. [Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Stong, R. [Department of Mathematics, Rice University, Houston, Texas 77004 (United States); Wooten, F. [Department of Applied Science, University of California Davis/Livermore, P.O. Box 808, Livermore, California 94551 (United States)

    1997-04-01

    What configuration of N point charges on a conducting sphere minimizes the Coulombic energy? J.J. Thomson posed this question in 1904. For N{le}112, numerical methods have found apparent global minimum-energy configurations; but the number of local minima appears to grow exponentially with N, making many such methods impractical. Here we describe a topological/numerical procedure that we believe gives the global energy minimum lattice configuration for N of the form N=10(m{sup 2}+n{sup 2}+mn)+2 (m, n positive integers). For those N with more than one lattice, we give a rule to choose the minimum one. {copyright} {ital 1997} {ital The American Physical Society}

  10. A variational proof of Thomson's theorem

    Energy Technology Data Exchange (ETDEWEB)

    Fiolhais, Miguel C.N., E-mail: miguel.fiolhais@cern.ch [Department of Physics, City College of the City University of New York, 160 Convent Avenue, New York, NY 10031 (United States); Department of Physics, New York City College of Technology, 300 Jay Street, Brooklyn, NY 11201 (United States); LIP, Department of Physics, University of Coimbra, 3004-516 Coimbra (Portugal); Essén, Hanno [Department of Mechanics, Royal Institute of Technology (KTH), Stockholm SE-10044 (Sweden); Gouveia, Tomé M. [Cavendish Laboratory, 19 JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2016-08-12

    Thomson's theorem of electrostatics, which states the electric charge on a set of conductors distributes itself on the conductor surfaces to minimize the electrostatic energy, is reviewed in this letter. The proof of Thomson's theorem, based on a variational principle, is derived for a set of normal charged conductors, with and without the presence of external electric fields produced by fixed charge distributions. In this novel approach, the variations are performed on both the charge densities and electric potentials, by means of a local Lagrange multiplier associated with Poisson's equation, constraining the two variables.

  11. Improved thermoelectric cooling based on the Thomson effect

    Science.gov (United States)

    Snyder, G. Jeffrey; Khanna, Raghav; Toberer, Eric S.; Heinz, Nicholas A.; Seifert, Wolfgang

    2016-05-01

    Traditional thermoelectric cooling relies on the Peltier effect which produces a temperature drop limited by the figure of merit, zT. This cooling limit is not required from classical thermodynamics but can be traced to problems of thermoelectric compatibility. Alternatively, if a thermoelectric cooler can be designed to achieve full thermoelectric compatibility, lower temperature can be achieved even if the zT is low. In such a device the Thomson effect plays an important role. We present the theoretical concept of a "Thomson cooler," for cryogenic cooling which is designed to maintain thermoelectric compatibility and we derive the requirements for the Seebeck coefficient.

  12. A computational thermodynamics approach to the Gibbs-Thomson effect

    Energy Technology Data Exchange (ETDEWEB)

    Shahandeh, Sina [Department of Material Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)]. E-mail: sinashahandeh@yahoo.com; Nategh, Said [Department of Material Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2007-01-15

    In two-phase system, curvature of interface leads to increase of solute concentration in matrix. This effect plays a significant role in solidification, precipitation, nucleation and growth and coarsening. There are number of models and formulas for Gibbs-Thomson effect in binary alloys. In this paper with the help of CALPHAD calculations, new approach for describing this effect in binary and multicomponent systems is proposed. In this generalized method no traditional simplifying assumption are considered and this yield to more accurate result for Gibbs-Thomson phenomenon. This model is compared with previous formulas in some case alloying systems.

  13. Program For Joule-Thomson Analysis Of Mixed Cryogens

    Science.gov (United States)

    Jones, Jack A.; Lund, Alan

    1994-01-01

    JTMIX computer program predicts ideal and realistic properties of mixed gases at temperatures between 65 and 80 K. Performs Joule-Thomson analysis of any gaseous mixture of neon, nitrogen, various hydrocarbons, argon, oxygen, carbon monoxide, carbon dioxide, and hydrogen sulfide. When used in conjunction with DDMIX computer program of National Institute of Standards and Technology (NIST), JTMIX accurately predicts order-of-magnitude increases in Joule-Thomson cooling capacities occuring when various hydrocarbons added to nitrogen. Also predicts boiling temperature of nitrogen depressed from normal value to as low as 60 K upon addition of neon. Written in Turbo C.

  14. Narrow bandwidth Thomson photon source development using Laser-Plasma Accelerators

    Science.gov (United States)

    Geddes, C. G. R.; van Tilborg, J.; Tsai, H.-E.; Toth, Cs.; Vay, J.-L.; Lehe, R.; Schroeder, C. B.; Esarey, E.; Rykovanov, S. G.; Grote, D. P.; Friedman, A.; Leemans, W. P.

    2016-10-01

    Compact, high-quality photon sources at MeV energies are being developed based on Laser-Plasma Accelerators (LPAs). An independent scattering laser with controlled pulse shaping in frequency and amplitude can be used together with laser guiding to realize high photon yield and narrow bandwidth. Simulations are presented on production of controllable narrow bandwidth sources using the beam and plasma capabilities of LPAs. Recent experiments and simulations demonstrate controllable LPAs in the energy range appropriate to MeV Thomson sources. Design of experiments and laser capabilities to combine these elements will be presented, towards a compact photon source system. A dedicated facility under construction will be described. Work supported by US DOE NNSA DNN R&D and by Sc. HEP under contract DE-AC02-05CH11231.

  15. Automated magnetic divertor design for optimal power exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Blommaert, Maarten

    2017-07-01

    The so-called divertor is the standard particle and power exhaust system of nuclear fusion tokamaks. In essence, the magnetic configuration hereby 'diverts' the plasma to a specific divertor structure. The design of this divertor is still a key issue to be resolved to evolve from experimental fusion tokamaks to commercial power plants. The focus of this dissertation is on one particular design requirement: avoiding excessive heat loads on the divertor structure. The divertor design process is assisted by plasma edge transport codes that simulate the plasma and neutral particle transport in the edge of the reactor. These codes are computationally extremely demanding, not in the least due to the complex collisional processes between plasma and neutrals that lead to strong radiation sinks and macroscopic heat convection near the vessel walls. One way of improving the heat exhaust is by modifying the magnetic confinement that governs the plasma flow. In this dissertation, automated design of the magnetic configuration is pursued using adjoint based optimization methods. A simple and fast perturbation model is used to compute the magnetic field in the vacuum vessel. A stable optimal design method of the nested type is then elaborated that strictly accounts for several nonlinear design constraints and code limitations. Using appropriate cost function definitions, the heat is spread more uniformly over the high-heat load plasma-facing components in a practical design example. Furthermore, practical in-parts adjoint sensitivity calculations are presented that provide a way to an efficient optimization procedure. Results are elaborated for a fictituous JET (Joint European Torus) case. The heat load is strongly reduced by exploiting an expansion of the magnetic flux towards the solid divertor structure. Subsequently, shortcomings of the perturbation model for magnetic field calculations are discussed in comparison to a free boundary equilibrium (FBE) simulation

  16. Investigations on the heat flux and impurity for the HL-2M divertor

    Science.gov (United States)

    Zheng, G. Y.; Cai, L. Z.; Duan, X. R.; Xu, X. Q.; Ryutov, D. D.; Cai, L. J.; Liu, X.; Li, J. X.; Pan, Y. D.

    2016-12-01

    The controllability of the heat load and impurity in the divertor is very important, which could be one of the critical problems to be solved in order to ensure the success for a steady state tokamak. HL-2M has the advantage of the poloidal field (PF) coils placed inside the demountable toroidal field (TF) coils and close to the main plasma. As a result, it is possible to make highly accurate configuration control of the advanced divertor for HL-2M. The divertor target geometry of HL-2M has been designed to be compatible with different divertor configurations to study the divertor physics and support the high performance plasma operations. In this paper, the heat loads and impurities with different divertor configurations, including the standard X-point divertor, the snowflake-minus divertor and two tripod divertor configurations for HL-2M, are investigated by numerical simulations with the SOLPS5.0 code under the current design of the HL-2M divertor geometry. The plasmas with different conditions, such as the low discharge parameters with {{I}\\text{p}}   =  0.5 MA at the first stage of HL-2M and the high parameters with {{I}\\text{p}}   =  2.0 MA during the normal operations, are simulated. The heat load profiles and the impurity distributions are obtained, and the control of the peak heat load and the effect of impurity on the core plasma are discussed. The compatibility of different divertor configurations for HL-2M is also evaluated. It is seen that the excellent compatibility of different divertor configurations with the current divertor geometry has been verified. The results show that the snowflake-minus divertor and the tripod divertor with {{d}x}=30 \\text{cm} present good performance in terms of the heat load profiles and the impurity distributions under different conditions, which may not have a big effect on the core plasma. In addition, it is possible to optimize the distance between the two X-points, {{d}x} , to achieve a better

  17. Design study of JT-60SA divertor for high heat and particle controllability

    Energy Technology Data Exchange (ETDEWEB)

    Kawashima, H. [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka-shi, Ibaraki-ken 311-0193 (Japan)], E-mail: kawashima.hisato@jaea.go.jp; Shimizu, K.; Takizuka, T.; Asakura, N.; Sakurai, S.; Matsukawa, M.; Fujita, T. [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka-shi, Ibaraki-ken 311-0193 (Japan)

    2008-12-15

    The modification of JT-60 to a fully superconducting coil tokamak, JT-60SA (JT-60 Super Advanced) device, has been programmed to contribute and supplement ITER toward to DEMO. Lower divertor design with the ITER-like lower single null divertor configuration is studied to obtain high heat and particle controllability using SOLDOR/NEUT2D code. With anticipated total power flux into SOL of 37 MW (90% of input power), the peak heat load on outer divertor target can be reduced to 5.8 MW/m{sup 2} at the detached condition by gas puffing in the vertical divertor target with the 'V-shaped corner'. It is {approx}2/5 of the allowable level of 15 MW/m{sup 2}. On the other hand, particle controllability such as control of detached to attached condition by divertor pumping is improved by increase the strike point distance from 20 to 120 mm with above divertor geometry, suggesting that recover from severe detachment at the small distance case can be achieving by elevation of the strike point locations. Optimization of upper divertor design is in progress for high {beta} steady-state operation using upper single null divertor configuration.

  18. Investigation of scrape-off layer and divertor heat transport in ASDEX Upgrade L-mode

    Science.gov (United States)

    Sieglin, B.; Eich, T.; Faitsch, M.; Herrmann, A.; Scarabosio, A.; the ASDEX Upgrade Team

    2016-05-01

    Power exhaust is one of the major challenges for the development of a fusion power plant. Predictions based upon a multimachine database give a scrape-off layer power fall-off length {λq}≤slant 1 mm for large fusion devices such as ITER. The power deposition profile on the target is broadened in the divertor by heat transport perpendicular to the magnetic field lines. This profile broadening is described by the power spreading S. Hence both {λq} and S need to be understood in order to estimate the expected divertor heat load for future fusion devices. For the investigation of S and {λq} L-Mode discharges with stable divertor conditions in hydrogen and deuterium were conducted in ASDEX Upgrade. A strong dependence of S on the divertor electron temperature and density is found which is the result of the competition between parallel electron heat conductivity and perpendicular diffusion in the divertor region. For high divertor temperatures it is found that the ion gyro radius at the divertor target needs to be considered. The dependence of the in/out asymmetry of the divertor power load on the electron density is investigated. The influence of the main ion species on the asymmetric behaviour is shown for hydrogen, deuterium and helium. A possible explanation for the observed asymmetry behaviour based on vertical drifts is proposed.

  19. Particle and power deposition on divertor targets in EAST H-mode plasmas

    DEFF Research Database (Denmark)

    Wang, L.; Xu, G.S.; Guo, H.Y.

    2012-01-01

    The effects of edge-localized modes (ELMs) on divertor particle and heat fluxes were investigated for the first time in the Experimental Advanced Superconducting Tokamak (EAST). The experiments were carried out with both double null and lower single null divertor configurations, and comparisons w...

  20. Geometry and expected performance of the solid tungsten outer divertor row in JET

    NARCIS (Netherlands)

    Rapp, J.; Pintsuk, G.; Mertens, P.; Altmann, H.; Lomas, P. J.; Riccardo, V.

    2010-01-01

    At JET new plasma-facing components for the main chamber wall and the divertor are being designed and built to mimic the expected ITER plasma wall conditions in the deuterium-tritium operation phase. The main wall elements at JET will be made of beryllium and the divertor plasma-facing surface will

  1. Characterization of a thermoelectric/Joule–Thomson hybrid microcooler

    NARCIS (Netherlands)

    Cao, H.; Vanapalli, S.; Holland, H.J.; Vermeer, C.H.; Brake, ter H.J.M.

    2016-01-01

    Micromachined Joule–Thomson (JT) coolers are attractive for cooling small electronic devices. However, microcoolers operated with pure gases, such as nitrogen gas require high pressures of about 9 MPa to achieve reasonable cooling powers. Such high pressures severely add complexity to the developmen

  2. Joule-Thomson effect in liquid He II

    Energy Technology Data Exchange (ETDEWEB)

    Huang, B.J.

    The paper reports that the Joule-Thomson coefficients of liquid He II are extraordinarily high for temperatures far below the lambda point as compared with ordinary real gases or liquids. Its effect on the throttling process of He II was shown to be quite significant and should be taken into account when dealing with transport processes of He II.

  3. The dynamical mechanical properties of tungsten under compression at working temperature range of divertors

    Science.gov (United States)

    Zhu, C. C.; Song, Y. T.; Peng, X. B.; Wei, Y. P.; Mao, X.; Li, W. X.; Qian, X. Y.

    2016-02-01

    In the divertor structure of ITER and EAST with mono-block module, tungsten plays not only a role of armor material but also a role of structural material, because electromagnetic (EM) impact will be exerted on tungsten components in VDEs or CQ. The EM loads can reach to 100 MN, which would cause high strain rates. In addition, directly exposed to high-temperature plasma, the temperature regime of divertor components is complex. Aiming at studying dynamical response of tungsten divertors under EM loads, an experiment on tungsten employed in EAST divertors was performed using a Kolsky bar system. The testing strain rates and temperatures is derived from actual working conditions, which makes the constitutive equation concluded by using John-Cook model and testing data very accurate and practical. The work would give a guidance to estimate the dynamical response, fatigue life and damage evolution of tungsten divertor components under EM impact loads.

  4. Simulation of divertor targets shielding during transients in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Pestchanyi, Sergey, E-mail: serguei.pestchanyi@kit.edu [KIT, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen (Germany); Pitts, Richard; Lehnen, Michael [ITER Organization,Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France)

    2016-11-01

    Highlights: • We simulated plasma shielding effect during disruption in ITER using the TOKES code. • It has been found that vaporization is unavoidable under action of ITER transients, but plasma shielding drastically reduces the divertor target damage: the melt pool and the vaporization region widths reduced 10–15 times. • A simplified 1D model describing the melt pool depth and the shielded heat flux to the divertor targets have been developed. • The results of the TOKES simulations have been compared with the analytic model when the model is valid. - Abstract: Direct extrapolation of the disruptive heat flux on ITER conditions predicts severe melting and vaporization of the divertor targets causing their intolerable damage. However, tungsten vaporized from the target at initial stage of the disruption can create plasma shield in front of the target, which effectively protects the target surface from the rest of the heat flux. Estimation of this shielding efficiency has been performed using the TOKES code. The shielding effect under ITER conditions is found to be very strong: the maximal depth of the melt layer reduced 4 times, the melt layer width—more than 10 times and vaporization region shrinks 10–15 times due to shielding for unmitigated disruption of 350 MJ discharge. The simulation results show complex, 2D plasma dynamics of the shield under ITER conditions. However, a simplified analytic model, valid for rough estimation of the maximum value for the shielded flux to the target and for the melt depth at the target surface has been developed.

  5. SOLPS modeling of the effect on plasma detachment of closing the lower divertor in DIII-D

    Science.gov (United States)

    Sang, C. F.; Stangeby, P. C.; Guo, H. Y.; Leonard, A. W.; Covele, B.; Lao, L. L.; Moser, A. L.; Thomas, D. M.

    2017-02-01

    Scrape-off layer plasma simulation modeling has been carried out to assess the effect of tightly closing the lower divertor in DIII-D, which at present is almost fully open, on the achievement of cold dissipative/detached divertor conditions. To isolate the impact of other factors on the divertor plasma solution and to make direct comparisons, most of the parameters including the meshes were kept as similar as possible. Only the neutral baffling was modified to compare a fully open divertor with a tightly closed one. The modeling shows that the tightly closed divertor greatly improves trapping of recycling neutrals, thereby increasing radiative and charge exchange losses in the divertor and reducing the electron temperature T et and deposited power density q dep at the target plate. Furthermore, the closed structure enables the divertor plasma to enter into highly dissipative and detached divertor conditions at a significantly lower upstream density. The effects of divertor closure on the neutral density and pressure, and their correlation with the divertor plasma conditions are also demonstrated. The effect of molecular D2-ion D+ elastic collisions and neutral-neutral collisions on the divertor plasma solution are assessed.

  6. Scale invariance and scaling law of Thomson backscatter spectra by electron moving in laser-magnetic resonance regime

    CERN Document Server

    Fu, Yi-Jia; Wan, Feng; Sang, Hai-Bo; Xie, Bai-Song

    2016-01-01

    The Thomson scattering spectra by an electron moving in the laser-magnetic resonance acceleration regime are computed numerically and analytically. The dependence of fundamental frequency on the laser intensity and magnetic resonance parameter is examined carefully. By calculating the emission of a single electron in a circularly polarized plane-wave laser field and constant external magnetic field, the scale invariance of the radiation spectra is evident in terms of harmonic orders. The scaling law of backscattered spectra are exhibited remarkably for the laser intensity as well for the initial axial momentum of the electron when the cyclotron frequency of the electron approaches the laser frequency. The results indicate that the magnetic resonance parameter plays an important role on the strength of emission. And the rich features of scattering spectra found may be applicable to the radiation source tunability.

  7. Experiments and computational modeling focused on divertor and SOL optimization for advanced tokamak operation on DIII-D

    Science.gov (United States)

    Allen, S. L.; Boedo, J. A.; Bozek, A. S.; Brooks, N. H.; Carlstrom, T. N.; Casper, T. A.; Colchin, R. J.; Evans, T. E.; Fenstermacher, M. E.; Friend, M. E.; Isler, R. C.; Jayakumar, R.; Lasnier, C. J.; Leonard, A. W.; Mahdavi, M. A.; Maingi, R.; McKee, G. R.; Moyer, R. A.; Murakami, M.; Osborne, T. H.; O'Neill, R. C.; Petrie, T. W.; Porter, G. D.; Ramsey, A. T.; Schaffer, M. J.; Stangeby, P. C.; Stambaugh, R. D.; Wade, M. R.; Watking, J. G.; West, W. P.; Whyte, D. G.; Wolf, N. S.

    2001-03-01

    We present the results from DIII-D experiments and modeling focused on the divertor issues of an `Advanced Tokamak' (AT). Operation at high plasma pressure β with good energy confinement H requires core and divertor plasma shaping and current profile J( r) control with ECH current drive. Transport modeling indicates that the available DIII-D ECH power determines a density and temperature regime for sustained DIII-D AT experiments. We demonstrate that a high-δ, unbalanced double null divertor with cryopumping (D-2000) is a flexible AT divertor. Impurity levels in AT experiments have been reduced by careful alignment of the divertor tiles; this, in turn has changed the time evolution of the core J( r) profiles. New physics has been observed near the X-point and private flux regions, including flow reversal and recombination, that is important in understanding and controlling the flows and thereby the radiation in the divertor region, which reduces the divertor heat flux.

  8. Fluid flow and heat transfer in Joule-Thomson coolers coupled with infrared detectors

    Science.gov (United States)

    Du, Bingyan; Jia, Weimin

    2011-08-01

    Joule-Thomson coolers have been widely used in infrared detectors with respect to compact, light and low cost. For self-regulating Joule-Thomson cooler, its performance is required to be improved with the development of higher mass and larger diameter of focal plane infrared detectors. Self-regulating Joule-Thomson coolers use a limited supply of high pressure gas to support the cooling of infrared detectors. In order to develop Joule-Thomson coolers with a given volume of stored gas, it is important to study on fluid flow and heat transfer of Joule-Thomson coolers coupled with infrared detectors, especially the starting time of Joule-Thomson coolers. A serial of experiments of Joule-Thomson coolers coupled with 128×128 focal plane infrared detectors have been carried out. The exchanger of coolers are made of a d=0.5mm capillary finned with a copper wire. The coolers are self-regulated by bellows and the diameters are about 8mm. Nitrogen is used as working gas. The effect of pressure of working gas has been studied. The relation between starting time and pressure of working gas is proved to fit exponential decay. Error analysis has also been carried. It is crucial to study the performance of Joule-Thomson coolers coupled with infrared detectors. Deeper research on Joule-Thomson coolers will be carried on to improve the Joule-Thomson coolers for infrared detectors.

  9. Surface heat loads on the ITER divertor vertical targets

    Science.gov (United States)

    Gunn, J. P.; Carpentier-Chouchana, S.; Escourbiac, F.; Hirai, T.; Panayotis, S.; Pitts, R. A.; Corre, Y.; Dejarnac, R.; Firdaouss, M.; Kočan, M.; Komm, M.; Kukushkin, A.; Languille, P.; Missirlian, M.; Zhao, W.; Zhong, G.

    2017-04-01

    The heating of tungsten monoblocks at the ITER divertor vertical targets is calculated using the heat flux predicted by three-dimensional ion orbit modelling. The monoblocks are beveled to a depth of 0.5 mm in the toroidal direction to provide magnetic shadowing of the poloidal leading edges within the range of specified assembly tolerances, but this increases the magnetic field incidence angle resulting in a reduction of toroidal wetted fraction and concentration of the local heat flux to the unshadowed surfaces. This shaping solution successfully protects the leading edges from inter-ELM heat loads, but at the expense of (1) temperatures on the main loaded surface that could exceed the tungsten recrystallization temperature in the nominal partially detached regime, and (2) melting and loss of margin against critical heat flux during transient loss of detachment control. During ELMs, the risk of monoblock edge melting is found to be greater than the risk of full surface melting on the plasma-wetted zone. Full surface and edge melting will be triggered by uncontrolled ELMs in the burning plasma phase of ITER operation if current models of the likely ELM ion impact energies at the divertor targets are correct. During uncontrolled ELMs in pre-nuclear deuterium or helium plasmas at half the nominal plasma current and magnetic field, full surface melting should be avoided, but edge melting is predicted.

  10. On the W7-X divertor performance under detached conditions

    Science.gov (United States)

    Feng, Y.; Beidler, C. D.; Geiger, J.; Helander, P.; Hölbe, H.; Maassberg, H.; Turkin, Y.; Reiter, D.; W7-X Team

    2016-12-01

    We present a theoretical/numerical predictive analysis of the performance of the W7-X island divertor under conditions of detachment characterized by intensive radiation. The analysis is based on EMC3-Eirene simulations and the earlier W7-AS experimental and numerical experience. Carbon is employed as a representative radiator. The associated drawbacks, i.e. core contamination and recycling degradation (reduced recycling flux), are evaluated by determining the carbon density at the last closed flux surface (LCFS) and the neutral pressure in the divertor chamber. Optimum conditions are explored in both configuration and plasma parameter space. This study aims to identify the key geometric/magnetic and plasma parameters that affect the performance of detached plasmas in W7-X. Emphasis is placed on what occurs when the islands are enlarged far beyond the maximum size available in W7-AS and whether an island size limit for optimal detachment operation exists, and why. Further issues addressed are the power removal ability of the W7-X edge islands, potentially limiting factors, compatibility between particle and power exhaust, and particle refueling capability of the recycling neutrals.

  11. Spectroscopic characterization of the DIII-D divertor

    Science.gov (United States)

    Isler, R. C.; Wood, R. W.; Klepper, C. C.; Brooks, N. H.; Fenstermacher, M. E.; Leonard, A. W.

    1997-02-01

    Radiative losses along a fixed view into the divertor chamber of the DIII-D tokamak [Plasma Physics Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol I, p. 159] have been characterized for attached and partially detached discharges by analyzing line-integrated vacuum ultraviolet (VUV) signals. Essentially all the emission can be ascribed to carbon and deuterium. Because the majority of the most intense lines, which lie at wavelengths above 1100 Å, are not accessible to the present instrumentation, extensive use has been made of collisional-radiative (CR) calculations for level populations of the important ions in order to relate the total radiated power to shorter wavelength transitions. In beam-heated plasmas, the fraction of radiation detected from carbon along the VUV spectrometer view is usually between 50% and 80% of the total. Carbon densities are estimated from a simplified approach to modelling the emission using a one-dimensional transport code. For partially detached plasmas the concentrations range from 2%-6% of the electron density; but in attached plasmas it appears that carbon may supply most of the electrons in the divertor region just below the X point. Ion temperatures are measured from Doppler broadening of spectral lines by fitting measured profiles to theoretical lineshapes, which account precisely for atomic sublevel splitting caused by the Zeeman/Paschen-Back effect in the tokamak magnetic field.

  12. An exploration of advanced X-divertor scenarios on ITER

    Science.gov (United States)

    Covele, B.; Valanju, P.; Kotschenreuther, M.; Mahajan, S.

    2014-07-01

    It is found that the X-divertor (XD) configuration (Kotschenreuther et al 2004 Proc. 20th Int. Conf. on Fusion Energy (Vilamoura, Portugal, 2004) (Vienna: IAEA) CD-ROM file [IC/P6-43] www-naweb.iaea.org/napc/physics/fec/fec2004/datasets/index.html, Kotschenreuther et al 2006 Proc. 21st Int. Conf. on Fusion Energy 2006 (Chengdu, China, 2006) (Vienna: IAEA), CD-ROM file [IC/P7-12] www-naweb.iaea.org/napc/physics/FEC/FEC2006/html/index.htm, Kotschenreuther et al 2007 Phys. Plasmas 14 072502) can be made with the conventional poloidal field (PF) coil set on ITER (Tomabechi et al and Team 1991 Nucl. Fusion 31 1135), where all PF coils are outside the TF coils. Starting from the standard divertor, a sequence of desirable XD configurations are possible where the PF currents are below the present maximum design limits on ITER, and where the baseline divertor cassette is used. This opens the possibility that the XD could be tested and used to assist in high-power operation on ITER, but some further issues need examination. Note that the increased major radius of the super-X-divertor (Kotschenreuther et al 2007 Bull. Am. Phys. Soc. 53 11, Valanju et al 2009 Phys. Plasmas 16 5, Kotschenreuther et al 2010 Nucl. Fusion 50 035003, Valanju et al 2010 Fusion Eng. Des. 85 46) is not a feature of the XD geometry. In addition, we present an XD configuration for K-DEMO (Kim et al 2013 Fusion Eng. Des. 88 123) to demonstrate that it is also possible to attain the XD configuration in advanced tokamak reactors with all PF coils outside the TF coils. The results given here for the XD are far more encouraging than recent calculations by Lackner and Zohm (2012 Fusion Sci. Technol. 63 43) for the Snowflake (Ryutov 2007 Phys. Plasmas 14 064502, Ryutov et al 2008 Phys. Plasmas 15 092501), where the required high PF currents represent a major technological challenge. The magnetic field structure in the outboard divertor SOL (Kotschenreuther 2013 Phys. Plasmas 20 102507) in the recently created

  13. Improvement of the divertor bolometer diagnostic in the ASDEX Upgrade tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Sehmer, Till; Meister, Hans; Bernert, Matthias; Koll, Juergen; Reimold, Felix; Wischmeier, Marco; Fantz, Ursel [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Collaboration: ASDEX Upgrade Team

    2015-05-01

    For future fusion devices such as ITER, the radiation balance in the divertor region will have a significant impact on the power exhaust balance. Therefore, scenarios with strongly localized radiation, like radiation in the high field side high density (HFSHD) region, X-Point radiation or radiation in the divertor legs during detachment, will be investigated in the next ASDEX Upgrade (AUG) operation campaign 2015. To obtain accurately the absolute divertor radiation out of these measurements, the AUG foil bolometer diagnostic system in the divertor region has been enhanced; two new cameras have been designed and manufactured. One will be mounted below the roof baffle and contains 28 lines of sight (LOS), which will observe the mentioned regions of particular physical interest. The second camera consists of 4 LOS and will be mounted at the high field side above the inner divertor nose. It will observe radiation arising from the X-Point region and from the outer divertor. The data will be analysed with a tomographic reconstruction algorithm to localize and quantify the divertor radiation.

  14. Motivation and goals of the new heated outer divertor for Alcator C-Mod

    Science.gov (United States)

    Lipschultz, B.; Doody, J.; Ellis, R.; Granetz, R.; Harrison, S.; Labombard, B.; Vieira, R.; Zhang, H.; Zhou, L.

    2012-10-01

    A precision-aligned, high-temperature outer divertor is being developed for Alcator C-Mod to enhance heatflux handling and to advance our knowledge and experience with high-Z Plasma Facing Components (PFCs) in a reactor-level power density environment. Several departures from the design of the current divertor will be implemented: Instead of 10 toroidal divertor segments that expand toroidally as they heat up, the divertor plate will be toroidally continuous, with no openings or leading edges in the high-heat flux region. It will expand in the radial direction when heated while maintaining good alignment with shallow field line angles (˜ 2 degrees), a requirement for future divertors. Those characteristics will reduce both impurity sources and disruption forces. A second design goal is to be able to control the divertor temperature up to 600^oC by installing heaters in the structure. Given the Arrhenius relation between hydrogen diffusivity and temperature in tungsten (and molybdenum) this will open up a new area of study for tokamaks - exploration of the effect of PFC temperature on fuel retention. Temperature control may also open up a new area of study into the effect of changes in divertor recycling on fueling and core confinement.

  15. Simulation of tokamak SOL and divertor region including heat flux mitigation by gas puffing

    Science.gov (United States)

    Park, Jin-Woo; Na, Yong-Su; Hong, Sang Hee; Ahn, Joon-Wook; Kim, Deok-Kyu; Han, Hyunsun; Shim, Seong Bo; Lee, Hae June

    2012-08-01

    Two-dimensional (2D), scrape-off layer (SOL)-divertor transport simulations are performed using the integrated plasma-neutral-impurity code KTRAN developed at Seoul National University. Firstly, the code is applied to reproduce a National Spherical Torus eXperiment (NSTX) discharge by using the prescribed transport coefficients and the boundary conditions obtained from the experiment. The plasma density, the heat flux on the divertor plate, and the D α emission rate profiles from the numerical simulation are found to follow experimental trends qualitatively. Secondly, predictive simulations are carried out for the baseline operation mode in Korea Superconducting Tokamak Advanced Research (KSTAR) to predict the heat flux on the divertor target plates. The stationary peak heat flux in the KSTAR baseline operation mode is expected to be 6.5 MW/m2 in the case of an orthogonal divertor. To study the mitigation of the heat flux, we investigated the puffing effects of deuterium and argon gases. The puffing position is assumed to be in front of the strike point at the outer lower divertor plate. In the simulations, mitigation of the peak heat flux at the divertor target plates is found to occur when the gas puffing rate exceeds certain values, ˜1.0 × 1020 /s and ˜5.0 × 1018 /s for deuterium and argon, respectively. Multi-charged impurity transport is also investigated for both NSTX and KSTAR SOL and divertor regions.

  16. The WEST project: Current status of the ITER-like tungsten divertor

    Energy Technology Data Exchange (ETDEWEB)

    Missirlian, M., E-mail: marc.missirlian@cea.fr; Bucalossi, J.; Corre, Y.; Ferlay, F.; Firdaouss, M.; Garin, P.; Grosman, A.; Guilhem, D.; Gunn, J.; Languille, P.; Lipa, M.; Richou, M.; Tsitrone, E.

    2014-10-15

    Highlights: • We presented the ITER-like W components occurred for the WEST divertor. • The main features including key elements of the design were detailed. • The main results of studies investigating the integration constraints or issues were reported. • The WEST ITER-like divertor design reached a mature stage to enable the launching of the procurement phase. - Abstract: The WEST (W – for tungsten – Environment in Steady-state Tokamak) project is an upgrade of Tore Supra from a limiter based tokamak with carbon PFCs into an X-point divertor tokamak with full-tungsten armour while keeping its long discharge capability. The WEST project will primarily offer the key capability of testing for the first time the ITER technology in real plasma environment. In particular, the main divertor (i.e. the lower divertor) of the WEST project will be based on actively cooled tungsten monoblock components and will follow as closely as possible the design and the assembling technology, foreseen for the ITER divertor units. The current design of WEST ITER-like tungsten divertor has now reached a mature stage following the 2013 WEST Final Design Review. This paper presents the key elements of the design, reports the technological requirements and reviews the main design and integration issues.

  17. Experimental study of the topological aspect of the ergodic divertor in Tore-supra tokamak; Etude experimentale des aspects topologiques du divertor ergodique de Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Costanzo, L

    2001-10-01

    The control of power deposition onto plasma facing components in tokamaks is a determining factor for future thermonuclear fusion reactors. Plasma surface interaction can be performed using limiters or divertors. The ergodic divertor installed on Tore Supra is an atypical example of a magnetic divertor. It consists in applying a magnetic perturbation which establishes a particular topology of the plasma in contact with the wall (edge plasma). We carried out dedicated experiments in order to study parallel heat flux which strike the divertor neutralizers. This quantitative and qualitative analysis of heat flux as a function of experimental conditions allows to determine the profiles of power deposition along the neutralizers. The influence of plasma electron density, additional heating, impurities and injected gas was established. An experimental study of the sheath heat transmission factor {gamma} was carried out by correlating measurements made with Langmuir probes and infrared imaging. This study gave rise to a major conclusion: for ohmic discharges with deuterium injection and most of the time with helium, it was experimentally confirmed that {gamma}=7 in agreement with classical sheath theory. However, an increase of this factor with additional power has been shown. Detached plasma, which is an attractive regime in order to reduce the power deposition, requires an optimized control. A new measurement of the detachment onset has been developed. It is based on the variation of heat flux onto the plates derived from infrared measurements. A detachment cartography with the determination of a new 2D 'IR' Degree of Detachment was carried out allowing to locate the zone where the detachment starts. We can apply this concept both to other tokamaks such as JET and ITER. A comparison between the axisymmetric divertor and the ergodic divertor is also presented concerning the power deposition in the two configurations. Low heat flux with the ergodic divertor is a

  18. Impact of the Thomson effect on concentrating photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Ari, Nimrod [School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Porter School of Environmental Studies, Tel Aviv University, Tel Aviv 69978 (Israel); Kribus, Abraham [School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel)

    2010-08-15

    Photovoltaic cells convert most of the absorbed photon energy to heat. Removal of the heat by thermal conduction creates a temperature gradient that is significant in concentrating photovoltaic (CPV) cells subject to high incident radiation flux. The Thomson effect interaction between this temperature gradient and the electrical current in the cell can either increase or decrease the electrical power output of the cell. Here we show that the Thomson effect has a non-negligible impact on the conversion efficiency of Ge-based CPV cells, which is comparable to the impact of typical series resistance, and therefore this effect should be considered in cell modeling. The effect may also have a significant impact on the performance of other high power optoelectronic devices. (author)

  19. Thomson Reuters to release Book Citation Index later this year

    Science.gov (United States)

    Aldred, Maxine

    2011-08-01

    Thomson Reuters will launch its new Book Citation Index later this year. Projected to include 25,000 volumes from major publishers and university presses in science, social science, and the humanities, the Book Citation Index will cover scholarly books (both series and nonseries) that present original research or literature reviews. The current effort regarding the science section is focused on books published from 2005 to the present. AGU has sent copies of its catalog for inclusion in the Book Citation Index, but the final selection will be made by Thomson Reuters, using its internal selection criteria, which may be found at http://wokinfo.com/wok/media/pdf/BKCI-SelectionEssay_web.pdf.

  20. Diagnostic tools for studying divertor detachment: bolometry, spectroscopy, and thermography for surface heat-flux

    Science.gov (United States)

    Terry, J. L.; Reinke, M. L.

    2017-04-01

    Some of the key aspects of divertor detachment that are addressed by bolometry, impurity spectroscopy, hydrogen spectroscopy, and measurements of divertor target heat-flux are reviewed. Measurement requirements for these diagnostic areas are defined, and brief descriptions of the techniques used for these diagnostics are given. Examples from the literature of measurements using these tools applied to detachment are presented. Feedback control of detachment using some of these diagnostics as the ‘sensors’ is reviewed. Challenges and some future directions for these diagnostics in the context of studying divertor detachment are described.

  1. A new approach to scaling of the scrape-off layer and divertor plasma in JET

    Energy Technology Data Exchange (ETDEWEB)

    Harbour, P.J.; Loarte, A.; Clement, S.; De Kock, L.; Jaeckel, H.J.; Lesourd, M.; O' Brien, D.P.; Summers, D.D.R.; Tagle, J.A. (JET Joint Undertaking, Abingdon (United Kingdom))

    1992-12-01

    An analytical model of the SOL/divertor magnetic geometry is applied to JET. Exponential decay lengths, [lambda], are related to differences in magnetic fluxes and are expressed in terms of [lambda] at midplane. Consistent values of [lambda] are usually obtained from Langmuir probes in the SOL or in the divertor, and with Lyman-[alpha] and Balmer-[alpha] profiles in the divertor. Scaling of [lambda] is presented: It is only slightly affected by , by X-point to target distance and by input power (other than the usual changes [Omega][yields]L[yields]H); it increases strongly with B[sub [phi

  2. Development of a high resolution and high dispersion Thomson parabola.

    Science.gov (United States)

    Jung, D; Hörlein, R; Kiefer, D; Letzring, S; Gautier, D C; Schramm, U; Hübsch, C; Öhm, R; Albright, B J; Fernandez, J C; Habs, D; Hegelich, B M

    2011-01-01

    Here, we report on the development of a novel high resolution and high dispersion Thomson parabola for simultaneously resolving protons and low-Z ions of more than 100 MeV/nucleon necessary to explore novel laser ion acceleration schemes. High electric and magnetic fields enable energy resolutions of ΔE∕E parabola for ion energies of more than 30 MeV/nucleon.

  3. Theoretical study on a Miniature Joule-Thomson & Bernoulli Cryocooler

    Science.gov (United States)

    Xiong, L. Y.; Kaiser, G.; Binneberg, A.

    2004-11-01

    In this paper, a microchannel-based cryocooler consisting of a compressor, a recuperator and a cold heat exchanger has been developed to study the feasibility of cryogenic cooling by the use of Joule-Thomson effect and Bernoulli effect. A set of governing equations including Bernoulli equations and energy equations are introduced and the performance of the cooler is calculated. The influences of some working conditions and structure parameters on the performance of coolers are discussed in details.

  4. The Joule-Thomson effect in confined fluids

    Science.gov (United States)

    Schoen, Martin

    1999-08-01

    The Joule-Thomson effect is discussed for a fluid composed of spherically symmetric Lennard-Jones(12,6) molecules (of “diameter” σ) confined between two planar, rigid, structureless solid substrates separated by sz=10 and 20 σ. The effect of “strong” and “weak” of the substrate is studied by employing fluid-substrate potentials with and without attractive interactions, respectively. The focal point of this study is the confinement-induced depression of the inversion temperature Tinv with respect to the bulk value. It is defined such that during a Joule-Thomson expansion the temperature of a (confined or bulk) gas remains constant. In the limit of vanishing gas density, Tinv is computed from the second virial coefficient defined through a density expansion of the transverse stress T∥ in the gas. For higher densities Tinv is computed from the (transverse) expansion coefficient α∥ which is accessible through density and enthalpy fluctuations in mixed stress-strain ensemble Monte Carlo simulations. Results of these simulations are analyzed in terms of a mean-field theory which provides a qualitatively correct description of the Joule-Thomson effect in confined fluids. The smaller sz the more depressed (with respect to the bulk) is Tinv. The density dependence of Tinv is different for “strong” and “weak” substrates. Without attractive fluid-fluid interactions Tinv does not exist and the confined gas is always heated during a Joule-Thomson expansion. In this case α∥ is independent of the substrate material.

  5. Joule—Thomson effect in liquid He II

    Science.gov (United States)

    Huang, B. J.

    It has been shown in the present study that the Joule—Thomson coefficients of liquid He II are extraordinarily high for temperatures far below the lambda point as compared with ordinary real gases or liquids. Its effect on the throttling process of He II was shown to be quite significant and should be taken into account when dealing with transport processes of He II.

  6. Instrucciones de acceso a Thomson Reuters Proview (Aranzadi)

    OpenAIRE

    Biblioteca de la Universidad de Málaga

    2016-01-01

    PROVIEW es la plataforma de revistas y libros digitales de Thomson Reuters (Aranzadi) dirigida específicamente a profesionales, estudiantes y docentes del Derecho. La Universidad de Málaga proporciona acceso institucional a la misma, mediante reconocimiento de los rangos IP, por lo que, salvo que se indique lo contrario en cada registro bibliográfico, el usuario no necesita utilizar identificación por nombre de usuario y contraseña.

  7. Joule-Thomson Cooling Due to CO2 Injection into Natural Gas Reservoirs

    OpenAIRE

    Oldenburg, Curtis M.

    2006-01-01

    Depleted natural gas reservoirs are a promising target for Carbon Sequestration with Enhanced Gas Recovery (CSEGR). The focus of this study is on evaluating the importance of Joule-Thomson cooling during CO2 injection into depleted natural gas reservoirs. Joule-Thomson cooling is the adiabatic cooling that accompanies the expansion of a real gas. If Joule-Thomson cooling were extreme, injectivity and formation permeability could be altered by the freezing of residual water, formation of ...

  8. Stability and heating of a poloidal divertor tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Biddle, A. P.; Dexter, R. N.; Holly, D. T.; Lipschultz, B.; Osborne, T. H.; Prager, S. C.; Shepard, D.A., Sprott, J.C.; Witherspoon, F. D.

    1980-06-01

    Five experimental studies - two stability and three heating investigations - have been carried out on Tokapole II, a Tokamak with a four node poloidal divertor. First, discharges have been attained with safety factor q as low as 0.6 over most of the column without degradation of confinement, and correlation of helical instability onset with current profile shape is being studied. Second, the axisymmetric instability has been investigated in detail for various noncircular cross-sectional shapes, and results have been compared with a numerical stability code adapted to the Tokapole machine. Third, application of high power fast wave ion cyclotron resonance heating doubles the ion temperature and permits observation of heating as a function of harmonic number and spatial location of the resonance. Fourth, low power shear Alfven wave propagation is underway to test the applicability of this heating method to tokamaks. Fifth, preionization by electron cyclotron heating has been employed to reduce the startup loop voltage by approx. 60%.

  9. Models of SOL transport and their relation to scaling of the divertor heat flux width in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Makowski, M.A., E-mail: makowski1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Lasnier, C.J. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Leonard, A.W.; Osborne, T.H. [General Atomics, P.O. Box 85608, San Diego, CA 92186-5608 (United States); Umansky, M. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Elder, J.D. [University of Toronto Institute for Aerospace Studies, Toronto M3H 5T6 (Canada); Nichols, J.H. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Stangeby, P.C. [University of Toronto Institute for Aerospace Studies, Toronto M3H 5T6 (Canada); Baver, D.A.; Myra, J.R. [Lodestar Research Corporation, Boulder, CO (United States)

    2015-08-15

    Strong support for the critical pressure gradient model for the heat flux width has been obtained, in that the measured separatrix pressure gradient lies below and scales similarly to the pressure gradient limit obtained from the ideal, infinite-n stability codes, BALOO and 2DX, in all cases that have been examined. Predictions of a heuristic drift model for the heat flux width are also in qualitative agreement with the measurements. These results have been obtained using an improved high rep-rate and higher edge spatial resolution Thomson scattering system on DIII-D to measure the upstream electron temperature and density profiles. In order to compare theory and experiment, profiles of density, temperature, and pressure for both electrons and ions are needed as well values of these quantities at the separatrix. A simple method to identify a proxy for the separatrix has been developed to do so.

  10. A snowflake divertor: a possible solution to the power exhaust problem for tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D. D.; Cohen, R. H.; Rognlien, T. D.; Umansky, M. V.

    2012-11-21

    This paper summarizes recent progress in the theory of a snowflake divertor, a possible path to reduce both steady-state and intermittent heat loads on the divertor plates to an acceptable level. The most important feature of a SF divertor is the presence of a large zone of a very weak poloidal magnetic field around the poloidal field (PF) null. Qualitative explanation of a variety of new features characteristic of a SF divertor is provided based on simple scaling relations. The main part of the paper is focused on the concept of spreading of the heat flux by curvature-driven convection near the PF null. References to experimental results from the NSTX and TCV tokamaks are provided.

  11. A snowflake divertor: a possible solution to the power exhaust problem for tokamaks

    Science.gov (United States)

    Ryutov, D. D.; Cohen, R. H.; Rognlien, T. D.; Umansky, M. V.

    2012-12-01

    This paper summarizes recent progress in the theory of a snowflake divertor, a possible path to reduce both steady-state and intermittent heat loads on the divertor plates to an acceptable level. The most important feature of a SF divertor is the presence of a large zone of a very weak poloidal magnetic field around the poloidal field (PF) null. Qualitative explanation of a variety of new features characteristic of a SF divertor is provided based on simple scaling relations. The main part of the paper is focused on the concept of spreading of the heat flux by curvature-driven convection near the PF null. References to experimental results from the NSTX and TCV tokamaks are provided.

  12. One dimensional simulation on stability of detached plasma in a tokamak divertor

    Energy Technology Data Exchange (ETDEWEB)

    Nakazawa, Shinji; Nakajima, Noriyoshi; Okamoto, Masao; Ohyabu, Nobuyoshi [National Inst. for Fusion Science, Toki, Gifu (Japan)

    1999-06-01

    The stability of radiation front in the Scrape-Off-Layer (SOL) of a tokamak is studied with a one dimensional fluid code; the time-dependent transport equations are solved in the direction parallel to a magnetic field line. The simulation results show that stable detached solutions exist, where the plasma temperature near the divertor target is {approx}2 eV. It is found that whenever such stable detached states are attained, the strong radiation front is contact with or at a small distance from the divertor target. When the energy externally injected into the SOL is decreased below a critical value, the radiation front starts to move towards the X-point, cooling the SOL plasma. In such cases, no stationary solutions such that the radiation front rests in the divertor channel are observed in our parameter space. This qualitatively corresponds to the results of tokamak divertor experiments which show the movement of radiation front. (author)

  13. Comparison of JET main chamber erosion with dust collected in the divertor

    CERN Document Server

    Widdowson, A; Booth, S; Coad, J P; Hakola, A; Heinola, K; Ivanova, S; Koivuranta, S; Likonen, J; Mayer, M; Stamp, M; Contributors, JET-EFDA

    2013-01-01

    A complete global balance for carbon in JET requires knowledge of the net erosion in the main chamber, net deposition in the divertor and the amount of dust and flakes collecting in the divertor region. This paper describes a number of measurements on aspects of this global picture. Profiler measurements and cross section microscopy on tiles that were removed in the 2009 JET intervention are used to evaluate the net erosion in the main chamber and net deposition in the divertor. In addition the mass of dust and flakes collected from the JET divertor during the same intervention is also reported and included as part of the balance. Spectroscopic measurements of carbon erosion from the main chamber are presented and compared with the erosion measurements for the main chamber.

  14. Development of heat sink concept for near-term fusion power plant divertor

    Science.gov (United States)

    Rimza, Sandeep; Khirwadkar, Samir; Velusamy, Karupanna

    2017-04-01

    Development of an efficient divertor concept is an important task to meet in the scenario of the future fusion power plant. The divertor, which is a vital part of the reactor has to discharge the considerable fraction of the total fusion thermal power (∼15%). Therefore, it has to survive very high thermal fluxes (∼10 MW/m2). In the present paper, an efficient divertor heat exchanger cooled by helium is proposed for the fusion tokamak. The Plasma facing surface of divertor made-up of several modules to overcome the stresses caused by high heat flux. The thermal hydraulic performance of one such module is numerically investigated in the present work. The result shows that the proposed design is capable of handling target heat flux values of 10 MW/m2. The computational model has been validated against high-heat flux experiments and a satisfactory agreement is noticed between the present simulation and the reported results.

  15. Thermal-hydraulic analysis of the HL-2M divertor using an homogeneous equilibrium model

    Science.gov (United States)

    Lu, Yong; Cai, Lijun; Liu, Yuxiang; Liu, Jian; Yuan, Yinglong; Zheng, Guoyao; Liu, Dequan

    2017-09-01

    The heat flux of the HL-2M divertor would reach 10 MW m-2 or more at the local area when the device operates at high parameters. Subcooled boiling could occur at high thermal load, which would be simulated based on the homogeneous equilibrium model. The results show that the current design of the HL-2M divertor could withstand the local heat flux 10 MW m-2 at a plasma pulse duration of 5 s, inlet coolant pressure of 1.5 MPa and flow velocity of 4 m s-1. The pulse duration that the HL-2M divertor could withstand is closely related to the coolant velocity. In addition, at the time of 2 min after plasma discharge, the flow velocity decreased from 4 m s-1 to 1 m s-1, and the divertor could also be cooled to the initial temperature before the next plasma discharge commences.

  16. Ion temperature measurement using an ion sensitive probe in the LHD divertor plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ezumi, N. E-mail: ezumi@ec.nagano-nct.ac.jp; Masuzaki, S.; Ohno, N.; Uesugi, Y.; Takamura, S

    2003-03-01

    The first reliable measurement of ion temperature in the divertor plasma of the Large Helical Device has been done by using an ion sensitive probe. The satisfactory current-voltage characteristics of the ion collector for evaluating the ion temperature were obtained at the outer part of the divertor leg. Furthermore, simultaneous ion and electron temperature measurements were successfully done in this part. The results show that the ion temperature is higher than the electron temperature in the part. There is a possibility that the profiles of the evaluated ion temperature which shows relatively higher than the electron temperature at the outside of divertor leg are qualitatively explained by particle's orbits around the edge and divertor region.

  17. Numerical optimization of tungsten monoblock tile in EAST divertor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiahua [Harbin Engineering University, Harbin 150001 (China); Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Ding, Fang, E-mail: fding@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Mao, Hongmin; Luo, Guangnan; Hu, Zhenhua; Xu, Feng; Niu, Guojian [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-10-15

    Highlights: • A method based on Kriging model and Uniform Design is developed and applied to the geometry optimization of EAST W tile. • An optimized chamfering geometry is obtained and significantly reduces the maximum temperature on W monoblock. • The incident angle of plasma flux has a strong impact on the optimized chamfering geometry. - Abstract: The ITER-like tungsten divertor with toroidally symmetric 1 mm × 1 mm chamfers on monoblock tiles has been installed in EAST in 2014. Hot spots were experimentally observed mostly along the toridial facing gaps between two columns of W/Cu monoblock units, which are often aggravated by installation misalignment. These hot spots can significantly degrade the power handling capability of W divertor and need to be alleviated. A numerical optimization model for tile chamfering design is built based on the finite element method (FEM), in which the numerical experiments are designed by the uniform table. The calculation results in ANSYS for these experiments are then processed employing the code Design and Analysis of Computer Experiments (DACE) in which the Kriging method is adopted to reconstruct a response surface. The optimum geometry can be derived from the minimum point on the surface. The results show that, under 200 MW/m{sup 2} parallel heat flux with an inclination angle of 3° with respect to tile surface, the maximum temperature on W tile with a 0.5 mm misalignment can be decreased to 2084 °C by adopting an optimized single-sided chamfer, 1.8 times lower than 1 mm × 1 mm symmetrically chamfered tile. The optimum chamfering geometry has a strong dependence on the inclination angle of plasma flux to tile surface. As a result, the monoblock tiles in a flat cassette module need to be chamfered differently to adapt to the varied inclination angles.

  18. Design study of JT-60SA divertor for high heat and particle controllability

    Energy Technology Data Exchange (ETDEWEB)

    Kawashima, H.; Shimizu, K.; Takizuka, T.; Asakura, N.; Sakurai, S.; Matsukawa, M.; Fujita, T. [Japan Atomic Energy Agency (Japan)

    2007-07-01

    In steady-state high performance plasma over 41 MW/100 s in the JT-60SA tokamak, the heat and particle flux density on the divertor targets are considerably higher than those of existing devices such as JT-60U. A divertor modeling code, SOLDOR/NEUT2D, has been applied in order to optimiz the JT-60SA divertor design in such conditions. The heat load q{sub heat} on divertor target is estimated for a conceptual divertor design as the first step. Simulation of SOL/divertor plasmas is carried out at lower single null divertor (LSN) configuration with I{sub p}/B{sub t}=3.5 MA/2.5 T. For the present calculation, anticipated SOL power flux of Q{sub total}=35 MW and particle fuelling flux of G{sub ion}=5.10{sup 21}/s (n{sub e-dege}=3.10{sup 19}/m) are applied. The pumping speed (S{sub pump}=50 m{sup 3}/s) is specified by an albedo for neutrals in front of the cryopump set bottom of exhaust chamber. The recycling of deuterium is assumed to be 100% at the first wall. For the first simulation, the carbon contamination in SOL/divertor regions is set to 2% of electron density uniformly. Gas puff flux G{sub puff}=0.5.10{sup 21}/s is introduced from outside midplane. We assume particle diffusion coefficient D=0.3 m{sup 2}/s and thermal diffusivity of electron and ion X{sub e}=X{sub i}=1 m{sup 2}/s. As a result, attached and detached plasma conditions are simulated on outer and inner divertor regions, respectively. The heat load around the outer strike point reaches 31 MW/m{sup 2}, which largely exceeds the allowable range of 15 MW/m{sup 2} for CFC materials. Reduction of heat load must be achieved somehow. An effect of the radiation cooling is simulated to reduce such a large heat load as the second step. To enlarge the radiative cooling, we increased the gas puff flux by a factor of ten and the carbon contamination partly in the outer divertor region from 2% to 4%. It gives a favorable result that the peak heat load is reduced to 12 MW/m{sup 2} with radiation enhancement by a

  19. Experimental study of electroinsulating coatings in gallium coolant related to the divertor cooling loop

    Science.gov (United States)

    Beznosov, A. V.; Sherbakov, R. V.; Karatushina, I. V.; Romanov, P. V.

    1996-10-01

    Experimental investigation of electroinsulating coatings stability on the samples made of stainless stell, vanadium alloy and beryllium has been conducted at 80-350°C. The impact of gas pressure upon the liquid gallium open surface was studied. The stability of electroinsulating film parameters on divertor structure materials was confirmed for the divertor with open liquid metal coolant surface in the vacuum chamber.

  20. Favorable effects of turbulent plasma mixing on the performance of innovative tokamak divertors

    Science.gov (United States)

    Ryutov, D. D.; Cohen, R. H.; Rognlien, T. D.; Umansky, M. V.

    2013-10-01

    The problem of reducing the heat load on plasma-facing components is one of the most demanding issues for MFE devices. The general approach to the solution of this problem is the use of a specially configured poloidal magnetic field, so called magnetic divertors. In recent years, novel divertors possessing the 2-nd and 3-rd order nulls of the poloidal field (PF) have been proposed. They are called a ``snowflake'' (SF) and a ``cloverleaf'' (CL) divertor, respectively, due to characteristic shape of the magnetic separatrix. Among several beneficial features of such divertors is an effect of strong turbulent plasma mixing that is intrinsic to the zone of weak PF near the null-point. The turbulence spreads the heat flux between multiple divertor exhaust channels and increases the heat flux width within each channel. Among physical processes affecting the onset of convection the curvature-driven mode of axisymmetric rolls is most prominent. The effect is quite significant for the SF and is even stronger for the CL divertor. Projections to future ITER-scale facilities are discussed. Work performed for U.S. DoE by LLNL under Contract DE-AC52-07NA27344.