WorldWideScience

Sample records for diverse functional constrains

  1. Bidirectional Dynamic Diversity Evolutionary Algorithm for Constrained Optimization

    Directory of Open Access Journals (Sweden)

    Weishang Gao

    2013-01-01

    Full Text Available Evolutionary algorithms (EAs were shown to be effective for complex constrained optimization problems. However, inflexible exploration-exploitation and improper penalty in EAs with penalty function would lead to losing the global optimum nearby or on the constrained boundary. To determine an appropriate penalty coefficient is also difficult in most studies. In this paper, we propose a bidirectional dynamic diversity evolutionary algorithm (Bi-DDEA with multiagents guiding exploration-exploitation through local extrema to the global optimum in suitable steps. In Bi-DDEA potential advantage is detected by three kinds of agents. The scale and the density of agents will change dynamically according to the emerging of potential optimal area, which play an important role of flexible exploration-exploitation. Meanwhile, a novel double optimum estimation strategy with objective fitness and penalty fitness is suggested to compute, respectively, the dominance trend of agents in feasible region and forbidden region. This bidirectional evolving with multiagents can not only effectively avoid the problem of determining penalty coefficient but also quickly converge to the global optimum nearby or on the constrained boundary. By examining the rapidity and veracity of Bi-DDEA across benchmark functions, the proposed method is shown to be effective.

  2. Nocturnality constrains morphological and functional diversity in the eyes of reef fishes

    Directory of Open Access Journals (Sweden)

    Schmitz Lars

    2011-11-01

    Full Text Available Abstract Background Ambient light levels are often considered to drive the evolution of eye form and function. Diel activity pattern is the main mechanism controlling the visual environment of teleost reef fish, with day-active (diurnal fish active in well-illuminated conditions, whereas night-active (nocturnal fish cope with dim light. Physiological optics predicts several specific evolutionary responses to dim-light vision that should be reflected in visual performance features of the eye. Results We analyzed a large comparative dataset on morphological traits of the eyes in 265 species of teleost reef fish in 43 different families. The eye morphology of nocturnal reef teleosts is characterized by a syndrome that indicates better light sensitivity, including large relative eye size, high optical ratio and large, rounded pupils. Improved dim-light image formation comes at the cost of reduced depth of focus and reduction of potential accommodative lens movement. Diurnal teleost reef fish, released from the stringent functional requirements of dim-light vision have much higher morphological and optical diversity than nocturnal species, with large ranges of optical ratio, depth of focus, and lens accommodation. Conclusions Physical characteristics of the environment are an important factor in the evolution and diversification of the vertebrate eye. Both teleost reef fish and terrestrial amniotes meet the functional requirements of dim-light vision with a similar evolutionary response of morphological and optical modifications. The trade-off between improved dim-light vision and reduced optical diversity may be a key factor in explaining the lower trophic diversity of nocturnal reef teleosts.

  3. McMAC: Towards a MAC Protocol with Multi-Constrained QoS Provisioning for Diverse Traffic in Wireless Body Area Networks

    OpenAIRE

    Monowar, Muhammad; Hassan, Mohammad; Bajaber, Fuad; Al-Hussein, Musaed; Alamri, Atif

    2012-01-01

    The emergence of heterogeneous applications with diverse requirements for resource-constrained Wireless Body Area Networks (WBANs) poses significant challenges for provisioning Quality of Service (QoS) with multi-constraints (delay and reliability) while preserving energy efficiency. To address such challenges, this paper proposes McMAC, a MAC protocol with multi-constrained QoS provisioning for diverse traffic classes in WBANs. McMAC classifies traffic based on their multi-constrained QoS de...

  4. New Exact Penalty Functions for Nonlinear Constrained Optimization Problems

    Directory of Open Access Journals (Sweden)

    Bingzhuang Liu

    2014-01-01

    Full Text Available For two kinds of nonlinear constrained optimization problems, we propose two simple penalty functions, respectively, by augmenting the dimension of the primal problem with a variable that controls the weight of the penalty terms. Both of the penalty functions enjoy improved smoothness. Under mild conditions, it can be proved that our penalty functions are both exact in the sense that local minimizers of the associated penalty problem are precisely the local minimizers of the original constrained problem.

  5. McMAC: Towards a MAC Protocol with Multi-Constrained QoS Provisioning for Diverse Traffic in Wireless Body Area Networks

    Directory of Open Access Journals (Sweden)

    Muhammad Mostafa Monowar

    2012-11-01

    Full Text Available The emergence of heterogeneous applications with diverse requirements forresource-constrained Wireless Body Area Networks (WBANs poses significant challengesfor provisioning Quality of Service (QoS with multi-constraints (delay and reliability whilepreserving energy efficiency. To address such challenges, this paper proposes McMAC,a MAC protocol with multi-constrained QoS provisioning for diverse traffic classes inWBANs. McMAC classifies traffic based on their multi-constrained QoS demands andintroduces a novel superframe structure based on the "transmit-whenever-appropriate"principle, which allows diverse periods for diverse traffic classes according to their respectiveQoS requirements. Furthermore, a novel emergency packet handling mechanism is proposedto ensure packet delivery with the least possible delay and the highest reliability. McMACis also modeled analytically, and extensive simulations were performed to evaluate itsperformance. The results reveal that McMAC achieves the desired delay and reliabilityguarantee according to the requirements of a particular traffic class while achieving energyefficiency.

  6. McMAC: towards a MAC protocol with multi-constrained QoS provisioning for diverse traffic in Wireless Body Area Networks.

    Science.gov (United States)

    Monowar, Muhammad Mostafa; Hassan, Mohammad Mehedi; Bajaber, Fuad; Al-Hussein, Musaed; Alamri, Atif

    2012-11-12

    The emergence of heterogeneous applications with diverse requirements for resource-constrained Wireless Body Area Networks (WBANs) poses significant challenges for provisioning Quality of Service (QoS) with multi-constraints (delay and reliability) while preserving energy efficiency. To address such challenges, this paper proposes McMAC,a MAC protocol with multi-constrained QoS provisioning for diverse traffic classes in WBANs. McMAC classifies traffic based on their multi-constrained QoS demands and introduces a novel superframe structure based on the "transmit-whenever-appropriate"principle, which allows diverse periods for diverse traffic classes according to their respective QoS requirements. Furthermore, a novel emergency packet handling mechanism is proposedto ensure packet delivery with the least possible delay and the highest reliability. McMAC is also modeled analytically, and extensive simulations were performed to evaluate its performance. The results reveal that McMAC achieves the desired delay and reliability guarantee according to the requirements of a particular traffic class while achieving energy efficiency.

  7. Tree species diversity promotes aboveground carbon storage through functional diversity and functional dominance.

    Science.gov (United States)

    Mensah, Sylvanus; Veldtman, Ruan; Assogbadjo, Achille E; Glèlè Kakaï, Romain; Seifert, Thomas

    2016-10-01

    The relationship between biodiversity and ecosystem function has increasingly been debated as the cornerstone of the processes behind ecosystem services delivery. Experimental and natural field-based studies have come up with nonconsistent patterns of biodiversity-ecosystem function, supporting either niche complementarity or selection effects hypothesis. Here, we used aboveground carbon (AGC) storage as proxy for ecosystem function in a South African mistbelt forest, and analyzed its relationship with species diversity, through functional diversity and functional dominance. We hypothesized that (1) diversity influences AGC through functional diversity and functional dominance effects; and (2) effects of diversity on AGC would be greater for functional dominance than for functional diversity. Community weight mean (CWM) of functional traits (wood density, specific leaf area, and maximum plant height) were calculated to assess functional dominance (selection effects). As for functional diversity (complementarity effects), multitrait functional diversity indices were computed. The first hypothesis was tested using structural equation modeling. For the second hypothesis, effects of environmental variables such as slope and altitude were tested first, and separate linear mixed-effects models were fitted afterward for functional diversity, functional dominance, and both. Results showed that AGC varied significantly along the slope gradient, with lower values at steeper sites. Species diversity (richness) had positive relationship with AGC, even when slope effects were considered. As predicted, diversity effects on AGC were mediated through functional diversity and functional dominance, suggesting that both the niche complementarity and the selection effects are not exclusively affecting carbon storage. However, the effects were greater for functional diversity than for functional dominance. Furthermore, functional dominance effects were strongly transmitted by CWM of

  8. Environmental Conditions Constrain the Distribution and Diversity of Archaeal merA in Yellowstone National Park, Wyoming, U.S.A.

    Science.gov (United States)

    Wang, Y.; Boyd, E.; Crane, S.; Lu-Irving, P.; Krabbenhoft, D.; King, S.; Dighton, J.; Geesey, G.; Barkay, T.

    2011-01-01

    The distribution and phylogeny of extant protein-encoding genes recovered from geochemically diverse environments can provide insight into the physical and chemical parameters that led to the origin and which constrained the evolution of a functional process. Mercuric reductase (MerA) plays an integral role in mercury (Hg) biogeochemistry by catalyzing the transformation of Hg(II) to Hg(0). Putative merA sequences were amplified from DNA extracts of microbial communities associated with mats and sulfur precipitates from physicochemically diverse Hg-containing springs in Yellowstone National Park, Wyoming, using four PCR primer sets that were designed to capture the known diversity of merA. The recovery of novel and deeply rooted MerA lineages from these habitats supports previous evidence that indicates merA originated in a thermophilic environment. Generalized linear models indicate that the distribution of putative archaeal merA lineages was constrained by a combination of pH, dissolved organic carbon, dissolved total mercury and sulfide. The models failed to identify statistically well supported trends for the distribution of putative bacterial merA lineages as a function of these or other measured environmental variables, suggesting that these lineages were either influenced by environmental parameters not considered in the present study, or the bacterial primer sets were designed to target too broad of a class of genes which may have responded differently to environmental stimuli. The widespread occurrence of merA in the geothermal environments implies a prominent role for Hg detoxification in these environments. Moreover, the differences in the distribution of the merA genes amplified with the four merA primer sets suggests that the organisms putatively engaged in this activity have evolved to occupy different ecological niches within the geothermal gradient. ?? 2011 Springer Science+Business Media, LLC.

  9. Environmental conditions constrain the distribution and diversity of archaeal merA in Yellowstone National Park, Wyoming, U.S.A.

    Science.gov (United States)

    Wang, Yanping; Boyd, Eric; Crane, Sharron; Lu-Irving, Patricia; Krabbenhoft, David; King, Susan; Dighton, John; Geesey, Gill; Barkay, Tamar

    2011-11-01

    The distribution and phylogeny of extant protein-encoding genes recovered from geochemically diverse environments can provide insight into the physical and chemical parameters that led to the origin and which constrained the evolution of a functional process. Mercuric reductase (MerA) plays an integral role in mercury (Hg) biogeochemistry by catalyzing the transformation of Hg(II) to Hg(0). Putative merA sequences were amplified from DNA extracts of microbial communities associated with mats and sulfur precipitates from physicochemically diverse Hg-containing springs in Yellowstone National Park, Wyoming, using four PCR primer sets that were designed to capture the known diversity of merA. The recovery of novel and deeply rooted MerA lineages from these habitats supports previous evidence that indicates merA originated in a thermophilic environment. Generalized linear models indicate that the distribution of putative archaeal merA lineages was constrained by a combination of pH, dissolved organic carbon, dissolved total mercury and sulfide. The models failed to identify statistically well supported trends for the distribution of putative bacterial merA lineages as a function of these or other measured environmental variables, suggesting that these lineages were either influenced by environmental parameters not considered in the present study, or the bacterial primer sets were designed to target too broad of a class of genes which may have responded differently to environmental stimuli. The widespread occurrence of merA in the geothermal environments implies a prominent role for Hg detoxification in these environments. Moreover, the differences in the distribution of the merA genes amplified with the four merA primer sets suggests that the organisms putatively engaged in this activity have evolved to occupy different ecological niches within the geothermal gradient.

  10. Natural selection constrains neutral diversity across a wide range of species.

    Science.gov (United States)

    Corbett-Detig, Russell B; Hartl, Daniel L; Sackton, Timothy B

    2015-04-01

    The neutral theory of molecular evolution predicts that the amount of neutral polymorphisms within a species will increase proportionally with the census population size (Nc). However, this prediction has not been borne out in practice: while the range of Nc spans many orders of magnitude, levels of genetic diversity within species fall in a comparatively narrow range. Although theoretical arguments have invoked the increased efficacy of natural selection in larger populations to explain this discrepancy, few direct empirical tests of this hypothesis have been conducted. In this work, we provide a direct test of this hypothesis using population genomic data from a wide range of taxonomically diverse species. To do this, we relied on the fact that the impact of natural selection on linked neutral diversity depends on the local recombinational environment. In regions of relatively low recombination, selected variants affect more neutral sites through linkage, and the resulting correlation between recombination and polymorphism allows a quantitative assessment of the magnitude of the impact of selection on linked neutral diversity. By comparing whole genome polymorphism data and genetic maps using a coalescent modeling framework, we estimate the degree to which natural selection reduces linked neutral diversity for 40 species of obligately sexual eukaryotes. We then show that the magnitude of the impact of natural selection is positively correlated with Nc, based on body size and species range as proxies for census population size. These results demonstrate that natural selection removes more variation at linked neutral sites in species with large Nc than those with small Nc and provides direct empirical evidence that natural selection constrains levels of neutral genetic diversity across many species. This implies that natural selection may provide an explanation for this longstanding paradox of population genetics.

  11. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships.

    Science.gov (United States)

    Laforest-Lapointe, Isabelle; Paquette, Alain; Messier, Christian; Kembel, Steven W

    2017-06-01

    Research on biodiversity and ecosystem functioning has demonstrated links between plant diversity and ecosystem functions such as productivity. At other trophic levels, the plant microbiome has been shown to influence host plant fitness and function, and host-associated microbes have been proposed to influence ecosystem function through their role in defining the extended phenotype of host organisms However, the importance of the plant microbiome for ecosystem function has not been quantified in the context of the known importance of plant diversity and traits. Here, using a tree biodiversity-ecosystem functioning experiment, we provide strong support for the hypothesis that leaf bacterial diversity is positively linked to ecosystem productivity, even after accounting for the role of plant diversity. Our results also show that host species identity, functional identity and functional diversity are the main determinants of leaf bacterial community structure and diversity. Our study provides evidence of a positive correlation between plant-associated microbial diversity and terrestrial ecosystem productivity, and a new mechanism by which models of biodiversity-ecosystem functioning relationships can be improved.

  12. Firefly Algorithm for Cardinality Constrained Mean-Variance Portfolio Optimization Problem with Entropy Diversity Constraint

    Directory of Open Access Journals (Sweden)

    Nebojsa Bacanin

    2014-01-01

    portfolio model with entropy constraint. Firefly algorithm is one of the latest, very successful swarm intelligence algorithm; however, it exhibits some deficiencies when applied to constrained problems. To overcome lack of exploration power during early iterations, we modified the algorithm and tested it on standard portfolio benchmark data sets used in the literature. Our proposed modified firefly algorithm proved to be better than other state-of-the-art algorithms, while introduction of entropy diversity constraint further improved results.

  13. Functional & phylogenetic diversity of copepod communities

    Science.gov (United States)

    Benedetti, F.; Ayata, S. D.; Blanco-Bercial, L.; Cornils, A.; Guilhaumon, F.

    2016-02-01

    The diversity of natural communities is classically estimated through species identification (taxonomic diversity) but can also be estimated from the ecological functions performed by the species (functional diversity), or from the phylogenetic relationships among them (phylogenetic diversity). Estimating functional diversity requires the definition of specific functional traits, i.e., phenotypic characteristics that impact fitness and are relevant to ecosystem functioning. Estimating phylogenetic diversity requires the description of phylogenetic relationships, for instance by using molecular tools. In the present study, we focused on the functional and phylogenetic diversity of copepod surface communities in the Mediterranean Sea. First, we implemented a specific trait database for the most commonly-sampled and abundant copepod species of the Mediterranean Sea. Our database includes 191 species, described by seven traits encompassing diverse ecological functions: minimal and maximal body length, trophic group, feeding type, spawning strategy, diel vertical migration and vertical habitat. Clustering analysis in the functional trait space revealed that Mediterranean copepods can be gathered into groups that have different ecological roles. Second, we reconstructed a phylogenetic tree using the available sequences of 18S rRNA. Our tree included 154 of the analyzed Mediterranean copepod species. We used these two datasets to describe the functional and phylogenetic diversity of copepod surface communities in the Mediterranean Sea. The replacement component (turn-over) and the species richness difference component (nestedness) of the beta diversity indices were identified. Finally, by comparing various and complementary aspects of plankton diversity (taxonomic, functional, and phylogenetic diversity) we were able to gain a better understanding of the relationships among the zooplankton community, biodiversity, ecosystem function, and environmental forcing.

  14. A user's guide to functional diversity indices

    OpenAIRE

    Schleuter, D.; Daufresne, M.; Massol, F.; Argillier, C.

    2010-01-01

    Functional diversity is the diversity of species traits in ecosystems. This concept is increasingly used in ecological research, yet its formal definition and measurements are currently under discussion. As the overall behaviour and consistency of functional diversity indices have not been described so far, the novice user risks choosing an inaccurate index or a set of redundant indices to represent functional diversity. In our study we closely examine functional diversity indices to clari...

  15. Firefly Algorithm for Cardinality Constrained Mean-Variance Portfolio Optimization Problem with Entropy Diversity Constraint

    Science.gov (United States)

    2014-01-01

    Portfolio optimization (selection) problem is an important and hard optimization problem that, with the addition of necessary realistic constraints, becomes computationally intractable. Nature-inspired metaheuristics are appropriate for solving such problems; however, literature review shows that there are very few applications of nature-inspired metaheuristics to portfolio optimization problem. This is especially true for swarm intelligence algorithms which represent the newer branch of nature-inspired algorithms. No application of any swarm intelligence metaheuristics to cardinality constrained mean-variance (CCMV) portfolio problem with entropy constraint was found in the literature. This paper introduces modified firefly algorithm (FA) for the CCMV portfolio model with entropy constraint. Firefly algorithm is one of the latest, very successful swarm intelligence algorithm; however, it exhibits some deficiencies when applied to constrained problems. To overcome lack of exploration power during early iterations, we modified the algorithm and tested it on standard portfolio benchmark data sets used in the literature. Our proposed modified firefly algorithm proved to be better than other state-of-the-art algorithms, while introduction of entropy diversity constraint further improved results. PMID:24991645

  16. Firefly algorithm for cardinality constrained mean-variance portfolio optimization problem with entropy diversity constraint.

    Science.gov (United States)

    Bacanin, Nebojsa; Tuba, Milan

    2014-01-01

    Portfolio optimization (selection) problem is an important and hard optimization problem that, with the addition of necessary realistic constraints, becomes computationally intractable. Nature-inspired metaheuristics are appropriate for solving such problems; however, literature review shows that there are very few applications of nature-inspired metaheuristics to portfolio optimization problem. This is especially true for swarm intelligence algorithms which represent the newer branch of nature-inspired algorithms. No application of any swarm intelligence metaheuristics to cardinality constrained mean-variance (CCMV) portfolio problem with entropy constraint was found in the literature. This paper introduces modified firefly algorithm (FA) for the CCMV portfolio model with entropy constraint. Firefly algorithm is one of the latest, very successful swarm intelligence algorithm; however, it exhibits some deficiencies when applied to constrained problems. To overcome lack of exploration power during early iterations, we modified the algorithm and tested it on standard portfolio benchmark data sets used in the literature. Our proposed modified firefly algorithm proved to be better than other state-of-the-art algorithms, while introduction of entropy diversity constraint further improved results.

  17. Ecosystem Functions across Trophic Levels Are Linked to Functional and Phylogenetic Diversity

    Science.gov (United States)

    Thompson, Patrick L.; Davies, T. Jonathan; Gonzalez, Andrew

    2015-01-01

    In experimental systems, it has been shown that biodiversity indices based on traits or phylogeny can outperform species richness as predictors of plant ecosystem function. However, it is unclear whether this pattern extends to the function of food webs in natural ecosystems. Here we tested whether zooplankton functional and phylogenetic diversity explains the functioning of 23 natural pond communities. We used two measures of ecosystem function: (1) zooplankton community biomass and (2) phytoplankton abundance (Chl a). We tested for diversity-ecosystem function relationships within and across trophic levels. We found a strong correlation between zooplankton diversity and ecosystem function, whereas local environmental conditions were less important. Further, the positive diversity-ecosystem function relationships were more pronounced for measures of functional and phylogenetic diversity than for species richness. Zooplankton and phytoplankton biomass were best predicted by different indices, suggesting that the two functions are dependent upon different aspects of diversity. Zooplankton community biomass was best predicted by zooplankton trait-based functional richness, while phytoplankton abundance was best predicted by zooplankton phylogenetic diversity. Our results suggest that the positive relationship between diversity and ecosystem function can extend across trophic levels in natural environments, and that greater insight into variation in ecosystem function can be gained by combining functional and phylogenetic diversity measures. PMID:25693188

  18. On Segal-Wilson's construction for the τ-functions of the constrained KP hierarchies

    International Nuclear Information System (INIS)

    Zhang You-jin.

    1994-06-01

    In this letter we study the constrained KP hierachies by employing Segal-Wilson's theory on the τ-functions of the KP hierarchy. We first describe the elements of the Grassmannian which correspond to solutions of the constrained KP hierarchy, and then we show how to construct its rational and soliton solutions from these elements of the Grassmannian. (author). 10 refs

  19. Adaptively Learning an Importance Function Using Transport Constrained Monte Carlo

    International Nuclear Information System (INIS)

    Booth, T.E.

    1998-01-01

    It is well known that a Monte Carlo estimate can be obtained with zero-variance if an exact importance function for the estimate is known. There are many ways that one might iteratively seek to obtain an ever more exact importance function. This paper describes a method that has obtained ever more exact importance functions that empirically produce an error that is dropping exponentially with computer time. The method described herein constrains the importance function to satisfy the (adjoint) Boltzmann transport equation. This constraint is provided by using the known form of the solution, usually referred to as the Case eigenfunction solution

  20. Low Functional β-Diversity Despite High Taxonomic β-Diversity among Tropical Estuarine Fish Communities

    Science.gov (United States)

    Villéger, Sébastien; Miranda, Julia Ramos; Hernandez, Domingo Flores; Mouillot, David

    2012-01-01

    The concept of β-diversity, defined as dissimilarity among communities, has been widely used to investigate biodiversity patterns and community assembly rules. However, in ecosystems with high taxonomic β-diversity, due to marked environmental gradients, the level of functional β-diversity among communities is largely overlooked while it may reveal processes shaping community structure. Here, decomposing biodiversity indices into α (local) and γ (regional) components, we estimated taxonomic and functional β-diversity among tropical estuarine fish communities, through space and time. We found extremely low functional β-diversity values among fish communities (diversities, α and γ functional diversities were very close to the minimal value. These patterns were caused by two dominant functional groups which maintained a similar functional structure over space and time, despite the strong dissimilarity in taxonomic structure along environmental gradients. Our findings suggest that taxonomic and functional β-diversity deserve to be quantified simultaneously since these two facets can show contrasting patterns and the differences can in turn shed light on community assembly rules. PMID:22792395

  1. New multidimensional functional diversity indices for a multifaceted framework in functional ecology.

    Science.gov (United States)

    Villéger, Sébastien; Mason, Norman W H; Mouillot, David

    2008-08-01

    Functional diversity is increasingly identified as an important driver of ecosystem functioning. Various indices have been proposed to measure the functional diversity of a community, but there is still no consensus on which are most suitable. Indeed, none of the existing indices meets all the criteria required for general use. The main criteria are that they must be designed to deal with several traits, take into account abundances, and measure all the facets of functional diversity. Here we propose three indices to quantify each facet of functional diversity for a community with species distributed in a multidimensional functional space: functional richness (volume of the functional space occupied by the community), functional evenness (regularity of the distribution of abundance in this volume), and functional divergence (divergence in the distribution of abundance in this volume). Functional richness is estimated using the existing convex hull volume index. The new functional evenness index is based on the minimum spanning tree which links all the species in the multidimensional functional space. Then this new index quantifies the regularity with which species abundances are distributed along the spanning tree. Functional divergence is measured using a novel index which quantifies how species diverge in their distances (weighted by their abundance) from the center of gravity in the functional space. We show that none of the indices meets all the criteria required for a functional diversity index, but instead we show that the set of three complementary indices meets these criteria. Through simulations of artificial data sets, we demonstrate that functional divergence and functional evenness are independent of species richness and that the three functional diversity indices are independent of each other. Overall, our study suggests that decomposition of functional diversity into its three primary components provides a meaningful framework for its quantification

  2. Effect of Functional diversity on Software Performance

    OpenAIRE

    Viswanatha Rao, Balajee

    2011-01-01

    For the past few decades, there has been numerous literature produced on functional diversity and performance. However, the relationship between functional diversity and performance in software industry is clearly not explained and results are found to be inconsistent. The main focus of this research is to explore the effects of functional diversity on software project performance by conducting a qualitative study. Four metrics were chosen from literature namely decision making, creativity an...

  3. The Resource constrained shortest path problem implemented in a lazy functional language

    NARCIS (Netherlands)

    Hartel, Pieter H.; Glaser, Hugh

    The resource constrained shortest path problem is an NP-hard problem for which many ingenious algorithms have been developed. These algorithms are usually implemented in Fortran or another imperative programming language. We have implemented some of the simpler algorithms in a lazy functional

  4. Resource diversity and provenance underpin spatial patterns in functional diversity across native and exotic species.

    Science.gov (United States)

    Méndez, Verónica; Wood, Jamie R; Butler, Simon J

    2018-05-01

    Functional diversity metrics are increasingly used to augment or replace taxonomic diversity metrics to deliver more mechanistic insights into community structure and function. Metrics used to describe landscape structure and characteristics share many of the same limitations as taxonomy-based metrics, particularly their reliance on anthropogenically defined typologies with little consideration of structure, management, or function. However, the development of alternative metrics to describe landscape characteristics has been limited. Here, we extend the functional diversity framework to characterize landscapes based on the diversity of resources available across habitats present. We then examine the influence of resource diversity and provenance on the functional diversities of native and exotic avian communities in New Zealand. Invasive species are increasingly prevalent and considered a global threat to ecosystem function, but the characteristics of and interactions between sympatric native and exotic communities remain unresolved. Understanding their comparative responses to environmental change and the mechanisms underpinning them is of growing importance in predicting community dynamics and changing ecosystem function. We use (i) matrices of resource use (species) and resource availability (habitats) and (ii) occurrence data for 62 native and 25 exotic species and 19 native and 13 exotic habitats in 2015 10 × 10 km quadrats to examine the relationship between native and exotic avian and landscape functional diversity. The numbers of species in, and functional diversities of, native and exotic communities were positively related. Each community displayed evidence of environmental filtering, but it was significantly stronger for exotic species. Less environmental filtering occurred in landscapes providing a more diverse combination of resources, with resource provenance also an influential factor. Landscape functional diversity explained a greater

  5. A note on reliability estimation of functionally diverse systems

    International Nuclear Information System (INIS)

    Littlewood, B.; Popov, P.; Strigini, L.

    1999-01-01

    It has been argued that functional diversity might be a plausible means of claiming independence of failures between two versions of a system. We present a model of functional diversity, in the spirit of earlier models of diversity such as those of Eckhardt and Lee, and Hughes. In terms of the model, we show that the claims for independence between functionally diverse systems seem rather unrealistic. Instead, it seems likely that functionally diverse systems will exhibit positively correlated failures, and thus will be less reliable than an assumption of independence would suggest. The result does not, of course, suggest that functional diversity is not worthwhile; instead, it places upon the evaluator of such a system the onus to estimate the degree of dependence so as to evaluate the reliability of the system

  6. β-Diversity, Community Assembly, and Ecosystem Functioning.

    Science.gov (United States)

    Mori, Akira S; Isbell, Forest; Seidl, Rupert

    2018-05-25

    Evidence is increasing for positive effects of α-diversity on ecosystem functioning. We highlight here the crucial role of β-diversity - a hitherto underexplored facet of biodiversity - for a better process-level understanding of biodiversity change and its consequences for ecosystems. A focus on β-diversity has the potential to improve predictions of natural and anthropogenic influences on diversity and ecosystem functioning. However, linking the causes and consequences of biodiversity change is complex because species assemblages in nature are shaped by many factors simultaneously, including disturbance, environmental heterogeneity, deterministic niche factors, and stochasticity. Because variability and change are ubiquitous in ecosystems, acknowledging these inherent properties of nature is an essential step for further advancing scientific knowledge of biodiversity-ecosystem functioning in theory and practice. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Land use change has stronger effects on functional diversity than taxonomic diversity in tropical Andean hummingbirds.

    Science.gov (United States)

    Tinoco, Boris A; Santillán, Vinicio E; Graham, Catherine H

    2018-03-01

    Land use change modifies the environment at multiple spatial scales, and is a main driver of species declines and deterioration of ecosystem services. However, most of the research on the effects of land use change has focused on taxonomic diversity, while functional diversity, an important predictor of ecosystem services, is often neglected. We explored how local and landscape scale characteristics influence functional and taxonomic diversity of hummingbirds in the Andes Mountains in southern Ecuador. Data was collected in six landscapes along a land use gradient, from an almost intact landscape to one dominated by cattle pastures. We used point counts to sample hummingbirds from 2011 to 2012 to assessed how local factors (i.e., vegetation structure, flowering plants richness, nectar availability) and landscape factors (i.e., landscape heterogeneity, native vegetation cover) influenced taxonomic and functional diversity. Then, we analyzed environment - trait relationships (RLQ test) to explore how different hummingbird functional traits influenced species responses to these factors. Taxonomic and functional diversity of hummingbirds were positively associated with landscape heterogeneity but only functional diversity was positively related to native vegetation coverage. We found a weak response of taxonomic and functional diversity to land use change at the local scale. Environment-trait associations showed that body mass of hummingbirds likely influenced species sensitivity to land use change. In conclusion, landscape heterogeneity created by land use change can positively influence hummingbird taxonomic and functional diversity; however, a reduction of native vegetation cover could decrease functional diversity. Given that functional diversity can mediate ecosystem services, the conservation of native vegetation cover could play a key role in the maintenance of hummingbird pollination services in the tropical Andes. Moreover, there are particular functional

  8. Amino acid metabolism conflicts with protein diversity

    OpenAIRE

    Krick, Teresa; Shub, David A.; Verstraete, Nina; Ferreiro, Diego U.; Alonso, Leonardo G.; Shub, Michael; Sanchez, Ignacio E.

    2014-01-01

    The 20 protein-coding amino acids are found in proteomes with different relative abundances. The most abundant amino acid, leucine, is nearly an order of magnitude more prevalent than the least abundant amino acid, cysteine. Amino acid metabolic costs differ similarly, constraining their incorporation into proteins. On the other hand, a diverse set of protein sequences is necessary to build functional proteomes. Here, we present a simple model for a cost-diversity trade-off postulating that n...

  9. Constraining the Mechanism of D" Anisotropy: Diversity of Observation Types Required

    Science.gov (United States)

    Creasy, N.; Pisconti, A.; Long, M. D.; Thomas, C.

    2017-12-01

    A variety of different mechanisms have been proposed as explanations for seismic anisotropy at the base of the mantle, including crystallographic preferred orientation of various minerals (bridgmanite, post-perovskite, and ferropericlase) and shape preferred orientation of elastically distinct materials such as partial melt. Investigations of the mechanism for D" anisotropy are usually ambiguous, as seismic observations rarely (if ever) uniquely constrain a mechanism. Observations of shear wave splitting and polarities of SdS and PdP reflections off the D" discontinuity are among our best tools for probing D" anisotropy; however, typical data sets cannot constrain a unique scenario suggested by the mineral physics literature. In this work, we determine what types of body wave observations are required to uniquely constrain a mechanism for D" anisotropy. We test multiple possible models based on both single-crystal and poly-phase elastic tensors provided by mineral physics studies. We predict shear wave splitting parameters for SKS, SKKS, and ScS phases and reflection polarities off the D" interface for a range of possible propagation directions. We run a series of tests that create synthetic data sets by random selection over multiple iterations, controlling the total number of measurements, the azimuthal distribution, and the type of phases. We treat each randomly drawn synthetic dataset with the same methodology as in Ford et al. (2015) to determine the possible mechanism(s), carrying out a grid search over all possible elastic tensors and orientations to determine which are consistent with the synthetic data. We find is it difficult to uniquely constrain the starting model with a realistic number of seismic anisotropy measurements with only one measurement technique or phase type. However, having a mix of SKS, SKKS, and ScS measurements, or a mix of shear wave splitting and reflection polarity measurements, dramatically increases the probability of uniquely

  10. Opposing Responses of Bird Functional Diversity to Vegetation Structural Diversity in Wet and Dry Forest.

    Directory of Open Access Journals (Sweden)

    Holly Sitters

    Full Text Available Disturbance regimes are changing worldwide, and the consequences for ecosystem function and resilience are largely unknown. Functional diversity (FD provides a surrogate measure of ecosystem function by capturing the range, abundance and distribution of trait values in a community. Enhanced understanding of the responses of FD to measures of vegetation structure at landscape scales is needed to guide conservation management. To address this knowledge gap, we used a whole-of-landscape sampling approach to examine relationships between bird FD, vegetation diversity and time since fire. We surveyed birds and measured vegetation at 36 landscape sampling units in dry and wet forest in southeast Australia during 2010 and 2011. Four uncorrelated indices of bird FD (richness, evenness, divergence and dispersion were derived from six bird traits, and we investigated responses of these indices and species richness to both vertical and horizontal vegetation diversity using linear mixed models. We also considered the extent to which the mean and diversity of time since fire were related to vegetation diversity. Results showed opposing responses of FD to vegetation diversity in dry and wet forest. In dry forest, where fire is frequent, species richness and two FD indices (richness and dispersion were positively related to vertical vegetation diversity, consistent with theory relating to environmental variation and coexistence. However, in wet forest subject to infrequent fire, the same three response variables were negatively associated with vertical diversity. We suggest that competitive dominance by species results in lower FD as vegetation diversity increases in wet forest. The responses of functional evenness were opposite to those of species richness, functional richness and dispersion in both forest types, highlighting the value of examining multiple FD metrics at management-relevant scales. The mean and diversity of time since fire were uncorrelated

  11. Opposing Responses of Bird Functional Diversity to Vegetation Structural Diversity in Wet and Dry Forest.

    Science.gov (United States)

    Sitters, Holly; York, Alan; Swan, Matthew; Christie, Fiona; Di Stefano, Julian

    2016-01-01

    Disturbance regimes are changing worldwide, and the consequences for ecosystem function and resilience are largely unknown. Functional diversity (FD) provides a surrogate measure of ecosystem function by capturing the range, abundance and distribution of trait values in a community. Enhanced understanding of the responses of FD to measures of vegetation structure at landscape scales is needed to guide conservation management. To address this knowledge gap, we used a whole-of-landscape sampling approach to examine relationships between bird FD, vegetation diversity and time since fire. We surveyed birds and measured vegetation at 36 landscape sampling units in dry and wet forest in southeast Australia during 2010 and 2011. Four uncorrelated indices of bird FD (richness, evenness, divergence and dispersion) were derived from six bird traits, and we investigated responses of these indices and species richness to both vertical and horizontal vegetation diversity using linear mixed models. We also considered the extent to which the mean and diversity of time since fire were related to vegetation diversity. Results showed opposing responses of FD to vegetation diversity in dry and wet forest. In dry forest, where fire is frequent, species richness and two FD indices (richness and dispersion) were positively related to vertical vegetation diversity, consistent with theory relating to environmental variation and coexistence. However, in wet forest subject to infrequent fire, the same three response variables were negatively associated with vertical diversity. We suggest that competitive dominance by species results in lower FD as vegetation diversity increases in wet forest. The responses of functional evenness were opposite to those of species richness, functional richness and dispersion in both forest types, highlighting the value of examining multiple FD metrics at management-relevant scales. The mean and diversity of time since fire were uncorrelated with vegetation

  12. Bird functional diversity decreases with time since disturbance: Does patchy prescribed fire enhance ecosystem function?.

    Science.gov (United States)

    Sitters, Holly; Di Stefano, Julian; Christie, Fiona; Swan, Matthew; York, Alan

    2016-01-01

    Animal species diversity is often associated with time since disturbance, but the effects of disturbances such as fire on functional diversity are unknown. Functional diversity measures the range, abundance, and distribution of trait values in a community, and links changes in species composition with the consequences for ecosystem function. Improved understanding of the relationship between time since fire (TSF) and functional diversity is critical given that the frequency of both prescribed fire and wildfire is expected to increase. To address this knowledge gap, we examined responses of avian functional diversity to TSF and two direct measures of environmental heterogeneity, plant diversity, and structural heterogeneity. We surveyed birds across a 70-year chronosequence spanning four vegetation types in southeast Australia. Six bird functional traits were used to derive four functional diversity indices (richness, evenness, divergence, and dispersion) and the effects of TSF, plant diversity and structural heterogeneity on species richness and the functional diversity indices were examined using mixed models. We used a regression tree method to identify traits associated with species more common in young vegetation. Functional richness and dispersion were negatively associated with TSF in all vegetation types, suggesting that recent prescribed fire generates heterogeneous vegetation and provides greater opportunities for resource partitioning. Species richness was not significantly associated with TSF, and is probably an unreliable surrogate for functional diversity in fire-prone systems. A positive, relationship between functional evenness and structural heterogeneity was comnon to all vegetation types, suggesting that fine-scale (tens of meters) structural variation can enhance ecosystem function. Species more common in young vegetation were primarily linked by their specialist diets, indicating that ecosystem services such as seed dispersal and insect control

  13. Functional diversity in plant communities: Theory and analysis ...

    African Journals Online (AJOL)

    Plant functional diversity in community has become a key point in ecology studies recently. The development of species functional diversity was reviewed in the present work. Based on the former original research papers and reviews, we discussed the concept and connotation and put forward a new definition of functional ...

  14. Predicting estuarine benthic production using functional diversity

    Directory of Open Access Journals (Sweden)

    Marina Dolbeth

    2014-05-01

    Full Text Available We considered an estuarine system having naturally low levels of diversity, but attaining considerable high production levels, and being subjected to different sorts of anthropogenic impacts and climate events to investigate the relationship between diversity and secondary production. Functional diversity measures were used to predict benthic production, which is considered as a proxy of the ecosystem provisioning services. To this end, we used a 14-year dataset on benthic invertebrate community production from a seagrass and a sandflat habitat and we adopted a sequential modeling approach, where abiotic, trait community weighted means (CWM and functional diversity indices were tested by generalized linear models (GLM, and their significant variables were then combined to produce a final model. Almost 90% of variance of the benthic production could be predicted by combining the number of locomotion types, the absolute maximum atmospheric temperature (proxy of the heat waves occurrence, the type of habitat and the mean body mass, by order of importance. This result is in agreement with the mass ratio hypothesis, where ecosystem functions/services can be chiefly predicted by the dominant trait in the community, here measured as CWM. The increase of benthic production with the number of locomotion types may be seen as greater possibility of using the resources available in the system. Such greater efficiency would increase production. The other variables were also discussed in line of the previous hypothesis and taking into account the general positive relationship obtained between production and functional diversity indices. Overall, it was concluded that traits representative of wider possibilities of using available resources and higher functional diversity are related with higher benthic production.

  15. Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional.

    Science.gov (United States)

    Sun, Jianwei; Remsing, Richard C; Zhang, Yubo; Sun, Zhaoru; Ruzsinszky, Adrienn; Peng, Haowei; Yang, Zenghui; Paul, Arpita; Waghmare, Umesh; Wu, Xifan; Klein, Michael L; Perdew, John P

    2016-09-01

    One atom or molecule binds to another through various types of bond, the strengths of which range from several meV to several eV. Although some computational methods can provide accurate descriptions of all bond types, those methods are not efficient enough for many studies (for example, large systems, ab initio molecular dynamics and high-throughput searches for functional materials). Here, we show that the recently developed non-empirical strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation (meta-GGA) within the density functional theory framework predicts accurate geometries and energies of diversely bonded molecules and materials (including covalent, metallic, ionic, hydrogen and van der Waals bonds). This represents a significant improvement at comparable efficiency over its predecessors, the GGAs that currently dominate materials computation. Often, SCAN matches or improves on the accuracy of a computationally expensive hybrid functional, at almost-GGA cost. SCAN is therefore expected to have a broad impact on chemistry and materials science.

  16. Constraining the Stellar Mass Function in the Galactic Center via Mass Loss from Stellar Collisions

    Directory of Open Access Journals (Sweden)

    Douglas Rubin

    2011-01-01

    Full Text Available The dense concentration of stars and high-velocity dispersions in the Galactic center imply that stellar collisions frequently occur. Stellar collisions could therefore result in significant mass loss rates. We calculate the amount of stellar mass lost due to indirect and direct stellar collisions and find its dependence on the present-day mass function of stars. We find that the total mass loss rate in the Galactic center due to stellar collisions is sensitive to the present-day mass function adopted. We use the observed diffuse X-ray luminosity in the Galactic center to preclude any present-day mass functions that result in mass loss rates >10-5M⨀yr−1 in the vicinity of ~1″. For present-day mass functions of the form, dN/dM∝M-α, we constrain the present-day mass function to have a minimum stellar mass ≲7M⨀ and a power-law slope ≳1.25. We also use this result to constrain the initial mass function in the Galactic center by considering different star formation scenarios.

  17. Local climatic conditions constrain soil yeast diversity patterns in Mediterranean forests, woodlands and scrub biome.

    Science.gov (United States)

    Yurkov, Andrey M; Röhl, Oliver; Pontes, Ana; Carvalho, Cláudia; Maldonado, Cristina; Sampaio, José Paulo

    2016-02-01

    Soil yeasts represent a poorly known fraction of the soil microbiome due to limited ecological surveys. Here, we provide the first comprehensive inventory of cultivable soil yeasts in a Mediterranean ecosystem, which is the leading biodiversity hotspot for vascular plants and vertebrates in Europe. We isolated and identified soil yeasts from forested sites of Serra da Arrábida Natural Park (Portugal), representing the Mediterranean forests, woodlands and scrub biome. Both cultivation experiments and the subsequent species richness estimations suggest the highest species richness values reported to date, resulting in a total of 57 and 80 yeast taxa, respectively. These values far exceed those reported for other forest soils in Europe. Furthermore, we assessed the response of yeast diversity to microclimatic environmental factors in biotopes composed of the same plant species but showing a gradual change from humid broadleaf forests to dry maquis. We observed that forest properties constrained by precipitation level had strong impact on yeast diversity and on community structure and lower precipitation resulted in an increased number of rare species and decreased evenness values. In conclusion, the structure of soil yeast communities mirrors the environmental factors that affect aboveground phytocenoses, aboveground biomass and plant projective cover. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Functional diversity exhibits a diverse relationship with area, even a decreasing one

    Science.gov (United States)

    Karadimou, Elpida K.; Kallimanis, Athanasios S.; Tsiripidis, Ioannis; Dimopoulos, Panayotis

    2016-01-01

    The relationship between species richness and area is one of the few well-established laws in ecology, and one might expect a similar relationship with functional diversity (FD). However, only a few studies investigate the relationship between trait-based FD and area, the Functional Diversity - Area Relationship (FDAR). To examine FDAR, we constructed the species accumulation curve and the corresponding FD curve. We used plant diversity data from nested plots (1–128 m2), recorded on the Volcanic islands of Santorini Archipelagos, Greece. Six multidimensional FD indices were calculated using 26 traits. We identified a typology of FDARs depending on the facet of FD analyzed: (A) strongly positive for indices quantifying the range of functional traits in the community, (B) negative correlation for indices quantifying the evenness in the distribution of abundance in the trait space, (C) no clear pattern for indices reflecting the functional similarity of species and (D) idiosyncratic patterns with area for functional divergence. As area increases, the range of traits observed in the community increases, but the abundance of traits does not increase proportionally and some traits become dominant, implying a reliance on some functions that may be located in either the center or the periphery of the trait space. PMID:27752086

  19. Assessing functional diversity by program slicing

    International Nuclear Information System (INIS)

    Wallace, D.R.; Lyle, J.R.; Gallagher, K.B.; Ippolito, L.M.

    1994-01-01

    A responsibility of the Nuclear Regulatory Commission auditors is to provide assessments of the quality of the safety systems. For software, the audit process as currently implemented is a slow, tedious, manual process prone to human errors. While auditors cannot possibly examine all components of the system in complete detail, they do check for implementation of specific principles like functional diversity. This paper describes an experimental prototype Computer Aided Software Engineering (CASE) tool, UNRAVEL, designed to enable auditors to check for functional diversity and aid an auditor in examining software by extracting all code relevant to a computation identified for detailed inspection

  20. Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning.

    Science.gov (United States)

    He, Zhili; Zhang, Ping; Wu, Linwei; Rocha, Andrea M; Tu, Qichao; Shi, Zhou; Wu, Bo; Qin, Yujia; Wang, Jianjun; Yan, Qingyun; Curtis, Daniel; Ning, Daliang; Van Nostrand, Joy D; Wu, Liyou; Yang, Yunfeng; Elias, Dwayne A; Watson, David B; Adams, Michael W W; Fields, Matthew W; Alm, Eric J; Hazen, Terry C; Adams, Paul D; Arkin, Adam P; Zhou, Jizhong

    2018-02-20

    Contamination from anthropogenic activities has significantly impacted Earth's biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN), representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate) increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminants would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate) increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5) increased significantly ( P contamination and ecosystem functioning. This study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning. IMPORTANCE Disentangling the relationships between biodiversity and ecosystem functioning is an important but poorly understood topic in ecology. Predicting ecosystem functioning on the basis of biodiversity is even more difficult, particularly with microbial biomarkers. As an exploratory effort, this study used key microbial functional genes as biomarkers to provide predictive understanding of environmental contamination and ecosystem functioning. The results indicated that the overall functional gene richness/diversity decreased as uranium increased in groundwater, while specific key microbial guilds increased significantly as

  1. Polychaete functional diversity in shallow habitats: Shelter from the storm

    Science.gov (United States)

    Wouters, Julia M.; Gusmao, Joao B.; Mattos, Gustavo; Lana, Paulo

    2018-05-01

    Innovative approaches are needed to help understanding how species diversity is related to the latitudinal gradient at large or small scales. We have applied a novel approach, by combining morphological and biological traits, to assess the relative importance of the large scale latitudinal gradient and regional morphodynamic drivers in shaping the functional diversity of polychaete assemblages in shallow water habitats, from exposed to estuarine sandy beaches. We used literature data on polychaetes from beaches along the southern and southeastern Brazilian coast together with data on beach types, slope, grain size, temperature, salinity, and chlorophyll a concentration. Generalized linear models on the FDis index for functional diversity calculated for each site and a combined RLQ and fourth-corner analysis were used to investigate relationships between functional traits and environmental variables. Functional diversity was not related to the latitudinal gradient but negatively correlated with grain size and beach slope. Functional diversity was highest in flat beaches with small grain size, little wave exposure and enhanced primary production, indicating that small scale morphodynamic conditions are the primary drivers of polychaete functional diversity.

  2. Application of pattern search method to power system security constrained economic dispatch with non-smooth cost function

    International Nuclear Information System (INIS)

    Al-Othman, A.K.; El-Naggar, K.M.

    2008-01-01

    Direct search methods are evolutionary algorithms used to solve optimization problems. (DS) methods do not require any information about the gradient of the objective function at hand while searching for an optimum solution. One of such methods is Pattern Search (PS) algorithm. This paper presents a new approach based on a constrained pattern search algorithm to solve a security constrained power system economic dispatch problem (SCED) with non-smooth cost function. Operation of power systems demands a high degree of security to keep the system satisfactorily operating when subjected to disturbances, while and at the same time it is required to pay attention to the economic aspects. Pattern recognition technique is used first to assess dynamic security. Linear classifiers that determine the stability of electric power system are presented and added to other system stability and operational constraints. The problem is formulated as a constrained optimization problem in a way that insures a secure-economic system operation. Pattern search method is then applied to solve the constrained optimization formulation. In particular, the method is tested using three different test systems. Simulation results of the proposed approach are compared with those reported in literature. The outcome is very encouraging and proves that pattern search (PS) is very applicable for solving security constrained power system economic dispatch problem (SCED). In addition, valve-point effect loading and total system losses are considered to further investigate the potential of the PS technique. Based on the results, it can be concluded that the PS has demonstrated ability in handling highly nonlinear discontinuous non-smooth cost function of the SCED. (author)

  3. Theoretical calculation of reorganization energy for electron self-exchange reaction by constrained density functional theory and constrained equilibrium thermodynamics.

    Science.gov (United States)

    Ren, Hai-Sheng; Ming, Mei-Jun; Ma, Jian-Yi; Li, Xiang-Yuan

    2013-08-22

    Within the framework of constrained density functional theory (CDFT), the diabatic or charge localized states of electron transfer (ET) have been constructed. Based on the diabatic states, inner reorganization energy λin has been directly calculated. For solvent reorganization energy λs, a novel and reasonable nonequilibrium solvation model is established by introducing a constrained equilibrium manipulation, and a new expression of λs has been formulated. It is found that λs is actually the cost of maintaining the residual polarization, which equilibrates with the extra electric field. On the basis of diabatic states constructed by CDFT, a numerical algorithm using the new formulations with the dielectric polarizable continuum model (D-PCM) has been implemented. As typical test cases, self-exchange ET reactions between tetracyanoethylene (TCNE) and tetrathiafulvalene (TTF) and their corresponding ionic radicals in acetonitrile are investigated. The calculated reorganization energies λ are 7293 cm(-1) for TCNE/TCNE(-) and 5939 cm(-1) for TTF/TTF(+) reactions, agreeing well with available experimental results of 7250 cm(-1) and 5810 cm(-1), respectively.

  4. Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning

    Science.gov (United States)

    Zhang, Ping; Wu, Linwei; Rocha, Andrea M.; Shi, Zhou; Wu, Bo; Qin, Yujia; Wang, Jianjun; Yan, Qingyun; Curtis, Daniel; Ning, Daliang; Van Nostrand, Joy D.; Wu, Liyou; Watson, David B.; Adams, Michael W. W.; Alm, Eric J.; Adams, Paul D.; Arkin, Adam P.

    2018-01-01

    ABSTRACT Contamination from anthropogenic activities has significantly impacted Earth’s biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN), representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate) increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminants would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate) increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5) increased significantly (P contamination and ecosystem functioning. This study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning. PMID:29463661

  5. Impacts of Urban Areas and Their Characteristics on Avian Functional Diversity

    Directory of Open Access Journals (Sweden)

    Emily Oliveira Hagen

    2017-07-01

    Full Text Available Urban development is rapidly expanding across the globe and is a major driver of environmental change. Despite considerable improvements in our understanding of how species richness responds to urbanization, there is still insufficient knowledge of how other measures of assemblage composition and structure respond to urban development. Functional diversity metrics provide a useful approach for quantifying ecological function. We compare avian functional diversity in 25 urban areas, located across the globe, with paired non-urban assemblages using a database of 27 functional traits that capture variation in resource use (amount and type of resources and how they are acquired across the 529 species occurring across these assemblages. Using three standard functional diversity metrics (FD, MNTD, and convex hull we quantify observed functional diversity and, using standardized effect sizes, how this diverges from that expected under random community assembly null models. We use regression trees to investigate whether human population density, amount of vegetation and city size (spatial extent of urban land, bio-region and use of semi-natural or agricultural assemblages as a baseline modulate the effect of urbanization on functional diversity. Our analyses suggest that observed functional diversity of urban avian assemblages is not consistently different from that of non-urban assemblages. After accounting for species richness avian functional diversity is higher in cities than areas of semi-natural habitat. This creates a paradox as species responses to urban development are determined by their ecological traits, which should generate assemblages clustered within a narrow range of trait space. Greater habitat diversity within cities compared to semi-natural areas dominated by a single habitat may enhance functional diversity in cities and explain this paradox. Regression trees further suggest that smaller urban areas, lower human population densities

  6. Magnetic exchange couplings from constrained density functional theory: an efficient approach utilizing analytic derivatives.

    Science.gov (United States)

    Phillips, Jordan J; Peralta, Juan E

    2011-11-14

    We introduce a method for evaluating magnetic exchange couplings based on the constrained density functional theory (C-DFT) approach of Rudra, Wu, and Van Voorhis [J. Chem. Phys. 124, 024103 (2006)]. Our method shares the same physical principles as C-DFT but makes use of the fact that the electronic energy changes quadratically and bilinearly with respect to the constraints in the range of interest. This allows us to use coupled perturbed Kohn-Sham spin density functional theory to determine approximately the corrections to the energy of the different spin configurations and construct a priori the relevant energy-landscapes obtained by constrained spin density functional theory. We assess this methodology in a set of binuclear transition-metal complexes and show that it reproduces very closely the results of C-DFT. This demonstrates a proof-of-concept for this method as a potential tool for studying a number of other molecular phenomena. Additionally, routes to improving upon the limitations of this method are discussed. © 2011 American Institute of Physics

  7. Evolutionary constrained optimization

    CERN Document Server

    Deb, Kalyanmoy

    2015-01-01

    This book makes available a self-contained collection of modern research addressing the general constrained optimization problems using evolutionary algorithms. Broadly the topics covered include constraint handling for single and multi-objective optimizations; penalty function based methodology; multi-objective based methodology; new constraint handling mechanism; hybrid methodology; scaling issues in constrained optimization; design of scalable test problems; parameter adaptation in constrained optimization; handling of integer, discrete and mix variables in addition to continuous variables; application of constraint handling techniques to real-world problems; and constrained optimization in dynamic environment. There is also a separate chapter on hybrid optimization, which is gaining lots of popularity nowadays due to its capability of bridging the gap between evolutionary and classical optimization. The material in the book is useful to researchers, novice, and experts alike. The book will also be useful...

  8. Microbial Functional Gene Diversity Predicts Groundwater Contamination and Ecosystem Functioning

    Directory of Open Access Journals (Sweden)

    Zhili He

    2018-02-01

    Full Text Available Contamination from anthropogenic activities has significantly impacted Earth’s biosphere. However, knowledge about how environmental contamination affects the biodiversity of groundwater microbiomes and ecosystem functioning remains very limited. Here, we used a comprehensive functional gene array to analyze groundwater microbiomes from 69 wells at the Oak Ridge Field Research Center (Oak Ridge, TN, representing a wide pH range and uranium, nitrate, and other contaminants. We hypothesized that the functional diversity of groundwater microbiomes would decrease as environmental contamination (e.g., uranium or nitrate increased or at low or high pH, while some specific populations capable of utilizing or resistant to those contaminants would increase, and thus, such key microbial functional genes and/or populations could be used to predict groundwater contamination and ecosystem functioning. Our results indicated that functional richness/diversity decreased as uranium (but not nitrate increased in groundwater. In addition, about 5.9% of specific key functional populations targeted by a comprehensive functional gene array (GeoChip 5 increased significantly (P < 0.05 as uranium or nitrate increased, and their changes could be used to successfully predict uranium and nitrate contamination and ecosystem functioning. This study indicates great potential for using microbial functional genes to predict environmental contamination and ecosystem functioning.

  9. Segmenting wine markets with diverse price functions: Evidence from California red and white wines sold in British Columbia

    Directory of Open Access Journals (Sweden)

    Richard Carew

    2017-06-01

    Full Text Available Previous hedonic price studies on wine market segments, exploring diverse price functions, are constrained by pre-determined price breakpoints, the total number of segments, or both. Using British Columbia Liquor Distribution Branch (BCLDB retail price data of California red and white wines, this study adopts an endogenous approach to explore the total number of market segments and identify breakpoints in price dispersion simultaneously. Results show that red and white California wines are grouped into two (breaking at Can$14 per bottle and three (breaking at Can$16 and $30 per bottle price segments, respectively. Also, implicit prices of wine attributes such as grape variety and geographic origin differ for red and white wines across market segments.

  10. Functional diversity changes during tropical forest succession.

    NARCIS (Netherlands)

    Lohbeck, M.W.M.; Poorter, L.; Paz, H.; Breugel, van M.; Martinez-Ramos, M.; Bongers, F.

    2012-01-01

    Functional diversity (FD) ‘those components of biodiversity that influence how an ecosystem operates or functions’ is a promising tool to assess the effect of biodiversity loss on ecosystem functioning. FD has received ample theoretical attention, but empirical studies are limited. We evaluate

  11. Patterns of bird functional diversity on land-bridge island fragments.

    Science.gov (United States)

    Ding, Zhifeng; Feeley, Kenneth J; Wang, Yanping; Pakeman, Robin J; Ding, Ping

    2013-07-01

    The loss of species diversity due to habitat fragmentation has been extensively studied. In contrast, the impacts of habitat fragmentation on functional diversity remains relatively poorly understood. We conducted bird functional diversity studies on a set of 41 recently isolated land-bridge islands in the Thousand Island Lake, China. We analysed differences in bird species richness and a recently developed suite of complementary functional diversity indices (FRic, volume of functional space occupied; FEve, evenness of abundance distribution in the functional trait space; FDiv, divergence in the distribution of abundance in the trait volume) across different gradients (island area and isolation). We found no correlations between FRic and FEve or FEve and FDiv, but negative correlations between FRic and FDiv. As predicted, island area accounted for most of the variation in bird species richness, whereas isolation explained most of the variation in species evenness (decreasing species evenness with increasing isolation). Functional diversity appears to be more strongly influenced by habitat filtering as opposed to limiting similarity. More specifically, across all islands, both FRic and FEve were significantly lower than expected for randomly assembled communities, but FDiv showed no clear patterns. FRic increased with island area, FEve decreased with island area and FDiv showed no clear patterns. Our finding that FEve decreases with island area at TIL may indicate low functional stability on such islands, and as such large islands and habitat patches may deserve extra attention and/or protection. These results help to demonstrate the importance of considering the effects of fragmentation on functional diversity in habitat management and reserve design plans. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  12. Functionally diverse reef-fish communities ameliorate coral disease.

    Science.gov (United States)

    Raymundo, Laurie J; Halford, Andrew R; Maypa, Aileen P; Kerr, Alexander M

    2009-10-06

    Coral reefs, the most diverse of marine ecosystems, currently experience unprecedented levels of degradation. Diseases are now recognized as a major cause of mortality in reef-forming corals and are complicit in phase shifts of reef ecosystems to algal-dominated states worldwide. Even so, factors contributing to disease occurrence, spread, and impact remain poorly understood. Ecosystem resilience has been linked to the conservation of functional diversity, whereas overfishing reduces functional diversity through cascading, top-down effects. Hence, we tested the hypothesis that reefs with trophically diverse reef fish communities have less coral disease than overfished reefs. We surveyed reefs across the central Philippines, including well-managed marine protected areas (MPAs), and found that disease prevalence was significantly negatively correlated with fish taxonomic diversity. Further, MPAs had significantly higher fish diversity and less disease than unprotected areas. We subsequently investigated potential links between coral disease and the trophic components of fish diversity, finding that only the density of coral-feeding chaetodontid butterflyfishes, seldom targeted by fishers, was positively associated with disease prevalence. These previously uncharacterized results are supported by a second large-scale dataset from the Great Barrier Reef. We hypothesize that members of the charismatic reef-fish family Chaetodontidae are major vectors of coral disease by virtue of their trophic specialization on hard corals and their ecological release in overfished areas, particularly outside MPAs.

  13. Environmental conditions influence the plant functional diversity effect on potential denitrification.

    Directory of Open Access Journals (Sweden)

    Ariana E Sutton-Grier

    2011-02-01

    Full Text Available Global biodiversity loss has prompted research on the relationship between species diversity and ecosystem functioning. Few studies have examined how plant diversity impacts belowground processes; even fewer have examined how varying resource levels can influence the effect of plant diversity on microbial activity. In a field experiment in a restored wetland, we examined the role of plant trait diversity (or functional diversity, (FD and its interactions with natural levels of variability of soil properties, on a microbial process, denitrification potential (DNP. We demonstrated that FD significantly affected microbial DNP through its interactions with soil conditions; increasing FD led to increased DNP but mainly at higher levels of soil resources. Our results suggest that the effect of species diversity on ecosystem functioning may depend on environmental factors such as resource availability. Future biodiversity experiments should examine how natural levels of environmental variability impact the importance of biodiversity to ecosystem functioning.

  14. Functional Resilience against Climate-Driven Extinctions - Comparing the Functional Diversity of European and North American Tree Floras.

    Directory of Open Access Journals (Sweden)

    Mario Liebergesell

    Full Text Available Future global change scenarios predict a dramatic loss of biodiversity for many regions in the world, potentially reducing the resistance and resilience of ecosystem functions. Once before, during Plio-Pleistocene glaciations, harsher climatic conditions in Europe as compared to North America led to a more depauperate tree flora. Here we hypothesize that this climate driven species loss has also reduced functional diversity in Europe as compared to North America. We used variation in 26 traits for 154 North American and 66 European tree species and grid-based co-occurrences derived from distribution maps to compare functional diversity patterns of the two continents. First, we identified similar regions with respect to contemporary climate in the temperate zone of North America and Europe. Second, we compared the functional diversity of both continents and for the climatically similar sub-regions using the functional dispersion-index (FDis and the functional richness index (FRic. Third, we accounted in these comparisons for grid-scale differences in species richness, and, fourth, investigated the associated trait spaces using dimensionality reduction. For gymnosperms we find similar functional diversity on both continents, whereas for angiosperms functional diversity is significantly greater in Europe than in North America. These results are consistent across different scales, for climatically similar regions and considering species richness patterns. We decomposed these differences in trait space occupation into differences in functional diversity vs. differences in functional identity. We show that climate-driven species loss on a continental scale might be decoupled from or at least not linearly related to changes in functional diversity. This might be important when analyzing the effects of climate-driven biodiversity change on ecosystem functioning.

  15. Constraining the electric dipole photon strength function in {sup 130}Te

    Energy Technology Data Exchange (ETDEWEB)

    Isaak, J.; Loeher, B.; Savran, D.; Silva, J. [ExtreMe Matter Institute EMMI and Research Division, Darmstadt (Germany); FIAS, Frankfurt (Germany); Ahmed, M.W.; Kelley, J.H.; Tornow, W.; Weller, H.R. [Department of Physics, Duke University, TUNL (United States); Beller, J.; Pietralla, N.; Romig, C.; Zweidinger, M. [Institut fuer Kernphysik, TU Darmstadt (Germany); Glorius, J.; Sonnabend, K. [Institut fuer Angewandte Physik, Goethe-Universitaet Frankfurt (Germany); Krticka, M. [Faculty of Mathematics and Physics, Charles University, Prague (Czech Republic); Rusev, G. [Chemistry Division, LANL (United States); Scheck, M. [School of Engineering, University of the West of Scotland (United Kingdom); Tonchev, A.P. [Physics Division, LLNL (United States)

    2014-07-01

    The decay properties of photo-excited states in {sup 130}Te have been investigated by means of Nuclear Resonance Fluorescence experiments at the Darmstadt High Intensity Photon Setup (DHIPS) and the High Intensity γ-ray Source (HIγS). The combination of continuous-energy bremsstrahlung on the one hand and the quasi-monoenergetic and linearly polarized photon beam on the other enables a detailed insight into the photoabsorption cross section and the decay behavior of spin-1 states. Comparing these results to simulations within the statistical model allow for constraining the electric dipole photon strength function (E1-PSF). Results are presented and discussed.

  16. Functional roles affect diversity-succession relationships for boreal beetles.

    Directory of Open Access Journals (Sweden)

    Heloise Gibb

    Full Text Available Species diversity commonly increases with succession and this relationship is an important justification for conserving large areas of old-growth habitats. However, species with different ecological roles respond differently to succession. We examined the relationship between a range of diversity measures and time since disturbance for boreal forest beetles collected over a 285 year forest chronosequence. We compared responses of "functional" groups related to threat status, dependence on dead wood habitats, diet and the type of trap in which they were collected (indicative of the breadth of ecologies of species. We examined fits of commonly used rank-abundance models for each age class and traditional and derived diversity indices. Rank abundance distributions were closest to the Zipf-Mandelbrot distribution, suggesting little role for competition in structuring most assemblages. Diversity measures for most functional groups increased with succession, but differences in slopes were common. Evenness declined with succession; more so for red-listed species than common species. Saproxylic species increased in diversity with succession while non-saproxylic species did not. Slopes for fungivores were steeper than other diet groups, while detritivores were not strongly affected by succession. Species trapped using emergence traps (log specialists responded more weakly to succession than those trapped using flight intercept traps (representing a broader set of ecologies. Species associated with microhabitats that accumulate with succession (fungi and dead wood thus showed the strongest diversity responses to succession. These clear differences between functional group responses to forest succession should be considered in planning landscapes for optimum conservation value, particularly functional resilience.

  17. Predator-prey dynamics driven by feedback between functionally diverse trophic levels.

    Directory of Open Access Journals (Sweden)

    Katrin Tirok

    Full Text Available Neglecting the naturally existing functional diversity of communities and the resulting potential to respond to altered conditions may strongly reduce the realism and predictive power of ecological models. We therefore propose and study a predator-prey model that describes mutual feedback via species shifts in both predator and prey, using a dynamic trait approach. Species compositions of the two trophic levels were described by mean functional traits--prey edibility and predator food-selectivity--and functional diversities by the variances. Altered edibility triggered shifts in food-selectivity so that consumers continuously respond to the present prey composition, and vice versa. This trait-mediated feedback mechanism resulted in a complex dynamic behavior with ongoing oscillations in the mean trait values, reflecting continuous reorganization of the trophic levels. The feedback was only possible if sufficient functional diversity was present in both trophic levels. Functional diversity was internally maintained on the prey level as no niche existed in our system, which was ideal under any composition of the predator level due to the trade-offs between edibility, growth and carrying capacity. The predators were only subject to one trade-off between food-selectivity and grazing ability and in the absence of immigration, one predator type became abundant, i.e., functional diversity declined to zero. In the lack of functional diversity the system showed the same dynamics as conventional models of predator-prey interactions ignoring the potential for shifts in species composition. This way, our study identified the crucial role of trade-offs and their shape in physiological and ecological traits for preserving diversity.

  18. Plant functional diversity affects climate-vegetation interaction

    Science.gov (United States)

    Groner, Vivienne P.; Raddatz, Thomas; Reick, Christian H.; Claussen, Martin

    2018-04-01

    We present how variations in plant functional diversity affect climate-vegetation interaction towards the end of the African Humid Period (AHP) in coupled land-atmosphere simulations using the Max Planck Institute Earth system model (MPI-ESM). In experiments with AHP boundary conditions, the extent of the green Sahara varies considerably with changes in plant functional diversity. Differences in vegetation cover extent and plant functional type (PFT) composition translate into significantly different land surface parameters, water cycling, and surface energy budgets. These changes have not only regional consequences but considerably alter large-scale atmospheric circulation patterns and the position of the tropical rain belt. Towards the end of the AHP, simulations with the standard PFT set in MPI-ESM depict a gradual decrease of precipitation and vegetation cover over time, while simulations with modified PFT composition show either a sharp decline of both variables or an even slower retreat. Thus, not the quantitative but the qualitative PFT composition determines climate-vegetation interaction and the climate-vegetation system response to external forcing. The sensitivity of simulated system states to changes in PFT composition raises the question how realistically Earth system models can actually represent climate-vegetation interaction, considering the poor representation of plant diversity in the current generation of land surface models.

  19. Genetic Diversity Underlying the Envelope Glycoproteins of Hepatitis C Virus: Structural and Functional Consequences and the Implications for Vaccine Design

    Directory of Open Access Journals (Sweden)

    Alexander W. Tarr

    2015-07-01

    Full Text Available In the 26 years since the discovery of Hepatitis C virus (HCV a major global research effort has illuminated many aspects of the viral life cycle, facilitating the development of targeted antivirals. Recently, effective direct-acting antiviral (DAA regimens with >90% cure rates have become available for treatment of chronic HCV infection in developed nations, representing a significant advance towards global eradication. However, the high cost of these treatments results in highly restricted access in developing nations, where the disease burden is greatest. Additionally, the largely asymptomatic nature of infection facilitates continued transmission in at risk groups and resource constrained settings due to limited surveillance. Consequently a prophylactic vaccine is much needed. The HCV envelope glycoproteins E1 and E2 are located on the surface of viral lipid envelope, facilitate viral entry and are the targets for host immunity, in addition to other functions. Unfortunately, the extreme global genetic and antigenic diversity exhibited by the HCV glycoproteins represents a significant obstacle to vaccine development. Here we review current knowledge of HCV envelope protein structure, integrating knowledge of genetic, antigenic and functional diversity to inform rational immunogen design.

  20. Deforestation Impacts on Bat Functional Diversity in Tropical Landscapes.

    Directory of Open Access Journals (Sweden)

    Rodrigo García-Morales

    Full Text Available Functional diversity is the variability in the functional roles carried out by species within ecosystems. Changes in the environment can affect this component of biodiversity and can, in turn, affect different processes, including some ecosystem services. This study aimed to determine the effect of forest loss on species richness, abundance and functional diversity of Neotropical bats. To this end, we identified six landscapes with increasing loss of forest cover in the Huasteca region of the state of Hidalgo, Mexico. We captured bats in each landscape using mist nets, and calculated functional diversity indices (functional richness and functional evenness along with species richness and abundance. We analyzed these measures in terms of percent forest cover. We captured 906 bats (Phyllostomidae and Mormoopidae, including 10 genera and 12 species. Species richness, abundance and functional richness per night are positively related with forest cover. Generalized linear models show that species richness, abundance and functional richness per night are significantly related with forest cover, while seasonality had an effect on abundance and functional richness. Neither forest cover nor season had a significant effect on functional evenness. All these findings were consistent across three spatial scales (1, 3 and 5 km radius around sampling sites. The decrease in species, abundance and functional richness of bats with forest loss may have implications for the ecological processes they carry out such as seed dispersal, pollination and insect predation, among others.

  1. Deforestation Impacts on Bat Functional Diversity in Tropical Landscapes.

    Science.gov (United States)

    García-Morales, Rodrigo; Moreno, Claudia E; Badano, Ernesto I; Zuria, Iriana; Galindo-González, Jorge; Rojas-Martínez, Alberto E; Ávila-Gómez, Eva S

    2016-01-01

    Functional diversity is the variability in the functional roles carried out by species within ecosystems. Changes in the environment can affect this component of biodiversity and can, in turn, affect different processes, including some ecosystem services. This study aimed to determine the effect of forest loss on species richness, abundance and functional diversity of Neotropical bats. To this end, we identified six landscapes with increasing loss of forest cover in the Huasteca region of the state of Hidalgo, Mexico. We captured bats in each landscape using mist nets, and calculated functional diversity indices (functional richness and functional evenness) along with species richness and abundance. We analyzed these measures in terms of percent forest cover. We captured 906 bats (Phyllostomidae and Mormoopidae), including 10 genera and 12 species. Species richness, abundance and functional richness per night are positively related with forest cover. Generalized linear models show that species richness, abundance and functional richness per night are significantly related with forest cover, while seasonality had an effect on abundance and functional richness. Neither forest cover nor season had a significant effect on functional evenness. All these findings were consistent across three spatial scales (1, 3 and 5 km radius around sampling sites). The decrease in species, abundance and functional richness of bats with forest loss may have implications for the ecological processes they carry out such as seed dispersal, pollination and insect predation, among others.

  2. Rare species support vulnerable functions in high-diversity ecosystems.

    Science.gov (United States)

    Mouillot, David; Bellwood, David R; Baraloto, Christopher; Chave, Jerome; Galzin, Rene; Harmelin-Vivien, Mireille; Kulbicki, Michel; Lavergne, Sebastien; Lavorel, Sandra; Mouquet, Nicolas; Paine, C E Timothy; Renaud, Julien; Thuiller, Wilfried

    2013-01-01

    Around the world, the human-induced collapses of populations and species have triggered a sixth mass extinction crisis, with rare species often being the first to disappear. Although the role of species diversity in the maintenance of ecosystem processes has been widely investigated, the role of rare species remains controversial. A critical issue is whether common species insure against the loss of functions supported by rare species. This issue is even more critical in species-rich ecosystems where high functional redundancy among species is likely and where it is thus often assumed that ecosystem functioning is buffered against species loss. Here, using extensive datasets of species occurrences and functional traits from three highly diverse ecosystems (846 coral reef fishes, 2,979 alpine plants, and 662 tropical trees), we demonstrate that the most distinct combinations of traits are supported predominantly by rare species both in terms of local abundance and regional occupancy. Moreover, species that have low functional redundancy and are likely to support the most vulnerable functions, with no other species carrying similar combinations of traits, are rarer than expected by chance in all three ecosystems. For instance, 63% and 98% of fish species that are likely to support highly vulnerable functions in coral reef ecosystems are locally and regionally rare, respectively. For alpine plants, 32% and 89% of such species are locally and regionally rare, respectively. Remarkably, 47% of fish species and 55% of tropical tree species that are likely to support highly vulnerable functions have only one individual per sample on average. Our results emphasize the importance of rare species conservation, even in highly diverse ecosystems, which are thought to exhibit high functional redundancy. Rare species offer more than aesthetic, cultural, or taxonomic diversity value; they disproportionately increase the potential breadth of functions provided by ecosystems across

  3. Global patterns of guild composition and functional diversity of spiders.

    Directory of Open Access Journals (Sweden)

    Pedro Cardoso

    Full Text Available The objectives of this work are: (1 to define spider guilds for all extant families worldwide; (2 test if guilds defined at family level are good surrogates of species guilds; (3 compare the taxonomic and guild composition of spider assemblages from different parts of the world; (4 compare the taxonomic and functional diversity of spider assemblages and; (5 relate functional diversity with habitat structure. Data on foraging strategy, prey range, vertical stratification and circadian activity was collected for 108 families. Spider guilds were defined by hierarchical clustering. We searched for inconsistencies between family guild placement and the known guild of each species. Richness and abundance per guild before and after correcting guild placement were compared, as were the proportions of each guild and family between all possible pairs of sites. Functional diversity per site was calculated based on hierarchical clustering. Eight guilds were discriminated: (1 sensing, (2 sheet, (3 space, and (4 orb web weavers; (5 specialists; (6 ambush, (7 ground, and (8 other hunters. Sixteen percent of the species richness corresponding to 11% of all captured individuals was incorrectly attributed to a guild by family surrogacy; however, the correlation of uncorrected vs. corrected guilds was invariably high. The correlation of guild richness or abundances was generally higher than the correlation of family richness or abundances. Functional diversity was not always higher in the tropics than in temperate regions. Families may potentially serve as ecological surrogates for species. Different families may present similar roles in the ecosystems, with replacement of some taxa by other within the same guild. Spiders in tropical regions seem to have higher redundancy of functional roles and/or finer resource partitioning than in temperate regions. Although species and family diversity were higher in the tropics, functional diversity seems to be also

  4. Traits Without Borders:Integrating Functional Diversity Across Scales

    Czech Academy of Sciences Publication Activity Database

    Carmona, C. P.; de Bello, Francesco; Mason, N. W. H.; Lepš, Jan

    2016-01-01

    Roč. 31, č. 5 (2016), s. 382-394 ISSN 0169-5347 R&D Projects: GA ČR GAP505/12/1296; GA ČR GB14-36079G Institutional support: RVO:67985939 ; RVO:60077344 Keywords : functional trait * functional diversity * functional niche Subject RIV: EH - Ecology, Behaviour Impact factor: 15.268, year: 2016

  5. Phylogenetic and Functional Diversity of Fleshy-Fruited Plants Are Positively Associated with Seedling Diversity in a Tropical Montane Forest

    Directory of Open Access Journals (Sweden)

    Marcia C. Muñoz

    2017-08-01

    Full Text Available Mutualistic interactions between plants and animals can affect both plant and animal communities, and potentially leave imprints on plant demography. Yet, no study has simultaneously tested how trait variation in plant resources shapes the diversity of animal consumers, and how these interactions influence seedling recruitment. Here, we analyzed whether (i phylogenetic diversity and functional diversity of fruiting plants were correlated with the corresponding diversity of frugivorous birds, and (ii whether phylogenetic diversity and functional identity of plant and bird communities influenced the corresponding diversity and identity of seedling communities. We recorded mutualistic interactions between fleshy-fruited plants and frugivorous birds and seedling communities in 10 plots along an elevational gradient in the Colombian Andes. We built a phylogeny for plants/seedlings and birds and measured relevant morphological plant and bird traits that influence plant-bird interactions and seedling recruitment. We found that phylogenetic diversity and functional diversity of frugivorous birds were positively associated with the corresponding diversities of fruiting plants, consistent with a bottom-up effect of plants on birds. Moreover, the phylogenetic diversity of seedlings was related to the phylogenetic diversity of plants, but was unrelated to the phylogenetic diversity of frugivorous birds, suggesting that top-down effects of animals on seedlings were weak. Mean seed mass of seedling communities was positively associated with the mean fruit mass of plants, but was not associated with the mean avian body mass in the frugivore communities. Our study shows that variation in the traits of fleshy-fruited plants was associated with the diversity of frugivorous birds and affected the future trajectory of seedling recruitment, whereas the morphological traits of animal seed dispersers were unrelated to the phylogenetic and functional structure of

  6. Decreases in soil microbial function and functional diversity in response to depleted uranium

    International Nuclear Information System (INIS)

    Meyer, M.C.; Paschke, M.W.; McLendon, T.

    1998-01-01

    A soil microcosm experiment was used to analyze effects of depleted uranium (DU) on soil function, and the concomitant changes in bacterial functional diversity. Uranium treatment levels were 0, 50, 500, 5000, 10,000 and 25,000 mg DU kg -1 soil. Three measures of soil function were made. Overall soil biological activity was assessed via measurement of soil respiration. Decomposition was assessed by measurement of mass loss of four different plant litter types: wood sticks, cellulose paper, high-N grass, and low-N grass. Mineral N availability in the microcosms was estimated using ion-exchange resin bags. Functional diversity of the microcosms was analyzed through the use of the Biolog-system of sole-C-utilization patterns. Soil respiration was the most sensitive measure of functional changes, with significant decreases observed starting at the 500 mg kg -1 treatment. No differences in N availability were observed across the U treatments. Litter decomposition was significantly decreased at the 25,000 mg kg -1 level relative to the control for all litter types except the high-N grass. Wood decomposition was reduced by 84% at the 25,000 mg kg - treatment, cellulose paper by 68%, and low-N grass by 15%. Decreases in the functional diversity of the bacterial community were related to the observed decrease in soil respiration, and to the greater effect on decomposition of the lower-quality litter types

  7. Distance-Based Functional Diversity Measures and Their Decomposition: A Framework Based on Hill Numbers

    Science.gov (United States)

    Chiu, Chun-Huo; Chao, Anne

    2014-01-01

    Hill numbers (or the “effective number of species”) are increasingly used to characterize species diversity of an assemblage. This work extends Hill numbers to incorporate species pairwise functional distances calculated from species traits. We derive a parametric class of functional Hill numbers, which quantify “the effective number of equally abundant and (functionally) equally distinct species” in an assemblage. We also propose a class of mean functional diversity (per species), which quantifies the effective sum of functional distances between a fixed species to all other species. The product of the functional Hill number and the mean functional diversity thus quantifies the (total) functional diversity, i.e., the effective total distance between species of the assemblage. The three measures (functional Hill numbers, mean functional diversity and total functional diversity) quantify different aspects of species trait space, and all are based on species abundance and species pairwise functional distances. When all species are equally distinct, our functional Hill numbers reduce to ordinary Hill numbers. When species abundances are not considered or species are equally abundant, our total functional diversity reduces to the sum of all pairwise distances between species of an assemblage. The functional Hill numbers and the mean functional diversity both satisfy a replication principle, implying the total functional diversity satisfies a quadratic replication principle. When there are multiple assemblages defined by the investigator, each of the three measures of the pooled assemblage (gamma) can be multiplicatively decomposed into alpha and beta components, and the two components are independent. The resulting beta component measures pure functional differentiation among assemblages and can be further transformed to obtain several classes of normalized functional similarity (or differentiation) measures, including N-assemblage functional generalizations of

  8. Distance-based functional diversity measures and their decomposition: a framework based on Hill numbers.

    Directory of Open Access Journals (Sweden)

    Chun-Huo Chiu

    Full Text Available Hill numbers (or the "effective number of species" are increasingly used to characterize species diversity of an assemblage. This work extends Hill numbers to incorporate species pairwise functional distances calculated from species traits. We derive a parametric class of functional Hill numbers, which quantify "the effective number of equally abundant and (functionally equally distinct species" in an assemblage. We also propose a class of mean functional diversity (per species, which quantifies the effective sum of functional distances between a fixed species to all other species. The product of the functional Hill number and the mean functional diversity thus quantifies the (total functional diversity, i.e., the effective total distance between species of the assemblage. The three measures (functional Hill numbers, mean functional diversity and total functional diversity quantify different aspects of species trait space, and all are based on species abundance and species pairwise functional distances. When all species are equally distinct, our functional Hill numbers reduce to ordinary Hill numbers. When species abundances are not considered or species are equally abundant, our total functional diversity reduces to the sum of all pairwise distances between species of an assemblage. The functional Hill numbers and the mean functional diversity both satisfy a replication principle, implying the total functional diversity satisfies a quadratic replication principle. When there are multiple assemblages defined by the investigator, each of the three measures of the pooled assemblage (gamma can be multiplicatively decomposed into alpha and beta components, and the two components are independent. The resulting beta component measures pure functional differentiation among assemblages and can be further transformed to obtain several classes of normalized functional similarity (or differentiation measures, including N-assemblage functional

  9. Functional-diversity indices can be driven by methodological choices and species richness.

    Science.gov (United States)

    Poos, Mark S; Walker, Steven C; Jackson, Donald A

    2009-02-01

    Functional diversity is an important concept in community ecology because it captures information on functional traits absent in measures of species diversity. One popular method of measuring functional diversity is the dendrogram-based method, FD. To calculate FD, a variety of methodological choices are required, and it has been debated about whether biological conclusions are sensitive to such choices. We studied the probability that conclusions regarding FD were sensitive, and that patterns in sensitivity were related to alpha and beta components of species richness. We developed a randomization procedure that iteratively calculated FD by assigning species into two assemblages and calculating the probability that the community with higher FD varied across methods. We found evidence of sensitivity in all five communities we examined, ranging from a probability of sensitivity of 0 (no sensitivity) to 0.976 (almost completely sensitive). Variations in these probabilities were driven by differences in alpha diversity between assemblages and not by beta diversity. Importantly, FD was most sensitive when it was most useful (i.e., when differences in alpha diversity were low). We demonstrate that trends in functional-diversity analyses can be largely driven by methodological choices or species richness, rather than functional trait information alone.

  10. [Research on functional diversity of microorganisms on jujube fruit surface in storage].

    Science.gov (United States)

    Sha, Yuexia

    2009-10-01

    Disease during storage caused by microbial infection is a serious problem of jujube fruits. The aim of the study was to characterize the microbial diversity in stored jujube fruits. I used Biolog in experiment. The types of micro-plates were Filamentous Fungi micro-plate and Economicmicro-plate. There was much difference in microbial functional diversity on the surface of stored jujube fruit. The microbial functional diversity of stored 30 days was richer than it of stored 15 days. The diversity, homogeneity and average well color development of jujube used by fruit perservatives were lower than it not used by fruit preservatives. There were six kinds of the characteristic carbon. Our study firstly showed microbial diversity on the surface of stored jujube fruit. Biolog could be applied in the research on microbial functional diversity of fruit surface.

  11. Constraining the composition and thermal state of the moon from an inversion of electromagnetic lunar day-side transfer functions

    DEFF Research Database (Denmark)

    Khan, Amir; Connolly, J.A.D.; Olsen, Nils

    2006-01-01

    We present a general method to constrain planetary composition and thermal state from an inversion of long-period electromagnetic sounding data. As an example of our approach, we reexamine the problem of inverting lunar day-side transfer functions to constrain the internal structure of the Moon. We...... to significantly influence the inversion results. In order to improve future inferences about lunar composition and thermal state, more electrical conductivity measurements are needed especially for minerals appropriate to the Moon, such as pyrope and almandine....

  12. Fragment approach to constrained density functional theory calculations using Daubechies wavelets

    International Nuclear Information System (INIS)

    Ratcliff, Laura E.; Genovese, Luigi; Mohr, Stephan; Deutsch, Thierry

    2015-01-01

    In a recent paper, we presented a linear scaling Kohn-Sham density functional theory (DFT) code based on Daubechies wavelets, where a minimal set of localized support functions are optimized in situ and therefore adapted to the chemical properties of the molecular system. Thanks to the systematically controllable accuracy of the underlying basis set, this approach is able to provide an optimal contracted basis for a given system: accuracies for ground state energies and atomic forces are of the same quality as an uncontracted, cubic scaling approach. This basis set offers, by construction, a natural subset where the density matrix of the system can be projected. In this paper, we demonstrate the flexibility of this minimal basis formalism in providing a basis set that can be reused as-is, i.e., without reoptimization, for charge-constrained DFT calculations within a fragment approach. Support functions, represented in the underlying wavelet grid, of the template fragments are roto-translated with high numerical precision to the required positions and used as projectors for the charge weight function. We demonstrate the interest of this approach to express highly precise and efficient calculations for preparing diabatic states and for the computational setup of systems in complex environments

  13. Fragment approach to constrained density functional theory calculations using Daubechies wavelets

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliff, Laura E., E-mail: lratcliff@anl.gov [Argonne Leadership Computing Facility, Argonne National Laboratory, Lemont, Illinois 60439 (United States); Université de Grenoble Alpes, CEA, INAC-SP2M, L-Sim, F-38000 Grenoble (France); Genovese, Luigi; Mohr, Stephan; Deutsch, Thierry [Université de Grenoble Alpes, CEA, INAC-SP2M, L-Sim, F-38000 Grenoble (France)

    2015-06-21

    In a recent paper, we presented a linear scaling Kohn-Sham density functional theory (DFT) code based on Daubechies wavelets, where a minimal set of localized support functions are optimized in situ and therefore adapted to the chemical properties of the molecular system. Thanks to the systematically controllable accuracy of the underlying basis set, this approach is able to provide an optimal contracted basis for a given system: accuracies for ground state energies and atomic forces are of the same quality as an uncontracted, cubic scaling approach. This basis set offers, by construction, a natural subset where the density matrix of the system can be projected. In this paper, we demonstrate the flexibility of this minimal basis formalism in providing a basis set that can be reused as-is, i.e., without reoptimization, for charge-constrained DFT calculations within a fragment approach. Support functions, represented in the underlying wavelet grid, of the template fragments are roto-translated with high numerical precision to the required positions and used as projectors for the charge weight function. We demonstrate the interest of this approach to express highly precise and efficient calculations for preparing diabatic states and for the computational setup of systems in complex environments.

  14. Rare species support vulnerable functions in high-diversity ecosystems.

    Directory of Open Access Journals (Sweden)

    David Mouillot

    Full Text Available Around the world, the human-induced collapses of populations and species have triggered a sixth mass extinction crisis, with rare species often being the first to disappear. Although the role of species diversity in the maintenance of ecosystem processes has been widely investigated, the role of rare species remains controversial. A critical issue is whether common species insure against the loss of functions supported by rare species. This issue is even more critical in species-rich ecosystems where high functional redundancy among species is likely and where it is thus often assumed that ecosystem functioning is buffered against species loss. Here, using extensive datasets of species occurrences and functional traits from three highly diverse ecosystems (846 coral reef fishes, 2,979 alpine plants, and 662 tropical trees, we demonstrate that the most distinct combinations of traits are supported predominantly by rare species both in terms of local abundance and regional occupancy. Moreover, species that have low functional redundancy and are likely to support the most vulnerable functions, with no other species carrying similar combinations of traits, are rarer than expected by chance in all three ecosystems. For instance, 63% and 98% of fish species that are likely to support highly vulnerable functions in coral reef ecosystems are locally and regionally rare, respectively. For alpine plants, 32% and 89% of such species are locally and regionally rare, respectively. Remarkably, 47% of fish species and 55% of tropical tree species that are likely to support highly vulnerable functions have only one individual per sample on average. Our results emphasize the importance of rare species conservation, even in highly diverse ecosystems, which are thought to exhibit high functional redundancy. Rare species offer more than aesthetic, cultural, or taxonomic diversity value; they disproportionately increase the potential breadth of functions provided by

  15. Finite-time convergent recurrent neural network with a hard-limiting activation function for constrained optimization with piecewise-linear objective functions.

    Science.gov (United States)

    Liu, Qingshan; Wang, Jun

    2011-04-01

    This paper presents a one-layer recurrent neural network for solving a class of constrained nonsmooth optimization problems with piecewise-linear objective functions. The proposed neural network is guaranteed to be globally convergent in finite time to the optimal solutions under a mild condition on a derived lower bound of a single gain parameter in the model. The number of neurons in the neural network is the same as the number of decision variables of the optimization problem. Compared with existing neural networks for optimization, the proposed neural network has a couple of salient features such as finite-time convergence and a low model complexity. Specific models for two important special cases, namely, linear programming and nonsmooth optimization, are also presented. In addition, applications to the shortest path problem and constrained least absolute deviation problem are discussed with simulation results to demonstrate the effectiveness and characteristics of the proposed neural network.

  16. Clustering Using Boosted Constrained k-Means Algorithm

    Directory of Open Access Journals (Sweden)

    Masayuki Okabe

    2018-03-01

    Full Text Available This article proposes a constrained clustering algorithm with competitive performance and less computation time to the state-of-the-art methods, which consists of a constrained k-means algorithm enhanced by the boosting principle. Constrained k-means clustering using constraints as background knowledge, although easy to implement and quick, has insufficient performance compared with metric learning-based methods. Since it simply adds a function into the data assignment process of the k-means algorithm to check for constraint violations, it often exploits only a small number of constraints. Metric learning-based methods, which exploit constraints to create a new metric for data similarity, have shown promising results although the methods proposed so far are often slow depending on the amount of data or number of feature dimensions. We present a method that exploits the advantages of the constrained k-means and metric learning approaches. It incorporates a mechanism for accepting constraint priorities and a metric learning framework based on the boosting principle into a constrained k-means algorithm. In the framework, a metric is learned in the form of a kernel matrix that integrates weak cluster hypotheses produced by the constrained k-means algorithm, which works as a weak learner under the boosting principle. Experimental results for 12 data sets from 3 data sources demonstrated that our method has performance competitive to those of state-of-the-art constrained clustering methods for most data sets and that it takes much less computation time. Experimental evaluation demonstrated the effectiveness of controlling the constraint priorities by using the boosting principle and that our constrained k-means algorithm functions correctly as a weak learner of boosting.

  17. Symbiotic Dinoflagellate Functional Diversity Mediates Coral Survival under Ecological Crisis.

    Science.gov (United States)

    Suggett, David J; Warner, Mark E; Leggat, William

    2017-10-01

    Coral reefs have entered an era of 'ecological crisis' as climate change drives catastrophic reef loss worldwide. Coral growth and stress susceptibility are regulated by their endosymbiotic dinoflagellates (genus Symbiodinium). The phylogenetic diversity of Symbiodinium frequently corresponds to patterns of coral health and survival, but knowledge of functional diversity is ultimately necessary to reconcile broader ecological success over space and time. We explore here functional traits underpinning the complex biology of Symbiodinium that spans free-living algae to coral endosymbionts. In doing so we propose a mechanistic framework integrating the primary traits of resource acquisition and utilisation as a means to explain Symbiodinium functional diversity and to resolve the role of Symbiodinium in driving the stability of coral reefs under an uncertain future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Diversity-interaction modeling: estimating contributions of species identities and interactions to ecosystem function

    DEFF Research Database (Denmark)

    Kirwan, L; Connolly, J; Finn, J A

    2009-01-01

    to the roles of evenness, functional groups, and functional redundancy. These more parsimonious descriptions can be especially useful in identifying general diversity-function relationships in communities with large numbers of species. We provide an example of the application of the modeling framework......We develop a modeling framework that estimates the effects of species identity and diversity on ecosystem function and permits prediction of the diversity-function relationship across different types of community composition. Rather than just measure an overall effect of diversity, we separately....... These models describe community-level performance and thus do not require separate measurement of the performance of individual species. This flexible modeling approach can be tailored to test many hypotheses in biodiversity research and can suggest the interaction mechanisms that may be acting....

  19. Epigenetic variation predicts regional and local intraspecific functional diversity in a perennial herb.

    Science.gov (United States)

    Medrano, Mónica; Herrera, Carlos M; Bazaga, Pilar

    2014-10-01

    The ecological significance of epigenetic variation has been generally inferred from studies on model plants under artificial conditions, but the importance of epigenetic differences between individuals as a source of intraspecific diversity in natural plant populations remains essentially unknown. This study investigates the relationship between epigenetic variation and functional plant diversity by conducting epigenetic (methylation-sensitive amplified fragment length polymorphisms, MSAP) and genetic (amplified fragment length polymorphisms, AFLP) marker-trait association analyses for 20 whole-plant, leaf and regenerative functional traits in a large sample of wild-growing plants of the perennial herb Helleborus foetidus from ten sampling sites in south-eastern Spain. Plants differed widely in functional characteristics, and exhibited greater epigenetic than genetic diversity, as shown by per cent polymorphism of MSAP fragments (92%) or markers (69%) greatly exceeding that for AFLP ones (41%). After controlling for genetic structuring and possible cryptic relatedness, every functional trait considered exhibited a significant association with at least one AFLP or MSAP marker. A total of 27 MSAP (13.0% of total) and 12 AFLP (4.4%) markers were involved in significant associations, which explained on average 8.2% and 8.0% of trait variance, respectively. Individual MSAP markers were more likely to be associated with functional traits than AFLP markers. Between-site differences in multivariate functional diversity were directly related to variation in multilocus epigenetic diversity after multilocus genetic diversity was statistically accounted for. Results suggest that epigenetic variation can be an important source of intraspecific functional diversity in H. foetidus, possibly endowing this species with the capacity to exploit a broad range of ecological conditions despite its modest genetic diversity. © 2014 John Wiley & Sons Ltd.

  20. The world's richest tadpole communities show functional redundancy and low functional diversity: ecological data on Madagascar's stream-dwelling amphibian larvae

    Directory of Open Access Journals (Sweden)

    Randrianiaina Roger-Daniel

    2010-05-01

    Full Text Available Abstract Background Functional diversity illustrates the range of ecological functions in a community. It allows revealing the appearance of functional redundancy in communities and processes of community assembly. Functional redundancy illustrates the overlap in ecological functions of community members which may be an indicator of community resilience. We evaluated patterns of species richness, functional diversity and functional redundancy on tadpole communities in rainforest streams in Madagascar. This habitat harbours the world's most species-rich stream tadpole communities which are due to their occurrence in primary habitat of particular interest for functional diversity studies. Results Species richness of tadpole communities is largely determined by characteristics of the larval habitat (stream structure, not by adult habitat (forest structure. Species richness is positively correlated with a size-velocity gradient of the streams, i.e. communities follow a classical species-area relationship. While widely observed for other taxa, this is an unusual pattern for anuran larvae which usually is expected to be hump-shaped. Along the species richness gradient, we quantified functional diversity of all communities considering the similarity and dissimilarity of species in 18 traits related to habitat use and foraging. Especially species-rich communities were characterised by an overlap of species function, i.e. by functional redundancy. By comparing the functional diversity of the observed communities with functional diversity of random assemblages, we found no differences at low species richness level, whereas observed species-rich communities have lower functional diversity than respective random assemblages. Conclusions We found functional redundancy being a feature of communities also in primary habitat, what has not been shown before using such a continuous measure. The observed species richness dependent pattern of low functional

  1. Application of the Nutrition Functional Diversity indicator to assess food system contributions to dietary diversity and sustainable diets of Malawian households.

    Science.gov (United States)

    Luckett, Brian G; DeClerck, Fabrice A J; Fanzo, Jessica; Mundorf, Adrienne R; Rose, Donald

    2015-09-01

    Dietary diversity is associated with nutrient adequacy and positive health outcomes but indicators to measure diversity have focused primarily on consumption, rather than sustainable provisioning of food. The Nutritional Functional Diversity score was developed by ecologists to describe the contribution of biodiversity to sustainable diets. We have employed this tool to estimate the relative contribution of home production and market purchases in providing nutritional diversity to agricultural households in Malawi and examine how food system provisioning varies by time, space and socio-economic conditions. A secondary analysis of nationally representative household consumption data to test the applicability of the Nutritional Functional Diversity score. The data were collected between 2010 and 2011 across the country of Malawi. Households (n 11 814) from predominantly rural areas of Malawi. Nutritional Functional Diversity varied demographically, geographically and temporally. Nationally, purchased foods contributed more to household nutritional diversity than home produced foods (mean score=17·5 and 7·8, respectively). Households further from roads and population centres had lower overall diversity (PFunctional Diversity score is an effective indicator for identifying populations with low nutritional diversity and the relative roles that markets, agricultural extension and home production play in achieving nutritional diversity. This information may be used by policy makers to plan agricultural and market-based interventions that support sustainable diets and local food systems.

  2. Functional trait space and the latitudinal diversity gradient

    DEFF Research Database (Denmark)

    Lamanna, Christine; Blonder, Benjamin; Violle, Cyrille

    2014-01-01

    The processes causing the latitudinal gradient in species richness remain elusive. Ecological theories for the origin of biodiversity gradients, such as competitive exclusion, neutral dynamics, and environmental filtering, make predictions for how functional diversity should vary at the alpha...... of trait combinations or that niche packing is stronger in the tropical zone. Although there are limitations in the data, our analyses suggest that multiple processes have shaped trait diversity in trees, reflecting no consistent support for any one theory....

  3. Versatile Loading of Diverse Cargo into Functional Polymer Capsules.

    Science.gov (United States)

    Richardson, Joseph J; Maina, James W; Ejima, Hirotaka; Hu, Ming; Guo, Junling; Choy, Mei Y; Gunawan, Sylvia T; Lybaert, Lien; Hagemeyer, Christoph E; De Geest, Bruno G; Caruso, Frank

    2015-02-01

    Polymer microcapsules are of particular interest for applications including self-healing coatings, catalysis, bioreactions, sensing, and drug delivery. The primary way that polymer capsules can exhibit functionality relevant to these diverse fields is through the incorporation of functional cargo in the capsule cavity or wall. Diverse functional and therapeutic cargo can be loaded into polymer capsules with ease using polymer-stabilized calcium carbonate (CaCO 3 ) particles. A variety of examples are demonstrated, including 15 types of cargo, yielding a toolbox with effectively 500+ variations. This process uses no harsh reagents and can take less than 30 min to prepare, load, coat, and form the hollow capsules. For these reasons, it is expected that the technique will play a crucial role across scientific studies in numerous fields.

  4. Integrating abundance and functional traits reveals new global hotspots of fish diversity.

    Science.gov (United States)

    Stuart-Smith, Rick D; Bates, Amanda E; Lefcheck, Jonathan S; Duffy, J Emmett; Baker, Susan C; Thomson, Russell J; Stuart-Smith, Jemina F; Hill, Nicole A; Kininmonth, Stuart J; Airoldi, Laura; Becerro, Mikel A; Campbell, Stuart J; Dawson, Terence P; Navarrete, Sergio A; Soler, German A; Strain, Elisabeth M A; Willis, Trevor J; Edgar, Graham J

    2013-09-26

    Species richness has dominated our view of global biodiversity patterns for centuries. The dominance of this paradigm is reflected in the focus by ecologists and conservation managers on richness and associated occurrence-based measures for understanding drivers of broad-scale diversity patterns and as a biological basis for management. However, this is changing rapidly, as it is now recognized that not only the number of species but the species present, their phenotypes and the number of individuals of each species are critical in determining the nature and strength of the relationships between species diversity and a range of ecological functions (such as biomass production and nutrient cycling). Integrating these measures should provide a more relevant representation of global biodiversity patterns in terms of ecological functions than that provided by simple species counts. Here we provide comparisons of a traditional global biodiversity distribution measure based on richness with metrics that incorporate species abundances and functional traits. We use data from standardized quantitative surveys of 2,473 marine reef fish species at 1,844 sites, spanning 133 degrees of latitude from all ocean basins, to identify new diversity hotspots in some temperate regions and the tropical eastern Pacific Ocean. These relate to high diversity of functional traits amongst individuals in the community (calculated using Rao's Q), and differ from previously reported patterns in functional diversity and richness for terrestrial animals, which emphasize species-rich tropical regions only. There is a global trend for greater evenness in the number of individuals of each species, across the reef fish species observed at sites ('community evenness'), at higher latitudes. This contributes to the distribution of functional diversity hotspots and contrasts with well-known latitudinal gradients in richness. Our findings suggest that the contribution of species diversity to a range of

  5. Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients

    Science.gov (United States)

    Spasojevic, Marko J.; Grace, James B.; Harrison, Susan; Damschen, Ellen Ingman

    2013-01-01

    1. The physiological tolerance hypothesis proposes that plant species richness is highest in warm and/or wet climates because a wider range of functional strategies can persist under such conditions. Functional diversity metrics, combined with statistical modeling, offer new ways to test whether diversity-environment relationships are consistent with this hypothesis. 2. In a classic study by R. H. Whittaker (1960), herb species richness declined from mesic (cool, moist, northerly) slopes to xeric (hot, dry, southerly) slopes. Building on this dataset, we measured four plant functional traits (plant height, specific leaf area, leaf water content and foliar C:N) and used them to calculate three functional diversity metrics (functional richness, evenness, and dispersion). We then used a structural equation model to ask if ‘functional diversity’ (modeled as the joint responses of richness, evenness, and dispersion) could explain the observed relationship of topographic climate gradients to species richness. We then repeated our model examining the functional diversity of each of the four traits individually. 3. Consistent with the physiological tolerance hypothesis, we found that functional diversity was higher in more favorable climatic conditions (mesic slopes), and that multivariate functional diversity mediated the relationship of the topographic climate gradient to plant species richness. We found similar patterns for models focusing on individual trait functional diversity of leaf water content and foliar C:N. 4. Synthesis. Our results provide trait-based support for the physiological tolerance hypothesis, suggesting that benign climates support more species because they allow for a wider range of functional strategies.

  6. Ontogenetic functional diversity: size structure of a keystone predator drives functioning of a complex ecosystem.

    Science.gov (United States)

    Rudolf, Volker H W; Rasmussen, Nick L

    2013-05-01

    A central challenge in community ecology is to understand the connection between biodiversity and the functioning of ecosystems. While traditional approaches have largely focused on species-level diversity, increasing evidence indicates that there exists substantial ecological diversity among individuals within species. By far, the largest source of this intraspecific diversity stems from variation among individuals in ontogenetic stage and size. Although such ontogenetic shifts are ubiquitous in natural communities, whether and how they scale up to influence the structure and functioning of complex ecosystems is largely unknown. Here we take an experimental approach to examine the consequences of ontogenetic niche shifts for the structure of communities and ecosystem processes. In particular we experimentally manipulated the stage structure in a keystone predator, larvae of the dragonfly Anax junius, in complex experimental pond communities to test whether changes in the population stage or size structure of a keystone species scale up to alter community structure and ecosystem processes, and how functional differences scale with relative differences in size among stages. We found that the functional role of A. junius was stage-specific. Altering what stages were present in a pond led to concurrent changes in community structure, primary producer biomass (periphyton and phytoplankton), and ultimately altered ecosystem processes (respiration and net primary productivity), indicating a strong, but stage-specific, trophic cascade. Interestingly, the stage-specific effects did not simply scale with size or biomass of the predator, but instead indicated clear ontogenetic niche shifts in ecological interactions. Thus, functional differences among stages within a keystone species scaled up to alter the functioning of entire ecosystems. Therefore, our results indicate that the classical approach of assuming an average functional role of a species can be misleading because

  7. Simulation of X-ray absorption spectra with orthogonality constrained density functional theory.

    Science.gov (United States)

    Derricotte, Wallace D; Evangelista, Francesco A

    2015-06-14

    Orthogonality constrained density functional theory (OCDFT) [F. A. Evangelista, P. Shushkov and J. C. Tully, J. Phys. Chem. A, 2013, 117, 7378] is a variational time-independent approach for the computation of electronic excited states. In this work we extend OCDFT to compute core-excited states and generalize the original formalism to determine multiple excited states. Benchmark computations on a set of 13 small molecules and 40 excited states show that unshifted OCDFT/B3LYP excitation energies have a mean absolute error of 1.0 eV. Contrary to time-dependent DFT, OCDFT excitation energies for first- and second-row elements are computed with near-uniform accuracy. OCDFT core excitation energies are insensitive to the choice of the functional and the amount of Hartree-Fock exchange. We show that OCDFT is a powerful tool for the assignment of X-ray absorption spectra of large molecules by simulating the gas-phase near-edge spectrum of adenine and thymine.

  8. Phage and bacteria support mutual diversity in a narrowing staircase of coexistence

    DEFF Research Database (Denmark)

    Härter, Jan Olaf Mirko; Mitarai, Namiko; Sneppen, Kim

    2014-01-01

    arms race will typically favor high growth rate, but a phage that infects two bacterial strains differently can occasionally eliminate the fastest growing bacteria. This context-dependent fitness allows abrupt resetting of the 'Red-Queen's race' and constrains the local diversity.......The competitive exclusion principle states that phage diversity M should not exceed bacterial diversity N. By analyzing the steady-state solutions of multistrain equations, we find a new constraint: the diversity N of bacteria living on the same resources is constrained to be M or M+1 in terms...... of the diversity of their phage predators. We quantify how the parameter space of coexistence exponentially decreases with diversity. For diversity to grow, an open or evolving ecosystem needs to climb a narrowing 'diversity staircase' by alternatingly adding new bacteria and phages. The unfolding coevolutionary...

  9. Functional Molecular Diversity of Marine Dissolved Organic Matter Is Reduced during Degradation

    Directory of Open Access Journals (Sweden)

    Andrea Mentges

    2017-06-01

    Full Text Available Dissolved organic matter (DOM is a highly diverse mixture of compounds, accounting for one of the world's largest active carbon pools. The surprising recalcitrance of some DOM compounds to bacterial degradation has recently been associated with its diversity. However, little is known about large-scale patterns of marine DOM diversity and its change through degradation, in particular considering the functional diversity of DOM. Here, we analyze the development of marine DOM diversity during degradation in two data sets comprising DOM of very different ages: a three-year mesocosm experiment and highly-resolved field samples from the Atlantic and Southern Ocean. The DOM molecular composition was determined using ultra-high resolution mass spectrometry. We quantify DOM diversity using three conceptually different diversity measures, namely richness of molecular formulas, abundance-based diversity, and functional molecular diversity. Using these measures we find stable molecular richness of DOM with age >1 year, systematic changes in the molecules' abundance distribution with degradation state, and increasing homogeneity with respect to chemical properties for more degraded DOM. Coinciding with differences in sea water density, the spatial field data separated clearly into regions of high and low diversity. The joint application of different diversity measures yields a comprehensive overview on temporal and spatial patterns of molecular diversity, valuable for general conclusions on drivers and consequences of marine DOM diversity.

  10. Local-scale Partitioning of Functional and Phylogenetic Beta Diversity in a Tropical Tree Assemblage.

    Science.gov (United States)

    Yang, Jie; Swenson, Nathan G; Zhang, Guocheng; Ci, Xiuqin; Cao, Min; Sha, Liqing; Li, Jie; Ferry Slik, J W; Lin, Luxiang

    2015-08-03

    The relative degree to which stochastic and deterministic processes underpin community assembly is a central problem in ecology. Quantifying local-scale phylogenetic and functional beta diversity may shed new light on this problem. We used species distribution, soil, trait and phylogenetic data to quantify whether environmental distance, geographic distance or their combination are the strongest predictors of phylogenetic and functional beta diversity on local scales in a 20-ha tropical seasonal rainforest dynamics plot in southwest China. The patterns of phylogenetic and functional beta diversity were generally consistent. The phylogenetic and functional dissimilarity between subplots (10 × 10 m, 20 × 20 m, 50 × 50 m and 100 × 100 m) was often higher than that expected by chance. The turnover of lineages and species function within habitats was generally slower than that across habitats. Partitioning the variation in phylogenetic and functional beta diversity showed that environmental distance was generally a better predictor of beta diversity than geographic distance thereby lending relatively more support for deterministic environmental filtering over stochastic processes. Overall, our results highlight that deterministic processes play a stronger role than stochastic processes in structuring community composition in this diverse assemblage of tropical trees.

  11. Wronskian type solutions for the vector k-constrained KP hierarchy

    International Nuclear Information System (INIS)

    Zhang Youjin.

    1995-07-01

    Motivated by a relation of the 1-constrained Kadomtsev-Petviashvili (KP) hierarchy with the 2 component KP hierarchy, the tau-conditions of the vector k-constrained KP hierarchy are constructed by using an analogue of the Baker-Akhiezer (m + 1)-point function. These tau functions are expressed in terms of Wronskian type determinants. (author). 20 refs

  12. Functional, size and taxonomic diversity of fish along a depth gradient in the deep sea.

    Science.gov (United States)

    Mindel, Beth L; Neat, Francis C; Trueman, Clive N; Webb, Thomas J; Blanchard, Julia L

    2016-01-01

    Biodiversity is well studied in ecology and the concept has been developed to include traits of species, rather than solely taxonomy, to better reflect the functional diversity of a system. The deep sea provides a natural environmental gradient within which to study changes in different diversity metrics, but traits of deep-sea fish are not widely known, hampering the application of functional diversity to this globally important system. We used morphological traits to determine the functional richness and functional divergence of demersal fish assemblages along the continental slope in the Northeast Atlantic, at depths of 300-2,000 m. We compared these metrics to size diversity based on individual body size and species richness. Functional richness and size diversity showed similar patterns, with the highest diversity at intermediate depths; functional divergence showed the opposite pattern, with the highest values at the shallowest and deepest parts of the study site. Species richness increased with depth. The functional implications of these patterns were deduced by examining depth-related changes in morphological traits and the dominance of feeding guilds as illustrated by stable isotope analyses. The patterns in diversity and the variation in certain morphological traits can potentially be explained by changes in the relative dominance of pelagic and benthic feeding guilds. All measures of diversity examined here suggest that the deep areas of the continental slope may be equally or more diverse than assemblages just beyond the continental shelf.

  13. Functional, size and taxonomic diversity of fish along a depth gradient in the deep sea

    Directory of Open Access Journals (Sweden)

    Beth L. Mindel

    2016-09-01

    Full Text Available Biodiversity is well studied in ecology and the concept has been developed to include traits of species, rather than solely taxonomy, to better reflect the functional diversity of a system. The deep sea provides a natural environmental gradient within which to study changes in different diversity metrics, but traits of deep-sea fish are not widely known, hampering the application of functional diversity to this globally important system. We used morphological traits to determine the functional richness and functional divergence of demersal fish assemblages along the continental slope in the Northeast Atlantic, at depths of 300–2,000 m. We compared these metrics to size diversity based on individual body size and species richness. Functional richness and size diversity showed similar patterns, with the highest diversity at intermediate depths; functional divergence showed the opposite pattern, with the highest values at the shallowest and deepest parts of the study site. Species richness increased with depth. The functional implications of these patterns were deduced by examining depth-related changes in morphological traits and the dominance of feeding guilds as illustrated by stable isotope analyses. The patterns in diversity and the variation in certain morphological traits can potentially be explained by changes in the relative dominance of pelagic and benthic feeding guilds. All measures of diversity examined here suggest that the deep areas of the continental slope may be equally or more diverse than assemblages just beyond the continental shelf.

  14. PAPR-Constrained Pareto-Optimal Waveform Design for OFDM-STAP Radar

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Satyabrata [ORNL

    2014-01-01

    We propose a peak-to-average power ratio (PAPR) constrained Pareto-optimal waveform design approach for an orthogonal frequency division multiplexing (OFDM) radar signal to detect a target using the space-time adaptive processing (STAP) technique. The use of an OFDM signal does not only increase the frequency diversity of our system, but also enables us to adaptively design the OFDM coefficients in order to further improve the system performance. First, we develop a parametric OFDM-STAP measurement model by considering the effects of signaldependent clutter and colored noise. Then, we observe that the resulting STAP-performance can be improved by maximizing the output signal-to-interference-plus-noise ratio (SINR) with respect to the signal parameters. However, in practical scenarios, the computation of output SINR depends on the estimated values of the spatial and temporal frequencies and target scattering responses. Therefore, we formulate a PAPR-constrained multi-objective optimization (MOO) problem to design the OFDM spectral parameters by simultaneously optimizing four objective functions: maximizing the output SINR, minimizing two separate Cramer-Rao bounds (CRBs) on the normalized spatial and temporal frequencies, and minimizing the trace of CRB matrix on the target scattering coefficients estimations. We present several numerical examples to demonstrate the achieved performance improvement due to the adaptive waveform design.

  15. A supply function model for representing the strategic bidding of the producers in constrained electricity markets

    International Nuclear Information System (INIS)

    Bompard, Ettore; Napoli, Roberto; Lu, Wene; Jiang, Xiuchen

    2010-01-01

    The modeling of the bidding behaviour of the producer is a key-point in the modeling and simulation of the competitive electricity markets. In our paper, the linear supply function model is applied so as to find the Supply Function Equilibrium analytically. It also proposed a new and efficient approach to find SFEs for the network constrained electricity markets by finding the best slope of the supply function with the help of changing the intercept, and the method can be applied on the large systems. The approach proposed is applied to study IEEE-118 bus test systems and the comparison between bidding slope and bidding intercept is presented, as well, with reference to the test system. (author)

  16. Why we shouldn't underestimate the impact of plant functional diversity

    Science.gov (United States)

    Groner, V.; Raddatz, T.; Reick, C. H.; Claussen, M.

    2017-12-01

    We present a series of coupled land-atmosphere simulations with different combinations of plant functional types (PFTs) from mid-Holocene to preindustrial to show how plant functional diversity affects simulated climate-vegetation interaction under changing environmental conditions in subtropical Africa. Scientists nowadays agree that the establishment of the ``green'' Sahara was triggered by external changes in the Earth's orbit and amplified by internal feedback mechanisms. The timing and abruptness of the transition to the ``desert'' state are in turn still under debate. While some previous studies indicated an abrupt collapse of vegetation implying a strong climate-vegetation feedback, others suggested a gradual vegetation decline thereby questioning the existence of a strong climate-vegetation feedback. However, none of these studies explicitly accounted for the role of plant diversity. We show that the introduction or removal of a single PFT can bring about significant impacts on the simulated climate-vegetation system response to changing orbital forcing. While simulations with the standard set of PFTs show a gradual decrease of precipitation and vegetation cover over time, the reduction of plant functional diversity can cause either an abrupt decline of both variables or an even slower response to the external forcing. PFT composition seems to be the decisive factor for the system response to external forcing, and an increase in plant functional diversity does not necessarily increase the stability of the climate-vegetation system. From this we conclude that accounting for plant functional diversity in future studies - not only on palaeo climates - could significantly improve the understanding of climate-vegetation interaction in semi-arid regions, the predictability of the vegetation response to changing climate, and respectively, of the resulting feedback on precipitation.

  17. Dramatic Increases of Soil Microbial Functional Gene Diversity at the Treeline Ecotone of Changbai Mountain.

    Science.gov (United States)

    Shen, Congcong; Shi, Yu; Ni, Yingying; Deng, Ye; Van Nostrand, Joy D; He, Zhili; Zhou, Jizhong; Chu, Haiyan

    2016-01-01

    The elevational and latitudinal diversity patterns of microbial taxa have attracted great attention in the past decade. Recently, the distribution of functional attributes has been in the spotlight. Here, we report a study profiling soil microbial communities along an elevation gradient (500-2200 m) on Changbai Mountain. Using a comprehensive functional gene microarray (GeoChip 5.0), we found that microbial functional gene richness exhibited a dramatic increase at the treeline ecotone, but the bacterial taxonomic and phylogenetic diversity based on 16S rRNA gene sequencing did not exhibit such a similar trend. However, the β-diversity (compositional dissimilarity among sites) pattern for both bacterial taxa and functional genes was similar, showing significant elevational distance-decay patterns which presented increased dissimilarity with elevation. The bacterial taxonomic diversity/structure was strongly influenced by soil pH, while the functional gene diversity/structure was significantly correlated with soil dissolved organic carbon (DOC). This finding highlights that soil DOC may be a good predictor in determining the elevational distribution of microbial functional genes. The finding of significant shifts in functional gene diversity at the treeline ecotone could also provide valuable information for predicting the responses of microbial functions to climate change.

  18. Metagenomic and functional analyses of the consequences of reduction of bacterial diversity on soil functions and bioremediation in diesel-contaminated microcosms.

    Science.gov (United States)

    Jung, Jaejoon; Philippot, Laurent; Park, Woojun

    2016-03-14

    The relationship between microbial biodiversity and soil function is an important issue in ecology, yet most studies have been performed in pristine ecosystems. Here, we assess the role of microbial diversity in ecological function and remediation strategies in diesel-contaminated soils. Soil microbial diversity was manipulated using a removal by dilution approach and microbial functions were determined using both metagenomic analyses and enzymatic assays. A shift from Proteobacteria- to Actinobacteria-dominant communities was observed when species diversity was reduced. Metagenomic analysis showed that a large proportion of functional gene categories were significantly altered by the reduction in biodiversity. The abundance of genes related to the nitrogen cycle was significantly reduced in the low-diversity community, impairing denitrification. In contrast, the efficiency of diesel biodegradation was increased in the low-diversity community and was further enhanced by addition of red clay as a stimulating agent. Our results suggest that the relationship between microbial diversity and ecological function involves trade-offs among ecological processes, and should not be generalized as a positive, neutral, or negative relationship.

  19. Microbial functional diversity plays an important role in the degradation of polyhydroxybutyrate (PHB) in soil.

    Science.gov (United States)

    Dey, Samrat; Tribedi, Prosun

    2018-03-01

    Towards bioremediation of recalcitrant materials like synthetic polymer, soil has been recognized as a traditional site for disposal and subsequent degradation as some microorganisms in soil can degrade the polymer in a non-toxic, cost-effective, and environment friendly way. Microbial functional diversity is a constituent of biodiversity that includes wide range of metabolic activities that can influence numerous aspects of ecosystem functioning like ecosystem stability, nutrient availability, ecosystem dynamics, etc. Thus, in the current study, we assumed that microbial functional diversity could play an important role in polymer degradation in soil. To verify this hypothesis, we isolated soil from five different sites of landfill and examined several microbiological parameters wherein we observed a significant variation in heterotrophic microbial count as well as microbial activities among the soil microcosms tested. Multivariate analysis (principle component analysis) based on the carbon sources utilization pattern revealed that soil microcosms showed different metabolic patterns suggesting the variable distribution of microorganisms among the soil microcosms tested. Since microbial functional diversity depends on both microbial richness and evenness, Shannon diversity index was determined to measure microbial richness and Gini coefficient was determined to measure microbial evenness. The tested soil microcosms exhibited variation in both microbial richness and evenness suggesting the considerable difference in microbial functional diversity among the tested microcosms. We then measured polyhydroxybutyrate (PHB) degradation in soil microcosms after desired period of incubation of PHB in soil wherein we found that soil microcosms having higher functional diversity showed enhanced PHB degradation and soil microcosms having lower functional diversity showed reduced PHB degradation. We also noticed that all the tested soil microcosms showed similar pattern in both

  20. Centrins in unicellular organisms: functional diversity and specialization.

    Science.gov (United States)

    Zhang, Yu; He, Cynthia Y

    2012-07-01

    Centrins (also known as caltractins) are conserved, EF hand-containing proteins ubiquitously found in eukaryotes. Similar to calmodulins, the calcium-binding EF hands in centrins fold into two structurally similar domains separated by an alpha-helical linker region, shaping like a dumbbell. The small size (15-22 kDa) and domain organization of centrins and their functional diversity/specialization make them an ideal system to study protein structure-function relationship. Here, we review the work on centrins with a focus on their structures and functions characterized in unicellular organisms.

  1. Dramatic increases of soil microbial functional gene diversity at the treeline ecotone of Changbai Mountain

    Directory of Open Access Journals (Sweden)

    Congcong Shen

    2016-07-01

    Full Text Available The elevational and latitudinal diversity patterns of microbial taxa have attracted great attention in the past decade. Recently, the distribution of functional attributes has been in the spotlight. Here, we report a study profiling soil microbial communities along an elevation gradient (500 to 2200 m on Changbai Mountain. Using a comprehensive functional gene microarray (GeoChip 5.0, we found that microbial functional gene richness exhibited a dramatic increase at the treeline ecotone, but the bacterial taxonomic and phylogenetic diversity based on 16S rRNA gene sequencing did not exhibit such a similar trend. However, the β-diversity (compositional dissimilarity among sites for both bacterial taxa and functional genes was similar, showing significant elevational distance-decay patterns which presented increased dissimilarity with elevation. The bacterial taxonomic diversity/structure was strongly influenced by soil pH, while the functional gene diversity/structure was significantly correlated with soil dissolved organic carbon (DOC. This finding highlights that soil DOC may be a good predictor in determining the elevational distribution of microbial functional genes. The finding of significant shifts in functional gene diversity at the treeline ecotone could also provide valuable information for predicting the responses of microbial functions to climate change.

  2. Synthesis and biological evaluation of flexible and conformationally constrained LpxC inhibitors

    DEFF Research Database (Denmark)

    Löppenberg, Marius; Müller, Hannes; Pulina, Carla

    2013-01-01

    , conformationally constrained C-glycosidic as well as open chained hydroxamic acids with a defined stereochemistry were prepared. Diversity was introduced by performing C–C coupling reactions like the Sonogashira and Suzuki cross-coupling reactions. The biological evaluation of the synthesized compounds revealed...

  3. Enzyme structure, enzyme function and allozyme diversity in ...

    African Journals Online (AJOL)

    In estimates of population genetic diversity based on allozyme heterozygosity, some enzymes are regularly more variable than others. Evolutionary theory suggests that functionally less important molecules, or parts of molecules, evolve more rapidly than more important ones; the latter enzymes should then theoretically be ...

  4. Butterflies show different functional and species diversity in relationship to vegetation structure and land use

    NARCIS (Netherlands)

    Aguirre-Gutiérrez, J.; WallisDeVries, M.F.; Marshall, L.; van't Zelfde, M.; Villalobos-Arámbula, A.R.; Boekelo, B.; Bartholomeus, H.; Franzén, M.; Biesmeijer, J.C.

    2017-01-01

    Aim: Biodiversity is rapidly disappearing at local and global scales also affecting the functional diversity of ecosystems. We aimed to assess whether functional diversity was correlated with species diversity and whether both were affected by similar land use and vegetation structure drivers.

  5. Functional diversity of fish in estuaries at a global extent

    Directory of Open Access Journals (Sweden)

    Rita P Vasconcelos

    2015-10-01

    Full Text Available Biodiversity is currently viewed as a framework encompassing multiple facets of the variety of life, including taxonomic and functional aspects. Species richness and composition of fish assemblages in estuaries is defined by global to local processes acting on community colonization. The present study further investigates how biodiversity of fish assemblages varies among estuaries globally, by simultaneously analysing taxonomic and functional richness and diversity of assemblages. A comprehensive worldwide database was compiled on the fish assemblage composition and environmental characteristics of estuaries. In addition, functional attributes of the fish species were characterized such as body size, habitat use and trophic ecology. We investigated the relationship between taxonomic and functional aspects of biodiversity, i.e. the match or mismatch between the two. We also explored how functional diversity of fish assemblages varied among estuaries globally and related to environmental features of estuaries, i.e. historic and contemporary, global and local constraints. The results are explored in the context of ecosystem functioning and resilience, and outcomes relevant to assist in prioritizing conservation efforts are highlighted.

  6. Diversity and functions of intestinal mononuclear phagocytes

    DEFF Research Database (Denmark)

    Joeris, Thorsten; Müller-Luda, K; Agace, William Winston

    2017-01-01

    The intestinal lamina propria (LP) contains a diverse array of mononuclear phagocyte (MNP) subsets, including conventional dendritic cells (cDC), monocytes and tissue-resident macrophages (mφ) that collectively play an essential role in mucosal homeostasis, infection and inflammation. In the curr......The intestinal lamina propria (LP) contains a diverse array of mononuclear phagocyte (MNP) subsets, including conventional dendritic cells (cDC), monocytes and tissue-resident macrophages (mφ) that collectively play an essential role in mucosal homeostasis, infection and inflammation....... In the current review we discuss the function of intestinal cDC and monocyte-derived MNP, highlighting how these subsets play several non-redundant roles in the regulation of intestinal immune responses. While much remains to be learnt, recent findings also underline how the various populations of MNP adapt...

  7. Functional diversity of soil invertebrates: a potential tool to explain N2O emission?

    Science.gov (United States)

    Lubbers, Ingrid; De Deyn, Gerlinde; Drake, Harold; Hunger, Sindy; Oppermann, Timo; van Groenigen, Jan Willem

    2017-04-01

    Soil biota play a crucial role in the mineralization of nutrients from organic material. However, they can thereby increase emissions of the potent greenhouse gas nitrous oxide (N2O). Our current lack of understanding of the factors controlling N2O production and emission is impeding the development of effective mitigation strategies. It is the challenge to control N2O emissions from production systems without reducing crop yield, and diversity of soil fauna may play a key role. A high functional diversity of soil invertebrates is known to stimulate nitrogen mineralization and thereby plant growth, however, it is unknown whether a high functional diversity of soil invertebrates can concurrently diminish N2O emissions. We hypothesized that increased functional diversity of soil invertebrates reduces faunal-induced N2O emissions by facilitating more complete denitrification through (i) stimulating the activity of denitrifying microbes, and (ii) affecting the distribution of micro and macro pores, creating more anaerobic reaction sites. Using state-of-the-art X-ray tomography and next-generation sequencing, we studied effects of functional diversity on soil structural properties and the diversity of the microbial community (16S rRNA genes and 16S rRNA), and linked these to soil N2O emissions. In a 120-day study we found that the functional composition of the soil invertebrate community determined N2O emissions: earthworm activity was key to faunal-induced N2O emissions (a 32-fold increase after 120 days, Pstructural properties (mean pore size, pore size distribution) were found to be radically altered by earthworm activity. We conclude that the presence of a few functional groups (ecosystem engineers) is more important than overall increased functional diversity in explaining faunal-affected N2O emissions.

  8. Functional diversity and redundancy across fish gut, sediment and water bacterial communities.

    Science.gov (United States)

    Escalas, Arthur; Troussellier, Marc; Yuan, Tong; Bouvier, Thierry; Bouvier, Corinne; Mouchet, Maud A; Flores Hernandez, Domingo; Ramos Miranda, Julia; Zhou, Jizhong; Mouillot, David

    2017-08-01

    This article explores the functional diversity and redundancy in a bacterial metacommunity constituted of three habitats (sediment, water column and fish gut) in a coastal lagoon under anthropogenic pressure. Comprehensive functional gene arrays covering a wide range of ecological processes and stress resistance genes to estimate the functional potential of bacterial communities were used. Then, diversity partitioning was used to characterize functional diversity and redundancy within (α), between (β) and across (γ) habitats. It was showed that all local communities exhibit a highly diversified potential for the realization of key ecological processes and resistance to various environmental conditions, supporting the growing evidence that macro-organisms microbiomes harbour a high functional potential and are integral components of functional gene dynamics in aquatic bacterial metacommunities. Several levels of functional redundancy at different scales of the bacterial metacommunity were observed (within local communities, within habitats and at the metacommunity level). The results suggested a high potential for the realization of spatial ecological insurance within this ecosystem, that is, the functional compensation among microorganisms for the realization and maintenance of key ecological processes, within and across habitats. Finally, the role of macro-organisms as dispersal vectors of microbes and their potential influence on marine metacommunity dynamics were discussed. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Biodiversity patterns along ecological gradients: unifying β-diversity indices.

    Science.gov (United States)

    Szava-Kovats, Robert C; Pärtel, Meelis

    2014-01-01

    Ecologists have developed an abundance of conceptions and mathematical expressions to define β-diversity, the link between local (α) and regional-scale (γ) richness, in order to characterize patterns of biodiversity along ecological (i.e., spatial and environmental) gradients. These patterns are often realized by regression of β-diversity indices against one or more ecological gradients. This practice, however, is subject to two shortcomings that can undermine the validity of the biodiversity patterns. First, many β-diversity indices are constrained to range between fixed lower and upper limits. As such, regression analysis of β-diversity indices against ecological gradients can result in regression curves that extend beyond these mathematical constraints, thus creating an interpretational dilemma. Second, despite being a function of the same measured α- and γ-diversity, the resultant biodiversity pattern depends on the choice of β-diversity index. We propose a simple logistic transformation that rids beta-diversity indices of their mathematical constraints, thus eliminating the possibility of an uninterpretable regression curve. Moreover, this transformation results in identical biodiversity patterns for three commonly used classical beta-diversity indices. As a result, this transformation eliminates the difficulties of both shortcomings, while allowing the researcher to use whichever beta-diversity index deemed most appropriate. We believe this method can help unify the study of biodiversity patterns along ecological gradients.

  10. Active constrained layer damping of geometrically nonlinear vibrations of functionally graded plates using piezoelectric fiber-reinforced composites

    International Nuclear Information System (INIS)

    Panda, Satyajit; Ray, M C

    2008-01-01

    In this paper, a geometrically nonlinear dynamic analysis has been presented for functionally graded (FG) plates integrated with a patch of active constrained layer damping (ACLD) treatment and subjected to a temperature field. The constraining layer of the ACLD treatment is considered to be made of the piezoelectric fiber-reinforced composite (PFRC) material. The temperature field is assumed to be spatially uniform over the substrate plate surfaces and varied through the thickness of the host FG plates. The temperature-dependent material properties of the FG substrate plates are assumed to be graded in the thickness direction of the plates according to a power-law distribution while the Poisson's ratio is assumed to be a constant over the domain of the plate. The constrained viscoelastic layer of the ACLD treatment is modeled using the Golla–Hughes–McTavish (GHM) method. Based on the first-order shear deformation theory, a three-dimensional finite element model has been developed to model the open-loop and closed-loop nonlinear dynamics of the overall FG substrate plates under the thermal environment. The analysis suggests the potential use of the ACLD treatment with its constraining layer made of the PFRC material for active control of geometrically nonlinear vibrations of FG plates in the absence or the presence of the temperature gradient across the thickness of the plates. It is found that the ACLD treatment is more effective in controlling the geometrically nonlinear vibrations of FG plates than in controlling their linear vibrations. The analysis also reveals that the ACLD patch is more effective for controlling the nonlinear vibrations of FG plates when it is attached to the softest surface of the FG plates than when it is bonded to the stiffest surface of the plates. The effect of piezoelectric fiber orientation in the active constraining PFRC layer on the damping characteristics of the overall FG plates is also discussed

  11. Active constrained layer damping of geometrically nonlinear vibrations of functionally graded plates using piezoelectric fiber-reinforced composites

    Science.gov (United States)

    Panda, Satyajit; Ray, M. C.

    2008-04-01

    In this paper, a geometrically nonlinear dynamic analysis has been presented for functionally graded (FG) plates integrated with a patch of active constrained layer damping (ACLD) treatment and subjected to a temperature field. The constraining layer of the ACLD treatment is considered to be made of the piezoelectric fiber-reinforced composite (PFRC) material. The temperature field is assumed to be spatially uniform over the substrate plate surfaces and varied through the thickness of the host FG plates. The temperature-dependent material properties of the FG substrate plates are assumed to be graded in the thickness direction of the plates according to a power-law distribution while the Poisson's ratio is assumed to be a constant over the domain of the plate. The constrained viscoelastic layer of the ACLD treatment is modeled using the Golla-Hughes-McTavish (GHM) method. Based on the first-order shear deformation theory, a three-dimensional finite element model has been developed to model the open-loop and closed-loop nonlinear dynamics of the overall FG substrate plates under the thermal environment. The analysis suggests the potential use of the ACLD treatment with its constraining layer made of the PFRC material for active control of geometrically nonlinear vibrations of FG plates in the absence or the presence of the temperature gradient across the thickness of the plates. It is found that the ACLD treatment is more effective in controlling the geometrically nonlinear vibrations of FG plates than in controlling their linear vibrations. The analysis also reveals that the ACLD patch is more effective for controlling the nonlinear vibrations of FG plates when it is attached to the softest surface of the FG plates than when it is bonded to the stiffest surface of the plates. The effect of piezoelectric fiber orientation in the active constraining PFRC layer on the damping characteristics of the overall FG plates is also discussed.

  12. Food-derived carbohydrates--structural complexity and functional diversity.

    Science.gov (United States)

    Tharanathan, Rudrapatnam N

    2002-01-01

    Carbohydrates are biomolecules abundantly available in nature. They are found in bewildering types ranging from simple sugars through oligo- and polysaccharides to glycoconjugates and saccharide complexes, each exhibiting characteristic bio-physiological and/or nutritional functions both in in vivo and in vitro systems. For example, their presence or inclusion in food dictates the texture (body) and gives desirable customer appeal (satisfaction), or their inclusion in the diet offers beneficial effects of great therapeutic value. Thus, carbohydrates are integrally involved in a multitude of biological functions such as regulation of the immune system, cellular signaling (communication), cell malignancy, antiinfection responses, host-pathogen interactions, etc. If starch is considered the major energy storage carbohydrate, the gums/mucilages and other non-starch carbohydrates are of structural significance. The most investigated properties of starch are its gelatinization and melting behavior, especially during food processing. This has led to the development of the food polymer science approach, which has enabled a new interpretive and experimental frame work for the study of the plasticizing influence of simple molecules such as water, sugars, etc. on food systems that are kinetically constrained. Starch, although considered fully digestible, has been challenged, and starch is found to be partly indigestible in the GI tract of humans. This fraction of starch-resisting digestion in vivo is known as resistant starch (RS). The latter, due to its excellent fermentative capacity in the gut, especially yielding butyric acid is considered a new tool for the creation of fiber-rich foods, which are of nutraceutical importance. By a careful control of the processing conditions the content of RS, a man-made fiber, can be increased to as high as 30%. Arabinoxylans are the major endospermic cell wall polysaccharides of cereals. In wheat they are found complexed with ferulic

  13. Taxonomic and functional trait diversity of wild bees in different urban settings.

    Science.gov (United States)

    Normandin, Étienne; Vereecken, Nicolas J; Buddle, Christopher M; Fournier, Valérie

    2017-01-01

    Urbanization is one of the major anthropogenic processes contributing to local habitat loss and extirpation of numerous species, including wild bees, the most widespread pollinators. Little is known about the mechanisms through which urbanization impacts wild bee communities, or the types of urban green spaces that best promote their conservation in cities. The main objective of this study was to describe and compare wild bee community diversity, structure, and dynamics in two Canadian cities, Montreal and Quebec City. A second objective was to compare functional trait diversity among three habitat types (cemeteries, community gardens and urban parks) within each city. Bees were collected using pan traps and netting on the same 46 sites, multiple times, over the active season in 2012 and 2013. A total of 32,237 specimens were identified, representing 200 species and 6 families, including two new continental records, Hylaeus communis Nylander (1852) and Anthidium florentinum (Fabricius, 1775). Despite high community evenness, we found significant abundance of diverse species, including exotic ones. Spatio-temporal analysis showed higher stability in the most urbanized city (Montreal) but low nestedness of species assemblages among the three urban habitats in both cities. Our study demonstrates that cities are home to diverse communities of wild bees, but in turn affect bee community structure and dynamics. We also found that community gardens harbour high levels of functional trait diversity. Urban agriculture therefore contributes substantially to the provision of functionally diverse bee communities and possibly to urban pollination services.

  14. Distribution of mammal functional diversity in the Neotropical realm: Influence of land-use and extinction risk.

    Directory of Open Access Journals (Sweden)

    José F González-Maya

    Full Text Available Functional diversity represents a measure of diversity that incorporates the role of species in an ecosystem, and therefore its dynamics and resilience. Assessing its drivers and spatial variation represents an important step forward in our understanding of functional ecosystem dynamics and it is also necessary to achieve a comprehensive conservation planning. In this paper, we assessed mammal functional diversity for the 218 ecoregions within the Neotropical realm. We evaluated the overall influence and spatial variation of species richness, ecoregion extent, intervention and species at risk on functional diversity. Using ordinary least squares and geographically weighted regression modeling approaches, we found that intervened areas and threatened and non-threatened species are the most influential overall drivers of functional diversity. However, we also detected that these variables do not operate equally across scales. Our local analyses indicated both that the variation explained and local coefficients vary spatially depending on the ecoregion and major habitat type. As estimates of functional diversity are based on current distribution of all mammals, negative influence of intervened areas and positive influence of non-threatened species may reflect a potential degradation of functional processes for some ecosystems. Most generally, the negative influence of intervention together with the influence of threatened species indicates that some areas are currently more susceptible to functional diversity loss. Our results help to pinpoint key areas requiring urgent conservation action to reduce natural land-cover loss and areas where threatened species play influential roles on ecosystem functioning.

  15. [Species, functional, structural diversity of typical plant communities and their responses to environmental factors in Miao Archipelago, China.

    Science.gov (United States)

    Zheng, Li Ting; Su, Tian; Liu, Xiang Yu; Yin, Fang; Guo, Chao; Tuo, Bin; Yan, En Rong

    2018-02-01

    Island vegetation plays an important role in biodiversity research across the world. The study of plant diversity in island is helpful for understanding the mechanism of plant diversity maintenance under land-sea interaction. Here, four typical plant communities (Quercus acutissima community, Robinia pseudoacacia community, Pinus thunbergii community and Vitex negundo community) in Miao Archipelago were selected to examine the species, functional and structural diversities and their responses to environmental factors at the community scale by using species diversity indices, functional diversity indices, as well as structural diversity indices. The results showed that the species richness and Rao index of P. thunbergii community was higher than that of Q. acutissima community and R. pseudoacacia community, but the structural diversity was lower. The species diversity and structural diversity of V. Negundo shrub were lower than that of forest community, but the functional diversity was higher than some forest communities. The relationship between the diversity of typical plant communities in island area illustrated a significant positive correlation between species richness with Rao index and tree height diversity, however the correlation with functional evenness was significantly negative. The structural diversity and functional evenness were determined by slope with negative and positive relationships, respectively. Functional heterogeneity, functional divergence and species diversity were affected largely by soil physical and chemical properties, displaying the positive relationship with soil bulk density and soil total carbon content, and a negative relationship with soil water content. In conclusion, diversity pattern of plant community in Miao Archipelago reflected not only the characteristics in mainland vegetation but also the special nature of the sea island.

  16. Management with willow short rotation coppice increase the functional gene diversity and functional activity of a heavy metal polluted soil.

    Science.gov (United States)

    Xue, K; van Nostrand, J D; Vangronsveld, J; Witters, N; Janssen, J O; Kumpiene, J; Siebielec, G; Galazka, R; Giagnoni, L; Arenella, M; Zhou, J-Z; Renella, G

    2015-11-01

    We studied the microbial functional diversity, biochemical activity, heavy metals (HM) availability and soil toxicity of Cd, Pb and Zn contaminated soils, kept under grassland or short rotation coppice (SRC) to attenuate the risks associated with HM contamination and restore the soil ecological functions. Soil microbial functional diversity was analyzed by the GeoChip, a functional gene microarray containing probes for genes involved in nutrient cycling, metal resistance and stress response. Soil under SRC showed a higher abundance of microbial genes involved in C, N, P and S cycles and resistance to various HM, higher microbial biomass, respiration and enzyme activity rates, and lower HM availability than the grassland soil. The linkages between functional genes of soil microbial communities and soil chemical properties, HM availability and biochemical activity were also investigated. Soil toxicity and N, P and Pb availability were important factors in shaping the microbial functional diversity, as determined by CCA. We concluded that in HM contaminated soils the microbial functional diversity was positively influenced by SRC management through the reduction of HM availability and soil toxicity increase of nutrient cycling. The presented results can be important in predicting the long term environmental sustainability of plant-based soil remediation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Plant litter functional diversity effects on litter mass loss depend on the macro-detritivore community.

    Science.gov (United States)

    Patoine, Guillaume; Thakur, Madhav P; Friese, Julia; Nock, Charles; Hönig, Lydia; Haase, Josephine; Scherer-Lorenzen, Michael; Eisenhauer, Nico

    2017-11-01

    A better understanding of the mechanisms driving litter diversity effects on decomposition is needed to predict how biodiversity losses affect this crucial ecosystem process. In a microcosm study, we investigated the effects of litter functional diversity and two major groups of soil macro-detritivores on the mass loss of tree leaf litter mixtures. Furthermore, we tested the effects of litter trait community means and dissimilarity on litter mass loss for seven traits relevant to decomposition. We expected macro-detritivore effects on litter mass loss to be most pronounced in litter mixtures of high functional diversity. We used 24 leaf mixtures differing in functional diversity, which were composed of litter from four species from a pool of 16 common European tree species. Earthworms, isopods, or a combination of both were added to each litter combination for two months. Litter mass loss was significantly higher in the presence of earthworms than in that of isopods, whereas no synergistic effects of macro-detritivore mixtures were found. The effect of functional diversity of the litter material was highest in the presence of both macro-detritivore groups, supporting the notion that litter diversity effects are most pronounced in the presence of different detritivore species. Species-specific litter mass loss was explained by nutrient content, secondary compound concentration, and structural components. Moreover, dissimilarity in N concentrations increased litter mass loss, probably because detritivores having access to nutritionally diverse food sources. Furthermore, strong competition between the two macro-detritivores for soil surface litter resulted in a decrease of survival of both macro-detritivores. These results show that the effects of litter functional diversity on decomposition are contingent upon the macro-detritivore community and composition. We conclude that the temporal dynamics of litter trait diversity effects and their interaction with

  18. Composite Differential Evolution with Modified Oracle Penalty Method for Constrained Optimization Problems

    Directory of Open Access Journals (Sweden)

    Minggang Dong

    2014-01-01

    Full Text Available Motivated by recent advancements in differential evolution and constraints handling methods, this paper presents a novel modified oracle penalty function-based composite differential evolution (MOCoDE for constrained optimization problems (COPs. More specifically, the original oracle penalty function approach is modified so as to satisfy the optimization criterion of COPs; then the modified oracle penalty function is incorporated in composite DE. Furthermore, in order to solve more complex COPs with discrete, integer, or binary variables, a discrete variable handling technique is introduced into MOCoDE to solve complex COPs with mix variables. This method is assessed on eleven constrained optimization benchmark functions and seven well-studied engineering problems in real life. Experimental results demonstrate that MOCoDE achieves competitive performance with respect to some other state-of-the-art approaches in constrained optimization evolutionary algorithms. Moreover, the strengths of the proposed method include few parameters and its ease of implementation, rendering it applicable to real life. Therefore, MOCoDE can be an efficient alternative to solving constrained optimization problems.

  19. Morphological and functional diversity of primary producers group in savannas

    International Nuclear Information System (INIS)

    Medina, E.

    1996-01-01

    The meaning of biological diversity for the operation and stability of natural ecosystems is matter of great theoretical and practical interest. The appearance and permanency of species in a given atmosphere indicates its capacity to compete with other species with similar habit and requirements, and to accumulate the resources that allow its reproduction. On the other hand, the coexistence of similar species in the same ecosystem allows to wonder if ever biological redundancy exists, that is to say, if several species coexist with the same function inside the ecosystem, so that the disappearance of one of them would not have biological significant consequences. A strategy to simplify the analysis of relationships between biodiversity and ecosystems operation is by grouping species with similar function, called functional groups. In this work the the primary producers functional group is analyzed, essentially superiors plants, in a savannas ecosystems. The analysis establishes that the gives the primary producers group is heterogeneous and complex, so much morphological as functionally: 1) the structural complexity and diversity forms of life in an savannas ecosystem are associated with the stratified exploitation of resources over (light) and under the floor (nourishment and water). Changes in diversity that affect the system structure will probably also affect its operations. 2 )Very similar morphological species can differ physiologically up to constitute production units with contrasting nutritional requirements. The echo-physiologic analysis of this differentiation can explain the habitat preferences that are naturally observed. 3) The long-time permanency of rare species, of low frequency, show the inability of dominant species to capture all the available resources. 4) The primary producers and the floor microorganisms have strong interactions. Changes in the community composition can generate significant changes in other community. These biotic interactions

  20. Specialized functional diversity and interactions of the Na,K-ATPase

    Directory of Open Access Journals (Sweden)

    Igor I. Krivoi

    2016-05-01

    Full Text Available Na,K-ATPase is a protein ubiquitously expressed in the plasma membrane of all animal cells and vitally essential for their functions. A specialized functional diversity of the Na,K-ATPase isozymes is provided by molecular heterogeneity, distinct subcellular localizations and functional interactions with molecular environment. Studies over the last decades clearly demonstrated complex and isoform-specific reciprocal functional interactions between the Na,K-ATPase and neighboring proteins and lipids. These interactions are enabled by a spatially restricted ion homeostasis, direct protein-protein/lipid interactions and protein kinase signaling pathways. In addition to its ‘classical’ function in ion translocation, the Na,K-ATPase is now considered as one of the most important signaling molecules in neuronal, epithelial, skeletal, cardiac and vascular tissues. Accordingly, the Na,K-ATPase forms specialized sub-cellular multimolecular microdomains which act as receptors to circulating endogenous cardiotonic steroids triggering a number of signaling pathways. Changes in these endogenous cardiotonic steroid levels and initiated signaling responses have significant adaptive values for tissues and whole organisms under numerous physiological and pathophysiological conditions. This review discusses recent progress in the studies of functional interactions between the Na,K-ATPase and molecular microenvironment, the Na,K-ATPase-dependent signaling pathways and their significance for diversity of cell function.

  1. Links between plant litter chemistry, species diversity, and below-ground ecosystem function.

    Science.gov (United States)

    Meier, Courtney L; Bowman, William D

    2008-12-16

    Decomposition is a critical source of plant nutrients, and drives the largest flux of terrestrial C to the atmosphere. Decomposing soil organic matter typically contains litter from multiple plant species, yet we lack a mechanistic understanding of how species diversity influences decomposition processes. Here, we show that soil C and N cycling during decomposition are controlled by the composition and diversity of chemical compounds within plant litter mixtures, rather than by simple metrics of plant species diversity. We amended native soils with litter mixtures containing up to 4 alpine plant species, and we used 9 litter chemical traits to evaluate the chemical composition (i.e., the identity and quantity of compounds) and chemical diversity of the litter mixtures. The chemical composition of the litter mixtures was the strongest predictor of soil respiration, net N mineralization, and microbial biomass N. Soil respiration and net N mineralization rates were also significantly correlated with the chemical diversity of the litter mixtures. In contrast, soil C and N cycling rates were poorly correlated with plant species richness, and there was no relationship between species richness and the chemical diversity of the litter mixtures. These results indicate that the composition and diversity of chemical compounds in litter are potentially important functional traits affecting decomposition, and simple metrics like plant species richness may fail to capture variation in these traits. Litter chemical traits therefore provide a mechanistic link between organisms, species diversity, and key components of below-ground ecosystem function.

  2. Taxonomic and functional trait diversity of wild bees in different urban settings

    Directory of Open Access Journals (Sweden)

    Étienne Normandin

    2017-03-01

    Full Text Available Urbanization is one of the major anthropogenic processes contributing to local habitat loss and extirpation of numerous species, including wild bees, the most widespread pollinators. Little is known about the mechanisms through which urbanization impacts wild bee communities, or the types of urban green spaces that best promote their conservation in cities. The main objective of this study was to describe and compare wild bee community diversity, structure, and dynamics in two Canadian cities, Montreal and Quebec City. A second objective was to compare functional trait diversity among three habitat types (cemeteries, community gardens and urban parks within each city. Bees were collected using pan traps and netting on the same 46 sites, multiple times, over the active season in 2012 and 2013. A total of 32,237 specimens were identified, representing 200 species and 6 families, including two new continental records, Hylaeus communis Nylander (1852 and Anthidium florentinum (Fabricius, 1775. Despite high community evenness, we found significant abundance of diverse species, including exotic ones. Spatio-temporal analysis showed higher stability in the most urbanized city (Montreal but low nestedness of species assemblages among the three urban habitats in both cities. Our study demonstrates that cities are home to diverse communities of wild bees, but in turn affect bee community structure and dynamics. We also found that community gardens harbour high levels of functional trait diversity. Urban agriculture therefore contributes substantially to the provision of functionally diverse bee communities and possibly to urban pollination services.

  3. Functional diversity of macrobenthic assemblages decreases in response to sewage discharges

    NARCIS (Netherlands)

    Gusmao, Joao B.; Brauko, Kalina M.; Eriksson, Britas K.; Lana, Paulo C.

    We analyzed the effects of sewage discharge on a subtropical estuary by comparing the functional diversity of intertidal macroinvertebrate assemblages in contaminated with non-contaminated reference areas. Functional structure was assessed using biological traits analysis (BTA) and four multivariate

  4. Partitioning of functional and taxonomic diversity in surface-associated microbial communities.

    Science.gov (United States)

    Roth-Schulze, Alexandra J; Zozaya-Valdés, Enrique; Steinberg, Peter D; Thomas, Torsten

    2016-12-01

    Surfaces, including those submerged in the marine environment, are subjected to constant interactions and colonisation by surrounding microorganisms. The principles that determine the assembly of those epibiotic communities are however poorly understood. In this study, we employed a hierarchical design to assess the functionality and diversity of microbial communities on different types of host surfaces (e.g. macroalgae, seagrasses). We found that taxonomic diversity was unique to each type of host, but that the majority of functions (> 95%) could be found in any given surface community, suggesting a high degree of functional redundancy. However, some community functions were enriched on certain surfaces and were related to host-specific properties (e.g. the degradation of specific polysaccharides). Together these observations support a model, whereby communities on surfaces are assembled from guilds of microorganisms with a functionality that is partitioned into general properties for a surface-associated life-style, but also specific features that mediate host-specificity. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Inter-assemblage facilitation: the functional diversity of cavity-producing beetles drives the size diversity of cavity-nesting bees.

    Science.gov (United States)

    Sydenham, Markus A K; Häusler, Lise D; Moe, Stein R; Eldegard, Katrine

    2016-01-01

    Inter-specific interactions are important drivers and maintainers of biodiversity. Compared to trophic and competitive interactions, the role of non-trophic facilitation among species has received less attention. Cavity-nesting bees nest in old beetle borings in dead wood, with restricted diameters corresponding to the body size of the bee species. The aim of this study was to test the hypothesis that the functional diversity of cavity-producing wood boring beetles - in terms of cavity diameters - drives the size diversity of cavity-nesting bees. The invertebrate communities were sampled in 30 sites, located in forested landscapes along an elevational gradient. We regressed the species richness and abundance of cavity nesting bees against the species richness and abundance of wood boring beetles, non-wood boring beetles and elevation. The proportion of cavity nesting bees in bee species assemblage was regressed against the species richness and abundance of wood boring beetles. We also tested the relationships between the size diversity of cavity nesting bees and wood boring beetles. The species richness and abundance of cavity nesting bees increased with the species richness and abundance of wood boring beetles. No such relationship was found for non-wood boring beetles. The abundance of wood boring beetles was also related to an increased proportion of cavity nesting bee individuals. Moreover, the size diversity of cavity-nesting bees increased with the functional diversity of wood boring beetles. Specifically, the mean and dispersion of bee body sizes increased with the functional dispersion of large wood boring beetles. The positive relationships between cavity producing bees and cavity nesting bees suggest that non-trophic facilitative interactions between species assemblages play important roles in organizing bee species assemblages. Considering a community-wide approach may therefore be required if we are to successfully understand and conserve wild bee

  6. Diverse Supramolecular Nanofiber Networks Assembled by Functional Low-Complexity Domains.

    Science.gov (United States)

    An, Bolin; Wang, Xinyu; Cui, Mengkui; Gui, Xinrui; Mao, Xiuhai; Liu, Yan; Li, Ke; Chu, Cenfeng; Pu, Jiahua; Ren, Susu; Wang, Yanyi; Zhong, Guisheng; Lu, Timothy K; Liu, Cong; Zhong, Chao

    2017-07-25

    Self-assembling supramolecular nanofibers, common in the natural world, are of fundamental interest and technical importance to both nanotechnology and materials science. Despite important advances, synthetic nanofibers still lack the structural and functional diversity of biological molecules, and the controlled assembly of one type of molecule into a variety of fibrous structures with wide-ranging functional attributes remains challenging. Here, we harness the low-complexity (LC) sequence domain of fused in sarcoma (FUS) protein, an essential cellular nuclear protein with slow kinetics of amyloid fiber assembly, to construct random copolymer-like, multiblock, and self-sorted supramolecular fibrous networks with distinct structural features and fluorescent functionalities. We demonstrate the utilities of these networks in the templated, spatially controlled assembly of ligand-decorated gold nanoparticles, quantum dots, nanorods, DNA origami, and hybrid structures. Owing to the distinguishable nanoarchitectures of these nanofibers, this assembly is structure-dependent. By coupling a modular genetic strategy with kinetically controlled complex supramolecular self-assembly, we demonstrate that a single type of protein molecule can be used to engineer diverse one-dimensional supramolecular nanostructures with distinct functionalities.

  7. Functional Diversity of Fungal Communities in Soil Contaminated with Diesel Oil

    Directory of Open Access Journals (Sweden)

    Agata Borowik

    2017-09-01

    Full Text Available The widespread use and consumption of crude oil draws the public’s attention to the fate of petroleum hydrocarbons in the environment, as they can permeate the soil environment in an uncontrollable manner. Contamination of soils with petroleum products, including diesel oil (DO, can cause changes in the microbiological soil properties. The effect of diesel oil on the functional diversity of fungi was tested in a model experiment during 270 days. Fungi were isolated from soil and identified. The functional diversity of fungal communities was also determined. Fungi were identified with the MALDI-TOF method, while the functional diversity was determined using FF-plates made by Biolog®, with 95 carbon sources. Moreover, the diesel oil degradation dynamics was assessed. The research showed that soil contaminated with diesel oil is characterized by a higher activity of oxireductases and a higher number of fungi than soil not exposed to the pressure of this product. The DO pollution has an adverse effect on the diversity of fungal community. This is proved by significantly lower values of the Average Well-Color Development, substrates Richness (R and Shannon–Weaver (H indices at day 270 after contamination. The consequences of DO affecting soil not submitted to remediation are persistent. After 270 days, only 64% of four-ringed, 28% of five-ringed, 21% of 2–3-ringed and 16% of six-ringed PAHs underwent degradation. The lasting effect of DO on communities of fungi led to a decrease in their functional diversity. The assessment of the response of fungi to DO pollution made on the basis of the development of colonies on Petri dishes [Colony Development (CD and Eco-physiological Diversity (EP indices] is consistent with the analysis based on the FF MicroPlate system by Biolog®. Thus, a combination of the FF MicroPlate system by Biolog® with the simultaneous calculation of CD and EP indices alongside the concurrent determination of the content of

  8. Functional diversity of benthic ciliate communities in response to environmental gradients in a wetland of Yangtze Estuary, China.

    Science.gov (United States)

    Xu, Yuan; Fan, Xinpeng; Warren, Alan; Zhang, Liquan; Xu, Henglong

    2018-02-01

    Researches on the functional diversity of benthic ecosystems have mainly focused on macrofauna, and studies on functional structure of ciliate communities have been based only on trophic- or size-groups. Current research was carried out on the changing patterns of classical and functional diversity of benthic ciliates in response to environmental gradients at three sites in a wetland in Yangtze Estuary. The results showed that changes of environmental factors (e.g. salinity, sediment grain size and hydrodynamic conditions) in the Yangtze Estuary induce variability in species composition and functional trait distribution. Furthermore, increased species richness and diversity did not lead to significant changes in functional diversity due to functional redundancy. However, salt water intrusion of Yangtze Estuary during the dry season could cause reduced functional diversity of ciliate communities. Current study provides the first insight into the functional diversity of ciliate communities in response to environmental gradients. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Functional diversity of home gardens and their agrobiodiversity conservation benefits in Benin, West Africa.

    Science.gov (United States)

    Gbedomon, Rodrigue Castro; Salako, Valère Kolawolé; Fandohan, Adandé Belarmain; Idohou, Alix Frank Rodrigue; Glèlè Kakaї, Romain; Assogbadjo, Achille Ephrem

    2017-11-25

    Understanding the functional diversity of home gardens and their socio-ecological determinants is essential for mainstreaming these agroforestry practices into agrobiodiversity conservation strategies. This paper analyzed functional diversity of home gardens, identified the socio-ecological drivers of functions assigned to them, and assessed the agrobiodiversity benefits of home gardens functions. Using data on occurring species in home garden (HG) and functions assigned to each species by the gardeners, the study combined clustering and discriminant canonical analyses to explore the functional diversity of 360 home gardens in Benin, West Africa. Next, multinomial logistic models and chi-square tests were used to analyze the effect of socio-demographic characteristics of gardeners (age, gender, and education level), agro-ecological zones (humid, sub-humid, and semi-arid), and management regime (single and multiple managers) on the possession of a functional type of home gardens. Generalized linear models were used to assess the effect of the functions of home gardens and the determinant factor on their potential in conserving agrobiodiversity. Seven functional groups of home gardens, four with specific functions (food, medicinal, or both food and medicinal) and three with multiple functions (more than two main functions), were found. Women owned most of home gardens with primarily food plant production purpose while men owned most of home gardens with primarily medicinal plant production purposes. Finding also showed that multifunctional home gardens had higher plant species diversity. Specifically, crops and crop wild relatives occurred mainly in home gardens with food function while wild plant species were mostly found in home gardens with mainly medicinal function. Home gardening is driven by functions beyond food production. These functions are mostly related to direct and extractive values of home gardens. Functions of home gardens were gendered, with women

  10. Multi-scale functional and taxonomic β-diversity of the macroinvertebrate communities in a Mediterranean coastal lagoon

    Directory of Open Access Journals (Sweden)

    D. CABANA

    2017-03-01

    Full Text Available Benthic macroinvertebrate communities form the basis of the intricate lagoonal food web. Understanding their functional and taxonomic response, from a β-diversity perspective, is essential to disclose underlying patterns with potential applicability in conservation and management actions. Within the central lagoon of Messolonghi we studied the main environmental components structuring the macroinvertebrate community. We analyzed the β-taxonomic and β-functional diversity across the main habitats and seasons, over a year time frame. Our results outline habitat type and vegetation biomass as the major factors structuring the communities. We found environmental variability to have a positive correlation with functional β-diversity, however no correlation was found with taxonomic β-diversity. Across the seasons an asynchronous response of the functional and taxonomic β-diversity was identified. The taxonomic composition displayed significant heterogeneity during the driest period and the functional during the rainy season. Across the habitats the unvegetated presented higher taxonomic homogeneity and functionally heterogeneity, contrary the vegetated habitats present higher taxonomic variability and functional homogeneity. Across the seasons and habitats a pattern of functional redundancy and taxonomic replacement was identified. Besides high functional turnover versus low taxonomic turnover was documented in an anthropogenic organically enriched habitat We conclude that habitats display independent functional and taxonomic seasonal patterns, thus different processes may contribute to their variability. The framework presented here highlights the importance of studying both β-diversity components framed in a multiscale approach to better understand ecological processes and variability patterns. These results are important to understand macroinvertebrate community assembly processes and are valuable for conservation purposes.

  11. Constraining nuclear photon strength functions by the decay properties of photo-excited states

    Science.gov (United States)

    Isaak, J.; Savran, D.; Krtička, M.; Ahmed, M. W.; Beller, J.; Fiori, E.; Glorius, J.; Kelley, J. H.; Löher, B.; Pietralla, N.; Romig, C.; Rusev, G.; Scheck, M.; Schnorrenberger, L.; Silva, J.; Sonnabend, K.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Zweidinger, M.

    2013-12-01

    A new approach for constraining the low-energy part of the electric dipole Photon Strength Function (E1-PSF) is presented. Experiments at the Darmstadt High-Intensity Photon Setup and the High Intensity γ→-Ray Source have been performed to investigate the decay properties of 130Te between 5.50 and 8.15 MeV excitation energy. In particular, the average γ-ray branching ratio to the ground state and the population intensity of low-lying excited states have been studied. A comparison to the statistical model shows that the latter is sensitive to the low-energy behavior of the E1-PSF, while the average ground state branching ratio cannot be described by the statistical model in the energy range between 5.5 and 6.5 MeV.

  12. PDZ-containing proteins: alternative splicing as a source of functional diversity.

    Science.gov (United States)

    Sierralta, Jimena; Mendoza, Carolina

    2004-12-01

    Scaffold proteins allow specific protein complexes to be assembled in particular regions of the cell at which they organize subcellular structures and signal transduction complexes. This characteristic is especially important for neurons, which are highly polarized cells. Among the domains contained by scaffold proteins, the PSD-95, Discs-large, ZO-1 (PDZ) domains are of particular relevance in signal transduction processes and maintenance of neuronal and epithelial polarity. These domains are specialized in the binding of the carboxyl termini of proteins allowing membrane proteins to be localized by the anchoring to the cytoskeleton mediated by PDZ-containing scaffold proteins. In vivo studies carried out in Drosophila have taught that the role of many scaffold proteins is not limited to a single process; thus, in many cases the same genes are expressed in different tissues and participate in apparently very diverse processes. In addition to the differential expression of interactors of scaffold proteins, the expression of variants of these molecular scaffolds as the result of the alternative processing of the genes that encode them is proving to be a very important source of variability and complexity on a main theme. Alternative splicing in the nervous system is well documented, where specific isoforms play roles in neurotransmission, ion channel function, neuronal cell recognition, and are developmentally regulated making it a major mechanism of functional diversity. Here we review the current state of knowledge about the diversity and the known function of PDZ-containing proteins in Drosophila with emphasis in the role played by alternatively processed forms in the diversity of functions attributed to this family of proteins.

  13. GeoChip-based analysis of microbial functional gene diversity in a landfill leachate-contaminated aquifer

    Science.gov (United States)

    Lu, Zhenmei; He, Zhili; Parisi, Victoria A.; Kang, Sanghoon; Deng, Ye; Van Nostrand, Joy D.; Masoner, Jason R.; Cozzarelli, Isabelle M.; Suflita, Joseph M.; Zhou, Jizhong

    2012-01-01

    The functional gene diversity and structure of microbial communities in a shallow landfill leachate-contaminated aquifer were assessed using a comprehensive functional gene array (GeoChip 3.0). Water samples were obtained from eight wells at the same aquifer depth immediately below a municipal landfill or along the predominant downgradient groundwater flowpath. Functional gene richness and diversity immediately below the landfill and the closest well were considerably lower than those in downgradient wells. Mantel tests and canonical correspondence analysis (CCA) suggested that various geochemical parameters had a significant impact on the subsurface microbial community structure. That is, leachate from the unlined landfill impacted the diversity, composition, structure, and functional potential of groundwater microbial communities as a function of groundwater pH, and concentrations of sulfate, ammonia, and dissolved organic carbon (DOC). Historical geochemical records indicate that all sampled wells chronically received leachate, and the increase in microbial diversity as a function of distance from the landfill is consistent with mitigation of the impact of leachate on the groundwater system by natural attenuation mechanisms.

  14. Metagenomic and functional analyses of the consequences of reduction of bacterial diversity on soil functions and bioremediation in diesel-contaminated microcosms

    OpenAIRE

    Jung, Jaejoon; Philippot, Laurent

    2016-01-01

    The relationship between microbial biodiversity and soil function is an important issue in ecology, yet most studies have been performed in pristine ecosystems. Here, we assess the role of microbial diversity in ecological function and remediation strategies in diesel-contaminated soils. Soil microbial diversity was manipulated using a removal by dilution approach and microbial functions were determined using both metagenomic analyses and enzymatic assays. A shift from Proteobacteria- to Acti...

  15. Algorithm for locating the extremum of a multi-dimensional constrained function and its application to the PPPL Hybrid Study

    International Nuclear Information System (INIS)

    Bathke, C.

    1978-03-01

    A description is presented of a general algorithm for locating the extremum of a multi-dimensional constrained function. The algorithm employs a series of techniques dominated by random shrinkage, steepest descent, and adaptive creeping. A discussion follows of the algorithm's application to a ''real world'' problem, namely the optimization of the price of electricity, P/sub eh/, from a hybrid fusion-fission reactor. Upon the basis of comparisons with other optimization schemes of a survey nature, the algorithm is concluded to yield a good approximation to the location of a function's optimum

  16. Effects of land use on taxonomic and functional diversity

    DEFF Research Database (Denmark)

    Hevia, Violeta; Carmona, Carlos P.; Azcárate, Francisco M.

    2016-01-01

    Land-use change is the major driver of biodiversity loss. However, taxonomic diversity (TD) and functional diversity (FD) might respond differently to land-use change, and this response might also vary depending on the biotic group being analysed. In this study, we compare the TD and FD of four......: the sampling unit scale and the site scale. Land-use intensity effects on TD and FD were quite different and highly varied among the four biotic groups, with no single clear pattern emerging that could be considered general for all organisms. Additive partitioning of species diversity revealed clear...... contrasting patterns between TD and FD in the percentage of variability observed at each spatial scale. While most variability in TD was found at the larger scales, irregardless of organism group and land-use type, most variability in FD was found at the smallest scale, indicating that species turnover among...

  17. Diversity and functional properties of bistable pigments.

    Science.gov (United States)

    Tsukamoto, Hisao; Terakita, Akihisa

    2010-11-01

    Rhodopsin and related opsin-based pigments, which are photosensitive membrane proteins, have been extensively studied using a wide variety of techniques, with rhodopsin being the most understood G protein-coupled receptor (GPCR). Animals use various opsin-based pigments for vision and a wide variety of non-visual functions. Many functionally varied pigments are roughly divided into two kinds, based on their photoreaction: bistable and monostable pigments. Bistable pigments are thermally stable before and after photo-activation, but monostable pigments are stable only before activation. Here, we review the diversity of bistable pigments and their molecular characteristics. We also discuss the mechanisms underlying different molecular characteristics of bistable and monostable pigments. In addition, the potential of bistable pigments as a GPCR model is proposed.

  18. Diversity and population structure of Marine Group A bacteria in the Northeast subarctic Pacific Ocean

    OpenAIRE

    Allers, Elke; Wright, Jody J; Konwar, Kishori M; Howes, Charles G; Beneze, Erica; Hallam, Steven J; Sullivan, Matthew B

    2012-01-01

    Marine Group A (MGA) is a candidate phylum of Bacteria that is ubiquitous and abundant in the ocean. Despite being prevalent, the structural and functional properties of MGA populations remain poorly constrained. Here, we quantified MGA diversity and population structure in relation to nutrients and O2 concentrations in the oxygen minimum zone (OMZ) of the Northeast subarctic Pacific Ocean using a combination of catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH) and ...

  19. Self-constrained inversion of potential fields

    Science.gov (United States)

    Paoletti, V.; Ialongo, S.; Florio, G.; Fedi, M.; Cella, F.

    2013-11-01

    We present a potential-field-constrained inversion procedure based on a priori information derived exclusively from the analysis of the gravity and magnetic data (self-constrained inversion). The procedure is designed to be applied to underdetermined problems and involves scenarios where the source distribution can be assumed to be of simple character. To set up effective constraints, we first estimate through the analysis of the gravity or magnetic field some or all of the following source parameters: the source depth-to-the-top, the structural index, the horizontal position of the source body edges and their dip. The second step is incorporating the information related to these constraints in the objective function as depth and spatial weighting functions. We show, through 2-D and 3-D synthetic and real data examples, that potential field-based constraints, for example, structural index, source boundaries and others, are usually enough to obtain substantial improvement in the density and magnetization models.

  20. A Constrained Genetic Algorithm with Adaptively Defined Fitness Function in MRS Quantification

    Science.gov (United States)

    Papakostas, G. A.; Karras, D. A.; Mertzios, B. G.; Graveron-Demilly, D.; van Ormondt, D.

    MRS Signal quantification is a rather involved procedure and has attracted the interest of the medical engineering community, regarding the development of computationally efficient methodologies. Significant contributions based on Computational Intelligence tools, such as Neural Networks (NNs), demonstrated a good performance but not without drawbacks already discussed by the authors. On the other hand preliminary application of Genetic Algorithms (GA) has already been reported in the literature by the authors regarding the peak detection problem encountered in MRS quantification using the Voigt line shape model. This paper investigates a novel constrained genetic algorithm involving a generic and adaptively defined fitness function which extends the simple genetic algorithm methodology in case of noisy signals. The applicability of this new algorithm is scrutinized through experimentation in artificial MRS signals interleaved with noise, regarding its signal fitting capabilities. Although extensive experiments with real world MRS signals are necessary, the herein shown performance illustrates the method's potential to be established as a generic MRS metabolites quantification procedure.

  1. JuPOETs: a constrained multiobjective optimization approach to estimate biochemical model ensembles in the Julia programming language.

    Science.gov (United States)

    Bassen, David M; Vilkhovoy, Michael; Minot, Mason; Butcher, Jonathan T; Varner, Jeffrey D

    2017-01-25

    Ensemble modeling is a promising approach for obtaining robust predictions and coarse grained population behavior in deterministic mathematical models. Ensemble approaches address model uncertainty by using parameter or model families instead of single best-fit parameters or fixed model structures. Parameter ensembles can be selected based upon simulation error, along with other criteria such as diversity or steady-state performance. Simulations using parameter ensembles can estimate confidence intervals on model variables, and robustly constrain model predictions, despite having many poorly constrained parameters. In this software note, we present a multiobjective based technique to estimate parameter or models ensembles, the Pareto Optimal Ensemble Technique in the Julia programming language (JuPOETs). JuPOETs integrates simulated annealing with Pareto optimality to estimate ensembles on or near the optimal tradeoff surface between competing training objectives. We demonstrate JuPOETs on a suite of multiobjective problems, including test functions with parameter bounds and system constraints as well as for the identification of a proof-of-concept biochemical model with four conflicting training objectives. JuPOETs identified optimal or near optimal solutions approximately six-fold faster than a corresponding implementation in Octave for the suite of test functions. For the proof-of-concept biochemical model, JuPOETs produced an ensemble of parameters that gave both the mean of the training data for conflicting data sets, while simultaneously estimating parameter sets that performed well on each of the individual objective functions. JuPOETs is a promising approach for the estimation of parameter and model ensembles using multiobjective optimization. JuPOETs can be adapted to solve many problem types, including mixed binary and continuous variable types, bilevel optimization problems and constrained problems without altering the base algorithm. JuPOETs is open

  2. Conditions for the Solvability of the Linear Programming Formulation for Constrained Discounted Markov Decision Processes

    Energy Technology Data Exchange (ETDEWEB)

    Dufour, F., E-mail: dufour@math.u-bordeaux1.fr [Institut de Mathématiques de Bordeaux, INRIA Bordeaux Sud Ouest, Team: CQFD, and IMB (France); Prieto-Rumeau, T., E-mail: tprieto@ccia.uned.es [UNED, Department of Statistics and Operations Research (Spain)

    2016-08-15

    We consider a discrete-time constrained discounted Markov decision process (MDP) with Borel state and action spaces, compact action sets, and lower semi-continuous cost functions. We introduce a set of hypotheses related to a positive weight function which allow us to consider cost functions that might not be bounded below by a constant, and which imply the solvability of the linear programming formulation of the constrained MDP. In particular, we establish the existence of a constrained optimal stationary policy. Our results are illustrated with an application to a fishery management problem.

  3. Functional diversity of fish in tropical estuaries: A traits-based approach of communities in Pernambuco, Brazil

    Science.gov (United States)

    Silva-Júnior, C. A. B.; Mérigot, B.; Lucena-Frédou, F.; Ferreira, B. P.; Coxey, M. S.; Rezende, S. M.; Frédou, T.

    2017-11-01

    Environmental changes and human activities may have strong impacts on biodiversity and ecosystem functioning. While biodiversity is traditionally based on species richness and composition, there is a growing concern to take into account functional diversity to assess and manage species communities. In spite of their economic importance, functional diversity quantified by a traits-based approach is still poorly documented in tropical estuaries. In this study, the functional diversity of fishes was investigated within four estuaries in Pernambuco state, northeast of Brazil. These areas are subject to different levels of human impact (e.g. mangrove deforestation, shrimp farming, fishing etc.) and environmental conditions. Fishes were collected during 34 scientific surveys. A total of 122 species were identified and 12 functional traits were quantified describing two main functions: food acquisition and locomotion. Fish abundance and functional dissimilarities data were combined into a multivariate analysis, the Double Principal Coordinate Analysis, to identify the functional typology of fish assemblages according to the estuary. Results showed that Itapissuma, the largest estuary with a wider mangrove forest area, differs from the other three estuaries, showing higher mean values per samples of species richness S and quadratic entropy Q. Similarly, it presented a different functional typology (the first two axes of the DPCoA account for 68.7% of total inertia, while those of a traditional PCA based solely on species abundances provided only 17.4%). Conversely, Suape, Sirinhaém, and to a lower extent Rio Formoso, showed more similarity in their diversity. This result was attributed to their predominantly marine influenced hydrological features, and similar levels of species abundances and in morphological traits. Overall, this study, combining diversity indices and a recent multivariate analysis to access species contribution to functional typology, allows to deepen

  4. Functional diversity of fish in estuaries at a global extent

    OpenAIRE

    Rita P Vasconcelos; Sébastien Villéger; François Guilhaumon

    2015-01-01

    Biodiversity is currently viewed as a framework encompassing multiple facets of the variety of life, including taxonomic and functional aspects. Species richness and composition of fish assemblages in estuaries is defined by global to local processes acting on community colonization. The present study further investigates how biodiversity of fish assemblages varies among estuaries globally, by simultaneously analysing taxonomic and functional richness and diversity of assemblages. A comprehen...

  5. Relative roles of local disturbance, current climate and palaeoclimate in determining phylogenetic and functional diversity in Chinese forests

    DEFF Research Database (Denmark)

    Feng, Gang; Mi, Xiangcheng; Bøcher, Peder Klith

    2014-01-01

    their relative roles in determining woody plant phylogenetic and functional diversity in this important hotspot for woody plant diversity. Local disturbance was the best predictor of functional diversity as represented by maximum canopy height (Hmax), probably reflecting the dominant role of competition...... studied, their relative importance for other aspects of diversity, notably phylogenetic and functional diversity is so far little studied. Here, we link data from large Chinese forest plots to data on current and Last Glacial Maximum (LGM) climate as well as local disturbance regimes to study...

  6. The Smoothing Artifact of Spatially Constrained Canonical Correlation Analysis in Functional MRI

    Directory of Open Access Journals (Sweden)

    Dietmar Cordes

    2012-01-01

    Full Text Available A wide range of studies show the capacity of multivariate statistical methods for fMRI to improve mapping of brain activations in a noisy environment. An advanced method uses local canonical correlation analysis (CCA to encompass a group of neighboring voxels instead of looking at the single voxel time course. The value of a suitable test statistic is used as a measure of activation. It is customary to assign the value to the center voxel; however, this is a choice of convenience and without constraints introduces artifacts, especially in regions of strong localized activation. To compensate for these deficiencies, different spatial constraints in CCA have been introduced to enforce dominance of the center voxel. However, even if the dominance condition for the center voxel is satisfied, constrained CCA can still lead to a smoothing artifact, often called the “bleeding artifact of CCA”, in fMRI activation patterns. In this paper a new method is introduced to measure and correct for the smoothing artifact for constrained CCA methods. It is shown that constrained CCA methods corrected for the smoothing artifact lead to more plausible activation patterns in fMRI as shown using data from a motor task and a memory task.

  7. Identifying and Visualizing Functional PAM Diversity across CRISPR-Cas Systems.

    Science.gov (United States)

    Leenay, Ryan T; Maksimchuk, Kenneth R; Slotkowski, Rebecca A; Agrawal, Roma N; Gomaa, Ahmed A; Briner, Alexandra E; Barrangou, Rodolphe; Beisel, Chase L

    2016-04-07

    CRISPR-Cas adaptive immune systems in prokaryotes boast a diversity of protein families and mechanisms of action, where most systems rely on protospacer-adjacent motifs (PAMs) for DNA target recognition. Here, we developed an in vivo, positive, and tunable screen termed PAM-SCANR (PAM screen achieved by NOT-gate repression) to elucidate functional PAMs as well as an interactive visualization scheme termed the PAM wheel to convey individual PAM sequences and their activities. PAM-SCANR and the PAM wheel identified known functional PAMs while revealing complex sequence-activity landscapes for the Bacillus halodurans I-C (Cascade), Escherichia coli I-E (Cascade), Streptococcus thermophilus II-A CRISPR1 (Cas9), and Francisella novicida V-A (Cpf1) systems. The PAM wheel was also readily applicable to existing high-throughput screens and garnered insights into SpyCas9 and SauCas9 PAM diversity. These tools offer powerful means of elucidating and visualizing functional PAMs toward accelerating our ability to understand and exploit the multitude of CRISPR-Cas systems in nature. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. In Search of functionality-diversity relationships in anaerobic mixed culture fermentations

    International Nuclear Information System (INIS)

    Kleerebezem, R.; Temudo, M.; Muyzer Van Loosdrecht, M. C. M.

    2009-01-01

    Based on the work described in this paper we will postulate that in environmental ecosystems with a weak selective pressure no clear relationship exists between the ecosystem functionality and the microbial diversity and microbial composition. In the past years we have been investigating the anaerobic fermentation of glucose, xylose, and glycerol, and mixtures of these substrates in continuously stirred tank reactors (CSTR) inoculated with an activated sludge characterized by a very rich microbial diversity. (Author)

  9. A constrained optimization algorithm for total energy minimization in electronic structure calculations

    International Nuclear Information System (INIS)

    Yang Chao; Meza, Juan C.; Wang Linwang

    2006-01-01

    A new direct constrained optimization algorithm for minimizing the Kohn-Sham (KS) total energy functional is presented in this paper. The key ingredients of this algorithm involve projecting the total energy functional into a sequence of subspaces of small dimensions and seeking the minimizer of total energy functional within each subspace. The minimizer of a subspace energy functional not only provides a search direction along which the KS total energy functional decreases but also gives an optimal 'step-length' to move along this search direction. Numerical examples are provided to demonstrate that this new direct constrained optimization algorithm can be more efficient than the self-consistent field (SCF) iteration

  10. UV radiation and organic matter composition shape bacterial functional diversity in sediments

    Directory of Open Access Journals (Sweden)

    Ellard Roy Hunting

    2013-10-01

    Full Text Available AbstractUV radiation and organic matter (OM composition are known to influence the speciescomposition of bacterioplankton communities. Potential effects of UV radiation onbacterial communities residing in sediments remain completely unexplored to date.However, it has been demonstrated that UV radiation can reach the bottom of shallowwaters and wetlands and alter the OM composition of the sediment, suggesting thatUV radiation may be more important for sediment bacteria than previously anticipated.It is hypothesized here that exposure of shallow OMcontaining sediments to UVradiation induces OMsource dependant shifts in the functional composition ofsediment bacterial communities. This study therefore investigated the combinedinfluence of both UV radiation and OM composition on bacterial functional diversity inlaboratory sediments. Two different organic matter sources, labile and recalcitrantorganic matter (OM, were used and metabolic diversity was measured with BiologGN. Radiation exerted strong negative effects on the metabolic diversity in thetreatments containing recalcitrant OM, more than in treatments containing labile OM.The functional composition of the bacterial community also differed significantlybetween the treatments. Our findings demonstrate that a combined effect of UVradiation and OM composition shapes the functional composition of microbialcommunities developing in sediments, hinting that UV radiation may act as animportant sorting mechanism for bacterial communities and driver for bacterialfunctioning in shallow lakes and wetlands.

  11. β-Diversity of functional groups of woody plants in a tropical dry forest in Yucatan.

    Directory of Open Access Journals (Sweden)

    Jorge Omar López-Martínez

    Full Text Available Two main theories have attempted to explain variation in plant species composition (β-diversity. Niche theory proposes that most of the variation is related to environment (environmental filtering, whereas neutral theory posits that dispersal limitation is the main driver of β-diversity. In this study, we first explored how α- and β-diversity of plant functional groups defined by growth form (trees, shrubs and lianas, which represent different strategies of resource partitioning, and dispersal syndrome (autochory, anemochory and zoochory, which represent differences in dispersal limitation vary with successional age and topographic position in a tropical dry forest. Second, we examined the effects of environmental, spatial, and spatially-structured environmental factors on β-diversity of functional groups; we used the spatial structure of sampling sites as a proxy for dispersal limitation, and elevation, soil properties and forest stand age as indicators of environmental filtering. We recorded 200 species and 22,245 individuals in 276 plots; 120 species were trees, 41 shrubs and 39 lianas. We found that β-diversity was highest for shrubs, intermediate for lianas and lowest for trees, and was slightly higher for zoochorous than for autochorous and anemochorous species. All three dispersal syndromes, trees and shrubs varied in composition among vegetation classes (successional age and topographic position, whilst lianas did not. β-diversity was influenced mostly by proxies of environmental filtering, except for shrubs, for which the influence of dispersal limitation was more important. Stand age and topography significantly influenced α-diversity across functional groups, but showed a low influence on β-diversity -possibly due to the counterbalancing effect of resprouting on plant distribution and composition. Our results show that considering different plant functional groups reveals important differences in both α- and β-diversity

  12. Decoupling phylogenetic and functional diversity to reveal hidden signals in community assembly

    Czech Academy of Sciences Publication Activity Database

    de Bello, Francesco; Šmilauer, P.; Diniz-Filho, J. A. F.; Carmona, C. P.; Lososová, Z.; Herben, Tomáš; Götzenberger, Lars

    2017-01-01

    Roč. 8, č. 10 (2017), s. 1200-1211 ISSN 2041-210X R&D Projects: GA ČR(CZ) GA16-15012S; GA ČR GB14-36079G EU Projects: European Commission(XE) 267243 Institutional support: RVO:67985939 Keywords : community ecology * phylogenetic diversity * functional diversity Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 5.708, year: 2016

  13. Scale-Dependence of Processes Structuring Dung Beetle Metacommunities Using Functional Diversity and Community Deconstruction Approaches

    Science.gov (United States)

    da Silva, Pedro Giovâni; Hernández, Malva Isabel Medina

    2015-01-01

    Community structure is driven by mechanisms linked to environmental, spatial and temporal processes, which have been successfully addressed using metacommunity framework. The relative importance of processes shaping community structure can be identified using several different approaches. Two approaches that are increasingly being used are functional diversity and community deconstruction. Functional diversity is measured using various indices that incorporate distinct community attributes. Community deconstruction is a way to disentangle species responses to ecological processes by grouping species with similar traits. We used these two approaches to determine whether they are improvements over traditional measures (e.g., species composition, abundance, biomass) for identification of the main processes driving dung beetle (Scarabaeinae) community structure in a fragmented mainland-island landscape in southern Brazilian Atlantic Forest. We sampled five sites in each of four large forest areas, two on the mainland and two on the island. Sampling was performed in 2012 and 2013. We collected abundance and biomass data from 100 sampling points distributed over 20 sampling sites. We studied environmental, spatial and temporal effects on dung beetle community across three spatial scales, i.e., between sites, between areas and mainland-island. The γ-diversity based on species abundance was mainly attributed to β-diversity as a consequence of the increase in mean α- and β-diversity between areas. Variation partitioning on abundance, biomass and functional diversity showed scale-dependence of processes structuring dung beetle metacommunities. We identified two major groups of responses among 17 functional groups. In general, environmental filters were important at both local and regional scales. Spatial factors were important at the intermediate scale. Our study supports the notion of scale-dependence of environmental, spatial and temporal processes in the distribution

  14. On Tree-Constrained Matchings and Generalizations

    NARCIS (Netherlands)

    S. Canzar (Stefan); K. Elbassioni; G.W. Klau (Gunnar); J. Mestre

    2011-01-01

    htmlabstractWe consider the following \\textsc{Tree-Constrained Bipartite Matching} problem: Given two rooted trees $T_1=(V_1,E_1)$, $T_2=(V_2,E_2)$ and a weight function $w: V_1\\times V_2 \\mapsto \\mathbb{R}_+$, find a maximum weight matching $\\mathcal{M}$ between nodes of the two trees, such that

  15. Climate-suitable planting as a strategy for maintaining forest productivity and functional diversity.

    Science.gov (United States)

    Duveneck, Matthew J; Scheller, Robert M

    2015-09-01

    Within the time frame of the longevity of tree species, climate change will change faster than the ability of natural tree migration. Migration lags may result in reduced productivity and reduced diversity in forests under current management and climate change. We evaluated the efficacy of planting climate-suitable tree species (CSP), those tree species with current or historic distributions immediately south of a focal landscape, to maintain or increase aboveground biomass productivity, and species and functional diversity. We modeled forest change with the LANDIS-II forest simulation model for 100 years (2000-2100) at a 2-ha cell resolution and five-year time steps within two landscapes in the Great Lakes region (northeastern Minnesota and northern lower Michigan, USA). We compared current climate to low- and high-emission futures. We simulated a low-emission climate future with the Intergovernmental Panel on Climate Change (IPCC) 2007 B1 emission scenario and the Parallel Climate Model Global Circulation Model (GCM). We simulated a high-emission climate future with the IPCC A1FI emission scenario and the Geophysical Fluid Dynamics Laboratory (GFDL) GCM. We compared current forest management practices (business-as-usual) to CSP management. In the CSP scenario, we simulated a target planting of 5.28% and 4.97% of forested area per five-year time step in the Minnesota and Michigan landscapes, respectively. We found that simulated CSP species successfully established in both landscapes under all climate scenarios. The presence of CSP species generally increased simulated aboveground biomass. Species diversity increased due to CSP; however, the effect on functional diversity was variable. Because the planted species were functionally similar to many native species, CSP did not result in a consistent increase nor decrease in functional diversity. These results provide an assessment of the potential efficacy and limitations of CSP management. These results have

  16. Wannier-function-based constrained DFT with nonorthogonality-correcting Pulay forces in application to the reorganization effects in graphene-adsorbed pentacene

    Science.gov (United States)

    Roychoudhury, Subhayan; O'Regan, David D.; Sanvito, Stefano

    2018-05-01

    Pulay terms arise in the Hellmann-Feynman forces in electronic-structure calculations when one employs a basis set made of localized orbitals that move with their host atoms. If the total energy of the system depends on a subspace population defined in terms of the localized orbitals across multiple atoms, then unconventional Pulay terms will emerge due to the variation of the orbital nonorthogonality with ionic translation. Here, we derive the required exact expressions for such terms, which cannot be eliminated by orbital orthonormalization. We have implemented these corrected ionic forces within the linear-scaling density functional theory (DFT) package onetep, and we have used constrained DFT to calculate the reorganization energy of a pentacene molecule adsorbed on a graphene flake. The calculations are performed by including ensemble DFT, corrections for periodic boundary conditions, and empirical Van der Waals interactions. For this system we find that tensorially invariant population analysis yields an adsorbate subspace population that is very close to integer-valued when based upon nonorthogonal Wannier functions, and also but less precisely so when using pseudoatomic functions. Thus, orbitals can provide a very effective population analysis for constrained DFT. Our calculations show that the reorganization energy of the adsorbed pentacene is typically lower than that of pentacene in the gas phase. We attribute this effect to steric hindrance.

  17. Split diversity in constrained conservation prioritization using integer linear programming.

    Science.gov (United States)

    Chernomor, Olga; Minh, Bui Quang; Forest, Félix; Klaere, Steffen; Ingram, Travis; Henzinger, Monika; von Haeseler, Arndt

    2015-01-01

    Phylogenetic diversity (PD) is a measure of biodiversity based on the evolutionary history of species. Here, we discuss several optimization problems related to the use of PD, and the more general measure split diversity (SD), in conservation prioritization.Depending on the conservation goal and the information available about species, one can construct optimization routines that incorporate various conservation constraints. We demonstrate how this information can be used to select sets of species for conservation action. Specifically, we discuss the use of species' geographic distributions, the choice of candidates under economic pressure, and the use of predator-prey interactions between the species in a community to define viability constraints.Despite such optimization problems falling into the area of NP hard problems, it is possible to solve them in a reasonable amount of time using integer programming. We apply integer linear programming to a variety of models for conservation prioritization that incorporate the SD measure.We exemplarily show the results for two data sets: the Cape region of South Africa and a Caribbean coral reef community. Finally, we provide user-friendly software at http://www.cibiv.at/software/pda.

  18. Biogeographical disparity in the functional diversity and redundancy of corals.

    Science.gov (United States)

    McWilliam, Mike; Hoogenboom, Mia O; Baird, Andrew H; Kuo, Chao-Yang; Madin, Joshua S; Hughes, Terry P

    2018-03-20

    Corals are major contributors to a range of key ecosystem functions on tropical reefs, including calcification, photosynthesis, nutrient cycling, and the provision of habitat structure. The abundance of corals is declining at multiple scales, and the species composition of assemblages is responding to escalating human pressures, including anthropogenic global warming. An urgent challenge is to understand the functional consequences of these shifts in abundance and composition in different biogeographical contexts. While global patterns of coral species richness are well known, the biogeography of coral functions in provinces and domains with high and low redundancy is poorly understood. Here, we quantify the functional traits of all currently recognized zooxanthellate coral species ( n = 821) in both the Indo-Pacific and Atlantic domains to examine the relationships between species richness and the diversity and redundancy of functional trait space. We find that trait diversity is remarkably conserved (>75% of the global total) along latitudinal and longitudinal gradients in species richness, falling away only in species-poor provinces ( n < 200), such as the Persian Gulf (52% of the global total), Hawaii (37%), the Caribbean (26%), and the East-Pacific (20%), where redundancy is also diminished. In the more species-poor provinces, large and ecologically important areas of trait space are empty, or occupied by just a few, highly distinctive species. These striking biogeographical differences in redundancy could affect the resilience of critical reef functions and highlight the vulnerability of relatively depauperate, peripheral locations, which are often a low priority for targeted conservation efforts.

  19. Functional diversity through the mean trait dissimilarity: resolving shortcomings with existing paradigms and algorithms.

    Science.gov (United States)

    de Bello, Francesco; Carmona, Carlos P; Lepš, Jan; Szava-Kovats, Robert; Pärtel, Meelis

    2016-04-01

    While an increasing number of indices for estimating the functional trait diversity of biological communities are being proposed, there is a growing demand by ecologists to clarify their actual implications and simplify index selection. Several key indices relate to mean trait dissimilarity between species within biological communities. Among them, the most widely used include (a) the mean species pairwise dissimilarity (MPD) and (b) the Rao quadratic entropy (and related indices). These indices are often regarded as redundant and promote the unsubstantiated yet widely held view that Rao is a form of MPD. Worryingly, existing R functions also do not always simplify the use and differentiation of these indices. In this paper, we show various distinctions between these two indices that warrant mathematical and biological consideration. We start by showing an existing form of MPD that considers species abundances and is different from Rao both mathematically and conceptually. We then show that the mathematical relationship between MPD and Rao can be presented simply as Rao = MPD × Simpson, where the Simpson diversity index is defined as 1 - dominance. We further show that this relationship is maintained for both species abundances and presence/absence. This evidence dismantles the paradigm that the Rao diversity is an abundance-weighted form of MPD and indicates that both indices can differ substantially at low species diversities. We discuss the different interpretations of trait diversity patterns in biological communities provided by Rao and MPD and then provide a simple R function, called "melodic," which avoids the unintended results that arise from existing mainstream functions.

  20. Partitioning taxonomic diversity of aquatic insect assemblages and functional feeding groups in Neotropical Savanna headwater streams

    Science.gov (United States)

    Biological diversity can be divided into: alpha (α, local), beta (β, difference in assemblage composition among locals), and gamma (γ, total diversity). We assessed the partitioning of taxonomic diversity of Ephemeroptera, Plecoptera and Trichoptera (EPT) and of functional feedin...

  1. Free and constrained symplectic integrators for numerical general relativity

    International Nuclear Information System (INIS)

    Richter, Ronny; Lubich, Christian

    2008-01-01

    We consider symplectic time integrators in numerical general relativity and discuss both free and constrained evolution schemes. For free evolution of ADM-like equations we propose the use of the Stoermer-Verlet method, a standard symplectic integrator which here is explicit in the computationally expensive curvature terms. For the constrained evolution we give a formulation of the evolution equations that enforces the momentum constraints in a holonomically constrained Hamiltonian system and turns the Hamilton constraint function from a weak to a strong invariant of the system. This formulation permits the use of the constraint-preserving symplectic RATTLE integrator, a constrained version of the Stoermer-Verlet method. The behavior of the methods is illustrated on two effectively (1+1)-dimensional versions of Einstein's equations, which allow us to investigate a perturbed Minkowski problem and the Schwarzschild spacetime. We compare symplectic and non-symplectic integrators for free evolution, showing very different numerical behavior for nearly-conserved quantities in the perturbed Minkowski problem. Further we compare free and constrained evolution, demonstrating in our examples that enforcing the momentum constraints can turn an unstable free evolution into a stable constrained evolution. This is demonstrated in the stabilization of a perturbed Minkowski problem with Dirac gauge, and in the suppression of the propagation of boundary instabilities into the interior of the domain in Schwarzschild spacetime

  2. Factors shaping bacterial phylogenetic and functional diversity in coastal waters of the NW Mediterranean Sea

    Science.gov (United States)

    Boras, Julia A.; Vaqué, Dolors; Maynou, Francesc; Sà, Elisabet L.; Weinbauer, Markus G.; Sala, Maria Montserrat

    2015-03-01

    To evaluate the main factors shaping bacterioplankton phylogenetic and functional diversity in marine coastal waters, we carried out a two-year study based on a monthly sampling in Blanes Bay (NW Mediterranean). We expected the key factors driving bacterial diversity to be (1) temperature and nutrient concentration, together with chlorophyll a concentration as an indicator of phytoplankton biomass and, hence, a carbon source for bacteria (here called bottom-up factors), and (2) top-down pressure (virus- and protist-mediated mortality of bacteria). Phylogenetic diversity was analyzed by denaturing gradient gel electrophoresis (DGGE) of 16S rRNA. Functional diversity was assessed by using monomeric carbon sources in Biolog EcoPlates and by determining the activity of six extracellular enzymes. Our results indicate that the bacterial phylogenetic and functional diversity in this coastal system is shaped mainly by bottom-up factors. A dendrogram analysis of the DGGE banding patterns revealed three main sample clusters. Two clusters differed significantly in temperature, nitrate and chlorophyll a concentration, and the third was characterized by the highest losses of bacterial production due to viral lysis detected over the whole study period. Protistan grazing had no effect on bacterial functional diversity, since there were no correlations between protist-mediated mortality (PMM) and extracellular enzyme activities, and utilization of only two out of the 31 carbon sources (N-acetyl-D-glucosamine and α-cyclodextrin) was correlated with PMM. In contrast, virus-mediated mortality correlated with changes in the percentage of use of four carbon sources, and also with specific leu-aminopeptidase and β-glucosidase activity. This suggests that viral lysate provides a pool of labile carbon sources, presumably including amino acids and glucose, which may inhibit proteolytic and glucosidic activity. Our results indicate that bottom-up factors play a more important role than

  3. Altitudinal patterns of diversity and functional traits of metabolically active microorganisms in stream biofilms

    Science.gov (United States)

    Wilhelm, Linda; Besemer, Katharina; Fragner, Lena; Peter, Hannes; Weckwerth, Wolfram; Battin, Tom J

    2015-01-01

    Resources structure ecological communities and potentially link biodiversity to energy flow. It is commonly believed that functional traits (generalists versus specialists) involved in the exploitation of resources depend on resource availability and environmental fluctuations. The longitudinal nature of stream ecosystems provides changing resources to stream biota with yet unknown effects on microbial functional traits and community structure. We investigated the impact of autochthonous (algal extract) and allochthonous (spruce extract) resources, as they change along alpine streams from above to below the treeline, on microbial diversity, community composition and functions of benthic biofilms. Combining bromodeoxyuridine labelling and 454 pyrosequencing, we showed that diversity was lower upstream than downstream of the treeline and that community composition changed along the altitudinal gradient. We also found that, especially for allochthonous resources, specialisation by biofilm bacteria increased along that same gradient. Our results suggest that in streams below the treeline biofilm diversity, specialisation and functioning are associated with increasing niche differentiation as potentially modulated by divers allochthonous and autochthonous constituents contributing to resources. These findings expand our current understanding on biofilm structure and function in alpine streams. PMID:25978543

  4. Diversity Indices as Measures of Functional Annotation Methods in Metagenomics Studies

    KAUST Repository

    Jankovic, Boris R.

    2016-01-26

    Applications of high-throughput techniques in metagenomics studies produce massive amounts of data. Fragments of genomic, transcriptomic and proteomic molecules are all found in metagenomics samples. Laborious and meticulous effort in sequencing and functional annotation are then required to, amongst other objectives, reconstruct a taxonomic map of the environment that metagenomics samples were taken from. In addition to computational challenges faced by metagenomics studies, the analysis is further complicated by the presence of contaminants in the samples, potentially resulting in skewed taxonomic analysis. The functional annotation in metagenomics can utilize all available omics data and therefore different methods that are associated with a particular type of data. For example, protein-coding DNA, non-coding RNA or ribosomal RNA data can be used in such an analysis. These methods would have their advantages and disadvantages and the question of comparison among them naturally arises. There are several criteria that can be used when performing such a comparison. Loosely speaking, methods can be evaluated in terms of computational complexity or in terms of the expected biological accuracy. We propose that the concept of diversity that is used in the ecosystems and species diversity studies can be successfully used in evaluating certain aspects of the methods employed in metagenomics studies. We show that when applying the concept of Hill’s diversity, the analysis of variations in the diversity order provides valuable clues into the robustness of methods used in the taxonomical analysis.

  5. Stress, Social Support, and Psychosocial Functioning of Ethnically Diverse Students

    Science.gov (United States)

    Farrell, Michelle; Langrehr, Kimberly J.

    2017-01-01

    This study examined the stress-buffering role of social support on indicators of psychosocial functioning among a combined and split sample of ethnically diverse college students. Although high social support significantly moderated 2 relationships in the combined sample, high and low levels of social support significantly reduced the effect of…

  6. Extracellular enzyme activity assay as indicator of soil microbial functional diversity and activity

    DEFF Research Database (Denmark)

    Hendriksen, Niels Bohse; Winding, Anne

    2012-01-01

    Extracellular enzyme activity assay as indicator of soil microbial functional diversity and activity Niels Bohse Hendriksen, Anne Winding. Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark Soils provide numerous essential ecosystem services such as carbon cycling...... of soil microbial functions is still needed. In soil, enzymes originate from a variety of organisms, notably fungi and bacteria and especially hydrolytic extracellular enzymes are of pivotal importance for decomposition of organic substrates and biogeochemical cycling. Their activity will reflect...... the functional diversity and activity of the microorganisms involved in decomposition processes. Their activity has been measured by the use of fluorogenic model substrates e.g. methylumbelliferyl (MUF) substrates for a number of enzymes involved in the degradation of polysacharides as cellulose, hemicellulose...

  7. GPS-based ionospheric tomography with a constrained adaptive ...

    Indian Academy of Sciences (India)

    Gauss weighted function is introduced to constrain the tomography system in the new method. It can resolve the ... the research focus in the fields of space geodesy and ... ment of GNSS such as GPS, Glonass, Galileo and. Compass, as these ...

  8. Plant diversity surpasses plant functional groups and plant productivity as driver of soil biota in the long term.

    Directory of Open Access Journals (Sweden)

    Nico Eisenhauer

    2011-01-01

    Full Text Available One of the most significant consequences of contemporary global change is the rapid decline of biodiversity in many ecosystems. Knowledge of the consequences of biodiversity loss in terrestrial ecosystems is largely restricted to single ecosystem functions. Impacts of key plant functional groups on soil biota are considered to be more important than those of plant diversity; however, current knowledge mainly relies on short-term experiments.We studied changes in the impacts of plant diversity and presence of key functional groups on soil biota by investigating the performance of soil microorganisms and soil fauna two, four and six years after the establishment of model grasslands. The results indicate that temporal changes of plant community effects depend on the trophic affiliation of soil animals: plant diversity effects on decomposers only occurred after six years, changed little in herbivores, but occurred in predators after two years. The results suggest that plant diversity, in terms of species and functional group richness, is the most important plant community property affecting soil biota, exceeding the relevance of plant above- and belowground productivity and the presence of key plant functional groups, i.e. grasses and legumes, with the relevance of the latter decreasing in time.Plant diversity effects on biota are not only due to the presence of key plant functional groups or plant productivity highlighting the importance of diverse and high-quality plant derived resources, and supporting the validity of the singular hypothesis for soil biota. Our results demonstrate that in the long term plant diversity essentially drives the performance of soil biota questioning the paradigm that belowground communities are not affected by plant diversity and reinforcing the importance of biodiversity for ecosystem functioning.

  9. Temporal changes in taxonomic and functional diversity of fish assemblages downstream from mountaintop mining

    Science.gov (United States)

    Hitt, Nathaniel P.; Chambers, Douglas B.

    2014-01-01

    Mountaintop mining (MTM) affects chemical, physical, and hydrological properties of receiving streams, but the long-term consequences for fish-assemblage structure and function are poorly understood. We sampled stream fish assemblages using electrofishing techniques in MTM exposure sites and reference sites within the Guyandotte River basin, USA, during 2010–2011. We calculated indices of taxonomic diversity (species richness, abundance, Shannon diversity) and functional diversity (functional richness, functional evenness, functional divergence) to compare exposure and reference assemblages between seasons (spring and autumn) and across years (1999–2011). We based temporal comparisons on 2 sites that were sampled during 1999–2001 by Stauffer and Ferreri (2002). Exposure assemblages had lower taxonomic and functional diversity than reference assemblages or simulated assemblages that accounted for random variation. Differences in taxonomic composition between reference and exposure assemblages were associated with conductivity and aqueous Se concentrations. Exposure assemblages had fewer species, lower abundances, and less biomass than reference assemblages across years and seasons. Green Sunfish (Lepomis cyanellus) and Creek Chub (Semotilus atromaculatus) became numerically dominant in exposure assemblages over time because of their persistence and losses of other taxa. In contrast, species richness increased over time in reference assemblages, a result that may indicate recovery from drought. Mean individual biomass increased as fish density decreased and most obligate invertivores were apparently extirpated at MTM exposure sites. Effects of MTM were not related to physical-habitat conditions but were associated with water-quality variables, which may limit quality and availability of benthic macroinvertebrate prey. Simulations revealed effects of MTM that could not be attributed to random variation in fish assemblage structure.

  10. Selection of multiple umbrella species for functional and taxonomic diversity to represent urban biodiversity.

    Science.gov (United States)

    Sattler, T; Pezzatti, G B; Nobis, M P; Obrist, M K; Roth, T; Moretti, M

    2014-04-01

    Surrogates, such as umbrella species, are commonly used to reduce the complexity of quantifying biodiversity for conservation purposes. The presence of umbrella species is often indicative of high taxonomic diversity; however, functional diversity is now recognized as an important metric for biodiversity and thus should be considered when choosing umbrella species. We identified umbrella species associated with high taxonomic and functional biodiversity in urban areas in Switzerland. We analyzed 39,752 individuals of 574 animal species from 96 study plots and 1397 presences of 262 plant species from 58 plots. Thirty-one biodiversity measures of 7 taxonomic groups (plants, spiders, bees, ground beetles, lady bugs, weevils and birds) were included in within- and across-taxa analyses. Sixteen measures were taxonomical (species richness and species diversity), whereas 15 were functional (species traits including mobility, resource use, and reproduction). We used indicator value analysis to identify umbrella species associated with single or multiple biodiversity measures. Many umbrella species were indicators of high biodiversity within their own taxonomic group (from 33.3% in weevils to 93.8% in birds), to a lesser extent they were indicators across taxa. Principal component analysis revealed that umbrella species for multiple measures of biodiversity represented different aspects of biodiversity, especially with respect to measures of taxonomic and functional diversity. Thus, even umbrella species for multiple measures of biodiversity were complementary in the biodiversity aspects they represented. Thus, the choice of umbrella species based solely on taxonomic diversity is questionable and may not represent biodiversity comprehensively. Our results suggest that, depending on conservation priorities, managers should choose multiple and complementary umbrella species to assess the state of biodiversity. © 2013 Society for Conservation Biology.

  11. Partitioning the regional and local drivers of phylogenetic and functional diversity along temperate elevational gradients on an East Asian peninsula.

    Science.gov (United States)

    Chun, Jung-Hwa; Lee, Chang-Bae

    2018-02-12

    Species-centric approaches to biodiversity in ecological research are limited in their ability to reflect the evolutionary history and functional diversity of community assembly. Recently, the introduction of alternative facets of biodiversity, such as phylogenetic and functional diversity, has shed light on this problem and improved our understanding of the processes underlying biodiversity patterns. Here, we investigated the phylogenetic and functional diversity patterns of α, β and γ components in woody plant assemblages along regional and local elevational gradients in South Korea. Although the patterns of phylogenetic and functional diversity varied along regional and local elevational transects, the main drivers were partitioned into two categories: regional area or climate for phylogenetic diversity, depending on whether the transect was at a regional or local scale; and habitat heterogeneity for functional diversity, which was derived in elevational bands. Moreover, environmental distance was more important than was geographic distance for phylogenetic and functional β diversity between paired elevational bands. These results support the hypothesis that niche-based deterministic processes such as environmental filtering and competitive exclusion are fundamental in structuring woody plant assemblages along temperate elevational gradients regardless of scale (regional vs. local) in our study areas.

  12. The Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM: a diverse approach to representing terrestrial biogeography and biogeochemistry based on plant functional trade-offs

    Directory of Open Access Journals (Sweden)

    R. Pavlick

    2013-06-01

    Full Text Available Terrestrial biosphere models typically abstract the immense diversity of vegetation forms and functioning into a relatively small set of predefined semi-empirical plant functional types (PFTs. There is growing evidence, however, from the field ecology community as well as from modelling studies that current PFT schemes may not adequately represent the observed variations in plant functional traits and their effect on ecosystem functioning. In this paper, we introduce the Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM as a new approach to terrestrial biosphere modelling with a richer representation of functional diversity than traditional modelling approaches based on a small number of fixed PFTs. JeDi-DGVM simulates the performance of a large number of randomly generated plant growth strategies, each defined by a set of 15 trait parameters which characterize various aspects of plant functioning including carbon allocation, ecophysiology and phenology. Each trait parameter is involved in one or more functional trade-offs. These trade-offs ultimately determine whether a strategy is able to survive under the climatic conditions in a given model grid cell and its performance relative to the other strategies. The biogeochemical fluxes and land surface properties of the individual strategies are aggregated to the grid-cell scale using a mass-based weighting scheme. We evaluate the simulated global biogeochemical patterns against a variety of field and satellite-based observations following a protocol established by the Carbon-Land Model Intercomparison Project. The land surface fluxes and vegetation structural properties are reasonably well simulated by JeDi-DGVM, and compare favourably with other state-of-the-art global vegetation models. We also evaluate the simulated patterns of functional diversity and the sensitivity of the JeDi-DGVM modelling approach to the number of sampled strategies. Altogether, the results demonstrate the

  13. Coral Reef Health Indices versus the Biological, Ecological and Functional Diversity of Fish and Coral Assemblages in the Caribbean Sea.

    Science.gov (United States)

    Díaz-Pérez, Leopoldo; Rodríguez-Zaragoza, Fabián Alejandro; Ortiz, Marco; Cupul-Magaña, Amílcar Leví; Carriquiry, Jose D; Ríos-Jara, Eduardo; Rodríguez-Troncoso, Alma Paola; García-Rivas, María Del Carmen

    2016-01-01

    This study evaluated the relationship between the indices known as the Reef Health Index (RHI) and two-dimensional Coral Health Index (2D-CHI) and different representative metrics of biological, ecological and functional diversity of fish and corals in 101 reef sites located across seven zones in the western Caribbean Sea. Species richness and average taxonomic distinctness were used to asses biological estimation; while ecological diversity was evaluated with the indices of Shannon diversity and Pielou´s evenness, as well as by taxonomic diversity and distinctness. Functional diversity considered the number of functional groups, the Shannon diversity and the functional Pielou´s evenness. According to the RHI, 57.15% of the zones were classified as presenting a "poor" health grade, while 42.85% were in "critical" grade. Based on the 2D-CHI, 28.5% of the zones were in "degraded" condition and 71.5% were "very degraded". Differences in fish and coral diversity among sites and zones were demonstrated using permutational ANOVAs. Differences between the two health indices (RHI and 2D-CHI) and some indices of biological, ecological and functional diversity of fish and corals were observed; however, only the RHI showed a correlation between the health grades and the species and functional group richness of fish at the scale of sites, and with the species and functional group richness and Shannon diversity of the fish assemblages at the scale of zones. None of the health indices were related to the metrics analyzed for the coral diversity. In general, our study suggests that the estimation of health indices should be complemented with classic community indices, or should at least include diversity indices of fish and corals, in order to improve the accuracy of the estimated health status of coral reefs in the western Caribbean Sea.

  14. Using niche-based modelling to assess the impact of climate change on tree functional diversity in Europe

    DEFF Research Database (Denmark)

    Thuiller, Wilfried; Lavorel, Sandra; Sykes, Martin T.

    2006-01-01

    Rapid anthropogenic climate change is already affecting species distributions and ecosystem functioning worldwide. We applied niche-based models to analyse the impact of climate change on tree species and functional diversity in Europe. Present-day climate was used to predict the distributions...... of 122 tree species from different functional types (FT). We then explored projections of future distributions under one climate scenario for 2080, considering two alternative dispersal assumptions: no dispersal and unlimited dispersal. The species-rich broadleaved deciduous group appeared to play a key...... role in the future of different European regions. Temperate areas were projected to lose both species richness and functional diversity due to the loss of broadleaved deciduous trees. These were projected to migrate to boreal forests, thereby increasing their species richness and functional diversity...

  15. The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community

    Energy Technology Data Exchange (ETDEWEB)

    Kong, W -D [Research Center for Eco-Environmental Sciences, Soil Environment of Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Zhu, Y -G [Research Center for Eco-Environmental Sciences, Soil Environment of Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Fu, B -J [Research Center for Eco-Environmental Sciences, Soil Environment of Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China); Marschner, P [Soil and Land Systems, School of Earth and Environmental Sciences, University of Adelaide, DP 636, 5005 (Australia); He, J -Z [Research Center for Eco-Environmental Sciences, Soil Environment of Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085 (China)

    2006-09-15

    There are increasing concerns over the effects of veterinary antibiotics and heavy metals in agricultural soils. The widely used veterinary antibiotic oxytetracycline (OTC), Cu and their combination on soil microbial community function were assessed with the Biolog method. The microbial community was extracted from the soil and exposed to a 0.85% sodium chloride solution containing OTC (0, 1, 5, 11, 43, 109 and 217 {mu}M), or Cu (0, 10, 20, 100 and 300 {mu}M), or combination of the two pollutants (OTC 0, 5, 11 {mu}M and Cu 0, 20 {mu}M). Functional diversity, evenness, average well color development (AWCD) and substrate utilization decreased significantly with increasing concentrations of OTC or Cu (p < 0.005). The critical concentrations were 11 {mu}M for OTC and 20 {mu}M for Cu. The combination of OTC and Cu significantly decreased Shannon's diversity, evenness and utilization of carbohydrates and carboxylic acids compared to individual one of the contaminants. The antibiotic OTC and Cu had significant negative effects on soil microbial community function, particularly when both pollutants were present. - Oxytetracycline reduces the functional diversity of soil microbial community, and the combination of Cu and oxytetracycline leads to a further reduction.

  16. The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community

    International Nuclear Information System (INIS)

    Kong, W.-D.; Zhu, Y.-G.; Fu, B.-J.; Marschner, P.; He, J.-Z.

    2006-01-01

    There are increasing concerns over the effects of veterinary antibiotics and heavy metals in agricultural soils. The widely used veterinary antibiotic oxytetracycline (OTC), Cu and their combination on soil microbial community function were assessed with the Biolog method. The microbial community was extracted from the soil and exposed to a 0.85% sodium chloride solution containing OTC (0, 1, 5, 11, 43, 109 and 217 μM), or Cu (0, 10, 20, 100 and 300 μM), or combination of the two pollutants (OTC 0, 5, 11 μM and Cu 0, 20 μM). Functional diversity, evenness, average well color development (AWCD) and substrate utilization decreased significantly with increasing concentrations of OTC or Cu (p < 0.005). The critical concentrations were 11 μM for OTC and 20 μM for Cu. The combination of OTC and Cu significantly decreased Shannon's diversity, evenness and utilization of carbohydrates and carboxylic acids compared to individual one of the contaminants. The antibiotic OTC and Cu had significant negative effects on soil microbial community function, particularly when both pollutants were present. - Oxytetracycline reduces the functional diversity of soil microbial community, and the combination of Cu and oxytetracycline leads to a further reduction

  17. Constraining supergravity models from gluino production

    International Nuclear Information System (INIS)

    Barbieri, R.; Gamberini, G.; Giudice, G.F.; Ridolfi, G.

    1988-01-01

    The branching ratios for gluino decays g tilde → qanti qΧ, g tilde → gΧ into a stable undetected neutralino are computed as functions of the relevant parameters of the underlying supergravity theory. A simple way of constraining supergravity models from gluino production emerges. The effectiveness of hadronic versus e + e - colliders in the search for supersymmetry can be directly compared. (orig.)

  18. Enhanced interannual precipitation variability increases plant functional diversity that in turn ameliorates negative impact on productivity.

    Science.gov (United States)

    Gherardi, Laureano A; Sala, Osvaldo E

    2015-12-01

    Although precipitation interannual variability is projected to increase due to climate change, effects of changes in precipitation variance have received considerable less attention than effects of changes in the mean state of climate. Interannual precipitation variability effects on functional diversity and its consequences for ecosystem functioning are assessed here using a 6-year rainfall manipulation experiment. Five precipitation treatments were switched annually resulting in increased levels of precipitation variability while maintaining average precipitation constant. Functional diversity showed a positive response to increased variability due to increased evenness. Dominant grasses decreased and rare plant functional types increased in abundance because grasses showed a hump-shaped response to precipitation with a maximum around modal precipitation, whereas rare species peaked at high precipitation values. Increased functional diversity ameliorated negative effects of precipitation variability on primary production. Rare species buffered the effect of precipitation variability on the variability in total productivity because their variance decreases with increasing precipitation variance. © 2015 John Wiley & Sons Ltd/CNRS.

  19. Multiple utility constrained multi-objective programs using Bayesian theory

    Science.gov (United States)

    Abbasian, Pooneh; Mahdavi-Amiri, Nezam; Fazlollahtabar, Hamed

    2018-03-01

    A utility function is an important tool for representing a DM's preference. We adjoin utility functions to multi-objective optimization problems. In current studies, usually one utility function is used for each objective function. Situations may arise for a goal to have multiple utility functions. Here, we consider a constrained multi-objective problem with each objective having multiple utility functions. We induce the probability of the utilities for each objective function using Bayesian theory. Illustrative examples considering dependence and independence of variables are worked through to demonstrate the usefulness of the proposed model.

  20. Five species, many genotypes, broad phenotypic diversity: When agronomy meets functional ecology.

    Science.gov (United States)

    Prieto, Ivan; Litrico, Isabelle; Violle, Cyrille; Barre, Philippe

    2017-01-01

    Current ecological theory can provide insight into the causes and impacts of plant domestication. However, just how domestication has impacted intraspecific genetic variability (ITV) is unknown. We used 50 ecotypes and 35 cultivars from five grassland species to explore how selection drives functional trait coordination and genetic differentiation. We quantified the extent of genetic diversity among different sets of functional traits and determined how much genetic diversity has been generated within populations of natural ecotypes and selected cultivars. In general, the cultivars were larger (e.g., greater height, faster growth rates) and had larger and thinner leaves (greater SLA). We found large (average 63%) and trait-dependent (ranging from 14% for LNC to 95.8% for growth rate) genetic variability. The relative extent of genetic variability was greater for whole-plant than for organ-level traits. This pattern was consistent within ecotypes and within cultivars. However, ecotypes presented greater ITV variability. The results indicated that genetic diversity is large in domesticated species with contrasting levels of heritability among functional traits and that selection for high yield has led to indirect selection of some associated leaf traits. These findings open the way to define which target traits should be the focus in selection programs, especially in the context of community-level selection. © 2017 Botanical Society of America.

  1. Predicting ethnic variation in adaptation to later life: styles of socioemotional functioning and constrained heterotypy.

    Science.gov (United States)

    Consedine, Nathan S; Magai, Carol; Conway, Francine

    2004-06-01

    It is an axiom of social gerontology that populations of older individuals become increasingly differentiated as they age. Adaptations to physical and social losses and the increased dependency that typically accompany greater age are likely to be similarly heterogeneous, with different individuals adjusting to the aging process in widely diverse ways. In this paper we consider how individuals with diverse emotional and regulatory profiles, different levels of religiosity, and varied patterns of social relatedness fare as they age. Specifically, we examine the relation between ethnicity and patterns of socioemotional adaptation in a large, ethnically diverse sample (N = 1118) of community-dwelling older adults. Cluster analysis was applied to 11 measures of socioemotional functioning. Ten qualitatively different profiles were extracted and then related to a measure of physical resiliency. Consistent with ethnographic and psychological theory, individuals from different ethnic backgrounds were unevenly distributed across the clusters. Resilient participants of African descent (African Americans, Jamaicans, Trinidadians, Barbadians) were more likely to manifest patterns of adaptation characterized by religious beliefs, while resilient US-born Whites and Immigrant Whites were more likely to be resilient as a result of non-religious social connectedness. Taken together, although these data underscore the diversity of adaptation to later life, we suggest that patterns of successful adaptation vary systematically across ethnic groups. Implications for the continued study of ethnicity in aging and directions for future research are given.

  2. Comparing functional diversity in traits and demography of Central European vegetation

    Czech Academy of Sciences Publication Activity Database

    Herben, Tomáš; Nováková, Z.; Klimešová, Jitka

    2013-01-01

    Roč. 24, č. 5 (2013), s. 910-920 ISSN 1100-9233 R&D Projects: GA ČR GA526/09/0963 Institutional support: RVO:67985939 Keywords : botanical garden * plant functional traits * funtional diversity Subject RIV: EF - Botanics Impact factor: 3.372, year: 2013

  3. Functional Diversity of AAA+ Protease Complexes in Bacillus subtilis

    OpenAIRE

    Elsholz, Alexander K. W.; Birk, Marlene S.; Charpentier, Emmanuelle; Turgay, K?r?ad

    2017-01-01

    Here, we review the diverse roles and functions of AAA+ protease complexes in protein homeostasis, control of stress response and cellular development pathways by regulatory and general proteolysis in the Gram-positive model organism Bacillus subtilis. We discuss in detail the intricate involvement of AAA+ protein complexes in controlling sporulation, the heat shock response and the role of adaptor proteins in these processes. The investigation of these protein complexes and their adaptor pro...

  4. Slow logarithmic relaxation in models with hierarchically constrained dynamics

    OpenAIRE

    Brey, J. J.; Prados, A.

    2000-01-01

    A general kind of models with hierarchically constrained dynamics is shown to exhibit logarithmic anomalous relaxation, similarly to a variety of complex strongly interacting materials. The logarithmic behavior describes most of the decay of the response function.

  5. Short-term parasite-infection alters already the biomass, activity and functional diversity of soil microbial communities

    Science.gov (United States)

    Li, Jun-Min; Jin, Ze-Xin; Hagedorn, Frank; Li, Mai-He

    2014-11-01

    Native parasitic plants may be used to infect and control invasive plants. We established microcosms with invasive Mikania micrantha and native Coix lacryma-jobi growing in mixture on native soils, with M. micrantha being infected by parasitic Cuscuta campestris at four intensity levels for seven weeks to estimate the top-down effects of plant parasitism on the biomass and functional diversity of soil microbial communities. Parasitism significantly decreased root biomass and altered soil microbial communities. Soil microbial biomass decreased, but soil respiration increased at the two higher infection levels, indicating a strong stimulation of soil microbial metabolic activity (+180%). Moreover, a Biolog assay showed that the infection resulted in a significant change in the functional diversity indices of soil microbial communities. Pearson correlation analysis indicated that microbial biomass declined significantly with decreasing root biomass, particularly of the invasive M. micrantha. Also, the functional diversity indices of soil microbial communities were positively correlated with soil microbial biomass. Therefore, the negative effects on the biomass, activity and functional diversity of soil microbial community by the seven week long plant parasitism was very likely caused by decreased root biomass and root exudation of the invasive M. micrantha.

  6. Soil functional diversity analysis of a bauxite-mined restoration chronosequence.

    Science.gov (United States)

    Lewis, Dawn E; White, John R; Wafula, Denis; Athar, Rana; Dickerson, Tamar; Williams, Henry N; Chauhan, Ashvini

    2010-05-01

    Soil microorganisms are sensitive to environmental perturbations such that changes in microbial community structure and function can provide early signs of anthropogenic disturbances and even predict restoration success. We evaluated the bacterial functional diversity of un-mined and three chronosequence sites at various stages of rehabilitation (0, 10, and 20 years old) located in the Mocho Mountains of Jamaica. Samples were collected during the dry and wet seasons and analyzed for metal concentrations, microbial biomass carbon, bacterial numbers, and functional responses of soil microbiota using community-level physiological profile (CLPP) assays. Regardless of the season, un-mined soils consisted of higher microbial biomass and numbers than any of the rehabilitated sites. Additionally, the number and rate of substrates utilized and substrate evenness (the distribution of color development between the substrates) were significantly greater in the un-mined soils with carbohydrates being preferentially utilized than amino acids, polymers, carboxylic acids, and esters. To some extent, functional responses varied with the seasons but the least physiological activity was shown by the site rehabilitated in 1987 indicating long-term perturbation to this ecosystem. Small subunit ribosomal DNA (SSUrDNA)-denaturing gradient-gel electrophoresis analyses on the microbiota collected from the most preferred CLPP substrates followed by taxonomic analyses showed Proteobacteria, specifically the gamma-proteobacteria, as the most functionally active phyla, indicating a propensity of this phyla to out-compete other groups under the prevailing conditions. Additionally, multivariate statistical analyses, Shannon's diversity, and evenness indices, principal component analysis, biplot and un-weighted-pair-group method with arithmetic averages dendrograms further confirmed that un-mined sites were distinctly different from the rehabilitated soils.

  7. Functional group diversity is key to Southern Ocean benthic carbon pathways.

    Directory of Open Access Journals (Sweden)

    David K A Barnes

    Full Text Available High latitude benthos are globally important in terms of accumulation and storage of ocean carbon, and the feedback this is likely to have on regional warming. Understanding this ecosystem service is important but difficult because of complex taxonomic diversity, history and geography of benthic biomass. Using South Georgia as a model location (where the history and geography of benthic biology is relatively well studied we investigated whether the composition of functional groups were critical to benthic accumulation, immobilization and burial pathway to sequestration-and also aid their study through simplification of identification. We reclassified [1], [2] morphotype and carbon mass data to 13 functional groups, for each sample of 32 sites around the South Georgia continental shelf. We investigated the influence on carbon accumulation, immobilization and sequestration estimate by multiple factors including the compositions of functional groups. Functional groups showed high diversity within and between sites, and within and between habitat types. Carbon storage was not linked to a functional group in particular but accumulation and immobilization increased with the number of functional groups present and the presence of hard substrata. Functional groups were also important to carbon burial rate, which increased with the presence of mixed (hard and soft substrata. Functional groups showed high surrogacy for taxonomic composition and were useful for examining contrasting habitat categorization. Functional groups not only aid marine carbon storage investigation by reducing time and the need for team size and speciality, but also important to benthic carbon pathways per se. There is a distinct geography to seabed carbon storage; seabed boulder-fields are hotspots of carbon accumulation and immobilization, whilst the interface between such boulder-fields and sediments are key places for burial and sequestration.

  8. Modeling microbial community structure and functional diversity across time and space.

    Science.gov (United States)

    Larsen, Peter E; Gibbons, Sean M; Gilbert, Jack A

    2012-07-01

    Microbial communities exhibit exquisitely complex structure. Many aspects of this complexity, from the number of species to the total number of interactions, are currently very difficult to examine directly. However, extraordinary efforts are being made to make these systems accessible to scientific investigation. While recent advances in high-throughput sequencing technologies have improved accessibility to the taxonomic and functional diversity of complex communities, monitoring the dynamics of these systems over time and space - using appropriate experimental design - is still expensive. Fortunately, modeling can be used as a lens to focus low-resolution observations of community dynamics to enable mathematical abstractions of functional and taxonomic dynamics across space and time. Here, we review the approaches for modeling bacterial diversity at both the very large and the very small scales at which microbial systems interact with their environments. We show that modeling can help to connect biogeochemical processes to specific microbial metabolic pathways. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. Wide ranges of functional traits in the flora from the central region of Sonora: A diversity to be explored

    Science.gov (United States)

    Cesar Hinojo Hinojo; Alejandro E. Castellanos; Jose M. Llano. Sotelo

    2013-01-01

    Although the Sonoran Desert does not have the highest plant species richness, it has been documented with the highest growth form diversity from the North American deserts. It is not known if this high growth form diversity could also harbor a high functional diversity. In this study we characterize the ecophysiological functional traits of photosynthetic capacity,...

  10. q-Deformed KP Hierarchy and q-Deformed Constrained KP Hierarchy

    OpenAIRE

    He, Jingsong; Li, Yinghua; Cheng, Yi

    2006-01-01

    Using the determinant representation of gauge transformation operator, we have shown that the general form of $au$ function of the $q$-KP hierarchy is a $q$-deformed generalized Wronskian, which includes the $q$-deformed Wronskian as a special case. On the basis of these, we study the $q$-deformed constrained KP ($q$-cKP) hierarchy, i.e. $l$-constraints of $q$-KP hierarchy. Similar to the ordinary constrained KP (cKP) hierarchy, a large class of solutions of $q$-cKP hierarchy can be represent...

  11. Analysis of the functional diversity of the microbial communities in a ...

    African Journals Online (AJOL)

    The Biolog method was thus evaluated in a paper-mill water system. The influence of the production of various paper grades, biocide combinations and monthly maintenance shut-downs on the functional diversity of the microbial communities were determined using the Biolog technique. The communities in the planktonic ...

  12. Spatial patterns of littoral zooplankton assemblages along a salinity gradient in a brackish sea: A functional diversity perspective

    Science.gov (United States)

    Helenius, Laura K.; Leskinen, Elina; Lehtonen, Hannu; Nurminen, Leena

    2017-11-01

    The distribution patterns and diversity of littoral zooplankton are both key baseline information for understanding the functioning of coastal ecosystems, and for identifying the mechanisms by which the impacts of recently increased eutrophication are transferred through littoral food webs. In this study, zooplankton community structure and diversity along a shallow coastal area of the northern Baltic Sea were determined in terms of horizontal environmental gradients. Spatial heterogeneity of the zooplankton community was examined along the gradient. Altogether 31 sites in shallow sandy bays on the coast of southwest Finland were sampled in the summer periods of 2009 and 2010 for zooplankton and environmental variables (surface water temperature, salinity, turbidity, wave exposure, macrophyte coverage, chlorophyll a and nutrients). Zooplankton diversity was measured as both taxonomic as well as functional diversity, using trait-based classification of planktonic crustaceans. Salinity, and to a lesser extent turbidity and temperature, were found to be the main predictors of the spatial patterns and functional diversity of the zooplankton community. Occurrence of cyclopoid copepods, as well as abundances of the calanoid copepod genus Acartia and the rotifer genus Keratella were found to be key factors in differentiating sites along the gradient. As far as we know, this is the first extensive study of functional diversity in Baltic Sea coastal zooplankton communities.

  13. GPS-based ionospheric tomography with a constrained adaptive ...

    Indian Academy of Sciences (India)

    According to the continuous smoothness of the variations of ionospheric electron density (IED) among neighbouring voxels, Gauss weighted function is introduced to constrain the tomography system in the new method. It can resolve the dependence on the initial values for those voxels without any GPS rays traversing them ...

  14. Shifts in taxonomic and functional microbial diversity with agriculture: How fragile is the Brazilian Cerrado?

    Science.gov (United States)

    Souza, Renata Carolini; Mendes, Iêda Carvalho; Reis-Junior, Fábio Bueno; Carvalho, Fabíola Marques; Nogueira, Marco Antonio; Vasconcelos, Ana Tereza Ribeiro; Vicente, Vânia Aparecida; Hungria, Mariangela

    2016-03-16

    The Cerrado--an edaphic type of savannah--comprises the second largest biome of the Brazilian territory and is the main area for grain production in the country, but information about the impact of land conversion to agriculture on microbial diversity is still scarce. We used a shotgun metagenomic approach to compare undisturbed (native) soil and soils cropped for 23 years with soybean/maize under conservation tillage--"no-till" (NT)--and conventional tillage (CT) systems in the Cerrado biome. Soil management and fertilizer inputs with the introduction of agriculture improved chemical properties, but decreased soil macroporosity and microbial biomass of carbon and nitrogen. Principal coordinates analyses confirmed different taxonomic and functional profiles for each treatment. There was predominance of the Bacteria domain, especially the phylum Proteobacteria, with higher numbers of sequences in the NT and CT treatments; Archaea and Viruses also had lower numbers of sequences in the undisturbed soil. Within the Alphaproteobacteria, there was dominance of Rhizobiales and of the genus Bradyrhizobium in the NT and CT systems, attributed to massive inoculation of soybean, and also of Burkholderiales. In contrast, Rhizobium, Azospirillum, Xanthomonas, Pseudomonas and Acidobacterium predominated in the native Cerrado. More Eukaryota, especially of the phylum Ascomycota were detected in the NT. The functional analysis revealed lower numbers of sequences in the five dominant categories for the CT system, whereas the undisturbed Cerrado presented higher abundance. High impact of agriculture in taxonomic and functional microbial diversity in the biome Cerrado was confirmed. Functional diversity was not necessarily associated with taxonomic diversity, as the less conservationist treatment (CT) presented increased taxonomic sequences and reduced functional profiles, indicating a strategy to try to maintain soil functioning by favoring taxa that are probably not the most

  15. Changes in tree reproductive traits reduce functional diversity in a fragmented Atlantic forest landscape.

    Directory of Open Access Journals (Sweden)

    Luciana Coe Girão

    Full Text Available Functional diversity has been postulated to be critical for the maintenance of ecosystem functioning, but the way it can be disrupted by human-related disturbances remains poorly investigated. Here we test the hypothesis that habitat fragmentation changes the relative contribution of tree species within categories of reproductive traits (frequency of traits and reduces the functional diversity of tree assemblages. The study was carried out in an old and severely fragmented landscape of the Brazilian Atlantic forest. We used published information and field observations to obtain the frequency of tree species and individuals within 50 categories of reproductive traits (distributed in four major classes: pollination systems, floral biology, sexual systems, and reproductive systems in 10 fragments and 10 tracts of forest interior (control plots. As hypothesized, populations in fragments and control plots differed substantially in the representation of the four major classes of reproductive traits (more than 50% of the categories investigated. The most conspicuous differences were the lack of three pollination systems in fragments--pollination by birds, flies and non-flying mammals--and that fragments had a higher frequency of both species and individuals pollinated by generalist vectors. Hermaphroditic species predominate in both habitats, although their relative abundances were higher in fragments. On the contrary, self-incompatible species were underrepresented in fragments. Moreover, fragments showed lower functional diversity (H' scores for pollination systems (-30.3%, floral types (-23.6%, and floral sizes (-20.8% in comparison to control plots. In contrast to the overwhelming effect of fragmentation, patch and landscape metrics such as patch size and forest cover played a minor role on the frequency of traits. Our results suggest that habitat fragmentation promotes a marked shift in the relative abundance of tree reproductive traits and

  16. Fungal endophytes: diversity and functional roles

    Science.gov (United States)

    Rodriguez, R.J.; White, J.F.; Arnold, A.E.; Redman, R.S.

    2009-01-01

    All plants in natural ecosystems appear to be symbiotic with fungal endophytes. This highly diverse group of fungi can have profound impacts on plant communities through increasing fitness by conferring abiotic and biotic stress tolerance, increasing biomass and decreasing water consumption, or decreasing fitness by altering resource allocation. Despite more than 100 yr of research resulting in thousands of journal articles, the ecological significance of these fungi remains poorly characterized. Historically, two endophytic groups (clavicipitaceous (C) and nonclavicipitaceous (NC)) have been discriminated based on phylogeny and life history traits. Here, we show that NC-endophytes represent three distinct functional groups based on host colonization and transmission, in planta biodiversity and fitness benefits conferred to hosts. Using this framework, we contrast the life histories, interactions with hosts and potential roles in plant ecophysiology of C- and NC-endophytes, and highlight several key questions for future work in endophyte biology.

  17. Unifying the functional diversity in natural and cultivated soils using the overall body-mass distribution of nematodes.

    Science.gov (United States)

    Mulder, Christian; Maas, Rob

    2017-11-28

    Sustainable use of our soils is a key goal for environmental protection. As many ecosystem services are supported belowground at different trophic levels by nematodes, soil nematodes are expected to provide objective metrics for biological quality to integrate physical and chemical soil variables. Trait measurements of body mass carried out at the individual level can in this way be correlated with environmental properties that influence the performance of soil biota. Soil samples were collected across 200 sites (4 soil types and 5 land-use types resulting in 9 combinations) during a long-term monitoring programme in the Netherlands and the functional diversity of nematode communities was investigated. Using three commonly used functional diversity indices applicable to single traits (Divergence, Evenness and Richness), a unified index of overall body-mass distribution is proposed to better illustrate the application of functional metrics as a descriptor of land use. Effects of land use and soil chemistry on the functional diversity of nematodes were demonstrated and a combination of environmental factors accounts for the low functional value of Scots Pine forest soils in comparison to the high functional value of heathland soils, whereas human factors account for the low functional and chemical values of arable fields. These findings show an unexpected high functional vulnerability of nematodes inhabiting clay-rich soils in comparison to sandy soils and support the notion that soil C:N ratio is a major driver of biodiversity. The higher the C:N ratio, the higher the overall diversity, as soil nematodes cope better with nutrient-poor agroecosystems under less intense fertilization. A trait-based way focusing on size distribution of nematodes is proposed to maintain environmental health by monitoring the overall diversity in soil biota, keeping agriculture and forestry sustainable.

  18. Considering Future Potential Regarding Structural Diversity in Selection of Forest Reserves.

    Directory of Open Access Journals (Sweden)

    Johanna Lundström

    Full Text Available A rich structural diversity in forests promotes biodiversity. Forests are dynamic and therefore it is crucial to consider future structural potential when selecting reserves, to make robust conservation decisions. We analyzed forests in boreal Sweden based on 17,599 National Forest Inventory (NFI plots with the main aim to understand how effectiveness of reserves depends on the time dimension in the selection process, specifically by considering future structural diversity. In the study both the economic value and future values of 15 structural variables were simulated during a 100 year period. To get a net present structural value (NPSV, a single value covering both current and future values, we used four discounting alternatives: (1 only considering present values, (2 giving equal importance to values in each of the 100 years within the planning horizon, (3 applying an annual discount rate considering the risk that values could be lost, and (4 only considering the values in year 100. The four alternatives were evaluated in a reserve selection model under budget-constrained and area-constrained selections. When selecting young forests higher structural richness could be reached at a quarter of the cost over almost twice the area in a budget-constrained selection compared to an area-constrained selection. Our results point to the importance of considering future structural diversity in the selection of forest reserves and not as is done currently to base the selection on existing values. Targeting future values increases structural diversity and implies a relatively lower cost. Further, our results show that a re-orientation from old to young forests would imply savings while offering a more extensive reserve network with high structural qualities in the future. However, caution must be raised against a drastic reorientation of the current old-forest strategy since remnants of ancient forests will need to be prioritized due to their role for

  19. Chance constrained problems: penalty reformulation and performance of sample approximation technique

    Czech Academy of Sciences Publication Activity Database

    Branda, Martin

    2012-01-01

    Roč. 48, č. 1 (2012), s. 105-122 ISSN 0023-5954 R&D Projects: GA ČR(CZ) GBP402/12/G097 Institutional research plan: CEZ:AV0Z10750506 Keywords : chance constrained problems * penalty functions * asymptotic equivalence * sample approximation technique * investment problem Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.619, year: 2012 http://library.utia.cas.cz/separaty/2012/E/branda-chance constrained problems penalty reformulation and performance of sample approximation technique.pdf

  20. Vacuum expectation values in a scalar constrained theory

    International Nuclear Information System (INIS)

    Alonso, F.; Julve, J.; Tiemblo, A.

    1985-01-01

    A class of finite Green functions in the context of a scalar constrained theory is studied. In a particular model the one-point GFs show that the vacuum expectation values for some fields vanish while one of them remains finite, a feature exhibited by the Goldstone and Higgs fields respectively. (orig.)

  1. Volume-constrained optimization of magnetorheological and electrorheological valves and dampers

    Science.gov (United States)

    Rosenfeld, Nicholas C.; Wereley, Norman M.

    2004-12-01

    This paper presents a case study of magnetorheological (MR) and electrorheological (ER) valve design within a constrained cylindrical volume. The primary purpose of this study is to establish general design guidelines for volume-constrained MR valves. Additionally, this study compares the performance of volume-constrained MR valves against similarly constrained ER valves. Starting from basic design guidelines for an MR valve, a method for constructing candidate volume-constrained valve geometries is presented. A magnetic FEM program is then used to evaluate the magnetic properties of the candidate valves. An optimized MR valve is chosen by evaluating non-dimensional parameters describing the candidate valves' damping performance. A derivation of the non-dimensional damping coefficient for valves with both active and passive volumes is presented to allow comparison of valves with differing proportions of active and passive volumes. The performance of the optimized MR valve is then compared to that of a geometrically similar ER valve using both analytical and numerical techniques. An analytical equation relating the damping performances of geometrically similar MR and ER valves in as a function of fluid yield stresses and relative active fluid volume, and numerical calculations are provided to calculate each valve's damping performance and to validate the analytical calculations.

  2. Disturbance, Functional Diversity and Ecosystem Processes: Does Species Identity Matter?

    OpenAIRE

    Emrick III, Verl Roy

    2013-01-01

    The role of disturbance is widely recognized as a fundamental driver of ecological organization from individual species to entire landscapes. Anthropogenic disturbances from military training provide a unique opportunity to examine effects of disturbance on vegetation dynamics, physicochemical soil properties, and ecosystem processes. Additionally, plant functional diversity has been suggested as the key to ecosystem processes such as productivity and nutrient dynamics. I investigated how dis...

  3. Microbial functional diversity and enzymatic activity of soil degraded by sulphur mining reclaimed with various waste

    Science.gov (United States)

    Joniec, Jolanta; Frąc, Magdalena

    2017-10-01

    The aim of the study was to evaluate microbial functional diversity based on community level physiological profiling and β-glucosidase activity changes in soil degraded by sulphur mining and subjected to reclamation with various waste. The experiment was set up in the area of the former `Jeziórko' Sulphur Mine (Poland), on a soilless substrate with a particle size distribution of slightly loamy sand. The experimental variants included the application of post-flotation lime, sewage sludge and mineral wool. The analyses of soil samples included the assessment of the following microbiological indices: β-glucosidase activity and functional diversity average well color development and richness). The results indicate that sewage sludge did not exert a significant impact on the functional diversity of microorganisms present in the reclaimed soil. In turn, the application of other types of waste contributed to a significant increase in the parameters of total metabolic activity and functional diversity of the reclaimed soil. However, the temporal analysis of the metabolic profile of soil microorganisms demonstrated that a single application of waste did not yield a durable, stable metabolic profile in the reclaimed soil. Still, there was an increase in β-glucosidase activity, especially in objects treated with sewage sludge.

  4. A one-layer recurrent neural network for constrained nonsmooth invex optimization.

    Science.gov (United States)

    Li, Guocheng; Yan, Zheng; Wang, Jun

    2014-02-01

    Invexity is an important notion in nonconvex optimization. In this paper, a one-layer recurrent neural network is proposed for solving constrained nonsmooth invex optimization problems, designed based on an exact penalty function method. It is proved herein that any state of the proposed neural network is globally convergent to the optimal solution set of constrained invex optimization problems, with a sufficiently large penalty parameter. In addition, any neural state is globally convergent to the unique optimal solution, provided that the objective function and constraint functions are pseudoconvex. Moreover, any neural state is globally convergent to the feasible region in finite time and stays there thereafter. The lower bounds of the penalty parameter and convergence time are also estimated. Two numerical examples are provided to illustrate the performances of the proposed neural network. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Constrained dansyl derivatives reveal bacterial specificity of highly conserved thymidylate synthases.

    Science.gov (United States)

    Calò, Sanuele; Tondi, Donatella; Ferrari, Stefania; Venturelli, Alberto; Ghelli, Stefano; Costi, Maria Paola

    2008-03-25

    The elucidation of the structural/functional specificities of highly conserved enzymes remains a challenging area of investigation, and enzymes involved in cellular replication are important targets for functional studies and drug discovery. Thymidylate synthase (TS, ThyA) governs the synthesis of thymidylate for use in DNA synthesis. The present study focused on Lactobacillus casei TS (LcTS) and Escherichia coli TS (EcTS), which exhibit 50 % sequence identity and strong folding similarity. We have successfully designed and validated a chemical model in which linear, but not constrained, dansyl derivatives specifically complement the LcTS active site. Conversely, chemically constrained dansyl derivatives showed up to 1000-fold improved affinity for EcTS relative to the inhibitory activity of linear derivatives. This study demonstrates that the accurate design of small ligands can uncover functional features of highly conserved enzymes.

  6. Influence of soil zinc concentrations on zinc sensitivity and functional diversity of microbial communities

    International Nuclear Information System (INIS)

    Lock, K.; Janssen, C.R.

    2005-01-01

    Pollution induced community tolerance (PICT) is based on the phenomenon that toxic effects reduce survival of the most sensitive organisms, thus increasing community tolerance. Community tolerance for a contaminant is thus a strong indicator for the presence of that contaminant at the level of adverse concentrations. Here we assessed PICT in 11 soils contaminated with zinc runoff from galvanised electricity pylons and 11 reference soils sampled at 10 m distance from these pylons. Using PICT, the influence of background concentration and bioavailability of zinc on zinc sensitivity and functional diversity of microbial communities was assessed. Zinc sensitivity of microbial communities decreased significantly with increasing zinc concentrations in pore water and calcium chloride extracted fraction while no significant relationship was found with total zinc concentration in the soil. It was also found that functional diversity of microbial communities decreased with increasing zinc concentrations, indicating that increased tolerance is indeed an undesirable phenomenon when environmental quality is considered. The hypothesis that zinc sensitivity of microbial communities is related to background zinc concentration in pore water could not be confirmed. - Zinc sensitivity of microbial communities and functional diversity decrease with increasing zinc concentration in the pore water

  7. Distributions of ectomycorrhizal and foliar endophytic fungal communities associated with Pinus ponderosa along a spatially constrained elevation gradient.

    Science.gov (United States)

    Bowman, Elizabeth A; Arnold, A Elizabeth

    2018-05-13

    Understanding distributions of plant-symbiotic fungi is important for projecting responses to environmental change. Many coniferous trees host ectomycorrhizal fungi (EM) in association with roots and foliar endophytic fungi (FE) in leaves. We examined how EM and FE associated with Pinus ponderosa each vary in abundance, diversity, and community structure over a spatially constrained elevation gradient that traverses four plant communities, 4°C in mean annual temperature, and 15 cm in mean annual precipitation. We sampled 63 individuals of Pinus ponderosa in 10 sites along a 635 m elevation gradient that encompassed a geographic distance of 9.8 km. We used standard methods to characterize each fungal group (amplified and sequenced EM from root tips; isolated and sequenced FE from leaves). Abundance and diversity of EM were similar across sites, but community composition and distributions of the most common EM differed with elevation (i.e., with climate, soil chemistry, and plant communities). Abundance and composition of FE did not differ with elevation, but diversity peaked in mid-to-high elevations. Our results suggest relatively tight linkages between EM and climate, soil chemistry, and plant communities. That FE appear less linked with these factors may speak to limitations of a culture-based approach, but more likely reflects the small spatial scale encompassed by our study. Future work should consider comparable methods for characterizing these functional groups, and additional transects to understand relationships of EM and FE to environmental factors that are likely to shift as a function of climate change. © 2018 Botanical Society of America.

  8. Arthropod Diversity and Functional Importance in Old-Growth Forests of North America

    Directory of Open Access Journals (Sweden)

    Timothy Schowalter

    2017-03-01

    Full Text Available Old-growth forests have become rare in North America but provide habitat for unique assemblages of species that often are rare in younger forests. Insects and related arthropods reach their highest diversity in old-growth forests because of their stable moderate temperature and relative humidity and the rich variety of resources represented by high plant species richness and structural complexity. Old-growth arthropod assemblages typically are distinct from those in younger, managed forests. Major subcommunities include the arboreal community that is composed of a rich assemblage of herbivores, fungivores, and their associated predators and parasitoids that function to regulate primary production and nutrient fluxes, the stem zone community that includes bark- and wood-boring species and their associated predators and parasitoids that initiate the decomposition of coarse woody debris, and the forest floor community composed of a variety of detritivores, fungivores, burrowers, and their associated predators and parasitoids that are instrumental in litter decomposition. Insect outbreaks are relatively rare in old-growth forests, where the diversity of resources and predators limit population growth. In turn, insects contribute to plant diversity and limit primary production of host plant species, thereby promoting development of old-growth forest characteristics. Arthropods also provide important functions in decomposition and nutrient cycling that may be lost in younger, managed forests with limited provision of coarse woody debris and accumulated litter. Protection of remnant old-growth forests within the forest matrix may be particularly valuable for maintaining the diversity of plant and arthropod predators that can minimize outbreaks, thereby contributing to resilience to changing environmental conditions.

  9. Functional Gene Diversity and Metabolic Potential of the Microbial Community in an Estuary-Shelf Environment

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2017-06-01

    Full Text Available Microbes play crucial roles in various biogeochemical processes in the ocean, including carbon (C, nitrogen (N, and phosphorus (P cycling. Functional gene diversity and the structure of the microbial community determines its metabolic potential and therefore its ecological function in the marine ecosystem. However, little is known about the functional gene composition and metabolic potential of bacterioplankton in estuary areas. The East China Sea (ECS is a dynamic marginal ecosystem in the western Pacific Ocean that is mainly affected by input from the Changjiang River and the Kuroshio Current. Here, using a high-throughput functional gene microarray (GeoChip, we analyzed the functional gene diversity, composition, structure, and metabolic potential of microbial assemblages in different ECS water masses. Four water masses determined by temperature and salinity relationship showed different patterns of functional gene diversity and composition. Generally, functional gene diversity [Shannon–Weaner’s H and reciprocal of Simpson’s 1/(1-D] in the surface water masses was higher than that in the bottom water masses. The different presence and proportion of functional genes involved in C, N, and P cycling among the bacteria of the different water masses showed different metabolic preferences of the microbial populations in the ECS. Genes involved in starch metabolism (amyA and nplT showed higher proportion in microbial communities of the surface water masses than of the bottom water masses. In contrast, a higher proportion of genes involved in chitin degradation was observed in microorganisms of the bottom water masses. Moreover, we found a higher proportion of nitrogen fixation (nifH, transformation of hydroxylamine to nitrite (hao and ammonification (gdh genes in the microbial communities of the bottom water masses compared with those of the surface water masses. The spatial variation of microbial functional genes was significantly correlated

  10. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices.

    Science.gov (United States)

    Gagic, Vesna; Bartomeus, Ignasi; Jonsson, Tomas; Taylor, Astrid; Winqvist, Camilla; Fischer, Christina; Slade, Eleanor M; Steffan-Dewenter, Ingolf; Emmerson, Mark; Potts, Simon G; Tscharntke, Teja; Weisser, Wolfgang; Bommarco, Riccardo

    2015-02-22

    Drastic biodiversity declines have raised concerns about the deterioration of ecosystem functions and have motivated much recent research on the relationship between species diversity and ecosystem functioning. A functional trait framework has been proposed to improve the mechanistic understanding of this relationship, but this has rarely been tested for organisms other than plants. We analysed eight datasets, including five animal groups, to examine how well a trait-based approach, compared with a more traditional taxonomic approach, predicts seven ecosystem functions below- and above-ground. Trait-based indices consistently provided greater explanatory power than species richness or abundance. The frequency distributions of single or multiple traits in the community were the best predictors of ecosystem functioning. This implies that the ecosystem functions we investigated were underpinned by the combination of trait identities (i.e. single-trait indices) and trait complementarity (i.e. multi-trait indices) in the communities. Our study provides new insights into the general mechanisms that link biodiversity to ecosystem functioning in natural animal communities and suggests that the observed responses were due to the identity and dominance patterns of the trait composition rather than the number or abundance of species per se. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  11. Principal determinants of species and functional diversity of carabid beetle assemblages during succession at post-industrial sites.

    Science.gov (United States)

    Sipos, J; Hodecek, J; Kuras, T; Dolny, A

    2017-08-01

    Although ecological succession is one of the principal focuses of recent restoration ecology research, it is still unclear which factors drive this process and positively influence species richness and functional diversity. In this study we sought to elucidate how species traits and functional diversity change during forest succession, and to identify important factors that determine the species in the observed assemblages. We analyzed species richness and functional diversity of ground beetle assemblages in relation to succession on post-industrial localities after habitat deterioration caused by spoil deposition. We selected ground beetles as they are known to be sensitive to landscape changes (with a large range of responses), and their taxonomy and ecology are generally well-known. Ground beetles were sampled on the spoil heaps during the last 30 years when spontaneous succession occurred. To calculate functional diversity, we used traits related to habitat and trophic niche, i.e. food specialization, wing morphology, trophic level, and bio-indication value. Ground beetle species were found to be distributed non-randomly in the assemblages in the late phase of succession. Ordination analyses revealed that the ground beetle assemblage was significantly associated with the proportion of forested area. Environmental heterogeneity generated assemblages that contained over-dispersed species traits. Our findings indicated that environmental conditions at late successional stages supported less mobile carnivorous species. Overall, we conclude that the decline in species richness and functional diversity in the middle of the studied succession gradient indicated that the assemblages of open habitats had been replaced by species typical of forest ecosystems.

  12. Morphological and functional diversity in therizinosaur claws and the implications for theropod claw evolution.

    Science.gov (United States)

    Lautenschlager, Stephan

    2014-06-22

    Therizinosaurs are a group of herbivorous theropod dinosaurs from the Cretaceous of North America and Asia, best known for their iconically large and elongate manual claws. However, among Therizinosauria, ungual morphology is highly variable, reflecting a general trend found in derived theropod dinosaurs (Maniraptoriformes). A combined approach of shape analysis to characterize changes in manual ungual morphology across theropods and finite-element analysis to assess the biomechanical properties of different ungual shapes in therizinosaurs reveals a functional diversity related to ungual morphology. While some therizinosaur taxa used their claws in a generalist fashion, other taxa were functionally adapted to use the claws as grasping hooks during foraging. Results further indicate that maniraptoriform dinosaurs deviated from the plesiomorphic theropod ungual morphology resulting in increased functional diversity. This trend parallels modifications of the cranial skeleton in derived theropods in response to dietary adaptation, suggesting that dietary diversification was a major driver for morphological and functional disparity in theropod evolution.

  13. Phylogenetic and Functional Diversity of Total (DNA) and Expressed (RNA) Bacterial Communities in Urban Green Infrastructure Bioswale Soils.

    Science.gov (United States)

    Gill, Aman S; Lee, Angela; McGuire, Krista L

    2017-08-15

    New York City (NYC) is pioneering green infrastructure with the use of bioswales and other engineered soil-based habitats to provide stormwater infiltration and other ecosystem functions. In addition to avoiding the environmental and financial costs of expanding traditional built infrastructure, green infrastructure is thought to generate cobenefits in the form of diverse ecological processes performed by its plant and microbial communities. Yet, although plant communities in these habitats are closely managed, we lack basic knowledge about how engineered ecosystems impact the distribution and functioning of soil bacteria. We sequenced amplicons of the 16S ribosomal subunit, as well as seven genes associated with functional pathways, generated from both total (DNA-based) and expressed (RNA) soil communities in the Bronx, NYC, NY, in order to test whether bioswale soils host characteristic bacterial communities with evidence for enriched microbial functioning, compared to nonengineered soils in park lawns and tree pits. Bioswales had distinct, phylogenetically diverse bacterial communities, including taxa associated with nutrient cycling and metabolism of hydrocarbons and other pollutants. Bioswale soils also had a significantly greater diversity of genes involved in several functional pathways, including carbon fixation ( cbbL-R [ cbbL gene, red-like subunit] and apsA ), nitrogen cycling ( noxZ and amoA ), and contaminant degradation ( bphA ); conversely, no functional genes were significantly more abundant in nonengineered soils. These results provide preliminary evidence that urban land management can shape the diversity and activity of soil communities, with positive consequences for genetic resources underlying valuable ecological functions, including biogeochemical cycling and degradation of common urban pollutants. IMPORTANCE Management of urban soil biodiversity by favoring taxa associated with decontamination or other microbial metabolic processes is a

  14. Minimal models from W-constrained hierarchies via the Kontsevich-Miwa transform

    CERN Document Server

    Gato-Rivera, Beatriz

    1992-01-01

    A direct relation between the conformal formalism for 2d-quantum gravity and the W-constrained KP hierarchy is found, without the need to invoke intermediate matrix model technology. The Kontsevich-Miwa transform of the KP hierarchy is used to establish an identification between W constraints on the KP tau function and decoupling equations corresponding to Virasoro null vectors. The Kontsevich-Miwa transform maps the $W^{(l)}$-constrained KP hierarchy to the $(p^\\prime,p)$ minimal model, with the tau function being given by the correlator of a product of (dressed) $(l,1)$ (or $(1,l)$) operators, provided the Miwa parameter $n_i$ and the free parameter (an abstract $bc$ spin) present in the constraints are expressed through the ratio $p^\\prime/p$ and the level $l$.

  15. Diversity and Abundance of Beetle (Coleoptera Functional Groups in a Range of Land Use System in Jambi, Sumatra

    Directory of Open Access Journals (Sweden)

    SURYO HARDIWINOTO

    2009-10-01

    Full Text Available Degradation of tropical rain forest might exert impacts on biodiversity loss and affect the function and stability of the related ecosystems. The objective of this study was to study the impact of land use systems (LUS on the diversity and abundance of beetle functional groups in Jambi area, Sumatra. This research was carried out during the rainy season (May-June of 2004. Inventory and collection of beetles have been conducted using winkler method across six land use systems, i.e. primary forest, secondary forest, Imperata grassland, rubber plantation, oilpalm plantation, and cassava garden. The result showed that a total of 47 families and subfamilies of beetles was found in the study area, and they were classified into four major functional groups, i.e. herbivore, predator, scavenger, and fungivore. There were apparent changes in proportion, diversity, and abundance of beetle functional groups from forests to other land use systems. The bulk of beetle diversity and abundance appeared to converge in primary forest and secondary forest and predatory beetles were the most diverse and the most abundant of the four major functional groups.

  16. Constrained evolution in numerical relativity

    Science.gov (United States)

    Anderson, Matthew William

    The strongest potential source of gravitational radiation for current and future detectors is the merger of binary black holes. Full numerical simulation of such mergers can provide realistic signal predictions and enhance the probability of detection. Numerical simulation of the Einstein equations, however, is fraught with difficulty. Stability even in static test cases of single black holes has proven elusive. Common to unstable simulations is the growth of constraint violations. This work examines the effect of controlling the growth of constraint violations by solving the constraints periodically during a simulation, an approach called constrained evolution. The effects of constrained evolution are contrasted with the results of unconstrained evolution, evolution where the constraints are not solved during the course of a simulation. Two different formulations of the Einstein equations are examined: the standard ADM formulation and the generalized Frittelli-Reula formulation. In most cases constrained evolution vastly improves the stability of a simulation at minimal computational cost when compared with unconstrained evolution. However, in the more demanding test cases examined, constrained evolution fails to produce simulations with long-term stability in spite of producing improvements in simulation lifetime when compared with unconstrained evolution. Constrained evolution is also examined in conjunction with a wide variety of promising numerical techniques, including mesh refinement and overlapping Cartesian and spherical computational grids. Constrained evolution in boosted black hole spacetimes is investigated using overlapping grids. Constrained evolution proves to be central to the host of innovations required in carrying out such intensive simulations.

  17. Functional Diversity of AAA+ Protease Complexes in Bacillus subtilis

    Science.gov (United States)

    Elsholz, Alexander K. W.; Birk, Marlene S.; Charpentier, Emmanuelle; Turgay, Kürşad

    2017-01-01

    Here, we review the diverse roles and functions of AAA+ protease complexes in protein homeostasis, control of stress response and cellular development pathways by regulatory and general proteolysis in the Gram-positive model organism Bacillus subtilis. We discuss in detail the intricate involvement of AAA+ protein complexes in controlling sporulation, the heat shock response and the role of adaptor proteins in these processes. The investigation of these protein complexes and their adaptor proteins has revealed their relevance for Gram-positive pathogens and their potential as targets for new antibiotics. PMID:28748186

  18. Functional Diversity of AAA+ Protease Complexes in Bacillus subtilis.

    Science.gov (United States)

    Elsholz, Alexander K W; Birk, Marlene S; Charpentier, Emmanuelle; Turgay, Kürşad

    2017-01-01

    Here, we review the diverse roles and functions of AAA+ protease complexes in protein homeostasis, control of stress response and cellular development pathways by regulatory and general proteolysis in the Gram-positive model organism Bacillus subtilis . We discuss in detail the intricate involvement of AAA+ protein complexes in controlling sporulation, the heat shock response and the role of adaptor proteins in these processes. The investigation of these protein complexes and their adaptor proteins has revealed their relevance for Gram-positive pathogens and their potential as targets for new antibiotics.

  19. Response diversity, functional redundancy, and post-logging productivity in northern temperate and boreal forests.

    Science.gov (United States)

    Correia, David Laginha Pinto; Raulier, Frédéric; Bouchard, Mathieu; Filotas, Élise

    2018-04-19

    The development of efficient ecosystem resilience indicators was identified as one of the key research priorities in the improvement of existing sustainable forest management frameworks. Two indicators of tree diversity associated with ecosystem functioning have recently received particular attention in the literature: functional redundancy (FR) and response diversity (RD). We examined how these indicators could be used to predict post-logging productivity in forests of Québec, Canada. We analysed the relationships between pre-logging FR and RD, as measured with sample plots, and post-logging productivity, measured as seasonal variation in enhanced vegetation index obtained from MODIS satellite imagery. The effects of the deciduous and coniferous tree components in our pre-disturbance diversity assessments were isolated in order to examine the hypothesis that they have different impacts on post-disturbance productivity. We also examined the role of tree species richness and species identity effects. Our analysis revealed the complementary nature of traditional biodiversity indicators and trait-based approaches in the study of biodiversity-ecosystem-functioning relationships in dynamic ecosystems. We report a significant and positive relationship between pre-disturbance deciduous RD and post-disturbance productivity, as well as an unexpected significant negative effect of coniferous RD on productivity. This negative relationship with post-logging productivity likely results from slower coniferous regeneration speeds and from the relatively short temporal scale examined. Negative black-spruce-mediated identity effects were likely associated with increased stand vulnerability to paludification and invasion by ericaceous shrubs that slow down forest regeneration. Response diversity outperformed functional redundancy as a measure of post-disturbance productivity most likely due to the stand-replacing nature of the disturbance considered. To the best of our knowledge

  20. Elevated Atmospheric CO2 and Drought Affect Soil Microbial Community and Functional Diversity Associated with Glycine max

    Directory of Open Access Journals (Sweden)

    Junfeng Wang

    2017-12-01

    Full Text Available Abstract Under the background of climate change, the increase of atmospheric CO2 and drought frequency have been considered as significant influencers on the soil microbial communities and the yield and quality of crop. In this study, impacts of increased ambient CO2 and drought on soil microbial structure and functional diversity of a Stagnic Anthrosol were investigated in phytotron growth chambers, by testing two representative CO2 levels, three soil moisture levels, and two soil cover types (with or without Glycine max. The 16S rDNA and 18S rDNA fragments were amplified to analyze the functional diversity of fungi and bacteria. Results showed that rhizosphere microbial biomass and community structure were significantly affected by drought, but effects differed between fungi and bacteria. Drought adaptation of fungi was found to be easier than that of bacteria. The diversity of fungi was less affected by drought than that of bacteria, evidenced by their higher diversity. Severe drought reduced soil microbial functional diversity and restrained the metabolic activity. Elevated CO2 alone, in the absence of crops (bare soil, did not enhance the metabolic activity of soil microorganisms. Generally, due to the co-functioning of plant and soil microorganisms in water and nutrient use, plants have major impacts on the soil microbial community, leading to atmospheric CO2 enrichment, but cannot significantly reduce the impacts of drought on soil microorganisms.

  1. Parametric scaling from species to growth-form diversity: an interesting analogy with multifractal functions.

    Science.gov (United States)

    Ricotta, Carlo; Pacini, Alessandra; Avena, Giancarlo

    2002-01-01

    We propose a measure of divergence from species to life-form diversity aimed at summarizing the ecological similarity among different plant communities without losing information on traditional taxonomic diversity. First, species and life-form relative abundances within a given plant community are determined. Next, using Rényi's generalized entropy, the diversity profiles of the analyzed community are computed both from species and life-form relative abundances. Finally, the speed of decrease from species to life-form diversity is obtained by combining the outcome of both profiles. Interestingly, the proposed measure shows some formal analogies with multifractal functions developed in statistical physics for the analysis of spatial patterns. As an application for demonstration, a small data set from a plant community sampled in the archaeological site of Paestum (southern Italy) is used.

  2. Available nitrogen is the key factor influencing soil microbial functional gene diversity in tropical rainforest.

    Science.gov (United States)

    Cong, Jing; Liu, Xueduan; Lu, Hui; Xu, Han; Li, Yide; Deng, Ye; Li, Diqiang; Zhang, Yuguang

    2015-08-20

    Tropical rainforests cover over 50% of all known plant and animal species and provide a variety of key resources and ecosystem services to humans, largely mediated by metabolic activities of soil microbial communities. A deep analysis of soil microbial communities and their roles in ecological processes would improve our understanding on biogeochemical elemental cycles. However, soil microbial functional gene diversity in tropical rainforests and causative factors remain unclear. GeoChip, contained almost all of the key functional genes related to biogeochemical cycles, could be used as a specific and sensitive tool for studying microbial gene diversity and metabolic potential. In this study, soil microbial functional gene diversity in tropical rainforest was analyzed by using GeoChip technology. Gene categories detected in the tropical rainforest soils were related to different biogeochemical processes, such as carbon (C), nitrogen (N) and phosphorus (P) cycling. The relative abundance of genes related to C and P cycling detected mostly derived from the cultured bacteria. C degradation gene categories for substrates ranging from labile C to recalcitrant C were all detected, and gene abundances involved in many recalcitrant C degradation gene categories were significantly (P rainforest. Soil available N could be the key factor in shaping the soil microbial functional gene structure and metabolic potential.

  3. A real-time Java tool chain for resource constrained platforms

    DEFF Research Database (Denmark)

    Korsholm, Stephan Erbs; Søndergaard, Hans; Ravn, Anders P.

    2013-01-01

    The Java programming language was originally developed for embedded systems, but the resource requirements of previous and current Java implementations - especially memory consumption - tend to exclude them from being used on a significant class of resource constrained embedded platforms. The con......The Java programming language was originally developed for embedded systems, but the resource requirements of previous and current Java implementations - especially memory consumption - tend to exclude them from being used on a significant class of resource constrained embedded platforms...... by integrating: (1) a lean virtual machine (HVM) without any external dependencies on POSIX-like libraries or other OS functionalities, (2) a hardware abstraction layer, implemented almost entirely in Java through the use of hardware objects, first level interrupt handlers, and native variables, and (3....... An evaluation of the presented solution shows that the miniCDj benchmark gets reduced to a size where it can run on resource constrained platforms....

  4. Gluon field strength correlation functions within a constrained instanton model

    International Nuclear Information System (INIS)

    Dorokhov, A.E.; Esaibegyan, S.V.; Maximov, A.E.; Mikhailov, S.V.

    2000-01-01

    We suggest a constrained instanton (CI) solution in the physical QCD vacuum which is described by large-scale vacuum field fluctuations. This solution decays exponentially at large distances. It is stable only if the interaction of the instanton with the background vacuum field is small and additional constraints are introduced. The CI solution is explicitly constructed in the ansatz form, and the two-point vacuum correlator of the gluon field strengths is calculated in the framework of the effective instanton vacuum model. At small distances the results are qualitatively similar to the single instanton case; in particular, the D 1 invariant structure is small, which is in agreement with the lattice calculations. (orig.)

  5. Habitat connectivity and local conditions shape taxonomic and functional diversity of arthropods on green roofs.

    Science.gov (United States)

    Braaker, Sonja; Obrist, Martin Karl; Ghazoul, Jaboury; Moretti, Marco

    2017-05-01

    Increasing development of urban environments creates high pressure on green spaces with potential negative impacts on biodiversity and ecosystem services. There is growing evidence that green roofs - rooftops covered with vegetation - can contribute mitigate the loss of urban green spaces by providing new habitats for numerous arthropod species. Whether green roofs can contribute to enhance taxonomic and functional diversity and increase connectivity across urbanized areas remains, however, largely unknown. Furthermore, only limited information is available on how environmental conditions shape green roof arthropod communities. We investigated the community composition of arthropods (Apidae, Curculionidae, Araneae and Carabidae) on 40 green roofs and 40 green sites at ground level in the city of Zurich, Switzerland. We assessed how the site's environmental variables (such as area, height, vegetation, substrate and connectivity among sites) affect species richness and functional diversity using generalized linear models. We used an extension of co-inertia analysis (RLQ) and fourth-corner analysis to highlight the mechanism underlying community assemblages across taxonomic groups on green roof and ground communities. Species richness was higher at ground-level sites, while no difference in functional diversity was found between green roofs and ground sites. Green roof arthropod diversity increased with higher connectivity and plant species richness, irrespective of substrate depth, height and area of green roofs. The species trait analysis reviewed the mechanisms related to the environmental predictors that shape the species assemblages of the different taxa at ground and roof sites. Our study shows the important contribution of green roofs in maintaining high functional diversity of arthropod communities across different taxonomic groups, despite their lower species richness compared with ground sites. Species communities on green roofs revealed to be characterized

  6. Functional Diversity of Fibroblast Growth Factors in Bone Formation

    Directory of Open Access Journals (Sweden)

    Yuichiro Takei

    2015-01-01

    Full Text Available The functional significance of fibroblast growth factor (FGF signaling in bone formation has been demonstrated through genetic loss-of-function and gain-of-function approaches. FGFs, comprising 22 family members, are classified into three subfamilies: canonical, hormone-like, and intracellular. The former two subfamilies activate their signaling pathways through FGF receptors (FGFRs. Currently, intracellular FGFs appear to be primarily involved in the nervous system. Canonical FGFs such as FGF2 play significant roles in bone formation, and precise spatiotemporal control of FGFs and FGFRs at the transcriptional and posttranscriptional levels may allow for the functional diversity of FGFs during bone formation. Recently, several research groups, including ours, have shown that FGF23, a member of the hormone-like FGF subfamily, is primarily expressed in osteocytes/osteoblasts. This polypeptide decreases serum phosphate levels by inhibiting renal phosphate reabsorption and vitamin D3 activation, resulting in mineralization defects in the bone. Thus, FGFs are involved in the positive and negative regulation of bone formation. In this review, we focus on the reciprocal roles of FGFs in bone formation in relation to their local versus systemic effects.

  7. Dimensions of biodiversity loss: Spatial mismatch in land-use impacts on species, functional and phylogenetic diversity of European bees.

    Science.gov (United States)

    De Palma, Adriana; Kuhlmann, Michael; Bugter, Rob; Ferrier, Simon; Hoskins, Andrew J; Potts, Simon G; Roberts, Stuart P M; Schweiger, Oliver; Purvis, Andy

    2017-12-01

    Agricultural intensification and urbanization are important drivers of biodiversity change in Europe. Different aspects of bee community diversity vary in their sensitivity to these pressures, as well as independently influencing ecosystem service provision (pollination). To obtain a more comprehensive understanding of human impacts on bee diversity across Europe, we assess multiple, complementary indices of diversity. One Thousand four hundred and forty six sites across Europe. We collated data on bee occurrence and abundance from the published literature and supplemented them with the PREDICTS database. Using Rao's Quadratic Entropy, we assessed how species, functional and phylogenetic diversity of 1,446 bee communities respond to land-use characteristics including land-use class, cropland intensity, human population density and distance to roads. We combined these models with statistically downscaled estimates of land use in 2005 to estimate and map-at a scale of approximately 1 km 2 -the losses in diversity relative to semi-natural/natural baseline (the predicted diversity of an uninhabited grid square, consisting only of semi-natural/natural vegetation). We show that-relative to the predicted local diversity in uninhabited semi-natural/natural habitat-half of all EU27 countries have lost over 10% of their average local species diversity and two-thirds of countries have lost over 5% of their average local functional and phylogenetic diversity. All diversity measures were generally lower in pasture and higher-intensity cropland than in semi-natural/natural vegetation, but facets of diversity showed less consistent responses to human population density. These differences have led to marked spatial mismatches in losses: losses in phylogenetic diversity were in some areas almost 20 percentage points (pp.) more severe than losses in species diversity, but in other areas losses were almost 40 pp. less severe. These results highlight the importance of exploring

  8. Evolutionary Pattern and Regulation Analysis to Support Why Diversity Functions Existed within PPAR Gene Family Members

    Directory of Open Access Journals (Sweden)

    Tianyu Zhou

    2015-01-01

    Full Text Available Peroxisome proliferators-activated receptor (PPAR gene family members exhibit distinct patterns of distribution in tissues and differ in functions. The purpose of this study is to investigate the evolutionary impacts on diversity functions of PPAR members and the regulatory differences on gene expression patterns. 63 homology sequences of PPAR genes from 31 species were collected and analyzed. The results showed that three isolated types of PPAR gene family may emerge from twice times of gene duplication events. The conserved domains of HOLI (ligand binding domain of hormone receptors domain and ZnF_C4 (C4 zinc finger in nuclear in hormone receptors are essential for keeping basic roles of PPAR gene family, and the variant domains of LCRs may be responsible for their divergence in functions. The positive selection sites in HOLI domain are benefit for PPARs to evolve towards diversity functions. The evolutionary variants in the promoter regions and 3′ UTR regions of PPARs result into differential transcription factors and miRNAs involved in regulating PPAR members, which may eventually affect their expressions and tissues distributions. These results indicate that gene duplication event, selection pressure on HOLI domain, and the variants on promoter and 3′ UTR are essential for PPARs evolution and diversity functions acquired.

  9. Evolutionary Pattern and Regulation Analysis to Support Why Diversity Functions Existed within PPAR Gene Family Members.

    Science.gov (United States)

    Zhou, Tianyu; Yan, Xiping; Wang, Guosong; Liu, Hehe; Gan, Xiang; Zhang, Tao; Wang, Jiwen; Li, Liang

    2015-01-01

    Peroxisome proliferators-activated receptor (PPAR) gene family members exhibit distinct patterns of distribution in tissues and differ in functions. The purpose of this study is to investigate the evolutionary impacts on diversity functions of PPAR members and the regulatory differences on gene expression patterns. 63 homology sequences of PPAR genes from 31 species were collected and analyzed. The results showed that three isolated types of PPAR gene family may emerge from twice times of gene duplication events. The conserved domains of HOLI (ligand binding domain of hormone receptors) domain and ZnF_C4 (C4 zinc finger in nuclear in hormone receptors) are essential for keeping basic roles of PPAR gene family, and the variant domains of LCRs may be responsible for their divergence in functions. The positive selection sites in HOLI domain are benefit for PPARs to evolve towards diversity functions. The evolutionary variants in the promoter regions and 3' UTR regions of PPARs result into differential transcription factors and miRNAs involved in regulating PPAR members, which may eventually affect their expressions and tissues distributions. These results indicate that gene duplication event, selection pressure on HOLI domain, and the variants on promoter and 3' UTR are essential for PPARs evolution and diversity functions acquired.

  10. Functional diversity of resilin in Arthropoda

    Directory of Open Access Journals (Sweden)

    Jan Michels

    2016-09-01

    Full Text Available Resilin is an elastomeric protein typically occurring in exoskeletons of arthropods. It is composed of randomly orientated coiled polypeptide chains that are covalently cross-linked together at regular intervals by the two unusual amino acids dityrosine and trityrosine forming a stable network with a high degree of flexibility and mobility. As a result of its molecular prerequisites, resilin features exceptional rubber-like properties including a relatively low stiffness, a rather pronounced long-range deformability and a nearly perfect elastic recovery. Within the exoskeleton structures, resilin commonly forms composites together with other proteins and/or chitin fibres. In the last decades, numerous exoskeleton structures with large proportions of resilin and various resilin functions have been described. Today, resilin is known to be responsible for the generation of deformability and flexibility in membrane and joint systems, the storage of elastic energy in jumping and catapulting systems, the enhancement of adaptability to uneven surfaces in attachment and prey catching systems, the reduction of fatigue and damage in reproductive, folding and feeding systems and the sealing of wounds in a traumatic reproductive system. In addition, resilin is present in many compound eye lenses and is suggested to be a very suitable material for optical elements because of its transparency and amorphousness. The evolution of this remarkable functional diversity can be assumed to have only been possible because resilin exhibits a unique combination of different outstanding properties.

  11. Metal artifact reduction in x-ray computed tomography (CT) by constrained optimization

    International Nuclear Information System (INIS)

    Zhang Xiaomeng; Wang Jing; Xing Lei

    2011-01-01

    Purpose: The streak artifacts caused by metal implants have long been recognized as a problem that limits various applications of CT imaging. In this work, the authors propose an iterative metal artifact reduction algorithm based on constrained optimization. Methods: After the shape and location of metal objects in the image domain is determined automatically by the binary metal identification algorithm and the segmentation of ''metal shadows'' in projection domain is done, constrained optimization is used for image reconstruction. It minimizes a predefined function that reflects a priori knowledge of the image, subject to the constraint that the estimated projection data are within a specified tolerance of the available metal-shadow-excluded projection data, with image non-negativity enforced. The minimization problem is solved through the alternation of projection-onto-convex-sets and the steepest gradient descent of the objective function. The constrained optimization algorithm is evaluated with a penalized smoothness objective. Results: The study shows that the proposed method is capable of significantly reducing metal artifacts, suppressing noise, and improving soft-tissue visibility. It outperforms the FBP-type methods and ART and EM methods and yields artifacts-free images. Conclusions: Constrained optimization is an effective way to deal with CT reconstruction with embedded metal objects. Although the method is presented in the context of metal artifacts, it is applicable to general ''missing data'' image reconstruction problems.

  12. Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points

    Science.gov (United States)

    Regis, Rommel G.

    2014-02-01

    This article develops two new algorithms for constrained expensive black-box optimization that use radial basis function surrogates for the objective and constraint functions. These algorithms are called COBRA and Extended ConstrLMSRBF and, unlike previous surrogate-based approaches, they can be used for high-dimensional problems where all initial points are infeasible. They both follow a two-phase approach where the first phase finds a feasible point while the second phase improves this feasible point. COBRA and Extended ConstrLMSRBF are compared with alternative methods on 20 test problems and on the MOPTA08 benchmark automotive problem (D.R. Jones, Presented at MOPTA 2008), which has 124 decision variables and 68 black-box inequality constraints. The alternatives include a sequential penalty derivative-free algorithm, a direct search method with kriging surrogates, and two multistart methods. Numerical results show that COBRA algorithms are competitive with Extended ConstrLMSRBF and they generally outperform the alternatives on the MOPTA08 problem and most of the test problems.

  13. Increased microbial functional diversity under long-term organic and integrated fertilization in a paddy soil.

    Science.gov (United States)

    Ding, Long-Jun; Su, Jian-Qiang; Sun, Guo-Xin; Wu, Jin-Shui; Wei, Wen-Xue

    2018-02-01

    Microbes play key roles in diverse biogeochemical processes including nutrient cycling. However, responses of soil microbial community and functional genes to long-term integrated fertilization (chemical combined with organic fertilization) remain unclear. Here, we used pyrosequencing and a microarray-based GeoChip to explore the shifts of microbial community and functional genes in a paddy soil which received over 21-year fertilization with various regimes, including control (no fertilizer), rice straw (R), rice straw plus chemical fertilizer nitrogen (NR), N and phosphorus (NPR), NP and potassium (NPKR), and reduced rice straw plus reduced NPK (L-NPKR). Significant shifts of the overall soil bacterial composition only occurred in the NPKR and L-NPKR treatments, with enrichment of certain groups including Bradyrhizobiaceae and Rhodospirillaceae families that benefit higher productivity. All fertilization treatments significantly altered the soil microbial functional structure with increased diversity and abundances of genes for carbon and nitrogen cycling, in which NPKR and L-NPKR exhibited the strongest effect, while R exhibited the least. Functional gene structure and abundance were significantly correlated with corresponding soil enzymatic activities and rice yield, respectively, suggesting that the structural shift of the microbial functional community under fertilization might promote soil nutrient turnover and thereby affect yield. Overall, this study indicates that the combined application of rice straw and balanced chemical fertilizers was more pronounced in shifting the bacterial composition and improving the functional diversity toward higher productivity, providing a microbial point of view on applying a cost-effective integrated fertilization regime with rice straw plus reduced chemical fertilizers for sustainable nutrient management.

  14. Pole shifting with constrained output feedback

    International Nuclear Information System (INIS)

    Hamel, D.; Mensah, S.; Boisvert, J.

    1984-03-01

    The concept of pole placement plays an important role in linear, multi-variable, control theory. It has received much attention since its introduction, and several pole shifting algorithms are now available. This work presents a new method which allows practical and engineering constraints such as gain limitation and controller structure to be introduced right into the pole shifting design strategy. This is achieved by formulating the pole placement problem as a constrained optimization problem. Explicit constraints (controller structure and gain limits) are defined to identify an admissible region for the feedback gain matrix. The desired pole configuration is translated into an appropriate cost function which must be closed-loop minimized. The resulting constrained optimization problem can thus be solved with optimization algorithms. The method has been implemented as an algorithmic interactive module in a computer-aided control system design package, MVPACK. The application of the method is illustrated to design controllers for an aircraft and an evaporator. The results illustrate the importance of controller structure on overall performance of a control system

  15. CycloPs: generating virtual libraries of cyclized and constrained peptides including nonnatural amino acids.

    Science.gov (United States)

    Duffy, Fergal J; Verniere, Mélanie; Devocelle, Marc; Bernard, Elise; Shields, Denis C; Chubb, Anthony J

    2011-04-25

    We introduce CycloPs, software for the generation of virtual libraries of constrained peptides including natural and nonnatural commercially available amino acids. The software is written in the cross-platform Python programming language, and features include generating virtual libraries in one-dimensional SMILES and three-dimensional SDF formats, suitable for virtual screening. The stand-alone software is capable of filtering the virtual libraries using empirical measurements, including peptide synthesizability by standard peptide synthesis techniques, stability, and the druglike properties of the peptide. The software and accompanying Web interface is designed to enable the rapid generation of large, structurally diverse, synthesizable virtual libraries of constrained peptides quickly and conveniently, for use in virtual screening experiments. The stand-alone software, and the Web interface for evaluating these empirical properties of a single peptide, are available at http://bioware.ucd.ie .

  16. Adaptive Constrained Optimal Control Design for Data-Based Nonlinear Discrete-Time Systems With Critic-Only Structure.

    Science.gov (United States)

    Luo, Biao; Liu, Derong; Wu, Huai-Ning

    2018-06-01

    Reinforcement learning has proved to be a powerful tool to solve optimal control problems over the past few years. However, the data-based constrained optimal control problem of nonaffine nonlinear discrete-time systems has rarely been studied yet. To solve this problem, an adaptive optimal control approach is developed by using the value iteration-based Q-learning (VIQL) with the critic-only structure. Most of the existing constrained control methods require the use of a certain performance index and only suit for linear or affine nonlinear systems, which is unreasonable in practice. To overcome this problem, the system transformation is first introduced with the general performance index. Then, the constrained optimal control problem is converted to an unconstrained optimal control problem. By introducing the action-state value function, i.e., Q-function, the VIQL algorithm is proposed to learn the optimal Q-function of the data-based unconstrained optimal control problem. The convergence results of the VIQL algorithm are established with an easy-to-realize initial condition . To implement the VIQL algorithm, the critic-only structure is developed, where only one neural network is required to approximate the Q-function. The converged Q-function obtained from the critic-only VIQL method is employed to design the adaptive constrained optimal controller based on the gradient descent scheme. Finally, the effectiveness of the developed adaptive control method is tested on three examples with computer simulation.

  17. A real-time Java tool chain for resource constrained platforms

    DEFF Research Database (Denmark)

    Korsholm, Stephan E.; Søndergaard, Hans; Ravn, Anders Peter

    2014-01-01

    The Java programming language was originally developed for embedded systems, but the resource requirements of previous and current Java implementations – especially memory consumption – tend to exclude them from being used on a significant class of resource constrained embedded platforms. The con......The Java programming language was originally developed for embedded systems, but the resource requirements of previous and current Java implementations – especially memory consumption – tend to exclude them from being used on a significant class of resource constrained embedded platforms...... by integrating the following: (1) a lean virtual machine without any external dependencies on POSIX-like libraries or other OS functionalities; (2) a hardware abstraction layer, implemented almost entirely in Java through the use of hardware objects, first level interrupt handlers, and native variables; and (3....... An evaluation of the presented solution shows that the miniCDj benchmark gets reduced to a size where it can run on resource constrained platforms....

  18. Consumers control diversity and functioning of a natural marine ecosystem.

    Directory of Open Access Journals (Sweden)

    Andrew H Altieri

    Full Text Available BACKGROUND: Our understanding of the functional consequences of changes in biodiversity has been hampered by several limitations of previous work, including limited attention to trophic interactions, a focus on species richness rather than evenness, and the use of artificially assembled communities. METHODOLOGY AND PRINCIPAL FINDINGS: In this study, we manipulated the density of an herbivorous snail in natural tide pools and allowed seaweed communities to assemble in an ecologically relevant and non-random manner. Seaweed species evenness and biomass-specific primary productivity (mg O(2 h(-1 g(-1 were higher in tide pools with snails because snails preferentially consumed an otherwise dominant seaweed species that can reduce biomass-specific productivity rates of algal assemblages. Although snails reduced overall seaweed biomass in tide pools, they did not affect gross primary productivity at the scale of tide pools (mg O(2 h(-1 pool(-1 or mg O(2 h(-1 m(-2 because of the enhanced biomass-specific productivity associated with grazer-mediated increases in algal evenness. SIGNIFICANCE: Our results suggest that increased attention to trophic interactions, diversity measures other than richness, and particularly the effects of consumers on evenness and primary productivity, will improve our understanding of the relationship between diversity and ecosystem functioning and allow more effective links between experimental results and real-world changes in biodiversity.

  19. Wave-function functionals for the density

    International Nuclear Information System (INIS)

    Slamet, Marlina; Pan Xiaoyin; Sahni, Viraht

    2011-01-01

    We extend the idea of the constrained-search variational method for the construction of wave-function functionals ψ[χ] of functions χ. The search is constrained to those functions χ such that ψ[χ] reproduces the density ρ(r) while simultaneously leading to an upper bound to the energy. The functionals are thereby normalized and automatically satisfy the electron-nucleus coalescence condition. The functionals ψ[χ] are also constructed to satisfy the electron-electron coalescence condition. The method is applied to the ground state of the helium atom to construct functionals ψ[χ] that reproduce the density as given by the Kinoshita correlated wave function. The expectation of single-particle operators W=Σ i r i n , n=-2,-1,1,2, W=Σ i δ(r i ) are exact, as must be the case. The expectations of the kinetic energy operator W=-(1/2)Σ i ∇ i 2 , the two-particle operators W=Σ n u n , n=-2,-1,1,2, where u=|r i -r j |, and the energy are accurate. We note that the construction of such functionals ψ[χ] is an application of the Levy-Lieb constrained-search definition of density functional theory. It is thereby possible to rigorously determine which functional ψ[χ] is closer to the true wave function.

  20. New microbial resource: microbial diversity, function and dynamics in Chinese liquor starter.

    Science.gov (United States)

    Huang, Yuhong; Yi, Zhuolin; Jin, Yanling; Zhao, Yonggui; He, Kaize; Liu, Dayu; Zhao, Dong; He, Hui; Luo, Huibo; Zhang, Wenxue; Fang, Yang; Zhao, Hai

    2017-11-06

    Traditional Chinese liquor (Baijiu) solid state fermentation technology has lasted for several thousand years. The microbial communities that enrich in liquor starter are important for fermentation. However, the microbial communities are still under-characterized. In this study, 454 pyrosequencing technology was applied to comprehensively analyze the microbial diversity, function and dynamics of two most-consumed liquor starters (Jiang- and Nong-flavor) during production. In total, 315 and 83 bacterial genera and 72 and 47 fungal genera were identified in Jiang- and Nong-flavor liquor starter, respectively. The relatively high diversity was observed when the temperature increased to 70 and 62 °C for Jiang- and Nong-flavor liquor starter, respectively. Some thermophilic fungi have already been isolated. Microbial communities that might contribute to ethanol fermentation, saccharification and flavor development were identified and shown to be core communities in correlation-based network analysis. The predictively functional profile of bacterial communities showed significant difference in energy, carbohydrate and amino acid metabolism and the degradation of aromatic compounds between the two kinds of liquor starters. Here we report these liquor starters as a new functionally microbial resource, which can be used for discovering thermophilic and aerobic enzymes and for food and feed preservation.

  1. A First-order Prediction-Correction Algorithm for Time-varying (Constrained) Optimization: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Simonetto, Andrea [Universite catholique de Louvain

    2017-07-25

    This paper focuses on the design of online algorithms based on prediction-correction steps to track the optimal solution of a time-varying constrained problem. Existing prediction-correction methods have been shown to work well for unconstrained convex problems and for settings where obtaining the inverse of the Hessian of the cost function can be computationally affordable. The prediction-correction algorithm proposed in this paper addresses the limitations of existing methods by tackling constrained problems and by designing a first-order prediction step that relies on the Hessian of the cost function (and do not require the computation of its inverse). Analytical results are established to quantify the tracking error. Numerical simulations corroborate the analytical results and showcase performance and benefits of the algorithms.

  2. Nucleosome breathing and remodeling constrain CRISPR-Cas9 function

    Science.gov (United States)

    Isaac, R Stefan; Jiang, Fuguo; Doudna, Jennifer A; Lim, Wendell A; Narlikar, Geeta J; Almeida, Ricardo

    2016-01-01

    The CRISPR-Cas9 bacterial surveillance system has become a versatile tool for genome editing and gene regulation in eukaryotic cells, yet how CRISPR-Cas9 contends with the barriers presented by eukaryotic chromatin is poorly understood. Here we investigate how the smallest unit of chromatin, a nucleosome, constrains the activity of the CRISPR-Cas9 system. We find that nucleosomes assembled on native DNA sequences are permissive to Cas9 action. However, the accessibility of nucleosomal DNA to Cas9 is variable over several orders of magnitude depending on dynamic properties of the DNA sequence and the distance of the PAM site from the nucleosome dyad. We further find that chromatin remodeling enzymes stimulate Cas9 activity on nucleosomal templates. Our findings imply that the spontaneous breathing of nucleosomal DNA together with the action of chromatin remodelers allow Cas9 to effectively act on chromatin in vivo. DOI: http://dx.doi.org/10.7554/eLife.13450.001 PMID:27130520

  3. Urbanization Drives a Reduction in Functional Diversity in a Guild of Nectar-feeding Birds

    Directory of Open Access Journals (Sweden)

    Anton Pauw

    2012-06-01

    Full Text Available Urbanization is a widespread and rapidly growing threat to biodiversity, therefore we need a predictive understanding of its effects on species and ecosystem processes. In this paper we study the impact of urbanization on a guild of nectar-feeding birds in a biodiversity hotspot at the Cape of Africa. The guild of four bird species provides important ecosystem services by pollinating 320 plant species in the Cape Floral Region. Functional diversity within the guild is related to differences in bill length. The long-billed Malachite Sunbird (Nectarinia famosa plays an irreplaceable role as the exclusive pollinator of plant species with long nectar tubes. We analyzed the composition of the guild in suburban gardens of Cape Town along a gradient of increasing distance from the nearest natural habitat. Urbanization reduces the functional diversity of the nectarivore guild. Malachite Sunbirds did not penetrate more than 1 km into the city, whereas only the short-billed Southern Double-collared Sunbirds (Cinnyris chalybea occurred throughout the urbanization gradient. The lack of data precludes conclusions regarding the detailed responses of Orange-breasted Sunbirds (Anthobaphes violacea and Sugarbirds (Promerops cafer, however their absence across the entire gradient is suggestive of high sensitivity. The functional diversity of this guild of pollinators can potentially be restored, but the pros and cons of this conservation action need to be considered.

  4. Ecological-network models link diversity, structure and function in the plankton food-web

    Science.gov (United States)

    D'Alelio, Domenico; Libralato, Simone; Wyatt, Timothy; Ribera D'Alcalà, Maurizio

    2016-02-01

    A planktonic food-web model including sixty-three functional nodes (representing auto- mixo- and heterotrophs) was developed to integrate most trophic diversity present in the plankton. The model was implemented in two variants - which we named ‘green’ and ‘blue’ - characterized by opposite amounts of phytoplankton biomass and representing, respectively, bloom and non-bloom states of the system. Taxonomically disaggregated food-webs described herein allowed to shed light on how components of the plankton community changed their trophic behavior in the two different conditions, and modified the overall functioning of the plankton food web. The green and blue food-webs showed distinct organizations in terms of trophic roles of the nodes and carbon fluxes between them. Such re-organization stemmed from switches in selective grazing by both metazoan and protozoan consumers. Switches in food-web structure resulted in relatively small differences in the efficiency of material transfer towards higher trophic levels. For instance, from green to blue states, a seven-fold decrease in phytoplankton biomass translated into only a two-fold decrease in potential planktivorous fish biomass. By linking diversity, structure and function in the plankton food-web, we discuss the role of internal mechanisms, relying on species-specific functionalities, in driving the ‘adaptive’ responses of plankton communities to perturbations.

  5. Two decades of climate driving the dynamics of functional and taxonomic diversity of a tropical small mammal community in western Mexico.

    Science.gov (United States)

    Mason-Romo, Edgard David; Farías, Ariel A; Ceballos, Gerardo

    2017-01-01

    Understanding the effects of global climate disruption on biodiversity is important to future conservation efforts. While taxonomic diversity is widely studied, functional diversity of plants, and recently animals, is receiving increasing attention. Most studies of mammals are short-term, focus on temperate habitats, and rely on traits described in the literature rather than generating traits from observations. Unlike previous studies, this long-term field study assessed the factors driving the functional and taxonomic diversity of small-mammal assemblages in dry tropical forests using both traits recorded from literature and a demographic database. We assessed the drivers (abundance and biomass, temperature and rainfall) of taxonomic richness and functional diversity for two rain-driven seasons in two adjacent but distinct forests-upland and lowland (arroyo or riparian) forests. Our analysis found that rainfall, both seasonal and atypical, was the primary factor driving functional and taxonomic diversity of small-mammal assemblages. Functional responses differed between the two types of forests, however, with effects being stronger in the harsher conditions of the upland forests than in the less severe conditions prevailing in the arroyo (riparian) forest. The latter also supports a richer, more diverse, and more stable small-mammal assemblage. These findings highlight the importance of climate to tropical biological diversity, as extreme climate events (hurricanes, droughts and floods) and disruption of rainfall patterns were shown to decrease biodiversity. They also support the need to preserve these habitats, as their high taxonomic diversity and functional redundancy makes them resilient against global climate disruption and local extreme events. Tropical dry forests constitute a potential reservoir for biodiversity and the ecosystem services they provide. Unfortunately, these forests are among the most endangered terrestrial ecosystems because of

  6. Two decades of climate driving the dynamics of functional and taxonomic diversity of a tropical small mammal community in western Mexico.

    Directory of Open Access Journals (Sweden)

    Edgard David Mason-Romo

    Full Text Available Understanding the effects of global climate disruption on biodiversity is important to future conservation efforts. While taxonomic diversity is widely studied, functional diversity of plants, and recently animals, is receiving increasing attention. Most studies of mammals are short-term, focus on temperate habitats, and rely on traits described in the literature rather than generating traits from observations. Unlike previous studies, this long-term field study assessed the factors driving the functional and taxonomic diversity of small-mammal assemblages in dry tropical forests using both traits recorded from literature and a demographic database. We assessed the drivers (abundance and biomass, temperature and rainfall of taxonomic richness and functional diversity for two rain-driven seasons in two adjacent but distinct forests-upland and lowland (arroyo or riparian forests. Our analysis found that rainfall, both seasonal and atypical, was the primary factor driving functional and taxonomic diversity of small-mammal assemblages. Functional responses differed between the two types of forests, however, with effects being stronger in the harsher conditions of the upland forests than in the less severe conditions prevailing in the arroyo (riparian forest. The latter also supports a richer, more diverse, and more stable small-mammal assemblage. These findings highlight the importance of climate to tropical biological diversity, as extreme climate events (hurricanes, droughts and floods and disruption of rainfall patterns were shown to decrease biodiversity. They also support the need to preserve these habitats, as their high taxonomic diversity and functional redundancy makes them resilient against global climate disruption and local extreme events. Tropical dry forests constitute a potential reservoir for biodiversity and the ecosystem services they provide. Unfortunately, these forests are among the most endangered terrestrial ecosystems because

  7. High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography.

    Directory of Open Access Journals (Sweden)

    Ruth Hershberg

    2008-12-01

    Full Text Available Mycobacterium tuberculosis infects one third of the human world population and kills someone every 15 seconds. For more than a century, scientists and clinicians have been distinguishing between the human- and animal-adapted members of the M. tuberculosis complex (MTBC. However, all human-adapted strains of MTBC have traditionally been considered to be essentially identical. We surveyed sequence diversity within a global collection of strains belonging to MTBC using seven megabase pairs of DNA sequence data. We show that the members of MTBC affecting humans are more genetically diverse than generally assumed, and that this diversity can be linked to human demographic and migratory events. We further demonstrate that these organisms are under extremely reduced purifying selection and that, as a result of increased genetic drift, much of this genetic diversity is likely to have functional consequences. Our findings suggest that the current increases in human population, urbanization, and global travel, combined with the population genetic characteristics of M. tuberculosis described here, could contribute to the emergence and spread of drug-resistant tuberculosis.

  8. Structure, function and diversity of the healthy human microbiome.

    Science.gov (United States)

    2012-06-13

    Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far. We found the diversity and abundance of each habitat's signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81-99% of the genera, enzyme families and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology and translational applications of the human microbiome.

  9. Hsp40 function in yeast prion propagation: Amyloid diversity necessitates chaperone functional complexity.

    Science.gov (United States)

    Sporn, Zachary A; Hines, Justin K

    2015-01-01

    Yeast prions are heritable protein-based elements, most of which are formed of amyloid aggregates that rely on the action of molecular chaperones for transmission to progeny. Prions can form distinct amyloid structures, known as 'strains' in mammalian systems, that dictate both pathological progression and cross-species infection barriers. In yeast these same amyloid structural polymorphisms, called 'variants', dictate the intensity of prion-associated phenotypes and stability in mitosis. We recently reported that [PSI(+)] prion variants differ in the fundamental domain requirements for one chaperone, the Hsp40/J-protein Sis1, which are mutually exclusive between 2 different yeast prions, demonstrating a functional plurality for Sis1. Here we extend that analysis to incorporate additional data that collectively support the hypothesis that Sis1 has multiple functional roles that can be accomplished by distinct sets of domains. These functions are differentially required by distinct prions and prion variants. We also present new data regarding Hsp104-mediated prion elimination and show that some Sis1 functions, but not all, are conserved in the human homolog Hdj1/DNAJB1. Importantly, of the 10 amyloid-based prions indentified to date in Saccharomyces cerevisiae, the chaperone requirements of only 4 are known, leaving a great diversity of amyloid structures, and likely modes of amyloid-chaperone interaction, largely unexplored.

  10. Evaluating green infrastructure in urban environments using a multi-taxa and functional diversity approach.

    Science.gov (United States)

    Pinho, Pedro; Correia, Otília; Lecoq, Miguel; Munzi, Silvana; Vasconcelos, Sasha; Gonçalves, Paula; Rebelo, Rui; Antunes, Cristina; Silva, Patrícia; Freitas, Catarina; Lopes, Nuno; Santos-Reis, Margarida; Branquinho, Cristina

    2016-05-01

    Forested areas within cities host a large number of species, responsible for many ecosystem services in urban areas. The biodiversity in these areas is influenced by human disturbances such as atmospheric pollution and urban heat island effect. To ameliorate the effects of these factors, an increase in urban green areas is often considered sufficient. However, this approach assumes that all types of green cover have the same importance for species. Our aim was to show that not all forested green areas are equal in importance for species, but that based on a multi-taxa and functional diversity approach it is possible to value green infrastructure in urban environments. After evaluating the diversity of lichens, butterflies and other-arthropods, birds and mammals in 31 Mediterranean urban forests in south-west Europe (Almada, Portugal), bird and lichen functional groups responsive to urbanization were found. A community shift (tolerant species replacing sensitive ones) along the urbanization gradient was found, and this must be considered when using these groups as indicators of the effect of urbanization. Bird and lichen functional groups were then analyzed together with the characteristics of the forests and their surroundings. Our results showed that, contrary to previous assumptions, vegetation density and more importantly the amount of urban areas around the forest (matrix), are more important for biodiversity than forest quantity alone. This indicated that not all types of forested green areas have the same importance for biodiversity. An index of forest functional diversity was then calculated for all sampled forests of the area. This could help decision-makers to improve the management of urban green infrastructures with the goal of increasing functionality and ultimately ecosystem services in urban areas. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Co-occurrence of linguistic and biological diversity in biodiversity hotspots and high biodiversity wilderness areas.

    Science.gov (United States)

    Gorenflo, L J; Romaine, Suzanne; Mittermeier, Russell A; Walker-Painemilla, Kristen

    2012-05-22

    As the world grows less biologically diverse, it is becoming less linguistically and culturally diverse as well. Biologists estimate annual loss of species at 1,000 times or more greater than historic rates, and linguists predict that 50-90% of the world's languages will disappear by the end of this century. Prior studies indicate similarities in the geographic arrangement of biological and linguistic diversity, although conclusions have often been constrained by use of data with limited spatial precision. Here we use greatly improved datasets to explore the co-occurrence of linguistic and biological diversity in regions containing many of the Earth's remaining species: biodiversity hotspots and high biodiversity wilderness areas. Results indicate that these regions often contain considerable linguistic diversity, accounting for 70% of all languages on Earth. Moreover, the languages involved are frequently unique (endemic) to particular regions, with many facing extinction. Likely reasons for co-occurrence of linguistic and biological diversity are complex and appear to vary among localities, although strong geographic concordance between biological and linguistic diversity in many areas argues for some form of functional connection. Languages in high biodiversity regions also often co-occur with one or more specific conservation priorities, here defined as endangered species and protected areas, marking particular localities important for maintaining both forms of diversity. The results reported in this article provide a starting point for focused research exploring the relationship between biological and linguistic-cultural diversity, and for developing integrated strategies designed to conserve species and languages in regions rich in both.

  12. Exploring Constrained Creative Communication

    DEFF Research Database (Denmark)

    Sørensen, Jannick Kirk

    2017-01-01

    Creative collaboration via online tools offers a less ‘media rich’ exchange of information between participants than face-to-face collaboration. The participants’ freedom to communicate is restricted in means of communication, and rectified in terms of possibilities offered in the interface. How do...... these constrains influence the creative process and the outcome? In order to isolate the communication problem from the interface- and technology problem, we examine via a design game the creative communication on an open-ended task in a highly constrained setting, a design game. Via an experiment the relation...... between communicative constrains and participants’ perception of dialogue and creativity is examined. Four batches of students preparing for forming semester project groups were conducted and documented. Students were asked to create an unspecified object without any exchange of communication except...

  13. Dynamic Convex Duality in Constrained Utility Maximization

    OpenAIRE

    Li, Yusong; Zheng, Harry

    2016-01-01

    In this paper, we study a constrained utility maximization problem following the convex duality approach. After formulating the primal and dual problems, we construct the necessary and sufficient conditions for both the primal and dual problems in terms of FBSDEs plus additional conditions. Such formulation then allows us to explicitly characterize the primal optimal control as a function of the adjoint process coming from the dual FBSDEs in a dynamic fashion and vice versa. Moreover, we also...

  14. Diversity and Function of Microbial Community in Chinese Strong-Flavor Baijiu Ecosystem: A Review

    Directory of Open Access Journals (Sweden)

    Wei Zou

    2018-04-01

    Full Text Available Strong flavor baijiu (SFB, also called Luzhou-flavor liquor, is the most popular Chinese baijiu. It is manufactured via solid fermentation, with daqu as the starter. Microbial diversity of the SFB ecosystem and the synergistic effects of the enzymes and compounds produced by them are responsible for the special flavor and mouthfeel of SFB. The present review covers research studies focused on microbial community analysis of the SFB ecosystem, including the culturable microorganisms, their metabolic functions, microbial community diversity and their interactions. The review specifically emphasizes on the most recently conducted culture-independent analysis of SFB microbial community diversity. Furthermore, the possible application of systems biology approaches for elucidating the molecular mechanisms of SFB production were also reviewed and prospected.

  15. Constrained minimization in C ++ environment

    International Nuclear Information System (INIS)

    Dymov, S.N.; Kurbatov, V.S.; Silin, I.N.; Yashchenko, S.V.

    1998-01-01

    Based on the ideas, proposed by one of the authors (I.N.Silin), the suitable software was developed for constrained data fitting. Constraints may be of the arbitrary type: equalities and inequalities. The simplest of possible ways was used. Widely known program FUMILI was realized to the C ++ language. Constraints in the form of inequalities φ (θ i ) ≥ a were taken into account by change into equalities φ (θ i ) = t and simple inequalities of type t ≥ a. The equalities were taken into account by means of quadratic penalty functions. The suitable software was tested on the model data of the ANKE setup (COSY accelerator, Forschungszentrum Juelich, Germany)

  16. Comparative genomics of Geobacter chemotaxis genes reveals diverse signaling function

    Directory of Open Access Journals (Sweden)

    Antommattei Frances M

    2008-10-01

    Full Text Available Abstract Background Geobacter species are δ-Proteobacteria and are often the predominant species in a variety of sedimentary environments where Fe(III reduction is important. Their ability to remediate contaminated environments and produce electricity makes them attractive for further study. Cell motility, biofilm formation, and type IV pili all appear important for the growth of Geobacter in changing environments and for electricity production. Recent studies in other bacteria have demonstrated that signaling pathways homologous to the paradigm established for Escherichia coli chemotaxis can regulate type IV pili-dependent motility, the synthesis of flagella and type IV pili, the production of extracellular matrix material, and biofilm formation. The classification of these pathways by comparative genomics improves the ability to understand how Geobacter thrives in natural environments and better their use in microbial fuel cells. Results The genomes of G. sulfurreducens, G. metallireducens, and G. uraniireducens contain multiple (~70 homologs of chemotaxis genes arranged in several major clusters (six, seven, and seven, respectively. Unlike the single gene cluster of E. coli, the Geobacter clusters are not all located near the flagellar genes. The probable functions of some Geobacter clusters are assignable by homology to known pathways; others appear to be unique to the Geobacter sp. and contain genes of unknown function. We identified large numbers of methyl-accepting chemotaxis protein (MCP homologs that have diverse sensing domain architectures and generate a potential for sensing a great variety of environmental signals. We discuss mechanisms for class-specific segregation of the MCPs in the cell membrane, which serve to maintain pathway specificity and diminish crosstalk. Finally, the regulation of gene expression in Geobacter differs from E. coli. The sequences of predicted promoter elements suggest that the alternative sigma factors

  17. Soil microbial community profiles and functional diversity in limestone cedar glades

    Science.gov (United States)

    Cartwright, Jennifer M.; Dzantor, E. Kudjo; Momen, Bahram

    2016-01-01

    Rock outcrop ecosystems, such as limestone cedar glades (LCGs), are known for their rare and endemic plant species adapted to high levels of abiotic stress. Soils in LCGs are thin (< 25 cm), soil-moisture conditions fluctuate seasonally between xeric and saturated, and summer soil temperatures commonly exceed 48 °C. The effects of these stressors on soil microbial communities (SMC) remain largely unstudied, despite the importance of SMC-plant interactions in regulating the structure and function of terrestrial ecosystems. SMC profiles and functional diversity were characterized in LCGs using community level physiological profiling (CLPP) and plate-dilution frequency assays (PDFA). Most-probable number (MPN) estimates and microbial substrate-utilization diversity (H) were positively related to soil thickness, soil organic matter (OM), soil water content, and vegetation density, and were diminished in alkaline soil relative to circumneutral soil. Soil nitrate showed no relationship to SMCs, suggesting lack of N-limitation. Canonical correlation analysis indicated strong correlations between microbial CLPP patterns and several physical and chemical properties of soil, primarily temperature at the ground surface and at 4-cm depth, and secondarily soil-water content, enabling differentiation by season. Thus, it was demonstrated that several well-described abiotic determinants of plant community structure in this ecosystem are also reflected in SMC profiles.

  18. Diversity and functions of protein glycosylation in insects.

    Science.gov (United States)

    Walski, Tomasz; De Schutter, Kristof; Van Damme, Els J M; Smagghe, Guy

    2017-04-01

    The majority of proteins is modified with carbohydrate structures. This modification, called glycosylation, was shown to be crucial for protein folding, stability and subcellular location, as well as protein-protein interactions, recognition and signaling. Protein glycosylation is involved in multiple physiological processes, including embryonic development, growth, circadian rhythms, cell attachment as well as maintenance of organ structure, immunity and fertility. Although the general principles of glycosylation are similar among eukaryotic organisms, insects synthesize a distinct repertoire of glycan structures compared to plants and vertebrates. Consequently, a number of unique insect glycans mediate functions specific to this class of invertebrates. For instance, the core α1,3-fucosylation of N-glycans is absent in vertebrates, while in insects this modification is crucial for the development of wings and the nervous system. At present, most of the data on insect glycobiology comes from research in Drosophila. Yet, progressively more information on the glycan structures and the importance of glycosylation in other insects like beetles, caterpillars, aphids and bees is becoming available. This review gives a summary of the current knowledge and recent progress related to glycan diversity and function(s) of protein glycosylation in insects. We focus on N- and O-glycosylation, their synthesis, physiological role(s), as well as the molecular and biochemical basis of these processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Hydrological-niche models predict water plant functional group distributions in diverse wetland types.

    Science.gov (United States)

    Deane, David C; Nicol, Jason M; Gehrig, Susan L; Harding, Claire; Aldridge, Kane T; Goodman, Abigail M; Brookes, Justin D

    2017-06-01

    Human use of water resources threatens environmental water supplies. If resource managers are to develop policies that avoid unacceptable ecological impacts, some means to predict ecosystem response to changes in water availability is necessary. This is difficult to achieve at spatial scales relevant for water resource management because of the high natural variability in ecosystem hydrology and ecology. Water plant functional groups classify species with similar hydrological niche preferences together, allowing a qualitative means to generalize community responses to changes in hydrology. We tested the potential for functional groups in making quantitative prediction of water plant functional group distributions across diverse wetland types over a large geographical extent. We sampled wetlands covering a broad range of hydrogeomorphic and salinity conditions in South Australia, collecting both hydrological and floristic data from 687 quadrats across 28 wetland hydrological gradients. We built hydrological-niche models for eight water plant functional groups using a range of candidate models combining different surface inundation metrics. We then tested the predictive performance of top-ranked individual and averaged models for each functional group. Cross validation showed that models achieved acceptable predictive performance, with correct classification rates in the range 0.68-0.95. Model predictions can be made at any spatial scale that hydrological data are available and could be implemented in a geographical information system. We show the response of water plant functional groups to inundation is consistent enough across diverse wetland types to quantify the probability of hydrological impacts over regional spatial scales. © 2017 by the Ecological Society of America.

  20. Loading pattern optimization with maximum utilization of discharging fuel employing adaptively constrained discontinuous penalty function

    International Nuclear Information System (INIS)

    Park, T. K.; Joo, H. G.; Kim, C. H.

    2010-01-01

    In order to find the most economical loading pattern (LP) considering multi-cycle fuel loading, multi-objective fuel LP optimization problems are examined by employing an adaptively constrained discontinuous penalty function (ACDPF) method. This is an improved method to simplify the complicated acceptance logic of the original DPF method in that the stochastic effects caused by the different random number sequence can be reduced. The effectiveness of the multi-objective simulated annealing (SA) algorithm employing ACDPF is examined for the reload core LP of Cycle 4 of Yonggwang Nuclear Unit 4. Several optimization runs are performed with different numbers of objectives consisting of cycle length and average burnup of fuels to be discharged or reloaded. The candidate LPs obtained from the multi-objective optimization runs turn out to be better than the reference LP in the aspects of cycle length and utilization of given fuels. It is note that the proposed ACDPF based MOSA algorithm can be a practical method to obtain an economical LP considering multi-cycle fuel loading. (authors)

  1. Expanded functional diversity of shaker K(+ channels in cnidarians is driven by gene expansion.

    Directory of Open Access Journals (Sweden)

    Timothy Jegla

    Full Text Available The genome of the cnidarian Nematostella vectensis (starlet sea anemone provides a molecular genetic view into the first nervous systems, which appeared in a late common ancestor of cnidarians and bilaterians. Nematostella has a surprisingly large and diverse set of neuronal signaling genes including paralogs of most neuronal signaling molecules found in higher metazoans. Several ion channel gene families are highly expanded in the sea anemone, including three subfamilies of the Shaker K(+ channel gene family: Shaker (Kv1, Shaw (Kv3 and Shal (Kv4. In order to better understand the physiological significance of these voltage-gated K(+ channel expansions, we analyzed the function of 18 members of the 20 gene Shaker subfamily in Nematostella. Six of the Nematostella Shaker genes express functional homotetrameric K(+ channels in vitro. These include functional orthologs of bilaterian Shakers and channels with an unusually high threshold for voltage activation. We identified 11 Nematostella Shaker genes with a distinct "silent" or "regulatory" phenotype; these encode subunits that function only in heteromeric channels and serve to further diversify Nematostella Shaker channel gating properties. Subunits with the regulatory phenotype have not previously been found in the Shaker subfamily, but have evolved independently in the Shab (Kv2 family in vertebrates and the Shal family in a cnidarian. Phylogenetic analysis indicates that regulatory subunits were present in ancestral cnidarians, but have continued to diversity at a high rate after the split between anthozoans and hydrozoans. Comparison of Shaker family gene complements from diverse metazoan species reveals frequent, large scale duplication has produced highly unique sets of Shaker channels in the major metazoan lineages.

  2. Robust and Efficient Constrained DFT Molecular Dynamics Approach for Biochemical Modeling

    Czech Academy of Sciences Publication Activity Database

    Řezáč, Jan; Levy, B.; Demachy, I.; de la Lande, A.

    2012-01-01

    Roč. 8, č. 2 (2012), s. 418-427 ISSN 1549-9618 Institutional research plan: CEZ:AV0Z40550506 Keywords : constrained density functional the ory * electron transfer * density fitting Subject RIV: CF - Physical ; The oretical Chemistry Impact factor: 5.389, year: 2012

  3. A constrained variational calculation for beta-stable matter

    International Nuclear Information System (INIS)

    Howes, C.; Bishop, R.F.; Irvine, J.M

    1978-01-01

    A method of lowest-order constrained variation previously applied by the authors to asymmetric nuclear matter is extended to include electrons and muons making the nucleon fluid electrically neutral and stable against beta decay. The equilibrium composition of a nucleon fluid is calculated as a function of baryon number density and an equation of state for beta-stable matter is deduced for the Reid soft-core interaction. (author)

  4. Constrained convex minimization via model-based excessive gap

    OpenAIRE

    Tran Dinh, Quoc; Cevher, Volkan

    2014-01-01

    We introduce a model-based excessive gap technique to analyze first-order primal- dual methods for constrained convex minimization. As a result, we construct new primal-dual methods with optimal convergence rates on the objective residual and the primal feasibility gap of their iterates separately. Through a dual smoothing and prox-function selection strategy, our framework subsumes the augmented Lagrangian, and alternating methods as special cases, where our rates apply.

  5. Microbial Species and Functional Diversity in Rice Rhizosphere of High-yield Special Ecological Areas

    Directory of Open Access Journals (Sweden)

    PAN Li-yuan

    2016-11-01

    Full Text Available Taoyuan, Yunnan Province is a special eco-site which keeps the highest yield records of rice cultivation in small planting areas. Soil microbial species and functional diversity were evaluated using cultivation method and BIOLOG ecoplates. The results showed that the microbial community of the high yield region was more abundant, and the total microbial population was 2 times of the control, furthermore, the areas belonged to the healthy "bacteria" soil, which was showed as bacteria > actinomycetes > fungi. Bacteria were the dominant populations in the rhizosphere of high yielding rice field, and the yield formation of rice was not correlated with the depth of soil layers. In order to obtain more species diversity information, Shannon diversity index H, Shannon evenness index E and Simpson index D were analyzed, and the results showed that microbial community diversity and evenness were not the main differences between the high and general yield areas. Then, the functional diversity of soil microbial community was investigated through the average well color development(AWCD and diversity index analyses. The results of AWCD analysis indicated that the metabolic activity of soil microbial community in high yield paddy soils were stronger than the control. Moreover, the difference range from large to small showed as tillering stage > harvest period > seedling period > rotation period, the stronger the rice growth, the greater the difference between the high yield region and the control. At tillering stage and harvest stage, due to the vigorous plant growth, the root exudates were rich, and the microbial communities of high yield paddy soils showed a strong metabolic activity and strong ability to use carbon sources. The results of Shannon, Simpson and McIntosh indices analysis indicated that common microbial species was not a key factor affecting the yield of rice. Tillering stage was a key period for the growth of high yield rice, and many

  6. Comparative genome analysis of PHB gene family reveals deep evolutionary origins and diverse gene function.

    Science.gov (United States)

    Di, Chao; Xu, Wenying; Su, Zhen; Yuan, Joshua S

    2010-10-07

    PHB (Prohibitin) gene family is involved in a variety of functions important for different biological processes. PHB genes are ubiquitously present in divergent species from prokaryotes to eukaryotes. Human PHB genes have been found to be associated with various diseases. Recent studies by our group and others have shown diverse function of PHB genes in plants for development, senescence, defence, and others. Despite the importance of the PHB gene family, no comprehensive gene family analysis has been carried to evaluate the relatedness of PHB genes across different species. In order to better guide the gene function analysis and understand the evolution of the PHB gene family, we therefore carried out the comparative genome analysis of the PHB genes across different kingdoms. The relatedness, motif distribution, and intron/exon distribution all indicated that PHB genes is a relatively conserved gene family. The PHB genes can be classified into 5 classes and each class have a very deep evolutionary origin. The PHB genes within the class maintained the same motif patterns during the evolution. With Arabidopsis as the model species, we found that PHB gene intron/exon structure and domains are also conserved during the evolution. Despite being a conserved gene family, various gene duplication events led to the expansion of the PHB genes. Both segmental and tandem gene duplication were involved in Arabidopsis PHB gene family expansion. However, segmental duplication is predominant in Arabidopsis. Moreover, most of the duplicated genes experienced neofunctionalization. The results highlighted that PHB genes might be involved in important functions so that the duplicated genes are under the evolutionary pressure to derive new function. PHB gene family is a conserved gene family and accounts for diverse but important biological functions based on the similar molecular mechanisms. The highly diverse biological function indicated that more research needs to be carried out

  7. Accurate determination of renal function in patients with intestinal urinary diversions

    International Nuclear Information System (INIS)

    McDougal, W.S.; Koch, M.O.

    1986-01-01

    The regular determination of renal function is a critical part of the management of patients who have had the urinary tract reconstructed with intestinal segments. These intestinal segments reabsorb urinary solutes and, thereby, complicate the determination of renal function by conventional methods. Urinary clearances of urea, creatinine and inulin were performed in patients with intestinal segments in the urinary tract and controls under varying diuretic conditions. Patients with intestinal diversions also underwent radioisotopic determination of renal function. The urinary clearances of urea, creatinine and inulin are highly dependent on the rate of urine flow in patients with intestinal segments in the urinary tract. Diuresis maximizes the urinary clearances of these solutes by minimizing intestinal reabsorption. Creatinine clearance prediction from the serum creatinine underestimates true glomerular filtration rate. Radioisotopic determination of renal function correlates poorly with true glomerular filtration rate. Only creatinine clearance measured under diuretic conditions correlates well with true renal function. Urine concentrating ability cannot be assessed accurately in patients with intestinal segments in the urinary tract, since osmolality rapidly equilibrates across the segments

  8. Feature and Pose Constrained Visual Aided Inertial Navigation for Computationally Constrained Aerial Vehicles

    Science.gov (United States)

    Williams, Brian; Hudson, Nicolas; Tweddle, Brent; Brockers, Roland; Matthies, Larry

    2011-01-01

    A Feature and Pose Constrained Extended Kalman Filter (FPC-EKF) is developed for highly dynamic computationally constrained micro aerial vehicles. Vehicle localization is achieved using only a low performance inertial measurement unit and a single camera. The FPC-EKF framework augments the vehicle's state with both previous vehicle poses and critical environmental features, including vertical edges. This filter framework efficiently incorporates measurements from hundreds of opportunistic visual features to constrain the motion estimate, while allowing navigating and sustained tracking with respect to a few persistent features. In addition, vertical features in the environment are opportunistically used to provide global attitude references. Accurate pose estimation is demonstrated on a sequence including fast traversing, where visual features enter and exit the field-of-view quickly, as well as hover and ingress maneuvers where drift free navigation is achieved with respect to the environment.

  9. Gancao-Gansui combination impacts gut microbiota diversity and related metabolic functions.

    Science.gov (United States)

    Yu, Jingao; Guo, Jianming; Tao, Weiwei; Liu, Pei; Shang, Erxin; Zhu, Zhenhua; Fan, Xiuhe; Shen, Juan; Hua, Yongqing; Zhu, Kevin Yue; Tang, Yuping; Duan, Jin-Ao

    2018-03-25

    The theory of "eighteen incompatible medicaments" (EIM) in traditional Chinese medicine (TCM) is the most representative case of herbal-herbal interactions. Gancao and Gansui are one of the incompatible herbal pairs in EIM. Gancao, also known as "licorice", is the most frequently used Chinese herb or food additive. Gansui, the root of Euphorbia kansui T.P. Wang, is another famous Chinese herb usually used to treat edema, ascites and asthma but could induce gastrointestinal (GI) tract irritation. Although Gancao and Gansui are incompatible herbal pairs, they are still used in combination in the famous "Gansui-Banxia" decoction. This study was conducted to investigate if Gancao-Gansui combination could exacerbate Gansui induced GI tract injury. Moreover, the impact of Gancao-Gansui combination to gut microbiota and related metabolism pathways were evaluated. Normal mice were divided into different groups and treated with Gancao extracts, Gansui extracts, and Gancao-Gansui combination extracts for 7 days. Serum biomarkers (diamine oxidase activity, lipopolysaccharide, motilin, IL-1β, IL-6, TNF-α) were determined to reflect GI tract damage. Gut microbiota diversity was studied by 16S rDNA sequencing and metagenomes analysis were also conducted to reflect functional genes expression alteration. Fecal hydrogen sulfide concentrations were measured by spectrophotometry to confirm the alteration of Desulfovibrio genus. Fecal lipid metabolomics study was conducted by GC-MS analysis to confirm the change of metagenomes and Mycoplasma abundance. Gancao-Gansui combination did not exacerbate GI tract tissue or functional damage but caused gut microbiota dysbiosis and increased some rare genus's abundance including Desulfovibrio and Mycoplasma. Desulfovibrio genus proliferation was confirmed by the disturbance of fecal hydrogen sulfide homeostasis. Gancao-Gansui combination also dys-regulated the metabolic genes in metagenomes. Mycoplasma genus proliferation and the metagenomes

  10. The influence of biogeographic history on the functional and phylogenetic diversity of passerine birds in savannas and forests of the Brazilian Amazon.

    Science.gov (United States)

    Almeida, Sara Miranda; Juen, Leandro; Sobral, Fernando Landa; Santos, Marcos Pérsio Dantas

    2018-04-01

    Passeriformes is the largest and most diverse avian order in the world and comprises the Passeri and Tyranni suborders. These suborders constitute a monophyletic group, but differ in their ecology and history of occupation of South America. We investigated the influence of biogeographic history on functional and phylogenetic diversities of Passeri and Tyranni in forest and savanna habitats in the Brazilian Amazon. We compiled species composition data for 34 Passeriformes assemblages, 12 in savannas and 22 in forests. We calculated the functional (Rao's quadratic entropy, FD Q ) and phylogenetic diversities (mean pairwise distance, MPD, and mean nearest taxon distance, MNTD), and the functional beta diversity to investigate the potential role of biogeographic history in shaping ecological traits and species lineages of both suborders. The functional diversity of Passeri was higher than for Tyranni in both habitats. The MPD for Tyranni was higher than for Passeri in forests; however, there was no difference between the suborders in savannas. In savannas, Passeri presented higher MNTD than Tyranni, while in forest areas, Tyranni assemblages showed higher MNTD than Passeri. We found a high functional turnover (~75%) between Passeri and Tyranni in both habitats. The high functional diversity of Passeri in both habitats is due to the high diversity of ecological traits exhibited by species of this group, which enables the exploitation of a wide variety of resources and foraging strategies. The higher Tyranni MPD and MNTD in forests is likely due to Tyranni being older settlers in this habitat, resulting in the emergence and persistence of more lineages. The higher Passeri MNTD in savannas can be explained by the existence of a larger number of different Passeri lineages adapted to this severe habitat. The high functional turnover between the suborders in both habitats suggests an ecological strategy to avoid niche overlap.

  11. Choosing health, constrained choices.

    Science.gov (United States)

    Chee Khoon Chan

    2009-12-01

    In parallel with the neo-liberal retrenchment of the welfarist state, an increasing emphasis on the responsibility of individuals in managing their own affairs and their well-being has been evident. In the health arena for instance, this was a major theme permeating the UK government's White Paper Choosing Health: Making Healthy Choices Easier (2004), which appealed to an ethos of autonomy and self-actualization through activity and consumption which merited esteem. As a counterpoint to this growing trend of informed responsibilization, constrained choices (constrained agency) provides a useful framework for a judicious balance and sense of proportion between an individual behavioural focus and a focus on societal, systemic, and structural determinants of health and well-being. Constrained choices is also a conceptual bridge between responsibilization and population health which could be further developed within an integrative biosocial perspective one might refer to as the social ecology of health and disease.

  12. Harvesting influences functional identity and diversity over time in forests of the northeastern U.S.A.

    Science.gov (United States)

    M.T. Curzon; A.W. D' Amato; S. Fraver; B.J. Palik; A. Bottero; J.R. Foster; K.E. Gleason

    2017-01-01

    Concern over global environmental change and associated uncertainty has given rise to greater emphasis on fostering resilience through forest management. We examined the impact of standard silvicultural systems (including clearcutting, shelterwood, and selection) compared with unharvested controls on tree functional identity and functional diversity in three forest...

  13. Mobilization of interactions between functional diversity of plant and soil organisms on nitrogen availability and use

    Science.gov (United States)

    Drut, Baptiste; Cassagne, Nathalie; Cannavacciuolo, Mario; Brauman, Alain; Le Floch, Gaëtan; Cobo, Jose; Fustec, Joëlle

    2017-04-01

    Keywords: legumes, earthworms, microorganisms, nitrogen, interactions Both aboveground and belowground biodiversity and their interactions can play an important role in crop productivity. Plant functional diversity, such as legume based intercrops have been shown to improve yields through plant complementarity for nitrogen use (Corre-Hellou et al., 2006). Moreover, plant species or plant genotype may influence the structure of soil microorganism communities through the composition of rhizodeposits in the rhizosphere (Dennis et al., 2010). Belowground diversity can also positively influence plant performance especially related to functional dissimilarity between soil organisms (Eisenhauer, 2012). Earthworms through their burrowing activity influence soil microbial decomposers and nutrient availability and have thus been reported to increase plant growth (Brown, 1995; Brown et al., 2004). We hypothesize that i) plant functional (genetic and/or specific) diversity associated to functional earthworms diversity are key drivers of interactions balance to improve crop performances and ii) the improvement of plant performances can be related to change in the structure of soil microorganism communities due to the diversity of rhizodeposits and the burrowing activity of earthworms. In a first mesocosm experiment, we investigated the effect of a gradient of plant diversity - one cultivar of wheat (Triticum aestivum L.), 3 different wheat cultivars, and 3 different cultivars intercropped with clover (Trifolium hybridum L.) - and the presence of one (endogeic) or two (endogeic and anecic) categories of earthworms on biomass and nitrogen accumulation of wheat. In a second mesocosm experiment, we investigated the influence of three species with different rhizodeposition - wheat, rapeseed (Brassica napus L. ) and faba bean (Vicia faba L.) in pure stand or intercropped - and the presence of endogeic earthworms on microbial activity and nitrogen availability. In the first experiment

  14. Continental cichlid radiations: functional diversity reveals the role of changing ecological opportunity in the Neotropics.

    Science.gov (United States)

    Arbour, Jessica Hilary; López-Fernández, Hernán

    2016-08-17

    Adaptive radiations have been hypothesized to contribute broadly to the diversity of organisms. Models of adaptive radiation predict that ecological opportunity and ecological release, the availability of empty ecological niches and the response by adapting lineages to occupy them, respectively, drive patterns of phenotypic and lineage diversification. Adaptive radiations driven by 'ecological opportunity' are well established in island systems; it is less clear if ecological opportunity influences continent-wide diversification. We use Neotropical cichlid fishes to test if variation in rates of functional evolution is consistent with changing ecological opportunity. Across a functional morphological axis associated with ram-suction feeding traits, evolutionary rates declined through time as lineages diversified in South America. Evolutionary rates of ram-suction functional morphology also appear to have accelerated as cichlids colonized Central America and encountered renewed opportunity. Our results suggest that ecological opportunity may play an important role in shaping patterns of morphological diversity of even broadly distributed lineages like Neotropical cichlids. © 2016 The Author(s).

  15. Functional diversity of microbial decomposers facilitates plant coexistence in a plant-microbe-soil feedback model.

    Science.gov (United States)

    Miki, Takeshi; Ushio, Masayuki; Fukui, Shin; Kondoh, Michio

    2010-08-10

    Theory and empirical evidence suggest that plant-soil feedback (PSF) determines the structure of a plant community and nutrient cycling in terrestrial ecosystems. The plant community alters the nutrient pool size in soil by affecting litter decomposition processes, which in turn shapes the plant community, forming a PSF system. However, the role of microbial decomposers in PSF function is often overlooked, and it remains unclear whether decomposers reinforce or weaken litter-mediated plant control over nutrient cycling. Here, we present a theoretical model incorporating the functional diversity of both plants and microbial decomposers. Two fundamental microbial processes are included that control nutrient mineralization from plant litter: (i) assimilation of mineralized nutrient into the microbial biomass (microbial immobilization), and (ii) release of the microbial nutrients into the inorganic nutrient pool (net mineralization). With this model, we show that microbial diversity may act as a buffer that weakens plant control over the soil nutrient pool, reversing the sign of PSF from positive to negative and facilitating plant coexistence. This is explained by the decoupling of litter decomposability and nutrient pool size arising from a flexible change in the microbial community composition and decomposition processes in response to variations in plant litter decomposability. Our results suggest that the microbial community plays a central role in PSF function and the plant community structure. Furthermore, the results strongly imply that the plant-centered view of nutrient cycling should be changed to a plant-microbe-soil feedback system, by incorporating the community ecology of microbial decomposers and their functional diversity.

  16. Optimal Power Constrained Distributed Detection over a Noisy Multiaccess Channel

    Directory of Open Access Journals (Sweden)

    Zhiwen Hu

    2015-01-01

    Full Text Available The problem of optimal power constrained distributed detection over a noisy multiaccess channel (MAC is addressed. Under local power constraints, we define the transformation function for sensor to realize the mapping from local decision to transmitted waveform. The deflection coefficient maximization (DCM is used to optimize the performance of power constrained fusion system. Using optimality conditions, we derive the closed-form solution to the considered problem. Monte Carlo simulations are carried out to evaluate the performance of the proposed new method. Simulation results show that the proposed method could significantly improve the detection performance of the fusion system with low signal-to-noise ratio (SNR. We also show that the proposed new method has a robust detection performance for broad SNR region.

  17. Constraining neutrinoless double beta decay

    International Nuclear Information System (INIS)

    Dorame, L.; Meloni, D.; Morisi, S.; Peinado, E.; Valle, J.W.F.

    2012-01-01

    A class of discrete flavor-symmetry-based models predicts constrained neutrino mass matrix schemes that lead to specific neutrino mass sum-rules (MSR). We show how these theories may constrain the absolute scale of neutrino mass, leading in most of the cases to a lower bound on the neutrinoless double beta decay effective amplitude.

  18. Linking biological soil crust diversity to ecological functions

    Science.gov (United States)

    Glaser, Karin; Borchhardt, Nadine; Schulz, Karoline; Mikhailyuk, Tatiana; Baumann, Karen; Leinweber, Peter; Ulf, Karsten

    2016-04-01

    Biological soil crusts (BSCs) are an association of different microorganisms and soil particles in the top millimeters of the soil. They are formed by algae, cyanobacteria, microfungi, bacteria, bryophytes and lichens in various compositions. Our aim was to determine and compare the biodiversity of all occurring organisms in biogeographically different habitats, ranging from polar (both Arctic and Antarctic), subpolar (Scandinavia), temperate (Germany) to dry regions (Chile). The combination of microscopy and molecular techniques (next-generation sequencing) revealed highly diverse crust communities, whose composition clustered by region and correlates with habitat characteristics such as water content. The BSC biodiversity was then linked to the ecological function of the crusts. The functional role of the BSCs in the biogeochemical cycles of carbon, nitrogen and phosphorous is evaluated using an array of state of the art soil chemistry methods including Py-FIMS (pyrolysis field ionization mass spectrometry) and XANES (x-ray absorbance near edge structure). Total P as well as P fractions were quantified in all BSCs, adjacent soil underneath and comparable nearby soil of BSC-free areas revealing a remarkable accumulation of total phosphorous and a distinct pattern of P fractions in the crust. Further, we observed an indication of a different P-speciation composition in the crust compared with BSC-free soil. The data allow answering the question whether BSCs act as sink or source for these compounds, and how biodiversity controls the biogeochemical function of BSCs.

  19. Functionally relevant diversity of closely related Nitrospira in activated sludge.

    Science.gov (United States)

    Gruber-Dorninger, Christiane; Pester, Michael; Kitzinger, Katharina; Savio, Domenico F; Loy, Alexander; Rattei, Thomas; Wagner, Michael; Daims, Holger

    2015-03-01

    Nitrospira are chemolithoautotrophic nitrite-oxidizing bacteria that catalyze the second step of nitrification in most oxic habitats and are important for excess nitrogen removal from sewage in wastewater treatment plants (WWTPs). To date, little is known about their diversity and ecological niche partitioning within complex communities. In this study, the fine-scale community structure and function of Nitrospira was analyzed in two full-scale WWTPs as model ecosystems. In Nitrospira-specific 16S rRNA clone libraries retrieved from each plant, closely related phylogenetic clusters (16S rRNA identities between clusters ranged from 95.8% to 99.6%) within Nitrospira lineages I and II were found. Newly designed probes for fluorescence in situ hybridization (FISH) allowed the specific detection of several of these clusters, whose coexistence in the WWTPs was shown for prolonged periods of several years. In situ ecophysiological analyses based on FISH, relative abundance and spatial arrangement quantification, as well as microautoradiography revealed functional differences of these Nitrospira clusters regarding the preferred nitrite concentration, the utilization of formate as substrate and the spatial coaggregation with ammonia-oxidizing bacteria as symbiotic partners. Amplicon pyrosequencing of the nxrB gene, which encodes subunit beta of nitrite oxidoreductase of Nitrospira, revealed in one of the WWTPs as many as 121 species-level nxrB operational taxonomic units with highly uneven relative abundances in the amplicon library. These results show a previously unrecognized high diversity of Nitrospira in engineered systems, which is at least partially linked to niche differentiation and may have important implications for process stability.

  20. Wherefore Art Thou, Homeo(stasis? Functional Diversity in Homeostatic Synaptic Plasticity

    Directory of Open Access Journals (Sweden)

    Bridget N. Queenan

    2012-01-01

    Full Text Available Homeostatic plasticity has emerged as a fundamental regulatory principle that strives to maintain neuronal activity within optimal ranges by altering diverse aspects of neuronal function. Adaptation to network activity is often viewed as an essential negative feedback restraint that prevents runaway excitation or inhibition. However, the precise importance of these homeostatic functions is often theoretical rather than empirically derived. Moreover, a remarkable multiplicity of homeostatic adaptations has been observed. To clarify these issues, it may prove useful to ask: why do homeostatic mechanisms exist, what advantages do these adaptive responses confer on a given cell population, and why are there so many seemingly divergent effects? Here, we approach these questions by applying the principles of control theory to homeostatic synaptic plasticity of mammalian neurons and suggest that the varied responses observed may represent distinct functional classes of control mechanisms directed toward disparate physiological goals.

  1. Reliability of a Test Battery Designed for Quickly and Safely Assessing Diverse Indices of Neuromuscular Function

    Science.gov (United States)

    Spiering, Barry A.; Lee, Stuart M. C.; Mulavara, Ajitkumar P.; Bentley, Jason, R.; Buxton, Roxanne E.; Lawrence, Emily L.; Sinka, Joseph; Guilliams, Mark E.; Ploutz-Snyder, Lori L.; Bloomberg, Jacob J.

    2010-01-01

    Spaceflight affects nearly every physiological system. Spaceflight-induced alterations in physiological function translate to decrements in functional performance. Purpose: To develop a test battery for quickly and safely assessing diverse indices of neuromuscular performance. I. Quickly: Battery of tests can be completed in approx.30-40 min. II. Safely: a) No eccentric muscle actions or impact forces. b) Tests present little challenge to postural stability. III. Diverse indices: a) Strength: Excellent reliability (ICC = 0.99) b) Central activation: Very good reliability (ICC = 0.87) c) Power: Excellent reliability (ICC = 0.99) d) Endurance: Total work has excellent reliability (ICC = 0.99) e) Force steadiness: Poor reliability (ICC = 0.20 - 0.60) National

  2. Network Structure, Diversity, and Proactive Resilience Building: a Response to Tompkins and Adger

    Directory of Open Access Journals (Sweden)

    Lenore Newman

    2005-06-01

    Full Text Available Although community social networks can build resilience, and thus, aid adaptation to unexpected environmental change (Tomkins and Adger 2004, not all social networks are created equal. Networks composed of a diversity of "bridging" links to a diverse web of resources and "bonding" links that build trust strengthen a community's ability to adapt to change, but networks composed only of "bonding" links can impose constraining social norms and foster group homophily, reducing resilience. Diversity fosters the resilience needed to adapt to unexpected change, and can also enlarge the ability to proactively make collective decisions that optimize future options.

  3. Syndecans as cell surface receptors: Unique structure equates with functional diversity

    DEFF Research Database (Denmark)

    Choi, Youngsil; Chung, Heesung; Jung, Heyjung

    2011-01-01

    An increasing number of functions for syndecan cell surface heparan sulfate proteoglycans have been proposed over the last decade. Moreover, aberrant syndecan regulation has been found to play a critical role in multiple pathologies, including cancers, as well as wound healing and inflammation....... As receptors, they have much in common with other molecules on the cell surface. Syndecans are type I transmembrane molecules with cytoplasmic domains that link to the actin cytoskeleton and can interact with a number of regulators. However, they are also highly complex by virtue of their external...... glycosaminoglycan chains, especially heparan sulfate. This heterodisperse polysaccharide has the potential to interact with many ligands from diverse protein families. Here, we relate the structural features of syndecans to some of their known functions....

  4. Functional diversity of bacterial genes associated with aromatic hydrocarbon degradation in anthropogenic dark earth of Amazonia

    Directory of Open Access Journals (Sweden)

    Mariana Gomes Germano

    2012-05-01

    Full Text Available The objective of this work was to evaluate the catabolic gene diversity for the bacterial degradation of aromatic hydrocarbons in anthropogenic dark earth of Amazonia (ADE and their biochar (BC. Functional diversity analyses in ADE soils can provide information on how adaptive microorganisms may influence the fertility of soils and what is their involvement in biogeochemical cycles. For this, clone libraries containing the gene encoding for the alpha subunit of aromatic ring-hydroxylating dioxygenases (α-ARHD bacterial gene were constructed, totaling 800 clones. These libraries were prepared from samples of an ADE soil under two different land uses, located at the Caldeirão Experimental Station - secondary forest (SF and agriculture (AG -, and the biochar (SF_BC and AG_BC, respectively. Heterogeneity estimates indicated greater diversity in BC libraries; and Venn diagrams showed more unique operational protein clusters (OPC in the SF_BC library than the ADE soil, which indicates that specific metabolic processes may occur in biochar. Phylogenetic analysis showed unidentified dioxygenases in ADE soils. Libraries containing functional gene encoding for the alpha subunit of the aromatic ring-hydroxylating dioxygenases (ARHD gene from biochar show higher diversity indices than those of ADE under secondary forest and agriculture.

  5. A constrained approximation for nuclear barrier penetration and fission

    International Nuclear Information System (INIS)

    Tang, H.H.K.; Negele, J.W.; Massachusetts Inst. of Tech., Cambridge; Massachusetts Inst. of Tech., Cambridge

    1983-01-01

    An approximation to the time-dependent mean-field theory for barrier penetration by a nucleus is obtained in terms of constrained Hartree-Fock wave functions and a coherent velocity field. A discrete approximation to the continuum theory suitable for practical numerical calculations is presented and applied to three illustrative models. Potential application of the theory to the study of nuclear fission is discussed. (orig.)

  6. Adaptive Fuzzy Output-Constrained Fault-Tolerant Control of Nonlinear Stochastic Large-Scale Systems With Actuator Faults.

    Science.gov (United States)

    Li, Yongming; Ma, Zhiyao; Tong, Shaocheng

    2017-09-01

    The problem of adaptive fuzzy output-constrained tracking fault-tolerant control (FTC) is investigated for the large-scale stochastic nonlinear systems of pure-feedback form. The nonlinear systems considered in this paper possess the unstructured uncertainties, unknown interconnected terms and unknown nonaffine nonlinear faults. The fuzzy logic systems are employed to identify the unknown lumped nonlinear functions so that the problems of structured uncertainties can be solved. An adaptive fuzzy state observer is designed to solve the nonmeasurable state problem. By combining the barrier Lyapunov function theory, adaptive decentralized and stochastic control principles, a novel fuzzy adaptive output-constrained FTC approach is constructed. All the signals in the closed-loop system are proved to be bounded in probability and the system outputs are constrained in a given compact set. Finally, the applicability of the proposed controller is well carried out by a simulation example.

  7. Multi-objective hybrid PSO-APO algorithm based security constrained optimal power flow with wind and thermal generators

    Directory of Open Access Journals (Sweden)

    Kiran Teeparthi

    2017-04-01

    Full Text Available In this paper, a new low level with teamwork heterogeneous hybrid particle swarm optimization and artificial physics optimization (HPSO-APO algorithm is proposed to solve the multi-objective security constrained optimal power flow (MO-SCOPF problem. Being engaged with the environmental and total production cost concerns, wind energy is highly penetrating to the main grid. The total production cost, active power losses and security index are considered as the objective functions. These are simultaneously optimized using the proposed algorithm for base case and contingency cases. Though PSO algorithm exhibits good convergence characteristic, fails to give near optimal solution. On the other hand, the APO algorithm shows the capability of improving diversity in search space and also to reach a near global optimum point, whereas, APO is prone to premature convergence. The proposed hybrid HPSO-APO algorithm combines both individual algorithm strengths, to get balance between global and local search capability. The APO algorithm is improving diversity in the search space of the PSO algorithm. The hybrid optimization algorithm is employed to alleviate the line overloads by generator rescheduling during contingencies. The standard IEEE 30-bus and Indian 75-bus practical test systems are considered to evaluate the robustness of the proposed method. The simulation results reveal that the proposed HPSO-APO method is more efficient and robust than the standard PSO and APO methods in terms of getting diverse Pareto optimal solutions. Hence, the proposed hybrid method can be used for the large interconnected power system to solve MO-SCOPF problem with integration of wind and thermal generators.

  8. Effects of Predation by Protists on Prokaryotic Community Function, Structure, and Diversity in Anaerobic Granular Sludge.

    Science.gov (United States)

    Hirakata, Yuga; Oshiki, Mamoru; Kuroda, Kyohei; Hatamoto, Masashi; Kubota, Kengo; Yamaguchi, Takashi; Harada, Hideki; Araki, Nobuo

    2016-09-29

    Predation by protists is top-down pressure that regulates prokaryotic abundance, community function, structure, and diversity in natural and artificial ecosystems. Although the effects of predation by protists have been studied in aerobic ecosystems, they are poorly understood in anoxic environments. We herein studied the influence of predation by Metopus and Caenomorpha ciliates-ciliates frequently found in anoxic ecosystems-on prokaryotic community function, structure, and diversity. Metopus and Caenomorpha ciliates were cocultivated with prokaryotic assemblages (i.e., anaerobic granular sludge) in an up-flow anaerobic sludge blanket (UASB) reactor for 171 d. Predation by these ciliates increased the methanogenic activities of granular sludge, which constituted 155% of those found in a UASB reactor without the ciliates (i.e., control reactor). Sequencing of 16S rRNA gene amplicons using Illumina MiSeq revealed that the prokaryotic community in the UASB reactor with the ciliates was more diverse than that in the control reactor; 2,885-3,190 and 2,387-2,426 operational taxonomic units (>97% sequence similarities), respectively. The effects of predation by protists in anaerobic engineered systems have mostly been overlooked, and our results show that the influence of predation by protists needs to be examined and considered in the future for a better understanding of prokaryotic community structure and function.

  9. Vector species richness increases haemorrhagic disease prevalence through functional diversity modulating the duration of seasonal transmission.

    Science.gov (United States)

    Park, Andrew W; Cleveland, Christopher A; Dallas, Tad A; Corn, Joseph L

    2016-06-01

    Although many parasites are transmitted between hosts by a suite of arthropod vectors, the impact of vector biodiversity on parasite transmission is poorly understood. Positive relationships between host infection prevalence and vector species richness (SR) may operate through multiple mechanisms, including (i) increased vector abundance, (ii) a sampling effect in which species of high vectorial capacity are more likely to occur in species-rich communities, and (iii) functional diversity whereby communities comprised species with distinct phenologies may extend the duration of seasonal transmission. Teasing such mechanisms apart is impeded by a lack of appropriate data, yet could highlight a neglected role for functional diversity in parasite transmission. We used statistical modelling of extensive host, vector and microparasite data to test the hypothesis that functional diversity leading to longer seasonal transmission explained variable levels of disease in a wildlife population. We additionally developed a simple transmission model to guide our expectation of how an increased transmission season translates to infection prevalence. Our study demonstrates that vector SR is associated with increased levels of disease reporting, but not via increases in vector abundance or via a sampling effect. Rather, the relationship operates by extending the length of seasonal transmission, in line with theoretical predictions.

  10. A Framework for Constrained Optimization Problems Based on a Modified Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Biwei Tang

    2016-01-01

    Full Text Available This paper develops a particle swarm optimization (PSO based framework for constrained optimization problems (COPs. Aiming at enhancing the performance of PSO, a modified PSO algorithm, named SASPSO 2011, is proposed by adding a newly developed self-adaptive strategy to the standard particle swarm optimization 2011 (SPSO 2011 algorithm. Since the convergence of PSO is of great importance and significantly influences the performance of PSO, this paper first theoretically investigates the convergence of SASPSO 2011. Then, a parameter selection principle guaranteeing the convergence of SASPSO 2011 is provided. Subsequently, a SASPSO 2011-based framework is established to solve COPs. Attempting to increase the diversity of solutions and decrease optimization difficulties, the adaptive relaxation method, which is combined with the feasibility-based rule, is applied to handle constraints of COPs and evaluate candidate solutions in the developed framework. Finally, the proposed method is verified through 4 benchmark test functions and 2 real-world engineering problems against six PSO variants and some well-known methods proposed in the literature. Simulation results confirm that the proposed method is highly competitive in terms of the solution quality and can be considered as a vital alternative to solve COPs.

  11. Diversity Generator Mechanisms Are Essential Components of Biological Systems: The Two Queen Hypothesis

    Directory of Open Access Journals (Sweden)

    Eric Muraille

    2018-02-01

    Full Text Available Diversity is widely known to fuel adaptation and evolutionary processes and increase robustness at the population, species and ecosystem levels. The Neo-Darwinian paradigm proposes that the diversity of biological entities is the consequence of genetic changes arising spontaneously and randomly, without regard for their usefulness. However, a growing body of evidence demonstrates that the evolutionary process has shaped mechanisms, such as horizontal gene transfer mechanisms, meiosis and the adaptive immune system, which has resulted in the regulated generation of diversity among populations. Though their origins are unrelated, these diversity generator (DG mechanisms share common functional properties. They (i contribute to the great unpredictability of the composition and/or behavior of biological systems, (ii favor robustness and collectivism among populations and (iii operate mainly by manipulating the systems that control the interaction of living beings with their environment. The definition proposed here for DGs is based on these properties and can be used to identify them according to function. Interestingly, prokaryotic DGs appear to be mainly reactive, as they generate diversity in response to environmental stress. They are involved in the widely described Red Queen/arms race/Cairnsian dynamic. The emergence of multicellular organisms harboring K selection traits (longer reproductive life cycle and smaller population size has led to the acquisition of a new class of DGs that act anticipatively to stress pressures and generate a distinct dynamic called the “White Queen” here. The existence of DGs leads to the view of evolution as a more “intelligent” and Lamarckian-like process. Their repeated selection during evolution could be a neglected example of convergent evolution and suggests that some parts of the evolutionary process are tightly constrained by ecological factors, such as the population size, the generation time and

  12. Joint Chance-Constrained Dynamic Programming

    Science.gov (United States)

    Ono, Masahiro; Kuwata, Yoshiaki; Balaram, J. Bob

    2012-01-01

    This paper presents a novel dynamic programming algorithm with a joint chance constraint, which explicitly bounds the risk of failure in order to maintain the state within a specified feasible region. A joint chance constraint cannot be handled by existing constrained dynamic programming approaches since their application is limited to constraints in the same form as the cost function, that is, an expectation over a sum of one-stage costs. We overcome this challenge by reformulating the joint chance constraint into a constraint on an expectation over a sum of indicator functions, which can be incorporated into the cost function by dualizing the optimization problem. As a result, the primal variables can be optimized by a standard dynamic programming, while the dual variable is optimized by a root-finding algorithm that converges exponentially. Error bounds on the primal and dual objective values are rigorously derived. We demonstrate the algorithm on a path planning problem, as well as an optimal control problem for Mars entry, descent and landing. The simulations are conducted using a real terrain data of Mars, with four million discrete states at each time step.

  13. Constrained optimization of test intervals using a steady-state genetic algorithm

    International Nuclear Information System (INIS)

    Martorell, S.; Carlos, S.; Sanchez, A.; Serradell, V.

    2000-01-01

    There is a growing interest from both the regulatory authorities and the nuclear industry to stimulate the use of Probabilistic Risk Analysis (PRA) for risk-informed applications at Nuclear Power Plants (NPPs). Nowadays, special attention is being paid on analyzing plant-specific changes to Test Intervals (TIs) within the Technical Specifications (TSs) of NPPs and it seems to be a consensus on the need of making these requirements more risk-effective and less costly. Resource versus risk-control effectiveness principles formally enters in optimization problems. This paper presents an approach for using the PRA models in conducting the constrained optimization of TIs based on a steady-state genetic algorithm (SSGA) where the cost or the burden is to be minimized while the risk or performance is constrained to be at a given level, or vice versa. The paper encompasses first with the problem formulation, where the objective function and constraints that apply in the constrained optimization of TIs based on risk and cost models at system level are derived. Next, the foundation of the optimizer is given, which is derived by customizing a SSGA in order to allow optimizing TIs under constraints. Also, a case study is performed using this approach, which shows the benefits of adopting both PRA models and genetic algorithms, in particular for the constrained optimization of TIs, although it is also expected a great benefit of using this approach to solve other engineering optimization problems. However, care must be taken in using genetic algorithms in constrained optimization problems as it is concluded in this paper

  14. Small diversity effects on ocean primary production under environmental change in a diversity-resolving ocean ecosystem model

    DEFF Research Database (Denmark)

    Prowe, Friederike; Pahlow, M.; Dutkiewicz, S.

    2013-01-01

    Marine ecosystem models used to investigate how global change affects ocean ecosystems and their functioning typically omit pelagic diversity. Diversity, however, can affect functions such as primary production and their sensitivity to environmental changes. Using a global ocean ecosystem model...... the diversity effects on ecosystem functioning captured in ocean ecosystem models....

  15. Changes in the functional trait composition and diversity of meadow communities induced by Rhinanthus minor L.

    Czech Academy of Sciences Publication Activity Database

    Mudrák, Ondřej; de Bello, Francesco; Doležal, Jiří; Lepš, Jan

    2016-01-01

    Roč. 51, č. 1 (2016), s. 1-11 ISSN 1211-9520 R&D Projects: GA MŠk(CZ) EE2.3.30.0048 Institutional support: RVO:67985939 ; RVO:60077344 Keywords : functional traits * functional diversity * root hemiparasite Subject RIV: EF - Botanics; EH - Ecology, Behaviour (BC-A) Impact factor: 1.017, year: 2016

  16. Multivariable controller for discrete stochastic amplitude-constrained systems

    Directory of Open Access Journals (Sweden)

    Hannu T. Toivonen

    1983-04-01

    Full Text Available A sub-optimal multivariable controller for discrete stochastic amplitude-constrained systems is presented. In the approach the regulator structure is restricted to the class of linear saturated feedback laws. The stationary covariances of the controlled system are evaluated by approximating the stationary probability distribution of the state by a gaussian distribution. An algorithm for minimizing a quadratic loss function is given, and examples are presented to illustrate the performance of the sub-optimal controller.

  17. Nested Sampling with Constrained Hamiltonian Monte Carlo

    OpenAIRE

    Betancourt, M. J.

    2010-01-01

    Nested sampling is a powerful approach to Bayesian inference ultimately limited by the computationally demanding task of sampling from a heavily constrained probability distribution. An effective algorithm in its own right, Hamiltonian Monte Carlo is readily adapted to efficiently sample from any smooth, constrained distribution. Utilizing this constrained Hamiltonian Monte Carlo, I introduce a general implementation of the nested sampling algorithm.

  18. Differential subcellular distribution of ion channels and the diversity of neuronal function.

    Science.gov (United States)

    Nusser, Zoltan

    2012-06-01

    Following the astonishing molecular diversity of voltage-gated ion channels that was revealed in the past few decades, the ion channel repertoire expressed by neurons has been implicated as the major factor governing their functional heterogeneity. Although the molecular structure of ion channels is a key determinant of their biophysical properties, their subcellular distribution and densities on the surface of nerve cells are just as important for fulfilling functional requirements. Recent results obtained with high resolution quantitative localization techniques revealed complex, subcellular compartment-specific distribution patterns of distinct ion channels. Here I suggest that within a given neuron type every ion channel has a unique cell surface distribution pattern, with the functional consequence that this dramatically increases the computational power of nerve cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Sequential unconstrained minimization algorithms for constrained optimization

    International Nuclear Information System (INIS)

    Byrne, Charles

    2008-01-01

    The problem of minimizing a function f(x):R J → R, subject to constraints on the vector variable x, occurs frequently in inverse problems. Even without constraints, finding a minimizer of f(x) may require iterative methods. We consider here a general class of iterative algorithms that find a solution to the constrained minimization problem as the limit of a sequence of vectors, each solving an unconstrained minimization problem. Our sequential unconstrained minimization algorithm (SUMMA) is an iterative procedure for constrained minimization. At the kth step we minimize the function G k (x)=f(x)+g k (x), to obtain x k . The auxiliary functions g k (x):D subset of R J → R + are nonnegative on the set D, each x k is assumed to lie within D, and the objective is to minimize the continuous function f:R J → R over x in the set C = D-bar, the closure of D. We assume that such minimizers exist, and denote one such by x-circumflex. We assume that the functions g k (x) satisfy the inequalities 0≤g k (x)≤G k-1 (x)-G k-1 (x k-1 ), for k = 2, 3, .... Using this assumption, we show that the sequence {(x k )} is decreasing and converges to f(x-circumflex). If the restriction of f(x) to D has bounded level sets, which happens if x-circumflex is unique and f(x) is closed, proper and convex, then the sequence {x k } is bounded, and f(x*)=f(x-circumflex), for any cluster point x*. Therefore, if x-circumflex is unique, x* = x-circumflex and {x k } → x-circumflex. When x-circumflex is not unique, convergence can still be obtained, in particular cases. The SUMMA includes, as particular cases, the well-known barrier- and penalty-function methods, the simultaneous multiplicative algebraic reconstruction technique (SMART), the proximal minimization algorithm of Censor and Zenios, the entropic proximal methods of Teboulle, as well as certain cases of gradient descent and the Newton–Raphson method. The proof techniques used for SUMMA can be extended to obtain related results

  20. Inexact nonlinear improved fuzzy chance-constrained programming model for irrigation water management under uncertainty

    Science.gov (United States)

    Zhang, Chenglong; Zhang, Fan; Guo, Shanshan; Liu, Xiao; Guo, Ping

    2018-01-01

    An inexact nonlinear mλ-measure fuzzy chance-constrained programming (INMFCCP) model is developed for irrigation water allocation under uncertainty. Techniques of inexact quadratic programming (IQP), mλ-measure, and fuzzy chance-constrained programming (FCCP) are integrated into a general optimization framework. The INMFCCP model can deal with not only nonlinearities in the objective function, but also uncertainties presented as discrete intervals in the objective function, variables and left-hand side constraints and fuzziness in the right-hand side constraints. Moreover, this model improves upon the conventional fuzzy chance-constrained programming by introducing a linear combination of possibility measure and necessity measure with varying preference parameters. To demonstrate its applicability, the model is then applied to a case study in the middle reaches of Heihe River Basin, northwest China. An interval regression analysis method is used to obtain interval crop water production functions in the whole growth period under uncertainty. Therefore, more flexible solutions can be generated for optimal irrigation water allocation. The variation of results can be examined by giving different confidence levels and preference parameters. Besides, it can reflect interrelationships among system benefits, preference parameters, confidence levels and the corresponding risk levels. Comparison between interval crop water production functions and deterministic ones based on the developed INMFCCP model indicates that the former is capable of reflecting more complexities and uncertainties in practical application. These results can provide more reliable scientific basis for supporting irrigation water management in arid areas.

  1. Resource partitioning along multiple niche axes drives functional diversity in parrotfishes on Caribbean coral reefs.

    Science.gov (United States)

    Adam, Thomas C; Kelley, Megan; Ruttenberg, Benjamin I; Burkepile, Deron E

    2015-12-01

    The recent loss of key consumers to exploitation and habitat degradation has significantly altered community dynamics and ecosystem function across many ecosystems worldwide. Predicting the impacts of consumer losses requires knowing the level of functional diversity that exists within a consumer assemblage. In this study, we document functional diversity among nine species of parrotfishes on Caribbean coral reefs. Parrotfishes are key herbivores that facilitate the maintenance and recovery of coral-dominated reefs by controlling algae and provisioning space for the recruitment of corals. We observed large functional differences among two genera of parrotfishes that were driven by differences in diet. Fishes in the genus Scarus targeted filamentous algal turf assemblages, crustose coralline algae, and endolithic algae and avoided macroalgae, while fishes in the genus Sparisoma preferentially targeted macroalgae. However, species with similar diets were dissimilar in other attributes, including the habitats they frequented, the types of substrate they fed from, and the spatial scale at which they foraged. These differences indicate that species that appear to be functionally redundant when looking at diet alone exhibit high levels of complementarity when we consider multiple functional traits. By identifying key functional differences among parrotfishes, we provide critical information needed to manage parrotfishes to enhance the resilience of coral-dominated reefs and reverse phase shifts on algal-dominated reefs throughout the wider Caribbean. Further, our study provides a framework for predicting the impacts of consumer losses in other species rich ecosystems.

  2. Adaptive landscape and functional diversity of Neotropical cichlids: implications for the ecology and evolution of Cichlinae (Cichlidae; Cichliformes).

    Science.gov (United States)

    Arbour, J H; López-Fernández, H

    2014-11-01

    Morphological, lineage and ecological diversity can vary substantially even among closely related lineages. Factors that influence morphological diversification, especially in functionally relevant traits, can help to explain the modern distribution of disparity across phylogenies and communities. Multivariate axes of feeding functional morphology from 75 species of Neotropical cichlid and a stepwise-AIC algorithm were used to estimate the adaptive landscape of functional morphospace in Cichlinae. Adaptive landscape complexity and convergence, as well as the functional diversity of Cichlinae, were compared with expectations under null evolutionary models. Neotropical cichlid feeding function varied primarily between traits associated with ram feeding vs. suction feeding/biting and secondarily with oral jaw muscle size and pharyngeal crushing capacity. The number of changes in selective regimes and the amount of convergence between lineages was higher than expected under a null model of evolution, but convergence was not higher than expected under a similarly complex adaptive landscape. Functional disparity was compatible with an adaptive landscape model, whereas the distribution of evolutionary change through morphospace corresponded with a process of evolution towards a single adaptive peak. The continentally distributed Neotropical cichlids have evolved relatively rapidly towards a number of adaptive peaks in functional trait space. Selection in Cichlinae functional morphospace is more complex than expected under null evolutionary models. The complexity of selective constraints in feeding morphology has likely been a significant contributor to the diversity of feeding ecology in this clade. © 2014 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  3. Microbial functional diversity associated with plant litter decomposition along a climatic gradient.

    Science.gov (United States)

    Sherman, Chen; Steinberger, Yosef

    2012-08-01

    Predicted changes in climate associated with increased greenhouse gas emissions can cause increases in global mean temperature and changes in precipitation regimes. These changes may affect key soil processes, e.g., microbial CO(2) evolution and biomass, mineralization rates, primary productivity, biodiversity, and litter decomposition, which play an important role in carbon and nutrient cycling in terrestrial ecosystems. Our study examined the changes in litter microbial communities and decomposition along a climatic gradient, ranging from arid desert to humid Mediterranean regions in Israel. Wheat straw litter bags were placed in arid, semi-arid, Mediterranean, and humid Mediterranean sites. Samples were collected seasonally over a 2-year period in order to evaluate mass loss, litter moisture, C/N ratio, bacterial colony-forming units (CFUs), microbial CO(2) evolution and biomass, microbial functional diversity, and catabolic profile. Decomposition rate was the highest during the first year of the study at the Mediterranean and arid sites. Community-level physiological profile and microbial biomass were the highest in summer, while bacterial CFUs were the highest in winter. Microbial functional diversity was found to be highest at the humid Mediterranean site, whereas substrate utilization increased at the arid site. Our results support the assumption that climatic factors control litter degradation and regulate microbial activity.

  4. Transient thermal stresses in a circular cylinder with constrained ends

    International Nuclear Information System (INIS)

    Goshima, Takahito; Miyao, Kaju

    1986-01-01

    This paker deals with the transient thermal stresses in a finite circular cylinder constrained at both end surfaces and subjected to axisymmetric temperature distribution on the lateral surface. The thermoelastic problem is formulated in terms of a thermoelastic displacement potential and three harmonic stress functions. Numerical calculations are carried out for the case of the uniform temperature distribution on the lateral surface. The stress distributions on the constrained end and the free suface are shown graphically, and the singularity in stresses appearing at the circumferencial edge is considered. Moreover, the approximate solution based upon the plane strain theory is introduced in order to compare the rigorous one, and it is considered how the length of the cylinder and the time proceeds affect on the accuracy of the approximation. (author)

  5. Topological variation in the evolution of new reactions in functionally diverse enzyme superfamilies.

    Science.gov (United States)

    Meng, Elaine C; Babbitt, Patricia C

    2011-06-01

    In functionally diverse enzyme superfamilies (SFs), conserved structural and active site features reflect catalytic capabilities 'hard-wired' in each SF architecture. Overlaid on this foundation, evolutionary changes in active site machinery, structural topology and other aspects of structural organization and interactions support the emergence of new reactions, mechanisms, and substrate specificity. This review connects topological with functional variation in each of the haloalkanoic acid dehalogenase (HAD) and vicinal oxygen chelate fold (VOC) SFs and a set of redox-active thioredoxin (Trx)-fold SFs to illustrate a few of the varied themes nature has used to evolve new functions from a limited set of structural scaffolds. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Microbial and functional diversity of a subterrestrial high pH groundwater associated to serpentinization.

    Science.gov (United States)

    Tiago, Igor; Veríssimo, António

    2013-06-01

    Microbial and functional diversity were assessed, from a serpentinization-driven subterrestrial alkaline aquifer - Cabeço de Vide Aquifer (CVA) in Portugal. DGGE analyses revealed the presence of a stable microbial community. By 16S rRNA gene libraries and pyrosequencing analyses, a diverse bacterial composition was determined, contrasting with low archaeal diversity. Within Bacteria the majority of the populations were related to organisms or sequences affiliated to class Clostridia, but members of classes Acidobacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Deinococci, Gammaproteobacteria and of the phyla Bacteroidetes, Chloroflexi and Nitrospira were also detected. Domain Archaea encompassed mainly sequences affiliated to Euryarchaeota. Only form I RuBisCO - cbbL was detected. Autotrophic carbon fixation via the rTCA, 3-HP and 3-HP/4H-B cycles could not be confirmed. The detected APS reductase alpha subunit - aprA sequences were phylogenetically related to sequences of sulfate-reducing bacteria belonging to Clostridia, and also to sequences of chemolithoautothrophic sulfur-oxidizing bacteria belonging to Betaproteobacteria. Sequences of methyl coenzyme M reductase - mcrA were phylogenetically affiliated to sequences belonging to Anaerobic Methanotroph group 1 (ANME-1). The populations found and the functional key markers detected in CVA suggest that metabolisms related to H2 , methane and/or sulfur may be the major driving forces in this environment. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  7. Changes in enzyme activity and functional diversity in soil induced by Cd and glucose addition

    Science.gov (United States)

    Gilmullina, A. R.; Galitskaya, P. Yu; Selivanovskaya, S. Yu

    2018-01-01

    Toxic heavy metal (HM) contamination is a major global issue as it may have an indirect effect on the health of soil, plants, animals and, consequently, on human health. Agricultural soils’ fertilization is one of the reported sources of HM pollution in the world. In this case simultaneous input of stimulating and inhibiting agents into soil takes place, and effects of the combined influence of these agents is hardly predictable. In this study, a simultaneous inhibiting and stimulating effect of Cd and glucose on soil microbes was studied in a model experiment. Enzyme activities (phosphatase, β-glucosidase and cellobiohydrolase) and functional diversity (BIOLOG®EcoPlates ™) were assessed as a test functions. Cd (300 μg Cd g-1 ) amendment had a negative effect only on phosphatase activity. Glucose (3 mg C g-1) addition inhibited β-glucosidase activity and stimulated functional diversity. In joint addition of Cd and Glucose the leading effect belonged to that agent which had the greatest effect in case when it was added separately.

  8. Diverse Politics, Diverse News Coverage? A Longitudinal Study of Diversity of Dutch Political News During Two Decades of Election Campaigns

    NARCIS (Netherlands)

    van Hoof, A.M.J.; Jacobi, C.; Ruigrok, N.

    2014-01-01

    Although diverse political news has been recognized a requirement for a well functioning democracy, longitudinal research into this topic is sparse. In this paper, we analyze the development of diversity in election coverage in the Netherlands between 1994 and 2012. We distinguish between diversity

  9. Integrating Taxonomic, Functional and Phylogenetic Beta Diversities: Interactive Effects with the Biome and Land Use across Taxa.

    Science.gov (United States)

    Corbelli, Julian Martin; Zurita, Gustavo Andres; Filloy, Julieta; Galvis, Juan Pablo; Vespa, Natalia Isabel; Bellocq, Isabel

    2015-01-01

    The spatial distribution of species, functional traits and phylogenetic relationships at both the regional and local scales provide complementary approaches to study patterns of biodiversity and help to untangle the mechanisms driving community assembly. Few studies have simultaneously considered the taxonomic (TBD), functional (FBD) and phylogenetic (PBD) facets of beta diversity. Here we analyze the associations between TBD, FBD, and PBD with the biome (representing different regional species pools) and land use, and investigate whether TBD, FBD and PBD were correlated. In the study design we considered two widely used indicator taxa (birds and ants) from two contrasting biomes (subtropical forest and grassland) and land uses (tree plantations and cropfields) in the southern Neotropics. Non-metric multidimensional scaling showed that taxonomic, functional and phylogenetic distances were associated to biome and land use; study sites grouped into four groups on the bi-dimensional space (cropfields in forest and grassland, and tree plantations in forest and grassland), and that was consistent across beta diversity facets and taxa. Mantel and PERMANOVA tests showed that TBD, FBD and PBD were positively correlated for both bird and ant assemblages; in general, partial correlations were also significant. Some of the functional traits considered here were conserved along phylogeny. Our results will contribute to the development of sound land use planning and beta diversity conservation.

  10. Integrating Taxonomic, Functional and Phylogenetic Beta Diversities: Interactive Effects with the Biome and Land Use across Taxa

    Science.gov (United States)

    Corbelli, Julian Martin; Zurita, Gustavo Andres; Filloy, Julieta; Galvis, Juan Pablo; Vespa, Natalia Isabel; Bellocq, Isabel

    2015-01-01

    The spatial distribution of species, functional traits and phylogenetic relationships at both the regional and local scales provide complementary approaches to study patterns of biodiversity and help to untangle the mechanisms driving community assembly. Few studies have simultaneously considered the taxonomic (TBD), functional (FBD) and phylogenetic (PBD) facets of beta diversity. Here we analyze the associations between TBD, FBD, and PBD with the biome (representing different regional species pools) and land use, and investigate whether TBD, FBD and PBD were correlated. In the study design we considered two widely used indicator taxa (birds and ants) from two contrasting biomes (subtropical forest and grassland) and land uses (tree plantations and cropfields) in the southern Neotropics. Non-metric multidimensional scaling showed that taxonomic, functional and phylogenetic distances were associated to biome and land use; study sites grouped into four groups on the bi-dimensional space (cropfields in forest and grassland, and tree plantations in forest and grassland), and that was consistent across beta diversity facets and taxa. Mantel and PERMANOVA tests showed that TBD, FBD and PBD were positively correlated for both bird and ant assemblages; in general, partial correlations were also significant. Some of the functional traits considered here were conserved along phylogeny. Our results will contribute to the development of sound land use planning and beta diversity conservation. PMID:25978319

  11. Integrating Taxonomic, Functional and Phylogenetic Beta Diversities: Interactive Effects with the Biome and Land Use across Taxa.

    Directory of Open Access Journals (Sweden)

    Julian Martin Corbelli

    Full Text Available The spatial distribution of species, functional traits and phylogenetic relationships at both the regional and local scales provide complementary approaches to study patterns of biodiversity and help to untangle the mechanisms driving community assembly. Few studies have simultaneously considered the taxonomic (TBD, functional (FBD and phylogenetic (PBD facets of beta diversity. Here we analyze the associations between TBD, FBD, and PBD with the biome (representing different regional species pools and land use, and investigate whether TBD, FBD and PBD were correlated. In the study design we considered two widely used indicator taxa (birds and ants from two contrasting biomes (subtropical forest and grassland and land uses (tree plantations and cropfields in the southern Neotropics. Non-metric multidimensional scaling showed that taxonomic, functional and phylogenetic distances were associated to biome and land use; study sites grouped into four groups on the bi-dimensional space (cropfields in forest and grassland, and tree plantations in forest and grassland, and that was consistent across beta diversity facets and taxa. Mantel and PERMANOVA tests showed that TBD, FBD and PBD were positively correlated for both bird and ant assemblages; in general, partial correlations were also significant. Some of the functional traits considered here were conserved along phylogeny. Our results will contribute to the development of sound land use planning and beta diversity conservation.

  12. Constraining the Composition of the Earth from Long-period Electromagnetic Sounding of the Lower Mantle

    DEFF Research Database (Denmark)

    Khan, A.; Connolly, J.; Olsen, Nils

    We reexamine the problem of inverting global transfer functions to constrain the internal structure of the Earth. We go beyond the conventional approach of inverting electromagnetic induction data by inverting directly for chemical composition and thermal state, using the model system CaO-FeO-MgO......We reexamine the problem of inverting global transfer functions to constrain the internal structure of the Earth. We go beyond the conventional approach of inverting electromagnetic induction data by inverting directly for chemical composition and thermal state, using the model system Ca...... and experimental mineral electrical conductivity data are consistent with a silicate earth, with a composition close to the pyrolite model and additionally seem to require a low temperature mantle geotherm....

  13. A constrained Hartree-Fock-Bogoliubov equation derived from the double variational method

    International Nuclear Information System (INIS)

    Onishi, Naoki; Horibata, Takatoshi.

    1980-01-01

    The double variational method is applied to the intrinsic state of the generalized BCS wave function. A constrained Hartree-Fock-Bogoliubov equation is derived explicitly in the form of an eigenvalue equation. A method of obtaining approximate overlap and energy overlap integrals is proposed. This will help development of numerical calculations of the angular momentum projection method, especially for general intrinsic wave functions without any symmetry restrictions. (author)

  14. Taxonomic and functional diversity provides insight into microbial pathways and stress responses in the saline Qinghai Lake, China.

    Directory of Open Access Journals (Sweden)

    Qiuyuan Huang

    Full Text Available Microbe-mediated biogeochemical cycles contribute to the global climate system and have sensitive responses and feedbacks to environmental stress caused by climate change. Yet, little is known about the effects of microbial biodiversity (i.e., taxonmic and functional diversity on biogeochemical cycles in ecosytems that are highly sensitive to climate change. One such sensitive ecosystem is Qinghai Lake, a high-elevation (3196 m saline (1.4% lake located on the Tibetan Plateau, China. This study provides baseline information on the microbial taxonomic and functional diversity as well as the associated stress response genes. Illumina metagenomic and metatranscriptomic datasets were generated from lake water samples collected at two sites (B and E. Autotrophic Cyanobacteria dominated the DNA samples, while heterotrophic Proteobacteria dominated the RNA samples at both sites. Photoheterotrophic Loktanella was also present at both sites. Photosystem II was the most active pathway at site B; while, oxidative phosphorylation was most active at site E. Organisms that expressed photosystem II or oxidative phosphorylation also expressed genes involved in photoprotection and oxidative stress, respectively. Assimilatory pathways associated with the nitrogen cycle were dominant at both sites. Results also indicate a positive relationship between functional diversity and the number of stress response genes. This study provides insight into the stress resilience of microbial metabolic pathways supported by greater taxonomic diversity, which may affect the microbial community response to climate change.

  15. Effects of Predation by Protists on Prokaryotic Community Function, Structure, and Diversity in Anaerobic Granular Sludge

    Science.gov (United States)

    Hirakata, Yuga; Oshiki, Mamoru; Kuroda, Kyohei; Hatamoto, Masashi; Kubota, Kengo; Yamaguchi, Takashi; Harada, Hideki; Araki, Nobuo

    2016-01-01

    Predation by protists is top-down pressure that regulates prokaryotic abundance, community function, structure, and diversity in natural and artificial ecosystems. Although the effects of predation by protists have been studied in aerobic ecosystems, they are poorly understood in anoxic environments. We herein studied the influence of predation by Metopus and Caenomorpha ciliates—ciliates frequently found in anoxic ecosystems—on prokaryotic community function, structure, and diversity. Metopus and Caenomorpha ciliates were cocultivated with prokaryotic assemblages (i.e., anaerobic granular sludge) in an up-flow anaerobic sludge blanket (UASB) reactor for 171 d. Predation by these ciliates increased the methanogenic activities of granular sludge, which constituted 155% of those found in a UASB reactor without the ciliates (i.e., control reactor). Sequencing of 16S rRNA gene amplicons using Illumina MiSeq revealed that the prokaryotic community in the UASB reactor with the ciliates was more diverse than that in the control reactor; 2,885–3,190 and 2,387–2,426 operational taxonomic units (>97% sequence similarities), respectively. The effects of predation by protists in anaerobic engineered systems have mostly been overlooked, and our results show that the influence of predation by protists needs to be examined and considered in the future for a better understanding of prokaryotic community structure and function. PMID:27431197

  16. Inorganic pyrophosphatases: structural diversity serving the function

    Science.gov (United States)

    Samygina, V. R.

    2016-05-01

    The review is devoted to ubiquitous enzymes, inorganic pyrophosphatases, which are essential in all living organisms. Despite the long history of investigations, these enzymes continue to attract interest. The review focuses on the three-dimensional structures of various representatives of this class of proteins. The structural diversity, the relationship between the structure and some properties of pyrophosphatases and various mechanisms of enzyme action related to the structural diversity of these enzymes are discussed. Interactions of pyrophosphatase with other proteins and possible practical applications are considered. The bibliography includes 56 references.

  17. H2B ubiquitination: Conserved molecular mechanism, diverse physiologic functions of the E3 ligase during meiosis.

    Science.gov (United States)

    Wang, Liying; Cao, Chunwei; Wang, Fang; Zhao, Jianguo; Li, Wei

    2017-09-03

    RNF20/Bre1 mediated H2B ubiquitination (H2Bub) has various physiologic functions. Recently, we found that H2Bub participates in meiotic recombination by promoting chromatin relaxation during meiosis. We then analyzed the phylogenetic relationships among the E3 ligase for H2Bub, its E2 Rad6 and their partner WW domain-containing adaptor with a coiled-coil (WAC) or Lge1, and found that the molecular mechanism underlying H2Bub is evolutionarily conserved from yeast to mammals. However, RNF20 has diverse physiologic functions in different organisms, which might be caused by the evolutionary divergency of their domain/motif architectures. In the current extra view, we not only elucidate the evolutionarily conserved molecular mechanism underlying H2Bub, but also discuss the diverse physiologic functions of RNF20 during meiosis.

  18. Resource-constrained project scheduling: computing lower bounds by solving minimum cut problems

    NARCIS (Netherlands)

    Möhring, R.H.; Nesetril, J.; Schulz, A.S.; Stork, F.; Uetz, Marc Jochen

    1999-01-01

    We present a novel approach to compute Lagrangian lower bounds on the objective function value of a wide class of resource-constrained project scheduling problems. The basis is a polynomial-time algorithm to solve the following scheduling problem: Given a set of activities with start-time dependent

  19. Mesh dependence in PDE-constrained optimisation an application in tidal turbine array layouts

    CERN Document Server

    Schwedes, Tobias; Funke, Simon W; Piggott, Matthew D

    2017-01-01

    This book provides an introduction to PDE-constrained optimisation using finite elements and the adjoint approach. The practical impact of the mathematical insights presented here are demonstrated using the realistic scenario of the optimal placement of marine power turbines, thereby illustrating the real-world relevance of best-practice Hilbert space aware approaches to PDE-constrained optimisation problems. Many optimisation problems that arise in a real-world context are constrained by partial differential equations (PDEs). That is, the system whose configuration is to be optimised follows physical laws given by PDEs. This book describes general Hilbert space formulations of optimisation algorithms, thereby facilitating optimisations whose controls are functions of space. It demonstrates the importance of methods that respect the Hilbert space structure of the problem by analysing the mathematical drawbacks of failing to do so. The approaches considered are illustrated using the optimisation problem arisin...

  20. The effect of range changes on the functional turnover, structure and diversity of bird assemblages under future climate scenarios.

    Science.gov (United States)

    Barbet-Massin, Morgane; Jetz, Walter

    2015-08-01

    Animal assemblages fulfill a critical set of ecological functions for ecosystems that may be altered substantially as climate change-induced distribution changes lead to community disaggregation and reassembly. We combine species and community perspectives to assess the consequences of projected geographic range changes for the diverse functional attributes of avian assemblages worldwide. Assemblage functional structure is projected to change highly unevenly across space. These differences arise from both changes in the number of species and changes in species' relative local functional redundancy or distinctness. They sometimes result in substantial losses of functional diversity that could have severe consequences for ecosystem health. Range expansions may counter functional losses in high-latitude regions, but offer little compensation in many tropical and subtropical biomes. Future management of local community function and ecosystem services thus relies on understanding the global dynamics of species distributions and multiscale approaches that include the biogeographic context of species traits. © 2015 John Wiley & Sons Ltd.

  1. Policing Visible Sexual/Gender Diversity as a Program of Governance

    Directory of Open Access Journals (Sweden)

    Angela Dwyer

    2012-11-01

    Full Text Available Using interview data on LGBT young people’s policing experiences, I argue policing and security works as a program of government (Dean 1999; Foucault 1991; Rose 1999 that constrains the visibilities of diverse sexuality and gender in public spaces. While young people narrated police actions as discriminatory, the interactions were complex and multi-faceted with police and security working to subtly constrain the public visibilities of ‘queerness’. Same sex affection, for instance, was visibly yet unverifiably (Mason 2002 regulated by police as a method of governing the boundaries of proper gender and sexuality in public. The paper concludes by noting how the visibility of police interactions with LGBT young people demonstrates to the public that public spaces are, and should remain, heterosexual spaces.

  2. Diversity and functions of bacterial community in drinking water biofilms revealed by high-throughput sequencing

    Science.gov (United States)

    Chao, Yuanqing; Mao, Yanping; Wang, Zhiping; Zhang, Tong

    2015-06-01

    The development of biofilms in drinking water (DW) systems may cause various problems to water quality. To investigate the community structure of biofilms on different pipe materials and the global/specific metabolic functions of DW biofilms, PCR-based 454 pyrosequencing data for 16S rRNA genes and Illumina metagenomic data were generated and analysed. Considerable differences in bacterial diversity and taxonomic structure were identified between biofilms formed on stainless steel and biofilms formed on plastics, indicating that the metallic materials facilitate the formation of higher diversity biofilms. Moreover, variations in several dominant genera were observed during biofilm formation. Based on PCA analysis, the global functions in the DW biofilms were similar to other DW metagenomes. Beyond the global functions, the occurrences and abundances of specific protective genes involved in the glutathione metabolism, the SoxRS system, the OxyR system, RpoS regulated genes, and the production/degradation of extracellular polymeric substances were also evaluated. A near-complete and low-contamination draft genome was constructed from the metagenome of the DW biofilm, based on the coverage and tetranucleotide frequencies, and identified as a Bradyrhizobiaceae-like bacterium according to a phylogenetic analysis. Our findings provide new insight into DW biofilms, especially in terms of their metabolic functions.

  3. Lightweight cryptography for constrained devices

    DEFF Research Database (Denmark)

    Alippi, Cesare; Bogdanov, Andrey; Regazzoni, Francesco

    2014-01-01

    Lightweight cryptography is a rapidly evolving research field that responds to the request for security in resource constrained devices. This need arises from crucial pervasive IT applications, such as those based on RFID tags where cost and energy constraints drastically limit the solution...... complexity, with the consequence that traditional cryptography solutions become too costly to be implemented. In this paper, we survey design strategies and techniques suitable for implementing security primitives in constrained devices....

  4. A MAP blind image deconvolution algorithm with bandwidth over-constrained

    Science.gov (United States)

    Ren, Zhilei; Liu, Jin; Liang, Yonghui; He, Yulong

    2018-03-01

    We demonstrate a maximum a posteriori (MAP) blind image deconvolution algorithm with bandwidth over-constrained and total variation (TV) regularization to recover a clear image from the AO corrected images. The point spread functions (PSFs) are estimated by bandwidth limited less than the cutoff frequency of the optical system. Our algorithm performs well in avoiding noise magnification. The performance is demonstrated on simulated data.

  5. Cultural Diversities and Human Rights: History, Minorities, Pluralization

    Directory of Open Access Journals (Sweden)

    EDUARDO J. RUIZ VIEYTEZ

    2014-12-01

    Full Text Available Cultural diversity plays today a prominent role in the updating and developing of human rights. Past developments in the protection of rights have essentially forgotten the democratic management of cultural and identity-based diversity. States have stifled the main developments of the rights and constrained them to partial views in favour of the majority or dominant groups in each country. The current context of regional progressive integration and social diversification within each state agrees on the need to address the adequacy of systems for the protection of rights from different strategies to the context of multiculturalism. Against the process of "nationalization of rights" it is necessary to adopt a strategy for pluralization. On the one hand, the concept of minority has to be given its corresponding importance in both international and domestic law. On the other hand, different kind of policies and legal instruments for the accommodation of diversity can be identified and used to foster this necessary process of pluralization.

  6. A GA based penalty function technique for solving constrained redundancy allocation problem of series system with interval valued reliability of components

    Science.gov (United States)

    Gupta, R. K.; Bhunia, A. K.; Roy, D.

    2009-10-01

    In this paper, we have considered the problem of constrained redundancy allocation of series system with interval valued reliability of components. For maximizing the overall system reliability under limited resource constraints, the problem is formulated as an unconstrained integer programming problem with interval coefficients by penalty function technique and solved by an advanced GA for integer variables with interval fitness function, tournament selection, uniform crossover, uniform mutation and elitism. As a special case, considering the lower and upper bounds of the interval valued reliabilities of the components to be the same, the corresponding problem has been solved. The model has been illustrated with some numerical examples and the results of the series redundancy allocation problem with fixed value of reliability of the components have been compared with the existing results available in the literature. Finally, sensitivity analyses have been shown graphically to study the stability of our developed GA with respect to the different GA parameters.

  7. Constrained Optimization Based on Hybrid Evolutionary Algorithm and Adaptive Constraint-Handling Technique

    DEFF Research Database (Denmark)

    Wang, Yong; Cai, Zixing; Zhou, Yuren

    2009-01-01

    A novel approach to deal with numerical and engineering constrained optimization problems, which incorporates a hybrid evolutionary algorithm and an adaptive constraint-handling technique, is presented in this paper. The hybrid evolutionary algorithm simultaneously uses simplex crossover and two...... mutation operators to generate the offspring population. Additionally, the adaptive constraint-handling technique consists of three main situations. In detail, at each situation, one constraint-handling mechanism is designed based on current population state. Experiments on 13 benchmark test functions...... and four well-known constrained design problems verify the effectiveness and efficiency of the proposed method. The experimental results show that integrating the hybrid evolutionary algorithm with the adaptive constraint-handling technique is beneficial, and the proposed method achieves competitive...

  8. The phylogeny of the mammalian heme peroxidases and the evolution of their diverse functions

    Directory of Open Access Journals (Sweden)

    Ó'Fágáin Ciarán

    2008-03-01

    Full Text Available Abstract Background The mammalian heme peroxidases (MHPs are a medically important group of enzymes. Included in this group are myeloperoxidase, eosinophil peroxidase, lactoperoxidase, and thyroid peroxidase. These enzymes are associated with such diverse diseases as asthma, Alzheimer's disease and inflammatory vascular disease. Despite much effort to elucidate a clearer understanding of the function of the 4 major groups of this multigene family, we still do not have a clear understanding of their relationships to each other. Results Sufficient signal exists for the resolution of the evolutionary relationships of this family of enzymes. We demonstrate, using a root mean squared deviation statistic, how the removal of the fastest evolving sites aids in the minimisation of the effect of long branch attraction and the generation of a highly supported phylogeny. Based on this phylogeny we have pinpointed the amino acid positions that have most likely contributed to the diverse functions of these enzymes. Many of these residues are in close proximity to sites implicated in protein misfolding, loss of function or disease. Conclusion Our analysis of all available genomic sequence data for the MHPs from all available completed mammalian genomes, involved sophisticated methods of phylogeny reconstruction and data treatment. Our study has (i fully resolved the phylogeny of the MHPs and the subsequent pattern of gene duplication, and (ii, we have detected amino acids under positive selection that have most likely contributed to the observed functional shifts in each type of MHP.

  9. Partitioning the impact of environment and spatial structure on alpha and beta components of taxonomic, functional, and phylogenetic diversity in European ants.

    Science.gov (United States)

    Arnan, Xavier; Cerdá, Xim; Retana, Javier

    2015-01-01

    We analyze the relative contribution of environmental and spatial variables to the alpha and beta components of taxonomic (TD), phylogenetic (PD), and functional (FD) diversity in ant communities found along different climate and anthropogenic disturbance gradients across western and central Europe, in order to assess the mechanisms structuring ant biodiversity. To this aim we calculated alpha and beta TD, PD, and FD for 349 ant communities, which included a total of 155 ant species; we examined 10 functional traits and phylogenetic relatedness. Variation partitioning was used to examine how much variation in ant diversity was explained by environmental and spatial variables. Autocorrelation in diversity measures and each trait's phylogenetic signal were also analyzed. We found strong autocorrelation in diversity measures. Both environmental and spatial variables significantly contributed to variation in TD, PD, and FD at both alpha and beta scales; spatial structure had the larger influence. The different facets of diversity showed similar patterns along environmental gradients. Environment explained a much larger percentage of variation in FD than in TD or PD. All traits demonstrated strong phylogenetic signals. Our results indicate that environmental filtering and dispersal limitations structure all types of diversity in ant communities. Strong dispersal limitations appear to have led to clustering of TD, PD, and FD in western and central Europe, probably because different historical and evolutionary processes generated different pools of species. Remarkably, these three facets of diversity showed parallel patterns along environmental gradients. Trait-mediated species sorting and niche conservatism appear to structure ant diversity, as evidenced by the fact that more variation was explained for FD and that all traits had strong phylogenetic signals. Since environmental variables explained much more variation in FD than in PD, functional diversity should be a

  10. THE VELOCITY FUNCTION IN THE LOCAL ENVIRONMENT FROM ΛCDM AND ΛWDM CONSTRAINED SIMULATIONS

    International Nuclear Information System (INIS)

    Zavala, J.; Jing, Y. P.; Faltenbacher, A.; Yepes, G.; Hoffman, Y.; Gottloeber, S.; Catinella, B.

    2009-01-01

    Using constrained simulations of the local universe for generic cold dark matter (CDM) and for 1 keV warm dark matter (WDM), we investigate the difference in the abundance of dark matter halos in the local environment. We find that the mass function (MF) within 20 h -1 Mpc of the Local Group is ∼2 times larger than the universal MF in the 10 9 -10 13 h -1 M sun mass range. Imposing the field of view of the ongoing H I blind survey Arecibo Legacy Fast ALFA (ALFALFA) in our simulations, we predict that the velocity function (VF) in the Virgo-direction region (VdR) exceeds the universal VF by a factor of 3. Furthermore, employing a scheme to translate the halo VF into a galaxy VF, we compare the simulation results with a sample of galaxies from the early catalog release of ALFALFA. We find that our simulations are able to reproduce the VF in the 80-300 km s -1 velocity range, having a value ∼10 times larger than the universal VF in the VdR. In the low-velocity regime, 35-80 km s -1 , the WDM simulation reproduces the observed flattening of the VF. In contrast, the simulation with CDM predicts a steep rise in the VF toward lower velocities; for V max = 35 km s -1 , it forecasts ∼10 times more sources than the ones observed. If confirmed by the complete ALFALFA survey, our results indicate a potential problem for the CDM paradigm or for the conventional assumptions about energetic feedback in dwarf galaxies.

  11. Assessing the functional diversity of herbivorous reef fishes using a compound-specific stable isotope approach

    KAUST Repository

    Tietbohl, Matthew

    2016-12-01

    Herbivorous coral reef fishes play an important role in helping to structure their environment directly by consuming algae and indirectly by promoting coral health and growth. These fishes are generally separated into three broad groups: browsers, grazers, and excavators/scrapers, with these groupings often thought to have a fixed general function and all fishes within a group thought to have similar ecological roles. This categorization assumes a high level of functional redundancy within herbivorous fishes. However, recent evidence questions the use of this broad classification scheme, and posits that there may actually be more resource partitioning within these functional groupings. Here, I use a compound-specific stable isotope approach (CSIA) to show there appears to be a greater diversity of functional roles than previously assumed within broad functional groups. The δ13C signatures from essential amino acids of reef end-members (coral, macroalgae, detritus, and phytoplankton) and fish muscle were analyzed to investigate differences in resource use between fishes. Most end-members displayed clear isotopic differences, and most fishes within functional groups were dissimilar in their isotopic signature, implying differences in the resources they target. No grazers closely resembled each other isotopically, implying a much lower level of functional redundancy within this group; scraping parrotfish were also distinct from excavating parrotfish and to a lesser degree distinct between scrapers. This study highlights the potential of CSIA to help distinguish fine-scale ecological differences within other groups of reef organisms as well. These results question the utility of lumping nominally herbivorous fishes into broad groups with assumed similar roles. Given the apparent functional differences between nominally herbivorous reef fishes, it is important for managers to incorporate the diversity of functional roles these fish play.

  12. Assessing the functional diversity of herbivorous reef fishes using a compound-specific stable isotope approach

    KAUST Repository

    Tietbohl, Matthew

    2016-01-01

    Herbivorous coral reef fishes play an important role in helping to structure their environment directly by consuming algae and indirectly by promoting coral health and growth. These fishes are generally separated into three broad groups: browsers, grazers, and excavators/scrapers, with these groupings often thought to have a fixed general function and all fishes within a group thought to have similar ecological roles. This categorization assumes a high level of functional redundancy within herbivorous fishes. However, recent evidence questions the use of this broad classification scheme, and posits that there may actually be more resource partitioning within these functional groupings. Here, I use a compound-specific stable isotope approach (CSIA) to show there appears to be a greater diversity of functional roles than previously assumed within broad functional groups. The δ13C signatures from essential amino acids of reef end-members (coral, macroalgae, detritus, and phytoplankton) and fish muscle were analyzed to investigate differences in resource use between fishes. Most end-members displayed clear isotopic differences, and most fishes within functional groups were dissimilar in their isotopic signature, implying differences in the resources they target. No grazers closely resembled each other isotopically, implying a much lower level of functional redundancy within this group; scraping parrotfish were also distinct from excavating parrotfish and to a lesser degree distinct between scrapers. This study highlights the potential of CSIA to help distinguish fine-scale ecological differences within other groups of reef organisms as well. These results question the utility of lumping nominally herbivorous fishes into broad groups with assumed similar roles. Given the apparent functional differences between nominally herbivorous reef fishes, it is important for managers to incorporate the diversity of functional roles these fish play.

  13. Post-translational processing targets functionally diverse proteins in Mycoplasma hyopneumoniae.

    Science.gov (United States)

    Tacchi, Jessica L; Raymond, Benjamin B A; Haynes, Paul A; Berry, Iain J; Widjaja, Michael; Bogema, Daniel R; Woolley, Lauren K; Jenkins, Cheryl; Minion, F Chris; Padula, Matthew P; Djordjevic, Steven P

    2016-02-01

    Mycoplasma hyopneumoniae is a genome-reduced, cell wall-less, bacterial pathogen with a predicted coding capacity of less than 700 proteins and is one of the smallest self-replicating pathogens. The cell surface of M. hyopneumoniae is extensively modified by processing events that target the P97 and P102 adhesin families. Here, we present analyses of the proteome of M. hyopneumoniae-type strain J using protein-centric approaches (one- and two-dimensional GeLC-MS/MS) that enabled us to focus on global processing events in this species. While these approaches only identified 52% of the predicted proteome (347 proteins), our analyses identified 35 surface-associated proteins with widely divergent functions that were targets of unusual endoproteolytic processing events, including cell adhesins, lipoproteins and proteins with canonical functions in the cytosol that moonlight on the cell surface. Affinity chromatography assays that separately used heparin, fibronectin, actin and host epithelial cell surface proteins as bait recovered cleavage products derived from these processed proteins, suggesting these fragments interact directly with the bait proteins and display previously unrecognized adhesive functions. We hypothesize that protein processing is underestimated as a post-translational modification in genome-reduced bacteria and prokaryotes more broadly, and represents an important mechanism for creating cell surface protein diversity. © 2016 The Authors.

  14. The evolutionary value of recombination is constrained by genome modularity.

    Directory of Open Access Journals (Sweden)

    Darren P Martin

    2005-10-01

    Full Text Available Genetic recombination is a fundamental evolutionary mechanism promoting biological adaptation. Using engineered recombinants of the small single-stranded DNA plant virus, Maize streak virus (MSV, we experimentally demonstrate that fragments of genetic material only function optimally if they reside within genomes similar to those in which they evolved. The degree of similarity necessary for optimal functionality is correlated with the complexity of intragenomic interaction networks within which genome fragments must function. There is a striking correlation between our experimental results and the types of MSV recombinants that are detectable in nature, indicating that obligatory maintenance of intragenome interaction networks strongly constrains the evolutionary value of recombination for this virus and probably for genomes in general.

  15. Unrecognized coral species diversity masks differences in functional ecology.

    Science.gov (United States)

    Boulay, Jennifer N; Hellberg, Michael E; Cortés, Jorge; Baums, Iliana B

    2014-02-07

    Porites corals are foundation species on Pacific reefs but a confused taxonomy hinders understanding of their ecosystem function and responses to climate change. Here, we show that what has been considered a single species in the eastern tropical Pacific, Porites lobata, includes a morphologically similar yet ecologically distinct species, Porites evermanni. While P. lobata reproduces mainly sexually, P. evermanni dominates in areas where triggerfish prey on bioeroding mussels living within the coral skeleton, thereby generating asexual coral fragments. These fragments proliferate in marginal habitat not colonized by P. lobata. The two Porites species also show a differential bleaching response despite hosting the same dominant symbiont subclade. Thus, hidden diversity within these reef-builders has until now obscured differences in trophic interactions, reproductive dynamics and bleaching susceptibility, indicative of differential responses when confronted with future climate change.

  16. A multi-objective improved teaching-learning based optimization algorithm for unconstrained and constrained optimization problems

    Directory of Open Access Journals (Sweden)

    R. Venkata Rao

    2014-01-01

    Full Text Available The present work proposes a multi-objective improved teaching-learning based optimization (MO-ITLBO algorithm for unconstrained and constrained multi-objective function optimization. The MO-ITLBO algorithm is the improved version of basic teaching-learning based optimization (TLBO algorithm adapted for multi-objective problems. The basic TLBO algorithm is improved to enhance its exploration and exploitation capacities by introducing the concept of number of teachers, adaptive teaching factor, tutorial training and self-motivated learning. The MO-ITLBO algorithm uses a grid-based approach to adaptively assess the non-dominated solutions (i.e. Pareto front maintained in an external archive. The performance of the MO-ITLBO algorithm is assessed by implementing it on unconstrained and constrained test problems proposed for the Congress on Evolutionary Computation 2009 (CEC 2009 competition. The performance assessment is done by using the inverted generational distance (IGD measure. The IGD measures obtained by using the MO-ITLBO algorithm are compared with the IGD measures of the other state-of-the-art algorithms available in the literature. Finally, Lexicographic ordering is used to assess the overall performance of competitive algorithms. Results have shown that the proposed MO-ITLBO algorithm has obtained the 1st rank in the optimization of unconstrained test functions and the 3rd rank in the optimization of constrained test functions.

  17. Chronic polyaromatic hydrocarbon (PAH contamination is a marginal driver for community diversity and prokaryotic predicted functioning in coastal sediments

    Directory of Open Access Journals (Sweden)

    Mathilde Jeanbille

    2016-08-01

    Full Text Available Benthic microorganisms are key players in the recycling of organic matter and recalcitrant compounds such as polyaromatic hydrocarbons (PAHs in coastal sediments. Despite their ecological importance, the response of microbial communities to chronic PAH pollution, one of the major threats to coastal ecosystems, has received very little attention. In one of the largest surveys performed so far on coastal sediments, the diversity and composition of microbial communities inhabiting both chronically contaminated and non-contaminated coastal sediments were investigated using high-throughput sequencing on the 18S and 16S rRNA genes. Prokaryotic alpha-diversity showed significant association with salinity, temperature, and organic carbon content. The effect of particle size distribution was strong on eukaryotic diversity. Similarly to alpha-diversity, beta-diversity patterns were strongly influenced by the environmental filter, while PAHs had no influence on the prokaryotic community structure and a weak impact on the eukaryotic community structure at the continental scale. However, at the regional scale, PAHs became the main driver shaping the structure of bacterial and eukaryotic communities. These patterns were not found for PICRUSt predicted prokaryotic functions, thus indicating some degree of functional redundancy. Eukaryotes presented a greater potential for their use as PAH contamination biomarkers, owing to their stronger response at both regional and continental scales.

  18. Taxonomical and functional diversity turnover in Mediterranean grasslands: interactions between grazing, habitat type and rainfall

    Czech Academy of Sciences Publication Activity Database

    Carmona, C. P.; Azcárate, F. M.; de Bello, Francesco; Ollero, H. S.; Lepš, Jan; Peco, B.

    2012-01-01

    Roč. 49, č. 5 (2012), 1084-1093 ISSN 0021-8901 Institutional research plan: CEZ:AV0Z60050516; CEZ:AV0Z50070508 Institutional support: RVO:67985939 ; RVO:60077344 Keywords : Dehesa * diversity partitioning * functional redundancy * grazing management Subject RIV: EH - Ecology, Behaviour Impact factor: 4.740, year: 2012

  19. Minimal constrained supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Cribiori, N. [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Dall' Agata, G., E-mail: dallagat@pd.infn.it [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Farakos, F. [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Porrati, M. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)

    2017-01-10

    We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.

  20. Minimal constrained supergravity

    International Nuclear Information System (INIS)

    Cribiori, N.; Dall'Agata, G.; Farakos, F.; Porrati, M.

    2017-01-01

    We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.

  1. Analyses of the influencing factors of soil microbial functional gene diversity in tropical rainforest based on GeoChip 5.0.

    Science.gov (United States)

    Cong, Jing; Liu, Xueduan; Lu, Hui; Xu, Han; Li, Yide; Deng, Ye; Li, Diqiang; Zhang, Yuguang

    2015-09-01

    To examine soil microbial functional gene diversity and causative factors in tropical rainforests, we used a microarray-based metagenomic tool named GeoChip 5.0 to profile it. We found that high microbial functional gene diversity and different soil microbial metabolic potential for biogeochemical processes were considered to exist in tropical rainforest. Soil available nitrogen was the most associated with soil microbial functional gene structure. Here, we mainly describe the experiment design, the data processing, and soil biogeochemical analyses attached to the study in details, which could be published on BMC microbiology Journal in 2015, whose raw data have been deposited in NCBI's Gene Expression Omnibus (accession number GSE69171).

  2. Constrained optimization via simulation models for new product innovation

    Science.gov (United States)

    Pujowidianto, Nugroho A.

    2017-11-01

    We consider the problem of constrained optimization where the decision makers aim to optimize the primary performance measure while constraining the secondary performance measures. This paper provides a brief overview of stochastically constrained optimization via discrete event simulation. Most review papers tend to be methodology-based. This review attempts to be problem-based as decision makers may have already decided on the problem formulation. We consider constrained optimization models as there are usually constraints on secondary performance measures as trade-off in new product development. It starts by laying out different possible methods and the reasons using constrained optimization via simulation models. It is then followed by the review of different simulation optimization approach to address constrained optimization depending on the number of decision variables, the type of constraints, and the risk preferences of the decision makers in handling uncertainties.

  3. Complementarity of flux- and biometric-based data to constrain parameters in a terrestrial carbon model

    Directory of Open Access Journals (Sweden)

    Zhenggang Du

    2015-03-01

    Full Text Available To improve models for accurate projections, data assimilation, an emerging statistical approach to combine models with data, have recently been developed to probe initial conditions, parameters, data content, response functions and model uncertainties. Quantifying how many information contents are contained in different data streams is essential to predict future states of ecosystems and the climate. This study uses a data assimilation approach to examine the information contents contained in flux- and biometric-based data to constrain parameters in a terrestrial carbon (C model, which includes canopy photosynthesis and vegetation–soil C transfer submodels. Three assimilation experiments were constructed with either net ecosystem exchange (NEE data only or biometric data only [including foliage and woody biomass, litterfall, soil organic C (SOC and soil respiration], or both NEE and biometric data to constrain model parameters by a probabilistic inversion application. The results showed that NEE data mainly constrained parameters associated with gross primary production (GPP and ecosystem respiration (RE but were almost invalid for C transfer coefficients, while biometric data were more effective in constraining C transfer coefficients than other parameters. NEE and biometric data constrained about 26% (6 and 30% (7 of a total of 23 parameters, respectively, but their combined application constrained about 61% (14 of all parameters. The complementarity of NEE and biometric data was obvious in constraining most of parameters. The poor constraint by only NEE or biometric data was probably attributable to either the lack of long-term C dynamic data or errors from measurements. Overall, our results suggest that flux- and biometric-based data, containing different processes in ecosystem C dynamics, have different capacities to constrain parameters related to photosynthesis and C transfer coefficients, respectively. Multiple data sources could also

  4. Hybrid real-code ant colony optimisation for constrained mechanical design

    Science.gov (United States)

    Pholdee, Nantiwat; Bureerat, Sujin

    2016-01-01

    This paper proposes a hybrid meta-heuristic based on integrating a local search simplex downhill (SDH) method into the search procedure of real-code ant colony optimisation (ACOR). This hybridisation leads to five hybrid algorithms where a Monte Carlo technique, a Latin hypercube sampling technique (LHS) and a translational propagation Latin hypercube design (TPLHD) algorithm are used to generate an initial population. Also, two numerical schemes for selecting an initial simplex are investigated. The original ACOR and its hybrid versions along with a variety of established meta-heuristics are implemented to solve 17 constrained test problems where a fuzzy set theory penalty function technique is used to handle design constraints. The comparative results show that the hybrid algorithms are the top performers. Using the TPLHD technique gives better results than the other sampling techniques. The hybrid optimisers are a powerful design tool for constrained mechanical design problems.

  5. Experimental Manipulation of Grassland Plant Diversity Induces Complex Shifts in Aboveground Arthropod Diversity.

    Science.gov (United States)

    Hertzog, Lionel R; Meyer, Sebastian T; Weisser, Wolfgang W; Ebeling, Anne

    2016-01-01

    Changes in producer diversity cause multiple changes in consumer communities through various mechanisms. However, past analyses investigating the relationship between plant diversity and arthropod consumers focused only on few aspects of arthropod diversity, e.g. species richness and abundance. Yet, shifts in understudied facets of arthropod diversity like relative abundances or species dominance may have strong effects on arthropod-mediated ecosystem functions. Here we analyze the relationship between plant species richness and arthropod diversity using four complementary diversity indices, namely: abundance, species richness, evenness (equitability of the abundance distribution) and dominance (relative abundance of the dominant species). Along an experimental gradient of plant species richness (1, 2, 4, 8, 16 and 60 plant species), we sampled herbivorous and carnivorous arthropods using pitfall traps and suction sampling during a whole vegetation period. We tested whether plant species richness affects consumer diversity directly (i), or indirectly through increased productivity (ii). Further, we tested the impact of plant community composition on arthropod diversity by testing for the effects of plant functional groups (iii). Abundance and species richness of both herbivores and carnivores increased with increasing plant species richness, but the underlying mechanisms differed between the two trophic groups. While higher species richness in herbivores was caused by an increase in resource diversity, carnivore richness was driven by plant productivity. Evenness of herbivore communities did not change along the gradient in plant species richness, whereas evenness of carnivores declined. The abundance of dominant herbivore species showed no response to changes in plant species richness, but the dominant carnivores were more abundant in species-rich plant communities. The functional composition of plant communities had small impacts on herbivore communities, whereas

  6. Experimental Manipulation of Grassland Plant Diversity Induces Complex Shifts in Aboveground Arthropod Diversity

    Science.gov (United States)

    Hertzog, Lionel R.; Meyer, Sebastian T.; Weisser, Wolfgang W.; Ebeling, Anne

    2016-01-01

    Changes in producer diversity cause multiple changes in consumer communities through various mechanisms. However, past analyses investigating the relationship between plant diversity and arthropod consumers focused only on few aspects of arthropod diversity, e.g. species richness and abundance. Yet, shifts in understudied facets of arthropod diversity like relative abundances or species dominance may have strong effects on arthropod-mediated ecosystem functions. Here we analyze the relationship between plant species richness and arthropod diversity using four complementary diversity indices, namely: abundance, species richness, evenness (equitability of the abundance distribution) and dominance (relative abundance of the dominant species). Along an experimental gradient of plant species richness (1, 2, 4, 8, 16 and 60 plant species), we sampled herbivorous and carnivorous arthropods using pitfall traps and suction sampling during a whole vegetation period. We tested whether plant species richness affects consumer diversity directly (i), or indirectly through increased productivity (ii). Further, we tested the impact of plant community composition on arthropod diversity by testing for the effects of plant functional groups (iii). Abundance and species richness of both herbivores and carnivores increased with increasing plant species richness, but the underlying mechanisms differed between the two trophic groups. While higher species richness in herbivores was caused by an increase in resource diversity, carnivore richness was driven by plant productivity. Evenness of herbivore communities did not change along the gradient in plant species richness, whereas evenness of carnivores declined. The abundance of dominant herbivore species showed no response to changes in plant species richness, but the dominant carnivores were more abundant in species-rich plant communities. The functional composition of plant communities had small impacts on herbivore communities, whereas

  7. Affine Lie algebraic origin of constrained KP hierarchies

    International Nuclear Information System (INIS)

    Aratyn, H.; Gomes, J.F.; Zimerman, A.H.

    1994-07-01

    It is presented an affine sl(n+1) algebraic construction of the basic constrained KP hierarchy. This hierarchy is analyzed using two approaches, namely linear matrix eigenvalue problem on hermitian symmetric space and constrained KP Lax formulation and we show that these approaches are equivalent. The model is recognized to be generalized non-linear Schroedinger (GNLS) hierarchy and it is used as a building block for a new class of constrained KP hierarchies. These constrained KP hierarchies are connected via similarity-Backlund transformations and interpolate between GNLS and multi-boson KP-Toda hierarchies. The construction uncovers origin of the Toda lattice structure behind the latter hierarchy. (author). 23 refs

  8. Minimal constrained supergravity

    Directory of Open Access Journals (Sweden)

    N. Cribiori

    2017-01-01

    Full Text Available We describe minimal supergravity models where supersymmetry is non-linearly realized via constrained superfields. We show that the resulting actions differ from the so called “de Sitter” supergravities because we consider constraints eliminating directly the auxiliary fields of the gravity multiplet.

  9. Ecosystem engineering by invasive exotic beavers reduces in-stream diversity and enhances ecosystem function in Cape Horn, Chile.

    Science.gov (United States)

    Anderson, Christopher B; Rosemond, Amy D

    2007-11-01

    Species invasions are of global significance, but predicting their impacts can be difficult. Introduced ecosystem engineers, however, provide an opportunity to test the underlying mechanisms that may be common to all invasive engineers and link relationships between changes in diversity and ecosystem function, thereby providing explanatory power for observed ecological patterns. Here we test specific predictions for an invasive ecosystem engineer by quantifying the impacts of habitat and resource modifications caused by North American beavers (Castor canadensis) on aquatic macroinvertebrate community structure and stream ecosystem function in the Cape Horn Biosphere Reserve, Chile. We compared responses to beavers in three habitat types: (1) forested (unimpacted) stream reaches, (2) beaver ponds, and (3) sites immediately downstream of beaver dams in four streams. We found that beaver engineering in ponds created taxonomically simplified, but more productive, benthic macroinvertebrate assemblages. Specifically, macroinvertebrate richness, diversity and number of functional feeding groups were reduced by half, while abundance, biomass and secondary production increased three- to fivefold in beaver ponds compared to forested sites. Reaches downstream of beaver ponds were very similar to natural forested sections. Beaver invasion effects on both community and ecosystem parameters occurred predominantly via increased retention of fine particulate organic matter, which was associated with reduced macroinvertebrate richness and diversity (via homogenization of benthic microhabitat) and increased macroinvertebrate biomass and production (via greater food availability). Beaver modifications to macroinvertebrate community structure were largely confined to ponds, but increased benthic production in beaver-modified habitats adds to energy retention and flow for the entire stream ecosystem. Furthermore, the effects of beavers on taxa richness (negative) and measures of

  10. Resource Constrained Project Scheduling Subject to Due Dates: Preemption Permitted with Penalty

    Directory of Open Access Journals (Sweden)

    Behrouz Afshar-Nadjafi

    2014-01-01

    Full Text Available Extensive research works have been carried out in resource constrained project scheduling problem. However, scarce researches have studied the problems in which a setup cost must be incurred if activities are preempted. In this research, we investigate the resource constrained project scheduling problem to minimize the total project cost, considering earliness-tardiness and preemption penalties. A mixed integer programming formulation is proposed for the problem. The resulting problem is NP-hard. So, we try to obtain a satisfying solution using simulated annealing (SA algorithm. The efficiency of the proposed algorithm is tested based on 150 randomly produced examples. Statistical comparison in terms of the computational times and objective function indicates that the proposed algorithm is efficient and effective.

  11. Evolutionary Conservation and Emerging Functional Diversity of the Cytosolic Hsp70:J Protein Chaperone Network of Arabidopsis thaliana.

    Science.gov (United States)

    Verma, Amit K; Diwan, Danish; Raut, Sandeep; Dobriyal, Neha; Brown, Rebecca E; Gowda, Vinita; Hines, Justin K; Sahi, Chandan

    2017-06-07

    Heat shock proteins of 70 kDa (Hsp70s) partner with structurally diverse Hsp40s (J proteins), generating distinct chaperone networks in various cellular compartments that perform myriad housekeeping and stress-associated functions in all organisms. Plants, being sessile, need to constantly maintain their cellular proteostasis in response to external environmental cues. In these situations, the Hsp70:J protein machines may play an important role in fine-tuning cellular protein quality control. Although ubiquitous, the functional specificity and complexity of the plant Hsp70:J protein network has not been studied. Here, we analyzed the J protein network in the cytosol of Arabidopsis thaliana and, using yeast genetics, show that the functional specificities of most plant J proteins in fundamental chaperone functions are conserved across long evolutionary timescales. Detailed phylogenetic and functional analysis revealed that increased number, regulatory differences, and neofunctionalization in J proteins together contribute to the emerging functional diversity and complexity in the Hsp70:J protein network in higher plants. Based on the data presented, we propose that higher plants have orchestrated their "chaperome," especially their J protein complement, according to their specialized cellular and physiological stipulations. Copyright © 2017 Verma et al.

  12. The functions of biological diversity in an age of extinction.

    Science.gov (United States)

    Naeem, Shahid; Duffy, J Emmett; Zavaleta, Erika

    2012-06-15

    Ecosystems worldwide are rapidly losing taxonomic, phylogenetic, genetic, and functional diversity as a result of human appropriation of natural resources, modification of habitats and climate, and the spread of pathogenic, exotic, and domestic plants and animals. Twenty years of intense theoretical and empirical research have shown that such biotic impoverishment can markedly alter the biogeochemical and dynamic properties of ecosystems, but frontiers remain in linking this research to the complexity of wild nature, and in applying it to pressing environmental issues such as food, water, energy, and biosecurity. The question before us is whether these advances can take us beyond merely invoking the precautionary principle of conserving biodiversity to a predictive science that informs practical and specific solutions to mitigate and adapt to its loss.

  13. Diversity and Ecological Functions of Crenarchaeota in Terrestrial Hot Springs of Tengchong, China

    Science.gov (United States)

    Li, W.; Song, Z.; Chen, J.; Jiang, H.; Zhou, E.; Wang, F.; Xiao, X.; Zhang, C.

    2010-12-01

    The diversity and potential ecological functions of Crenarchaeota were investigated in eight terrestrial hot springs (pH: 2.8-7.7; temperature: 43.6-96 C) located in Tengchong, China, using 16S rRNA gene phylogenetic analysis. A total of 826 crenarchaeotal clones were analyzed and a total of 47 Operational taxonomic units (OTUs) were identified. Most (93%) of the identified OTUs were closely related (89-99%) to those retrieved from hot springs and other thermal environments. Our data showed that temperature may predominate over pH in affecting crenarchaeotal diversity in Tengchong hot springs. Crenarchaeotal diversity in moderate-temperature (59 to 77 C) hot springs was the highest, indicating that the moderate-temperature hot springs are more inclusive for Crenarchaeota. To understand what ecological functions these Crenarchaeota may play in Tengchong hot springs, we isolated the environmental RNA and constructed four cDNA clone libraries of the archaeal accA gene that encodes Acetyl CoA carboxylase. The accA gene represents one of the key enzymes responsible for the CO2 fixation in the 3-hydroxypropionate/4-hydroxybutyrate pathway. The results of phylogenetic analysis showed all the transcribed accA gene sequences can be classified into three large clusters, with the first one being affiliated with marine crenarchaeota, the second one with cultured crenarchaeota, and the third one with Chlorobi (Green sulfur bacteria), which have been proved to employ the 3-hydroxypropionate/4-hydroxybutyrate pathway. The long-branch distances of the phylogenetic tree suggest that these sequences represent novel accA-like gene. Our results also showed that sequences of the accA-like gene from the same hot spring belonged to one cluster, which suggests that a single crenarchaeotal group may fix CO2 via 3-hydroxypropionate/4-hydroxybutyrate pathway in the investigated hot springs.

  14. Cascading Constrained 2-D Arrays using Periodic Merging Arrays

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Laursen, Torben Vaarby

    2003-01-01

    We consider a method for designing 2-D constrained codes by cascading finite width arrays using predefined finite width periodic merging arrays. This provides a constructive lower bound on the capacity of the 2-D constrained code. Examples include symmetric RLL and density constrained codes...

  15. Long-term followup of bilateral high (Sober) urinary diversion in patients with posterior urethral valves and its effect on bladder function

    NARCIS (Netherlands)

    Ghanem, MA; Nijman, RJM

    Purpose: Although valve ablation is the treatment of choice in patients with posterior urethral valves (PLTV), temporary high (ureterostomy) diversion remains controversial. In this study we evaluated the effect of bilateral Sober high urinary diversion on renal and bladder function. Materials and

  16. Effects of mercury contamination on the culturable heterotrophic, functional and genetic diversity of the bacterial community in soil

    DEFF Research Database (Denmark)

    Rasmussen, Lasse Dam; Sørensen, S. J.

    2001-01-01

    This study investigates the effect of mercury contamination on the culturable heterotrophic, functional and genetic diversity of the bacterial community in soil. The changes in diversity were monitored in soil microcosms, enriched with 25 mug Hg(II) g(-1) soil, over a period of 3 months...... by purification of total soil DNA and amplification of bacterial 16S rDNA fragments by polymerase chain reaction. Concentrations of bioavailable and total mercury were measured throughout the experiment. The effect on the culturable heterotrophic and genetic diversity was very similar, showing an immediate...... decrease after mercury addition but then slowly increasing throughout the entire experimental period. Pre-exposure levels were not reached within the time span of this investigation. The DGGE band pattern indicated that a shift in the community structure was responsible for recovered diversity. When...

  17. Functional soil microbial diversity across Europe estimated by EEA, MicroResp and BIOLOG

    DEFF Research Database (Denmark)

    Winding, Anne; Rutgers, Michiel; Creamer, Rachel

    consisting of 81 soil samples covering five Biogeograhical Zones and three land-uses in order to test the sensitivity, ease and cost of performance and biological significance of the data output. The techniques vary in how close they are to in situ functions; dependency on growth during incubation......Soil microorganisms are abundant and essential for the bio-geochemical processes of soil, soil quality and soil ecosystem services. All this is dependent on the actual functions the microbial communities are performing in the soil. Measuring soil respiration has for many years been the basis...... of estimating soil microbial activity. However, today several techniques are in use for determining microbial functional diversity and assessing soil biodiversity: Methods based on CO2 development by the microbes such as substrate induced respiration (SIR) on specific substrates have lead to the development...

  18. GENETIC DIVERSITY IN ARABICA COFFEE GROWN IN POTASSIUM-CONSTRAINED ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Waldênia de Melo Moura

    2015-02-01

    Full Text Available Potassium is a source of non-renewable natural resource, and is used in large quantities in coffee fertilization through basically imported formulations in the form of potassium chloride. An alternative to make production systems more sustainable would be obtaining cultivars more efficient in the use of this nutrient. This study aimed to evaluate the genetic diversity among 20 cultivars of coffee, in conditions of low availability of potassium to identify the best combinations for composing future populations to be used in breeding programs. The experiment was arranged in a randomized block design with three replications of nutrient solution. Agronomic characteristics and efficiencies of rooting, absorption, translocation, biomass production and potassium utilization were evaluated. The clustering analysis was based on the unweighted pair group method with arithmetic mean clustering algorithm (UPGMA and canonical variables. Variability was observed for most treatments. The multivariate procedures produced similar discrimination of genotypes, with the formation of five groups. Hybridizations between the cultivar Icatu Precoce IAC 3283 with cultivars Catuaí Amarelo IAC 62, Araponga MG1, Caturra Vermelho IAC 477, Catuaí Vermelho IAC 15, Rubi MG 1192 and Catucaí 785/15, and between the cultivar Tupi IAC 1669-33 with cultivars Icatu Vermelho IAC 4045, Acaiá Cerrado MG 1474 and Oeiras MG 6851 are the most promising for obtaining segregating populations or heterotic hybrids in breeding programs aiming more efficiency in potassium utilization.

  19. Privileged substructure-based diversity-oriented synthesis pathway for diverse pyrimidine-embedded polyheterocycles

    DEFF Research Database (Denmark)

    Kim, Heejun; Thanh Tung, Truong; Park, Seung Bum

    2013-01-01

    A new diversity-oriented synthesis pathway for the fabrication of a pyrimidine-embedded polyheterocycles library was developed for potential interactions with diverse biopolymers. Five different pyrimidine-embedded core skeletons were synthesized from ortho-alkynylpyrimidine carbaldehydes by a si...... by a silver- or iodine-mediated tandem cyclization strategy. The resulting polyheterocycles possess diverse fused ring sizes and positions with potential functionalities for further modification....

  20. Modeling the microstructural evolution during constrained sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Frandsen, Henrik Lund; Tikare, V.

    A numerical model able to simulate solid state constrained sintering of a powder compact is presented. The model couples an existing kinetic Monte Carlo (kMC) model for free sintering with a finite element (FE) method for calculating stresses on a microstructural level. The microstructural response...... to the stress field as well as the FE calculation of the stress field from the microstructural evolution is discussed. The sintering behavior of two powder compacts constrained by a rigid substrate is simulated and compared to free sintering of the same samples. Constrained sintering result in a larger number...

  1. Adaptive evolution in locomotor performance: How selective pressures and functional relationships produce diversity.

    Science.gov (United States)

    Scales, Jeffrey A; Butler, Marguerite A

    2016-01-01

    Despite the complexity of nature, most comparative studies of phenotypic evolution consider selective pressures in isolation. When competing pressures operate on the same system, it is commonly expected that trade-offs will occur that will limit the evolution of phenotypic diversity, however, it is possible that interactions among selective pressures may promote diversity instead. We explored the evolution of locomotor performance in lizards in relation to possible selective pressures using the Ornstein-Uhlenbeck process. Here, we show that a combination of selection based on foraging mode and predator escape is required to explain variation in performance phenotypes. Surprisingly, habitat use contributed little explanatory power. We find that it is possible to evolve very different abilities in performance which were previously thought to be tightly correlated, supporting a growing literature that explores the many-to-one mapping of morphological design. Although we generally find the expected trade-off between maximal exertion and speed, this relationship surprisingly disappears when species experience selection for both performance types. We conclude that functional integration need not limit adaptive potential, and that an integrative approach considering multiple major influences on a phenotype allows a more complete understanding of adaptation and the evolution of diversity. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  2. Metatranscriptomic analysis of diverse microbial communities reveals core metabolic pathways and microbiome-specific functionality.

    Science.gov (United States)

    Jiang, Yue; Xiong, Xuejian; Danska, Jayne; Parkinson, John

    2016-01-12

    Metatranscriptomics is emerging as a powerful technology for the functional characterization of complex microbial communities (microbiomes). Use of unbiased RNA-sequencing can reveal both the taxonomic composition and active biochemical functions of a complex microbial community. However, the lack of established reference genomes, computational tools and pipelines make analysis and interpretation of these datasets challenging. Systematic studies that compare data across microbiomes are needed to demonstrate the ability of such pipelines to deliver biologically meaningful insights on microbiome function. Here, we apply a standardized analytical pipeline to perform a comparative analysis of metatranscriptomic data from diverse microbial communities derived from mouse large intestine, cow rumen, kimchi culture, deep-sea thermal vent and permafrost. Sequence similarity searches allowed annotation of 19 to 76% of putative messenger RNA (mRNA) reads, with the highest frequency in the kimchi dataset due to its relatively low complexity and availability of closely related reference genomes. Metatranscriptomic datasets exhibited distinct taxonomic and functional signatures. From a metabolic perspective, we identified a common core of enzymes involved in amino acid, energy and nucleotide metabolism and also identified microbiome-specific pathways such as phosphonate metabolism (deep sea) and glycan degradation pathways (cow rumen). Integrating taxonomic and functional annotations within a novel visualization framework revealed the contribution of different taxa to metabolic pathways, allowing the identification of taxa that contribute unique functions. The application of a single, standard pipeline confirms that the rich taxonomic and functional diversity observed across microbiomes is not simply an artefact of different analysis pipelines but instead reflects distinct environmental influences. At the same time, our findings show how microbiome complexity and availability of

  3. Multiplicative algorithms for constrained non-negative matrix factorization

    KAUST Repository

    Peng, Chengbin

    2012-12-01

    Non-negative matrix factorization (NMF) provides the advantage of parts-based data representation through additive only combinations. It has been widely adopted in areas like item recommending, text mining, data clustering, speech denoising, etc. In this paper, we provide an algorithm that allows the factorization to have linear or approximatly linear constraints with respect to each factor. We prove that if the constraint function is linear, algorithms within our multiplicative framework will converge. This theory supports a large variety of equality and inequality constraints, and can facilitate application of NMF to a much larger domain. Taking the recommender system as an example, we demonstrate how a specialized weighted and constrained NMF algorithm can be developed to fit exactly for the problem, and the tests justify that our constraints improve the performance for both weighted and unweighted NMF algorithms under several different metrics. In particular, on the Movielens data with 94% of items, the Constrained NMF improves recall rate 3% compared to SVD50 and 45% compared to SVD150, which were reported as the best two in the top-N metric. © 2012 IEEE.

  4. Analyses of the influencing factors of soil microbial functional gene diversity in tropical rainforest based on GeoChip 5.0

    Directory of Open Access Journals (Sweden)

    Jing Cong

    2015-09-01

    Full Text Available To examine soil microbial functional gene diversity and causative factors in tropical rainforests, we used a microarray-based metagenomic tool named GeoChip 5.0 to profile it. We found that high microbial functional gene diversity and different soil microbial metabolic potential for biogeochemical processes were considered to exist in tropical rainforest. Soil available nitrogen was the most associated with soil microbial functional gene structure. Here, we mainly describe the experiment design, the data processing, and soil biogeochemical analyses attached to the study in details, which could be published on BMC microbiology Journal in 2015, whose raw data have been deposited in NCBI's Gene Expression Omnibus (accession number GSE69171.

  5. A New Continuous-Time Equality-Constrained Optimization to Avoid Singularity.

    Science.gov (United States)

    Quan, Quan; Cai, Kai-Yuan

    2016-02-01

    In equality-constrained optimization, a standard regularity assumption is often associated with feasible point methods, namely, that the gradients of constraints are linearly independent. In practice, the regularity assumption may be violated. In order to avoid such a singularity, a new projection matrix is proposed based on which a feasible point method to continuous-time, equality-constrained optimization is developed. First, the equality constraint is transformed into a continuous-time dynamical system with solutions that always satisfy the equality constraint. Second, a new projection matrix without singularity is proposed to realize the transformation. An update (or say a controller) is subsequently designed to decrease the objective function along the solutions of the transformed continuous-time dynamical system. The invariance principle is then applied to analyze the behavior of the solution. Furthermore, the proposed method is modified to address cases in which solutions do not satisfy the equality constraint. Finally, the proposed optimization approach is applied to three examples to demonstrate its effectiveness.

  6. On the origin of constrained superfields

    Energy Technology Data Exchange (ETDEWEB)

    Dall’Agata, G. [Dipartimento di Fisica “Galileo Galilei”, Università di Padova,Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova,Via Marzolo 8, 35131 Padova (Italy); Dudas, E. [Centre de Physique Théorique, École Polytechnique, CNRS, Université Paris-Saclay,F-91128 Palaiseau (France); Farakos, F. [Dipartimento di Fisica “Galileo Galilei”, Università di Padova,Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova,Via Marzolo 8, 35131 Padova (Italy)

    2016-05-06

    In this work we analyze constrained superfields in supersymmetry and supergravity. We propose a constraint that, in combination with the constrained goldstino multiplet, consistently removes any selected component from a generic superfield. We also describe its origin, providing the operators whose equations of motion lead to the decoupling of such components. We illustrate our proposal by means of various examples and show how known constraints can be reproduced by our method.

  7. Reflected stochastic differential equation models for constrained animal movement

    Science.gov (United States)

    Hanks, Ephraim M.; Johnson, Devin S.; Hooten, Mevin B.

    2017-01-01

    Movement for many animal species is constrained in space by barriers such as rivers, shorelines, or impassable cliffs. We develop an approach for modeling animal movement constrained in space by considering a class of constrained stochastic processes, reflected stochastic differential equations. Our approach generalizes existing methods for modeling unconstrained animal movement. We present methods for simulation and inference based on augmenting the constrained movement path with a latent unconstrained path and illustrate this augmentation with a simulation example and an analysis of telemetry data from a Steller sea lion (Eumatopias jubatus) in southeast Alaska.

  8. Solving of L0 norm constrained EEG inverse problem.

    Science.gov (United States)

    Xu, Peng; Lei, Xu; Hu, Xiao; Yao, Dezhong

    2009-01-01

    l(0) norm is an effective constraint used to solve EEG inverse problem for a sparse solution. However, due to the discontinuous and un-differentiable properties, it is an open issue to solve the l(0) norm constrained problem, which is usually instead solved by using some alternative functions like l(1) norm to approximate l(0) norm. In this paper, a continuous and differentiable function having the same form as the transfer function of Butterworth low-pass filter is introduced to approximate l(0) norm constraint involved in EEG inverse problem. The new approximation based approach was compared with l(1) norm and LORETA solutions on a realistic head model using simulated sources. The preliminary results show that this alternative approximation to l(0) norm is promising for the estimation of EEG sources with sparse distribution.

  9. ODE constrained mixture modelling: a method for unraveling subpopulation structures and dynamics.

    Directory of Open Access Journals (Sweden)

    Jan Hasenauer

    2014-07-01

    Full Text Available Functional cell-to-cell variability is ubiquitous in multicellular organisms as well as bacterial populations. Even genetically identical cells of the same cell type can respond differently to identical stimuli. Methods have been developed to analyse heterogeneous populations, e.g., mixture models and stochastic population models. The available methods are, however, either incapable of simultaneously analysing different experimental conditions or are computationally demanding and difficult to apply. Furthermore, they do not account for biological information available in the literature. To overcome disadvantages of existing methods, we combine mixture models and ordinary differential equation (ODE models. The ODE models provide a mechanistic description of the underlying processes while mixture models provide an easy way to capture variability. In a simulation study, we show that the class of ODE constrained mixture models can unravel the subpopulation structure and determine the sources of cell-to-cell variability. In addition, the method provides reliable estimates for kinetic rates and subpopulation characteristics. We use ODE constrained mixture modelling to study NGF-induced Erk1/2 phosphorylation in primary sensory neurones, a process relevant in inflammatory and neuropathic pain. We propose a mechanistic pathway model for this process and reconstructed static and dynamical subpopulation characteristics across experimental conditions. We validate the model predictions experimentally, which verifies the capabilities of ODE constrained mixture models. These results illustrate that ODE constrained mixture models can reveal novel mechanistic insights and possess a high sensitivity.

  10. ODE constrained mixture modelling: a method for unraveling subpopulation structures and dynamics.

    Science.gov (United States)

    Hasenauer, Jan; Hasenauer, Christine; Hucho, Tim; Theis, Fabian J

    2014-07-01

    Functional cell-to-cell variability is ubiquitous in multicellular organisms as well as bacterial populations. Even genetically identical cells of the same cell type can respond differently to identical stimuli. Methods have been developed to analyse heterogeneous populations, e.g., mixture models and stochastic population models. The available methods are, however, either incapable of simultaneously analysing different experimental conditions or are computationally demanding and difficult to apply. Furthermore, they do not account for biological information available in the literature. To overcome disadvantages of existing methods, we combine mixture models and ordinary differential equation (ODE) models. The ODE models provide a mechanistic description of the underlying processes while mixture models provide an easy way to capture variability. In a simulation study, we show that the class of ODE constrained mixture models can unravel the subpopulation structure and determine the sources of cell-to-cell variability. In addition, the method provides reliable estimates for kinetic rates and subpopulation characteristics. We use ODE constrained mixture modelling to study NGF-induced Erk1/2 phosphorylation in primary sensory neurones, a process relevant in inflammatory and neuropathic pain. We propose a mechanistic pathway model for this process and reconstructed static and dynamical subpopulation characteristics across experimental conditions. We validate the model predictions experimentally, which verifies the capabilities of ODE constrained mixture models. These results illustrate that ODE constrained mixture models can reveal novel mechanistic insights and possess a high sensitivity.

  11. Towards weakly constrained double field theory

    Directory of Open Access Journals (Sweden)

    Kanghoon Lee

    2016-08-01

    Full Text Available We show that it is possible to construct a well-defined effective field theory incorporating string winding modes without using strong constraint in double field theory. We show that X-ray (Radon transform on a torus is well-suited for describing weakly constrained double fields, and any weakly constrained fields are represented as a sum of strongly constrained fields. Using inverse X-ray transform we define a novel binary operation which is compatible with the level matching constraint. Based on this formalism, we construct a consistent gauge transform and gauge invariant action without using strong constraint. We then discuss the relation of our result to the closed string field theory. Our construction suggests that there exists an effective field theory description for massless sector of closed string field theory on a torus in an associative truncation.

  12. The impact of translocations on neutral and functional genetic diversity within and among populations of the Seychelles warbler.

    Science.gov (United States)

    Wright, David J; Spurgin, Lewis G; Collar, Nigel J; Komdeur, Jan; Burke, Terry; Richardson, David S

    2014-05-01

    Translocations are an increasingly common tool in conservation. The maintenance of genetic diversity through translocation is critical for both the short- and long-term persistence of populations and species. However, the relative spatio-temporal impacts of translocations on neutral and functional genetic diversity, and how this affects genetic structure among the conserved populations overall, have received little investigation. We compared the impact of translocating different numbers of founders on both microsatellite and major histocompatibility complex (MHC) class I diversity over a 23-year period in the Seychelles warbler (Acrocephalus sechellensis). We found low and stable microsatellite and MHC diversity in the source population and evidence for only a limited loss of either type of diversity in the four new populations. However, we found evidence of significant, but low to moderate, genetic differentiation between populations, with those populations established with fewer founders clustering separately. Stochastic genetic capture (as opposed to subsequent drift) was the main determinant of translocated population diversity. Furthermore, a strong correlation between microsatellite and MHC differentiation suggested that neutral processes outweighed selection in shaping MHC diversity in the new populations. These data provide important insights into how to optimize the use of translocation as a conservation tool. © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  13. Operator approach to solutions of the constrained BKP hierarchy

    International Nuclear Information System (INIS)

    Shen, Hsin-Fu; Lee, Niann-Chern; Tu, Ming-Hsien

    2011-01-01

    The operator formalism to the vector k-constrained BKP hierarchy is presented. We solve the Hirota bilinear equations of the vector k-constrained BKP hierarchy via the method of neutral free fermion. In particular, by choosing suitable group element of O(∞), we construct rational and soliton solutions of the vector k-constrained BKP hierarchy.

  14. Mini Heme-Proteins: Designability of Structure and Diversity of Functions.

    Science.gov (United States)

    Rai, Jagdish

    2017-08-30

    Natural heme proteins may have heme bound to poly-peptide chain as a cofactor via noncovalent forces or heme as a prosthetic group may be covalently bound to the proteins. Nature has used porphyrins in diverse functions like electron transfer, oxidation, reduction, ligand binding, photosynthesis, signaling, etc. by modulating its properties through diverse protein matrices. Synthetic chemists have tried to utilize these molecules in equally diverse industrial and medical applications due to their versatile electro-chemical and optical properties. The heme iron has catalytic activity which can be modulated and enhanced for specific applications by protein matrix around it. Heme proteins can be designed into novel enzymes for sterio specific catalysis ranging from oxidation to reduction. These designed heme-proteins can have applications in industrial catalysis and biosensing. A peptide folds around heme easily due to hydrophobic effect of the large aromatic ring of heme. The directional property of co-ordinate bonding between peptide and metal ion in heme further specifies the structure. Therefore heme proteins can be easily designed for targeted structure and catalytic activity. The central aromatic chemical entity in heme viz. porphyrin is a very ancient molecule. Its presence in the prebiotic soup and in all forms of life suggests that it has played a vital role in the origin and progressive evolution of living organisms. Porphyrin macrocycles are highly conjugated systems composed of four modified pyrrole subunits interconnected at their α -carbon atoms via methine (=CH-) bridges. Initial minimalist models of hemoproteins focused on effect of heme-ligand co-ordinate bonding on chemical reactivity, spectroscopy, electrochemistry and magnetic properties of heme. The great sensitivity of these spectroscopic features of heme to its surrounding makes them extremely useful in structural elucidation of designed heme-peptide complexes. Therefore heme proteins are

  15. Assessment of soil microbial diversity with functional multi-endpoint methods

    DEFF Research Database (Denmark)

    Winding, Anne; Creamer, R. E.; Rutgers, M.

    on CO2 development by the microbes such as substrate induced respiration (SIR) on specific substrates have lead to the development of MicroResp™ and Community Level Physiological Profile (CLPP) with Biolog™ plates, and soil enzymatic activity assayed by Extracellular Enzyme Activity (EEA) based on MUF......Soil microbial diversity provides the cornerstone for support of soil ecosystem services by key roles in soil organic matter turnover, carbon sequestration and water infiltration. However, standardized methods to quantify the multitude of microbial functions in soils are lacking. Methods based...... to the lack of principle methods, the data obtained from these substitute methods are currently not used in classification and assessment schemes, making quantification of natural capital and ecosystems services of the soil a difficult venture. In this contribution, we compare and contrast the three...

  16. Origin and Function of Tuning Diversity in Macaque Visual Cortex.

    Science.gov (United States)

    Goris, Robbe L T; Simoncelli, Eero P; Movshon, J Anthony

    2015-11-18

    Neurons in visual cortex vary in their orientation selectivity. We measured responses of V1 and V2 cells to orientation mixtures and fit them with a model whose stimulus selectivity arises from the combined effects of filtering, suppression, and response nonlinearity. The model explains the diversity of orientation selectivity with neuron-to-neuron variability in all three mechanisms, of which variability in the orientation bandwidth of linear filtering is the most important. The model also accounts for the cells' diversity of spatial frequency selectivity. Tuning diversity is matched to the needs of visual encoding. The orientation content found in natural scenes is diverse, and neurons with different selectivities are adapted to different stimulus configurations. Single orientations are better encoded by highly selective neurons, while orientation mixtures are better encoded by less selective neurons. A diverse population of neurons therefore provides better overall discrimination capabilities for natural images than any homogeneous population. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. An Equilibrium Chance-Constrained Multiobjective Programming Model with Birandom Parameters and Its Application to Inventory Problem

    Directory of Open Access Journals (Sweden)

    Zhimiao Tao

    2013-01-01

    Full Text Available An equilibrium chance-constrained multiobjective programming model with birandom parameters is proposed. A type of linear model is converted into its crisp equivalent model. Then a birandom simulation technique is developed to tackle the general birandom objective functions and birandom constraints. By embedding the birandom simulation technique, a modified genetic algorithm is designed to solve the equilibrium chance-constrained multiobjective programming model. We apply the proposed model and algorithm to a real-world inventory problem and show the effectiveness of the model and the solution method.

  18. Diverse politics, diverse news coverage? A longitudinal study of diversity in Dutch political news during two decades of election campaigns

    NARCIS (Netherlands)

    van Hoof, A.M.J.; Jacobi, C.; Ruigrok, N.; van Atteveldt, W.H.

    2014-01-01

    Although diverse political news has been recognized as a requirement for a well-functioning democracy, longitudinal research into this topic is sparse. In this article, we analyse the development of diversity in election coverage in the Netherlands between 1994 and 2012. We distinguish between

  19. Soil Microbial Functional and Fungal Diversity as Influenced by Municipal Sewage Sludge Accumulation

    OpenAIRE

    Frąc, Magdalena; Oszust, Karolina; Lipiec, Jerzy; Jezierska-Tys, Stefania; Nwaichi, Eucharia Oluchi

    2014-01-01

    Safe disposal of municipal sewage sludge is a challenging global environmental concern. The aim of this study was to assess the response of soil microbial functional diversity to the accumulation of municipal sewage sludge during landfill storage. Soil samples of a municipal sewage sludge (SS) and from a sewage sludge landfill that was 3 m from a SS landfill (SS3) were analyzed relative to an undisturbed reference soil. Biolog EcoPlatesTM were inoculated with a soil suspension, and the Avera...

  20. Diversity, Function and Transcriptional Regulation of Gut Innate Lymphocytes

    Directory of Open Access Journals (Sweden)

    Lucille eRankin

    2013-03-01

    Full Text Available The innate immune system plays a critical early role in host defense against viruses, bacteria and tumour cells. Until recently, natural killer (NK cells and lymphoid tissue inducer (LTi cells were the primary members of the innate lymphocyte family: NK cells form the front-line interface between the external environment and the adaptive immune system, while LTi cells are essential for secondary lymphoid tissue formation. More recently, it has become apparent that the composition of this family is much more diverse than previously appreciated and newly recognized populations play distinct and essential functions in tissue protection. Despite the importance of these cells, the developmental relationships between different innate lymphocyte populations (ILCs remain unclear. Here we review recent advances in our understanding of the development of different innate immune cell subsets, the transcriptional programs that might be involved in driving fate decisions during development, and their relationship to NK cells.

  1. Functional understanding of the diverse exon-intron structures of human GPCR genes.

    Science.gov (United States)

    Hammond, Dorothy A; Olman, Victor; Xu, Ying

    2014-02-01

    The GPCR genes have a variety of exon-intron structures even though their proteins are all structurally homologous. We have examined all human GPCR genes with at least two functional protein isoforms, totaling 199, aiming to gain an understanding of what may have contributed to the large diversity of the exon-intron structures of the GPCR genes. The 199 genes have a total of 808 known protein splicing isoforms with experimentally verified functions. Our analysis reveals that 1301 (80.6%) adjacent exon-exon pairs out of the total of 1,613 in the 199 genes have either exactly one exon skipped or the intron in-between retained in at least one of the 808 protein splicing isoforms. This observation has a statistical significance p-value of 2.051762 * e(-09), assuming that the observed splicing isoforms are independent of the exon-intron structures. Our interpretation of this observation is that the exon boundaries of the GPCR genes are not randomly determined; instead they may be selected to facilitate specific alternative splicing for functional purposes.

  2. Low-lying excited states by constrained DFT

    Science.gov (United States)

    Ramos, Pablo; Pavanello, Michele

    2018-04-01

    Exploiting the machinery of Constrained Density Functional Theory (CDFT), we propose a variational method for calculating low-lying excited states of molecular systems. We dub this method eXcited CDFT (XCDFT). Excited states are obtained by self-consistently constraining a user-defined population of electrons, Nc, in the virtual space of a reference set of occupied orbitals. By imposing this population to be Nc = 1.0, we computed the first excited state of 15 molecules from a test set. Our results show that XCDFT achieves an accuracy in the predicted excitation energy only slightly worse than linear-response time-dependent DFT (TDDFT), but without incurring into problems of variational collapse typical of the more commonly adopted ΔSCF method. In addition, we selected a few challenging processes to test the limits of applicability of XCDFT. We find that in contrast to TDDFT, XCDFT is capable of reproducing energy surfaces featuring conical intersections (azobenzene and H3) with correct topology and correct overall energetics also away from the intersection. Venturing to condensed-phase systems, XCDFT reproduces the TDDFT solvatochromic shift of benzaldehyde when it is embedded by a cluster of water molecules. Thus, we find XCDFT to be a competitive method among single-reference methods for computations of excited states in terms of time to solution, rate of convergence, and accuracy of the result.

  3. Current-State Constrained Filter Bank for Wald Testing of Spacecraft Conjunctions

    Science.gov (United States)

    Carpenter, J. Russell; Markley, F. Landis

    2012-01-01

    We propose a filter bank consisting of an ordinary current-state extended Kalman filter, and two similar but constrained filters: one is constrained by a null hypothesis that the miss distance between two conjuncting spacecraft is inside their combined hard body radius at the predicted time of closest approach, and one is constrained by an alternative complementary hypothesis. The unconstrained filter is the basis of an initial screening for close approaches of interest. Once the initial screening detects a possibly risky conjunction, the unconstrained filter also governs measurement editing for all three filters, and predicts the time of closest approach. The constrained filters operate only when conjunctions of interest occur. The computed likelihoods of the innovations of the two constrained filters form a ratio for a Wald sequential probability ratio test. The Wald test guides risk mitigation maneuver decisions based on explicit false alarm and missed detection criteria. Since only current-state Kalman filtering is required to compute the innovations for the likelihood ratio, the present approach does not require the mapping of probability density forward to the time of closest approach. Instead, the hard-body constraint manifold is mapped to the filter update time by applying a sigma-point transformation to a projection function. Although many projectors are available, we choose one based on Lambert-style differential correction of the current-state velocity. We have tested our method using a scenario based on the Magnetospheric Multi-Scale mission, scheduled for launch in late 2014. This mission involves formation flight in highly elliptical orbits of four spinning spacecraft equipped with antennas extending 120 meters tip-to-tip. Eccentricities range from 0.82 to 0.91, and close approaches generally occur in the vicinity of perigee, where rapid changes in geometry may occur. Testing the method using two 12,000-case Monte Carlo simulations, we found the

  4. Diversity Indices as Measures of Functional Annotation Methods in Metagenomics Studies

    KAUST Repository

    Jankovic, Boris R.

    2016-01-01

    in the ecosystems and species diversity studies can be successfully used in evaluating certain aspects of the methods employed in metagenomics studies. We show that when applying the concept of Hill’s diversity, the analysis of variations in the diversity order

  5. Species Diversity and Functional Prediction of Surface Bacterial Communities on Aging Flue-Cured Tobaccos.

    Science.gov (United States)

    Wang, Fan; Zhao, Hongwei; Xiang, Haiying; Wu, Lijun; Men, Xiao; Qi, Chang; Chen, Guoqiang; Zhang, Haibo; Wang, Yi; Xian, Mo

    2018-06-05

    Microbes on aging flue-cured tobaccos (ATFs) improve the aroma and other qualities desirable in products. Understanding the relevant organisms would picture microbial community diversity, metabolic potential, and their applications. However, limited efforts have been made on characterizing the microbial quality and functional profiling. Herein, we present our investigation of the bacterial diversity and predicted potential genetic capability of the bacteria from two AFTs using 16S rRNA gene sequences and phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) software. The results show that dominant bacteria from AFT surfaces were classified into 48 genera, 36 families, and 7 phyla. In addition, Bacillus spp. was found prevalent on both ATFs. Furthermore, PICRUSt predictions of bacterial community functions revealed many attractive metabolic capacities in the AFT microbiota, including several involved in the biosynthesis of flavors and fragrances and the degradation of harmful compounds, such as nicotine and nitrite. These results provide insights into the importance of AFT bacteria in determining product qualities and indicate specific microbial species with predicted enzymatic capabilities for the production of high-efficiency flavors, the degradation of undesirable compounds, and the provision of nicotine and nitrite tolerance which suggest fruitful areas of investigation into the manipulation of AFT microbiota for AFT and other product improvements.

  6. A metagenomic snapshot of taxonomic and functional diversity in an alpine glacier cryoconite ecosystem

    International Nuclear Information System (INIS)

    Edwards, Arwyn; Pachebat, Justin A; Swain, Martin; Hegarty, Matt; Rassner, Sara M E; Hodson, Andrew J; Irvine-Fynn, Tristram D L; Sattler, Birgit

    2013-01-01

    Cryoconite is a microbe–mineral aggregate which darkens the ice surface of glaciers. Microbial process and marker gene PCR-dependent measurements reveal active and diverse cryoconite microbial communities on polar glaciers. Here, we provide the first report of a cryoconite metagenome and culture-independent study of alpine cryoconite microbial diversity. We assembled 1.2 Gbp of metagenomic DNA sequenced using an Illumina HiScanSQ from cryoconite holes across the ablation zone of Rotmoosferner in the Austrian Alps. The metagenome revealed a bacterially-dominated community, with Proteobacteria (62% of bacterial-assigned contigs) and Bacteroidetes (14%) considerably more abundant than Cyanobacteria (2.5%). Streptophyte DNA dominated the eukaryotic metagenome. Functional genes linked to N, Fe, S and P cycling illustrated an acquisitive trend and a nitrogen cycle based upon efficient ammonia recycling. A comparison of 32 metagenome datasets revealed a similarity in functional profiles between the cryoconite and metagenomes characterized from other cold microbe–mineral aggregates. Overall, the metagenomic snapshot reveals the cryoconite ecosystem of this alpine glacier as dependent on scavenging carbon and nutrients from allochthonous sources, in particular mosses transported by wind from ice-marginal habitats, consistent with net heterotrophy indicated by productivity measurements. A transition from singular snapshots of cryoconite metagenomes to comparative analyses is advocated. (letter)

  7. Diversity, Adaptability and Ecosystem Resilience

    Science.gov (United States)

    Keribin, Rozenn; Friend, Andrew

    2013-04-01

    Our ability to predict climate change and anticipate its impacts depends on Earth System Models (ESMs) and their ability to account for the high number of interacting components of the Earth System and to gauge both their influence on the climate and the feedbacks they induce. The land carbon cycle is a component of ESMs that is still poorly constrained. Since the 1990s dynamic global vegetation models (DGVMs) have become the main tool through which we understand the interactions between plant ecosystems and the climate. While DGVMs have made it clear the impacts of climate change on vegetation could be dramatic, predicting the dieback of rainforests and massive carbon losses from various ecosystems, they are highly variable both in their composition and their predictions. Their treatment of plant diversity and competition in particular vary widely and are based on highly-simplified relationships that do not account for the multiple levels of diversity and adaptability found in real plant ecosystems. The aim of this GREENCYCLES II project is to extend an individual-based DGVM to treat the diversity of physiologies found in plant communities and evaluate their effect if any on the ecosystem's transient dynamics and resilience. In the context of the InterSectoral Impacts Model Intercomparison Project (ISI-MIP), an initiative coordinated by a team at the Potsdam Institute for Climate Impact Research (PIK) that aims to provide fast-track global impact assessments for the IPCC's Fifth Assessment Report, we compare 6 vegetation models including 4 DGVMs under different climate change scenarios and analyse how the very different treatments of plant diversity and interactions from one model to the next affect the models' results. We then investigate a new, more mechanistic method of incorporating plant diversity into the DGVM "Hybrid" based on ecological tradeoffs mediated by plant traits and individual-based competition for light.

  8. Patterns of functional diversity of two trophic groups after canopy thinning in an abandoned coppice

    Czech Academy of Sciences Publication Activity Database

    Šipoš, Jan; Hédl, Radim; Hula, V.; Chudomelová, Markéta; Košulič, O.; Niedobová, J.; Riedl, Vladan

    2017-01-01

    Roč. 52, č. 1 (2017), s. 45-58 ISSN 1211-9520 R&D Projects: GA AV ČR IAA600050812; GA MŠk(CZ) EE2.3.20.0267 EU Projects: European Commission(XE) 278065 - LONGWOOD Institutional support: RVO:67985939 Keywords : coppice restoration * functional diversity * trophic groups Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 1.017, year: 2016

  9. k-t PCA: temporally constrained k-t BLAST reconstruction using principal component analysis

    DEFF Research Database (Denmark)

    Pedersen, Henrik; Kozerke, Sebastian; Ringgaard, Steffen

    2009-01-01

    in applications exhibiting a broad range of temporal frequencies such as free-breathing myocardial perfusion imaging. We show that temporal basis functions calculated by subjecting the training data to principal component analysis (PCA) can be used to constrain the reconstruction such that the temporal resolution...... is improved. The presented method is called k-t PCA....

  10. Depth-related trends in morphological and functional diversity of demersal fish assemblages in the western Mediterranean Sea

    Science.gov (United States)

    Farré, Marc; Tuset, Víctor M.; Cartes, Joan E.; Massutí, Enric; Lombarte, Antoni

    2016-09-01

    The morphological and functional traits of fishes are key factors defining the ecological and biological habits of species within ecosystems. However, little is known about how the depth gradient affects these factors. In the present study, several demersal fish assemblages from the Balearic Islands (western Mediterranean Sea) along a wide depth range (40-2200 m) were morphologically, functionally and ecologically described. The morphological characterization of communities was performed using geometric morphometric methods, while the functional structures were obtained by the functional categorization of species and the application of principal coordinates analysis (PCoA). The results revealed that morphospaces presented less richness of body forms as depth increases, although they showed a progressive spreading of species toward the periphery, with a proliferation of more extreme body traits, demonstrating lower morphological redundancy. In addition, a trend toward the elongation of body shape was also observed with depth. Moreover, functional diversity increased with bathymetry up to 1400 m, where it sharply decreased downwards. This decrease was parallel to a progressive fall of H‧ (ecological diversity) up to 2200 m. Functional redundancy progressively decreased until the deepest assemblage (more constantly in the deeper levels), which was almost exclusively dominated by benthopelagic wandering species feeding on suprabenthos. Redundancy analysis (RDA) demonstrated that both morphological and functional spaces showed high variation along the bathymetric range. Mantel test indicated that the majority of species presented similar spatial distribution within the morphospace and functional space, although in the functional space the more abundant species were always located at the periphery. These results demonstrate that the assessment of the morpho-functional variation between marine communities helps to understand the processes that affect the structure and

  11. A distance constrained synaptic plasticity model of C. elegans neuronal network

    Science.gov (United States)

    Badhwar, Rahul; Bagler, Ganesh

    2017-03-01

    Brain research has been driven by enquiry for principles of brain structure organization and its control mechanisms. The neuronal wiring map of C. elegans, the only complete connectome available till date, presents an incredible opportunity to learn basic governing principles that drive structure and function of its neuronal architecture. Despite its apparently simple nervous system, C. elegans is known to possess complex functions. The nervous system forms an important underlying framework which specifies phenotypic features associated to sensation, movement, conditioning and memory. In this study, with the help of graph theoretical models, we investigated the C. elegans neuronal network to identify network features that are critical for its control. The 'driver neurons' are associated with important biological functions such as reproduction, signalling processes and anatomical structural development. We created 1D and 2D network models of C. elegans neuronal system to probe the role of features that confer controllability and small world nature. The simple 1D ring model is critically poised for the number of feed forward motifs, neuronal clustering and characteristic path-length in response to synaptic rewiring, indicating optimal rewiring. Using empirically observed distance constraint in the neuronal network as a guiding principle, we created a distance constrained synaptic plasticity model that simultaneously explains small world nature, saturation of feed forward motifs as well as observed number of driver neurons. The distance constrained model suggests optimum long distance synaptic connections as a key feature specifying control of the network.

  12. Algebra for All: California's Eighth-Grade Algebra Initiative as Constrained Curricula.

    Science.gov (United States)

    Domina, Thurston; Penner, Andrew M; Penner, Emily K; Conley, Annemarie

    2014-08-01

    Across the United States, secondary school curricula are intensifying as a growing proportion of students enroll in high-level academic math courses. In many districts, this intensification process occurs as early as eighth grade, where schools are effectively constraining their mathematics curricula by restricting course offerings and placing more students into Algebra I. This paper provides a quantitative single-case research study of policy-driven curricular intensification in one California school district. (1a) What effect did 8th eighth grade curricular intensification have on mathematics course enrollment patterns in Towering Pines Unified schools? (2b) How did the distribution of prior achievement in Towering Pines math classrooms change as the district constrained the curriculum by universalizing 8th eighth grade Algebra? (3c) Did 8th eighth grade curricular intensification improve students' mathematics achievement? Towering Pines is an immigrant enclave in the inner-ring suburbs of a major metropolitan area. The district's 10 middle schools together enroll approximately 4,000 eighth graders each year. The districts' students are ethnically diverse and largely economically disadvantaged. The study draws upon administrative data describing 8th eighth graders in the district in the 2004-20-05 through 2007-20-08 school years. During the study period, Towering Pines dramatically intensified middle school students' math curricula: In the 2004-20-05 school year 32% of the district's 8th eighth graders enrolled in Algebra or a higher- level mathematics course; by the 2007-20-08 school year that proportion had increased to 84%. We use an interrupted time-series design, comparing students' 8th eighth grade math course enrollments, 10th grade math course enrollments, and 10th grade math test scores across the four cohorts, controlling for demographics and prior achievement. We find that students' odds of taking higher level mathematics courses increased as this

  13. Are Protected Areas Required to Maintain Functional Diversity in Human-Modified Landscapes?

    Science.gov (United States)

    Cottee-Jones, H. Eden W.; Matthews, Thomas J.; Bregman, Tom P.; Barua, Maan; Tamuly, Jatin; Whittaker, Robert J.

    2015-01-01

    The conversion of forest to agriculture across the world’s tropics, and the limited space for protected areas, has increased the need to identify effective conservation strategies in human-modified landscapes. Isolated trees are believed to conserve elements of ecological structure, providing micro-sites for conservation in matrix landscapes, and facilitating seed dispersal and forest restoration. Here we investigate the role of isolated Ficus trees, which are of critical importance to tropical forest ecosystems, in conserving frugivore composition and function in a human-modified landscape in Assam, India. We surveyed the frugivorous birds feeding at 122 isolated Ficus trees, 33 fruit trees, and 31 other large trees across a range of 32 km from the nearest intact forest. We found that Ficus trees attracted richer and more abundant assemblages of frugivores than the other tree categories. However, incidence function estimates revealed that forest specialist species decreased dramatically within the first kilometre of the forest edge. Despite this, species richness and functional diversity remained consistent across the human-modified landscape, as habitat generalists replaced forest-dependent frugivores, and accounted for most of the ecological function found in Ficus trees near the forest edge. We recommend that isolated Ficus trees are awarded greater conservation status, and suggest that their conservation can support ecologically functional networks of frugivorous bird communities. PMID:25946032

  14. On the origin of sweet potato (Ipomoea batatas (L.) Lam.) genetic diversity in New Guinea, a secondary centre of diversity.

    Science.gov (United States)

    Roullier, C; Kambouo, R; Paofa, J; McKey, D; Lebot, V

    2013-06-01

    New Guinea is considered the most important secondary centre of diversity for sweet potato (Ipomoea batatas). We analysed nuclear and chloroplast genetic diversity of 417 New Guinea sweet potato landraces, representing agro-morphological diversity collected throughout the island, and compared this diversity with that in tropical America. The molecular data reveal moderate diversity across all accessions analysed, lower than that found in tropical America. Nuclear data confirm previous results, suggesting that New Guinea landraces are principally derived from the Northern neotropical genepool (Camote and Batata lines, from the Caribbean and Central America). However, chloroplast data suggest that South American clones (early Kumara line clones or, more probably, later reintroductions) were also introduced into New Guinea and then recombined with existing genotypes. The frequency distribution of pairwise distances between New Guinea landraces suggests that sexual reproduction, rather than somaclonal variation, has played a predominant role in the diversification of sweet potato. The frequent incorporation of plants issued from true seed by farmers, and the geographical and cultural barriers constraining crop diffusion in this topographically and linguistically heterogeneous island, has led to the accumulation of an impressive number of variants. As the diversification of sweet potato in New Guinea is primarily the result of farmers' management of the reproductive biology of their crop, we argue that on-farm conservation programmes that implement distribution of core samples (clones representing the useful diversity of the species) and promote on-farm selection of locally adapted variants may allow local communities to fashion relatively autonomous strategies for coping with ongoing global change.

  15. Abundance and Diversity of Denitrifying and Anammox Bacteria in Seasonally Hypoxic and Sulfidic Sediments of the Saline Lake Grevelingen

    NARCIS (Netherlands)

    Lipsewers, Y.A.; Hopmans, E.C.; Meysman, F.J.R.; Sinninghe Damsté, J.S.; Villanueva, L.

    2016-01-01

    Denitrifying and anammox bacteria are involved in the nitrogen cycling in marine sediments but the environmental factors that regulate the relative importance of these processes are not well constrained. Here, we evaluated the abundance, diversity, and potential activity of denitrifying, anammox,

  16. Abundance and diversity of denitrifying and anammox bacteria in seasonally hypoxic and sulfidic sediments of the saline lake grevelingen

    NARCIS (Netherlands)

    Lipsewers, Yvonne A.; Hopmans, Ellen C.; Meysman, Filip J.R.; Sinninghe Damsté, Jaap S.|info:eu-repo/dai/nl/07401370X; Villanueva, Laura

    2016-01-01

    Denitrifying and anammox bacteria are involved in the nitrogen cycling in marine sediments but the environmental factors that regulate the relative importance of these processes are not well constrained. Here, we evaluated the abundance, diversity, and potential activity of denitrifying, anammox,

  17. [Responses of functional diversity of aquatic insect community to land use change in middle reach of Qiantang River, East China].

    Science.gov (United States)

    Zhang, Lian-Bo; Liu, Dong-Xiao; Liu, Shuo-Ru; Zhang, Yong; Tong, Xiao-Li; Wang, Bei-Xin

    2013-10-01

    Based on the biological traits such as life history, resistance ability against environmental disturbance, and physiological characteristics of aquatic insects, and by using the fourth-corner statistical method, this paper studied the responses of the functional diversity of aquatic insect community to land use change in the middle reach of Qiantang River, Zhejiang Province of East China. For the test aquatic insect community, some of its biological traits were sensitive to land use change, and altered along human disturbance gradients as expected. With the increasing intensity of human disturbance, the maximal insect body length decreased gradually, the dominant respiration pattern evolved from gill respiration to tegument respiration, and the abundance of burrowers increased significantly. At the same time, the functional diversity measured as Rao's quadratic entropy was significantly higher in reference sites than in disturbed sites (P aquatic community were mainly induced by the land use change caused by human activities, which resulted in the decline of stream water quality and habitat quality and the variations of aquatic insect community composition and biological traits. The aquatic insect biological traits and functional diversity could be the potentially effective indicators in the stream health assessment in the future.

  18. Environmental and Human Controls of Ecosystem Functional Diversity in Temperate South America

    Directory of Open Access Journals (Sweden)

    Domingo Alcaraz-Segura

    2013-01-01

    Full Text Available The regional controls of biodiversity patterns have been traditionally evaluated using structural and compositional components at the species level, but evaluation of the functional component at the ecosystem level is still scarce. During the last decades, the role of ecosystem functioning in management and conservation has increased. Our aim was to use satellite-derived Ecosystem Functional Types (EFTs, patches of the land-surface with similar carbon gain dynamics to characterize the regional patterns of ecosystem functional diversity and to evaluate the environmental and human controls that determine EFT richness across natural and human-modified systems in temperate South America. The EFT identification was based on three descriptors of carbon gain dynamics derived from seasonal curves of the MODIS Enhanced Vegetation Index (EVI: annual mean (surrogate of primary production, seasonal coefficient of variation (indicator of seasonality and date of maximum EVI (descriptor of phenology. As observed for species richness in the southern hemisphere, water availability, not energy, emerged as the main climatic driver of EFT richness in natural areas of temperate South America. In anthropogenic areas, the role of both water and energy decreased and increasing human intervention increased richness at low levels of human influence, but decreased richness at high levels of human influence.

  19. Social Diversity and Democracy in Higher Education in the 21st Century: Towards a Feminist Critique

    Science.gov (United States)

    David, Miriam E.

    2009-01-01

    This paper takes a feminist perspective on the UK literature on mass higher education in the 21st century, building on US critiques about marketization, neo-liberalism and "academic capitalism". Concepts of equality and diversity have been transformed by neo-liberalism and how these changes have constrained democratic contributions to UK…

  20. ANALYSING THE USE OF FOUR CREATIVITY TOOLS IN A CONSTRAINED DESIGN SITUATION

    DEFF Research Database (Denmark)

    Snider, C.M.; Dekoninck, E.A.; Yue, H.

    2011-01-01

    This paper investigates creativity tools and their use within highly constrained design tasks. Previously, a coding scheme was developed to classify design changes as ‘Creative Modes of Change’. The coding scheme is used to compare the outcomes from the use of four creative tools (supported design......) against unsupported design within a constrained task. The tools showed design space expansion, developing additional concepts to those from the unsupported stage. All four tools stimulated ‘Creative Modes of Change’, although the type varied depending on their operation. ‘Assumption Smashing......’ and the ‘Contradiction Matrix’ usually stimulate extra function; ‘Analogies’ and ‘Trends of Evolution’ improve design performance. The former two usually produce ‘Creative Modes of Change’ as opposed to routine. The results show some links between the designer’s driving force, mode of change and the design outcome. ‘New...

  1. Diverse Phytochemicals and Bioactivities in the Ancient Fruit and Modern Functional Food Pomegranate (Punica granatum).

    Science.gov (United States)

    Wu, Sheng; Tian, Li

    2017-09-25

    Having served as a symbolic fruit since ancient times, pomegranate ( Punica granatum ) has also gained considerable recognition as a functional food in the modern era. A large body of literature has linked pomegranate polyphenols, particularly anthocyanins (ATs) and hydrolyzable tannins (HTs), to the health-promoting activities of pomegranate juice and fruit extracts. However, it remains unclear as to how, and to what extent, the numerous phytochemicals in pomegranate may interact and exert cooperative activities in humans. In this review, we examine the structural and analytical information of the diverse phytochemicals that have been identified in different pomegranate tissues, to establish a knowledge base for characterization of metabolite profiles, discovery of novel phytochemicals, and investigation of phytochemical interactions in pomegranate. We also assess recent findings on the function and molecular mechanism of ATs as well as urolithins, the intestinal microbial derivatives of pomegranate HTs, on human nutrition and health. A better understanding of the structural diversity of pomegranate phytochemicals as well as their bioconversions and bioactivities in humans will facilitate the interrogation of their synergistic/antagonistic interactions and accelerate their applications in dietary-based cancer chemoprevention and treatment in the future.

  2. Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts

    KAUST Repository

    Neave, Matthew J.

    2017-01-17

    Endozoicomonas bacteria are globally distributed and often abundantly associated with diverse marine hosts including reef-building corals, yet their function remains unknown. In this study we generated novel Endozoicomonas genomes from single cells and metagenomes obtained directly from the corals Stylophora pistillata, Pocillopora verrucosa, and Acropora humilis. We then compared these culture-independent genomes to existing genomes of bacterial isolates acquired from a sponge, sea slug, and coral to examine the functional landscape of this enigmatic genus. Sequencing and analysis of single cells and metagenomes resulted in four novel genomes with 60–76% and 81–90% genome completeness, respectively. These data also confirmed that Endozoicomonas genomes are large and are not streamlined for an obligate endosymbiotic lifestyle, implying that they have free-living stages. All genomes show an enrichment of genes associated with carbon sugar transport and utilization and protein secretion, potentially indicating that Endozoicomonas contribute to the cycling of carbohydrates and the provision of proteins to their respective hosts. Importantly, besides these commonalities, the genomes showed evidence for differential functional specificity and diversification, including genes for the production of amino acids. Given this metabolic diversity of Endozoicomonas we propose that different genotypes play disparate roles and have diversified in concert with their hosts.

  3. Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts

    KAUST Repository

    Neave, Matthew J.; Michell, Craig; Apprill, Amy; Voolstra, Christian R.

    2017-01-01

    Endozoicomonas bacteria are globally distributed and often abundantly associated with diverse marine hosts including reef-building corals, yet their function remains unknown. In this study we generated novel Endozoicomonas genomes from single cells and metagenomes obtained directly from the corals Stylophora pistillata, Pocillopora verrucosa, and Acropora humilis. We then compared these culture-independent genomes to existing genomes of bacterial isolates acquired from a sponge, sea slug, and coral to examine the functional landscape of this enigmatic genus. Sequencing and analysis of single cells and metagenomes resulted in four novel genomes with 60–76% and 81–90% genome completeness, respectively. These data also confirmed that Endozoicomonas genomes are large and are not streamlined for an obligate endosymbiotic lifestyle, implying that they have free-living stages. All genomes show an enrichment of genes associated with carbon sugar transport and utilization and protein secretion, potentially indicating that Endozoicomonas contribute to the cycling of carbohydrates and the provision of proteins to their respective hosts. Importantly, besides these commonalities, the genomes showed evidence for differential functional specificity and diversification, including genes for the production of amino acids. Given this metabolic diversity of Endozoicomonas we propose that different genotypes play disparate roles and have diversified in concert with their hosts.

  4. An Experimental Comparison of Similarity Assessment Measures for 3D Models on Constrained Surface Deformation

    Science.gov (United States)

    Quan, Lulin; Yang, Zhixin

    2010-05-01

    To address the issues in the area of design customization, this paper expressed the specification and application of the constrained surface deformation, and reported the experimental performance comparison of three prevail effective similarity assessment algorithms on constrained surface deformation domain. Constrained surface deformation becomes a promising method that supports for various downstream applications of customized design. Similarity assessment is regarded as the key technology for inspecting the success of new design via measuring the difference level between the deformed new design and the initial sample model, and indicating whether the difference level is within the limitation. According to our theoretical analysis and pre-experiments, three similarity assessment algorithms are suitable for this domain, including shape histogram based method, skeleton based method, and U system moment based method. We analyze their basic functions and implementation methodologies in detail, and do a series of experiments on various situations to test their accuracy and efficiency using precision-recall diagram. Shoe model is chosen as an industrial example for the experiments. It shows that shape histogram based method gained an optimal performance in comparison. Based on the result, we proposed a novel approach that integrating surface constrains and shape histogram description with adaptive weighting method, which emphasize the role of constrains during the assessment. The limited initial experimental result demonstrated that our algorithm outperforms other three algorithms. A clear direction for future development is also drawn at the end of the paper.

  5. Diversity and its Impact on Organizational Performance: The Influence of Diversity Constructions on Expectations and Outcomes

    Directory of Open Access Journals (Sweden)

    Starlene M. Simons

    2011-08-01

    Full Text Available Diversity and diverse integration viewpoints into organizations are pertinent in a world of shifting demographic patterns and work practices. The challenge of implementing diversity in organizations is increased by the lack of clarification regarding the difference between functional and social diversity in the literature, which results in a lack of differentiation in organizational policies. This lack of clarification is reflected in theoretical research regarding diversity in the workforce and in pragmatic research regarding diversity. This research thematically analyzes the definitions of diversity in management literature to determine whether this differentiation is made in theoretical or practical discussions of diversity management.

  6. Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms

    NARCIS (Netherlands)

    Kowalchuk, G.A.; Buma, D.S; De Boer, W.; Klinkhamer, P.G.L.; Van Veen, J.A.

    2002-01-01

    A coupling of above-ground plant diversity and below-ground microbial diversity has been implied in studies dedicated to assessing the role of macrophyte diversity on the stability, resilience, and functioning of ecosystems. Indeed, above-ground plant communities have long been assumed to drive

  7. Phylogenetic diversity and functional characterization of the Manila clam microbiota: a culture-based approach.

    Science.gov (United States)

    Leite, Laura; Jude-Lemeilleur, Florence; Raymond, Natalie; Henriques, Isabel; Garabetian, Frédéric; Alves, Artur

    2017-09-01

    According to the hologenome theory, the microbiota contributes to the fitness of the holobiont having an important role in its adaptation, survival, development, health, and evolution. Environmental stress also affects the microbiota and its capability to assist the holobiont in coping with stress factors. Here, we analyzed the diversity of cultivable bacteria associated with Manila clam tissues (mantle, gills, hemolymph) in two non-contaminated sites (Portugal and France) and one metal-contaminated site (Portugal). A total of 240 isolates were obtained. Representative isolates (n = 198) of the overall diversity were identified by 16S rDNA sequencing and subjected to functional characterization. Isolates affiliated with Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes. Proteobacteria (mostly Pseudoalteromonadaceae and Vibrionaceae) were dominant in non-contaminated sites while Actinobacteria (mostly Microbacteriaceae) dominated in the metal-contaminated site. The main factor affecting the microbiota composition was contamination. No significant differences were observed between clam tissues and geographic regions. Several isolates tested positive for antibacterial activity, biofilm formation, protease, and siderophore production. The results show that the Manila clam harbors a diverse microbiota that may contribute to clam protection and overall fitness, as well as to its adaptation to stressful environments. In addition, the Manila clam microbiota is revealed as a promising source of novel probiotics with potential application in aquaculture.

  8. Diversity and functional traits of culturable microbiome members, including cyanobacteria in the rice phyllosphere.

    Science.gov (United States)

    Venkatachalam, S; Ranjan, K; Prasanna, R; Ramakrishnan, B; Thapa, S; Kanchan, A

    2016-07-01

    The diversity and abundance of culturable microbiome members of the rice phyllosphere was investigated using cv. Pusa Punjab Basmati 1509. Both diversity and species richness of bacteria were significantly higher in plants in pots in a semi-controlled environment than those in fields. Application of fertilisers reduced both diversity and species richness in field-grown plants under a conventional flooded system of rice intensification (SRI) and in dry-seeded rice (DSR) modes. Sequence analyses of 16S rDNA of culturable bacteria, those selected after amplified ribosomal DNA restriction analysis (ARDRA), showed the dominance of α-proteobacteria (35%) and actinobacteria (38%); Pantoea, Exiguobacterium and Bacillus were common among the culturable phyllospheric bacteria. About 34% of 83 culturable bacterial isolates had higher potential (>2 μg·ml(-1) ) for indole acetic acid production in the absence of tryptophan. Interestingly, the phyllosphere bacterial isolates from the pot experiment had significantly higher potential for nitrogen fixation than isolates from the field experiment. Enrichment for cyanobacteria showed both unicellular forms and non-heterocystous filaments under aerobic as well as anaerobic conditions. PCR-DGGE analysis of these showed that aerobic and anaerobic conditions as well as the three modes of cultivation of rice in the field strongly influenced the number and abundance of phylotypes. The adaptability and functional traits of these culturable microbiome members suggest enormous diversity in the phyllosphere, including potential for plant growth promotion, which was also significantly influenced by the different methods of growing rice. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. Exploring spatial planning and functional program impact on microbial diversity and distribution in two South African hospital microbiomes

    CSIR Research Space (South Africa)

    Nice, Jaco A

    2015-07-01

    Full Text Available This paper presents a theoretical and experimental research approach on the impact of spatial planning and functional program on the microbial load, distribution and organism diversity in hospital environments. The investigation aims to identify...

  10. Structural and Functional Diversity of Weed Species in Organic and Conventional Rice Agro-Ecosystems

    Directory of Open Access Journals (Sweden)

    S. Y. Mousawi Toghani

    2016-02-01

    Full Text Available Introduction Diversity reflects the complexity of a system and can maintain its sustainability. Higherdiversity, results in higher inherent complexity of agro-ecosystems and strengthen their processes. It is necessary to realize the spatial distribution and temporal properties of the biodiversity components in agro-ecosystems, for the conservation and optimal utilization. Since weeds as a complementary component of agro-ecosystems and are inseparable, so the study of species, their functional and structural diversity of them can play an important role in weed management and balance in ecological systems. Materials and Methods This study was performed to determine the effects of different management systems on structural, and functional diversity of paddy weeds in Mazandaran province. Three rice fields, ranged from 0.3 to 0.5 ha, were chosen for each management system. Samples were collected from three fields running under each selected management system (organic and conventional. Data (number of weed species and their density were randomly gathered from 9 quadrates (1m×1m per each field in four stages (tillering, stem elongation, grain filling and after harvest. The diversity, evenness, frequency and similarity indices for weeds were determined at genera and species level. Data analysis carried out through T-test and grouping performed via cluster analysis as hierarchy. Results and Discussion All monitored weeds can be classified into four plant family including cereals (Poaceae, sedges (Cyperaceae, plantain (Plantaginaceae and chicory (Asteraceae.Under conventional systems the values of weed diversity indices were higher during tillering and stem elongation compared with organic ones, and were lower during grain filling and after harvest stages. However indices of weed evenness showed contrary tendency. Both Sympson and Shanon-Wiener diversity indices, consist of two clusters in 76% similarity. Evenness indices of Kamargo and Smith

  11. Structure-constrained sparse canonical correlation analysis with an application to microbiome data analysis.

    Science.gov (United States)

    Chen, Jun; Bushman, Frederic D; Lewis, James D; Wu, Gary D; Li, Hongzhe

    2013-04-01

    Motivated by studying the association between nutrient intake and human gut microbiome composition, we developed a method for structure-constrained sparse canonical correlation analysis (ssCCA) in a high-dimensional setting. ssCCA takes into account the phylogenetic relationships among bacteria, which provides important prior knowledge on evolutionary relationships among bacterial taxa. Our ssCCA formulation utilizes a phylogenetic structure-constrained penalty function to impose certain smoothness on the linear coefficients according to the phylogenetic relationships among the taxa. An efficient coordinate descent algorithm is developed for optimization. A human gut microbiome data set is used to illustrate this method. Both simulations and real data applications show that ssCCA performs better than the standard sparse CCA in identifying meaningful variables when there are structures in the data.

  12. Continuation of Sets of Constrained Orbit Segments

    DEFF Research Database (Denmark)

    Schilder, Frank; Brøns, Morten; Chamoun, George Chaouki

    Sets of constrained orbit segments of time continuous flows are collections of trajectories that represent a whole or parts of an invariant set. A non-trivial but simple example is a homoclinic orbit. A typical representation of this set consists of an equilibrium point of the flow and a trajectory...... that starts close and returns close to this fixed point within finite time. More complicated examples are hybrid periodic orbits of piecewise smooth systems or quasi-periodic invariant tori. Even though it is possible to define generalised two-point boundary value problems for computing sets of constrained...... orbit segments, this is very disadvantageous in practice. In this talk we will present an algorithm that allows the efficient continuation of sets of constrained orbit segments together with the solution of the full variational problem....

  13. Typological diversity of tall buildings and complexes in relation to their functional structure

    Science.gov (United States)

    Generalov, Viktor P.; Generalova, Elena M.; Kalinkina, Nadezhda A.; Zhdanova, Irina V.

    2018-03-01

    The paper focuses on peculiarities of tall buildings and complexes, their typology and its formation in relation to their functional structure. The research is based on the analysis of tall buildings and complexes and identifies the following main functional elements of their formation: residential, administrative (office), hotel elements. The paper also considers the following services as «disseminated» in the space-planning structure: shops, medicine, entertainment, kids and sports facilities, etc., their location in the structure of the total bulk of the building and their impact on typological diversity. Research results include suggestions to add such concepts as «single-function tall buildings» and «mixed-use tall buildings and complexes» into the classification of tall buildings. In addition, if a single-function building or complex performs serving functions, it is proposed to add such concepts as «a residential tall building (complex) with provision of services», «an administrative (public) tall building (complex) with provision of services» into the classification of tall buildings. For mixed-use buildings and complexes the following terms are suggested: «a mixed-use tall building with provision of services», «a mixed-use tall complex with provision of services».

  14. Constrained consequence

    CSIR Research Space (South Africa)

    Britz, K

    2011-09-01

    Full Text Available their basic properties and relationship. In Section 3 we present a modal instance of these constructions which also illustrates with an example how to reason abductively with constrained entailment in a causal or action oriented context. In Section 4 we... of models with the former approach, whereas in Section 3.3 we give an example illustrating ways in which C can be de ned with both. Here we employ the following versions of local consequence: De nition 3.4. Given a model M = hW;R;Vi and formulas...

  15. Metagenomic-Based Study of the Phylogenetic and Functional Gene Diversity in Galápagos Land and Marine Iguanas

    KAUST Repository

    Hong, Pei-Ying; Mao, Yuejian; Ortiz-Kofoed, Shannon; Shah, Rushabh S.; Cann, Isaac Ko O; Mackie, Roderick Ian

    2014-01-01

    affiliations of the fecal microbiome were more similar between both iguanas than to other mammalian herbivorous hosts. However, functional gene diversities in both MI and LI iguana hosts differed in relation to the diet, where the MI fecal microbiota had a

  16. Phylogenetic and functional diversity of metagenomic libraries of phenol degrading sludge from petroleum refinery wastewater treatment system.

    Science.gov (United States)

    Silva, Cynthia C; Hayden, Helen; Sawbridge, Tim; Mele, Pauline; Kruger, Ricardo H; Rodrigues, Marili Vn; Costa, Gustavo Gl; Vidal, Ramon O; Sousa, Maíra P; Torres, Ana Paula R; Santiago, Vânia Mj; Oliveira, Valéria M

    2012-03-27

    In petrochemical refinery wastewater treatment plants (WWTP), different concentrations of pollutant compounds are received daily in the influent stream, including significant amounts of phenolic compounds, creating propitious conditions for the development of particular microorganisms that can rapidly adapt to such environment. In the present work, the microbial sludge from a refinery WWTP was enriched for phenol, cloned into fosmid vectors and pyrosequenced. The fosmid libraries yielded 13,200 clones and a comprehensive bioinformatic analysis of the sequence data set revealed a complex and diverse bacterial community in the phenol degrading sludge. The phylogenetic analyses using MEGAN in combination with RDP classifier showed a massive predominance of Proteobacteria, represented mostly by the genera Diaphorobacter, Pseudomonas, Thauera and Comamonas. The functional classification of phenol degrading sludge sequence data set generated by MG-RAST showed the wide metabolic diversity of the microbial sludge, with a high percentage of genes involved in the aerobic and anaerobic degradation of phenol and derivatives. In addition, genes related to the metabolism of many other organic and xenobiotic compounds, such as toluene, biphenyl, naphthalene and benzoate, were found. Results gathered herein demonstrated that the phenol degrading sludge has complex phylogenetic and functional diversities, showing the potential of such community to degrade several pollutant compounds. This microbiota is likely to represent a rich resource of versatile and unknown enzymes which may be exploited for biotechnological processes such as bioremediation.

  17. Differential surface phenotype and context-dependent reactivity of functionally diverse NKT cells.

    Science.gov (United States)

    Cameron, Garth; Godfrey, Dale I

    2018-03-05

    Natural Killer T (NKT) cells are a functionally diverse population that recognizes lipid-based antigens in association with the antigen-presenting molecule CD1d. Here, we define a technique to separate the functionally distinct thymic NKT1, NKT2 and NKT17 cell subsets by their surface expression of CD278 (ICOS) and the activation-associated glycoform of CD43, enabling the investigation of subset-specific effector-functions. We report that all three subsets express the transcription factor GATA-3 and the potential to produce IL-4 and IL-10 following activation. This questions the notion that NKT2 cells are the predominant source of IL-4 within the NKT cell pool, and suggests that IL-10-production may be more indicative of NKT cell plasticity than the existence of a distinct regulatory lineage or subset. We also show that many NKT17 cells are CD4 + and are biased toward Vβ8.3 TCR gene usage. Lastly, we demonstrate that the toll-like receptor (TLR) ligand lipopolysaccharide (LPS) can induce a NKT17 cell-biased response, even in the absence of exogenous antigen, and that combining LPS with α-GalCer resulted in enhanced IL-17A-production, and reduced levels of the immunosuppressive cytokine IL-10. This study provides a novel means to examine the context-dependent reactivity of the functionally heterogeneous NKT cell population and provides important new insight into the functional biology of these subsets. © 2018 Australasian Society for Immunology Inc.

  18. Comparison of Ant Community Diversity and Functional Group Composition Associated to Land Use Change in a Seasonally Dry Oak Forest.

    Science.gov (United States)

    Cuautle, M; Vergara, C H; Badano, E I

    2016-04-01

    Ants have been used to assess land use conversion, because they reflect environmental change, and their response to these changes have been useful in the identification of bioindicators. We evaluated ant diversity and composition associated to different land use change in a temperate forest (above 2000 m asl) in Mexico. The study was carried out in "Flor del Bosque" Park a vegetation mosaic of native Oak Forests and introduced Eucalyptus and grasslands. Species richness, dominance and diversity rarefaction curves, based on ant morphospecies and functional groups, were constructed and compared among the three vegetation types, for the rainy and the dry seasons of 2008-2009. Jaccard and Sorensen incidence-based indices were calculated to obtain similarity values among all the habitats. The Oak Forest was a rich dominant community, both in species and functional groups; the Eucalyptus plantation was diverse with low dominance. The most seasonality habitat was the grassland, with low species and high functional group diversity during the dry seasons, but the reverse pattern during the wet season. The Oak Forest was more similar to the Eucalyptus plantation than to the grassland, particularly during the dry season. Oak Forests are dominated by Cold Climate Specialists, specifically Prenolepis imparis (Say). The Eucalyptus and the grassland are characterized by generalized Myrmicinae, as Pheidole spp. and Monomorium ebenium (Forel). The conservation of the native Oak Forest is primordial for the maintenance of Cold Climate Specialist ant communities. The microclimatic conditions in this forest, probably, prevented the invasion by opportunistic species.

  19. I/O-Efficient Construction of Constrained Delaunay Triangulations

    DEFF Research Database (Denmark)

    Agarwal, Pankaj Kumar; Arge, Lars; Yi, Ke

    2005-01-01

    In this paper, we designed and implemented an I/O-efficient algorithm for constructing constrained Delaunay triangulations. If the number of constraining segments is smaller than the memory size, our algorithm runs in expected O( N B logM/B NB ) I/Os for triangulating N points in the plane, where...

  20. Inferring Aggregated Functional Traits from Metagenomic Data Using Constrained Non-negative Matrix Factorization: Application to Fiber Degradation in the Human Gut Microbiota.

    Science.gov (United States)

    Raguideau, Sébastien; Plancade, Sandra; Pons, Nicolas; Leclerc, Marion; Laroche, Béatrice

    2016-12-01

    Whole Genome Shotgun (WGS) metagenomics is increasingly used to study the structure and functions of complex microbial ecosystems, both from the taxonomic and functional point of view. Gene inventories of otherwise uncultured microbial communities make the direct functional profiling of microbial communities possible. The concept of community aggregated trait has been adapted from environmental and plant functional ecology to the framework of microbial ecology. Community aggregated traits are quantified from WGS data by computing the abundance of relevant marker genes. They can be used to study key processes at the ecosystem level and correlate environmental factors and ecosystem functions. In this paper we propose a novel model based approach to infer combinations of aggregated traits characterizing specific ecosystemic metabolic processes. We formulate a model of these Combined Aggregated Functional Traits (CAFTs) accounting for a hierarchical structure of genes, which are associated on microbial genomes, further linked at the ecosystem level by complex co-occurrences or interactions. The model is completed with constraints specifically designed to exploit available genomic information, in order to favor biologically relevant CAFTs. The CAFTs structure, as well as their intensity in the ecosystem, is obtained by solving a constrained Non-negative Matrix Factorization (NMF) problem. We developed a multicriteria selection procedure for the number of CAFTs. We illustrated our method on the modelling of ecosystemic functional traits of fiber degradation by the human gut microbiota. We used 1408 samples of gene abundances from several high-throughput sequencing projects and found that four CAFTs only were needed to represent the fiber degradation potential. This data reduction highlighted biologically consistent functional patterns while providing a high quality preservation of the original data. Our method is generic and can be applied to other metabolic processes in

  1. Inferring Aggregated Functional Traits from Metagenomic Data Using Constrained Non-negative Matrix Factorization: Application to Fiber Degradation in the Human Gut Microbiota.

    Directory of Open Access Journals (Sweden)

    Sébastien Raguideau

    2016-12-01

    Full Text Available Whole Genome Shotgun (WGS metagenomics is increasingly used to study the structure and functions of complex microbial ecosystems, both from the taxonomic and functional point of view. Gene inventories of otherwise uncultured microbial communities make the direct functional profiling of microbial communities possible. The concept of community aggregated trait has been adapted from environmental and plant functional ecology to the framework of microbial ecology. Community aggregated traits are quantified from WGS data by computing the abundance of relevant marker genes. They can be used to study key processes at the ecosystem level and correlate environmental factors and ecosystem functions. In this paper we propose a novel model based approach to infer combinations of aggregated traits characterizing specific ecosystemic metabolic processes. We formulate a model of these Combined Aggregated Functional Traits (CAFTs accounting for a hierarchical structure of genes, which are associated on microbial genomes, further linked at the ecosystem level by complex co-occurrences or interactions. The model is completed with constraints specifically designed to exploit available genomic information, in order to favor biologically relevant CAFTs. The CAFTs structure, as well as their intensity in the ecosystem, is obtained by solving a constrained Non-negative Matrix Factorization (NMF problem. We developed a multicriteria selection procedure for the number of CAFTs. We illustrated our method on the modelling of ecosystemic functional traits of fiber degradation by the human gut microbiota. We used 1408 samples of gene abundances from several high-throughput sequencing projects and found that four CAFTs only were needed to represent the fiber degradation potential. This data reduction highlighted biologically consistent functional patterns while providing a high quality preservation of the original data. Our method is generic and can be applied to other

  2. Constrained Vapor Bubble Experiment

    Science.gov (United States)

    Gokhale, Shripad; Plawsky, Joel; Wayner, Peter C., Jr.; Zheng, Ling; Wang, Ying-Xi

    2002-11-01

    Microgravity experiments on the Constrained Vapor Bubble Heat Exchanger, CVB, are being developed for the International Space Station. In particular, we present results of a precursory experimental and theoretical study of the vertical Constrained Vapor Bubble in the Earth's environment. A novel non-isothermal experimental setup was designed and built to study the transport processes in an ethanol/quartz vertical CVB system. Temperature profiles were measured using an in situ PC (personal computer)-based LabView data acquisition system via thermocouples. Film thickness profiles were measured using interferometry. A theoretical model was developed to predict the curvature profile of the stable film in the evaporator. The concept of the total amount of evaporation, which can be obtained directly by integrating the experimental temperature profile, was introduced. Experimentally measured curvature profiles are in good agreement with modeling results. For microgravity conditions, an analytical expression, which reveals an inherent relation between temperature and curvature profiles, was derived.

  3. Microbial community diversity and composition varies with habitat characteristics and biofilm function in macrophyte-rich streams

    DEFF Research Database (Denmark)

    Levi, Peter S.; Starnawski, Piotr; Poulsen, Britta

    2017-01-01

    Biofilms in streams play an integral role in ecosystem processes and function yet few studies have investigated the broad diversity of these complex prokaryotic and eukaryotic microbial communities. Physical habitat characteristics can affect the composition and abundance of microorganisms...... in these biofilms by creating microhabitats. Here we describe the prokaryotic and eukaryotic microbial diversity of biofilms in sand and macrophyte habitats (i.e. epipsammon and epiphyton, respectively) in five macrophyte-rich streams in Jutland, Denmark. The macrophyte species varied in growth morphology, C......:N stoichiometry, and preferred stream habitat, providing a range in environmental conditions for the epiphyton. Among all habitats and streams, the prokaryotic communities were dominated by common phyla, including Alphaproteobacteria, Bacteriodetes, and Gammaproteobacteria, while the eukaryotic communities were...

  4. Hyperbolicity and constrained evolution in linearized gravity

    International Nuclear Information System (INIS)

    Matzner, Richard A.

    2005-01-01

    Solving the 4-d Einstein equations as evolution in time requires solving equations of two types: the four elliptic initial data (constraint) equations, followed by the six second order evolution equations. Analytically the constraint equations remain solved under the action of the evolution, and one approach is to simply monitor them (unconstrained evolution). Since computational solution of differential equations introduces almost inevitable errors, it is clearly 'more correct' to introduce a scheme which actively maintains the constraints by solution (constrained evolution). This has shown promise in computational settings, but the analysis of the resulting mixed elliptic hyperbolic method has not been completely carried out. We present such an analysis for one method of constrained evolution, applied to a simple vacuum system, linearized gravitational waves. We begin with a study of the hyperbolicity of the unconstrained Einstein equations. (Because the study of hyperbolicity deals only with the highest derivative order in the equations, linearization loses no essential details.) We then give explicit analytical construction of the effect of initial data setting and constrained evolution for linearized gravitational waves. While this is clearly a toy model with regard to constrained evolution, certain interesting features are found which have relevance to the full nonlinear Einstein equations

  5. An L∞/L1-Constrained Quadratic Optimization Problem with Applications to Neural Networks

    International Nuclear Information System (INIS)

    Leizarowitz, Arie; Rubinstein, Jacob

    2003-01-01

    Pattern formation in associative neural networks is related to a quadratic optimization problem. Biological considerations imply that the functional is constrained in the L ∞ norm and in the L 1 norm. We consider such optimization problems. We derive the Euler-Lagrange equations, and construct basic properties of the maximizers. We study in some detail the case where the kernel of the quadratic functional is finite-dimensional. In this case the optimization problem can be fully characterized by the geometry of a certain convex and compact finite-dimensional set

  6. Epoch of reionization 21 cm forecasting from MCMC-constrained semi-numerical models

    Science.gov (United States)

    Hassan, Sultan; Davé, Romeel; Finlator, Kristian; Santos, Mario G.

    2017-06-01

    The recent low value of Planck Collaboration XLVII integrated optical depth to Thomson scattering suggests that the reionization occurred fairly suddenly, disfavouring extended reionization scenarios. This will have a significant impact on the 21 cm power spectrum. Using a semi-numerical framework, we improve our model from instantaneous to include time-integrated ionization and recombination effects, and find that this leads to more sudden reionization. It also yields larger H II bubbles that lead to an order of magnitude more 21 cm power on large scales, while suppressing the small-scale ionization power. Local fluctuations in the neutral hydrogen density play the dominant role in boosting the 21 cm power spectrum on large scales, while recombinations are subdominant. We use a Monte Carlo Markov chain approach to constrain our model to observations of the star formation rate functions at z = 6, 7, 8 from Bouwens et al., the Planck Collaboration XLVII optical depth measurements and the Becker & Bolton ionizing emissivity data at z ˜ 5. We then use this constrained model to perform 21 cm forecasting for Low Frequency Array, Hydrogen Epoch of Reionization Array and Square Kilometre Array in order to determine how well such data can characterize the sources driving reionization. We find that the Mock 21 cm power spectrum alone can somewhat constrain the halo mass dependence of ionizing sources, the photon escape fraction and ionizing amplitude, but combining the Mock 21 cm data with other current observations enables us to separately constrain all these parameters. Our framework illustrates how the future 21 cm data can play a key role in understanding the sources and topology of reionization as observations improve.

  7. Cross-cultural consistency and diversity in intrinsic functional organization of Broca's Region.

    Science.gov (United States)

    Zhang, Yu; Fan, Lingzhong; Caspers, Svenja; Heim, Stefan; Song, Ming; Liu, Cirong; Mo, Yin; Eickhoff, Simon B; Amunts, Katrin; Jiang, Tianzi

    2017-04-15

    As a core language area, Broca's region was consistently activated in a variety of language studies even across different language systems. Moreover, a high degree of structural and functional heterogeneity in Broca's region has been reported in many studies. This raised the issue of how the intrinsic organization of Broca's region effects by different language experiences in light of its subdivisions. To address this question, we used multi-center resting-state fMRI data to explore the cross-cultural consistency and diversity of Broca's region in terms of its subdivisions, connectivity patterns and modularity organization in Chinese and German speakers. A consistent topological organization of the 13 subdivisions within the extended Broca's region was revealed on the basis of a new in-vivo parcellation map, which corresponded well to the previously reported receptorarchitectonic map. Based on this parcellation map, consistent functional connectivity patterns and modularity organization of these subdivisions were found. Some cultural difference in the functional connectivity patterns was also found, for instance stronger connectivity in Chinese subjects between area 6v2 and the motor hand area, as well as higher correlations between area 45p and middle frontal gyrus. Our study suggests that a generally invariant organization of Broca's region, together with certain regulations of different language experiences on functional connectivity, might exists to support language processing in human brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Stroke in a resource-constrained hospital in Madagascar.

    Science.gov (United States)

    Stenumgård, Pål Sigurd; Rakotondranaivo, Miadana Joshua; Sletvold, Olav; Follestad, Turid; Ellekjær, Hanne

    2017-07-24

    Stroke is reported as the most frequent cause of in-hospital death in Madagascar. However, no descriptive data on hospitalized stroke patients in the country have been published. In the present study, we sought to investigate the feasibility of collecting data on stroke patients in a resource-constrained hospital in Madagascar. We also aimed to characterize patients hospitalized with stroke. We registered socio-demographics, clinical characteristics, and early outcomes of patients admitted for stroke between 23 September 2014 and 3 December 2014. We used several validated scales for the evaluation. Stroke severity was measured by the National Institutes of Health Stroke Scale (NIHSS), disability by the modified Rankin Scale (mRS), and function by the Barthel Index (BI). We studied 30 patients. Sixteen were males. The median age was 62.5 years (IQR 58-67). The NIHSS and mRS were completed for all of the patients, and BI was used for the survivors. Three patients received a computed tomography (CT) brain scan. The access to laboratory investigations was limited. Electrocardiographs (ECGs) were not performed. The median NIHSS score was 16.5 (IQR 10-35). The in-hospital stroke mortality was 30%. At discharge, the median mRS score was 5 (IQR 4-6), and the median BI score was 45 (IQR 0-72.5). Although the access to brain imaging and supporting investigations was deficient, this small-scale study suggests that it is feasible to collect essential data on stroke patients in a resource-constrained hospital in Madagascar. Such data should be useful for improving stroke services and planning further research. The hospitalized stroke patients had severe symptoms. The in-hospital stroke mortality was high. At discharge, the disability category was high, and functional status low.

  9. Spatial Tourist and Functional Diversity on the Volcanic Island of Gran Canaria

    Science.gov (United States)

    Gonda-Soroczyńska, Eleonora; Olczyk, Hanna

    2017-10-01

    The conducted research is focused on spatial, functional and landscape diversity, the existing tourist potential and the possibilities for further development of a small, volcanic island of Gran Canaria. The discussed island was compared against other islands of the Canarian archipelago (Lanzarote, Fuerteventura, Tenerife, La Palma, El Hierro). Similarly to the remaining Canary Islands, the economy of Gran Canaria is predominantly based on tourism (approx. 4,5-5,0 million tourists visit the Canary Island annually and approx. 2,8 million come to Gran Canaria). Additionally, Puerto de la Luz transhipment centre in Las Palmas plays a very important role because of the goods imported from overseas. It is one of the largest ports in Spain (it reloads almost 2 million containers per year) also being an important Atlantic refuelling station. Apart from tourism, an important role is played here by agriculture, primarily the cultivation of bananas and tomatoes, which represent the most significant export good of the archipelago. The conducted spatial research showed an extensive diversity. This situation is, to a great extent, influenced by the climate. The northern part is cooler and dominated by agriculture, whereas the southern one is much warmer and characterized by a well-developed tourism infrastructure. Site inspections performed out along the outer contour of the island resembling a circle. Numerous architectural and urban sketches, urban analyses and photographic documentation were made. Community surveys were carried out. For a researcher, it was extremely interesting to answer the questions whether Gran Canaria is different from the other Canary Islands, especially in the functional and landscape context, and if so what exactly these differences consist of. What is Gran Canaria in particular characterized by and what kind of role it plays in the economic sector of Spain?

  10. Board diversity in family firms

    OpenAIRE

    Menozzi, Anna; Fraquelli, Giovanni; Novara, Jolanda de

    2015-01-01

    The paper deals with diversity as a key factor to improve the board of directors’ decision process in family firms. The empirical literature about board diversity points at the positive impact of diversity on board functioning and firm performance. The paper uses a statistical diversity index to capture the heterogeneity of board of directors and put it in relation with firm performance, as measured by firm profitability. The empirical analysis is based on a newly collected panel of 327 famil...

  11. Constrained noninformative priors

    International Nuclear Information System (INIS)

    Atwood, C.L.

    1994-10-01

    The Jeffreys noninformative prior distribution for a single unknown parameter is the distribution corresponding to a uniform distribution in the transformed model where the unknown parameter is approximately a location parameter. To obtain a prior distribution with a specified mean but with diffusion reflecting great uncertainty, a natural generalization of the noninformative prior is the distribution corresponding to the constrained maximum entropy distribution in the transformed model. Examples are given

  12. Dimensionally constrained energy confinement analysis of W7-AS data

    International Nuclear Information System (INIS)

    Dose, V.; Preuss, R.; Linden, W. von der

    1998-01-01

    A recently assembled W7-AS stellarator database has been subject to dimensionally constrained confinement analysis. The analysis employs Bayesian inference. Dimensional information is taken from the Connor-Taylor (CT) similarity transformation theory, which provides six possible physical scenarios with associated dimensional conditions. Bayesian theory allows the calculations of the probability for each model and it is found that the present W7-AS data are most probably described by the collisionless high-β case. Probabilities for all models and the associated exponents of a power law scaling function are presented. (author)

  13. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide

    Science.gov (United States)

    Prober, Suzanne M.; Leff, Jonathan W.; Bates, Scott T.; Borer, Elizabeth T.; Firn, Jennifer; Harpole, W. Stanley; Lind, Eric M.; Seabloom, Eric W.; Adler, Peter B.; Bakker, Jonathan D.; Cleland, Elsa E.; DeCrappeo, Nicole; DeLorenze, Elizabeth; Hagenah, Nicole; Hautier, Yann; Hofmockel, Kirsten S.; Kirkman, Kevin P.; Knops, Johannes M. H.; La Pierre, Kimberly J.; MacDougall, Andrew S.; McCulley, Rebecca L.; Mitchell, Charles E.; Risch, Anita C.; Schuetz, Martin; Stevens, Carly J.; Williams, Ryan J.; Fierer, Noah

    2015-01-01

    Aboveground–belowground interactions exert critical controls on the composition and function of terrestrial ecosystems, yet the fundamental relationships between plant diversity and soil microbial diversity remain elusive. Theory predicts predominantly positive associations but tests within single sites have shown variable relationships, and associations between plant and microbial diversity across broad spatial scales remain largely unexplored. We compared the diversity of plant, bacterial, archaeal and fungal communities in one hundred and forty-five 1 m2 plots across 25 temperate grassland sites from four continents. Across sites, the plant alpha diversity patterns were poorly related to those observed for any soil microbial group. However, plant beta diversity (compositional dissimilarity between sites) was significantly correlated with the beta diversity of bacterial and fungal communities, even after controlling for environmental factors. Thus, across a global range of temperate grasslands, plant diversity can predict patterns in the composition of soil microbial communities, but not patterns in alpha diversity.

  14. [Effects of nitrogen application rate on faba bean fusarium wilt and rhizospheric microbial metabolic functional diversity].

    Science.gov (United States)

    Dong, Yan; Yang, Zhi-xian; Dong, Kun; Tang, Li; Zheng, Yi; Hu, Guo-bin

    2013-04-01

    A field plot experiment was conducted to study the effects of different nitrogen (N) application rates on the microbial functional diversity in faba bean rhizosphere and the relationships between the microbial functional diversity and the occurrence of faba bean fusarium wilt. Four nitrogen application rates were installed, i. e. , N0(0 kg hm-2 , N1 (56. 25 kg hm-2) , N2(112. 5 kg hm-2), and N3 (168.75 kg hm-2), and Biolog microbial analysis system was applied to study the damage of faba bean fusarium wilt and the rhizospheric microbial metabolic functional diversity. Applying N (N1 N2, and N3) decreased the disease index of faba bean fusarium wilt and the quantity of Fusarium oxysporum significantly, and increased the quantities of bacteria and actinomyces and the ratios of bacteria/fungi and actinomyces/fungi significantly, with the peak values of bacteria and actinomyces, bacteria/fungi, and actinomyces/fungi, and the lowest disease index and F. oxysporum density in N2. As compared with N0, applying N increased the AWCD value significantly, but the effects of different N application rates on the ability of rhizospheric microbes in utilizing six types of carbon sources had definite differences. Under the application of N, the utilization rates of carbohydrates, carboxylic acids, and amino acids by the rhizospheric microbes were higher. Principal component analysis demonstrated that applying N changed the rhizospheric microbial community composition obviously, and the carbohydrates, carboxylic acids, and amino acids were the sensitive carbon sources differentiating the changes of the microbial community induced by N application. Applying N inhibited the utilization of carbohydrates and carboxylic acids but improved the utilization of amino acids and phenolic acids by the rhizospheric microbes, which could be one of the main reasons of applying N being able to reduce the harm of faba bean fusarium wilt. It was suggested that rationally applying N could increase the

  15. Species Richness and Functional Trait Diversity for Plants in Southern California's Green Infrastructure along a Climate Gradient

    Science.gov (United States)

    Rochford, M. E.; Ibsen, P.; Jenerette, D.

    2016-12-01

    Green infrastructure (GI) is greenery planted to absorb rainwater into the earth as an alternative to grey infrastructure, like storm drains. Not only does GI prevent flooding, but it also performs a number of ecosystem services, including increasing biodiversity, because it allows water to cycle through the environment naturally. Increased biodiversity in plant communities is said to help purify the air and improve the health and resilience of the plants themselves. I want to investigate these claims about GI's benefits by studying types of GI with slightly different functions. This will answer the questions 1) Are different types of green infrastructure's plant communities equally biodiverse in terms of functional trait diversity and species richness? 2) How does functional trait diversity and species richness differ along a temperature gradient in Southern California? To compare biodiversity, I must survey four different types of GI, urban parks, riparian zones, detention basins, and bioswales, in three cities in distinct climate regions. Detention basins are reservoirs lined with vegetation that collect water until it is absorbed into the soil. Bioswales are vegetated gutters that filter out pollutants in storm water. Unlike retention basins, they also add aesthetic value to an area. Even though parks are mainly for recreation and beatification rather than storm water management, they have plenty of permeable surface to absorb storm water. The types of GI that have high levels of interaction with humans should also have higher levels of maintenance. The results should follow the homogenization hypothesis and demonstrate that, regardless of climate, species richness should not differ much between highly maintained areas, like parks, in different cities. Otherwise, in GI that is not as manicured, species richness should be significantly different between cities and the different types of GI. Because types of GI selected vary in expected levels of human

  16. The effects of habitat management on the species, phylogenetic and functional diversity of bees are modified by the environmental context.

    Science.gov (United States)

    Sydenham, Markus A K; Moe, Stein R; Stanescu-Yadav, Diana N; Totland, Ørjan; Eldegard, Katrine

    2016-02-01

    Anthropogenic landscape elements, such as roadsides, hedgerows, field edges, and power line clearings, can be managed to provide important habitats for wild bees. However, the effects of habitat improvement schemes in power line clearings on components of diversity are poorly studied. We conducted a large-scale experiment to test the effects of different management practices on the species, phylogenetic, and functional diversity of wild bees in power line clearings (n = 19 sites across southeastern Norway) and explored whether any treatment effects were modified by the environmental context. At each site, we conducted the following treatments: (1) Cut: all trees cut and left to decay in the clearing; (2) Cut + Remove: all trees cut and removed from the plot; and (3) Uncut: uncleared. The site-specific environmental context (i.e., elevation and floral diversity) influenced the species, phylogenetic, and functional diversity within bee species assemblages. The largest number of species was found in the Cut + Remove treatment in plots with a high forb species richness, indicating that the outcome of management practices depends on the environmental context. Clearing of treatment plots with many forb species also appeared to alter the phylogenetic composition of bee species assemblages, that is, more closely related species were found in the Cut and the Cut + Remove plots than in the Uncut plots. Synthesis and applications: Our experimental simulation of management practices in power line clearings influenced the species, phylogenetic, and functional diversity of bee species assemblages. Frequent clearing and removal of the woody debris at low elevations with a high forb species richness can increase the value of power line clearings for solitary bees. It is therefore important for managers to consider the environmental context when designing habitat improvement schemes for solitary bees.

  17. Functional Characterization of Bacteria Isolated from Ancient Arctic Soil Exposes Diverse Resistance Mechanisms to Modern Antibiotics

    Science.gov (United States)

    Perron, Gabriel G.; Whyte, Lyle; Turnbaugh, Peter J.; Goordial, Jacqueline; Hanage, William P.; Dantas, Gautam; Desai, Michael M.

    2015-01-01

    Using functional metagenomics to study the resistomes of bacterial communities isolated from different layers of the Canadian high Arctic permafrost, we show that microbial communities harbored diverse resistance mechanisms at least 5,000 years ago. Among bacteria sampled from the ancient layers of a permafrost core, we isolated eight genes conferring clinical levels of resistance against aminoglycoside, β-lactam and tetracycline antibiotics that are naturally produced by microorganisms. Among these resistance genes, four also conferred resistance against amikacin, a modern semi-synthetic antibiotic that does not naturally occur in microorganisms. In bacteria sampled from the overlaying active layer, we isolated ten different genes conferring resistance to all six antibiotics tested in this study, including aminoglycoside, β-lactam and tetracycline variants that are naturally produced by microorganisms as well as semi-synthetic variants produced in the laboratory. On average, we found that resistance genes found in permafrost bacteria conferred lower levels of resistance against clinically relevant antibiotics than resistance genes sampled from the active layer. Our results demonstrate that antibiotic resistance genes were functionally diverse prior to the anthropogenic use of antibiotics, contributing to the evolution of natural reservoirs of resistance genes. PMID:25807523

  18. Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes.

    Science.gov (United States)

    Xu, Lin; Jiang, Zhe; Qing, Quan; Mai, Liqiang; Zhang, Qingjie; Lieber, Charles M

    2013-02-13

    Functional kinked nanowires (KNWs) represent a new class of nanowire building blocks, in which functional devices, for example, nanoscale field-effect transistors (nanoFETs), are encoded in geometrically controlled nanowire superstructures during synthesis. The bottom-up control of both structure and function of KNWs enables construction of spatially isolated point-like nanoelectronic probes that are especially useful for monitoring biological systems where finely tuned feature size and structure are highly desired. Here we present three new types of functional KNWs including (1) the zero-degree KNW structures with two parallel heavily doped arms of U-shaped structures with a nanoFET at the tip of the "U", (2) series multiplexed functional KNW integrating multi-nanoFETs along the arm and at the tips of V-shaped structures, and (3) parallel multiplexed KNWs integrating nanoFETs at the two tips of W-shaped structures. First, U-shaped KNWs were synthesized with separations as small as 650 nm between the parallel arms and used to fabricate three-dimensional nanoFET probes at least 3 times smaller than previous V-shaped designs. In addition, multiple nanoFETs were encoded during synthesis in one of the arms/tip of V-shaped and distinct arms/tips of W-shaped KNWs. These new multiplexed KNW structures were structurally verified by optical and electron microscopy of dopant-selective etched samples and electrically characterized using scanning gate microscopy and transport measurements. The facile design and bottom-up synthesis of these diverse functional KNWs provides a growing toolbox of building blocks for fabricating highly compact and multiplexed three-dimensional nanoprobes for applications in life sciences, including intracellular and deep tissue/cell recordings.

  19. Two decades of climate driving the dynamics of functional and taxonomic diversity of a tropical small mammal community in western Mexico

    OpenAIRE

    Mason-Romo, Edgard David; Farías, Ariel A.; Ceballos, Gerardo

    2017-01-01

    Understanding the effects of global climate disruption on biodiversity is important to future conservation efforts. While taxonomic diversity is widely studied, functional diversity of plants, and recently animals, is receiving increasing attention. Most studies of mammals are short-term, focus on temperate habitats, and rely on traits described in the literature rather than generating traits from observations. Unlike previous studies, this long-term field study assessed the factors driving t...

  20. Constrained-path quantum Monte Carlo approach for non-yrast states within the shell model

    Energy Technology Data Exchange (ETDEWEB)

    Bonnard, J. [INFN, Sezione di Padova, Padova (Italy); LPC Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3, Caen (France); Juillet, O. [LPC Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3, Caen (France)

    2016-04-15

    The present paper intends to present an extension of the constrained-path quantum Monte Carlo approach allowing to reconstruct non-yrast states in order to reach the complete spectroscopy of nuclei within the interacting shell model. As in the yrast case studied in a previous work, the formalism involves a variational symmetry-restored wave function assuming two central roles. First, it guides the underlying Brownian motion to improve the efficiency of the sampling. Second, it constrains the stochastic paths according to the phaseless approximation to control sign or phase problems that usually plague fermionic QMC simulations. Proof-of-principle results in the sd valence space are reported. They prove the ability of the scheme to offer remarkably accurate binding energies for both even- and odd-mass nuclei irrespective of the considered interaction. (orig.)

  1. Cosmicflows Constrained Local UniversE Simulations

    Science.gov (United States)

    Sorce, Jenny G.; Gottlöber, Stefan; Yepes, Gustavo; Hoffman, Yehuda; Courtois, Helene M.; Steinmetz, Matthias; Tully, R. Brent; Pomarède, Daniel; Carlesi, Edoardo

    2016-01-01

    This paper combines observational data sets and cosmological simulations to generate realistic numerical replicas of the nearby Universe. The latter are excellent laboratories for studies of the non-linear process of structure formation in our neighbourhood. With measurements of radial peculiar velocities in the local Universe (cosmicflows-2) and a newly developed technique, we produce Constrained Local UniversE Simulations (CLUES). To assess the quality of these constrained simulations, we compare them with random simulations as well as with local observations. The cosmic variance, defined as the mean one-sigma scatter of cell-to-cell comparison between two fields, is significantly smaller for the constrained simulations than for the random simulations. Within the inner part of the box where most of the constraints are, the scatter is smaller by a factor of 2 to 3 on a 5 h-1 Mpc scale with respect to that found for random simulations. This one-sigma scatter obtained when comparing the simulated and the observation-reconstructed velocity fields is only 104 ± 4 km s-1, I.e. the linear theory threshold. These two results demonstrate that these simulations are in agreement with each other and with the observations of our neighbourhood. For the first time, simulations constrained with observational radial peculiar velocities resemble the local Universe up to a distance of 150 h-1 Mpc on a scale of a few tens of megaparsecs. When focusing on the inner part of the box, the resemblance with our cosmic neighbourhood extends to a few megaparsecs (<5 h-1 Mpc). The simulations provide a proper large-scale environment for studies of the formation of nearby objects.

  2. Environmental determinants and spatial mismatch of mammal diversity measures in Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Maya, J.F.; Arias-Alzate, A.; Granados-Peña, R.; Mancera-Rodriguez, N.J.; Ceballos, G.

    2016-07-01

    Including complementary diversity measures into ecological and conservation studies should improve our ability to link species assemblages to ecosystems. Recent measures such as phylogenetic and functional diversity have furthered our understanding of assemblage patterns of ecosystems and species, allowing improved inference of ecosystem function and conservation. We evaluated spatial patterns of taxonomic, phylogenetic and functional diversity of mammals in Colombia and identified their main environmental determinants, as well as interrelationships and spatial mismatch between the three measures. We found significant effects of elevation and precipitation on species richness, slope and species richness on phylogenetic diversity, and slope and phylogenetic diversity on functional diversity. We also identified a spatial mismatch of the three measures in some areas of the country: 12% of the country for species richness and 14% for phylogenetic and functional diversity. Our results highlight the importance of including species relationships within environmental drivers with biogeographical and distribution analyses and could facilitate selection of priority areas for conservation, especially when mismatch occurs between measures. (Author)

  3. Effects of nitrogen load on the function and diversity of methanotrophs in the littoral wetland of a boreal lake

    Directory of Open Access Journals (Sweden)

    Henri MP Siljanen

    2012-02-01

    Full Text Available Methane is the second most abundant greenhouse gas in the atmosphere. A major part of the total methane emissions from lake ecosystems are emitted from littoral wetlands. Methane emissions are significantly reduced by methanotrophs as they use methane as the sole energy and carbon source. Function of methanotrophs can be either activated or suppressed by nitrogen. However, the effects of nitrogen on methanotrophs in littoral wetlands are unknown. Here we report how nitrogen loading in situ affected the function and diversity of methanotrophs in a littoral wetland. Methanotrophic community composition and functional diversity were analyzed with particulate methane monooxygenase (pmoA gene targeted microarray. Nitrogen load had no effects on methane oxidation potential and methane fluxes. Nitrogen load activated pmoA gene transcription of type I (Methylobacter, Methylomonas and LW21-freshwater phylotypes methanotrophs, but decreased the relative abundance of type II (Methylocystis, Methylosinus trichosporium and Methylosinus phylotypes methanotrophs. Hence, the overall activity of a methanotroph community in littoral wetlands is unlikely to be affected by nitrogen leached from the catchment area.

  4. Land-use systems affect Archaeal community structure and functional diversity in western Amazon soils

    Directory of Open Access Journals (Sweden)

    Acácio Aparecido Navarrete

    2011-10-01

    Full Text Available The study of the ecology of soil microbial communities at relevant spatial scales is primordial in the wide Amazon region due to the current land use changes. In this study, the diversity of the Archaea domain (community structure and ammonia-oxidizing Archaea (richness and community composition were investigated using molecular biology-based techniques in different land-use systems in western Amazonia, Brazil. Soil samples were collected in two periods with high precipitation (March 2008 and January 2009 from Inceptisols under primary tropical rainforest, secondary forest (5-20 year old, agricultural systems of indigenous people and cattle pasture. Denaturing gradient gel electrophoresis of polymerase chain reaction-amplified DNA (PCR-DGGE using the 16S rRNA gene as a biomarker showed that archaeal community structures in crops and pasture soils are different from those in primary forest soil, which is more similar to the community structure in secondary forest soil. Sequence analysis of excised DGGE bands indicated the presence of crenarchaeal and euryarchaeal organisms. Based on clone library analysis of the gene coding the subunit of the enzyme ammonia monooxygenase (amoA of Archaea (306 sequences, the Shannon-Wiener function and Simpson's index showed a greater ammonia-oxidizing archaeal diversity in primary forest soils (H' = 2.1486; D = 0.1366, followed by a lower diversity in soils under pasture (H' = 1.9629; D = 0.1715, crops (H' = 1.4613; D = 0.3309 and secondary forest (H' = 0.8633; D = 0.5405. All cloned inserts were similar to the Crenarchaeota amoA gene clones (identity > 95 % previously found in soils and sediments and distributed primarily in three major phylogenetic clusters. The findings indicate that agricultural systems of indigenous people and cattle pasture affect the archaeal community structure and diversity of ammonia-oxidizing Archaea in western Amazon soils.

  5. Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives

    Science.gov (United States)

    Moses, Tessa; Papadopoulou, Kalliope K.

    2014-01-01

    Saponins are widely distributed plant natural products with vast structural and functional diversity. They are typically composed of a hydrophobic aglycone, which is extensively decorated with functional groups prior to the addition of hydrophilic sugar moieties, to result in surface-active amphipathic compounds. The saponins are broadly classified as triterpenoids, steroids or steroidal glycoalkaloids, based on the aglycone structure from which they are derived. The saponins and their biosynthetic intermediates display a variety of biological activities of interest to the pharmaceutical, cosmetic and food sectors. Although their relevance in industrial applications has long been recognized, their role in plants is underexplored. Recent research on modulating native pathway flux in saponin biosynthesis has demonstrated the roles of saponins and their biosynthetic intermediates in plant growth and development. Here, we review the literature on the effects of these molecules on plant physiology, which collectively implicate them in plant primary processes. The industrial uses and potential of saponins are discussed with respect to structure and activity, highlighting the undoubted value of these molecules as therapeutics. PMID:25286183

  6. Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas

    KAUST Repository

    Neave, Matthew J.

    2016-08-24

    Endozoicomonas bacteria are emerging as extremely diverse and flexible symbionts of numerous marine hosts inhabiting oceans worldwide. Their hosts range from simple invertebrate species, such as sponges and corals, to complex vertebrates, such as fish. Although widely distributed, the functional role of Endozoicomonas within their host microenvironment is not well understood. In this review, we provide a summary of the currently recognized hosts of Endozoicomonas and their global distribution. Next, the potential functional roles of Endozoicomonas, particularly in light of recent microscopic, genomic, and genetic analyses, are discussed. These analyses suggest that Endozoicomonas typically reside in aggregates within host tissues, have a free-living stage due to their large genome sizes, show signs of host and local adaptation, participate in host-associated protein and carbohydrate transport and cycling, and harbour a high degree of genomic plasticity due to the large proportion of transposable elements residing in their genomes. This review will finish with a discussion on the methodological tools currently employed to study Endozoicomonas and host interactions and review future avenues for studying complex host-microbial symbioses.

  7. Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas

    KAUST Repository

    Neave, Matthew J.; Apprill, Amy; Ferrier-Pagè s, Christine; Voolstra, Christian R.

    2016-01-01

    Endozoicomonas bacteria are emerging as extremely diverse and flexible symbionts of numerous marine hosts inhabiting oceans worldwide. Their hosts range from simple invertebrate species, such as sponges and corals, to complex vertebrates, such as fish. Although widely distributed, the functional role of Endozoicomonas within their host microenvironment is not well understood. In this review, we provide a summary of the currently recognized hosts of Endozoicomonas and their global distribution. Next, the potential functional roles of Endozoicomonas, particularly in light of recent microscopic, genomic, and genetic analyses, are discussed. These analyses suggest that Endozoicomonas typically reside in aggregates within host tissues, have a free-living stage due to their large genome sizes, show signs of host and local adaptation, participate in host-associated protein and carbohydrate transport and cycling, and harbour a high degree of genomic plasticity due to the large proportion of transposable elements residing in their genomes. This review will finish with a discussion on the methodological tools currently employed to study Endozoicomonas and host interactions and review future avenues for studying complex host-microbial symbioses.

  8. A Sequential Quadratically Constrained Quadratic Programming Method of Feasible Directions

    International Nuclear Information System (INIS)

    Jian Jinbao; Hu Qingjie; Tang Chunming; Zheng Haiyan

    2007-01-01

    In this paper, a sequential quadratically constrained quadratic programming method of feasible directions is proposed for the optimization problems with nonlinear inequality constraints. At each iteration of the proposed algorithm, a feasible direction of descent is obtained by solving only one subproblem which consist of a convex quadratic objective function and simple quadratic inequality constraints without the second derivatives of the functions of the discussed problems, and such a subproblem can be formulated as a second-order cone programming which can be solved by interior point methods. To overcome the Maratos effect, an efficient higher-order correction direction is obtained by only one explicit computation formula. The algorithm is proved to be globally convergent and superlinearly convergent under some mild conditions without the strict complementarity. Finally, some preliminary numerical results are reported

  9. Factorization of Constrained Energy K-Network Reliability with Perfect Nodes

    OpenAIRE

    Burgos, Juan Manuel

    2013-01-01

    This paper proves a new general K-network constrained energy reliability global factorization theorem. As in the unconstrained case, beside its theoretical mathematical importance the theorem shows how to do parallel processing in exact network constrained energy reliability calculations in order to reduce the processing time of this NP-hard problem. Followed by a new simple factorization formula for its calculation, we propose a new definition of constrained energy network reliability motiva...

  10. An analysis of cultural diversity in spanish educational legislation: a historical overview

    Directory of Open Access Journals (Sweden)

    Alicia Peñalva Vélez

    2014-10-01

    Full Text Available In this paper we analyze the Educational Laws approved in Spain since 1990, with the aim of identifying any references about cultural diversity. All these laws have come into force within a new multicultural Spanish reality, which has already been existing in other European countries for decades. However, the Spanish legal system (including educational law still focuses on cultural differences of those migrants that are non EU members. Our Social Imaginary is composed of distorted images of what cultural diversity is, and what it means. We should introduce intercultural educational model at schools, as interculturality pursues the renovation of monocultural scholar curricula. Its objective is to promote the diverse cultural groups at schools, apart from trying to achieve cultural feedback within society. The most important problem we have currently faced in the educational system is that cultures, far from being clearly defined as global, dynamic and open, are being constrained to ethnic, geographical or religious features

  11. A New Self-Constrained Inversion Method of Potential Fields Based on Probability Tomography

    Science.gov (United States)

    Sun, S.; Chen, C.; WANG, H.; Wang, Q.

    2014-12-01

    The self-constrained inversion method of potential fields uses a priori information self-extracted from potential field data. Differing from external a priori information, the self-extracted information are generally parameters derived exclusively from the analysis of the gravity and magnetic data (Paoletti et al., 2013). Here we develop a new self-constrained inversion method based on probability tomography. Probability tomography doesn't need any priori information, as well as large inversion matrix operations. Moreover, its result can describe the sources, especially the distribution of which is complex and irregular, entirely and clearly. Therefore, we attempt to use the a priori information extracted from the probability tomography results to constrain the inversion for physical properties. The magnetic anomaly data was taken as an example in this work. The probability tomography result of magnetic total field anomaly(ΔΤ) shows a smoother distribution than the anomalous source and cannot display the source edges exactly. However, the gradients of ΔΤ are with higher resolution than ΔΤ in their own direction, and this characteristic is also presented in their probability tomography results. So we use some rules to combine the probability tomography results of ∂ΔΤ⁄∂x, ∂ΔΤ⁄∂y and ∂ΔΤ⁄∂z into a new result which is used for extracting a priori information, and then incorporate the information into the model objective function as spatial weighting functions to invert the final magnetic susceptibility. Some magnetic synthetic examples incorporated with and without a priori information extracted from the probability tomography results were made to do comparison, results of which show that the former are more concentrated and with higher resolution of the source body edges. This method is finally applied in an iron mine in China with field measured ΔΤ data and performs well. ReferencesPaoletti, V., Ialongo, S., Florio, G., Fedi, M

  12. Human impacts in African savannas are mediated by plant functional traits.

    Science.gov (United States)

    Osborne, Colin P; Charles-Dominique, Tristan; Stevens, Nicola; Bond, William J; Midgley, Guy; Lehmann, Caroline E R

    2018-05-28

    Tropical savannas have a ground cover dominated by C 4 grasses, with fire and herbivory constraining woody cover below a rainfall-based potential. The savanna biome covers 50% of the African continent, encompassing diverse ecosystems that include densely wooded Miombo woodlands and Serengeti grasslands with scattered trees. African savannas provide water, grazing and browsing, food and fuel for tens of millions of people, and have a unique biodiversity that supports wildlife tourism. However, human impacts are causing widespread and accelerating degradation of savannas. The primary threats are land cover-change and transformation, landscape fragmentation that disrupts herbivore communities and fire regimes, climate change and rising atmospheric CO 2 . The interactions among these threats are poorly understood, with unknown consequences for ecosystem health and human livelihoods. We argue that the unique combinations of plant functional traits characterizing the major floristic assemblages of African savannas make them differentially susceptible and resilient to anthropogenic drivers of ecosystem change. Research must address how this functional diversity among African savannas differentially influences their vulnerability to global change and elucidate the mechanisms responsible. This knowledge will permit appropriate management strategies to be developed to maintain ecosystem integrity, biodiversity and livelihoods. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.

  13. We are diverse but belonging to the same team: an empirical study on the relationship between diversity and identification

    Directory of Open Access Journals (Sweden)

    Beatrice Venturini

    2015-01-01

    Full Text Available The present study aims to highlights the role of work group culture and gender diversity on work group functioning. Gender diversity is an aspect of organizational life and research on the effect of workgroup composition has yielded ambiguous results. The categorization elaboration model (van Knippenberg, De Dreu & Homan, 2004 addresses this issue and suggests examining factors influencing the relationship between work group diversity and work group functioning. The present study proposes that the group gender diversity affects group identification and that this effect is contingent on group norms. 18 work groups in an information technology enterprise were involved. Results confirmed the hypothesis. Theoretical and practical implications are discussed.

  14. Multicriteria performance and sustainability in livestock farming systems: Functional diversity matters

    NARCIS (Netherlands)

    Tichit, M.; Puillet, L.; Sabatier, R.; Teillard, F.

    2011-01-01

    Agricultural intensification drastically reduces diversity at different scales of livestock farming systems (LFS). This homogenization process leads to environmental degradation and ignores the fact that multiple performance criterions often come in conflict. Taking advantage of diversity at

  15. Functional genomic analysis supports conservation of function among cellulose synthase-like a gene family members and suggests diverse roles of mannans in plants

    DEFF Research Database (Denmark)

    Liepman, Aaron H; Nairn, C Joseph; Willats, William G T

    2007-01-01

    from Arabidopsis (Arabidopsis thaliana), guar (Cyamopsis tetragonolobus), and Populus trichocarpa catalyze beta-1,4-mannan and glucomannan synthase reactions in vitro. Mannan polysaccharides and homologs of CslA genes appear to be present in all lineages of land plants analyzed to date. In many plants......, the CslA genes are members of extended multigene families; however, it is not known whether all CslA proteins are glucomannan synthases. CslA proteins from diverse land plant species, including representatives of the mono- and dicotyledonous angiosperms, gymnosperms, and bryophytes, were produced...... they are prevalent at cell junctions and in buds. Taken together, these results demonstrate that members of the CslA gene family from diverse plant species encode glucomannan synthases and support the hypothesis that mannans function in metabolic networks devoted to other cellular processes in addition to cell wall...

  16. Constraining decaying dark matter with FERMI-LAT gamma rays

    International Nuclear Information System (INIS)

    Maccione, L.

    2011-01-01

    High energy electron sand positrons from decaying dark matter can produce a significant flux of gamma rays by inverse Compton of low energy photons in the interstellar radiation field. This possibility is inevitably related with the dark matter interpretation of the observed PAMELA and FERMI excesses. We will describe a simple and universal method to constrain dark matter models which produce electrons and positrons in their decay by using the FERMI-LAT gamma-ray observations in the energy range between 0.5 GeV and 300 GeV, by exploiting universal response functions that, once convolved with a specific dark matter model, produce the desired constraint. The response functions contain all the astrophysical inputs. Here is discussed the uncertainties in the determination of the response functions and apply them to place constraints on some specific dark matter decay models that can well fit the positron and electron fluxes observed by PAMELA and FERMI LAT, also taking into account prompt radiation from the dark matter decay. With the available data decaying dark matter can not be excluded as source of the PAMELA positron excess.

  17. Constraining omega and bias from the Stromlo-APM survey

    International Nuclear Information System (INIS)

    Loveday, J.

    1995-05-01

    Galaxy redshift surveys provide a distorted picture of the universe due to the non-Hubble component of galaxy motions. By measuring such distortions in the linear regime one can constrain the quantity β = Ω 0.6 where Ω is the cosmological density parameter and b is the (linear) bias factor for optically-selected galaxies. In this paper we estimate β from the Stromlo-APM redshift survey by comparing the amplitude of the direction-averaged redshift space correlation function to the real space correlation function. We find a 95% confidence upper limit of β = 0.75, with a 'best estimate' of β ∼ 0.48. A bias parameter b ∼ 2 is thus required if Ω ≡ 1. However, higher-order correlations measured from the APM galaxy survey indicate a low value for the bias parameter b ∼ 1, requiring that Q approx-lt 0.6

  18. Trends in PDE constrained optimization

    CERN Document Server

    Benner, Peter; Engell, Sebastian; Griewank, Andreas; Harbrecht, Helmut; Hinze, Michael; Rannacher, Rolf; Ulbrich, Stefan

    2014-01-01

    Optimization problems subject to constraints governed by partial differential equations (PDEs) are among the most challenging problems in the context of industrial, economical and medical applications. Almost the entire range of problems in this field of research was studied and further explored as part of the Deutsche Forschungsgemeinschaft (DFG) priority program 1253 on “Optimization with Partial Differential Equations” from 2006 to 2013. The investigations were motivated by the fascinating potential applications and challenging mathematical problems that arise in the field of PDE constrained optimization. New analytic and algorithmic paradigms have been developed, implemented and validated in the context of real-world applications. In this special volume, contributions from more than fifteen German universities combine the results of this interdisciplinary program with a focus on applied mathematics.   The book is divided into five sections on “Constrained Optimization, Identification and Control”...

  19. Managing diversity : How leaders' multiculturalism and colorblindness affect work group functioning

    NARCIS (Netherlands)

    Meeussen, Loes; Otten, Sabine; Phalet, Karen

    Workforces are becoming increasingly diverse and leaders face the challenge of managing their groups to minimize costs and maximize benefits of diversity. This paper investigates how leaders' multiculturalism and colorblindness affect cultural minority and majority members' experiences of

  20. Reinforcement Learning for Constrained Energy Trading Games With Incomplete Information.

    Science.gov (United States)

    Wang, Huiwei; Huang, Tingwen; Liao, Xiaofeng; Abu-Rub, Haitham; Chen, Guo

    2017-10-01

    This paper considers the problem of designing adaptive learning algorithms to seek the Nash equilibrium (NE) of the constrained energy trading game among individually strategic players with incomplete information. In this game, each player uses the learning automaton scheme to generate the action probability distribution based on his/her private information for maximizing his own averaged utility. It is shown that if one of admissible mixed-strategies converges to the NE with probability one, then the averaged utility and trading quantity almost surely converge to their expected ones, respectively. For the given discontinuous pricing function, the utility function has already been proved to be upper semicontinuous and payoff secure which guarantee the existence of the mixed-strategy NE. By the strict diagonal concavity of the regularized Lagrange function, the uniqueness of NE is also guaranteed. Finally, an adaptive learning algorithm is provided to generate the strategy probability distribution for seeking the mixed-strategy NE.

  1. Molecular and functional diversity in Capsicum landraces of ...

    African Journals Online (AJOL)

    shrawan

    2013-09-25

    Sep 25, 2013 ... of diversity in the local germplasm was much needed to recognize the genetic .... reducing sugar and multiplying with a conversion factor (0.95). The absorbance for ..... Except SPG-3 which was outlier with 54% intra-cluster ...

  2. Functional diversity in Spain. Towards the equal inclusion of persons with disabilities

    Directory of Open Access Journals (Sweden)

    Colectivo Ioé

    2013-07-01

    Full Text Available This text brings together some of the conclusions of the study Disabilities and social inclusion, edited in 2012 by La Caixa Foundation, which in its turn in based on the last survey on Disability, Personal Autonomy and Frailty conducted by the Spanish Statistical Office (INE in 2008. In particular, it focuses on some of the aspects of major interest for understanding the ways of social inclusion and labor insertion of the persons with functional diversity, a group of 3.8 million people, of which 1.5 million people are in their working age. Some analyses and proposals to address the problems of chronification and marginalization of this large sector of the population are highlighted from a socio-preventative approach.

  3. Constrained superfields in supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Dall’Agata, Gianguido; Farakos, Fotis [Dipartimento di Fisica ed Astronomia “Galileo Galilei”, Università di Padova,Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova,Via Marzolo 8, 35131 Padova (Italy)

    2016-02-16

    We analyze constrained superfields in supergravity. We investigate the consistency and solve all known constraints, presenting a new class that may have interesting applications in the construction of inflationary models. We provide the superspace Lagrangians for minimal supergravity models based on them and write the corresponding theories in component form using a simplifying gauge for the goldstino couplings.

  4. Cross-constrained problems for nonlinear Schrodinger equation with harmonic potential

    Directory of Open Access Journals (Sweden)

    Runzhang Xu

    2012-11-01

    Full Text Available This article studies a nonlinear Schodinger equation with harmonic potential by constructing different cross-constrained problems. By comparing the different cross-constrained problems, we derive different sharp criterion and different invariant manifolds that separate the global solutions and blowup solutions. Moreover, we conclude that some manifolds are empty due to the essence of the cross-constrained problems. Besides, we compare the three cross-constrained problems and the three depths of the potential wells. In this way, we explain the gaps in [J. Shu and J. Zhang, Nonlinear Shrodinger equation with harmonic potential, Journal of Mathematical Physics, 47, 063503 (2006], which was pointed out in [R. Xu and Y. Liu, Remarks on nonlinear Schrodinger equation with harmonic potential, Journal of Mathematical Physics, 49, 043512 (2008].

  5. Multifaceted diversity-area relationships reveal global hotspots of mammalian species, trait and lineage diversity.

    Science.gov (United States)

    Mazel, Florent; Guilhaumon, François; Mouquet, Nicolas; Devictor, Vincent; Gravel, Dominique; Renaud, Julien; Cianciaruso, Marcus Vinicius; Loyola, Rafael Dias; Diniz-Filho, José Alexandre Felizola; Mouillot, David; Thuiller, Wilfried

    2014-08-01

    To define biome-scale hotspots of phylogenetic and functional mammalian biodiversity (PD and FD, respectively) and compare them to 'classical' hotspots based on species richness (SR) only. Global. SR, PD & FD were computed for 782 terrestrial ecoregions using distribution ranges of 4616 mammalian species. We used a set of comprehensive diversity indices unified by a recent framework that incorporates the species relative coverage in each ecoregion. We build large-scale multifaceted diversity-area relationships to rank ecoregions according to their levels of biodiversity while accounting for the effect of area on each diversity facet. Finally we defined hotspots as the top-ranked ecoregions. While ignoring species relative coverage led to a relative good congruence between biome top ranked SR, PD and FD hotspots, ecoregions harboring a rich and abundantly represented evolutionary history and functional diversity did not match with top ranked ecoregions defined by species richness. More importantly PD and FD hotspots showed important spatial mismatches. We also found that FD and PD generally reached their maximum values faster than species richness as a function of area. The fact that PD/FD reach faster their maximal value than SR may suggest that the two former facets might be less vulnerable to habitat loss than the latter. While this point is expected, it is the first time that it is quantified at global scale and should have important consequences in conservation. Incorporating species relative coverage into the delineation of multifaceted hotspots of diversity lead to weak congruence between SR, PD and FD hotspots. This means that maximizing species number may fail at preserving those nodes (in the phylogenetic or functional tree) that are relatively abundant in the ecoregion. As a consequence it may be of prime importance to adopt a multifaceted biodiversity perspective to inform conservation strategies at global scale.

  6. Spatial diversity of spontaneous activity in the cortex

    Directory of Open Access Journals (Sweden)

    Andrew Yong-Yi Tan

    2015-09-01

    Full Text Available The neocortex is a layered sheet across which a basic organization is thought to widely apply. The variety of spontaneous activity patterns is similar throughout the cortex, consistent with the notion of a basic cortical organization. However, the basic organization is only an outline which needs adjustments and additions to account for the structural and functional diversity across cortical layers and areas. Such diversity suggests that spontaneous activity is spatially diverse in any particular behavioral state. Accordingly, this review summarizes the laminar and areal diversity in cortical activity during fixation and slow oscillations, and the effects of attention, anesthesia and plasticity on the cortical distribution of spontaneous activity. Among questions that remain open, characterizing the spatial diversity in spontaneous membrane potential may help elucidate how differences in circuitry among cortical regions supports their varied functions. More work is also needed to understand whether cortical spontaneous activity not only reflects cortical circuitry, but also contributes to determining the outcome of plasticity, so that it is itself a factor shaping the functional diversity of the cortex.

  7. Effects of Transparency on Pilot Trust and Agreement in the Autonomous Constrained Flight Planner

    Science.gov (United States)

    Sadler, Garrett; Battiste, Henri; Ho, Nhut; Hoffmann, Lauren; Lyons, Joseph; Johnson, Walter; Shively, Robert; Smith, David

    2016-01-01

    We performed a human-in-the-loop study to explore the role of transparency in engendering trust and reliance within highly automated systems. Specifically, we examined how transparency impacts trust in and reliance upon the Autonomous Constrained Flight Planner (ACFP), a critical automated system being developed as part of NASA's Reduced Crew Operations (RCO) Concept. The ACFP is designed to provide an enhanced ground operator, termed a super dispatcher, with recommended diversions for aircraft when their primary destinations are unavailable. In the current study, 12 commercial transport rated pilots who played the role of super dispatchers were given six time-pressured all land scenarios where they needed to use the ACFP to determine diversions for multiple aircraft. Two factors were manipulated. The primary factor was level of transparency. In low transparency scenarios the pilots were given a recommended airport and runway, plus basic information about the weather conditions, the aircraft types, and the airport and runway characteristics at that and other airports. In moderate transparency scenarios the pilots were also given a risk evaluation for the recommended airport, and for the other airports if they requested it. In the high transparency scenario additional information including the reasoning for the risk evaluations was made available to the pilots. The secondary factor was level of risk, either high or low. For high-risk aircraft, all potential diversions were rated as highly risky, with the ACFP giving the best option for a bad situation. For low-risk aircraft the ACFP found only low-risk options for the pilot. Both subjective and objective measures were collected, including rated trust, whether the pilots checked the validity of the automation recommendation, and whether the pilots eventually flew to the recommended diversion airport. Key results show that: 1) Pilots trust increased with higher levels of transparency, 2) Pilots were more likely to

  8. MO-FG-CAMPUS-TeP2-01: A Graph Form ADMM Algorithm for Constrained Quadratic Radiation Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X; Belcher, AH; Wiersma, R [The University of Chicago, Chicago, IL (United States)

    2016-06-15

    Purpose: In radiation therapy optimization the constraints can be either hard constraints which must be satisfied or soft constraints which are included but do not need to be satisfied exactly. Currently the voxel dose constraints are viewed as soft constraints and included as a part of the objective function and approximated as an unconstrained problem. However in some treatment planning cases the constraints should be specified as hard constraints and solved by constrained optimization. The goal of this work is to present a computation efficiency graph form alternating direction method of multipliers (ADMM) algorithm for constrained quadratic treatment planning optimization and compare it with several commonly used algorithms/toolbox. Method: ADMM can be viewed as an attempt to blend the benefits of dual decomposition and augmented Lagrangian methods for constrained optimization. Various proximal operators were first constructed as applicable to quadratic IMRT constrained optimization and the problem was formulated in a graph form of ADMM. A pre-iteration operation for the projection of a point to a graph was also proposed to further accelerate the computation. Result: The graph form ADMM algorithm was tested by the Common Optimization for Radiation Therapy (CORT) dataset including TG119, prostate, liver, and head & neck cases. Both unconstrained and constrained optimization problems were formulated for comparison purposes. All optimizations were solved by LBFGS, IPOPT, Matlab built-in toolbox, CVX (implementing SeDuMi) and Mosek solvers. For unconstrained optimization, it was found that LBFGS performs the best, and it was 3–5 times faster than graph form ADMM. However, for constrained optimization, graph form ADMM was 8 – 100 times faster than the other solvers. Conclusion: A graph form ADMM can be applied to constrained quadratic IMRT optimization. It is more computationally efficient than several other commercial and noncommercial optimizers and it also

  9. In vitro transcription of a torsionally constrained template

    DEFF Research Database (Denmark)

    Bentin, Thomas; Nielsen, Peter E

    2002-01-01

    RNA polymerase (RNAP) and the DNA template must rotate relative to each other during transcription elongation. In the cell, however, the components of the transcription apparatus may be subject to rotary constraints. For instance, the DNA is divided into topological domains that are delineated...... of torsionally constrained DNA by free RNAP. We asked whether or not a newly synthesized RNA chain would limit transcription elongation. For this purpose we developed a method to immobilize covalently closed circular DNA to streptavidin-coated beads via a peptide nucleic acid (PNA)-biotin conjugate in principle...... constrained. We conclude that transcription of a natural bacterial gene may proceed with high efficiency despite the fact that newly synthesized RNA is entangled around the template in the narrow confines of torsionally constrained supercoiled DNA....

  10. Terrestrial Sagnac delay constraining modified gravity models

    Science.gov (United States)

    Karimov, R. Kh.; Izmailov, R. N.; Potapov, A. A.; Nandi, K. K.

    2018-04-01

    Modified gravity theories include f(R)-gravity models that are usually constrained by the cosmological evolutionary scenario. However, it has been recently shown that they can also be constrained by the signatures of accretion disk around constant Ricci curvature Kerr-f(R0) stellar sized black holes. Our aim here is to use another experimental fact, viz., the terrestrial Sagnac delay to constrain the parameters of specific f(R)-gravity prescriptions. We shall assume that a Kerr-f(R0) solution asymptotically describes Earth's weak gravity near its surface. In this spacetime, we shall study oppositely directed light beams from source/observer moving on non-geodesic and geodesic circular trajectories and calculate the time gap, when the beams re-unite. We obtain the exact time gap called Sagnac delay in both cases and expand it to show how the flat space value is corrected by the Ricci curvature, the mass and the spin of the gravitating source. Under the assumption that the magnitude of corrections are of the order of residual uncertainties in the delay measurement, we derive the allowed intervals for Ricci curvature. We conclude that the terrestrial Sagnac delay can be used to constrain the parameters of specific f(R) prescriptions. Despite using the weak field gravity near Earth's surface, it turns out that the model parameter ranges still remain the same as those obtained from the strong field accretion disk phenomenon.

  11. Partitioning taxonomic diversity of aquatic insect assemblages ...

    Science.gov (United States)

    Biological diversity can be divided into: alpha (α, local), beta (β, difference in assemblage composition among locals), and gamma (γ, total diversity). We assessed the partitioning of taxonomic diversity of Ephemeroptera, Plecoptera and Trichoptera (EPT) and of functional feeding groups (FFG) in Neotropical Savanna (southeastern Brazilian Cerrado) streams. To do so, we considered three diversity components: stream site (α), among stream sites (β1), and among hydrologic units (β2). We also evaluated the association of EPT genera composition with heterogeneity in land use, instream physical habitat structure, and instream water quality variables. The percent of EPT taxonomic α diversity (20.7%) was lower than the β1 and β2 diversities (53.1% and 26.2%, respectively). The EPT FFG α diversity (26.5%) was lower than the β1 diversity (55.8%) and higher than the β2 (17.7%) diversity. The collector-gatherer FFG was predominant and had the greatest β diversity among stream sites (β1, 55.8%). Our findings support the need for implementing regional scale conservation strategies in the Cerrado biome, which has been degraded by anthropogenic activities. Using adaptations of the US EPA’s National Aquatic Resource Survey (NARS) designs and methods, Ferreira and colleagues examined the distribution of taxonomic and functional diversity of aquatic insects among basins, stream sites within basins, and within stream sample reaches. They sampled 160 low-order stre

  12. Causes and consequences of fleet diversity in fisheries: The case of the Norwegian Barents Sea cod fishery

    Directory of Open Access Journals (Sweden)

    Arne Eide

    2016-05-01

    Full Text Available Abstract Fisheries operate under fluctuating environmental conditions, targeting fish stocks that appear in varying densities in different areas, often with abrupt and unexpected local changes. Physical conditions, markets and management regulations constrain vessels in different and varying ways. These factors all contribute to forming the fleet diversity we find in most fisheries. Here, a simulation model of the Northeast Arctic cod fishery is used in order to investigate how this diversity is formed and maintained, assuming rational economic behaviour under varying combined constraints. The study also focuses on how the ability of vessels to find fish influences fleet diversity, profitability, stock development and seasonal profiles of the fishery. Results indicate that an increased ability to target the most profitable fishing grounds may influence fleet diversity positively or negatively, depending on overall exploitation level. High exploitation rates also increase the temporal fluctuations in fleet diversity and profits, which are amplified as the fish-finding ability increases.

  13. The beta-diversity of species interactions: Untangling the drivers of geographic variation in plant-pollinator diversity and function across scales.

    Science.gov (United States)

    Burkle, Laura A; Myers, Jonathan A; Belote, R Travis

    2016-01-01

    Geographic patterns of biodiversity have long inspired interest in processes that shape the assembly, diversity, and dynamics of communities at different spatial scales. To study mechanisms of community assembly, ecologists often compare spatial variation in community composition (beta-diversity) across environmental and spatial gradients. These same patterns inspired evolutionary biologists to investigate how micro- and macro-evolutionary processes create gradients in biodiversity. Central to these perspectives are species interactions, which contribute to community assembly and geographic variation in evolutionary processes. However, studies of beta-diversity have predominantly focused on single trophic levels, resulting in gaps in our understanding of variation in species-interaction networks (interaction beta-diversity), especially at scales most relevant to evolutionary studies of geographic variation. We outline two challenges and their consequences in scaling-up studies of interaction beta-diversity from local to biogeographic scales using plant-pollinator interactions as a model system in ecology, evolution, and conservation. First, we highlight how variation in regional species pools may contribute to variation in interaction beta-diversity among biogeographic regions with dissimilar evolutionary history. Second, we highlight how pollinator behavior (host-switching) links ecological networks to geographic patterns of plant-pollinator interactions and evolutionary processes. Third, we outline key unanswered questions regarding the role of geographic variation in plant-pollinator interactions for conservation and ecosystem services (pollination) in changing environments. We conclude that the largest advances in the burgeoning field of interaction beta-diversity will come from studies that integrate frameworks in ecology, evolution, and conservation to understand the causes and consequences of interaction beta-diversity across scales. © 2016 Botanical

  14. Environmental determinants and spatial mismatch of mammal diversity measures in Colombia

    Directory of Open Access Journals (Sweden)

    González–Maya, J. F.

    2016-02-01

    Full Text Available Including complementary diversity measures into ecological and conservation studies should improve our ability to link species assemblages to ecosystems. Recent measures such as phylogenetic and functional diversity have furthered our understanding of assemblage patterns of ecosystems and species, allowing improved inference of ecosystem function and conservation. We evaluated spatial patterns of taxonomic, phylogenetic and functional diversity of mammals in Colombia and identified their main environmental determinants, as well as interrelationships and spatial mismatch between the three measures. We found significant effects of elevation and precipitation on species richness, slope and species richness on phylogenetic diversity, and slope and phylogenetic diversity on functional diversity. We also identified a spatial mismatch of the three measures in some areas of the country: 12% of the country for species richness and 14% for phylogenetic and functional diversity. Our results highlight the importance of including species relationships within environmental drivers with biogeographical and distribution analyses and could facilitate selection of priority areas for conservation, especially when mismatch occurs between measures.

  15. Constrained principal component analysis and related techniques

    CERN Document Server

    Takane, Yoshio

    2013-01-01

    In multivariate data analysis, regression techniques predict one set of variables from another while principal component analysis (PCA) finds a subspace of minimal dimensionality that captures the largest variability in the data. How can regression analysis and PCA be combined in a beneficial way? Why and when is it a good idea to combine them? What kind of benefits are we getting from them? Addressing these questions, Constrained Principal Component Analysis and Related Techniques shows how constrained PCA (CPCA) offers a unified framework for these approaches.The book begins with four concre

  16. Modeling Dzyaloshinskii-Moriya Interaction at Transition Metal Interfaces: Constrained Moment versus Generalized Bloch Theorem

    KAUST Repository

    Dong, Yao-Jun

    2017-10-29

    Dzyaloshinskii-Moriya interaction (DMI) at Pt/Co interfaces is investigated theoretically using two different first principles methods. The first one uses the constrained moment method to build a spin spiral in real space, while the second method uses the generalized Bloch theorem approach to construct a spin spiral in reciprocal space. We show that although the two methods produce an overall similar total DMI energy, the dependence of DMI as a function of the spin spiral wavelength is dramatically different. We suggest that long-range magnetic interactions, that determine itinerant magnetism in transition metals, are responsible for this discrepancy. We conclude that the generalized Bloch theorem approach is more adapted to model DMI in transition metal systems, where magnetism is delocalized, while the constrained moment approach is mostly applicable to weak or insulating magnets, where magnetism is localized.

  17. Modeling Dzyaloshinskii-Moriya Interaction at Transition Metal Interfaces: Constrained Moment versus Generalized Bloch Theorem

    KAUST Repository

    Dong, Yao-Jun; Belabbes, Abderrezak; Manchon, Aurelien

    2017-01-01

    Dzyaloshinskii-Moriya interaction (DMI) at Pt/Co interfaces is investigated theoretically using two different first principles methods. The first one uses the constrained moment method to build a spin spiral in real space, while the second method uses the generalized Bloch theorem approach to construct a spin spiral in reciprocal space. We show that although the two methods produce an overall similar total DMI energy, the dependence of DMI as a function of the spin spiral wavelength is dramatically different. We suggest that long-range magnetic interactions, that determine itinerant magnetism in transition metals, are responsible for this discrepancy. We conclude that the generalized Bloch theorem approach is more adapted to model DMI in transition metal systems, where magnetism is delocalized, while the constrained moment approach is mostly applicable to weak or insulating magnets, where magnetism is localized.

  18. Communicating more than diversity: The effect of institutional diversity statements on expectations and performance as a function of race and gender.

    Science.gov (United States)

    Wilton, Leigh S; Good, Jessica J; Moss-Racusin, Corinne A; Sanchez, Diana T

    2015-07-01

    The present studies examined whether colorblind diversity messages, relative to multicultural diversity messages, serve as an identity threat that undermines performance-related outcomes for individuals at the intersections of race and gender. We exposed racial/ethnic majority and minority women and men to either a colorblind or multicultural diversity statement and then measured their expectations about overall diversity, anticipated bias, and group task performance (Study 1, N = 211), as well as their expectations about distinct race and gender diversity and their actual performance on a math test (Study 2, N = 328). Participants expected more bias (Study 1) and less race and gender diversity (Study 2) after exposure to a colorblind versus a multicultural message. However, the colorblind message was particularly damaging for women of color, prompting them to expect the least diversity overall and to perform worse (Study 1), as well as to actually perform worse on a math test (Study 2) than the multicultural message. White women demonstrated the opposite pattern, performing better on the math test in the colorblind versus the multicultural condition, whereas racial minority and majority men's performances were not affected by different messages about diversity. We discuss the importance of examining psychological processes that underscore performance-related outcomes at the junction of race and gender. (c) 2015 APA, all rights reserved).

  19. Modeling Dynamic Contrast-Enhanced MRI Data with a Constrained Local AIF

    DEFF Research Database (Denmark)

    Duan, Chong; Kallehauge, Jesper F.; Pérez-Torres, Carlos J

    2018-01-01

    PURPOSE: This study aims to develop a constrained local arterial input function (cL-AIF) to improve quantitative analysis of dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) data by accounting for the contrast-agent bolus amplitude error in the voxel-specific AIF. PROCEDURES....... RESULTS: When the data model included the cL-AIF, tracer kinetic parameters were correctly estimated from in silico data under contrast-to-noise conditions typical of clinical DCE-MRI experiments. Considering the clinical cervical cancer data, Bayesian model selection was performed for all tumor voxels...

  20. Prokaryotic caspase homologs: phylogenetic patterns and functional characteristics reveal considerable diversity.

    Directory of Open Access Journals (Sweden)

    Johannes Asplund-Samuelsson

    Full Text Available Caspases accomplish initiation and execution of apoptosis, a programmed cell death process specific to metazoans. The existence of prokaryotic caspase homologs, termed metacaspases, has been known for slightly more than a decade. Despite their potential connection to the evolution of programmed cell death in eukaryotes, the phylogenetic distribution and functions of these prokaryotic metacaspase sequences are largely uncharted, while a few experiments imply involvement in programmed cell death. Aiming at providing a more detailed picture of prokaryotic caspase homologs, we applied a computational approach based on Hidden Markov Model search profiles to identify and functionally characterize putative metacaspases in bacterial and archaeal genomes. Out of the total of 1463 analyzed genomes, merely 267 (18% were identified to contain putative metacaspases, but their taxonomic distribution included most prokaryotic phyla and a few archaea (Euryarchaeota. Metacaspases were particularly abundant in Alphaproteobacteria, Deltaproteobacteria and Cyanobacteria, which harbor many morphologically and developmentally complex organisms, and a distinct correlation was found between abundance and phenotypic complexity in Cyanobacteria. Notably, Bacillus subtilis and Escherichia coli, known to undergo genetically regulated autolysis, lacked metacaspases. Pfam domain architecture analysis combined with operon identification revealed rich and varied configurations among the metacaspase sequences. These imply roles in programmed cell death, but also e.g. in signaling, various enzymatic activities and protein modification. Together our data show a wide and scattered distribution of caspase homologs in prokaryotes with structurally and functionally diverse sub-groups, and with a potentially intriguing evolutionary role. These features will help delineate future characterizations of death pathways in prokaryotes.

  1. Diversity Policing–Policing Diversity: Performing Ethnicity in Police and Private-Security Work in Sweden

    Directory of Open Access Journals (Sweden)

    Cecilia Hansen Löfstrand

    2014-09-01

    Full Text Available This article draws upon two separate studies on policing in Sweden, both investigating “ethnic diversity” as a discourse and a practice in the performance of policing functions: one interview study with minority police officers from a county police authority and one ethnographic study of private security officers. To examine how “diversity policing” and the “policing of diversity” are performed by policing actors, their strategic reliance on an ethnically diverse workforce is examined. The official discourse in both contexts stressed “diversity policing” as a valuable resource for the effective execution of policing tasks and the legitimation of policing functions. There was, however, also another, more unofficial discourse on ethnicity that heavily influenced the policing agents’ day-to-day work. The resulting practice of “policing diversity” involved situated activities on the ground through which “foreign elements” in the population were policed using ethnicized stereotypes. Diversity in the policing workforce promoted the practice of ethnic matching, which, ironically, in turn perpetuated stereotypical thinking about Swedish “others”. A conceptual framework is developed for understanding the policing strategies involved and the disjuncture found between the widely accepted rationalities for recruiting an ethnically diverse workforce and the realities for that workforce’s effective deployment at the street level.

  2. Molecular and functional diversity in Capsicum landraces of ...

    African Journals Online (AJOL)

    The present study analyzed the diversity in 26 landraces of Capsicum from Andaman Islands using 20 morphological, 16 biochemical and 10 DNA markers. Significant differences were observed in tested landraces and 16 reference genotypes from mainland India. Biochemical markers grouped all the genotypes into eight ...

  3. Diverse effects of invasive ecosystem engineers on marine biodiversity and ecosystem functions: A global review and meta-analysis.

    Science.gov (United States)

    Guy-Haim, Tamar; Lyons, Devin A; Kotta, Jonne; Ojaveer, Henn; Queirós, Ana M; Chatzinikolaou, Eva; Arvanitidis, Christos; Como, Serena; Magni, Paolo; Blight, Andrew J; Orav-Kotta, Helen; Somerfield, Paul J; Crowe, Tasman P; Rilov, Gil

    2018-03-01

    Invasive ecosystem engineers (IEE) are potentially one of the most influential types of biological invaders. They are expected to have extensive ecological impacts by altering the physical-chemical structure of ecosystems, thereby changing the rules of existence for a broad range of resident biota. To test the generality of this expectation, we used a global systematic review and meta-analysis to examine IEE effects on the abundance of individual species and communities, biodiversity (using several indices) and ecosystem functions, focusing on marine and estuarine environments. We found that IEE had a significant effect (positive and negative) in most studies testing impacts on individual species, but the overall (cumulative) effect size was small and negative. Many individual studies showed strong IEE effects on community abundance and diversity, but the direction of effects was variable, leading to statistically non-significant overall effects in most categories. In contrast, there was a strong overall effect on most ecosystem functions we examined. IEE negatively affected metabolic functions and primary production, but positively affected nutrient flux, sedimentation and decomposition. We use the results to develop a conceptual model by highlighting pathways whereby IEE impact communities and ecosystem functions, and identify several sources of research bias in the IEE-related invasion literature. Only a few of the studies simultaneously quantified IEE effects on community/diversity and ecosystem functions. Therefore, understanding how IEE may alter biodiversity-ecosystem function relationships should be a primary focus of future studies of invasion biology. Moreover, the clear effects of IEE on ecosystem functions detected in our study suggest that scientists and environmental managers ought to examine how the effects of IEE might be manifested in the services that marine ecosystems provide to humans. © 2017 John Wiley & Sons Ltd.

  4. Onomatopoeia characters extraction from comic images using constrained Delaunay triangulation

    Science.gov (United States)

    Liu, Xiangping; Shoji, Kenji; Mori, Hiroshi; Toyama, Fubito

    2014-02-01

    A method for extracting onomatopoeia characters from comic images was developed based on stroke width feature of characters, since they nearly have a constant stroke width in a number of cases. An image was segmented with a constrained Delaunay triangulation. Connected component grouping was performed based on the triangles generated by the constrained Delaunay triangulation. Stroke width calculation of the connected components was conducted based on the altitude of the triangles generated with the constrained Delaunay triangulation. The experimental results proved the effectiveness of the proposed method.

  5. Topology Optimization of Constrained Layer Damping on Plates Using Method of Moving Asymptote (MMA Approach

    Directory of Open Access Journals (Sweden)

    Zheng Ling

    2011-01-01

    Full Text Available Damping treatments have been extensively used as a powerful means to damp out structural resonant vibrations. Usually, damping materials are fully covered on the surface of plates. The drawbacks of this conventional treatment are also obvious due to an added mass and excess material consumption. Therefore, it is not always economical and effective from an optimization design view. In this paper, a topology optimization approach is presented to maximize the modal damping ratio of the plate with constrained layer damping treatment. The governing equation of motion of the plate is derived on the basis of energy approach. A finite element model to describe dynamic performances of the plate is developed and used along with an optimization algorithm in order to determine the optimal topologies of constrained layer damping layout on the plate. The damping of visco-elastic layer is modeled by the complex modulus formula. Considering the vibration and energy dissipation mode of the plate with constrained layer damping treatment, damping material density and volume factor are considered as design variable and constraint respectively. Meantime, the modal damping ratio of the plate is assigned as the objective function in the topology optimization approach. The sensitivity of modal damping ratio to design variable is further derived and Method of Moving Asymptote (MMA is adopted to search the optimized topologies of constrained layer damping layout on the plate. Numerical examples are used to demonstrate the effectiveness of the proposed topology optimization approach. The results show that vibration energy dissipation of the plates can be enhanced by the optimal constrained layer damping layout. This optimal technology can be further extended to vibration attenuation of sandwich cylindrical shells which constitute the major building block of many critical structures such as cabins of aircrafts, hulls of submarines and bodies of rockets and missiles as an

  6. Constraining walking and custodial technicolor

    DEFF Research Database (Denmark)

    Foadi, Roshan; Frandsen, Mads Toudal; Sannino, Francesco

    2008-01-01

    We show how to constrain the physical spectrum of walking technicolor models via precision measurements and modified Weinberg sum rules. We also study models possessing a custodial symmetry for the S parameter at the effective Lagrangian level-custodial technicolor-and argue that these models...

  7. Algebra for All: California’s Eighth-Grade Algebra Initiative as Constrained Curricula

    Science.gov (United States)

    Domina, Thurston; Penner, Andrew M.; Penner, Emily K.; Conley, Annemarie

    2015-01-01

    Background/Context Across the United States, secondary school curricula are intensifying as a growing proportion of students enroll in high-level academic math courses. In many districts, this intensification process occurs as early as eighth grade, where schools are effectively constraining their mathematics curricula by restricting course offerings and placing more students into Algebra I. This paper provides a quantitative single-case research study of policy-driven curricular intensification in one California school district. Research Questions (1a) What effect did 8th eighth grade curricular intensification have on mathematics course enrollment patterns in Towering Pines Unified schools? (2b) How did the distribution of prior achievement in Towering Pines math classrooms change as the district constrained the curriculum by universalizing 8th eighth grade Algebra? (3c) Did 8th eighth grade curricular intensification improve students’ mathematics achievement? Setting Towering Pines is an immigrant enclave in the inner-ring suburbs of a major metropolitan area. The district’s 10 middle schools together enroll approximately 4,000 eighth graders each year. The districts’ students are ethnically diverse and largely economically disadvantaged. The study draws upon administrative data describing 8th eighth graders in the district in the 2004–20-05 through 2007–20-08 school years. Intervention/Program/Practice During the study period, Towering Pines dramatically intensified middle school students’ math curricula: In the 2004–20-05 school year 32% of the district’s 8th eighth graders enrolled in Algebra or a higher- level mathematics course; by the 2007–20-08 school year that proportion had increased to 84%. Research Design We use an interrupted time-series design, comparing students’ 8th eighth grade math course enrollments, 10th grade math course enrollments, and 10th grade math test scores across the four cohorts, controlling for demographics and

  8. Optimal dispatch in dynamic security constrained open power market

    International Nuclear Information System (INIS)

    Singh, S.N.; David, A.K.

    2002-01-01

    Power system security is a new concern in the competitive power market operation, because the integration of the system controller and the generation owner has been broken. This paper presents an approach for dynamic security constrained optimal dispatch in restructured power market environment. The transient energy margin using transient energy function (TEF) approach has been used to calculate the stability margin of the system and a hybrid method is applied to calculate the approximate unstable equilibrium point (UEP) that is used to calculate the exact UEP and thus, the energy margin using TEF. The case study results illustrated on two systems shows that the operating mechanisms are compatible with the new business environment. (author)

  9. 21 CFR 888.3300 - Hip joint metal constrained cemented or uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal constrained cemented or uncemented... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3300 Hip joint metal constrained cemented or uncemented prosthesis. (a) Identification. A hip joint metal constrained...

  10. A Global Overview of the Genetic and Functional Diversity in the Helicobacter pylori cag Pathogenicity Island

    Science.gov (United States)

    Moodley, Yoshan; Uhr, Markus; Stamer, Christiana; Vauterin, Marc; Suerbaum, Sebastian; Achtman, Mark

    2010-01-01

    The Helicobacter pylori cag pathogenicity island (cagPAI) encodes a type IV secretion system. Humans infected with cagPAI–carrying H. pylori are at increased risk for sequelae such as gastric cancer. Housekeeping genes in H. pylori show considerable genetic diversity; but the diversity of virulence factors such as the cagPAI, which transports the bacterial oncogene CagA into host cells, has not been systematically investigated. Here we compared the complete cagPAI sequences for 38 representative isolates from all known H. pylori biogeographic populations. Their gene content and gene order were highly conserved. The phylogeny of most cagPAI genes was similar to that of housekeeping genes, indicating that the cagPAI was probably acquired only once by H. pylori, and its genetic diversity reflects the isolation by distance that has shaped this bacterial species since modern humans migrated out of Africa. Most isolates induced IL-8 release in gastric epithelial cells, indicating that the function of the Cag secretion system has been conserved despite some genetic rearrangements. More than one third of cagPAI genes, in particular those encoding cell-surface exposed proteins, showed signatures of diversifying (Darwinian) selection at more than 5% of codons. Several unknown gene products predicted to be under Darwinian selection are also likely to be secreted proteins (e.g. HP0522, HP0535). One of these, HP0535, is predicted to code for either a new secreted candidate effector protein or a protein which interacts with CagA because it contains two genetic lineages, similar to cagA. Our study provides a resource that can guide future research on the biological roles and host interactions of cagPAI proteins, including several whose function is still unknown. PMID:20808891

  11. Response diversity determines the resilience of ecosystems to environmental change.

    Science.gov (United States)

    Mori, Akira S; Furukawa, Takuya; Sasaki, Takehiro

    2013-05-01

    A growing body of evidence highlights the importance of biodiversity for ecosystem stability and the maintenance of optimal ecosystem functionality. Conservation measures are thus essential to safeguard the ecosystem services that biodiversity provides and human society needs. Current anthropogenic threats may lead to detrimental (and perhaps irreversible) ecosystem degradation, providing strong motivation to evaluate the response of ecological communities to various anthropogenic pressures. In particular, ecosystem functions that sustain key ecosystem services should be identified and prioritized for conservation action. Traditional diversity measures (e.g. 'species richness') may not adequately capture the aspects of biodiversity most relevant to ecosystem stability and functionality, but several new concepts may be more appropriate. These include 'response diversity', describing the variation of responses to environmental change among species of a particular community. Response diversity may also be a key determinant of ecosystem resilience in the face of anthropogenic pressures and environmental uncertainty. However, current understanding of response diversity is poor, and we see an urgent need to disentangle the conceptual strands that pervade studies of the relationship between biodiversity and ecosystem functioning. Our review clarifies the links between response diversity and the maintenance of ecosystem functionality by focusing on the insurance hypothesis of biodiversity and the concept of functional redundancy. We provide a conceptual model to describe how loss of response diversity may cause ecosystem degradation through decreased ecosystem resilience. We explicitly explain how response diversity contributes to functional compensation and to spatio-temporal complementarity among species, leading to long-term maintenance of ecosystem multifunctionality. Recent quantitative studies suggest that traditional diversity measures may often be uncoupled from

  12. The Llandovery (Silurian conodont species diversity on the Upper Yangtze Platform, South China

    Directory of Open Access Journals (Sweden)

    Zhongyang Chen

    2014-12-01

    Full Text Available Conodonts are one of the stratigraphically most important fossil groups in the Silurian Period. We examine the regional diversity dynamics of the Llandovery condonts on the Upper Yangtze Platform. The data set of 41 species from seven sections is compiled from the Geobiodiversity Database. Four measures of taxonomic richness based on zonal counting are used to demonstrate the conodont diversity change. The CONOP (Constrained optimization program is used to build up a more precise composite sequence, which provides the data for comparative analysis of diversity change. Conodont richness keeps growing from the Ozarkodina aff. hassi Zone through the Ozarkodina obesa Zone to the Ozarkodina guizhouensis Zone and reaches a peak at the fourth zone, the Pterospathodus eopennatus Zone. This significant growth was followed by a rapid decrease, which probably represents an extinction in the mid-Telychian. This extinction event can also be observed in other fossil groups such as graptolites and chitinozoans based on recent studies.

  13. Secondary foundation species as drivers of trophic and functional diversity: evidence from a tree-epiphyte system.

    Science.gov (United States)

    Angelini, Christine; Silliman, Brian R

    2014-01-01

    Facilitation cascades arise where primary foundation species facilitate secondary (dependent) foundation species, and collectively, they increase habitat complexity and quality to enhance biodiversity. Whether such phenomena occur in nonmarine systems and if secondary foundation species enhance food web structure (e.g., support novel feeding guilds) and ecosystem function (e.g., provide nursery for juveniles) remain unclear. Here we report on field experiments designed to test whether trees improve epiphyte survival and epiphytes secondarily increase the number and diversity of adult and juvenile invertebrates in a potential live oak-Tillandsia usneoides (Spanish moss) facilitation cascade. Our results reveal that trees reduce physical stress to facilitate Tillandsia, which, in turn, reduces desiccation and predation stress to facilitate invertebrates. In experimental removals, invertebrate total density, juvenile density, species richness and H' diversity were 16, 60, 1.7, and 1.5 times higher, and feeding guild richness and H' were 5 and 11 times greater in Tillandsia-colonized relative to Tillandsia-removal limb plots. Tillandsia enhanced communities similarly in a survey across the southeastern United States. These findings reveal that a facilitation cascade organizes this widespread terrestrial assemblage and expand the role of secondary foundation species as drivers of trophic structure and ecosystem function. We conceptualize the relationship between foundation species' structural attributes and associated species abundance and composition in a Foundation Species-Biodiversity (FSB) model. Importantly, the FSB predicts that, where secondary foundation species form expansive and functionally distinct structures that increase habitat availability and complexity within primary foundation species, they generate and maintain hot spots of biodiversity and trophic interactions.

  14. Coding for Two Dimensional Constrained Fields

    DEFF Research Database (Denmark)

    Laursen, Torben Vaarbye

    2006-01-01

    a first order model to model higher order constraints by the use of an alphabet extension. We present an iterative method that based on a set of conditional probabilities can help in choosing the large numbers of parameters of the model in order to obtain a stationary model. Explicit results are given...... for the No Isolated Bits constraint. Finally we present a variation of the encoding scheme of bit-stuffing that is applicable to the class of checkerboard constrained fields. It is possible to calculate the entropy of the coding scheme thus obtaining lower bounds on the entropy of the fields considered. These lower...... bounds are very tight for the Run-Length limited fields. Explicit bounds are given for the diamond constrained field as well....

  15. Q-deformed systems and constrained dynamics

    International Nuclear Information System (INIS)

    Shabanov, S.V.

    1993-01-01

    It is shown that quantum theories of the q-deformed harmonic oscillator and one-dimensional free q-particle (a free particle on the 'quantum' line) can be obtained by the canonical quantization of classical Hamiltonian systems with commutative phase-space variables and a non-trivial symplectic structure. In the framework of this approach, classical dynamics of a particle on the q-line coincides with the one of a free particle with friction. It is argued that q-deformed systems can be treated as ordinary mechanical systems with the second-class constraints. In particular, second-class constrained systems corresponding to the q-oscillator and q-particle are given. A possibility of formulating q-deformed systems via gauge theories (first-class constrained systems) is briefly discussed. (orig.)

  16. 21 CFR 888.3110 - Ankle joint metal/polymer semi-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ankle joint metal/polymer semi-constrained... Ankle joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an ankle...

  17. How important is diversity for capturing environmental-change responses in ecosystem models?

    DEFF Research Database (Denmark)

    Prowe, Friederike; Pahlow, M.; Dutkiewicz, S.

    2014-01-01

    Marine ecosystem models used to investigate how global change affects ocean ecosystems and their functioning typically omit pelagic plankton diversity. Diversity, however, may affect functions such as primary production and their sensitivity to environmental changes. Here we use a global ocean...... ecosystem model that explicitly resolves phytoplankton diversity by defining subtypes within four phytoplankton functional types (PFTs). We investigate the model's ability to capture diversity effects on primary production under environmental change. An idealized scenario with a sudden reduction in vertical...... in the model, for example via trade-offs or different PFTs, thus determines the diversity effects on ecosystem functioning captured in ocean ecosystem models....

  18. Improved solution for ill-posed linear systems using a constrained optimization ruled by a penalty: evaluation in nuclear medicine tomography

    International Nuclear Information System (INIS)

    Walrand, Stephan; Jamar, François; Pauwels, Stanislas

    2009-01-01

    Ill-posed linear systems occur in many different fields. A class of regularization methods, called constrained optimization, aims to determine the extremum of a penalty function whilst constraining an objective function to a likely value. We propose here a novel heuristic way to screen the local extrema satisfying the discrepancy principle. A modified version of the Landweber algorithm is used for the iteration process. After finding a local extremum, a bound is performed to the 'farthest' estimate in the data space still satisfying the discrepancy principle. Afterwards, the modified Landweber algorithm is again applied to find a new local extremum. This bound-iteration process is repeated until a satisfying solution is reached. For evaluation in nuclear medicine tomography, a novel penalty function that preserves the edge steps in the reconstructed solution was evaluated on Monte Carlo simulations and using real SPECT acquisitions as well. Surprisingly, the first bound always provided a significantly better solution in a wide range of statistics

  19. CLFs-based optimization control for a class of constrained visual servoing systems.

    Science.gov (United States)

    Song, Xiulan; Miaomiao, Fu

    2017-03-01

    In this paper, we use the control Lyapunov function (CLF) technique to present an optimized visual servo control method for constrained eye-in-hand robot visual servoing systems. With the knowledge of camera intrinsic parameters and depth of target changes, visual servo control laws (i.e. translation speed) with adjustable parameters are derived by image point features and some known CLF of the visual servoing system. The Fibonacci method is employed to online compute the optimal value of those adjustable parameters, which yields an optimized control law to satisfy constraints of the visual servoing system. The Lyapunov's theorem and the properties of CLF are used to establish stability of the constrained visual servoing system in the closed-loop with the optimized control law. One merit of the presented method is that there is no requirement of online calculating the pseudo-inverse of the image Jacobian's matrix and the homography matrix. Simulation and experimental results illustrated the effectiveness of the method proposed here. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Leadership in diversity.

    Science.gov (United States)

    Hunt, P L

    1994-12-01

    As principal change agents, healthcare leaders are well positioned to integrate diversity into their institutions' organizational structure. Thus healthcare leaders must be competent in handling diversity issues. Diversity refers to any characteristic that helps shape a person's attitudes, behaviors, perspective, and interpretation of what is "normal." In the healthcare ministry, diversity encompasses the cultural differences that can be found across functions or among organizations when they merge or partner. Managers and supervisors will have to be familiar with the nuances of diversity if they are to be effective. Those managers who are not adept at incorporating diversity into human resource management may incorrectly evaluate subordinates' capabilities and provide inappropriate training or supervision. As a result, some employees may be underutilized. Others may resist needed direction, overlook instructions, or hide problems such as a language barrier. If executives, marketers, and strategic planners are to develop relevant healthcare services that take into account the needs of their constituencies, they will need to determine how different groups understand and access healthcare. Healthcare leaders who know how to uncover cultural dynamics and challenge cultural assumptions will go far in enabling their staff and managers to confront personal attitudes about community residents. Ultimately, quality of service delivery will be improved.