WorldWideScience

Sample records for diverse evolutionary histories

  1. Evolutionary history determines how plant productivity responds to phylogenetic diversity and species richness

    Directory of Open Access Journals (Sweden)

    Mark A. Genung

    2014-03-01

    Full Text Available The relationship between biodiversity and ecosystem function has received a great deal of attention in ecological research and recent results, from re-analyses, suggest that ecosystem function improves with increases in phylogenetic diversity. However, many of these results have been generalized across a range of different species and clades, and plants with different evolutionary histories could display different relationships between biodiversity and ecosystem function. To experimentally test this hypothesis, we manipulated species richness and phylogenetic diversity using 26 species from two subgenera of the genus Eucalyptus (subgenus Eucalyptus and subgenus Symphyomyrtus. We found that plant biomass (a measurement of ecosystem function sometimes, but not always, responded to increases in species richness and phylogenetic diversity. Specifically, Symphyomyrtus plants showed a positive response while no comparable effect was observed for Eucalyptus plants, showing that responses to biodiversity can vary across different phylogenetic groups. Our results show that the impacts of evolutionary history may complicate the relationship between the diversity of plant communities and plant biomass.

  2. Predicting loss of evolutionary history: Where are we?

    Science.gov (United States)

    Veron, Simon; Davies, T Jonathan; Cadotte, Marc W; Clergeau, Philippe; Pavoine, Sandrine

    2017-02-01

    The Earth's evolutionary history is threatened by species loss in the current sixth mass extinction event in Earth's history. Such extinction events not only eliminate species but also their unique evolutionary histories. Here we review the expected loss of Earth's evolutionary history quantified by phylogenetic diversity (PD) and evolutionary distinctiveness (ED) at risk. Due to the general paucity of data, global evolutionary history losses have been predicted for only a few groups, such as mammals, birds, amphibians, plants, corals and fishes. Among these groups, there is now empirical support that extinction threats are clustered on the phylogeny; however this is not always a sufficient condition to cause higher loss of phylogenetic diversity in comparison to a scenario of random extinctions. Extinctions of the most evolutionarily distinct species and the shape of phylogenetic trees are additional factors that can elevate losses of evolutionary history. Consequently, impacts of species extinctions differ among groups and regions, and even if global losses are low within large groups, losses can be high among subgroups or within some regions. Further, we show that PD and ED are poorly protected by current conservation practices. While evolutionary history can be indirectly protected by current conservation schemes, optimizing its preservation requires integrating phylogenetic indices with those that capture rarity and extinction risk. Measures based on PD and ED could bring solutions to conservation issues, however they are still rarely used in practice, probably because the reasons to protect evolutionary history are not clear for practitioners or due to a lack of data. However, important advances have been made in the availability of phylogenetic trees and methods for their construction, as well as assessments of extinction risk. Some challenges remain, and looking forward, research should prioritize the assessment of expected PD and ED loss for more taxonomic

  3. Epidemic disease decimates amphibian abundance, species diversity, and evolutionary history in the highlands of central Panama.

    Science.gov (United States)

    Crawford, Andrew J; Lips, Karen R; Bermingham, Eldredge

    2010-08-03

    Amphibian populations around the world are experiencing unprecedented declines attributed to a chytrid fungal pathogen, Batrachochytrium dendrobatidis. Despite the severity of the crisis, quantitative analyses of the effects of the epidemic on amphibian abundance and diversity have been unavailable as a result of the lack of equivalent data collected before and following disease outbreak. We present a community-level assessment combining long-term field surveys and DNA barcode data describing changes in abundance and evolutionary diversity within the amphibian community of El Copé, Panama, following a disease epidemic and mass-mortality event. The epidemic reduced taxonomic, lineage, and phylogenetic diversity similarly. We discovered that 30 species were lost, including five undescribed species, representing 41% of total amphibian lineage diversity in El Copé. These extirpations represented 33% of the evolutionary history of amphibians within the community, and variation in the degree of population loss and decline among species was random with respect to the community phylogeny. Our approach provides a fast, economical, and informative analysis of loss in a community whether measured by species or phylogenetic diversity.

  4. Diversity-Guided Evolutionary Algorithms

    DEFF Research Database (Denmark)

    Ursem, Rasmus Kjær

    2002-01-01

    Population diversity is undoubtably a key issue in the performance of evolutionary algorithms. A common hypothesis is that high diversity is important to avoid premature convergence and to escape local optima. Various diversity measures have been used to analyze algorithms, but so far few...... algorithms have used a measure to guide the search. The diversity-guided evolutionary algorithm (DGEA) uses the wellknown distance-to-average-point measure to alternate between phases of exploration (mutation) and phases of exploitation (recombination and selection). The DGEA showed remarkable results...

  5. Ecological and evolutionary drivers of the elevational gradient of diversity.

    Science.gov (United States)

    Laiolo, Paola; Pato, Joaquina; Obeso, José Ramón

    2018-05-02

    Ecological, evolutionary, spatial and neutral theories make distinct predictions and provide distinct explanations for the mechanisms that control the relationship between diversity and the environment. Here, we test predictions of the elevational diversity gradient focusing on Iberian bumblebees, grasshoppers and birds. Processes mediated by local abundance and regional diversity concur in explaining local diversity patterns along elevation. Effects expressed through variation in abundance were similar among taxa and point to the overriding role of a physical factor, temperature. This determines how energy is distributed among individuals and ultimately how the resulting pattern of abundance affects species incidence. Effects expressed through variation in regional species pools depended instead on taxon-specific evolutionary history, and lead to diverging responses under similar environmental pressures. Local filters and regional variation also explain functional diversity gradients, in line with results from species richness that indicate an (local) ecological and (regional) historical unfolding of diversity-elevation relationships. © 2018 John Wiley & Sons Ltd/CNRS.

  6. Evolutionary accounts of human behavioural diversity

    Science.gov (United States)

    Brown, Gillian R.; Dickins, Thomas E.; Sear, Rebecca; Laland, Kevin N.

    2011-01-01

    Human beings persist in an extraordinary range of ecological settings, in the process exhibiting enormous behavioural diversity, both within and between populations. People vary in their social, mating and parental behaviour and have diverse and elaborate beliefs, traditions, norms and institutions. The aim of this theme issue is to ask whether, and how, evolutionary theory can help us to understand this diversity. In this introductory article, we provide a background to the debate surrounding how best to understand behavioural diversity using evolutionary models of human behaviour. In particular, we examine how diversity has been viewed by the main subdisciplines within the human evolutionary behavioural sciences, focusing in particular on the human behavioural ecology, evolutionary psychology and cultural evolution approaches. In addition to differences in focus and methodology, these subdisciplines have traditionally varied in the emphasis placed on human universals, ecological factors and socially learned behaviour, and on how they have addressed the issue of genetic variation. We reaffirm that evolutionary theory provides an essential framework for understanding behavioural diversity within and between human populations, but argue that greater integration between the subfields is critical to developing a satisfactory understanding of diversity. PMID:21199836

  7. Natural history collections as windows on evolutionary processes.

    Science.gov (United States)

    Holmes, Michael W; Hammond, Talisin T; Wogan, Guinevere O U; Walsh, Rachel E; LaBarbera, Katie; Wommack, Elizabeth A; Martins, Felipe M; Crawford, Jeremy C; Mack, Katya L; Bloch, Luke M; Nachman, Michael W

    2016-02-01

    Natural history collections provide an immense record of biodiversity on Earth. These repositories have traditionally been used to address fundamental questions in biogeography, systematics and conservation. However, they also hold the potential for studying evolution directly. While some of the best direct observations of evolution have come from long-term field studies or from experimental studies in the laboratory, natural history collections are providing new insights into evolutionary change in natural populations. By comparing phenotypic and genotypic changes in populations through time, natural history collections provide a window into evolutionary processes. Recent studies utilizing this approach have revealed some dramatic instances of phenotypic change over short timescales in response to presumably strong selective pressures. In some instances, evolutionary change can be paired with environmental change, providing a context for potential selective forces. Moreover, in a few cases, the genetic basis of phenotypic change is well understood, allowing for insight into adaptive change at multiple levels. These kinds of studies open the door to a wide range of previously intractable questions by enabling the study of evolution through time, analogous to experimental studies in the laboratory, but amenable to a diversity of species over longer timescales in natural populations. © 2016 John Wiley & Sons Ltd.

  8. X-linked MTMR8 diversity and evolutionary history of sub-Saharan populations.

    Directory of Open Access Journals (Sweden)

    Damian Labuda

    Full Text Available The genetic diversity within an 11 kb segment of the MTMR8 gene in a sample of 111 sub-Saharan and 49 non-African X chromosomes was investigated to assess the early evolutionary history of sub-Saharan Africans and the out-of-Africa expansion. The analyses revealed a complex genetic structure of the Africans that contributed to the emergence of modern humans. We observed partitioning of two thirds of old lineages among southern, west/central and east African populations indicating ancient population stratification predating the out of Africa migration. Age estimates of these lineages, older than coalescence times of uniparentally inherited markers, raise the question whether contemporary humans originated from a single population or as an amalgamation of different populations separated by years of independent evolution, thus suggesting a greater antiquity of our species than generally assumed. While the oldest sub-Saharan lineages, ~500 thousand years, are found among Khoe-San from southern-Africa, a distinct haplotype found among Biaka is likely due to admixture from an even older population. An East African population that gave rise to non-Africans underwent a selective sweep affecting the subcentromeric region where MTMR8 is located. This and similar sweeps in four other regions of the X chromosome, documented in the literature, effectively reduced genetic diversity of non-African chromosomes and therefore may have exacerbated the effect of the demographic bottleneck usually ascribed to the out of Africa migration. Our data is suggestive, however, that a bottleneck, occurred in Africa before range expansion.

  9. X-linked MTMR8 diversity and evolutionary history of sub-Saharan populations.

    Science.gov (United States)

    Labuda, Damian; Yotova, Vania; Lefebvre, Jean-François; Moreau, Claudia; Utermann, Gerd; Williams, Scott M

    2013-01-01

    The genetic diversity within an 11 kb segment of the MTMR8 gene in a sample of 111 sub-Saharan and 49 non-African X chromosomes was investigated to assess the early evolutionary history of sub-Saharan Africans and the out-of-Africa expansion. The analyses revealed a complex genetic structure of the Africans that contributed to the emergence of modern humans. We observed partitioning of two thirds of old lineages among southern, west/central and east African populations indicating ancient population stratification predating the out of Africa migration. Age estimates of these lineages, older than coalescence times of uniparentally inherited markers, raise the question whether contemporary humans originated from a single population or as an amalgamation of different populations separated by years of independent evolution, thus suggesting a greater antiquity of our species than generally assumed. While the oldest sub-Saharan lineages, ~500 thousand years, are found among Khoe-San from southern-Africa, a distinct haplotype found among Biaka is likely due to admixture from an even older population. An East African population that gave rise to non-Africans underwent a selective sweep affecting the subcentromeric region where MTMR8 is located. This and similar sweeps in four other regions of the X chromosome, documented in the literature, effectively reduced genetic diversity of non-African chromosomes and therefore may have exacerbated the effect of the demographic bottleneck usually ascribed to the out of Africa migration. Our data is suggestive, however, that a bottleneck, occurred in Africa before range expansion.

  10. The evolutionary history of the extinct ratite moa and New Zealand Neogene paleogeography

    DEFF Research Database (Denmark)

    Bunce, M; Worthy, T H; Phillips, M J

    2009-01-01

    The ratite moa (Aves: Dinornithiformes) were a speciose group of massive graviportal avian herbivores that dominated the New Zealand (NZ) ecosystem until their extinction approximately 600 years ago. The phylogeny and evolutionary history of this morphologically diverse order has remained controv...

  11. Evolutionary approaches to cultural and linguistic diversity.

    Science.gov (United States)

    Steele, James; Jordan, Peter; Cochrane, Ethan

    2010-12-12

    Evolutionary approaches to cultural change are increasingly influential, and many scientists believe that a 'grand synthesis' is now in sight. The papers in this Theme Issue, which derives from a symposium held by the AHRC Centre for the Evolution of Cultural Diversity (University College London) in December 2008, focus on how the phylogenetic tree-building and network-based techniques used to estimate descent relationships in biology can be adapted to reconstruct cultural histories, where some degree of inter-societal diffusion will almost inevitably be superimposed on any deeper signal of a historical branching process. The disciplines represented include the three most purely 'cultural' fields from the four-field model of anthropology (cultural anthropology, archaeology and linguistic anthropology). In this short introduction, some context is provided from the history of anthropology, and key issues raised by the papers are highlighted.

  12. Comparative mitogenomics, phylogeny and evolutionary history of Leptogorgia (Gorgoniidae).

    Science.gov (United States)

    Poliseno, Angelo; Feregrino, Christian; Sartoretto, Stéphane; Aurelle, Didier; Wörheide, Gert; McFadden, Catherine S; Vargas, Sergio

    2017-10-01

    Molecular analyses of the ecologically important gorgonian octocoral genus Leptogorgia are scant and mostly deal with few species from restricted geographical regions. Here we explore the phylogenetic relationships and the evolutionary history of Leptogorgia using the complete mitochondrial genomes of six Leptogorgia species from different localities in the Atlantic, Mediterranean and eastern Pacific as well as four other genera of Gorgoniidae and Plexauridae. Our mitogenomic analyses showed high inter-specific diversity, variable nucleotide substitution rates and, for some species, novel genomic features such as ORFs of unknown function. The phylogenetic analyses using complete mitogenomes and an extended mtMutS dataset recovered Leptogorgia as polyphyletic, and the species considered in the analyses were split into two defined groups corresponding to different geographic regions, namely the eastern Pacific and the Atlantic-Mediterranean. Our phylogenetic analysis based on mtMutS also showed a clear separation between the eastern Atlantic and South African Leptogorgia, suggesting the need of a taxonomic revision for these forms. A time-calibrated phylogeny showed that the separation of eastern Pacific and western Atlantic species started ca. 20Mya and suggested a recent divergence for eastern Pacific species and for L. sarmentosa-L. capverdensis. Our results also revealed high inter-specific diversity among eastern Atlantic and South African species, highlighting a potential role of the geographical diversification processes and geological events occurring during the last 30Ma in the Atlantic on the evolutionary history of these organisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Evolutionary history of lagomorphs in response to global environmental change.

    Directory of Open Access Journals (Sweden)

    Deyan Ge

    Full Text Available Although species within Lagomorpha are derived from a common ancestor, the distribution range and body size of its two extant groups, ochotonids and leporids, are quite differentiated. It is unclear what has driven their disparate evolutionary history. In this study, we compile and update all fossil records of Lagomorpha for the first time, to trace the evolutionary processes and infer their evolutionary history using mitochondrial genes, body length and distribution of extant species. We also compare the forage selection of extant species, which offers an insight into their future prospects. The earliest lagomorphs originated in Asia and later diversified in different continents. Within ochotonids, more than 20 genera occupied the period from the early Miocene to middle Miocene, whereas most of them became extinct during the transition from the Miocene to Pliocene. The peak diversity of the leporids occurred during the Miocene to Pliocene transition, while their diversity dramatically decreased in the late Quaternary. Mantel tests identified a positive correlation between body length and phylogenetic distance of lagomorphs. The body length of extant ochotonids shows a normal distribution, while the body length of extant leporids displays a non-normal pattern. We also find that the forage selection of extant pikas features a strong preference for C(3 plants, while for the diet of leporids, more than 16% of plant species are identified as C(4 (31% species are from Poaceae. The ability of several leporid species to consume C(4 plants is likely to result in their size increase and range expansion, most notably in Lepus. Expansion of C(4 plants in the late Miocene, the so-called 'nature's green revolution', induced by global environmental change, is suggested to be one of the major 'ecological opportunities', which probably drove large-scale extinction and range contraction of ochotonids, but inversely promoted diversification and range expansion of

  14. Mitochondrial DNA haplotype distribution patterns in Pinus ponderosa (Pinaceae): range-wide evolutionary history and implications for conservation.

    Science.gov (United States)

    Potter, Kevin M; Hipkins, Valerie D; Mahalovich, Mary F; Means, Robert E

    2013-08-01

    Ponderosa pine (Pinus ponderosa Douglas ex P. Lawson & C. Lawson) exhibits complicated patterns of morphological and genetic variation across its range in western North America. This study aims to clarify P. ponderosa evolutionary history and phylogeography using a highly polymorphic mitochondrial DNA marker, with results offering insights into how geographical and climatological processes drove the modern evolutionary structure of tree species in the region. We amplified the mtDNA nad1 second intron minisatellite region for 3,100 trees representing 104 populations, and sequenced all length variants. We estimated population-level haplotypic diversity and determined diversity partitioning among varieties, races and populations. After aligning sequences of minisatellite repeat motifs, we evaluated evolutionary relationships among haplotypes. The geographical structuring of the 10 haplotypes corresponded with division between Pacific and Rocky Mountain varieties. Pacific haplotypes clustered with high bootstrap support, and appear to have descended from Rocky Mountain haplotypes. A greater proportion of diversity was partitioned between Rocky Mountain races than between Pacific races. Areas of highest haplotypic diversity were the southern Sierra Nevada mountain range in California, northwestern California, and southern Nevada. Pinus ponderosa haplotype distribution patterns suggest a complex phylogeographic history not revealed by other genetic and morphological data, or by the sparse paleoecological record. The results appear consistent with long-term divergence between the Pacific and Rocky Mountain varieties, along with more recent divergences not well-associated with race. Pleistocene refugia may have existed in areas of high haplotypic diversity, as well as the Great Basin, Southwestern United States/northern Mexico, and the High Plains.

  15. Neutral polymorphisms in putative housekeeping genes and tandem repeats unravels the population genetics and evolutionary history of Plasmodium vivax in India.

    Directory of Open Access Journals (Sweden)

    Surendra K Prajapati

    Full Text Available The evolutionary history and age of Plasmodium vivax has been inferred as both recent and ancient by several studies, mainly using mitochondrial genome diversity. Here we address the age of P. vivax on the Indian subcontinent using selectively neutral housekeeping genes and tandem repeat loci. Analysis of ten housekeeping genes revealed a substantial number of SNPs (n = 75 from 100 P. vivax isolates collected from five geographical regions of India. Neutrality tests showed a majority of the housekeeping genes were selectively neutral, confirming the suitability of housekeeping genes for inferring the evolutionary history of P. vivax. In addition, a genetic differentiation test using housekeeping gene polymorphism data showed a lack of geographical structuring between the five regions of India. The coalescence analysis of the time to the most recent common ancestor estimate yielded an ancient TMRCA (232,228 to 303,030 years and long-term population history (79,235 to 104,008 of extant P. vivax on the Indian subcontinent. Analysis of 18 tandem repeat loci polymorphisms showed substantial allelic diversity and heterozygosity per locus, and analysis of potential bottlenecks revealed the signature of a stable P. vivax population, further corroborating our ancient age estimates. For the first time we report a comparable evolutionary history of P. vivax inferred by nuclear genetic markers (putative housekeeping genes to that inferred from mitochondrial genome diversity.

  16. Neutral polymorphisms in putative housekeeping genes and tandem repeats unravels the population genetics and evolutionary history of Plasmodium vivax in India.

    Science.gov (United States)

    Prajapati, Surendra K; Joshi, Hema; Carlton, Jane M; Rizvi, M Alam

    2013-01-01

    The evolutionary history and age of Plasmodium vivax has been inferred as both recent and ancient by several studies, mainly using mitochondrial genome diversity. Here we address the age of P. vivax on the Indian subcontinent using selectively neutral housekeeping genes and tandem repeat loci. Analysis of ten housekeeping genes revealed a substantial number of SNPs (n = 75) from 100 P. vivax isolates collected from five geographical regions of India. Neutrality tests showed a majority of the housekeeping genes were selectively neutral, confirming the suitability of housekeeping genes for inferring the evolutionary history of P. vivax. In addition, a genetic differentiation test using housekeeping gene polymorphism data showed a lack of geographical structuring between the five regions of India. The coalescence analysis of the time to the most recent common ancestor estimate yielded an ancient TMRCA (232,228 to 303,030 years) and long-term population history (79,235 to 104,008) of extant P. vivax on the Indian subcontinent. Analysis of 18 tandem repeat loci polymorphisms showed substantial allelic diversity and heterozygosity per locus, and analysis of potential bottlenecks revealed the signature of a stable P. vivax population, further corroborating our ancient age estimates. For the first time we report a comparable evolutionary history of P. vivax inferred by nuclear genetic markers (putative housekeeping genes) to that inferred from mitochondrial genome diversity.

  17. Population Structure, Genetic Diversity, and Evolutionary History of Kleinia neriifolia (Asteraceae) on the Canary Islands.

    Science.gov (United States)

    Sun, Ye; Vargas-Mendoza, Carlos F

    2017-01-01

    Kleinia neriifolia Haw. is an endemic species on the Canarian archipelago, this species is widespread in the coastal thicket of all the Canarian islands. In the present study, genetic diversity and population structure of K. neriifolia were investigated using chloroplast gene sequences and nuclear SSR (simple sequence repeat). The differentiation among island populations, the historical demography, and the underlying evolutionary scenarios of this species are further tested based on the genetic data. Chloroplast diversity reveals a strong genetic divergence between eastern islands (Gran Canaria, Fuerteventura, and Lanzarote) and western islands (EI Hierro, La Palma, La Gomera, Tenerife), this west-east genetic divergence may reflect a very beginning of speciation. The evolutionary scenario with highest posterior probabilities suggests Gran Canaria as oldest population with a westward colonization path to Tenerife, La Gomera, La Palma, and EI Hierro, and eastward dispersal path to Lanzarote through Fuerteventura. In the western islands, there is a slight decrease in the effective population size toward areas of recent colonization. However, in the eastern islands, the effective population size increase in Lanzarote relative to Gran Canaria and Fuerteventura. These results further our understanding of the evolution of widespread endemic plants within Canarian archipelago.

  18. Population Structure, Genetic Diversity, and Evolutionary History of Kleinia neriifolia (Asteraceae on the Canary Islands

    Directory of Open Access Journals (Sweden)

    Ye Sun

    2017-06-01

    Full Text Available Kleinia neriifolia Haw. is an endemic species on the Canarian archipelago, this species is widespread in the coastal thicket of all the Canarian islands. In the present study, genetic diversity and population structure of K. neriifolia were investigated using chloroplast gene sequences and nuclear SSR (simple sequence repeat. The differentiation among island populations, the historical demography, and the underlying evolutionary scenarios of this species are further tested based on the genetic data. Chloroplast diversity reveals a strong genetic divergence between eastern islands (Gran Canaria, Fuerteventura, and Lanzarote and western islands (EI Hierro, La Palma, La Gomera, Tenerife, this west–east genetic divergence may reflect a very beginning of speciation. The evolutionary scenario with highest posterior probabilities suggests Gran Canaria as oldest population with a westward colonization path to Tenerife, La Gomera, La Palma, and EI Hierro, and eastward dispersal path to Lanzarote through Fuerteventura. In the western islands, there is a slight decrease in the effective population size toward areas of recent colonization. However, in the eastern islands, the effective population size increase in Lanzarote relative to Gran Canaria and Fuerteventura. These results further our understanding of the evolution of widespread endemic plants within Canarian archipelago.

  19. Evolutionary history of the plant pathogenic bacterium Xanthomonas axonopodis.

    Directory of Open Access Journals (Sweden)

    Nadia Mhedbi-Hajri

    Full Text Available Deciphering mechanisms shaping bacterial diversity should help to build tools to predict the emergence of infectious diseases. Xanthomonads are plant pathogenic bacteria found worldwide. Xanthomonas axonopodis is a genetically heterogeneous species clustering, into six groups, strains that are collectively pathogenic on a large number of plants. However, each strain displays a narrow host range. We address the question of the nature of the evolutionary processes--geographical and ecological speciation--that shaped this diversity. We assembled a large collection of X. axonopodis strains that were isolated over a long period, over continents, and from various hosts. Based on the sequence analysis of seven housekeeping genes, we found that recombination occurred as frequently as point mutation in the evolutionary history of X. axonopodis. However, the impact of recombination was about three times greater than the impact of mutation on the diversity observed in the whole dataset. We then reconstructed the clonal genealogy of the strains using coalescent and genealogy approaches and we studied the diversification of the pathogen using a model of divergence with migration. The suggested scenario involves a first step of generalist diversification that spanned over the last 25,000 years. A second step of ecology-driven specialization occurred during the past two centuries. Eventually, secondary contacts between host-specialized strains probably occurred as a result of agricultural development and intensification, allowing genetic exchanges of virulence-associated genes. These transfers may have favored the emergence of novel pathotypes. Finally, we argue that the largest ecological entity within X. axonopodis is the pathovar.

  20. Deciphering the evolutionary history of open and closed mitosis.

    Science.gov (United States)

    Sazer, Shelley; Lynch, Michael; Needleman, Daniel

    2014-11-17

    The origin of the nucleus at the prokaryote-to-eukaryote transition represents one of the most important events in the evolution of cellular organization. The nuclear envelope encircles the chromosomes in interphase and is a selectively permeable barrier between the nucleoplasm and cytoplasm and an organizational scaffold for the nucleus. It remains intact in the 'closed' mitosis of some yeasts, but loses its integrity in the 'open' mitosis of mammals. Instances of both types of mitosis within two evolutionary clades indicate multiple evolutionary transitions between open and closed mitosis, although the underlying genetic changes that influenced these transitions remain unknown. A survey of the diversity of mitotic nuclei that fall between these extremes is the starting point from which to determine the physiologically relevant characteristics distinguishing open from closed mitosis and to understand how they evolved and why they are retained in present-day organisms. The field is now poised to begin addressing these issues by defining and documenting patterns of mitotic nuclear variation within and among species and mapping them onto a phylogenic tree. Deciphering the evolutionary history of open and closed mitosis will complement cell biological and genetic approaches aimed at deciphering the fundamental organizational principles of the nucleus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The effects of ecology and evolutionary history on robust capuchin morphological diversity.

    Science.gov (United States)

    Wright, Kristin A; Wright, Barth W; Ford, Susan M; Fragaszy, Dorothy; Izar, Patricia; Norconk, Marilyn; Masterson, Thomas; Hobbs, David G; Alfaro, Michael E; Lynch Alfaro, Jessica W

    2015-01-01

    Recent molecular work has confirmed the long-standing morphological hypothesis that capuchins are comprised of two distinct clades, the gracile (untufted) capuchins (genus Cebus, Erxleben, 1777) and the robust (tufted) capuchins (genus Sapajus Kerr, 1792). In the past, the robust group was treated as a single, undifferentiated and cosmopolitan species, with data from all populations lumped together in morphological and ecological studies, obscuring morphological differences that might exist across this radiation. Genetic evidence suggests that the modern radiation of robust capuchins began diversifying ∼2.5 Ma, with significant subsequent geographic expansion into new habitat types. In this study we use a morphological sample of gracile and robust capuchin craniofacial and postcranial characters to examine how ecology and evolutionary history have contributed to morphological diversity within the robust capuchins. We predicted that if ecology is driving robust capuchin variation, three distinct robust morphotypes would be identified: (1) the Atlantic Forest species (Sapajus xanthosternos, S. robustus, and S. nigritus), (2) the Amazonian rainforest species (S. apella, S. cay and S. macrocephalus), and (3) the Cerrado-Caatinga species (S. libidinosus). Alternatively, if diversification time between species pairs predicts degree of morphological difference, we predicted that the recently diverged S. apella, S. macrocephalus, S. libidinosus, and S. cay would be morphologically comparable, with greater variation among the more ancient lineages of S. nigritus, S. xanthosternos, and S. robustus. Our analyses suggest that S. libidinosus has the most derived craniofacial and postcranial features, indicative of inhabiting a more terrestrial niche that includes a dependence on tool use for the extraction of imbedded foods. We also suggest that the cranial robusticity of S. macrocephalus and S. apella are indicative of recent competition with sympatric gracile capuchin

  2. The genetic diversity and evolutionary history of hepatitis C virus in Vietnam.

    Science.gov (United States)

    Li, Chunhua; Yuan, Manqiong; Lu, Ling; Lu, Teng; Xia, Wenjie; Pham, Van H; Vo, An X D; Nguyen, Mindie H; Abe, Kenji

    2014-11-01

    Vietnam has a unique history in association with foreign countries, which may have resulted in multiple introductions of the alien HCV strains to mix with those indigenous ones. In this study, we characterized the HCV sequences in Core-E1 and NS5B regions from 236 Vietnamese individuals. We identified multiple HCV lineages; 6a, 6 e, 6h, 6k, 6l, 6 o, 6p, and two novel variants may represent the indigenous strains; 1a was probably introduced from the US; 1b and 2a possibly originated in East Asia; while 2i, 2j, and 2m were likely brought by French explorers. We inferred the evolutionary history for four major subtypes: 1a, 1b, 6a, and 6 e. The obtained Bayesian Skyline Plots (BSPs) consistently showed the rapid HCV population growth from 1955 to 1963 until 1984 or after, corresponding to the era of the Vietnam War. We also estimated HCV growth rates and reconstructed phylogeographic trees for comparing subtypes 1a, 1b, and HCV-2. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Investigating the evolutionary history of irrigated agricultural technology in the Heihe River Basin, China

    Science.gov (United States)

    Wu, S.; Wei, Y.; Zhao, Y.; Zheng, H.

    2017-12-01

    Human's innovative abilities do not only enable rapid expansion of civilization, but also lead to enormous modifications on the natural environment. Technology, while a key factor embedded in socioeconomic developments, its impacts have been rarely appropriately considered in river basin management. This research aims to examine the evolutionary history of irrigated agricultural technology in the Heihe River Basin, China, and how its characteristics interacted with the river basin environment. It adopts a content analysis approach to collect and summarize quantitative technological information in the Heihe River Basin across a time span of more than 2000 years from the Han Dynasty (206 BC) to 2015. Two Chinese academic research databases: Wan Fang Data and China National Knowledge Infrastructure (CNKI) were chosen as data sources. The results show that irrigated agricultural technologies in Heihe River Basin have shifted from focusing on developing new farming tools and cultivation methods to adapting modernized, water-saving irrigation methods and water diversion infrastructures. In additions, the center of irrigated agricultural technology in the Heihe river basin has moved from downstream to middle stream since the Ming Dynasty (1368AD) as a result of degraded natural environment. The developing trend of technology in the Heihe River Basin thus coincides with the change of societal focus from agricultural production efficiency to the human-water balance and environmental remediation. This research demonstrates that irrigated agricultural technologies had a twisted evolutionary history in the Heihe River Basin, influenced by a diverse range of environmental and socioeconomic factors. It provides insights into the fact that technology exhibits a co-evolutionary characteristic with the social development history in the region, pointing towards the urgent need to maintain the balance between human and environment.

  4. Evolutionary history, immigration history, and the extent of diversification in community assembly.

    Science.gov (United States)

    Knope, Matthew L; Forde, Samantha E; Fukami, Tadashi

    2011-01-01

    During community assembly, species may accumulate not only by immigration, but also by in situ diversification. Diversification has intrigued biologists because its extent varies even among closely related lineages under similar ecological conditions. Recent research has suggested that some of this puzzling variation may be caused by stochastic differences in the history of immigration (relative timing and order of immigration by founding populations), indicating that immigration and diversification may affect community assembly interactively. However, the conditions under which immigration history affects diversification remain unclear. Here we propose the hypothesis that whether or not immigration history influences the extent of diversification depends on the founding populations' prior evolutionary history, using evidence from a bacterial experiment. To create genotypes with different evolutionary histories, replicate populations of Pseudomonas fluorescens were allowed to adapt to a novel environment for a short or long period of time (approximately 10 or 100 bacterial generations) with or without exploiters (viral parasites). Each evolved genotype was then introduced to a new habitat either before or after a standard competitor genotype. Most genotypes diversified to a greater extent when introduced before, rather than after, the competitor. However, introduction order did not affect the extent of diversification when the evolved genotype had previously adapted to the environment for a long period of time without exploiters. Diversification of these populations was low regardless of introduction order. These results suggest that the importance of immigration history in diversification can be predicted by the immigrants' evolutionary past. The hypothesis proposed here may be generally applicable in both micro- and macro-organisms.

  5. Probing the evolutionary history of epigenetic mechanisms: what can we learn from marine diatoms

    Directory of Open Access Journals (Sweden)

    Achal Rastogi

    2015-07-01

    Full Text Available Recent progress made on epigenetic studies revealed the conservation of epigenetic features in deep diverse branching species including Stramenopiles, plants and animals. This suggests their fundamental role in shaping species genomes across different evolutionary time scales. Diatoms are a highly successful and diverse group of phytoplankton with a fossil record of about 190 million years ago. They are distantly related from other super-groups of Eukaryotes and have retained some of the epigenetic features found in mammals and plants suggesting their ancient origin. Phaeodactylum tricornutum and Thalassiosira pseudonana, pennate and centric diatoms, respectively, emerged as model species to address questions on the evolution of epigenetic phenomena such as what has been lost, retained or has evolved in contemporary species. In the present work, we will discuss how the study of non-model or emerging model organisms, such as diatoms, helps understand the evolutionary history of epigenetic mechanisms with a particular focus on DNA methylation and histone modifications.

  6. The complex evolutionary history and phylogeography of Caridina typus (Crustacea: Decapoda): long-distance dispersal and cryptic allopatric species.

    Science.gov (United States)

    Bernardes, Samuel C; Pepato, Almir R; von Rintelen, Thomas; von Rintelen, Kristina; Page, Timothy J; Freitag, Hendrik; de Bruyn, Mark

    2017-08-22

    The evolutionary history of the old, diverse freshwater shrimp genus Caridina is still poorly understood, despite its vast distribution - from Africa to Polynesia. Here, we used nuclear and mitochondrial DNA to infer the phylogeographic and evolutionary history of C. typus, which is one of only four species distributed across the entire range of the genus. Despite this species' potential for high levels of gene flow, questions have been raised regarding its phylogeographic structure and taxonomic status. We identified three distinct lineages that likely diverged in the Miocene. Molecular dating and ancestral range reconstructions are congruent with C. typus' early dispersal to Africa, possibly mediated by the Miocene Indian Ocean Equatorial Jet, followed by back dispersal to Australasia after the Jet's closure. Furthermore, several different species delimitation methods indicate each lineage represents a distinct (cryptic) species, contradicting current morphospecies delimitation of a single C. typus taxon. The evolutionary history of C. typus lineages is complex, in which ancient oceanic current systems and (currently unrecognised) speciation events preceded secondary sympatry of these cryptic species.

  7. Evolutionary heritage influences Amazon tree ecology

    Science.gov (United States)

    Coelho de Souza, Fernanda; Dexter, Kyle G.; Phillips, Oliver L.; Brienen, Roel J. W.; Chave, Jerome; Galbraith, David R.; Lopez Gonzalez, Gabriela; Monteagudo Mendoza, Abel; Pennington, R. Toby; Poorter, Lourens; Alexiades, Miguel; Álvarez-Dávila, Esteban; Andrade, Ana; Aragão, Luis E. O. C.; Araujo-Murakami, Alejandro; Arets, Eric J. M. M.; Aymard C, Gerardo A.; Baraloto, Christopher; Barroso, Jorcely G.; Bonal, Damien; Boot, Rene G. A.; Camargo, José L. C.; Comiskey, James A.; Valverde, Fernando Cornejo; de Camargo, Plínio B.; Di Fiore, Anthony; Erwin, Terry L.; Feldpausch, Ted R.; Ferreira, Leandro; Fyllas, Nikolaos M.; Gloor, Emanuel; Herault, Bruno; Herrera, Rafael; Higuchi, Niro; Honorio Coronado, Eurídice N.; Killeen, Timothy J.; Laurance, William F.; Laurance, Susan; Lloyd, Jon; Lovejoy, Thomas E.; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S.; Marimon-Junior, Ben H.; Mendoza, Casimiro; Morandi, Paulo; Neill, David A.; Vargas, Percy Núñez; Oliveira, Edmar A.; Lenza, Eddie; Palacios, Walter A.; Peñuela-Mora, Maria C.; Pipoly, John J.; Pitman, Nigel C. A.; Prieto, Adriana; Quesada, Carlos A.; Ramirez-Angulo, Hirma; Rudas, Agustin; Ruokolainen, Kalle; Salomão, Rafael P.; Silveira, Marcos; ter Steege, Hans; Thomas-Caesar, Raquel; van der Hout, Peter; van der Heijden, Geertje M. F.; van der Meer, Peter J.; Vasquez, Rodolfo V.; Vieira, Simone A.; Vilanova, Emilio; Vos, Vincent A.; Wang, Ophelia; Young, Kenneth R.; Zagt, Roderick J.; Baker, Timothy R.

    2016-01-01

    Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change. PMID:27974517

  8. Evolutionary heritage influences Amazon tree ecology.

    Science.gov (United States)

    Coelho de Souza, Fernanda; Dexter, Kyle G; Phillips, Oliver L; Brienen, Roel J W; Chave, Jerome; Galbraith, David R; Lopez Gonzalez, Gabriela; Monteagudo Mendoza, Abel; Pennington, R Toby; Poorter, Lourens; Alexiades, Miguel; Álvarez-Dávila, Esteban; Andrade, Ana; Aragão, Luis E O C; Araujo-Murakami, Alejandro; Arets, Eric J M M; Aymard C, Gerardo A; Baraloto, Christopher; Barroso, Jorcely G; Bonal, Damien; Boot, Rene G A; Camargo, José L C; Comiskey, James A; Valverde, Fernando Cornejo; de Camargo, Plínio B; Di Fiore, Anthony; Elias, Fernando; Erwin, Terry L; Feldpausch, Ted R; Ferreira, Leandro; Fyllas, Nikolaos M; Gloor, Emanuel; Herault, Bruno; Herrera, Rafael; Higuchi, Niro; Honorio Coronado, Eurídice N; Killeen, Timothy J; Laurance, William F; Laurance, Susan; Lloyd, Jon; Lovejoy, Thomas E; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S; Marimon-Junior, Ben H; Mendoza, Casimiro; Morandi, Paulo; Neill, David A; Vargas, Percy Núñez; Oliveira, Edmar A; Lenza, Eddie; Palacios, Walter A; Peñuela-Mora, Maria C; Pipoly, John J; Pitman, Nigel C A; Prieto, Adriana; Quesada, Carlos A; Ramirez-Angulo, Hirma; Rudas, Agustin; Ruokolainen, Kalle; Salomão, Rafael P; Silveira, Marcos; Stropp, Juliana; Ter Steege, Hans; Thomas-Caesar, Raquel; van der Hout, Peter; van der Heijden, Geertje M F; van der Meer, Peter J; Vasquez, Rodolfo V; Vieira, Simone A; Vilanova, Emilio; Vos, Vincent A; Wang, Ophelia; Young, Kenneth R; Zagt, Roderick J; Baker, Timothy R

    2016-12-14

    Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change. © 2016 The Authors.

  9. Evolutionary history of the recruitment of conserved developmental genes in association to the formation and diversification of a novel trait

    Directory of Open Access Journals (Sweden)

    Shirai Leila T

    2012-02-01

    Full Text Available Abstract Background The origin and modification of novel traits are important aspects of biological diversification. Studies combining concepts and approaches of developmental genetics and evolutionary biology have uncovered many examples of the recruitment, or co-option, of genes conserved across lineages for the formation of novel, lineage-restricted traits. However, little is known about the evolutionary history of the recruitment of those genes, and of the relationship between them -for example, whether the co-option involves whole or parts of existing networks, or whether it occurs by redeployment of individual genes with de novo rewiring. We use a model novel trait, color pattern elements on butterfly wings called eyespots, to explore these questions. Eyespots have greatly diversified under natural and sexual selection, and their formation involves genetic circuitries shared across insects. Results We investigated the evolutionary history of the recruitment and co-recruitment of four conserved transcription regulators to the larval wing disc region where circular pattern elements develop. The co-localization of Antennapedia, Notch, Distal-less, and Spalt with presumptive (eyespot organizers was examined in 13 butterfly species, providing the largest comparative dataset available for the system. We found variation between families, between subfamilies, and between tribes. Phylogenetic reconstructions by parsimony and maximum likelihood methods revealed an unambiguous evolutionary history only for Antennapedia, with a resolved single origin of eyespot-associated expression, and many homoplastic events for Notch, Distal-less, and Spalt. The flexibility in the (co-recruitment of the targeted genes includes cases where different gene combinations are associated with morphologically similar eyespots, as well as cases where identical protein combinations are associated with very different phenotypes. Conclusions The evolutionary history of gene

  10. The Evolutionary Basis of Naturally Diverse Rice Leaves Anatomy.

    Directory of Open Access Journals (Sweden)

    Jolly Chatterjee

    Full Text Available Rice contains genetically and ecologically diverse wild and cultivated species that show a wide variation in plant and leaf architecture. A systematic characterization of leaf anatomy is essential in understanding the dynamics behind such diversity. Therefore, leaf anatomies of 24 Oryza species spanning 11 genetically diverse rice genomes were studied in both lateral and longitudinal directions and possible evolutionary trends were examined. A significant inter-species variation in mesophyll cells, bundle sheath cells, and vein structure was observed, suggesting precise genetic control over these major rice leaf anatomical traits. Cellular dimensions, measured along three growth axes, were further combined proportionately to construct three-dimensional (3D leaf anatomy models to compare the relative size and orientation of the major cell types present in a fully expanded leaf. A reconstruction of the ancestral leaf state revealed that the following are the major characteristics of recently evolved rice species: fewer veins, larger and laterally elongated mesophyll cells, with an increase in total mesophyll area and in bundle sheath cell number. A huge diversity in leaf anatomy within wild and domesticated rice species has been portrayed in this study, on an evolutionary context, predicting a two-pronged evolutionary pathway leading to the 'sativa leaf type' that we see today in domesticated species.

  11. Evolutionary history of a keystone pollinator parallels the biome occupancy of angiosperms in the Greater Cape Floristic Region.

    Science.gov (United States)

    de Jager, Marinus L; Ellis, Allan G

    2017-02-01

    The Greater Cape Floristic Region (GCFR) in South Africa has been extensively investigated for its phenomenal angiosperm diversity. A key emergent pattern is the occurrence of older plant lineages in the southern Fynbos biome and younger lineages in the northern Succulent Karoo biome. We know practically nothing, however, about the evolutionary history of the animals that pollinate this often highly-specialized flora. In this study, we explore the evolutionary history of an important GCFR fly pollinator, Megapalpus capensis, and ask whether it exhibits broadly congruent genetic structuring and timing of diversification to flowering plants within these biomes. We find that the oldest M. capensis lineages originated in Fynbos during the Miocene, while younger Succulent Karoo lineages diverged in the Pliocene and correspond to the proposed age of this recent biome. A strong signature of population expansion is also recovered for flies in this arid biome, consistent with recent colonization. Our first investigation into the evolutionary history of GCFR pollinators thus supports a recent origin of the SK biome, as inferred from angiosperm phylogenies, and suggests that plants and pollinators may have co-diverged within this remarkable area. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Evolutionary history of genus Macrobrachium inferred from mitochondrial markers: a molecular clock approach.

    Science.gov (United States)

    Jose, Deepak; Harikrishnan, Mahadevan

    2018-04-17

    Caridea, an infraorder of shrimps coming under Pleocyemata was first reported from the oceans before 417 million years followed by their radiation recorded during the Permian period. Hitherto, about 3877 extant caridean species were accounted within which one quarter constitute freshwater species. Freshwater prawns of genus Macrobrachium (Infraorder Caridea; Family Palaemonidae), with more than 240 species are inhabitants of diverse aquatic habitats like coastal lagoons, lakes, tropical streams, ponds and rivers. Previous studies on Macrobrachium relied on the highly variable morphological characters which were insufficient for accurate diagnosis of natural species groups. Present study focuses on the utility of molecular markers (viz. COI and 16S rRNA) for resolving the evolutionary history of genus Macrobrachium using a combination of phylogeny and timescale components. It is for the first time a molecular clock approach had been carried out towards genus Macrobrachium in a broad aspect with the incorporation of congeners inhabiting diverse geographical realms including endemic species M. striatum from South West coast of India. Molecular results obtained revealed the phylogenetic relationships between congeners of genus Macrobrachium at intra/inter-continental level along with the corresponding evolutionary time estimates.

  13. Clonality and evolutionary history of rhabdomyosarcoma.

    Directory of Open Access Journals (Sweden)

    Li Chen

    2015-03-01

    Full Text Available To infer the subclonality of rhabdomyosarcoma (RMS and predict the temporal order of genetic events for the tumorigenic process, and to identify novel drivers, we applied a systematic method that takes into account germline and somatic alterations in 44 tumor-normal RMS pairs using deep whole-genome sequencing. Intriguingly, we find that loss of heterozygosity of 11p15.5 and mutations in RAS pathway genes occur early in the evolutionary history of the PAX-fusion-negative-RMS (PFN-RMS subtype. We discover several early mutations in non-RAS mutated samples and predict them to be drivers in PFN-RMS including recurrent mutation of PKN1. In contrast, we find that PAX-fusion-positive (PFP subtype tumors have undergone whole-genome duplication in the late stage of cancer evolutionary history and have acquired fewer mutations and subclones than PFN-RMS. Moreover we predict that the PAX3-FOXO1 fusion event occurs earlier than the whole genome duplication. Our findings provide information critical to the understanding of tumorigenesis of RMS.

  14. [Evolutionary process unveiled by the maximum genetic diversity hypothesis].

    Science.gov (United States)

    Huang, Yi-Min; Xia, Meng-Ying; Huang, Shi

    2013-05-01

    As two major popular theories to explain evolutionary facts, the neutral theory and Neo-Darwinism, despite their proven virtues in certain areas, still fail to offer comprehensive explanations to such fundamental evolutionary phenomena as the genetic equidistance result, abundant overlap sites, increase in complexity over time, incomplete understanding of genetic diversity, and inconsistencies with fossil and archaeological records. Maximum genetic diversity hypothesis (MGD), however, constructs a more complete evolutionary genetics theory that incorporates all of the proven virtues of existing theories and adds to them the novel concept of a maximum or optimum limit on genetic distance or diversity. It has yet to meet a contradiction and explained for the first time the half-century old Genetic Equidistance phenomenon as well as most other major evolutionary facts. It provides practical and quantitative ways of studying complexity. Molecular interpretation using MGD-based methods reveal novel insights on the origins of humans and other primates that are consistent with fossil evidence and common sense, and reestablished the important role of China in the evolution of humans. MGD theory has also uncovered an important genetic mechanism in the construction of complex traits and the pathogenesis of complex diseases. We here made a series of sequence comparisons among yeasts, fishes and primates to illustrate the concept of limit on genetic distance. The idea of limit or optimum is in line with the yin-yang paradigm in the traditional Chinese view of the universal creative law in nature.

  15. Chitinase family GH18: evolutionary insights from the genomic history of a diverse protein family

    Directory of Open Access Journals (Sweden)

    Aronson Nathan N

    2007-06-01

    Full Text Available Abstract Background Chitinases (EC.3.2.1.14 hydrolyze the β-1,4-linkages in chitin, an abundant N-acetyl-β-D-glucosamine polysaccharide that is a structural component of protective biological matrices such as insect exoskeletons and fungal cell walls. The glycoside hydrolase 18 (GH18 family of chitinases is an ancient gene family widely expressed in archea, prokaryotes and eukaryotes. Mammals are not known to synthesize chitin or metabolize it as a nutrient, yet the human genome encodes eight GH18 family members. Some GH18 proteins lack an essential catalytic glutamic acid and are likely to act as lectins rather than as enzymes. This study used comparative genomic analysis to address the evolutionary history of the GH18 multiprotein family, from early eukaryotes to mammals, in an effort to understand the forces that shaped the human genome content of chitinase related proteins. Results Gene duplication and loss according to a birth-and-death model of evolution is a feature of the evolutionary history of the GH18 family. The current human family likely originated from ancient genes present at the time of the bilaterian expansion (approx. 550 mya. The family expanded in the chitinous protostomes C. elegans and D. melanogaster, declined in early deuterostomes as chitin synthesis disappeared, and expanded again in late deuterostomes with a significant increase in gene number after the avian/mammalian split. Conclusion This comprehensive genomic study of animal GH18 proteins reveals three major phylogenetic groups in the family: chitobiases, chitinases/chitolectins, and stabilin-1 interacting chitolectins. Only the chitinase/chitolectin group is associated with expansion in late deuterostomes. Finding that the human GH18 gene family is closely linked to the human major histocompatibility complex paralogon on chromosome 1, together with the recent association of GH18 chitinase activity with Th2 cell inflammation, suggests that its late expansion

  16. Incorporating evolutionary history into conservation planning in biodiversity hotspots.

    Science.gov (United States)

    Buerki, Sven; Callmander, Martin W; Bachman, Steven; Moat, Justin; Labat, Jean-Noël; Forest, Félix

    2015-02-19

    There is increased evidence that incorporating evolutionary history directly in conservation actions is beneficial, particularly given the likelihood that extinction is not random and that phylogenetic diversity (PD) is lost at higher rates than species diversity. This evidence is even more compelling in biodiversity hotspots, such as Madagascar, where less than 10% of the original vegetation remains. Here, we use the Leguminosae, an ecologically and economically important plant family, and a combination of phylogenetics and species distribution modelling, to assess biodiversity patterns and identify regions, coevolutionary processes and ecological factors that are important in shaping this diversity, especially during the Quaternary. We show evidence that species distribution and community PD are predicted by watershed boundaries, which enable the identification of a network of refugia and dispersal corridors that were perhaps important for maintaining community integrity during past climate change. Phylogenetically clustered communities are found in the southwest of the island at low elevation and share a suite of morphological characters (especially fruit morphology) indicative of coevolution with their main dispersers, the extinct and extant lemurs. Phylogenetically over-dispersed communities are found along the eastern coast at sea level and may have resulted from many independent dispersal events from the drier and more seasonal regions of Madagascar. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. Relative role of contemporary environment versus history in shaping diversity patterns of China's woody plants

    DEFF Research Database (Denmark)

    Wang, Zhiheng; Fang, Jingyun; Tang, Zhiyao

    2012-01-01

    What determines large-scale patterns of species diversity is a central and controversial topic in biogeography and ecology. In this study, we compared the effects of contemporary environment and historical contingencies on species richness patterns of woody plants in China, using fine-resolution ......-plant species richness across China, while historical contingencies generate regional deviations from this trend. Our findings imply that both species diversity and regional evolutionary and ecological histories should be taken into account for future nature conservation......., and the Tibetan Plateau, perhaps reflecting their special geological features and history. Nevertheless, partial regression indicated that historical effects were less important relative to contemporary environment. In conclusion, contemporary environment (notably climate) determines the general trend in woody...

  18. Evolutionary history of nematodes associated with sweat bees.

    Science.gov (United States)

    McFrederick, Quinn S; Taylor, Douglas R

    2013-03-01

    Organisms that live in close association with other organisms make up a large part of the world's diversity. One driver of this diversity is the evolution of host-species specificity, which can occur via reproductive isolation following a host-switch or, given the correct circumstances, via cospeciation. In this study, we explored the diversity and evolutionary history of Acrostichus nematodes that are associated with halictid bees in North America. First, we conducted surveys of bees in Virginia, and found six halictid species that host Acrostichus. To test the hypothesis of cospeciation, we constructed phylogenetic hypotheses of Acrostichus based on three genes. We found Acrostichus puri and Acrostichus halicti to be species complexes comprising cryptic, host-specific species. Although several nodes in the host and symbiont phylogenies were congruent and tests for cospeciation were significant, the host's biogeography, the apparent patchiness of the association across the host's phylogeny, and the amount of evolution in the nematode sequence suggested a mixture of cospeciation, host switching, and extinction events instead of strict cospeciation. Cospeciation can explain the relationships between Ac. puri and its augochlorine hosts, but colonization of Halictus hosts is more likely than cospeciation. The nematodes are vertically transmitted, but sexual transmission is also likely. Both of these transmission modes may explain host-species specificity and congruent bee and nematode phylogenies. Additionally, all halictid hosts come from eusocial or socially polymorphic lineages, suggesting that sociality may be a factor in the suitability of hosts for Acrostichus. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Evolutionary dynamics under interactive diversity

    Science.gov (United States)

    Su, Qi; Li, Aming; Wang, Long

    2017-10-01

    As evidenced by many cases in human societies, individuals often make different behavior decisions in different interactions, and adaptively adjust their behavior in changeable interactive scenarios. However, up to now, how such diverse interactive behavior affects cooperation dynamics has still remained unknown. Here we develop a general framework of interactive diversity, which models individuals’ separated behavior against distinct opponents and their adaptive adjustment in response to opponents’ strategies, to explore the evolution of cooperation. We find that interactive diversity enables individuals to reciprocate every single opponent, and thus sustains large-scale reciprocal interactions. Our work witnesses an impressive boost of cooperation for a notably extensive range of parameters and for all pairwise games. These results are robust against well-mixed and various networked populations, and against degree-normalized and cumulative payoff patterns. From the perspective of network dynamics, distinguished from individuals competing for nodes in most previous work, in this paper, the system evolves in the form of behavior disseminating along edges. We propose a theoretical method based on evolution of edges, which predicts well both the frequency of cooperation and the compact cooperation clusters. Our thorough investigation clarifies the positive role of interactive diversity in resolving social dilemmas and highlights the significance of understanding evolutionary dynamics from the viewpoint of edge dynamics.

  20. Evolutionary history of Lake Tanganyika's scale-eating cichlid fishes.

    Science.gov (United States)

    Koblmüller, Stephan; Egger, Bernd; Sturmbauer, Christian; Sefc, Kristina M

    2007-09-01

    Although Lake Tanganyika is not the most species-rich of the Great East African Lakes it comprises by far the greatest diversity of cichlid fishes in terms of morphology, ecology, and breeding styles. Our study focuses on the Tanganyikan cichlid tribe Perissodini, which exhibits one of the most peculiar feeding strategies found in cichlids-scale-eating. Their evolutionary history was reconstructed from 1416 bp DNA sequence of two mitochondrial genes (ND2 and partial control region) and from 612 AFLP markers. We confirm the inclusion of the zooplanktivorous genus Haplotaxodon in the tribe Perissodini, and species status of Haplotaxodon trifasciatus. Within the Perissodini, the major lineages emerged within a short period roughly 1.5-2 MYA, which makes their radiation slightly younger than that of other Tanganyikan cichlid tribes. Most scale-eaters evolved in deep-water habitat, perhaps associated with the previously documented radiations of other deep-water dwelling cichlid lineages, and colonized the shallow habitat only recently.

  1. The evolutionary history of cockatoos (Aves: Psittaciformes: Cacatuidae)

    DEFF Research Database (Denmark)

    White, Nicole E.; Phillips, Matthew J.; Gilbert, Tom

    2011-01-01

    Cockatoos are the distinctive family Cacatuidae, a major lineage of the order of parrots (Psittaciformes) and distributed throughout the Australasian region of the world. However, the evolutionary history of cockatoos is not well understood. We investigated the phylogeny of cockatoos based on thr...

  2. Connecting proximate mechanisms and evolutionary patterns: pituitary gland size and mammalian life history.

    Science.gov (United States)

    Kamilar, J M; Tecot, S R

    2015-11-01

    At the proximate level, hormones are known to play a critical role in influencing the life history of mammals, including humans. The pituitary gland is directly responsible for producing several hormones, including those related to growth and reproduction. Although we have a basic understanding of how hormones affect life history characteristics, we still have little knowledge of this relationship in an evolutionary context. We used data from 129 mammal species representing 14 orders to investigate the relationship between pituitary gland size and life history variation. Because pituitary gland size should be related to hormone production and action, we predicted that species with relatively large pituitaries should be associated with fast life histories, especially increased foetal and post-natal growth rates. Phylogenetic analyses revealed that total pituitary size and the size of the anterior lobe of the pituitary significantly predicted a life history axis that was correlated with several traits including body mass, and foetal and post-natal growth rates. Additional models directly examining the association between relative pituitary size and growth rates produced concordant results. We also found that relative pituitary size variation across mammals was best explained by an Ornstein-Uhlenbeck model of evolution, suggesting an important role of stabilizing selection. Our results support the idea that the size of the pituitary is linked to life history variation through evolutionary time. This pattern is likely due to mediating hormone levels but additional work is needed. We suggest that future investigations incorporating endocrine gland size may be critical for understanding life history evolution. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  3. Multilocus phylogeny and statistical biogeography clarify the evolutionary history of major lineages of turtles.

    Science.gov (United States)

    Pereira, Anieli G; Sterli, Juliana; Moreira, Filipe R R; Schrago, Carlos G

    2017-08-01

    Despite their complex evolutionary history and the rich fossil record, the higher level phylogeny and historical biogeography of living turtles have not been investigated in a comprehensive and statistical framework. To tackle these issues, we assembled a large molecular dataset, maximizing both taxonomic and gene sampling. As different models provide alternative biogeographical scenarios, we have explicitly tested such hypotheses in order to reconstruct a robust biogeographical history of Testudines. We scanned publicly available databases for nucleotide sequences and composed a dataset comprising 13 loci for 294 living species of Testudines, which accounts for all living genera and 85% of their extant species diversity. Phylogenetic relationships and species divergence times were estimated using a thorough evaluation of fossil information as calibration priors. We then carried out the analysis of historical biogeography of Testudines in a fully statistical framework. Our study recovered the first large-scale phylogeny of turtles with well-supported relationships following the topology proposed by phylogenomic works. Our dating result consistently indicated that the origin of the main clades, Pleurodira and Cryptodira, occurred in the early Jurassic. The phylogenetic and historical biogeographical inferences permitted us to clarify how geological events affected the evolutionary dynamics of crown turtles. For instance, our analyses support the hypothesis that the breakup of Pangaea would have driven the divergence between the cryptodiran and pleurodiran lineages. The reticulated pattern in the ancestral distribution of the cryptodiran lineage suggests a complex biogeographic history for the clade, which was supposedly related to the complex paleogeographic history of Laurasia. On the other hand, the biogeographical history of Pleurodira indicated a tight correlation with the paleogeography of the Gondwanan landmasses. Copyright © 2017 Elsevier Inc. All rights

  4. Evolutionary History of the Global Emergence of the Escherichia coli Epidemic Clone ST131.

    Science.gov (United States)

    Stoesser, Nicole; Sheppard, Anna E; Pankhurst, Louise; De Maio, Nicola; Moore, Catrin E; Sebra, Robert; Turner, Paul; Anson, Luke W; Kasarskis, Andrew; Batty, Elizabeth M; Kos, Veronica; Wilson, Daniel J; Phetsouvanh, Rattanaphone; Wyllie, David; Sokurenko, Evgeni; Manges, Amee R; Johnson, Timothy J; Price, Lance B; Peto, Timothy E A; Johnson, James R; Didelot, Xavier; Walker, A Sarah; Crook, Derrick W

    2016-03-22

    emerging resistance to all preferred antimicrobials. Resistance is concentrated within specificE. colilineages, such as sequence type 131 (ST131). Clarification of the genetic basis for clonally associated resistance is key to devising intervention strategies. We used high-resolution genomic analysis of a large global collection of ST131 isolates to define the evolutionary history of extended-spectrum beta-lactamase production in ST131. We documented diverse contributory genetic processes, including stable chromosomal integrations of resistance genes, persistence and evolution of mobile resistance elements within sublineages, and sporadic acquisition of different resistance elements. Both global distribution and regional segregation were evident. The diversity of resistance element acquisition and propagation within ST131 indicates a need for control and surveillance strategies that target both bacterial strains and mobile genetic elements. Copyright © 2016 Stoesser et al.

  5. Ancient connections among the European rivers and watersheds revealed from the evolutionary history of the genus Telestes (Actinopterygii; Cypriniformes)

    Science.gov (United States)

    Buj, Ivana; Ćaleta, Marko; Šanda, Radek; Geiger, Matthias F.; Freyhof, Jörg; Machordom, Annie; Vukić, Jasna

    2017-01-01

    In order to better understand the complex geologic history of the Mediterranean area, we have analysed evolutionary history, phylogeographic structure and molecular diversity of freshwater fishes belonging to the genus Telestes. As primary freshwater fishes distributed largely in the Mediterranean basin, this genus represents a suitable model system for investigating the historical biogeography of freshwater drainage systems in southern Europe. In this investigation we have included samples representing all Telestes species and based our analyses on one mitochondrial and one nuclear gene. We have investigated phylogenetic structure inside the genus Telestes, estimated divergence times, reconstructed ancestral distribution ranges and described intraspecific molecular diversity. Diversification of Telestes started in the Early Miocene, when the ancestors of T. souffia, lineage comprising T. croaticus and T. fontinalis, and the one comprising T. pleurobipunctatus and T. beoticus got isolated. The remaining species are genetically more closely related and form a common cluster in the recovered phylogenetic trees. Complex geological history of southern Europe, including formation of continental bridges, fragmentation of landmass, closing of the sea corridor, local tectonic activities, led to complicated biogeographical pattern of this genus, caused by multiple colonization events and passovers between ancient rivers and water basins. Especially pronounced diversity of Telestes found in the Adriatic watershed in Croatia and Bosnia and Herzegovina is a consequence of a triple colonization of this area by different lineages, which led to an existence of genetically distinct species in neighboring areas. Significant intraspecific structuring is present in T. souffia, T. muticellus, T. croaticus and T. pleurobipunctatus. Besides in well-structured species, elevated levels of genetic polymorphism were found inside T. turskyi and T. ukliva, as a consequence of their old origin

  6. Ancient connections among the European rivers and watersheds revealed from the evolutionary history of the genus Telestes (Actinopterygii; Cypriniformes.

    Directory of Open Access Journals (Sweden)

    Ivana Buj

    Full Text Available In order to better understand the complex geologic history of the Mediterranean area, we have analysed evolutionary history, phylogeographic structure and molecular diversity of freshwater fishes belonging to the genus Telestes. As primary freshwater fishes distributed largely in the Mediterranean basin, this genus represents a suitable model system for investigating the historical biogeography of freshwater drainage systems in southern Europe. In this investigation we have included samples representing all Telestes species and based our analyses on one mitochondrial and one nuclear gene. We have investigated phylogenetic structure inside the genus Telestes, estimated divergence times, reconstructed ancestral distribution ranges and described intraspecific molecular diversity. Diversification of Telestes started in the Early Miocene, when the ancestors of T. souffia, lineage comprising T. croaticus and T. fontinalis, and the one comprising T. pleurobipunctatus and T. beoticus got isolated. The remaining species are genetically more closely related and form a common cluster in the recovered phylogenetic trees. Complex geological history of southern Europe, including formation of continental bridges, fragmentation of landmass, closing of the sea corridor, local tectonic activities, led to complicated biogeographical pattern of this genus, caused by multiple colonization events and passovers between ancient rivers and water basins. Especially pronounced diversity of Telestes found in the Adriatic watershed in Croatia and Bosnia and Herzegovina is a consequence of a triple colonization of this area by different lineages, which led to an existence of genetically distinct species in neighboring areas. Significant intraspecific structuring is present in T. souffia, T. muticellus, T. croaticus and T. pleurobipunctatus. Besides in well-structured species, elevated levels of genetic polymorphism were found inside T. turskyi and T. ukliva, as a consequence

  7. An evolutionary approach to financial history.

    Science.gov (United States)

    Ferguson, N

    2009-01-01

    Financial history is not conventionally thought of in evolutionary terms, but it should be. Traditional ways of thinking about finance, dating back to Hilferding, emphasize the importance of concentration and economies of scale. But these approaches overlook the rich "biodiversity" that characterizes the financial world. They also overlook the role of natural selection. To be sure, natural selection in the financial world is not exactly analogous to the processes first described by Darwin and elaborated on by modern biologists. There is conscious adaptation as well as random mutation. Moreover, there is something resembling "intelligent design" in finance, whereby regulators and legislators act in a quasidivine capacity, putting dinosaurs on life support. The danger is that such interventions in the natural processes of the market may ultimately distort the evolutionary process, by getting in the way of Schumpeter's "creative destruction."

  8. Tumor evolutionary directed graphs and the history of chronic lymphocytic leukemia.

    Science.gov (United States)

    Wang, Jiguang; Khiabanian, Hossein; Rossi, Davide; Fabbri, Giulia; Gattei, Valter; Forconi, Francesco; Laurenti, Luca; Marasca, Roberto; Del Poeta, Giovanni; Foà, Robin; Pasqualucci, Laura; Gaidano, Gianluca; Rabadan, Raul

    2014-12-11

    Cancer is a clonal evolutionary process, caused by successive accumulation of genetic alterations providing milestones of tumor initiation, progression, dissemination, and/or resistance to certain therapeutic regimes. To unravel these milestones we propose a framework, tumor evolutionary directed graphs (TEDG), which is able to characterize the history of genetic alterations by integrating longitudinal and cross-sectional genomic data. We applied TEDG to a chronic lymphocytic leukemia (CLL) cohort of 70 patients spanning 12 years and show that: (a) the evolution of CLL follows a time-ordered process represented as a global flow in TEDG that proceeds from initiating events to late events; (b) there are two distinct and mutually exclusive evolutionary paths of CLL evolution; (c) higher fitness clones are present in later stages of the disease, indicating a progressive clonal replacement with more aggressive clones. Our results suggest that TEDG may constitute an effective framework to recapitulate the evolutionary history of tumors.

  9. Gene genealogies indicates abundant gene conversions and independent evolutionary histories of the mating-type chromosomes in the evolutionary history of Neurospora tetrasperma

    Directory of Open Access Journals (Sweden)

    Whittle Carrie A

    2010-07-01

    Full Text Available Abstract Background The self-fertile filamentous ascomycete Neurospora tetrasperma contains a large (~7 Mbp and young (mat chromosomes. The objective of the present study is to reveal the evolutionary history, including key genomic events, associated with the various regions of the mat chromosomes among ten strains representing all the nine known species (lineages contained within the N. tetrasperma species complex. Results Comparative analysis of sequence divergence among alleles of 24 mat-linked genes (mat A and mat a indicates that a large region of suppressed recombination exists within the mat chromosome for each of nine lineages of N. tetrasperma sensu latu. The recombinationally suppressed region varies in size and gene composition among lineages, and is flanked on both ends by normally recombining regions. Genealogical analyses among lineages reveals that eight gene conversion events have occurred between homologous mat A and mat a-linked alleles of genes located within the region of restricted recombination during the evolutionary history of N. tetrasperma. Conclusions We conclude that the region of suppressed recombination in the mat chromosomes has likely been subjected to independent contraction and/or expansion during the evolutionary history of the N. tetrasperma species complex. Furthermore, we infer that gene conversion events are likely a common phenomenon within this recombinationally suppressed genomic region. We argue that gene conversions might provide an efficient mechanism of adaptive editing of functional genes, including the removal of deleterious mutations, within the young recombinationally suppressed region of the mat chromosomes.

  10. Evolutionary history of the somatostatin and somatostatin receptors

    Indian Academy of Sciences (India)

    Somatostatin and its receptors have a critical role in mammalian growth through their control pattern of secretion of growth hormone, but the evolutionary history of somatostatin and somatostatin receptors are ill defined. We used comparative whole genome analysis of Danio rerio, Carassius auratus, Xenopus tropicalis, ...

  11. How has our knowledge of dinosaur diversity through geologic time changed through research history?

    Science.gov (United States)

    Tennant, Jonathan P; Chiarenza, Alfio Alessandro; Baron, Matthew

    2018-01-01

    Assessments of dinosaur macroevolution at any given time can be biased by the historical publication record. Recent studies have analysed patterns in dinosaur diversity that are based on secular variations in the numbers of published taxa. Many of these have employed a range of approaches that account for changes in the shape of the taxonomic abundance curve, which are largely dependent on databases compiled from the primary published literature. However, how these 'corrected' diversity patterns are influenced by the history of publication remains largely unknown. Here, we investigate the influence of publication history between 1991 and 2015 on our understanding of dinosaur evolution using raw diversity estimates and shareholder quorum subsampling for the three major subgroups: Ornithischia, Sauropodomorpha, and Theropoda. We find that, while sampling generally improves through time, there remain periods and regions in dinosaur evolutionary history where diversity estimates are highly volatile (e.g. the latest Jurassic of Europe, the mid-Cretaceous of North America, and the Late Cretaceous of South America). Our results show that historical changes in database compilation can often substantially influence our interpretations of dinosaur diversity. 'Global' estimates of diversity based on the fossil record are often also based on incomplete, and distinct regional signals, each subject to their own sampling history. Changes in the record of taxon abundance distribution, either through discovery of new taxa or addition of existing taxa to improve sampling evenness, are important in improving the reliability of our interpretations of dinosaur diversity. Furthermore, the number of occurrences and newly identified dinosaurs is still rapidly increasing through time, suggesting that it is entirely possible for much of what we know about dinosaurs at the present to change within the next 20 years.

  12. Book Review: Evolutionary Ecology of Birds: Life Histories, Mating ...

    African Journals Online (AJOL)

    Abstract. Book Title: Evolutionary Ecology of Birds: Life Histories, Mating Systems and Extinction. Book Authors: P.M. Bennett & I.P.F. Owens. Oxford University. Press. 2002. Pp. 272. Price £24.95 (paperback). ISBN 0 19 851089 6.

  13. Molecular phylogeography and evolutionary history of Poropuntius huangchuchieni (Cyprinidae in Southwest China.

    Directory of Open Access Journals (Sweden)

    Xiaoyun Wu

    Full Text Available The evolution of the Yunnan Plateau's drainages network during the Pleistocene was dominated by the intense uplifts of the Qinghai-Tibetan Plateau. In the present study, we investigated the association between the evolutionary histories of three main drainage systems and the geographic patterns of genetic differentiation of Poropuntius huangchuchieni.We sequenced the complete sequences of mitochondrial control region for 304 specimens and the sequences of Cytochrome b gene for 15 specimens of the species P. huangchuchieni and 5 specimens of Poropuntius opisthoptera. Phylogenetic analysis identified five major lineages, of which lineages MK-A and MK-B constrained to the Mekong River System, lineages RL and LX to the Red River System, and lineage SW to the Salween River System. The genetic distance and network analysis detected significant divergences among these lineages. Mismatch distribution analysis implied that the population of P. huangchuchieni underwent demographic stability and the lineage MK-B, sublineages MK-A1 and LX-1 underwent a recent population expansion. The divergence of the 5 major lineages was dated back to 0.73-1.57 MYA.Our results suggest that P. opisthoptera was a paraphyletic group of P. huangchuchieni. The phylogenetic pattern of P. huangchuchieni was mostly associated with the drainage's structures and the geomorphological history of the Southwest Yunnan Plateau. Also the differentiation of the major lineages among the three drainages systems coincides with the Kunlun-Yellow River Movement (1.10-0.60 MYA. The genetic differentiation within river basins and recent demographical expansions that occurred in some lineages and sublineages are consistent with the palaeoclimatic oscillations during the Pleistocene. Additionally, our results also suggest that the populations of P. huangchuchieni had keep long term large effective population sizes and demographic stability in the recent evolutionary history, which may be

  14. Phylogeny and evolutionary history of Leymus (Triticeae; Poaceae based on a single-copy nuclear gene encoding plastid acetyl-CoA carboxylase

    Directory of Open Access Journals (Sweden)

    Ding Cun-Bang

    2009-10-01

    Full Text Available Abstract Background Single- and low- copy genes are less likely subject to concerted evolution, thus making themselves ideal tools for studying the origin and evolution of polyploid taxa. Leymus is a polyploid genus with a diverse array of morphology, ecology and distribution in Triticeae. The genomic constitution of Leymus was assigned as NsXm, where Ns was presumed to be originated from Psathyrostachys, while Xm represented a genome of unknown origin. In addition, little is known about the evolutionary history of Leymus. Here, we investigate the phylogenetic relationship, genome donor, and evolutionary history of Leymus based on a single-copy nuclear Acc1 gene. Results Two homoeologues of the Acc1 gene were isolated from nearly all the sampled Leymus species using allele-specific primer and were analyzed with those from 35 diploid taxa representing 18 basic genomes in Triticeae. Sequence diversity patterns and genealogical analysis suggested that (1 Leymus is closely related to Psathyrostachys, Agropyron, and Eremopyrum; (2 Psathyrostachys juncea is an ancestral Ns-genome donor of Leymus species; (3 the Xm genome in Leymus may be originated from an ancestral lineage of Agropyron and Eremopyrum triticeum; (4 the Acc1 sequences of Leymus species from the Qinghai-Tibetan plateau are evolutionarily distinct; (5 North America Leymus species might originate from colonization via the Bering land bridge; (6 Leymus originated about 11-12MYA in Eurasia, and adaptive radiation might have occurred in Leymus during the period of 3.7-4.3 MYA and 1.7-2.1 MYA. Conclusion Leymus species have allopolyploid origin. It is hypothesized that the adaptive radiation of Leymus species might have been triggered by the recent upliftings of the Qinghai-Tibetan plateau and subsequent climatic oscillations. Adaptive radiation may have promoted the rapid speciation, as well as the fixation of unique morphological characters in Leymus. Our results shed new light on our

  15. Reconstruction of caribou evolutionary history in Western North America and its implications for conservation.

    Science.gov (United States)

    Weckworth, Byron V; Musiani, Marco; McDevitt, Allan D; Hebblewhite, Mark; Mariani, Stefano

    2012-07-01

    The role of Beringia as a refugium and route for trans-continental exchange of fauna during glacial cycles of the past 2million years are well documented; less apparent is its contribution as a significant reservoir of genetic diversity. Using mitochondrial DNA sequences and 14 microsatellite loci, we investigate the phylogeographic history of caribou (Rangifer tarandus) in western North America. Patterns of genetic diversity reveal two distinct groups of caribou. Caribou classified as a Northern group, of Beringian origin, exhibited greater number and variability in mtDNA haplotypes compared to a Southern group originating from refugia south of glacial ice. Results indicate that subspecies R. t. granti of Alaska and R. t. groenlandicus of northern Canada do not constitute distinguishable units at mtDNA or microsatellites, belying their current status as separate subspecies. Additionally, the Northern Mountain ecotype of woodland caribou (presently R. t. caribou) has closer kinship to caribou classified as granti or groenlandicus. Comparisons of mtDNA and microsatellite data suggest that behavioural and ecological specialization is a more recently derived life history characteristic. Notably, microsatellite differentiation among Southern herds is significantly greater, most likely as a result of human-induced landscape fragmentation and genetic drift due to smaller population sizes. These results not only provide important insight into the evolutionary history of northern species such as caribou, but also are important indicators for managers evaluating conservation measures for this threatened species. © 2012 Blackwell Publishing Ltd.

  16. A rapid loss of stripes: the evolutionary history of the extinct quagga.

    Science.gov (United States)

    Leonard, Jennifer A; Rohland, Nadin; Glaberman, Scott; Fleischer, Robert C; Caccone, Adalgisa; Hofreiter, Michael

    2005-09-22

    Twenty years ago, the field of ancient DNA was launched with the publication of two short mitochondrial (mt) DNA sequences from a single quagga (Equus quagga) museum skin, an extinct South African equid (Higuchi et al. 1984 Nature312, 282-284). This was the first extinct species from which genetic information was retrieved. The DNA sequences of the quagga showed that it was more closely related to zebras than to horses. However, quagga evolutionary history is far from clear. We have isolated DNA from eight quaggas and a plains zebra (subspecies or phenotype Equus burchelli burchelli). We show that the quagga displayed little genetic diversity and very recently diverged from the plains zebra, probably during the penultimate glacial maximum. This emphasizes the importance of Pleistocene climate changes for phylogeographic patterns in African as well as Holarctic fauna.

  17. Macro-evolutionary studies of cultural diversity: a review of empirical studies of cultural transmission and cultural adaptation.

    Science.gov (United States)

    Mace, Ruth; Jordan, Fiona M

    2011-02-12

    A growing body of theoretical and empirical research has examined cultural transmission and adaptive cultural behaviour at the individual, within-group level. However, relatively few studies have tried to examine proximate transmission or test ultimate adaptive hypotheses about behavioural or cultural diversity at a between-societies macro-level. In both the history of anthropology and in present-day work, a common approach to examining adaptive behaviour at the macro-level has been through correlating various cultural traits with features of ecology. We discuss some difficulties with simple ecological associations, and then review cultural phylogenetic studies that have attempted to go beyond correlations to understand the underlying cultural evolutionary processes. We conclude with an example of a phylogenetically controlled approach to understanding proximate transmission pathways in Austronesian cultural diversity.

  18. Assessing variation in life-history tactics within a population using mixture regression models: a practical guide for evolutionary ecologists.

    Science.gov (United States)

    Hamel, Sandra; Yoccoz, Nigel G; Gaillard, Jean-Michel

    2017-05-01

    Mixed models are now well-established methods in ecology and evolution because they allow accounting for and quantifying within- and between-individual variation. However, the required normal distribution of the random effects can often be violated by the presence of clusters among subjects, which leads to multi-modal distributions. In such cases, using what is known as mixture regression models might offer a more appropriate approach. These models are widely used in psychology, sociology, and medicine to describe the diversity of trajectories occurring within a population over time (e.g. psychological development, growth). In ecology and evolution, however, these models are seldom used even though understanding changes in individual trajectories is an active area of research in life-history studies. Our aim is to demonstrate the value of using mixture models to describe variation in individual life-history tactics within a population, and hence to promote the use of these models by ecologists and evolutionary ecologists. We first ran a set of simulations to determine whether and when a mixture model allows teasing apart latent clustering, and to contrast the precision and accuracy of estimates obtained from mixture models versus mixed models under a wide range of ecological contexts. We then used empirical data from long-term studies of large mammals to illustrate the potential of using mixture models for assessing within-population variation in life-history tactics. Mixture models performed well in most cases, except for variables following a Bernoulli distribution and when sample size was small. The four selection criteria we evaluated [Akaike information criterion (AIC), Bayesian information criterion (BIC), and two bootstrap methods] performed similarly well, selecting the right number of clusters in most ecological situations. We then showed that the normality of random effects implicitly assumed by evolutionary ecologists when using mixed models was often

  19. Evolutionary principles and their practical application

    DEFF Research Database (Denmark)

    Hendry, A. P.; Kinnison, M. T.; Heino, M.

    2011-01-01

    Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles...... are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design...... of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently...

  20. Evolutionary history of anglerfishes (Teleostei: Lophiiformes: a mitogenomic perspective

    Directory of Open Access Journals (Sweden)

    Shimazaki Mitsuomi

    2010-02-01

    Full Text Available Abstract Background The teleost order Lophiiformes, commonly known as the anglerfishes, contains a diverse array of marine fishes, ranging from benthic shallow-water dwellers to highly modified deep-sea midwater species. They comprise 321 living species placed in 68 genera, 18 families and 5 suborders, but approximately half of the species diversity is occupied by deep-sea ceratioids distributed among 11 families. The evolutionary origins of such remarkable habitat and species diversity, however, remain elusive because of the lack of fresh material for a majority of the deep-sea ceratioids and incompleteness of the fossil record across all of the Lophiiformes. To obtain a comprehensive picture of the phylogeny and evolutionary history of the anglerfishes, we assembled whole mitochondrial genome (mitogenome sequences from 39 lophiiforms (33 newly determined during this study representing all five suborders and 17 of the 18 families. Sequences of 77 higher teleosts including the 39 lophiiform sequences were unambiguously aligned and subjected to phylogenetic analysis and divergence time estimation. Results Partitioned maximum likelihood analysis confidently recovered monophyly for all of the higher taxa (including the order itself with the exception of the Thaumatichthyidae (Lasiognathus was deeply nested within the Oneirodidae. The mitogenomic trees strongly support the most basal and an apical position of the Lophioidei and a clade comprising Chaunacoidei + Ceratioidei, respectively, although alternative phylogenetic positions of the remaining two suborders (Antennarioidei and Ogcocephaloidei with respect to the above two lineages are statistically indistinguishable. While morphology-based intra-subordinal relationships for relatively shallow, benthic dwellers (Lophioidei, Antennarioidei, Ogcocephaloidei, Chaunacoidei are either congruent with or statistically indistinguishable from the present mitogenomic tree, those of the principally deep

  1. Phytochrome Interacting Factors (PIFs in Solanum lycopersicum: Diversity, Evolutionary History and Expression Profiling during Different Developmental Processes.

    Directory of Open Access Journals (Sweden)

    Daniele Rosado

    Full Text Available Although the importance of light for tomato plant yield and edible fruit quality is well known, the PHYTOCHROME INTERACTING FACTORS (PIFs, main components of phytochrome-mediated light signal transduction, have been studied almost exclusively in Arabidopsis thaliana. Here, the diversity, evolution and expression profile of PIF gene subfamily in Solanum lycopersicum was characterized. Eight tomato PIF loci were identified, named SlPIF1a, SlPIF1b, SlPIF3, SlPIF4, SlPIF7a, SlPIF7b, SlPIF8a and SlPIF8b. The duplication of SlPIF1, SlPIF7 and SlPIF8 genes were dated and temporally coincided with the whole-genome triplication event that preceded tomato and potato divergence. Different patterns of mRNA accumulation in response to light treatments were observed during seedling deetiolation, dark-induced senescence, diel cycle and fruit ripening. SlPIF4 showed similar expression profile as that reported for A. thaliana homologs, indicating an evolutionary conserved function of PIF4 clade. A comprehensive analysis of the evolutionary and transcriptional data allowed proposing that duplicated SlPIFs have undergone sub- and neofunctionalization at mRNA level, pinpointing the importance of transcriptional regulation for the maintenance of duplicated genes. Altogether, the results indicate that genome polyploidization and functional divergence have played a major role in diversification of the Solanum PIF gene subfamily.

  2. Reassessing the evolutionary history of ass-like equids: insights from patterns of genetic variation in contemporary extant populations.

    Science.gov (United States)

    Rosenbom, Sónia; Costa, Vânia; Chen, Shanyuan; Khalatbari, Leili; Yusefi, Gholam Hosein; Abdukadir, Ablimit; Yangzom, Chamba; Kebede, Fanuel; Teclai, Redae; Yohannes, Hagos; Hagos, Futsum; Moehlman, Patricia D; Beja-Pereira, Albano

    2015-04-01

    All extant equid species are grouped in a single genus - Equus. Among those, ass-like equids have remained particularly unstudied and their phylogenetic relations were poorly understood, most probably because they inhabit extreme environments in remote geographic areas. To gain further insights into the evolutionary history of ass-like equids, we have used a non-invasive sampling approach to collect representative fecal samples of extant African and Asiatic ass-like equid populations across their distribution range and mitochondrial DNA (mtDNA) sequencing analyses to examine intraspecific genetic diversity and population structure, and to reconstruct phylogenetic relations among wild ass species/subspecies. Sequence analyses of 410 base pairs of the fast evolving mtDNA control region identified the Asiatic wild ass population of Kalamaili (China) as the one displaying the highest diversity among all wild ass populations. Phylogenetic analyses of complete cytochrome b sequences revealed that African and Asiatic wild asses shared a common ancestor approximately 2.3Mya and that diversification in both groups occurred much latter, probably driven by climatic events during the Pleistocene. Inferred genetic relationships among Asiatic wild ass species do not support E. kiang monophyly, highlighting the need of more extensive studies in order to clarify the taxonomic status of species/subspecies belonging to this branch of the Equus phylogeny. These results highlight the importance of re-assessing the evolutionary history of ass-like equid species, and urge to extend studies at the population level to efficiently design conservation and management actions for these threatened species. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Extinction vs. Rapid Radiation: The Juxtaposed Evolutionary Histories of Coelotine Spiders Support the Eocene-Oligocene Orogenesis of the Tibetan Plateau.

    Science.gov (United States)

    Zhao, Zhe; Li, Shuqiang

    2017-11-01

    Evolutionary biology has long been concerned with how changing environments affect and drive the spatiotemporal development of organisms. Coelotine spiders (Agelenidae: Coelotinae) are common species in the temperate and subtropical areas of the Northern Hemisphere. Their long evolutionary history and the extremely imbalanced distribution of species richness suggest that Eurasian environments, especially since the Cenozoic, are the drivers of their diversification. We use phylogenetics, molecular dating, ancestral area reconstructions, diversity, and ecological niche analyses to investigate the spatiotemporal evolution of 286 coelotine species from throughout the region. Based on eight genes (6.5 kb) and 2323 de novo DNA sequences, analyses suggest an Eocene South China origin for them. Most extant, widespread species belong to the southern (SCG) or northern (NCG) clades. The origin of coelotine spiders appears to associate with either the Paleocene-Eocene Thermal Maximum or the hot period in early Eocene. Tibetan uplifting events influenced the current diversity patterns of coelotines. The origin of SCG lies outside of the Tibetan Plateau. Uplifting in the southeastern area of the plateau blocked dispersal since the Late Eocene. Continuous orogenesis appears to have created localized vicariant events, which drove rapid radiation in SCG. North-central Tibet is the likely location of origin for NCG and many lineages likely experienced extinction owing to uplifting since early Oligocene. Their evolutionary histories correspond with recent geological evidence that high-elevation orographical features existed in the Tibetan region as early as 40-35 Ma. Our discoveries may be the first empirical evidence that links the evolution of organisms to the Eocene-Oligocene uplifting of the Tibetan Plateau. [Tibet; biogeography; ecology; molecular clock; diversification.]. © The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic

  4. First insights into the evolutionary history of the Davallia repens complex

    NARCIS (Netherlands)

    Chen, C.-W.; Ngan, L.T.; Hidayat, A.; Evangelista, L.; Nooteboom, H.P.; Chiou, W.-L.

    2014-01-01

    Davallia repens and its close relatives have been identified as a species complex in this study because of the existence of continuously morphological variation. To decipher its evolutionary history, integrated methodologies were applied in this study including morphology, cytology, reproductive

  5. Evolutionary history, structural features and biochemical diversity of the NlpC/P60 superfamily of enzymes.

    Science.gov (United States)

    Anantharaman, Vivek; Aravind, L

    2003-01-01

    Peptidoglycan is hydrolyzed by a diverse set of enzymes during bacterial growth, development and cell division. The N1pC/P60 proteins define a family of cell-wall peptidases that are widely represented in various bacterial lineages. Currently characterized members are known to hydrolyze D-gamma-glutamyl-meso-diaminopimelate or N-acetylmuramate-L-alanine linkages. Detailed analysis of the N1pC/P60 peptidases showed that these proteins define a large superfamily encompassing several diverse groups of proteins. In addition to the well characterized P60-like proteins, this superfamily includes the AcmB/LytN and YaeF/YiiX families of bacterial proteins, the amidase domain of bacterial and kinetoplastid glutathionylspermidine synthases (GSPSs), and several proteins from eukaryotes, phages, poxviruses, positive-strand RNA viruses, and certain archaea. The eukaryotic members include lecithin retinol acyltransferase (LRAT), nematode developmental regulator Egl-26, and candidate tumor suppressor H-rev107. These eukaryotic proteins, along with the bacterial YaeF/poxviral G6R family, show a circular permutation of the catalytic domain. We identified three conserved residues, namely a cysteine, a histidine and a polar residue, that are involved in the catalytic activities of this superfamily. Evolutionary analysis of this superfamily shows that it comprises four major families, with diverse domain architectures in each of them. Several related, but distinct, catalytic activities, such as murein degradation, acyl transfer and amide hydrolysis, have emerged in the N1pC/P60 superfamily. The three conserved catalytic residues of this superfamily are shown to be equivalent to the catalytic triad of the papain-like thiol peptidases. The predicted structural features indicate that the N1pC/P60 enzymes contain a fold similar to the papain-like peptidases, transglutaminases and arylamine acetyltransferases.

  6. Evolutionary history of the porpoise family (Phocoenidae) : A perspective from mitogenomes

    NARCIS (Netherlands)

    Ben Chehida, Yacine; Aguilar, A. A.; Borrell, A.; Ferreira, M.; Taylor, B.L.; Rojas-Bracho, L.; Robertson, K.; Thumloup, Julie; Schumacher, C.; Vikingsson, G.A.; Morin, Phillip A.; Fontaine, Michael Christophe

    2017-01-01

    The six species of porpoises inhabit the cold waters of the globe, displaying a textbook example of anti-tropical distribution in marine mammals. Nevertheless, the evolutionary history of the porpoises still remained poorly understood, but this knowledge is crucial to illuminate the conservation

  7. The evolutionary legacy of diversification predicts ecosystem function

    Czech Academy of Sciences Publication Activity Database

    Yguel, B.; Jactel, H.; Pearse, I. S.; Moen, D.; Winter, M.; Hortal, J.; Helmus, M. R.; Kühn, I.; Pavoine, S.; Purschke, O.; Weiher, E.; Violle, C.; Ozinga, W.; Brändle, M.; Bartish, Igor; Prinzing, A.

    2016-01-01

    Roč. 188, č. 4 (2016), s. 398-410 ISSN 0003-0147 Grant - others:AV ČR(CZ) Fellowship J. E. Purkyně Institutional support: RVO:67985939 Keywords : community ecology * evolutionary history * phylogenetic diversity Subject RIV: EF - Botanics Impact factor: 4.167, year: 2016

  8. Diversity and Evolutionary Histories of Human Coronaviruses NL63 and 229E Associated with Acute Upper Respiratory Tract Symptoms in Kuala Lumpur, Malaysia.

    Science.gov (United States)

    Al-Khannaq, Maryam Nabiel; Ng, Kim Tien; Oong, Xiang Yong; Pang, Yong Kek; Takebe, Yutaka; Chook, Jack Bee; Hanafi, Nik Sherina; Kamarulzaman, Adeeba; Tee, Kok Keng

    2016-05-04

    The human alphacoronaviruses HCoV-NL63 and HCoV-229E are commonly associated with upper respiratory tract infections (URTI). Information on their molecular epidemiology and evolutionary dynamics in the tropical region of southeast Asia however is limited. Here, we analyzed the phylogenetic, temporal distribution, population history, and clinical manifestations among patients infected with HCoV-NL63 and HCoV-229E. Nasopharyngeal swabs were collected from 2,060 consenting adults presented with acute URTI symptoms in Kuala Lumpur, Malaysia, between 2012 and 2013. The presence of HCoV-NL63 and HCoV-229E was detected using multiplex polymerase chain reaction (PCR). The spike glycoprotein, nucleocapsid, and 1a genes were sequenced for phylogenetic reconstruction and Bayesian coalescent inference. A total of 68/2,060 (3.3%) subjects were positive for human alphacoronavirus; HCoV-NL63 and HCoV-229E were detected in 45 (2.2%) and 23 (1.1%) patients, respectively. A peak in the number of HCoV-NL63 infections was recorded between June and October 2012. Phylogenetic inference revealed that 62.8% of HCoV-NL63 infections belonged to genotype B, 37.2% was genotype C, while all HCoV-229E sequences were clustered within group 4. Molecular dating analysis indicated that the origin of HCoV-NL63 was dated to 1921, before it diverged into genotype A (1975), genotype B (1996), and genotype C (2003). The root of the HCoV-229E tree was dated to 1955, before it diverged into groups 1-4 between the 1970s and 1990s. The study described the seasonality, molecular diversity, and evolutionary dynamics of human alphacoronavirus infections in a tropical region. © The American Society of Tropical Medicine and Hygiene.

  9. Arginine deiminase pathway enzymes: evolutionary history in metamonads and other eukaryotes.

    Science.gov (United States)

    Novák, Lukáš; Zubáčová, Zuzana; Karnkowska, Anna; Kolisko, Martin; Hroudová, Miluše; Stairs, Courtney W; Simpson, Alastair G B; Keeling, Patrick J; Roger, Andrew J; Čepička, Ivan; Hampl, Vladimír

    2016-10-06

    Multiple prokaryotic lineages use the arginine deiminase (ADI) pathway for anaerobic energy production by arginine degradation. The distribution of this pathway among eukaryotes has been thought to be very limited, with only two specialized groups living in low oxygen environments (Parabasalia and Diplomonadida) known to possess the complete set of all three enzymes. We have performed an extensive survey of available sequence data in order to map the distribution of these enzymes among eukaryotes and to reconstruct their phylogenies. We have found genes for the complete pathway in almost all examined representatives of Metamonada, the anaerobic protist group that includes parabasalids and diplomonads. Phylogenetic analyses indicate the presence of the complete pathway in the last common ancestor of metamonads and heterologous transformation experiments suggest its cytosolic localization in the metamonad ancestor. Outside Metamonada, the complete pathway occurs rarely, nevertheless, it was found in representatives of most major eukaryotic clades. Phylogenetic relationships of complete pathways are consistent with the presence of the Archaea-derived ADI pathway in the last common ancestor of all eukaryotes, although other evolutionary scenarios remain possible. The presence of the incomplete set of enzymes is relatively common among eukaryotes and it may be related to the fact that these enzymes are involved in other cellular processes, such as the ornithine-urea cycle. Single protein phylogenies suggest that the evolutionary history of all three enzymes has been shaped by frequent gene losses and horizontal transfers, which may sometimes be connected with their diverse roles in cellular metabolism.

  10. Host use does not clarify the evolutionary history of African ticks ...

    African Journals Online (AJOL)

    Where host-parasite associations are rigid and unique, the host preference(s) of parasites and the evolutionary relationships between their hosts may offer insights into the parasites' evolu–tionary history. Where such associations are less rigid, however, the assumption that current host preferences are useful in formulating ...

  11. Contrasting population-level responses to Pleistocene climatic oscillations in an alpine bat revealed by complete mitochondrial genomes and evolutionary history inference

    DEFF Research Database (Denmark)

    Alberdi, Antton; Gilbert, M. Thomas P; Razgour, Orly

    2015-01-01

    Aim: We used an integrative approach to reconstruct the evolutionary history of the alpine long-eared bat, Plecotus macrobullaris, to test whether the variable effects of Pleistocene climatic oscillations across geographical regions led to contrasting population-level demographic histories within...... a single species. Location: The Western Palaearctic. Methods: We sequenced the complete mitochondrial genomes of 57 individuals from across the distribution of the species. The analysis integrated ecological niche modelling (ENM), approximate Bayesian computation (ABC), measures of genetic diversity...... and Bayesian phylogenetic methods. Results: We identified two deep lineages: a western lineage, restricted to the Pyrenees and the Alps, and an eastern lineage, which expanded across the mountain ranges east of the Dinarides (Croatia). ENM projections of past conditions predicted that climatic suitability...

  12. Evolutionary principles and their practical application.

    Science.gov (United States)

    Hendry, Andrew P; Kinnison, Michael T; Heino, Mikko; Day, Troy; Smith, Thomas B; Fitt, Gary; Bergstrom, Carl T; Oakeshott, John; Jørgensen, Peter S; Zalucki, Myron P; Gilchrist, George; Southerton, Simon; Sih, Andrew; Strauss, Sharon; Denison, Robert F; Carroll, Scott P

    2011-03-01

    Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently in these different fields, even though the underlying fundamental concepts are the same. We explore these fundamental concepts under four main themes: variation, selection, connectivity, and eco-evolutionary dynamics. Within each theme, we present several key evolutionary principles and illustrate their use in addressing applied problems. We hope that the resulting primer of evolutionary concepts and their practical utility helps to advance a unified multidisciplinary field of applied evolutionary biology.

  13. Different Histories, Different Destinies‒Impact of Evolutionary History and Population Genetic Structure on Extinction Risk of the Adriatic Spined Loaches (Genus Cobitis; Cypriniformes, Actinopterygii.

    Directory of Open Access Journals (Sweden)

    Ivana Buj

    Full Text Available The region of Balkans is often considered as an ichthyologic "hot spot", with a great number of species and high portion of endemics living in fresh waters in a relatively small area. The Adriatic watershed in Croatia and Herzegovina is inhabited by six spined loach species (genus Cobitis whose extinction risk estimations were based solely on their extent of occurrence (and/or area of occupancy and its fragmentation, and conservation proposals do not consider diversity below species level. In this investigation we employed molecular genetic methods to describe present genetic structure of the Adriatic spined loaches and reveal their demographic history. The divergence of the Adriatic lineages inside the genus Cobitis started in Miocene and lasted until Pleistocene epoch. Geological events responsible for shaping recent diversity of spined loaches in the Adriatic basin are: the Dinarid Mountains upwelling, the evolution of Dinaric Lake system, local tectonic activity, river connections during glaciations and differences in sea level. Even though all the investigated species inhabit karstic rivers located in the same geographic area and that were subject of similar geological events, the results obtained reveal great differences in their genetic diversity and structure and point out the necessity of different conservation measures to ensure their future viability. High level of genetic polymorphism is characteristic for species located more to the south. Two species comprised of more than one population have completely different intraspecific structure; populations of C. illyrica are genetically distinct and represent separate evolutionary significant units, whereas intraspecific structure of C. narentana corresponds to metapopulational pattern. Without population genetic data, evolutionary significant units could be easily misidentified. Furthermore, the obtained results affirm that population genetic measurements are able to detect differences

  14. Transdisciplinary Perspectives in Bioethics: A Co-evolutionary Introduction from the Big History

    Directory of Open Access Journals (Sweden)

    Javier Collado-Ruano

    2016-10-01

    Full Text Available The main objective of this work is to expand the bioethics notion expressed in the Article 17th of the Universal Declaration on Bioethics and Human Rights, concerning the interconnections between human beings and other life forms. For this purpose, it is combined the transdisciplinary methodology with the theoretical framework of the “Big History” to approach the co-evolutionary phenomena that life is developing on Earth for some 3.8 billion years. As a result, the study introduces us to the unification, integration and inclusion of the history of the universe, the solar system, Earth, and life with the history of human beings. In conclusion, I consider to safeguard the cosmic miracle that represents the emergence of life we must adopt new transdisciplinary perspectives into bioethics to address the ecosystem complexity of co-evolutionary processes of life on Gaia as a whole.

  15. Offense History and the Effectiveness of Juvenile Diversion Programs.

    Science.gov (United States)

    Osgood, D. Wayne; And Others

    Some evaluations have concluded that diversion programs for juvenile offenders (programs intended as community-based alternatives to formal justice dispositions) reduce recidivism only among youths with the least serious offense histories. To investigate the relationship of offense history to program effectiveness, three diversion programs were…

  16. Tempo and mode of genomic mutations unveil human evolutionary history.

    Science.gov (United States)

    Hara, Yuichiro

    2015-01-01

    Mutations that have occurred in human genomes provide insight into various aspects of evolutionary history such as speciation events and degrees of natural selection. Comparing genome sequences between human and great apes or among humans is a feasible approach for inferring human evolutionary history. Recent advances in high-throughput or so-called 'next-generation' DNA sequencing technologies have enabled the sequencing of thousands of individual human genomes, as well as a variety of reference genomes of hominids, many of which are publicly available. These sequence data can help to unveil the detailed demographic history of the lineage leading to humans as well as the explosion of modern human population size in the last several thousand years. In addition, high-throughput sequencing illustrates the tempo and mode of de novo mutations, which are producing human genetic variation at this moment. Pedigree-based human genome sequencing has shown that mutation rates vary significantly across the human genome. These studies have also provided an improved timescale of human evolution, because the mutation rate estimated from pedigree analysis is half that estimated from traditional analyses based on molecular phylogeny. Because of the dramatic reduction in sequencing cost, sequencing on-demand samples designed for specific studies is now also becoming popular. To produce data of sufficient quality to meet the requirements of the study, it is necessary to set an explicit sequencing plan that includes the choice of sample collection methods, sequencing platforms, and number of sequence reads.

  17. Climate constrains the evolutionary history and biodiversity of crocodylians.

    Science.gov (United States)

    Mannion, Philip D; Benson, Roger B J; Carrano, Matthew T; Tennant, Jonathan P; Judd, Jack; Butler, Richard J

    2015-09-24

    The fossil record of crocodylians and their relatives (pseudosuchians) reveals a rich evolutionary history, prompting questions about causes of long-term decline to their present-day low biodiversity. We analyse climatic drivers of subsampled pseudosuchian biodiversity over their 250 million year history, using a comprehensive new data set. Biodiversity and environmental changes correlate strongly, with long-term decline of terrestrial taxa driven by decreasing temperatures in northern temperate regions, and biodiversity decreases at lower latitudes matching patterns of increasing aridification. However, there is no relationship between temperature and biodiversity for marine pseudosuchians, with sea-level change and post-extinction opportunism demonstrated to be more important drivers. A 'modern-type' latitudinal biodiversity gradient might have existed throughout pseudosuchian history, and range expansion towards the poles occurred during warm intervals. Although their fossil record suggests that current global warming might promote long-term increases in crocodylian biodiversity and geographic range, the 'balancing forces' of anthropogenic environmental degradation complicate future predictions.

  18. Diversity and adaptive evolution of Saccharomyces wine yeast: a review

    Science.gov (United States)

    Marsit, Souhir; Dequin, Sylvie

    2015-01-01

    Saccharomyces cerevisiae and related species, the main workhorses of wine fermentation, have been exposed to stressful conditions for millennia, potentially resulting in adaptive differentiation. As a result, wine yeasts have recently attracted considerable interest for studying the evolutionary effects of domestication. The widespread use of whole-genome sequencing during the last decade has provided new insights into the biodiversity, population structure, phylogeography and evolutionary history of wine yeasts. Comparisons between S. cerevisiae isolates from various origins have indicated that a variety of mechanisms, including heterozygosity, nucleotide and structural variations, introgressions, horizontal gene transfer and hybridization, contribute to the genetic and phenotypic diversity of S. cerevisiae. This review will summarize the current knowledge on the diversity and evolutionary history of wine yeasts, focusing on the domestication fingerprints identified in these strains. PMID:26205244

  19. The environmental context of human evolutionary history in Eurasia and Africa.

    Science.gov (United States)

    Elton, Sarah

    2008-04-01

    This review has three main aims: (1) to make specific predictions about the habitat of the hypothetical last common ancestor of the chimpanzee/bonobo-human clade; (2) to outline the major trends in environments between 8-6 Ma and the late Pleistocene; and (3) to pinpoint when, and in some cases where, human ancestors evolved to cope with the wide range of habitats they presently tolerate. Several lines of evidence indicate that arboreal environments, particularly woodlands, were important habitats for late Miocene hominids and hominins, and therefore possibly for the last common ancestor of the chimpanzee/bonobo-human clade. However, as there is no clear candidate for this last common ancestor, and because the sampling of fossils and past environments is inevitably patchy, this prediction remains a working hypothesis at best. Nonetheless, as a primate, it is expected that the last common ancestor was ecologically dependent on trees in some form. Understanding past environments is important, as palaeoenvironmental reconstructions provide the context for human morphological and behavioural evolution. Indeed, the impact of climate on the evolutionary history of our species has long been debated. Since the mid-Miocene, the Earth has been experiencing a general cooling trend accompanied by aridification, which intensified during the later Pliocene and Pleistocene. Numerous climatic fluctuations, as well as local, regional and continental geography that influenced weather patterns and vegetation, created hominin environments that were dynamic in space and time. Behavioural flexibility and cultural complexity were crucial aspects of hominin expansion into diverse environments during the Pleistocene, but the ability to exploit varied and varying habitats was established much earlier in human evolutionary history. The development of increasingly complex tool technology facilitated re-expansion into tropical forests. These environments are difficult for obligate bipeds to

  20. Evolutionary History of the Enzymes Involved in the Calvin-Benson Cycle in Euglenids.

    Science.gov (United States)

    Markunas, Chelsea M; Triemer, Richard E

    2016-05-01

    Euglenids are an ancient lineage that may have existed as early as 2 billion years ago. A mere 65 years ago, Melvin Calvin and Andrew A. Benson performed experiments on Euglena gracilis and elucidated the series of reactions by which carbon was fixed and reduced during photosynthesis. However, the evolutionary history of this pathway (Calvin-Benson cycle) in euglenids was more complex than Calvin and Benson could have imagined. The chloroplast present today in euglenophytes arose from a secondary endosymbiosis between a phagotrophic euglenid and a prasinophyte green alga. A long period of evolutionary time existed before this secondary endosymbiotic event took place, which allowed for other endosymbiotic events or gene transfers to occur prior to the establishment of the green chloroplast. This research revealed the evolutionary history of the major enzymes of the Calvin-Benson cycle throughout the euglenid lineage and showed that the majority of genes for Calvin-Benson cycle enzymes shared an ancestry with red algae and/or chromophytes suggesting they may have been transferred to the nucleus prior to the acquisition of the green chloroplast. © 2015 The Author(s) Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.

  1. Biology Teachers' Conceptions of the Diversity of Life and the Historical Development of Evolutionary Concepts

    Science.gov (United States)

    da Silva, Paloma Rodrigues; de Andrade, Mariana A. Bologna Soares; de Andrade Caldeira, Ana Maria

    2015-01-01

    Biology is a science that involves study of the diversity of living organisms. This diversity has always generated questions and has motivated cultures to seek plausible explanations for the differences and similarities between types of organisms. In biology teaching, these issues are addressed by adopting an evolutionary approach. The aim of this…

  2. Bidirectional Dynamic Diversity Evolutionary Algorithm for Constrained Optimization

    Directory of Open Access Journals (Sweden)

    Weishang Gao

    2013-01-01

    Full Text Available Evolutionary algorithms (EAs were shown to be effective for complex constrained optimization problems. However, inflexible exploration-exploitation and improper penalty in EAs with penalty function would lead to losing the global optimum nearby or on the constrained boundary. To determine an appropriate penalty coefficient is also difficult in most studies. In this paper, we propose a bidirectional dynamic diversity evolutionary algorithm (Bi-DDEA with multiagents guiding exploration-exploitation through local extrema to the global optimum in suitable steps. In Bi-DDEA potential advantage is detected by three kinds of agents. The scale and the density of agents will change dynamically according to the emerging of potential optimal area, which play an important role of flexible exploration-exploitation. Meanwhile, a novel double optimum estimation strategy with objective fitness and penalty fitness is suggested to compute, respectively, the dominance trend of agents in feasible region and forbidden region. This bidirectional evolving with multiagents can not only effectively avoid the problem of determining penalty coefficient but also quickly converge to the global optimum nearby or on the constrained boundary. By examining the rapidity and veracity of Bi-DDEA across benchmark functions, the proposed method is shown to be effective.

  3. EvoluCode: Evolutionary Barcodes as a Unifying Framework for Multilevel Evolutionary Data.

    Science.gov (United States)

    Linard, Benjamin; Nguyen, Ngoc Hoan; Prosdocimi, Francisco; Poch, Olivier; Thompson, Julie D

    2012-01-01

    Evolutionary systems biology aims to uncover the general trends and principles governing the evolution of biological networks. An essential part of this process is the reconstruction and analysis of the evolutionary histories of these complex, dynamic networks. Unfortunately, the methodologies for representing and exploiting such complex evolutionary histories in large scale studies are currently limited. Here, we propose a new formalism, called EvoluCode (Evolutionary barCode), which allows the integration of different evolutionary parameters (eg, sequence conservation, orthology, synteny …) in a unifying format and facilitates the multilevel analysis and visualization of complex evolutionary histories at the genome scale. The advantages of the approach are demonstrated by constructing barcodes representing the evolution of the complete human proteome. Two large-scale studies are then described: (i) the mapping and visualization of the barcodes on the human chromosomes and (ii) automatic clustering of the barcodes to highlight protein subsets sharing similar evolutionary histories and their functional analysis. The methodologies developed here open the way to the efficient application of other data mining and knowledge extraction techniques in evolutionary systems biology studies. A database containing all EvoluCode data is available at: http://lbgi.igbmc.fr/barcodes.

  4. Origin and evolutionary history of freshwater Rhodophyta: further insights based on phylogenomic evidence.

    Science.gov (United States)

    Nan, Fangru; Feng, Jia; Lv, Junping; Liu, Qi; Fang, Kunpeng; Gong, Chaoyan; Xie, Shulian

    2017-06-07

    Freshwater representatives of Rhodophyta were sampled and the complete chloroplast and mitochondrial genomes were determined. Characteristics of the chloroplast and mitochondrial genomes were analyzed and phylogenetic relationship of marine and freshwater Rhodophyta were reconstructed based on the organelle genomes. The freshwater member Compsopogon caeruleus was determined for the largest chloroplast genome among multicellular Rhodophyta up to now. Expansion and subsequent reduction of both the genome size and GC content were observed in the Rhodophyta except for the freshwater Compsopogon caeruleus. It was inferred that the freshwater members of Rhodophyta occurred through diverse origins based on evidence of genome size, GC-content, phylogenomic analysis and divergence time estimation. The freshwater species Compsopogon caeruleus and Hildenbrandia rivularis originated and evolved independently at the inland water, whereas the Bangia atropurpurea, Batrachospermum arcuatum and Thorea hispida are derived from the marine relatives. The typical freshwater representatives Thoreales and Batrachospermales are probably derived from the marine relative Palmaria palmata at approximately 415-484 MYA. The origin and evolutionary history of freshwater Rhodophyta needs to be testified with more organelle genome sequences and wider global sampling.

  5. Evolutionary history of Otophysi (Teleostei, a major clade of the modern freshwater fishes: Pangaean origin and Mesozoic radiation

    Directory of Open Access Journals (Sweden)

    Saitoh Kenji

    2011-06-01

    Full Text Available Abstract Background Freshwater harbors approximately 12,000 fish species accounting for 43% of the diversity of all modern fish. A single ancestral lineage evolved into about two-thirds of this enormous biodiversity (≈ 7900 spp. and is currently distributed throughout the world's continents except Antarctica. Despite such remarkable species diversity and ubiquity, the evolutionary history of this major freshwater fish clade, Otophysi, remains largely unexplored. To gain insight into the history of otophysan diversification, we constructed a timetree based on whole mitogenome sequences across 110 species representing 55 of the 64 families. Results Partitioned maximum likelihood analysis based on unambiguously aligned sequences (9923 bp confidently recovered the monophyly of Otophysi and the two constituent subgroups (Cypriniformes and Characiphysi. The latter clade comprised three orders (Gymnotiformes, Characiformes, Siluriformes, and Gymnotiformes was sister to the latter two groups. One of the two suborders in Characiformes (Characoidei was more closely related to Siluriformes than to its own suborder (Citharinoidei, rendering the characiforms paraphyletic. Although this novel relationship did not receive strong statistical support, it was supported by analyzing independent nuclear markers. A relaxed molecular clock Bayesian analysis of the divergence times and reconstruction of ancestral habitats on the timetree suggest a Pangaean origin and Mesozoic radiation of otophysans. Conclusions The present timetree demonstrates that survival of the ancestral lineages through the two consecutive mass extinctions on Pangaea, and subsequent radiations during the Jurassic through early Cretaceous shaped the modern familial diversity of otophysans. This evolutionary scenario is consistent with recent arguments based on biogeographic inferences and molecular divergence time estimates. No fossil otophysan, however, has been recorded before the Albian, the

  6. Evolutionary history of Otophysi (Teleostei), a major clade of the modern freshwater fishes: Pangaean origin and Mesozoic radiation.

    Science.gov (United States)

    Nakatani, Masanori; Miya, Masaki; Mabuchi, Kohji; Saitoh, Kenji; Nishida, Mutsumi

    2011-06-22

    Freshwater harbors approximately 12,000 fish species accounting for 43% of the diversity of all modern fish. A single ancestral lineage evolved into about two-thirds of this enormous biodiversity (≈ 7900 spp.) and is currently distributed throughout the world's continents except Antarctica. Despite such remarkable species diversity and ubiquity, the evolutionary history of this major freshwater fish clade, Otophysi, remains largely unexplored. To gain insight into the history of otophysan diversification, we constructed a timetree based on whole mitogenome sequences across 110 species representing 55 of the 64 families. Partitioned maximum likelihood analysis based on unambiguously aligned sequences (9923 bp) confidently recovered the monophyly of Otophysi and the two constituent subgroups (Cypriniformes and Characiphysi). The latter clade comprised three orders (Gymnotiformes, Characiformes, Siluriformes), and Gymnotiformes was sister to the latter two groups. One of the two suborders in Characiformes (Characoidei) was more closely related to Siluriformes than to its own suborder (Citharinoidei), rendering the characiforms paraphyletic. Although this novel relationship did not receive strong statistical support, it was supported by analyzing independent nuclear markers. A relaxed molecular clock Bayesian analysis of the divergence times and reconstruction of ancestral habitats on the timetree suggest a Pangaean origin and Mesozoic radiation of otophysans. The present timetree demonstrates that survival of the ancestral lineages through the two consecutive mass extinctions on Pangaea, and subsequent radiations during the Jurassic through early Cretaceous shaped the modern familial diversity of otophysans. This evolutionary scenario is consistent with recent arguments based on biogeographic inferences and molecular divergence time estimates. No fossil otophysan, however, has been recorded before the Albian, the early Cretaceous 100-112 Ma, creating an over 100

  7. The beta-diversity of species interactions: Untangling the drivers of geographic variation in plant-pollinator diversity and function across scales.

    Science.gov (United States)

    Burkle, Laura A; Myers, Jonathan A; Belote, R Travis

    2016-01-01

    Geographic patterns of biodiversity have long inspired interest in processes that shape the assembly, diversity, and dynamics of communities at different spatial scales. To study mechanisms of community assembly, ecologists often compare spatial variation in community composition (beta-diversity) across environmental and spatial gradients. These same patterns inspired evolutionary biologists to investigate how micro- and macro-evolutionary processes create gradients in biodiversity. Central to these perspectives are species interactions, which contribute to community assembly and geographic variation in evolutionary processes. However, studies of beta-diversity have predominantly focused on single trophic levels, resulting in gaps in our understanding of variation in species-interaction networks (interaction beta-diversity), especially at scales most relevant to evolutionary studies of geographic variation. We outline two challenges and their consequences in scaling-up studies of interaction beta-diversity from local to biogeographic scales using plant-pollinator interactions as a model system in ecology, evolution, and conservation. First, we highlight how variation in regional species pools may contribute to variation in interaction beta-diversity among biogeographic regions with dissimilar evolutionary history. Second, we highlight how pollinator behavior (host-switching) links ecological networks to geographic patterns of plant-pollinator interactions and evolutionary processes. Third, we outline key unanswered questions regarding the role of geographic variation in plant-pollinator interactions for conservation and ecosystem services (pollination) in changing environments. We conclude that the largest advances in the burgeoning field of interaction beta-diversity will come from studies that integrate frameworks in ecology, evolution, and conservation to understand the causes and consequences of interaction beta-diversity across scales. © 2016 Botanical

  8. Hybridization masks speciation in the evolutionary history of the Galápagos marine iguana.

    Science.gov (United States)

    MacLeod, Amy; Rodríguez, Ariel; Vences, Miguel; Orozco-terWengel, Pablo; García, Carolina; Trillmich, Fritz; Gentile, Gabriele; Caccone, Adalgisa; Quezada, Galo; Steinfartz, Sebastian

    2015-06-22

    The effects of the direct interaction between hybridization and speciation-two major contrasting evolutionary processes--are poorly understood. We present here the evolutionary history of the Galápagos marine iguana (Amblyrhynchus cristatus) and reveal a case of incipient within--island speciation, which is paralleled by between-island hybridization. In-depth genome-wide analyses suggest that Amblyrhynchus diverged from its sister group, the Galápagos land iguanas, around 4.5 million years ago (Ma), but divergence among extant populations is exceedingly young (less than 50,000 years). Despite Amblyrhynchus appearing as a single long-branch species phylogenetically, we find strong population structure between islands, and one case of incipient speciation of sister lineages within the same island--ostensibly initiated by volcanic events. Hybridization between both lineages is exceedingly rare, yet frequent hybridization with migrants from nearby islands is evident. The contemporary snapshot provided by highly variable markers indicates that speciation events may have occurred throughout the evolutionary history of marine iguanas, though these events are not visible in the deeper phylogenetic trees. We hypothesize that the observed interplay of speciation and hybridization might be a mechanism by which local adaptations, generated by incipient speciation, can be absorbed into a common gene pool, thereby enhancing the evolutionary potential of the species as a whole. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. Hybridization masks speciation in the evolutionary history of the Galápagos marine iguana

    Science.gov (United States)

    MacLeod, Amy; Rodríguez, Ariel; Vences, Miguel; Orozco-terWengel, Pablo; García, Carolina; Trillmich, Fritz; Gentile, Gabriele; Caccone, Adalgisa; Quezada, Galo; Steinfartz, Sebastian

    2015-01-01

    The effects of the direct interaction between hybridization and speciation—two major contrasting evolutionary processes—are poorly understood. We present here the evolutionary history of the Galápagos marine iguana (Amblyrhynchus cristatus) and reveal a case of incipient within-island speciation, which is paralleled by between-island hybridization. In-depth genome-wide analyses suggest that Amblyrhynchus diverged from its sister group, the Galápagos land iguanas, around 4.5 million years ago (Ma), but divergence among extant populations is exceedingly young (less than 50 000 years). Despite Amblyrhynchus appearing as a single long-branch species phylogenetically, we find strong population structure between islands, and one case of incipient speciation of sister lineages within the same island—ostensibly initiated by volcanic events. Hybridization between both lineages is exceedingly rare, yet frequent hybridization with migrants from nearby islands is evident. The contemporary snapshot provided by highly variable markers indicates that speciation events may have occurred throughout the evolutionary history of marine iguanas, though these events are not visible in the deeper phylogenetic trees. We hypothesize that the observed interplay of speciation and hybridization might be a mechanism by which local adaptations, generated by incipient speciation, can be absorbed into a common gene pool, thereby enhancing the evolutionary potential of the species as a whole. PMID:26041359

  10. Diversity and evolutionary patterns of immune genes in free-ranging Namibian leopards (Panthera pardus pardus).

    Science.gov (United States)

    Castro-Prieto, Aines; Wachter, Bettina; Melzheimer, Joerg; Thalwitzer, Susanne; Sommer, Simone

    2011-01-01

    The genes of the major histocompatibility complex (MHC) are a key component of the mammalian immune system and have become important molecular markers for fitness-related genetic variation in wildlife populations. Currently, no information about the MHC sequence variation and constitution in African leopards exists. In this study, we isolated and characterized genetic variation at the adaptively most important region of MHC class I and MHC class II-DRB genes in 25 free-ranging African leopards from Namibia and investigated the mechanisms that generate and maintain MHC polymorphism in the species. Using single-stranded conformation polymorphism analysis and direct sequencing, we detected 6 MHC class I and 6 MHC class II-DRB sequences, which likely correspond to at least 3 MHC class I and 3 MHC class II-DRB loci. Amino acid sequence variation in both MHC classes was higher or similar in comparison to other reported felids. We found signatures of positive selection shaping the diversity of MHC class I and MHC class II-DRB loci during the evolutionary history of the species. A comparison of MHC class I and MHC class II-DRB sequences of the leopard to those of other felids revealed a trans-species mode of evolution. In addition, the evolutionary relationships of MHC class II-DRB sequences between African and Asian leopard subspecies are discussed.

  11. The evolutionary history of the SAL1 gene family in eutherian mammals

    Directory of Open Access Journals (Sweden)

    Callebaut Isabelle

    2011-05-01

    Full Text Available Abstract Background SAL1 (salivary lipocalin is a member of the OBP (Odorant Binding Protein family and is involved in chemical sexual communication in pig. SAL1 and its relatives may be involved in pheromone and olfactory receptor binding and in pre-mating behaviour. The evolutionary history and the selective pressures acting on SAL1 and its orthologous genes have not yet been exhaustively described. The aim of the present work was to study the evolution of these genes, to elucidate the role of selective pressures in their evolution and the consequences for their functions. Results Here, we present the evolutionary history of SAL1 gene and its orthologous genes in mammals. We found that (1 SAL1 and its related genes arose in eutherian mammals with lineage-specific duplications in rodents, horse and cow and are lost in human, mouse lemur, bushbaby and orangutan, (2 the evolution of duplicated genes of horse, rat, mouse and guinea pig is driven by concerted evolution with extensive gene conversion events in mouse and guinea pig and by positive selection mainly acting on paralogous genes in horse and guinea pig, (3 positive selection was detected for amino acids involved in pheromone binding and amino acids putatively involved in olfactory receptor binding, (4 positive selection was also found for lineage, indicating a species-specific strategy for amino acid selection. Conclusions This work provides new insights into the evolutionary history of SAL1 and its orthologs. On one hand, some genes are subject to concerted evolution and to an increase in dosage, suggesting the need for homogeneity of sequence and function in certain species. On the other hand, positive selection plays a role in the diversification of the functions of the family and in lineage, suggesting adaptive evolution, with possible consequences for speciation and for the reinforcement of prezygotic barriers.

  12. Evolutionary Nephrology.

    Science.gov (United States)

    Chevalier, Robert L

    2017-05-01

    Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as "maladaptive." In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic) adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ~40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons), evolutionary selection for APOL1 mutations (that provide resistance to trypanosome infection, a tradeoff), and modern life experience (Western diet mismatch leading to diabetes and hypertension). Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo), developmental programming and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.

  13. Evolutionary Nephrology

    Directory of Open Access Journals (Sweden)

    Robert L. Chevalier

    2017-05-01

    Full Text Available Progressive kidney disease follows nephron loss, hyperfiltration, and incomplete repair, a process described as “maladaptive.” In the past 20 years, a new discipline has emerged that expands research horizons: evolutionary medicine. In contrast to physiologic (homeostatic adaptation, evolutionary adaptation is the result of reproductive success that reflects natural selection. Evolutionary explanations for physiologically maladaptive responses can emerge from mismatch of the phenotype with environment or from evolutionary tradeoffs. Evolutionary adaptation to a terrestrial environment resulted in a vulnerable energy-consuming renal tubule and a hypoxic, hyperosmolar microenvironment. Natural selection favors successful energy investment strategy: energy is allocated to maintenance of nephron integrity through reproductive years, but this declines with increasing senescence after ∼40 years of age. Risk factors for chronic kidney disease include restricted fetal growth or preterm birth (life history tradeoff resulting in fewer nephrons, evolutionary selection for APOL1 mutations (which provide resistance to trypanosome infection, a tradeoff, and modern life experience (Western diet mismatch leading to diabetes and hypertension. Current advances in genomics, epigenetics, and developmental biology have revealed proximate causes of kidney disease, but attempts to slow kidney disease remain elusive. Evolutionary medicine provides a complementary approach by addressing ultimate causes of kidney disease. Marked variation in nephron number at birth, nephron heterogeneity, and changing susceptibility to kidney injury throughout the life history are the result of evolutionary processes. Combined application of molecular genetics, evolutionary developmental biology (evo-devo, developmental programming, and life history theory may yield new strategies for prevention and treatment of chronic kidney disease.

  14. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage.

    OpenAIRE

    Merker Matthias; Blin Camille; Mona Stefano; Duforet-Frebourg Nicolas; Lecher Sophie; Willery Eve; Blum Michael G B; Rüsch-Gerdes Sabine; Mokrousov Igor; Aleksic Eman; Allix-Béguec Caroline; Antierens Annick; Augustynowicz-Kopec Ewa; Ballif Marie; Barletta Francesca

    2015-01-01

    International audience; Mycobacterium tuberculosis strains of the Beijing lineage are globally distributed and are associated with the massive spread of multidrug-resistant (MDR) tuberculosis in Eurasia. Here we reconstructed the biogeographical structure and evolutionary history of this lineage by genetic analysis of 4,987 isolates from 99 countries and whole-genome sequencing of 110 representative isolates. We show that this lineage initially originated in the Far East, from where it radiat...

  15. The evolutionary history of colour polymorphism in Ischnura damselflies.

    Science.gov (United States)

    Sánchez-Guillén, Rosa A; Cordero-Rivera, Adolfo; Rivas-Torres, Anais; Wellenreuther, Maren; Bybee, Seth; Hansson, Bengt; Velasquez-Vélez, María I; Realpe, Emilio; Chávez-Ríos, Jesús R; Villalobos, Fabricio; Dumont, Henri

    2018-05-10

    A major challenge in evolutionary biology consists of understanding how genetic and phenotypic variation is created and maintained. In the present study, we investigated the origin(s) and evolutionary patterns of the female-limited colour polymorphism in ischnuran damselflies. These consist of the presence of one to three colour morphs: one androchrome morph with a colouration that is similar to the male, and two gynochrome morphs (infuscans and aurantiaca) with female-specific colouration. We (i) documented the colour and mating system of 44 of the 75 taxa within the genus Ischnura, (ii) reconstructed the evolutionary history of colour and mating system to identify the ancestral state, (iii) evaluated the stability of the colour morph status over time, and (iv) tested for a correlation between colour and mating system. We found that the ances tral female colour of Ischnura was monomorphic and aurantiaca and that colour morph status changed over time; characterised by many gains and losses across the species tree. Our results further showed that colour polymorphism is significantly more frequent among polyandric species, whereas monandric species tend to be monomorphic. Research on some Ischnura species has shown that colour morphs have evolved to reduce male mating harassment, and our finding that the same phenotypic morphs have evolved multiple times (convergent evolution) suggests that several species in this genus might be experiencing similar selective pressures. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Evolutionary history of Leishmania killicki (synonymous Leishmania tropica) and taxonomic implications.

    Science.gov (United States)

    Chaara, Dhekra; Ravel, Christophe; Bañuls, Anne- Laure; Haouas, Najoua; Lami, Patrick; Talignani, Loïc; El Baidouri, Fouad; Jaouadi, Kaouther; Harrat, Zoubir; Dedet, Jean-Pierre; Babba, Hamouda; Pratlong, Francine

    2015-04-01

    The taxonomic status of Leishmania (L.) killicki, a parasite that causes chronic cutaneous leishmaniasis, is not well defined yet. Indeed, some researchers suggested that this taxon could be included in the L. tropica complex, whereas others considered it as a distinct phylogenetic complex. To try to solve this taxonomic issue we carried out a detailed study on the evolutionary history of L. killicki relative to L. tropica. Thirty-five L. killicki and 25 L. tropica strains isolated from humans and originating from several countries were characterized using the MultiLocus Enzyme Electrophoresis (MLEE) and the MultiLocus Sequence Typing (MLST) approaches. The results of the genetic and phylogenetic analyses strongly support the hypothesis that L. killicki belongs to the L. tropica complex. Our data suggest that L. killicki emerged from a single founder event and that it evolved independently from L. tropica. However, they do not validate the hypothesis that L. killicki is a distinct complex. Therefore, we suggest naming this taxon L. killicki (synonymous L. tropica) until further epidemiological and phylogenetic studies justify the L. killicki denomination. This study provides taxonomic and phylogenetic information on L. killicki and improves our knowledge on the evolutionary history of this taxon.

  17. A classification scheme for alternative oxidases reveals the taxonomic distribution and evolutionary history of the enzyme in angiosperms.

    Science.gov (United States)

    Costa, José Hélio; McDonald, Allison E; Arnholdt-Schmitt, Birgit; Fernandes de Melo, Dirce

    2014-11-01

    A classification scheme based on protein phylogenies and sequence harmony method was used to clarify the taxonomic distribution and evolutionary history of the alternative oxidase (AOX) in angiosperms. A large data set analyses showed that AOX1 and AOX2 subfamilies were distributed into 4 phylogenetic clades: AOX1a-c/1e, AOX1d, AOX2a-c and AOX2d. High diversity in AOX family compositions was found. While the AOX2 subfamily was not detected in monocots, the AOX1 subfamily has expanded (AOX1a-e) in the large majority of these plants. In addition, Poales AOX1b and 1d were orthologous to eudicots AOX1d and then renamed as AOX1d1 and 1d2. AOX1 or AOX2 losses were detected in some eudicot plants. Several AOX2 duplications (AOX2a-c) were identified in eudicot species, mainly in the asterids. The AOX2b originally identified in eudicots in the Fabales order (soybean, cowpea) was divergent from AOX2a-c showing some specific amino acids with AOX1d and then it was renamed as AOX2d. AOX1d and AOX2d seem to be stress-responsive, facultative and mutually exclusive among species suggesting a complementary role with an AOX1(a) in stress conditions. Based on the data collected, we present a model for the evolutionary history of AOX in angiosperms and highlight specific areas where further research would be most beneficial. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira

    DEFF Research Database (Denmark)

    Palomo, Alejandro; Pedersen, Anders Gorm; Fowler, Jane

    2018-01-01

    genomes encode genes that might allow efficient growth at low oxygen concentrations. Regarding the evolutionary history of comammox Nitrospira, our analyses indicate that several genes belonging to the ammonia oxidation pathway could have been laterally transferred from β-AOB to comammox Nitrospira. We...

  19. History Lessons: Inequality, Diversity and the National Curriculum

    Science.gov (United States)

    Alexander, Claire; Weekes-Bernard, Debbie

    2017-01-01

    This article explores the continued importance of teaching a diverse curriculum at a time when issues of racial and ethnic equality and diversity have been increasingly sidelined in the political discussion around "British" values and identities, and how these should be taught in schools. The 2014 History National curriculum, in…

  20. Next-generation sequencing and phylogenetic signal of complete mitochondrial genomes for resolving the evolutionary history of leaf-nosed bats (Phyllostomidae).

    Science.gov (United States)

    Botero-Castro, Fidel; Tilak, Marie-ka; Justy, Fabienne; Catzeflis, François; Delsuc, Frédéric; Douzery, Emmanuel J P

    2013-12-01

    Leaf-nosed bats (Phyllostomidae) are one of the most studied groups within the order Chiroptera mainly because of their outstanding species richness and diversity in morphological and ecological traits. Rapid diversification and multiple homoplasies have made the phylogeny of the family difficult to solve using morphological characters. Molecular data have contributed to shed light on the evolutionary history of phyllostomid bats, yet several relationships remain unresolved at the intra-familial level. Complete mitochondrial genomes have proven useful to deal with this kind of situation in other groups of mammals by providing access to a large number of molecular characters. At present, there are only two mitogenomes available for phyllostomid bats hinting at the need for further exploration of the mitogenomic approach in this group. We used both standard Sanger sequencing of PCR products and next-generation sequencing (NGS) of shotgun genomic DNA to obtain new complete mitochondrial genomes from 10 species of phyllostomid bats, including representatives of major subfamilies, plus one outgroup belonging to the closely-related mormoopids. We then evaluated the contribution of mitogenomics to the resolution of the phylogeny of leaf-nosed bats and compared the results to those based on mitochondrial genes and the RAG2 and VWF nuclear makers. Our results demonstrate the advantages of the Illumina NGS approach to efficiently obtain mitogenomes of phyllostomid bats. The phylogenetic signal provided by entire mitogenomes is highly comparable to the one of a concatenation of individual mitochondrial and nuclear markers, and allows increasing both resolution and statistical support for several clades. This enhanced phylogenetic signal is the result of combining markers with heterogeneous evolutionary rates representing a large number of nucleotide sites. Our results illustrate the potential of the NGS mitogenomic approach for resolving the evolutionary history of

  1. From success to persistence: Identifying an evolutionary regime shift in the diverse Paleozoic aquatic arthropod group Eurypterida, driven by the Devonian biotic crisis.

    Science.gov (United States)

    Lamsdell, James C; Selden, Paul A

    2017-01-01

    Mass extinctions have altered the trajectory of evolution a number of times over the Phanerozoic. During these periods of biotic upheaval a different selective regime appears to operate, although it is still unclear whether consistent survivorship rules apply across different extinction events. We compare variations in diversity and disparity across the evolutionary history of a major Paleozoic arthropod group, the Eurypterida. Using these data, we explore the group's transition from a successful, dynamic clade to a stagnant persistent lineage, pinpointing the Devonian as the period during which this evolutionary regime shift occurred. The late Devonian biotic crisis is potentially unique among the "Big Five" mass extinctions in exhibiting a drop in speciation rates rather than an increase in extinction. Our study reveals eurypterids show depressed speciation rates throughout the Devonian but no abnormal peaks in extinction. Loss of morphospace occupation is random across all Paleozoic extinction events; however, differential origination during the Devonian results in a migration and subsequent stagnation of occupied morphospace. This shift appears linked to an ecological transition from euryhaline taxa to freshwater species with low morphological diversity alongside a decrease in endemism. These results demonstrate the importance of the Devonian biotic crisis in reshaping Paleozoic ecosystems. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  2. Clonal diversity and estimation of relative clone age: application to agrobiodiversity of yam (Dioscorea rotundata).

    Science.gov (United States)

    Scarcelli, Nora; Couderc, Marie; Baco, Mohamed N; Egah, Janvier; Vigouroux, Yves

    2013-11-13

    Clonal propagation is a particular reproductive system found in both the plant and animal kingdoms, from human parasites to clonally propagated crops. Clonal diversity provides information about plant and animal evolutionary history, i.e. how clones spread, or the age of a particular clone. In plants, this could provide valuable information about agrobiodiversity dynamics and more broadly about the evolutionary history of a particular crop. We studied the evolutionary history of yam, Dioscorea rotundata. In Africa, Yam is cultivated by tuber clonal propagation. We used 12 microsatellite markers to identify intra-clonal diversity in yam varieties. We then used this diversity to assess the relative ages of clones. Using simulations, we assessed how Approximate Bayesian Computation could use clonal diversity to estimate the age of a clone depending on the size of the sample, the number of independent samples and the number of markers. We then applied this approach to our particular dataset and showed that the relative ages of varieties could be estimated, and that each variety could be ranked by age. We give a first estimation of clone age in an approximate Bayesian framework. However the precise estimation of clone age depends on the precision of the mutation rate. We provide useful information on agrobiodiversity dynamics and suggest recurrent creation of varietal diversity in a clonally propagated crop.

  3. The antiquity and evolutionary history of social behavior in bees.

    Directory of Open Access Journals (Sweden)

    Sophie Cardinal

    Full Text Available A long-standing controversy in bee social evolution concerns whether highly eusocial behavior has evolved once or twice within the corbiculate Apidae. Corbiculate bees include the highly eusocial honey bees and stingless bees, the primitively eusocial bumble bees, and the predominantly solitary or communal orchid bees. Here we use a model-based approach to reconstruct the evolutionary history of eusociality and date the antiquity of eusocial behavior in apid bees, using a recent molecular phylogeny of the Apidae. We conclude that eusociality evolved once in the common ancestor of the corbiculate Apidae, advanced eusociality evolved independently in the honey and stingless bees, and that eusociality was lost in the orchid bees. Fossil-calibrated divergence time estimates reveal that eusociality first evolved at least 87 Mya (78 to 95 Mya in the corbiculates, much earlier than in other groups of bees with less complex social behavior. These results provide a robust new evolutionary framework for studies of the organization and genetic basis of social behavior in honey bees and their relatives.

  4. Evolutionary history of the angiosperm flora of China

    Science.gov (United States)

    Lu, Li-Min; Mao, Ling-Feng; Yang, Tuo; Ye, Jian-Fei; Liu, Bing; Li, Hong-Lei; Sun, Miao; Miller, Joseph T.; Mathews, Sarah; Hu, Hai-Hua; Niu, Yan-Ting; Peng, Dan-Xiao; Chen, You-Hua; Smith, Stephen A.; Chen, Min; Xiang, Kun-Li; Le, Chi-Toan; Dang, Viet-Cuong; Lu, An-Ming; Soltis, Pamela S.; Soltis, Douglas E.; Li, Jian-Hua; Chen, Zhi-Duan

    2018-02-01

    High species diversity may result from recent rapid speciation in a ‘cradle’ and/or the gradual accumulation and preservation of species over time in a ‘museum’. China harbours nearly 10% of angiosperm species worldwide and has long been considered as both a museum, owing to the presence of many species with hypothesized ancient origins, and a cradle, as many lineages have originated as recent topographic changes and climatic shifts—such as the formation of the Qinghai-Tibetan Plateau and the development of the monsoon—provided new habitats that promoted remarkable radiation. However, no detailed phylogenetic study has addressed when and how the major components of the Chinese angiosperm flora assembled to form the present-day vegetation. Here we investigate the spatio-temporal divergence patterns of the Chinese flora using a dated phylogeny of 92% of the angiosperm genera for the region, a nearly complete species-level tree comprising 26,978 species and detailed spatial distribution data. We found that 66% of the angiosperm genera in China did not originate until early in the Miocene epoch (23 million years ago (Mya)). The flora of eastern China bears a signature of older divergence (mean divergence times of 22.04-25.39 Mya), phylogenetic overdispersion (spatial co-occurrence of distant relatives) and higher phylogenetic diversity. In western China, the flora shows more recent divergence (mean divergence times of 15.29-18.86 Mya), pronounced phylogenetic clustering (co-occurrence of close relatives) and lower phylogenetic diversity. Analyses of species-level phylogenetic diversity using simulated branch lengths yielded results similar to genus-level patterns. Our analyses indicate that eastern China represents a floristic museum, and western China an evolutionary cradle, for herbaceous genera; eastern China has served as both a museum and a cradle for woody genera. These results identify areas of high species richness and phylogenetic diversity, and

  5. Genetic Diversity and Demographic History of Wild and Cultivated/Naturalised Plant Populations: Evidence from Dalmatian Sage (Salvia officinalis L., Lamiaceae)

    Science.gov (United States)

    Rešetnik, Ivana; Baričevič, Dea; Batîr Rusu, Diana; Carović-Stanko, Klaudija; Chatzopoulou, Paschalina; Dajić-Stevanović, Zora; Gonceariuc, Maria; Grdiša, Martina; Greguraš, Danijela; Ibraliu, Alban; Jug-Dujaković, Marija; Krasniqi, Elez; Liber, Zlatko; Murtić, Senad; Pećanac, Dragana; Radosavljević, Ivan; Stefkov, Gjoshe; Stešević, Danijela; Šoštarić, Ivan; Šatović, Zlatko

    2016-01-01

    Dalmatian sage (Salvia officinalis L., Lamiaceae) is a well-known aromatic and medicinal Mediterranean plant that is native in coastal regions of the western Balkan and southern Apennine Peninsulas and is commonly cultivated worldwide. It is widely used in the food, pharmaceutical and cosmetic industries. Knowledge of its genetic diversity and spatiotemporal patterns is important for plant breeding programmes and conservation. We used eight microsatellite markers to investigate evolutionary history of indigenous populations as well as genetic diversity and structure within and among indigenous and cultivated/naturalised populations distributed across the Balkan Peninsula. The results showed a clear separation between the indigenous and cultivated/naturalised groups, with the cultivated material originating from one restricted geographical area. Most of the genetic diversity in both groups was attributable to differences among individuals within populations, although spatial genetic analysis of indigenous populations indicated the existence of isolation by distance. Geographical structuring of indigenous populations was found using clustering analysis, with three sub-clusters of indigenous populations. The highest level of gene diversity and the greatest number of private alleles were found in the central part of the eastern Adriatic coast, while decreases in gene diversity and number of private alleles were evident towards the northwestern Adriatic coast and southern and eastern regions of the Balkan Peninsula. The results of Ecological Niche Modelling during Last Glacial Maximum and Approximate Bayesian Computation suggested two plausible evolutionary trajectories: 1) the species survived in the glacial refugium in southern Adriatic coastal region with subsequent colonization events towards northern, eastern and southern Balkan Peninsula; 2) species survived in several refugia exhibiting concurrent divergence into three genetic groups. The insight into genetic

  6. Evolutionary thinking

    Science.gov (United States)

    Hunt, Tam

    2014-01-01

    Evolution as an idea has a lengthy history, even though the idea of evolution is generally associated with Darwin today. Rebecca Stott provides an engaging and thoughtful overview of this history of evolutionary thinking in her 2013 book, Darwin's Ghosts: The Secret History of Evolution. Since Darwin, the debate over evolution—both how it takes place and, in a long war of words with religiously-oriented thinkers, whether it takes place—has been sustained and heated. A growing share of this debate is now devoted to examining how evolutionary thinking affects areas outside of biology. How do our lives change when we recognize that all is in flux? What can we learn about life more generally if we study change instead of stasis? Carter Phipps’ book, Evolutionaries: Unlocking the Spiritual and Cultural Potential of Science's Greatest Idea, delves deep into this relatively new development. Phipps generally takes as a given the validity of the Modern Synthesis of evolutionary biology. His story takes us into, as the subtitle suggests, the spiritual and cultural implications of evolutionary thinking. Can religion and evolution be reconciled? Can evolutionary thinking lead to a new type of spirituality? Is our culture already being changed in ways that we don't realize by evolutionary thinking? These are all important questions and Phipps book is a great introduction to this discussion. Phipps is an author, journalist, and contributor to the emerging “integral” or “evolutionary” cultural movement that combines the insights of Integral Philosophy, evolutionary science, developmental psychology, and the social sciences. He has served as the Executive Editor of EnlightenNext magazine (no longer published) and more recently is the co-founder of the Institute for Cultural Evolution, a public policy think tank addressing the cultural roots of America's political challenges. What follows is an email interview with Phipps. PMID:26478766

  7. Evolutionary public health: introducing the concept.

    Science.gov (United States)

    Wells, Jonathan C K; Nesse, Randolph M; Sear, Rebecca; Johnstone, Rufus A; Stearns, Stephen C

    2017-07-29

    The emerging discipline of evolutionary medicine is breaking new ground in understanding why people become ill. However, the value of evolutionary analyses of human physiology and behaviour is only beginning to be recognised in the field of public health. Core principles come from life history theory, which analyses the allocation of finite amounts of energy between four competing functions-maintenance, growth, reproduction, and defence. A central tenet of evolutionary theory is that organisms are selected to allocate energy and time to maximise reproductive success, rather than health or longevity. Ecological interactions that influence mortality risk, nutrient availability, and pathogen burden shape energy allocation strategies throughout the life course, thereby affecting diverse health outcomes. Public health interventions could improve their own effectiveness by incorporating an evolutionary perspective. In particular, evolutionary approaches offer new opportunities to address the complex challenges of global health, in which populations are differentially exposed to the metabolic consequences of poverty, high fertility, infectious diseases, and rapid changes in nutrition and lifestyle. The effect of specific interventions is predicted to depend on broader factors shaping life expectancy. Among the important tools in this approach are mathematical models, which can explore probable benefits and limitations of interventions in silico, before their implementation in human populations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Evolutionary History of Saber-Toothed Cats Based on Ancient Mitogenomics.

    Science.gov (United States)

    Paijmans, Johanna L A; Barnett, Ross; Gilbert, M Thomas P; Zepeda-Mendoza, M Lisandra; Reumer, Jelle W F; de Vos, John; Zazula, Grant; Nagel, Doris; Baryshnikov, Gennady F; Leonard, Jennifer A; Rohland, Nadin; Westbury, Michael V; Barlow, Axel; Hofreiter, Michael

    2017-11-06

    Saber-toothed cats (Machairodontinae) are among the most widely recognized representatives of the now largely extinct Pleistocene megafauna. However, many aspects of their ecology, evolution, and extinction remain uncertain. Although ancient-DNA studies have led to huge advances in our knowledge of these aspects of many other megafauna species (e.g., mammoths and cave bears), relatively few ancient-DNA studies have focused on saber-toothed cats [1-3], and they have been restricted to short fragments of mitochondrial DNA. Here we investigate the evolutionary history of two lineages of saber-toothed cats (Smilodon and Homotherium) in relation to living carnivores and find that the Machairodontinae form a well-supported clade that is distinct from all living felids. We present partial mitochondrial genomes from one S. populator sample and three Homotherium sp. samples, including the only Late Pleistocene Homotherium sample from Eurasia [4]. We confirm the identification of the unique Late Pleistocene European fossil through ancient-DNA analyses, thus strengthening the evidence that Homotherium occurred in Europe over 200,000 years later than previously believed. This in turn forces a re-evaluation of its demography and extinction dynamics. Within the Machairodontinae, we find a deep divergence between Smilodon and Homotherium (∼18 million years) but limited diversity between the American and European Homotherium specimens. The genetic data support the hypothesis that all Late Pleistocene (or post-Villafrancian) Homotherium should be considered a single species, H. latidens, which was previously proposed based on morphological data [5, 6]. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A clarified position for solanum lycopersicum var. cerasiforme in the evolutionary history of tomatoes (solanaceae

    Directory of Open Access Journals (Sweden)

    Causse Mathilde

    2008-12-01

    Full Text Available Abstract Background The natural phenotypic variability present in the germplasm of cultivated plants can be linked to molecular polymorphisms using association genetics. However it is necessary to consider the genetic structure of the germplasm used to avoid false association. The knowledge of genetic structure of plant populations can help in inferring plant evolutionary history. In this context, we genotyped 360 wild, feral and cultivated accessions with 20 simple sequence repeat markers and investigated the extent and structure of the genetic variation. The study focused on the red fruited tomato clade involved in the domestication of tomato and confirmed the admixture status of cherry tomatoes (Solanum lycopersicum var. cerasiforme. We used a nested sample strategy to set-up core collection maximizing the genetic diversity with a minimum of individuals. Results Molecular diversity was considerably lower in S. lycopersicum i.e. the domesticated form. Model-based analysis showed that the 144 S. lycopersicum var. cerasiforme accessions were structured into two groups: one close to the domesticated group and one resulting from the admixture of the S. lycopersicum and S. pimpinellifolium genomes. SSR genotyping also indicates that domesticated and wild tomatoes have evolved as a species complex with intensive level of hybridization. We compiled genotypic and phenotypic data to identify sub-samples of 8, 24, 32 and 64 cherry tomato accessions that captured most of the genetic and morphological diversity present in the entire S. lycopersicum var. cerasiforme collection. Conclusion The extent and structure of allelic variation is discussed in relation to historical events like domestication and modern selection. The potential use of the admixed group of S. lycopersicum var. cerasiforme for association genetics studies is also discussed. Nested core collections sampled to represent tomato diversity will be useful in diversity studies. Molecular and

  10. Beyond Tokenism: Teaching a Diverse History in the Post-14 Curriculum

    Science.gov (United States)

    Dennis, Nick

    2016-01-01

    Nick Dennis shows how a "multidirectional memory" approach to teaching history can move history teachers beyond seeing black history as separate or distracting from the history that must be taught at examination level. He gives examples of ways in which a diverse history can be built into examination courses, strengthening historical…

  11. Museum DNA reveals the demographic history of the endangered Seychelles warbler.

    Science.gov (United States)

    Spurgin, Lewis G; Wright, David J; van der Velde, Marco; Collar, Nigel J; Komdeur, Jan; Burke, Terry; Richardson, David S

    2014-11-01

    The importance of evolutionary conservation - how understanding evolutionary forces can help guide conservation decisions - is widely recognized. However, the historical demography of many endangered species is unknown, despite the fact that this can have important implications for contemporary ecological processes and for extinction risk. Here, we reconstruct the population history of the Seychelles warbler (Acrocephalus sechellensis) - an ecological model species. By the 1960s, this species was on the brink of extinction, but its previous history is unknown. We used DNA samples from contemporary and museum specimens spanning 140 years to reconstruct bottleneck history. We found a 25% reduction in genetic diversity between museum and contemporary populations, and strong genetic structure. Simulations indicate that the Seychelles warbler was bottlenecked from a large population, with an ancestral N e of several thousands falling to Seychelles warbler, and our results will inform conservation practices. Reconstructing the population history of this species also allows us to better understand patterns of genetic diversity, inbreeding and promiscuity in the contemporary populations. Our approaches can be applied across species to test ecological hypotheses and inform conservation.

  12. Cultural and climatic changes shape the evolutionary history of the Uralic languages.

    Science.gov (United States)

    Honkola, T; Vesakoski, O; Korhonen, K; Lehtinen, J; Syrjänen, K; Wahlberg, N

    2013-06-01

    Quantitative phylogenetic methods have been used to study the evolutionary relationships and divergence times of biological species, and recently, these have also been applied to linguistic data to elucidate the evolutionary history of language families. In biology, the factors driving macroevolutionary processes are assumed to be either mainly biotic (the Red Queen model) or mainly abiotic (the Court Jester model) or a combination of both. The applicability of these models is assumed to depend on the temporal and spatial scale observed as biotic factors act on species divergence faster and in smaller spatial scale than the abiotic factors. Here, we used the Uralic language family to investigate whether both 'biotic' interactions (i.e. cultural interactions) and abiotic changes (i.e. climatic fluctuations) are also connected to language diversification. We estimated the times of divergence using Bayesian phylogenetics with a relaxed-clock method and related our results to climatic, historical and archaeological information. Our timing results paralleled the previous linguistic studies but suggested a later divergence of Finno-Ugric, Finnic and Saami languages. Some of the divergences co-occurred with climatic fluctuation and some with cultural interaction and migrations of populations. Thus, we suggest that both 'biotic' and abiotic factors contribute either directly or indirectly to the diversification of languages and that both models can be applied when studying language evolution. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  13. Voltage-Gated Sodium Channels: Evolutionary History and Distinctive Sequence Features.

    Science.gov (United States)

    Kasimova, M A; Granata, D; Carnevale, V

    2016-01-01

    Voltage-gated sodium channels (Nav) are responsible for the rising phase of the action potential. Their role in electrical signal transmission is so relevant that their emergence is believed to be one of the crucial factors enabling development of nervous system. The presence of voltage-gated sodium-selective channels in bacteria (BacNav) has raised questions concerning the evolutionary history of the ones in animals. Here we review some of the milestones in the field of Nav phylogenetic analysis and discuss some of the most important sequence features that distinguish these channels from voltage-gated potassium channels and transient receptor potential channels. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Toward a Predictive Framework for Convergent Evolution: Integrating Natural History, Genetic Mechanisms, and Consequences for the Diversity of Life.

    Science.gov (United States)

    Agrawal, Anurag A

    2017-08-01

    A charm of biology as a scientific discipline is the diversity of life. Although this diversity can make laws of biology challenging to discover, several repeated patterns and general principles govern evolutionary diversification. Convergent evolution, the independent evolution of similar phenotypes, has been at the heart of one approach to understand generality in the evolutionary process. Yet understanding when and why organismal traits and strategies repeatedly evolve has been a central challenge. These issues were the focus of the American Society of Naturalists Vice Presidential Symposium in 2016 and are the subject of this collection of articles. Although naturalists have long made inferences about convergent evolution and its importance, there has been confusion in the interpretation of the pattern of convergence. Does convergence primarily indicate adaptation or constraint? How often should convergence be expected? Are there general principles that would allow us to predict where and when and by what mechanisms convergent evolution should occur? What role does natural history play in advancing our understanding of general evolutionary principles? In this introductory article, I address these questions, review several generalizations about convergent evolution that have emerged over the past 15 years, and present a framework for advancing the study and interpretation of convergence. Perhaps the most important emerging conclusion is that the genetic mechanisms of convergent evolution are phylogenetically conserved; that is, more closely related species tend to share the same genetic basis of traits, even when independently evolved. Finally, I highlight how the articles in this special issue further develop concepts, methodologies, and case studies at the frontier of our understanding of the causes and consequences of convergent evolution.

  15. Selection, diversity and evolutionary patterns of the MHC class II DAB in free-ranging Neotropical marsupials

    Directory of Open Access Journals (Sweden)

    Otten Celine

    2008-06-01

    Full Text Available Abstract Background Research on the genetic architecture and diversity of the MHC has focused mainly on eutherian mammals, birds and fish. So far, studies on model marsupials used in laboratory investigations indicated very little or even no variation in MHC class II genes. However, natural levels of diversity and selection are unknown in marsupials as studies on wild populations are virtually absent. We used two endemic South American mouse opossums, Gracilinanus microtarsus and Marmosops incanus, to investigate characteristic features of MHC selection. This study is the first investigation of MHC selection in free-ranging Neotropical marsupials. In addition, the evolutionary history of MHC lineages within the group of marsupials was examined. Results G. microtarsus showed extensive levels of MHC diversity within and among individuals as 47 MHC-DAB alleles and high levels of sequence divergence were detected at a minimum of four loci. Positively selected codon sites were identified, of which most were congruent with human antigen binding sites. The diversity in M. incanus was rather low with only eight observed alleles at presumably two loci. However, these alleles also revealed high sequence divergence. Again, positive selection was identified on specific codon sites, all congruent with human ABS and with positively selected sites observed in G. microtarsus. In a phylogenetic comparison alleles of M. incanus interspersed widely within alleles of G. microtarsus with four alleles being present in both species. Conclusion Our investigations revealed extensive MHC class II polymorphism in a natural marsupial population, contrary to previous assumptions. Furthermore, our study confirms for the first time in marsupials the presence of three characteristic features common at MHC loci of eutherian mammals, birds and fish: large allelic sequence divergence, positive selection on specific sites and trans-specific polymorphism.

  16. Trophic phylogenetics: evolutionary influences on body size, feeding, and species associations in grassland arthropods.

    Science.gov (United States)

    Lind, Eric M; Vincent, John B; Weiblen, George D; Cavender-Bares, Jeannine; Borer, Elizabeth T

    2015-04-01

    Contemporary animal-plant interactions such as herbivory are widely understood to be shaped by evolutionary history. Yet questions remain about the role of plant phylogenetic diversity in generating and maintaining herbivore diversity, and whether evolutionary relatedness of producers might predict the composition of consumer communities. We tested for evidence of evolutionary associations among arthropods and the plants on which they were found, using phylogenetic analysis of naturally occurring arthropod assemblages sampled from a plant-diversity manipulation experiment. Considering phylogenetic relationships among more than 900 arthropod consumer taxa and 29 plant species in the experiment, we addressed several interrelated questions. First, our results support the hypothesis that arthropod functional traits such as body size and trophic role are phylogenetically conserved in community ecological samples. Second, herbivores tended to cooccur with closer phylogenetic relatives than would be expected at random, whereas predators and parasitoids did not show phylogenetic association patterns. Consumer specialization, as measured by association through time with monocultures of particular host plant species, showed significant phylogenetic signal, although the. strength of this association varied among plant species. Polycultures of phylogenetically dissimilar plant species supported more phylogenetically dissimilar consumer communities than did phylogenetically similar polycultures. Finally, we separated the effects of plant species richness and relatedness in predicting the phylogenetic distribution of the arthropod assemblages in this experiment. The phylogenetic diversity of plant communities predicted the phylogenetic diversity of herbivore communities even after accounting for plant species richness. The phylogenetic diversity of secondary consumers differed by guild, with predator phylogenetic diversity responding to herbivore relatedness, while parasitoid

  17. The joint evolutionary histories of Wolbachia and mitochondria in Hypolimnas bolina.

    Science.gov (United States)

    Charlat, Sylvain; Duplouy, Anne; Hornett, Emily A; Dyson, Emily A; Davies, Neil; Roderick, George K; Wedell, Nina; Hurst, Gregory D D

    2009-03-24

    The interaction between the Blue Moon butterfly, Hypolimnas bolina, and Wolbachia has attracted interest because of the high prevalence of male-killing achieved within the species, the ecological consequences of this high prevalence, the intensity of selection on the host to suppress the infection, and the presence of multiple Wolbachia infections inducing different phenotypes. We examined diversity in the co-inherited marker, mtDNA, and the partitioning of this between individuals of different infection status, as a means to investigate the population biology and evolutionary history of the Wolbachia infections. Part of the mitochondrial COI gene was sequenced from 298 individuals of known infection status revealing ten different haplotypes. Despite very strong biological evidence that the sample represents a single species, the ten haplotypes did not fall within a monophyletic clade within the Hypolimnas genus, with one haplotype differing by 5% from the other nine. There were strong associations between infection status and mtDNA haplotype. The presence of wBol1 infection in association with strongly divergent haplotypes prompted closer examination of wBol1 genetic variation. This revealed the existence of two cryptic subtypes, wBol1a and wBol1b. The wBol1a infection, by far the most common, was in strict association with the single divergent mtDNA haplotype. The wBol1b infection was found with two haplotypes that were also observed in uninfected specimens. Finally, the wBol2 infection was associated with a large diversity of mtDNA haplotypes, most often shared with uninfected sympatric butterflies. This data overall supports the hypothesis that high prevalence of male-killing Wolbachia (wBol1) in H. bolina is associated with very high transmission efficiency rather than regular horizontal transmission. It also suggests this infection has undergone a recent selective sweep and was introduced in this species through introgression. In contrast, the sharing of

  18. A rapid loss of stripes: the evolutionary history of the extinct quagga

    OpenAIRE

    Leonard, Jennifer A; Rohland, Nadin; Glaberman, Scott; Fleischer, Robert C; Caccone, Adalgisa; Hofreiter, Michael

    2005-01-01

    Twenty years ago, the field of ancient DNA was launched with the publication of two short mitochondrial (mt) DNA sequences from a single quagga (Equus quagga) museum skin, an extinct South African equid (Higuchi et al. 1984 Nature 312, 282–284). This was the first extinct species from which genetic information was retrieved. The DNA sequences of the quagga showed that it was more closely related to zebras than to horses. However, quagga evolutionary history is far from clear. We have isolated...

  19. The origins and evolutionary history of human non-coding RNA regulatory networks.

    Science.gov (United States)

    Sherafatian, Masih; Mowla, Seyed Javad

    2017-04-01

    The evolutionary history and origin of the regulatory function of animal non-coding RNAs are not well understood. Lack of conservation of long non-coding RNAs and small sizes of microRNAs has been major obstacles in their phylogenetic analysis. In this study, we tried to shed more light on the evolution of ncRNA regulatory networks by changing our phylogenetic strategy to focus on the evolutionary pattern of their protein coding targets. We used available target databases of miRNAs and lncRNAs to find their protein coding targets in human. We were able to recognize evolutionary hallmarks of ncRNA targets by phylostratigraphic analysis. We found the conventional 3'-UTR and lesser known 5'-UTR targets of miRNAs to be enriched at three consecutive phylostrata. Firstly, in eukaryata phylostratum corresponding to the emergence of miRNAs, our study revealed that miRNA targets function primarily in cell cycle processes. Moreover, the same overrepresentation of the targets observed in the next two consecutive phylostrata, opisthokonta and eumetazoa, corresponded to the expansion periods of miRNAs in animals evolution. Coding sequence targets of miRNAs showed a delayed rise at opisthokonta phylostratum, compared to the 3' and 5' UTR targets of miRNAs. LncRNA regulatory network was the latest to evolve at eumetazoa.

  20. Sex differences in life history drive evolutionary transitions among maternal, paternal, and bi-parental care.

    Science.gov (United States)

    Klug, Hope; Bonsall, Michael B; Alonzo, Suzanne H

    2013-04-01

    Evolutionary transitions among maternal, paternal, and bi-parental care have been common in many animal groups. We use a mathematical model to examine the effect of male and female life-history characteristics (stage-specific maturation and mortality) on evolutionary transitions among maternal, paternal, and bi-parental care. When males and females are relatively similar - that is, when females initially invest relatively little into eggs and both sexes have similar mortality and maturation - transitions among different patterns of care are unlikely to be strongly favored. As males and females become more different, transitions are more likely. If females initially invest heavily into eggs and this reduces their expected future reproductive success, transitions to increased maternal care (paternal → maternal, paternal → bi-parental, bi-parental → maternal) are favored. This effect of anisogamy (i.e., the fact that females initially invest more into each individual zygote than males) might help explain the predominance of maternal care in nature and differs from previous work that found no effect of anisogamy on the origin of different sex-specific patterns of care from an ancestral state of no care. When male mortality is high or male egg maturation rate is low, males have reduced future reproductive potential and transitions to increased paternal care (maternal → paternal, bi-parental → paternal, maternal → bi-parental) are favored. Offspring need (i.e., low offspring survival in the absence of care) also plays a role in transitions to paternal care. In general, basic life-history differences between the sexes can drive evolutionary transitions among different sex-specific patterns of care. The finding that simple life-history differences can alone lead to transitions among maternal and paternal care suggests that the effect of inter-sexual life-history differences should be considered as a baseline scenario when attempting to understand how other

  1. An engine for global plant diversity: Highest evolutionary turnover and emigration in the American tropics

    Directory of Open Access Journals (Sweden)

    Alexandre eAntonelli

    2015-04-01

    Full Text Available Understanding the processes that have generated the latitudinal biodiversity gradient and the continental differences in tropical biodiversity remains a major goal of evolutionary biology. Here we estimate the timing and direction of range shifts of extant flowering plants (angiosperms between tropical and non-tropical zones, and into and out of the major tropical regions of the world. We then calculate rates of speciation and extinction taking into account incomplete taxonomic sampling. We use a recently published fossil calibrated phylogeny and apply novel bioinformatic tools to code species into user-defined polygons. We reconstruct biogeographic history using stochastic character mapping to compute relative numbers of range shifts in proportion to the number of available lineages through time. Our results, based on the analysis of c. 22,600 species and c. 20 million geo-referenced occurrence records, show no significant differences between the speciation and extinction of tropical and non-tropical angiosperms. This suggests that at least in plants, the tropical biodiversity gradient primarily derives from other factors than differential rates of diversification. In contrast, the outstanding species richness found today in the American tropics (the Neotropics, as compared to tropical Africa and tropical Asia, is associated with significantly higher speciation and extinction rates. This suggests an exceedingly rapid evolutionary turnover, i.e. Neotropical species being formed and replaced by one another at unparalleled rates. In addition, tropical America stands out from other continents by having ‘pumped out’ more species than it received through most of the last 66 million years. These results imply that the Neotropics have acted as an engine for global plant diversity.

  2. Divergent evolutionary processes associated with colonization of offshore islands.

    Science.gov (United States)

    Martínková, Natália; Barnett, Ross; Cucchi, Thomas; Struchen, Rahel; Pascal, Marine; Pascal, Michel; Fischer, Martin C; Higham, Thomas; Brace, Selina; Ho, Simon Y W; Quéré, Jean-Pierre; O'Higgins, Paul; Excoffier, Laurent; Heckel, Gerald; Hoelzel, A Rus; Dobney, Keith M; Searle, Jeremy B

    2013-10-01

    Oceanic islands have been a test ground for evolutionary theory, but here, we focus on the possibilities for evolutionary study created by offshore islands. These can be colonized through various means and by a wide range of species, including those with low dispersal capabilities. We use morphology, modern and ancient sequences of cytochrome b (cytb) and microsatellite genotypes to examine colonization history and evolutionary change associated with occupation of the Orkney archipelago by the common vole (Microtus arvalis), a species found in continental Europe but not in Britain. Among possible colonization scenarios, our results are most consistent with human introduction at least 5100 bp (confirmed by radiocarbon dating). We used approximate Bayesian computation of population history to infer the coast of Belgium as the possible source and estimated the evolutionary timescale using a Bayesian coalescent approach. We showed substantial morphological divergence of the island populations, including a size increase presumably driven by selection and reduced microsatellite variation likely reflecting founder events and genetic drift. More surprisingly, our results suggest that a recent and widespread cytb replacement event in the continental source area purged cytb variation there, whereas the ancestral diversity is largely retained in the colonized islands as a genetic 'ark'. The replacement event in the continental M. arvalis was probably triggered by anthropogenic causes (land-use change). Our studies illustrate that small offshore islands can act as field laboratories for studying various evolutionary processes over relatively short timescales, informing about the mainland source area as well as the island. © 2013 John Wiley & Sons Ltd.

  3. Evolutionary history of LINE-1 in the major clades of placental mammals.

    Directory of Open Access Journals (Sweden)

    Paul D Waters

    2007-01-01

    Full Text Available LINE-1 constitutes an important component of mammalian genomes. It has a dynamic evolutionary history characterized by the rise, fall and replacement of subfamilies. Most data concerning LINE-1 biology and evolution are derived from the human and mouse genomes and are often assumed to hold for all placentals.To examine LINE-1 relationships, sequences from the 3' region of the reverse transcriptase from 21 species (representing 13 orders across Afrotheria, Xenarthra, Supraprimates and Laurasiatheria were obtained from whole genome sequence assemblies, or by PCR with degenerate primers. These sequences were aligned and analysed.Our analysis reflects accepted placental relationships suggesting mostly lineage-specific LINE-1 families. The data provide clear support for several clades including Glires, Supraprimates, Laurasiatheria, Boreoeutheria, Xenarthra and Afrotheria. Within the afrotherian LINE-1 (AfroLINE clade, our tree supports Paenungulata, Afroinsectivora and Afroinsectiphillia. Xenarthran LINE-1 (XenaLINE falls sister to AfroLINE, providing some support for the Atlantogenata (Xenarthra+Afrotheria hypothesis.LINEs and SINEs make up approximately half of all placental genomes, so understanding their dynamics is an essential aspect of comparative genomics. Importantly, a tree of LINE-1 offers a different view of the root, as long edges (branches such as that to marsupials are shortened and/or broken up. Additionally, a robust phylogeny of diverse LINE-1 is essential in testing that site-specific LINE-1 insertions, often regarded as homoplasy-free phylogenetic markers, are indeed unique and not convergent.

  4. Proteomics in evolutionary ecology.

    Science.gov (United States)

    Baer, B; Millar, A H

    2016-03-01

    Evolutionary ecologists are traditionally gene-focused, as genes propagate phenotypic traits across generations and mutations and recombination in the DNA generate genetic diversity required for evolutionary processes. As a consequence, the inheritance of changed DNA provides a molecular explanation for the functional changes associated with natural selection. A direct focus on proteins on the other hand, the actual molecular agents responsible for the expression of a phenotypic trait, receives far less interest from ecologists and evolutionary biologists. This is partially due to the central dogma of molecular biology that appears to define proteins as the 'dead-end of molecular information flow' as well as technical limitations in identifying and studying proteins and their diversity in the field and in many of the more exotic genera often favored in ecological studies. Here we provide an overview of a newly forming field of research that we refer to as 'Evolutionary Proteomics'. We point out that the origins of cellular function are related to the properties of polypeptide and RNA and their interactions with the environment, rather than DNA descent, and that the critical role of horizontal gene transfer in evolution is more about coopting new proteins to impact cellular processes than it is about modifying gene function. Furthermore, post-transcriptional and post-translational processes generate a remarkable diversity of mature proteins from a single gene, and the properties of these mature proteins can also influence inheritance through genetic and perhaps epigenetic mechanisms. The influence of post-transcriptional diversification on evolutionary processes could provide a novel mechanistic underpinning for elements of rapid, directed evolutionary changes and adaptations as observed for a variety of evolutionary processes. Modern state-of the art technologies based on mass spectrometry are now available to identify and quantify peptides, proteins, protein

  5. Evolutionary Pattern and Regulation Analysis to Support Why Diversity Functions Existed within PPAR Gene Family Members

    Directory of Open Access Journals (Sweden)

    Tianyu Zhou

    2015-01-01

    Full Text Available Peroxisome proliferators-activated receptor (PPAR gene family members exhibit distinct patterns of distribution in tissues and differ in functions. The purpose of this study is to investigate the evolutionary impacts on diversity functions of PPAR members and the regulatory differences on gene expression patterns. 63 homology sequences of PPAR genes from 31 species were collected and analyzed. The results showed that three isolated types of PPAR gene family may emerge from twice times of gene duplication events. The conserved domains of HOLI (ligand binding domain of hormone receptors domain and ZnF_C4 (C4 zinc finger in nuclear in hormone receptors are essential for keeping basic roles of PPAR gene family, and the variant domains of LCRs may be responsible for their divergence in functions. The positive selection sites in HOLI domain are benefit for PPARs to evolve towards diversity functions. The evolutionary variants in the promoter regions and 3′ UTR regions of PPARs result into differential transcription factors and miRNAs involved in regulating PPAR members, which may eventually affect their expressions and tissues distributions. These results indicate that gene duplication event, selection pressure on HOLI domain, and the variants on promoter and 3′ UTR are essential for PPARs evolution and diversity functions acquired.

  6. Evolutionary Pattern and Regulation Analysis to Support Why Diversity Functions Existed within PPAR Gene Family Members.

    Science.gov (United States)

    Zhou, Tianyu; Yan, Xiping; Wang, Guosong; Liu, Hehe; Gan, Xiang; Zhang, Tao; Wang, Jiwen; Li, Liang

    2015-01-01

    Peroxisome proliferators-activated receptor (PPAR) gene family members exhibit distinct patterns of distribution in tissues and differ in functions. The purpose of this study is to investigate the evolutionary impacts on diversity functions of PPAR members and the regulatory differences on gene expression patterns. 63 homology sequences of PPAR genes from 31 species were collected and analyzed. The results showed that three isolated types of PPAR gene family may emerge from twice times of gene duplication events. The conserved domains of HOLI (ligand binding domain of hormone receptors) domain and ZnF_C4 (C4 zinc finger in nuclear in hormone receptors) are essential for keeping basic roles of PPAR gene family, and the variant domains of LCRs may be responsible for their divergence in functions. The positive selection sites in HOLI domain are benefit for PPARs to evolve towards diversity functions. The evolutionary variants in the promoter regions and 3' UTR regions of PPARs result into differential transcription factors and miRNAs involved in regulating PPAR members, which may eventually affect their expressions and tissues distributions. These results indicate that gene duplication event, selection pressure on HOLI domain, and the variants on promoter and 3' UTR are essential for PPARs evolution and diversity functions acquired.

  7. Conservation of native Pacific trout diversity in Western North America

    Science.gov (United States)

    Brooke E. Penaluna; Alicia Abadía-Cardoso; Jason B. Dunham; Francisco J. García-Dé León; Robert E. Gresswell; Arturo Ruiz Luna; Eric B. Taylor; Bradley B. Shepard; Robert Al-Chokhachy; Clint C. Muhlfeld; Kevin R. Bestgen; Kevin Rogers; Marco A. Escalante; Ernest R. Keeley; Gabriel M. Temple; Jack E. Williams; Kathleen R. Matthews; Ron Pierce; Richard L. Mayden; Ryan P. Kovach; John Carlos Garza; Kurt D. Fausch

    2016-01-01

    Pacific trout Oncorhynchus spp. in western North America are strongly valued in ecological, socioeconomic, and cultural views, and have been the subject of substantial research and conservation efforts. Despite this, the understanding of their evolutionary histories, overall diversity, and challenges to their conservation is incomplete. We review...

  8. Phylogeny and evolutionary history of the silkworm.

    Science.gov (United States)

    Sun, Wei; Yu, Hongsong; Shen, Yihong; Banno, Yutaka; Xiang, Zhonghuai; Zhang, Ze

    2012-06-01

    The silkworm, Bombyx mori, played an important role in the old Silk Road that connected ancient Asia and Europe. However, to date, there have been few studies of the origins and domestication of this species using molecular methods. In this study, DNA sequences of mitochondrial and nuclear loci were used to infer the phylogeny and evolutionary history of the domesticated silkworm and its relatives. All of the phylogenetic analyses indicated a close relationship between the domesticated silkworm and the Chinese wild silkworm. Domestication was estimated to have occurred about 4100 years ago (ya), and the radiation of the different geographic strains of B. mori about 2000 ya. The Chinese wild silkworm and the Japanese wild silkworm split about 23600 ya. These estimates are in good agreement with the fossil evidence and historical records. In addition, we show that the domesticated silkworm experienced a population expansion around 1000 ya. The divergence times and the population dynamics of silkworms presented in this study will be useful for studies of lepidopteran phylogenetics, in the genetic analysis of domestic animals, and for understanding the spread of human civilizations.

  9. Evolutionary analyses of non-genealogical bonds produced by introgressive descent.

    Science.gov (United States)

    Bapteste, Eric; Lopez, Philippe; Bouchard, Frédéric; Baquero, Fernando; McInerney, James O; Burian, Richard M

    2012-11-06

    All evolutionary biologists are familiar with evolutionary units that evolve by vertical descent in a tree-like fashion in single lineages. However, many other kinds of processes contribute to evolutionary diversity. In vertical descent, the genetic material of a particular evolutionary unit is propagated by replication inside its own lineage. In what we call introgressive descent, the genetic material of a particular evolutionary unit propagates into different host structures and is replicated within these host structures. Thus, introgressive descent generates a variety of evolutionary units and leaves recognizable patterns in resemblance networks. We characterize six kinds of evolutionary units, of which five involve mosaic lineages generated by introgressive descent. To facilitate detection of these units in resemblance networks, we introduce terminology based on two notions, P3s (subgraphs of three nodes: A, B, and C) and mosaic P3s, and suggest an apparatus for systematic detection of introgressive descent. Mosaic P3s correspond to a distinct type of evolutionary bond that is orthogonal to the bonds of kinship and genealogy usually examined by evolutionary biologists. We argue that recognition of these evolutionary bonds stimulates radical rethinking of key questions in evolutionary biology (e.g., the relations among evolutionary players in very early phases of evolutionary history, the origin and emergence of novelties, and the production of new lineages). This line of research will expand the study of biological complexity beyond the usual genealogical bonds, revealing additional sources of biodiversity. It provides an important step to a more realistic pluralist treatment of evolutionary complexity.

  10. Population and evolutionary dynamics in spatially structured seasonally varying environments.

    Science.gov (United States)

    Reid, Jane M; Travis, Justin M J; Daunt, Francis; Burthe, Sarah J; Wanless, Sarah; Dytham, Calvin

    2018-03-25

    Increasingly imperative objectives in ecology are to understand and forecast population dynamic and evolutionary responses to seasonal environmental variation and change. Such population and evolutionary dynamics result from immediate and lagged responses of all key life-history traits, and resulting demographic rates that affect population growth rate, to seasonal environmental conditions and population density. However, existing population dynamic and eco-evolutionary theory and models have not yet fully encompassed within-individual and among-individual variation, covariation, structure and heterogeneity, and ongoing evolution, in a critical life-history trait that allows individuals to respond to seasonal environmental conditions: seasonal migration. Meanwhile, empirical studies aided by new animal-tracking technologies are increasingly demonstrating substantial within-population variation in the occurrence and form of migration versus year-round residence, generating diverse forms of 'partial migration' spanning diverse species, habitats and spatial scales. Such partially migratory systems form a continuum between the extreme scenarios of full migration and full year-round residence, and are commonplace in nature. Here, we first review basic scenarios of partial migration and associated models designed to identify conditions that facilitate the maintenance of migratory polymorphism. We highlight that such models have been fundamental to the development of partial migration theory, but are spatially and demographically simplistic compared to the rich bodies of population dynamic theory and models that consider spatially structured populations with dispersal but no migration, or consider populations experiencing strong seasonality and full obligate migration. Second, to provide an overarching conceptual framework for spatio-temporal population dynamics, we define a 'partially migratory meta-population' system as a spatially structured set of locations that can

  11. A resurgence in field research is essential to better understand the diversity, ecology, and evolution of microbial eukaryotes.

    Science.gov (United States)

    Heger, Thierry J; Edgcomb, Virginia P; Kim, Eunsoo; Lukeš, Julius; Leander, Brian S; Yubuki, Naoji

    2014-01-01

    The discovery and characterization of protist communities from diverse environments are crucial for understanding the overall evolutionary history of life on earth. However, major questions about the diversity, ecology, and evolutionary history of protists remain unanswered, notably because data obtained from natural protist communities, especially of heterotrophic species, remain limited. In this review, we discuss the challenges associated with "field protistology", defined here as the exploration, characterization, and interpretation of microbial eukaryotic diversity within the context of natural environments or field experiments, and provide suggestions to help fill this important gap in knowledge. We also argue that increased efforts in field studies that combine molecular and microscopical methods offer the most promising path toward (1) the discovery of new lineages that expand the tree of eukaryotes; (2) the recognition of novel evolutionary patterns and processes; (3) the untangling of ecological interactions and functions, and their roles in larger ecosystem processes; and (4) the evaluation of protist adaptations to a changing climate. © 2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists.

  12. Malagasy bats shelter a considerable genetic diversity of pathogenic Leptospira suggesting notable host-specificity patterns.

    Science.gov (United States)

    Gomard, Yann; Dietrich, Muriel; Wieseke, Nicolas; Ramasindrazana, Beza; Lagadec, Erwan; Goodman, Steven M; Dellagi, Koussay; Tortosa, Pablo

    2016-04-01

    Pathogenic Leptospira are the causative agents of leptospirosis, a disease of global concern with major impact in tropical regions. Despite the importance of this zoonosis for human health, the evolutionary and ecological drivers shaping bacterial communities in host reservoirs remain poorly investigated. Here, we describe Leptospira communities hosted by Malagasy bats, composed of mostly endemic species, in order to characterize host-pathogen associations and investigate their evolutionary histories. We screened 947 individual bats (representing 31 species, 18 genera and seven families) for Leptospira infection and subsequently genotyped positive samples using three different bacterial loci. Molecular identification showed that these Leptospira are notably diverse and include several distinct lineages mostly belonging to Leptospira borgpetersenii and L. kirschneri. The exploration of the most probable host-pathogen evolutionary scenarios suggests that bacterial genetic diversity results from a combination of events related to the ecology and the evolutionary history of their hosts. Importantly, based on the data set presented herein, the notable host-specificity we have uncovered, together with a lack of geographical structuration of bacterial genetic diversity, indicates that the Leptospira community at a given site depends on the co-occurring bat species assemblage. The implications of such tight host-specificity on the epidemiology of leptospirosis are discussed. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. On the history of political diversity in social psychology.

    Science.gov (United States)

    Binning, Kevin R; Sears, David O

    2015-01-01

    We argue that the history of political diversity in social psychology may be better characterized by stability than by a large shift toward liberalism. The branch of social psychology that focuses on political issues has defined social problems from a liberal perspective since at least the 1930s. Although a lack of ideological diversity within the discipline can pose many of the problems noted by Duarte et al., we suggest that these problems (a) are less apparent when the insights of social psychology are pitted against the insights from other social science disciplines, and (b) are less pressing than the need for other types of diversity in the field, especially ethnic and racial diversity.

  14. Genetic Structure and Evolutionary History of Three Alpine Sclerophyllous Oaks in East Himalaya-Hengduan Mountains and Adjacent Regions.

    Science.gov (United States)

    Feng, Li; Zheng, Qi-Jian; Qian, Zeng-Qiang; Yang, Jia; Zhang, Yan-Ping; Li, Zhong-Hu; Zhao, Gui-Fang

    2016-01-01

    The East Himalaya-Hengduan Mountains (EH-HM) region has a high biodiversity and harbors numerous endemic alpine plants. This is probably the result of combined orographic and climate oscillations occurring since late Tertiary. Here, we determined the genetic structure and evolutionary history of alpine oak species (including Quercus spinosa, Quercus aquifolioides , and Quercus rehderiana ) using both cytoplasmic-nuclear markers and ecological niche models (ENMs), and elucidated the impacts of climate oscillations and environmental heterogeneity on their population demography. Our results indicate there were mixed genetic structure and asymmetric contemporary gene flow within them. The ENMs revealed a similar demographic history for the three species expanded their ranges from the last interglacial (LIG) to the last glacial maximum (LGM), which was consistent with effective population sizes changes. Effects of genetic drift and fragmentation of habitats were responsible for the high differentiation and the lack of phylogeographic structure. Our results support that geological and climatic factors since Miocene triggered the differentiation, evolutionary origin and range shifts of the three oak species in the studied area and also emphasize that a multidisciplinary approach combining molecular markers, ENMs and population genetics can yield deep insights into diversification and evolutionary dynamics of species.

  15. Global patterns of amphibian phylogenetic diversity

    DEFF Research Database (Denmark)

    Fritz, Susanne; Rahbek, Carsten

    2012-01-01

    Aim  Phylogenetic diversity can provide insight into how evolutionary processes may have shaped contemporary patterns of species richness. Here, we aim to test for the influence of phylogenetic history on global patterns of amphibian species richness, and to identify areas where macroevolutionary...... processes such as diversification and dispersal have left strong signatures on contemporary species richness. Location  Global; equal-area grid cells of approximately 10,000 km2. Methods  We generated an amphibian global supertree (6111 species) and repeated analyses with the largest available molecular...... phylogeny (2792 species). We combined each tree with global species distributions to map four indices of phylogenetic diversity. To investigate congruence between global spatial patterns of amphibian species richness and phylogenetic diversity, we selected Faith’s phylogenetic diversity (PD) index...

  16. Evolutionary history of the parrotfishes: biogeography, ecomorphology, and comparative diversity.

    Science.gov (United States)

    Streelman, J T; Alfaro, M; Westneat, M W; Bellwood, D R; Karl, S A

    2002-05-01

    The family Scaridae comprises about 90 species of herbivorous coral reef, rock reef, and seagrass fishes. Parrotfishes are important agents of marine bioerosion who rework the substrate with their beaklike oral jaws. Many scarid populations are characterized by complex social systems including highly differentiated sexual stages, territoriality, and the defense of harems. Here, we test a hypothesis of relationships among parrotfish genera derived from nearly 2 kb of nuclear and mitochondrial DNA sequence. The DNA tree is different than a phylogeny based on comparative morphology and leads to important reinterpretations of scarid evolution. The molecular data suggest a split among seagrass and coral reef associated genera with nearly 80% of all species in the coral reef clade. Our phylogenetic results imply an East Tethyan origin of the family and the recurrent evolution of excavating and scraping feeding modes. It is likely that ecomorphological differences played a significant role in the initial divergence of major scarid lineages, but that variation in color and breeding behavior has triggered subsequent diversification. We present a two-phase model of parrotfish evolution to explain patterns of comparative diversity. Finally, we discuss the application of this model to other adaptively radiating clades.

  17. (macro- Evolutionary ecology of parasite diversity: From determinants of parasite species richness to host diversification

    Directory of Open Access Journals (Sweden)

    Serge Morand

    2015-04-01

    Full Text Available The present review summarized the factors or determinants that may explain parasite diversity among host species and the consequences of this parasite diversity on the evolution of host-life history traits. As host–parasite interactions are asymmetrical exploited–exploiter relationships, ecological and epidemiological theories produce hypotheses to find the potential determinants of parasite species richness, while life-history theory helps for testing potential consequences on parasite diversity on the evolution of hosts. This review referred only to studies that have specifically controlled or took into account phylogenetic information illustrated with parasites of mammals. Several points needing more investigation were identified with a special emphasis to develop the metabolic theory of epidemiology.

  18. DNA Methylation and Somatic Mutations Converge on the Cell Cycle and Define Similar Evolutionary Histories in Brain Tumors

    NARCIS (Netherlands)

    T. Mazor (Tali); A. Pankov (Aleksandr); B.E. Johnson (Brett E.); C. Hong (Chibo); E.G. Hamilton (Emily G.); R.J.A. Bell (Robert J.A.); I.V. Smirnov (Ivan V.); G.F. Reis (Gerald F.); J.J. Phillips (Joanna J.); M.J. Barnes (Michael); A. Idbaih (Ahmed); A. Alentorn (Agusti); J.J. Kloezeman (Jenneke); M.L.M. Lamfers (Martine); A.W. Bollen (Andrew W.); B.S. Taylor (Barry S.); A.M. Molinaro (Annette M.); A. Olshen (Adam); S.M. Chang (Susan); J.S. Song (Jun S.); J.F. Costello (Joseph F.)

    2015-01-01

    textabstractThe evolutionary history of tumor cell populations can be reconstructed from patterns of genetic alterations. In contrast to stable genetic events, epigenetic states are reversible and sensitive to the microenvironment, prompting the question whether epigenetic information can similarly

  19. The joint evolutionary histories of Wolbachia and mitochondria in Hypolimnas bolina

    Directory of Open Access Journals (Sweden)

    Roderick George K

    2009-03-01

    Full Text Available Abstract Background The interaction between the Blue Moon butterfly, Hypolimnas bolina, and Wolbachia has attracted interest because of the high prevalence of male-killing achieved within the species, the ecological consequences of this high prevalence, the intensity of selection on the host to suppress the infection, and the presence of multiple Wolbachia infections inducing different phenotypes. We examined diversity in the co-inherited marker, mtDNA, and the partitioning of this between individuals of different infection status, as a means to investigate the population biology and evolutionary history of the Wolbachia infections. Results Part of the mitochondrial COI gene was sequenced from 298 individuals of known infection status revealing ten different haplotypes. Despite very strong biological evidence that the sample represents a single species, the ten haplotypes did not fall within a monophyletic clade within the Hypolimnas genus, with one haplotype differing by 5% from the other nine. There were strong associations between infection status and mtDNA haplotype. The presence of wBol1 infection in association with strongly divergent haplotypes prompted closer examination of wBol1 genetic variation. This revealed the existence of two cryptic subtypes, wBol1a and wBol1b. The wBol1a infection, by far the most common, was in strict association with the single divergent mtDNA haplotype. The wBol1b infection was found with two haplotypes that were also observed in uninfected specimens. Finally, the wBol2 infection was associated with a large diversity of mtDNA haplotypes, most often shared with uninfected sympatric butterflies. Conclusion This data overall supports the hypothesis that high prevalence of male-killing Wolbachia (wBol1 in H. bolina is associated with very high transmission efficiency rather than regular horizontal transmission. It also suggests this infection has undergone a recent selective sweep and was introduced in this

  20. The phylogeny and evolutionary history of tyrannosauroid dinosaurs

    Science.gov (United States)

    Brusatte, Stephen L.; Carr, Thomas D.

    2016-02-01

    Tyrannosauroids—the group of carnivores including Tyrannosaurs rex—are some of the most familiar dinosaurs of all. A surge of recent discoveries has helped clarify some aspects of their evolution, but competing phylogenetic hypotheses raise questions about their relationships, biogeography, and fossil record quality. We present a new phylogenetic dataset, which merges published datasets and incorporates recently discovered taxa. We analyze it with parsimony and, for the first time for a tyrannosauroid dataset, Bayesian techniques. The parsimony and Bayesian results are highly congruent, and provide a framework for interpreting the biogeography and evolutionary history of tyrannosauroids. Our phylogenies illustrate that the body plan of the colossal species evolved piecemeal, imply no clear division between northern and southern species in western North America as had been argued, and suggest that T. rex may have been an Asian migrant to North America. Over-reliance on cranial shape characters may explain why published parsimony studies have diverged and filling three major gaps in the fossil record holds the most promise for future work.

  1. The phylogeny and evolutionary history of tyrannosauroid dinosaurs.

    Science.gov (United States)

    Brusatte, Stephen L; Carr, Thomas D

    2016-02-02

    Tyrannosauroids--the group of carnivores including Tyrannosaurs rex--are some of the most familiar dinosaurs of all. A surge of recent discoveries has helped clarify some aspects of their evolution, but competing phylogenetic hypotheses raise questions about their relationships, biogeography, and fossil record quality. We present a new phylogenetic dataset, which merges published datasets and incorporates recently discovered taxa. We analyze it with parsimony and, for the first time for a tyrannosauroid dataset, Bayesian techniques. The parsimony and Bayesian results are highly congruent, and provide a framework for interpreting the biogeography and evolutionary history of tyrannosauroids. Our phylogenies illustrate that the body plan of the colossal species evolved piecemeal, imply no clear division between northern and southern species in western North America as had been argued, and suggest that T. rex may have been an Asian migrant to North America. Over-reliance on cranial shape characters may explain why published parsimony studies have diverged and filling three major gaps in the fossil record holds the most promise for future work.

  2. Molecular data and ecological niche modelling reveal a highly dynamic evolutionary history of the East Asian Tertiary relict Cercidiphyllum (Cercidiphyllaceae).

    Science.gov (United States)

    Qi, Xin-Shuai; Chen, Chen; Comes, Hans Peter; Sakaguchi, Shota; Liu, Yi-Hui; Tanaka, Nobuyuki; Sakio, Hitoshi; Qiu, Ying-Xiong

    2012-10-01

    East Asia's temperate deciduous forests served as sanctuary for Tertiary relict trees, but their ages and response to past climate change remain largely unknown. To address this issue, we elucidated the evolutionary and population demographic history of Cercdiphyllum, comprising species in China/Japan (Cercdiphyllum japonicum) and central Japan (Cercdiphyllum magnificum). Fifty-three populations were genotyped using chloroplast and ribosomal DNA sequences and microsatellite loci to assess molecular structure and diversity in relation to past (Last Glacial Maximum) and present distributions based on ecological niche modelling. Late Tertiary climate cooling was reflected in a relatively recent speciation event, dated at the Mio-/Pliocene boundary. During glacials, the warm-temperate C. japonicum experienced massive habitat losses in some areas (north-central China/north Japan) but increases in others (southwest/-east China, East China Sea landbridge, south Japan). In China, the Sichuan Basin and/or the middle-Yangtze were source areas of postglacial northward recolonization; in Japan, this may have been facilitated through introgressive hybridization with the cool-temperate C. magnificum. Our findings challenge the notion of relative evolutionary and demographic stability of Tertiary relict trees, and may serve as a guideline for assessing the impact of Neogene climate change on the evolution and distribution of East Asian temperate plants. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  3. Evolutionary history of callose synthases in terrestrial plants with emphasis on proteins involved in male gametophyte development.

    Directory of Open Access Journals (Sweden)

    Lenka Záveská Drábková

    Full Text Available Callose is a plant-specific polysaccharide (β-1,3-glucan playing an important role in angiosperms in many developmental processes and responses to biotic and abiotic stresses. Callose is synthesised at the plasma membrane of plant cells by callose synthase (CalS and, among others, represents the main polysaccharide in the callose wall surrounding the tetrads of developing microspores and in the growing pollen tube wall. CalS proteins involvement in spore development is a plesiomorphic feature of terrestrial plants, but very little is known about their evolutionary origin and relationships amongst the members of this protein family. We performed thorough comparative analyses of callose synthase family proteins from major plant lineages to determine their evolutionary history across the plant kingdom. A total of 1211 candidate CalS sequences were identified and compared amongst diverse taxonomic groups of plants, from bryophytes to angiosperms. Phylogenetic analyses identified six main clades of CalS proteins and suggested duplications during the evolution of specialised functions. Twelve family members had previously been identified in Arabidopsis thaliana. We focused on five CalS subfamilies directly linked to pollen function and found that proteins expressed in pollen evolved twice. CalS9/10 and CalS11/12 formed well-defined clades, whereas pollen-specific CalS5 was found within subfamilies that mostly did not express in mature pollen vegetative cell, although were found in sperm cells. Expression of five out of seven mature pollen-expressed CalS genes was affected by mutations in bzip transcription factors. Only three subfamilies, CalS5, CalS10, and CalS11, however, formed monophyletic, mostly conserved clades. The pairs CalS9/CalS10, CalS11/CalS12 and CalS3 may have diverged after angiosperms diversified from lycophytes and bryophytes. Our analysis of fully sequenced plant proteins identified new evolutionary lineages of callose synthase

  4. Baleen boom and bust: a synthesis of mysticete phylogeny, diversity and disparity

    OpenAIRE

    Marx, Felix G.; Fordyce, R. Ewan

    2015-01-01

    A new, fully dated total-evidence phylogeny of baleen whales (Mysticeti) shows that evolutionary phases correlate strongly with Caenozoic modernization of the oceans and climates, implying a major role for bottom-up physical drivers. The phylogeny of 90 modern and dated fossil species suggests three major phases in baleen whale history: an early adaptive radiation (36?30?Ma), a shift towards bulk filter-feeding (30?23?Ma) and a climate-driven diversity loss around 3?Ma. Evolutionary rates and...

  5. Sex, rebellion and decadence: the scandalous evolutionary history of the human Y chromosome.

    Science.gov (United States)

    Navarro-Costa, Paulo

    2012-12-01

    It can be argued that the Y chromosome brings some of the spirit of rock&roll to our genome. Equal parts degenerate and sex-driven, the Y has boldly rebelled against sexual recombination, one of the sacred pillars of evolution. In evolutionary terms this chromosome also seems to have adopted another of rock&roll's mottos: living fast. Yet, it appears to have refused to die young. In this manuscript the Y chromosome will be analyzed from the intersection between structural, evolutionary and functional biology. Such integrative approach will present the Y as a highly specialized product of a series of remarkable evolutionary processes. These led to the establishment of a sex-specific genomic niche that is maintained by a complex balance between selective pressure and the genetic diversity introduced by intrachromosomal recombination. Central to this equilibrium is the "polish or perish" dilemma faced by the male-specific Y genes: either they are polished by the acquisition of male-related functions or they perish via the accumulation of inactivating mutations. Thus, understanding to what extent the idiosyncrasies of Y recombination may impact this chromosome's role in sex determination and male germline functions should be regarded as essential for added clinical insight into several male infertility phenotypes. This article is part of a Special Issue entitled: Molecular Genetics of Human Reproductive Failure. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Evolutionary trends of the pharyngeal dentition in Cypriniformes (Actinopterygii: Ostariophysi.

    Directory of Open Access Journals (Sweden)

    Emmanuel Pasco-Viel

    Full Text Available BACKGROUND: The fish order Cypriniformes is one of the most diverse ray-finned fish groups in the world with more than 3000 recognized species. Cypriniformes are characterized by a striking distribution of their dentition: namely the absence of oral teeth and presence of pharyngeal teeth on the last gill arch (fifth ceratobranchial. Despite this limited localisation, the diversity of tooth patterns in Cypriniformes is astonishing. Here we provide a further description of this diversity using X-ray microtomography and we map the resulting dental characters on a phylogenetic tree to explore evolutionary trends. RESULTS: We performed a pilot survey of dental formulae and individual tooth shapes in 34 adult species of Cypriniformes by X-ray microtomography (using either conventional X-ray machine, or synchrotron microtomography when necessary or by dissecting. By mapping morphological results in a phylogenetic tree, it emerges that the two super-families Cobitoidea and Cyprinoidea have followed two distinct evolutionary pathways. Furthermore, our analysis supports the hypothesis of a three-row dentition as ancestral for Cyprinoidea and a general trend in tooth row reduction in most derived lineages. Yet, this general scheme must be considered with caution as several events of tooth row gain and loss have occurred during evolutionary history of Cyprinoidea. SIGNIFICANCE: Dentition diversity in Cypriniformes constitutes an excellent model to study the evolution of complex morphological structures. This morphological survey clearly advocates for extending the use of X-ray microtomography to study tooth morphology in Cypriniformes. Yet, our survey also underlines that improved knowledge of Cypriniformes life traits, such as feeding habits, is required as current knowledge is not sufficient to conclude on the link between diet and dental morphology.

  7. Genetic structure and evolutionary history of three alpine sclerophyllous oaks in East Himalaya-Hengduan Mountains and adjacent regions

    Directory of Open Access Journals (Sweden)

    Li Feng

    2016-11-01

    Full Text Available The East Himalaya-Hengduan Mountains (EH-HM region has a high biodiversity and harbours numerous endemic alpine plants. This is probably the result of combined orographic and climate oscillations occurring since late Tertiary. Here, we determined the genetic structure and evolutionary history of alpine oak species (including Q. spinosa, Q. aquifolioides and Q. rehderiana using both cytoplasmic-nuclear markers and ecological niche models (ENMs, and elucidated the impacts of climate oscillations and environmental heterogeneity on their population demography. Our results indicate there were mixed genetic structure and asymmetric contemporary gene flow within them. The ENMs revealed a similar demographic history for the three species expanded their ranges from the last interglacial (LIG to the last glacial maximum (LGM, which was consistent with effective population sizes changes. Effects of genetic drift and fragmentation of habitats were responsible for the high differentiation and the lack of phylogeographic structure. Our results support that geological and climatic factors since Miocene triggered the differentiation, evolutionary origin and range shifts of the three oak species in the studied area and also emphasize that a multidisciplinary approach combining molecular markers, ENMs and population genetics can yield deep insights into diversification and evolutionary dynamics of species.

  8. Reconstructing the Evolutionary History of Paralogous APETALA1/FRUITFULL-Like Genes in Grasses (Poaceae)

    Science.gov (United States)

    Preston, Jill C.; Kellogg, Elizabeth A.

    2006-01-01

    Gene duplication is an important mechanism for the generation of evolutionary novelty. Paralogous genes that are not silenced may evolve new functions (neofunctionalization) that will alter the developmental outcome of preexisting genetic pathways, partition ancestral functions (subfunctionalization) into divergent developmental modules, or function redundantly. Functional divergence can occur by changes in the spatio-temporal patterns of gene expression and/or by changes in the activities of their protein products. We reconstructed the evolutionary history of two paralogous monocot MADS-box transcription factors, FUL1 and FUL2, and determined the evolution of sequence and gene expression in grass AP1/FUL-like genes. Monocot AP1/FUL-like genes duplicated at the base of Poaceae and codon substitutions occurred under relaxed selection mostly along the branch leading to FUL2. Following the duplication, FUL1 was apparently lost from early diverging taxa, a pattern consistent with major changes in grass floral morphology. Overlapping gene expression patterns in leaves and spikelets indicate that FUL1 and FUL2 probably share some redundant functions, but that FUL2 may have become temporally restricted under partial subfunctionalization to particular stages of floret development. These data have allowed us to reconstruct the history of AP1/FUL-like genes in Poaceae and to hypothesize a role for this gene duplication in the evolution of the grass spikelet. PMID:16816429

  9. Revising the recent evolutionary history of equids using ancient DNA.

    Science.gov (United States)

    Orlando, Ludovic; Metcalf, Jessica L; Alberdi, Maria T; Telles-Antunes, Miguel; Bonjean, Dominique; Otte, Marcel; Martin, Fabiana; Eisenmann, Véra; Mashkour, Marjan; Morello, Flavia; Prado, Jose L; Salas-Gismondi, Rodolfo; Shockey, Bruce J; Wrinn, Patrick J; Vasil'ev, Sergei K; Ovodov, Nikolai D; Cherry, Michael I; Hopwood, Blair; Male, Dean; Austin, Jeremy J; Hänni, Catherine; Cooper, Alan

    2009-12-22

    The rich fossil record of the family Equidae (Mammalia: Perissodactyla) over the past 55 MY has made it an icon for the patterns and processes of macroevolution. Despite this, many aspects of equid phylogenetic relationships and taxonomy remain unresolved. Recent genetic analyses of extinct equids have revealed unexpected evolutionary patterns and a need for major revisions at the generic, subgeneric, and species levels. To investigate this issue we examine 35 ancient equid specimens from four geographic regions (South America, Europe, Southwest Asia, and South Africa), of which 22 delivered 87-688 bp of reproducible aDNA mitochondrial sequence. Phylogenetic analyses support a major revision of the recent evolutionary history of equids and reveal two new species, a South American hippidion and a descendant of a basal lineage potentially related to Middle Pleistocene equids. Sequences from specimens assigned to the giant extinct Cape zebra, Equus capensis, formed a separate clade within the modern plain zebra species, a phenotypicically plastic group that also included the extinct quagga. In addition, we revise the currently recognized extinction times for two hemione-related equid groups. However, it is apparent that the current dataset cannot solve all of the taxonomic and phylogenetic questions relevant to the evolution of Equus. In light of these findings, we propose a rapid DNA barcoding approach to evaluate the taxonomic status of the many Late Pleistocene fossil Equidae species that have been described from purely morphological analyses.

  10. Comparative mtDNA phylogeography of neotropical freshwater fishes: testing shared history to infer the evolutionary landscape of lower Central America.

    Science.gov (United States)

    Bermingham, E; Martin, A P

    1998-04-01

    Historical biogeography seeks to explain contemporary distributions of taxa in the context of intrinsic biological and extrinsic geological and climatic factors. To decipher the relative importance of biological characteristics vs. environmental conditions, it is necessary to ask whether groups of taxa with similar distributions share the same history of diversification. Because all of the taxa will have shared the same climatic and geological history, evidence of shared history across multiple species provides an estimate of the role of extrinsic factors in shaping contemporary biogeographic patterns. Similarly, differences in the records of evolutionary history across species will probably be signatures of biological differences. In this study, we focus on inferring the evolutionary history for geographical populations and closely related species representing three genera of primary freshwater fishes that are widely distributed in lower Central America (LCA) and northwestern Colombia. Analysis of mitochondrial gene trees provides the opportunity for robust tests of shared history across taxa. Moreover, because mtDNA permits inference of the temporal scale of diversification we can test hypotheses regarding the chronological development of the Isthmian corridor linking North and South America. We have focused attention on two issues. First, we show that many of the distinct populations of LCA fishes diverged in a relatively brief period of time thus limiting the phylogenetic signal available for tests of shared history. Second, our results provide reduced evidence of shared history when all drainages are included in the analysis because of inferred dispersion events that obscure the evolutionary history among drainage basins. When we restrict the analysis to areas that harbour endemic mitochondrial lineages, there is evidence of shared history across taxa. We hypothesize that there were two to three distinct waves of invasion into LCA from putative source

  11. Large-Scale Phylogenomic Analysis Reveals the Complex Evolutionary History of Rabies Virus in Multiple Carnivore Hosts.

    Directory of Open Access Journals (Sweden)

    Cécile Troupin

    2016-12-01

    Full Text Available The natural evolution of rabies virus (RABV provides a potent example of multiple host shifts and an important opportunity to determine the mechanisms that underpin viral emergence. Using 321 genome sequences spanning an unprecedented diversity of RABV, we compared evolutionary rates and selection pressures in viruses sampled from multiple primary host shifts that occurred on various continents. Two major phylogenetic groups, bat-related RABV and dog-related RABV, experiencing markedly different evolutionary dynamics were identified. While no correlation between time and genetic divergence was found in bat-related RABV, the evolution of dog-related RABV followed a generally clock-like structure, although with a relatively low evolutionary rate. Subsequent molecular clock dating indicated that dog-related RABV likely underwent a rapid global spread following the intensification of intercontinental trade starting in the 15th century. Strikingly, although dog RABV has jumped to various wildlife species from the order Carnivora, we found no clear evidence that these host-jumping events involved adaptive evolution, with RABV instead characterized by strong purifying selection, suggesting that ecological processes also play an important role in shaping patterns of emergence. However, specific amino acid changes were associated with the parallel emergence of RABV in ferret-badgers in Asia, and some host shifts were associated with increases in evolutionary rate, particularly in the ferret-badger and mongoose, implying that changes in host species can have important impacts on evolutionary dynamics.

  12. Evolutionary analysis of hepatitis C virus gene sequences from 1953

    Science.gov (United States)

    Gray, Rebecca R.; Tanaka, Yasuhito; Takebe, Yutaka; Magiorkinis, Gkikas; Buskell, Zelma; Seeff, Leonard; Alter, Harvey J.; Pybus, Oliver G.

    2013-01-01

    Reconstructing the transmission history of infectious diseases in the absence of medical or epidemiological records often relies on the evolutionary analysis of pathogen genetic sequences. The precision of evolutionary estimates of epidemic history can be increased by the inclusion of sequences derived from ‘archived’ samples that are genetically distinct from contemporary strains. Historical sequences are especially valuable for viral pathogens that circulated for many years before being formally identified, including HIV and the hepatitis C virus (HCV). However, surprisingly few HCV isolates sampled before discovery of the virus in 1989 are currently available. Here, we report and analyse two HCV subgenomic sequences obtained from infected individuals in 1953, which represent the oldest genetic evidence of HCV infection. The pairwise genetic diversity between the two sequences indicates a substantial period of HCV transmission prior to the 1950s, and their inclusion in evolutionary analyses provides new estimates of the common ancestor of HCV in the USA. To explore and validate the evolutionary information provided by these sequences, we used a new phylogenetic molecular clock method to estimate the date of sampling of the archived strains, plus the dates of four more contemporary reference genomes. Despite the short fragments available, we conclude that the archived sequences are consistent with a proposed sampling date of 1953, although statistical uncertainty is large. Our cross-validation analyses suggest that the bias and low statistical power observed here likely arise from a combination of high evolutionary rate heterogeneity and an unstructured, star-like phylogeny. We expect that attempts to date other historical viruses under similar circumstances will meet similar problems. PMID:23938759

  13. The evolutionary history of Eugenia sect. Phyllocalyx (Myrtaceae) corroborates historically stable areas in the southern Atlantic forests.

    Science.gov (United States)

    de Oliveira Bünger, Mariana; Fernanda Mazine, Fiorella; Forest, Félix; Leandro Bueno, Marcelo; Renato Stehmann, João; Lucas, Eve J

    2016-12-01

    Eugenia sect. Phyllocalyx Nied. includes 14 species endemic to the Neotropics, mostly distributed in the Atlantic coastal forests of Brazil. Here the first comprehensive phylogenetic study of this group is presented, and this phylogeny is used as the basis to evaluate the recent infrageneric classification in Eugenia sensu lato (s.l.) to test the history of the evolution of traits in the group and test hypotheses associated with the history of this clade. A total of 42 taxa were sampled, of which 14 were Eugenia sect. Phyllocalyx for one nuclear (ribosomal internal transcribed spacer) and four plastid markers (psbA-trnH, rpl16, trnL-rpl32 and trnQ-rps16). The relationships were reconstructed based on Bayesian analysis and maximum likelihood. Additionally, ancestral area analysis and modelling methods were used to estimate species dispersal, comparing historically climatic stable (refuges) and unstable areas. Maximum likelihood and Bayesian inferences indicate that Eugenia sect. Phyllocalyx is paraphyletic and the two clades recovered are characterized by combinations of morphological characters. Phylogenetic relationships support a link between Cerrado and south-eastern species and a difference in the composition of species from north-eastern and south-eastern Atlantic forest. Refugia and stable areas identified within unstable areas suggest that these areas were important to maintain diversity in the Atlantic forest biodiversity hotspot. This study provides a robust phylogenetic framework to address important historical questions for Eugenia s.l. within an evolutionary context, supporting the need for better taxonomic study of one of the largest genera in the Neotropics. Furthermore, valuable insight is offered into diversification and biome shifts of plant species in the highly environmentally impacted Atlantic forest of South America. Evidence is presented that climate stability in the south-eastern Atlantic forest during the Quaternary contributed to the

  14. Evolutionary Dynamics and Diversity in Microbial Populations

    Science.gov (United States)

    Thompson, Joel; Fisher, Daniel

    2013-03-01

    Diseases such as flu and cancer adapt at an astonishing rate. In large part, viruses and cancers are so difficult to prevent because they are continually evolving. Controlling such ``evolutionary diseases'' requires a better understanding of the underlying evolutionary dynamics. It is conventionally assumed that adaptive mutations are rare and therefore will occur and sweep through the population in succession. Recent experiments using modern sequencing technologies have illuminated the many ways in which real population sequence data does not conform to the predictions of conventional theory. We consider a very simple model of asexual evolution and perform simulations in a range of parameters thought to be relevant for microbes and cancer. Simulation results reveal complex evolutionary dynamics typified by competition between lineages with different sets of adaptive mutations. This dynamical process leads to a distribution of mutant gene frequencies different than expected under the conventional assumption that adaptive mutations are rare. Simulated gene frequencies share several conspicuous features with data collected from laboratory-evolved yeast and the worldwide population of influenza.

  15. Wide distribution and ancient evolutionary history of simian foamy viruses in New World primates.

    Science.gov (United States)

    Ghersi, Bruno M; Jia, Hongwei; Aiewsakun, Pakorn; Katzourakis, Aris; Mendoza, Patricia; Bausch, Daniel G; Kasper, Matthew R; Montgomery, Joel M; Switzer, William M

    2015-10-29

    Although simian foamy viruses (SFV) are the only exogenous retroviruses to infect New World monkeys (NWMs), little is known about their evolutionary history and epidemiology. Previous reports show distinct SFVs among NWMs but were limited to small numbers of captive or wild monkeys from five (Cebus, Saimiri, Ateles, Alouatta, and Callithrix) of the 15 NWM genera. Other studies also used only PCR testing or serological assays with limited validation and may have missed infection in some species. We developed and validated new serological and PCR assays to determine the prevalence of SFV in blood specimens from a large number of captive NWMs in the US (n = 274) and in captive and wild-caught NWMs (n = 236) in Peruvian zoos, rescue centers, and illegal trade markets. Phylogenetic and co-speciation reconciliation analyses of new SFV polymerase (pol) and host mitochondrial cytochrome B sequences, were performed to infer SFV and host co-evolutionary histories. 124/274 (45.2 %) of NWMs captive in the US and 59/157 (37.5 %) of captive and wild-caught NWMs in Peru were SFV WB-positive representing 11 different genera (Alouatta, Aotus, Ateles, Cacajao, Callithrix, Cebus, Lagothrix, Leontopithecus, Pithecia, Saguinus and Saimiri). Seroprevalences were lower at rescue centers (10/53, 18.9 %) compared to zoos (46/97, 47.4 %) and illegal trade markets (3/7, 8/19, 42.9 %) in Peru. Analyses showed that the trees of NWM hosts and SFVs have remarkably similar topologies at the level of species and sub-populations suggestive of co-speciation. Phylogenetic reconciliation confirmed 12 co-speciation events (p history of SFV in NWMs at the species level. Additional studies are necessary to further explore the epidemiology and natural history of SFV infection of NWMs and to determine the zoonotic potential for persons exposed to infected monkeys in captivity and in the wild.

  16. Incorporating evolutionary principles into environmental management and policy

    DEFF Research Database (Denmark)

    Lankau, Richard; Jørgensen, Peter Søgaard; Harris, David J.

    2011-01-01

    As policymakers and managers work to mitigate the effects of rapid anthropogenic environmental changes, they need to consider organisms’ responses. In light of recent evidence that evolution can be quite rapid, this now includes evolutionary responses. Evolutionary principles have a long history...... in conservation biology, and the necessary next step for the field is to consider ways in which conservation policy makers and managers can proactively manipulate evolutionary processes to achieve their goals. In this review, we aim to illustrate the potential conservation benefits of an increased understanding...... of evolutionary history and prescriptive manipulation of three basic evolutionary factors: selection, variation, and gene flow. For each, we review and propose ways that policy makers and managers can use evolutionary thinking to preserve threatened species, combat pest species, or reduce undesirable evolutionary...

  17. Genetic diversity and structure related to expansion history and habitat isolation: stone marten populating rural-urban habitats.

    Science.gov (United States)

    Wereszczuk, Anna; Leblois, Raphaël; Zalewski, Andrzej

    2017-12-22

    Population genetic diversity and structure are determined by past and current evolutionary processes, among which spatially limited dispersal, genetic drift, and shifts in species distribution boundaries have major effects. In most wildlife species, environmental modifications by humans often lead to contraction of species' ranges and/or limit their dispersal by acting as environmental barriers. However, in species well adapted to anthropogenic habitat or open landscapes, human induced environmental changes may facilitate dispersal and range expansions. In this study, we analysed whether isolation by distance and deforestation, among other environmental features, promotes or restricts dispersal and expansion in stone marten (Martes foina) populations. We genotyped 298 martens from eight sites at twenty-two microsatellite loci to characterize the genetic variability, population structure and demographic history of stone martens in Poland. At the landscape scale, limited genetic differentiation between sites in a mosaic of urban, rural and forest habitats was mostly influenced by isolation by distance. Statistical clustering and multivariate analyses showed weak genetic structuring with two to four clusters and a high rate of gene flow between them. Stronger genetic differentiation was detected for one stone marten population (NE1) located inside a large forest complex. Genetic differentiation between this site and all others was 20% higher than between other sites separated by similar distances. The genetic uniqueness index of NE1 was also twofold higher than in other sites. Past demographic history analyses showed recent expansion of this species in north-eastern Poland. A decrease in genetic diversity from south to north, and MIGRAINE analyses indicated the direction of expansion of stone marten. Our results showed that two processes, changes in species distribution boundaries and limited dispersal associated with landscape barriers, affect genetic diversity and

  18. New clues to the evolutionary history of the main European paternal lineage M269

    DEFF Research Database (Denmark)

    Valverde, Laura; Illescas, Maria José; Villaescusa, Patricia

    2016-01-01

    The dissection of S116 in more than 1500 individuals from Atlantic Europe and the Iberian Peninsula has provided important clues about the controversial evolutionary history of M269. First, the results do not point to an origin of M269 in the Franco-Cantabrian refuge, owing to the lack of subline...... European peopling, as has been the case for the place of origin of M269.European Journal of Human Genetics advance online publication, 17 June 2015; doi:10.1038/ejhg.2015.114....

  19. Evolutionary thinking: "A conversation with Carter Phipps about the role of evolutionary thinking in modern culture".

    Science.gov (United States)

    Hunt, Tam

    2014-12-01

    Evolution as an idea has a lengthy history, even though the idea of evolution is generally associated with Darwin today. Rebecca Stott provides an engaging and thoughtful overview of this history of evolutionary thinking in her 2013 book, Darwin's Ghosts: The Secret History of Evolution. Since Darwin, the debate over evolution-both how it takes place and, in a long war of words with religiously-oriented thinkers, whether it takes place-has been sustained and heated. A growing share of this debate is now devoted to examining how evolutionary thinking affects areas outside of biology. How do our lives change when we recognize that all is in flux? What can we learn about life more generally if we study change instead of stasis? Carter Phipps' book, Evolutionaries: Unlocking the Spiritual and Cultural Potential of Science's Greatest Idea, delves deep into this relatively new development. Phipps generally takes as a given the validity of the Modern Synthesis of evolutionary biology. His story takes us into, as the subtitle suggests, the spiritual and cultural implications of evolutionary thinking. Can religion and evolution be reconciled? Can evolutionary thinking lead to a new type of spirituality? Is our culture already being changed in ways that we don't realize by evolutionary thinking? These are all important questions and Phipps book is a great introduction to this discussion. Phipps is an author, journalist, and contributor to the emerging "integral" or "evolutionary" cultural movement that combines the insights of Integral Philosophy, evolutionary science, developmental psychology, and the social sciences. He has served as the Executive Editor of EnlightenNext magazine (no longer published) and more recently is the co-founder of the Institute for Cultural Evolution, a public policy think tank addressing the cultural roots of America's political challenges. What follows is an email interview with Phipps.

  20. Micro-evolutionary diversification among Indian Ocean parrots: temporal and spatial changes in phylogenetic diversity as a consequence of extinction and invasion

    OpenAIRE

    Jackson, H; Jones, C G; Agapow, P-M; Tatayah, V; Groombridge, Jim J.

    2015-01-01

    Almost 90% of global bird extinctions have occurred on islands. The loss of endemic spe- cies from island systems can dramatically alter evolutionary trajectories of insular species biodiversity, resulting in a loss of evolutionary diversity important for species adaptation to changing environments. The Western Indian Ocean islands have been the scene of evolution for a large number of endemic parrots. Since their discovery in the 16th cen- tury, many of these parrots have become extinct or h...

  1. The diversity and evolution of nematodes (Pharyngodonidae) infecting New Zealand lizards.

    Science.gov (United States)

    Mockett, Sarah; Bell, Trent; Poulin, Robert; Jorge, Fátima

    2017-04-01

    Host-parasite co-evolutionary studies can shed light on diversity and the processes that shape it. Molecular methods have proven to be an indispensable tool in this task, often uncovering unseen diversity. This study used two nuclear markers (18S rRNA and 28S rRNA) and one mitochondrial (cytochrome oxidase subunit I) marker to investigate the diversity of nematodes of the family Pharyngodonidae parasitizing New Zealand (NZ) lizards (lygosomine skinks and diplodactylid geckos) and to explore their co-evolutionary history. A Bayesian approach was used to infer phylogenetic relationships of the parasitic nematodes. Analyses revealed that nematodes parasitizing skinks, currently classified as Skrjabinodon, are more closely related to Spauligodon than to Skrjabinodon infecting NZ geckos. Genetic analyses also uncovered previously undetected diversity within NZ gecko nematodes and provided evidence for several provisionally cryptic species. We also examined the level of host-parasite phylogenetic congruence using a global-fit approach. Significant congruence was detected between gecko-Skrjabinodon phylogenies, but our results indicated that strict co-speciation is not the main co-evolutionary process shaping the associations between NZ skinks and geckos and their parasitic nematodes. However, further sampling is required to fully resolve co-phylogenetic patterns of diversification in this host-parasite system.

  2. Citizen science data reveal ecological, historical and evolutionary factors shaping interactions between woody hosts and wood-inhabiting fungi.

    Science.gov (United States)

    Heilmann-Clausen, Jacob; Maruyama, Pietro K; Bruun, Hans Henrik; Dimitrov, Dimitar; Laessøe, Thomas; Frøslev, Tobias Guldberg; Dalsgaard, Bo

    2016-12-01

    Woody plants host diverse communities of associated organisms, including wood-inhabiting fungi. In this group, host effects on species richness and interaction network structure are not well understood, especially not at large geographical scales. We investigated ecological, historical and evolutionary determinants of fungal species richness and network modularity, that is, subcommunity structure, across woody hosts in Denmark, using a citizen science data set comprising > 80 000 records of > 1000 fungal species on 91 genera of woody plants. Fungal species richness was positively related to host size, wood pH, and the number of species in the host genus, with limited influence of host frequency and host history, that is, time since host establishment in the area. Modularity patterns were unaffected by host history, but largely reflected host phylogeny. Notably, fungal communities differed substantially between angiosperm and gymnosperm hosts. Host traits and evolutionary history appear to be more important than host frequency and recent history in structuring interactions between hosts and wood-inhabiting fungi. High wood acidity appears to act as a stress factor reducing fungal species richness, while large host size, providing increased niche diversity, enhances it. In some fungal groups that are known to interact with live host cells in the establishment phase, host selectivity is common, causing a modular community structure. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  3. Evolutionary history of Indian Ocean nycteribiid bat flies mirroring the ecology of their hosts.

    Science.gov (United States)

    Tortosa, Pablo; Dsouli, Najla; Gomard, Yann; Ramasindrazana, Beza; Dick, Carl W; Goodman, Steven M

    2013-01-01

    Bats and their parasites are increasingly investigated for their role in maintenance and transmission of potentially emerging pathogens. The islands of the western Indian Ocean hold nearly 50 bat species, mostly endemic and taxonomically well studied. However, investigation of associated viral, bacterial, and external parasites has lagged behind. In the case of their ectoparasites, more detailed information should provide insights into the evolutionary history of their hosts, as well as pathogen cycles in these wild animals. Here we investigate species of Nycteribiidae, a family of obligate hematophagous wingless flies parasitizing bats. Using morphological and molecular approaches, we describe fly species diversity sampled on Madagascar and the Comoros for two cave-roosting bat genera with contrasting ecologies: Miniopterus and Rousettus. Within the sampling area, 11 endemic species of insect-feeding Miniopterus occur, two of which are common to Madagascar and Comoros, while fruit-consuming Rousettus are represented by one species endemic to each of these zones. Morphological and molecular characterization of flies reveals that nycteribiids associated with Miniopterus bats comprise three species largely shared by most host species. Flies of M. griveaudi, one of the two bats found on Madagascar and certain islands in the Comoros, belong to the same taxon, which accords with continued over-water population exchange of this bat species and the lack of inter-island genetic structuring. Flies parasitizing Rousettus belong to two distinct species, each associated with a single host species, again in accordance with the distribution of each endemic bat species.

  4. Similar but not the same: insights into the evolutionary history of paralogous sex-determining genes of the dwarf honey bee Apis florea.

    Science.gov (United States)

    Biewer, M; Lechner, S; Hasselmann, M

    2016-01-01

    Studying the fate of duplicated genes provides informative insight into the evolutionary plasticity of biological pathways to which they belong. In the paralogous sex-determining genes complementary sex determiner (csd) and feminizer (fem) of honey bee species (genus Apis), only heterozygous csd initiates female development. Here, the full-length coding sequences of the genes csd and fem of the phylogenetically basal dwarf honey bee Apis florea are characterized. Compared with other Apis species, remarkable evolutionary changes in the formation and localization of a protein-interacting (coiled-coil) motif and in the amino acids coding for the csd characteristic hypervariable region (HVR) are observed. Furthermore, functionally different csd alleles were isolated as genomic fragments from a random population sample. In the predicted potential specifying domain (PSD), a high ratio of πN/πS=1.6 indicated positive selection, whereas signs of balancing selection, commonly found in other Apis species, are missing. Low nucleotide diversity on synonymous and genome-wide, non-coding sites as well as site frequency analyses indicated a strong impact of genetic drift in A. florea, likely linked to its biology. Along the evolutionary trajectory of ~30 million years of csd evolution, episodic diversifying selection seems to have acted differently among distinct Apis branches. Consistently low amino-acid differences within the PSD among pairs of functional heterozygous csd alleles indicate that the HVR is the most important region for determining allele specificity. We propose that in the early history of the lineage-specific fem duplication giving rise to csd in Apis, A. florea csd stands as a remarkable example for the plasticity of initial sex-determining signals.

  5. The origin, current diversity and future conservation of the modern lion (Panthera leo)

    Science.gov (United States)

    Barnett, Ross; Yamaguchi, Nobuyuki; Barnes, Ian; Cooper, Alan

    2006-01-01

    Understanding the phylogeographic processes affecting endangered species is crucial both to interpreting their evolutionary history and to the establishment of conservation strategies. Lions provide a key opportunity to explore such processes; however, a lack of genetic diversity and shortage of suitable samples has until now hindered such investigation. We used mitochondrial control region DNA (mtDNA) sequences to investigate the phylogeographic history of modern lions, using samples from across their entire range. We find the sub-Saharan African lions are basal among modern lions, supporting a single African origin model of modern lion evolution, equivalent to the ‘recent African origin’ model of modern human evolution. We also find the greatest variety of mtDNA haplotypes in the centre of Africa, which may be due to the distribution of physical barriers and continental-scale habitat changes caused by Pleistocene glacial oscillations. Our results suggest that the modern lion may currently consist of three geographic populations on the basis of their recent evolutionary history: North African–Asian, southern African and middle African. Future conservation strategies should take these evolutionary subdivisions into consideration. PMID:16901830

  6. Cenozoic tectonic and climatic events in southern Iberian Peninsula: Implications for the evolutionary history of freshwater fish of the genus Squalius (Actinopterygii, Cyprinidae).

    Science.gov (United States)

    Perea, Silvia; Cobo-Simon, Marta; Doadrio, Ignacio

    2016-04-01

    Southern Iberian freshwater ecosystems located at the border between the European and African plates represent a tectonically complex region spanning several geological ages, from the uplifting of the Betic Mountains in the Serravalian-Tortonian periods to the present. This area has also been subjected to the influence of changing climate conditions since the Middle-Upper Pliocene when seasonal weather patterns were established. Consequently, the ichthyofauna of southern Iberia is an interesting model system for analyzing the influence of Cenozoic tectonic and climatic events on its evolutionary history. The cyprinids Squalius malacitanus and Squalius pyrenaicus are allopatrically distributed in southern Iberia and their evolutionary history may have been defined by Cenozoic tectonic and climatic events. We analyzed MT-CYB (510 specimens) and RAG1 (140 specimens) genes of both species to reconstruct phylogenetic relationships and to estimate divergence times and ancestral distribution ranges of the species and their populations. We also assessed their levels of genetic structure and diversity as well as the amount of gene flow between populations. To investigate recent paleogeographical and climatic factors in southern Iberia, we modeled changes-through-time in sea level from the LGM to the present. Phylogenetic, geographic and population structure analyses revealed two well-supported species (S. malacitanus and S. pyrenaicus) in southern Iberia and two subclades (Atlantic and Mediterranean) within S. malacitanus. The origin of S. malacitanus and the separation of its Atlantic and Mediterranean populations occurred during the Serravalian-Tortonian and Miocene-Pliocene periods, respectively. These divergence events occurred in the Middle Pliocene and Pleistocene in S. pyrenaicus. In both species, Atlantic basins possessed populations with higher genetic diversity than Mediterranean, which may be explained by the Janda Lagoon. The isolation of S. malacitanus was

  7. The evolutionary history of bears is characterized by gene flow across species

    Science.gov (United States)

    Kumar, Vikas; Lammers, Fritjof; Bidon, Tobias; Pfenninger, Markus; Kolter, Lydia; Nilsson, Maria A.; Janke, Axel

    2017-01-01

    Bears are iconic mammals with a complex evolutionary history. Natural bear hybrids and studies of few nuclear genes indicate that gene flow among bears may be more common than expected and not limited to polar and brown bears. Here we present a genome analysis of the bear family with representatives of all living species. Phylogenomic analyses of 869 mega base pairs divided into 18,621 genome fragments yielded a well-resolved coalescent species tree despite signals for extensive gene flow across species. However, genome analyses using different statistical methods show that gene flow is not limited to closely related species pairs. Strong ancestral gene flow between the Asiatic black bear and the ancestor to polar, brown and American black bear explains uncertainties in reconstructing the bear phylogeny. Gene flow across the bear clade may be mediated by intermediate species such as the geographically wide-spread brown bears leading to large amounts of phylogenetic conflict. Genome-scale analyses lead to a more complete understanding of complex evolutionary processes. Evidence for extensive inter-specific gene flow, found also in other animal species, necessitates shifting the attention from speciation processes achieving genome-wide reproductive isolation to the selective processes that maintain species divergence in the face of gene flow. PMID:28422140

  8. The evolutionary history of bears is characterized by gene flow across species.

    Science.gov (United States)

    Kumar, Vikas; Lammers, Fritjof; Bidon, Tobias; Pfenninger, Markus; Kolter, Lydia; Nilsson, Maria A; Janke, Axel

    2017-04-19

    Bears are iconic mammals with a complex evolutionary history. Natural bear hybrids and studies of few nuclear genes indicate that gene flow among bears may be more common than expected and not limited to polar and brown bears. Here we present a genome analysis of the bear family with representatives of all living species. Phylogenomic analyses of 869 mega base pairs divided into 18,621 genome fragments yielded a well-resolved coalescent species tree despite signals for extensive gene flow across species. However, genome analyses using different statistical methods show that gene flow is not limited to closely related species pairs. Strong ancestral gene flow between the Asiatic black bear and the ancestor to polar, brown and American black bear explains uncertainties in reconstructing the bear phylogeny. Gene flow across the bear clade may be mediated by intermediate species such as the geographically wide-spread brown bears leading to large amounts of phylogenetic conflict. Genome-scale analyses lead to a more complete understanding of complex evolutionary processes. Evidence for extensive inter-specific gene flow, found also in other animal species, necessitates shifting the attention from speciation processes achieving genome-wide reproductive isolation to the selective processes that maintain species divergence in the face of gene flow.

  9. The relative importance of regional, local, and evolutionary factors structuring cryptobenthic coral-reef assemblages

    Science.gov (United States)

    Ahmadia, Gabby N.; Tornabene, Luke; Smith, David J.; Pezold, Frank L.

    2018-03-01

    Factors shaping coral-reef fish species assemblages can operate over a wide range of spatial scales (local versus regional) and across both proximate and evolutionary time. Niche theory and neutral theory provide frameworks for testing assumptions and generating insights about the importance of local versus regional processes. Niche theory postulates that species assemblages are an outcome of evolutionary processes at regional scales followed by local-scale interactions, whereas neutral theory presumes that species assemblages are formed by largely random processes drawing from regional species pools. Indo-Pacific cryptobenthic coral-reef fishes are highly evolved, ecologically diverse, temporally responsive, and situated on a natural longitudinal diversity gradient, making them an ideal group for testing predictions from niche and neutral theories and effects of regional and local processes on species assemblages. Using a combination of ecological metrics (fish density, diversity, assemblage composition) and evolutionary analyses (testing for phylogenetic niche conservatism), we demonstrate that the structure of cryptobenthic fish assemblages can be explained by a mixture of regional factors, such as the size of regional species pools and broad-scale barriers to gene flow/drivers of speciation, coupled with local-scale factors, such as the relative abundance of specific microhabitat types. Furthermore, species of cryptobenthic fishes have distinct microhabitat associations that drive significant differences in assemblage community structure between microhabitat types, and these distinct microhabitat associations are phylogenetically conserved over evolutionary timescales. The implied differential fitness of cryptobenthic fishes across varied microhabitats and the conserved nature of their ecology are consistent with predictions from niche theory. Neutral theory predictions may still hold true for early life-history stages, where stochastic factors may be more

  10. A field experiment demonstrating plant life-history evolution and its eco-evolutionary feedback to seed predator populations.

    Science.gov (United States)

    Agrawal, Anurag A; Johnson, Marc T J; Hastings, Amy P; Maron, John L

    2013-05-01

    The extent to which evolutionary change occurs in a predictable manner under field conditions and how evolutionary changes feed back to influence ecological dynamics are fundamental, yet unresolved, questions. To address these issues, we established eight replicate populations of native common evening primrose (Oenothera biennis). Each population was planted with 18 genotypes in identical frequency. By tracking genotype frequencies with microsatellite DNA markers over the subsequent three years (up to three generations, ≈5,000 genotyped plants), we show rapid and consistent evolution of two heritable plant life-history traits (shorter life span and later flowering time). This rapid evolution was only partially the result of differential seed production; genotypic variation in seed germination also contributed to the observed evolutionary response. Since evening primrose genotypes exhibited heritable variation for resistance to insect herbivores, which was related to flowering time, we predicted that evolutionary changes in genotype frequencies would feed back to influence populations of a seed predator moth that specializes on O. biennis. By the conclusion of the experiment, variation in the genotypic composition among our eight replicate field populations was highly predictive of moth abundance. These results demonstrate how rapid evolution in field populations of a native plant can influence ecological interactions.

  11. Improved quantum-inspired evolutionary algorithm with diversity information applied to economic dispatch problem with prohibited operating zones

    International Nuclear Information System (INIS)

    Vianna Neto, Julio Xavier; Andrade Bernert, Diego Luis de; Santos Coelho, Leandro dos

    2011-01-01

    The objective of the economic dispatch problem (EDP) of electric power generation, whose characteristics are complex and highly nonlinear, is to schedule the committed generating unit outputs so as to meet the required load demand at minimum operating cost while satisfying all unit and system equality and inequality constraints. Recently, as an alternative to the conventional mathematical approaches, modern meta-heuristic optimization techniques have been given much attention by many researchers due to their ability to find an almost global optimal solution in EDPs. Research on merging evolutionary computation and quantum computation has been started since late 1990. Inspired on the quantum computation, this paper presented an improved quantum-inspired evolutionary algorithm (IQEA) based on diversity information of population. A classical quantum-inspired evolutionary algorithm (QEA) and the IQEA were implemented and validated for a benchmark of EDP with 15 thermal generators with prohibited operating zones. From the results for the benchmark problem, it is observed that the proposed IQEA approach provides promising results when compared to various methods available in the literature.

  12. Improved quantum-inspired evolutionary algorithm with diversity information applied to economic dispatch problem with prohibited operating zones

    Energy Technology Data Exchange (ETDEWEB)

    Vianna Neto, Julio Xavier, E-mail: julio.neto@onda.com.b [Pontifical Catholic University of Parana, PUCPR, Undergraduate Program at Mechatronics Engineering, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, Parana (Brazil); Andrade Bernert, Diego Luis de, E-mail: dbernert@gmail.co [Pontifical Catholic University of Parana, PUCPR, Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, Parana (Brazil); Santos Coelho, Leandro dos, E-mail: leandro.coelho@pucpr.b [Pontifical Catholic University of Parana, PUCPR, Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, Parana (Brazil)

    2011-01-15

    The objective of the economic dispatch problem (EDP) of electric power generation, whose characteristics are complex and highly nonlinear, is to schedule the committed generating unit outputs so as to meet the required load demand at minimum operating cost while satisfying all unit and system equality and inequality constraints. Recently, as an alternative to the conventional mathematical approaches, modern meta-heuristic optimization techniques have been given much attention by many researchers due to their ability to find an almost global optimal solution in EDPs. Research on merging evolutionary computation and quantum computation has been started since late 1990. Inspired on the quantum computation, this paper presented an improved quantum-inspired evolutionary algorithm (IQEA) based on diversity information of population. A classical quantum-inspired evolutionary algorithm (QEA) and the IQEA were implemented and validated for a benchmark of EDP with 15 thermal generators with prohibited operating zones. From the results for the benchmark problem, it is observed that the proposed IQEA approach provides promising results when compared to various methods available in the literature.

  13. Improved quantum-inspired evolutionary algorithm with diversity information applied to economic dispatch problem with prohibited operating zones

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Julio Xavier Vianna [Pontifical Catholic University of Parana, PUCPR, Undergraduate Program at Mechatronics Engineering, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, Parana (Brazil); Bernert, Diego Luis de Andrade; Coelho, Leandro dos Santos [Pontifical Catholic University of Parana, PUCPR, Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, Parana (Brazil)

    2011-01-15

    The objective of the economic dispatch problem (EDP) of electric power generation, whose characteristics are complex and highly nonlinear, is to schedule the committed generating unit outputs so as to meet the required load demand at minimum operating cost while satisfying all unit and system equality and inequality constraints. Recently, as an alternative to the conventional mathematical approaches, modern meta-heuristic optimization techniques have been given much attention by many researchers due to their ability to find an almost global optimal solution in EDPs. Research on merging evolutionary computation and quantum computation has been started since late 1990. Inspired on the quantum computation, this paper presented an improved quantum-inspired evolutionary algorithm (IQEA) based on diversity information of population. A classical quantum-inspired evolutionary algorithm (QEA) and the IQEA were implemented and validated for a benchmark of EDP with 15 thermal generators with prohibited operating zones. From the results for the benchmark problem, it is observed that the proposed IQEA approach provides promising results when compared to various methods available in the literature. (author)

  14. Global patterns of evolutionary distinct and globally endangered amphibians and mammals.

    Science.gov (United States)

    Safi, Kamran; Armour-Marshall, Katrina; Baillie, Jonathan E M; Isaac, Nick J B

    2013-01-01

    Conservation of phylogenetic diversity allows maximising evolutionary information preserved within fauna and flora. The "EDGE of Existence" programme is the first institutional conservation initiative that prioritises species based on phylogenetic information. Species are ranked in two ways: one according to their evolutionary distinctiveness (ED) and second, by including IUCN extinction status, their evolutionary distinctiveness and global endangerment (EDGE). Here, we describe the global patterns in the spatial distribution of priority ED and EDGE species, in order to identify conservation areas for mammalian and amphibian communities. In addition, we investigate whether environmental conditions can predict the observed spatial pattern in ED and EDGE globally. Priority zones with high concentrations of ED and EDGE scores were defined using two different methods. The overlap between mammal and amphibian zones was very small, reflecting the different phylo-biogeographic histories. Mammal ED zones were predominantly found on the African continent and the neotropical forests, whereas in amphibians, ED zones were concentrated in North America. Mammal EDGE zones were mainly in South-East Asia, southern Africa and Madagascar; for amphibians they were in central and south America. The spatial pattern of ED and EDGE was poorly described by a suite of environmental variables. Mapping the spatial distribution of ED and EDGE provides an important step towards identifying priority areas for the conservation of mammalian and amphibian phylogenetic diversity in the EDGE of existence programme.

  15. Personalized medicine and human genetic diversity.

    Science.gov (United States)

    Lu, Yi-Fan; Goldstein, David B; Angrist, Misha; Cavalleri, Gianpiero

    2014-07-24

    Human genetic diversity has long been studied both to understand how genetic variation influences risk of disease and infer aspects of human evolutionary history. In this article, we review historical and contemporary views of human genetic diversity, the rare and common mutations implicated in human disease susceptibility, and the relevance of genetic diversity to personalized medicine. First, we describe the development of thought about diversity through the 20th century and through more modern studies including genome-wide association studies (GWAS) and next-generation sequencing. We introduce several examples, such as sickle cell anemia and Tay-Sachs disease that are caused by rare mutations and are more frequent in certain geographical populations, and common treatment responses that are caused by common variants, such as hepatitis C infection. We conclude with comments about the continued relevance of human genetic diversity in medical genetics and personalized medicine more generally. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  16. An intertwined evolutionary history of methanogenic archaea and sulfate reduction.

    Directory of Open Access Journals (Sweden)

    Dwi Susanti

    Full Text Available Hydrogenotrophic methanogenesis and dissimilatory sulfate reduction, two of the oldest energy conserving respiratory systems on Earth, apparently could not have evolved in the same host, as sulfite, an intermediate of sulfate reduction, inhibits methanogenesis. However, certain methanogenic archaea metabolize sulfite employing a deazaflavin cofactor (F(420-dependent sulfite reductase (Fsr where N- and C-terminal halves (Fsr-N and Fsr-C are homologs of F(420H(2 dehydrogenase and dissimilatory sulfite reductase (Dsr, respectively. From genome analysis we found that Fsr was likely assembled from freestanding Fsr-N homologs and Dsr-like proteins (Dsr-LP, both being abundant in methanogens. Dsr-LPs fell into two groups defined by following sequence features: Group I (simplest, carrying a coupled siroheme-[Fe(4-S(4] cluster and sulfite-binding Arg/Lys residues; Group III (most complex, with group I features, a Dsr-type peripheral [Fe(4-S(4] cluster and an additional [Fe(4-S(4] cluster. Group II Dsr-LPs with group I features and a Dsr-type peripheral [Fe(4-S(4] cluster were proposed as evolutionary intermediates. Group III is the precursor of Fsr-C. The freestanding Fsr-N homologs serve as F(420H(2 dehydrogenase unit of a putative novel glutamate synthase, previously described membrane-bound electron transport system in methanogens and of assimilatory type sulfite reductases in certain haloarchaea. Among archaea, only methanogens carried Dsr-LPs. They also possessed homologs of sulfate activation and reduction enzymes. This suggested a shared evolutionary history for methanogenesis and sulfate reduction, and Dsr-LPs could have been the source of the oldest (3.47-Gyr ago biologically produced sulfide deposit.

  17. Global change and genetic diversity

    International Nuclear Information System (INIS)

    Kremer, Antoine

    2000-01-01

    Are there grounds for concern as to the impact of global change on the future of European forests? This question is approached from the genetic angle, considering the modifications produced by climate change on the diversity and adaptive potential of forest species. In the absence of experimental data, the answers are derived from a set of arguments based on knowledge of evolutionary mechanisms involved in genetic diversity, the post-glacial history of European forests and lessons drawn from recent introductions of foreign wood species. These arguments entail less pessimistic conclusions than those generally reached for consequences attributed to global change. Even if major changes in composition could occur, past events show that genetic erosion capable of challenging the adaptive potential of species is unlikely. (author)

  18. Bichordites from the early Eocene of Cuba: significance in the evolutionary history of the spatangoids

    Science.gov (United States)

    Villegas-Martín, Jorge; Netto, Renata Guimarães

    2017-12-01

    The trace fossil Bichordites monastiriensis is found in early Eocene turbiditic sandstones of the upper-slope deposits from the Capdevila Formation in Los Palacios Basin, Pinar del Río region, western Cuba. The potential tracemakers of B. monastiriensis include fossil spatangoids from the family Eupatagidae. The record of Bichordites in the deposits from Cuba allows to suppose that Eupatagidae echinoids were the oldest potential tracemakers of Bichordites isp. and reinforce the hypothesis that the ichnological record are relevant in envisaging the evolutionary history of the spatangoids.

  19. Phylogenetic investigation of the complex evolutionary history of dispersal mode and diversification rates across living and fossil Fagales.

    Science.gov (United States)

    Larson-Johnson, Kathryn

    2016-01-01

    As a primary determinant of spatial structure in angiosperm populations, fruit dispersal may impact large-scale ecological and evolutionary processes. Essential to understanding these mechanisms is an accurate reconstruction of dispersal mode over the entire history of an angiosperm lineage. A total-evidence phylogeny is presented for most fossil fruit and all extant genera in Fagales over its c. 95 million yr history. This phylogeny - the largest of its kind to include plant fossils - was used to reconstruct an evolutionary history directly informed by fossil morphologies and to assess relationships among dispersal mode, biogeographic range size, and diversification rate. Reconstructions indicate four transitions to wind dispersal and seven to biotic dispersal, with the phylogenetic integration of fossils crucial to understanding these patterns. Complexity further increased when more specialized behaviors were considered, with fluttering, gliding, autorotating, and scatter-hoarding evolving multiple times across the order. Preliminary biogeographic analyses suggest larger range sizes in biotically dispersed lineages, especially when pollination mode was held constant. Biotically dispersed lineages had significantly higher diversification rates than abiotically dispersed lineages, although transitions in dispersal mode alone cannot explain all detected diversification rate shifts across Fagales. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  20. Comparative evolutionary diversity and phylogenetic structure across multiple forest dynamics plots: a mega-phylogeny approach

    Science.gov (United States)

    Erickson, David L.; Jones, Frank A.; Swenson, Nathan G.; Pei, Nancai; Bourg, Norman A.; Chen, Wenna; Davies, Stuart J.; Ge, Xue-jun; Hao, Zhanqing; Howe, Robert W.; Huang, Chun-Lin; Larson, Andrew J.; Lum, Shawn K. Y.; Lutz, James A.; Ma, Keping; Meegaskumbura, Madhava; Mi, Xiangcheng; Parker, John D.; Fang-Sun, I.; Wright, S. Joseph; Wolf, Amy T.; Ye, W.; Xing, Dingliang; Zimmerman, Jess K.; Kress, W. John

    2014-01-01

    Forest dynamics plots, which now span longitudes, latitudes, and habitat types across the globe, offer unparalleled insights into the ecological and evolutionary processes that determine how species are assembled into communities. Understanding phylogenetic relationships among species in a community has become an important component of assessing assembly processes. However, the application of evolutionary information to questions in community ecology has been limited in large part by the lack of accurate estimates of phylogenetic relationships among individual species found within communities, and is particularly limiting in comparisons between communities. Therefore, streamlining and maximizing the information content of these community phylogenies is a priority. To test the viability and advantage of a multi-community phylogeny, we constructed a multi-plot mega-phylogeny of 1347 species of trees across 15 forest dynamics plots in the ForestGEO network using DNA barcode sequence data (rbcL, matK, and psbA-trnH) and compared community phylogenies for each individual plot with respect to support for topology and branch lengths, which affect evolutionary inference of community processes. The levels of taxonomic differentiation across the phylogeny were examined by quantifying the frequency of resolved nodes throughout. In addition, three phylogenetic distance (PD) metrics that are commonly used to infer assembly processes were estimated for each plot [PD, Mean Phylogenetic Distance (MPD), and Mean Nearest Taxon Distance (MNTD)]. Lastly, we examine the partitioning of phylogenetic diversity among community plots through quantification of inter-community MPD and MNTD. Overall, evolutionary relationships were highly resolved across the DNA barcode-based mega-phylogeny, and phylogenetic resolution for each community plot was improved when estimated within the context of the mega-phylogeny. Likewise, when compared with phylogenies for individual plots, estimates of

  1. On the origins of Balkan endemics: the complex evolutionary history of the Cyanus napulifer group (Asteraceae).

    Science.gov (United States)

    Olšavská, Katarína; Slovák, Marek; Marhold, Karol; Štubňová, Eliška; Kučera, Jaromír

    2016-11-01

    The Balkan Peninsula is one of the most important centres of plant diversity in Europe. Here we aim to fill the gap in the current knowledge of the evolutionary processes and factors modelling this astonishing biological richness by applying multiple approaches to the Cyanus napulifer group. To reconstruct the mode of diversification within the C. napulifer group and to uncover its relationships with potential relatives with x = 10 from Europe and Northern Africa, we examined variation in genetic markers (amplified fragment length polymorphisms [AFLPs]; 460 individuals), relative DNA content (4',6-diamidino-2-phenylindole [DAPI] flow cytometry, 330 individuals) and morphology (multivariate morphometrics, 40 morphological characters, 710 individuals). To elucidate its evolutionary history, we analysed chloroplast DNA (cpDNA) sequences of the genus Cyanus deposited in the GenBank database. The AFLPs revealed a suite of closely related entities with variable levels of differentiation. The C. napulifer group formed a genetically well-defined unit. Samples outside the group formed strongly diversified and mostly species-specific genetic lineages with no further geographical patterns, often characterized also by a different DNA content. AFLP analysis of the C. napulifer group revealed extensive radiation and split it into nine allopatric (sub)lineages with varying degrees of congruence among genetic, DNA-content and morphological patterns. Genetic admixture was usually detected in contact zones between genetic lineages. Plastid data indicated extensive maintenance of ancestral variation across Cyanus perennials. The C. napulifer group is an example of a rapidly and recently diversified plant group whose genetic lineages have evolved in spatio-temporal isolation on the topographically complex Balkan Peninsula. Adaptive radiation, accompanied in some cases by long-term isolation and hybridization, has contributed to the formation of this species complex and its mosaic

  2. Evolutionary history of Indian Ocean nycteribiid bat flies mirroring the ecology of their hosts.

    Directory of Open Access Journals (Sweden)

    Pablo Tortosa

    Full Text Available Bats and their parasites are increasingly investigated for their role in maintenance and transmission of potentially emerging pathogens. The islands of the western Indian Ocean hold nearly 50 bat species, mostly endemic and taxonomically well studied. However, investigation of associated viral, bacterial, and external parasites has lagged behind. In the case of their ectoparasites, more detailed information should provide insights into the evolutionary history of their hosts, as well as pathogen cycles in these wild animals. Here we investigate species of Nycteribiidae, a family of obligate hematophagous wingless flies parasitizing bats. Using morphological and molecular approaches, we describe fly species diversity sampled on Madagascar and the Comoros for two cave-roosting bat genera with contrasting ecologies: Miniopterus and Rousettus. Within the sampling area, 11 endemic species of insect-feeding Miniopterus occur, two of which are common to Madagascar and Comoros, while fruit-consuming Rousettus are represented by one species endemic to each of these zones. Morphological and molecular characterization of flies reveals that nycteribiids associated with Miniopterus bats comprise three species largely shared by most host species. Flies of M. griveaudi, one of the two bats found on Madagascar and certain islands in the Comoros, belong to the same taxon, which accords with continued over-water population exchange of this bat species and the lack of inter-island genetic structuring. Flies parasitizing Rousettus belong to two distinct species, each associated with a single host species, again in accordance with the distribution of each endemic bat species.

  3. Evolutionary Multiplayer Games

    OpenAIRE

    Gokhale, Chaitanya S.; Traulsen, Arne

    2014-01-01

    Evolutionary game theory has become one of the most diverse and far reaching theories in biology. Applications of this theory range from cell dynamics to social evolution. However, many applications make it clear that inherent non-linearities of natural systems need to be taken into account. One way of introducing such non-linearities into evolutionary games is by the inclusion of multiple players. An example is of social dilemmas, where group benefits could e.g.\\ increase less than linear wi...

  4. Genetic diversity in the lion (panthera leo (Linnaeus 1758)) : unravelling the past and prospects for the future

    NARCIS (Netherlands)

    Bertola, Laura Diana

    2015-01-01

    Insights into the spatial distribution of genetic diversity is key for understanding the evolutionary history and for effective species conservation. For the lion, all African populations are considered to belong to one subspecies, while the Asiatic subspecies is confined to a single population in

  5. Evolutionary history of a dispersal-associated locus across sympatric and allopatric divergent populations of a wing-polymorphic beetle across Atlantic Europe

    NARCIS (Netherlands)

    van Belleghem, S.M.; Roelofs, D.; Hendrickx, F.

    2015-01-01

    Studying the evolutionary history of trait divergence, in particular those related to dispersal capacity, is of major interest for the process of local adaptation and metapopulation dynamics. Here, we reconstruct the evolution of different alleles at the nuclear-encoded mitochondrial NADP

  6. Evolutionary biology and life histories

    Directory of Open Access Journals (Sweden)

    Brown, C. R.

    2004-06-01

    Full Text Available The demographic processes that drive the spread of populations through environments and in turn determine the abundance of organisms are the same demographic processes that drive the spread of genes through populations and in turn determine gene frequencies and fitness. Conceptually, marked similarities exist in the dynamic processes underlying population ecology and those underlying evolutionary biology. Central to an understanding of both disciplines is life history and its component demographic rates, such as survival, fecundity, and age of first breeding, and biologists from both fields have a vested interest in good analytical machinery for the estimation and analysis of these demographic rates. In the EURING conferences, we have been striving since the mid 1980s to promote a quantitative understanding of demographic rates through interdisciplinary collaboration between ecologists and statisticians. From the ecological side, the principal impetus has come from population biology, and in particular from wildlife biology, but the importance of good quantitative insights into demographic processes has long been recognized by a number of evolutionary biologists (e.g., Nichols & Kendall, 1995; Clobert, 1995; Cooch et al., 2002. In organizing this session, we have aimed to create a forum for those committed to gaining the best possible understanding of evolutionary processes through the application of modern quantitative methods for the collection and interpretation of data on marked animal populations. Here we present a short overview of the material presented in the session on evolutionary biology and life histories. In a plenary talk, Brown & Brown (2004 explored how mark–recapture methods have allowed a better understanding of the evolution of group–living and alternative reproductive tactics in colonial cliff swallows (Petrochelidon pyrrhonota. By estimating the number of transient birds passing through colonies of different sizes, they

  7. Attachment within life history theory: an evolutionary perspective on individual differences in attachment.

    Science.gov (United States)

    Szepsenwol, Ohad; Simpson, Jeffry A

    2018-03-15

    In this article, we discuss theory and research on how individual differences in adult attachment mediate the adaptive calibration of reproductive strategies, cognitive schemas, and emotional expression and regulation. We first present an integration of attachment theory and life history theory. Then, we discuss how early harsh and/or unpredictable environments may promote insecure attachment by hampering parents' ability to provide sensitive and reliable care to their children. Finally, we discuss how, in the context of harsh and/or unpredictable environments, different types of insecure attachment (i.e. anxiety and avoidance) may promote evolutionary adaptive reproductive strategies, cognitive schemas, and emotional expression and regulation profiles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Molecular phylogeny and evolutionary history of Moricandia DC (Brassicaceae

    Directory of Open Access Journals (Sweden)

    Francisco Perfectti

    2017-10-01

    Full Text Available Background The phylogeny of tribe Brassiceae (Brassicaceae has not yet been resolved because of its complex evolutionary history. This tribe comprises economically relevant species, including the genus Moricandia DC. This genus is currently distributed in North Africa, Middle East, Central Asia and Southern Europe, where it is associated with arid and semi-arid environments. Although some species of Moricandia have been used in several phylogenetic studies, the phylogeny of this genus is not well established. Methods Here we present a phylogenetic analysis of the genus Moricandia using a nuclear (the internal transcribed spacers of the ribosomal DNA and two plastidial regions (parts of the NADH dehydrogenase subunit F gene and the trnT-trnF region. We also included in the analyses members of their sister genus Rytidocarpus and from the close genus Eruca. Results The phylogenetic analyses showed a clear and robust phylogeny of the genus Moricandia. The Bayesian inference tree was concordant with the maximum likelihood and timing trees, with the plastidial and nuclear trees showing only minor discrepancies. The genus Moricandia appears to be formed by two main lineages: the Iberian clade including three species, and the African clade including the four species inhabiting the Southern Mediterranean regions plus M. arvensis. Discussion We dated the main evolutionary events of this genus, showing that the origin of the Iberian clade probably occurred after a range expansion during the Messinian period, between 7.25 and 5.33 Ma. In that period, an extensive African-Iberian floral and faunal interchange occurred due to the existence of land bridges between Africa and Europa in what is, at present-days, the Strait of Gibraltar. We have demonstrated that a Spanish population previously ascribed to Rytidocarpus moricandioides is indeed a Moricandia species, and we propose to name it as M. rytidocarpoides sp. nov. In addition, in all the phylogenetic

  9. Molecular phylogeny of the higher and lower taxonomy of the Fusarium genus and differences in the evolutionary histories of multiple genes

    Science.gov (United States)

    2011-01-01

    Background Species of the Fusarium genus are important fungi which is associated with health hazards in human and animals. The taxonomy of this genus has been a subject of controversy for many years. Although many researchers have applied molecular phylogenetic analysis to examine the taxonomy of Fusarium species, their phylogenetic relationships remain unclear only few comprehensive phylogenetic analyses of the Fusarium genus and a lack of suitable nucleotides and amino acid substitution rates. A previous stugy with whole genome comparison among Fusairum species revealed the possibility that each gene in Fusarium genomes has a unique evolutionary history, and such gene may bring difficulty to the reconstruction of phylogenetic tree of Fusarium. There is a need not only to check substitution rates of genes but also to perform the exact evaluation of each gene-evolution. Results We performed phylogenetic analyses based on the nucleotide sequences of the rDNA cluster region (rDNA cluster), and the β-tubulin gene (β-tub), the elongation factor 1α gene (EF-1α), and the aminoadipate reductase gene (lys2). Although incongruence of the tree topologies between lys2 and the other genes was detected, all genes supported the classification of Fusarium species into 7 major clades, I to VII. To obtain a reliable phylogeny for Fusarium species, we excluded the lys2 sequences from our dataset, and re-constructed a maximum likelihood (ML) tree based on the combined data of the rDNA cluster, β-tub, and EF-1α. Our ML tree indicated some interesting relationships in the higher and lower taxa of Fusarium species and related genera. Moreover, we observed a novel evolutionary history of lys2. We suggest that the unique tree topologies of lys2 are not due to an analytical artefact, but due to differences in the evolutionary history of genomes caused by positive selection of particular lineages. Conclusion This study showed the reliable species tree of the higher and lower taxonomy

  10. Sixty-Five Million Years of Change in Temperature and Topography Explain Evolutionary History in Eastern North American Plethodontid Salamanders.

    Science.gov (United States)

    Barnes, Richard; Clark, Adam Thomas

    2017-07-01

    For many taxa and systems, species richness peaks at midelevations. One potential explanation for this pattern is that large-scale changes in climate and geography have, over evolutionary time, selected for traits that are favored under conditions found in contemporary midelevation regions. To test this hypothesis, we use records of historical temperature and topographic changes over the past 65 Myr to construct a general simulation model of plethodontid salamander evolution in eastern North America. We then explore possible mechanisms constraining species to midelevation bands by using the model to predict plethodontid evolutionary history and contemporary geographic distributions. Our results show that models that incorporate both temperature and topographic changes are better able to predict these patterns, suggesting that both processes may have played an important role in driving plethodontid evolution in the region. Additionally, our model (whose annotated source code is included as a supplement) represents a proof of concept to encourage future work that takes advantage of recent advances in computing power to combine models of ecology, evolution, and earth history to better explain the abundance and distribution of species over time.

  11. Interpreting Evolutionary Diagrams: When Topology and Process Conflict

    Science.gov (United States)

    Catley, Kefyn M.; Novick, Laura R.; Shade, Courtney K.

    2010-01-01

    The authors argue that some diagrams in biology textbooks and the popular press presented as depicting evolutionary relationships suggest an inappropriate (anagenic) conception of evolutionary history. The goal of this research was to provide baseline data that begin to document how college students conceptualize the evolutionary relationships…

  12. Cooperation and conflict in cancer: An evolutionary perspective

    Directory of Open Access Journals (Sweden)

    Jonathan Featherston

    2012-09-01

    Full Text Available Evolutionary approaches to carcinogenesis have gained prominence in the literature and enhanced our understanding of cancer. However, an appreciation of neoplasia in the context of evolutionary transitions, particularly the transition from independent genes to a fullyintegrated genome, is largely absent. In the gene–genome evolutionary transition, mobile genetic elements (MGEs can be studied as the extant exemplars of selfish autonomous lowerlevel units that cooperated to form a higher-level, functionally integrated genome. Here,we discuss levels of selection in cancer cells. In particular, we examine the tension between gene and genome units of selection by examining the expression profiles of MGE domains in an array of human cancers. Overall, across diverse cancers, there is an aberrant expression of several families of mobile elements, including the most common MGE in the human genome, retrotransposon LINE 1. These results indicate an alternative life-history strategy for MGEs in the cancers studied. Whether the aberrant expression is the cause or effect oftumourigenesis is unknown, although some evidence suggests that dysregulation of MGEs can play a role in cancer origin and progression. These data are interpreted in combination with phylostratigraphic reports correlating the origin of cancer genes with multicellularity and other potential increases in complexity in cancer cell populations. Cooperation and conflict between individuals at the gene, genome and cell level provide an evolutionary medicineperspective of cancer that enhances our understanding of disease pathogenesis and treatment.

  13. Ecological and evolutionary influences on body size and shape in the Galápagos marine iguana (Amblyrhynchus cristatus).

    Science.gov (United States)

    Chiari, Ylenia; Glaberman, Scott; Tarroso, Pedro; Caccone, Adalgisa; Claude, Julien

    2016-07-01

    Oceanic islands are often inhabited by endemic species that have undergone substantial morphological evolutionary change due to processes of multiple colonizations from various source populations, dispersal, and local adaptation. Galápagos marine iguanas are an example of an island endemic exhibiting high morphological diversity, including substantial body size variation among populations and sexes, but the causes and magnitude of this variation are not well understood. We obtained morphological measurements from marine iguanas throughout their distribution range. These data were combined with genetic and local environmental data from each population to investigate the effects of evolutionary history and environmental conditions on body size and shape variation and sexual dimorphism. Our results indicate that body size and shape are highly variable among populations. Sea surface temperature and island perimeter, but not evolutionary history as depicted by phylogeographic patterns in this species, explain variation in body size among populations. Conversely, evolutionary history, but not environmental parameters or island size, was found to influence variation in body shape among populations. Finally, in all populations except one, we found strong sexual dimorphism in body size and shape in which males are larger, with higher heads than females, while females have longer heads than males. Differences among populations suggest that plasticity and/or genetic adaptation may shape body size and shape variation in marine iguanas. This study will help target future investigations to address the contribution of plasticity versus genetic adaptation on size and shape variation in marine iguanas.

  14. Evolutionary history of the endangered fish Zoogoneticus quitzeoensis (Bean, 1898) (Cyprinodontiformes: Goodeidae) using a sequential approach to phylogeography based on mitochondrial and nuclear DNA data

    Science.gov (United States)

    2008-01-01

    Background Tectonic, volcanic and climatic events that produce changes in hydrographic systems are the main causes of diversification and speciation of freshwater fishes. Elucidate the evolutionary history of freshwater fishes permits to infer theories on the biotic and geological evolution of a region, which can further be applied to understand processes of population divergence, speciation and for conservation purposes. The freshwater ecosystems in Central Mexico are characterized by their genesis dynamism, destruction, and compartmentalization induced by intense geologic activity and climatic changes since the early Miocene. The endangered goodeid Zoogoneticus quitzeoensis is widely distributed across Central México, thus making it a good model for phylogeographic analyses in this area. Results We addressed the phylogeography, evolutionary history and genetic structure of populations of Z. quitzeoensis through a sequential approach, based on both microsatellite and mitochondrial cytochrome b sequences. Most haplotypes were private to particular locations. All the populations analysed showed a remarkable number of haplotypes. The level of gene diversity within populations was H¯d = 0.987 (0.714 – 1.00). However, in general the nucleotide diversity was low, π = 0.0173 (0.0015 – 0.0049). Significant genetic structure was found among populations at the mitochondrial and nuclear level (ΦST = 0.836 and FST = 0.262, respectively). We distinguished two well-defined mitochondrial lineages that were separated ca. 3.3 million years ago (Mya). The time since expansion was ca. 1.5 × 106 years ago for Lineage I and ca. 860,000 years ago for Lineage II. Also, genetic patterns of differentiation, between and within lineages, are described at different historical timescales. Conclusion Our mtDNA data indicates that the evolution of the different genetic groups is more related to ancient geological and climatic events (Middle Pliocene, ca. 3.3 Mya) than to the current

  15. Evolutionary hotspots in the Mojave Desert

    Science.gov (United States)

    Vandergast, Amy G.; Inman, Richard D.; Barr, Kelly R.; Nussear, Kenneth E.; Esque, Todd C.; Hathaway, Stacie A.; Wood, Dustin A.; Medica, Philip A.; Breinholt, Jesse W.; Stephen, Catherine L.; Gottscho, Andrew D.; Marks, Sharyn B.; Jennings, W. Bryan; Fisher, Robert N.

    2013-01-01

    Genetic diversity within species provides the raw material for adaptation and evolution. Just as regions of high species diversity are conservation targets, identifying regions containing high genetic diversity and divergence within and among populations may be important to protect future evolutionary potential. When multiple co-distributed species show spatial overlap in high genetic diversity and divergence, these regions can be considered evolutionary hotspots. We mapped spatial population genetic structure for 17 animal species across the Mojave Desert, USA. We analyzed these in concurrence and located 10 regions of high genetic diversity, divergence or both among species. These were mainly concentrated along the western and southern boundaries where ecotones between mountain, grassland and desert habitat are prevalent, and along the Colorado River. We evaluated the extent to which these hotspots overlapped protected lands and utility-scale renewable energy development projects of the Bureau of Land Management. While 30–40% of the total hotspot area was categorized as protected, between 3–7% overlapped with proposed renewable energy project footprints, and up to 17% overlapped with project footprints combined with transmission corridors. Overlap of evolutionary hotspots with renewable energy development mainly occurred in 6 of the 10 identified hotspots. Resulting GIS-based maps can be incorporated into ongoing landscape planning efforts and highlight specific regions where further investigation of impacts to population persistence and genetic connectivity may be warranted.

  16. Applying evolutionary anthropology.

    Science.gov (United States)

    Gibson, Mhairi A; Lawson, David W

    2015-01-01

    Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution. © 2015 Wiley Periodicals, Inc.

  17. Applying Evolutionary Anthropology

    Science.gov (United States)

    Gibson, Mhairi A; Lawson, David W

    2015-01-01

    Evolutionary anthropology provides a powerful theoretical framework for understanding how both current environments and legacies of past selection shape human behavioral diversity. This integrative and pluralistic field, combining ethnographic, demographic, and sociological methods, has provided new insights into the ultimate forces and proximate pathways that guide human adaptation and variation. Here, we present the argument that evolutionary anthropological studies of human behavior also hold great, largely untapped, potential to guide the design, implementation, and evaluation of social and public health policy. Focusing on the key anthropological themes of reproduction, production, and distribution we highlight classic and recent research demonstrating the value of an evolutionary perspective to improving human well-being. The challenge now comes in transforming relevance into action and, for that, evolutionary behavioral anthropologists will need to forge deeper connections with other applied social scientists and policy-makers. We are hopeful that these developments are underway and that, with the current tide of enthusiasm for evidence-based approaches to policy, evolutionary anthropology is well positioned to make a strong contribution. PMID:25684561

  18. Global patterns of evolutionary distinct and globally endangered amphibians and mammals.

    Directory of Open Access Journals (Sweden)

    Kamran Safi

    Full Text Available BACKGROUND: Conservation of phylogenetic diversity allows maximising evolutionary information preserved within fauna and flora. The "EDGE of Existence" programme is the first institutional conservation initiative that prioritises species based on phylogenetic information. Species are ranked in two ways: one according to their evolutionary distinctiveness (ED and second, by including IUCN extinction status, their evolutionary distinctiveness and global endangerment (EDGE. Here, we describe the global patterns in the spatial distribution of priority ED and EDGE species, in order to identify conservation areas for mammalian and amphibian communities. In addition, we investigate whether environmental conditions can predict the observed spatial pattern in ED and EDGE globally. METHODS AND PRINCIPAL FINDINGS: Priority zones with high concentrations of ED and EDGE scores were defined using two different methods. The overlap between mammal and amphibian zones was very small, reflecting the different phylo-biogeographic histories. Mammal ED zones were predominantly found on the African continent and the neotropical forests, whereas in amphibians, ED zones were concentrated in North America. Mammal EDGE zones were mainly in South-East Asia, southern Africa and Madagascar; for amphibians they were in central and south America. The spatial pattern of ED and EDGE was poorly described by a suite of environmental variables. CONCLUSIONS: Mapping the spatial distribution of ED and EDGE provides an important step towards identifying priority areas for the conservation of mammalian and amphibian phylogenetic diversity in the EDGE of existence programme.

  19. Evolutionary diversity and turn-over of sex determination in teleost fishes.

    Science.gov (United States)

    Mank, J E; Avise, J C

    2009-01-01

    Sex determination, due to the obvious association with reproduction and Darwinian fitness, has been traditionally assumed to be a relatively conserved trait. However, research on teleost fishes has shown that this need not be the case, as these animals display a remarkable diversity in the ways that they determine sex. These different mechanisms, which include constitutive genetic mechanisms on sex chromosomes, polygenic constitutive mechanisms, environmental influences, hermaphroditism, and unisexuality have each originated numerous independent times in the teleosts. The evolutionary lability of sex determination, and the corresponding rapid rate of turn-over among different modes, makes the teleost clade an excellent model with which to test theories regarding the evolution of sex determining adaptations. Much of the plasticity in sex determination likely results from the dynamic teleost genome, and recent advances in fish genetics and genomics have revealed the role of gene and genome duplication in fostering emergence and turn-over of sex determining mechanisms. 2009 S. Karger AG, Basel.

  20. Potential pitfalls of reconstructing deep time evolutionary history with only extant data, a case study using the canidae (mammalia, carnivora).

    Science.gov (United States)

    Finarelli, John A; Goswami, Anjali

    2013-12-01

    Reconstructing evolutionary patterns and their underlying processes is a central goal in biology. Yet many analyses of deep evolutionary histories assume that data from the fossil record is too incomplete to include, and rely solely on databases of extant taxa. Excluding fossil taxa assumes that character state distributions across living taxa are faithful representations of a clade's entire evolutionary history. Many factors can make this assumption problematic. Fossil taxa do not simply lead-up to extant taxa; they represent now-extinct lineages that can substantially impact interpretations of character evolution for extant groups. Here, we analyze body mass data for extant and fossil canids (dogs, foxes, and relatives) for changes in mean and variance through time. AIC-based model selection recovered distinct models for each of eight canid subgroups. We compared model fit of parameter estimates for (1) extant data alone and (2) extant and fossil data, demonstrating that the latter performs significantly better. Moreover, extant-only analyses result in unrealistically low estimates of ancestral mass. Although fossil data are not always available, reconstructions of deep-time organismal evolution in the absence of deep-time data can be highly inaccurate, and we argue that every effort should be made to include fossil data in macroevolutionary studies. © 2013 The Authors. Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  1. Virophages, polintons, and transpovirons: a complex evolutionary network of diverse selfish genetic elements with different reproduction strategies.

    Science.gov (United States)

    Yutin, Natalya; Raoult, Didier; Koonin, Eugene V

    2013-05-23

    Recent advances of genomics and metagenomics reveal remarkable diversity of viruses and other selfish genetic elements. In particular, giant viruses have been shown to possess their own mobilomes that include virophages, small viruses that parasitize on giant viruses of the Mimiviridae family, and transpovirons, distinct linear plasmids. One of the virophages known as the Mavirus, a parasite of the giant Cafeteria roenbergensis virus, shares several genes with large eukaryotic self-replicating transposon of the Polinton (Maverick) family, and it has been proposed that the polintons evolved from a Mavirus-like ancestor. We performed a comprehensive phylogenomic analysis of the available genomes of virophages and traced the evolutionary connections between the virophages and other selfish genetic elements. The comparison of the gene composition and genome organization of the virophages reveals 6 conserved, core genes that are organized in partially conserved arrays. Phylogenetic analysis of those core virophage genes, for which a sufficient diversity of homologs outside the virophages was detected, including the maturation protease and the packaging ATPase, supports the monophyly of the virophages. The results of this analysis appear incompatible with the origin of polintons from a Mavirus-like agent but rather suggest that Mavirus evolved through recombination between a polinton and an unknown virus. Altogether, virophages, polintons, a distinct Tetrahymena transposable element Tlr1, transpovirons, adenoviruses, and some bacteriophages form a network of evolutionary relationships that is held together by overlapping sets of shared genes and appears to represent a distinct module in the vast total network of viruses and mobile elements. The results of the phylogenomic analysis of the virophages and related genetic elements are compatible with the concept of network-like evolution of the virus world and emphasize multiple evolutionary connections between bona fide

  2. Effects of tectonics and large scale climatic changes on the evolutionary history of Hyalomma ticks.

    Science.gov (United States)

    Sands, Arthur F; Apanaskevich, Dmitry A; Matthee, Sonja; Horak, Ivan G; Harrison, Alan; Karim, Shahid; Mohammad, Mohammad K; Mumcuoglu, Kosta Y; Rajakaruna, Rupika S; Santos-Silva, Maria M; Matthee, Conrad A

    2017-09-01

    Hyalomma Koch, 1844 are ixodid ticks that infest mammals, birds and reptiles, to which 27 recognized species occur across the Afrotropical, Palearctic and Oriental regions. Despite their medical and veterinary importance, the evolutionary history of the group is enigmatic. To investigate various taxonomic hypotheses based on morphology, and also some of the mechanisms involved in the diversification of the genus, we sequenced and analysed data derived from two mtDNA fragments, three nuclear DNA genes and 47 morphological characters. Bayesian and Parsimony analyses based on the combined data (2242 characters for 84 taxa) provided maximum resolution and strongly supported the monophyly of Hyalomma and the subgenus Euhyalomma Filippova, 1984 (including H. punt Hoogstraal, Kaiser and Pedersen, 1969). A predicted close evolutionary association was found between morphologically similar H. dromedarii Koch, 1844, H. somalicum Tonelli Rondelli, 1935, H. impeltatum Schulze and Schlottke, 1929 and H. punt, and together they form a sister lineage to H. asiaticum Schulze and Schlottke, 1929, H. schulzei Olenev, 1931 and H. scupense Schulze, 1919. Congruent with morphological suggestions, H. anatolicum Koch, 1844, H. excavatum Koch, 1844 and H. lusitanicum Koch, 1844 form a clade and so also H. glabrum Delpy, 1949, H. marginatum Koch, 1844, H. turanicum Pomerantzev, 1946 and H. rufipes Koch, 1844. Wide scale continental sampling revealed cryptic divergences within African H. truncatum Koch, 1844 and H. rufipes and suggested that the taxonomy of these lineages is in need of a revision. The most basal lineages in Hyalomma represent taxa currently confined to Eurasia and molecular clock estimates suggest that members of the genus started to diverge approximately 36.25 million years ago (Mya). The early diversification event coincides well with the collision of the Indian and Eurasian Plates, an event that was also characterized by large scale faunal turnover in the region. Using S

  3. Are hotspots of evolutionary potential adequately protected in southern California?

    Science.gov (United States)

    Vandergast, A.G.; Bohonak, A.J.; Hathaway, S.A.; Boys, J.; Fisher, R.N.

    2008-01-01

    Reserves are often designed to protect rare habitats, or "typical" exemplars of ecoregions and geomorphic provinces. This approach focuses on current patterns of organismal and ecosystem-level biodiversity, but typically ignores the evolutionary processes that control the gain and loss of biodiversity at these and other levels (e.g., genetic, ecological). In order to include evolutionary processes in conservation planning efforts, their spatial components must first be identified and mapped. We describe a GIS-based approach for explicitly mapping patterns of genetic divergence and diversity for multiple species (a "multi-species genetic landscape"). Using this approach, we analyzed mitochondrial DNA datasets from 21 vertebrate and invertebrate species in southern California to identify areas with common phylogeographic breaks and high intrapopulation diversity. The result is an evolutionary framework for southern California within which patterns of genetic diversity can be analyzed in the context of historical processes, future evolutionary potential and current reserve design. Our multi-species genetic landscapes pinpoint six hotspots where interpopulation genetic divergence is consistently high, five evolutionary hotspots within which genetic connectivity is high, and three hotspots where intrapopulation genetic diversity is high. These 14 hotspots can be grouped into eight geographic areas, of which five largely are unprotected at this time. The multi-species genetic landscape approach may provide an avenue to readily incorporate measures of evolutionary process into GIS-based systematic conservation assessment and land-use planning.

  4. Comparative evolutionary diversity and phylogenetic structure across multiple forest dynamics plots: a mega-phylogeny approach

    Directory of Open Access Journals (Sweden)

    David Lee Erickson

    2014-11-01

    Full Text Available Forest dynamics plots, which now span longitudes, latitudes, and habitat types across the globe, offer unparalleled insights into the ecological and evolutionary processes that determine how species are assembled into communities. Understanding phylogenetic relationships among species in a community has become an important component of assessing assembly processes. However, the application of evolutionary information to questions in community ecology has been limited in large part by the lack of accurate estimates of phylogenetic relationships among individual species found within communities, and is particularly limiting in comparisons between communities. Therefore, streamlining and maximizing the information content of these community phylogenies is a priority. To test the viability and advantage of a multi-community phylogeny, we constructed a multi-plot mega-phylogeny of 1,347 species of trees across 15 forest dynamics plots in the ForestGEO network using DNA barcode sequence data (rbcL, matK and psbA-trnH and compared community phylogenies for each individual plot with respect to support for topology and branch lengths, which affect evolutionary inference of community processes. The levels of taxonomic differentiation across the phylogeny were examined by quantifying the frequency of resolved nodes throughout. In addition, three phylogenetic distance metrics that are commonly used to infer assembly processes were estimated for each plot (Phylogenetic Distance [PD], Mean Phylogenetic Distance [MPD], and Mean Nearest Taxon Distance [MNTD]. Lastly, we examine the partitioning of phylogenetic diversity among community plots through quantification of inter-community MPD and MNTD. Overall, evolutionary relationships were highly resolved across the DNA barcode-based mega-phylogeny, and phylogenetic resolution for each community plot was improved when estimated within the context of the mega-phylogeny. Likewise, when compared with phylogenies for

  5. Mitochondrial DNA reveals unexpected diversity of chubs (genus Squalius; Cypriniformes, Actinopterygii in the Adriatic basin

    Directory of Open Access Journals (Sweden)

    Ivana Buj

    2015-12-01

    Full Text Available The genus Squalius comprises more than 40 species inhabiting various freshwater habitats. They are distributed in Europe and Asia, with particularly high diversity recorded in the Mediterranean area. The taxonomic status of many populations is still matter of debate. With this investigation we aimed to help in resolving taxonomic uncertainties of the chubs distributed in the Adriatic basin in Croatia and Bosnia and Herzegovina. Phylogenetic reconstruction based on mitochondrial gene for cytochrome b revealed high diversity of chubs in the investigated area. Two evolutionary independent lineages are revealed: the first one comprising species Sq. svallize, Sq. tenellus, Sq. illyricus and Sq. zrmanjae; whereas the second lineage corresponds with Sq. squalus. High intraspecific structuring of Sq. squalus was detected, implying necessity of taxonomic revision of that species. Based on the obtained results, most important aspects of the evolutionary history of the genus Squalius in the Adriatic basin will be discussed and evolutionary significant units identified.

  6. Evolutionary process of deep-sea bathymodiolus mussels.

    Science.gov (United States)

    Miyazaki, Jun-Ichi; de Oliveira Martins, Leonardo; Fujita, Yuko; Matsumoto, Hiroto; Fujiwara, Yoshihiro

    2010-04-27

    Since the discovery of deep-sea chemosynthesis-based communities, much work has been done to clarify their organismal and environmental aspects. However, major topics remain to be resolved, including when and how organisms invade and adapt to deep-sea environments; whether strategies for invasion and adaptation are shared by different taxa or unique to each taxon; how organisms extend their distribution and diversity; and how they become isolated to speciate in continuous waters. Deep-sea mussels are one of the dominant organisms in chemosynthesis-based communities, thus investigations of their origin and evolution contribute to resolving questions about life in those communities. We investigated worldwide phylogenetic relationships of deep-sea Bathymodiolus mussels and their mytilid relatives by analyzing nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I (COI) and NADH dehydrogenase subunit 4 (ND4) genes. Phylogenetic analysis of the concatenated sequence data showed that mussels of the subfamily Bathymodiolinae from vents and seeps were divided into four groups, and that mussels of the subfamily Modiolinae from sunken wood and whale carcasses assumed the outgroup position and shallow-water modioline mussels were positioned more distantly to the bathymodioline mussels. We provisionally hypothesized the evolutionary history of Bathymodilolus mussels by estimating evolutionary time under a relaxed molecular clock model. Diversification of bathymodioline mussels was initiated in the early Miocene, and subsequently diversification of the groups occurred in the early to middle Miocene. The phylogenetic relationships support the "Evolutionary stepping stone hypothesis," in which mytilid ancestors exploited sunken wood and whale carcasses in their progressive adaptation to deep-sea environments. This hypothesis is also supported by the evolutionary transition of symbiosis in that nutritional adaptation to the deep sea proceeded from extracellular

  7. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage.

    Science.gov (United States)

    Merker, Matthias; Blin, Camille; Mona, Stefano; Duforet-Frebourg, Nicolas; Lecher, Sophie; Willery, Eve; Blum, Michael G B; Rüsch-Gerdes, Sabine; Mokrousov, Igor; Aleksic, Eman; Allix-Béguec, Caroline; Antierens, Annick; Augustynowicz-Kopeć, Ewa; Ballif, Marie; Barletta, Francesca; Beck, Hans Peter; Barry, Clifton E; Bonnet, Maryline; Borroni, Emanuele; Campos-Herrero, Isolina; Cirillo, Daniela; Cox, Helen; Crowe, Suzanne; Crudu, Valeriu; Diel, Roland; Drobniewski, Francis; Fauville-Dufaux, Maryse; Gagneux, Sébastien; Ghebremichael, Solomon; Hanekom, Madeleine; Hoffner, Sven; Jiao, Wei-wei; Kalon, Stobdan; Kohl, Thomas A; Kontsevaya, Irina; Lillebæk, Troels; Maeda, Shinji; Nikolayevskyy, Vladyslav; Rasmussen, Michael; Rastogi, Nalin; Samper, Sofia; Sanchez-Padilla, Elisabeth; Savic, Branislava; Shamputa, Isdore Chola; Shen, Adong; Sng, Li-Hwei; Stakenas, Petras; Toit, Kadri; Varaine, Francis; Vukovic, Dragana; Wahl, Céline; Warren, Robin; Supply, Philip; Niemann, Stefan; Wirth, Thierry

    2015-03-01

    Mycobacterium tuberculosis strains of the Beijing lineage are globally distributed and are associated with the massive spread of multidrug-resistant (MDR) tuberculosis in Eurasia. Here we reconstructed the biogeographical structure and evolutionary history of this lineage by genetic analysis of 4,987 isolates from 99 countries and whole-genome sequencing of 110 representative isolates. We show that this lineage initially originated in the Far East, from where it radiated worldwide in several waves. We detected successive increases in population size for this pathogen over the last 200 years, practically coinciding with the Industrial Revolution, the First World War and HIV epidemics. Two MDR clones of this lineage started to spread throughout central Asia and Russia concomitantly with the collapse of the public health system in the former Soviet Union. Mutations identified in genes putatively under positive selection and associated with virulence might have favored the expansion of the most successful branches of the lineage.

  8. Burning phylogenies: fire, molecular evolutionary rates, and diversification.

    Science.gov (United States)

    Verdú, Miguel; Pausas, Juli G; Segarra-Moragues, José Gabriel; Ojeda, Fernando

    2007-09-01

    Mediterranean-type ecosystems are among the most remarkable plant biodiversity "hot spots" on the earth, and fire has traditionally been invoked as one of the evolutionary forces explaining this exceptional diversity. In these ecosystems, adult plants of some species are able to survive after fire (resprouters), whereas in other species fire kills the adults and populations are only maintained by an effective post-fire recruitment (seeders). Seeders tend to have shorter generation times than resprouters, particularly under short fire return intervals, thus potentially increasing their molecular evolutionary rates and, ultimately, their diversification. We explored whether seeder lineages actually have higher rates of molecular evolution and diversification than resprouters. Molecular evolutionary rates in different DNA regions were compared in 45 phylogenetically paired congeneric taxa from fire-prone Mediterranean-type ecosystems with contrasting seeder and resprouter life histories. Differential diversification was analyzed with both topological and chronological approaches in five genera (Banksia, Daviesia, Lachnaea, Leucadendron, and Thamnochortus) from two fire-prone regions (Australia and South Africa). We found that seeders had neither higher molecular rates nor higher diversification than resprouters. Such lack of differences in molecular rates between seeders and resprouters-which did not agree with theoretical predictions-may occur if (1) the timing of the switch from seeding to resprouting (or vice versa) occurs near the branch tip, so that most of the branch length evolves under the opposite life-history form; (2) resprouters suffer more somatic mutations and therefore counterbalancing the replication-induced mutations of seeders; and (3) the rate of mutations is not related to shorter generation times because plants do not undergo determinate germ-line replication. The absence of differential diversification is to be expected if seeders and resprouters

  9. Paleoclimatic modeling and phylogeography of least killifish, Heterandria formosa: insights into Pleistocene expansion-contraction dynamics and evolutionary history of North American Coastal Plain freshwater biota.

    Science.gov (United States)

    Bagley, Justin C; Sandel, Michael; Travis, Joseph; Lozano-Vilano, María de Lourdes; Johnson, Jerald B

    2013-10-09

    Climatic and sea-level fluctuations throughout the last Pleistocene glacial cycle (~130-0 ka) profoundly influenced present-day distributions and genetic diversity of Northern Hemisphere biotas by forcing range contractions in many species during the glacial advance and allowing expansion following glacial retreat ('expansion-contraction' model). Evidence for such range dynamics and refugia in the unglaciated Gulf-Atlantic Coastal Plain stems largely from terrestrial species, and aquatic species Pleistocene responses remain relatively uninvestigated. Heterandria formosa, a wide-ranging regional endemic, presents an ideal system to test the expansion-contraction model within this biota. By integrating ecological niche modeling and phylogeography, we infer the Pleistocene history of this livebearing fish (Poeciliidae) and test for several predicted distributional and genetic effects of the last glaciation. Paleoclimatic models predicted range contraction to a single southwest Florida peninsula refugium during the Last Glacial Maximum, followed by northward expansion. We inferred spatial-population subdivision into four groups that reflect genetic barriers outside this refuge. Several other features of the genetic data were consistent with predictions derived from an expansion-contraction model: limited intraspecific divergence (e.g. mean mtDNA p-distance = 0.66%); a pattern of mtDNA diversity (mean Hd = 0.934; mean π = 0.007) consistent with rapid, recent population expansion; a lack of mtDNA isolation-by-distance; and clinal variation in allozyme diversity with higher diversity at lower latitudes near the predicted refugium. Statistical tests of mismatch distributions and coalescent simulations of the gene tree lent greater support to a scenario of post-glacial expansion and diversification from a single refugium than to any other model examined (e.g. multiple-refugia scenarios). Congruent results from diverse data indicate H. formosa fits the classic Pleistocene

  10. Origin of Chinese goldfish and sequential loss of genetic diversity accompanies new breeds.

    Directory of Open Access Journals (Sweden)

    Shu-Yan Wang

    Full Text Available Goldfish, Carassius auratus, have experienced strong anthropogenic selection during their evolutionary history, generating a tremendous extent of morphological variation relative to that in native Carassius. To locate the geographic origin of goldfish, we analyzed nucleotide sequences from part of the control region (CR and the entire cytochrome b (Cytb mitochondrial DNA genes for 234 goldfish and a large series of native specimens. Four important morphological characteristics used in goldfish taxonomy-body shape, dorsal fin, eye shape, and tailfin-were selected for hypothesis-testing to identify those that better correspond to evolutionary history.Haplotypes of goldfish rooted in two sublineages (C5 and C6, which contained the haplotypes of native C. a. auratus from southern China. Values of F(ST and N(m revealed a close relationship between goldfish and native C. a. auratus from the lower Yangtze River. An extraordinary, stepwise loss of genetic diversity was detected from native fish to goldfish and from Grass-goldfish relative to other breeds. Significantly negative results for the tests of Tajima's D and Fu and Li's D* and F* were identified in goldfish, including the Grass breed. The results identified eye-shape as being the least informative character for grouping goldfish with respect to their evolutionary history. Fisher's exact test identified matrilineal constraints on domestication.Chinese goldfish have a matrilineal origin from native southern Chinese C. a. auratus, especially the lineages from the lower Yangtze River. Anthropogenic selection of the native Carassius eliminated aesthetically unappealing goldfish and this action appeared to be responsible for the stepwise decrease in genetic diversity of domesticated goldfish, a process similar to that reported for the domestication of pigs, rice, and maize. The three-breed taxonomy--Grass-goldfish, Egg-goldfish, and Wen-goldfish--better reflected the history of domestication.

  11. Comparative genome analysis of PHB gene family reveals deep evolutionary origins and diverse gene function.

    Science.gov (United States)

    Di, Chao; Xu, Wenying; Su, Zhen; Yuan, Joshua S

    2010-10-07

    PHB (Prohibitin) gene family is involved in a variety of functions important for different biological processes. PHB genes are ubiquitously present in divergent species from prokaryotes to eukaryotes. Human PHB genes have been found to be associated with various diseases. Recent studies by our group and others have shown diverse function of PHB genes in plants for development, senescence, defence, and others. Despite the importance of the PHB gene family, no comprehensive gene family analysis has been carried to evaluate the relatedness of PHB genes across different species. In order to better guide the gene function analysis and understand the evolution of the PHB gene family, we therefore carried out the comparative genome analysis of the PHB genes across different kingdoms. The relatedness, motif distribution, and intron/exon distribution all indicated that PHB genes is a relatively conserved gene family. The PHB genes can be classified into 5 classes and each class have a very deep evolutionary origin. The PHB genes within the class maintained the same motif patterns during the evolution. With Arabidopsis as the model species, we found that PHB gene intron/exon structure and domains are also conserved during the evolution. Despite being a conserved gene family, various gene duplication events led to the expansion of the PHB genes. Both segmental and tandem gene duplication were involved in Arabidopsis PHB gene family expansion. However, segmental duplication is predominant in Arabidopsis. Moreover, most of the duplicated genes experienced neofunctionalization. The results highlighted that PHB genes might be involved in important functions so that the duplicated genes are under the evolutionary pressure to derive new function. PHB gene family is a conserved gene family and accounts for diverse but important biological functions based on the similar molecular mechanisms. The highly diverse biological function indicated that more research needs to be carried out

  12. The evolutionary ecology of clonally propagated domesticated plants.

    Science.gov (United States)

    McKey, Doyle; Elias, Marianne; Pujol, Benoît; Duputié, Anne

    2010-04-01

    While seed-propagated crops have contributed many evolutionary insights, evolutionary biologists have often neglected clonally propagated crops. We argue that widespread notions about their evolution under domestication are oversimplified, and that they offer rich material for evolutionary studies. The diversity of their wild ancestors, the diverse ecologies of the crop populations themselves, and the intricate mix of selection pressures, acting not only on the parts harvested but also on the parts used by humans to make clonal propagules, result in complex and diverse evolutionary trajectories under domestication. We examine why farmers propagate some plants clonally, and discuss the evolutionary dynamics of sexual reproduction in clonal crops. We explore how their mixed clonal/sexual reproductive systems function, based on the sole example studied in detail, cassava (Manihot esculenta). Biotechnology is now expanding the number of clonal crops, continuing the 10 000-yr-old trend to increase crop yields by propagating elite genotypes. In an era of rapid global change, it is more important than ever to understand how the adaptive potential of clonal crops can be maintained. A key component of strategies for preserving this adaptive potential is the maintenance of mixed clonal/sexual systems, which can be achieved by encouraging and valuing farmer knowledge about the sexual reproductive biology of their clonal crops.

  13. The tale of a modern animal plague: Tracing the evolutionary history and determining the time-scale for foot and mouth disease virus

    International Nuclear Information System (INIS)

    Tully, Damien C.; Fares, Mario A.

    2008-01-01

    Despite significant advances made in the understanding of its epidemiology, foot and mouth disease virus (FMDV) is among the most unexpected agricultural devastating plagues. While the disease manifests itself as seven immunologically distinct strains their origin, population dynamics, migration patterns and divergence times remain unknown. Herein we have assembled a comprehensive data set of gene sequences representing the global diversity of the disease and inferred the time-scale and evolutionary history for FMDV. Serotype-specific rates of evolution and divergence times were estimated using a Bayesian coalescent framework. We report that an ancient precursor FMDV gave rise to two major diversification events spanning a relatively short interval of time. This radiation event is estimated to have taken place towards the end of the 17th and the beginning of the 18th century giving us the present circulating Euro-Asiatic and South African viral strains. Furthermore our results hint that Europe acted as a possible hub for the disease from where it successfully dispersed elsewhere via exploration and trading routes

  14. The Complex Demographic History and Evolutionary Origin of the Western Honey Bee, Apis Mellifera.

    Science.gov (United States)

    Cridland, Julie M; Tsutsui, Neil D; Ramírez, Santiago R

    2017-02-01

    The western honey bee, Apis mellifera, provides critical pollination services to agricultural crops worldwide. However, despite substantial interest and prior investigation, the early evolution and subsequent diversification of this important pollinator remain uncertain. The primary hypotheses place the origin of A. mellifera in either Asia or Africa, with subsequent radiations proceeding from one of these regions. Here, we use two publicly available whole-genome data sets plus newly sequenced genomes and apply multiple population genetic analysis methods to investigate the patterns of ancestry and admixture in native honey bee populations from Europe, Africa, and the Middle East. The combination of these data sets is critical to the analyses, as each contributes samples from geographic locations lacking in the other, thereby producing the most complete set of honey bee populations available to date. We find evidence supporting an origin of A. mellifera in the Middle East or North Eastern Africa, with the A and Y lineages representing the earliest branching lineages. This finding has similarities with multiple contradictory hypotheses and represents a disentangling of genetic relationships, geographic proximity, and secondary contact to produce a more accurate picture of the origins of A. mellifera. We also investigate how previous studies came to their various conclusions based on incomplete sampling of populations, and illustrate the importance of complete sampling in understanding evolutionary processes. These results provide fundamental knowledge about genetic diversity within Old World honey bee populations and offer insight into the complex history of an important pollinator. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. The Genealogical Population Dynamics of HIV-1 in a Large Transmission Chain: Bridging within and among Host Evolutionary Rates

    Science.gov (United States)

    Vrancken, Bram; Rambaut, Andrew; Suchard, Marc A.; Drummond, Alexei; Baele, Guy; Derdelinckx, Inge; Van Wijngaerden, Eric; Vandamme, Anne-Mieke; Van Laethem, Kristel; Lemey, Philippe

    2014-01-01

    Transmission lies at the interface of human immunodeficiency virus type 1 (HIV-1) evolution within and among hosts and separates distinct selective pressures that impose differences in both the mode of diversification and the tempo of evolution. In the absence of comprehensive direct comparative analyses of the evolutionary processes at different biological scales, our understanding of how fast within-host HIV-1 evolutionary rates translate to lower rates at the between host level remains incomplete. Here, we address this by analyzing pol and env data from a large HIV-1 subtype C transmission chain for which both the timing and the direction is known for most transmission events. To this purpose, we develop a new transmission model in a Bayesian genealogical inference framework and demonstrate how to constrain the viral evolutionary history to be compatible with the transmission history while simultaneously inferring the within-host evolutionary and population dynamics. We show that accommodating a transmission bottleneck affords the best fit our data, but the sparse within-host HIV-1 sampling prevents accurate quantification of the concomitant loss in genetic diversity. We draw inference under the transmission model to estimate HIV-1 evolutionary rates among epidemiologically-related patients and demonstrate that they lie in between fast intra-host rates and lower rates among epidemiologically unrelated individuals infected with HIV subtype C. Using a new molecular clock approach, we quantify and find support for a lower evolutionary rate along branches that accommodate a transmission event or branches that represent the entire backbone of transmitted lineages in our transmission history. Finally, we recover the rate differences at the different biological scales for both synonymous and non-synonymous substitution rates, which is only compatible with the ‘store and retrieve’ hypothesis positing that viruses stored early in latently infected cells

  16. Genotyping of ancient Mycobacterium tuberculosis strains reveals historic genetic diversity.

    Science.gov (United States)

    Müller, Romy; Roberts, Charlotte A; Brown, Terence A

    2014-04-22

    The evolutionary history of the Mycobacterium tuberculosis complex (MTBC) has previously been studied by analysis of sequence diversity in extant strains, but not addressed by direct examination of strain genotypes in archaeological remains. Here, we use ancient DNA sequencing to type 11 single nucleotide polymorphisms and two large sequence polymorphisms in the MTBC strains present in 10 archaeological samples from skeletons from Britain and Europe dating to the second-nineteenth centuries AD. The results enable us to assign the strains to groupings and lineages recognized in the extant MTBC. We show that at least during the eighteenth-nineteenth centuries AD, strains of M. tuberculosis belonging to different genetic groups were present in Britain at the same time, possibly even at a single location, and we present evidence for a mixed infection in at least one individual. Our study shows that ancient DNA typing applied to multiple samples can provide sufficiently detailed information to contribute to both archaeological and evolutionary knowledge of the history of tuberculosis.

  17. An Evolutionary Approach to Adaptive Capacity Assessment: A Case Study of Soufriere, Saint Lucia

    Directory of Open Access Journals (Sweden)

    James Ryan Hogarth

    2016-03-01

    Full Text Available This paper assesses the capacity of Soufriere, Saint Lucia to adapt to climate change. A community-based vulnerability assessment was conducted that employed semi-structured interviews with community members. The results were analysed using the Local Adaptive Capacity (LAC framework, which characterises adaptive capacity based on five elements: asset base; institutions and entitlements; knowledge and information; innovation; and flexible forward-looking decision-making and governance. Beyond providing an in-depth analysis of Soufriere’s capacity to adapt to climate change, the paper argues that the elements of the LAC framework largely correspond with an evolutionary perspective on adaptive capacity. However, other evolutionary themes—such as structure, history, path-dependency, scale, agency, conservation of diversity, and the perils of specialisation—should also be taken into account.

  18. Visions of the past and dreams of the future in the Orient: the Irano-Turanian region from classical botany to evolutionary studies.

    Science.gov (United States)

    Manafzadeh, Sara; Staedler, Yannick M; Conti, Elena

    2017-08-01

    Ever since the 19th century, the immense arid lands of the Orient, now called the Irano-Turanian (IT) floristic region, attracted the interest of European naturalists with their tremendous plant biodiversity. Covering approximately 30% of the surface of Eurasia (16000000 km 2 ), the IT region is one of the largest floristic regions of the world. The IT region represents one of the hotspots of evolutionary and biological diversity in the Old World, and serves as a source of xerophytic taxa for neighbouring regions. Moreover, it is the cradle of the numerous species domesticated in the Fertile Crescent. Over the last 200 years, naturalists outlined different borders for the IT region. Yet, the delimitation and evolutionary history of this area remain one of the least well-understood fields of global biogeography, even though it is crucial to explaining the distribution of life in Eurasia. No comprehensive review of the biogeographical delimitations nor of the role of geological and climatic changes in the evolution of the IT region is currently available. After considering the key role of floristic regions in biogeography, we review the history of evolving concepts about the borders and composition of the IT region over the past 200 years and outline a tentative circumscription for it. We also summarise current knowledge on the geological and climatic history of the IT region. We then use this knowledge to generate specific evolutionary hypotheses to explain how different geological, palaeoclimatic, and ecological factors contributed to range expansion and contraction, thus shaping patterns of speciation in the IT region over time and space. Both historical and ecological biogeography should be applied to understand better the floristic diversification of the region. This will ultimately require evolutionary comparative analyses based on integrative phylogenetic, geological, climatic, ecological, and species distribution studies on the region. Furthermore, an

  19. [Evolutionary perspective in precocious puberty].

    Science.gov (United States)

    Hochberg, Ze'ev

    2014-10-01

    Pubertal development is subject to substantial heritability, but much variation remains to be explained, including fast changes over the last 150 years, that cannot be explained by changes of gene frequency in the population. This article discusses the influence of environmental factors to adjust maturational tempo in the service of fitness goals. Utilizing evolutionary development thinking (evo-devo), the author examines adolescence as an evolutionary life-history stage in its developmental context. The transition from the preceding stage of juvenility entails adaptive plasticity in response to energy resources, social needs of adolescence and maturation toward youth and adulthood. Using Belsky's evolutionary theory of socialization, I show that familial psychosocial environment during the infancy-childhood and childhood-juvenility transitions foster a fast life-history and reproductive strategy rather than early maturation being just a risk factor for aggression and delinquency. The implications of the evo-devo framework for theory building, illuminates new directions in the understanding of precocious puberty other than a diagnosis of a disease.

  20. Tracing evolutionary relicts of positive selection on eight malaria-related immune genes in mammals.

    Science.gov (United States)

    Huang, Bing-Hong; Liao, Pei-Chun

    2015-07-01

    Plasmodium-induced malaria widely infects primates and other mammals. Multiple past studies have revealed that positive selection could be the main evolutionary force triggering the genetic diversity of anti-malaria resistance-associated genes in human or primates. However, researchers focused most of their attention on the infra-generic and intra-specific genome evolution rather than analyzing the complete evolutionary history of mammals. Here we extend previous research by testing the evolutionary link of natural selection on eight candidate genes associated with malaria resistance in mammals. Three of the eight genes were detected to be affected by recombination, including TNF-α, iNOS and DARC. Positive selection was detected in the rest five immunogenes multiple times in different ancestral lineages of extant species throughout the mammalian evolution. Signals of positive selection were exposed in four malaria-related immunogenes in primates: CCL2, IL-10, HO1 and CD36. However, selection signals of G6PD have only been detected in non-primate eutherians. Significantly higher evolutionary rates and more radical amino acid replacement were also detected in primate CD36, suggesting its functional divergence from other eutherians. Prevalent positive selection throughout the evolutionary trajectory of mammalian malaria-related genes supports the arms race evolutionary hypothesis of host genetic response of mammalian immunogenes to infectious pathogens. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  1. Genetic diversity in the lion (panthera leo (Linnaeus 1758)): unravelling the past and prospects for the future

    OpenAIRE

    Bertola, Laura Diana

    2015-01-01

    Insights into the spatial distribution of genetic diversity is key for understanding the evolutionary history and for effective species conservation. For the lion, all African populations are considered to belong to one subspecies, while the Asiatic subspecies is confined to a single population in India. However, it is suggested that the genetic diversity is greater than the taxonomy implies. Notably the West and Central African lion represents a unique clade, which is relevant because the po...

  2. Ecological and evolutionary effects of stickleback on community structure.

    Directory of Open Access Journals (Sweden)

    Simone Des Roches

    Full Text Available Species' ecology and evolution can have strong effects on communities. Both may change concurrently when species colonize a new ecosystem. We know little, however, about the combined effects of ecological and evolutionary change on community structure. We simultaneously examined the effects of top-predator ecology and evolution on freshwater community parameters using recently evolved generalist and specialist ecotypes of three-spine stickleback (Gasterosteus aculeatus. We used a mesocosm experiment to directly examine the effects of ecological (fish presence and density and evolutionary (phenotypic diversity and specialization factors on community structure at lower trophic levels. We evaluated zooplankton biomass and composition, periphyton and phytoplankton chlorophyll-a concentration, and net primary production among treatments containing different densities and diversities of stickleback. Our results showed that both ecological and evolutionary differences in the top-predator affect different aspects of community structure and composition. Community structure, specifically the abundance of organisms at each trophic level, was affected by stickleback presence and density, whereas composition of zooplankton was influenced by stickleback diversity and specialization. Primary productivity, in terms of chlorophyll-a concentration and net primary production was affected by ecological but not evolutionary factors. Our results stress the importance of concurrently evaluating both changes in density and phenotypic diversity on the structure and composition of communities.

  3. Karyotype Diversity and Evolutionary Trends in Armored Catfish Species of the Genus Harttia (Siluriformes: Loricariidae).

    Science.gov (United States)

    Blanco, Daniel Rodrigues; Vicari, Marcelo Ricardo; Lui, Roberto Laridondo; Traldi, Josiane Baccarin; Bueno, Vanessa; Martinez, Juliana de Fátima; Brandão, Heleno; Oyakawa, Osvaldo Takeshi; Moreira Filho, Orlando

    2017-04-01

    Most species of the genus Harttia inhabits the headwaters of small tributaries, but some species are restricted to the main channel of some rivers. This feature, combined with limited dispersal ability, leads to the formation of small isolated populations with reduced gene flow. Currently, there are 23 taxonomically defined and recognized species, and 17 of these are found in Brazil, distributed in several hydrographic basins. Despite this diversity, few chromosomal data for the species belonging to this genus are found in the literature. Thus, this study analyzed, by classical and molecular cytogenetics methodologies, the chromosomal diversity of this genus, to discuss the processes that are involved in the evolution and karyotype differentiation of the species of the group. Seven species of Harttia were analyzed: H. kronei, H. longipinna, H. gracilis, H. punctata, H. loricariformis, H. torrenticola, and H. carvalhoi. The chromosomal diversity found in these species includes different diploid and fundamental numbers, distinct distribution of several repetitive sequences, the presence of supernumerary chromosomes in H. longipinna and multiple sex chromosome systems of the type XX/XY 1 Y 2 in H. carvalhoi and X 1 X 1 X 2 X 2 /X 1 X 2 Y in H. punctata. Lastly, our data highlight the genus Harttia as an excellent model for evolutionary studies.

  4. Phylogenetic relationships and evolutionary history of the greater horseshoe bat, Rhinolophus ferrumequinum, in Northeast Asia.

    Science.gov (United States)

    Liu, Tong; Sun, Keping; Park, Yung Chul; Feng, Jiang

    2016-01-01

    The greater horseshoe bat, Rhinolophus ferrumequinum , is an important model organism for studies on chiropteran phylogeographic patterns. Previous studies revealed the population history of R. ferrumequinum from Europe and most Asian regions, yet there continue to be arguments about their evolutionary process in Northeast Asia. In this study, we obtained mitochondrial DNA cyt b and D-loop data of R. ferrumequinum from Northeast China, South Korea and Japan to clarify their phylogenetic relationships and evolutionary process. Our results indicate a highly supported monophyletic group of Northeast Asian greater horseshoe bats, in which Japanese populations formed a single clade and clustered into the mixed branches of Northeast Chinese and South Korean populations. We infer that R. ferrumequinum in Northeast Asia originated in Northeast China and South Korea during a cold glacial period, while some ancestors likely arrived in Japan by flying or land bridge and subsequently adapted to the local environment. Consequently, during the warm Eemian interglaciation, the Korea Strait, between Japan and South Korea, became a geographical barrier to Japanese and inland populations, while the Changbai Mountains, between China and North Korea, did not play a significant role as a barrier between Northeast China and South Korea populations.

  5. A population study of killer viruses reveals different evolutionary histories of two closely related Saccharomyces sensu stricto yeasts.

    Science.gov (United States)

    Chang, Shang-Lin; Leu, Jun-Yi; Chang, Tien-Hsien

    2015-08-01

    Microbes have evolved ways of interference competition to gain advantage over their ecological competitors. The use of secreted killer toxins by yeast cells through acquiring double-stranded RNA viruses is one such prominent example. Although the killer behaviour has been well studied in laboratory yeast strains, our knowledge regarding how killer viruses are spread and maintained in nature and how yeast cells co-evolve with viruses remains limited. We investigated these issues using a panel of 81 yeast populations belonging to three Saccharomyces sensu stricto species isolated from diverse ecological niches and geographic locations. We found that killer strains are rare among all three species. In contrast, killer toxin resistance is widespread in Saccharomyces paradoxus populations, but not in Saccharomyces cerevisiae or Saccharomyces eubayanus populations. Genetic analyses revealed that toxin resistance in S. paradoxus is often caused by dominant alleles that have independently evolved in different populations. Molecular typing identified one M28 and two types of M1 killer viruses in those killer strains. We further showed that killer viruses of the same type could lead to distinct killer phenotypes under different host backgrounds, suggesting co-evolution between the viruses and hosts in different populations. Taken together, our data suggest that killer viruses vary in their evolutionary histories even within closely related yeast species. © 2015 John Wiley & Sons Ltd.

  6. Phylogenetic comparison of F-Box (FBX gene superfamily within the plant kingdom reveals divergent evolutionary histories indicative of genomic drift.

    Directory of Open Access Journals (Sweden)

    Zhihua Hua

    Full Text Available The emergence of multigene families has been hypothesized as a major contributor to the evolution of complex traits and speciation. To help understand how such multigene families arose and diverged during plant evolution, we examined the phylogenetic relationships of F-Box (FBX genes, one of the largest and most polymorphic superfamilies known in the plant kingdom. FBX proteins comprise the target recognition subunit of SCF-type ubiquitin-protein ligases, where they individually recruit specific substrates for ubiquitylation. Through the extensive analysis of 10,811 FBX loci from 18 plant species, ranging from the alga Chlamydomonas reinhardtii to numerous monocots and eudicots, we discovered strikingly diverse evolutionary histories. The number of FBX loci varies widely and appears independent of the growth habit and life cycle of land plants, with a little as 198 predicted for Carica papaya to as many as 1350 predicted for Arabidopsis lyrata. This number differs substantially even among closely related species, with evidence for extensive gains/losses. Despite this extraordinary inter-species variation, one subset of FBX genes was conserved among most species examined. Together with evidence of strong purifying selection and expression, the ligases synthesized from these conserved loci likely direct essential ubiquitylation events. Another subset was much more lineage specific, showed more relaxed purifying selection, and was enriched in loci with little or no evidence of expression, suggesting that they either control more limited, species-specific processes or arose from genomic drift and thus may provide reservoirs for evolutionary innovation. Numerous FBX loci were also predicted to be pseudogenes with their numbers tightly correlated with the total number of FBX genes in each species. Taken together, it appears that the FBX superfamily has independently undergone substantial birth/death in many plant lineages, with its size and rapid

  7. Unpacking the Suitcase and Finding History: Doing Justice to the Teaching of Diverse Histories in the Classroom

    Science.gov (United States)

    Mohamud, Abdul; Whitburn, Robin

    2014-01-01

    It has become a truism that Britain is a multi-cultural society yet, as Mohamud and Whitburn argue, there is still a great deal of thinking to be done by history teachers in accounting for this diversity in the classroom. Mohamud and Whitburn consider approaches to both curriculum and pedagogy when it comes to teaching about the Somali community…

  8. The evolutionary history of cockatoos (Aves: Psittaciformes: Cacatuidae).

    Science.gov (United States)

    White, Nicole E; Phillips, Matthew J; Gilbert, M Thomas P; Alfaro-Núñez, Alonzo; Willerslev, Eske; Mawson, Peter R; Spencer, Peter B S; Bunce, Michael

    2011-06-01

    Cockatoos are the distinctive family Cacatuidae, a major lineage of the order of parrots (Psittaciformes) and distributed throughout the Australasian region of the world. However, the evolutionary history of cockatoos is not well understood. We investigated the phylogeny of cockatoos based on three mitochondrial and three nuclear DNA genes obtained from 16 of 21 species of Cacatuidae. In addition, five novel mitochondrial genomes were used to estimate time of divergence and our estimates indicate Cacatuidae diverged from Psittacidae approximately 40.7 million years ago (95% CI 51.6-30.3 Ma) during the Eocene. Our data shows Cacatuidae began to diversify approximately 27.9 Ma (95% CI 38.1-18.3 Ma) during the Oligocene. The early to middle Miocene (20-10 Ma) was a significant period in the evolution of modern Australian environments and vegetation, in which a transformation from mainly mesic to xeric habitats (e.g., fire-adapted sclerophyll vegetation and grasslands) occurred. We hypothesize that this environmental transformation was a driving force behind the diversification of cockatoos. A detailed multi-locus molecular phylogeny enabled us to resolve the phylogenetic placements of the Palm Cockatoo (Probosciger aterrimus), Galah (Eolophus roseicapillus), Gang-gang Cockatoo (Callocephalon fimbriatum) and Cockatiel (Nymphicus hollandicus), which have historically been difficult to place within Cacatuidae. When the molecular evidence is analysed in concert with morphology, it is clear that many of the cockatoo species' diagnostic phenotypic traits such as plumage colour, body size, wing shape and bill morphology have evolved in parallel or convergently across lineages. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Baleen boom and bust: a synthesis of mysticete phylogeny, diversity and disparity.

    Science.gov (United States)

    Marx, Felix G; Fordyce, R Ewan

    2015-04-01

    A new, fully dated total-evidence phylogeny of baleen whales (Mysticeti) shows that evolutionary phases correlate strongly with Caenozoic modernization of the oceans and climates, implying a major role for bottom-up physical drivers. The phylogeny of 90 modern and dated fossil species suggests three major phases in baleen whale history: an early adaptive radiation (36-30 Ma), a shift towards bulk filter-feeding (30-23 Ma) and a climate-driven diversity loss around 3 Ma. Evolutionary rates and disparity were high following the origin of mysticetes around 38 Ma, coincident with global cooling, abrupt Southern Ocean eutrophication and the development of the Antarctic Circumpolar Current (ACC). Subsequently, evolutionary rates and disparity fell, becoming nearly constant after approximately 23 Ma as the ACC reached its full strength. By contrast, species diversity rose until 15 Ma and then remained stable, before dropping sharply with the onset of Northern Hemisphere glaciation. This decline coincided with the final establishment of modern mysticete gigantism and may be linked to glacially driven variability in the distribution of shallow habitats or an increased need for long-distance migration related to iron-mediated changes in glacial marine productivity.

  10. Students Engaging in Diversity: Blogging to Learn the History of Jazz

    Science.gov (United States)

    Stewart, Anissa Ryan; Reid, Jacqueline Marie; Stewart, Jeffrey C.

    2014-01-01

    This study examined discursive choices made by the instructor of a Black Studies course in constructing what counted as blogging and the history of jazz; how students showed evidence of meeting the course requirements, and how particular students engaged with issues of race and diversity in their blogs. The instructor required blogging to enable…

  11. Understanding the mind from an evolutionary perspective: an overview of evolutionary psychology.

    Science.gov (United States)

    Shackelford, Todd K; Liddle, James R

    2014-05-01

    The theory of evolution by natural selection provides the only scientific explanation for the existence of complex adaptations. The design features of the brain, like any organ, are the result of selection pressures operating over deep time. Evolutionary psychology posits that the human brain comprises a multitude of evolved psychological mechanisms, adaptations to specific and recurrent problems of survival and reproduction faced over human evolutionary history. Although some mistakenly view evolutionary psychology as promoting genetic determinism, evolutionary psychologists appreciate and emphasize the interactions between genes and environments. This approach to psychology has led to a richer understanding of a variety of psychological phenomena, and has provided a powerful foundation for generating novel hypotheses. Critics argue that evolutionary psychologists resort to storytelling, but as with any branch of science, empirical testing is a vital component of the field, with hypotheses standing or falling with the weight of the evidence. Evolutionary psychology is uniquely suited to provide a unifying theoretical framework for the disparate subdisciplines of psychology. An evolutionary perspective has provided insights into several subdisciplines of psychology, while simultaneously demonstrating the arbitrary nature of dividing psychological science into such subdisciplines. Evolutionary psychologists have amassed a substantial empirical and theoretical literature, but as a relatively new approach to psychology, many questions remain, with several promising directions for future research. For further resources related to this article, please visit the WIREs website. The authors have declared no conflicts of interest for this article. © 2014 John Wiley & Sons, Ltd.

  12. Different Evolutionary History for Basque Diaspora Populations in USA and Argentina Unveiled by Mitochondrial DNA Analysis.

    Science.gov (United States)

    Baeta, Miriam; Núñez, Carolina; Cardoso, Sergio; Palencia-Madrid, Leire; Piñeiro-Hermida, Sergio; Arriba-Barredo, Miren; Villanueva-Millán, María Jesús; M de Pancorbo, Marian

    2015-01-01

    The Basque Diaspora in Western USA and Argentina represents two populations which have maintained strong Basque cultural and social roots in a completely different geographic context. Hence, they provide an exceptional opportunity to study the maternal genetic legacy from the ancestral Basque population and assess the degree of genetic introgression from the host populations in two of the largest Basque communities outside the Basque Country. For this purpose, we analyzed the complete mitochondrial DNA control region of Basque descendants living in Western USA (n = 175) and in Argentina (n = 194). The Diaspora populations studied here displayed a genetic diversity in their European maternal input which was similar to that of the Basque source populations, indicating that not important founder effects would have occurred. Actually, the genetic legacy of the Basque population still prevailed in their present-day maternal pools, by means of a haplogroup distribution similar to the source population characterized by the presence of autochthonous Basque lineages, such as U5b1f1a and J1c5c1. However, introgression of non-Basque lineages, mostly Native American, has been observed in the Diaspora populations, particularly in Argentina, where the quick assimilation of the newcomers would have favored a wider admixture with host populations. In contrast, a longer isolation of the Diaspora groups in USA, because of language and cultural differences, would have limited the introgression of local lineages. This study reveals important differences in the maternal evolutionary histories of these Basque Diaspora populations, which have to be taken into consideration in forensic and medical genetic studies.

  13. Neglect of genetic diversity in implementation of the Convention on Biological Diversity

    Science.gov (United States)

    Linda Laikre; Fred W. Allendorf; Laurel C. Aroner; C. Scott Baker; David P. Gregovich; Michael M. Hansen; Jennifer A. Jackson; Katherine C. Kendall; Kevin Mckelvey; Maile C. Neel; Isabelle Olivieri; Nils Ryman; Michael K. Schwartz; Ruth Short Bull; Jeffrey B. Stetz; David A. Tallmon; Barbara L. Taylor; Christina D. Vojta; Donald M. Waller; Robin S. Waples

    2009-01-01

    Genetic diversity is the foundation for all biological diversity; the persistence and evolutionary potential of species depend on it. World leaders have agreed on the conservation of genetic diversity as an explicit goal of the Convention on Biological Diversity (CBD). Nevertheless, actions to protect genetic diversity are largely lacking. With only months left to the...

  14. Molluscan Evolutionary Development

    DEFF Research Database (Denmark)

    Wanninger, Andreas Wilhelm Georg; Koop, Damien; Moshel-Lynch, Sharon

    2008-01-01

    Brought together by Winston F. Ponder and David R. Lindberg, thirty-six experts on the evolution of the Mollusca provide an up-to-date review of its evolutionary history. The Mollusca are the second largest animal phylum and boast a fossil record of over 540 million years. They exhibit remarkable...

  15. The Phylogeny of Rickettsia Using Different Evolutionary Signatures: How Tree-Like is Bacterial Evolution?

    Science.gov (United States)

    Murray, Gemma G. R.; Weinert, Lucy A.; Rhule, Emma L.; Welch, John J.

    2016-01-01

    Rickettsia is a genus of intracellular bacteria whose hosts and transmission strategies are both impressively diverse, and this is reflected in a highly dynamic genome. Some previous studies have described the evolutionary history of Rickettsia as non-tree-like, due to incongruity between phylogenetic reconstructions using different portions of the genome. Here, we reconstruct the Rickettsia phylogeny using whole-genome data, including two new genomes from previously unsampled host groups. We find that a single topology, which is supported by multiple sources of phylogenetic signal, well describes the evolutionary history of the core genome. We do observe extensive incongruence between individual gene trees, but analyses of simulations over a single topology and interspersed partitions of sites show that this is more plausibly attributed to systematic error than to horizontal gene transfer. Some conflicting placements also result from phylogenetic analyses of accessory genome content (i.e., gene presence/absence), but we argue that these are also due to systematic error, stemming from convergent genome reduction, which cannot be accommodated by existing phylogenetic methods. Our results show that, even within a single genus, tests for gene exchange based on phylogenetic incongruence may be susceptible to false positives. PMID:26559010

  16. Core principles of evolutionary medicine

    Science.gov (United States)

    Grunspan, Daniel Z; Nesse, Randolph M; Barnes, M Elizabeth; Brownell, Sara E

    2018-01-01

    Abstract Background and objectives Evolutionary medicine is a rapidly growing field that uses the principles of evolutionary biology to better understand, prevent and treat disease, and that uses studies of disease to advance basic knowledge in evolutionary biology. Over-arching principles of evolutionary medicine have been described in publications, but our study is the first to systematically elicit core principles from a diverse panel of experts in evolutionary medicine. These principles should be useful to advance recent recommendations made by The Association of American Medical Colleges and the Howard Hughes Medical Institute to make evolutionary thinking a core competency for pre-medical education. Methodology The Delphi method was used to elicit and validate a list of core principles for evolutionary medicine. The study included four surveys administered in sequence to 56 expert panelists. The initial open-ended survey created a list of possible core principles; the three subsequent surveys winnowed the list and assessed the accuracy and importance of each principle. Results Fourteen core principles elicited at least 80% of the panelists to agree or strongly agree that they were important core principles for evolutionary medicine. These principles over-lapped with concepts discussed in other articles discussing key concepts in evolutionary medicine. Conclusions and implications This set of core principles will be helpful for researchers and instructors in evolutionary medicine. We recommend that evolutionary medicine instructors use the list of core principles to construct learning goals. Evolutionary medicine is a young field, so this list of core principles will likely change as the field develops further. PMID:29493660

  17. Adult and offspring size in the ocean over 17 orders of magnitude follows two life history strategies

    DEFF Research Database (Denmark)

    Neuheimer, Anna; Hartvig, Martin; Heuschele, Jan

    2015-01-01

    is observed along with variability in physical and biological forcing factors in space and time. We compiled adult and offspring size for 407 pelagic marine species covering more than 17 orders of magnitude in body mass including Cephalopoda, Cnidaria, Crustaceans, Ctenophora, Elasmobranchii, Mammalia...... discuss where these two strategies occur and how these patterns (along with the relative size of the offspring) may be shaped by physical and biological constraints in the organism’s environment. This adaptive environment along with the evolutionary history of the different groups shape observed life......Explaining variability in offspring vs. adult size among groups is a necessary step to determine the evolutionary and environmental constraints shaping variability in life history strategies. This is of particular interest for life in the ocean where a diversity of offspring development strategies...

  18. Evolutionary process of deep-sea bathymodiolus mussels.

    Directory of Open Access Journals (Sweden)

    Jun-Ichi Miyazaki

    Full Text Available BACKGROUND: Since the discovery of deep-sea chemosynthesis-based communities, much work has been done to clarify their organismal and environmental aspects. However, major topics remain to be resolved, including when and how organisms invade and adapt to deep-sea environments; whether strategies for invasion and adaptation are shared by different taxa or unique to each taxon; how organisms extend their distribution and diversity; and how they become isolated to speciate in continuous waters. Deep-sea mussels are one of the dominant organisms in chemosynthesis-based communities, thus investigations of their origin and evolution contribute to resolving questions about life in those communities. METHODOLOGY/PRINCIPAL FINDING: We investigated worldwide phylogenetic relationships of deep-sea Bathymodiolus mussels and their mytilid relatives by analyzing nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I (COI and NADH dehydrogenase subunit 4 (ND4 genes. Phylogenetic analysis of the concatenated sequence data showed that mussels of the subfamily Bathymodiolinae from vents and seeps were divided into four groups, and that mussels of the subfamily Modiolinae from sunken wood and whale carcasses assumed the outgroup position and shallow-water modioline mussels were positioned more distantly to the bathymodioline mussels. We provisionally hypothesized the evolutionary history of Bathymodilolus mussels by estimating evolutionary time under a relaxed molecular clock model. Diversification of bathymodioline mussels was initiated in the early Miocene, and subsequently diversification of the groups occurred in the early to middle Miocene. CONCLUSIONS/SIGNIFICANCE: The phylogenetic relationships support the "Evolutionary stepping stone hypothesis," in which mytilid ancestors exploited sunken wood and whale carcasses in their progressive adaptation to deep-sea environments. This hypothesis is also supported by the evolutionary transition of

  19. The Evolutionary History of Daphniid α-Carbonic Anhydrase within Animalia

    Science.gov (United States)

    Culver, Billy W.; Morton, Philip K.

    2015-01-01

    Understanding the mechanisms that drive acid-base regulation in organisms is important, especially for organisms in aquatic habitats that experience rapidly fluctuating pH conditions. Previous studies have shown that carbonic anhydrases (CAs), a family of zinc metalloenzymes, are responsible for acid-base regulation in many organisms. Through the use of phylogenetic tools, this present study attempts to elucidate the evolutionary history of the α-CA superfamily, with particular interest in the emerging model aquatic organism Daphnia pulex. We provide one of the most extensive phylogenies of the evolution of α-CAs, with the inclusion of 261 amino acid sequences across taxa ranging from Cnidarians to Homo sapiens. While the phylogeny supports most of our previous understanding on the relationship of how α-CAs have evolved, we find that, contrary to expectations, amino acid conservation with bacterial α-CAs supports the supposition that extracellular α-CAs are the ancestral state of animal α-CAs. Furthermore, we show that two cytosolic and one GPI-anchored α-CA in Daphnia genus have homologs in sister taxa that are possible candidate genes to study for acid-base regulation. In addition, we provide further support for previous findings of a high rate of gene duplication within Daphnia genus, as compared with other organisms. PMID:25893130

  20. Historical change and evolutionary theory.

    Science.gov (United States)

    Masters, Roger D

    2007-09-01

    Despite advances in fields like genetics, evolutionary psychology, and human behavior and evolution--which generally focus on individual or small group behavior from a biological perspective--evolutionary biology has made little impact on studies of political change and social history. Theories of natural selection often seem inapplicable to human history because our social behavior is embedded in language (which makes possible the concepts of time and social identity on which what we call "history" depends). Peter Corning's Holistic Darwinism reconceptualizes evolutionary biology, making it possible to go beyond the barriers separating the social and natural sciences. Corning focuses on two primary processes: "synergy" (complex multivariate interactions at multiple levels between a species and its environment) and "cybernetics" (the information systems permitting communication between individuals and groups over time). Combining this frame of reference with inclusive fitness theory, it is possible to answer the most important (and puzzling) question in human history: How did a species that lived for millennia in hunter-gatherer bands form centralized states governing large populations of non-kin (including multi-ethnic empires as well as modern nation-states)? The fragility and contemporary ethnic violence in Kenya and the Congo should suffice as evidence that these issues need to be taken seriously. To explain the rise and fall of states as well as changes in human laws and customs--the core of historical research--it is essential to show how the provision of collective goods can overcome the challenge of self-interest and free-riding in some instances, yet fail to do so in others. To this end, it is now possible to consider how a state providing public goods can--under circumstances that often include effective leadership--contribute to enhanced inclusive fitness of virtually all its members. Because social behavior needs to adapt to ecology, but ecological

  1. High Genetic Diversity and Distinctiveness of Rear-Edge Climate Relicts Maintained by Ancient Tetraploidisation for Alnus glutinosa

    Science.gov (United States)

    Lepais, Olivier; Muller, Serge D.; Ben Saad-Limam, Samia; Benslama, Mohamed; Rhazi, Laila; Belouahem-Abed, Djamila; Daoud-Bouattour, Amina; Gammar, Amor Mokhtar; Ghrabi-Gammar, Zeineb; Bacles, Cécile Fanny Emilie

    2013-01-01

    Populations located at the rear-edge of a species’ distribution may have disproportionate ecological and evolutionary importance for biodiversity conservation in a changing global environment. Yet genetic studies of such populations remain rare. This study investigates the evolutionary history of North-African low latitude marginal populations of Alnus glutinosa Gaertn., a European tree species that plays a significant ecological role as a keystone of riparian ecosystems. We genotyped 551 adults from 19 populations located across North Africa at 12 microsatellite loci and applied a coalescent-based simulation approach to reconstruct the demographic and evolutionary history of these populations. Surprisingly, Moroccan trees were tetraploids demonstrating a strong distinctiveness of these populations within a species otherwise known as diploid. Best-fitting models of demographic reconstruction revealed the relict nature of Moroccan populations that were found to have withstood past climate change events and to be much older than Algerian and Tunisian populations. This study highlights the complex demographic history that can be encountered in rear-edge distribution margins that here consist of both old stable climate relict and more recent populations, distinctively diverse genetically both quantitatively and qualitatively. We emphasize the high evolutionary and conservation value of marginal rear-edge populations of a keystone riparian species in the context of on-going climate change in the Mediterranean region. PMID:24098677

  2. Conflicting Evolutionary Histories of the Mitochondrial and Nuclear Genomes in New World Myotis Bats.

    Science.gov (United States)

    Platt, Roy N; Faircloth, Brant C; Sullivan, Kevin A M; Kieran, Troy J; Glenn, Travis C; Vandewege, Michael W; Lee, Thomas E; Baker, Robert J; Stevens, Richard D; Ray, David A

    2018-03-01

    The rapid diversification of Myotis bats into more than 100 species is one of the most extensive mammalian radiations available for study. Efforts to understand relationships within Myotis have primarily utilized mitochondrial markers and trees inferred from nuclear markers lacked resolution. Our current understanding of relationships within Myotis is therefore biased towards a set of phylogenetic markers that may not reflect the history of the nuclear genome. To resolve this, we sequenced the full mitochondrial genomes of 37 representative Myotis, primarily from the New World, in conjunction with targeted sequencing of 3648 ultraconserved elements (UCEs). We inferred the phylogeny and explored the effects of concatenation and summary phylogenetic methods, as well as combinations of markers based on informativeness or levels of missing data, on our results. Of the 294 phylogenies generated from the nuclear UCE data, all are significantly different from phylogenies inferred using mitochondrial genomes. Even within the nuclear data, quartet frequencies indicate that around half of all UCE loci conflict with the estimated species tree. Several factors can drive such conflict, including incomplete lineage sorting, introgressive hybridization, or even phylogenetic error. Despite the degree of discordance between nuclear UCE loci and the mitochondrial genome and among UCE loci themselves, the most common nuclear topology is recovered in one quarter of all analyses with strong nodal support. Based on these results, we re-examine the evolutionary history of Myotis to better understand the phenomena driving their unique nuclear, mitochondrial, and biogeographic histories.

  3. Expanding Evolutionary Theory beyond Darwinism with Elaborating, Self-Organizing, and Fractionating Complex Evolutionary Systems

    Science.gov (United States)

    Fichter, Lynn S.; Pyle, E. J.; Whitmeyer, S. J.

    2010-01-01

    Earth systems increase in complexity, diversity, and interconnectedness with time, driven by tectonic/solar energy that keeps the systems far from equilibrium. The evolution of Earth systems is facilitated by three evolutionary mechanisms: "elaboration," "fractionation," and "self-organization," that share…

  4. Genetic structure and demographic history of Colletotrichum gloeosporioides sensu lato and C. truncatum isolates from Trinidad and Mexico.

    Science.gov (United States)

    Rampersad, Sephra N; Perez-Brito, Daisy; Torres-Calzada, Claudia; Tapia-Tussell, Raul; Carrington, Christine V F

    2013-06-22

    C. gloeosporioides sensu lato is one of the most economically important post-harvest diseases affecting papaya production worldwide. There is currently no information concerning the genetic structure or demographic history of this pathogen in any of the affected countries. Knowledge of molecular demographic parameters for different populations will improve our understanding of the biogeographic history as well as the evolutionary and adaptive potential of these pathogens. In this study, sequence data for ACT, GPDH, β-TUB and ITS gene regions were analyzed for C. gloeosporioides sensu lato and C. truncatum isolates infecting papaya in Trinidad and Mexico in order to determine the genetic structure and demographic history of these populations. The data indicated that Mexico is the ancestral C. gloeosporioides sensu lato population with asymmetrical migration to Trinidad. Mexico also had the larger effective population size but, both Mexico and Trinidad populations exhibited population expansion. Mexico also had greater nucleotide diversity and high levels of diversity for each gene. There was significant sub-division of the Trinidad and Mexico populations and low levels of genetic divergence among populations for three of the four gene regions; β-TUB was shown to be under positive selection. There were also dissimilar haplotype characteristics for both populations. Mutation may play a role in shaping the population structure of C. gloeosporioides sensu lato isolates from Trinidad and from Mexico, especially with respect to the ACT and GPDH gene regions. There was no evidence of gene flow between the C. truncatum populations and it is possible that the Mexico and Trinidad populations emerged independently of each other. The study revealed relevant information based on the genetic structure as well as the demographic history of two fungal pathogens infecting papaya, C. gloeosporioides sensu lato and C. truncatum, in Trinidad and Mexico. Understanding the genetic

  5. Harmony as Ideology: Questioning the Diversity-Stability Hypothesis.

    Science.gov (United States)

    Nikisianis, Nikos; Stamou, Georgios P

    2016-03-01

    The representation of a complex but stable, self-regulated and, finally, harmonious nature penetrates the whole history of Ecology, thus contradicting the core of the Darwinian evolution. Originated in the pre-Darwinian Natural History, this representation defined theoretically the various schools of early ecology and, in the context of the cybernetic synthesis of the 1950s, it assumed a typical mathematical form on account of α positive correlation between species diversity and community stability. After 1960, these two aforementioned concepts and their positive correlation were proposed as environmental management tools, in the face of the ecological crisis arising at the time. In the early 1970s, and particularly after May's evolutionary arguments, the consensus around this positive correlation collapsed for a while, only to be promptly restored for the purpose of attaching an ecological value on biodiversity. In this paper, we explore the history of the diversity-stability hypothesis and we review the successive terms that have been used to express community stability. We argue that this hypothesis has been motivated by the nodal ideological presuppositions of order and harmony and that the scientific developments in this field largely correspond to external social pressures. We conclude that the conflict about the diversity-stability relationship is in fact an ideological debate, referring mostly to the way we see nature and society rather than to an autonomous scientific question. From this point of view, we may understand why Ecology's concepts and perceptions may decline and return again and again, forming a pluralistic scientific history.

  6. Global Population Structure of a Worldwide Pest and Virus Vector: Genetic Diversity and Population History of the Bemisia tabaci Sibling Species Group

    Science.gov (United States)

    2016-01-01

    The whitefly Bemisia tabaci sibling species (sibsp.) group comprises morphologically indiscernible lineages of well-known exemplars referred to as biotypes. It is distributed throughout tropical and subtropical latitudes and includes the contemporary invasive haplotypes, termed B and Q. Several well-studied B. tabaci biotypes exhibit ecological and biological diversity, however, most members are poorly studied or completely uncharacterized. Genetic studies have revealed substantial diversity within the group based on a fragment of the mitochondrial cytochrome oxidase I (mtCOI) sequence (haplotypes), with other tested markers being less useful for deep phylogenetic comparisons. The view of global relationships within the B. tabaci sibsp. group is largely derived from this single marker, making assessment of gene flow and genetic structure difficult at the population level. Here, the population structure was explored for B. tabaci in a global context using nuclear data from variable microsatellite markers. Worldwide collections were examined representing most of the available diversity, including known monophagous, polyphagous, invasive, and indigenous haplotypes. Well-characterized biotypes and other related geographic lineages discovered represented highly differentiated genetic clusters with little or no evidence of gene flow. The invasive B and Q biotypes exhibited moderate to high levels of genetic diversity, suggesting that they stemmed from large founding populations that have maintained ancestral variation, despite homogenizing effects, possibly due to human-mediated among-population gene flow. Results of the microsatellite analyses are in general agreement with published mtCOI phylogenies; however, notable conflicts exist between the nuclear and mitochondrial relationships, highlighting the need for a multifaceted approach to delineate the evolutionary history of the group. This study supports the hypothesis that the extant B. tabaci sibsp. group contains

  7. Record of the Cretaceous magnetic quiet zone in the distal Bengal fan and its significance in understanding the evolutionary history of the northeastern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Ramana, M.V.; Subrahmanyam, V.; Sarma, K.V.L.N.S.; Desa, M.; Rao, M.M.M.; Subrahmanyam, C.

    was collected during the International Indian Ocean Expedition Programme and subsequent expeditions to unravel the evolutionary history of Indian Ocean, not much was known about the age and nature of the ocean floor of the Bengal Fan but for few speculations...

  8. Reconstruction of the Evolutionary History and Dispersal of Usutu Virus, a Neglected Emerging Arbovirus in Europe and Africa.

    Science.gov (United States)

    Engel, Dimitri; Jöst, Hanna; Wink, Michael; Börstler, Jessica; Bosch, Stefan; Garigliany, Mutien-Marie; Jöst, Artur; Czajka, Christina; Lühken, Renke; Ziegler, Ute; Groschup, Martin H; Pfeffer, Martin; Becker, Norbert; Cadar, Daniel; Schmidt-Chanasit, Jonas

    2016-02-02

    Usutu virus (USUV), one of the most neglected Old World encephalitic flaviviruses, causes epizootics among wild and captive birds and sporadic infection in humans. The dynamics of USUV spread and evolution in its natural hosts are unknown. Here, we present the phylogeny and evolutionary history of all available USUV strains, including 77 newly sequenced complete genomes from a variety of host species at a temporal and spatial scaled resolution. The results showed that USUV can be classified into six distinct lineages and that the most recent common ancestor of the recent European epizootics emerged in Africa at least 500 years ago. We demonstrated that USUV was introduced regularly from Africa into Europe in the last 50 years, and the genetic diversity of European lineages is shaped primarily by in situ evolution, while the African lineages have been driven by extensive gene flow. Most of the amino acid changes are deleterious polymorphisms removed by purifying selection, with adaptive evolution restricted to the NS5 gene and several others evolving under episodic directional selection, indicating that the ecological or immunological factors were mostly the key determinants of USUV dispersal and outbreaks. Host-specific mutations have been detected, while the host transition analysis identified mosquitoes as the most likely origin of the common ancestor and birds as the source of the recent European USUV lineages. Our results suggest that the major migratory bird flyways could predict the continental and intercontinental dispersal patterns of USUV and that migratory birds might act as potential long-distance dispersal vehicles. Usutu virus (USUV), a mosquito-borne flavivirus of the Japanese encephalitis virus antigenic group, caused massive bird die-offs, mostly in Europe. There is increasing evidence that USUV appears to be pathogenic for humans, becoming a potential public health problem. The emergence of USUV in Europe allows us to understand how an arbovirus

  9. Population dynamics and evolutionary history of the weedy vine Ipomoea hederacea in North America.

    Science.gov (United States)

    Campitelli, Brandon E; Stinchcombe, John R

    2014-06-03

    Disentangling the historical evolutionary processes that contribute to patterns of phenotypic and genetic variation is important for understanding contemporary patterns of both traits of interest and genetic diversity of a species. Ipomoea hederacea is a self-compatible species whose geographic origin is contested, and previous work suggests that although there are signals of adaptation (significant leaf shape and flowering time clines), no population structure or neutral genetic differentiation of I. hederacea populations was detected. Here, we use DNA sequence data to characterize patterns of genetic variation to establish a more detailed understanding of the current and historical processes that may have generated the patterns of genetic variation in this species. We resequenced ca. 5000 bp across 7 genes for 192 individuals taken from 24 populations in North America. Our results indicate that North American I. hederacea populations are ubiquitously genetically depauperate, and patterns of nucleotide diversity are consistent with population expansion. Contrary to previous findings, we discovered significant population subdivision and isolation-by-distance, but genetic structure was spatially discontinuous, potentially implicating long-distance dispersal. We further found significant genetic differentiation at sequenced loci but nearly fourfold stronger differentiation at the leaf shape locus, strengthening evidence that the leaf shape locus is under divergent selection. We propose that North American I. hederacea has experienced a recent founder event, and/or population dynamics are best described by a metapopulation model (high turnover and dispersal), leading to low genetic diversity and a patchy genetic distribution. Copyright © 2014 Campitelli and Stinchcombe.

  10. The Origin and Evolutionary History of HIV-1 Subtype C in Senegal

    Science.gov (United States)

    Jung, Matthieu; Leye, Nafissatou; Vidal, Nicole; Fargette, Denis; Diop, Halimatou; Toure Kane, Coumba; Gascuel, Olivier; Peeters, Martine

    2012-01-01

    Background The classification of HIV-1 strains in subtypes and Circulating Recombinant Forms (CRFs) has helped in tracking the course of the HIV pandemic. In Senegal, which is located at the tip of West Africa, CRF02_AG predominates in the general population and Female Sex Workers (FSWs). In contrast, 40% of Men having Sex with Men (MSM) in Senegal are infected with subtype C. In this study we analyzed the geographical origins and introduction dates of HIV-1 C in Senegal in order to better understand the evolutionary history of this subtype, which predominates today in the MSM population Methodology/Principal Findings We used a combination of phylogenetic analyses and a Bayesian coalescent-based approach, to study the phylogenetic relationships in pol of 56 subtype C isolates from Senegal with 3,025 subtype C strains that were sampled worldwide. Our analysis shows a significantly well supported cluster which contains all subtype C strains that circulate among MSM in Senegal. The MSM cluster and other strains from Senegal are widely dispersed among the different subclusters of African HIV-1 C strains, suggesting multiple introductions of subtype C in Senegal from many different southern and east African countries. More detailed analyses show that HIV-1 C strains from MSM are more closely related to those from southern Africa. The estimated date of the MRCA of subtype C in the MSM population in Senegal is estimated to be in the early 80's. Conclusions/Significance Our evolutionary reconstructions suggest that multiple subtype C viruses with a common ancestor originating in the early 1970s entered Senegal. There was only one efficient spread in the MSM population, which most likely resulted from a single introduction, underlining the importance of high-risk behavior in spread of viruses. PMID:22470456

  11. The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning.

    Science.gov (United States)

    Schlosser, Gerhard; Patthey, Cedric; Shimeld, Sebastian M

    2014-05-01

    Cranial placodes are evolutionary innovations of vertebrates. However, they most likely evolved by redeployment, rewiring and diversification of preexisting cell types and patterning mechanisms. In the second part of this review we compare vertebrates with other animal groups to elucidate the evolutionary history of ectodermal patterning. We show that several transcription factors have ancient bilaterian roles in dorsoventral and anteroposterior regionalisation of the ectoderm. Evidence from amphioxus suggests that ancestral chordates then concentrated neurosecretory cells in the anteriormost non-neural ectoderm. This anterior proto-placodal domain subsequently gave rise to the oral siphon primordia in tunicates (with neurosecretory cells being lost) and anterior (adenohypophyseal, olfactory, and lens) placodes of vertebrates. Likewise, tunicate atrial siphon primordia and posterior (otic, lateral line, and epibranchial) placodes of vertebrates probably evolved from a posterior proto-placodal region in the tunicate-vertebrate ancestor. Since both siphon primordia in tunicates give rise to sparse populations of sensory cells, both proto-placodal domains probably also gave rise to some sensory receptors in the tunicate-vertebrate ancestor. However, proper cranial placodes, which give rise to high density arrays of specialised sensory receptors and neurons, evolved from these domains only in the vertebrate lineage. We propose that this may have involved rewiring of the regulatory network upstream and downstream of Six1/2 and Six4/5 transcription factors and their Eya family cofactors. These proteins, which play ancient roles in neuronal differentiation were first recruited to the dorsal non-neural ectoderm in the tunicate-vertebrate ancestor but subsequently probably acquired new target genes in the vertebrate lineage, allowing them to adopt new functions in regulating proliferation and patterning of neuronal progenitors. Copyright © 2014 Elsevier Inc. All rights

  12. Evolutionary Algorithms for Boolean Functions in Diverse Domains of Cryptography.

    Science.gov (United States)

    Picek, Stjepan; Carlet, Claude; Guilley, Sylvain; Miller, Julian F; Jakobovic, Domagoj

    2016-01-01

    The role of Boolean functions is prominent in several areas including cryptography, sequences, and coding theory. Therefore, various methods for the construction of Boolean functions with desired properties are of direct interest. New motivations on the role of Boolean functions in cryptography with attendant new properties have emerged over the years. There are still many combinations of design criteria left unexplored and in this matter evolutionary computation can play a distinct role. This article concentrates on two scenarios for the use of Boolean functions in cryptography. The first uses Boolean functions as the source of the nonlinearity in filter and combiner generators. Although relatively well explored using evolutionary algorithms, it still presents an interesting goal in terms of the practical sizes of Boolean functions. The second scenario appeared rather recently where the objective is to find Boolean functions that have various orders of the correlation immunity and minimal Hamming weight. In both these scenarios we see that evolutionary algorithms are able to find high-quality solutions where genetic programming performs the best.

  13. The evolutionary and phylogeographic history of woolly mammoths: a comprehensive mitogenomic analysis

    Science.gov (United States)

    Chang, Dan; Knapp, Michael; Enk, Jacob; Lippold, Sebastian; Kircher, Martin; Lister, Adrian; MacPhee, Ross D. E.; Widga, Christopher; Czechowski, Paul; Sommer, Robert; Hodges, Emily; Stümpel, Nikolaus; Barnes, Ian; Dalén, Love; Derevianko, Anatoly; Germonpré, Mietje; Hillebrand-Voiculescu, Alexandra; Constantin, Silviu; Kuznetsova, Tatyana; Mol, Dick; Rathgeber, Thomas; Rosendahl, Wilfried; Tikhonov, Alexey N.; Willerslev, Eske; Hannon, Greg; Lalueza-Fox, Carles; Joger, Ulrich; Poinar, Hendrik; Hofreiter, Michael; Shapiro, Beth

    2017-01-01

    Near the end of the Pleistocene epoch, populations of the woolly mammoth (Mammuthus primigenius) were distributed across parts of three continents, from western Europe and northern Asia through Beringia to the Atlantic seaboard of North America. Nonetheless, questions about the connectivity and temporal continuity of mammoth populations and species remain unanswered. We use a combination of targeted enrichment and high-throughput sequencing to assemble and interpret a data set of 143 mammoth mitochondrial genomes, sampled from fossils recovered from across their Holarctic range. Our dataset includes 54 previously unpublished mitochondrial genomes and significantly increases the coverage of the Eurasian range of the species. The resulting global phylogeny confirms that the Late Pleistocene mammoth population comprised three distinct mitochondrial lineages that began to diverge ~1.0–2.0 million years ago (Ma). We also find that mammoth mitochondrial lineages were strongly geographically partitioned throughout the Pleistocene. In combination, our genetic results and the pattern of morphological variation in time and space suggest that male-mediated gene flow, rather than large-scale dispersals, was important in the Pleistocene evolutionary history of mammoths. PMID:28327635

  14. Life-history diversity and its importance to population stability and persistence of a migratory fish: steelhead in two large North American watersheds.

    Science.gov (United States)

    Moore, Jonathan W; Yeakel, Justin D; Peard, Dean; Lough, Jeff; Beere, Mark

    2014-09-01

    Life-history strategies can buffer individuals and populations from environmental variability. For instance, it is possible that asynchronous dynamics among different life histories can stabilize populations through portfolio effects. Here, we examine life-history diversity and its importance to stability for an iconic migratory fish species. In particular, we examined steelhead (Oncorhynchus mykiss), an anadromous and iteroparous salmonid, in two large, relatively pristine, watersheds, the Skeena and Nass, in north-western British Columbia, Canada. We synthesized life-history information derived from scales collected from adult steelhead (N = 7227) in these watersheds across a decade. These migratory fishes expressed 36 different manifestations of the anadromous life-history strategy, with 16 different combinations of freshwater and marine ages, 7·6% of fish performing multiple spawning migrations, and up to a maximum of four spawning migrations per lifetime. Furthermore, in the Nass watershed, various life histories were differently prevalent through time - three different life histories were the most prevalent in a given year, and no life history ever represented more than 45% of the population. These asynchronous dynamics among life histories decreased the variability of numerical abundance and biomass of the aggregated population so that it was > 20% more stable than the stability of the weighted average of specific life histories: evidence of a substantial portfolio effect. Year of ocean entry was a key driver of dynamics; the median correlation coefficient of abundance of life histories that entered the ocean the same year was 2·5 times higher than the median pairwise coefficient of life histories that entered the ocean at different times. Simulations illustrated how different elements of life-history diversity contribute to stability and persistence of populations. This study provides evidence that life-history diversity can dampen fluctuations in

  15. Island phytophagy: explaining the remarkable diversity of plant-feeding insects.

    Science.gov (United States)

    Joy, Jeffrey B; Crespi, Bernard J

    2012-08-22

    Plant-feeding insects have undergone unparalleled diversification among different plant taxa, yet explanations for variation in their diversity lack a quantitative, predictive framework. Island biogeographic theory has been applied to spatially discrete habitats but not to habitats, such as host plants, separated by genetic distance. We show that relationships between the diversity of gall-inducing flies and their host plants meet several fundamental predictions from island biogeographic theory. First, plant-taxon genetic distinctiveness, an integrator for long-term evolutionary history of plant lineages, is a significant predictor of variance in the diversity of gall-inducing flies among host-plant taxa. Second, range size and structural complexity also explain significant proportions of the variance in diversity of gall-inducing flies among different host-plant taxa. Third, as with other island systems, plant-lineage age does not predict species diversity. Island biogeographic theory, applied to habitats defined by genetic distance, provides a novel, comprehensive framework for analysing and explaining the diversity of plant-feeding insects and other host-specific taxa.

  16. Ancient Biomolecules and Evolutionary Inference

    DEFF Research Database (Denmark)

    Cappellini, Enrico; Prohaska, Ana; Racimo, Fernando

    2018-01-01

    Over the last decade, studies of ancient biomolecules-particularly ancient DNA, proteins, and lipids-have revolutionized our understanding of evolutionary history. Though initially fraught with many challenges, the field now stands on firm foundations. Researchers now successfully retrieve nucleo...

  17. The Evolutionary History and Spatiotemporal Dynamics of the NC Lineage of Citrus Tristeza Virus

    Directory of Open Access Journals (Sweden)

    María José Benítez-Galeano

    2017-10-01

    Full Text Available Citrus tristeza virus (CTV is a major pathogen affecting citrus trees worldwide. However, few studies have focused on CTV’s evolutionary history and geographic behavior. CTV is locally dispersed by an aphid vector and long distance dispersion due to transportation of contaminated material. With the aim to delve deeper into the CTV-NC (New Clade genotype evolution, we estimated an evolution rate of 1.19 × 10−3 subs/site/year and the most common recent ancestor in 1977. Furthermore, the place of origin of the genotype was in the United States, and a great expansion of the population was observed in Uruguay. This expansion phase could be a consequence of the increment in the number of naïve citrus trees in Uruguayan orchards encompassing citrus industry growth in the past years.

  18. The origin of snakes: revealing the ecology, behavior, and evolutionary history of early snakes using genomics, phenomics, and the fossil record.

    Science.gov (United States)

    Hsiang, Allison Y; Field, Daniel J; Webster, Timothy H; Behlke, Adam D B; Davis, Matthew B; Racicot, Rachel A; Gauthier, Jacques A

    2015-05-20

    The highly derived morphology and astounding diversity of snakes has long inspired debate regarding the ecological and evolutionary origin of both the snake total-group (Pan-Serpentes) and crown snakes (Serpentes). Although speculation abounds on the ecology, behavior, and provenance of the earliest snakes, a rigorous, clade-wide analysis of snake origins has yet to be attempted, in part due to a dearth of adequate paleontological data on early stem snakes. Here, we present the first comprehensive analytical reconstruction of the ancestor of crown snakes and the ancestor of the snake total-group, as inferred using multiple methods of ancestral state reconstruction. We use a combined-data approach that includes new information from the fossil record on extinct crown snakes, new data on the anatomy of the stem snakes Najash rionegrina, Dinilysia patagonica, and Coniophis precedens, and a deeper understanding of the distribution of phenotypic apomorphies among the major clades of fossil and Recent snakes. Additionally, we infer time-calibrated phylogenies using both new 'tip-dating' and traditional node-based approaches, providing new insights on temporal patterns in the early evolutionary history of snakes. Comprehensive ancestral state reconstructions reveal that both the ancestor of crown snakes and the ancestor of total-group snakes were nocturnal, widely foraging, non-constricting stealth hunters. They likely consumed soft-bodied vertebrate and invertebrate prey that was subequal to head size, and occupied terrestrial settings in warm, well-watered, and well-vegetated environments. The snake total-group - approximated by the Coniophis node - is inferred to have originated on land during the middle Early Cretaceous (~128.5 Ma), with the crown-group following about 20 million years later, during the Albian stage. Our inferred divergence dates provide strong evidence for a major radiation of henophidian snake diversity in the wake of the Cretaceous-Paleogene (K

  19. Methods in Teaching Region and Diversity in U.S. Western Women's History

    Science.gov (United States)

    Jackson-Abernathy, Brenda K.

    2013-01-01

    History teachers may well feel challenged with the task of bringing women into their American West curriculums due to the great diversity of women in the West during the nineteenth century. At the same time, the past thirty years or so have produced a plethora of monographs, articles, and primary source collections on women in the American West.…

  20. The roles of host evolutionary relationships (genus: Nasonia) and development in structuring microbial communities.

    Science.gov (United States)

    Brucker, Robert M; Bordenstein, Seth R

    2012-02-01

    The comparative structure of bacterial communities among closely related host species remains relatively unexplored. For instance, as speciation events progress from incipient to complete stages, does divergence in the composition of the species' microbial communities parallel the divergence of host nuclear genes? To address this question, we used the recently diverged species of the parasitoid wasp genus Nasonia to test whether the evolutionary relationships of their bacterial microbiotas recapitulate the Nasonia phylogenetic history. We also assessed microbial diversity in Nasonia at different stages of development to determine the role that host age plays in microbiota structure. The results indicate that all three species of Nasonia share simple larval microbiotas dominated by the γ-proteobacteria class; however, bacterial species diversity increases as Nasonia develop into pupae and adults. Finally, under identical environmental conditions, the relationships of the microbial communities reflect the phylogeny of the Nasonia host species at multiple developmental stages, which suggests that the structure of an animal's microbial community is closely allied with divergence of host genes. These findings highlight the importance of host evolutionary relationships on microbiota composition and have broad implications for future studies of microbial symbiosis and animal speciation. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  1. Unraveling the evolutionary history of the phosphoryl-transfer chain of the phosphoenolpyruvate:phosphotransferase system through phylogenetic analyses and genome context

    Directory of Open Access Journals (Sweden)

    Zúñiga Manuel

    2008-05-01

    Full Text Available Abstract Background The phosphoenolpyruvate phosphotransferase system (PTS plays a major role in sugar transport and in the regulation of essential physiological processes in many bacteria. The PTS couples solute transport to its phosphorylation at the expense of phosphoenolpyruvate (PEP and it consists of general cytoplasmic phosphoryl transfer proteins and specific enzyme II complexes which catalyze the uptake and phosphorylation of solutes. Previous studies have suggested that the evolution of the constituents of the enzyme II complexes has been driven largely by horizontal gene transfer whereas vertical inheritance has been prevalent in the general phosphoryl transfer proteins in some bacterial groups. The aim of this work is to test this hypothesis by studying the evolution of the phosphoryl transfer proteins of the PTS. Results We have analyzed the evolutionary history of the PTS phosphoryl transfer chain (PTS-ptc components in 222 complete genomes by combining phylogenetic methods and analysis of genomic context. Phylogenetic analyses alone were not conclusive for the deepest nodes but when complemented with analyses of genomic context and functional information, the main evolutionary trends of this system could be depicted. Conclusion The PTS-ptc evolved in bacteria after the divergence of early lineages such as Aquificales, Thermotogales and Thermus/Deinococcus. The subsequent evolutionary history of the PTS-ptc varied in different bacterial lineages: vertical inheritance and lineage-specific gene losses mainly explain the current situation in Actinobacteria and Firmicutes whereas horizontal gene transfer (HGT also played a major role in Proteobacteria. Most remarkably, we have identified a HGT event from Firmicutes or Fusobacteria to the last common ancestor of the Enterobacteriaceae, Pasteurellaceae, Shewanellaceae and Vibrionaceae. This transfer led to extensive changes in the metabolic and regulatory networks of these bacteria

  2. The role of peroxisomes in the integration of metabolism and evolutionary diversity of photosynthetic organisms

    DEFF Research Database (Denmark)

    Igamberdiev, A.U.; Lea, P.J.

    2002-01-01

    reactions to flavin-dependent oxidation, coupled to the decomposition of hydrogen peroxide by catalase. Hydrogen peroxide and superoxide originating in peroxisomes are important mediators in signal transduction pathways, particularly those involving salicylic acid. By contributing to the synthesis...... of oxalate, formate and other organic acids, peroxisomes regulate major fluxes of primary and secondary metabolism. The evolutionary diversity of algae has led to the presence of a wide range of enzymes in the peroxisomes that acre only similar to higher plants in their direct predecessors, the Charophyceae....... The appearance of seed plants was connected to the acquirement by storage tissues, of a peroxisomal fatty acid oxidation function linked to the glyoxylate cycle, which is induced during seed germination and maturation. Rearrangement of the peroxisomal photorespiratory function between different tissues of higher...

  3. Entrepreneurs and Evolutionary Biology: The Relationship between Testosterone and New Venture Creation

    Science.gov (United States)

    White, Roderick E.; Thornhill, Stewart; Hampson, Elizabeth

    2006-01-01

    Biological evolutionary processes select for heritable behaviors providing a survival and reproductive advantage. Accordingly, how we behave is, at least in part, affected by the evolutionary history of our species. This research uses evolutionary psychology as the theoretical perspective for exploring the relationship between a heritable…

  4. Epidemic disease decimates amphibian abundance, species diversity, and evolutionary history in the highlands of central Panama

    OpenAIRE

    Crawford, Andrew J.; Lips, Karen R.; Bermingham, Eldredge

    2010-01-01

    Amphibian populations around the world are experiencing unprecedented declines attributed to a chytrid fungal pathogen, Batrachochytrium dendrobatidis. Despite the severity of the crisis, quantitative analyses of the effects of the epidemic on amphibian abundance and diversity have been unavailable as a result of the lack of equivalent data collected before and following disease outbreak. We present a community-level assessment combining long-term field surveys and DNA barcode data describing...

  5. Study of human genetic diversity : inferences on population origin and history

    OpenAIRE

    Haber, Marc, 1980-

    2013-01-01

    Patterns of human genetic diversity suggest that all modern humans originated from a small population in Africa that expanded rapidly 50,000 years ago to occupy the whole world. While moving into new environments, genetic drift and natural selection affected populations differently, creating genetic structure. By understanding the genetic structure of human populations, we can reconstruct human history and understand the genetic basis of diseases. The work presented here contributes to the on...

  6. Genetic variations and evolutionary relationships among radishes ...

    African Journals Online (AJOL)

    vera 1

    To determine the genetic diversity and evolutionary relationships among red radishes, 37 accessions ... determined that plant height, fresh leaf weight, and root ... Flower-shaped. Red .... according to Levan's karyotype classification standards.

  7. Incorporating Development Into Evolutionary Psychology

    Directory of Open Access Journals (Sweden)

    David F. Bjorklund

    2016-09-01

    Full Text Available Developmental thinking is gradually becoming integrated within mainstream evolutionary psychology. This is most apparent with respect to the role of parenting, with proponents of life history theory arguing that cognitive and behavioral plasticity early in life permits children to select different life history strategies, with such strategies being adaptive solutions to different fitness trade-offs. I argue that adaptations develop and are based on the highly plastic nature of infants’ and children’s behavior/cognition/brains. The concept of evolved probabilistic cognitive mechanisms is introduced, defined as information processing mechanisms evolved to solve recurrent problems faced by ancestral populations that are expressed in a probabilistic fashion in each individual in a generation and are based on the continuous and bidirectional interaction over time at all levels of organization, from the genetic through the cultural. Early perceptual/cognitive biases result in behavior that, when occurring in a species-typical environment, produce continuous adaptive changes in behavior (and cognition, yielding adaptive outcomes. Examples from social learning and tool use are provided, illustrating the development of adaptations via evolved probabilistic cognitive mechanisms. The integration of developmental concepts into mainstream evolutionary psychology (and evolutionary concepts into mainstream developmental psychology will provide a clearer picture of what it means to be human.

  8. Phylogenetic niche conservatism explains an inverse latitudinal diversity gradient in freshwater arthropods

    Science.gov (United States)

    Morinière, Jérôme; van Dam, Matthew H.; Hawlitschek, Oliver; Bergsten, Johannes; Michat, Mariano C.; Hendrich, Lars; Ribera, Ignacio; Toussaint, Emmanuel F. A.; Balke, Michael

    2016-05-01

    The underlying mechanisms responsible for the general increase in species richness from temperate regions to the tropics remain equivocal. Many hypotheses have been proposed to explain this astonishing pattern but additional empirical studies are needed to shed light on the drivers at work. Here we reconstruct the evolutionary history of the cosmopolitan diving beetle subfamily Colymbetinae, the majority of which are found in the Northern hemisphere, hence exhibiting an inversed latitudinal diversity gradient. We reconstructed a dated phylogeny using 12 genes, to investigate the biogeographical history and diversification dynamics in the Colymbetinae. We aimed to identify the role that phylogenetic niche conservatism plays in the inversed diversification pattern seen in this group. Our results suggest that Colymbetinae originated in temperate climates, which supports the hypothesis that their distribution is the result of an ancestral adaptation to temperate environmental conditions rather than tropical origins, and that temperate niche conservatism can generate and/or maintain inverse latitudinal diversity gradients.

  9. Conservation of native Pacific trout diversity in western North America

    Science.gov (United States)

    Penaluna, Brooke E.; Abadía-Cardoso, Alicia; Dunham, Jason B.; García de León, Francisco J; Gresswell, Robert E.; Luna, Arturo Ruiz; Taylor, Eric B.; Shepard, Bradley B.; Al-Chokhachy, Robert K.; Muhlfeld, Clint C.; Bestgen, Kevin R.; Rogers, Kevin H.; Escalante, Marco A; Keeley, Ernest R; Temple, Gabriel; Williams, Jack E.; Matthews, Kathleen; Pierce, Ron; Mayden, Richard L.; Kovach, Ryan; Garza, John Carlos; Fausch, Kurt D.

    2016-01-01

    Pacific trout Oncorhynchus spp. in western North America are strongly valued in ecological, socioeconomic, and cultural views, and have been the subject of substantial research and conservation efforts. Despite this, the understanding of their evolutionary histories, overall diversity, and challenges to their conservation is incomplete. We review the state of knowledge on these important issues, focusing on Pacific trout in the genus Oncorhynchus. Although most research on salmonid fishes emphasizes Pacific salmon, we focus on Pacific trout because they share a common evolutionary history, and many taxa in western North America have not been formally described, particularly in the southern extent of their ranges. Research in recent decades has led to the revision of many hypotheses concerning the origin and diversification of Pacific trout throughout their range. Although there has been significant success at addressing past threats to Pacific trout, contemporary and future threats represented by nonnative species, land and water use activities, and climate change pose challenges and uncertainties. Ultimately, conservation of Pacific trout depends on how well these issues are understood and addressed, and on solutions that allow these species to coexist with a growing scope of human influences.

  10. Phylogeny and evolutionary histories of Pyrus L. revealed by phylogenetic trees and networks based on data from multiple DNA sequences.

    Science.gov (United States)

    Zheng, Xiaoyan; Cai, Danying; Potter, Daniel; Postman, Joseph; Liu, Jing; Teng, Yuanwen

    2014-11-01

    Reconstructing the phylogeny of Pyrus has been difficult due to the wide distribution of the genus and lack of informative data. In this study, we collected 110 accessions representing 25 Pyrus species and constructed both phylogenetic trees and phylogenetic networks based on multiple DNA sequence datasets. Phylogenetic trees based on both cpDNA and nuclear LFY2int2-N (LN) data resulted in poor resolution, especially, only five primary species were monophyletic in the LN tree. A phylogenetic network of LN suggested that reticulation caused by hybridization is one of the major evolutionary processes for Pyrus species. Polytomies of the gene trees and star-like structure of cpDNA networks suggested rapid radiation is another major evolutionary process, especially for the occidental species. Pyrus calleryana and P. regelii were the earliest diverged Pyrus species. Two North African species, P. cordata, P. spinosa and P. betulaefolia were descendent of primitive stock Pyrus species and still share some common molecular characters. Southwestern China, where a large number of P. pashia populations are found, is probably the most important diversification center of Pyrus. More accessions and nuclear genes are needed for further understanding the evolutionary histories of Pyrus. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Diversity of neighborhoods promotes cooperation in evolutionary social dilemmas

    Science.gov (United States)

    Ma, Yongjuan; Lu, Jun; Shi, Lei

    2017-02-01

    Explaining the evolution of cooperative behavior is one of the most important and interesting problems in a myriad of disciplines, such as evolutionary biology, mathematics, statistical physics, social science and economics Up to now, there have been a great number of works aiming to this issue with the help of evolutionary game theory. However, vast majority of existing literatures simply assume that the interaction neighborhood and replacement neighborhood are symmetric, which seems inconsistent with real-world cases. In this paper, we consider the asymmetrical neighborhood: player of type A, whose factor is controlled by a parameter τ, has four interaction neighbors and four replacement neighbors, while player of type B, whose factor is controlled by a parameter 1 - τ, possess eight interaction neighbors and four replacement neighbors. By means of numerous Monte Carlo simulations, we found that middle τ can make the cooperation reach the highest level While for this finding, its robustness can be further validated in more games.

  12. Evolutionary ethics from Darwin to Moore.

    Science.gov (United States)

    Allhoff, Fritz

    2003-01-01

    Evolutionary ethics has a long history, dating all the way back to Charles Darwin. Almost immediately after the publication of the Origin, an immense interest arose in the moral implications of Darwinism and whether the truth of Darwinism would undermine traditional ethics. Though the biological thesis was certainly exciting, nobody suspected that the impact of the Origin would be confined to the scientific arena. As one historian wrote, 'whether or not ancient populations of armadillos were transformed into the species that currently inhabit the new world was certainly a topic about which zoologists could disagree. But it was in discussing the broader implications of the theory...that tempers flared and statements were made which could transform what otherwise would have been a quiet scholarly meeting into a social scandal' (Farber 1994, 22). Some resistance to the biological thesis of Darwinism sprung from the thought that it was incompatible with traditional morality and, since one of them had to go, many thought that Darwinism should be rejected. However, some people did realize that a secular ethics was possible so, even if Darwinism did undermine traditional religious beliefs, it need not have any effects on moral thought. Before I begin my discussion of evolutionary ethics from Darwin to Moore, I would like to make some more general remarks about its development. There are three key events during this history of evolutionary ethics. First, Charles Darwin published On the Origin of the Species (Darwin 1859). Since one did not have a fully developed theory of evolution until 1859, there exists little work on evolutionary ethics until then. Shortly thereafter, Herbert Spencer (1898) penned the first systematic theory of evolutionary ethics, which was promptly attacked by T.H. Huxley (Huxley 1894). Second, at about the turn of the century, moral philosophers entered the fray and attempted to demonstrate logical errors in Spencer's work; such errors were alluded

  13. Genomes, Phylogeny, and Evolutionary Systems Biology

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Monica

    2005-03-25

    With the completion of the human genome and the growing number of diverse genomes being sequenced, a new age of evolutionary research is currently taking shape. The myriad of technological breakthroughs in biology that are leading to the unification of broad scientific fields such as molecular biology, biochemistry, physics, mathematics and computer science are now known as systems biology. Here I present an overview, with an emphasis on eukaryotes, of how the postgenomics era is adopting comparative approaches that go beyond comparisons among model organisms to shape the nascent field of evolutionary systems biology.

  14. Conservatism of lizard thermal tolerances and body temperatures across evolutionary history and geography.

    Science.gov (United States)

    Grigg, Joseph W; Buckley, Lauren B

    2013-04-23

    Species may exhibit similar thermal tolerances via either common ancestry or environmental filtering and local adaptation, if the species inhabit similar environments. We ask whether upper and lower thermal limits (critical thermal maxima and minima) and body temperatures are more strongly conserved across evolutionary history or geography for lizard populations distributed globally. We find that critical thermal maxima are highly conserved with location accounting for a higher proportion of the variation than phylogeny. Notably, thermal tolerance breadth is conserved across the phylogeny despite critical thermal minima showing little niche conservatism. Body temperatures observed during activity in the field show the greatest degree of conservatism, with phylogeny accounting for most of the variation. This suggests that propensities for thermoregulatory behaviour, which can buffer body temperatures from environmental variation, are similar within lineages. Phylogeny and geography constrain thermal tolerances similarly within continents, but variably within clades. Conservatism of thermal tolerances across lineages suggests that the potential for local adaptation to alleviate the impacts of climate change on lizards may be limited.

  15. Tracking the evolutionary history of Cortinarius species in section Calochroi, with transoceanic disjunct distributions.

    Science.gov (United States)

    Garnica, Sigisfredo; Spahn, Philipp; Oertel, Bernhard; Ammirati, Joseph; Oberwinkler, Franz

    2011-07-19

    Cortinarius species in section Calochroi display local, clinal and circumboreal patterns of distribution across the Northern Hemisphere where these ectomycorrhizal fungi occur with host trees throughout their geographical range within a continent, or have disjunct intercontinental distributions, the origins of which are not understood. We inferred evolutionary histories of four species, 1) C. arcuatorum, 2) C. aureofulvus, 3) C. elegantior and 4) C. napus, from populations distributed throughout the Old World, and portions of the New World (Central- and North America) based on genetic variation of 154 haplotype internal transcribed spacer (ITS) sequences from 83 population samples. By describing the population structure of these species across their geographical distribution, we attempt to identify their historical migration and patterns of diversification. Models of population structure from nested clade, demographic and coalescent-based analyses revealed genetically differentiated and geographically structured haplotypes in C. arcuatorum and C. elegantior, while C. aureofulvus showed considerably less population structure and C. napus lacked sufficient genetic differentiation to resolve any population structure. Disjunct populations within C. arcuatorum, C. aureofulvus and C. elegantior show little or no morphological differentiation, whereas in C. napus there is a high level of homoplasy and phenotypic plasticity for veil and lamellae colour. The ITS sequences of the type specimens of C. albobrunnoides and C. albobrunnoides var. violaceovelatus were identical to one another and are treated as one species with a wider range of geographic distribution under C. napus. Our results indicate that each of the Calochroi species has undergone a relatively independent evolutionary history, hypothesised as follows: 1) a widely distributed ancestral population of C. arcuatorum diverged into distinctive sympatric populations in the New World; 2) two divergent lineages in C

  16. Evolutionary history of the genus Tarentola (Gekkota: Phyllodactylidae from the Mediterranean Basin, estimated using multilocus sequence data

    Directory of Open Access Journals (Sweden)

    Rato Catarina

    2012-01-01

    Full Text Available Abstract Background The pronounced morphological conservatism within Tarentola geckos contrasted with a high genetic variation in North Africa, has led to the hypothesis that this group could represent a cryptic species complex, a challenging system to study especially when trying to define distinct evolutionary entities and address biogeographic hypotheses. In the present work we have re-examined the phylogenetic and phylogeographic relationships between and within all Mediterranean species of Tarentola, placing the genealogies obtained into a temporal framework. In order to do this, we have investigated the sequence variation of two mitochondrial (12S rRNA and 16S rRNA, and four nuclear markers (ACM4, PDC, MC1R, and RAG2 for 384 individuals of all known Mediterranean Tarentola species, so that their evolutionary history could be assessed. Results Of all three generated genealogies (combined mtDNA, combined nDNA, and mtDNA+nDNA we prefer the phylogenetic relationships obtained when all genetic markers are combined. A total of 133 individuals, and 2,901 bp of sequence length, were used in this analysis. The phylogeny obtained for Tarentola presents deep branches, with T. annularis, T. ephippiata and T. chazaliae occupying a basal position and splitting from the remaining species around 15.38 Mya. Tarentola boehmei is sister to all other Mediterranean species, from which it split around 11.38 Mya. There are also two other major groups: 1 the T. mauritanica complex present in North Africa and Europe; and 2 the clade formed by the T. fascicularis/deserti complex, T. neglecta and T. mindiae, occurring only in North Africa. The cladogenesis between these two groups occurred around 8.69 Mya, coincident with the late Miocene. Contrary to what was initially proposed, T. neglecta and T. mindiae are sister taxa to both T. fascicularis and T. deserti. Conclusions At least in the Iberian Peninsula and Northwest Africa, the lineages obtained have some

  17. Population genomic analysis reveals differential evolutionary histories and patterns of diversity across subgenomes and subpopulations of Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Elodie eGazave

    2016-04-01

    Full Text Available The allotetraploid species Brassica napus L. is a global crop of major economic importance, providing canola oil (seed and vegetables for human consumption and fodder and meal for livestock feed. Characterizing the genetic diversity present in the extant germplasm pool of B. napus is fundamental to better conserve, manage and utilize the genetic resources of this species. We used sequence-based genotyping to identify and genotype 30,881 SNPs in a diversity panel of 782 B. napus accessions, representing samples of winter and spring growth habits originating from 33 countries across Europe, Asia and America. We detected strong population structure broadly concordant with growth habit and geography, and identified three major genetic groups: spring (SP, winter Europe (WE, and winter Asia (WA. Subpopulation-specific polymorphism patterns suggest enriched genetic diversity within the WA group and a smaller effective breeding population for the SP group compared to WE. Interestingly, the two subgenomes of B. napus appear to have different geographic origins, with phylogenetic analysis placing WE and WA as basal clades for the other subpopulations in the C and A subgenomes, respectively. Finally, we identified 16 genomic regions where the patterns of diversity differed markedly from the genome-wide average, several of which are suggestive of genomic inversions. The results obtained in this study constitute a valuable resource for worldwide breeding efforts and the genetic dissection and prediction of complex B. napus traits.

  18. Patterns of plant species diversity during succession under different disturbance regimes.

    Science.gov (United States)

    Denslow, Julie Sloan

    1980-07-01

    I suggest that between-community variations in diversity patterns during succession in plant communities are due to the effects of selection on life history strategies under different disturbance regimes. Natural disturbances to plant communities are simultaneously a source of mortality for some individuals and a source of establishment sites for others. The plant community consists of a mosaic of disturbance patches (gaps) of different environmental conditions. The composition of the mosaic is described by the size-frequency distribution of the gaps and is dependent on the rates and scales of disturbance. The life-history strategies of plant species dependent on some form of disturbance for establishment of propagules should reflect this size-frequency distribution of disturbance patches. An extension of island biogeographic theory to encompass relative habitat area predicts that a community should be most rich in species adapted to growth and establishment in the spatially most common patch types. Changes in species diversity during succession following large scale disturbance reflect the prevalent life history patterns under historically common disturbance regimes. Communities in which the greatest patch area is in large-scale clearings (e.g. following fire) are most diverse in species establishing seedlings in xeric, high light conditions. Species diversity decreases during succession. Communities in which such large patches are rare are characterized by a large number of species that reach the canopy through small gaps and realtively few which regenerate in the large clearings. Diversity increases during succession following a large scale disturbance.Evidence from communities characterized by different disturbance regimes is summarized from the literature. This hypothesis provides an evolutionary mechanism with which to examine the changes in plant community structure during succession. Diversity peaks occurring at "intermediate levels" of disturbance as

  19. Origins of altruism diversity I: The diverse ecological roles of altruistic strategies and their evolutionary responses to local competition.

    Science.gov (United States)

    Van Dyken, J David; Wade, Michael J

    2012-08-01

    Nature abounds with a rich variety of altruistic strategies, including public resource enhancement, resource provisioning, communal foraging, alarm calling, and nest defense. Yet, despite their vastly different ecological roles, current theory typically treats diverse altruistic traits as being favored under the same general conditions. Here, we introduce greater ecological realism into social evolution theory and find evidence of at least four distinct modes of altruism. Contrary to existing theory, we find that altruistic traits contributing to "resource-enhancement" (e.g., siderophore production, provisioning, agriculture) and "resource-efficiency" (e.g., pack hunting, communication) are most strongly favored when there is strong local competition. These resource-based modes of helping are "K-strategies" that increase a social group's growth yield, and should characterize species with scarce resources and/or high local crowding caused by low mortality, high fecundity, and/or mortality occurring late in the process of resource-acquisition. The opposite conditions, namely weak local competition (abundant resource, low crowding), favor survival (e.g., nest defense) and fecundity (e.g., nurse workers) altruism, which are "r-strategies" that increase a social group's growth rate. We find that survival altruism is uniquely favored by a novel evolutionary force that we call "sunk cost selection." Sunk cost selection favors helping that prevents resources from being wasted on individuals destined to die before reproduction. Our results contribute to explaining the observed natural diversity of altruistic strategies, reveal the necessary connection between the evolution and the ecology of sociality, and correct the widespread but inaccurate view that local competition uniformly impedes the evolution of altruism. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  20. Evolution and development: some insights from evolutionary theory

    Directory of Open Access Journals (Sweden)

    DAVID JEAN R.

    2001-01-01

    Full Text Available Developmental biology and evolutionary biology are both mature integrative disciplines which started in the 19th century and then followed parallel and independent scientific pathways. Recently, a genetical component has stepped into both disciplines (developmental genetics and evolutionary genetics pointing out the need for future convergent maturation. Indeed, the Evo-Devo approach is becoming popular among developmental biologists, based on the facts that distant groups share a common ancestry, that precise phylogenies can be worked out and that homologous genes often play similar roles during the development of very different organisms. In this essay, I try to show that the real future of Evo-Devo thinking is still broader. The evolutionary theory is a set of diverse concepts which can and should be used in any biological field. Evolutionary thinking trains to ask « why » questions and to provide logical and plausible answers. It can shed some light on a diversity of general problems such as how to distinguish homologies from analogies, the costs and benefits of multicellularity, the origin of novel structures (e.g. the head, or the evolution of sexual reproduction. In the next decade, we may expect a progressive convergence between developmental genetics and quantitative genetics.

  1. Evolutionary persistence in Gunnera and the contribution of southern plant groups to the tropical Andes biodiversity hotspot

    Directory of Open Access Journals (Sweden)

    Christine D. Bacon

    2018-03-01

    Full Text Available Several studies have demonstrated the contribution of northern immigrants to the flora of the tropical Andes—the world’s richest and most diverse biodiversity hotspot. However, much less is known about the biogeographic history and diversification of Andean groups with southern origins, although it has been suggested that northern and southern groups have contributed roughly equally to the high Andean (i.e., páramo flora. Here we infer the evolutionary history of the southern hemisphere plant genus Gunnera, a lineage with a rich fossil history and an important ecological role as an early colonising species characteristic of wet, montane environments. Our results show striking contrasts in species diversification, where some species may have persisted for some 90 million years, and whereas others date to less than 2 Ma since origination. The outstanding longevity of the group is likely linked to a high degree of niche conservatism across its highly disjunct range, whereby Gunnera tracks damp and boggy soils in cool habitats. Colonisation of the northern Andes is related to Quaternary climate change, with subsequent rapid diversification appearing to be driven by their ability to take advantage of environmental opportunities. This study demonstrates the composite origin of a mega-diverse biota.

  2. Evolutionary rate variation and RNA secondary structure prediction

    DEFF Research Database (Denmark)

    Knudsen, B.; Andersen, E.S.; Damgaard, C.

    2004-01-01

    Predicting RNA secondary structure using evolutionary history can be carried out by using an alignment of related RNA sequences with conserved structure. Accurately determining evolutionary substitution rates for base pairs and single stranded nucleotides is a concern for methods based on this type...... by applying rates derived from tRNA and rRNA to the prediction of the much more rapidly evolving 5'-region of HIV-1. We find that the HIV-1 prediction is in agreement with experimental data, even though the relative evolutionary rate between A and G is significantly increased, both in stem and loop regions...

  3. Habitat shifts in the evolutionary history of a Neotropical flycatcher lineage from forest and open landscapes

    Directory of Open Access Journals (Sweden)

    Christidis Les

    2008-07-01

    Full Text Available Abstract Background Little is known about the role ecological shifts play in the evolution of Neotropical radiations that have colonized a variety of environments. We here examine habitat shifts in the evolutionary history of Elaenia flycatchers, a Neotropical bird lineage that lives in a range of forest and open habitats. We evaluate phylogenetic relationships within the genus based on mitochondrial and nuclear DNA sequence data, and then employ parsimony-based and Bayesian methods to reconstruct preferences for a number of habitat types and migratory behaviour throughout the evolutionary history of the genus. Using a molecular clock approach, we date the most important habitat shifts. Results Our analyses resolve phylogenetic relationships among Elaenia species and confirm several species associations predicted by morphology while furnishing support for other taxon placements that are in conflict with traditional classification, such as the elevation of various Elaenia taxa to species level. While savannah specialism is restricted to one basal clade within the genus, montane forest was invaded from open habitat only on a limited number of occasions. Riparian growth may have been favoured early on in the evolution of the main Elaenia clade and subsequently been deserted on several occasions. Austral long-distance migratory behaviour evolved on several occasions. Conclusion Ancestral reconstructions of habitat preferences reveal pronounced differences not only in the timing of the emergence of certain habitat preferences, but also in the frequency of habitat shifts. The early origin of savannah specialism in Elaenia highlights the importance of this habitat in Neotropical Pliocene and late Miocene biogeography. While forest in old mountain ranges such as the Tepuis and the Brazilian Shield was colonized early on, the most important colonization event of montane forest was in conjunction with Pliocene Andean uplift. Riparian habitats may have

  4. Paleo-drainage basin connectivity predicts evolutionary relationships across three Southeast Asian biodiversity hotspots.

    Science.gov (United States)

    de Bruyn, Mark; Rüber, Lukas; Nylinder, Stephan; Stelbrink, Björn; Lovejoy, Nathan R; Lavoué, Sébastien; Tan, Heok Hui; Nugroho, Estu; Wowor, Daisy; Ng, Peter K L; Siti Azizah, M N; Von Rintelen, Thomas; Hall, Robert; Carvalho, Gary R

    2013-05-01

    Understanding factors driving diversity across biodiversity hotspots is critical for formulating conservation priorities in the face of ongoing and escalating environmental deterioration. While biodiversity hotspots encompass a small fraction of Earth's land surface, more than half the world's plants and two-thirds of terrestrial vertebrate species are endemic to these hotspots. Tropical Southeast (SE) Asia displays extraordinary species richness, encompassing four biodiversity hotspots, though disentangling multiple potential drivers of species richness is confounded by the region's dynamic geological and climatic history. Here, we use multilocus molecular genetic data from dense multispecies sampling of freshwater fishes across three biodiversity hotspots, to test the effect of Quaternary climate change and resulting drainage rearrangements on aquatic faunal diversification. While Cenozoic geological processes have clearly shaped evolutionary history in SE Asian halfbeak fishes, we show that paleo-drainage re-arrangements resulting from Quaternary climate change played a significant role in the spatiotemporal evolution of lowland aquatic taxa, and provide priorities for conservation efforts.

  5. Evolutionary heritage influences amazon tree ecology

    NARCIS (Netherlands)

    Souza, De Fernanda Coelho; Dexter, Kyle G.; Phillips, Oliver L.; Brienen, Roel J.W.; Chave, Jerome; Galbraith, David R.; Gonzalez, Gabriela Lopez; Mendoza, Abel Monteagudo; Toby Pennington, R.; Poorter, Lourens; Arets, E.J.M.M.; Boot, Rene G.A.; Meer, van der Peter J.

    2016-01-01

    Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of

  6. Core principles of evolutionary medicine: A Delphi study.

    Science.gov (United States)

    Grunspan, Daniel Z; Nesse, Randolph M; Barnes, M Elizabeth; Brownell, Sara E

    2018-01-01

    Evolutionary medicine is a rapidly growing field that uses the principles of evolutionary biology to better understand, prevent and treat disease, and that uses studies of disease to advance basic knowledge in evolutionary biology. Over-arching principles of evolutionary medicine have been described in publications, but our study is the first to systematically elicit core principles from a diverse panel of experts in evolutionary medicine. These principles should be useful to advance recent recommendations made by The Association of American Medical Colleges and the Howard Hughes Medical Institute to make evolutionary thinking a core competency for pre-medical education. The Delphi method was used to elicit and validate a list of core principles for evolutionary medicine. The study included four surveys administered in sequence to 56 expert panelists. The initial open-ended survey created a list of possible core principles; the three subsequent surveys winnowed the list and assessed the accuracy and importance of each principle. Fourteen core principles elicited at least 80% of the panelists to agree or strongly agree that they were important core principles for evolutionary medicine. These principles over-lapped with concepts discussed in other articles discussing key concepts in evolutionary medicine. This set of core principles will be helpful for researchers and instructors in evolutionary medicine. We recommend that evolutionary medicine instructors use the list of core principles to construct learning goals. Evolutionary medicine is a young field, so this list of core principles will likely change as the field develops further.

  7. A molecular phylogeny of nephilid spiders: evolutionary history of a model lineage.

    Science.gov (United States)

    Kuntner, Matjaž; Arnedo, Miquel A; Trontelj, Peter; Lokovšek, Tjaša; Agnarsson, Ingi

    2013-12-01

    we set the minimum bound for the stems of Nephilidae at 40 Ma and of Nephila at 16 Ma to accommodate Palaeonephila from Baltic amber and Dominican Nephila species, respectively. We also calibrated and dated the phylogeny under three different interpretations of the enigmatic 165 Ma fossil Nephila jurassica, which we suspected based on morphology to be misplaced. We found that by treating N. jurassica as stem Nephila or nephilid the inferred clade ages were vastly older, and the mitochondrial substitution rates much slower than expected from other empirical spider data. This suggests that N. jurassica is not a Nephila nor a nephilid, but possibly a stem orbicularian. The estimated nephilid ancestral age (40-60 Ma) rejects a Gondwanan origin of the family as most of the southern continents were already split at that time. The origin of the family is equally likely to be African, Asian, or Australasian, with a global biogeographic history dominated by dispersal events. A reinterpretation of web architecture evolution suggests that a partially arboricolous, asymmetric orb web with a retreat, as exemplified by both groups of "Nephilengys", is plesiomorphic in Nephilidae, that this architecture was modified into specialized arboricolous webs in Herennia and independently in Clitaetra, and that the web became aerial, gigantic, and golden independently in both "Nephila" groups. The new topology questions previously hypothesized gradual evolution of female size from small to large, and rather suggests a more mosaic evolutionary pattern with independent female size increases from medium to giant in both "Nephila" clades, and two reversals back to medium and small; combined with male size evolution, this pattern will help detect gross evolutionary events leading to extreme sexual size dimorphism, and its morphological and behavioral correlates. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Urbanization shapes the demographic history of a native rodent (the white-footed mouse, Peromyscus leucopus) in New York City

    OpenAIRE

    Harris, Stephen E.; Xue, Alexander T.; Alvarado-Serrano, Diego; Boehm, Joel T.; Joseph, Tyler; Hickerson, Michael J.; Munshi-South, Jason

    2016-01-01

    How urbanization shapes population genomic diversity and evolution of urban wildlife is largely unexplored. We investigated the impact of urbanization on white-footed mice, Peromyscus leucopus, in the New York City (NYC) metropolitan area using coalescent-based simulations to infer demographic history from the site-frequency spectrum. We assigned individuals to evolutionary clusters and then inferred recent divergence times, population size changes and migration using genome-wide single nucle...

  9. Evolutionary mysteries in meiosis.

    Science.gov (United States)

    Lenormand, Thomas; Engelstädter, Jan; Johnston, Susan E; Wijnker, Erik; Haag, Christoph R

    2016-10-19

    Meiosis is a key event of sexual life cycles in eukaryotes. Its mechanistic details have been uncovered in several model organisms, and most of its essential features have received various and often contradictory evolutionary interpretations. In this perspective, we present an overview of these often 'weird' features. We discuss the origin of meiosis (origin of ploidy reduction and recombination, two-step meiosis), its secondary modifications (in polyploids or asexuals, inverted meiosis), its importance in punctuating life cycles (meiotic arrests, epigenetic resetting, meiotic asymmetry, meiotic fairness) and features associated with recombination (disjunction constraints, heterochiasmy, crossover interference and hotspots). We present the various evolutionary scenarios and selective pressures that have been proposed to account for these features, and we highlight that their evolutionary significance often remains largely mysterious. Resolving these mysteries will likely provide decisive steps towards understanding why sex and recombination are found in the majority of eukaryotes.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'. © 2016 The Author(s).

  10. On the Evolutionary History of Uleiella chilensis, a Smut Fungus Parasite of Araucaria araucana in South America: Uleiellales ord. nov. in Ustilaginomycetes.

    Directory of Open Access Journals (Sweden)

    Kai Riess

    Full Text Available The evolutionary history, divergence times and phylogenetic relationships of Uleiella chilensis (Ustilaginomycotina, smut fungi associated with Araucaria araucana were analysed. DNA sequences from multiple gene regions and morphology were analysed and compared to other members of the Basidiomycota to determine the phylogenetic placement of smut fungi on gymnosperms. Divergence time estimates indicate that the majority of smut fungal orders diversified during the Triassic-Jurassic period. However, the origin and relationships of several orders remain uncertain. The most recent common ancestor between Uleiella chilensis and Violaceomyces palustris has been dated to the Lower Cretaceous. Comparisons of divergence time estimates between smut fungi and host plants lead to the hypothesis that the early Ustilaginomycotina had a saprobic lifestyle. As there are only two extant species of Araucaria in South America, each hosting a unique Uleiella species, we suggest that either coevolution or a host shift followed by allopatric speciation are the most likely explanations for the current geographic restriction of Uleiella and its low diversity. Phylogenetic and age estimation analyses, ecology, the unusual life-cycle and the peculiar combination of septal and haustorial characteristics support Uleiella chilensis as a distinct lineage among the Ustilaginomycotina. Here, we describe a new ustilaginomycetous order, the Uleiellales to accommodate Uleiella. Within the Ustilaginomycetes, Uleiellales are sister taxon to the Violaceomycetales.

  11. Evolutionary history of the endangered fish Zoogoneticus quitzeoensis (Bean, 1898 (Cyprinodontiformes: Goodeidae using a sequential approach to phylogeography based on mitochondrial and nuclear DNA data

    Directory of Open Access Journals (Sweden)

    García-Garitagoitia José

    2008-05-01

    Full Text Available Abstract Background Tectonic, volcanic and climatic events that produce changes in hydrographic systems are the main causes of diversification and speciation of freshwater fishes. Elucidate the evolutionary history of freshwater fishes permits to infer theories on the biotic and geological evolution of a region, which can further be applied to understand processes of population divergence, speciation and for conservation purposes. The freshwater ecosystems in Central Mexico are characterized by their genesis dynamism, destruction, and compartmentalization induced by intense geologic activity and climatic changes since the early Miocene. The endangered goodeid Zoogoneticus quitzeoensis is widely distributed across Central México, thus making it a good model for phylogeographic analyses in this area. Results We addressed the phylogeography, evolutionary history and genetic structure of populations of Z. quitzeoensis through a sequential approach, based on both microsatellite and mitochondrial cytochrome b sequences. Most haplotypes were private to particular locations. All the populations analysed showed a remarkable number of haplotypes. The level of gene diversity within populations was H¯ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGaciGaaiaabeqaaeqabiWaaaGcbaGafmisaGKbaebaaaa@2D06@d = 0.987 (0.714 – 1.00. However, in general the nucleotide diversity was low, π = 0.0173 (0.0015 – 0.0049. Significant genetic structure was found among populations at the mitochondrial and nuclear level (ΦST = 0.836 and FST = 0.262, respectively. We distinguished two well-defined mitochondrial lineages that were separated ca. 3.3 million years ago (Mya. The time since expansion was ca. 1.5 × 106 years ago for Lineage I and ca. 860,000 years ago for Lineage II. Also, genetic patterns of

  12. A Double Evolutionary Pool Memetic Algorithm for Examination Timetabling Problems

    Directory of Open Access Journals (Sweden)

    Yu Lei

    2014-01-01

    Full Text Available A double evolutionary pool memetic algorithm is proposed to solve the examination timetabling problem. To improve the performance of the proposed algorithm, two evolutionary pools, that is, the main evolutionary pool and the secondary evolutionary pool, are employed. The genetic operators have been specially designed to fit the examination timetabling problem. A simplified version of the simulated annealing strategy is designed to speed the convergence of the algorithm. A clonal mechanism is introduced to preserve population diversity. Extensive experiments carried out on 12 benchmark examination timetabling instances show that the proposed algorithm is able to produce promising results for the uncapacitated examination timetabling problem.

  13. Evolutionary Novelty in a Butterfly Wing Pattern through Enhancer Shuffling

    Science.gov (United States)

    Pardo-Diaz, Carolina; Hanly, Joseph J.; Martin, Simon H.; Mallet, James; Dasmahapatra, Kanchon K.; Salazar, Camilo; Joron, Mathieu; Nadeau, Nicola; McMillan, W. Owen; Jiggins, Chris D.

    2016-01-01

    An important goal in evolutionary biology is to understand the genetic changes underlying novel morphological structures. We investigated the origins of a complex wing pattern found among Amazonian Heliconius butterflies. Genome sequence data from 142 individuals across 17 species identified narrow regions associated with two distinct red colour pattern elements, dennis and ray. We hypothesise that these modules in non-coding sequence represent distinct cis-regulatory loci that control expression of the transcription factor optix, which in turn controls red pattern variation across Heliconius. Phylogenetic analysis of the two elements demonstrated that they have distinct evolutionary histories and that novel adaptive morphological variation was created by shuffling these cis-regulatory modules through recombination between divergent lineages. In addition, recombination of modules into different combinations within species further contributes to diversity. Analysis of the timing of diversification in these two regions supports the hypothesis of introgression moving regulatory modules between species, rather than shared ancestral variation. The dennis phenotype introgressed into Heliconius melpomene at about the same time that ray originated in this group, while ray introgressed back into H. elevatus much more recently. We show that shuffling of existing enhancer elements both within and between species provides a mechanism for rapid diversification and generation of novel morphological combinations during adaptive radiation. PMID:26771987

  14. Accurate reconstruction of insertion-deletion histories by statistical phylogenetics.

    Directory of Open Access Journals (Sweden)

    Oscar Westesson

    Full Text Available The Multiple Sequence Alignment (MSA is a computational abstraction that represents a partial summary either of indel history, or of structural similarity. Taking the former view (indel history, it is possible to use formal automata theory to generalize the phylogenetic likelihood framework for finite substitution models (Dayhoff's probability matrices and Felsenstein's pruning algorithm to arbitrary-length sequences. In this paper, we report results of a simulation-based benchmark of several methods for reconstruction of indel history. The methods tested include a relatively new algorithm for statistical marginalization of MSAs that sums over a stochastically-sampled ensemble of the most probable evolutionary histories. For mammalian evolutionary parameters on several different trees, the single most likely history sampled by our algorithm appears less biased than histories reconstructed by other MSA methods. The algorithm can also be used for alignment-free inference, where the MSA is explicitly summed out of the analysis. As an illustration of our method, we discuss reconstruction of the evolutionary histories of human protein-coding genes.

  15. Ancestral assumptions and the clinical uncertainty of evolutionary medicine.

    Science.gov (United States)

    Cournoyea, Michael

    2013-01-01

    Evolutionary medicine is an emerging field of medical studies that uses evolutionary theory to explain the ultimate causes of health and disease. Educational tools, online courses, and medical school modules are being developed to help clinicians and students reconceptualize health and illness in light of our evolutionary past. Yet clinical guidelines based on our ancient life histories are epistemically weak, relying on the controversial assumptions of adaptationism and advocating a strictly biophysical account of health. To fulfill the interventionist goals of clinical practice, it seems that proximate explanations are all we need to develop successful diagnostic and therapeutic guidelines. Considering these epistemic concerns, this article argues that the clinical relevance of evolutionary medicine remains uncertain at best.

  16. Evolutionary history of contagious bovine pleuropneumonia using next generation sequencing of Mycoplasma mycoides Subsp. mycoides "Small Colony".

    Directory of Open Access Journals (Sweden)

    Virginie Dupuy

    Full Text Available Mycoplasma mycoides subsp. mycoides "Small Colony" (MmmSC is responsible for contagious bovine pleuropneumonia (CBPP in bovidae, a notifiable disease to the World Organization for Animal Health (OIE. Although its origin is not documented, the disease was known in Europe in 1773. It reached nearly world-wide distribution in the 19(th century through the cattle trade and was eradicated from most continents by stamping-out policies. During the 20(th century it persisted in Africa, and it reappeared sporadically in Southern Europe. Yet, classical epidemiology studies failed to explain the re-occurrence of the disease in Europe in the 1990s. The objectives of this study were to obtain a precise phylogeny of this pathogen, reconstruct its evolutionary history, estimate the date of its emergence, and determine the origin of the most recent European outbreaks. A large-scale genomic approach based on next-generation sequencing technologies was applied to construct a robust phylogeny of this extremely monomorphic pathogen by using 20 representative strains of various geographical origins. Sixty two polymorphic genes of the MmmSC core genome were selected, representing 83601 bp in total and resulting in 139 SNPs within the 20 strains. A robust phylogeny was obtained that identified a lineage specific to European strains; African strains were scattered in various branches. Bayesian analysis allowed dating the most recent common ancestor for MmmSC around 1700. The strains circulating in Sub-Saharan Africa today, however, were shown to descend from a strain that existed around 1810. MmmSC emerged recently, about 300 years ago, and was most probably exported from Europe to other continents, including Africa, during the 19(th century. Its diversity is now greater in Africa, where CBPP is enzootic, than in Europe, where outbreaks occurred sporadically until 1999 and where CBPP may now be considered eradicated unless MmmSC remains undetected.

  17. Assessing the evolutionary history of the class Synurophyceae (Heterokonta) using molecular, morphometric, and paleobiological approaches.

    Science.gov (United States)

    Siver, Peter A; Jo, Bok Yeon; Kim, Jong Im; Shin, Woongghi; Lott, Anne Marie; Wolfe, Alexander P

    2015-06-01

    Heterokont algae of the class Synurophyceae, characterized by distinctive siliceous scales that cover the surface of the cell, are ecologically important in inland waters, yet their evolutionary history remains enigmatic. We explore phylogenetic relationships within this group of algae relative to geologic time, with a focus on evolution of siliceous components. We combined an expansive five-gene and time-calibrated molecular phylogeny of synurophyte algae with an extensive array of fossil specimens from the middle Eocene to infer evolutionary trends within the group. The group originated in the Jurassic approximately 157 million years ago (Ma), with the keystone genera Mallomonas and Synura diverging during the Early Cretaceous at 130 Ma. Mallomonas further splits into two major subclades, signaling the evolution of the V-rib believed to aid in the spacing and organization of scales on the cell covering. Synura also diverges into two primary subclades, separating taxa with forward-projecting spines on the scale from those with a keel positioned on the scale proper. Approximately one third of the fossil species are extinct, whereas the remaining taxa are linked to modern congeners. The taxonomy of synurophytes, which relies extensively on the morphology of the siliceous components, is largely congruent with molecular analyses. Scales of extinct synurophytes were significantly larger than those of modern taxa and may have played a role in their demise. In contrast, many fossil species linked to modern lineages were smaller in the middle Eocene, possibly reflecting growth in the greenhouse climatic state that characterized this geologic interval. © 2015 Botanical Society of America, Inc.

  18. Haplotypes in the Dystrophin DNA Segment Point to a Mosaic Origin of Modern Human Diversity

    OpenAIRE

    Ziętkiewicz, Ewa; Yotova, Vania; Gehl, Dominik; Wambach, Tina; Arrieta, Isabel; Batzer, Mark; Cole, David E.C.; Hechtman, Peter; Kaplan, Feige; Modiano, David; Moisan, Jean-Paul; Michalski, Roman; Labuda, Damian

    2003-01-01

    Although Africa has played a central role in human evolutionary history, certain studies have suggested that not all contemporary human genetic diversity is of recent African origin. We investigated 35 simple polymorphic sites and one Tn microsatellite in an 8-kb segment of the dystrophin gene. We found 86 haplotypes in 1,343 chromosomes from around the world. Although a classical out-of-Africa topology was observed in trees based on the variant frequencies, the tree of haplotype sequences re...

  19. Reconstructing the complex evolutionary history of mobile plasmids in red algal genomes

    Science.gov (United States)

    Lee, JunMo; Kim, Kyeong Mi; Yang, Eun Chan; Miller, Kathy Ann; Boo, Sung Min; Bhattacharya, Debashish; Yoon, Hwan Su

    2016-01-01

    The integration of foreign DNA into algal and plant plastid genomes is a rare event, with only a few known examples of horizontal gene transfer (HGT). Plasmids, which are well-studied drivers of HGT in prokaryotes, have been reported previously in red algae (Rhodophyta). However, the distribution of these mobile DNA elements and their sites of integration into the plastid (ptDNA), mitochondrial (mtDNA), and nuclear genomes of Rhodophyta remain unknown. Here we reconstructed the complex evolutionary history of plasmid-derived DNAs in red algae. Comparative analysis of 21 rhodophyte ptDNAs, including new genome data for 5 species, turned up 22 plasmid-derived open reading frames (ORFs) that showed syntenic and copy number variation among species, but were conserved within different individuals in three lineages. Several plasmid-derived homologs were found not only in ptDNA but also in mtDNA and in the nuclear genome of green plants, stramenopiles, and rhizarians. Phylogenetic and plasmid-derived ORF analyses showed that the majority of plasmid DNAs originated within red algae, whereas others were derived from cyanobacteria, other bacteria, and viruses. Our results elucidate the evolution of plasmid DNAs in red algae and suggest that they spread as parasitic genetic elements. This hypothesis is consistent with their sporadic distribution within Rhodophyta. PMID:27030297

  20. New insights into flavivirus evolution, taxonomy and biogeographic history, extended by analysis of canonical and alternative coding sequences.

    Directory of Open Access Journals (Sweden)

    Gregory Moureau

    Full Text Available To generate the most diverse phylogenetic dataset for the flaviviruses to date, we determined the genomic sequences and phylogenetic relationships of 14 flaviviruses, of which 10 are primarily associated with Culex spp. mosquitoes. We analyze these data, in conjunction with a comprehensive collection of flavivirus genomes, to characterize flavivirus evolutionary and biogeographic history in unprecedented detail and breadth. Based on the presumed introduction of yellow fever virus into the Americas via the transatlantic slave trade, we extrapolated a timescale for a relevant subset of flaviviruses whose evolutionary history, shows that different Culex-spp. associated flaviviruses have been introduced from the Old World to the New World on at least five separate occasions, with 2 different sets of factors likely to have contributed to the dispersal of the different viruses. We also discuss the significance of programmed ribosomal frameshifting in a central region of the polyprotein open reading frame in some mosquito-associated flaviviruses.

  1. Phylodynamic analysis and molecular diversity of the avian infectious bronchitis virus of chickens in Brazil.

    Science.gov (United States)

    Fraga, Aline Padilha de; Gräf, Tiago; Pereira, Cleiton Schneider; Ikuta, Nilo; Fonseca, André Salvador Kazantzi; Lunge, Vagner Ricardo

    2018-03-21

    Avian infectious bronchitis virus (IBV) is the etiological agent of a highly contagious disease, which results in severe economic losses to the poultry industry. The spike protein (S1 subunit) is responsible for the molecular diversity of the virus and many sero/genotypes are described around the world. Recently a new standardized classification of the IBV molecular diversity was conducted, based on phylogenetic analysis of the S1 gene sequences sampled worldwide. Brazil is one of the biggest poultry producers in the world and the present study aimed to review the molecular diversity and reconstruct the evolutionary history of IBV in the country. All IBV S1 gene sequences, with local and year of collection information available on GenBank, were retrieved. Phylogenetic analyses were carried out based on a maximum likelihood method for the classification of genotypes occurring in Brazil, according to the new classification. Bayesian phylogenetic analyses were performed with the Brazilian clade and related international sequences to determine the evolutionary history of IBV in Brazil. A total of 143 Brazilian sequences were classified as GI-11 and 46 as GI-1 (Mass). Within the GI-11 clade, we have identified a potential recombinant strain circulating in Brazil. Phylodynamic analysis demonstrated that IBV GI-11 lineage was introduced in Brazil in the 1950s (1951, 1917-1975 95% HPD) and population dynamics was mostly constant throughout the time. Despite the national vaccination protocols, our results show the widespread dissemination and maintenance of the IBV GI-11 lineage in Brazil and highlight the importance of continuous surveillance to evaluate the impact of currently used vaccine strains on the observed viral diversity of the country. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Biodiversity assessment among two Nebraska prairies: a comparison between traditional and phylogenetic diversity indices.

    Science.gov (United States)

    Aust, Shelly K; Ahrendsen, Dakota L; Kellar, P Roxanne

    2015-01-01

    Conservation of the evolutionary diversity among organisms should be included in the selection of priority regions for preservation of Earth's biodiversity. Traditionally, biodiversity has been determined from an assessment of species richness (S), abundance, evenness, rarity, etc. of organisms but not from variation in species' evolutionary histories. Phylogenetic diversity (PD) measures evolutionary differences between taxa in a community and is gaining acceptance as a biodiversity assessment tool. However, with the increase in the number of ways to calculate PD, end-users and decision-makers are left wondering how metrics compare and what data are needed to calculate various metrics. In this study, we used massively parallel sequencing to generate over 65,000 DNA characters from three cellular compartments for over 60 species in the asterid clade of flowering plants. We estimated asterid phylogenies from character datasets of varying nucleotide quantities, and then assessed the effect of varying character datasets on resulting PD metric values. We also compared multiple PD metrics with traditional diversity indices (including S) among two endangered grassland prairies in Nebraska (U.S.A.). Our results revealed that PD metrics varied based on the quantity of genes used to infer the phylogenies; therefore, when comparing PD metrics between sites, it is vital to use comparable datasets. Additionally, various PD metrics and traditional diversity indices characterize biodiversity differently and should be chosen depending on the research question. Our study provides empirical results that reveal the value of measuring PD when considering sites for conservation, and it highlights the usefulness of using PD metrics in combination with other diversity indices when studying community assembly and ecosystem functioning. Ours is just one example of the types of investigations that need to be conducted across the tree of life and across varying ecosystems in order to build

  3. A complete mitochondrial genome sequence of the wild two-humped camel (Camelus bactrianus ferus: an evolutionary history of camelidae

    Directory of Open Access Journals (Sweden)

    Meng He

    2007-07-01

    Full Text Available Abstract Background The family Camelidae that evolved in North America during the Eocene survived with two distinct tribes, Camelini and Lamini. To investigate the evolutionary relationship between them and to further understand the evolutionary history of this family, we determined the complete mitochondrial genome sequence of the wild two-humped camel (Camelus bactrianus ferus, the only wild survivor of the Old World camel. Results The mitochondrial genome sequence (16,680 bp from C. bactrianus ferus contains 13 protein-coding, two rRNA, and 22 tRNA genes as well as a typical control region; this basic structure is shared by all metazoan mitochondrial genomes. Its protein-coding region exhibits codon usage common to all mammals and possesses the three cryptic stop codons shared by all vertebrates. C. bactrianus ferus together with the rest of mammalian species do not share a triplet nucleotide insertion (GCC that encodes a proline residue found only in the nd1 gene of the New World camelid Lama pacos. This lineage-specific insertion in the L. pacos mtDNA occurred after the split between the Old and New World camelids suggests that it may have functional implication since a proline insertion in a protein backbone usually alters protein conformation significantly, and nd1 gene has not been seen as polymorphic as the rest of ND family genes among camelids. Our phylogenetic study based on complete mitochondrial genomes excluding the control region suggested that the divergence of the two tribes may occur in the early Miocene; it is much earlier than what was deduced from the fossil record (11 million years. An evolutionary history reconstructed for the family Camelidae based on cytb sequences suggested that the split of bactrian camel and dromedary may have occurred in North America before the tribe Camelini migrated from North America to Asia. Conclusion Molecular clock analysis of complete mitochondrial genomes from C. bactrianus ferus and L

  4. Geological and climatic changes in quaternary shaped the evolutionary history of Calibrachoa heterophylla, an endemic South-Atlantic species of petunia.

    Science.gov (United States)

    Mäder, Geraldo; Fregonezi, Jéferson N; Lorenz-Lemke, Aline P; Bonatto, Sandro L; Freitas, Loreta B

    2013-08-29

    The glacial and interglacial cycles that characterized the Quaternary greatly affected the distribution and genetic diversity of plants. In the Neotropics, few phylogeographic studies have focused on coastal species outside of the Atlantic Rainforest. Climatic and sea level changes during the Quaternary played an important role in the evolutionary history of many organisms found in coastal regions. To contribute to a better understanding of plant evolution in this environment in Southern South America, we focused on Calibrachoa heterophylla (Solanaceae), an endemic and vulnerable wild petunia species from the South Atlantic Coastal Plain (SACP). We assessed DNA sequences from two cpDNA intergenic spacers and analyzed them using a phylogeographic approach. The present phylogeographic study reveals the influence of complex geologic and climatic events on patterns of genetic diversification. The results indicate that C. heterophylla originated inland and subsequently colonized the SACP; the data show that the inland haplogroup is more ancient than the coastal one and that the inland was not affected by sea level changes in the Quaternary. The major diversification of C. heterophylla that occurred after 0.4 Myr was linked to sea level oscillations in the Quaternary, and any diversification that occurred before this time was obscured by marine transgressions that occurred before the coastal sand barrier's formation. Results of the Bayesian skyline plot showed a recent population expansion detected in C. heterophylla seems to be related to an increase in temperature and humidity that occurred at the beginning of the Holocene. The geographic clades have been formed when the coastal plain was deeply dissected by paleochannels and these correlate very well with the distributional limits of the clades. The four major sea transgressions formed a series of four sand barriers parallel to the coast that progressively increased the availability of coastal areas after the

  5. An evolutionary medicine approach to understanding factors that contribute to chronic obstructive pulmonary disease.

    Science.gov (United States)

    Aoshiba, Kazutetsu; Tsuji, Takao; Itoh, Masayuki; Yamaguchi, Kazuhiro; Nakamura, Hiroyuki

    2015-01-01

    Although many studies have been published on the causes and mechanisms of chronic obstructive pulmonary disease (COPD), the reason for the existence of COPD and the reasons why COPD develops in humans have hardly been studied. Evolutionary medical approaches are required to explain not only the proximate factors, such as the causes and mechanisms of a disease, but the ultimate (evolutionary) factors as well, such as why the disease is present and why the disease develops in humans. According to the concepts of evolutionary medicine, disease susceptibility is acquired as a result of natural selection during the evolutionary process of traits linked to the genes involved in disease susceptibility. In this paper, we discuss the following six reasons why COPD develops in humans based on current evolutionary medical theories: (1) evolutionary constraints; (2) mismatch between environmental changes and evolution; (3) co-evolution with pathogenic microorganisms; (4) life history trade-off; (5) defenses and their costs, and (6) reproductive success at the expense of health. Our perspective pursues evolutionary answers to the fundamental question, 'Why are humans susceptible to this common disease, COPD, despite their long evolutionary history?' We believe that the perspectives offered by evolutionary medicine are essential for researchers to better understand the significance of their work.

  6. Ancient Biomolecules and Evolutionary Inference.

    Science.gov (United States)

    Cappellini, Enrico; Prohaska, Ana; Racimo, Fernando; Welker, Frido; Pedersen, Mikkel Winther; Allentoft, Morten E; de Barros Damgaard, Peter; Gutenbrunner, Petra; Dunne, Julie; Hammann, Simon; Roffet-Salque, Mélanie; Ilardo, Melissa; Moreno-Mayar, J Víctor; Wang, Yucheng; Sikora, Martin; Vinner, Lasse; Cox, Jürgen; Evershed, Richard P; Willerslev, Eske

    2018-04-25

    Over the last decade, studies of ancient biomolecules-particularly ancient DNA, proteins, and lipids-have revolutionized our understanding of evolutionary history. Though initially fraught with many challenges, the field now stands on firm foundations. Researchers now successfully retrieve nucleotide and amino acid sequences, as well as lipid signatures, from progressively older samples, originating from geographic areas and depositional environments that, until recently, were regarded as hostile to long-term preservation of biomolecules. Sampling frequencies and the spatial and temporal scope of studies have also increased markedly, and with them the size and quality of the data sets generated. This progress has been made possible by continuous technical innovations in analytical methods, enhanced criteria for the selection of ancient samples, integrated experimental methods, and advanced computational approaches. Here, we discuss the history and current state of ancient biomolecule research, its applications to evolutionary inference, and future directions for this young and exciting field. Expected final online publication date for the Annual Review of Biochemistry Volume 87 is June 20, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  7. Do the historical biogeography and evolutionary history of the digenean Margotrema spp. across central Mexico mirror those of their freshwater fish hosts (Goodeinae)?

    Science.gov (United States)

    Martínez-Aquino, Andrés; Ceccarelli, Fadia Sara; Eguiarte, Luis E; Vázquez-Domínguez, Ella; de León, Gerardo Pérez-Ponce

    2014-01-01

    Host-parasite systems provide an ideal platform to study evolution at different levels, including codivergence in a historical biogeography context. In this study we aim to describe biogeographic and codivergent patterns and associated processes of the Goodeinae freshwater fish and their digenean parasite (Margotrema spp.) over the last 6.5 Ma (million years), identifying the main factors (host and/or hydrogeomorphology) that influenced the evolution of Margotrema. We obtained a species tree for Margotrema spp. using DNA sequence data from mitochondrial and nuclear molecular markers (COI and ITS1, respectively) and performed molecular dating to discern divergence events within the genus. The dispersal-extinction-cladogenesis (DEC) model was used to describe the historical biogeography of digeneans and applied to cophylogenetic analyses of Margotrema and their goodeine hosts. Our results showed that the evolutionary history of Margotrema has been shaped in close association with its geographic context, especially with the geological history of central Mexico during the Pleistocene. Host-specificity has been established at three levels of historical association: a) Species-Species, represented by Xenotaenia resolanae-M. resolanae exclusively found in the Cuzalapa River Basin; b) Species-Lineage, represented by Characodon audax-M. bravoae Lineage II, exclusive to the Upper and Middle Mezquital River Basin, and c) Tribe-Lineage, including two instances of historical associations among parasites and hosts at the taxonomical level of tribe, one represented by Ilyodontini-M. bravoae Lineage I (distributed across the Ayuquila and Balsas River Basins), and another comprised of Girardinichthyini/Chapalichthyini-M. bravoae Lineage III, found only in the Lerma River Basin. We show that the evolutionary history of the parasites is, on several occasions, in agreement with the phylogenetic and biogeographic history of their hosts. A series of biogeographic and host

  8. Do the Historical Biogeography and Evolutionary History of the Digenean Margotrema spp. across Central Mexico Mirror Those of Their Freshwater Fish Hosts (Goodeinae)?

    Science.gov (United States)

    Martínez-Aquino, Andrés; Ceccarelli, Fadia Sara; Eguiarte, Luis E.; Vázquez-Domínguez, Ella; de León, Gerardo Pérez-Ponce

    2014-01-01

    Host-parasite systems provide an ideal platform to study evolution at different levels, including codivergence in a historical biogeography context. In this study we aim to describe biogeographic and codivergent patterns and associated processes of the Goodeinae freshwater fish and their digenean parasite (Margotrema spp.) over the last 6.5 Ma (million years), identifying the main factors (host and/or hydrogeomorphology) that influenced the evolution of Margotrema. We obtained a species tree for Margotrema spp. using DNA sequence data from mitochondrial and nuclear molecular markers (COI and ITS1, respectively) and performed molecular dating to discern divergence events within the genus. The dispersal-extinction-cladogenesis (DEC) model was used to describe the historical biogeography of digeneans and applied to cophylogenetic analyses of Margotrema and their goodeine hosts. Our results showed that the evolutionary history of Margotrema has been shaped in close association with its geographic context, especially with the geological history of central Mexico during the Pleistocene. Host-specificity has been established at three levels of historical association: a) Species-Species, represented by Xenotaenia resolanae-M. resolanae exclusively found in the Cuzalapa River Basin; b) Species-Lineage, represented by Characodon audax-M. bravoae Lineage II, exclusive to the Upper and Middle Mezquital River Basin, and c) Tribe-Lineage, including two instances of historical associations among parasites and hosts at the taxonomical level of tribe, one represented by Ilyodontini-M. bravoae Lineage I (distributed across the Ayuquila and Balsas River Basins), and another comprised of Girardinichthyini/Chapalichthyini-M. bravoae Lineage III, found only in the Lerma River Basin. We show that the evolutionary history of the parasites is, on several occasions, in agreement with the phylogenetic and biogeographic history of their hosts. A series of biogeographic and host

  9. Do the historical biogeography and evolutionary history of the digenean Margotrema spp. across central Mexico mirror those of their freshwater fish hosts (Goodeinae?

    Directory of Open Access Journals (Sweden)

    Andrés Martínez-Aquino

    Full Text Available Host-parasite systems provide an ideal platform to study evolution at different levels, including codivergence in a historical biogeography context. In this study we aim to describe biogeographic and codivergent patterns and associated processes of the Goodeinae freshwater fish and their digenean parasite (Margotrema spp. over the last 6.5 Ma (million years, identifying the main factors (host and/or hydrogeomorphology that influenced the evolution of Margotrema. We obtained a species tree for Margotrema spp. using DNA sequence data from mitochondrial and nuclear molecular markers (COI and ITS1, respectively and performed molecular dating to discern divergence events within the genus. The dispersal-extinction-cladogenesis (DEC model was used to describe the historical biogeography of digeneans and applied to cophylogenetic analyses of Margotrema and their goodeine hosts. Our results showed that the evolutionary history of Margotrema has been shaped in close association with its geographic context, especially with the geological history of central Mexico during the Pleistocene. Host-specificity has been established at three levels of historical association: a Species-Species, represented by Xenotaenia resolanae-M. resolanae exclusively found in the Cuzalapa River Basin; b Species-Lineage, represented by Characodon audax-M. bravoae Lineage II, exclusive to the Upper and Middle Mezquital River Basin, and c Tribe-Lineage, including two instances of historical associations among parasites and hosts at the taxonomical level of tribe, one represented by Ilyodontini-M. bravoae Lineage I (distributed across the Ayuquila and Balsas River Basins, and another comprised of Girardinichthyini/Chapalichthyini-M. bravoae Lineage III, found only in the Lerma River Basin. We show that the evolutionary history of the parasites is, on several occasions, in agreement with the phylogenetic and biogeographic history of their hosts. A series of biogeographic and host

  10. Tracking the evolutionary history of Cortinarius species in section Calochroi, with transoceanic disjunct distributions

    Directory of Open Access Journals (Sweden)

    Ammirati Joseph

    2011-07-01

    Full Text Available Abstract Background Cortinarius species in section Calochroi display local, clinal and circumboreal patterns of distribution across the Northern Hemisphere where these ectomycorrhizal fungi occur with host trees throughout their geographical range within a continent, or have disjunct intercontinental distributions, the origins of which are not understood. We inferred evolutionary histories of four species, 1 C. arcuatorum, 2 C. aureofulvus, 3 C. elegantior and 4 C. napus, from populations distributed throughout the Old World, and portions of the New World (Central- and North America based on genetic variation of 154 haplotype internal transcribed spacer (ITS sequences from 83 population samples. By describing the population structure of these species across their geographical distribution, we attempt to identify their historical migration and patterns of diversification. Results Models of population structure from nested clade, demographic and coalescent-based analyses revealed genetically differentiated and geographically structured haplotypes in C. arcuatorum and C. elegantior, while C. aureofulvus showed considerably less population structure and C. napus lacked sufficient genetic differentiation to resolve any population structure. Disjunct populations within C. arcuatorum, C. aureofulvus and C. elegantior show little or no morphological differentiation, whereas in C. napus there is a high level of homoplasy and phenotypic plasticity for veil and lamellae colour. The ITS sequences of the type specimens of C. albobrunnoides and C. albobrunnoides var. violaceovelatus were identical to one another and are treated as one species with a wider range of geographic distribution under C. napus. Conclusions Our results indicate that each of the Calochroi species has undergone a relatively independent evolutionary history, hypothesised as follows: 1 a widely distributed ancestral population of C. arcuatorum diverged into distinctive sympatric

  11. Genome-wide investigation reveals high evolutionary rates in annual model plants.

    Science.gov (United States)

    Yue, Jia-Xing; Li, Jinpeng; Wang, Dan; Araki, Hitoshi; Tian, Dacheng; Yang, Sihai

    2010-11-09

    Rates of molecular evolution vary widely among species. While significant deviations from molecular clock have been found in many taxa, effects of life histories on molecular evolution are not fully understood. In plants, annual/perennial life history traits have long been suspected to influence the evolutionary rates at the molecular level. To date, however, the number of genes investigated on this subject is limited and the conclusions are mixed. To evaluate the possible heterogeneity in evolutionary rates between annual and perennial plants at the genomic level, we investigated 85 nuclear housekeeping genes, 10 non-housekeeping families, and 34 chloroplast genes using the genomic data from model plants including Arabidopsis thaliana and Medicago truncatula for annuals and grape (Vitis vinifera) and popular (Populus trichocarpa) for perennials. According to the cross-comparisons among the four species, 74-82% of the nuclear genes and 71-97% of the chloroplast genes suggested higher rates of molecular evolution in the two annuals than those in the two perennials. The significant heterogeneity in evolutionary rate between annuals and perennials was consistently found both in nonsynonymous sites and synonymous sites. While a linear correlation of evolutionary rates in orthologous genes between species was observed in nonsynonymous sites, the correlation was weak or invisible in synonymous sites. This tendency was clearer in nuclear genes than in chloroplast genes, in which the overall evolutionary rate was small. The slope of the regression line was consistently lower than unity, further confirming the higher evolutionary rate in annuals at the genomic level. The higher evolutionary rate in annuals than in perennials appears to be a universal phenomenon both in nuclear and chloroplast genomes in the four dicot model plants we investigated. Therefore, such heterogeneity in evolutionary rate should result from factors that have genome-wide influence, most likely those

  12. Multilocus phylogeny reconstruction: new insights into the evolutionary history of the genus Petunia.

    Science.gov (United States)

    Reck-Kortmann, Maikel; Silva-Arias, Gustavo Adolfo; Segatto, Ana Lúcia Anversa; Mäder, Geraldo; Bonatto, Sandro Luis; de Freitas, Loreta Brandão

    2014-12-01

    The phylogeny of Petunia species has been difficult to resolve, primarily due to the recent diversification of the genus. Several studies have included molecular data in phylogenetic reconstructions of this genus, but all of them have failed to include all taxa and/or analyzed few genetic markers. In the present study, we employed the most inclusive genetic and taxonomic datasets for the genus, aiming to reconstruct the evolutionary history of Petunia based on molecular phylogeny, biogeographic distribution, and character evolution. We included all 20 Petunia morphological species or subspecies in these analyses. Based on nine nuclear and five plastid DNA markers, our phylogenetic analysis reinforces the monophyly of the genus Petunia and supports the hypothesis that the basal divergence is more related to the differentiation of corolla tube length, whereas the geographic distribution of species is more related to divergences within these main clades. Ancestral area reconstructions suggest the Pampas region as the area of origin and earliest divergence in Petunia. The state reconstructions suggest that the ancestor of Petunia might have had a short corolla tube and a bee pollination floral syndrome. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. The First Joke: Exploring the Evolutionary Origins of Humor

    Directory of Open Access Journals (Sweden)

    Joseph Polimeni

    2006-01-01

    Full Text Available Humor is a complex cognitive function which often leads to laughter. Contemporary humor theorists have begun to formulate hypotheses outlining the possible innate cognitive structures underlying humor. Humor's conspicuous presence in the behavioral repertoire of humankind invites adaptive explanations. This article explores the possible adaptive features of humor and ponders its evolutionary path through hominid history. Current humor theories and previous evolutionary ideas on humor are reviewed. In addition, scientific fields germane to the evolutionary study of humor are examined: animal models, genetics, children's humor, humor in pathological conditions, neurobiology, humor in traditional societies and cognitive archeology. Candidate selection pressures and associated evolutionary mechanisms are considered. The authors conclude that several evolutionary-related topics such as the origins of language, cognition underlying spiritual feelings, hominid group size, and primate teasing could have special relevance to the origins of humor.

  14. Evolutionary dynamics of protein domain architecture in plants

    Directory of Open Access Journals (Sweden)

    Zhang Xue-Cheng

    2012-01-01

    Full Text Available Abstract Background Protein domains are the structural, functional and evolutionary units of the protein. Protein domain architectures are the linear arrangements of domain(s in individual proteins. Although the evolutionary history of protein domain architecture has been extensively studied in microorganisms, the evolutionary dynamics of domain architecture in the plant kingdom remains largely undefined. To address this question, we analyzed the lineage-based protein domain architecture content in 14 completed green plant genomes. Results Our analyses show that all 14 plant genomes maintain similar distributions of species-specific, single-domain, and multi-domain architectures. Approximately 65% of plant domain architectures are universally present in all plant lineages, while the remaining architectures are lineage-specific. Clear examples are seen of both the loss and gain of specific protein architectures in higher plants. There has been a dynamic, lineage-wise expansion of domain architectures during plant evolution. The data suggest that this expansion can be largely explained by changes in nuclear ploidy resulting from rounds of whole genome duplications. Indeed, there has been a decrease in the number of unique domain architectures when the genomes were normalized into a presumed ancestral genome that has not undergone whole genome duplications. Conclusions Our data show the conservation of universal domain architectures in all available plant genomes, indicating the presence of an evolutionarily conserved, core set of protein components. However, the occurrence of lineage-specific domain architectures indicates that domain architecture diversity has been maintained beyond these core components in plant genomes. Although several features of genome-wide domain architecture content are conserved in plants, the data clearly demonstrate lineage-wise, progressive changes and expansions of individual protein domain architectures, reinforcing

  15. Ubiquity and diversity of human-associated Demodex mites.

    Directory of Open Access Journals (Sweden)

    Megan S Thoemmes

    Full Text Available Demodex mites are a group of hair follicle and sebaceous gland-dwelling species. The species of these mites found on humans are arguably the animals with which we have the most intimate interactions. Yet, their prevalence and diversity have been poorly explored. Here we use a new molecular method to assess the occurrence of Demodex mites on humans. In addition, we use the 18S rRNA gene (18S rDNA to assess the genetic diversity and evolutionary history of Demodex lineages. Within our samples, 100% of people over 18 years of age appear to host at least one Demodex species, suggesting that Demodex mites may be universal associates of adult humans. A phylogenetic analysis of 18S rDNA reveals intraspecific structure within one of the two named human-associated Demodex species, D. brevis. The D. brevis clade is geographically structured, suggesting that new lineages are likely to be discovered as humans from additional geographic regions are sampled.

  16. An Evolutionary Perspective on War Heroism

    NARCIS (Netherlands)

    Rusch, Hannes; Störmer, C.

    2015-01-01

    Humans are one of the most cooperative and altruistic species on the planet. At the same time, humans have a long history of violent and deadly intergroup conflicts or wars. Recently, contemporary evolutionary theorists have revived Charles Darwin’s idea that human in-group altruism and out-group

  17. Evolutionary demography and the population history of the European early Neolithic.

    Science.gov (United States)

    Shennan, Stephen

    2009-04-01

    In this paper I propose that evolutionary demography and associated theory from human behavioral ecology provide a strong basis for explaining the available evidence for the patterns observed in the first agricultural settlement of Europe in the 7th-5th millennium cal. BC, linking together a variety of what have previously been disconnected observations and casting doubt on some long-standing existing models. An outline of relevant aspects of life history theory, which provides the foundation for understanding demography, is followed by a review of large-scale demographic patterns in the early Neolithic, which point to rapid population increase and a process of demic diffusion. More localized socioeconomic and demographic patterns suggesting rapid expansion to local carrying capacities and an associated growth of inequality in the earliest farming communities of central Europe (the Linear Pottery Culture, or LBK) are then outlined and shown to correspond to predictions of spatial population ecology and reproductive skew theory. Existing models of why it took so long for farming to spread to northern and northwest Europe, which explain the spread in terms of the gradual disruption of hunter-gatherer ways of life, are then questioned in light of evidence for population collapse at the end of the LBK. Finally, some broader implications of the study are presented, including the suggestion that the pattern of an initial agricultural boom followed by a bust may be relevant in other parts of the world.

  18. Genetic diversity, evolutionary history and implications for conservation of the lion (Panthera leo) in West and Central Africa

    NARCIS (Netherlands)

    Bertola, L.D.; Hooft, van W.F.; Vrieling, K.; Weerd, de D.R.U.; York, D.S.; Bauer, H.; Prins, H.H.T.; Funston, P.J.; Haes, de H.A.U.; Leirs, H.; Haeringen, van W.A.; Sogbohossou, E.; Tumenta, P.N.; Iongh, de H.H.

    2011-01-01

    Aim In recent decades there has been a marked decline in the numbers of African lions (Panthera leo), especially in West Africa where the species is regionally endangered. Based on the climatological history of western Africa, we hypothesize that West and Central African lions have a unique

  19. New insights into the evolutionary history of biological nitrogen fixation

    Directory of Open Access Journals (Sweden)

    Eric eBoyd

    2013-08-01

    Full Text Available Nitrogenase, which catalyzes the ATP-dependent reduction of dinitrogen (N2 to ammonia (NH3, accounts for roughly half of the bioavailable nitrogen supporting extant life. The fundamental requirement for fixed forms of nitrogen for life on Earth, both at present and in the past, has led to broad and significant interest in the origin and evolution of this fundamental biological process. One key question is whether the limited availability of fixed nitrogen was a factor in life’s origin or whether there were ample sources of fixed nitrogen produced by abiotic processes or delivered through the weathering of bolide impact materials to support this early life. If the latter, the key questions become what were the characteristics of the environment that precipitated the evolution of this oxygen sensitive process, when did this occur, and how was its subsequent evolutionary history impacted by the advent of oxygenic photosynthesis and the rise of oxygen in the Earth’s biosphere. Since the availability of fixed sources of nitrogen capable of supporting early life is difficult to glean from the geologic record, there are limited means to get direct insights into these questions. Indirect insights, however, can be gained by deep phylogenetic studies of nitrogenase structural gene products and additional gene products involved in the biosynthesis of the complex metal-containing prosthetic groups associated with this enzyme complex. Insights gained from such studies, as reviewed herein, challenge traditional models for the evolution of biological nitrogen fixation and provide the basis for the development of new conceptual models that explain the stepwise evolution of this highly complex and life sustaining process.

  20. Evolutionary cell biology: two origins, one objective.

    Science.gov (United States)

    Lynch, Michael; Field, Mark C; Goodson, Holly V; Malik, Harmit S; Pereira-Leal, José B; Roos, David S; Turkewitz, Aaron P; Sazer, Shelley

    2014-12-02

    All aspects of biological diversification ultimately trace to evolutionary modifications at the cellular level. This central role of cells frames the basic questions as to how cells work and how cells come to be the way they are. Although these two lines of inquiry lie respectively within the traditional provenance of cell biology and evolutionary biology, a comprehensive synthesis of evolutionary and cell-biological thinking is lacking. We define evolutionary cell biology as the fusion of these two eponymous fields with the theoretical and quantitative branches of biochemistry, biophysics, and population genetics. The key goals are to develop a mechanistic understanding of general evolutionary processes, while specifically infusing cell biology with an evolutionary perspective. The full development of this interdisciplinary field has the potential to solve numerous problems in diverse areas of biology, including the degree to which selection, effectively neutral processes, historical contingencies, and/or constraints at the chemical and biophysical levels dictate patterns of variation for intracellular features. These problems can now be examined at both the within- and among-species levels, with single-cell methodologies even allowing quantification of variation within genotypes. Some results from this emerging field have already had a substantial impact on cell biology, and future findings will significantly influence applications in agriculture, medicine, environmental science, and synthetic biology.

  1. EVOLUTIONARY THEORY AND THE MARKET COMPETITION

    Directory of Open Access Journals (Sweden)

    SIRGHI Nicoleta

    2014-12-01

    Full Text Available Evolutionary theory study of processes that transform economy for firms, institutions, industries, employment, production, trade and growth within, through the actions of diverse agents from experience and interactions, using evolutionary methodology. Evolutionary theory analyses the unleashing of a process of technological and institutional innovation by generating and testing a diversity of ideas which discover and accumulate more survival value for the costs incurred than competing alternatives.This paper presents study the behavior of the firms on the market used the evolutionary theory.The paper is to present in full the developments that have led to the re-assessment of theories of firms starting from the criticism on Coase's theory based on the lack of testable hypotheses and on non-operative definition of transaction costs. In the literature in the field studies on firms were allotted a secondary place for a long period of time, to date the new theories of the firm hold a dominant place in the firms’ economic analysis. In an article, published in 1937, Ronald H. Coase identified the main sources of the cost of using the market mechanism. The firms theory represent a issue intensively studied in the literature in the field, regarding the survival, competitiveness and innovation of firm on the market. The research of Nelson and Winter, “An Evolutionary Theory of Economic Change” (1982 is the starting point for a modern literature in the field which considers the approach of the theory of the firm from an evolutionary perspective. Nelson and Winter have shown that the “orthodox” theory, is objectionable primarily by the fact that the hypothesis regarding profit maximization has a normative character and is not valid in any situation. Nelson and Winter reconsidered their microeconomic analysis showing that excessive attention should not be paid to market equilibrium but rather to dynamic processes resulting from irreversible

  2. MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods

    Science.gov (United States)

    Tamura, Koichiro; Peterson, Daniel; Peterson, Nicholas; Stecher, Glen; Nei, Masatoshi; Kumar, Sudhir

    2011-01-01

    Comparative analysis of molecular sequence data is essential for reconstructing the evolutionary histories of species and inferring the nature and extent of selective forces shaping the evolution of genes and species. Here, we announce the release of Molecular Evolutionary Genetics Analysis version 5 (MEGA5), which is a user-friendly software for mining online databases, building sequence alignments and phylogenetic trees, and using methods of evolutionary bioinformatics in basic biology, biomedicine, and evolution. The newest addition in MEGA5 is a collection of maximum likelihood (ML) analyses for inferring evolutionary trees, selecting best-fit substitution models (nucleotide or amino acid), inferring ancestral states and sequences (along with probabilities), and estimating evolutionary rates site-by-site. In computer simulation analyses, ML tree inference algorithms in MEGA5 compared favorably with other software packages in terms of computational efficiency and the accuracy of the estimates of phylogenetic trees, substitution parameters, and rate variation among sites. The MEGA user interface has now been enhanced to be activity driven to make it easier for the use of both beginners and experienced scientists. This version of MEGA is intended for the Windows platform, and it has been configured for effective use on Mac OS X and Linux desktops. It is available free of charge from http://www.megasoftware.net. PMID:21546353

  3. Maize Endophytic Bacterial Diversity as Affected by Soil Cultivation History.

    Science.gov (United States)

    Correa-Galeote, David; Bedmar, Eulogio J; Arone, Gregorio J

    2018-01-01

    The bacterial endophytic communities residing within roots of maize ( Zea mays L.) plants cultivated by a sustainable management in soils from the Quechua maize belt (Peruvian Andes) were examined using tags pyrosequencing spanning the V4 and V5 hypervariable regions of the 16S rRNA. Across four replicate libraries, two corresponding to sequences of endophytic bacteria from long time maize-cultivated soils and the other two obtained from fallow soils, 793 bacterial sequences were found that grouped into 188 bacterial operational taxonomic units (OTUs, 97% genetic similarity). The numbers of OTUs in the libraries from the maize-cultivated soils were significantly higher than those found in the libraries from fallow soils. A mean of 30 genera were found in the fallow soil libraries and 47 were in those from the maize-cultivated soils. Both alpha and beta diversity indexes showed clear differences between bacterial endophytic populations from plants with different soil cultivation history and that the soils cultivated for long time requires a higher diversity of endophytes. The number of sequences corresponding to main genera Sphingomonas, Herbaspirillum, Bradyrhizobium and Methylophilus in the maize-cultivated libraries were statistically more abundant than those from the fallow soils. Sequences of genera Dyella and Sreptococcus were significantly more abundant in the libraries from the fallow soils. Relative abundance of genera Burkholderia, candidatus Glomeribacter, Staphylococcus, Variovorax, Bacillus and Chitinophaga were similar among libraries. A canonical correspondence analysis of the relative abundance of the main genera showed that the four libraries distributed in two clearly separated groups. Our results suggest that cultivation history is an important driver of endophytic colonization of maize and that after a long time of cultivation of the soil the maize plants need to increase the richness of the bacterial endophytes communities.

  4. Walking backwards into the future: the need for a holistic evolutionary approach in Pacific health research.

    Science.gov (United States)

    Matisoo-Smith, Elizabeth; Gosling, Anna L

    2018-05-01

    The Pacific region has had a complex human history. It has been subject to multiple major human dispersal and colonisation events, including some of the earliest Out-of-Africa migrations, the so-called Austronesian expansion of people out of Island Southeast Asia, and the more recent arrival of Europeans. Despite models of island isolation, evidence suggests significant levels of interconnectedness that vary in direction and frequency over time. The Pacific Ocean covers a vast area and its islands provide an array of different physical environments with variable pathogen loads and subsistence opportunities. These diverse environments likely caused Pacific peoples to adapt (both genetically and culturally) in unique ways. Differences in genetic background, in combination with adaptation, likely affect their susceptibility to non-communicable diseases. Here we provide an overview of some of the key issues in the natural and human history of the Pacific region which are likely to impact human health. We argue that understanding the evolutionary and cultural history of Pacific peoples is essential for the generation of testable hypotheses surrounding potential causes of elevated disease susceptibility among Pacific peoples.

  5. The evolutionary ecology of molecular replicators.

    Science.gov (United States)

    Nee, Sean

    2016-08-01

    By reasonable criteria, life on the Earth consists mainly of molecular replicators. These include viruses, transposons, transpovirons, coviruses and many more, with continuous new discoveries like Sputnik Virophage. Their study is inherently multidisciplinary, spanning microbiology, genetics, immunology and evolutionary theory, and the current view is that taking a unified approach has great power and promise. We support this with a new, unified, model of their evolutionary ecology, using contemporary evolutionary theory coupling the Price equation with game theory, studying the consequences of the molecular replicators' promiscuous use of each others' gene products for their natural history and evolutionary ecology. Even at this simple expository level, we can make a firm prediction of a new class of replicators exploiting viruses such as lentiviruses like SIVs, a family which includes HIV: these have been explicitly stated in the primary literature to be non-existent. Closely connected to this departure is the view that multicellular organism immunology is more about the management of chronic infections rather than the elimination of acute ones and new understandings emerging are changing our view of the kind of theatre we ourselves provide for the evolutionary play of molecular replicators. This study adds molecular replicators to bacteria in the emerging field of sociomicrobiology.

  6. The evolutionary diversification of seed size: using the past to understand the present.

    Science.gov (United States)

    Sims, Hallie J

    2012-05-01

    The Devonian origin of seed plants and subsequent morphological diversification of seeds during the late Paleozoic represents an adaptive radiation into unoccupied ecological niche space. A plant's seed size is correlated with its life-history strategy, growth form, and seed dispersal syndrome. The fossil record indicates that the oldest seed plants had relatively small seeds, but the Mississippian seed size envelope increased significantly with the diversification of larger seeded lineages. Fossil seeds equivalent to the largest extant gymnosperm seeds appeared by the Pennsylvanian, concurrent with morphological diversification of growth forms and dispersal syndromes as well as the clade's radiation into new environments. Wang's Analysis of Skewness indicates that the evolutionary trend of increasing seed size resulted from primarily passive processes in Pennsylvanian seed plants. The distributions of modern angiosperms indicate a more diverse system of active and some passive processes, unbounded by Paleozoic limits; multiple angiosperm lineages independently evolved though the upper and lower bounds. Quantitative measures of preservation suggest that, although our knowledge of Paleozoic seeds is far from complete, the evolutionary trend in seed size is unlikely to be an artifact of taphonomy. © 2012 The Author. Evolution© 2012 The Society for the Study of Evolution.

  7. Evolution in Mind: Evolutionary Dynamics, Cognitive Processes, and Bayesian Inference.

    Science.gov (United States)

    Suchow, Jordan W; Bourgin, David D; Griffiths, Thomas L

    2017-07-01

    Evolutionary theory describes the dynamics of population change in settings affected by reproduction, selection, mutation, and drift. In the context of human cognition, evolutionary theory is most often invoked to explain the origins of capacities such as language, metacognition, and spatial reasoning, framing them as functional adaptations to an ancestral environment. However, evolutionary theory is useful for understanding the mind in a second way: as a mathematical framework for describing evolving populations of thoughts, ideas, and memories within a single mind. In fact, deep correspondences exist between the mathematics of evolution and of learning, with perhaps the deepest being an equivalence between certain evolutionary dynamics and Bayesian inference. This equivalence permits reinterpretation of evolutionary processes as algorithms for Bayesian inference and has relevance for understanding diverse cognitive capacities, including memory and creativity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Evolutionary insights from studies on viruses of hyperthermophilic archaea.

    Science.gov (United States)

    Prangishvili, David

    2003-05-01

    The morphological diversity of viruses which parasitize hyperthermophilic archaea thriving at temperatures > or = 80 degrees C appears to exceed that of viruses of prokaryotes living at lower temperatures. Based on assumptions of the existence of viruses in the prebiotic phase of evolution and hot origins of cellular life, we suggest that this remarkable diversity could have its source in ancestral diversity of viral morphotypes in hot environments. Attempts are made to trace evolutionary relationships of viruses of hyperthermophilic archaea with other viruses.

  9. Evolutionary Conservation and Emerging Functional Diversity of the Cytosolic Hsp70:J Protein Chaperone Network of Arabidopsis thaliana.

    Science.gov (United States)

    Verma, Amit K; Diwan, Danish; Raut, Sandeep; Dobriyal, Neha; Brown, Rebecca E; Gowda, Vinita; Hines, Justin K; Sahi, Chandan

    2017-06-07

    Heat shock proteins of 70 kDa (Hsp70s) partner with structurally diverse Hsp40s (J proteins), generating distinct chaperone networks in various cellular compartments that perform myriad housekeeping and stress-associated functions in all organisms. Plants, being sessile, need to constantly maintain their cellular proteostasis in response to external environmental cues. In these situations, the Hsp70:J protein machines may play an important role in fine-tuning cellular protein quality control. Although ubiquitous, the functional specificity and complexity of the plant Hsp70:J protein network has not been studied. Here, we analyzed the J protein network in the cytosol of Arabidopsis thaliana and, using yeast genetics, show that the functional specificities of most plant J proteins in fundamental chaperone functions are conserved across long evolutionary timescales. Detailed phylogenetic and functional analysis revealed that increased number, regulatory differences, and neofunctionalization in J proteins together contribute to the emerging functional diversity and complexity in the Hsp70:J protein network in higher plants. Based on the data presented, we propose that higher plants have orchestrated their "chaperome," especially their J protein complement, according to their specialized cellular and physiological stipulations. Copyright © 2017 Verma et al.

  10. Economic and evolutionary hypotheses for cross-population variation in parochialism

    OpenAIRE

    Daniel Jacob Hruschka; Joseph eHenrich

    2013-01-01

    Human populations differ reliably in the degree to which people favor family, friends and community members over strangers and outsiders. In the last decade, researchers have begun to propose several economic and evolutionary hypotheses for these cross-population differences in parochialism. In this paper, we outline major current theories and review recent attempts to test them. We also discuss the key methodological challenges in assessing these diverse economic and evolutionary theories...

  11. Phylogeographic analyses and genetic structure illustrate the complex evolutionary history of Phragmites australis in Mexico.

    Science.gov (United States)

    Colin, Ricardo; Eguiarte, Luis E

    2016-05-01

    Genetic data suggest that three lineages of Phragmites australis are found in North America: the Native North American lineage, the Gulf Coast lineage, and the Invasive lineage. In Mexico, P. australis is a common species, but nothing is known about the distribution or ecology of these lineages. We examined the phylogeography of P. australis to analyze the current geographic distribution of genetic variation, demographic history, and dispersal patterns to better understand its evolutionary history in Mexico. We sampled 427 individuals from 28 populations. We used two noncoding regions of chloroplast DNA to estimate the levels of genetic variation and identified the genetic groups across the species' geographical range in Mexico. We compared the genealogical relationships among haplotypes with those previously reported. A hypothesis of demographic expansion was also tested for the Mexican P. australis lineages. We found 13 new haplotypes native to Mexico that might be undergoing an active process of expansion and diversification. Genealogical analyses provided evidence that two independent lineages of P. australis are present in Mexico. The invasive lineage was not detected with our sampling. Our estimates of population expansions in Mexico ranged from 0.202 to 0.726 mya. Phragmites australis is a native species that has been in Mexico for thousands of years. Genetic data suggest that climatic changes during the Pleistocene played an important role in the demographic expansion of the populations that constitute the different genetic groups of P. australis in Mexico. © 2016 Botanical Society of America.

  12. 3D computational mechanics elucidate the evolutionary implications of orbit position and size diversity of early amphibians.

    Directory of Open Access Journals (Sweden)

    Jordi Marcé-Nogué

    Full Text Available For the first time in vertebrate palaeontology, the potential of joining Finite Element Analysis (FEA and Parametrical Analysis (PA is used to shed new light on two different cranial parameters from the orbits to evaluate their biomechanical role and evolutionary patterns. The early tetrapod group of Stereospondyls, one of the largest groups of Temnospondyls is used as a case study because its orbits position and size vary hugely within the members of this group. An adult skull of Edingerella madagascariensis was analysed using two different cases of boundary and loading conditions in order to quantify stress and deformation response under a bilateral bite and during skull raising. Firstly, the variation of the original geometry of its orbits was introduced in the models producing new FEA results, allowing the exploration of the ecomorphology, feeding strategy and evolutionary patterns of these top predators. Secondly, the quantitative results were analysed in order to check if the orbit size and position were correlated with different stress patterns. These results revealed that in most of the cases the stress distribution is not affected by changes in the size and position of the orbit. This finding supports the high mechanical plasticity of this group during the Triassic period. The absence of mechanical constraints regarding the orbit probably promoted the ecomorphological diversity acknowledged for this group, as well as its ecological niche differentiation in the terrestrial Triassic ecosystems in clades as lydekkerinids, trematosaurs, capitosaurs or metoposaurs.

  13. 3D Computational Mechanics Elucidate the Evolutionary Implications of Orbit Position and Size Diversity of Early Amphibians

    Science.gov (United States)

    Marcé-Nogué, Jordi; Fortuny, Josep; De Esteban-Trivigno, Soledad; Sánchez, Montserrat; Gil, Lluís; Galobart, Àngel

    2015-01-01

    For the first time in vertebrate palaeontology, the potential of joining Finite Element Analysis (FEA) and Parametrical Analysis (PA) is used to shed new light on two different cranial parameters from the orbits to evaluate their biomechanical role and evolutionary patterns. The early tetrapod group of Stereospondyls, one of the largest groups of Temnospondyls is used as a case study because its orbits position and size vary hugely within the members of this group. An adult skull of Edingerella madagascariensis was analysed using two different cases of boundary and loading conditions in order to quantify stress and deformation response under a bilateral bite and during skull raising. Firstly, the variation of the original geometry of its orbits was introduced in the models producing new FEA results, allowing the exploration of the ecomorphology, feeding strategy and evolutionary patterns of these top predators. Secondly, the quantitative results were analysed in order to check if the orbit size and position were correlated with different stress patterns. These results revealed that in most of the cases the stress distribution is not affected by changes in the size and position of the orbit. This finding supports the high mechanical plasticity of this group during the Triassic period. The absence of mechanical constraints regarding the orbit probably promoted the ecomorphological diversity acknowledged for this group, as well as its ecological niche differentiation in the terrestrial Triassic ecosystems in clades as lydekkerinids, trematosaurs, capitosaurs or metoposaurs. PMID:26107295

  14. Shifts in diversification rates and host jump frequencies shaped the diversity of host range among Sclerotiniaceae fungal plant pathogens

    OpenAIRE

    Taylor, Andrew; Clarkson, John; Raffaele, Sylvain; Navaud, Olivier; Barbacci, Adelin

    2017-01-01

    The range of hosts that a parasite can infect in nature is a trait determined by its own evolutionary history and that of its potential hosts. However, knowledge on host range diversity and evolution at the family level is often lacking. Here, we investigate host range variation and diversification trends within the Sclerotiniaceae , a family of Ascomycete fungi. Using a phylogenetic framework, we associate diversification rates, the frequency of host jump events, and host range variation dur...

  15. Two colonisation stages generate two different patterns of genetic diversity within native and invasive ranges of Ulex europaeus.

    Science.gov (United States)

    Hornoy, B; Atlan, A; Roussel, V; Buckley, Y M; Tarayre, M

    2013-11-01

    Genetic diversity and the way a species is introduced influence the capacity of populations of invasive species to persist in, and adapt to, their new environment. The diversity of introduced populations affects their evolutionary potential, which is particularly important for species that have invaded a wide range of habitats and climates, such as European gorse, Ulex europaeus. This species originated in the Iberian peninsula and colonised Europe in the Neolithic; over the course of the past two centuries it was introduced to, and has become invasive in, other continents. We characterised neutral genetic diversity and its structure in the native range and in invaded regions. By coupling these results with historical data, we have identified the way in which gorse populations were introduced and the consequences of introduction history on genetic diversity. Our study is based on the genotyping of individuals from 18 populations at six microsatellite loci. As U. europaeus is an allohexaploid species, we used recently developed tools that take into account genotypic ambiguity. Our results show that genetic diversity in gorse is very high and mainly contained within populations. We confirm that colonisation occurred in two stages. During the first stage, gorse spread out naturally from Spain towards northern Europe, losing some genetic diversity. During the second stage, gorse was introduced by humans into different regions of the world, from northern Europe. These introductions resulted in the loss of rare alleles but did not significantly reduce genetic diversity and thus the evolutionary potential of this invasive species.

  16. Species diversity of polyporoid and corticioid fungi in northern hardwood forests with differing management histories

    Science.gov (United States)

    Daniel L. Lindner; Harold H., Jr. Burdsall; Glen R. Stanosz

    2006-01-01

    Effects of forest management on fungal diversity were investigated by sampling fruit bodies of polyporoid and corticioid fungi in forest stands that have different management histories. Fruit bodies were sampled in 15 northern hardwood stands in northern Wisconsin and the upper peninsula of Michigan. Sampling was conducted in five old-growth stands, five uneven-age...

  17. Hardy–Weinberg Equilibrium and the Foundations of Evolutionary ...

    Indian Academy of Sciences (India)

    propagules such as pollen) can both be assumed to alter the allele frequency in the gamete ... of organisms interact to give rise to evolutionary change which is then manifested as the diversity of living forms we marvel at. We will undertake ...

  18. Genome Size, Molecular Phylogeny, and Evolutionary History of the Tribe Aquilarieae (Thymelaeaceae, the Natural Source of Agarwood

    Directory of Open Access Journals (Sweden)

    Azman H. Farah

    2018-05-01

    Full Text Available The tribe Aquilarieae of the family Thymelaeaceae consists of two genera, Aquilaria and Gyrinops, with a total of 30 species, distributed from northeast India, through southeast Asia and the south of China, to Papua New Guinea. They are an important botanical resource for fragrant agarwood, a prized product derived from injured or infected stems of these species. The aim of this study was to estimate the genome size of selected Aquilaria species and comprehend the evolutionary history of Aquilarieae speciation through molecular phylogeny. Five non-coding chloroplast DNA regions and a nuclear region were sequenced from 12 Aquilaria and three Gyrinops species. Phylogenetic trees constructed using combined chloroplast DNA sequences revealed relationships of the studied 15 members in Aquilarieae, while nuclear ribosomal DNA internal transcribed spacer (ITS sequences showed a paraphyletic relationship between Aquilaria species from Indochina and Malesian. We exposed, for the first time, the estimated divergence time for Aquilarieae speciation, which was speculated to happen during the Miocene Epoch. The ancestral split and biogeographic pattern of studied species were discussed. Results showed no large variation in the 2C-values for the five Aquilaria species (1.35–2.23 pg. Further investigation into the genome size may provide additional information regarding ancestral traits and its evolution history.

  19. Insights into the evolution of enzyme substrate promiscuity after the discovery of (βα)₈ isomerase evolutionary intermediates from a diverse metagenome.

    Science.gov (United States)

    Noda-García, Lianet; Juárez-Vázquez, Ana L; Ávila-Arcos, María C; Verduzco-Castro, Ernesto A; Montero-Morán, Gabriela; Gaytán, Paul; Carrillo-Tripp, Mauricio; Barona-Gómez, Francisco

    2015-06-10

    Current sequence-based approaches to identify enzyme functional shifts, such as enzyme promiscuity, have proven to be highly dependent on a priori functional knowledge, hampering our ability to reconstruct evolutionary history behind these mechanisms. Hidden Markov Model (HMM) profiles, broadly used to classify enzyme families, can be useful to distinguish between closely related enzyme families with different specificities. The (βα)8-isomerase HisA/PriA enzyme family, involved in L-histidine (HisA, mono-substrate) biosynthesis in most bacteria and plants, but also in L-tryptophan (HisA/TrpF or PriA, dual-substrate) biosynthesis in most Actinobacteria, has been used as model system to explore evolutionary hypotheses and therefore has a considerable amount of evolutionary, functional and structural knowledge available. We searched for functional evolutionary intermediates between the HisA and PriA enzyme families in order to understand the functional divergence between these families. We constructed a HMM profile that correctly classifies sequences of unknown function into the HisA and PriA enzyme sub-families. Using this HMM profile, we mined a large metagenome to identify plausible evolutionary intermediate sequences between HisA and PriA. These sequences were used to perform phylogenetic reconstructions and to identify functionally conserved amino acids. Biochemical characterization of one selected enzyme (CAM1) with a mutation within the functionally essential N-terminus phosphate-binding site, namely, an alanine instead of a glycine in HisA or a serine in PriA, showed that this evolutionary intermediate has dual-substrate specificity. Moreover, site-directed mutagenesis of this alanine residue, either backwards into a glycine or forward into a serine, revealed the robustness of this enzyme. None of these mutations, presumably upon functionally essential amino acids, significantly abolished its enzyme activities. A truncated version of this enzyme (CAM2

  20. Assessment of the genetic and phenotypic diversity among rhizogenic Agrobacterium biovar 1 strains infecting solanaceous and cucurbit crops.

    Science.gov (United States)

    Bosmans, Lien; Álvarez-Pérez, Sergio; Moerkens, Rob; Wittemans, Lieve; Van Calenberge, Bart; Kerckhove, Stefan Van; Paeleman, Anneleen; De Mot, René; Rediers, Hans; Lievens, Bart

    2015-08-01

    Rhizogenic Agrobacterium biovar 1 strains have been found to cause extensive root proliferation on hydroponically grown Cucurbitaceae and Solanaceae crops, resulting in substantial economic losses. As these agrobacteria live under similar ecological conditions, infecting a limited number of crops, it may be hypothesized that genetic and phenotypic variation among such strains is relatively low. In this study we assessed the phenotypic diversity as well as the phylogenetic and evolutionary relationships of several rhizogenic Agrobacterium biovar 1 strains from cucurbit and solanaceous crops. A collection of 41 isolates was subjected to a number of phenotypic assays and characterized by MLSA targeting four housekeeping genes (16S rRNA gene, recA, rpoB and trpE) and two loci from the root-inducing Ri-plasmid (part of rolB and virD2). Besides phenotypic variation, remarkable genotypic diversity was observed, especially for some chromosomal loci such as trpE. In contrast, genetic diversity was lower for the plasmid-borne loci, indicating that the studied chromosomal housekeeping genes and Ri-plasmid-borne loci might not exhibit the same evolutionary history. Furthermore, phylogenetic and network analyses and several recombination tests suggested that recombination could be contributing in some extent to the evolutionary dynamics of rhizogenic Agrobacterium populations. Finally, a genomospecies-level identification analysis revealed that at least four genomospecies may occur on cucurbit and tomato crops (G1, G3, G8 and G9). Together, this study gives a first glimpse at the genetic and phenotypic diversity within this economically important plant pathogenic bacterium. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Evolutionary history and functional divergence of the cytochrome P450 gene superfamily between Arabidopsis thaliana and Brassica species uncover effects of whole genome and tandem duplications.

    Science.gov (United States)

    Yu, Jingyin; Tehrim, Sadia; Wang, Linhai; Dossa, Komivi; Zhang, Xiurong; Ke, Tao; Liao, Boshou

    2017-09-18

    The cytochrome P450 monooxygenase (P450) superfamily is involved in the biosynthesis of various primary and secondary metabolites. However, little is known about the effects of whole genome duplication (WGD) and tandem duplication (TD) events on the evolutionary history and functional divergence of P450s in Brassica after splitting from a common ancestor with Arabidopsis thaliana. Using Hidden Markov Model search and manual curation, we detected that Brassica species have nearly 1.4-fold as many P450 members as A. thaliana. Most P450s in A. thaliana and Brassica species were located on pseudo-chromosomes. The inferred phylogeny indicated that all P450s were clustered into two different subgroups. Analysis of WGD event revealed that different P450 gene families had appeared after evolutionary events of species. For the TD event analyses, the P450s from TD events in Brassica species can be divided into ancient and recent parts. Our comparison of influence of WGD and TD events on the P450 gene superfamily between A. thaliana and Brassica species indicated that the family-specific evolution in the Brassica lineage can be attributed to both WGD and TD, whereas WGD was recognized as the major mechanism for the recent evolution of the P450 super gene family. Expression analysis of P450s from A. thaliana and Brassica species indicated that WGD-type P450s showed the same expression pattern but completely different expression with TD-type P450s across different tissues in Brassica species. Selection force analysis suggested that P450 orthologous gene pairs between A. thaliana and Brassica species underwent negative selection, but no significant differences were found between P450 orthologous gene pairs in A. thaliana-B. rapa and A. thaliana-B. oleracea lineages, as well as in different subgenomes in B. rapa or B. oleracea compared with A. thaliana. This study is the first to investigate the effects of WGD and TD on the evolutionary history and functional divergence of P450

  2. Evolutionary history of a dispersal-associated locus across sympatric and allopatric divergent populations of a wing-polymorphic beetle across Atlantic Europe.

    Science.gov (United States)

    Van Belleghem, Steven M; Roelofs, Dick; Hendrickx, Frederik

    2015-02-01

    Studying the evolutionary history of trait divergence, in particular those related to dispersal capacity, is of major interest for the process of local adaptation and metapopulation dynamics. Here, we reconstruct the evolution of different alleles at the nuclear-encoded mitochondrial NADP(+)-dependent isocitrate dehydrogenase (mtIdh) locus of the ground beetle Pogonus chalceus that are differentially and repeatedly selected in short- and long-winged populations in response to different hydrological regimes at both allopatric and sympatric scales along the Atlantic European coasts. We sequenced 2788 bp of the mtIdh locus spanning a ~7-kb genome region and compared its variation with that of two supposedly neutral genes. mtIdh sequences show (i) monophyletic clustering of the short-winged associated mtIDH-DE haplotypes within the long-winged associated mtIDH-AB haplotypes, (ii) a more than tenfold lower haplotype diversity associated with the mtIDH-DE alleles compared to the mtIDH-AB alleles and (iii) a high number of fixed nucleotide differences between both mtIDH haplotype clusters. Coalescent simulations suggest that this observed sequence variation in the mtIdh locus is most consistent with a singular origin in a partially isolated subpopulation, followed by a relatively recent spread of the mtIDH-DE allele in short-winged populations along the Atlantic coast. These results demonstrate that even traits associated with decreased dispersal capacity can rapidly spread and that reuse of adaptive alleles plays an important role in the adaptive potential within this sympatric mosaic of P. chalceus populations. © 2014 John Wiley & Sons Ltd.

  3. Bringing together evolution on serpentine and polyploidy: spatiotemporal history of the diploid-tetraploid complex of Knautia arvensis (Dipsacaceae.

    Directory of Open Access Journals (Sweden)

    Filip Kolář

    Full Text Available Polyploidization is one of the leading forces in the evolution of land plants, providing opportunities for instant speciation and rapid gain of evolutionary novelties. Highly selective conditions of serpentine environments act as an important evolutionary trigger that can be involved in various speciation processes. Whereas the significance of both edaphic speciation on serpentine and polyploidy is widely acknowledged in plant evolution, the links between polyploid evolution and serpentine differentiation have not yet been examined. To fill this gap, we investigated the evolutionary history of the perennial herb Knautia arvensis (Dipsacaceae, a diploid-tetraploid complex that exhibits an intriguing pattern of eco-geographic differentiation. Using plastid DNA sequencing and AFLP genotyping of 336 previously cytotyped individuals from 40 populations from central Europe, we unravelled the patterns of genetic variation among the cytotypes and the edaphic types. Diploids showed the highest levels of genetic differentiation, likely as a result of long term persistence of several lineages in ecologically distinct refugia and/or independent immigration. Recurrent polyploidization, recorded in one serpentine island, seems to have opened new possibilities for the local serpentine genotype. Unlike diploids, the serpentine tetraploids were able to escape from the serpentine refugium and spread further; this was also attributable to hybridization with the neighbouring non-serpentine tetraploid lineages. The spatiotemporal history of K. arvensis allows tracing the interplay of polyploid evolution and ecological divergence on serpentine, resulting in a complex evolutionary pattern. Isolated serpentine outcrops can act as evolutionary capacitors, preserving distinct karyological and genetic diversity. The serpentine lineages, however, may not represent evolutionary 'dead-ends' but rather dynamic systems with a potential to further influence the surrounding

  4. Odonata (dragonflies and damselflies) as a bridge between ecology and evolutionary genomics.

    Science.gov (United States)

    Bybee, Seth; Córdoba-Aguilar, Alex; Duryea, M Catherine; Futahashi, Ryo; Hansson, Bengt; Lorenzo-Carballa, M Olalla; Schilder, Ruud; Stoks, Robby; Suvorov, Anton; Svensson, Erik I; Swaegers, Janne; Takahashi, Yuma; Watts, Phillip C; Wellenreuther, Maren

    2016-01-01

    Odonata (dragonflies and damselflies) present an unparalleled insect model to integrate evolutionary genomics with ecology for the study of insect evolution. Key features of Odonata include their ancient phylogenetic position, extensive phenotypic and ecological diversity, several unique evolutionary innovations, ease of study in the wild and usefulness as bioindicators for freshwater ecosystems worldwide. In this review, we synthesize studies on the evolution, ecology and physiology of odonates, highlighting those areas where the integration of ecology with genomics would yield significant insights into the evolutionary processes that would not be gained easily by working on other animal groups. We argue that the unique features of this group combined with their complex life cycle, flight behaviour, diversity in ecological niches and their sensitivity to anthropogenic change make odonates a promising and fruitful taxon for genomics focused research. Future areas of research that deserve increased attention are also briefly outlined.

  5. The "History" of Victorian Scientific Naturalism: Huxley, Spencer and the "End" of natural history.

    Science.gov (United States)

    Lightman, Bernard

    2016-08-01

    As part of their defence of evolutionary theory, T. H. Huxley and Herbert Spencer argued that natural history was no longer a legitimate scientific discipline. They outlined a secularized concept of life from biology to argue for the validity of naturalism. Despite their support for naturalism, they offered two different responses to the decline of natural history. Whereas Huxley emphasized the creation of a biological discipline, and all that that entailed, Spencer was more concerned with constructing an entire intellectual system based on the idea of evolution. In effect, Spencer wanted to create a new scientific worldview based on evolutionary theory. This had consequences for their understanding of human history, especially of how science had evolved through the ages. It affected their conceptions of human agency, contingency, and directionality in history. Examining Huxley's and Spencer's responses to the "end" of natural history reveals some of the deep divisions within scientific naturalism and the inherent problems of naturalism in general. Whereas Huxley chose to separate the natural and the historical, Spencer opted to fuse them into a single system. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  6. Genetic variations and evolutionary relationships among radishes ...

    African Journals Online (AJOL)

    To determine the genetic diversity and evolutionary relationships among red radishes, 37 accessions with different flesh colors were analyzed in terms of the red pigment content, karyotypes, and simple sequence repeat markers. Red pigment content of red radish was 3.4 to 28.8% with an average of 15.62%. The karyotype ...

  7. Evolutionary assembly rules for fish life histories

    DEFF Research Database (Denmark)

    Charnov, E.L.; Gislason, Henrik; Pope, J.G.

    2012-01-01

    length along the growth trajectory within the species. We then interpret K in terms of the VBGE in mass , and show that the previous equation is itself equivalent to a -1/3 power function rule between M and the mass at first reproduction (W α); this new -1/3 power function emerges directly from the life...... history that maximizes Darwinian fitness in non-growing populations. We merge this M, W α power function with other power functions to produce general across-species scaling rules for yearly reproductive allocation, reproductive effort and age at first reproduction in fish. We then suggest a new way...... to classify habitats (or lifestyles) as to the life histories they should contain, and we contrast our scheme with the widely used Winemiller-Rose fish lifestyle classification...

  8. Modeling evolutionary games in populations with demographic structure

    DEFF Research Database (Denmark)

    Li, Xiang-Yi; Giaimo, Stefano; Baudisch, Annette

    2015-01-01

    interactions, but usually omits life history and the demographic structure of the population. Here we show how an integration of both aspects can substantially alter the underlying evolutionary dynamics. We study the replicator dynamics of strategy interactions in life stage structured populations. Individuals...

  9. From Purgatorius ceratops to Homo sapiens - Primate Evolutionary ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 7. From Purgatorius ceratops to Homo sapiens - Primate Evolutionary History. Sindhu Radhakrishna. General Article Volume 11 Issue 7 July 2006 pp 51-60. Fulltext. Click here to view fulltext PDF. Permanent link:

  10. Horizontal gene transfer of a chloroplast DnaJ-Fer protein to Thaumarchaeota and the evolutionary history of the DnaK chaperone system in Archaea.

    Science.gov (United States)

    Petitjean, Céline; Moreira, David; López-García, Purificación; Brochier-Armanet, Céline

    2012-11-26

    In 2004, we discovered an atypical protein in metagenomic data from marine thaumarchaeotal species. This protein, referred as DnaJ-Fer, is composed of a J domain fused to a Ferredoxin (Fer) domain. Surprisingly, the same protein was also found in Viridiplantae (green algae and land plants). Because J domain-containing proteins are known to interact with the major chaperone DnaK/Hsp70, this suggested that a DnaK protein was present in Thaumarchaeota. DnaK/Hsp70, its co-chaperone DnaJ and the nucleotide exchange factor GrpE are involved, among others, in heat shocks and heavy metal cellular stress responses. Using phylogenomic approaches we have investigated the evolutionary history of the DnaJ-Fer protein and of interacting proteins DnaK, DnaJ and GrpE in Thaumarchaeota. These proteins have very complex histories, involving several inter-domain horizontal gene transfers (HGTs) to explain the contemporary distribution of these proteins in archaea. These transfers include one from Cyanobacteria to Viridiplantae and one from Viridiplantae to Thaumarchaeota for the DnaJ-Fer protein, as well as independent HGTs from Bacteria to mesophilic archaea for the DnaK/DnaJ/GrpE system, followed by HGTs among mesophilic and thermophilic archaea. We highlight the chimerical origin of the set of proteins DnaK, DnaJ, GrpE and DnaJ-Fer in Thaumarchaeota and suggest that the HGT of these proteins has played an important role in the adaptation of several archaeal groups to mesophilic and thermophilic environments from hyperthermophilic ancestors. Finally, the evolutionary history of DnaJ-Fer provides information useful for the relative dating of the diversification of Archaeplastida and Thaumarchaeota.

  11. Has long-term metal exposure induced changes in life history traits and genetic diversity of the enchytraeid worm Cognettia sphagnetorum (Vejd.)?

    International Nuclear Information System (INIS)

    Haimi, Jari; Knott, Karelyn Emily; Selonen, Salla; Laurikainen, Marjo

    2006-01-01

    We studied whether long-term metal exposure has affected life history traits, population growth patterns and genetic diversity of the asexual enchytraeid worm Cognettia sphagnetorum (Vejd.). Enchytraeids from metal contaminated and uncontaminated forest soil were compared by growing them individually in the laboratory and by following their population development in patchily Cu contaminated microcosms. Genetic differences between the two native populations were studied using allozyme electrophoresis. Individuals from the contaminated site had slower growth rate and they produced fewer fragments of larger size when compared to individuals from the uncontaminated site. In patchily Cu contaminated microcosms, C. sphagnetorum from the contaminated site had a slower population growth rate. Most alleles were shared by the two native populations, but there was greater diversity and more unique genotypes in the population living in the uncontaminated site. Overall, long-term exposure to metals has induced only slight changes in life history properties and clonal diversity of C. sphagnetorum. - Long-term exposure to metals caused only small changes in life histories of two populations of Cognettia sphagnetorum

  12. Economic and evolutionary hypotheses for cross-population variation in parochialism.

    Science.gov (United States)

    Hruschka, Daniel J; Henrich, Joseph

    2013-09-11

    Human populations differ reliably in the degree to which people favor family, friends, and community members over strangers and outsiders. In the last decade, researchers have begun to propose several economic and evolutionary hypotheses for these cross-population differences in parochialism. In this paper, we outline major current theories and review recent attempts to test them. We also discuss the key methodological challenges in assessing these diverse economic and evolutionary theories for cross-population differences in parochialism.

  13. How evolutionary principles improve the understanding of human health and disease.

    Science.gov (United States)

    Gluckman, Peter D; Low, Felicia M; Buklijas, Tatjana; Hanson, Mark A; Beedle, Alan S

    2011-03-01

    An appreciation of the fundamental principles of evolutionary biology provides new insights into major diseases and enables an integrated understanding of human biology and medicine. However, there is a lack of awareness of their importance amongst physicians, medical researchers, and educators, all of whom tend to focus on the mechanistic (proximate) basis for disease, excluding consideration of evolutionary (ultimate) reasons. The key principles of evolutionary medicine are that selection acts on fitness, not health or longevity; that our evolutionary history does not cause disease, but rather impacts on our risk of disease in particular environments; and that we are now living in novel environments compared to those in which we evolved. We consider these evolutionary principles in conjunction with population genetics and describe several pathways by which evolutionary processes can affect disease risk. These perspectives provide a more cohesive framework for gaining insights into the determinants of health and disease. Coupled with complementary insights offered by advances in genomic, epigenetic, and developmental biology research, evolutionary perspectives offer an important addition to understanding disease. Further, there are a number of aspects of evolutionary medicine that can add considerably to studies in other domains of contemporary evolutionary studies.

  14. Human genomic disease variants: a neutral evolutionary explanation.

    Science.gov (United States)

    Dudley, Joel T; Kim, Yuseob; Liu, Li; Markov, Glenn J; Gerold, Kristyn; Chen, Rong; Butte, Atul J; Kumar, Sudhir

    2012-08-01

    Many perspectives on the role of evolution in human health include nonempirical assumptions concerning the adaptive evolutionary origins of human diseases. Evolutionary analyses of the increasing wealth of clinical and population genomic data have begun to challenge these presumptions. In order to systematically evaluate such claims, the time has come to build a common framework for an empirical and intellectual unification of evolution and modern medicine. We review the emerging evidence and provide a supporting conceptual framework that establishes the classical neutral theory of molecular evolution (NTME) as the basis for evaluating disease- associated genomic variations in health and medicine. For over a decade, the NTME has already explained the origins and distribution of variants implicated in diseases and has illuminated the power of evolutionary thinking in genomic medicine. We suggest that a majority of disease variants in modern populations will have neutral evolutionary origins (previously neutral), with a relatively smaller fraction exhibiting adaptive evolutionary origins (previously adaptive). This pattern is expected to hold true for common as well as rare disease variants. Ultimately, a neutral evolutionary perspective will provide medicine with an informative and actionable framework that enables objective clinical assessment beyond convenient tendencies to invoke past adaptive events in human history as a root cause of human disease.

  15. Evolutionary History of the Genus Capsella (Brassicaceae - Capsella orientalis , New for Mongolia

    Directory of Open Access Journals (Sweden)

    Barbara Neuffer

    2014-12-01

    Full Text Available To elucidate the evolutionary history of the genus Capsella , we included the hitherto poorly known species C. orientalis and C. thracica into our studies together with C. grandifl ora , C. rubella , and C. bursa-pastoris . We sequenced the ITS, and four loci of noncoding cpDNA regions (trnL – F, rps16, trnH – psbA, trnQ – rps16. In common garden fi eld experiments C. orientalis turned out as early fl owering with a specifi c leaf type. The crossing ability of the species was tested in pollen germination experiments. Capsella orientalis (self-compatible, SC; 2n = 16 forms a clade (eastern lineage with C . bursa-pastoris (SC; 2n = 32, which is a sister clade (western lineage to C. grandifl ora (self-incompatible, SI; 2n = 16 and C. rubella (SC; 2n = 16. Capsella bursa-pastoris is an autopolyploid species of multiple origin, whereas the Bulgarian endemic C. thracica (SC; 2n = 32 is allopolyploid and emerged from interspecifi c hybridisation between C. bursa-pastoris and C. grandifl ora . The common ancestor of the two lineages was diploid and SI, and its distribution ranged from eastern Europe to central Asia, predominantly confi ned to steppe like habitats. Biogeographic dynamics during the Pleistocene caused geographic and genetic subdivisions within the common ancestor giving rise to the two extant lineages. Capsella orientalis is verifi ed at several positions in western Mongolia.

  16. Genetic diversity, outcrossing rate, and demographic history along a climatic gradient in the ruderal plant Ruellia nudiflora (Acanthaceae)

    OpenAIRE

    Vargas-Mendoza, Carlos F.; Ortegón-Campos, Ilka; Marrufo-Zapata, Denis; Herrera, Carlos M.; Parra-Tabla, Víctor

    2015-01-01

    Ruellia nudiflora has shown a high potential to easily invade disturbed areas. Outcrossing rate and genetic structure and diversity in this species were examined along a climatic gradient in the Yucatán Peninsula (Mexico) in order to understand the effects of environmental heterogeneity - isolation by environment (IBE) - as well as correlation in herkogamy on genetic structure, diversity, and demographic history in this species. Nine populations were sampled along a temperature-precipitation ...

  17. Applications of evolutionary computation in image processing and pattern recognition

    CERN Document Server

    Cuevas, Erik; Perez-Cisneros, Marco

    2016-01-01

    This book presents the use of efficient Evolutionary Computation (EC) algorithms for solving diverse real-world image processing and pattern recognition problems. It provides an overview of the different aspects of evolutionary methods in order to enable the reader in reaching a global understanding of the field and, in conducting studies on specific evolutionary techniques that are related to applications in image processing and pattern recognition. It explains the basic ideas of the proposed applications in a way that can also be understood by readers outside of the field. Image processing and pattern recognition practitioners who are not evolutionary computation researchers will appreciate the discussed techniques beyond simple theoretical tools since they have been adapted to solve significant problems that commonly arise on such areas. On the other hand, members of the evolutionary computation community can learn the way in which image processing and pattern recognition problems can be translated into an...

  18. Comparative genome-wide analysis and evolutionary history of haemoglobin-processing and haem detoxification enzymes in malarial parasites.

    Science.gov (United States)

    Ponsuwanna, Patrath; Kochakarn, Theerarat; Bunditvorapoom, Duangkamon; Kümpornsin, Krittikorn; Otto, Thomas D; Ridenour, Chase; Chotivanich, Kesinee; Wilairat, Prapon; White, Nicholas J; Miotto, Olivo; Chookajorn, Thanat

    2016-01-29

    Malaria parasites have evolved a series of intricate mechanisms to survive and propagate within host red blood cells. Intra-erythrocytic parasitism requires these organisms to digest haemoglobin and detoxify iron-bound haem. These tasks are executed by haemoglobin-specific proteases and haem biocrystallization factors that are components of a large multi-subunit complex. Since haemoglobin processing machineries are functionally and genetically linked to the modes of action and resistance mechanisms of several anti-malarial drugs, an understanding of their evolutionary history is important for drug development and drug resistance prevention. Maximum likelihood trees of genetic repertoires encoding haemoglobin processing machineries within Plasmodium species, and with the representatives of Apicomplexan species with various host tropisms, were created. Genetic variants were mapped onto existing three-dimensional structures. Genome-wide single nucleotide polymorphism data were used to analyse the selective pressure and the effect of these mutations at the structural level. Recent expansions in the falcipain and plasmepsin repertoires are unique to human malaria parasites especially in the Plasmodium falciparum and P. reichenowi lineage. Expansion of haemoglobin-specific plasmepsins occurred after the separation event of Plasmodium species, but the other members of the plasmepsin family were evolutionarily conserved with one copy for each sub-group in every Apicomplexan species. Haemoglobin-specific falcipains are separated from invasion-related falcipain, and their expansions within one specific locus arose independently in both P. falciparum and P. vivax lineages. Gene conversion between P. falciparum falcipain 2A and 2B was observed in artemisinin-resistant strains. Comparison between the numbers of non-synonymous and synonymous mutations suggests a strong selective pressure at falcipain and plasmepsin genes. The locations of amino acid changes from non

  19. Evolutionary impact assessment: accounting for evolutionary consequences of fishing in an ecosystem approach to fisheries management.

    Science.gov (United States)

    Laugen, Ane T; Engelhard, Georg H; Whitlock, Rebecca; Arlinghaus, Robert; Dankel, Dorothy J; Dunlop, Erin S; Eikeset, Anne M; Enberg, Katja; Jørgensen, Christian; Matsumura, Shuichi; Nusslé, Sébastien; Urbach, Davnah; Baulier, Loїc; Boukal, David S; Ernande, Bruno; Johnston, Fiona D; Mollet, Fabian; Pardoe, Heidi; Therkildsen, Nina O; Uusi-Heikkilä, Silva; Vainikka, Anssi; Heino, Mikko; Rijnsdorp, Adriaan D; Dieckmann, Ulf

    2014-03-01

    Managing fisheries resources to maintain healthy ecosystems is one of the main goals of the ecosystem approach to fisheries (EAF). While a number of international treaties call for the implementation of EAF, there are still gaps in the underlying methodology. One aspect that has received substantial scientific attention recently is fisheries-induced evolution (FIE). Increasing evidence indicates that intensive fishing has the potential to exert strong directional selection on life-history traits, behaviour, physiology, and morphology of exploited fish. Of particular concern is that reversing evolutionary responses to fishing can be much more difficult than reversing demographic or phenotypically plastic responses. Furthermore, like climate change, multiple agents cause FIE, with effects accumulating over time. Consequently, FIE may alter the utility derived from fish stocks, which in turn can modify the monetary value living aquatic resources provide to society. Quantifying and predicting the evolutionary effects of fishing is therefore important for both ecological and economic reasons. An important reason this is not happening is the lack of an appropriate assessment framework. We therefore describe the evolutionary impact assessment (EvoIA) as a structured approach for assessing the evolutionary consequences of fishing and evaluating the predicted evolutionary outcomes of alternative management options. EvoIA can contribute to EAF by clarifying how evolution may alter stock properties and ecological relations, support the precautionary approach to fisheries management by addressing a previously overlooked source of uncertainty and risk, and thus contribute to sustainable fisheries.

  20. An evolutionary framework for the Jovian and Saturnian satellites

    International Nuclear Information System (INIS)

    Stevenson, R.J.

    1987-01-01

    The position of the satellite within the protonebula, the influence of the parent planet, particularly the relative effects of tidal (gravitational) as opposed to radiogenic (internal) heat generating processes, as well as the type of ice, exert a control on the evolutionary histories of the Jovian and Saturnian satellites. The landscapes of the moons are modified by surface deformational processes (tectonic activity derived from within the body) and externally derived cratering. The geological history of the Galilean satellites is deduced from surface stratigraphic successions of geological units. Io and Europa, with crater-free surfaces, are tectonically more advanced than crater-saturated Callisto. Two thermal-drive models are proposed based on: an expression for externally derived gravitational influences between two bodies; and internal heat generation via radiogenic decay (expressed by surface area/volume ratio). Both parameters, for the Galilean satellites, are plotted against an inferred product of tectonic processes - the age of the surface terrain. From these diagrams, the tectonic evolutionary state of the more distant Saturnian system are predicted. These moons are fitted into an evolutionary framework for the Solar System. 34 refs.; 4 figs.; 2 tabs

  1. Evolutionary demography of agricultural expansion in preindustrial northern Finland

    Science.gov (United States)

    Helle, Samuli; Brommer, Jon E.; Pettay, Jenni E.; Lummaa, Virpi; Enbuske, Matti; Jokela, Jukka

    2014-01-01

    A shift from nomadic foraging to sedentary agriculture was a major turning point in human evolutionary history, increasing our population size and eventually leading to the development of modern societies. We however lack understanding of the changes in life histories that contributed to the increased population growth rate of agriculturalists, because comparable individual-based reproductive records of sympatric populations of agriculturalists and foragers are rarely found. Here, we compared key life-history traits and population growth rate using comprehensive data from the seventieth to nineteenth century Northern Finland: indigenous Sami were nomadic hunter-fishers and reindeer herders, whereas sympatric agricultural Finns relied predominantly on animal husbandry. We found that agriculture-based families had higher lifetime fecundity, faster birth spacing and lower maternal mortality. Furthermore, agricultural Finns had 6.2% higher annual population growth rate than traditional Sami, which was accounted by differences between the subsistence modes in age-specific fecundity but not in mortality. Our results provide, to our knowledge, the most detailed demonstration yet of the demographic changes and evolutionary benefits that resulted from agricultural revolution. PMID:25232134

  2. Expression Profiling of Mitogen-Activated Protein Kinase Genes Reveals Their Evolutionary and Functional Diversity in Different Rubber Tree (Hevea brasiliensis Cultivars

    Directory of Open Access Journals (Sweden)

    Xiang Jin

    2017-10-01

    Full Text Available Rubber tree (Hevea brasiliensis is the only commercially cultivated plant for producing natural rubber, one of the most essential industrial raw materials. Knowledge of the evolutionary and functional characteristics of kinases in H. brasiliensis is limited because of the long growth period and lack of well annotated genome information. Here, we reported mitogen-activated protein kinases in H. brasiliensis (HbMPKs by manually checking and correcting the rubber tree genome. Of the 20 identified HbMPKs, four members were validated by proteomic data. Protein motif and phylogenetic analyses classified these members into four known groups comprising Thr-Glu-Tyr (TEY and Thr-Asp-Tyr (TDY domains, respectively. Evolutionary and syntenic analyses suggested four duplication events: HbMPK3/HbMPK6, HbMPK8/HbMPK9/HbMPK15, HbMPK10/HbMPK12 and HbMPK11/HbMPK16/HbMPK19. Expression profiling of the identified HbMPKs in roots, stems, leaves and latex obtained from three cultivars with different latex yield ability revealed tissue- and variety-expression specificity of HbMPK paralogues. Gene expression patterns under osmotic, oxidative, salt and cold stresses, combined with cis-element distribution analyses, indicated different regulation patterns of HbMPK paralogues. Further, Ka/Ks and Tajima analyses suggested an accelerated evolutionary rate in paralogues HbMPK10/12. These results revealed HbMPKs have diverse functions in natural rubber biosynthesis, and highlighted the potential possibility of using MPKs to improve stress tolerance in future rubber tree breeding.

  3. Nuclear and plastid markers reveal the persistence of genetic identity: a new perspective on the evolutionary history of Petunia exserta.

    Science.gov (United States)

    Segatto, Ana Lúcia Anversa; Cazé, Ana Luíza Ramos; Turchetto, Caroline; Klahre, Ulrich; Kuhlemeier, Cris; Bonatto, Sandro Luis; Freitas, Loreta Brandão

    2014-01-01

    Recently divergent species that can hybridize are ideal models for investigating the genetic exchanges that can occur while preserving the species boundaries. Petunia exserta is an endemic species from a very limited and specific area that grows exclusively in rocky shelters. These shaded spots are an inhospitable habitat for all other Petunia species, including the closely related and widely distributed species P. axillaris. Individuals with intermediate morphologic characteristics have been found near the rocky shelters and were believed to be putative hybrids between P. exserta and P. axillaris, suggesting a situation where Petunia exserta is losing its genetic identity. In the current study, we analyzed the plastid intergenic spacers trnS/trnG and trnH/psbA and six nuclear CAPS markers in a large sampling design of both species to understand the evolutionary process occurring in this biological system. Bayesian clustering methods, cpDNA haplotype networks, genetic diversity statistics, and coalescence-based analyses support a scenario where hybridization occurs while two genetic clusters corresponding to two species are maintained. Our results reinforce the importance of coupling differentially inherited markers with an extensive geographic sample to assess the evolutionary dynamics of recently diverged species that can hybridize. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Life: Complexity and Diversity

    Indian Academy of Sciences (India)

    tinual increase in the diversity of life over evolutionary time. Ways of ... Centre for Ecological. Scienc'es .... plants evolved flowers to attract pollinators and reward them with .... with the evolving complexity of their interactions in communi- ties.

  5. Contemporary and historical evolutionary processes interact to shape patterns of within-lake phenotypic divergences in polyphenic pumpkinseed sunfish, Lepomis gibbosus.

    Science.gov (United States)

    Weese, Dylan J; Ferguson, Moira M; Robinson, Beren W

    2012-03-01

    Historical and contemporary evolutionary processes can both contribute to patterns of phenotypic variation among populations of a species. Recent studies are revealing how interactions between historical and contemporary processes better explain observed patterns of phenotypic divergence than either process alone. Here, we investigate the roles of evolutionary history and adaptation to current environmental conditions in structuring phenotypic variation among polyphenic populations of sunfish inhabiting 12 postglacial lakes in eastern North America. The pumpkinseed sunfish polyphenism includes sympatric ecomorphs specialized for littoral or pelagic lake habitats. First, we use population genetic methods to test the evolutionary independence of within-lake phenotypic divergences of ecomorphs and to describe patterns of genetic structure among lake populations that clustered into three geographical groupings. We then used multivariate analysis of covariance (MANCOVA) to partition body shape variation (quantified with geometric morphometrics) among the effects of evolutionary history (reflecting phenotypic variation among genetic clusters), the shared phenotypic response of all populations to alternate habitats within lakes (reflecting adaptation to contemporary conditions), and unique phenotypic responses to habitats within lakes nested within genetic clusters. All effects had a significant influence on body form, but the effects of history and the interaction between history and contemporary habitat were larger than contemporary processes in structuring phenotypic variation. This highlights how divergence can be better understood against a known backdrop of evolutionary history.

  6. The fossil record and taphonomy of butterflies and moths (Insecta, Lepidoptera): implications for evolutionary diversity and divergence-time estimates.

    Science.gov (United States)

    Sohn, Jae-Cheon; Labandeira, Conrad C; Davis, Donald R

    2015-02-04

    It is conventionally accepted that the lepidopteran fossil record is significantly incomplete when compared to the fossil records of other, very diverse, extant insect orders. Such an assumption, however, has been based on cumulative diversity data rather than using alternative statistical approaches from actual specimen counts. We reviewed documented specimens of the lepidopteran fossil record, currently consisting of 4,593 known specimens that are comprised of 4,262 body fossils and 331 trace fossils. The temporal distribution of the lepidopteran fossil record shows significant bias towards the late Paleocene to middle Eocene time interval. Lepidopteran fossils also record major shifts in preservational style and number of represented localities at the Mesozoic stage and Cenozoic epoch level of temporal resolution. Only 985 of the total known fossil specimens (21.4%) were assigned to 23 of the 40 extant lepidopteran superfamilies. Absolute numbers and proportions of preservation types for identified fossils varied significantly across superfamilies. The secular increase of lepidopteran family-level diversity through geologic time significantly deviates from the general pattern of other hyperdiverse, ordinal-level lineages. Our statistical analyses of the lepidopteran fossil record show extreme biases in preservation type, age, and taxonomic composition. We highlight the scarcity of identified lepidopteran fossils and provide a correspondence between the latest lepidopteran divergence-time estimates and relevant fossil occurrences at the superfamily level. These findings provide caution in interpreting the lepidopteran fossil record through the modeling of evolutionary diversification and in determination of divergence time estimates.

  7. Allo-allo-triploid Sphagnum × falcatulum: single individuals contain most of the Holantarctic diversity for ancestrally indicative markers.

    Science.gov (United States)

    Karlin, Eric F; Smouse, Peter E

    2017-08-01

    Allopolyploids exhibit both different levels and different patterns of genetic variation than are typical of diploids. However, scant attention has been given to the partitioning of allelic information and diversity in allopolyploids, particularly that among homeologous monoploid components of the hologenome. Sphagnum × falcatulum is a double allopolyploid peat moss that spans a considerable portion of the Holantarctic. With monoploid genomes from three ancestral species, this organism exhibits a complex evolutionary history involving serial inter-subgeneric allopolyploidizations. Studying populations from three disjunct regions [South Island (New Zealand); Tierra de Fuego archipelago (Chile, Argentina); Tasmania (Australia)], allelic information for five highly stable microsatellite markers that differed among the three (ancestral) monoploid genomes was examined. Using Shannon information and diversity measures, the holoploid information, as well as the information within and among the three component monoploid genomes, was partitioned into separate components for individuals within and among populations and regions, and those information components were then converted into corresponding diversity measures. The majority (76 %) of alleles detected across these five markers are most likely to have been captured by hybridization, but the information within each of the three monoploid genomes varied, suggesting a history of recurrent allopolyploidization between ancestral species containing different levels of genetic diversity. Information within individuals, equivalent to the information among monoploid genomes (for this dataset), was relatively stable, and represented 83 % of the grand total information across the Holantarctic, with both inter-regional and inter-population diversification each accounting for about 5 % of the total information. Sphagnum × falcatulum probably inherited the great majority of its genetic diversity at these markers by reticulation

  8. Economic and evolutionary hypotheses for cross-population variation in parochialism

    Directory of Open Access Journals (Sweden)

    Daniel Jacob Hruschka

    2013-09-01

    Full Text Available Human populations differ reliably in the degree to which people favor family, friends and community members over strangers and outsiders. In the last decade, researchers have begun to propose several economic and evolutionary hypotheses for these cross-population differences in parochialism. In this paper, we outline major current theories and review recent attempts to test them. We also discuss the key methodological challenges in assessing these diverse economic and evolutionary theories for cross-population differences in parochialism.

  9. An Evolutionary History of Oriented Strandboard (OSB)

    Science.gov (United States)

    John I. Zerbe; Zhiyong Cai; George B. Harpole

    2015-01-01

    To improve wood utilization efficiency, oriented strandboard (OSB) was developed; 80% of the wood removed from the forest can now be processed into marketable products. This manuscript describes the history of developing this most profitable wood product, OSB, and the early FPL contribution in development.

  10. Comparative Study of Lectin Domains in Model Species: New Insights into Evolutionary Dynamics

    Directory of Open Access Journals (Sweden)

    Sofie Van Holle

    2017-05-01

    Full Text Available Lectins are present throughout the plant kingdom and are reported to be involved in diverse biological processes. In this study, we provide a comparative analysis of the lectin families from model species in a phylogenetic framework. The analysis focuses on the different plant lectin domains identified in five representative core angiosperm genomes (Arabidopsis thaliana, Glycine max, Cucumis sativus, Oryza sativa ssp. japonica and Oryza sativa ssp. indica. The genomes were screened for genes encoding lectin domains using a combination of Basic Local Alignment Search Tool (BLAST, hidden Markov models, and InterProScan analysis. Additionally, phylogenetic relationships were investigated by constructing maximum likelihood phylogenetic trees. The results demonstrate that the majority of the lectin families are present in each of the species under study. Domain organization analysis showed that most identified proteins are multi-domain proteins, owing to the modular rearrangement of protein domains during evolution. Most of these multi-domain proteins are widespread, while others display a lineage-specific distribution. Furthermore, the phylogenetic analyses reveal that some lectin families evolved to be similar to the phylogeny of the plant species, while others share a closer evolutionary history based on the corresponding protein domain architecture. Our results yield insights into the evolutionary relationships and functional divergence of plant lectins.

  11. Evolutionary History of Ascomyceteous Yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Haridas, Sajeet; Riley, Robert; Salamov, Asaf; Goker, Markus; Klenk, Hans-Peter; Kurtzman, Cletus P.; Blackwell, Meredith; Grigoriev, Igor; Jeffries, Thomas W.

    2014-06-06

    Yeasts are important for many industrial and biotechnological processes and show remarkable diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. A comparison of these with several other previously published yeast genomes have added increased confidence to the phylogenetic positions of previously poorly placed species including Saitoella complicata, Babjeviella inositovora and Metschnikowia bicuspidata. Phylogenetic analysis also showed that yeasts with alternative nuclear codon usage where CUG encodes serine instead of leucine are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with a large fraction of single exon genes with Lipomyces starkeyi and the previously published Pneumocystis jirovecii being notable exceptions. Intron analysis suggests that early diverging species have more introns. We also observed a large number of unclassified lineage specific non-simple repeats in these genomes.

  12. Multifaceted diversity-area relationships reveal global hotspots of mammalian species, trait and lineage diversity.

    Science.gov (United States)

    Mazel, Florent; Guilhaumon, François; Mouquet, Nicolas; Devictor, Vincent; Gravel, Dominique; Renaud, Julien; Cianciaruso, Marcus Vinicius; Loyola, Rafael Dias; Diniz-Filho, José Alexandre Felizola; Mouillot, David; Thuiller, Wilfried

    2014-08-01

    To define biome-scale hotspots of phylogenetic and functional mammalian biodiversity (PD and FD, respectively) and compare them to 'classical' hotspots based on species richness (SR) only. Global. SR, PD & FD were computed for 782 terrestrial ecoregions using distribution ranges of 4616 mammalian species. We used a set of comprehensive diversity indices unified by a recent framework that incorporates the species relative coverage in each ecoregion. We build large-scale multifaceted diversity-area relationships to rank ecoregions according to their levels of biodiversity while accounting for the effect of area on each diversity facet. Finally we defined hotspots as the top-ranked ecoregions. While ignoring species relative coverage led to a relative good congruence between biome top ranked SR, PD and FD hotspots, ecoregions harboring a rich and abundantly represented evolutionary history and functional diversity did not match with top ranked ecoregions defined by species richness. More importantly PD and FD hotspots showed important spatial mismatches. We also found that FD and PD generally reached their maximum values faster than species richness as a function of area. The fact that PD/FD reach faster their maximal value than SR may suggest that the two former facets might be less vulnerable to habitat loss than the latter. While this point is expected, it is the first time that it is quantified at global scale and should have important consequences in conservation. Incorporating species relative coverage into the delineation of multifaceted hotspots of diversity lead to weak congruence between SR, PD and FD hotspots. This means that maximizing species number may fail at preserving those nodes (in the phylogenetic or functional tree) that are relatively abundant in the ecoregion. As a consequence it may be of prime importance to adopt a multifaceted biodiversity perspective to inform conservation strategies at global scale.

  13. The Demographic and Adaptive History of the African Green Monkey.

    Science.gov (United States)

    Pfeifer, Susanne P

    2017-05-01

    Relatively little is known about the evolutionary history of the African green monkey (genus Chlorocebus) due to the lack of sampled polymorphism data from wild populations. Yet, this characterization of genetic diversity is not only critical for a better understanding of their own history, but also for human biomedical research given that they are one of the most widely used primate models. Here, I analyze the demographic and selective history of the African green monkey, utilizing one of the most comprehensive catalogs of wild genetic diversity to date, consisting of 1,795,643 autosomal single nucleotide polymorphisms in 25 individuals, representing all five major populations: C. a. aethiops, C. a. cynosurus, C. a. pygerythrus, C. a. sabaeus, and C. a tantalus. Assuming a mutation rate of 5.9 × 10-9 per base pair per generation and a generation time of 8.5 years, divergence time estimates range from 523 to 621 kya for the basal split of C. a. aethiops from the other four populations. Importantly, the resulting tree characterizing the relationship and split-times between these populations differs significantly from that presented in the original genome paper, owing to their neglect of within-population variation when calculating between population-divergence. In addition, I find that the demographic history of all five populations is well explained by a model of population fragmentation and isolation, rather than novel colonization events. Finally, utilizing these demographic models as a null, I investigate the selective history of the populations, identifying candidate regions potentially related to adaptation in response to pathogen exposure. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Comparative genomic analysis of the Lipase3 gene family in five plant species reveals distinct evolutionary origins.

    Science.gov (United States)

    Wang, Dan; Zhang, Lin; Hu, JunFeng; Gao, Dianshuai; Liu, Xin; Sha, Yan

    2018-04-01

    Lipases are physiologically important and ubiquitous enzymes that share a conserved domain and are classified into eight different families based on their amino acid sequences and fundamental biological properties. The Lipase3 family of lipases was reported to possess a canonical fold typical of α/β hydrolases and a typical catalytic triad, suggesting a distinct evolutionary origin for this family. Genes in the Lipase3 family do not have the same functions, but maintain the conserved Lipase3 domain. There have been extensive studies of Lipase3 structures and functions, but little is known about their evolutionary histories. In this study, all lipases within five plant species were identified, and their phylogenetic relationships and genetic properties were analyzed and used to group them into distinct evolutionary families. Each identified lipase family contained at least one dicot and monocot Lipase3 protein, indicating that the gene family was established before the split of dicots and monocots. Similar intron/exon numbers and predicted protein sequence lengths were found within individual groups. Twenty-four tandem Lipase3 gene duplications were identified, implying that the distinctive function of Lipase3 genes appears to be a consequence of translocation and neofunctionalization after gene duplication. The functional genes EDS1, PAD4, and SAG101 that are reportedly involved in pathogen response were all located in the same group. The nucleotide diversity (Dxy) and the ratio of nonsynonymous to synonymous nucleotide substitutions rates (Ka/Ks) of the three genes were significantly greater than the average across the genomes. We further observed evidence for selection maintaining diversity on three genes in the Toll-Interleukin-1 receptor type of nucleotide binding/leucine-rich repeat immune receptor (TIR-NBS LRR) immunity-response signaling pathway, indicating that they could be vulnerable to pathogen effectors.

  15. Evolutionary medicine and its implications for endocrinological issues (e.g. menopause).

    Science.gov (United States)

    Kirchengast, Sylvia; Rühli, Frank

    2013-06-01

    Evolutionary medicine, which was formalized in the early 1990s, investigates evolutionary causes of recent human disease, disorders and malfunctions but also the influence of changing living conditions and modernization on health and disease. Evolutionary medicine can also provide insights into endocrinological disorders and in particular in the process of female reproductive senescence. Female reproductive senescence, i.e. menopausal transition is physiologically caused by the decline of estrogen secretion, which is associated with various somatic and psychic discomforts making this stage of life extremely uncomfortable. From the viewpoint of evolutionary medicine, these menopausal symptoms are the result from the sudden decrease of very high lifetime estrogen levels to zero during postmenopause, a situation which is quite new in our evolution and history. While women in recent developed countries experience menarche early, menopause late, few pregnancies, short periods of lactation and consequently low life time estrogen levels. The opposite is true of women living in traditional societies, whose living conditions may be interpreted as a mirror of the situation in our history. From this viewpoint we can conclude that menopausal symptoms may are the result of a mismatch between female reproductive physiology and recent living conditions. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. The genome diversity and karyotype evolution of mammals

    Directory of Open Access Journals (Sweden)

    Trifonov Vladimir A

    2011-10-01

    Full Text Available Abstract The past decade has witnessed an explosion of genome sequencing and mapping in evolutionary diverse species. While full genome sequencing of mammals is rapidly progressing, the ability to assemble and align orthologous whole chromosome regions from more than a few species is still not possible. The intense focus on building of comparative maps for companion (dog and cat, laboratory (mice and rat and agricultural (cattle, pig, and horse animals has traditionally been used as a means to understand the underlying basis of disease-related or economically important phenotypes. However, these maps also provide an unprecedented opportunity to use multispecies analysis as a tool for inferring karyotype evolution. Comparative chromosome painting and related techniques are now considered to be the most powerful approaches in comparative genome studies. Homologies can be identified with high accuracy using molecularly defined DNA probes for fluorescence in situ hybridization (FISH on chromosomes of different species. Chromosome painting data are now available for members of nearly all mammalian orders. In most orders, there are species with rates of chromosome evolution that can be considered as 'default' rates. The number of rearrangements that have become fixed in evolutionary history seems comparatively low, bearing in mind the 180 million years of the mammalian radiation. Comparative chromosome maps record the history of karyotype changes that have occurred during evolution. The aim of this review is to provide an overview of these recent advances in our endeavor to decipher the karyotype evolution of mammals by integrating the published results together with some of our latest unpublished results.

  17. Horizontal gene transfer of a chloroplast DnaJ-Fer protein to Thaumarchaeota and the evolutionary history of the DnaK chaperone system in Archaea

    Directory of Open Access Journals (Sweden)

    Petitjean Céline

    2012-11-01

    Full Text Available Abstract Background In 2004, we discovered an atypical protein in metagenomic data from marine thaumarchaeotal species. This protein, referred as DnaJ-Fer, is composed of a J domain fused to a Ferredoxin (Fer domain. Surprisingly, the same protein was also found in Viridiplantae (green algae and land plants. Because J domain-containing proteins are known to interact with the major chaperone DnaK/Hsp70, this suggested that a DnaK protein was present in Thaumarchaeota. DnaK/Hsp70, its co-chaperone DnaJ and the nucleotide exchange factor GrpE are involved, among others, in heat shocks and heavy metal cellular stress responses. Results Using phylogenomic approaches we have investigated the evolutionary history of the DnaJ-Fer protein and of interacting proteins DnaK, DnaJ and GrpE in Thaumarchaeota. These proteins have very complex histories, involving several inter-domain horizontal gene transfers (HGTs to explain the contemporary distribution of these proteins in archaea. These transfers include one from Cyanobacteria to Viridiplantae and one from Viridiplantae to Thaumarchaeota for the DnaJ-Fer protein, as well as independent HGTs from Bacteria to mesophilic archaea for the DnaK/DnaJ/GrpE system, followed by HGTs among mesophilic and thermophilic archaea. Conclusions We highlight the chimerical origin of the set of proteins DnaK, DnaJ, GrpE and DnaJ-Fer in Thaumarchaeota and suggest that the HGT of these proteins has played an important role in the adaptation of several archaeal groups to mesophilic and thermophilic environments from hyperthermophilic ancestors. Finally, the evolutionary history of DnaJ-Fer provides information useful for the relative dating of the diversification of Archaeplastida and Thaumarchaeota.

  18. Evolutionary origin and phylogeography of the diploid obligate parthenogen Artemia parthenogenetica (Branchiopoda: Anostraca.

    Directory of Open Access Journals (Sweden)

    Joaquín Muñoz

    2010-08-01

    Full Text Available Understanding the evolutionary origin and the phylogeographic patterns of asexual taxa can shed light on the origin and maintenance of sexual reproduction. We assessed the geographic origin, genetic diversity, and phylogeographic history of obligate parthenogen diploid Artemia parthenogenetica populations, a widespread halophilic crustacean.We analysed a partial sequence of the Cytochrome c Oxidase Subunit I mitochondrial gene from an extensive set of localities (including Eurasia, Africa, and Australia, and examined their phylogeographic patterns and the phylogenetic relationships of diploid A. parthenogenetica and its closest sexual relatives. Populations displayed an extremely low level of mitochondrial genetic diversity, with one widespread haplotype shared by over 79% of individuals analysed. Phylogenetic and phylogeographic analyses indicated a multiple and recent evolutionary origin of diploid A. parthenogenetica, and strongly suggested that the geographic origin of parthenogenesis in Artemia was in Central Asia. Our results indicate that the maternal sexual ancestors of diploid A. parthenogenetica were an undescribed species from Kazakhstan and A. urmiana.We found evidence for multiple origin of parthenogenesis in Central Asia. Our results indicated that, shortly after its origin, diploid A. parthenogenetica populations underwent a rapid range expansion from Central Asia towards the Mediterranean region, and probably to the rest of its current geographic distribution. This contrasts with the restricted geographic distribution, strong genetic structure, and regional endemism of sexual Artemia lineages and other passively dispersed sexual continental aquatic invertebrates. We hypothesize that diploid parthenogens might have reached their current distribution in historical times, with a range expansion possibly facilitated by an increased availability of suitable habitat provided by anthropogenic activities, such as the spread of solar

  19. Pneumocystis diversity as a phylogeographic tool

    Directory of Open Access Journals (Sweden)

    S Derouiche

    2009-02-01

    Full Text Available Parasites are increasingly used to complement the evolutionary and ecological adaptation history of their hosts. Pneumocystis pathogenic fungi, which are transmitted from host-to-host via an airborne route, have been shown to constitute genuine host markers of evolution. These parasites can also provide valuable information about their host ecology. Here, we suggest that parasites can be used as phylogeographic markers to understand the geographical distribution of intra-specific host genetic variants. To test our hypothesis, we characterised Pneumocystis isolates from wild bats living in different areas. Bats comprise a wide variety of species; some of them are able to migrate. Thus, bat chorology and migration behaviour can be approached using Pneumocystis as phylogeographic markers. In the present work, we find that the genetic polymorphisms of bat-derived Pneumocystis are structured by host chorology. Therefore, Pneumocystis intra-specific genetic diversity may constitute a useful and relevant phylogeographic tool.

  20. Preserving the evolutionary potential of floras in biodiversity hotspots.

    Science.gov (United States)

    Forest, Félix; Grenyer, Richard; Rouget, Mathieu; Davies, T Jonathan; Cowling, Richard M; Faith, Daniel P; Balmford, Andrew; Manning, John C; Procheş, Serban; van der Bank, Michelle; Reeves, Gail; Hedderson, Terry A J; Savolainen, Vincent

    2007-02-15

    One of the biggest challenges for conservation biology is to provide conservation planners with ways to prioritize effort. Much attention has been focused on biodiversity hotspots. However, the conservation of evolutionary process is now also acknowledged as a priority in the face of global change. Phylogenetic diversity (PD) is a biodiversity index that measures the length of evolutionary pathways that connect a given set of taxa. PD therefore identifies sets of taxa that maximize the accumulation of 'feature diversity'. Recent studies, however, concluded that taxon richness is a good surrogate for PD. Here we show taxon richness to be decoupled from PD, using a biome-wide phylogenetic analysis of the flora of an undisputed biodiversity hotspot--the Cape of South Africa. We demonstrate that this decoupling has real-world importance for conservation planning. Finally, using a database of medicinal and economic plant use, we demonstrate that PD protection is the best strategy for preserving feature diversity in the Cape. We should be able to use PD to identify those key regions that maximize future options, both for the continuing evolution of life on Earth and for the benefit of society.

  1. Does sex speed up evolutionary rate and increase biodiversity?

    Science.gov (United States)

    Melián, Carlos J; Alonso, David; Allesina, Stefano; Condit, Richard S; Etienne, Rampal S

    2012-01-01

    Most empirical and theoretical studies have shown that sex increases the rate of evolution, although evidence of sex constraining genomic and epigenetic variation and slowing down evolution also exists. Faster rates with sex have been attributed to new gene combinations, removal of deleterious mutations, and adaptation to heterogeneous environments. Slower rates with sex have been attributed to removal of major genetic rearrangements, the cost of finding a mate, vulnerability to predation, and exposure to sexually transmitted diseases. Whether sex speeds or slows evolution, the connection between reproductive mode, the evolutionary rate, and species diversity remains largely unexplored. Here we present a spatially explicit model of ecological and evolutionary dynamics based on DNA sequence change to study the connection between mutation, speciation, and the resulting biodiversity in sexual and asexual populations. We show that faster speciation can decrease the abundance of newly formed species and thus decrease long-term biodiversity. In this way, sex can reduce diversity relative to asexual populations, because it leads to a higher rate of production of new species, but with lower abundances. Our results show that reproductive mode and the mechanisms underlying it can alter the link between mutation, evolutionary rate, speciation and biodiversity and we suggest that a high rate of evolution may not be required to yield high biodiversity.

  2. Evolutionary History Underlies Plant Physiological Responses to Global Change Since the Last Glacial Maximum

    Science.gov (United States)

    Becklin, K. M.; Medeiros, J. S.; Sale, K. R.; Ward, J. K.

    2014-12-01

    Assessing family and species-level variation in physiological responses to global change across geologic time is critical for understanding factors that underlie changes in species distributions and community composition. Ancient plant specimens preserved within packrat middens are invaluable in this context since they allow for comparisons between co-occurring plant lineages. Here we used modern and ancient plant specimens preserved within packrat middens from the Snake Range, NV to investigate the physiological responses of a mixed montane conifer community to global change since the last glacial maximum. We used a conceptual model to infer relative changes in stomatal conductance and maximum photosynthetic capacity from measures of leaf carbon isotopes, stomatal characteristics, and leaf nitrogen content. Our results indicate that most of the sampled taxa decreased stomatal conductance and/or photosynthetic capacity from glacial to modern times. However, plant families differed in the timing and magnitude of these physiological responses. Additionally, leaf-level responses were more similar within plant families than within co-occurring species assemblages. This suggests that adaptation at the level of leaf physiology may not be the main determinant of shifts in community composition, and that plant evolutionary history may drive physiological adaptation to global change over recent geologic time.

  3. Genomics of Actinobacteria: Tracing the Evolutionary History of an Ancient Phylum†

    Science.gov (United States)

    Ventura, Marco; Canchaya, Carlos; Tauch, Andreas; Chandra, Govind; Fitzgerald, Gerald F.; Chater, Keith F.; van Sinderen, Douwe

    2007-01-01

    Summary: Actinobacteria constitute one of the largest phyla among Bacteria and represent gram-positive bacteria with a high G+C content in their DNA. This bacterial group includes microorganisms exhibiting a wide spectrum of morphologies, from coccoid to fragmenting hyphal forms, as well as possessing highly variable physiological and metabolic properties. Furthermore, Actinobacteria members have adopted different lifestyles, and can be pathogens (e.g., Corynebacterium, Mycobacterium, Nocardia, Tropheryma, and Propionibacterium), soil inhabitants (Streptomyces), plant commensals (Leifsonia), or gastrointestinal commensals (Bifidobacterium). The divergence of Actinobacteria from other bacteria is ancient, making it impossible to identify the phylogenetically closest bacterial group to Actinobacteria. Genome sequence analysis has revolutionized every aspect of bacterial biology by enhancing the understanding of the genetics, physiology, and evolutionary development of bacteria. Various actinobacterial genomes have been sequenced, revealing a wide genomic heterogeneity probably as a reflection of their biodiversity. This review provides an account of the recent explosion of actinobacterial genomics data and an attempt to place this in a biological and evolutionary context. PMID:17804669

  4. The influence of biogeographic history on the functional and phylogenetic diversity of passerine birds in savannas and forests of the Brazilian Amazon.

    Science.gov (United States)

    Almeida, Sara Miranda; Juen, Leandro; Sobral, Fernando Landa; Santos, Marcos Pérsio Dantas

    2018-04-01

    Passeriformes is the largest and most diverse avian order in the world and comprises the Passeri and Tyranni suborders. These suborders constitute a monophyletic group, but differ in their ecology and history of occupation of South America. We investigated the influence of biogeographic history on functional and phylogenetic diversities of Passeri and Tyranni in forest and savanna habitats in the Brazilian Amazon. We compiled species composition data for 34 Passeriformes assemblages, 12 in savannas and 22 in forests. We calculated the functional (Rao's quadratic entropy, FD Q ) and phylogenetic diversities (mean pairwise distance, MPD, and mean nearest taxon distance, MNTD), and the functional beta diversity to investigate the potential role of biogeographic history in shaping ecological traits and species lineages of both suborders. The functional diversity of Passeri was higher than for Tyranni in both habitats. The MPD for Tyranni was higher than for Passeri in forests; however, there was no difference between the suborders in savannas. In savannas, Passeri presented higher MNTD than Tyranni, while in forest areas, Tyranni assemblages showed higher MNTD than Passeri. We found a high functional turnover (~75%) between Passeri and Tyranni in both habitats. The high functional diversity of Passeri in both habitats is due to the high diversity of ecological traits exhibited by species of this group, which enables the exploitation of a wide variety of resources and foraging strategies. The higher Tyranni MPD and MNTD in forests is likely due to Tyranni being older settlers in this habitat, resulting in the emergence and persistence of more lineages. The higher Passeri MNTD in savannas can be explained by the existence of a larger number of different Passeri lineages adapted to this severe habitat. The high functional turnover between the suborders in both habitats suggests an ecological strategy to avoid niche overlap.

  5. A Latitudinal Diversity Gradient in Terrestrial Bacteria of the Genus Streptomyces

    Science.gov (United States)

    Andam, Cheryl P.; Doroghazi, James R.; Campbell, Ashley N.; Kelly, Peter J.; Choudoir, Mallory J.

    2016-01-01

    ABSTRACT We show that Streptomyces biogeography in soils across North America is influenced by the regional diversification of microorganisms due to dispersal limitation and genetic drift. Streptomyces spp. form desiccation-resistant spores, which can be dispersed on the wind, allowing for a strong test of whether dispersal limitation governs patterns of terrestrial microbial diversity. We employed an approach that has high sensitivity for determining the effects of genetic drift. Specifically, we examined the genetic diversity and phylogeography of physiologically similar Streptomyces strains isolated from geographically distributed yet ecologically similar habitats. We found that Streptomyces beta diversity scales with geographic distance and both beta diversity and phylogenetic diversity manifest in a latitudinal diversity gradient. This pattern of Streptomyces biogeography resembles patterns seen for diverse species of plants and animals, and we therefore evaluated these data in the context of ecological and evolutionary hypotheses proposed to explain latitudinal diversity gradients. The data are consistent with the hypothesis that niche conservatism limits dispersal, and historical patterns of glaciation have limited the time for speciation in higher-latitude sites. Most notably, higher-latitude sites have lower phylogenetic diversity, higher phylogenetic clustering, and evidence of range expansion from lower latitudes. In addition, patterns of beta diversity partition with respect to the glacial history of sites. Hence, the data support the hypothesis that extant patterns of Streptomyces biogeography have been driven by historical patterns of glaciation and are the result of demographic range expansion, dispersal limitation, and regional diversification due to drift. PMID:27073097

  6. A Latitudinal Diversity Gradient in Terrestrial Bacteria of the Genus Streptomyces

    Directory of Open Access Journals (Sweden)

    Cheryl P. Andam

    2016-04-01

    Full Text Available We show that Streptomyces biogeography in soils across North America is influenced by the regional diversification of microorganisms due to dispersal limitation and genetic drift. Streptomyces spp. form desiccation-resistant spores, which can be dispersed on the wind, allowing for a strong test of whether dispersal limitation governs patterns of terrestrial microbial diversity. We employed an approach that has high sensitivity for determining the effects of genetic drift. Specifically, we examined the genetic diversity and phylogeography of physiologically similar Streptomyces strains isolated from geographically distributed yet ecologically similar habitats. We found that Streptomyces beta diversity scales with geographic distance and both beta diversity and phylogenetic diversity manifest in a latitudinal diversity gradient. This pattern of Streptomyces biogeography resembles patterns seen for diverse species of plants and animals, and we therefore evaluated these data in the context of ecological and evolutionary hypotheses proposed to explain latitudinal diversity gradients. The data are consistent with the hypothesis that niche conservatism limits dispersal, and historical patterns of glaciation have limited the time for speciation in higher-latitude sites. Most notably, higher-latitude sites have lower phylogenetic diversity, higher phylogenetic clustering, and evidence of range expansion from lower latitudes. In addition, patterns of beta diversity partition with respect to the glacial history of sites. Hence, the data support the hypothesis that extant patterns of Streptomyces biogeography have been driven by historical patterns of glaciation and are the result of demographic range expansion, dispersal limitation, and regional diversification due to drift.

  7. Evolutionary history and stress regulation of the lectin superfamily in higher plants

    Directory of Open Access Journals (Sweden)

    Ramachandran Srinivasan

    2010-03-01

    Full Text Available Abstract Background Lectins are a class of carbohydrate-binding proteins. They play roles in various biological processes. However, little is known about their evolutionary history and their functions in plant stress regulation. The availability of full genome sequences from various plant species makes it possible to perform a whole-genome exploration for further understanding their biological functions. Results Higher plant genomes encode large numbers of lectin proteins. Based on their domain structures and phylogenetic analyses, a new classification system has been proposed. In this system, 12 different families have been classified and four of them consist of recently identified plant lectin members. Further analyses show that some of lectin families exhibit species-specific expansion and rapid birth-and-death evolution. Tandem and segmental duplications have been regarded as the major mechanisms to drive lectin expansion although retrogenes also significantly contributed to the birth of new lectin genes in soybean and rice. Evidence shows that lectin genes have been involved in biotic/abiotic stress regulations and tandem/segmental duplications may be regarded as drivers for plants to adapt various environmental stresses through duplication followed by expression divergence. Each member of this gene superfamily may play specialized roles in a specific stress condition and function as a regulator of various environmental factors such as cold, drought and high salinity as well as biotic stresses. Conclusions Our studies provide a new outline of the plant lectin gene superfamily and advance the understanding of plant lectin genes in lineage-specific expansion and their functions in biotic/abiotic stress-related developmental processes.

  8. Evolutionary morphology of the rabbit skull

    Directory of Open Access Journals (Sweden)

    Brian Kraatz

    2016-09-01

    Full Text Available The skull of leporids (rabbits and hares is highly transformed, typified by pronounced arching of the dorsal skull and ventral flexion of the facial region (i.e., facial tilt. Previous studies show that locomotor behavior influences aspects of cranial shape in leporids, and here we use an extensive 3D geometric morphometrics dataset to further explore what influences leporid cranial diversity. Facial tilt angle, a trait that strongly correlates with locomotor mode, significantly predicts the cranial shape variation captured by the primary axis of cranial shape space, and describes a small proportion (13.2% of overall cranial shape variation in the clade. However, locomotor mode does not correlate with overall cranial shape variation in the clade, because there are two district morphologies of generalist species, and saltators and cursorial species have similar morphologies. Cranial shape changes due to phyletic size change (evolutionary allometry also describes a small proportion (12.5% of cranial shape variation in the clade, but this is largely driven by the smallest living leporid, the pygmy rabbit (Brachylagus idahoensis. By integrating phylogenetic history with our geometric morphometric data, we show that the leporid cranium exhibits weak phylogenetic signal and substantial homoplasy. Though these results make it difficult to reconstruct what the ‘ancestral’ leporid skull looked like, the fossil records suggest that dorsal arching and facial tilt could have occurred before the origin of the crown group. Lastly, our study highlights the diversity of cranial variation in crown leporids, and highlights a need for additional phylogenetic work that includes stem (fossil leporids and includes morphological data that captures the transformed morphology of rabbits and hares.

  9. Using tree diversity to compare phylogenetic heuristics.

    Science.gov (United States)

    Sul, Seung-Jin; Matthews, Suzanne; Williams, Tiffani L

    2009-04-29

    Evolutionary trees are family trees that represent the relationships between a group of organisms. Phylogenetic heuristics are used to search stochastically for the best-scoring trees in tree space. Given that better tree scores are believed to be better approximations of the true phylogeny, traditional evaluation techniques have used tree scores to determine the heuristics that find the best scores in the fastest time. We develop new techniques to evaluate phylogenetic heuristics based on both tree scores and topologies to compare Pauprat and Rec-I-DCM3, two popular Maximum Parsimony search algorithms. Our results show that although Pauprat and Rec-I-DCM3 find the trees with the same best scores, topologically these trees are quite different. Furthermore, the Rec-I-DCM3 trees cluster distinctly from the Pauprat trees. In addition to our heatmap visualizations of using parsimony scores and the Robinson-Foulds distance to compare best-scoring trees found by the two heuristics, we also develop entropy-based methods to show the diversity of the trees found. Overall, Pauprat identifies more diverse trees than Rec-I-DCM3. Overall, our work shows that there is value to comparing heuristics beyond the parsimony scores that they find. Pauprat is a slower heuristic than Rec-I-DCM3. However, our work shows that there is tremendous value in using Pauprat to reconstruct trees-especially since it finds identical scoring but topologically distinct trees. Hence, instead of discounting Pauprat, effort should go in improving its implementation. Ultimately, improved performance measures lead to better phylogenetic heuristics and will result in better approximations of the true evolutionary history of the organisms of interest.

  10. Comparative Analysis of the Pattern of Population Genetic Diversity in Three Indo-West Pacific Rhizophora Mangrove Species.

    Science.gov (United States)

    Yan, Yu-Bin; Duke, Norm C; Sun, Mei

    2016-01-01

    Rhizophora species are the most widely distributed mangrove trees in the Indo-West Pacific (IWP) region. Comparative studies of these species with shared life history traits can help identify evolutionary factors that have played most important roles in determining genetic diversity within and between populations in ocean-current dispersed mangrove tree species. We sampled 935 individuals from 54 natural populations for genotyping with 13 microsatellite markers to investigate the level of genetic variation, population structure, and gene flow on a broad geographic scale in Rhizophora apiculata, Rhizophora mucronata , and Rhizophora stylosa across the IWP region. In contrast to the pattern expected of long-lived woody plants with predominant wind-pollination, water-dispersed seeds and wide geographic range, genetic variation within populations was generally low in all the three species, especially in those peripheral populations from geographic range limits. Although the large water-buoyant propagules of Rhizophora have capacity for long distance dispersal, such events might be rare in reality, as reflected by the low level of gene flow and high genetic differentiation between most of population pairs within each species. Phylogeographic separation of Australian and Pacific island populations from SE Asian lineages previously revealed with DNA sequence data was still detectable in R. apiculata based on genetic distances, but this pattern of disjunction was not always evident in R. mucronata and R. stylosa , suggesting that fast-evolving molecular markers could be more suitable for detecting contemporary genetic structure but not deep evolutionary divergence caused by historical vicariance. Given that mangrove species generally have small effective population sizes, we conclude that genetic drift coupled with limited gene flow have played a dominant role in producing the current pattern of population genetic diversity in the IWP Rhizophora species, overshadowing the

  11. Demographic modelling reveals a history of divergence with gene flow for a glacially tied stonefly in a changing post-Pleistocene landscape

    Science.gov (United States)

    Hotaling, Scott; Muhlfeld, Clint C.; Giersch, J. Joseph; Ali, Omar; Jordan, Steve; Miller, Michael R.; Luikart, Gordon; Weisrock, David W.

    2018-01-01

    AimClimate warming is causing extensive loss of glaciers in mountainous regions, yet our understanding of how glacial recession influences evolutionary processes and genetic diversity is limited. Linking genetic structure with the influences shaping it can improve understanding of how species respond to environmental change. Here, we used genome-scale data and demographic modelling to resolve the evolutionary history of Lednia tumana, a rare, aquatic insect endemic to alpine streams. We also employed a range of widely used data filtering approaches to quantify how they influenced population structure results.LocationAlpine streams in the Rocky Mountains of Glacier National Park, Montana, USA.TaxonLednia tumana, a stonefly (Order Plecoptera) in the family Nemouridae.MethodsWe generated single nucleotide polymorphism data through restriction-site associated DNA sequencing to assess contemporary patterns of genetic structure for 11 L. tumana populations. Using identified clusters, we assessed demographic history through model selection and parameter estimation in a coalescent framework. During population structure analyses, we filtered our data to assess the influence of singletons, missing data and total number of markers on results.ResultsContemporary patterns of population structure indicate that L. tumana exhibits a pattern of isolation-by-distance among populations within three genetic clusters that align with geography. Mean pairwise genetic differentiation (FST) among populations was 0.033. Coalescent-based demographic modelling supported divergence with gene flow among genetic clusters since the end of the Pleistocene (~13-17 kya), likely reflecting the south-to-north recession of ice sheets that accumulated during the Wisconsin glaciation.Main conclusionsWe identified a link between glacial retreat, evolutionary history and patterns of genetic diversity for a range-restricted stonefly imperiled by climate change. This finding included a history of

  12. The four cornerstones of Evolutionary Toxicology.

    Science.gov (United States)

    Bickham, John W

    2011-05-01

    Evolutionary Toxicology is the study of the effects of chemical pollutants on the genetics of natural populations. Research in Evolutionary Toxicology uses experimental designs familiar to the ecotoxicologist with matched reference and contaminated sites and the selection of sentinel species. It uses the methods of molecular genetics and population genetics, and is based on the theories and concepts of evolutionary biology and conservation genetics. Although it is a relatively young field, interest is rapidly growing among ecotoxicologists and more and more field studies and even controlled laboratory experiments are appearing in the literature. A number of population genetic impacts have been observed in organisms exposed to pollutants which I refer to here as the four cornerstones of Evolutionary Toxicology. These include (1) genome-wide changes in genetic diversity, (2) changes in allelic or genotypic frequencies caused by contaminant-induced selection acting at survivorship loci, (3) changes in dispersal patterns or gene flow which alter the genetic relationships among populations, and (4) changes in allelic or genotypic frequencies caused by increased mutation rates. It is concluded that population genetic impacts of pollution exposure are emergent effects that are not necessarily predictable from the mode of toxicity of the pollutant. Thus, to attribute an effect to a particular contaminant requires a careful experimental design which includes selection of appropriate reference sites, detailed chemistry analyses of environmental samples and tissues, and the use of appropriate biomarkers to establish exposure and effect. This paper describes the field of Evolutionary Toxicology and discusses relevant field studies and their findings. © Springer Science+Business Media, LLC 2011

  13. Evolutionary Origin of the Staphylococcal Cassette Chromosome mec (SCCmec)

    DEFF Research Database (Denmark)

    Rolo, Joana; Worning, Peder; Nielsen, Jesper Boye

    2017-01-01

    , many steps are still missing from this evolutionary history. In particular, it is not known how mecA was incorporated into the mobile element SCC prior to dissemination among Staphylococcus aureus and other pathogenic staphylococcal species. To gain insights into the possible contribution of several...

  14. Evolutionary history of 7SL RNA-derived SINEs in Supraprimates.

    Science.gov (United States)

    Kriegs, Jan Ole; Churakov, Gennady; Jurka, Jerzy; Brosius, Jürgen; Schmitz, Jürgen

    2007-04-01

    The evolutionary relationships of 7SL RNA-derived SINEs such as the primate Alu or the rodent B1 elements have hitherto been obscure. We established an unambiguous phylogenetic tree for Supraprimates, and derived intraordinal relationships of the 7SL RNA-derived SINEs. As well as new elements in Tupaia and primates, we also found that the purported ancestral fossil Alu monomer was restricted to Primates, and provide here the first description of a potential chimeric promoter box region in SINEs.

  15. Evolutionary dynamics of the Pgk1 gene in the polyploid genus Kengyilia (Triticeae: Poaceae and its diploid relatives.

    Directory of Open Access Journals (Sweden)

    Xing Fan

    Full Text Available The level and pattern of nucleotide variation in duplicate gene provide important information on the evolutionary history of polyploids and divergent process between homoeologous loci within lineages. Kengyilia is a group of allohexaploid species with the StYP genomic constitutions in the wheat tribe. To investigate the evolutionary dynamics of the Pgk1 gene in Kengyilia and its diploid relatives, three copies of Pgk1 homoeologues were isolated from all sampled hexaploid Kengyilia species and analyzed with the Pgk1 sequences from 47 diploid taxa representing 18 basic genomes in Triticeae. Sequence diversity patterns and genealogical analysis suggested that (1 Kengyilia species from the Central Asia and the Qinghai-Tibetan plateau have independent origins with geographically differentiated P genome donors and diverged levels of nucleotide diversity at Pgk1 locus; (2 a relatively long-time sweep event has allowed the Pgk1 gene within Agropyron to adapt to cold climate triggered by the recent uplifts of the Qinghai-Tibetan Plateau; (3 sweep event and population expansion might result in the difference in the d(N/d(S value of the Pgk1 gene in allopatric Agropyron populations, and this difference may be genetically transmitted to Kengyilia lineages via independent polyploidization events; (4 an 83 bp MITE element insertion has shaped the Pgk1 loci in the P genome lineage with different geographical regions; (5 the St and P genomes in Kengyilia were donated by Pseudoroegneria and Agropyron, respectively, and the Y genome is closely related to the Xp genome of Peridictyon sanctum. The interplay of evolutionary forces involving diverged natural selection, population expansion, and transposable events in geographically differentiated P genome donors could attribute to geographical differentiation of Kengyilia species via independent origins.

  16. East African cassava mosaic-like viruses from Africa to Indian ocean islands: molecular diversity, evolutionary history and geographical dissemination of a bipartite begomovirus

    Directory of Open Access Journals (Sweden)

    De Bruyn Alexandre

    2012-11-01

    Full Text Available Abstract Background Cassava (Manihot esculenta is a major food source for over 200 million sub-Saharan Africans. Unfortunately, its cultivation is severely hampered by cassava mosaic disease (CMD. Caused by a complex of bipartite cassava mosaic geminiviruses (CMG species (Family: Geminivirideae; Genus: Begomovirus CMD has been widely described throughout Africa and it is apparent that CMG's are expanding their geographical distribution. Determining where and when CMG movements have occurred could help curtail its spread and reveal the ecological and anthropic factors associated with similar viral invasions. We applied Bayesian phylogeographic inference and recombination analyses to available and newly described CMG sequences to reconstruct a plausible history of CMG diversification and migration between Africa and South West Indian Ocean (SWIO islands. Results The isolation and analysis of 114 DNA-A and 41 DNA-B sequences demonstrated the presence of three CMG species circulating in the Comoros and Seychelles archipelagos (East African cassava mosaic virus, EACMV; East African cassava mosaic Kenya virus, EACMKV; and East African cassava mosaic Cameroon virus, EACMCV. Phylogeographic analyses suggest that CMG’s presence on these SWIO islands is probably the result of at least four independent introduction events from mainland Africa occurring between 1988 and 2009. Amongst the islands of the Comoros archipelago, two major migration pathways were inferred: One from Grande Comore to Mohéli and the second from Mayotte to Anjouan. While only two recombination events characteristic of SWIO islands isolates were identified, numerous re-assortments events were detected between EACMV and EACMKV, which seem to almost freely interchange their genome components. Conclusions Rapid and extensive virus spread within the SWIO islands was demonstrated for three CMG complex species. Strong evolutionary or ecological interaction between CMG species may explain

  17. Ontogenetic niche shifts and evolutionary branching in size-structured populations

    NARCIS (Netherlands)

    Claessen, D.; Dieckmann, U.

    2002-01-01

    There are many examples of size-structured populations where individuals sequentially exploit several niches in the course of their life history. Efficient exploitation of such ontogenetic niches generally requires specific morphological adaptations. Here, we study the evolutionary implications of

  18. Ephemeral stream reaches preserve the evolutionary and distributional history of threespine stickleback in the Santa Clara and Ventura River watersheds of southern California

    Science.gov (United States)

    Richmond, Jonathan Q.; Jacobs, David K.; Backlin, Adam R.; Swift, Camm C.; Dellith, Chris; Fisher, Robert N.

    2015-01-01

    Much remains to be understood about the evolutionary history and contemporary landscape genetics of unarmored threespine stickleback in southern California, where populations collectively referred to as Gasterosteus aculeatus williamsoni have severely declined over the past 70+ years and are now endangered. We used mitochondrial sequence and microsatellite data to assess the population genetics and phylogeography of unarmored populations sampled immediately downstream from the type locality of G. a. williamsoni in the upper Santa Clara River, and assessed their distinctiveness with respect to low-armor populations in the downstream sections of the river and the adjacent Ventura River. We also characterized the geographic limits of different plate morphs and evaluated the congruence of those boundaries with barriers to dispersal in both river systems and to neutral genetic variation. We show substantial population structuring within the upper reach of the Santa Clara River, but little partitioning between the lower Santa Clara and Ventura Rivers—we attribute these patterns to different ancestry between spatially subdivided populations within the same drainage, a predominance of downstream gene flow, and ability for coastal dispersal between the Santa Clara and Ventura Rivers. We also show that alleles from introduced low-plate stock have infiltrated a native population in at least one upper Santa Clara River tributary, causing this formerly unarmored population to become gradually low-plated over a 30 + year time period. Measures of genetic diversity, census surveys, and severe habitat disturbance all indicate that unarmored stickleback near the type locality are currently at high risk of extinction.

  19. The Cladistic Basis for the Phylogenetic Diversity (PD Measure Links Evolutionary Features to Environmental Gradients and Supports Broad Applications of Microbial Ecology’s “Phylogenetic Beta Diversity” Framework

    Directory of Open Access Journals (Sweden)

    Rob Knight

    2009-11-01

    Full Text Available The PD measure of phylogenetic diversity interprets branch lengths cladistically to make inferences about feature diversity. PD calculations extend conventional specieslevel ecological indices to the features level. The “phylogenetic beta diversity” framework developed by microbial ecologists calculates PD-dissimilarities between community localities. Interpretation of these PD-dissimilarities at the feature level explains the framework’s success in producing ordinations revealing environmental gradients. An example gradients space using PD-dissimilarities illustrates how evolutionary features form unimodal response patterns to gradients. This features model supports new application of existing species-level methods that are robust to unimodal responses, plus novel applications relating to climate change, commercial products discovery, and community assembly.

  20. Evolutionary relationships and functional diversity of plant sulfate transporters.

    Science.gov (United States)

    Takahashi, Hideki; Buchner, Peter; Yoshimoto, Naoko; Hawkesford, Malcolm J; Shiu, Shin-Han

    2011-01-01

    Sulfate is an essential nutrient cycled in nature. Ion transporters that specifically facilitate the transport of sulfate across the membranes are found ubiquitously in living organisms. The phylogenetic analysis of known sulfate transporters and their homologous proteins from eukaryotic organisms indicate two evolutionarily distinct groups of sulfate transport systems. One major group named Tribe 1 represents yeast and fungal SUL, plant SULTR, and animal SLC26 families. The evolutionary origin of SULTR family members in land plants and green algae is suggested to be common with yeast and fungal SUL and animal anion exchangers (SLC26). The lineage of plant SULTR family is expanded into four subfamilies (SULTR1-SULTR4) in land plant species. By contrast, the putative SULTR homologs from Chlorophyte green algae are in two separate lineages; one with the subfamily of plant tonoplast-localized sulfate transporters (SULTR4), and the other diverged before the appearance of lineages for SUL, SULTR, and SLC26. There also was a group of yet undefined members of putative sulfate transporters in yeast and fungi divergent from these major lineages in Tribe 1. The other distinct group is Tribe 2, primarily composed of animal sodium-dependent sulfate/carboxylate transporters (SLC13) and plant tonoplast-localized dicarboxylate transporters (TDT). The putative sulfur-sensing protein (SAC1) and SAC1-like transporters (SLT) of Chlorophyte green algae, bryophyte, and lycophyte show low degrees of sequence similarities with SLC13 and TDT. However, the phylogenetic relationship between SAC1/SLT and the other two families, SLC13 and TDT in Tribe 2, is not clearly supported. In addition, the SAC1/SLT family is absent in the angiosperm species analyzed. The present study suggests distinct evolutionary trajectories of sulfate transport systems for land plants and green algae.

  1. Evolutionary relationships and functional diversity of plant sulfate transporters

    Directory of Open Access Journals (Sweden)

    Hideki eTakahashi

    2012-01-01

    Full Text Available Sulfate is an essential nutrient cycled in nature. Ion transporters that specifically facilitate the transport of sulfate across the membranes are found ubiquitously in living organisms. The phylogenetic analysis of known sulfate transporters and their homologous proteins from eukaryotic organisms indicate two evolutionarily distinct groups of sulfate transport systems. One major group named Tribe 1 represents yeast and fungal SUL, plant SULTR and animal SLC26 families. The evolutionary origin of SULTR family members in land plants and green algae is suggested to be common with yeast and fungal sulfate transporters (SUL and animal anion exchangers (SLC26. The lineage of plant SULTR family is expanded into four subfamilies (SULTR1 to SULTR4 in land plant species. By contrast, the putative SULTR homologues from Chlorophyte green algae are in two separate lineages; one with the subfamily of plant tonoplast-localized sulfate transporters (SULTR4, and the other diverged before the appearance of lineages for SUL, SULTR and SLC26. There also was a group of yet undefined members of putative sulfate transporters in yeast and fungi divergent from these major lineages in Tribe 1. The other distinct group is Tribe 2, primarily composed of animal sodium-dependent sulfate/carboxylate transporters (SLC13 and plant tonoplast-localized dicarboxylate transporters (TDT. The putative sulfur-sensing protein (SAC1 and SAC1-like transporters (SLT of Chlorophyte green algae, bryophyte and lycophyte show low degrees of sequence similarities with SLC13 and TDT. However, the phylogenetic relationship between SAC1/SLT and the other two families, SLC13 and TDT in Tribe 2, is not clearly supported. In addition, the SAC1/SLT family is completely absent in the angiosperm species analyzed. The present study suggests distinct evolutionary trajectories of sulfate transport systems for land plants and green algae.

  2. Reduced larval feeding rate is a strong evolutionary correlate of ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 85; Issue 3. Reduced larval feeding rate is a strong evolutionary correlate of rapid development in Drosophila melanogaster. M. Rajamani N. Raghavendra ... Keywords. life-history evolution; development time; larval feeding rate; competition; tradeoffs; Drosophila melanogaster.

  3. Parasite prevalence corresponds to host life history in a diverse assemblage of afrotropical birds and haemosporidian parasites.

    Directory of Open Access Journals (Sweden)

    Holly L Lutz

    Full Text Available Avian host life history traits have been hypothesized to predict rates of infection by haemosporidian parasites. Using molecular techniques, we tested this hypothesis for parasites from three haemosporidian genera (Plasmodium, Haemoproteus, and Leucocytozoon collected from a diverse sampling of birds in northern Malawi. We found that host life history traits were significantly associated with parasitism rates by all three parasite genera. Nest type and nest location predicted infection probability for all three parasite genera, whereas flocking behavior is an important predictor of Plasmodium and Haemoproteus infection and habitat is an important predictor of Leucocytozoon infection. Parasite prevalence was 79.1% across all individuals sampled, higher than that reported for comparable studies from any other region of the world. Parasite diversity was also exceptionally high, with 248 parasite cytochrome b lineages identified from 152 host species. A large proportion of Plasmodium, Haemoproteus, and Leucocytozoon parasite DNA sequences identified in this study represent new, previously undocumented lineages (n = 201; 81% of total identified based on BLAST queries against the avian malaria database, MalAvi.

  4. The life history of Pseudomonas syringae: linking agriculture to earth system processes.

    Science.gov (United States)

    Morris, Cindy E; Monteil, Caroline L; Berge, Odile

    2013-01-01

    The description of the ecology of Pseudomonas syringae is moving away from that of a ubiquitous epiphytic plant pathogen to one of a multifaceted bacterium sans frontières in fresh water and other ecosystems linked to the water cycle. Discovery of the aquatic facet of its ecology has led to a vision of its life history that integrates spatial and temporal scales spanning billions of years and traversing catchment basins, continents, and the planet and that confronts the implication of roles that are potentially conflicting for agriculture (as a plant pathogen and as an actor in processes leading to rain and snowfall). This new ecological perspective has also yielded insight into epidemiological phenomena linked to disease emergence. Overall, it sets the stage for the integration of more comprehensive contexts of ecology and evolutionary history into comparative genomic analyses to elucidate how P. syringae subverts the attack and defense responses of the cohabitants of the diverse environments it occupies.

  5. Analysis of Population Diversity of Dynamic Probabilistic Particle Swarm Optimization Algorithms

    Directory of Open Access Journals (Sweden)

    Qingjian Ni

    2014-01-01

    Full Text Available In evolutionary algorithm, population diversity is an important factor for solving performance. In this paper, combined with some population diversity analysis methods in other evolutionary algorithms, three indicators are introduced to be measures of population diversity in PSO algorithms, which are standard deviation of population fitness values, population entropy, and Manhattan norm of standard deviation in population positions. The three measures are used to analyze the population diversity in a relatively new PSO variant—Dynamic Probabilistic Particle Swarm Optimization (DPPSO. The results show that the three measure methods can fully reflect the evolution of population diversity in DPPSO algorithms from different angles, and we also discuss the impact of population diversity on the DPPSO variants. The relevant conclusions of the population diversity on DPPSO can be used to analyze, design, and improve the DPPSO algorithms, thus improving optimization performance, which could also be beneficial to understand the working mechanism of DPPSO theoretically.

  6. Individual-based modeling of ecological and evolutionary processes

    Science.gov (United States)

    DeAngelis, Donald L.; Mooij, Wolf M.

    2005-01-01

    Individual-based models (IBMs) allow the explicit inclusion of individual variation in greater detail than do classical differential-equation and difference-equation models. Inclusion of such variation is important for continued progress in ecological and evolutionary theory. We provide a conceptual basis for IBMs by describing five major types of individual variation in IBMs: spatial, ontogenetic, phenotypic, cognitive, and genetic. IBMs are now used in almost all subfields of ecology and evolutionary biology. We map those subfields and look more closely at selected key papers on fish recruitment, forest dynamics, sympatric speciation, metapopulation dynamics, maintenance of diversity, and species conservation. Theorists are currently divided on whether IBMs represent only a practical tool for extending classical theory to more complex situations, or whether individual-based theory represents a radically new research program. We feel that the tension between these two poles of thinking can be a source of creativity in ecology and evolutionary theory.

  7. Molecular epidemiology and evolutionary histories of human coronavirus OC43 and HKU1 among patients with upper respiratory tract infections in Kuala Lumpur, Malaysia.

    Science.gov (United States)

    Al-Khannaq, Maryam Nabiel; Ng, Kim Tien; Oong, Xiang Yong; Pang, Yong Kek; Takebe, Yutaka; Chook, Jack Bee; Hanafi, Nik Sherina; Kamarulzaman, Adeeba; Tee, Kok Keng

    2016-02-25

    Despite the worldwide circulation of human coronavirus OC43 (HCoV-OC43) and HKU1 (HCoV-HKU1), data on their molecular epidemiology and evolutionary dynamics in the tropical Southeast Asia region is lacking. The study aimed to investigate the genetic diversity, temporal distribution, population history and clinical symptoms of betacoronavirus infections in Kuala Lumpur, Malaysia between 2012 and 2013. A total of 2,060 adults presented with acute respiratory symptoms were screened for the presence of betacoronaviruses using multiplex PCR. The spike glycoprotein, nucleocapsid and 1a genes were sequenced for phylogenetic reconstruction and Bayesian coalescent inference. A total of 48/2060 (2.4 %) specimens were tested positive for HCoV-OC43 (1.3 %) and HCoV-HKU1 (1.1 %). Both HCoV-OC43 and HCoV-HKU1 were co-circulating throughout the year, with the lowest detection rates reported in the October-January period. Phylogenetic analysis of the spike gene showed that the majority of HCoV-OC43 isolates were grouped into two previously undefined genotypes, provisionally assigned as novel lineage 1 and novel lineage 2. Sign of natural recombination was observed in these potentially novel lineages. Location mapping showed that the novel lineage 1 is currently circulating in Malaysia, Thailand, Japan and China, while novel lineage 2 can be found in Malaysia and China. Molecular dating showed the origin of HCoV-OC43 around late 1950s, before it diverged into genotypes A (1960s), B (1990s), and other genotypes (2000s). Phylogenetic analysis revealed that 27.3 % of the HCoV-HKU1 strains belong to genotype A while 72.7 % belongs to genotype B. The tree root of HCoV-HKU1 was similar to that of HCoV-OC43, with the tMRCA of genotypes A and B estimated around the 1990s and 2000s, respectively. Correlation of HCoV-OC43 and HCoV-HKU1 with the severity of respiratory symptoms was not observed. The present study reported the molecular complexity and evolutionary dynamics of human

  8. Does sex speed up evolutionary rate and increase biodiversity?

    Directory of Open Access Journals (Sweden)

    Carlos J Melián

    Full Text Available Most empirical and theoretical studies have shown that sex increases the rate of evolution, although evidence of sex constraining genomic and epigenetic variation and slowing down evolution also exists. Faster rates with sex have been attributed to new gene combinations, removal of deleterious mutations, and adaptation to heterogeneous environments. Slower rates with sex have been attributed to removal of major genetic rearrangements, the cost of finding a mate, vulnerability to predation, and exposure to sexually transmitted diseases. Whether sex speeds or slows evolution, the connection between reproductive mode, the evolutionary rate, and species diversity remains largely unexplored. Here we present a spatially explicit model of ecological and evolutionary dynamics based on DNA sequence change to study the connection between mutation, speciation, and the resulting biodiversity in sexual and asexual populations. We show that faster speciation can decrease the abundance of newly formed species and thus decrease long-term biodiversity. In this way, sex can reduce diversity relative to asexual populations, because it leads to a higher rate of production of new species, but with lower abundances. Our results show that reproductive mode and the mechanisms underlying it can alter the link between mutation, evolutionary rate, speciation and biodiversity and we suggest that a high rate of evolution may not be required to yield high biodiversity.

  9. Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, Annual Report 2010

    Energy Technology Data Exchange (ETDEWEB)

    Diefenderfer, Heida L.; Johnson, Gary E.; Sather, Nichole K.; Skalski, J. R.; Dawley, Earl M.; Coleman, Andre M.; Ostrand, Kenneth G.; Hanson, Kyle C.; Woodruff, Dana L.; Donley, Erin E.; Ke, Yinghai; Buenau, Kate E.; Bryson, Amanda J.; Townsend, Richard L.

    2011-10-01

    This report describes the 2010 research conducted under the U.S. Army Corps of Engineers (USACE) project EST-P-09-1, titled Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, and known as the 'Salmon Benefits' study. The primary goal of the study is to establish scientific methods to quantify habitat restoration benefits to listed salmon and trout in the lower Columbia River and estuary (LCRE) in three required areas: habitat connectivity, early life history diversity, and survival (Figure ES.1). The general study approach was to first evaluate the state of the science regarding the ability to quantify benefits to listed salmon and trout from habitat restoration actions in the LCRE in the 2009 project year, and then, if feasible, in subsequent project years to develop quantitative indices of habitat connectivity, early life history diversity, and survival. Based on the 2009 literature review, the following definitions are used in this study. Habitat connectivity is defined as a landscape descriptor concerning the ability of organisms to move among habitat patches, including the spatial arrangement of habitats (structural connectivity) and how the perception and behavior of salmon affect the potential for movement among habitats (functional connectivity). Life history is defined as the combination of traits exhibited by an organism throughout its life cycle, and for the purposes of this investigation, a life history strategy refers to the body size and temporal patterns of estuarine usage exhibited by migrating juvenile salmon. Survival is defined as the probability of fish remaining alive over a defined amount of space and/or time. The objectives of the 4-year study are as follows: (1) develop and test a quantitative index of juvenile salmon habitat connectivity in the LCRE incorporating structural, functional, and hydrologic components; (2

  10. A new kind of history? The challenges of contemporary histories of photography

    Directory of Open Access Journals (Sweden)

    Ya'ara Gil Glazer

    2010-12-01

    Full Text Available Since the late 1970s there have been recurrent calls for a new history of photography. Geoffrey Batchen effectively summarized these calls, generally expressing a wish for separation from the historiographic model formulated by Beaumont Newhall in his classic The History of Photography from 1839 to the Present. Since the mid 1980s till today, a number of major history of photography textbooks that aimed to provide an alternative to Newhall’s have been published. These volumes fulfill, in different ways, the desire for a history that 'breaks free from an evolutionary narrative,' that 'traces the journey of an image, as well as its origin', or 'sees beyond Europe and the United States'. But do these new books really represent a 'new kind of history'?

  11. A phylogenetic perspective on species diversity, β-diversity and biogeography for the microbial world.

    Science.gov (United States)

    Barberán, Albert; Casamayor, Emilio O

    2014-12-01

    There is an increasing interest to combine phylogenetic data with distributional and ecological records to assess how natural communities arrange under an evolutionary perspective. In the microbial world, there is also a need to go beyond the problematic species definition to deeply explore ecological patterns using genetic data. We explored links between evolution/phylogeny and community ecology using bacterial 16S rRNA gene information from a high-altitude lakes district data set. We described phylogenetic community composition, spatial distribution, and β-diversity and biogeographical patterns applying evolutionary relatedness without relying on any particular operational taxonomic unit definition. High-altitude lakes districts usually contain a large mosaic of highly diverse small water bodies and conform a fine biogeographical model of spatially close but environmentally heterogeneous ecosystems. We sampled 18 lakes in the Pyrenees with a selection criteria focused on capturing the maximum environmental variation within the smallest geographical area. The results showed highly diverse communities nonrandomly distributed with phylogenetic β-diversity patterns mainly shaped by the environment and not by the spatial distance. Community similarity based on both bacterial taxonomic composition and phylogenetic β-diversity shared similar patterns and was primarily structured by similar environmental drivers. We observed a positive relationship between lake area and phylogenetic diversity with a slope consistent with highly dispersive planktonic organisms. The phylogenetic approach incorporated patterns of common ancestry into bacterial community analysis and emerged as a very convenient analytical tool for direct inter- and intrabiome biodiversity comparisons and sorting out microbial habitats with potential application in conservation studies. © 2014 John Wiley & Sons Ltd.

  12. Impacts of Evolutionary History on Endangerment in a Changing Climate: Miocene upwelling, Holocene Pluvial Cycles and Endemics at the Mouth of the Colorado River.

    Science.gov (United States)

    Jacobs, D. K.

    2006-12-01

    The environmental conditions communities experienced during their diversification and recent geologic history informs us as to which environmental changes are most likely to impact species in those communities. Three examples follow: 1) Recent compilation of molecular and paleontological data document that higher aspects of the trophic chain in the Pacific Northwest, including the salmon genus Onchoyrhynchus, alcid birds (Auks & Puffins) and crabs of the genus Cancer speciated dramatically in response to enhanced upwelling of the mid Miocene (Jacobs et al. 2004). Consistent with this evolutionary origin, population dynamics and endangerment of these taxa are associated with the changing productivity regime of the Pacific as well as more direct human impacts. 2) Pluvials in the Eurasian and African continent respond to the precession cycle, as a result wetland habitats were much more expansive in the early and middle Holocene. Late Holocene wetland habitat contraction combines with increasing anthropogenic manipulation of these cyclically limited hydrologic resources to yield a suite of endangered taxa across these continents as is statistically documented by analysis of Redbook data. 3) Our recent work documents the evolution of endemic fish and Molluscan taxa in association with the Colorado River Delta. These endemic taxa are then vulnerable to the to impacts on the Colorado Delta where anthropogenic use of water resources combine with the threat of climate provide combined threats to this ecosystem. The Environmental/Evolutionary history of lineages clearly has strong implications for how anthropogenic changes impacts and endangers those lineages. Jacobs D.K. et al. Annu. Rev. Earth Planet. Sci. 2004. 32:601 52

  13. Phylogenetic uncertainty can bias the number of evolutionary transitions estimated from ancestral state reconstruction methods.

    Science.gov (United States)

    Duchêne, Sebastian; Lanfear, Robert

    2015-09-01

    Ancestral state reconstruction (ASR) is a popular method for exploring the evolutionary history of traits that leave little or no trace in the fossil record. For example, it has been used to test hypotheses about the number of evolutionary origins of key life-history traits such as oviparity, or key morphological structures such as wings. Many studies that use ASR have suggested that the number of evolutionary origins of such traits is higher than was previously thought. The scope of such inferences is increasing rapidly, facilitated by the construction of very large phylogenies and life-history databases. In this paper, we use simulations to show that the number of evolutionary origins of a trait tends to be overestimated when the phylogeny is not perfect. In some cases, the estimated number of transitions can be several fold higher than the true value. Furthermore, we show that the bias is not always corrected by standard approaches to account for phylogenetic uncertainty, such as repeating the analysis on a large collection of possible trees. These findings have important implications for studies that seek to estimate the number of origins of a trait, particularly those that use large phylogenies that are associated with considerable uncertainty. We discuss the implications of this bias, and methods to ameliorate it. © 2015 Wiley Periodicals, Inc.

  14. Eco-evolutionary dynamics in a coevolving host-virus system.

    Science.gov (United States)

    Frickel, Jens; Sieber, Michael; Becks, Lutz

    2016-04-01

    Eco-evolutionary dynamics have been shown to be important for understanding population and community stability and their adaptive potential. However, coevolution in the framework of eco-evolutionary theory has not been addressed directly. Combining experiments with an algal host and its viral parasite, and mathematical model analyses we show eco-evolutionary dynamics in antagonistic coevolving populations. The interaction between antagonists initially resulted in arms race dynamics (ARD) with selective sweeps, causing oscillating host-virus population dynamics. However, ARD ended and populations stabilised after the evolution of a general resistant host, whereas a trade-off between host resistance and growth then maintained host diversity over time (trade-off driven dynamics). Most importantly, our study shows that the interaction between ecology and evolution had important consequences for the predictability of the mode and tempo of adaptive change and for the stability and adaptive potential of populations. © 2016 John Wiley & Sons Ltd/CNRS.

  15. Data on the evolutionary history of the V(DJ recombination-activating protein 1 – RAG1 coupled with sequence and variant analyses

    Directory of Open Access Journals (Sweden)

    Abhishek Kumar

    2016-09-01

    Full Text Available RAG1 protein is one of the key component of RAG complex regulating the V(DJ recombination. There are only few studies for RAG1 concerning evolutionary history, detailed sequence and mutational hotspots. Herein, we present out datasets used for the recent comprehensive study of RAG1 based on sequence, phylogenetic and genetic variant analyses (Kumar et al., 2015 [1]. Protein sequence alignment helped in characterizing the conserved domains and regions of RAG1. It also aided in unraveling ancestral RAG1 in the sea urchin. Human genetic variant analyses revealed 751 mutational hotspots, located both in the coding and the non-coding regions. For further analysis and discussion, see (Kumar et al., 2015 [1].

  16. Applying Evolutionary Genetics to Developmental Toxicology and Risk Assessment

    Science.gov (United States)

    Leung, Maxwell C. K.; Procter, Andrew C.; Goldstone, Jared V.; Foox, Jonathan; DeSalle, Robert; Mattingly, Carolyn J.; Siddall, Mark E.; Timme-Laragy, Alicia R.

    2018-01-01

    Evolutionary thinking continues to challenge our views on health and disease. Yet, there is a communication gap between evolutionary biologists and toxicologists in recognizing the connections among developmental pathways, high-throughput screening, and birth defects in humans. To increase our capability in identifying potential developmental toxicants in humans, we propose to apply evolutionary genetics to improve the experimental design and data interpretation with various in vitro and whole-organism models. We review five molecular systems of stress response and update 18 consensual cell-cell signaling pathways that are the hallmark for early development, organogenesis, and differentiation; and revisit the principles of teratology in light of recent advances in high-throughput screening, big data techniques, and systems toxicology. Multiscale systems modeling plays an integral role in the evolutionary approach to cross-species extrapolation. Phylogenetic analysis and comparative bioinformatics are both valuable tools in identifying and validating the molecular initiating events that account for adverse developmental outcomes in humans. The discordance of susceptibility between test species and humans (ontogeny) reflects their differences in evolutionary history (phylogeny). This synthesis not only can lead to novel applications in developmental toxicity and risk assessment, but also can pave the way for applying an evo-devo perspective to the study of developmental origins of health and disease. PMID:28267574

  17. Genetic diversity and biogeographical patterns of Caulerpa prolifera across the Mediterranean and Mediterranean/Atlantic transition zone

    KAUST Repository

    Varela-Á lvarez, Elena; Balau, Ana C.; Marbà , Nú rià N.; Afonso-Carrillo, Julio; Duarte, Carlos M.; Serrã o, Ester Á lvares

    2015-01-01

    Knowledge of spatial patterns of genetic differentiation between populations is key to understanding processes in evolutionary history of biological species. Caulerpa is a genus of marine green algae, which has attracted much public attention, mainly because of the impacts of invasive species in the Mediterranean. However, very little is known about the ecological and evolutionary history of the Mediterranean native Caulerpa prolifera, a species which is currently found at sites distributed worldwide. C. prolifera provides a good model to explore the patterns of genetic diversity at different scales across the Mediterranean and Atlantic area. This study aims to investigate the biogeographical patterns of diversity and differentiation of C. prolifera in the Mediterranean, with special focus on the Mediterranean/Atlantic transition zone. We used two nuclear (ITS rDNA and the hypervariable microsatellite locus CaPr_J2) and one chloroplast (tufA) DNA markers on samples of C. prolifera from its entire range. Analyses of 51 sequences of the cpDNA tufA of C. prolifera, 87 ITS2 sequences and genotypes of 788 ramets of C. prolifera for the locus CaPr_J2 revealed three different biogeographical areas: West Atlantic, East Atlantic and a larger area representing the Mediterranean, the Mediterranean/Atlantic transition zone and a Pacific site (Bali). It was found out that the Mediterranean/Atlantic transition zone is a biogeographical boundary for C. prolifera. A lack of connectivity was revealed between Atlantic and Mediterranean types, and identical sequences found in the Mediterranean and Indo-Pacific suggest either recent gene flow along the Red Sea connection or a possible ancient Indo-Pacific origin.

  18. Genetic diversity and biogeographical patterns of Caulerpa prolifera across the Mediterranean and Mediterranean/Atlantic transition zone

    KAUST Repository

    Varela-Álvarez, Elena

    2015-01-11

    Knowledge of spatial patterns of genetic differentiation between populations is key to understanding processes in evolutionary history of biological species. Caulerpa is a genus of marine green algae, which has attracted much public attention, mainly because of the impacts of invasive species in the Mediterranean. However, very little is known about the ecological and evolutionary history of the Mediterranean native Caulerpa prolifera, a species which is currently found at sites distributed worldwide. C. prolifera provides a good model to explore the patterns of genetic diversity at different scales across the Mediterranean and Atlantic area. This study aims to investigate the biogeographical patterns of diversity and differentiation of C. prolifera in the Mediterranean, with special focus on the Mediterranean/Atlantic transition zone. We used two nuclear (ITS rDNA and the hypervariable microsatellite locus CaPr_J2) and one chloroplast (tufA) DNA markers on samples of C. prolifera from its entire range. Analyses of 51 sequences of the cpDNA tufA of C. prolifera, 87 ITS2 sequences and genotypes of 788 ramets of C. prolifera for the locus CaPr_J2 revealed three different biogeographical areas: West Atlantic, East Atlantic and a larger area representing the Mediterranean, the Mediterranean/Atlantic transition zone and a Pacific site (Bali). It was found out that the Mediterranean/Atlantic transition zone is a biogeographical boundary for C. prolifera. A lack of connectivity was revealed between Atlantic and Mediterranean types, and identical sequences found in the Mediterranean and Indo-Pacific suggest either recent gene flow along the Red Sea connection or a possible ancient Indo-Pacific origin.

  19. Partitioning the regional and local drivers of phylogenetic and functional diversity along temperate elevational gradients on an East Asian peninsula.

    Science.gov (United States)

    Chun, Jung-Hwa; Lee, Chang-Bae

    2018-02-12

    Species-centric approaches to biodiversity in ecological research are limited in their ability to reflect the evolutionary history and functional diversity of community assembly. Recently, the introduction of alternative facets of biodiversity, such as phylogenetic and functional diversity, has shed light on this problem and improved our understanding of the processes underlying biodiversity patterns. Here, we investigated the phylogenetic and functional diversity patterns of α, β and γ components in woody plant assemblages along regional and local elevational gradients in South Korea. Although the patterns of phylogenetic and functional diversity varied along regional and local elevational transects, the main drivers were partitioned into two categories: regional area or climate for phylogenetic diversity, depending on whether the transect was at a regional or local scale; and habitat heterogeneity for functional diversity, which was derived in elevational bands. Moreover, environmental distance was more important than was geographic distance for phylogenetic and functional β diversity between paired elevational bands. These results support the hypothesis that niche-based deterministic processes such as environmental filtering and competitive exclusion are fundamental in structuring woody plant assemblages along temperate elevational gradients regardless of scale (regional vs. local) in our study areas.

  20. The palms of South America: diversity, distribution and evolutionary history

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Pintaud

    2014-03-01

    Full Text Available This article presents an inventory of South American palms including 457 species and 50 genera. The distribution of palms within seven phytogeographical entities is analyzed. Factors which influence the evolution of palms in South America are discussed.

  1. Darwin’s legacy in South African evolutionary biology

    Directory of Open Access Journals (Sweden)

    S. D. Johnson

    2010-02-01

    Full Text Available In the two decades after publication of the Origin of Species, Charles Darwin facilitated the publication of numerous scientific papers by settler naturalists in South Africa. This helped to establish the strong tradition of natural history which has characterised evolutionary research in South African museums, herbaria and universities. Significant developments in the early 20th century included the hominid fossil discoveries of Raymond Dart, Robert Broom, and others, but there was otherwise very little South African involvement in the evolutionary synthesis of the 1930s and 1940s. Evolutionary biology developed into a distinct discipline in South Africa during the 1970s and 1980s when it was dominated by mammalian palaeontology and a vigorous debate around species concepts. In the post-apartheid era, the main focus of evolutionary biology has been the construction of phylogenies for African plants and animals using molecular data, and the use of these phylogenies to answer questions about taxonomic classification and trait evolution. South African biologists have also recently contributed important evidence for some of Darwin’s ideas about plant–animal coevolution, sexual selection, and the role of natural selection in speciation. A bibliographic analysis shows that South African authors produce 2–3% of the world’s publications in the field of evolutionary biology, which is much higher than the value of about 0.5% for publications in all sciences. With its extraordinary biodiversity and well-developed research infrastructure, South Africa is an ideal laboratory from which to advance evolutionary research.

  2. The role of climatic and geological events in generating diversity in Ethiopian grass frogs (genus Ptychadena).

    Science.gov (United States)

    Smith, Megan L; Noonan, Brice P; Colston, Timothy J

    2017-08-01

    Ethiopia is a world biodiversity hotspot and harbours levels of biotic endemism unmatched in the Horn of Africa, largely due to topographic-and thus habitat-complexity, which results from a very active geological and climatic history. Among Ethiopian vertebrate fauna, amphibians harbour the highest levels of endemism, making amphibians a compelling system for the exploration of the impacts of Ethiopia's complex abiotic history on biotic diversification. Grass frogs of the genus Ptychadena are notably diverse in Ethiopia, where they have undergone an evolutionary radiation. We used molecular data and expanded taxon sampling to test for cryptic diversity and to explore diversification patterns in both the highland radiation and two widespread lowland Ptychadena . Species delimitation results support the presence of nine highland species and four lowland species in our dataset, and divergence dating suggests that both geologic events and climatic fluctuations played a complex and confounded role in the diversification of Ptychadena in Ethiopia. We rectify the taxonomy of the endemic P. neumanni species complex, elevating one formally synonymized name and describing three novel taxa. Finally, we describe two novel lowland Ptychadena species that occur in Ethiopia and may be more broadly distributed.

  3. Evolutionary and molecular foundations of multiple contemporary functions of the nitroreductase superfamily.

    Science.gov (United States)

    Akiva, Eyal; Copp, Janine N; Tokuriki, Nobuhiko; Babbitt, Patricia C

    2017-11-07

    Insight regarding how diverse enzymatic functions and reactions have evolved from ancestral scaffolds is fundamental to understanding chemical and evolutionary biology, and for the exploitation of enzymes for biotechnology. We undertook an extensive computational analysis using a unique and comprehensive combination of tools that include large-scale phylogenetic reconstruction to determine the sequence, structural, and functional relationships of the functionally diverse flavin mononucleotide-dependent nitroreductase (NTR) superfamily (>24,000 sequences from all domains of life, 54 structures, and >10 enzymatic functions). Our results suggest an evolutionary model in which contemporary subgroups of the superfamily have diverged in a radial manner from a minimal flavin-binding scaffold. We identified the structural design principle for this divergence: Insertions at key positions in the minimal scaffold that, combined with the fixation of key residues, have led to functional specialization. These results will aid future efforts to delineate the emergence of functional diversity in enzyme superfamilies, provide clues for functional inference for superfamily members of unknown function, and facilitate rational redesign of the NTR scaffold. Copyright © 2017 the Author(s). Published by PNAS.

  4. Shaping communicative colour signals over evolutionary time

    Science.gov (United States)

    Oyola Morales, José R.; Vital-García, Cuauhcihuatl; Hews, Diana K.; Martins, Emília P.

    2016-01-01

    Many evolutionary forces can shape the evolution of communicative signals, and the long-term impact of each force may depend on relative timing and magnitude. We use a phylogenetic analysis to infer the history of blue belly patches of Sceloporus lizards, and a detailed spectrophotometric analysis of four species to explore the specific forces shaping evolutionary change. We find that the ancestor of Sceloporus had blue patches. We then focus on four species; the first evolutionary shift (captured by comparison of S. merriami and S. siniferus) represents an ancient loss of the belly patch by S. siniferus, and the second evolutionary shift, bounded by S. undulatus and S. virgatus, represents a more recent loss of blue belly patch by S. virgatus. Conspicuousness measurements suggest that the species with the recent loss (S. virgatus) is the least conspicuous. Results for two other species (S. siniferus and S. merriami) suggest that over longer periods of evolutionary time, new signal colours have arisen which minimize absolute contrast with the habitat while maximizing conspicuousness to a lizard receiver. Specifically, males of the species representing an ancient loss of blue patch (S. siniferus) are more conspicuous than are females in the UV, whereas S. merriami males have evolved a green element that makes their belly patches highly sexually dimorphic but no more conspicuous than the white bellies of S. merriami females. Thus, our results suggest that natural selection may act more immediately to reduce conspicuousness, whereas sexual selection may have a more complex impact on communicative signals through the introduction of new colours. PMID:28018661

  5. Comparison of loline alkaloid gene clusters across fungal endophytes: predicting the co-regulatory sequence motifs and the evolutionary history.

    Science.gov (United States)

    Kutil, Brandi L; Greenwald, Charles; Liu, Gang; Spiering, Martin J; Schardl, Christopher L; Wilkinson, Heather H

    2007-10-01

    LOL, a fungal secondary metabolite gene cluster found in Epichloë and Neotyphodium species, is responsible for production of insecticidal loline alkaloids. To analyze the genetic architecture and to predict the evolutionary history of LOL, we compared five clusters from four fungal species (single clusters from Epichloë festucae, Neotyphodium sp. PauTG-1, Neotyphodium coenophialum, and two clusters we previously characterized in Neotyphodium uncinatum). Using PhyloCon to compare putative lol gene promoter regions, we have identified four motifs conserved across the lol genes in all five clusters. Each motif has significant similarity to known fungal transcription factor binding sites in the TRANSFAC database. Conservation of these motifs is further support for the hypothesis that the lol genes are co-regulated. Interestingly, the history of asexual Neotyphodium spp. includes multiple interspecific hybridization events. Comparing clusters from three Neotyphodium species and E. festucae allowed us to determine which Epichloë ancestors are the most likely contributors of LOL in these asexual species. For example, while no present day Epichloë typhina isolates are known to produce lolines, our data support the hypothesis that the E. typhina ancestor(s) of three asexual endophyte species contained a LOL gene cluster. Thus, these data support a model of evolution in which the polymorphism in loline alkaloid production phenotypes among endophyte species is likely due to the loss of the trait over time.

  6. Evolutionary Policy Transfer and Search Methods for Boosting Behavior Quality: RoboCup Keep-Away Case Study

    Directory of Open Access Journals (Sweden)

    Geoff Nitschke

    2017-11-01

    Full Text Available This study evaluates various evolutionary search methods to direct neural controller evolution in company with policy (behavior transfer across increasingly complex collective robotic (RoboCup keep-away tasks. Robot behaviors are first evolved in a source task and then transferred for further evolution to more complex target tasks. Evolutionary search methods tested include objective-based search (fitness function, behavioral and genotypic diversity maintenance, and hybrids of such diversity maintenance and objective-based search. Evolved behavior quality is evaluated according to effectiveness and efficiency. Effectiveness is the average task performance of transferred and evolved behaviors, where task performance is the average time the ball is controlled by a keeper team. Efficiency is the average number of generations taken for the fittest evolved behaviors to reach a minimum task performance threshold given policy transfer. Results indicate that policy transfer coupled with hybridized evolution (behavioral diversity maintenance and objective-based search addresses the bootstrapping problem for increasingly complex keep-away tasks. That is, this hybrid method (coupled with policy transfer evolves behaviors that could not otherwise be evolved. Also, this hybrid evolutionary search was demonstrated as consistently evolving topologically simple neural controllers that elicited high-quality behaviors.

  7. Genetic diversity patterns of arbuscular mycorrhizal fungi associated with the mycoheterotroph Arachnitis uniflora Phil. (Corsiaceae).

    Science.gov (United States)

    Renny, Mauricio; Acosta, M Cristina; Cofré, Noelia; Domínguez, Laura S; Bidartondo, Martin I; Sérsic, Alicia N

    2017-06-01

    Arachnitis uniflora is a mycoheterotrophic plant that exploits arbuscular mycorrhizal fungi of neighbouring plants. We tested A. uniflora 's specificity towards fungi across its large latitudinal range, as well as the role of historical events and current environmental, geographical and altitudinal variables on fungal genetic diversity. Arachnitis uniflora mycorrhizas were sampled at 25 sites. Fungal phylogenetic relationships were reconstructed, genetic diversity was calculated and the main divergent lineages were dated. Phylogeographical analysis was performed with the main fungal clade. Fungal diversity correlations with environmental factors were investigated. Glomeraceae fungi dominated, with a main clade that likely originated in the Upper Cretaceous and diversified in the Miocene. Two other arbuscular mycorrhizal fungal families not previously known to be targeted by A. uniflora were detected rarely and appear to be facultative associations. High genetic diversity, found in Bolivia and both northern and southern Patagonia, was correlated with temperature, rainfall and soil features. Fungal genetic diversity and its distribution can be explained by the ancient evolutionary history of the target fungi and by micro-scale environmental conditions with a geographical mosaic pattern. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  8. Evolutionary speed limited by water in arid Australia.

    Science.gov (United States)

    Goldie, Xavier; Gillman, Len; Crisp, Mike; Wright, Shane

    2010-09-07

    The covariation of biodiversity with climate is a fundamental pattern in nature. However, despite the ubiquity of this relationship, a consensus on the ultimate cause remains elusive. The evolutionary speed hypothesis posits direct mechanistic links between ambient temperature, the tempo of micro-evolution and, ultimately, species richness. Previous research has demonstrated faster rates of molecular evolution in warmer climates for a broad range of poikilothermic and homeothermic organisms, in both terrestrial and aquatic environments. In terrestrial systems, species richness increases with both temperature and water availability and the interaction of those terms: productivity. However, the influence of water availability as an independent variable on micro-evolutionary processes has not been examined previously. Here, using methodology that limits the potentially confounding role of cladogenetic and demographic processes, we report, to our knowledge, the first evidence that woody plants living in the arid Australian Outback are evolving more slowly than related species growing at similar latitudes in moist habitats on the mesic continental margins. These results support a modified evolutionary speed explanation for the relationship between the water-energy balance and plant diversity patterns.

  9. Life history theory and breast cancer risk: methodological and theoretical challenges: Response to "Is estrogen receptor negative breast cancer risk associated with a fast life history strategy?".

    Science.gov (United States)

    Aktipis, Athena

    2016-01-01

    In a meta-analysis published by myself and co-authors, we report differences in the life history risk factors for estrogen receptor negative (ER-) and estrogen receptor positive (ER+) breast cancers. Our meta-analysis did not find the association of ER- breast cancer risk with fast life history characteristics that Hidaka and Boddy suggest in their response to our article. There are a number of possible explanations for the differences between their conclusions and the conclusions we drew from our meta-analysis, including limitations of our meta-analysis and methodological challenges in measuring and categorizing estrogen receptor status. These challenges, along with the association of ER+ breast cancer with slow life history characteristics, may make it challenging to find a clear signal of ER- breast cancer with fast life history characteristics, even if that relationship does exist. The contradictory results regarding breast cancer risk and life history characteristics illustrate a more general challenge in evolutionary medicine: often different sub-theories in evolutionary biology make contradictory predictions about disease risk. In this case, life history models predict that breast cancer risk should increase with faster life history characteristics, while the evolutionary mismatch hypothesis predicts that breast cancer risk should increase with delayed reproduction. Whether life history tradeoffs contribute to ER- breast cancer is still an open question, but current models and several lines of evidence suggest that it is a possibility. © The Author(s) 2016. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.

  10. Different Endosymbiotic Interactions in Two Hydra Species Reflect the Evolutionary History of Endosymbiosis

    KAUST Repository

    Ishikawa, Masakazu

    2016-06-19

    Endosymbiosis is an important evolutionary event for organisms, and there is widespread interest in understanding the evolution of endosymbiosis establishment. Hydra is one of the most suitable organisms for studying the evolution of endosymbiosis. Within the genus Hydra, H. viridissima and H. vulgaris show endosymbiosis with green algae. Previous studies suggested that the endosymbiosis in H. vulgaris took place much more recently than that in H. viridissima, noting that the establishment of the interaction between H. vulgaris and its algae is not as stable as in H. viridissima. To investigate the on-going process of endosymbiosis, we first compared growth and tolerance to starvation in symbiotic and aposymbiotic polyps of both species. The results revealed that symbiotic H. viridissima had a higher growth rate and greater tolerance to starvation than aposymbiotic polyps. By contrast, growth of symbiotic H. vulgaris was identical to that of aposymbiotic polyps, and symbiotic H. vulgaris was less tolerant to starvation. Moreover, our gene expression analysis showed a pattern of differential gene expression in H. viridissima similar to that in other endosymbiotically established organisms, and contrary to that observed in H. vulgaris. We also showed that H. viridissima could cope with oxidative stress that caused damage, such as cell death, in H. vulgaris. These observations support the idea that oxidative stress related genes play an important role in the on-going process of endosymbiosis evolution. The different evolutionary stages of endosymbiosis studied here provide a deeper insight into the evolutionary processes occurring toward a stable endosymbiosis.

  11. Different Endosymbiotic Interactions in Two Hydra Species Reflect the Evolutionary History of Endosymbiosis

    KAUST Repository

    Ishikawa, Masakazu; Yuyama, Ikuko; Shimizu, Hiroshi; Nozawa, Masafumi; Ikeo, Kazuho; Gojobori, Takashi

    2016-01-01

    Endosymbiosis is an important evolutionary event for organisms, and there is widespread interest in understanding the evolution of endosymbiosis establishment. Hydra is one of the most suitable organisms for studying the evolution of endosymbiosis. Within the genus Hydra, H. viridissima and H. vulgaris show endosymbiosis with green algae. Previous studies suggested that the endosymbiosis in H. vulgaris took place much more recently than that in H. viridissima, noting that the establishment of the interaction between H. vulgaris and its algae is not as stable as in H. viridissima. To investigate the on-going process of endosymbiosis, we first compared growth and tolerance to starvation in symbiotic and aposymbiotic polyps of both species. The results revealed that symbiotic H. viridissima had a higher growth rate and greater tolerance to starvation than aposymbiotic polyps. By contrast, growth of symbiotic H. vulgaris was identical to that of aposymbiotic polyps, and symbiotic H. vulgaris was less tolerant to starvation. Moreover, our gene expression analysis showed a pattern of differential gene expression in H. viridissima similar to that in other endosymbiotically established organisms, and contrary to that observed in H. vulgaris. We also showed that H. viridissima could cope with oxidative stress that caused damage, such as cell death, in H. vulgaris. These observations support the idea that oxidative stress related genes play an important role in the on-going process of endosymbiosis evolution. The different evolutionary stages of endosymbiosis studied here provide a deeper insight into the evolutionary processes occurring toward a stable endosymbiosis.

  12. Genetic Variation and Adaptation in Africa: Implications for Human Evolution and Disease

    Science.gov (United States)

    Gomez, Felicia; Hirbo, Jibril; Tishkoff, Sarah A.

    2014-01-01

    Because modern humans originated in Africa and have adapted to diverse environments, African populations have high levels of genetic and phenotypic diversity. Thus, genomic studies of diverse African ethnic groups are essential for understanding human evolutionary history and how this leads to differential disease risk in all humans. Comparative studies of genetic diversity within and between African ethnic groups creates an opportunity to reconstruct some of the earliest events in human population history and are useful for identifying patterns of genetic variation that have been influenced by recent natural selection. Here we describe what is currently known about genetic variation and evolutionary history of diverse African ethnic groups. We also describe examples of recent natural selection in African genomes and how these data are informative for understanding the frequency of many genetic traits, including those that cause disease susceptibility in African populations and populations of recent African descent. PMID:24984772

  13. Diversity in solar photovoltaic energy: Implications for innovation and policy

    NARCIS (Netherlands)

    Subtil Lacerda, J.; van den Bergh, J.C.J.M.

    2016-01-01

    We undertake a qualitative empirical study of the solar photovoltaic (PV) industry in order to investigate the role of diversity in stimulating innovation and diffusion. Based on evolutionary-economic concepts, we identify the main dimensions and components of diversity in the solar PV industry.

  14. Diverse evolutionary trajectories for small RNA biogenesis genes in the oomycete genus Phytophthora

    Directory of Open Access Journals (Sweden)

    Stephanie eBollmann

    2016-03-01

    Full Text Available Gene regulation by small RNA pathways is ubiquitous among eukaryotes, but little is known about small RNA pathways in the Stramenopile kingdom. Phytophthora, a genus of filamentous oomycetes, contains many devastating plant pathogens, causing multibillion-dollar damage to crops, ornamental plants, and natural environments. The genomes of several oomycetes including Phytophthora species such as the soybean pathogen P. sojae, have been sequenced, allowing evolutionary analysis of small RNA-processing enzymes. This study examined the evolutionary origins of the oomycete small RNA-related genes Dicer-like (DCL, and RNA-dependent RNA polymerase (RDR through broad phylogenetic analyses of the key domains. Two Dicer gene homologs, DCL1 and DCL2, and one RDR homolog were cloned and analyzed from P. sojae. Gene expression analysis revealed only minor changes in transcript levels among different life stages. Oomycete DCL1 homologs clustered with animal and plant Dicer homologs in evolutionary trees, whereas oomycete DCL2 homologs clustered basally to the tree along with Drosha homologs. Phylogenetic analysis of the RDR homologs confirmed a previous study that suggested the last common eukaryote ancestor possessed three RDR homologs, which were selectively retained or lost in later lineages. Our analysis clarifies the position of some Unikont and Chromalveolate RDR lineages within the tree, including oomycete homologs. Finally, we analyzed alterations in the domain structure of oomycete Dicer and RDR homologs, specifically focusing on the proposed domain transfer of the DEAD-box helicase domain from Dicer to RDR. Implications of the oomycete domain structure are discussed, and possible roles of the two oomycete Dicer homologs are proposed.

  15. The marine diversity spectrum

    DEFF Research Database (Denmark)

    Reuman, Daniel C.; Gislason, Henrik; Barnes, Carolyn

    2014-01-01

    of taxonomy (all the species in a region regardless of clade) are much less studied but are equally important and will illuminate a different set of ecological and evolutionary processes. We develop and test a mechanistic model of how diversity varies with body mass in marine ecosystems. The model predicts...... the form of the diversity spectrum', which quantifies the distribution of species' asymptotic body masses, is a species analogue of the classic size spectrum of individuals, and which we have found to be a new and widely applicable description of diversity patterns. The marine diversity spectrum...... is predicted to be approximately linear across an asymptotic mass range spanning seven orders of magnitude. Slope -0 center dot 5 is predicted for the global marine diversity spectrum for all combined pelagic zones of continental shelf seas, and slopes for large regions are predicted to lie between -0 center...

  16. Comparative phylogeography reveals deep lineages and regional evolutionary hotspots in the Mojave and Sonoran Deserts

    Science.gov (United States)

    Wood, Dustin A.; Vandergast, Amy G.; Barr, Kelly R.; Inman, Richard D.; Esque, Todd C.; Nussear, Kenneth E.; Fisher, Robert N.

    2013-01-01

    Aim: We explored lineage diversification within desert-dwelling fauna. Our goals were (1) to determine whether phylogenetic lineages and population expansions were consistent with younger Pleistocene climate fluctuation hypotheses or much older events predicted by pre-Pleistocene vicariance hypotheses, (2) to assess concordance in spatial patterns of genetic divergence and diversity among species and (3) to identify regional evolutionary hotspots of divergence and diversity and assess their conservation status. Location: Mojave, Colorado, and Sonoran Deserts, USA. Methods: We analysed previously published gene sequence data for twelve species. We used Bayesian gene tree methods to estimate lineages and divergence times. Within each lineage, we tested for population expansion and age of expansion using coalescent approaches. We mapped interpopulation genetic divergence and intra-population genetic diversity in a GIS to identify hotspots of highest genetic divergence and diversity and to assess whether protected lands overlapped with evolutionary hotspots. Results: In seven of the 12 species, lineage divergence substantially predated the Pleistocene. Historical population expansion was found in eight species, but expansion events postdated the Last Glacial Maximum (LGM) in only four. For all species assessed, six hotspots of high genetic divergence and diversity were concentrated in the Colorado Desert, along the Colorado River and in the Mojave/Sonoran ecotone. At least some proportion of the land within each recovered hotspot was categorized as protected, yet four of the six also overlapped with major areas of human development. Main conclusions: Most of the species studied here diversified into distinct Mojave and Sonoran lineages prior to the LGM – supporting older diversification hypotheses. Several evolutionary hotspots were recovered but are not strategically paired with areas of protected land. Long-term preservation of species-level biodiversity would

  17. Effects of Clonal Reproduction on Evolutionary Lag and Evolutionary Rescue.

    Science.gov (United States)

    Orive, Maria E; Barfield, Michael; Fernandez, Carlos; Holt, Robert D

    2017-10-01

    Evolutionary lag-the difference between mean and optimal phenotype in the current environment-is of keen interest in light of rapid environmental change. Many ecologically important organisms have life histories that include stage structure and both sexual and clonal reproduction, yet how stage structure and clonality interplay to govern a population's rate of evolution and evolutionary lag is unknown. Effects of clonal reproduction on mean phenotype partition into two portions: one that is phenotype dependent, and another that is genotype dependent. This partitioning is governed by the association between the nonadditive genetic plus random environmental component of phenotype of clonal offspring and their parents. While clonality slows phenotypic evolution toward an optimum, it can dramatically increase population survival after a sudden step change in optimal phenotype. Increased adult survival slows phenotypic evolution but facilitates population survival after a step change; this positive effect can, however, be lost given survival-fecundity trade-offs. Simulations indicate that the benefits of increased clonality under environmental change greatly depend on the nature of that change: increasing population persistence under a step change while decreasing population persistence under a continuous linear change requiring de novo variation. The impact of clonality on the probability of persistence for species in a changing world is thus inexorably linked to the temporal texture of the change they experience.

  18. Evolutionary history of the Corallinales (Corallinophycidae, Rhodophyta) inferred from nuclear, plastidial and mitochondrial genomes.

    Science.gov (United States)

    Bittner, Lucie; Payri, Claude E; Maneveldt, Gavin W; Couloux, Arnaud; Cruaud, Corinne; de Reviers, Bruno; Le Gall, Line

    2011-12-01

    Systematics of the red algal order Corallinales has a long and convoluted history. In the present study, molecular approaches were used to assess the phylogenetic relationships based on the analyses of two datasets: a large dataset of SSU sequences including mainly sequences from GenBank; and a combined dataset including four molecular markers (two nuclear: SSU, LSU; one plastidial: psbA; and one mitochondrial: COI). Phylogenetic analyses of both datasets re-affirmed the monophyly of the Corallinales as well as the two families (Corallinaceae and Hapalidiaceae) currently recognized within the order. Three of the four subfamilies of the Corallinaceae (Corallinoideae, Lithophylloideae, Metagoniolithoideae) were also resolved as a monophyletic lineage whereas members of the Mastophoroideae were resolved as four distinct lineages. We therefore propose to restrict the Mastophoroideae to the genera Mastophora, Metamastophora, and possibly Lithoporella in the aim of rendering this subfamily monophyletic. In addition, our phylogenies resolved the genus Hydrolithon in two unrelated lineages, one containing the generitype Hydrolithon reinboldii and the second containing Hydrolithon onkodes, which used to be the generitype of the now defunct genus Porolithon. We therefore propose to resurrect the genus Porolithon for the second lineage encompassing those species with primarily monomerous thalli, and trichocyte arrangements in large pustulate horizontal rows. Moreover, our phylogenetic analyses revealed the presence of cryptic diversity in several taxa, shedding light on the need for further studies to better circumscribe species frontiers within the diverse order Corallinales, especially in the genera Mesophyllum and Neogoniolithon. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Evolutionary Analyses Suggest a Function of MxB Immunity Proteins Beyond Lentivirus Restriction.

    Directory of Open Access Journals (Sweden)

    Patrick S Mitchell

    2015-12-01

    Full Text Available Viruses impose diverse and dynamic challenges on host defenses. Diversifying selection of codons and gene copy number variation are two hallmarks of genetic innovation in antiviral genes engaged in host-virus genetic conflicts. The myxovirus resistance (Mx genes encode interferon-inducible GTPases that constitute a major arm of the cell-autonomous defense against viral infection. Unlike the broad antiviral activity of MxA, primate MxB was recently shown to specifically inhibit lentiviruses including HIV-1. We carried out detailed evolutionary analyses to investigate whether genetic conflict with lentiviruses has shaped MxB evolution in primates. We found strong evidence for diversifying selection in the MxB N-terminal tail, which contains molecular determinants of MxB anti-lentivirus specificity. However, we found no overlap between previously-mapped residues that dictate lentiviral restriction and those that have evolved under diversifying selection. Instead, our findings are consistent with MxB having a long-standing and important role in the interferon response to viral infection against a broader range of pathogens than is currently appreciated. Despite its critical role in host innate immunity, we also uncovered multiple functional losses of MxB during mammalian evolution, either by pseudogenization or by gene conversion from MxA genes. Thus, although the majority of mammalian genomes encode two Mx genes, this apparent stasis masks the dramatic effects that recombination and diversifying selection have played in shaping the evolutionary history of Mx genes. Discrepancies between our study and previous publications highlight the need to account for recombination in analyses of positive selection, as well as the importance of using sequence datasets with appropriate depth of divergence. Our study also illustrates that evolutionary analyses of antiviral gene families are critical towards understanding molecular principles that govern host

  20. Diversity and Complexity in the Classroom: Valuing Racial and Cultural Diversity

    Science.gov (United States)

    du Plessis, Pierre; Bisschoff, Tom

    2007-01-01

    From a diversity perspective, all students should receive an education that continuously affirms human diversity--one that embraces the history and culture of all racial groups and that teaches people of colour to take change of their own destinies. With regards to teaching, a diversity perspective assumes that teachers will hold high expectations…

  1. A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms

    Science.gov (United States)

    Werner, Gijsbert D. A.; Cornwell, William K.; Sprent, Janet I.; Kattge, Jens; Kiers, E. Toby

    2014-01-01

    Symbiotic associations occur in every habitat on earth, but we know very little about their evolutionary histories. Current models of trait evolution cannot adequately reconstruct the deep history of symbiotic innovation, because they assume homogenous evolutionary processes across millions of years. Here we use a recently developed, heterogeneous and quantitative phylogenetic framework to study the origin of the symbiosis between angiosperms and nitrogen-fixing (N2) bacterial symbionts housed in nodules. We compile the largest database of global nodulating plant species and reconstruct the symbiosis’ evolution. We identify a single, cryptic evolutionary innovation driving symbiotic N2-fixation evolution, followed by multiple gains and losses of the symbiosis, and the subsequent emergence of ‘stable fixers’ (clades extremely unlikely to lose the symbiosis). Originating over 100 MYA, this innovation suggests deep homology in symbiotic N2-fixation. Identifying cryptic innovations on the tree of life is key to understanding the evolution of complex traits, including symbiotic partnerships. PMID:24912610

  2. Evolutionary impact assessment: Accounting for the evolutionary consequences of fishing in an ecosystem approach to fisheries management

    DEFF Research Database (Denmark)

    Laugen, Ane T.; Engelhard, Georg H.; Whitlock, Rebecca

    2014-01-01

    substantial scientific attention recently is fisheries-induced evolution (FIE). Increasing evidence indicates that intensive fishing has the potential to exert strong directional selection on life-history traits, behaviour, physiology, and morphology of exploited fish. Of particular concern is that reversing...... evolutionary responses to fishing can be much more difficult than reversing demographic or phenotypically plastic responses. Furthermore, like climate change, multiple agents cause FIE, with effects accumulating over time. Consequently, FIE may alter the utility derived from fish stocks, which in turn can...

  3. Micro-evolutionary responses and adaptive costs of Caenorhabditis elegans populations exposed to environmental stress

    International Nuclear Information System (INIS)

    Dutilleul, M.

    2013-01-01

    The contemporary evolution of organisms is largely dependent on anthropogenic disturbances. In particular, pollution amplifies the intensity or the quantity of selection pressures on populations. However, these changes may have negative effects on the life, growth and reproduction of individuals, the demographics of the population, and its phenotypic and genetic characteristics over generations. Thus, micro-evolutionary changes are likely to occur in response to selection pressures. These phenomenon lead to collateral damages: adaptive costs. For example, a reduction of genetic diversity in a population entails a decrease in its potential to adapt to other stressors. Populations can be more susceptible to many environmental changes, especially with the increase of human activities. Hence in an ecological risk assessment, studying the mechanisms of action and immediate adverse effects of pollutants on organisms is no longer sufficient. It is also necessary to expand our knowledge on the evolution of populations in polluted environment. In this context, our study aims to determine the micro-evolutionary response of Caenorhabditis elegans populations exposed to environmental stressors, and to measure their costs of adaptation. Populations were experimentally exposed for 22 generations to a high concentration of uranium, sodium chloride or an alternation of both these pollutants. The analysis of phenotypic and genetic changes, observed through measures of life history traits, was accomplished using several quantitative genetics techniques. In particular, we confirmed the genetic differentiation between populations with an increase of resistance in populations exposed to different pollutions. The speed of evolutionary responses depended on the conditions of exposure and their effects on the expression of the genetic structure of traits (e.g. G matrix). Micro-evolutionary changes were linked to costs of adaptation, such as reduced fertility in stressful novel

  4. Ecological and evolutionary patterns of freshwater maturation in Pacific and Atlantic salmonines

    Science.gov (United States)

    Sloat, Matthew R.; Fraser, Dylan J.; Dunham, Jason B.; Falke, Jeffery A.; Jordan, Chris E.; McMillan, John R.; Ohms, Haley A.

    2014-01-01

    Reproductive tactics and migratory strategies in Pacific and Atlantic salmonines are inextricably linked through the effects of migration (or lack thereof) on age and size at maturity. In this review, we focus on the ecological and evolutionary patterns of freshwater maturation in salmonines, a key process resulting in the diversification of their life histories. We demonstrate that the energetics of maturation and reproduction provides a unifying theme for understanding both the proximate and ultimate causes of variation in reproductive schedules among species, populations, and the sexes. We use probabilistic maturation reaction norms to illustrate how variation in individual condition, in terms of body size, growth rate, and lipid storage, influences the timing of maturation. This useful framework integrates both genetic and environmental contributions to conditional strategies for maturation and, in doing so, demonstrates how flexible life histories can be both heritable and subject to strong environmental influences. We review evidence that the propensity for freshwater maturation in partially anadromous species is predictable across environmental gradients at geographic and local spatial scales. We note that growth is commonly associated with the propensity for freshwater maturation, but that life-history responses to changes in growth caused by temperature may be strikingly different than changes caused by differences in food availability. We conclude by exploring how contemporary management actions can constrain or promote the diversity of maturation phenotypes in Pacific and Atlantic salmonines and caution against underestimating the role of freshwater maturing forms in maintaining the resiliency of these iconic species.

  5. Morphological diversity in tenrecs (Afrosoricida, Tenrecidae: comparing tenrec skull diversity to their closest relatives

    Directory of Open Access Journals (Sweden)

    Sive Finlay

    2015-04-01

    Full Text Available It is important to quantify patterns of morphological diversity to enhance our understanding of variation in ecological and evolutionary traits. Here, we present a quantitative analysis of morphological diversity in a family of small mammals, the tenrecs (Afrosoricida, Tenrecidae. Tenrecs are often cited as an example of an exceptionally morphologically diverse group. However, this assumption has not been tested quantitatively. We use geometric morphometric analyses of skull shape to test whether tenrecs are more morphologically diverse than their closest relatives, the golden moles (Afrosoricida, Chrysochloridae. Tenrecs occupy a wider range of ecological niches than golden moles so we predict that they will be more morphologically diverse. Contrary to our expectations, we find that tenrec skulls are only more morphologically diverse than golden moles when measured in lateral view. Furthermore, similarities among the species-rich Microgale tenrec genus appear to mask higher morphological diversity in the rest of the family. These results reveal new insights into the morphological diversity of tenrecs and highlight the importance of using quantitative methods to test qualitative assumptions about patterns of morphological diversity.

  6. Multidimensional extended spatial evolutionary games.

    Science.gov (United States)

    Krześlak, Michał; Świerniak, Andrzej

    2016-02-01

    The goal of this paper is to study the classical hawk-dove model using mixed spatial evolutionary games (MSEG). In these games, played on a lattice, an additional spatial layer is introduced for dependence on more complex parameters and simulation of changes in the environment. Furthermore, diverse polymorphic equilibrium points dependent on cell reproduction, model parameters, and their simulation are discussed. Our analysis demonstrates the sensitivity properties of MSEGs and possibilities for further development. We discuss applications of MSEGs, particularly algorithms for modelling cell interactions during the development of tumours. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Pollutant Dehalogenation Capability May Depend on the Trophic Evolutionary History of the Organism: PBDEs in Freshwater Food Webs

    Science.gov (United States)

    Bartrons, Mireia; Grimalt, Joan O.; de Mendoza, Guillermo; Catalan, Jordi

    2012-01-01

    Organohalogen compounds are some of the most notorious persistent pollutants disturbing the Earth biosphere. Although human-made, these chemicals are not completely alien to living systems. A large number of natural organohalogens, part of the secondary metabolism, are involved in chemical trophic interactions. Surprisingly, the relationship between organisms’ trophic position and synthetic organohalogen biotransformation capability has not been investigated. We studied the case for polybromodiphenyl ethers (PBDE), a group of flame-retardants of widespread use in the recent years, in aquatic food webs from remote mountain lakes. These relatively simple ecosystems only receive pollution by atmospheric transport. A large predominance of the PBDE congener currently in use in Europe, BDE-209, largely dominated the PBDE composition of the basal resources of the food web. In contrast, primary consumers (herbivores and detritivores) showed a low proportion of BDE-209, and dominance of several less brominated congeners (e.g. BDE-100, BDE47). Secondary consumers (predators) showed large biomagnification of BDE-209 compare to other congeners. Finally, top predator fish characterized by low total PBDE concentrations. Examination of the bromine stable isotopic composition indicates that primary consumers showed higher PBDE biotransformation capability than secondary consumers. We suggest that the evolutionary response of primary consumers to feeding deterrents would have pre-adapted them for PBDE biotransformation. The observed few exceptions, some insect taxa, can be interpreted in the light of the trophic history of the evolutionary lineage of the organisms. Bromine isotopic composition in fish indicates that low PBDE values are due to not only biotransformation but also to some other process likely related to transport. Our finding illustrates that organohalogen compounds may strongly disturb ecosystems even at low concentrations, since the species lacking or having

  8. Pollutant dehalogenation capability may depend on the trophic evolutionary history of the organism: PBDEs in freshwater food webs.

    Directory of Open Access Journals (Sweden)

    Mireia Bartrons

    Full Text Available Organohalogen compounds are some of the most notorious persistent pollutants disturbing the Earth biosphere. Although human-made, these chemicals are not completely alien to living systems. A large number of natural organohalogens, part of the secondary metabolism, are involved in chemical trophic interactions. Surprisingly, the relationship between organisms' trophic position and synthetic organohalogen biotransformation capability has not been investigated. We studied the case for polybromodiphenyl ethers (PBDE, a group of flame-retardants of widespread use in the recent years, in aquatic food webs from remote mountain lakes. These relatively simple ecosystems only receive pollution by atmospheric transport. A large predominance of the PBDE congener currently in use in Europe, BDE-209, largely dominated the PBDE composition of the basal resources of the food web. In contrast, primary consumers (herbivores and detritivores showed a low proportion of BDE-209, and dominance of several less brominated congeners (e.g. BDE-100, BDE47. Secondary consumers (predators showed large biomagnification of BDE-209 compare to other congeners. Finally, top predator fish characterized by low total PBDE concentrations. Examination of the bromine stable isotopic composition indicates that primary consumers showed higher PBDE biotransformation capability than secondary consumers. We suggest that the evolutionary response of primary consumers to feeding deterrents would have pre-adapted them for PBDE biotransformation. The observed few exceptions, some insect taxa, can be interpreted in the light of the trophic history of the evolutionary lineage of the organisms. Bromine isotopic composition in fish indicates that low PBDE values are due to not only biotransformation but also to some other process likely related to transport. Our finding illustrates that organohalogen compounds may strongly disturb ecosystems even at low concentrations, since the species lacking

  9. The population history of endogenous retroviruses in mule deer (Odocoileus heminous)

    Science.gov (United States)

    Kamath, Pauline L.; Elleder, Daniel; Bao, Le; Cross, Paul C.; Powell, John H.; Poss, Mary

    2013-01-01

    Mobile elements are powerful agents of genomic evolution and can be exceptionally informative markers for investigating species and population-level evolutionary history. While several studies have utilized retrotransposon-based insertional polymorphisms to resolve phylogenies, few population studies exist outside of humans. Endogenous retroviruses are LTR-retrotransposons derived from retroviruses that have become stably integrated in the host genome during past infections and transmitted vertically to subsequent generations. They offer valuable insight into host-virus co-evolution and a unique perspective on host evolutionary history because they integrate into the genome at a discrete point in time. We examined the evolutionary history of a cervid endogenous gammaretrovirus (CrERVγ) in mule deer (Odocoileus hemionus). We sequenced 14 CrERV proviruses (CrERV-in1 to -in14), and examined the prevalence and distribution of 13 proviruses in 262 deer among 15 populations from Montana, Wyoming, and Utah. CrERV absence in white-tailed deer (O. virginianus), identical 5′ and 3′ long terminal repeat (LTR) sequences, insertional polymorphism, and CrERV divergence time estimates indicated that most endogenization events occurred within the last 200000 years. Population structure inferred from CrERVs (F ST = 0.008) and microsatellites (θ = 0.01) was low, but significant, with Utah, northwestern Montana, and a Helena herd being particularly differentiated. Clustering analyses indicated regional structuring, and non-contiguous clustering could often be explained by known translocations. Cluster ensemble results indicated spatial localization of viruses, specifically in deer from northeastern and western Montana. This study demonstrates the utility of endogenous retroviruses to elucidate and provide novel insight into both ERV evolutionary history and the history of contemporary host populations.

  10. The population history of endogenous retroviruses in mule deer (Odocoileus hemionus).

    Science.gov (United States)

    Kamath, Pauline L; Elleder, Daniel; Bao, Le; Cross, Paul C; Powell, John H; Poss, Mary

    2014-01-01

    Mobile elements are powerful agents of genomic evolution and can be exceptionally informative markers for investigating species and population-level evolutionary history. While several studies have utilized retrotransposon-based insertional polymorphisms to resolve phylogenies, few population studies exist outside of humans. Endogenous retroviruses are LTR-retrotransposons derived from retroviruses that have become stably integrated in the host genome during past infections and transmitted vertically to subsequent generations. They offer valuable insight into host-virus co-evolution and a unique perspective on host evolutionary history because they integrate into the genome at a discrete point in time. We examined the evolutionary history of a cervid endogenous gammaretrovirus (CrERVγ) in mule deer (Odocoileus hemionus). We sequenced 14 CrERV proviruses (CrERV-in1 to -in14), and examined the prevalence and distribution of 13 proviruses in 262 deer among 15 populations from Montana, Wyoming, and Utah. CrERV absence in white-tailed deer (O. virginianus), identical 5' and 3' long terminal repeat (LTR) sequences, insertional polymorphism, and CrERV divergence time estimates indicated that most endogenization events occurred within the last 200000 years. Population structure inferred from CrERVs (F ST = 0.008) and microsatellites (θ = 0.01) was low, but significant, with Utah, northwestern Montana, and a Helena herd being particularly differentiated. Clustering analyses indicated regional structuring, and non-contiguous clustering could often be explained by known translocations. Cluster ensemble results indicated spatial localization of viruses, specifically in deer from northeastern and western Montana. This study demonstrates the utility of endogenous retroviruses to elucidate and provide novel insight into both ERV evolutionary history and the history of contemporary host populations.

  11. Evolutionary diversity among Atlantic coast mangroves

    Science.gov (United States)

    Dodd, Richard S.; Rafii, Zara A.; Fromard, François; Blasco, François

    1998-06-01

    Current knowledge of intraspecific variation of mangrove species is limited in terms of rangewide distributions and is mostly restricted to morphological analyses, which have indicated a high degree of homogeneity. However, our analyses of the aliphatic hydrocarbon and triterpenoid fraction of foliar waxes (by gas chromatography and mass spectroscopy) of mangrove species ( Rhizophora mangle, Avicennia germinans and Laguncularia racemosa) from Gabon in West Africa and French Guiana in South America show significant genetic differentiation between eastern and western Atlantic provenances. The greater diversity in lipid composition, and the tendency for longer carbon chain lengths in all taxa from Africa, may suggest that American mangroves exhibit derived characteristics. A consequence of this hypothesis would be that Atlantic mangroves are unlikely to have dispersed from the Tethys via the Pacific, as has been proposed by some authors. More widespread sampling within the Atlantic and east Pacific region is needed to support and confirm these results.

  12. How to handle speciose clades? Mass taxon-sampling as a strategy towards illuminating the natural history of Campanula (Campanuloideae.

    Directory of Open Access Journals (Sweden)

    Guilhem Mansion

    evolutionary history of diverse clades.

  13. How to Handle Speciose Clades? Mass Taxon-Sampling as a Strategy towards Illuminating the Natural History of Campanula (Campanuloideae)

    Science.gov (United States)

    Mansion, Guilhem; Parolly, Gerald; Crowl, Andrew A.; Mavrodiev, Evgeny; Cellinese, Nico; Oganesian, Marine; Fraunhofer, Katharina; Kamari, Georgia; Phitos, Dimitrios; Haberle, Rosemarie; Akaydin, Galip; Ikinci, Nursel; Raus, Thomas; Borsch, Thomas

    2012-01-01

    Background Speciose clades usually harbor species with a broad spectrum of adaptive strategies and complex distribution patterns, and thus constitute ideal systems to disentangle biotic and abiotic causes underlying species diversification. The delimitation of such study systems to test evolutionary hypotheses is difficult because they often rely on artificial genus concepts as starting points. One of the most prominent examples is the bellflower genus Campanula with some 420 species, but up to 600 species when including all lineages to which Campanula is paraphyletic. We generated a large alignment of petD group II intron sequences to include more than 70% of described species as a reference. By comparison with partial data sets we could then assess the impact of selective taxon sampling strategies on phylogenetic reconstruction and subsequent evolutionary conclusions. Methodology/Principal Findings Phylogenetic analyses based on maximum parsimony (PAUP, PRAP), Bayesian inference (MrBayes), and maximum likelihood (RAxML) were first carried out on the large reference data set (D680). Parameters including tree topology, branch support, and age estimates, were then compared to those obtained from smaller data sets resulting from “classification-guided” (D088) and “phylogeny-guided sampling” (D101). Analyses of D088 failed to fully recover the phylogenetic diversity in Campanula, whereas D101 inferred significantly different branch support and age estimates. Conclusions/Significance A short genomic region with high phylogenetic utility allowed us to easily generate a comprehensive phylogenetic framework for the speciose Campanula clade. Our approach recovered 17 well-supported and circumscribed sub-lineages. Knowing these will be instrumental for developing more specific evolutionary hypotheses and guide future research, we highlight the predictive value of a mass taxon-sampling strategy as a first essential step towards illuminating the detailed evolutionary

  14. ERC analysis: web-based inference of gene function via evolutionary rate covariation.

    Science.gov (United States)

    Wolfe, Nicholas W; Clark, Nathan L

    2015-12-01

    The recent explosion of comparative genomics data presents an unprecedented opportunity to construct gene networks via the evolutionary rate covariation (ERC) signature. ERC is used to identify genes that experienced similar evolutionary histories, and thereby draws functional associations between them. The ERC Analysis website allows researchers to exploit genome-wide datasets to infer novel genes in any biological function and to explore deep evolutionary connections between distinct pathways and complexes. The website provides five analytical methods, graphical output, statistical support and access to an increasing number of taxonomic groups. Analyses and data at http://csb.pitt.edu/erc_analysis/ nclark@pitt.edu. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Chlamydia pneumoniae is genetically diverse in animals and appears to have crossed the host barrier to humans on (at least two occasions.

    Directory of Open Access Journals (Sweden)

    Candice M Mitchell

    2010-05-01

    Full Text Available Chlamydia pneumoniae is a common human and animal pathogen associated with a wide range of diseases. Since the first isolation of C. pneumoniae TWAR in 1965, all human isolates have been essentially clonal, providing little evolutionary insight. To address this gap, we investigated the genetic diversity of 30 isolates from diverse geographical locations, from both human and animal origin (amphibian, reptilian, equine and marsupial. Based on the level of variation that we observed at 23 discreet gene loci, it was clearly evident that the animal isolates were more diverse than the isolates of human origin. Furthermore, we show that C. pneumoniae isolates could be grouped into five major genotypes, A-E, with A, B, D and E genotypes linked by geographical location, whereas genotype C was found across multiple continents. Our evidence strongly supports two separate animal-to-human cross species transfer events in the evolutionary history of this pathogen. The C. pneumoniae human genotype identified in the USA, Canada, Taiwan, Iran, Japan, Korea and Australia (non-Indigenous most likely originated from a single amphibian or reptilian lineage, which appears to have been previously geographically widespread. We identified a separate human lineage present in two Australian Indigenous isolates (independent geographical locations. This lineage is distinct and is present in Australian amphibians as well as a range of Australian marsupials.

  16. Against a Systemic Legal History

    Directory of Open Access Journals (Sweden)

    Simon Roberts

    2002-01-01

    Full Text Available This paper questions the resort to systems theory as the foundation of an evolutionary legal history. In particular, the theoretical legacy of Niklas Luhmann upon which Marie Theres Fögen proposes to draw seems to have limited application outside a context in which advanced system differentiation is present. Although (like Marx, Durkheim and Weber before him Luhmann drew in a broad evolutionary trajectory, he was concerned principally with “functionally differentiated society”. Earlier phases – covering precisely those formations that historians will presumably focus upon – are very hazily sketched in and relatively poorly theorised. In general, we should not too readily acknowledge “the exhaustion of the paradigm of modernity” (Santos, 1995 or rush to proclaim the obsolescence of multi-dimensional approaches such as those of Bourdieu (1977 and Giddens (1984. Any legal history that marginalises both human actors and the conditional environment has a considerable task in making up the ensuing deficit.

  17. Comparative Analysis of the Pattern of Population Genetic Diversity in Three Indo-West Pacific Rhizophora Mangrove Species

    Directory of Open Access Journals (Sweden)

    Yu-Bin Yan

    2016-09-01

    Full Text Available Rhizophora species are the most widely distributed mangrove trees in the Indo-West Pacific (IWP region. Comparative studies of these species with shared life history traits can help identify evolutionary factors that have played most important roles in determining genetic diversity within and between populations in ocean-current dispersed mangrove tree species. We sampled 935 individuals from 54 natural populations for genotyping with 13 microsatellite markers to investigate the level of genetic variation, population structure, and gene flow on a broad geographic scale in Rhizophora apiculata, R. mucronata, and R. stylosa across the IWP region. In contrast to the pattern expected of long-lived woody plants with predominant wind-pollination, water-dispersed seeds and wide geographic range, genetic variation within populations was generally low in all the three species, especially in those peripheral populations from geographic range limits. Although the large water-buoyant propagules of Rhizophora have capacity for long distance dispersal, such events might be rare in reality, as reflected by the low level of gene flow and high genetic differentiation between most of population pairs within each species. Phylogeographic separation of Australian and Pacific island populations from SE Asian lineages previously revealed with DNA sequence data was still detectable in R. apiculata based on genetic distances, but this pattern of disjunction was not always evident in R. mucronata and R. stylosa, suggesting that fast-evolving molecular markers could be more suitable for detecting contemporary genetic structure but not deep evolutionary divergence caused by historical vicariance. Given that mangrove species generally have small effective population sizes, we conclude that genetic drift coupled with limited gene flow have played a dominant role in producing the current pattern of population genetic diversity in the IWP Rhizophora species, overshadowing the

  18. Effects of geological changes and climatic fluctuations on the demographic histories and low genetic diversity of Squaliobarbus curriculus in Yellow River.

    Science.gov (United States)

    Zhou, Wei; Song, Na; Wang, Jun; Gao, Tianxiang

    2016-09-15

    The 104 samples of Squaliobarbus curriculus were collected from four localities in Yellow River and one region in Yangtze River. Analyses of the first hypervariable region of mitochondrial DNA control region of 555bp revealed only 15 polymorphism sites and defined 19 haplotypes. Low-to-moderate levels of haplotype diversity and low nucleotide diversity were observed in Yellow River populations (h=0.2529-0.7510, π=0.0712%-0.2197%). In contrast, Poyang Lake population showed high haplotype diversity and lower-middle nucleotide diversity (h=0.9636, π=0.5317%). Low genetic differentiation was estimated among Yellow River populations and significant level of genetic structure was detected between two rivers. Population genetic structure between two rivers was believed to be connected with geographical barriers and paleoclimatic events. The demographic history of S. curriculus in Yellow River examined by neutrality tests, mismatch distribution analysis, and Bayesian skyline analysis suggested a sudden and spatial population expansion dating to the Holocene. Climatic warming and changes of Yellow River course may have important effects on demographic facet of S. curriculus history. The same signal was also obtained on Poyang Lake population in late Pleistocene during the last interglacial period. During the period, the pronounced climatic change and the water system variation of PYL may have an important influence on the population. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Molecular evolutionary rates are not correlated with temperature and latitude in Squamata: an exception to the metabolic theory of ecology?

    Science.gov (United States)

    Rolland, Jonathan; Loiseau, Oriane; Romiguier, Jonathan; Salamin, Nicolas

    2016-05-20

    The metabolic theory of ecology stipulates that molecular evolutionary rates should correlate with temperature and latitude in ectothermic organisms. Previous studies have shown that most groups of vertebrates, such as amphibians, turtles and even endothermic mammals, have higher molecular evolutionary rates in regions where temperature is high. However, the association between molecular evolutionary rates and temperature or latitude has never been tested in Squamata. We used a large dataset including the spatial distributions and environmental variables for 1,651 species of Squamata and compared the contrast of the rates of molecular evolution with the contrast of temperature and latitude between sister species. Using major axis regressions and a new algorithm to choose independent sister species pairs, we found that temperature and absolute latitude were not associated with molecular evolutionary rates. This absence of association in such a diverse ectothermic group questions the mechanisms explaining current pattern of species diversity in Squamata and challenges the presupposed universality of the metabolic theory of ecology.

  20. The Tsimane Health and Life History Project: Integrating anthropology and biomedicine.

    Science.gov (United States)

    Gurven, Michael; Stieglitz, Jonathan; Trumble, Benjamin; Blackwell, Aaron D; Beheim, Bret; Davis, Helen; Hooper, Paul; Kaplan, Hillard

    2017-04-01

    The Tsimane Health and Life History Project, an integrated bio-behavioral study of the human life course, is designed to test competing hypotheses of human life-history evolution. One aim is to understand the bidirectional connections between life history and social behavior in a high-fertility, kin-based context lacking amenities of modern urban life (e.g. sanitation, banks, electricity). Another aim is to understand how a high pathogen burden influences health and well-being during development and adulthood. A third aim addresses how modernization shapes human life histories and sociality. Here we outline the project's goals, history, and main findings since its inception in 2002. We reflect on the implications of current findings and highlight the need for more coordinated ethnographic and biomedical study of contemporary nonindustrial populations to address broad questions that can situate evolutionary anthropology in a key position within the social and life sciences. © 2017 The Authors Evolutionary Anthropology: Issues, News, and Reviews Published by Wiley Periodicals, Inc.

  1. Evolutionary genomics and population structure of Entamoeba histolytica

    Directory of Open Access Journals (Sweden)

    Koushik Das

    2014-11-01

    Full Text Available Amoebiasis caused by the gastrointestinal parasite Entamoeba histolytica has diverse disease outcomes. Study of genome and evolution of this fascinating parasite will help us to understand the basis of its virulence and explain why, when and how it causes diseases. In this review, we have summarized current knowledge regarding evolutionary genomics of E. histolytica and discussed their association with parasite phenotypes and its differential pathogenic behavior. How genetic diversity reveals parasite population structure has also been discussed. Queries concerning their evolution and population structure which were required to be addressed have also been highlighted. This significantly large amount of genomic data will improve our knowledge about this pathogenic species of Entamoeba.

  2. Development of antibiotic regimens using graph based evolutionary algorithms.

    Science.gov (United States)

    Corns, Steven M; Ashlock, Daniel A; Bryden, Kenneth M

    2013-12-01

    This paper examines the use of evolutionary algorithms in the development of antibiotic regimens given to production animals. A model is constructed that combines the lifespan of the animal and the bacteria living in the animal's gastro-intestinal tract from the early finishing stage until the animal reaches market weight. This model is used as the fitness evaluation for a set of graph based evolutionary algorithms to assess the impact of diversity control on the evolving antibiotic regimens. The graph based evolutionary algorithms have two objectives: to find an antibiotic treatment regimen that maintains the weight gain and health benefits of antibiotic use and to reduce the risk of spreading antibiotic resistant bacteria. This study examines different regimens of tylosin phosphate use on bacteria populations divided into Gram positive and Gram negative types, with a focus on Campylobacter spp. Treatment regimens were found that provided decreased antibiotic resistance relative to conventional methods while providing nearly the same benefits as conventional antibiotic regimes. By using a graph to control the information flow in the evolutionary algorithm, a variety of solutions along the Pareto front can be found automatically for this and other multi-objective problems. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Diversity spurs diversification in ecological communities

    Science.gov (United States)

    Calcagno, Vincent; Jarne, Philippe; Loreau, Michel; Mouquet, Nicolas; David, Patrice

    2017-06-01

    Diversity is a fundamental, yet threatened, property of ecological systems. The idea that diversity can itself favour diversification, in an autocatalytic process, is very appealing but remains controversial. Here, we study a generalized model of ecological communities and investigate how the level of initial diversity influences the possibility of evolutionary diversification. We show that even simple models of intra- and inter-specific ecological interactions can predict a positive effect of diversity on diversification: adaptive radiations may require a threshold number of species before kicking-off. We call this phenomenon DDAR (diversity-dependent adaptive radiations) and identify mathematically two distinct pathways connecting diversity to diversification, involving character displacement and the positive diversity-productivity relationship. Our results may explain observed delays in adaptive radiations at the macroscale and diversification patterns reported in experimental microbial communities, and shed new light on the dynamics of ecological diversity, the diversity-dependence of diversification rates, and the consequences of biodiversity loss.

  4. Diversity spurs diversification in ecological communities.

    Science.gov (United States)

    Calcagno, Vincent; Jarne, Philippe; Loreau, Michel; Mouquet, Nicolas; David, Patrice

    2017-06-09

    Diversity is a fundamental, yet threatened, property of ecological systems. The idea that diversity can itself favour diversification, in an autocatalytic process, is very appealing but remains controversial. Here, we study a generalized model of ecological communities and investigate how the level of initial diversity influences the possibility of evolutionary diversification. We show that even simple models of intra- and inter-specific ecological interactions can predict a positive effect of diversity on diversification: adaptive radiations may require a threshold number of species before kicking-off. We call this phenomenon DDAR (diversity-dependent adaptive radiations) and identify mathematically two distinct pathways connecting diversity to diversification, involving character displacement and the positive diversity-productivity relationship. Our results may explain observed delays in adaptive radiations at the macroscale and diversification patterns reported in experimental microbial communities, and shed new light on the dynamics of ecological diversity, the diversity-dependence of diversification rates, and the consequences of biodiversity loss.

  5. Split diversity in constrained conservation prioritization using integer linear programming.

    Science.gov (United States)

    Chernomor, Olga; Minh, Bui Quang; Forest, Félix; Klaere, Steffen; Ingram, Travis; Henzinger, Monika; von Haeseler, Arndt

    2015-01-01

    Phylogenetic diversity (PD) is a measure of biodiversity based on the evolutionary history of species. Here, we discuss several optimization problems related to the use of PD, and the more general measure split diversity (SD), in conservation prioritization.Depending on the conservation goal and the information available about species, one can construct optimization routines that incorporate various conservation constraints. We demonstrate how this information can be used to select sets of species for conservation action. Specifically, we discuss the use of species' geographic distributions, the choice of candidates under economic pressure, and the use of predator-prey interactions between the species in a community to define viability constraints.Despite such optimization problems falling into the area of NP hard problems, it is possible to solve them in a reasonable amount of time using integer programming. We apply integer linear programming to a variety of models for conservation prioritization that incorporate the SD measure.We exemplarily show the results for two data sets: the Cape region of South Africa and a Caribbean coral reef community. Finally, we provide user-friendly software at http://www.cibiv.at/software/pda.

  6. Evolution, human-microbe interactions, and life history plasticity.

    Science.gov (United States)

    Rook, Graham; Bäckhed, Fredrik; Levin, Bruce R; McFall-Ngai, Margaret J; McLean, Angela R

    2017-07-29

    A bacterium was once a component of the ancestor of all eukaryotic cells, and much of the human genome originated in microorganisms. Today, all vertebrates harbour large communities of microorganisms (microbiota), particularly in the gut, and at least 20% of the small molecules in human blood are products of the microbiota. Changing human lifestyles and medical practices are disturbing the content and diversity of the microbiota, while simultaneously reducing our exposures to the so-called old infections and to organisms from the natural environment with which human beings co-evolved. Meanwhile, population growth is increasing the exposure of human beings to novel pathogens, particularly the crowd infections that were not part of our evolutionary history. Thus some microbes have co-evolved with human beings and play crucial roles in our physiology and metabolism, whereas others are entirely intrusive. Human metabolism is therefore a tug-of-war between managing beneficial microbes, excluding detrimental ones, and channelling as much energy as is available into other essential functions (eg, growth, maintenance, reproduction). This tug-of-war shapes the passage of each individual through life history decision nodes (eg, how fast to grow, when to mature, and how long to live). Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Evolutionary molecular medicine.

    Science.gov (United States)

    Nesse, Randolph M; Ganten, Detlev; Gregory, T Ryan; Omenn, Gilbert S

    2012-05-01

    Evolution has long provided a foundation for population genetics, but some major advances in evolutionary biology from the twentieth century that provide foundations for evolutionary medicine are only now being applied in molecular medicine. They include the need for both proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, competition between alleles, co-evolution, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are transforming evolutionary biology in ways that create even more opportunities for progress at its interfaces with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and related principles to speed the development of evolutionary molecular medicine.

  8. Role of Genomic Typing in Taxonomy, Evolutionary Genetics, and Microbial Epidemiology

    Science.gov (United States)

    van Belkum, Alex; Struelens, Marc; de Visser, Arjan; Verbrugh, Henri; Tibayrenc, Michel

    2001-01-01

    Currently, genetic typing of microorganisms is widely used in several major fields of microbiological research. Taxonomy, research aimed at elucidation of evolutionary dynamics or phylogenetic relationships, population genetics of microorganisms, and microbial epidemiology all rely on genetic typing data for discrimination between genotypes. Apart from being an essential component of these fundamental sciences, microbial typing clearly affects several areas of applied microbiogical research. The epidemiological investigation of outbreaks of infectious diseases and the measurement of genetic diversity in relation to relevant biological properties such as pathogenicity, drug resistance, and biodegradation capacities are obvious examples. The diversity among nucleic acid molecules provides the basic information for all fields described above. However, researchers in various disciplines tend to use different vocabularies, a wide variety of different experimental methods to monitor genetic variation, and sometimes widely differing modes of data processing and interpretation. The aim of the present review is to summarize the technological and fundamental concepts used in microbial taxonomy, evolutionary genetics, and epidemiology. Information on the nomenclature used in the different fields of research is provided, descriptions of the diverse genetic typing procedures are presented, and examples of both conceptual and technological research developments for Escherichia coli are included. Recommendations for unification of the different fields through standardization of laboratory techniques are made. PMID:11432813

  9. An evolutionary perspective on drug discovery in the plant genus Euphorbia L. (Euphorbiaceae)

    DEFF Research Database (Denmark)

    Ernst, Madeleine

    herbivory and physical stresses or to attract pollinators. Consequently, specializedmetabolites, as well as plants used in traditional medicine, are not randomly distributed across phylogenetictrees. Evolutionary approaches to plant-based drug discovery suggest that this informationcan be used to guide...... healthcarethreats, urge for systematic and time-efficient approaches in finding new drug candidates. Manydrugs are derived from plant specialized metabolites, chemical compounds, which are synthesizedby the plants in response to evolutionary adaptation to environmental and ecological factors, for example,to combat...... evolution and diversification. Also, Euphorbia species producean often chemically highly diverse latex exhibiting an exceptional number of biological activities withpharmaceutical interest. In this PhD project, the genus Euphorbia was chosen as a model group forstudying evolutionary approaches to plant...

  10. Genetics, Genomics and Evolution of Ergot Alkaloid Diversity

    Directory of Open Access Journals (Sweden)

    Carolyn A. Young

    2015-04-01

    Full Text Available The ergot alkaloid biosynthesis system has become an excellent model to study evolutionary diversification of specialized (secondary metabolites. This is a very diverse class of alkaloids with various neurotropic activities, produced by fungi in several orders of the phylum Ascomycota, including plant pathogens and protective plant symbionts in the family Clavicipitaceae. Results of comparative genomics and phylogenomic analyses reveal multiple examples of three evolutionary processes that have generated ergot-alkaloid diversity: gene gains, gene losses, and gene sequence changes that have led to altered substrates or product specificities of the enzymes that they encode (neofunctionalization. The chromosome ends appear to be particularly effective engines for gene gains, losses and rearrangements, but not necessarily for neofunctionalization. Changes in gene expression could lead to accumulation of various pathway intermediates and affect levels of different ergot alkaloids. Genetic alterations associated with interspecific hybrids of Epichloë species suggest that such variation is also selectively favored. The huge structural diversity of ergot alkaloids probably represents adaptations to a wide variety of ecological situations by affecting the biological spectra and mechanisms of defense against herbivores, as evidenced by the diverse pharmacological effects of ergot alkaloids used in medicine.

  11. Evolutionary conservation and changes in insect TRP channels

    OpenAIRE

    Tominaga Makoto; Kohno Keigo; Sokabe Takaaki; Matsuura Hironori; Kadowaki Tatsuhiko

    2009-01-01

    Abstract Background TRP (Transient Receptor Potential) channels respond to diverse stimuli and thus function as the primary integrators of varied sensory information. They are also activated by various compounds and secondary messengers to mediate cell-cell interactions as well as to detect changes in the local environment. Their physiological roles have been primarily characterized only in mice and fruit flies, and evolutionary studies are limited. To understand the evolution of insect TRP c...

  12. Timing of the evolutionary history of Corallinaceae (Corallinales, Rhodophyta).

    Science.gov (United States)

    Rösler, Anja; Perfectti, Francisco; Peña, Viviana; Aguirre, Julio; Braga, Juan Carlos

    2017-06-01

    The temporal dimension of the most recent Corallinaceae (order Corallinales) phylogeny was presented here, based on first occurrence time estimates from the fossil record. Calibration of the molecular clock of the genetic marker SSU entailed a separation of Corallinales from Hapalidiales in the Albian (Early Cretaceous ~105 mya). Neither the calibration nor the fossil record resolved the succession of appearance of the first three emerging subfamilies: Mastophoroideae, Corallinoideae, and Neogoniolithoideae. The development of the tetra/bisporangial conceptacle roofs by filaments surrounding and interspersed among the sporangial initials was an evolutionary novelty emerging at the Cretaceous-Paleogene boundary (~66 mya). This novelty was shared by the subfamilies Hydrolithoideae, Metagoniolithoideae, and Lithophylloideae, which diverged in the early Paleogene. Subclades within the Metagoniolithoideae and Lithophylloideae diversified in the late Oligocene-middle Miocene (~28-12 mya). The most common reef corallinaceans (Hydrolithon, Porolithon, Harveylithon, "Pneophyllum" conicum, and subclades within Lithophylloideae) appeared in this interval in the Indo-Australian Archipelago. © 2017 Phycological Society of America.

  13. Analysis of genetic diversity in Arrhenatherum elatius Germplasm ...

    African Journals Online (AJOL)

    Jane

    2011-07-25

    Jul 25, 2011 ... The genetic diversity of 19 Arrhenatherum elatius accessions was analyzed ... can be used as novel DNA markers for genomic .... phylogenies and evolutionary biology. .... struction Project of the Beijing Academy of Agriculture.

  14. Evolutionary history of the most speciose mammals: molecular phylogeny of muroid rodents.

    OpenAIRE

    Michaux, Johan; Reyes, A.; Catzeflis, F.

    2001-01-01

    Phylogenetic relationships between 32 species of rodents representing 14 subfamilies of Muridae and four subfamilies of Dipodidae were studied using sequences of the nuclear protein-coding genes Lecithin Cholesterol Acyl Transferase (LCAT) and von Willebrand Factor (vWF). An examination of some evolutionary properties of each data matrix indicates that the two genes are rather complementary, with lower rates of nonsynonymous substitutions for LCAT. Both markers exhibit a wide range of GC3 per...

  15. Adapting to Population Growth: The Evolutionary Alternative to Malthus

    Directory of Open Access Journals (Sweden)

    Axel Kristinsson

    2016-06-01

    Full Text Available A long-standing debate on the dynamics of population growth in human history has become polarized between a Malthusian stance and a Boserupian one. The former tends to view population growth as limited by carrying capacity, dependent on environment and technology, whereas the latter sees population growth itself as a major inducement to social, economic and technological developments. In this paper the authors experiment with approaching this debate by using recent developments in evolutionary theory. According to these, evolutionary principles, as expounded by Charles Darwin and subsequent evolutionary scientists, apply not only to biological evolution but also to social or cultural evolution. Here, the role of genes is taken over by culture and, since culture is much more pliable than our DNA, evolution speeds up. As the only organisms on Earth whose evolution relies as heavily on culture as on genes, humans have become extremely adaptable. Their hyper-adaptability suggest that humans, through their cultural evolution, have managed increasingly to adapt to their own growing population, thus succeeding in accommodating ever-growing numbers. This hypothesis fits the Boserupian approach to population very well but less so the Malthusian one, perhaps indicating a gradual shift from a Malthusian regime to a Boserupian one in human history. The hypothesis is discussed and examined through four case studies: The beginning of farming around Göbekli Tepe in southeast Turkey, the productive farming systems of Tiwanaku in South America, the population crisis of late medieval and early modern Iceland, and the ‘collapse’ of Rapa Nui (Easter Island.

  16. What was historical about natural history? Contingency and explanation in the science of living things.

    Science.gov (United States)

    Harrison, Peter

    2016-08-01

    There is a long-standing distinction in Western thought between scientific and historical modes of explanation. According to Aristotle's influential account of scientific knowledge there cannot be an explanatory science of what is contingent and accidental, such things being the purview of a descriptive history. This distinction between scientia and historia continued to inform assumptions about scientific explanation into the nineteenth century and is particularly significant when considering the emergence of biology and its displacement of the more traditional discipline of natural history. One of the consequences of this nineteenth-century transition was that while modern evolutionary theory retained significant, if often implicit, historical components, these were often overlooked as evolutionary biology sought to accommodate itself to a model of scientific explanation that involved appeals to laws of nature. These scientific aspirations of evolutionary biology sometimes sit uncomfortably with its historical dimension. This tension lies beneath recent philosophical critiques of evolutionary theory and its modes of explanation. Such critiques, however, overlook the fact that there are legitimate modes of historical explanation that do not require recourse to laws of nature. But responding to these criticisms calls for a more explicit recognition of the affinities between evolutionary biology and history. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  17. Species associations structured by environment and land-use history promote beta-diversity in a temperate forest.

    Science.gov (United States)

    Murphy, Stephen J; Audino, Livia D; Whitacre, James; Eck, Jenalle L; Wenzel, John W; Queenborough, Simon A; Comita, Liza S

    2015-03-01

    Patterns of diversity and community composition in forests are controlled by a combination of environmental factors, historical events, and stochastic or neutral mechanisms. Each of these processes has been linked to forest community assembly, but their combined contributions to alpha and beta-diversity in forests has not been well explored. Here we use variance partitioning to analyze approximately 40,000 individual trees of 49 species, collected within 137 ha of sampling area spread across a 900-ha temperate deciduous forest reserve in Pennsylvania to ask (1) To what extent is site-to-site variation in species richness and community composition of a temperate forest explained by measured environmental gradients and by spatial descriptors (used here to estimate dispersal-assembly or unmeasured, spatially structured processes)? (2) How does the incorporation of land-use history information increase the importance attributed to deterministic community assembly? and (3) How do the distributions and abundances of individual species within the community correlate with these factors? Environmental variables (i.e., topography, soils, and distance to stream), spatial descriptors (i.e., spatial eigenvectors derived from Cartesian coordinates), and land-use history variables (i.e., land-use type and intensity, forest age, and distance to road), explained about half of the variation in both species richness and community composition. Spatial descriptors explained the most variation, followed by measured environmental variables and then by land- use history. Individual species revealed variable responses to each of these sets of predictor variables. Several species were associated with stream habitats, and others were strictly delimited across opposing north- and south-facing slopes. Several species were also associated with areas that experienced recent (i.e., indicate that deterministic factors, including environmental and land-use history variables, are important drivers

  18. Investigating the Geological History of Asteroid 101955 Bennu Through Remote Sensing and Returned Sample Analyses

    Science.gov (United States)

    Messenger, S.; Connolly, H. C., Jr.; Lauretta, D. S.; Bottke, W. F.

    2014-01-01

    The NASA New Frontiers Mission OSRIS-REx will return surface regolith samples from near-Earth asteroid 101955 Bennu in September 2023. This target is classified as a B-type asteroid and is spectrally similar to CI and CM chondrite meteorites [1]. The returned samples are thus expected to contain primitive ancient Solar System materials that formed in planetary, nebular, interstellar, and circumstellar environments. Laboratory studies of primitive astromaterials have yielded detailed constraints on the origins, properties, and evolutionary histories of a wide range of Solar System bodies. Yet, the parent bodies of meteorites and cosmic dust are generally unknown, genetic and evolutionary relationships among asteroids and comets are unsettled, and links between laboratory and remote observations remain tenuous. The OSIRIS-REx mission will offer the opportunity to coordinate detailed laboratory analyses of asteroidal materials with known and well characterized geological context from which the samples originated. A primary goal of the OSIRIS-REx mission will be to provide detailed constraints on the origin and geological and dynamical history of Bennu through coordinated analytical studies of the returned samples. These microanalytical studies will be placed in geological context through an extensive orbital remote sensing campaign that will characterize the global geological features and chemical diversity of Bennu. The first views of the asteroid surface and of the returned samples will undoubtedly bring remarkable surprises. However, a wealth of laboratory studies of meteorites and spacecraft encounters with primitive bodies provides a useful framework to formulate priority scientific questions and effective analytical approaches well before the samples are returned. Here we summarize our approach to unraveling the geological history of Bennu through returned sample analyses.

  19. An Untold Story in Biology: The Historical Continuity of Evolutionary Ideas of Muslim Scholars from the 8th Century to Darwin's Time

    Science.gov (United States)

    Malik, Aamina H.; Ziermann, Janine M.; Diogo, Rui

    2018-01-01

    Textbooks on the history of biology and evolutionary thought do not mention the evolutionary ideas of Muslim scholars before Darwin's time. This is part of a trend in the West to minimise the contributions of non-Western scientists to biology, human anatomy and evolutionary biology. Therefore, this paper focuses on the contributions of…

  20. Phylogeny, Traits, and Biodiversity of a Neotropical Bat Assemblage: Close Relatives Show Similar Responses to Local Deforestation.

    Science.gov (United States)

    Frank, Hannah K; Frishkoff, Luke O; Mendenhall, Chase D; Daily, Gretchen C; Hadly, Elizabeth A

    2017-08-01

    If species' evolutionary pasts predetermine their responses to evolutionarily novel stressors, then phylogeny could predict species survival in an increasingly human-dominated world. To understand the role of phylogenetic relatedness in structuring responses to rapid environmental change, we focused on assemblages of Neotropical bats, an ecologically diverse and functionally important group. We examined how taxonomic and phylogenetic diversity shift between tropical forest and farmland. We then explored the importance of evolutionary history by ascertaining whether close relatives share similar responses to environmental change and which species traits might mediate these trends. We analyzed a 5-year data set (5,011 captures) from 18 sites in a countryside landscape in southern Costa Rica using statistical models that account and correct for imperfect detection of species across sites, spatial autocorrelation, and consideration of spatial scale. Taxonomic and phylogenetic diversity decreased with deforestation, and assemblages became more phylogenetically clustered. Species' responses to deforestation were strongly phylogenetically correlated. Body mass and absolute wing loading explained a substantial portion of species variation in species' habitat preferences, likely related to these traits' influence on maneuverability in cluttered forest environments. Our findings highlight the role that evolutionary history plays in determining which species will survive human impacts and the need to consider diversity metrics, evolutionary history, and traits together when making predictions about species persistence for conservation or ecosystem functioning.

  1. The Evolutionary History of MAPL (Mitochondria-Associated Protein Ligase and Other Eukaryotic BAM/GIDE Domain Proteins.

    Directory of Open Access Journals (Sweden)

    Jeremy G Wideman

    Full Text Available MAPL (mitochondria-associated protein ligase, also called MULAN/GIDE/MUL1 is a multifunctional mitochondrial outer membrane protein found in human cells that contains a unique BAM (beside a membrane domain and a C-terminal RING-finger domain. MAPL has been implicated in several processes that occur in animal cells such as NF-kB activation, innate immunity and antiviral signaling, suppression of PINK1/parkin defects, mitophagy in skeletal muscle, and caspase-dependent apoptosis. Previous studies demonstrated that the BAM domain is present in diverse organisms in which most of these processes do not occur, including plants, archaea, and bacteria. Thus the conserved function of MAPL and its BAM domain remains an open question. In order to gain insight into its conserved function, we investigated the evolutionary origins of MAPL by searching for homologues in predicted proteomes of diverse eukaryotes. We show that MAPL proteins with a conserved BAM-RING architecture are present in most animals, protists closely related to animals, a single species of fungus, and several multicellular plants and related green algae. Phylogenetic analysis demonstrated that eukaryotic MAPL proteins originate from a common ancestor and not from independent horizontal gene transfers from bacteria. We also determined that two independent duplications of MAPL occurred, one at the base of multicellular plants and another at the base of vertebrates. Although no other eukaryote genome examined contained a verifiable MAPL orthologue, BAM domain-containing proteins were identified in the protists Bigelowiella natans and Ectocarpus siliculosis. Phylogenetic analyses demonstrated that these proteins are more closely related to prokaryotic BAM proteins and therefore likely arose from independent horizontal gene transfers from bacteria. We conclude that MAPL proteins with BAM-RING architectures have been present in the holozoan and viridiplantae lineages since their very beginnings

  2. Promoter Motifs in NCLDVs: An Evolutionary Perspective

    Directory of Open Access Journals (Sweden)

    Graziele Pereira Oliveira

    2017-01-01

    Full Text Available For many years, gene expression in the three cellular domains has been studied in an attempt to discover sequences associated with the regulation of the transcription process. Some specific transcriptional features were described in viruses, although few studies have been devoted to understanding the evolutionary aspects related to the spread of promoter motifs through related viral families. The discovery of giant viruses and the proposition of the new viral order Megavirales that comprise a monophyletic group, named nucleo-cytoplasmic large DNA viruses (NCLDV, raised new questions in the field. Some putative promoter sequences have already been described for some NCLDV members, bringing new insights into the evolutionary history of these complex microorganisms. In this review, we summarize the main aspects of the transcription regulation process in the three domains of life, followed by a systematic description of what is currently known about promoter regions in several NCLDVs. We also discuss how the analysis of the promoter sequences could bring new ideas about the giant viruses’ evolution. Finally, considering a possible common ancestor for the NCLDV group, we discussed possible promoters’ evolutionary scenarios and propose the term “MEGA-box” to designate an ancestor promoter motif (‘TATATAAAATTGA’ that could be evolved gradually by nucleotides’ gain and loss and point mutations.

  3. Promoter Motifs in NCLDVs: An Evolutionary Perspective

    Science.gov (United States)

    Oliveira, Graziele Pereira; Andrade, Ana Cláudia dos Santos Pereira; Rodrigues, Rodrigo Araújo Lima; Arantes, Thalita Souza; Boratto, Paulo Victor Miranda; Silva, Ludmila Karen dos Santos; Dornas, Fábio Pio; Trindade, Giliane de Souza; Drumond, Betânia Paiva; La Scola, Bernard; Kroon, Erna Geessien; Abrahão, Jônatas Santos

    2017-01-01

    For many years, gene expression in the three cellular domains has been studied in an attempt to discover sequences associated with the regulation of the transcription process. Some specific transcriptional features were described in viruses, although few studies have been devoted to understanding the evolutionary aspects related to the spread of promoter motifs through related viral families. The discovery of giant viruses and the proposition of the new viral order Megavirales that comprise a monophyletic group, named nucleo-cytoplasmic large DNA viruses (NCLDV), raised new questions in the field. Some putative promoter sequences have already been described for some NCLDV members, bringing new insights into the evolutionary history of these complex microorganisms. In this review, we summarize the main aspects of the transcription regulation process in the three domains of life, followed by a systematic description of what is currently known about promoter regions in several NCLDVs. We also discuss how the analysis of the promoter sequences could bring new ideas about the giant viruses’ evolution. Finally, considering a possible common ancestor for the NCLDV group, we discussed possible promoters’ evolutionary scenarios and propose the term “MEGA-box” to designate an ancestor promoter motif (‘TATATAAAATTGA’) that could be evolved gradually by nucleotides’ gain and loss and point mutations. PMID:28117683

  4. Phylogenetic and population genetic analyses of diploid Leucaena (Leguminosae; Mimosoideae) reveal cryptic species diversity and patterns of divergent allopatric speciation.

    Science.gov (United States)

    Govindarajulu, Rajanikanth; Hughes, Colin E; Bailey, C Donovan

    2011-12-01

    Leucaena comprises 17 diploid species, five tetraploid species, and a complex series of hybrids whose evolutionary histories have been influenced by human seed translocation, cultivation, and subsequent spontaneous hybridization. Here we investigated patterns of evolutionary divergence among diploid Leucaena through comprehensively sampled multilocus phylogenetic and population genetic approaches to address species delimitation, interspecific relationships, hybridization, and the predominant mode of speciation among diploids. Parsimony- and maximum-likelihood-based phylogenetic approaches were applied to 59 accessions sequenced for six SCAR-based nuclear loci, nrDNA ITS, and four cpDNA regions. Population genetic comparisons included 1215 AFLP loci representing 42 populations and 424 individuals. Phylogenetic results provided a well-resolved hypothesis of divergent species relationships, recovering previously recognized clades of diploids as well as newly resolved relationships. Phylogenetic and population genetic assessments identified two cryptic species that are consistent with geography and morphology. Findings from this study highlight the importance and utility of multilocus data in the recovery of complex evolutionary histories. The results are consistent with allopatric divergence representing the predominant mode of speciation among diploid Leucaena. These findings contrast with the potential hybrid origin of several tetraploid species and highlight the importance of human translocation of seed to the origin of these tetraploids. The recognition of one previously unrecognized species (L. cruziana) and the elevation of another taxon (L. collinsii subsp. zacapana) to specific status (L. zacapana) is consistent with a growing number of newly diagnosed species from neotropical seasonally dry forests, suggesting these communities harbor greater species diversity than previously recognized.

  5. Evolutionary responses of native plant species to invasive plants: a review.

    Science.gov (United States)

    Oduor, Ayub M O

    2013-12-01

    Strong competition from invasive plant species often leads to declines in abundances and may, in certain cases, cause localized extinctions of native plant species. Nevertheless, studies have shown that certain populations of native plant species can co-exist with invasive plant species,suggesting the possibility of adaptive evolutionary responses of those populations to the invasive plants. Empirical inference of evolutionary responses of the native plant species to invasive plants has involved experiments comparing two conspecific groups of native plants for differences in expression of growth/reproductive traits: populations that have experienced competition from the invasive plant species (i.e. experienced natives) versus populations with no known history of interactions with the invasive plant species (i.e. naıve natives). Here, I employ a meta-analysis to obtain a general pattern of inferred evolutionary responses of native plant species from 53 such studies. In general, the experienced natives had significantly higher growth/reproductive performances than naıve natives, when grown with or without competition from invasive plants.While the current results indicate that certain populations of native plant species could potentially adapt evolutionarily to invasive plant species, the ecological and evolutionary mechanisms that probably underlie such evolutionary responses remain unexplored and should be the focus of future studies.

  6. An Evolutionary Model of Spatial Competition

    DEFF Research Database (Denmark)

    Knudsen, Thorbjørn; Winter, Sidney G.

      This paper sets forth an evolutionary model in which diverse businesses, with diverse offerings, compete in a stylized physical space.  When a business firm attempts to expand its activity, so as to profit further from the capabilities it has developed, it necessarily does so in a "new location...... as well in the new environment as they did in the old; the firm may respond with effort to locate appropriate environments or by modification of its routines.  Tradeoffs are presented between the complexity of a business model and its replication costs,  as well as issues involving response....... Randomly generated firm policies are tested first by a local market environment, and then, if success leads the firm to grow spatially, in a gradually expanding environment.  In the initial experiments reported here, we show that the model generates configurations that reflect features of the exogenous...

  7. Global gradients in vertebrate diversity predicted by historical area-productivity dynamics and contemporary environment.

    Directory of Open Access Journals (Sweden)

    Walter Jetz

    Full Text Available Broad-scale geographic gradients in species richness have now been extensively documented, but their historical underpinning is still not well understood. While the importance of productivity, temperature, and a scale dependence of the determinants of diversity is broadly acknowledged, we argue here that limitation to a single analysis scale and data pseudo-replication have impeded an integrated evolutionary and ecological understanding of diversity gradients. We develop and apply a hierarchical analysis framework for global diversity gradients that incorporates an explicit accounting of past environmental variation and provides an appropriate measurement of richness. Due to environmental niche conservatism, organisms generally reside in climatically defined bioregions, or "evolutionary arenas," characterized by in situ speciation and extinction. These bioregions differ in age and their total productivity and have varied over time in area and energy available for diversification. We show that, consistently across the four major terrestrial vertebrate groups, current-day species richness of the world's main 32 bioregions is best explained by a model that integrates area and productivity over geological time together with temperature. Adding finer scale variation in energy availability as an ecological predictor of within-bioregional patterns of richness explains much of the remaining global variation in richness at the 110 km grain. These results highlight the separate evolutionary and ecological effects of energy availability and provide a first conceptual and empirical integration of the key drivers of broad-scale richness gradients. Avoiding the pseudo-replication that hampers the evolutionary interpretation of non-hierarchical macroecological analyses, our findings integrate evolutionary and ecological mechanisms at their most relevant scales and offer a new synthesis regarding global diversity gradients.

  8. Classification, Naming and Evolutionary History of Glycosyltransferases from Sequenced Green and Red Algal Genomes

    DEFF Research Database (Denmark)

    Ulvskov, Peter; Paiva, Dionisio Soares; Domozych, David

    2013-01-01

    . In order to elucidate possible evolutionary links between the three advanced lineages in Archaeplastida, a genomic analysis was initiated. Fully sequenced genomes from the Rhodophyta and Virideplantae and the well-defined CAZy database on glycosyltransferases were included in the analysis. The number...

  9. Genes, communities & invasive species: understanding the ecological and evolutionary dynamics of host-pathogen interactions.

    Science.gov (United States)

    Burdon, J J; Thrall, P H; Ericson, L

    2013-08-01

    Reciprocal interactions between hosts and pathogens drive ecological, epidemiological and co-evolutionary trajectories, resulting in complex patterns of diversity at population, species and community levels. Recent results confirm the importance of negative frequency-dependent rather than 'arms-race' processes in the evolution of individual host-pathogen associations. At the community level, complex relationships between species abundance and diversity dampen or alter pathogen impacts. Invasive pathogens challenge these controls reflecting the earliest stages of evolutionary associations (akin to arms-race) where disease effects may be so great that they overwhelm the host's and community's ability to respond. Viewing these different stabilization/destabilization phases as a continuum provides a valuable perspective to assessment of the role of genetics and ecology in the dynamics of both natural and invasive host-pathogen associations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Lactococcus garvieae: where is it from? A first approach to explore the evolutionary history of this emerging pathogen.

    Directory of Open Access Journals (Sweden)

    Chiara Ferrario

    Full Text Available The population structure and diversity of Lactococcus garvieae, an emerging pathogen of increasing clinical significance, was determined at both gene and genome level. Selected lactococcal isolates of various origins were analyzed by a multi locus sequence typing (MLST. This gene-based analysis was compared to genomic characteristics, estimated through the complete genome sequences available in database. The MLST identified two branches containing the majority of the strains and two branches bearing one strain each. One strain was particularly differentiated from the other L. garvieae strains, showing a significant genetic distance. The genomic characteristics, correlated to the MLST-based phylogeny, indicated that this "separated strain" appeared first and could be considered the evolutionary intermediate between Lactococcus lactis and L. garvieae main clusters. A preliminary genome analysis of L. garvieae indicated a pan-genome constituted of about 4100 genes, which included 1341 core genes and 2760 genes belonging to the dispensable genome. A total of 1491 Clusters of Orthologous Genes (COGs were found to be specific to the 11 L. garvieae genomes, with the genome of the "separated strain" showing the highest presence of unique genes.

  11. War, Trauma and Children's Development: Observations from a Modern Evolutionary Perspective

    Science.gov (United States)

    Belsky, Jay

    2008-01-01

    Lethal intergroup conflict has been part of the human experience ever since our species emerged on the African savannah. Modern evolutionary thinking suggests that children's development could have evolved a variety of responses to it, some of which are highlighted upon considering, from the field of behavioural ecology, life-history theory and,…

  12. Defensive traits exhibit an evolutionary trade-off and drive diversification in ants.

    Science.gov (United States)

    Blanchard, Benjamin D; Moreau, Corrie S

    2017-02-01

    Evolutionary biologists have long predicted that evolutionary trade-offs among traits should constrain morphological divergence and species diversification. However, this prediction has yet to be tested in a broad evolutionary context in many diverse clades, including ants. Here, we reconstruct an expanded ant phylogeny representing 82% of ant genera, compile a new family-wide trait database, and conduct various trait-based analyses to show that defensive traits in ants do exhibit an evolutionary trade-off. In particular, the use of a functional sting negatively correlates with a suite of other defensive traits including spines, large eye size, and large colony size. Furthermore, we find that several of the defensive traits that trade off with a sting are also positively correlated with each other and drive increased diversification, further suggesting that these traits form a defensive suite. Our results support the hypothesis that trade-offs in defensive traits significantly constrain trait evolution and influence species diversification in ants. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  13. Genetic structure and hierarchical population divergence history of Acer mono var. mono in South and Northeast China.

    Directory of Open Access Journals (Sweden)

    Chunping Liu

    Full Text Available Knowledge of the genetic structure and evolutionary history of tree species across their ranges is essential for the development of effective conservation and forest management strategies. Acer mono var. mono, an economically and ecologically important maple species, is extensively distributed in Northeast China (NE, whereas it has a scattered and patchy distribution in South China (SC. In this study, the genetic structure and demographic history of 56 natural populations of A. mono var. mono were evaluated using seven nuclear microsatellite markers. Neighbor-joining tree and STRUCTURE analysis clearly separated populations into NE and SC groups with two admixed-like populations. Allelic richness significantly decreased with increasing latitude within the NE group while both allelic richness and expected heterozygosity showed significant positive correlation with latitude within the SC group. Especially in the NE region, previous studies in Quercus mongolica and Fraxinus mandshurica have also detected reductions in genetic diversity with increases in latitude, suggesting this pattern may be common for tree species in this region, probably due to expansion from single refugium following the last glacial maximum (LGM. Approximate Bayesian Computation-based analysis revealed two major features of hierarchical population divergence in the species' evolutionary history. Recent divergence between the NE group and the admixed-like group corresponded to the LGM period and ancient divergence of SC groups took place during mid-late Pleistocene period. The level of genetic differentiation was moderate (FST  = 0.073; G'ST  = 0.278 among all populations, but significantly higher in the SC group than the NE group, mirroring the species' more scattered distribution in SC. Conservation measures for this species are proposed, taking into account the genetic structure and past demographic history identified in this study.

  14. Genetic Structure and Hierarchical Population Divergence History of Acer mono var. mono in South and Northeast China

    Science.gov (United States)

    Shen, Hailong; Hu, Lijiang; Saito, Yoko; Ide, Yuji

    2014-01-01

    Knowledge of the genetic structure and evolutionary history of tree species across their ranges is essential for the development of effective conservation and forest management strategies. Acer mono var. mono, an economically and ecologically important maple species, is extensively distributed in Northeast China (NE), whereas it has a scattered and patchy distribution in South China (SC). In this study, the genetic structure and demographic history of 56 natural populations of A. mono var. mono were evaluated using seven nuclear microsatellite markers. Neighbor-joining tree and STRUCTURE analysis clearly separated populations into NE and SC groups with two admixed-like populations. Allelic richness significantly decreased with increasing latitude within the NE group while both allelic richness and expected heterozygosity showed significant positive correlation with latitude within the SC group. Especially in the NE region, previous studies in Quercus mongolica and Fraxinus mandshurica have also detected reductions in genetic diversity with increases in latitude, suggesting this pattern may be common for tree species in this region, probably due to expansion from single refugium following the last glacial maximum (LGM). Approximate Bayesian Computation-based analysis revealed two major features of hierarchical population divergence in the species’ evolutionary history. Recent divergence between the NE group and the admixed-like group corresponded to the LGM period and ancient divergence of SC groups took place during mid-late Pleistocene period. The level of genetic differentiation was moderate (FST = 0.073; G′ST = 0.278) among all populations, but significantly higher in the SC group than the NE group, mirroring the species’ more scattered distribution in SC. Conservation measures for this species are proposed, taking into account the genetic structure and past demographic history identified in this study. PMID:24498039

  15. Genetic structure and hierarchical population divergence history of Acer mono var. mono in South and Northeast China.

    Science.gov (United States)

    Liu, Chunping; Tsuda, Yoshiaki; Shen, Hailong; Hu, Lijiang; Saito, Yoko; Ide, Yuji

    2014-01-01

    Knowledge of the genetic structure and evolutionary history of tree species across their ranges is essential for the development of effective conservation and forest management strategies. Acer mono var. mono, an economically and ecologically important maple species, is extensively distributed in Northeast China (NE), whereas it has a scattered and patchy distribution in South China (SC). In this study, the genetic structure and demographic history of 56 natural populations of A. mono var. mono were evaluated using seven nuclear microsatellite markers. Neighbor-joining tree and STRUCTURE analysis clearly separated populations into NE and SC groups with two admixed-like populations. Allelic richness significantly decreased with increasing latitude within the NE group while both allelic richness and expected heterozygosity showed significant positive correlation with latitude within the SC group. Especially in the NE region, previous studies in Quercus mongolica and Fraxinus mandshurica have also detected reductions in genetic diversity with increases in latitude, suggesting this pattern may be common for tree species in this region, probably due to expansion from single refugium following the last glacial maximum (LGM). Approximate Bayesian Computation-based analysis revealed two major features of hierarchical population divergence in the species' evolutionary history. Recent divergence between the NE group and the admixed-like group corresponded to the LGM period and ancient divergence of SC groups took place during mid-late Pleistocene period. The level of genetic differentiation was moderate (FST  = 0.073; G'ST  = 0.278) among all populations, but significantly higher in the SC group than the NE group, mirroring the species' more scattered distribution in SC. Conservation measures for this species are proposed, taking into account the genetic structure and past demographic history identified in this study.

  16. Reconsidering the classification of tick-borne encephalitis virus within the Siberian subtype gives new insights into its evolutionary history.

    Science.gov (United States)

    Kovalev, S Y; Mukhacheva, T A

    2017-11-01

    Tick-borne encephalitis is widespread in Eurasia and transmitted by Ixodes ticks. Classification of its causative agent, tick-borne encephalitis virus (TBEV), includes three subtypes, namely Far-Eastern, European, and Siberian (TBEV-Sib), as well as a group of 886-84-like strains with uncertain taxonomic status. TBEV-Sib is subdivided into three phylogenetic lineages: Baltic, Asian, and South-Siberian. A reason to reconsider TBEV-Sib classification was the analysis of 186 nucleotide sequences of an E gene fragment submitted to GenBank during the last two years. Within the South-Siberian lineage, we have identified a distinct group with prototype strains Aina and Vasilchenko as an individual lineage named East-Siberian. The analysis of reclassified lineages has promoted a new model of the evolutionary history of TBEV-Sib lineages and TBEV-Sib as a whole. Moreover, we present arguments supporting separation of 886-84-like strains into an individual TBEV subtype, which we propose to name Baikalian (TBEV-Bkl). Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Large Diversity of Nonstandard Genes and Dynamic Evolution of Chloroplast Genomes in Siphonous Green Algae (Bryopsidales, Chlorophyta).

    Science.gov (United States)

    Cremen, Ma Chiela M; Leliaert, Frederik; Marcelino, Vanessa R; Verbruggen, Heroen

    2018-04-01

    Chloroplast genomes have undergone tremendous alterations through the evolutionary history of the green algae (Chloroplastida). This study focuses on the evolution of chloroplast genomes in the siphonous green algae (order Bryopsidales). We present five new chloroplast genomes, which along with existing sequences, yield a data set representing all but one families of the order. Using comparative phylogenetic methods, we investigated the evolutionary dynamics of genomic features in the order. Our results show extensive variation in chloroplast genome architecture and intron content. Variation in genome size is accounted for by the amount of intergenic space and freestanding open reading frames that do not show significant homology to standard plastid genes. We show the diversity of these nonstandard genes based on their conserved protein domains, which are often associated with mobile functions (reverse transcriptase/intron maturase, integrases, phage- or plasmid-DNA primases, transposases, integrases, ligases). Investigation of the introns showed proliferation of group II introns in the early evolution of the order and their subsequent loss in the core Halimedineae, possibly through RT-mediated intron loss.

  18. Phylogenetic diversity of macromycetes and woody plants along an elevational gradient in Eastern Mexico

    Science.gov (United States)

    Marko Gomez-Hernandez; Guadalupe Williams-Linera; D. Jean Lodge; Roger Guevara; Eduardo Ruiz-Sanchez; Etelvina Gandara

    2016-01-01

    Phylogenetic information provides insight into the ecological and evolutionary processes that organize species assemblages. We compared patterns of phylogenetic diversity among macromycete and woody plant communities along a steep elevational gradient in eastern Mexico to better understand the evolutionary processes that structure their communities. Macrofungi and...

  19. Evolutionary history of the European whitefish Coregonus lavaretus (L.) species complex as inferred from mtDNA phylogeography and gill-raker numbers.

    Science.gov (United States)

    Østbye, K; Bernatchez, L; Naesje, T F; Himberg, K-J M; Hindar, K

    2005-12-01

    We compared mitochondrial DNA and gill-raker number variation in populations of the European whitefish Coregonus lavaretus (L.) species complex to illuminate their evolutionary history, and discuss mechanisms behind diversification. Using single-strand conformation polymorphism (SSCP) and sequencing 528 bp of combined parts of the cytochrome oxidase b (cyt b) and NADH dehydrogenase subunit 3 (ND3) mithochondrial DNA (mtDNA) regions, we documented phylogeographic relationships among populations and phylogeny of mtDNA haplotypes. Demographic events behind geographical distribution of haplotypes were inferred using nested clade analysis (NCA) and mismatch distribution. Concordance between operational taxonomical groups, based on gill-raker numbers, and mtDNA patterns was tested. Three major mtDNA clades were resolved in Europe: a North European clade from northwest Russia to Denmark, a Siberian clade from the Arctic Sea to southwest Norway, and a South European clade from Denmark to the European Alps, reflecting occupation in different glacial refugia. Demographic events inferred from NCA were isolation by distance, range expansion, and fragmentation. Mismatch analysis suggested that clades which colonized Fennoscandia and the Alps expanded in population size 24 500-5800 years before present, with minute female effective population sizes, implying small founder populations during colonization. Gill-raker counts did not commensurate with hierarchical mtDNA clades, and poorly with haplotypes, suggesting recent origin of gill-raker variation. Whitefish designations based on gill-raker numbers were not associated with ancient clades. Lack of congruence in morphology and evolutionary lineages implies that the taxonomy of this species complex should be reconsidered.

  20. Transdisciplinary Perspectives in Bioethics: A Co-evolutionary Introduction from the Big History

    OpenAIRE

    Javier Collado-Ruano

    2016-01-01

    The main objective of this work is to expand the bioethics notion expressed in the Article 17th of the Universal Declaration on Bioethics and Human Rights, concerning the interconnections between human beings and other life forms. For this purpose, it is combined the transdisciplinary methodology with the theoretical framework of the “Big History” to approach the co-evolutionary phenomena that life is developing on Earth for some 3.8 billion years. As a result, the study introduces us to t...