WorldWideScience

Sample records for divalent oxidation state

  1. A computational study of adsorption of divalent metal ions on graphene oxide

    Directory of Open Access Journals (Sweden)

    Somphob Thompho

    2017-12-01

    Full Text Available Adsorption of divalent metal ions (Pb2+,Cd2+, Zn2+,Cu2+ on graphene oxide (GO was studied using density functional theory (DFT. Adsorption geometries and energies, as well as the nature of the binding energy, were calculated for the interaction of divalent metal ions with oxygen-containing groups on the surface of GO. The configurations of the complexes were modeled by placing the divalent metal ions above the center and perpendicular to the surface. Binding of Cu2+ to the GO sheet was predicted to be much stronger than that for other divalent metal ions. Calculated results show good agreement with experimental observations and provide useful information for environmental pollution cleanup.

  2. Influence of divalent metal ions on degradation of dimethylsulphide ...

    African Journals Online (AJOL)

    SERVER

    2007-06-04

    Jun 4, 2007 ... Dimethylsulphide degradation by intact cells of Thiobacillus thioparus TK-m was stimulated by the addition of divalent .... plastic vials in ice-cooled water. .... tization of authotrophic sulphur bacteria oxidizing dimethyldisulphide.

  3. Raman spectroscopic study of the oxidation state of Eu in molten LiCl-KCl

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung; Yun, Jong-Il [KAIST, Daejeon(Korea, Republic of)

    2016-10-15

    Spectroscopy can provide high reliability for the quantitative analysis of such system. The molar absorptivity of Eu(II) at 325 nm is reported as about 1645 M{sup -1}cm{sup -1}, which is too high to apply to higher concentration. A high-temperature Raman spectroscopy has been set and employed for analyzing the molecular structure and coordination complex and investigating the oxidation state of europium in molten LiCl-KCl. Europium can be present in divalent state while many other lanthanides exist in trivalent state. The thermodynamic properties of europium ions have been studied using electrochemical methods, spectroscopic methods, and EPR technique. Although there has been discrepancy of the reduced amount of europium in previous works, the majority of Eu(III) is thought to be reduced to Eu(II) in molten LiCl-KCl spontaneously at relatively low concentration (< 7.5 × 10{sup -4} M). Raman spectroscopy was employed to investigate the oxidation state of EuClx in LiCl-KCl at 500 .deg. C. The Raman scattering results suggest the majority of trivalent europium is reduced to divalent state with the composition change by vaporization. The Raman bands show highly asymmetric structure, quite different from regular octahedral structure.

  4. A microbial-mineralization-inspired approach for synthesis of manganese oxide nanostructures with controlled oxidation states and morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Oba, Manabu; Oaki, Yuya; Imai, Hiroaki [Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2010-12-21

    Manganese oxide nanostructures are synthesized by a route inspired by microbial mineralization in nature. The combination of organic molecules, which include antioxidizing and chelating agents, facilitates the parallel control of oxidation states and morphologies in an aqueous solution at room temperature. Divalent manganese hydroxide (Mn(OH){sub 2}) is selectively obtained as a stable dried powder by using a combination of ascorbic acid as an antioxidizing agent and other organic molecules with the ability to chelate to manganese ions. The topotactic oxidation of the resultant Mn(OH){sub 2} leads to the selective formation of trivalent manganese oxyhydroxide ({beta}-MnOOH) and trivalent/tetravalent sodium manganese oxide (birnessite, Na{sub 0.55}Mn{sub 2}O{sub 4}.1.5H{sub 2}O). For microbial mineralization in nature, similar synthetic routes via intermediates have been proposed in earlier works. Therefore, these synthetic routes, which include in the present study the parallel control over oxidation states and morphologies of manganese oxides, can be regarded as new biomimetic routes for synthesis of transition metal oxide nanostructures. As a potential application, it is demonstrated that the resultant {beta}-MnOOH nanostructures perform as a cathode material for lithium ion batteries. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Optical study of gamma irradiated sodium metaphosphate glasses containing divalent metal oxide MO (ZnO or CdO

    Directory of Open Access Journals (Sweden)

    E. Nabhan

    Full Text Available Sodium metaphosphate glasses containing divalent metal oxide, ZnO or CdO with composition 50 P2O5 – (50 − x Na2O – x MO (ZnO, or CdO where x = 0, 10, 20 (mol% were prepared by conventional melt method. UV/visible spectroscopy and FTIR spectroscopy are measured before and after exposing to successive gamma irradiation doses (5–80 kGy. The optical absorption spectra results of the samples before irradiation reveal a strong UV absorption band at (∼230 nm which is related to unavoided iron impurities. The effects of gamma irradiation on the optical spectral properties of the various glasses have been compared. From the optical absorption spectral data, the optical band gap is evaluated. The main structural groups and the influence of both divalent metal oxide and gamma irradiation effect on the structural vibrational groups are realized through IR spectroscopy. The FTIR spectra of γ-irradiated samples are characterized by the stability of the number and position for the main characteristic band of phosphate groups. To better understood the structural changes during γ-irradiation, a deconvolution of FTIR spectra in the range 650–1450 cm−1 is made. The FTIR deconvolution results found evidence that, the changes occurring after gamma irradiation have been related to irradiation induced structural defects and compositional changes. Keywords: Sodium metaphosphate glass, UV–visible spectra, IR spectra, Deconvolution, Optical band gap, Gamma ray

  6. Aging of trivalent metal hydroxide/oxide gels in divalent metal salt ...

    Indian Academy of Sciences (India)

    Unknown

    3' gels do not form LDHs on aging in any of the divalent metal salts. In general, conditions .... values of I pH and II pH for all the systems investigated in this paper are given in ... spectra were obtained using a Nicolet Model Impact. 400D FTIR ...

  7. Chromium Oxidation State in Planetary Basalts: Oxygen Fugacity Indicator and Critical Variable for Cr-Spinel Stability

    Science.gov (United States)

    Bell, A. S.; Burger, P. V.; Le, Loan; Papike, J. J.; Jone, J.; Shearer, C. K.

    2014-01-01

    Cr is a ubiquitous and relatively abundant minor element in basaltic, planetary magmas. At the reduced oxidation states (divalent and trivalent forms. The ratio of trivalent to divalent Cr present in the melt has many consequences for the stability and Cr concentration of magmatic phases such as spinel, clinopyroxene, and olivine. However, understanding the Cr valence in quenched melts has historically been plagued with analytical issues, and only recently has reliable methodology for quantifying Cr valence in quenched melts been developed. Despite this substantial difficulty, the pioneering works of Hanson and Jones and Berry and O'Neill provided important insights into the oxidation state of Cr in in silicate melts. Here we present a series of 1-bar gas mixing experiments performed with a Fe-rich basaltic melt in which have determined the Cr redox ratio of the melt at over a range of fO2 values by measuring this quantity in olivine with X-ray Absorption Near Edge Spectroscopy (XANES). The measured Cr redox ratio of the olivine phenocrysts can be readily converted to the ratio present in the conjugate melt via the ratio of crystal-liquid partition coefficients for Cr3+ and Cr2+. We have applied these results to modeling Cr spinel stability and Cr redox ratios in a primitive, iron-rich martian basalt.

  8. Use of MgO doped with a divalent or trivalent metal cation for removing arsenic from water

    Science.gov (United States)

    Moore, Robert C; Holt-Larese, Kathleen C; Bontchev, Ranko

    2013-08-13

    Systems and methods for use of magnesium hydroxide, either directly or through one or more precursors, doped with a divalent or trivalent metal cation, for removing arsenic from drinking water, including water distribution systems. In one embodiment, magnesium hydroxide, Mg(OH).sub.2 (a strong adsorbent for arsenic) doped with a divalent or trivalent metal cation is used to adsorb arsenic. The complex consisting of arsenic adsorbed on Mg(OH).sub.2 doped with a divalent or trivalent metal cation is subsequently removed from the water by conventional means, including filtration, settling, skimming, vortexing, centrifugation, magnetic separation, or other well-known separation systems. In another embodiment, magnesium oxide, MgO, is employed, which reacts with water to form Mg(OH).sub.2. The resulting Mg(OH).sub.2 doped with a divalent or trivalent metal cation, then adsorbs arsenic, as set forth above. The method can also be used to treat human or animal poisoning with arsenic.

  9. Use of MgO doped with a divalent or trivalent metal cation for removing arsenic from water

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert C.; Larese, Kathleen Caroline; Bontchev, Ranko Panayotov

    2017-05-30

    Systems and methods for use of magnesium hydroxide, either directly or through one or more precursors, doped with a divalent or trivalent metal cation, for removing arsenic from drinking water, including water distribution systems. In one embodiment, magnesium hydroxide, Mg(OH).sub.2 (a strong adsorbent for arsenic) doped with a divalent or trivalent metal cation is used to adsorb arsenic. The complex consisting of arsenic adsorbed on Mg(OH).sub.2 doped with a divalent or trivalent metal cation is subsequently removed from the water by conventional means, including filtration, settling, skimming, vortexing, centrifugation, magnetic separation, or other well-known separation systems. In another embodiment, magnesium oxide, MgO, is employed, which reacts with water to form Mg(OH).sub.2. The resulting Mg(OH).sub.2 doped with a divalent or trivalent metal cation, then adsorbs arsenic, as set forth above. The method can also be used to treat human or animal poisoning with arsenic.

  10. Fermi Surface Properties of Eu-Divalent and Eu-Trivalent Electronic States with the AuCu3-type Cubic Structure

    International Nuclear Information System (INIS)

    Nakamura, Ai; Takeuchi, Tetsuya; Tatetsu, Yasutomi; Maehira, Takahiro; Hedo, Masato; Nakama, Takao; Ōnuki, Yoshichika; Harima, Hisatomo

    2015-01-01

    The electronic states in EuBi 3 and EuPd 3 are known to be Eu-divalent and Eu- trivalent, respectively, from the previous studies using polycrystal samples. In the present study, we succeeded in growing high-quality single crystals, and carried out the de Haas-van Alphen (dHvA) measurements and energy band calculations to clarify the Fermi surface properties

  11. Oxidation states of Fe and Ti in blue sapphire

    International Nuclear Information System (INIS)

    Wongrawang, P; Wongkokua, W; Monarumit, N; Thammajak, N; Wathanakul, P

    2016-01-01

    X-ray absorption near-edge spectroscopy (XANES) can be used to study the oxidation state of a dilute system such as transition metal defects in solid-state samples. In blue sapphire, Fe and Ti are defects that cause the blue color. Inter-valence charge transfer (IVCT) between Fe 2+ and Ti 4+ has been proposed to describe the optical color’s origin. However, the existence of divalent iron cations has not been thoroughly investigated. Fluorescent XANES is therefore employed to study K-edge absorptions of Fe and Ti cations in various blue sapphire samples including natural, synthetic, diffused and heat-treated sapphires. All the samples showed an Fe absorption edge at 7124 eV, corresponding to the Fe 3+ state; and Ti at 4984 eV, corresponding to Ti 4+ . From these results, we propose Fe 3+ -Ti 4+ mixed acceptor states located at 1.75 eV and 2.14 eV above the valence band of corundum, that correspond to 710 nm and 580 nm bands of UV–vis absorption spectra, to describe the cause of the color of blue sapphire. (paper)

  12. Coloration of chromium-doped yttrium aluminum garnet single-crystal fibers using a divalent codopant

    International Nuclear Information System (INIS)

    Tissue, B.M.; Jia, W.; Lu, L.; Yen, W.M.

    1991-01-01

    We have grown single-crystal fibers of Cr:YAG and Cr,Ca:YAG under oxidizing and reducing conditions by the laser-heated-pedestal-growth method. The Cr:YAG crystals were light green due to Cr 3+ in octahedral sites, while the Cr,Ca:YAG crystals were brown. The presence of the divalent codopant was the dominant factor determining the coloration in these single-crystal fibers, while the oxidizing power of the growth atmosphere had little effect on the coloration. The Cr,Ca:YAG had a broad absorption band centered at 1.03 μm and fluoresced from 1.1 to 1.7 μm, with a room-temperature lifetime of 3.5 μs. The presence of both chromium and a divalent codopant were necessary to create the optically-active center which produces the near-infrared emission. Doping with only Ca 2+ created a different coloration with absorption in the blue and ultraviolet. The coloration in the Cr,Ca:YAG is attributed to Cr 4+ and is produced in as-grown crystals without irradiation or annealing, as has been necessary in previous work

  13. Improving the Performance of Lithium Manganese Phosphate Through Divalent Cation Substitution

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Guoying; Richardson, Thomas J.

    2008-03-03

    Highly crystalline samples of LiMnPO{sub 4} and its analogs with partial substitution of Mn by divalent Mg, Cu, Zn, and Ni were prepared by hydrothermal synthesis and characterized by x-ray diffraction and infrared spectroscopy. Chemical oxidation produced two-phase mixtures of the initial phases LiMn{sub (1-y)}M{sub y}PO{sub 4} and the delithiated forms, Li{sub y}Mn{sub (1-y)}M{sub y}PO{sub 4}, all with the olivine structure. The extent of oxidation depended upon the quantity of oxidizing agent used and on the identity of the substituent ions. Mg, Ni and Cu were found to increase the level of delithation relative to that in pure LiMnPO{sub 4}. Mg was also shown to reduce the tendency of the oxidized phase to absorb water.

  14. Adsorption of trace elements of radionuclides on hydrous iron oxides

    International Nuclear Information System (INIS)

    Music, S.; Ristic, M.

    1988-01-01

    Factors that influence the adsorption of trace elements or radionuclides on hydrous iron oxides were investigated. The adsorption of monovalent cations (Cs + , Rb + ) on hydrous iron oxides is not strongly pH-dependent and it can be regarded as nonspecific. On the other hand, the adsorption of Ag + , divalent cations (Zn 2+ , Cd 2+ , Mn 2+ , Sr 2+ ) or trivalent cations (Cr 3+ , La 3+ , Ce 3+ , Eu 3+ , Gd 3+ , Er 3+ , Yb 3+ ) is strongly pH-dependent. The regularities of the adsorption of these cations on hydrous iron oxides are discussed. The differences in the adsorption behaviour of some divalent and trivalent cations are also explained. Freshly precipitated iron(III) hydroxide can be used for the decontamination of radionuclides from low-level waste solutions. However, the efficacy of decontamination depends on the oxidation state and the chemical properties of radionuclides. (author) 40 refs.; 9 figs

  15. Highly reversible open framework nanoscale electrodes for divalent ion batteries.

    Science.gov (United States)

    Wang, Richard Y; Wessells, Colin D; Huggins, Robert A; Cui, Yi

    2013-01-01

    The reversible insertion of monovalent ions such as lithium into electrode materials has enabled the development of rechargeable batteries with high energy density. Reversible insertion of divalent ions such as magnesium would allow the creation of new battery chemistries that are potentially safer and cheaper than lithium-based batteries. Here we report that nanomaterials in the Prussian Blue family of open framework materials, such as nickel hexacyanoferrate, allow for the reversible insertion of aqueous alkaline earth divalent ions, including Mg(2+), Ca(2+), Sr(2+), and Ba(2+). We show unprecedented long cycle life and high rate performance for divalent ion insertion. Our results represent a step forward and pave the way for future development in divalent batteries.

  16. Thermal study of monovalent-divalent phase transition in npBifc-F1TCNQ System

    International Nuclear Information System (INIS)

    Sato, Michiko; Nishio, Yutaka; Kajita, Koji; Mochida, Tomoyuki

    2009-01-01

    In a new molecular solid composed of di-neopentyl-biferrocene (npBifc) and fluorotetracyanoquinodimethane (F 1 TCNQ) 3 , Mochida reported the discovery of a reversible valence transfer that can be regarded as an 'ionic(I)-ionic(II)' phase transfer between the monovalent state (D + A - ) and the divalent state (D 2+ A 2- ). We have studied thermo-dynamical properties of this transformation for this complex using the differential thermal analyses (DTA). We observed a broad excess specific heat with multi-peaks attributed to micro-domain structure over the corresponding temperature range (100-150K) accompanied by temperature hysteresis of 7K. The transition entropy (ΔS) was determined to be 22 ± 2 J/mol-K and almost satisfied a Clausius-Clapeyron relation. These experimental results provide an experimental confirmation of the first order phase transition for the monovalent-divalent transfer. At the transition, we observe that the electronic degrees of freedom remained constant values, while large entropy absorbed crossing from low temperature phase to high temperature one is contributed by the lattice one. We finally estimated the internal energy and concluded that delicate energy valance between Madelung, ionization and affinity energies enable this system to exhibit a temperature induce monovalent-divalent phase transition.

  17. Thermal study of monovalent-divalent phase transition in npBifc-F{sub 1}TCNQ System

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Michiko; Nishio, Yutaka; Kajita, Koji [Department of Physics, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510 (Japan); Mochida, Tomoyuki, E-mail: nishio@ph.sci.toho-u.ac.j [Department of Chemistry, Faculty of Science, Kobe University, Rokkodai, Nada, Kobe 657-8501 (Japan)

    2009-03-01

    In a new molecular solid composed of di-neopentyl-biferrocene (npBifc) and fluorotetracyanoquinodimethane (F{sub 1}TCNQ){sub 3}, Mochida reported the discovery of a reversible valence transfer that can be regarded as an 'ionic(I)-ionic(II)' phase transfer between the monovalent state (D{sup +}A{sup -}) and the divalent state (D{sup 2+}A{sup 2-}). We have studied thermo-dynamical properties of this transformation for this complex using the differential thermal analyses (DTA). We observed a broad excess specific heat with multi-peaks attributed to micro-domain structure over the corresponding temperature range (100-150K) accompanied by temperature hysteresis of 7K. The transition entropy (DELTAS) was determined to be 22 +- 2 J/mol-K and almost satisfied a Clausius-Clapeyron relation. These experimental results provide an experimental confirmation of the first order phase transition for the monovalent-divalent transfer. At the transition, we observe that the electronic degrees of freedom remained constant values, while large entropy absorbed crossing from low temperature phase to high temperature one is contributed by the lattice one. We finally estimated the internal energy and concluded that delicate energy valance between Madelung, ionization and affinity energies enable this system to exhibit a temperature induce monovalent-divalent phase transition.

  18. Two-phase coexistence in the monovalent-to-divalent phase transition of dineopentylbiferrocene-fluorotetracyanoquinodimethane [npBifc-(F1TCNQ)3], charge-transfer salt

    International Nuclear Information System (INIS)

    Uruichi, Mikio; Yue, Yue; Yakushi, Kyuya; Mochida, Tomoyuki

    2007-01-01

    We present experimental findings showing that for npBifc-(F 1 TCNQ) 3 , two phases coexist over a wide temperature interval of 100-150 K near the monovalent-to-divalent phase transition temperature. Macroscopic domains of the high-temperature (monovalent) and low-temperature (divalent) phases were detected in the transition temperature region using X-ray diffraction and micro-Raman spectroscopy techniques. The volume fraction of the two domains continuously varied depending upon the temperature. A considerably large volume difference was found between the monovalent and divalent phases. The effect of volumetric strain due to this volume difference is discussed to understand this inhomogeneous state. (author)

  19. Solid-State Properties of One-Dimensional Metals Based on bis(oxalato)platinate Anions with Divalent Cations

    DEFF Research Database (Denmark)

    Braude, A.; Carneiro, K.; Jacobsen, Claus Schelde

    1987-01-01

    The crystal structures, superstructures, dc conductivity, optical properties, and thermopower of six linear-chain conductors of the type M0.8[Pt(C2O4)2]⋅(M=Ni,Co,Zn,Fe,Mg,Mn), where M is a divalent metal (M=Ni,Co,Zn,Fe,Mg,Mn), have been studied. At high temperatures they form a common orthorhombi...

  20. Synthesis and Characterization of Divalent Manganese, Iron, and Cobalt Complexes in Tripodal Phenolate/N-Heterocyclic Carbene Ligand Environments

    DEFF Research Database (Denmark)

    Käß, Martina; Hohenberger, Johannes; Adelhardt, Mario

    2014-01-01

    . The complete ligand series offers a convenient way of tuning the electronic and steric environment around the metal center, thus, allowing for control of the complex’s reactivity. This series of divalent complexes of Mn, Fe, and Co was synthesized and characterized by 1H NMR, IR, and UV/vis spectroscopy...... as well as by single-crystal X-ray diffraction studies. Variable-temperature SQUID magnetization measurements in the range from 2 to 300 K confirmed high-spin ground states for all divalent complexes and revealed a trend of increasing zero-field splitting |D| from Mn(II), to Fe(II), to Co(II) complexes...

  1. Crystal structure and luminescence properties of the first hydride oxide chloride with divalent europium. LiEu{sub 2}HOCl{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Rudolph, Daniel; Schleid, Thomas [Institute for Inorganic Chemistry, University of Stuttgart (Germany); Enseling, David; Juestel, Thomas [Department of Chemical Engineering, Muenster University of Applied Sciences, Steinfurt (Germany)

    2017-11-17

    The mixed-anionic hydride oxide chloride LiEu{sub 2}HOCl{sub 2} with divalent europium was synthesized by the reduction of Eu{sub 2}O{sub 3} with LiH in a LiCl flux at 750 C for 4 d in silica-jacketed niobium capsules. According to structure determination by single-crystal X-ray diffraction the yellow compound crystallizes in the orthorhombic space group Cmcm (a = 1492.30(11) pm, b = 570.12(4) pm, c = 1143.71(8) pm, Z = 8) with a crystal structure closely related to that one of the quaternary hydride oxide LiLa{sub 2}HO{sub 3} and the hydride nitride LiSr{sub 2}H{sub 2}N. On the other hand it can also be derived from the PbFCl-type structure of EuHCl showing astonishingly short Eu{sup 2+}..Eu{sup 2+} contacts of 326 and 329 pm. Both crystallographically different Eu{sup 2+} cations have nine anionic neighbors, while all other ions (Li{sup +}, H{sup -}, O{sup 2-} and Cl{sup -}) reside in six-membered coordination spheres. LiEu{sub 2}OCl{sub 2}H exhibits a bright yellow luminescence with an emission maximum at 581 nm upon excitation at 440 nm. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Reaction of N,N'-dimethylformamide and divalent viologen molecule to generate an organic dopant for molybdenum disulfide

    Science.gov (United States)

    Fukui, A.; Miura, K.; Ichimiya, H.; Tsurusaki, A.; Kariya, K.; Yoshimura, T.; Ashida, A.; Fujimura, N.; Kiriya, D.

    2018-05-01

    Tuning the carrier concentration is essential for semiconducting materials to apply optoelectronic devices. Molybdenum disulfide (MoS2) is a semiconducting material composed of atomically thin (˜0.7 nm thickness) layers. To dope thin MoS2, instead of using conventional atom/ion injection processes, a surface charge transfer method was successfully applied. In this study, we report a simple preparation method of a molecular dopant applicable to the doping process. The method follows a previous report for producing a molecular dopant, benzyl viologen (BV) which shows electron doping to MoS2. To prepare dopant BV molecules, a reduction process with a commercially available divalent BV by sodium borohydride (NaBH4) is required; however, the reaction requires a large consumption of NaBH4. NaBH4 drastically reacts with the solvent water itself. We found a reaction process of BV in an organic solvent, N,N'-dimethylformamide (DMF), by adding a small amount of water dissolving the divalent BV. The reaction is mild (at room temperature) and is autonomous once DMF comes into contact with the divalent BV aqueous solution. The reaction can be monitored with a UV-Vis spectrometer, and kinetic analysis indicates two reaction steps between divalent/monovalent/neutral viologen isomers. The product was soluble in toluene and did not dissolve in water, indicating it is similar to the reported dopant BV. The synthesized molecule was found to act as a dopant for MoS2 by applying a metal-oxide-semiconductor field-effect-transistor (MOSFET) structure. The process is a general method and applicable to other viologen-related dopants to tune the electronic structure of 2D materials to facilitate generating atomically thin devices.

  3. Reaction of N,N’-dimethylformamide and divalent viologen molecule to generate an organic dopant for molybdenum disulfide

    Directory of Open Access Journals (Sweden)

    A. Fukui

    2018-05-01

    Full Text Available Tuning the carrier concentration is essential for semiconducting materials to apply optoelectronic devices. Molybdenum disulfide (MoS2 is a semiconducting material composed of atomically thin (∼0.7 nm thickness layers. To dope thin MoS2, instead of using conventional atom/ion injection processes, a surface charge transfer method was successfully applied. In this study, we report a simple preparation method of a molecular dopant applicable to the doping process. The method follows a previous report for producing a molecular dopant, benzyl viologen (BV which shows electron doping to MoS2. To prepare dopant BV molecules, a reduction process with a commercially available divalent BV by sodium borohydride (NaBH4 is required; however, the reaction requires a large consumption of NaBH4. NaBH4 drastically reacts with the solvent water itself. We found a reaction process of BV in an organic solvent, N,N’-dimethylformamide (DMF, by adding a small amount of water dissolving the divalent BV. The reaction is mild (at room temperature and is autonomous once DMF comes into contact with the divalent BV aqueous solution. The reaction can be monitored with a UV-Vis spectrometer, and kinetic analysis indicates two reaction steps between divalent/monovalent/neutral viologen isomers. The product was soluble in toluene and did not dissolve in water, indicating it is similar to the reported dopant BV. The synthesized molecule was found to act as a dopant for MoS2 by applying a metal-oxide-semiconductor field-effect-transistor (MOSFET structure. The process is a general method and applicable to other viologen-related dopants to tune the electronic structure of 2D materials to facilitate generating atomically thin devices.

  4. Effect of Divalent Cations on RED Performance and Cation Exchange Membrane Selection to Enhance Power Densities.

    Science.gov (United States)

    Rijnaarts, Timon; Huerta, Elisa; van Baak, Willem; Nijmeijer, Kitty

    2017-11-07

    Reverse electrodialysis (RED) is a membrane-based renewable energy technology that can harvest energy from salinity gradients. The anticipated feed streams are natural river and seawater, both of which contain not only monovalent ions but also divalent ions. However, RED using feed streams containing divalent ions experiences lower power densities because of both uphill transport and increased membrane resistance. In this study, we investigate the effects of divalent cations (Mg 2+ and Ca 2+ ) on RED and demonstrate the mitigation of those effects using both novel and existing commercial cation exchange membranes (CEMs). Monovalent-selective Neosepta CMS is known to block divalent cations transport and can therefore mitigate reductions in stack voltage. The new multivalent-permeable Fuji T1 is able to transport divalent cations without a major increase in resistance. Both strategies significantly improve power densities compared to standard-grade CEMs when performing RED using streams containing divalent cations.

  5. SURVEY OF THE SPECTRA OF THE DIVALENT RARE EARTH IONS IN CUBIC CRYSTALS

    Energy Technology Data Exchange (ETDEWEB)

    McClure, Donald S. [Univ. of Chicago, IL (United States); Kiss, Zoltan J. [RCA Laboratories, Princeton, NJ (United States)

    1963-04-15

    The rare earth ions may exist in the divalent state in suitable host crystals such as CaF/sub 2/. All of the trivalent ions from La to Yb are reduced in situ to the divalent state in CaF/sub 2/ by gamma irradiation. The spectra of most of these ions show that the ground and first few excited states derive from f/sup n/ configurations, but the wesk absorption due to these is masked at higher energies by strong broad bands of the parity permitted f/sup n/ yields f/sup n-1/ d transitions. The excitation energy of these spectra have been calculated in a first approximation as the energy difference between the Hund Rule'' single determinant states of the configurations f/sup n -1/d and f/sup n/. This procedure satisfactorily accounts for the remarkable variations in the excitation energy in passing from one ion to the next in the series with the exception of Ge/ sup 2+/ Ce/sup 2+/, and Tb/sup 2+/, Ge/sup 2+/ probably has f/sup 7/d for its ground con figuration, while Ce/sup 2+/ and Tb/sup 2+/ are borderline cases. The spectral structure probably arises chiefly from the crystal field splitting of the d-orbital, since each ion in CaF/sub 2/ has a similar spectrum, and the spectra change drastically in sites of other than cubic symmetry. (auth)

  6. Divalent cations as modulators of neuronal excitability: Emphasis on copper and zinc

    Directory of Open Access Journals (Sweden)

    RICARDO DELGADO

    2006-01-01

    Full Text Available Based on indirect evidence, a role for synaptically released copper and zinc as modulators of neuronal activity has been proposed. To test this proposal directly, we studied the effect of copper, zinc, and other divalent cations on voltage-dependent currents in dissociated toad olfactory neurons and on their firing rate induced by small depolarizing currents. Divalent cations in the nanomolar range sped up the activation kinetics and increased the amplitude of the inward sodium current. In the micromolar range, they caused a dose dependent inhibition of the inward Na+ and Ca2+ currents (I Na and I Ca and reduced de amplitude of the Ca2+-dependent K+ outward current (I Ca-K. On the other hand, the firing rate of olfactory neurons increased when exposed to nanomolar concentration of divalent cations and decreased when exposed to micromolar concentrations. This biphasic effect of divalent cations on neuronal excitability may be explained by the interaction of these ions with high and low affinity sites in voltage-gated channels. Our results support the idea that these ions are normal modulators of neuronal excitability

  7. Divalent cation shrinks DNA but inhibits its compaction with trivalent cation.

    Science.gov (United States)

    Tongu, Chika; Kenmotsu, Takahiro; Yoshikawa, Yuko; Zinchenko, Anatoly; Chen, Ning; Yoshikawa, Kenichi

    2016-05-28

    Our observation reveals the effects of divalent and trivalent cations on the higher-order structure of giant DNA (T4 DNA 166 kbp) by fluorescence microscopy. It was found that divalent cations, Mg(2+) and Ca(2+), inhibit DNA compaction induced by a trivalent cation, spermidine (SPD(3+)). On the other hand, in the absence of SPD(3+), divalent cations cause the shrinkage of DNA. As the control experiment, we have confirmed the minimum effect of monovalent cation, Na(+) on the DNA higher-order structure. We interpret the competition between 2+ and 3+ cations in terms of the change in the translational entropy of the counterions. For the compaction with SPD(3+), we consider the increase in translational entropy due to the ion-exchange of the intrinsic monovalent cations condensing on a highly charged polyelectrolyte, double-stranded DNA, by the 3+ cations. In contrast, the presence of 2+ cation decreases the gain of entropy contribution by the ion-exchange between monovalent and 3+ ions.

  8. Divalent thulium triflate. A structural and spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Xemard, Mathieu; Jaoul, Arnaud; Cordier, Marie; Nocton, Gregory [Univ. Paris-Saclay, Palaiseau (France). LCM, Ecole polytechnique, CNRS; Molton, Florian; Duboc, Carole [Grenoble Univ., Saint Martin d' Heres (France). Dept. de Chimie Moleculaire; Cador, Olivier; Le Guennic, Boris [Univ. de Rennes 1 (France). Inst. des Sciences Chimique de Rennes, UMR 6226 CNRS; Maury, Olivier [Univ. Claude Bernard Lyon 1 (France). Lab. de Chimie; Clavaguera, Carine [Univ. Paris-Saclay, Palaiseau (France). LCM, Ecole polytechnique, CNRS; Univ. Paris Sud, Univ. Paris-Saclay, Orsay (France). Lab. de Chimie Physique, CNRS

    2017-04-03

    The first molecular Tm{sup II} luminescence measurements are reported along with rare magnetic, X and Q bands EPR studies. Access to simple and soluble molecular divalent lanthanide complexes is highly sought for small-molecule activation studies and organic transformations using single-electron transfer processes. However, owing to their low stability and propensity to disproportionate, these complexes are hard to synthetize and their electronic properties are therefore almost unexplored. Herein we present the synthesis of [Tm(μ-OTf){sub 2}(dme){sub 2}]{sub n}, a rare and simple coordination compound of divalent thulium that can be seen as a promising starting material for the synthesis of more elaborated complexes. This reactive complex was structurally characterized by X-ray diffraction analysis and its electronic structure has been compared with that of its halide cousin TmI{sub 2}(dme){sub 3}. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Divalent cations and the protein surface co-ordinate the intensity of human platelet adhesion and P-selectin surface expression.

    Science.gov (United States)

    Whiss, P A; Andersson, R G G

    2002-07-01

    At sites of blood vessel injury, platelets adhere to exposed vessel components, such as collagen, or immobilized fibrinogen derived from plasma or activated platelets. The divalent cations Mg(2+) and Ca(2+) are essential for platelet adhesion and activation, but Mg(2+) can also inhibit platelet activation. The present study evaluates, by an enzymatic method, the effects of various divalent cations on the adhesion of isolated human platelets to collagen, fibrinogen, albumin or plastic in vitro. By enzyme-linked immunosorbent assay, platelet surface expression of P-selectin was measured to estimate the state of activation on adherence. Mg(2+) increased platelet adhesion exclusively to collagen and fibrinogen at physiologically relevant concentrations. At higher concentrations, the adhesion declined. Ca(2+) induced a weak adhesion only to fibrinogen at physiological doses and a peak of increased adhesion to all protein-coated surfaces at 10 mmol/l. Mn(2+) elicited dose-dependent adhesion only to collagen and fibrinogen. Zn(2+), Ni(2+) and Cu(2+) increased the adhesion of platelets independently of the surface. Ca(2+) dose-dependently inhibited adhesion elicited by Mg(2+) to collagen and fibrinogen. No other combination of divalent cations elicited such an effect. Mg(2+)-dependent platelet adhesion to collagen and Ca(2+)-dependent adhesion to fibrinogen increased P-selectin expression. Thus, the present study shows that the outcome of the platelet adhesion depends on the surface and the access of divalent cations, which co-ordinate the intensity of platelet adhesion and P-selectin surface expression.

  10. Mössbauer study of oxide films of Fe-, Sn-, Cr- doped zirconium alloys during corrosion in autoclave

    Energy Technology Data Exchange (ETDEWEB)

    Filippov, V. P., E-mail: vpfilippov@mephi.ru; Bateev, A. B.; Lauer, Yu. A. [National Research Nuclear University “MEPhI” (Moscow Engineering Physics Institute) (Russian Federation)

    2016-12-15

    Mössbauer investigations were used to compare iron atom states in oxide films of binary Zr-Fe, ternary Zr-Fe-Cu and quaternary Zr-Fe-Cr-Sn alloys. Oxide films are received in an autoclave at a temperature of 350–360 °C and at pressure of 16.8 MPa. The corrosion process decomposes the intermetallic precipitates in alloys and forms metallic iron with inclusions of chromium atoms α–Fe(Cr), α–Fe(Cu), α–Fe {sub 2}O{sub 3} and Fe {sub 3}O{sub 4} compounds. Some iron ions are formed in divalent and in trivalent paramagnetic states. The additional doping influences on corrosion kinetics and concentration of iron compounds and phases formed in oxide films. It was shown the correlation between concentration of iron in different chemical states and corrosion resistance of alloys.

  11. Study of oxidation states of the transition metals in a series of Prussian blue analogs using x-ray absorption near edge structure (XANES) spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Adak, S. [Department of Physics, New Mexico State University, Las Cruces, NM, 88003 (United States); Hartl, M., E-mail: monika.hartl@esss.se [European Spallation Source ESS AB, 22100, Lund (Sweden); Manuel Lujan Jr. Neutron Scattering Center (LANSCE-LC), Los Alamos National Laboratory, Los Alamos, NM, 87545 (United States); Daemen, L. [Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN, 37830 (United States); Manuel Lujan Jr. Neutron Scattering Center (LANSCE-LC), Los Alamos National Laboratory, Los Alamos, NM, 87545 (United States); Fohtung, E.; Nakotte, H. [Department of Physics, New Mexico State University, Las Cruces, NM, 88003 (United States)

    2017-01-15

    Highlights: • Systematic XANES measurements on Prussian blue analogs shows oxidation state of transition metals. • Cobal-iron bimetallic hexacyanometallates show unexpected oxidation states. • Iron(II) ions in hexacyanometallates(III) show varying spin state depending on their bond to the “N” end or “C” end of the cyanide ligand. • Thermal expansion coefficients have been linked to the XANES results. - Abstract: There have been renewed interests in metal-organic framework classes of materials such as Prussian blue analogues (PBAs) due to their potential usage in energy storage applications. In particular, due to their high surface areas, controllable structures and excellent electrochemical properties, PBAs such as hexacyanometalates M{sup II}{sub 3}[A{sup III}(CN){sub 6}]{sub 2*}nH{sub 2}O (M = Mn, Fe, Co, Ni, Cu, Zn; A = Co, Fe, Cr; n = no. of water molecules present), M{sup II}{sub 2}[Fe{sup II}(CN){sub 6}]{sub 2*}nH{sub 2}O (M = Mn, Co, Ni, Cu, Zn) and mixed hexacyanometalates(III) (Fe{sub 1-x}Co{sub x}){sub 3}[B{sup III}(CN){sub 6}]{sub 2}·nH{sub 2}O (x = 0.25, 0.5, 0.75; B = Co, Fe) could have possible usage as a new class of cathode and even anode materials for rechargeable batteries. Detailed knowledge of the oxidation states of the transition metals in PBAs is required to improve efficiency and durability of such devices. Furthermore, a link between the thermal expansion observed in these materials and the oxidation state of the transition metal is of interest to synthesize materials with a desired thermal expansion behavior, Here we demonstrate the use of Synchrotron based X-ray absorption near-edge structure (XANES) spectra to identify transition metal oxidation states. Our analysis reveals the presence of divalent, trivalent and/or mixed valence transition metals in the materials as well as high-spin and low-spin complexes.

  12. Impurity diffusion in transition-metal oxides

    International Nuclear Information System (INIS)

    Peterson, N.L.

    1982-06-01

    Intrinsic tracer impurity diffusion measurements in ceramic oxides have been primarily confined to CoO, NiO, and Fe 3 O 4 . Tracer impurity diffusion in these materials and TiO 2 , together with measurements of the effect of impurities on tracer diffusion (Co in NiO and Cr in CoO), are reviewed and discussed in terms of impurity-defect interactions and mechanisms of diffusion. Divalent impurities in divalent solvents seem to have a weak interaction with vacancies whereas trivalent impurities in divalent solvents strongly influence the vacancy concentrations and significantly reduce solvent jump frequencies near a trivalent impurity. Impurities with small ionic radii diffuse more slowly with a larger activation energy than impurities with larger ionic radii for all systems considered in this review. Cobalt ions (a moderate size impurity) diffuse rapidly along the open channels parallel to the c-axis in TiO 2 whereas chromium ions (a smaller-sized impurity) do not. 60 references, 11 figures

  13. Determination of the nitrogen vacancy as a shallow compensating center in GaN doped with divalent metals.

    Science.gov (United States)

    Buckeridge, J; Catlow, C R A; Scanlon, D O; Keal, T W; Sherwood, P; Miskufova, M; Walsh, A; Woodley, S M; Sokol, A A

    2015-01-09

    We report accurate energetics of defects introduced in GaN on doping with divalent metals, focusing on the technologically important case of Mg doping, using a model that takes into consideration both the effect of hole localization and dipolar polarization of the host material, and includes a well-defined reference level. Defect formation and ionization energies show that divalent dopants are counterbalanced in GaN by nitrogen vacancies and not by holes, which explains both the difficulty in achieving p-type conductivity in GaN and the associated major spectroscopic features, including the ubiquitous 3.46 eV photoluminescence line, a characteristic of all lightly divalent-metal-doped GaN materials that has also been shown to occur in pure GaN samples. Our results give a comprehensive explanation for the observed behavior of GaN doped with low concentrations of divalent metals in good agreement with relevant experiment.

  14. Determination of the Nitrogen Vacancy as a Shallow Compensating Center in GaN Doped with Divalent Metals

    Science.gov (United States)

    Buckeridge, J.; Catlow, C. R. A.; Scanlon, D. O.; Keal, T. W.; Sherwood, P.; Miskufova, M.; Walsh, A.; Woodley, S. M.; Sokol, A. A.

    2015-01-01

    We report accurate energetics of defects introduced in GaN on doping with divalent metals, focusing on the technologically important case of Mg doping, using a model that takes into consideration both the effect of hole localization and dipolar polarization of the host material, and includes a well-defined reference level. Defect formation and ionization energies show that divalent dopants are counterbalanced in GaN by nitrogen vacancies and not by holes, which explains both the difficulty in achieving p -type conductivity in GaN and the associated major spectroscopic features, including the ubiquitous 3.46 eV photoluminescence line, a characteristic of all lightly divalent-metal-doped GaN materials that has also been shown to occur in pure GaN samples. Our results give a comprehensive explanation for the observed behavior of GaN doped with low concentrations of divalent metals in good agreement with relevant experiment.

  15. Acidic pH and divalent cation sensing by PhoQ are dispensable for systemic salmonellae virulence.

    Science.gov (United States)

    Hicks, Kevin G; Delbecq, Scott P; Sancho-Vaello, Enea; Blanc, Marie-Pierre; Dove, Katja K; Prost, Lynne R; Daley, Margaret E; Zeth, Kornelius; Klevit, Rachel E; Miller, Samuel I

    2015-05-23

    Salmonella PhoQ is a histidine kinase with a periplasmic sensor domain (PD) that promotes virulence by detecting the macrophage phagosome. PhoQ activity is repressed by divalent cations and induced in environments of acidic pH, limited divalent cations, and cationic antimicrobial peptides (CAMP). Previously, it was unclear which signals are sensed by salmonellae to promote PhoQ-mediated virulence. We defined conformational changes produced in the PhoQ PD on exposure to acidic pH that indicate structural flexibility is induced in α-helices 4 and 5, suggesting this region contributes to pH sensing. Therefore, we engineered a disulfide bond between W104C and A128C in the PhoQ PD that restrains conformational flexibility in α-helices 4 and 5. PhoQ(W104C-A128C) is responsive to CAMP, but is inhibited for activation by acidic pH and divalent cation limitation. phoQ(W104C-A128C) Salmonella enterica Typhimurium is virulent in mice, indicating that acidic pH and divalent cation sensing by PhoQ are dispensable for virulence.

  16. Effect of divalent ions on the optical emission behavior of protein thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bhowal, Ashim Chandra, E-mail: ashimbhowal111@gmail.com; Kundu, Sarathi [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035 (India)

    2016-05-06

    Photoluminescence behaviors of proteinthin film, bovine serum albumin (BSA) have been studied in the presence of three divalent ions (Mg{sup 2+}, Ca{sup 2+} and Ba{sup 2+}) at different temperatures using fluorescence spectroscopy. Film thickness and morphology have been studied using atomic force microscopy. Variation of different physicochemical parameters like temperature, solvent polarity, pH, ionic strength, substrate binding etc. can make conformational changes in the protein structure and hence influences the emission behavior.In thin film conformation of BSA, dynamic quenching behavior has beenidentified in the presence of all the three divalent ions at pH≈ 5.5. Depending upon the charge density of the divalent ions interaction with protein molecules modifies and as a result quenching efficiency varies. Also after heat treatment, conformation of the protein molecules changes and as a result the quenching efficiency enhances than that of the unheated films. Studies on such protein-ion interactions and conformational variation may explore various functions of protein when it will adsorb on soft surfaces like membranes, vesicles, etc.

  17. Androgen Receptor Antagonism By Divalent Ethisterone Conjugates In Castrate-Resistant Prostate Cancer Cells

    Science.gov (United States)

    Levine, Paul M.; Lee, Eugine; Greenfield, Alex; Bonneau, Richard; Logan, Susan K.; Garabedian, Michael J.; Kirshenbaum, Kent

    2013-01-01

    Sustained treatment of prostate cancer with Androgen Receptor (AR) antagonists can evoke drug resistance, leading to castrate-resistant disease. Elevated activity of the AR is often associated with this highly aggressive disease state. Therefore, new therapeutic regimens that target and modulate AR activity could prove beneficial. We previously introduced a versatile chemical platform to generate competitive and non-competitive multivalent peptoid oligomer conjugates that modulate AR activity. In particular, we identified a linear and a cyclic divalent ethisterone conjugate that exhibit potent anti-proliferative properties in LNCaP-abl cells, a model of castrate-resistant prostate cancer. Here, we characterize the mechanism of action of these compounds utilizing confocal microscopy, time-resolved fluorescence resonance energy transfer, chromatin immunoprecipitation, flow cytometry, and microarray analysis. The linear conjugate competitively blocks AR action by inhibiting DNA binding. In addition, the linear conjugate does not promote AR nuclear localization or co-activator binding. In contrast, the cyclic conjugate promotes AR nuclear localization and induces cell-cycle arrest, despite its inability to compete against endogenous ligand for binding to AR in vitro. Genome-wide expression analysis reveals that gene transcripts are differentially affected by treatment with the linear or cyclic conjugate. Although the divalent ethisterone conjugates share extensive chemical similarities, we illustrate that they can antagonize the AR via distinct mechanisms of action, establishing new therapeutic strategies for potential applications in AR pharmacology. PMID:22871957

  18. Divalent Copper as a Major Triggering Agent in Alzheimer's Disease.

    Science.gov (United States)

    Brewer, George J

    2015-01-01

    Alzheimer's disease (AD) is at epidemic proportions in developed countries, with a steady increase in the early 1900 s, and then exploding over the last 50 years. This epidemiology points to something causative in the environment of developed countries. This paper will review the considerable evidence that that something could be inorganic copper ingestion. The epidemic parallels closely the spread of copper plumbing, with copper leached from the plumbing into drinking water being a main causal feature, aided by the increasingly common use of supplement pills containing copper. Inorganic copper is divalent copper, or copper-2, while we now know that organic copper, or copper in foods, is primarily monovalent copper, or copper-1. The intestinal transport system, Ctr1, absorbs copper-1 and the copper moves to the liver, where it is put into safe channels. Copper-2 is not absorbed by Ctr1, and some of it bypasses the liver and goes directly into the blood, where it appears to be exquisitely toxic to brain cognition. Thus, while aggregation of amyloid-β has been postulated to be the cause of AD under current dogma, the great increase in prevalence over the last century appears to be due to ingestion of copper-2, which may be causing the aggregation, and/or increasing the oxidant toxicity of the aggregates. An alternative hypothesis proposes that oxidant stress is the primary injuring agent, and under this hypothesis, copper-2 accumulation in the brain may be a causal factor of the oxidant injury. Thus, irrespective of which hypothesis is correct, AD can be classified, at least in part, as a copper-2 toxicity disease. It is relatively easy to avoid copper-2 ingestion, as discussed in this review. If most people begin avoiding copper-2 ingestion, perhaps the epidemic of this serious disease can be aborted.

  19. Interaction of divalent minerals with liposoluble nutrients and phytochemicals during digestion and influences on their bioavailability - a review.

    Science.gov (United States)

    Corte-Real, Joana; Bohn, Torsten

    2018-06-30

    Several divalent minerals, including the macroelements calcium and magnesium, are essential nutrients for humans. However, their intake, especially via high-dose supplements, has been suspected to reduce the availability of lipophilic dietary constituents, including lipids, liposoluble vitamins, and several phytochemicals such as carotenoids. These constituents require emulsification in order to be bioavailable, and high divalent mineral concentrations may perturb this process, due to precipitations of free fatty acids or bile salt complexation, both pivotal for mixed micelle formation. Though in part based on in vitro or indirect evidence, it appears likely that high-dose supplements of divalent minerals around or even below their recommended dietary allowance perturb the availability of certain liposoluble miroconstituents, in addition to reducing absorption of dietary lipids/cholesterol. In this review, we investigate possible negative influences of divalent minerals, including trace elements (iron, zinc), on the digestion and intestinal uptake of lipophilic dietary constituents, with a focus on carotenoids. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Iron oxides, divalent cations, silica, and the early earth phosphorus crisis

    DEFF Research Database (Denmark)

    Jones, C.; Nomosatryo, S.; Crowe, S.A.

    2015-01-01

    As a nutrient required for growth, phosphorus regulates the activity of life in the oceans. Iron oxides sorb phosphorus from seawater, and through the Archean and early Proterozoic Eons, massive quantities of iron oxides precipitated from the oceans, producing a record of seawater chemistry...... that is preserved as banded iron formations (BIFs) today. Here we show that Ca2+, Mg2+, and silica in seawater control phosphorus sorption onto iron oxides, influencing the record of seawater phosphorus preserved in BIFs. Using a model for seawater cation chemistry through time, combined with the phosphorus...... waters shifted from phosphorus to iron limiting....

  1. Relationships among oxidation-reduction and acid-base properties of the actinides in high oxidation states

    International Nuclear Information System (INIS)

    Morss, L.R.

    1992-01-01

    The first chemical identification of plutonium, its subsequent isolation on the macroscopic scale, and more recent chemical separation schemes were achieved by taking advantage of the differences among the oxidation states of uranium, neptunium, and plutonium. Many acid-base properties modify the relative stabilities of oxidation states of the actinides. In the solid state, strongly basic compounds such as Cs 2 O yield complex oxides with oxidation states of Np(VII), Pu(VI), and Am(VI) whereas more acidic compounds such as CsF yield complex fluorides with lower oxidation states. In aqueous solution, high basicity and strongly covalent complexes favor high oxidation states. In nonaqueous solvent systems, high acidity generally favors low oxidation states. This paper elucidates and attempts to interpret the effects of these acid-base properties in a systematic fashion

  2. Divalent Metal Ion Transport across Large Biological Ion Channels and Their Effect on Conductance and Selectivity

    Directory of Open Access Journals (Sweden)

    Elena García-Giménez

    2012-01-01

    Full Text Available Electrophysiological characterization of large protein channels, usually displaying multi-ionic transport and weak ion selectivity, is commonly performed at physiological conditions (moderate gradients of KCl solutions at decimolar concentrations buffered at neutral pH. We extend here the characterization of the OmpF porin, a wide channel of the outer membrane of E. coli, by studying the effect of salts of divalent cations on the transport properties of the channel. The regulation of divalent cations concentration is essential in cell metabolism and understanding their effects is of key importance, not only in the channels specifically designed to control their passage but also in other multiionic channels. In particular, in porin channels like OmpF, divalent cations modulate the efficiency of molecules having antimicrobial activity. Taking advantage of the fact that the OmpF channel atomic structure has been resolved both in water and in MgCl2 aqueous solutions, we analyze the single channel conductance and the channel selectivity inversion aiming to separate the role of the electrolyte itself, and the counterion accumulation induced by the protein channel charges and other factors (binding, steric effects, etc. that being of minor importance in salts of monovalent cations become crucial in the case of divalent cations.

  3. Plutonium disproportionation. Hydrolysis and local oxidation-state maxima

    International Nuclear Information System (INIS)

    Silver, G.L.

    2014-01-01

    Local maxima in the fractions of the trivalent and hexavalent oxidation states are inherent in the algebra of Pu disproportionation reactions. A new method predicts the pH and the oxidation-state fractions at maximum. Tabulated results illustrate the effects of the Pu oxidation number and Pu(IV) hydrolysis on the maxima. This method suggests a new laboratory approach for discovering Pu oxidation-state maxima. (author)

  4. On the valency state of radiogenic lead in zircon and its consequences

    DEFF Research Database (Denmark)

    Kramers, J.; Frei, Robert; Newville, M.

    2009-01-01

    nucleus comes to rest. Further, a zircon grain, being small, should remain highly oxidizing in its interior by the constant loss of ß-particles, maintaining the 4+ state of radiogenic Pb. From its effective ion radius, similar to that of Zr4+, and its charge, Pb4+ has to be compatible in the zircon...... not resemble that of PbO2. The arguments why radiogenic Pb should be tetravalent are based on analogies with studies relating to the tetravalent state of 234Th and the hexavalent state of 234U, which show that a-recoil in silicates generates a strongly oxidizing environment at the site where the recoiling......-recoil damaged sites could be leached out by any electrolyte solution that reduces it to the divalent state, making it both incompatible and soluble. Thus, discordia can be generated in weathering. The curious observation that discordant Archaean zircon suites generally define trends to lower intercepts at up...

  5. Effect of illite clay and divalent cations on bitumen recovery

    Energy Technology Data Exchange (ETDEWEB)

    Ding, X. [SNC-Lavalin Inc., Calgary, AB (Canada); Repka, C. [Baker Petrolite Corp., Fort McMurray, AB (Canada); Xu, Z.; Masliyah, J. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2006-12-15

    Nearly 35 per cent of Canada's petroleum needs can be met from the Athabasca oil sands, particularly as conventional sources of petroleum decline. The interactions between bitumen and clay minerals play a key role in the recovery process of bitumen because they affect bitumen aeration. The 2 clays minerals found in various oil sands extraction process streams are kaolinite and illite. In this study, doping flotation tests using deionized water and electrokinetic studies were performed to examine the effect of illite clays on bitumen recovery. The effect of magnesium ions was also examined and compared with calcium ions. This paper also discussed the effects of temperature and tailings water chemistry. The negative effect of illite clay on bitumen recovery was found to be associated with its acidity. Denver flotation cell measurements indicated that the addition of calcium or magnesium ions to the flotation deionized water had only a slight effect on bitumen recovery, but the co-addition of illite clay and divalent cations resulted in a dramatic reduction in bitumen recovery. The effect was more significant at lower process temperature and low pH values. Zeta potential distributions of illite suspensions and bitumen emulsions were measured individually and as a mixture to determine the effect of divalent cations on the interaction between bitumen and illite clay. The presence of 1 mM calcium or magnesium ions in deionized water had a pronounced effect on the interactions between bitumen and illite clay. Slime coating of illite onto bitumen was not observed in zeta potential distribution measurements performed in alkaline tailings water. When tests were conducted using plant recycle water, the combination of illite clay and divalent cations did not have an adverse effect on bitumen recovery. 25 refs., 3 tabs., 15 figs.

  6. The role of electrolyte anions (ClO4-, NO3-, and Cl-) in divalent metal (M2+) adsorption on oxide and hydroxide surfaces in salt solutions

    International Nuclear Information System (INIS)

    Criscenti, L.J.; Sverjensky, D.A.

    1999-01-01

    Adsorption of divalent metal ions (M 2+ ) onto oxide and hydroxide surfaces from solutions of strong electrolytes has typically been inferred to take place without the involvement of the electrolyte anion. Only in situations where M 2+ forms a strong enough aqueous complex with the electrolyte anion (for example, CdCl + or PbCl + ) has it been frequently suggested that the metal and the electrolyte anion adsorb simultaneously. A review of experimental data for the adsorption of Cd 2+ , Pb 2+ , Co 2+ , UO 2 2+ , Zn 2+ , Cu 2+ , Ba 2+ , Sr 2+ , and Ca 2+ onto quartz, silica, goethite, hydrous ferric oxide, corundum, γ-alumina, anatase, birnessite, and magnetite, from NaNO 3 , KNO 3 , NaCl, and NaClO 4 solutions over a wide range of ionic strengths (0.0001 M-1.0 M), reveals that transition and heavy metal adsorption behavior with ionic strength is a function of the type of electrolyte. In NaNO 3 solutions, metal adsorption exhibits little or no dependence on the ionic strength of the solution. However, in NaCl solutions, transition and heavy metal adsorption decreases strongly with increasing ionic strength. In NaClO 4 solutions, metal adsorption decreases strongly with increasing ionic strength. In NaClO 4 solutions, metal adsorption exhibits little dependence on ionic strength but is often suggestive of an increase in metal adsorption with increasing ionic strength. Analysis of selected adsorption edges was carried out using the extended triple-layer model and aqueous speciation models that included metal-nitrate, metal-chloride, and metal-hydroxide complexes

  7. Non-equilibrium oxidation states of zirconium during early stages of metal oxidation

    International Nuclear Information System (INIS)

    Ma, Wen; Yildiz, Bilge; Herbert, F. William; Senanayake, Sanjaya D.

    2015-01-01

    The chemical state of Zr during the initial, self-limiting stage of oxidation on single crystal zirconium (0001), with oxide thickness on the order of 1 nm, was probed by synchrotron x-ray photoelectron spectroscopy. Quantitative analysis of the Zr 3d spectrum by the spectrum reconstruction method demonstrated the formation of Zr 1+ , Zr 2+ , and Zr 3+ as non-equilibrium oxidation states, in addition to Zr 4+ in the stoichiometric ZrO 2 . This finding resolves the long-debated question of whether it is possible to form any valence states between Zr 0 and Zr 4+ at the metal-oxide interface. The presence of local strong electric fields and the minimization of interfacial energy are assessed and demonstrated as mechanisms that can drive the formation of these non-equilibrium valence states of Zr

  8. Divalent metal ion removal from aqueous solution by acid-treated ...

    African Journals Online (AJOL)

    ions determined from the Langmuir isotherm showed that C. indica had the largest sorption capacity for Pb2+ ions and the least sorption for Ni2+. The results also showed that garlic-treatment of C. indica biomass enhanced its sorption capacity for the divalent metal ions, with the enhancement factor varying from 1.22 to 1.44 ...

  9. Inter-DNA Attraction Mediated by Divalent Counterions

    International Nuclear Information System (INIS)

    Qiu Xiangyun; Andresen, Kurt; Kwok, Lisa W.; Lamb, Jessica S.; Park, Hye Yoon; Pollack, Lois

    2007-01-01

    Can nonspecifically bound divalent counterions induce attraction between DNA strands? Here, we present experimental evidence demonstrating attraction between short DNA strands mediated by Mg 2+ ions. Solution small angle x-ray scattering data collected as a function of DNA concentration enable model independent extraction of the second virial coefficient. As the [Mg 2+ ] increases, this coefficient turns from positive to negative reflecting the transition from repulsive to attractive inter-DNA interaction. This surprising observation is corroborated by independent light scattering experiments. The dependence of the observed attraction on experimental parameters including DNA length provides valuable clues to its origin

  10. Divalent cations in tears, and their influence on tear film stability in humans and rabbits.

    Science.gov (United States)

    Wei, Xiaojia Eric; Markoulli, Maria; Millar, Thomas J; Willcox, Mark D P; Zhao, Zhenjun

    2012-06-05

    Reduced tear film stability is reported to contribute to dry eye. Rabbits are known to have a more stable tear film than humans. Thus, we sought to examine the tears of rabbits and humans for metal cations, and to test how they influence tear film stability. Tears were collected from 10 healthy humans and 6 rabbits. Tear osmolality was measured by vapor pressure osmometer, and metals analyzed using inductively coupled plasma (ICP) mass spectrometry or ICP atomic emission spectroscopy. The influence of divalent cations on tears was analyzed by measuring surface tension using the Langmuir trough in vitro, using different concentrations of cations in the subphase, and grading the tear break-up in rabbits in vivo after instillation of chelating agents. Rabbit tears had a higher osmolality compared to humans. Major metals did not differ between species; however, rabbits had higher levels of Mg(2+) (1.13 vs. 0.39 mM) and Ca(2+) (0.75 vs. 0.36 mM). In rabbit tears in vitro, diminishing divalent cations resulted in a decrease in the maximum surface pressure from 37 to 30 mN/m. In vivo, an increase in the amount of tear film that was broken-up was found. In contrast, when changing divalent cation concentrations in human tears, the maximum surface pressure remained at 26 mN/m. The normal osmolality of rabbit tears is significantly higher than that in humans. While divalent cations had little influence on human tears, they appear to have an important role in maintaining tear film stability in rabbits.

  11. Mercury chloride-induced oxidative stress in human erythrocytes ...

    African Journals Online (AJOL)

    ONOS

    2010-01-25

    Jan 25, 2010 ... Mercury can exist in the environment as metal, as monovalent and divalent salts and as organomercurials, one of the most important of which is mercuric chloride (HgCl2). It has been shown to induce oxidative stress in erythrocytes through the generation of free radicals and alteration of the.

  12. Ion exchange equilibrium for some uni-univalent and uni-divalent ...

    African Journals Online (AJOL)

    The study on thermodynamics of ion exchange equilibrium for uni-univalent Cl-/I-, Cl-/Br-, and uni-divalent Cl-/SO42-, Cl-/C2O42- reaction systems was carried out using ion exchange resin Duolite A-102 D. The equilibrium constant K was calculated by taking into account the activity coefficient of ions both in solution as well ...

  13. Fluorescent Protein-Based Ca2+ Sensor Reveals Global, Divalent Cation-Dependent Conformational Changes in Cardiac Troponin C.

    Directory of Open Access Journals (Sweden)

    Myriam A Badr

    Full Text Available Cardiac troponin C (cTnC is a key effector in cardiac muscle excitation-contraction coupling as the Ca2+ sensing subunit responsible for controlling contraction. In this study, we generated several FRET sensors for divalent cations based on cTnC flanked by a donor fluorescent protein (CFP and an acceptor fluorescent protein (YFP. The sensors report Ca2+ and Mg2+ binding, and relay global structural information about the structural relationship between cTnC's N- and C-domains. The sensors were first characterized using end point titrations to decipher the response to Ca2+ binding in the presence or absence of Mg2+. The sensor that exhibited the largest responses in end point titrations, CTV-TnC, (Cerulean, TnC, and Venus was characterized more extensively. Most of the divalent cation-dependent FRET signal originates from the high affinity C-terminal EF hands. CTV-TnC reconstitutes into skinned fiber preparations indicating proper assembly of troponin complex, with only ~0.2 pCa unit rightward shift of Ca2+-sensitive force development compared to WT-cTnC. Affinity of CTV-TnC for divalent cations is in agreement with known values for WT-cTnC. Analytical ultracentrifugation indicates that CTV-TnC undergoes compaction as divalent cations bind. C-terminal sites induce ion-specific (Ca2+ versus Mg2+ conformational changes in cTnC. Our data also provide support for the presence of additional, non-EF-hand sites on cTnC for Mg2+ binding. In conclusion, we successfully generated a novel FRET-Ca2+ sensor based on full length cTnC with a variety of cellular applications. Our sensor reveals global structural information about cTnC upon divalent cation binding.

  14. The modulation of TRPM7 currents by nafamostat mesilate depends directly upon extracellular concentrations of divalent cations

    Directory of Open Access Journals (Sweden)

    Chen Xuanmao

    2010-12-01

    Full Text Available Abstract Concentrations of extracellular divalent cations (Ca2+ and Mg2+ fall substantially during intensive synaptic transmission as well as during some pathophysiological conditions such as epilepsy and brain ischemia. Here we report that a synthetic serine protease inhibitor, nafamostat mesylate (NM, and several of its analogues, block recombinant TRPM7 currents expressed in HEK293T cells in inverse relationship to the concentration of extracellular divalent cations. Lowering extracellular Ca2+ and Mg2+ also evokes a divalent-sensitive non-selective cation current that is mediated by TRPM7 expression in hippocampal neurons. In cultured hippocampal neurons, NM blocked these TRPM7-mediated currents with an apparent affinity of 27 μM, as well as the paradoxical Ca2+ influx associated with lowering extracellular Ca2+. Unexpectedly, pre-exposure to NM strongly potentiated TRPM7 currents. In the presence of physiological concentrations of extracellular divalent cations, NM activates TRPM7. The stimulating effects of NM on TRPM7 currents are also inversely related to extracellular Ca2+ and Mg2+. DAPI and HSB but not netropsin, blocked and stimulated TRPM7. In contrast, mono-cationic, the metabolites of NM, p-GBA and AN, as well as protease inhibitor leupeptin and gabexate failed to substantially modulate TRPM7. NM thus provides a molecular template for the design of putative modulators of TRPM7.

  15. A divalent rare earth oxide semiconductor: Yttrium monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Kaminaga, Kenichi; Sei, Ryosuke [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); Department of Chemistry, Tohoku University, Sendai 980-8578 (Japan); Hayashi, Kouichi [Department of Environmental and Materials Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Happo, Naohisa [School of Information Sciences, Hiroshima City University, Hiroshima 731-3194 (Japan); Tajiri, Hiroo [Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8, Sayo 679-5198 (Japan); Oka, Daichi; Fukumura, Tomoteru, E-mail: tomoteru.fukumura.e4@tohoku.ac.jp [Department of Chemistry, Tohoku University, Sendai 980-8578 (Japan); Hasegawa, Tetsuya [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan)

    2016-03-21

    Rare earth oxides are usually widegap insulators like Y{sub 2}O{sub 3} with closed shell trivalent rare earth ions. In this study, solid phase rock salt structure yttrium monoxide, YO, with unusual valence of Y{sup 2+} (4d{sup 1}) was synthesized in a form of epitaxial thin film by pulsed laser deposition method. YO has been recognized as gaseous phase in previous studies. In contrast with Y{sub 2}O{sub 3}, YO was dark-brown colored and narrow gap semiconductor. The tunable electrical conductivity ranging from 10{sup −1} to 10{sup 3} Ω{sup −1 }cm{sup −1} was attributed to the presence of oxygen vacancies serving as electron donor. Weak antilocalization behavior observed in magnetoresistance indicated significant role of spin-orbit coupling as a manifestation of 4d electron carrier.

  16. Carbon monoxide oxidation over three different states of copper: Development of a model metal oxide catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Jernigan, Glenn Geoffrey [California Univ., Berkeley, CA (United States). Dept. of Chemistry

    1994-10-01

    Carbon monoxide oxidation was performed over the three different oxidation states of copper -- metallic (Cu), copper (I) oxide (Cu2O), and copper (II) oxide (CuO) as a test case for developing a model metal oxide catalyst amenable to study by the methods of modern surface science and catalysis. Copper was deposited and oxidized on oxidized supports of aluminum, silicon, molybdenum, tantalum, stainless steel, and iron as well as on graphite. The catalytic activity was found to decrease with increasing oxidation state (Cu > Cu2O > CuO) and the activation energy increased with increasing oxidation state (Cu, 9 kcal/mol < Cu2O, 14 kcal/mol < CuO, 17 kcal/mol). Reaction mechanisms were determined for the different oxidation states. Lastly, NO reduction by CO was studied. A Cu and CuO catalyst were exposed to an equal mixture of CO and NO at 300--350 C to observe the production of N2 and CO2. At the end of each reaction, the catalyst was found to be Cu2O. There is a need to study the kinetics of this reaction over the different oxidation states of copper.

  17. Divalent metal ion differentially regulates the sequential nicking reactions of the GIY-YIG homing endonuclease I-BmoI.

    Directory of Open Access Journals (Sweden)

    Benjamin P Kleinstiver

    Full Text Available Homing endonucleases are site-specific DNA endonucleases that function as mobile genetic elements by introducing double-strand breaks or nicks at defined locations. Of the major families of homing endonucleases, the modular GIY-YIG endonucleases are least understood in terms of mechanism. The GIY-YIG homing endonuclease I-BmoI generates a double-strand break by sequential nicking reactions during which the single active site of the GIY-YIG nuclease domain must undergo a substantial reorganization. Here, we show that divalent metal ion plays a significant role in regulating the two independent nicking reactions by I-BmoI. Rate constant determination for each nicking reaction revealed that limiting divalent metal ion has a greater impact on the second strand than the first strand nicking reaction. We also show that substrate mutations within the I-BmoI cleavage site can modulate the first strand nicking reaction over a 314-fold range. Additionally, in-gel DNA footprinting with mutant substrates and modeling of an I-BmoI-substrate complex suggest that amino acid contacts to a critical GC-2 base pair are required to induce a bottom-strand distortion that likely directs conformational changes for reaction progress. Collectively, our data implies mechanistic roles for divalent metal ion and substrate bases, suggesting that divalent metal ion facilitates the re-positioning of the GIY-YIG nuclease domain between sequential nicking reactions.

  18. Determination of the oxidation states of metals and metalloids: An analytical review

    Science.gov (United States)

    Vodyanitskii, Yu. N.

    2013-12-01

    The hazard of many heavy metals/metalloids in the soil depends on their oxidation state. The problem of determining the oxidation state has been solved due to the use of synchrotron radiation methods with the analysis of the X-ray absorption near-edge structure (XANES). The determination of the oxidation state is of special importance for some hazardous heavy elements (arsenic, antimony, selenium, chromium, uranium, and vanadium). The mobility and hazard of each of these elements depend on its oxidation state. The mobilities are higher at lower oxidation states of As, Cr, V, and Se and at higher oxidation states of Sb and U. The determination of the oxidation state of arsenic has allowed revealing its fixation features in the rhizosphere of hydrophytes. The known oxidation states of chromium and uranium are used for the retention of these elements on geochemical barriers. Different oxidation states have been established for vanadium displacing iron in goethite. The determination of the oxidation state of manganese in the rhizosphere and the photosynthetic apparatus of plants is of special importance for agricultural chemists.

  19. Binding of Divalent Cations to Polygalacturonate: A Mechanism Driven by the Hydration Water.

    Science.gov (United States)

    Huynh, Uyen T D; Lerbret, Adrien; Neiers, Fabrice; Chambin, Odile; Assifaoui, Ali

    2016-02-11

    We have investigated the interactions between polygalacturonate (polyGal) and four divalent cations (M(2+) = Ba(2+), Ca(2+), Mg(2+), Zn(2+)) that differ in size and affinity for water. Our results evidence that M(2+)-polyGal interactions are intimately linked to the affinity of M(2+) for water. Mg(2+) interacts so strongly with water that it remains weakly bound to polyGal (polycondensation) by sharing water molecules from its first coordination shell with the carboxylate groups of polyGal. In contrast, the other cations form transient ionic pairs with polyGal by releasing preferentially one water molecule (for Zn(2+)) or two (for Ca(2+) and Ba(2+)), which corresponds to monodentate and bidentate binding modes with carboxylates, respectively. The mechanism for the binding of these three divalent cations to polyGal can be described by two steps: (i) monocomplexation and formation of point-like cross-links between polyGal chains (at low M(2+)/Gal molar ratios, R) and (ii) dimerization (at higher R). The threshold molar ratio, R*, between these two steps depends on the nature of divalent cations and is lower for calcium ions (R* 0.3). This difference may be explained by the intermediate affinity of Ca(2+) for water with respect to those of Zn(2+) and Ba(2+), which may induce the formation of cross-links of intermediate flexibility. By comparison, the lower and higher flexibilities of the cross-links formed by Zn(2+) and Ba(2+), respectively, may shift the formation of dimers to higher molar ratios (R*).

  20. Comparative sensitivity of rat cerebellar neurons to dysregulation of divalent cation homeostasis and cytotoxicity caused by methylmercury

    International Nuclear Information System (INIS)

    Edwards, Joshua R.; Marty, M. Sue; Atchison, William D.

    2005-01-01

    The objective of the present study was to determine the relative effectiveness of methylmercury (MeHg) to alter divalent cation homeostasis and cause cell death in MeHg-resistant cerebellar Purkinje and MeHg-sensitive granule neurons. Application of 0.5-5 μM MeHg to Purkinje and granule cells grown in culture caused a concentration- and time-dependent biphasic increase in fura-2 fluorescence. At 0.5 and 1 μM MeHg, the elevations of fura-2 fluorescence induced by MeHg were biphasic in both cell types, but significantly delayed in Purkinje as compared to granule cells. Application of the heavy-metal chelator, TPEN, to Purkinje cells caused a precipitous decline in a proportion of the fura-2 fluorescence signal, indicating that MeHg causes release of Ca 2+ and non-Ca 2+ divalent cations. Purkinje cells were also more resistant than granule cells to the neurotoxic effects of MeHg. At 24.5 h after-application of 5 μM MeHg, 97.7% of Purkinje cells were viable. At 3 μM MeHg there was no detectable loss of Purkinje cell viability. In contrast, only 40.6% of cerebellar granule cells were alive 24.5 h after application of 3 μM MeHg. In conclusion, Purkinje neurons in primary cultures appear to be more resistant to MeHg-induced dysregulation of divalent cation homeostasis and subsequent cell death when compared to cerebellar granule cells. There is a significant component of non-Ca 2+ divalent cation released by MeHg in Purkinje neurons

  1. Divalent Cations Regulate the Ion Conductance Properties of Diverse Classes of Aquaporins

    Directory of Open Access Journals (Sweden)

    Mohamad Kourghi

    2017-11-01

    Full Text Available Aquaporins (AQPs are known to facilitate water and solute fluxes across barrier membranes. An increasing number of AQPs are being found to serve as ion channels. Ion and water permeability of selected plant and animal AQPs (plant Arabidopsis thaliana AtPIP2;1, AtPIP2;2, AtPIP2;7, human Homo sapiens HsAQP1, rat Rattus norvegicus RnAQP4, RnAQP5, and fly Drosophila melanogaster DmBIB were expressed in Xenopus oocytes and examined in chelator-buffered salines to evaluate the effects of divalent cations (Ca2+, Mg2+, Ba2+ and Cd2+ on ionic conductances. AtPIP2;1, AtPIP2;2, HsAQP1 and DmBIB expressing oocytes had ionic conductances, and showed differential sensitivity to block by external Ca2+. The order of potency of inhibition by Ca2+ was AtPIP2;2 > AtPIP2;1 > DmBIB > HsAQP1. Blockage of the AQP cation channels by Ba2+ and Cd2+ caused voltage-sensitive outward rectification. The channels with the highest sensitivity to Ca2+ (AtPIP2;1 and AtPIP2;2 showed a distinctive relief of the Ca2+ block by co-application of excess Ba2+, suggesting that divalent ions act at the same site. Recognizing the regulatory role of divalent cations may enable the discovery of other classes of AQP ion channels, and facilitate the development of tools for modulating AQP ion channels. Modulators of AQPs have potential value for diverse applications including improving salinity tolerance in plants, controlling vector-borne diseases, and intervening in serious clinical conditions involving AQPs, such as cancer metastasis, cardiovascular or renal dysfunction.

  2. Biodegradation tests of mercaptocarboxylic acids, their esters, related divalent sulfur compounds and mercaptans.

    Science.gov (United States)

    Rücker, Christoph; Mahmoud, Waleed M M; Schwartz, Dirk; Kümmerer, Klaus

    2018-04-17

    Mercaptocarboxylic acids and their esters, a class of difunctional compounds bearing both a mercapto and a carboxylic acid or ester functional group, are industrial chemicals of potential environmental concern. Biodegradation of such compounds was systematically investigated here, both by literature search and by experiments (Closed Bottle Test OECD 301D and Manometric Respirometry Test OECD 301F). These compounds were found either readily biodegradable or at least biodegradable to a significant extent. Some related compounds of divalent sulfur were tested for comparison (mercaptans, sulfides, disulfides). For the two relevant monofunctional compound classes, carboxylic acids/esters and mercaptans, literature data were compiled, and by comparison with structurally similar compounds without these functional groups, the influence of COOH/COOR' and SH groups on biodegradability was evaluated. Thereby, an existing rule of thumb for biodegradation of carboxylic acids/esters was supported by experimental data, and a rule of thumb could be formulated for mercaptans. Concurrent to biodegradation, abiotic processes were observed in the experiments, rapid oxidative formation of disulfides (dimerisation of monomercaptans and cyclisation of dimercaptans) and hydrolysis of esters. Some problems that compromise the reproducibility of biodegradation test results were discussed.

  3. Stability and transport of graphene oxide nanoparticles in groundwater and surface water

    Science.gov (United States)

    A transport study investigating the effects of natural organic matter (NOM) in the presence of monovalent (KCl) and divalent (CaCl2) salts was performed in a packed bed column. The electrophoretic mobility (EPM) and effective diameter of the graphene oxide nanoparticles (GONPs) were measured as a fu...

  4. Induction of divalent cation permeability by heterologous expression of a voltage sensor domain.

    Science.gov (United States)

    Arima, Hiroki; Tsutsui, Hidekazu; Sakamoto, Ayako; Yoshida, Manabu; Okamura, Yasushi

    2018-01-06

    The voltage sensor domain (VSD) is a protein domain that confers sensitivity to membrane potential in voltage-gated ion channels as well as the voltage-sensing phosphatase. Although VSDs have long been considered to function as regulatory units acting on adjacent effectors, recent studies have revealed the existence of direct ion permeation paths in some mutated VSDs and in the voltage-gated proton channel. In this study, we show that calcium currents are evoked upon membrane hyperpolarization in cells expressing a VSD derived from an ascidian voltage-gated ion channel superfamily. Unlike the previously reported omega-pore in the Shaker K + channel and rNav1.4, mutations are not required. From electrophysiological experiments in heterologous expression systems, we found that the conductance is directly mediated by the VSD itself and is carried by both monovalent and divalent cations. This is the first report of divalent cation permeation through a VSD-like structure. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Higher cytotoxicity of divalent antibody-toxins than monovalent antibody-toxins

    International Nuclear Information System (INIS)

    Won, JaeSeon; Nam, PilWon; Lee, YongChan; Choe, MuHyeon

    2009-01-01

    Recombinant antibody-toxins are constructed via the fusion of a 'carcinoma-specific' antibody fragment to a toxin. Due to the high affinity and high selectivity of the antibody fragments, antibody-toxins can bind to surface antigens on cancer cells and kill them without harming normal cells [L.H. Pai, J.K. Batra, D.J. FitzGerald, M.C. Willingham, I. Pastan, Anti-tumor activities of immunotoxins made of monoclonal antibody B3 and various forms of Pseudomonas exotoxin, Proc. Natl. Acad. Sci. USA 88 (1991) 3358-3362]. In this study, we constructed the antibody-toxin, Fab-SWn-PE38, with SWn (n = 3, 6, 9) sequences containing n-time repeated (G 4 S) between the Fab fragment and PE38 (38 kDa truncated form of Pseudomonas exotoxin A). The SWn sequence also harbored one cysteine residue that could form a disulfide bridge between two Fab-SWn-PE38 monomers. We assessed the cytotoxicity of the monovalent (Fab-SWn-PE38), and divalent ([Fab-SWn-PE38] 2 ) antibody-toxins. The cytotoxicity of the dimer against the CRL1739 cell line was approximately 18.8-fold higher than that of the monomer on the ng/ml scale, which was approximately 37.6-fold higher on the pM scale. These results strongly indicate that divalency provides higher cytotoxicity for an antibody-toxin.

  6. Polymerization of a divalent/tetravalent metal-storing atom-mimicking dendrimer

    OpenAIRE

    Albrecht, Ken; Hirabayashi, Yuki; Otake, Masaya; Mendori, Shin; Tobari, Yuta; Azuma, Yasuo; Majima, Yutaka; Yamamoto, Kimihisa

    2016-01-01

    The phenylazomethine dendrimer (DPA) has a layer-by-layer electron density gradient that is an analog of the Bohr atom (atom mimicry). In combination with electron pair mimicry, the polymerization of this atom-mimicking dendrimer was achieved. The valency of the mimicked atom was controlled by changing the chemical structure of the dendrimer. By mimicking a divalent atom, a one-dimensional (1D) polymer was obtained, and by using a planar tetravalent atom mimic, a 2D polymer was obtained. Thes...

  7. A divalent rare earth oxide semiconductor: Yttrium monoxide

    Science.gov (United States)

    Kaminaga, Kenichi; Sei, Ryosuke; Hayashi, Kouichi; Happo, Naohisa; Tajiri, Hiroo; Oka, Daichi; Fukumura, Tomoteru; Hasegawa, Tetsuya

    Rare earth sesquioxides like Y2O3 are known as widegap insulators with the highly stable closed shell trivalent rare earth ions. On the other hand, rare earth monoxides such as YO have been recognized as gaseous phase, and only EuO and YbO were thermodynamically stable solid-phase rock salt monoxides. In this study, solid-phase rock salt yttrium monoxide, YO, was synthesized in a form of epitaxial thin film by pulsed laser deposition method. YO possesses unusual valence of Y2+ ([Kr] 4d1) . In contrast with Y2O3, YO was narrow gap semiconductor with dark-brown color. The electrical conductivity was tunable from 10-1 to 103 Ω-1 cm-1 by introducing oxygen vacancies as electron donor. Weak antilocalization behavior was observed indicating significant spin-orbit coupling owing to 4 d electron carrier. The absorption spectral shape implies the Mott-Hubbard insulator character of YO. Rare earth monoixdes will be new platform of functional oxides. This work was supported by JST-CREST, the Japan Society for the Promotion of Science (JSPS) with Grant-in-Aid for Scientific Research on Innovative Areas (Nos. 26105002 and 26105006), and Nanotechnology Platform (Project No.12024046) of MEXT, Japan.

  8. Influence of vanadium oxidation states on the performance of V-Mg-Al mixed-oxide catalysts for the oxidative dehydrogenation of propane

    International Nuclear Information System (INIS)

    Schacht, L.; Navarrete, J.; Schacht, P.; Ramirez, M. A.

    2010-01-01

    V-Mg-Al mixed-oxide catalysts for oxidative dehydrogenation of propane were prepared by thermal decomposition of Mg-Al-layered double hydroxides with vanadium interlayer doping. The obtained catalysts were tested for the oxidative dehydrogenation of propane, obtaining good results in catalytic activity (conversion 16.55 % and selectivity 99.97 %) Results indicated that catalytic performance of these materials depends on how vanadium is integrated in the layered structure, which is determined by the Mg/Al ratio. Vanadium interlayer doping modifies the oxidation state of vanadium and consequently catalytic properties. Surface properties were studied by X-ray photoelectron spectroscopic and diffuse reflectance, UV-visible spectroscopy, and temperature programmed reduction. The analyses provided information about the oxidation state, before and after the reaction. From these results, it is suggested that selectivity to propylene and catalytic activity depend mainly of vanadium oxidation state. (Author)

  9. Influence of vanadium oxidation states on the performance of V-Mg-Al mixed-oxide catalysts for the oxidative dehydrogenation of propane

    Energy Technology Data Exchange (ETDEWEB)

    Schacht, L. [IPN, Escuela Superior de Fisica y Matematicas, Departamento de Ciencia de Materiales, Av. IPN s/n, Edificio 9, Col. Lindavista, 07738 Mexico D. F. (Mexico); Navarrete, J.; Schacht, P.; Ramirez, M. A., E-mail: pschacha@imp.m [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas No. 152, 07730 Mexico D. F. (Mexico)

    2010-07-01

    V-Mg-Al mixed-oxide catalysts for oxidative dehydrogenation of propane were prepared by thermal decomposition of Mg-Al-layered double hydroxides with vanadium interlayer doping. The obtained catalysts were tested for the oxidative dehydrogenation of propane, obtaining good results in catalytic activity (conversion 16.55 % and selectivity 99.97 %) Results indicated that catalytic performance of these materials depends on how vanadium is integrated in the layered structure, which is determined by the Mg/Al ratio. Vanadium interlayer doping modifies the oxidation state of vanadium and consequently catalytic properties. Surface properties were studied by X-ray photoelectron spectroscopic and diffuse reflectance, UV-visible spectroscopy, and temperature programmed reduction. The analyses provided information about the oxidation state, before and after the reaction. From these results, it is suggested that selectivity to propylene and catalytic activity depend mainly of vanadium oxidation state. (Author)

  10. Higher Americium Oxidation State Research Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Mincher, Bruce J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Law, Jack D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Goff, George S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Moyer, Bruce A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burns, Jon D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lumetta, Gregg J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sinkov, Sergey I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shehee, Thomas C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hobbs, David T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-12-18

    The partitioning of hexavalent Am from dissolved nuclear fuel requires the ability to efficiently oxidize Am(III) to Am(VI) and to maintain that oxidation state for a length of time sufficient to perform the separation. Several oxidants have been, or are being developed. Chemical oxidants include Ag-catalyzed ozone, Ag-catalyzed peroxydisulfate, Cu(III) periodate, and sodium bismuthate. Hexavalent americium has also now successfully been prepared by electrolysis, using functionalized electrodes. So-called auto-reduction rates of Am(VI) are sufficiently slow to allow for separations. However, for separations based on solvent extraction or ion exchange using organic resins, the high valence state must be maintained under the reducing conditions of the organic phase contact, and a holding oxidant is probably necessary. Until now, only Cu(III) periodate and sodium bismuthate oxidation have been successfully combined with solvent extraction separations. Bismuthate oxidation provided the higher DAm, since it acts as its own holding oxidant, and a successful hot test using centrifugal contactors was performed. For the other oxidants, Ag-catalyzed peroxydisulfate will not oxidize americium in nitric acid concentrations above 0.3 M, and it is not being further investigated. Peroxydisulfate in the absence of Ag catalysis is being used to prepare Am(V) in ion exchange work, discussed below. Preliminary work with Ag-catalyzed ozone has been unsuccessful for extractions of Am(VI) from 6.5 M HNO3, and only one attempt at extraction, also from 6.5 M HNO3, using the electrolytic oxidation has been attempted. However, this high acid concentration was based on the highest Am extraction efficiency using the bismuthate oxidant; which is only sparingly soluble, and thus the oxidation yield is based on bismuthate solubility. Lower acid concentrations may be sufficient with alternative oxidants and work with Ag-ozone, Cu(III) and electrolysis is on-going. Two non

  11. Salinity-Dependent Contact Angle Alteration in Oil/Brine/Silicate Systems: the Critical Role of Divalent Cations.

    Science.gov (United States)

    Haagh, M E J; Siretanu, I; Duits, M H G; Mugele, F

    2017-04-11

    The effectiveness of water flooding oil recovery depends to an important extent on the competitive wetting of oil and water on the solid rock matrix. Here, we use macroscopic contact angle goniometry in highly idealized model systems to evaluate how brine salinity affects the balance of wetting forces and to infer the microscopic origin of the resultant contact angle alteration. We focus, in particular, on two competing mechanisms debated in the literature, namely, double-layer expansion and divalent cation bridging. Our experiments involve aqueous droplets with a variable content of chloride salts of Na + , K + , Ca 2+ , and Mg 2+ , wetting surfaces of muscovite and amorphous silica, and an environment of ambient decane containing small amounts of fatty acids to represent polar oil components. By diluting the salt content in various manners, we demonstrate that the water contact angle on muscovite, not on silica, decreases by up to 25° as the divalent cation concentration is reduced from typical concentrations in seawater to zero. Decreasing the ionic strength at a constant divalent ion concentration, however, has a negligible effect on the contact angle. We discuss the consequences for the interpretation of core flooding experiments and the identification of a microscopic mechanism of low salinity water flooding, an increasingly popular, inexpensive, and environment-friendly technique for enhanced oil recovery.

  12. Bulk band gaps in divalent hexaborides: A soft x-ray emission study

    International Nuclear Information System (INIS)

    Denlinger, Jonathan D.; Gweon, Gey-Hong; Allen, James W.; Bianchi, Andrea D.; Fisk, Zachary

    2001-01-01

    Boron K-edge soft x-ray emission and absorption are used to address the fundamental question of whether divalent hexaborides are intrinsic semimetals or defect-doped bandgap insulators. These bulk sensitive measurements, complementary and consistent with surface-sensitive angle-resolved photoemission experiments, confirm the existence of a bulk band gap and the location of the chemical potential at the bottom of the conduction band

  13. Structural study of some divalent aluminoborate glasses using ultrasonic and positron annihilation techniques

    Science.gov (United States)

    Saddeek, Yasser B.; Mohamed, Hamdy F. M.; Azooz, Moenis A.

    2004-07-01

    Positron annihilation lifetime (PAL), ultrasonic techniques, and differential thermal analysis (DTA) were performed to study the structure of some aluminoborate glasses. The basic compositions of these glasses are 50 B2O3 + 10 Al2O3 + 40 RO (wt%), where RO is the divalent oxide (MgO, CaO, SrO, and CdO). The ultrasonic data show that the rigidity increases from MgO to CaO then decrease at SrO and again increases at CdO. The glass transition temperature (determined from DTA) decreases from MgO to SrO then increases at CdO. The trend of the thermal properties was attributed to thermal stability. The experimental data are correlated with the internal glass structure and its connectivity. The PAL data show that an inversely correlation between the relative fractional of the open hole volume and the density of the samples. Also, there is a good correlation between the ortho-positronium (o-Ps) lifetime (open hole volume size) and the bulk modulus of the samples (determined from ultrasonic technique). The open volume hole size distribution for the samples shows that the open volume holes expand in size for CaO, SrO, MgO, and CdO, respectively with their distribution function moving to higher volume size.

  14. Radical bonding: structure and stability of bis(phenalenyl) complexes of divalent metals from across the periodic table.

    Science.gov (United States)

    Craciun, Smaranda; Donald, Kelling J

    2009-07-06

    We examine the bonding possibilities of the bis(phenalenyl) MP(2) sandwich complexes of the divalent metals M = Be, Mg, Ca, Sr, Ba, Zn, Cd, and Hg, at the B3LYP level of theory. The outcome is an extraordinarily diverse class of low symmetry bis(phenalenyl)metal complexes in which bonding preferences and binding enthalpies differ dramatically. The lowest energy group 2 metal MP(2) complexes include an intriguing eta(1),eta(3) BeP(2) structure, and bent eta(6),eta(6) systems for M = Ca, Sr, and Ba. The group 12 bis(phenalenyl) complexes are thermodynamically unstable eta(1),eta(1) slip-sandwich structures. To better understand changes in the structural preferences going from the (eta(6),eta(6)) group 2 to the (eta(1),eta(1)) group 12 complexes, we explored the bonding in the bis(phenalenyl) complexes of transition metals with stable +2 oxidations states between Ca and Zn in period 4. The computed binding enthalpies are large and negative for nearly all of the minimum energy bis(phenalenyl) complexes of the group 2 and the transition metals; they are tiny for MgP(2), and are quite positive for the group 12 systems. The structural preferences and stability of the complexes is a subtle negotiation of several influences: the (un)availability of (n - 1)d and np, orbitals for bonding, the cost of the rehybridization at carbon sites in the phenalenyl rings in preparation for bonding to the metals, and the (P---P) interaction between the phenalenyl radicals.

  15. EPR of divalent manganese in non-Kramers hosts

    Energy Technology Data Exchange (ETDEWEB)

    Lech, J.; Slezak, A. [Institute of Physics, Technical University of Czestochowa, Czestochowa (Poland)

    1997-12-31

    Various interactions which lead to the observation of sharp EPR spectra of the high half-integer spin impurity Mn{sup 2+} (S=5/2) in paramagnetic hosts with integer spins S=1 and S=2 have been studied. Studies have been carried out on the basis of data extracted from experimental EPR spectra of Mn{sup 2+} in single crystal of divalent nickel Ni{sup 2+} (S=1) and Fe{sup 2+} (S=1) perchlorate hexahydrates. It has been shown that dipolar host-host and host-guest couplings broaden resonance lines of Mn{sup 2+}. Narrowing of the lines in the both crystals can be mainly attributed to the host-guest exchange interactions and quenching of the host spins. 19 refs, 3 figs, 1 tab.

  16. Crucial role of dynamic linker histone binding and divalent ions for DNA accessibility and gene regulation revealed by mesoscale modeling of oligonucleosomes

    Science.gov (United States)

    Collepardo-Guevara, Rosana; Schlick, Tamar

    2012-01-01

    Monte Carlo simulations of a mesoscale model of oligonucleosomes are analyzed to examine the role of dynamic-linker histone (LH) binding/unbinding in high monovalent salt with divalent ions, and to further interpret noted chromatin fiber softening by dynamic LH in monovalent salt conditions. We find that divalent ions produce a fiber stiffening effect that competes with, but does not overshadow, the dramatic softening triggered by dynamic-LH behavior. Indeed, we find that in typical in vivo conditions, dynamic-LH binding/unbinding reduces fiber stiffening dramatically (by a factor of almost 5, as measured by the elasticity modulus) compared with rigidly fixed LH, and also the force needed to initiate chromatin unfolding, making it consistent with those of molecular motors. Our data also show that, during unfolding, divalent ions together with LHs induce linker-DNA bending and DNA–DNA repulsion screening, which guarantee formation of heteromorphic superbeads-on-a-string structures that combine regions of loose and compact fiber independently of the characteristics of the LH–core bond. These structures might be important for gene regulation as they expose regions of the DNA selectively. Dynamic control of LH binding/unbinding, either globally or locally, in the presence of divalent ions, might constitute a mechanism for regulation of gene expression. PMID:22790986

  17. Response of a benzoxainone derivative linked to monoaza-15-crown-5 with divalent heavy metals.

    Science.gov (United States)

    Addleman, R S; Bennett, J; Tweedy, S H; Elshani, S; Wai, C M

    1998-08-01

    The response of a monoaza-15-crown-5 with an optically active aminobenzoxazinone moiety to divalent cations was investigated. The crown ether was found to undergo a strong emission shift to the blue when complexed with specific divalent metals that have ionic diameters between 1.9-2.4 A. Consequently the photoactive macrocycle is responsive to Mg(2+), Ca(2+), Ba(2+), Sr(2+), Cd(2+), and particularly responsive to Hg(2+)and Pb(2+). Macrocycle emission spectra are shown to be a function of cation concentration. Alkaline metal cations and smaller transition metals ions such as Ni(2+), Co(2+)and Zn(2+)do not cause significant changes in the macrocycle emission spectra. Emission, absorption, and complex stability constants are determined. Mechanisms of cation selectivity and spectral emission shifts are discussed. Challenges involving immobilization of the macrocycle while preserving its spectral response to cations are explored.

  18. Data in support of the negative influence of divalent cations on (?)-epigallocatechin-3-gallate (EGCG)-mediated inhibition of matrix metalloproteinase-2 (MMP-2)

    OpenAIRE

    Deb, Gauri; Batra, Sahil; Limaye, Anil M.

    2015-01-01

    In this data article we have provided evidence for the negative influence of divalent cations on (−)‐epigallocatechin-3-gallate (EGCG)-mediated inhibition of matrix metalloproteinase-2 (MMP-2) activity in cell-free experiments. Chelating agents, such as EDTA and sodium citrate alone, did not affect MMP-2 activity. While EDTA enhanced, excess of divalent cations interfered with EGCG-mediated inhibition of MMP-2.

  19. Charge state of oxide layer of SIMOX-structures

    CERN Document Server

    Askinazi, A Y; Dmitriev, V A; Miloglyadova, L V

    2001-01-01

    The charge state of the oxide layer of the SIMOX-structures, obtained in the course of forming the oxide layers, bricked up in the silicon volume, through the oxygen ions implantation into the Si, is studied. The charge state of the given structures is studied through the method of the layer-by-layer profiling, which makes it possible to obtain the dependence of the plane zones potential on the oxide layer thickness. It is established, that during the process of the SIMOX-structures formation in the oxide layer near the boundary with the Si there appear defects, responsible for the charge. The radiation from the near-the-ultraviolet (NUV) area without the applied electric field neutralizes the given charge. The simultaneous impact of the NUV-radiation and electric field leads to the formation of significantly positive charge

  20. Effect of microorganisms on the plutonium oxidation states

    International Nuclear Information System (INIS)

    Lukšienė, Benedikta; Druteikienė, Rūta; Pečiulytė, Dalia; Baltrūnas, Dalis; Remeikis, Vidmantas; Paškevičius, Algimantas

    2012-01-01

    Particular microbes from substrates at the low-level radioactive waste repository in the Ignalina NPP territory were exposed to 239 Pu (IV) at low pH under aerobic conditions. Pu(III) and Pu(IV) were separated and quantitatively evaluated using the modified anion exchange method and alpha spectrometry. Tested bacteria Bacillus mycoides and Serratia marcescens were more effective in Pu reduction than Rhodococcus fascians. Fungi Paecillomyces lilacinus and Absidia spinosa var. spinosa as well as bacterium Rhodococcus fascians did not alter the plutonium oxidation state. - Highlights: ► Particular microbes from low-level radioactive waste repository were exposed to Pu (IV). ► Some tested bacteria induced slight Pu (IV) reduction at low pH under aerobic conditions. ► Tested fungi did not show peculiarities to alter Pu oxidation state. ► The modified radiochemical method was applied to differentiate Pu oxidation states.

  1. Initial oxidation of TiFe1−xMnx (x = 0–0.3) by low dose exposures to H2O and O2

    International Nuclear Information System (INIS)

    Shwartz, A.; Shamir, N.; Froumin, N.; Zalkind, S.; Edry, I.; Haim, A.; Mintz, M.H.

    2014-01-01

    Highlights: • Thermodynamics of adsorption and initial oxidation of TiFe 1−x Mn x by H 2 O versus O 2 . • Explanation of different oxide formations. • Explanation of the role of the different constituents of the alloys in the processes. - Abstract: The very initial room-temperature oxidation processes of the ternary pseudo-binary TiFe 1−x Mn x (x = 0–0.3) intermetallics by trace amounts of H 2 O vapor and O 2 were studied utilizing XPS and AES techniques. Different reactivities of the two gases were obtained, with a lower oxidation ability of H 2 O, relative to O 2 , as anticipated from thermodynamic considerations. The exposure to O 2 results in a two stage oxidation of the Ti ingredient, which first converts into a divalent TiO (up to exposures of about 2 L), then proceeds into a tetravalent TiO 2 form. Unlike oxygen, water exposure produces only the divalent oxide through the whole exposure range studied (11 L). The Mn component in these compounds is oxidized only by O 2 and not by H 2 O. The Fe ingredient is not oxidized at all and remains in its metallic form up to exposures of 30 L

  2. Sensing properties of perovskite oxide La0.5SR0.5Co0-3-d obtained by using pulsed laser deposition

    NARCIS (Netherlands)

    Dam, T.V.A.; Olthuis, Wouter; Bergveld, Piet

    2004-01-01

    La1−xSrxCoO3−δ belongs to the group of perovskite oxides of the ABO3 structure, with a trivalent rare earth in the A position (La) and a trivalent metal ion in the B position (Co). Doping with divalent Sr-ions at the trivalent La-positions creates oxygen vacancies which give the oxide catalytic

  3. Drosophila divalent metal ion transporter Malvolio is required in dopaminergic neurons for feeding decisions.

    Science.gov (United States)

    Søvik, E; LaMora, A; Seehra, G; Barron, A B; Duncan, J G; Ben-Shahar, Y

    2017-06-01

    Members of the natural resistance-associated macrophage protein (NRAMP) family are evolutionarily conserved metal ion transporters that play an essential role in regulating intracellular divalent cation homeostasis in both prokaryotes and eukaryotes. Malvolio (Mvl), the sole NRAMP family member in insects, plays a role in food choice behaviors in Drosophila and other species. However, the specific physiological and cellular processes that require the action of Mvl for appropriate feeding decisions remain elusive. Here, we show that normal food choice requires Mvl function specifically in the dopaminergic system, and can be rescued by supplementing food with manganese. Collectively, our data indicate that the action of the Mvl transporter affects food choice behavior via the regulation of dopaminergic innervation of the mushroom bodies, a principle brain region associated with decision-making in insects. Our studies suggest that the homeostatic regulation of the intraneuronal levels of divalent cations plays an important role in the development and function of the dopaminergic system and associated behaviors. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  4. Effect of microorganisms on the plutonium oxidation states

    Energy Technology Data Exchange (ETDEWEB)

    Luksiene, Benedikta, E-mail: bena@ar.fi.lt [Center for Physical Sciences and Technology, Savanoriu ave 231, LT-02300 Vilnius (Lithuania); Druteikiene, Ruta [Center for Physical Sciences and Technology, Savanoriu ave 231, LT-02300 Vilnius (Lithuania); Peciulyte, Dalia [Nature Research Centre, Akademijos street 2, LT-08412 Vilnius (Lithuania); Baltrunas, Dalis; Remeikis, Vidmantas [Center for Physical Sciences and Technology, Savanoriu ave 231, LT-02300 Vilnius (Lithuania); Paskevicius, Algimantas [Nature Research Centre, Akademijos street 2, LT-08412 Vilnius (Lithuania)

    2012-03-15

    Particular microbes from substrates at the low-level radioactive waste repository in the Ignalina NPP territory were exposed to {sup 239}Pu (IV) at low pH under aerobic conditions. Pu(III) and Pu(IV) were separated and quantitatively evaluated using the modified anion exchange method and alpha spectrometry. Tested bacteria Bacillus mycoides and Serratia marcescens were more effective in Pu reduction than Rhodococcus fascians. Fungi Paecillomyces lilacinus and Absidia spinosa var. spinosa as well as bacterium Rhodococcus fascians did not alter the plutonium oxidation state. - Highlights: Black-Right-Pointing-Pointer Particular microbes from low-level radioactive waste repository were exposed to Pu (IV). Black-Right-Pointing-Pointer Some tested bacteria induced slight Pu (IV) reduction at low pH under aerobic conditions. Black-Right-Pointing-Pointer Tested fungi did not show peculiarities to alter Pu oxidation state. Black-Right-Pointing-Pointer The modified radiochemical method was applied to differentiate Pu oxidation states.

  5. Devil's staircase of odd-number charge order modulations in divalent β -vanadium bronzes under pressure

    Science.gov (United States)

    Yamauchi, Touru; Ueda, Hiroaki; Ohwada, Kenji; Nakao, Hironori; Ueda, Yutaka

    2018-03-01

    A common characteristic of quasi-one-dimensional (q1D) conductors β -A0.33V2O5 (A = Li, Na, and Ag) is that the charge ordering (CO), the ground state (GS) at ambient pressure, and the superconducting (SC) phases, the GS under high pressure, are competing with each other. We have explored high-pressure properties of divalent β -vanadium bronzes, β -A0.33V2O5 (A = Ca, Sr, and Pb), which are A -cation stoichiometry finely controlled single-crystal/powder samples, and found the absence of the SC phase. In these observations, however, we observed enormous and novel phase transitions, a kind of "devil's staircase"-type phase transitions in the charge ordering (CO) phases. The most surprising discovery in this devil's staircase, which was found mainly in β -Sr0.33V2O5 , is that all the charge modulation vectors of many kinds of CO phases can be represented as a primitive lattice translation vector along the b axis multiplied by several odd numbers. This discovery surely demonstrates interplay between the charge degree freedom and the crystallographic symmetry. We propose two possible mechanisms to explain this phenomenon: "self-charge transfer (carrier redistribution)" between the two subsystems in these compounds and "sequential symmetry reduction" that was discussed in Landau theory of phase transitions. In β -Ca0.33V2O5 we also found a P -T phase diagram similar in outlook but different in detail. The devil's staircase was also observed but it is an incomplete one. Furthermore, the charge modulation vectors in it are shorter than those in β -Sr0.33V2O5 . In β -Pb0.33V2O5 , which has no CO phase at ambient pressure, the pressure-induced antiferromagnetic ordering was observed at around 50 K above 0.5 GPa. Using these two kinds of mechanisms, we also explain the global high-pressure properties in all the stoichiometric divalent β -vanadium bronzes, which were observed as a wide variety of electromagnetic states. In addition, we also discuss a possible key for

  6. Oxidation-state maxima in plutonium chemistry

    International Nuclear Information System (INIS)

    Silver, G.L.

    2013-01-01

    Maxima in the fractions of the trivalent and hexavalent oxidation states of plutonium are inherent in the algebra of its disproportionation reactions. The maxima do not support overall disproportionation equations as satisfactory representations of aqueous plutonium. (author)

  7. Ab Initio Assessment of the Bonding in Disulfonates Containing Divalent Nitrogen and Phosphorus Atoms

    DEFF Research Database (Denmark)

    Andersen, Vinca Bonde; Berg, Rolf W.; Shim, Irene

    2017-01-01

    The iminodisulfonate, [N(SO3)2]3–, and phosphinodisulfonate, [P(SO3)2]3–, ions have been investigated by performing ab initio MP2/6-311+G**calculations. The nitrogen and phosphorus atoms as part of the ions are shown to be divalent with a negative charge and two lone pairs on the nitrogen...

  8. Two Divalent Metal Ions and Conformational Changes Play Roles in the Hammerhead Ribozyme Cleavage Reaction

    Science.gov (United States)

    Mir, Aamir; Chen, Ji; Robinson, Kyle; Lendy, Emma; Goodman, Jaclyn; Neau, David; Golden, Barbara L.

    2016-01-01

    The hammerhead ribozyme is a self-cleaving RNA broadly dispersed across all kingdoms of life. Although it was the first of the small, nucleolytic ribozymes discovered, the mechanism by which it catalyzes its reaction remains elusive. The nucleobase of G12 is well positioned to be a general base, but it is unclear if or how this guanine base becomes activated for proton transfer. Metal ions have been implicated in the chemical mechanism, but no interactions between divalent metal ions and the cleavage site have been observed crystallographically. To better understand how this ribozyme functions, we have solved crystal structures of wild-type and G12A mutant ribozymes. We observe a pH-dependent conformational change centered around G12, consistent with this nucleotide becoming deprotonated. Crystallographic and kinetic analysis of the G12A mutant reveals a Zn2+ specificity switch suggesting a direct interaction between a divalent metal ion and the purine at position 12. The metal ion specificity switch and the pH–rate profile of the G12A mutant suggest that the minor imino tautomer of A12 serves as the general base in the mutant ribozyme. We propose a model in which the hammerhead ribozyme rearranges prior to the cleavage reaction, positioning two divalent metal ions in the process. The first metal ion, positioned near G12, becomes directly coordinated to the O6 keto oxygen, to lower the pKa of the general base and organize the active site. The second metal ion, positioned near G10.1, bridges the N7 of G10.1 and the scissile phosphate and may participate directly in the cleavage reaction. PMID:26398724

  9. Shifts in oxidation states of cerium oxide nanoparticles detected inside intact hydrated cells and organelles

    Energy Technology Data Exchange (ETDEWEB)

    Szymanski, Craig J.; Munusamy, Prabhakaran; Mihai, Cosmin; Xie, Yumei; Hu, Dehong; Gilles, Marry K.; Tyliszczak, T.; Thevuthasan, Suntharampillai; Baer, Donald R.; Orr, Galya

    2015-09-01

    Cerium oxide nanoparticles (CNPs) have been shown to induce diverse biological effects, ranging from toxic to beneficial. The beneficial effects have been attributed to the potential antioxidant activity of CNPs via certain redox reactions, depending on their oxidation state or Ce3+/Ce4+ ratio. However, this ratio is strongly dependent on the environment and age of the nanoparticles and it is unclear whether and how the complex intracellular environment impacts this ratio and the possible redox reactions of CNPs. To identify any changes in the oxidation state of CNPs in the intracellular environment and better understand their intracellular reactions, we directly quantified the oxidation states of CNPs outside and inside intact hydrated cells and organelles using correlated scanning transmission x-ray and super resolution fluorescence microscopies. By analyzing hundreds of small CNP aggregates, we detected a shift to a higher Ce3+/Ce4+ ratio in CNPs inside versus outside the cells, indicating a net reduction of CNPs in the intracellular environment. We further found a similar ratio in the cytoplasm and in the lysosomes, indicating that the net reduction occurs earlier in the internalization pathway. Together with oxidative stress and toxicity measurements, our observations identify a net reduction of CNPs in the intracellular environment, which is consistent with their involvement in potentially beneficial oxidation reactions, but also point to interactions that can negatively impact the health of cells.

  10. Probing Induced Structural Changes in Biomimetic Bacterial Cell Membrane Interactions with Divalent Cations

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Allison M [ORNL; Standaert, Robert F [ORNL; Jubb, Aaron M [ORNL; Katsaras, John [ORNL; Johs, Alexander [ORNL

    2017-01-01

    Biological membranes, formed primarily by the self-assembly of complex mixtures of phospholipids, provide a structured scaffold for compartmentalization and structural processes in living cells. The specific physical properties of phospholipid species present in a given membrane play a key role in mediating these processes. Phosphatidylethanolamine (PE), a zwitterionic lipid present in bacterial, yeast, and mammalian cell membranes, is exceptional. In addition to undergoing the standard lipid polymorphic transition between the gel and liquid-crystalline phase, it can also assume an unusual polymorphic state, the inverse hexagonal phase (HII). Divalent cations are among the factors that drive the formation of the HII phase, wherein the lipid molecules form stacked tubular structures by burying the hydrophilic head groups and exposing the hydrophobic tails to the bulk solvent. Most biological membranes contain a lipid species capable of forming the HII state suggesting that such lipid polymorphic structural states play an important role in structural biological processes such as membrane fusion. In this study, the interactions between Mg2+ and biomimetic bacterial cell membranes composed of PE and phosphatidylglycerol (PG) were probed using differential scanning calorimetry (DSC), small-angle x-ray scattering (SAXS), and fluorescence spectroscopy. The lipid phase transitions were examined at varying ratios of PE to PG and upon exposure to physiologically relevant concentrations of Mg2+. An understanding of these basic interactions enhances our understanding of membrane dynamics and how membrane-mediated structural changes may occur in vivo.

  11. Separation of radionuclides from water by magnesium oxide adsorption

    International Nuclear Information System (INIS)

    Tseng, Chia-Lian; Lo, Jem-Mau; Yeh, Si-Jung

    1987-01-01

    Adsorption by magnesium oxide of more than forty radionuclides in respective ionic species in water was observed. Generally, the radionuclides in di-valent and/or multi-valent cations are favorably adsorbed by magnesium oxide; but not for the those in mono-valent cations. In addition, the adsorption by magnesium oxide was not effective to most of the radionuclides in negative ionic species. From the observations, the adsorption mechanism is more prominently by the ion exchange of the di- or multi-valent cation species with the hydrous magnesium oxide. Separation of the radionuclides related to the corrosion products possibly produced in a nuclear power plant from natural seawater was attempted by the magnesium oxide adsorption method. It should be emphasized that the adsorption method was found to be practical for separating radionuclides from a large quantity of natural seawater with high recovery and high reproducibility. (author)

  12. Bismuth silicate glass containing heavy metal oxide as a promising radiation shielding material

    Science.gov (United States)

    Elalaily, Nagia A.; Abou-Hussien, Eman M.; Saad, Ebtisam A.

    2016-12-01

    Optical and FTIR spectroscopic measurements and electron paramagnetic resonance (EPR) properties have been utilized to investigate and characterize the given compositions of binary bismuth silicate glasses. In this work, it is aimed to study the possibility of using the prepared bismuth silicate glasses as a good shielding material for γ-rays in which adding bismuth oxide to silicate glasses causes distinguish increase in its density by an order of magnitude ranging from one to two more than mono divalent oxides. The good thermal stability and high density of the bismuth-based silicate glass encourage many studies to be undertaken to understand its radiation shielding efficiency. For this purpose a glass containing 20% bismuth oxide and 80% SiO2 was prepared using the melting-annealing technique. In addition the effects of adding some alkali heavy metal oxides to this glass, such as PbO, BaO or SrO, were also studied. EPR measurements show that the prepared glasses have good stability when exposed to γ-irradiation. The changes in the FTIR spectra due to the presence of metal oxides were referred to the different housing positions and physical properties of the respective divalent Sr2+, Ba2+ and Pb2+ ions. Calculations of optical band gap energies were presented for some selected glasses from the UV data to support the probability of using these glasses as a gamma radiation shielding material. The results showed stability of both optical and magnetic spectra of the studied glasses toward gamma irradiation, which validates their irradiation shielding behavior and suitability as the radiation shielding candidate materials.

  13. Structural study of some divalent aluminoborate glasses using ultrasonic and positron annihilation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Saddeek, Yasser B. [Physics Department, Faculty of Science, Al-Azhar University, Assiut (Egypt); Mohamed, Hamdy F.M. [Physics Department, Faculty of Science, El-Minia University, B.O. 61519 El-Minia (Egypt); Azooz, Moenis A. [Glass Research Department, National Research Center, Dokki, Cairo (Egypt)

    2004-07-01

    Positron annihilation lifetime (PAL), ultrasonic techniques, and differential thermal analysis (DTA) were performed to study the structure of some aluminoborate glasses. The basic compositions of these glasses are 50 B{sub 2}O{sub 3}+ 10 Al {sub 2}O {sub 3}+40RO (wt%), where RO is the divalent oxide (MgO, CaO, SrO, and CdO). The ultrasonic data show that the rigidity increases from MgO to CaO then decrease at SrO and again increases at CdO. The glass transition temperature (determined from DTA) decreases from MgO to SrO then increases at CdO. The trend of the thermal properties was attributed to thermal stability. The experimental data are correlated with the internal glass structure and its connectivity. The PAL data show that an inversely correlation between the relative fractional of the open hole volume and the density of the samples. Also, there is a good correlation between the ortho-positronium (o-Ps) lifetime (open hole volume size) and the bulk modulus of the samples (determined from ultrasonic technique). The open volume hole size distribution for the samples shows that the open volume holes expand in size for CaO, SrO, MgO, and CdO, respectively with their distribution function moving to higher volume size. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Structural study of some divalent aluminoborate glasses using ultrasonic and positron annihilation techniques

    International Nuclear Information System (INIS)

    Saddeek, Yasser B.; Mohamed, Hamdy F.M.; Azooz, Moenis A.

    2004-01-01

    Positron annihilation lifetime (PAL), ultrasonic techniques, and differential thermal analysis (DTA) were performed to study the structure of some aluminoborate glasses. The basic compositions of these glasses are 50 B 2 O 3 + 10 Al 2 O 3 +40RO (wt%), where RO is the divalent oxide (MgO, CaO, SrO, and CdO). The ultrasonic data show that the rigidity increases from MgO to CaO then decrease at SrO and again increases at CdO. The glass transition temperature (determined from DTA) decreases from MgO to SrO then increases at CdO. The trend of the thermal properties was attributed to thermal stability. The experimental data are correlated with the internal glass structure and its connectivity. The PAL data show that an inversely correlation between the relative fractional of the open hole volume and the density of the samples. Also, there is a good correlation between the ortho-positronium (o-Ps) lifetime (open hole volume size) and the bulk modulus of the samples (determined from ultrasonic technique). The open volume hole size distribution for the samples shows that the open volume holes expand in size for CaO, SrO, MgO, and CdO, respectively with their distribution function moving to higher volume size. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Modulation of Higher Order Chromatin Conformation in Mammalian Cell Nuclei Can Be Mediated by Polyamines and Divalent Cations.

    Directory of Open Access Journals (Sweden)

    Ashwat Visvanathan

    Full Text Available The organisation of the large volume of mammalian genomic DNA within cell nuclei requires mechanisms to regulate chromatin compaction involving the reversible formation of higher order structures. The compaction state of chromatin varies between interphase and mitosis and is also subject to rapid and reversible change upon ATP depletion/repletion. In this study we have investigated mechanisms that may be involved in promoting the hyper-condensation of chromatin when ATP levels are depleted by treating cells with sodium azide and 2-deoxyglucose. Chromatin conformation was analysed in both live and permeabilised HeLa cells using FLIM-FRET, high resolution fluorescence microscopy and by electron spectroscopic imaging microscopy. We show that chromatin compaction following ATP depletion is not caused by loss of transcription activity and that it can occur at a similar level in both interphase and mitotic cells. Analysis of both live and permeabilised HeLa cells shows that chromatin conformation within nuclei is strongly influenced by the levels of divalent cations, including calcium and magnesium. While ATP depletion results in an increase in the level of unbound calcium, chromatin condensation still occurs even in the presence of a calcium chelator. Chromatin compaction is shown to be strongly affected by small changes in the levels of polyamines, including spermine and spermidine. The data are consistent with a model in which the increased intracellular pool of polyamines and divalent cations, resulting from depletion of ATP, bind to DNA and contribute to the large scale hyper-compaction of chromatin by a charge neutralisation mechanism.

  16. Investigation of radiation-chemical behaviour of divalent palladium in perchloric acid solutions

    International Nuclear Information System (INIS)

    Vladimirova, M.V.; Kalinina, S.V.

    1988-01-01

    Gamma-radiolysis of divalent palladium in perchloric acid solutions is studied. Absorption spectra of intermediate palladium compounds formed in the irradiated solution are taken. The analysis of literature data as well as comparative analysis of the absorption spectra obtained under irradiation of palladium (2) perchloric acid solutions with absorption spectra of palladium chlorocomplexes allows to suppose that the mentioned compounds are chlorocomplexes of palladium (2) of different composition depending on HClO 4 concentration in the initial solution and absorbed radiation dose. Radiation-chemical reduction of palladium (2) up to metal is stated to take place in the whole studied range of initial concentrations of components of the system and dose rates. Kinetic dependences of metallic palladium formation are obtained. Values of radiation-chemical yields of metallic palladium formation depending on the initial concentrations of palladium (2) and perchloric acid are given. A mechanism of radiolytic reduction of palladium (2) in the investigated system is suggested based on the experimental data, and a theoretical value of the radiation-chemical yield of palladium (2) reduction being in a good agreement with experimentally found values is calculated

  17. Interactions of chlorphenesin and divalent metal ions with phosphodiesterase.

    Science.gov (United States)

    Edelson, J; McMullen, J P

    1976-09-01

    Chlorphenesin inhibition of the hydrolysis of cyclic AMP by guinea-pig lung phosphodiesterase was reversed by the addition of exogenous magnesium ions. Chlorphenesin and theophylline inhibition of this enzyme was shown to be noncompetitive when the substrate concentration was low. Kinetic studies of the inhibition of beef heart phosphodiesterase by chlorphenesin and theophylline indicated that the substrate concentration was a factor in determining whether inhibition was competitive or noncompetitive. Calcium, cobalt and copper ions were inhibitory to guinea-pig lung phosphodiesterase. The inhibition due to chlorphenesin was partially reversed by low (40 mM or less) concentrations of barium ions; high concentrations of barium ions, or manganese ions, were inhibitory. The concentration of the divalent cation did not affect the type of inhibition that was observed.

  18. Influence of oxidation state on the pH dependence of hydrous iridium oxide films

    International Nuclear Information System (INIS)

    Steegstra, Patrick; Ahlberg, Elisabet

    2012-01-01

    Many electrochemical reactions taking place in aqueous solution consume or produce protons. The pH in the diffusion layer can therefore be significantly altered during the reaction and there is a need for in situ pH measurements tracing this near surface pH. In the present paper the rotating ring disc technique was used to measure near surface pH changes during oxygen reduction, utilising hydrous iridium oxide as the pH sensing probe. Before such experiments a good understanding of the pH sensing properties of these films is required and the impact of the oxidation state of the film on the pH sensing properties was investigated as well as the influence of solution redox species. The pH sensitivity (depicted by dE/dpH) was found to depend on the average oxidation state of the film in a manner resembling the cyclic voltammetry response. In all cases the pH response is “supernernstian” with more than one proton per electron. The origin of this behaviour is discussed in the context of acid-base properties of the film and the existence of both hydrous and anhydrous oxide phases. The pH response depends also on the redox properties of the solution but can be optimised for various purposes by conditioning the film at different potentials. This was clearly illustrated by adding hydrogen peroxide, an intermediate in the oxygen reduction reaction, to the solution. It was shown that hydrous iridium oxide can be used as a reliable in situ pH sensor provided that care is taken to optimise the oxidation state of the film.

  19. Mitochondrial membranes with mono- and divalent salt: Changes induced by salt ions on structure and dynamics

    NARCIS (Netherlands)

    Pöyry, S.; Róg, T.; Karttunen, M.E.J.; Vattulainen, I.

    2009-01-01

    We employ atomistic simulations to consider how mono- (NaCl) and divalent (CaCl2) salt affects properties of inner and outer membranes of mitochondria. We find that the influence of salt on structural properties is rather minute, only weakly affecting lipid packing, conformational ordering, and

  20. Synergistic extraction of some divalent metal cations into nitrobenzene by using strontium dicarbollylcobaltate and electroneutral macrocyclic lactam receptor

    Czech Academy of Sciences Publication Activity Database

    Makrlík, E.; Sedláková, Zdeňka; Vaňura, P.; Selucký, P.

    2013-01-01

    Roč. 295, č. 3 (2013), s. 2263-2266 ISSN 0236-5731 Institutional support: RVO:61389013 Keywords : divalent metal cations * macrocyclic lactam receptor * complexation Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.415, year: 2013

  1. The effects of monovalent and divalent cations on the stability of silver nanoparticles formed from direct reduction of silver ions by Suwannee River humic acid/natural organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Akaighe, Nelson [Chemistry Department, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901 (United States); Depner, Sean W.; Banerjee, Sarbajit [Department of Chemistry, 410 Natural Sciences Complex, University at Buffalo, The State University of New York, Buffalo, NY 14260-3000 (United States); Sharma, Virender K. [Chemistry Department, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901 (United States); Sohn, Mary, E-mail: msohn@fit.edu [Chemistry Department, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901 (United States)

    2012-12-15

    The formation and characterization of AgNPs (silver nanoparticles) formed from the reduction of Ag{sup +} by SRNOM (Suwannee River natural organic matter) is reported. The images of SRNOM-formed AgNPs and the selected area electron diffraction (SAED) were captured by high resolution transmission electron microscopy (HRTEM). The colloidal and chemical stability of SRNOM- and SRHA (Suwannee River humic acid)-formed AgNPs in different ionic strength solutions of NaCl, KCl, CaCl{sub 2} and MgCl{sub 2} was investigated in an effort to evaluate the key fate and transport processes of these nanoparticles in natural aqueous environments. The aggregation state, stability and sedimentation rate of the AgNPs were monitored by Dynamic Light Scattering (DLS), zeta potential, and UV-vis measurements. The results indicate that both types of AgNPs are very unstable in high ionic strength solutions. Interestingly, the nanoparticles appeared more unstable in divalent cation solutions than in monovalent cation solutions at similar concentrations. Furthermore, the presence of SRNOM and SRHA contributed to the nanoparticle instability at high ionic strength in divalent metallic cation solutions, most likely due to intermolecular bridging with the organic matter. The results clearly suggest that changes in solution chemistry greatly affect nanoparticle long term stability and transport in natural aqueous environments. Highlights: Black-Right-Pointing-Pointer Formation of SRNOM-AgNPs under environmentally relevant conditions Black-Right-Pointing-Pointer Influence of monovalent versus divalent cations on SRHA- and SRNOM-AgNP stability Black-Right-Pointing-Pointer Effect of AgNPs on organic matter removal from water columns.

  2. Effect of divalent (Sr, Ba) doping on the structural and magnetic properties of BiFeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Rangi, Manisha, E-mail: mrangi100@gmail.com; Sanghi, Sujata; Agarwal, Ashish; Jangra, Sandhaya; Singh, Ompal [Department of Applied Physics, Guru Jambheshwar University of Science and Technology, Hisar, Haryana- 125001 (India)

    2015-06-24

    The effect of divalent substitution on the crystal structure and magnetic properties of BiFeO{sub 3} has been investigated using X-ray diffraction and magnetic measurements technique. Single phase Bi{sub 0.8}A{sub 0.2}FeO{sub 3} (A= Sr, Ba) multiferroics have been synthesized by solid state reaction method. Rietveld analysis of the XRD patterns revealed that the prepared ceramics exhibit rhombohedral structure with space group R3c. M–H hysteresis loops were recorded at 5K revealed that Sr and Ba substitution transformed antiferromagnetic BiFeO3 into weak ferromagnetic. The enhanced magnetization with Sr and Ba addition is confirmed by the MT curve recorded at 1T. It is closely related to intrinsic structural distortion and modification of the antiparallel spin structure.

  3. Study of uranium oxidation states in geological material.

    Science.gov (United States)

    Pidchenko, I; Salminen-Paatero, S; Rothe, J; Suksi, J

    2013-10-01

    A wet chemical method to determine uranium (U) oxidation states in geological material has been developed and tested. The problem faced in oxidation state determinations with wet chemical methods is that U redox state may change when extracted from the sample material, thereby leading to erroneous results. In order to quantify and monitor U redox behavior during the acidic extraction in the procedure, an analysis of added isotopic redox tracers, (236)U(VI) and (232)U(IV), and of variations in natural uranium isotope ratio ((234)U/(238)U) of indigenous U(IV) and U(VI) fractions was performed. Two sample materials with varying redox activity, U bearing rock and U-rich clayey lignite sediment, were used for the tests. The Fe(II)/Fe(III) redox-pair of the mineral phases was postulated as a potentially disturbing redox agent. The impact of Fe(III) on U was studied by reducing Fe(III) with ascorbic acid, which was added to the extraction solution. We observed that ascorbic acid protected most of the U from oxidation. The measured (234)U/(238)U ratio in U(IV) and U(VI) fractions in the sediment samples provided a unique tool to quantify U oxidation caused by Fe(III). Annealing (sample heating) to temperatures above 500 °C was supposed to heal ionizing radiation induced defects in the material that can disturb U redox state during extraction. Good agreement between two independent methods was obtained for DL-1a material: an average 38% of U(IV) determined by redox tracer corrected wet chemistry and 45% for XANES. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Novel DOTA-based prochelator for divalent peptide vectorization: synthesis of dimeric bombesin analogues for multimodality tumor imaging and therapy.

    Science.gov (United States)

    Abiraj, Keelara; Jaccard, Hugues; Kretzschmar, Martin; Helm, Lothar; Maecke, Helmut R

    2008-07-28

    Dimeric peptidic vectors, obtained by the divalent grafting of bombesin analogues on a newly synthesized DOTA-based prochelator, showed improved qualities as tumor targeted imaging probes in comparison to their monomeric analogues.

  5. A magnetic route to measure the average oxidation state of mixed-valent manganese in manganese oxide octahedral molecular sieves (OMS).

    Science.gov (United States)

    Shen, Xiong-Fei; Ding, Yun-Shuang; Liu, Jia; Han, Zhao-Hui; Budnick, Joseph I; Hines, William A; Suib, Steven L

    2005-05-04

    A magnetic route has been applied for measurement of the average oxidation state (AOS) of mixed-valent manganese in manganese oxide octahedral molecular sieves (OMS). The method gives AOS measurement results in good agreement with titration methods. A maximum analysis deviation error of +/-7% is obtained from 10 sample measurements. The magnetic method is able to (1) confirm the presence of mixed-valent manganese and (2) evaluate AOS and the spin states of d electrons of both single oxidation state and mixed-valent state Mn in manganese oxides. In addition, the magnetic method may be extended to (1) determine AOS of Mn in manganese oxide OMS with dopant "diamagnetic" ions, such as reducible V5+ (3d0) ions, which is inappropriate for the titration method due to interference of redox reactions between these dopant ions and titration reagents, such as KMnO4, (2) evaluate the dopant "paramagnetic" ions that are present as clusters or in the OMS framework, and (3) determine AOS of other mixed-valent/single oxidation state ion systems, such as Mo3+(3d3)-Mo4+(3d2) systems and Fe3+ in FeCl3.

  6. Mercury vacancies as divalent acceptors in Hg{sub y}Te{sub 1} {sub –} {sub y}/Cd{sub x}Hg{sub 1} {sub –} {sub x}Te structures with quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, D. V., E-mail: dvkoz@ipmras.ru; Rumyantsev, V. V.; Morozov, S. V.; Kadykov, A. M.; Fadeev, M. A. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Varavin, V. S.; Mikhailov, N. N.; Dvoretsky, S. A. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Gavrilenko, V. I. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Teppe, F. [Laboratoire Charles Coulomb (L2C) (France)

    2016-12-15

    A long-wavelength band caused by transitions between states related to the valence band is detected in the photoconductivity spectra of Hg{sub y}Te{sub 1–y}/Cd{sub x}Hg{sub 1–x}Te (CMT) structures with quantum wells. The energy states of mercury vacancies in quantum wells of CMT structures is calculated taking into account a chemical shift. It is shown that the long-wavelength band observed in the photoconductivity spectra of these structures is associated with the ionization of divalent acceptor centers which are such vacancies.

  7. Origin of interface states and oxide charges generated by ionizing radiation

    International Nuclear Information System (INIS)

    Sah, C.T.

    1976-01-01

    The randomly located trivalent silicon atoms are shown to account for the thermally generated interface states at the SiO 2 -Si interface. The interface state density is greatly reduced in water containing ambients at low temperatures (450 0 C) by forming trivalent silicon hydroxide bonds. Interface states are regenerated when the /triple bond/Si-OH bonds are broken by ionizing radiation and the OH ions are drifted away. In the bulk of the oxide film, the trivalent silicon and the interstitial oxygen donor centers are shown to be responsible for the heat and radiation generated positive space charge build-up (oxide charge) in thermally grown silicon oxide

  8. Oxidative Stress and Heart Failure in Altered Thyroid States

    Directory of Open Access Journals (Sweden)

    Pallavi Mishra

    2012-01-01

    Full Text Available Increased or reduced action of thyroid hormone on certain molecular pathways in the heart and vasculature causes relevant cardiovascular derangements. It is well established that hyperthyroidism induces a hyperdynamic cardiovascular state, which is associated with a faster heart rate, enhanced left ventricular systolic and diastolic function whereas hypothyroidism is characterized by the opposite changes. Hyperthyroidism and hypothyroidism represent opposite clinical conditions, albeit not mirror images. Recent experimental and clinical studies have suggested the involvement of ROS tissue damage under altered thyroid status. Altered-thyroid state-linked changes in heart modify their susceptibility to oxidants and the extent of the oxidative damage they suffer following oxidative challenge. Chronic increase in the cellular levels of ROS can lead to a catastrophic cycle of DNA damage, mitochondrial dysfunction, further ROS generation and cellular injury. Thus, these cellular events might play an important role in the development and progression of myocardial remodeling and heart failure in altered thyroid states (hypo- and hyper-thyroidism. The present review aims at elucidating the various signaling pathways mediated via ROS and their modulation under altered thyroid state and the possibility of antioxidant therapy.

  9. Adsorption properties versus oxidation states of rutile TiO2(110)

    DEFF Research Database (Denmark)

    Martinez, Umberto; Hammer, Bjørk

    2011-01-01

    Using density functional theory we have studied the adsorption properties of different atoms and molecules deposited on a stoichiometric, reduced, and oxidized rutile TiO2(110) surface. Depending on the oxidation state of the surface, electrons can flow from or to the substrate and, therefore...... of the charge flow depends on the oxidation state of the rutile surface and on the adsorption site. Generally, the charging effect leads to more stable complexes. However, the increase in the binding energy of the adsorbates is highly dependent on the electronic states of the surface prior to the adsorption...... event. In this work we have analyzed in details these mechanisms and we have also established a direct correlation between the enhanced binding energy of the adsorbates and the induced gap states...

  10. Enhanced desorption of cesium from collapsed interlayer regions in vermiculite by hydrothermal treatment with divalent cations

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xiangbiao, E-mail: yin.x.aa@m.titech.ac.jp [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Wang, Xinpeng [College of Resources and Metallurgy, Guangxi University, 100 Daxue East Road, Nanning 530004 (China); Wu, Hao; Ohnuki, Toshihiko; Takeshita, Kenji [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2017-03-15

    Highlights: • Desorption of Cs{sup +} fixed in collapsed interlayer region of vermiculite was studied. • Monovalent cations readily induced interlayer collapse inhibiting Cs{sup +} desorption. • Larger hydrous ionic radii of divalent cations greatly prevented Cs{sup +} desorption. • Effect of divalent cation on Cs{sup +} desorption changes depending on thermal treatment. • ∼100% removal of saturated Cs{sup +} was achieved by hydrothermal treatment at 250 °C. - Abstract: Adsorption of cesium (Cs) on phyllosilicates has been intensively investigated because natural soils have strong ability of immobilizing Cs within clay minerals resulting in difficulty of decontamination. The objectives of present study are to clarify how Cs fixation on vermiculite is influenced by structure change caused by Cs sorption at different loading levels and how Cs desorption is affected by various replacing cations induced at different treating temperature. As a result, more than 80% of Cs was readily desorbed from vermiculite with loading amount of 2% saturated Cs (5.49 × 10{sup −3} mmol g{sup −1}) after four cycles of treatment of 0.01 M Mg{sup 2+}/Ca{sup 2+} at room temperature, but less than 20% of Cs was desorbed from saturated vermiculite. These distinct desorption patterns were attributed to inhibition of Cs desorption by interlayer collapse of vermiculite, especially at high Cs loadings. In contrast, elevated temperature significantly facilitated divalent cations to efficiently desorb Cs from collapsed regions. After five cycles of treatment at 250 °C with 0.01 M Mg{sup 2+}, ∼100% removal of saturated Cs was achieved. X-ray diffraction analysis results suggested that Cs desorption was completed through enhanced diffusion of Mg{sup 2+} cations into collapsed interlayer space under hydrothermal condition resulting in subsequent interlayer decollapse and readily release of Cs{sup +}.

  11. Photochemical oxidants: state of the science.

    Science.gov (United States)

    Kley, D; Kleinmann, M; Sanderman, H; Krupa, S

    1999-01-01

    Atmospheric photochemical processes resulting in the production of tropospheric ozone (O(3)) and other oxidants are described. The spatial and temporal variabilities in the occurrence of surface level oxidants and their relationships to air pollution meteorology are discussed. Models of photooxidant formation are reviewed in the context of control strategies and comparisons are provided of the air concentrations of O(3) at select geographic locations around the world. This overall oxidant (O(3)) climatology is coupled to human health and ecological effects. The discussion of the effects includes both acute and chronic responses, mechanisms of action, human epidemiological and plant population studies and briefly, efforts to establish cause-effect relationships through numerical modeling. A short synopsis is provided of the interactive effects of O(3) with other abiotic and biotic factors. The overall emphasis of the paper is on identifying the current uncertainties and gaps in our understanding of the state of the science and some suggestions as to how they may be addressed.

  12. Preferential solvation, ion pairing, and dynamics of concentrated aqueous solutions of divalent metal nitrate salts

    Science.gov (United States)

    Yadav, Sushma; Chandra, Amalendu

    2017-12-01

    We have investigated the characteristics of preferential solvation of ions, structure of solvation shells, ion pairing, and dynamics of aqueous solutions of divalent alkaline-earth metal nitrate salts at varying concentration by means of molecular dynamics simulations. Hydration shell structures and the extent of preferential solvation of the metal and nitrate ions in the solutions are investigated through calculations of radial distribution functions, tetrahedral ordering, and also spatial distribution functions. The Mg2+ ions are found to form solvent separated ion-pairs while the Ca2+ and Sr2+ ions form contact ion pairs with the nitrate ions. These findings are further corroborated by excess coordination numbers calculated through Kirkwood-Buff G factors for different ion-ion and ion-water pairs. The ion-pairing propensity is found to be in the order of Mg(NO3) 2 lead to the presence of substantial dynamical heterogeneity in these solutions of strongly interacting ions. The current study helps us to understand the molecular details of hydration structure, ion pairing, and dynamics of water in the solvation shells and also of ion diffusion in aqueous solutions of divalent metal nitrate salts.

  13. Ionic configuration of copper ferrimanganites Cu 0.5Mn xFe 2.5- xO 4

    Science.gov (United States)

    Lenglet, M.; Kasperek, J.; Hannoyer, B.; Lopitaux, J.; d'Huysser, A.; Tellier, J. C.

    1992-06-01

    Mössbauer spectrometry, neutron diffraction, XANES, and XPS have led to the determination of the cation distributions of the system Cu 0.5Mn xFe 2.5- xO 4 (0≤ x≤1.5). The three cations are present in both tetrahedral and octahedral sites, and the relative number of Fe ions on A- and B-sites remains nearly constant in the whole range of x. It appears that for x≤0.5 manganese is divalent and copper is in its two oxidation states. For x>0.5 copper and iron are respectively divalent and trivalent; the manganese is in +2 and +3 oxydation states.

  14. Ion exchange equilibrium for some uni-univalent and uni-divalent reaction systems using strongly basic anion exchange resin Duolite A-102 D

    Directory of Open Access Journals (Sweden)

    R.S. Lokhande

    2008-04-01

    Full Text Available The study on thermodynamics of ion exchange equilibrium for uni-univalent Cl-/I-, Cl-/Br-, and uni-divalent Cl-/SO42-, Cl-/C2O42- reaction systems was carried out using ion exchange resin Duolite A-102 D. The equilibrium constant K was calculated by taking into account the activity coefficient of ions both in solution as well as in the resin phase. The K values calculated for uni-univalent and uni-divalent anion exchange reaction systems was observed to increase with rise in temperature, indicating the endothermic exchange reactions having enthalpy values of 13.7, 38.0, 23.9, 22.9 kJ/mol, respectively.

  15. Effects of Temperature on Aggregation Kinetics of Graphene Oxide in Aqueous Solutions

    Science.gov (United States)

    Wang, M.; Gao, B.; Tang, D.; Sun, H.; Yin, X.; Yu, C.

    2017-12-01

    Temperature may play an important role in controlling graphene oxide (GO) stability in aqueous solutions, but it has been overlooked in the literature. In this work, laboratory experiments were conducted to determine the effects of temperature (6, 25, and 40 °C) on GO aggregation kinetics under different combinations of ionic strength, cation type, humic acid (HA) concentration by monitoring GO hydrodynamic radii and attachment efficiencies. The results showed that, without HA, temperature increase promoted GO aggregation in both monovalent (Na+ and K+) and divalent (Ca2+) solutions. This phenomenon might be caused by multiple processes including enhanced collision frequency, enhanced cation dehydration, and reduced electrostatic repulsion. The presence of HA introduced steric repulsion forces that enhanced GO stability and temperature showed different effects GO aggregation kinetics in monovalent and divalent electrolytes. In monovalent electrolytes, cold temperature diminished the steric repulsion of HA-coated GO. As a result, the fastest increasing rate of GO hydrodynamic radius and the smallest critical coagulation concentration value appeared at the lowest temperature (6 °C). Conversely, in divalent electrolyte solutions with HA, high temperate favored GO aggregation, probably because the interactions between Ca2+ and HA increased with temperature resulting in lower HA coating on GO. Findings of this work emphasized the importance of temperature as well as solution chemistry on the stability and fate of GO nanoparticles in aquatic environment.

  16. Thermodynamic Ground States of Complex Oxide Heterointerfaces

    DEFF Research Database (Denmark)

    Gunkel, F.; Hoffmann-Eifert, S.; Heinen, R. A.

    2017-01-01

    The formation mechanism of 2-dimensional electron gases (2DEGs) at heterointerfaces between nominally insulating oxides is addressed with a thermodynamical approach. We provide a comprehensive analysis of the thermodynamic ground states of various 2DEG systems directly probed in high temperature...

  17. Multisite Ion Model in Concentrated Solutions of Divalent Cations (MgCl2 and CaCl2): Osmotic Pressure Calculations

    Science.gov (United States)

    2015-01-01

    Accurate force field parameters for ions are essential for meaningful simulation studies of proteins and nucleic acids. Currently accepted models of ions, especially for divalent ions, do not necessarily reproduce the right physiological behavior of Ca2+ and Mg2+ ions. Saxena and Sept (J. Chem. Theor. Comput.2013, 9, 3538–3542) described a model, called the multisite-ion model, where instead of treating the ions as an isolated sphere, the charge was split into multiple sites with partial charge. This model provided accurate inner shell coordination of the ion with biomolecules and predicted better free energies for proteins and nucleic acids. Here, we expand and refine the multisite model to describe the behavior of divalent ions in concentrated MgCl2 and CaCl2 electrolyte solutions, eliminating the unusual ion–ion pairing and clustering of ions which occurred in the original model. We calibrate and improve the parameters of the multisite model by matching the osmotic pressure of concentrated solutions of MgCl2 to the experimental values and then use these parameters to test the behavior of CaCl2 solutions. We find that the concentrated solutions of both divalent ions exhibit the experimentally observed behavior with correct osmotic pressure, the presence of solvent separated ion pairs instead of direct ion pairs, and no aggregation of ions. The improved multisite model for (Mg2+ and Ca2+) can be used in classical simulations of biomolecules at physiologically relevant salt concentrations. PMID:25482831

  18. Initial oxidation of TiFe{sub 1−x}Mn{sub x} (x = 0–0.3) by low dose exposures to H{sub 2}O and O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Shwartz, A. [Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Shamir, N., E-mail: noah.shamir@gmail.com [Nuclear research Center – Negev, P.O. Box 9001, Beer-Sheva 84190 (Israel); Froumin, N. [Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Zalkind, S.; Edry, I.; Haim, A. [Nuclear research Center – Negev, P.O. Box 9001, Beer-Sheva 84190 (Israel); Mintz, M.H. [Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Nuclear research Center – Negev, P.O. Box 9001, Beer-Sheva 84190 (Israel)

    2014-10-15

    Highlights: • Thermodynamics of adsorption and initial oxidation of TiFe{sub 1−x}Mn{sub x} by H{sub 2}O versus O{sub 2}. • Explanation of different oxide formations. • Explanation of the role of the different constituents of the alloys in the processes. - Abstract: The very initial room-temperature oxidation processes of the ternary pseudo-binary TiFe{sub 1−x}Mn{sub x} (x = 0–0.3) intermetallics by trace amounts of H{sub 2}O vapor and O{sub 2} were studied utilizing XPS and AES techniques. Different reactivities of the two gases were obtained, with a lower oxidation ability of H{sub 2}O, relative to O{sub 2}, as anticipated from thermodynamic considerations. The exposure to O{sub 2} results in a two stage oxidation of the Ti ingredient, which first converts into a divalent TiO (up to exposures of about 2 L), then proceeds into a tetravalent TiO{sub 2} form. Unlike oxygen, water exposure produces only the divalent oxide through the whole exposure range studied (11 L). The Mn component in these compounds is oxidized only by O{sub 2} and not by H{sub 2}O. The Fe ingredient is not oxidized at all and remains in its metallic form up to exposures of 30 L.

  19. Synthesis and characterization of brannerite wasteforms for the immobilization of mixed oxide fuel residues

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, D.J.; Stennett, M.C.; Hyatt, N.C. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD (United Kingdom)

    2016-07-01

    A possible method for the reduction of civil Pu stockpiles is the reuse of Pu in mixed oxide fuel (MOX). During MOX fuel production, residues unsuitable for further recycle will be produced. Due to their high actinide content MOX residues require immobilization within a robust host matrix. Although it is possible to immobilize actinides in vitreous wasteforms; ceramic phases, such as brannerite (UTi{sub 2}O{sub 6}), are attractive due to their high waste loading capacity and relative insolubility. A range of uranium brannerite, formulated Gd{sub x}U{sub 1-x}Ti{sub 2}O{sub 6}, were prepared using a mixed oxide route. Charge compensation of divalent and trivalent cations was expected to occur via the oxidation of U{sup 4+} to higher valence states (U{sup 5+} or U{sup 6+}). Gd{sup 3+} was added to act as a neutron absorber in the final Pu bearing wasteform. X-ray powder diffraction of synthesised specimens found that phase distribution was strongly affected by processing atmosphere (air or Ar). In all cases prototypical brannerite was formed accompanied by different secondary phases dependent on processing atmosphere. Microstructural analysis (SEM) of the sintered samples confirmed the results of the X-ray powder diffraction. The preliminary results presented here indicate that brannerite is a promising host matrix for mixed oxide fuel residues. (authors)

  20. Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces

    International Nuclear Information System (INIS)

    Lee, Chung-Ho; Kim, Youn-Jeong; Jang, Je-Hee; Park, Jin-Woo

    2016-01-01

    Nanoscale topographical modification and surface chemistry alteration using bioactive ions are centrally important processes in the current design of the surface of titanium (Ti) bone implants with enhanced bone healing capacity. Macrophages play a central role in the early tissue healing stage and their activity in response to the implant surface is known to affect the subsequent healing outcome. Thus, the positive modulation of macrophage phenotype polarization (i.e. towards the regenerative M2 rather than the inflammatory M1 phenotype) with a modified surface is essential for the osteogenesis funtion of Ti bone implants. However, relatively few advances have been made in terms of modulating the macrophage-centered early healing capacity in the surface design of Ti bone implants for the two important surface properties of nanotopography and and bioactive ion chemistry. We investigated whether surface bioactive ion modification exerts a definite beneficial effect on inducing regenerative M2 macrophage polarization when combined with the surface nanotopography of Ti. Our results indicate that nanoscale topographical modification and surface bioactive ion chemistry can positively modulate the macrophage phenotype in a Ti implant surface. To the best of our knowledge, this is the first demonstration that chemical surface modification using divalent cations (Ca and Sr) dramatically induces the regenerative M2 macrophage phenotype of J774.A1 cells in nanostructured Ti surfaces. In this study, divalent cation chemistry regulated the cell shape of adherent macrophages and markedly up-regulated M2 macrophage phenotype expression when combined with the nanostructured Ti surface. These results provide insight into the surface engineering of future Ti bone implants that are harmonized between the macrophage-governed early wound healing process and subsequent mesenchymal stem cell-centered osteogenesis function. (paper)

  1. Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces

    Science.gov (United States)

    Lee, Chung-Ho; Kim, Youn-Jeong; Jang, Je-Hee; Park, Jin-Woo

    2016-02-01

    Nanoscale topographical modification and surface chemistry alteration using bioactive ions are centrally important processes in the current design of the surface of titanium (Ti) bone implants with enhanced bone healing capacity. Macrophages play a central role in the early tissue healing stage and their activity in response to the implant surface is known to affect the subsequent healing outcome. Thus, the positive modulation of macrophage phenotype polarization (i.e. towards the regenerative M2 rather than the inflammatory M1 phenotype) with a modified surface is essential for the osteogenesis funtion of Ti bone implants. However, relatively few advances have been made in terms of modulating the macrophage-centered early healing capacity in the surface design of Ti bone implants for the two important surface properties of nanotopography and and bioactive ion chemistry. We investigated whether surface bioactive ion modification exerts a definite beneficial effect on inducing regenerative M2 macrophage polarization when combined with the surface nanotopography of Ti. Our results indicate that nanoscale topographical modification and surface bioactive ion chemistry can positively modulate the macrophage phenotype in a Ti implant surface. To the best of our knowledge, this is the first demonstration that chemical surface modification using divalent cations (Ca and Sr) dramatically induces the regenerative M2 macrophage phenotype of J774.A1 cells in nanostructured Ti surfaces. In this study, divalent cation chemistry regulated the cell shape of adherent macrophages and markedly up-regulated M2 macrophage phenotype expression when combined with the nanostructured Ti surface. These results provide insight into the surface engineering of future Ti bone implants that are harmonized between the macrophage-governed early wound healing process and subsequent mesenchymal stem cell-centered osteogenesis function.

  2. Oxidatively generated DNA/RNA damage in psychological stress states

    DEFF Research Database (Denmark)

    Jørgensen, Anders

    2013-01-01

    age-related somatic disorders. The overall aim of the PhD project was to investigate the relation between psychopathology, psychological stress, stress hormone secretion and oxidatively generated DNA and RNA damage, as measured by the urinary excretion of markers of whole-body DNA/RNA oxidation (8...... between the 24 h urinary cortisol excretion and the excretion of 8-oxodG/8-oxoGuo, determined in the same samples. Collectively, the studies could not confirm an association between psychological stress and oxidative stress on nucleic acids. Systemic oxidatively generated DNA/RNA damage was increased......Both non-pathological psychological stress states and mental disorders are associated with molecular, cellular and epidemiological signs of accelerated aging. Oxidative stress on nucleic acids is a critical component of cellular and organismal aging, and a suggested pathogenic mechanism in several...

  3. Molecular dynamics simulations of the structure and single-particle dynamics of mixtures of divalent salts and ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-González, Víctor; Docampo-Álvarez, Borja; Gallego, Luis J.; Varela, Luis M., E-mail: luismiguel.varela@usc.es [Grupo de Nanomateriais e Materia Branda, Departamento de Física da Materia Condensada, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela (Spain); Cabeza, Oscar [Facultade de Ciencias, Universidade da Coruña, Campus A Zapateira s/n, E-15008 A Coruña (Spain); Fedorov, Maxim [Department of Physics, Scottish University Physics Alliance (SUPA), University of Strathclyde, John Anderson Bldg., 107 Rottenrow East, Glasgow G4 0NG (United Kingdom); Lynden-Bell, Ruth M. [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom)

    2015-09-28

    We report a molecular dynamics study of the structure and single-particle dynamics of mixtures of a protic (ethylammonium nitrate) and an aprotic (1-butyl-3-methylimidazolium hexaflurophosphate [BMIM][PF{sub 6}]) room-temperature ionic liquids doped with magnesium and calcium salts with a common anion at 298.15 K and 1 atm. The solvation of these divalent cations in dense ionic environments is analyzed by means of apparent molar volumes of the mixtures, radial distribution functions, and coordination numbers. For the protic mixtures, the effect of salt concentration on the network of hydrogen bonds is also considered. Moreover, single-particle dynamics of the salt cations is studied by means of their velocity autocorrelation functions and vibrational densities of states, explicitly analyzing the influence of salt concentration, and cation charge and mass on these magnitudes. The effect of the valency of the salt cation on these properties is considered comparing the results with those for the corresponding mixtures with lithium salts. We found that the main structural and dynamic features of the local solvation of divalent cations in ionic liquids are similar to those of monovalent salts, with cations being localized in the polar nanoregions of the bulk mixture coordinated in monodentate and bidentate coordination modes by the [NO{sub 3}]{sup −} and [PF{sub 6}]{sup −} anions. However, stronger electrostatic correlations of these polar nanoregions than in mixtures with salts with monovalent cations are found. The vibrational modes of the ionic liquid (IL) are seen to be scarcely affected by the addition of the salt, and the effect of mass and charge on the vibrational densities of states of the dissolved cations is reported. Cation mass is seen to exert a deeper influence than charge on the low-frequency vibrational spectra, giving a red shift of the vibrational modes and a virtual suppression of the higher energy vibrational modes for the heavier Ca{sup 2

  4. Molecular dynamics simulations of the structure and single-particle dynamics of mixtures of divalent salts and ionic liquids

    International Nuclear Information System (INIS)

    Gómez-González, Víctor; Docampo-Álvarez, Borja; Gallego, Luis J.; Varela, Luis M.; Cabeza, Oscar; Fedorov, Maxim; Lynden-Bell, Ruth M.

    2015-01-01

    We report a molecular dynamics study of the structure and single-particle dynamics of mixtures of a protic (ethylammonium nitrate) and an aprotic (1-butyl-3-methylimidazolium hexaflurophosphate [BMIM][PF 6 ]) room-temperature ionic liquids doped with magnesium and calcium salts with a common anion at 298.15 K and 1 atm. The solvation of these divalent cations in dense ionic environments is analyzed by means of apparent molar volumes of the mixtures, radial distribution functions, and coordination numbers. For the protic mixtures, the effect of salt concentration on the network of hydrogen bonds is also considered. Moreover, single-particle dynamics of the salt cations is studied by means of their velocity autocorrelation functions and vibrational densities of states, explicitly analyzing the influence of salt concentration, and cation charge and mass on these magnitudes. The effect of the valency of the salt cation on these properties is considered comparing the results with those for the corresponding mixtures with lithium salts. We found that the main structural and dynamic features of the local solvation of divalent cations in ionic liquids are similar to those of monovalent salts, with cations being localized in the polar nanoregions of the bulk mixture coordinated in monodentate and bidentate coordination modes by the [NO 3 ] − and [PF 6 ] − anions. However, stronger electrostatic correlations of these polar nanoregions than in mixtures with salts with monovalent cations are found. The vibrational modes of the ionic liquid (IL) are seen to be scarcely affected by the addition of the salt, and the effect of mass and charge on the vibrational densities of states of the dissolved cations is reported. Cation mass is seen to exert a deeper influence than charge on the low-frequency vibrational spectra, giving a red shift of the vibrational modes and a virtual suppression of the higher energy vibrational modes for the heavier Ca 2+ cations. No qualitative

  5. Optical properties of ytterbium-doped yttrium oxide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Solomonov, V.I.; Maksimov, R.N. [Institute of Electrophysics UrB RAS, Amundsena 106, 620016 Ekaterinburg (Russian Federation); Ural Federal University Named After the First President of Russia B.N. Yeltsin, Mira 19, 620002 Ekaterinburg (Russian Federation); Osipov, V.V.; Shitov, V.A.; Lipchak, A.I. [Institute of Electrophysics UrB RAS, Amundsena 106, 620016 Ekaterinburg (Russian Federation)

    2017-05-15

    Ytterbium-doped yttrium oxide (Yb:Y{sub 2}O{sub 3}) transparent ceramics with different sintering additives (Lu{sub 2}O{sub 3}, Sc{sub 2}O{sub 3}, CeO{sub 2}, ZrO{sub 2}, or HfO{sub 2}) were fabricated using nanopowders produced by laser ablation. Transmission and photoluminescence spectra of the obtained ceramics were investigated at room temperature. Highest in-line transmittance was over 80% at the wavelength of 1060 nm for 2 mm thick Yb:Y{sub 2}O{sub 3} ceramics with zirconium and hafnium. Divalent Yb ions with the ground state electron configuration 4f{sup 13}6s were revealed. The absorption and emission bands caused by s <-> s transitions of these ions were observed in the IR spectral range of Yb{sup 3+} ions. The superposition of both Yb{sup 3+} and Yb{sup 2+} emission bands leads to an effective broadening of the whole luminescence band. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Divalent phosphate is a counterion for carboxyatractyloside-insensitive adenine nucleotide transport in rat liver mitochondria

    International Nuclear Information System (INIS)

    Nosek, M.T.; Aprille, J.R.

    1986-01-01

    Unidirectional, carboxyatractyloside(CAT)-insensitive adenine nucleotide (AdN) fluxes have been studied in isolated rat liver mitochondria (mito). Previous work has shown that ATP x Mg transport in one direction is coupled to ATP x Mg or P/sub i/ transport in the opposite direction. The purpose of this study was to determine whether divalent HPO 4 2- or monovalent H 2 PO 4 - is the transported phosphate species. The authors used the monofluorophosphate (PO 3 F 2- ) and difluorophosphate (PO 2 F 2 - ) analogues as potential counterions forAdN efflux. After a preincubation on ice with 14 C-ADP to label the matrix AdN, efflux was measured at 30 0 C, pH 7.4, in 225mM sucrose, 10mM KCl, 5mM MgCl 2 , 5mM glutamate, 5mM malate, 10mM Tris, 0.5mM P/sub i/, 1mM ATP, and 5μM CAT. With no other additions efflux was -0.62 +/- 0.20 nmole/minute/mg protein. The data supports the hypothesis that divalent but not monovalent phosphate can act as a counterion for ATPx Mg transport over this CAT-insensitive carrier

  7. The problem of oxidation state stabilisation and some regularities of a Periodic system of the elements

    International Nuclear Information System (INIS)

    Kiselev, Yurii M; Tretyakov, Yuri D

    1999-01-01

    The general principles of the concept of oxidation state stabilisation are formulated. Problems associated with the preparation and provision of the highest valent forms of transition elements are considered. The empirical data concerning the synthesis of new compounds of rare-earth elements and d elements in unusually high oxidation states are analysed. The possibility of occurrence of the oxidation states + 9 and + 10 for some elements (for example, for iridium and platinum in tetraoxo ions) are discussed. Approaches to the realisation of these states are outlined and it is demonstrated that solid phases or matrices containing alkali metal cations are the most promising systems for the stabilisation of these high oxidation states. Selected thermodynamic features typical of metal halides and oxides and the regularities of the changes in the extreme oxidation states of d elements are considered. The bibliography includes 266 references.

  8. Heterogeneous Oxidation of Atmospheric Organic Aerosol: Kinetics of Changes to the Amount and Oxidation State of Particle-Phase Organic Carbon.

    Science.gov (United States)

    Kroll, Jesse H; Lim, Christopher Y; Kessler, Sean H; Wilson, Kevin R

    2015-11-05

    Atmospheric oxidation reactions are known to affect the chemical composition of organic aerosol (OA) particles over timescales of several days, but the details of such oxidative aging reactions are poorly understood. In this study we examine the rates and products of a key class of aging reaction, the heterogeneous oxidation of particle-phase organic species by the gas-phase hydroxyl radical (OH). We compile and reanalyze a number of previous studies from our laboratories involving the oxidation of single-component organic particles. All kinetic and product data are described on a common basis, enabling a straightforward comparison among different chemical systems and experimental conditions. Oxidation chemistry is described in terms of changes to key ensemble properties of the OA, rather than to its detailed molecular composition, focusing on two quantities in particular, the amount and the oxidation state of the particle-phase carbon. Heterogeneous oxidation increases the oxidation state of particulate carbon, with the rate of increase determined by the detailed chemical mechanism. At the same time, the amount of particle-phase carbon decreases with oxidation, due to fragmentation (C-C scission) reactions that form small, volatile products that escape to the gas phase. In contrast to the oxidation state increase, the rate of carbon loss is nearly uniform among most systems studied. Extrapolation of these results to atmospheric conditions indicates that heterogeneous oxidation can have a substantial effect on the amount and composition of atmospheric OA over timescales of several days, a prediction that is broadly in line with available measurements of OA evolution over such long timescales. In particular, 3-13% of particle-phase carbon is lost to the gas phase after one week of heterogeneous oxidation. Our results indicate that oxidative aging represents an important sink for particulate organic carbon, and more generally that fragmentation reactions play a major

  9. Characterization of Interface State in Silicon Carbide Metal Oxide Semiconductor Capacitors

    Science.gov (United States)

    Kao, Wei-Chieh

    Silicon carbide (SiC) has always been considered as an excellent material for high temperature and high power devices. Since SiC is the only compound semiconductor whose native oxide is silicon dioxide (SiO2), it puts SiC in a unique position. Although SiC metal oxide semiconductor (MOS) technology has made significant progress in recent years, there are still a number of issues to be overcome before more commercial SiC devices can enter the market. The prevailing issues surrounding SiC MOSFET devices are the low channel mobility, the low quality of the oxide layer and the high interface state density at the SiC/SiO2 interface. Consequently, there is a need for research to be performed in order to have a better understanding of the factors causing the poor SiC/SiO2 interface properties. In this work, we investigated the generation lifetime in SiC materials by using the pulsed metal oxide semiconductor (MOS) capacitor method and measured the interface state density distribution at the SiC/SiO2 interface by using the conductance measurement and the high-low frequency capacitance technique. These measurement techniques have been performed on n-type and p-type SiC MOS capacitors. In the course of our investigation, we observed fast interface states at semiconductor-dielectric interfaces in SiC MOS capacitors that underwent three different interface passivation processes, such states were detected in the nitrided samples but not observed in PSG-passivated samples. This result indicate that the lack of fast states at PSG-passivated interface is one of the main reasons for higher channel mobility in PSG MOSFETs. In addition, the effect of mobile ions in the oxide on the response time of interface states has been investigated. In the last chapter we propose additional methods of investigation that can help elucidate the origin of the particular interface states, enabling a more complete understanding of the SiC/SiO2 material system.

  10. Superconductivity of divalent Chevrel phases at very high pressures

    International Nuclear Information System (INIS)

    Yao, Y.S.; Guertin, R.P.; Hinks, D.G.; Jorgensen, J.; Capone II, D.W.

    1988-01-01

    The electrical resistivity and the superconducting transition temperatures were examined for three representative divalent Chevrel phase systems, SnMo 6 S 8 , EuMo 6 S 8 , and BaMo 6 S 8 , as a function of hydrostatic pressure to 2 GPa and in quasihydrostatic pressures to 10 GPa. In all systems, T/sub c/ is depressed to 0 K for sufficiently large pressures. For the Sn- and Eu-based systems, both highly purified samples and samples with controlled oxygen content were used. In an oxygenated SnMo 6 S 8 sample (less than 3% O 2 substituted for the S atoms) the pressure threshold and maximum T/sub c/ are 40% lower than in the pure sample, but for P>3.5 GPa the T/sub c/-P phase diagrams nearly coincide, with T/sub c/ reaching zero at an extrapolated pressure of about 12 GPa. In pure EuMo 6 S 8 , superconductivity appears only above a threshold pressure of about 1 GPa and is depressed to 0 K above 4.5 GPa. In an oxygenated sample the maximum T/sub c/ and the threshold pressure are depressed, and above about 3.5 GPa the T/sub c/-P phase diagrams coincide, as in the Sn-based system, although T/sub c/ is then rapidly depressed to 0 K at about 4.5 GPa. In a highly purified BaMo 6 S 8 sample superconductivity appears above about 2 GPa and is depressed to 0 K at extrapolated pressures above 12 GPa. A full transition to the zero-resistance superconducting state is observed in BaMo 6 S 8 . The data are discussed in terms of a model linking the rhombohedral-to-triclinic structural transition, the superconducting transition temperature, and the role of pressure in suppressing the structural transition

  11. Dispersion relations of the acoustic modes in divalent liquid metals

    Directory of Open Access Journals (Sweden)

    Inui Masanori

    2017-01-01

    Full Text Available Collective dynamics in liquid Ca and liquid Cd was studied by inelastic x-ray scattering (IXS. Using our experimental technique to prepare proper sample cells and high performance of an IXS beamline (BL35XU at SPring-8 in Japan, the dynamic structure factor with reasonable statistics was obtained for these divalent liquid metals. For both liquids, the dynamic structure factor at low Q exhibits a central peak with a shoulder or small hump clearly visible on each side, and the inelastic excitation energy determined using the model function composed of Lorentzian and the damped harmonic oscillator function disperses with increasing Q. The dispersion curves of these liquids were compared with that of the longitudinal acoustic phonon in each crystalline phase. From these results, clear difference in the interatomic interaction be- tween liquid Ca and liquid Cd was inferred.

  12. Extracellular redox state: refining the definition of oxidative stress in aging.

    Science.gov (United States)

    Jones, Dean P

    2006-01-01

    Oxidative stress in aging can result from an imbalance of prooxidants and antioxidants with excessive, destructive free radical chemistry. Thiol systems are important in the control of these processes, both by protecting against damage and serving in redox signaling mechanisms to sense danger and repair the damage. Studies by a number of research groups in collaboration with the Emory Clinical Biomarkers Laboratory show that the redox state of the central tissue antioxidant, glutathione (GSH), can be measured in human plasma and provides a quantitative systemic indicator of oxidative stress. Plasma GSH/GSSG redox in humans becomes oxidized with age, in response to chemotherapy, as a consequence of cigarette smoking, and in association with common age-related diseases (e.g., type 2 diabetes, cardiovascular disease). However, the GSH/GSSG redox is not equilibrated with the larger plasma cysteine/cystine (Cys/CySS) pool, and the Cys/CySS redox varies with age in a pattern that is distinct from that of GSH/GSSG redox. Furthermore, in vitro studies show that variation in Cys/CySS redox over the range found in vivo affects signaling pathways, which control cell proliferation and oxidant-induced apoptosis. The results point to the conclusion that free radical scavenging antioxidants are of increased importance when thiol/disulfide redox states are oxidized. Because thiol/disulfide redox states, per se, function in redox signaling and control as well as antioxidant protection, GSH/GSSG and Cys/CySS redox states may provide central parameters to link environmental influences and progression of changes associated with aging.

  13. How different oxidation states of crystalline myoglobin are influenced by X-rays.

    Science.gov (United States)

    Hersleth, Hans-Petter; Andersson, K Kristoffer

    2011-06-01

    X-ray induced radiation damage of protein crystals is well known to occur even at cryogenic temperatures. Redox active sites like metal sites seem especially vulnerable for these radiation-induced reductions. It is essential to know correctly the oxidation state of metal sites in protein crystal structures to be able to interpret the structure-function relation. Through previous structural studies, we have tried to characterise and understand the reactions between myoglobin and peroxides. These reaction intermediates are relevant because myoglobin is proposed to take part as scavenger of reactive oxygen species during oxidative stress, and because these intermediates are similar among the haem peroxidases and oxygenases. We have in our previous studies shown that these different myoglobin states are influenced by the X-rays used. In this study, we have in detail investigated the impact that X-rays have on these different oxidation states of myoglobin. An underlying goal has been to find a way to be able to determine mostly unreduced states. We have by using single-crystal light absorption spectroscopy found that the different oxidation states of myoglobin are to a different extent influenced by the X-rays (e.g. ferric Fe(III) myoglobin is faster reduced than ferryl Fe(IV)═O myoglobin). We observe that the higher oxidation states are not reduced to normal ferrous Fe(II) or ferric Fe(III) states, but end up in some intermediate and possibly artificial states. For ferric myoglobin, it seems that annealing of the radiation-induced/reduced state can reversibly more or less give the starting point (ferric myoglobin). Both scavengers and different dose-rates might influence to which extent the different states are affected by the X-rays. Our study shows that it is essential to do a time/dose monitoring of the influence X-rays have on each specific redox-state with spectroscopic techniques like single-crystal light absorption spectroscopy. This will determine to which

  14. Divalent Metal Ions Induced Osteogenic Differentiation of MC3T3E1

    Science.gov (United States)

    Wang, Guoshou; Su, Wenta; Chen, Pohung; Huang, Teyang

    2017-12-01

    Biomaterial scaffolds blended with biochemical signal molecules with adequate osteoinductive and osteoconductive properties have attracted significant interest in bone tissue engineering regeneration. The divalent metal ions can gradually release from the scaffold into the culture medium and then induced osteoblastic differentiation of MC3T3E1. These MC3T3E1 cells expressed high activity of alkaline phosphatase, bone-related gene expression of collagen type I, Runx2, osteopontin, osteocalcin, and significantly enhanced deposited minerals on scaffold after 21 days of culture. This experiment provided a useful inducer for osteogenic differentiation in bone repair.

  15. Effects of sulfur dioxide and nitric oxide on mercury oxidation and reduction under homogeneous conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yongxin Zhao; Michael D. Mann; Edwin S. Olson; John H. Pavlish; Grant E. Dunham [University of North Dakota, Grand Forks, ND (United States). Department of Chemical Engineering

    2006-05-15

    This paper is particularly related to elemental mercury (Hg{sup 0}) oxidation and divalent mercury (Hg{sup 2+} reduction under simulated flue gas conditions in the presence of nitric oxide (NO) and sulfur dioxide (SO{sub 2}). As a powerful oxidant and chlorinating reagent, Cl{sub 2} has the potential for Hg oxidation. However, the detailed mechanism for the interactions, especially among chlorine (Cl)-containing species, SO{sub 2}, NO, as well as H{sub 2}O, remains ambiguous. Research described in this paper therefore focused on the impacts of SO{sub 2} and NO on Hg{sup 0} oxidation and Hg{sup 2+} reduction with the intent of unraveling unrecognized interactions among Cl species, SO{sub 2}, and NO most importantly in the presence of H{sub 2}O. The experimental results demonstrated that SO{sub 2} and NO had pronounced inhibitory effects on Hg{sup 0} oxidation at high temperatures when H{sub 2}O was also present in the gas blend. Such a demonstration was further confirmed by the reduction of Hg{sup 2+} back into its elemental form. Data revealed that SO{sub 2} and NO were capable of promoting homogeneous reduction of Hg{sup 2+} to Hg{sup 0} with H{sub 2}O being present. However, the above inhibition or promotion disappeared under homogeneous conditions when H{sub 2}O was removed from the gas blend. 23 refs., 8 figs.

  16. Optoelectronic properties of valence-state-controlled amorphous niobium oxide

    Science.gov (United States)

    Onozato, Takaki; Katase, Takayoshi; Yamamoto, Akira; Katayama, Shota; Matsushima, Koichi; Itagaki, Naho; Yoshida, Hisao; Ohta, Hiromichi

    2016-06-01

    In order to understand the optoelectronic properties of amorphous niobium oxide (a-NbO x ), we have investigated the valence states, local structures, electrical resistivity, and optical absorption of a-NbO x thin films with various oxygen contents. It was found that the valence states of Nb ion in a-NbO x films can be controlled from 5+  to 4+  by reducing oxygen pressure during film deposition at room temperature, together with changing the oxide-ion arrangement around Nb ion from Nb2O5-like to NbO2-like local structure. As a result, a four orders of magnitude reduction in the electrical resistivity of a-NbO x films was observed with decreasing oxygen content, due to the carrier generation caused by the appearance and increase of an oxygen-vacancy-related subgap state working as an electron donor. The tunable optoelectronic properties of a-NbO x films by valence-state-control with oxygen-vacancy formation will be useful for potential flexible optoelectronic device applications.

  17. Oxidation of extracellular cysteine/cystine redox state in bleomycin-induced lung fibrosis.

    Science.gov (United States)

    Iyer, Smita S; Ramirez, Allan M; Ritzenthaler, Jeffrey D; Torres-Gonzalez, Edilson; Roser-Page, Susanne; Mora, Ana L; Brigham, Kenneth L; Jones, Dean P; Roman, Jesse; Rojas, Mauricio

    2009-01-01

    Several lines of evidence indicate that depletion of glutathione (GSH), a critical thiol antioxidant, is associated with the pathogenesis of idiopathic pulmonary fibrosis (IPF). However, GSH synthesis depends on the amino acid cysteine (Cys), and relatively little is known about the regulation of Cys in fibrosis. Cys and its disulfide, cystine (CySS), constitute the most abundant low-molecular weight thiol/disulfide redox couple in the plasma, and the Cys/CySS redox state (E(h) Cys/CySS) is oxidized in association with age and smoking, known risk factors for IPF. Furthermore, oxidized E(h) Cys/CySS in the culture media of lung fibroblasts stimulates proliferation and expression of transitional matrix components. The present study was undertaken to determine whether bleomycin-induced lung fibrosis is associated with a decrease in Cys and/or an oxidation of the Cys/CySS redox state and to determine whether these changes were associated with changes in E(h) GSH/glutathione disulfide (GSSG). We observed distinct effects on plasma GSH and Cys redox systems during the progression of bleomycin-induced lung injury. Plasma E(h) GSH/GSSG was selectively oxidized during the proinflammatory phase, whereas oxidation of E(h) Cys/CySS occurred at the fibrotic phase. In the epithelial lining fluid, oxidation of E(h) Cys/CySS was due to decreased food intake. Thus the data show that decreased precursor availability and enhanced oxidation of Cys each contribute to the oxidation of extracellular Cys/CySS redox state in bleomycin-induced lung fibrosis.

  18. Oxidation state analyses of uranium with emphasis on chemical speciation in geological media

    International Nuclear Information System (INIS)

    Ervanne, H.

    2004-01-01

    This thesis focuses on chemical methods suitable for the determination of uranium redox species in geological materials. Nd-coprecipitation method was studied for the determination of uranium oxidation states in ground waters. This method is ideally suited for the separation of uranium oxidation states in the field, which means that problems associated with the instability of U(IV) during transport are avoided. An alternative method, such as ion exchange, is recommended for the analysis of high saline and calcium- and iron-rich ground waters. U(IV)/Utot was 2.8-7.2% in ground waters in oxidizing conditions and 60-93% in anoxic conditions. From thermodynamic model calculations applied to results from anoxic ground waters it was concluded that uranium can act as redox buffer in granitic ground waters. An ion exchange method was developed for the analysis of uranium oxidation states in different solid materials of geological origin. These included uranium minerals, uraniumbearing minerals, fracture coatings and bulk rock. U(IV)/Utot was 50-70% in uraninites, 5.8-8.7% in secondary uranium minerals, 15-49% in different fracture coatings and 64- 77% in samples from deep bedrock. In the uranium-bearing minerals, U(IV)/Utot was 33-43% (allanites), 5.9% (fergusonite) and 93% (monazite). Although the ion exchange method gave reliable results, there is a risk for the conversion of uranium oxidation states during analysis of heterogeneous samples due to the redox reactions that take place in the presence of some iron compounds. This risk was investigated in a study of several common iron-bearing minerals. The risk for conversion of uranium oxidation states can be screened by sample selection and minimized with use of a redox buffer compound such as polyacrylic acid (PAA). In studies of several carboxylic acids, PAA was found to be the most suitable for extending the application of the method. The stability of uranium oxidation states during analysis and the selectivity

  19. Corrosion-product transport, oxidation state and remedial measures

    International Nuclear Information System (INIS)

    Sawicki, J.A.; Brett, M.E.; Tapping, R.L.

    1998-10-01

    The issues associated with monitoring and controlling corrosion-product transport (CPT) in the balance-of-plant (BOP) and steam generators (SG) of CANDU stations are briefly reviewed. Efforts are focused on minimizing corrosion of carbon steel, which is used extensively in the CANDU primary and secondary systems. Emphasis is placed on the corrosion-product oxidation state as a monitor of water chemistry effectiveness and as a monitor of system corrosion effects. The discussion is based mostly on the results of observations from Ontario Hydro plants, and their comparisons with pressurized-water reactors. The effects of low oxygen and elevated hydrazine chemistry are reviewed, as well as the effects of layup and various startup conditions. Progress in monitoring electrochemical potential (ECP) at Ontario Hydro plants and its relationship to the oxidation state of corrosion products is reviewed. Observations on CPT on the primary side of SGs are also discussed. (author)

  20. Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model

    Energy Technology Data Exchange (ETDEWEB)

    Baltrusaitis, Jonas, E-mail: job314@lehigh.edu [Department of Chemical Engineering, Lehigh University, B336 Iacocca Hall, 111 Research Drive, Bethlehem, PA 18015 (United States); PhotoCatalytic Synthesis group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Meander 229, P.O. Box 217, 7500 AE Enschede (Netherlands); Mendoza-Sanchez, Beatriz [CRANN, Chemistry School, Trinity College Dublin, Dublin (Ireland); Fernandez, Vincent [Institut des Matériaux Jean Rouxel, 2 rue de la Houssinière, BP 32229, F-44322 Nantes Cedex 3 (France); Veenstra, Rick [PhotoCatalytic Synthesis group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Meander 229, P.O. Box 217, 7500 AE Enschede (Netherlands); Dukstiene, Nijole [Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas (Lithuania); Roberts, Adam [Kratos Analytical Ltd, Trafford Wharf Road, Wharfside, Manchester, M17 1GP (United Kingdom); Fairley, Neal [Casa Software Ltd, Bay House, 5 Grosvenor Terrace, Teignmouth, Devon TQ14 8NE (United Kingdom)

    2015-01-30

    Highlights: • We analyzed and modeled spectral envelopes of complex molybdenum oxides. • Molybdenum oxide films of varying valence and crystallinity were synthesized. • MoO{sub 3} and MoO{sub 2} line shapes from experimental data were created. • Informed amorphous sample model (IASM) developed. • Amorphous molybdenum oxide XPS envelopes were interpreted. - Abstract: Accurate elemental oxidation state determination for the outer surface of a complex material is of crucial importance in many science and engineering disciplines, including chemistry, fundamental and applied surface science, catalysis, semiconductors and many others. X-ray photoelectron spectroscopy (XPS) is the primary tool used for this purpose. The spectral data obtained, however, is often very complex and can be subject to incorrect interpretation. Unlike traditional XPS spectra fitting procedures using purely synthetic spectral components, here we develop and present an XPS data processing method based on vector analysis that allows creating XPS spectral components by incorporating key information, obtained experimentally. XPS spectral data, obtained from series of molybdenum oxide samples with varying oxidation states and degree of crystallinity, were processed using this method and the corresponding oxidation states present, as well as their relative distribution was elucidated. It was shown that monitoring the evolution of the chemistry and crystal structure of a molybdenum oxide sample due to an invasive X-ray probe could be used to infer solutions to complex spectral envelopes.

  1. The oxidation states of elements in pure and Ca-doped BiCuSeO thermoelectric oxides

    International Nuclear Information System (INIS)

    Hsiao, Chun-Lung; Qi, Xiaoding

    2016-01-01

    Bi 1−x Ca x CuSeO (x = 0–0.3) was synthesized at 650 °C in an air-tight system flowing with pure argon. The Ca doping resulted in an increase in the thermoelectric figure of merit (ZT) as the consequence of increased carrier concentration. X-ray photoelectron spectroscopy (XPS) was carried out to check the oxidation states in Bi 1−x Ca x CuSeO. The results indicated that in addition to the expected Bi 3+ and Cu 1+ , there existed Bi 2+ and Cu 2+ in the undoped BiCuSeO, whereas in the Ca-doped BiCuSeO, Bi 4+ , Cu 3+ and Cu 2+ were observed. The Ca dopant was confirmed to be in the 2+ oxidation state. Two broad peaks centered at 54.22 and 58.59 eV were recorded in the vicinity around the binding energy of Se 3d. The former is often observed in the Se-containing intermetallics while the latter is often found in the Se-containing oxides, indicating that along with the expected Se–Cu bonding, a bonding between Se and O may also exist. Based on the XPS results, the charge compensation mechanisms were proposed for Bi 1−x Ca x CuSeO, which may shed some light on the origins of charge carriers. BiCuSeO based oxides have recently be discovered to have a large ZT comparable to the best alloys currently in use, because of the large Seebeck coefficient and small thermal conductivity. However, their electrical conductivity is lower compared to the best thermoelectrics. This work may provide some hints for the further improvement of ZT in BiCuSeO based oxides. - Graphical abstract: The oxidation states, charge compensation mechanisms, and origins of charge carriers in Bi 1−x Ca x CuSeO thermoelectrics. Display Omitted

  2. Synthesized cellulose/succinic anhydride as an ion exchanger. Calorimetry of divalent cations in aqueous suspension

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Julio C.P. [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13084-971 Campinas, SP (Brazil); Silva Filho, Edson C. [LIMAV, Federal University of Piaui, 64049-550 Teresina, Piaui (Brazil); Santana, Sirlane A.A. [Departamento de Quimica/CCET, Universidade Federal do Maranhao, Av. dos Portugueses S/N, Campus do Bacanga, 65080-540 Sao Luiz, MA (Brazil); Airoldi, Claudio, E-mail: airoldi@iqm.unicamp.br [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13084-971 Campinas, SP (Brazil)

    2011-09-20

    Highlights: {yields} Synthetic route based on anhydride melting point. {yields} Cellulosic biopolymer/anhydride as ion exchanger. {yields} Calorimetry of cation exchange at solid/liquid interface. {yields} Favorable thermodynamic data of exchanging process. - Abstract: A synthetic route to a biopolymer/anhydride ion exchanger adds cellulose directly to molten succinic anhydride in a quasi solvent-free procedure. An amount of 3.07 {+-} 0.05 mmol of pendant groups incorporated onto the polymeric structure, which was characterized by elemental analysis, solid state carbon NMR, infrared, X-ray and thermogravimetry. The new polysaccharide is able to exchange cations from aqueous solution through a batchwise methodology, to obtain 2.46 {+-} 0.09 mmol g{sup -1} for divalent cobalt and nickel cations. The net thermal effects obtained from calorimetric titrations gave endothermic values of 3.81 {+-} 0.02 and 2.35 {+-} 0.01 kJ mol{sup -1}. The spontaneity of this ion-exchange process reflected in negative Gibbs energies and also a positive entropic contribution. These thermodynamic data at the solid/liquid interface suggests a favorable ion exchange process for this anchored biopolymer, for cation removal from the environment.

  3. On the valence state of Yb and Ce in transition metal intermetallic compounds

    International Nuclear Information System (INIS)

    Boer, F.R. de; Dijkman, W.H.; Mattens, W.C.M.

    1979-01-01

    In the pure state Yb is a divalent metal, similar to Ca; in alloys it can become trivalent like the majority of the rare earth metals. Using a value of 38 kJ (mol Yb) -1 for the energy difference between divalent and trivalent Yb metal and using model calculations for the heat of formation of intermetallic compounds, the authors are able to account for the existing information on the valence state of Yb in transition metal compounds. A similar analysis of compounds of Ce with transition metals shows that a model in which the 4f electron is treated as a core electron, i.e. being absent in the tetravalent modification of Ce and present as a fully localized electron in trivalent Ce, does not apply. (Auth.)

  4. Corrosion-product transport, oxidation state and remedial measures

    International Nuclear Information System (INIS)

    Sawicki, J.A.; Brett, M.E.; Tapping, R.L.

    1998-01-01

    The issues associated with monitoring and controlling corrosion-product transport (CPT) in the balance-of-plant (BOP) and steam generators (SG) of CANDU stations are briefly reviewed. The efforts are focused on minimizing corrosion of carbon steel, which is used extensively in the CANDU primary and secondary systems. Emphasis is placed on the corrosion-product oxidation state as a monitor of water chemistry effectiveness, and as a monitor of system corrosion effects. The discussion is based mostly on the results and observations from Ontario Hydro plants, and their comparisons with PWRs. The effects of low oxygen and elevated hydrazine chemistry are reviewed, as well as the effects of lay-up and various start-up conditions. Progress in monitoring electrochemical potential (ECP) at Ontario Hydro plants and its relationship to the oxidation state of corrosion products is reviewed. Observations on corrosion-product transport on the primary side of steam generators are also discussed. (author)

  5. Interaction of divalent metal ions with Zn(2+)-glycerophosphocholine cholinephosphodiesterase from ox brain.

    Science.gov (United States)

    Lee, K J; Kim, M R; Kim, Y B; Myung, P K; Sok, D E

    1997-12-01

    The effect of divalent metal ions on the activity of glycerophosphocholine cholinephosphodiesterse from ox brain was examined. Zn(2+)- and Co(2+)-glycerophosphocholine cholinephosphodiesterases were prepared from the exposure of apoenzyme to Zn2+ and Co2+, respectively, and the properties of two metallo-phosphodiesterases were compared to those of native phosphodiesterase. Although two metallo-enzymes were similar in expressing Km value, optimum pH or sensitivity to Cu2+, they differed in the susceptibility to the inhibition by thiocholine or tellurite; while Co(2+)-phosphodiesterase was more sensitive to tellurites, Zn(2+)-phosphodiesterase was more susceptible to inhibition by thiocholine. In addition, Zn(2+)-phosphodiesterase was more thermo-stable than Co2+ enzyme. Separately, when properties of native phosphodiesterase were compared to those of each metallo-phosphodiesterase, native phosphodiesterase was found to be quite similar to Zn(2+)-phosphodiesterase in many respects. Even in thermo-stability, native enzyme resembled Zn(2+)-phosphodiesterase rather than Co(2+)-enzyme. Consistent with this, the stability of native phosphodiesterase was maintained in the presence of Zn2+, but not Co2+, Mn2+ was also as effective as Zn2+ in the stabilization of the enzyme. Noteworthy, the native enzyme was found to be inhibited competitively by Cu2+ with a Ki value of 20 microM, and its inhibitory action was antagonized effectively by Zn2+ or Co2+. Also, choline, another competitive inhibitor of the enzyme, appeared to antagonize the inhibitory action of Cu2+. Taken together, it is suggested that there may be multiple binding sites for divalent metal ions in the molecule of glycerophosphocholine cholinephosphodiesterase.

  6. Toxic and biochemical effects of divalent metal ions in Drosophila: correlation to effects in mice and to chemical softness parameters

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, K B; Turner, J E; Christie, N T; Owenby, R K

    1983-01-01

    The mechanism of toxicity of 11 divalent cations was evaluated by determining the effects of dietary administration to Drosophila melanogaster and measurement of the frequency of lethality at 4 days, alterations in the developmental patterns of proteins, and changes in specific transfer RNAs. The relative effectiveness of divalent cations to kill Drosophila is significantly correlated to the relative values of the coordinate bond energy of the metal ions. The resistance of Drosophila to cadmium toxicity appears to be genetically determined since different inbred strains vary markedly. Also, the resistance is maximal in the young adult. Two different genetic strains seem to respond to different cations (Cd/sup 2 +/, Hg/sup 2 +/, Cu/sup 2 +/, Co/sup 2 +/, Ba/sup 2 +/, and Sr/sup 2 +/) in a similar manner. Basic mechanisms of toxicity may be studied in Drosophila as well as mice since the chemical properties of the metals reflect their toxic effects on the former as closely as the latter. 25 references, 5 figures, 1 table.

  7. 99Tc and Re incorporated into metal oxide polyoxometalates: oxidation state stability elucidated by electrochemistry and theory.

    Science.gov (United States)

    McGregor, Donna; Burton-Pye, Benjamin P; Mbomekalle, Israel M; Aparicio, Pablo A; Romo, Susanna; López, Xavier; Poblet, Josep M; Francesconi, Lynn C

    2012-08-20

    The radioactive element technetium-99 ((99)Tc, half-life = 2.1 × 10(5) years, β(-) of 253 keV), is a major byproduct of (235)U fission in the nuclear fuel cycle. (99)Tc is also found in radioactive waste tanks and in the environment at National Lab sites and fuel reprocessing centers. Separation and storage of the long-lived (99)Tc in an appropriate and stable waste-form is an important issue that needs to be addressed. Considering metal oxide solid-state materials as potential storage matrixes for Tc, we are examining the redox speciation of Tc on the molecular level using polyoxometalates (POMs) as models. In this study we investigate the electrochemistry of Tc complexes of the monovacant Wells-Dawson isomers, α(1)-P(2)W(17)O(61)(10-) (α1) and α(2)-P(2)W(17)O(61)(10-) (α2) to identify features of metal oxide materials that can stabilize the immobile Tc(IV) oxidation state accessed from the synthesized Tc(V)O species and to interrogate other possible oxidation states available to Tc within these materials. The experimental results are consistent with density functional theory (DFT) calculations. Electrochemistry of K(7-n)H(n)[Tc(V)O(α(1)-P(2)W(17)O(61))] (Tc(V)O-α1), K(7-n)H(n)[Tc(V)O(α(2)-P(2)W(17)O(61))] (Tc(V)O-α2) and their rhenium analogues as a function of pH show that the Tc-containing derivatives are always more readily reduced than their Re analogues. Both Tc and Re are reduced more readily in the lacunary α1 site as compared to the α2 site. The DFT calculations elucidate that the highest oxidation state attainable for Re is VII while, under the same electrochemistry conditions, the highest oxidation state for Tc is VI. The M(V)→ M(IV) reduction processes for Tc(V)O-α1 are not pH dependent or only slightly pH dependent suggesting that protonation does not accompany reduction of this species unlike the M(V)O-α2 (M = (99)Tc, Re) and Re(V)O-α1 where M(V/IV) reduction process must occur hand in hand with protonation of the terminal M═O to

  8. Effects of metal ions on growth, β-oxidation system, and thioesterase activity of Lactococcus lactis.

    Science.gov (United States)

    Li, Liang; Ma, Ying

    2014-10-01

    The effects of divalent metal ions (Ca(2+), Mg(2+), Fe(2+), and Cu(2+)) on the growth, β-oxidation system, and thioesterase activity of Lactococcus lactis were investigated. Different metal ions significantly influenced the growth of L. lactis: Ca(2+) and Fe(2+) accelerated growth, whereas Cu(2+) inhibited growth. Furthermore, Mg(2+) inhibited growth of L. lactis at a low concentration but stimulated growth of L. lactis at a high concentration. The divalent metal ions had significant effects on activity of the 4 key enzymes of the β-oxidation system (acyl-CoA dehydrogenase, enoyl-CoA hydratase, L-3-hydroxyacyl-CoA dehydrogenase, and thiolase) and thioesterase of L. lactis. The activity of acyl-CoA dehydrogenases increased markedly in the presence of Ca(2+) and Mg(2+), whereas it decreased with 1 mmol/L Fe(2+) or 12 mmol/L Mg(2+). All the metal ions could induce activity of enoyl-CoA hydratase. In addition, 12 mmol/L Mg(2+) significantly stimulated activity of L-3-hydroxyacyl-CoA dehydrogenase, and all metal ions could induce activity of thiolase, although thiolase activity decreased significantly when 0.05 mmol/L Cu(2+) was added into M17 broth. Inhibition of thioesterase activity by all 4 metal ions could be reversed by 2 mmol/L Ca(2+). These results help us understand the effect of metal ions on the β-oxidation system and thioesterase activity of Lactococcus lactis. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Studies of Tc oxidation states in humic acid solutions

    International Nuclear Information System (INIS)

    Wang Bo; Liu Dejun; Yao Jun

    2011-01-01

    The oxidation state of Tc is an important aspect of the speciation in groundwater which contained organic substances due to it control the precipitation, complexation, sorption and colloid formation behavior of the Tc under HWL geological disposal conditions. In present work, the oxidation states of Tc were investigated using the LaCl 3 coagulation method and solution extraction method in aqueous solutions in which the humic acid concentration range is from 0 to 20 mg/L and the Tc (VII) concentration is about 10 -8 mol/L. The radiocounting of 99 Tc was determined using liquid scintillation spectrometry. The humic acid will influence the radiocounting ratio of 99 Tc apparently, however, the quenching effect can be restrained once keep the volume of the cocktail to about twenty times of the sample volume. The LaCl 3 coagulation method was carried out for the investigation of Tc oxidation states in humic acid aqueous systems at about pH 8. The tetraphenylarsonium chloride (TPA)-chloroform extraction method was used also simultaneously to investigation the concentrations of Tc (IV) and Tc (VII) for the availability of the LaCl 3 precipitation method, and the experimental results demonstrate that tetravalent technetium and pertechnetate concentration are well agreement with the LaCl 3 precipitation method. These two experimental results demonstrated that Tc (VII) is very stable in the Tc (VII)-humic acid system during a 350 days experimental period, and the Tc (IV) concentrations are very lower, that is indicate that there didn't oxidizing reactions between the Fluka humic acid and Tc (VII) in aqueous solutions under anaerobic conditions. That means the presence of humic acids even in anaerobic groundwater is disadvantage for the retardance of radionuclides. (authors)

  10. Adsorptive behaviour of mercury on algal biomass: Competition with divalent cations and organic compounds

    International Nuclear Information System (INIS)

    Carro, Leticia; Barriada, Jose L.; Herrero, Roberto; Sastre de Vicente, Manuel E.

    2011-01-01

    Highlights: → Native and protonated macroalga S. muticum are good materials for mercury removal. → Fast kinetic process and high mercury uptakes have been found for those materials. → Diffusion control is the rate limiting step of the process. → Competition effects by organic compounds, inorganic salts and divalent cations were analyzed. → Continuous flow experiments allowed identification of mercury reduction during metal removal. - Abstract: Biosorption processes constitute an effective technique for mercury elimination. Sorption properties of native and acid-treated Sargassum muticum have been studied. Effect of pH, initial mercury concentration and contact time studies provided fundamental information about the sorption process. This information was used as the reference values to analyse mercury sorption under competition conditions. Saline effect has shown little influence in sorption, when only electrostatic modifications took place upon salt addition. On the contrary, if mercury speciation dramatically changed owing to the addition of an electrolyte, such as in the case of chloride salt, very large modifications in mercury sorption were observed. Competition with other divalent cations or organic compounds has shown little or none effect on mercury, indicating that a different mechanism is taking place during the removal of these pollutants. Finally, continuous flow experiments have clearly shown that a reduction process is also taking place during mercury removal. This fact is not obvious to elucidate under batch sorption experiments. Scanning Electron Microscopy analysis of the surface of the materials show deposits of mercury(I) and metallic mercury which is indicative of the reduction process proposed.

  11. Effect of divalent impurities on some physical properties of LiF and NaF

    International Nuclear Information System (INIS)

    Laj, C.

    1969-05-01

    The ionic thermo-currents technique is applied to the study of impurity vacancy dipoles in LiF and NaF doped with several divalent cations. In LiF only one ITC band is observed whatever the impurity studied. In NaF on the contrary two ITC bands are present, one corresponding to the one observed in LiF, the other one, intense in the case of small impurities, at lower temperature. A parallel EPR study in the case of Mn 2+ doped samples shows that the band observed in LiF and the corresponding one in NaF are due to the relaxation of dipoles formed by the association of an impurity and a vacancy in the next nearest position. The knowledge of the properties of the dipoles allows to show that the room temperature ionic conductivity of LiF is conditioned by the equilibrium: M ++ □+ → M ++ + □+. It is also shown that the isolated cation vacancy originating from this dissociation is responsible for the enhancement of γ-ray coloration of LiF doped with divalent cation impurities. A paramagnetic center ascribed to the presence of Mn 0 isolated in the lattice is also studied. The value of the hyperfine interaction and its temperature dependence are in good agreement with both the theory and the other experimental results. Finally it is shown that the disappearance of dipoles by annealing is related to the formation of complexes involving OH - ions, probably of the M(OH) 2 type, with the two OH - ions occupying a single fluorine site. (author) [fr

  12. Composite materials with metal oxide attached to lead chalcogenide nanocrystal quantum dots with linkers

    Science.gov (United States)

    Fuke, Nobuhiro; Koposov, Alexey Y; Sykora, Milan; Hoch, Laura

    2014-12-16

    Composite materials useful for devices such as photoelectrochemical solar cells include a substrate, a metal oxide film on the substrate, nanocrystalline quantum dots (NQDs) of lead sulfide, lead selenide, and lead telluride, and linkers that attach the NQDs to the metal oxide film. Suitable linkers preserve the 1s absorption peak of the NQDs. A suitable linker has a general structure A-B-C where A is a chemical group adapted for binding to a MO.sub.x and C is a chemical group adapted for binding to a NQD and B is a divalent, rigid, or semi-rigid organic spacer moiety. Other linkers that preserve the 1s absorption peak may also be used.

  13. Stability constants for some divalent metal ion/crown ether complexes in methanol determined by polarography and conductometry

    NARCIS (Netherlands)

    Chen, L.; Bos, M.; Grootenhuis, P.D.J.; Christenhusz, A.; Hoogendam, E.; Reinhoudt, David; van der Linden, W.E.

    1987-01-01

    Stability constants in methanol at 25.0°C were evaluated for the complexes of the divalent cations Ca2+, Ni2+, Zn2+, Pb2+, Mg2+, Co2+ and Cu2+ with the macrocyclic polyethers 15-crown-5 (15C5), 18-crown-6 (18C6), dicyclohexyl-18-crown-6 (DC18C6) and dibenzo-24-crown-8 (DB24C8). The log K values of

  14. The Compact and Biologically Relevant Structure of Inter-α-inhibitor Is Maintained by the Chondroitin Sulfate Chain and Divalent Cations.

    Science.gov (United States)

    Scavenius, Carsten; Nikolajsen, Camilla Lund; Stenvang, Marcel; Thøgersen, Ida B; Wyrożemski, Łukasz; Wisniewski, Hans-Georg; Otzen, Daniel E; Sanggaard, Kristian W; Enghild, Jan J

    2016-02-26

    Inter-α-inhibitor is a proteoglycan of unique structure. The protein consists of three subunits, heavy chain 1, heavy chain 2, and bikunin covalently joined by a chondroitin sulfate chain originating at Ser-10 of bikunin. Inter-α-inhibitor interacts with an inflammation-associated protein, tumor necrosis factor-inducible gene 6 protein, in the extracellular matrix. This interaction leads to transfer of the heavy chains from the chondroitin sulfate of inter-α-inhibitor to hyaluronan and consequently to matrix stabilization. Divalent cations and heavy chain 2 are essential co-factors in this transfer reaction. In the present study, we have investigated how divalent cations in concert with the chondroitin sulfate chain influence the structure and stability of inter-α-inhibitor. The results showed that Mg(2+) or Mn(2+), but not Ca(2+), induced a conformational change in inter-α-inhibitor as evidenced by a decrease in the Stokes radius and a bikunin chondroitin sulfate-dependent increase of the thermodynamic stability. This structure was shown to be essential for the ability of inter-α-inhibitor to participate in extracellular matrix stabilization. In addition, the data revealed that bikunin was positioned adjacent to both heavy chains and that the two heavy chains also were in close proximity. The chondroitin sulfate chain interacted with all protein components and inter-α-inhibitor dissociated when it was degraded. Conventional purification protocols result in the removal of the Mg(2+) found in plasma and because divalent cations influence the conformation and affect function it is important to consider this when characterizing the biological activity of inter-α-inhibitor. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Predicting spent fuel oxidation states in a tuff repository

    International Nuclear Information System (INIS)

    Einziger, R.E.; Woodley, R.E.

    1987-01-01

    Nevada Nuclear Waste Storage Investigations Project (NNWSI) is studying the suitability of the tuffaceous rocks at Yucca Mountain as a waste repository for spent fuel disposal. The oxidation state of the LWR spent fuel in the moist air environment of a tuff repository could be a significant factor in determining its leaching and dissolution characteristics. Predictions as to which oxidation states would be present are important in analyzing such a repository and thus the present study was undertaken. A set of TGA (thermogravimetric analysis) tests were conducted on well-controlled samples of irradiated PWR fuel with time and temperature as the only variables. The tests were conducted between 140 and 225 0 C for a duration up to 2200 hours. The weight gain curves were analyzed in terms of diffusion through a layer of U 3 O 7 , diffusion into the grains to form a solid solution, a simplified empirical representation of a combination of grain boundary diffusion and bulk grain oxidation. Reaction rate constants were determined in each case, but analysis of these data could not establish a definitive mechanism. 21 refs., 10 figs., 3 tabs

  16. Investigation of the oxidation states of Pu isotopes in a hydrochloric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.H. [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, P. O. Box 105, Yuseong, Daejeon 305-353 (Korea, Republic of)], E-mail: mhlee@kaeri.re.kr; Kim, J.Y.; Kim, W.H.; Jung, E.C.; Jee, K.Y. [Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute, P. O. Box 105, Yuseong, Daejeon 305-353 (Korea, Republic of)

    2008-12-15

    The characteristics of the oxidation states of Pu in a hydrochloric acid solution were investigated and the results were applied to a separating of Pu isotopes from IAEA reference soils. The oxidation states of Pu(III) and Pu(IV) were prepared by adding hydroxylamine hydrochloride and sodium nitrite to a Pu stock solution, respectively. Also, the oxidation state of Pu(VI) was adjusted with concentrated HNO{sub 3} and HClO{sub 4}. The stability of the various oxidation states of plutonium in a HCl solution with elapsed time after preparation were found to be in the following order: Pu(III){approx}Pu(VI)>Pu(IV)>Pu(V). The chemical recoveries of Pu(IV) in a 9 M HCl solution with an anion exchange resin were similar to those of Pu(VI). This method for the determination of Pu isotopes with an anion exchange resin in a 9 M HCl medium was applied to IAEA reference soils where the activity concentrations of {sup 239,240}Pu and {sup 238}Pu in IAEA-375 and IAEA-326 were consistent with the reference values reported by the IAEA.

  17. Nuclear Magnetic Resonance and Elastic Wave Velocity of Chalk Saturated with Brines Containing Divalent Ions

    DEFF Research Database (Denmark)

    Katika, Konstantina; Alam, Mohammad Monzurul; Fabricius, Ida Lykke

    divided into groups of three and each group was saturated either with deionized water, calcite equilibrated water, or sodium chloride, magnesium chloride and calcium chloride solutions of the same ionic strength. Saturation with solutions that contain divalent ions caused major shifts in the distribution...... of the relaxation time. Core samples saturated with calcium chloride solution relaxed slower and those saturated with magnesium chloride solution relaxed faster than the rest of the samples. Along with the changes in relaxation the samples experienced smaller velocities of elastic waves when saturated with MgCl2...

  18. Composition dependence of glow peak temperature in KCl1-xBrx doped with divalent cations

    International Nuclear Information System (INIS)

    Perez-Salas, R; Aceves, R; RodrIguez-Mijangos, R; Riveros, H G; Duarte, C

    2004-01-01

    Thermoluminescence measurements of β-irradiated Eu 2+ - and Ca 2+ - doped KCl 1-x KBr x solid solutions excited at room temperature have been carried out to identify the effect of composition on the glow peaks. A typical glow peak has been distinguished for each composition. A linear dependence of its temperature on the composition x has been found. These results indicate that for divalent impurity-doped alkali halide solid solutions these glow peak temperatures are mostly dependent on the lattice constant of the host than on the size of the anion or impurity cation

  19. Valence states and occupation sites in (Fe,Mn){sub 3}O{sub 4} spinel oxides investigated by soft x-ray absorption spectroscopy and magnetic circular dichroism

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H J; Kim, G; Kim, D H; Kang, J-S [Department of Physics, Catholic University of Korea (CUK), Bucheon 420-743 (Korea, Republic of); Zhang, C L; Cheong, S-W [Rutgers Center for Emergent Materials and Department of Physics, Rutgers University, Piscataway, NJ 08854 (United States); Shim, J H; Lee, Soonchil [Department of Physics, KAIST, Daejeon 305-701 (Korea, Republic of); Lee, Hangil; Kim, J-Y [Pohang Accelerator Laboratory (PAL), POSTECH, Pohang 790-784 (Korea, Republic of); Kim, B H; Min, B I [Department of Physics, POSTECH, Pohang 790-784 (Korea, Republic of)], E-mail: kangjs@catholic.ac.kr

    2008-07-23

    The electronic structures of (Fe,Mn){sub 3}O{sub 4} spinel oxides have been investigated by employing soft-x-ray absorption spectroscopy (XAS) and soft x-ray magnetic circular dichroism (XMCD). We have determined the valence states as well as the occupation sites of Mn and Fe ions in Fe{sub 0.9}Mn{sub 2.1}O{sub 4} and MnFe{sub 2}O{sub 4}. Fe{sub 0.9}Mn{sub 2.1}O{sub 4} is found to be close to the inverse spinel (the inversion parameter y{approx}0.85), while MnFe{sub 2}O{sub 4} is close to the normal spinel (y{approx}0.2). In Fe{sub 0.9}Mn{sub 2.1}O{sub 4}, Fe ions are mainly trivalent and the majority of Fe{sup 3+} ions occupy the octahedral B sites, while Mn ions are mixed-valent with approximately 45% Mn{sub A}{sup 2+} at the tetrahedral A sites and 55% Mn{sub B}{sup 3+} ions at the octahedral B sites. In MnFe{sub 2}O{sub 4}, Mn ions are mainly divalent and the majority of Mn{sup 2+} ions occupy the tetrahedral A sites, while Fe ions are mainly trivalent and the majority of Fe{sup 3+} ions occupy the octahedral B sites.

  20. In situ oxidation state profiling of nickel hexacyanoferrate derivatized electrodes using line-imaging Raman spectroscopy and multivariate calibration

    International Nuclear Information System (INIS)

    Haight, S.M.; Schwartz, D.T.

    1999-01-01

    Metal hexacyanoferrate compounds show promise as electrochemically switchable ion exchange materials for use in the cleanup of radioactive wastes such as those found in storage basins and underground tanks at the Department of Energy's Hanford Nuclear Reservation. Reported is the use of line-imaging Raman spectroscopy for the in situ determination of oxidation state profiles in nickel hexacyanoferrate derivatized electrodes under potential control in an electrochemical cell. Line-imaging Raman spectroscopy is used to collect 256 contiguous Raman spectra every ∼5 microm from thin films (ca. 80 nm) formed by electrochemical derivatization of nickel electrodes. The cyanide stretching region of the Raman spectrum of the film is shown to be sensitive to iron oxidation state and is modeled by both univariate and multivariate correlations. Although both correlations fit the calibration set well, the multivariate (principle component regression or PCR) model's predictions of oxidation state are less sensitive to noise in the spectrum, yielding a much smoother oxidation state profile than the univariate model. Oxidation state profiles with spatial resolution of approximately 5 microm are shown for a nickel hexacyanoferrate derivatized electrode in reduced, intermediate, and oxidized states. In situ oxidation state profiles indicate that the 647.1 nm laser illumination photo-oxidizes the derivatized electrodes. This observation is confirmed using photoelectrochemical methods

  1. Thermodynamic properties of chromium bearing slags and minerals. A review

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Yanping; Holappa, L.

    1996-12-31

    In this report, the thermodynamic properties of chromium bearing slags and minerals were reviewed based on the available information in the literature. It includes the analysing methods for oxidation state of chromium in slags, oxidation state of chromium and activities of chromium oxides in slags and minerals. The phase diagrams of chromium oxide systems and chromium distributions between slag and metal phases are also covered ill this review. Concerning the analysing methods, it was found that most of the available approaches are limited to iron free slag systems and the sample preparation is very sensitive to the analysing results. In silicate slags under reducing atmosphere, divalent and trivalent chromium co-exist in the slags. It is agreed that the fraction of divalent chromium to total chromium increases with higher temperature, lower slag basicity and oxygen potential. For the slags under oxidising atmosphere, trivalent, pentavalent and hexavalent states were reported to be stable. The activities of CrO and CrO{sub 1.5} were concluded to have positive deviation from ideal solution. Slag basicity has a positive effect and temperature has a negative effect on the activities of chromium oxides. The phase diagrams of the Cr-O, binary, and ternary chromium containing oxide systems have been examined systematically. The analysis shows that the data on the quaternary and quinary systems are insufficient, and require further investigation. The most important features of the chromium containing silicate slags are the large miscibility gaps and the stability of the chromite spinel. (orig.) (76 refs.)

  2. Solid oxide fuel cells fueled with reducible oxides

    Science.gov (United States)

    Chuang, Steven S.; Fan, Liang Shih

    2018-01-09

    A direct-electrochemical-oxidation fuel cell for generating electrical energy includes a cathode provided with an electrochemical-reduction catalyst that promotes formation of oxygen ions from an oxygen-containing source at the cathode, a solid-state reduced metal, a solid-state anode provided with an electrochemical-oxidation catalyst that promotes direct electrochemical oxidation of the solid-state reduced metal in the presence of the oxygen ions to produce electrical energy, and an electrolyte disposed to transmit the oxygen ions from the cathode to the solid-state anode. A method of operating a solid oxide fuel cell includes providing a direct-electrochemical-oxidation fuel cell comprising a solid-state reduced metal, oxidizing the solid-state reduced metal in the presence of oxygen ions through direct-electrochemical-oxidation to obtain a solid-state reducible metal oxide, and reducing the solid-state reducible metal oxide to obtain the solid-state reduced metal.

  3. Bile secretion of cadmium, silver, zinc and copper in the rat. Involvement of various transport systems.

    NARCIS (Netherlands)

    Havinga, R; Vonk, RJ; Kuipers, F

    1996-01-01

    In the present study we compared, in vivo in rats, the hepatobiliary transport of monovalent (silver:Ag) and divalent metals (zinc:Zn; cadmium:Cd) with that of copper (Cu). Cu can have two oxidation states in vivo, i.e. Cu(I) and Cu(II). Studies were performed in normal Wistar (NW) rats and mutant

  4. PRECIPITATION OF PROTACTINIUM

    Science.gov (United States)

    Moore, R.L.

    1958-07-15

    An lmprovement in the separation of protactinium from aqueous nitric acid solutions is described. 1t covers the use of lead dioxide and tin dioxide as carrier precipitates for the protactinium. In carrying out the process, divalent lead or divalent tin is addcd to the solution and oxidized, causing formation of a carrier precipitate of lead dioxide or stannic oxide, respectively.

  5. Plutonium uptake by Scenedesmus obliquus as a function of isotope and oxidation state

    International Nuclear Information System (INIS)

    Tkacik, M.F.; Giesy, J.P.; Wilhite, E.L.; Corey, J.C.

    1979-01-01

    Uptake of 238 Pu 4+ , 238 Pu 6+ , 239 Pu 4+ and 239 Pu 6+ by the green alga Scenedesmus obliquus (Turp) Kutz was studied to determine whether isotope or oxidation state differences affect Pu uptake from aqueous medium by algal cells. At equivalent 238 Pu and 239 PU concentrations, even when initial oxidation states differed, accumulations of these isotopes by S.obliquus were not significantly (p>0.05) different. Plutonium accumulation by S.obliquus was log-linear. (author)

  6. Oxidation states of Fe in LaNi1-xFexO3

    International Nuclear Information System (INIS)

    Goeta, A.E.; Falcon, H.; Carbonio, R.

    1994-01-01

    The distribution of oxidation states in perovskites of the type LaA 1-x B x O 3 (A and B transition metal ions) can be ''tailored'' by x variation. In particular, in LaNiO 3 it has been shown that Fe substitution for Ni foces some Ni 3+ into Ni 2+ , while some Fe 3+ changes into the unusual Fe 4+ state. In addition, the existence of mixed oxidation states of Fe and/or Ni in LaNi 1-x Fe x O 3 has been related to its catalytic activity in hydrogen peroxide decomposition. The Fe 4+ population, obtained using Moessbauer spectroscopy, was found to be constant for all the analyzed annealing temperatures for x = 0.25 concentration, where the isomer shift difference for both states is the highest and the catalytic activity is maximum. (orig.)

  7. The oxidation state of sulfur in apatite: A new oxybarometer?

    Science.gov (United States)

    Fiege, A.; Konecke, B.; Kim, Y.; Simon, A. C.; Becker, U.; Parat, F.

    2016-12-01

    Oxygen fugacity (fO2) of magmatic and hydrothermal systems influences, for instance, crystallization and degassing processes as well as metal solubilities in melts and fluids. Apatite is a ubiquitous mineral in magmatic and hydrothermal environments that can record and preserve volatile zonation. It can contain several thousand μg/g of the redox sensitive element sulfur (S), making S-in-apatite a potential fO2 sensor. Despite the polyvalent properties of S (e.g., S2-, S4+, S6+), the oxidation state and incorporation mechanisms of S in the apatite structure are poorly understood. In this study, the oxidation state of S-in-apatite as a function of fO2 is investigated using X-ray absorption near-edge structures (XANES) spectroscopy at the S K-edge. Apatites crystallized from lamproitic melts at 1000°C, 300 MPa and over a broad range of fO2 and sulfur fugacities (fS2) were measured. Peaks corresponding to S6+ ( 2482 eV), S4+ ( 2478 eV) and S2- ( 2470 eV) were identified in apatite. The integrated S6+/STotal (STotal = S6+ + S4+ + S2-) peak area ratios show a distinct positive correlation with fO2, increasing from 0.17 at FMQ+0 to 0.96 at FMQ+3. Ab-initio calculations were performed to further understand the energetics and geometry of incorporation of S6+, S4+ and S2- into the apatite (F-, Cl-, OH-) end-members. The results confirm that apatite can contain three different oxidations states of S (S6+, S4+, S2-) as a function of fO2. This makes apatite probably the first geologically relevant mineral to incorporate reduced (S2-), intermediate (S4+), and oxidized (S6+) S in variable proportions. We emphasize that the strong dependence of the S oxidation state in apatite as a function of fO2 is also coupled with changing S content of apatite and co-existing melt (i.e., with changing fS2), resulting in a complex correlation between [1] apatite-melt (or fluid) partitioning, [2] redox conditions and [3] the melt and/or fluid composition, making the application of previously

  8. Studies of the Tc oxidation states in humic acid solutions

    International Nuclear Information System (INIS)

    Wang Bo; Liu Dejun; Yao Jun

    2010-01-01

    The oxidation state is an important aspect of the speciation of Tc in groundwater that contained organic substances due to it control the precipitation, complexation, sorption and colloid formation behavior of the Tc under HWL geological disposal conditions. In present work, the oxidation states of Tc were investigated using the LaCl 3 coagulation method and solution extraction method in aqueous solutions in which the humic acid concentration range is from 0 to 20 mg L -1 and the Tc (Ⅶ) concentration range is about 10 -8 mol l -1 . The radiocounting of 99 Tc was determined using liquid scintillation spectrometry. The humic acid will influence the radiocounting ratio of 99 Tc apparently, however, the quenching effect can be restrained once keep the volume of the cocktail to about twenty times of the sample volume. The LaCl 3 coagulation methods were carried out for the investigation of Tc oxidation states in humic acid aqueous systems at about pH 8. The tetraphenylarsonium chloride (IPA)-chloroform extraction method was used also simultaneously to investigation the concentrations of Tc (Ⅳ) and Tc (Ⅶ) for the availability of the LaCl 3 precipitation method, and the experimental results demonstrate that tetravalent technetium and pertechnetate concentrations are well agreement with the LaCl 3 precipitation method. These two experimental results demonstrated that Tc (Ⅶ) is very stable in the Tc (Ⅶ)-humic acid system during a 350 days experimental period, and the Tc (Ⅳ) concentrations are very lower, that is indicate that there didn't oxidizing reactions between the Fluka humic acid and Tc (Ⅶ) in aqueous solutions under anaerobic conditions. That is means the presence of humic acids even in anaerobic groundwater is disadvantage for the retardance of radionuclides. (authors)

  9. Structure of the oxalate-ATP complex with pyruvate kinase: ATP as a bridging ligand for the two divalent cations

    International Nuclear Information System (INIS)

    Lodato, D.T.; Reed, G.H.

    1987-01-01

    The 2 equiv of divalent cation that are required cofactors for pyruvate kinase reside in sites of different affinities for different species of cation. The intrinsic selectivity of the protein-based site for Mn(II) and of the nucleotide-based site for Mg(II) has been exploited in electron paramagnetic resonance (EOR) investigations of ligands for Mn(II) at the protein-based site. Oxalate, a structural analogue of the enolate of pyruvate, has been used as a surrogate for the reactive form of pyruvate in complexes with enzyme, Mn(II), Mg(II), and ATP. Superhyperfine coupling between the unpaired electron spin of Mn(II) and the nuclear spin of 17 O, specifically incorporated into oxalate, shows that oxalate is bound at the active site as a bidentate chelate with Mn(II). Coordination of the γ-phosphate of ATP to this same Mn(II) center is revealed by observation of superhyperfine coupling from 17 O regiospecifically incorporated into the γ-phosphate group of ATP. By contrast, 17 O in the α-phosphate or in the β-phosphate groups of ATP does not influence the spectrum. Experiments in 17 O-enriched water show that there is also a single water ligand bound to the Mn(II). These data indicate that ATP bridges Mn(II) and Mg(II) at the active site. A close spacing of the two divalent cations is also evident from the occurrence of magnetic interactions for complexes in which 2 equiv of Mn(II) are present at the active site. The structure for the enzyme-Mn(II)-oxalate-Mg(II)-ATP complex suggests a scheme for the normal reverse reaction of pyruvate kinase in which the divalent cation at the protein-based site activates the keto acid substrate through chelation and promotes phospho transfer by simultaneous coordination to the enolate oxygen and to a pendant oxygen from the γ-phosphate of ATP

  10. Influence of microorganisms on the oxidation state distribution of multivalent actinides under anoxic conditions

    International Nuclear Information System (INIS)

    Reed, Donald Timothy; Borkowski, Marian; Lucchini, Jean-Francois; Ams, David; Richmann, M.K.; Khaing, H.; Swanson, J.S.

    2010-01-01

    The fate and potential mobility of multivalent actinides in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium, uranium and neptunium are the near-surface multivalent contaminants of concern and are also key contaminants for the deep geologic disposal of nuclear waste. Their mobility is highly dependent on their redox distribution at their contamination source as well as along their potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity. Under anoxic conditions, indirect and direct bioreduction mechanisms exist that promote the prevalence of lower-valent species for multivalent actinides. Oxidation-state-specific biosorption is also an important consideration for long-term migration and can influence oxidation state distribution. Results of ongoing studies to explore and establish the oxidation-state specific interactions of soil bacteria (metal reducers and sulfate reducers) as well as halo-tolerant bacteria and Archaea for uranium, neptunium and plutonium will be presented. Enzymatic reduction is a key process in the bioreduction of plutonium and uranium, but co-enzymatic processes predominate in neptunium systems. Strong sorptive interactions can occur for most actinide oxidation states but are likely a factor in the stabilization of lower-valent species when more than one oxidation state can persist under anaerobic microbiologically-active conditions. These results for microbiologically active systems are interpreted in the context of their overall importance in defining the potential migration of multivalent actinides in the subsurface.

  11. Identification of a divalent metal cation binding site in herpes simplex virus 1 (HSV-1) ICP8 required for HSV replication.

    Science.gov (United States)

    Bryant, Kevin F; Yan, Zhipeng; Dreyfus, David H; Knipe, David M

    2012-06-01

    Herpes simplex virus 1 (HSV-1) ICP8 is a single-stranded DNA-binding protein that is necessary for viral DNA replication and exhibits recombinase activity in vitro. Alignment of the HSV-1 ICP8 amino acid sequence with ICP8 homologs from other herpesviruses revealed conserved aspartic acid (D) and glutamic acid (E) residues. Amino acid residue D1087 was conserved in every ICP8 homolog analyzed, indicating that it is likely critical for ICP8 function. We took a genetic approach to investigate the functions of the conserved ICP8 D and E residues in HSV-1 replication. The E1086A D1087A mutant form of ICP8 failed to support the replication of an ICP8 mutant virus in a complementation assay. E1086A D1087A mutant ICP8 bound DNA, albeit with reduced affinity, demonstrating that the protein is not globally misfolded. This mutant form of ICP8 was also recognized by a conformation-specific antibody, further indicating that its overall structure was intact. A recombinant virus expressing E1086A D1087A mutant ICP8 was defective in viral replication, viral DNA synthesis, and late gene expression in Vero cells. A class of enzymes called DDE recombinases utilize conserved D and E residues to coordinate divalent metal cations in their active sites. We investigated whether the conserved D and E residues in ICP8 were also required for binding metal cations and found that the E1086A D1087A mutant form of ICP8 exhibited altered divalent metal binding in an in vitro iron-induced cleavage assay. These results identify a novel divalent metal cation-binding site in ICP8 that is required for ICP8 functions during viral replication.

  12. Singlet-triplet energy differences in divalent five membered cyclic conjugated Arduengo-type carbenes XC2HN2M (M = C, Si, Ge, Sn, and Pb; X = F, Cl, Br, and I)

    Science.gov (United States)

    Vessally, Esmail; Dehbandi, Behnam; Ahmadi, Elaheh

    2016-09-01

    Singlet-triplet energy differences in Arduengo-type carbenes XC2HN2C compared and contrasted with their sila, germa, stana and plumba analogues; at B3LYP/6-311++G** level of theory. Free Gibbs energy differences between triplet (t) and singlet (s) states (Δ G(t-s)) change in the following order: plumbylenes > stannylenes > germylenes > silylenes > carbenes. The singlet states in XC2HN2C are generally more stable when the electron withdrawing groups such as-F was used at β-position. However, the singlet states in XC2N2HM (M = Si, Ge, Sn, and Pb) are generally more stable when the withdrawing groups such as-F was placed. The puckering energy is investigated for each the singlet and triplet states. The DFT calculations found the linear correlation to size of the group 14 divalent element (M), the ∠N-M-N angle, and the Δ(LUMO-HOMO) of XC2HN2M.

  13. Conformational Toggling of Yeast Iso-1-Cytochrome c in the Oxidized and Reduced States

    Science.gov (United States)

    Yang, Zhongzheng; Zhu, Jing; Ying, Tianlei; Jiang, Xianwang; Zhang, Xu; Wu, Houming; Liu, Maili; Tan, Xiangshi; Cao, Chunyang; Huang, Zhong-Xian

    2011-01-01

    To convert cyt c into a peroxidase-like metalloenzyme, the P71H mutant was designed to introduce a distal histidine. Unexpectedly, its peroxidase activity was found even lower than that of the native, and that the axial ligation of heme iron was changed to His71/His18 in the oxidized state, while to Met80/His18 in the reduced state, characterized by UV-visible, circular dichroism, and resonance Raman spectroscopy. To further probe the functional importance of Pro71 in oxidation state dependent conformational changes occurred in cyt c, the solution structures of P71H mutant in both oxidation states were determined. The structures indicate that the half molecule of cyt c (aa 50–102) presents a kind of “zigzag riveting ruler” structure, residues at certain positions of this region such as Pro71, Lys73 can move a big distance by altering the tertiary structure while maintaining the secondary structures. This finding provides a molecular insight into conformational toggling in different oxidation states of cyt c that is principle significance to its biological functions in electron transfer and apoptosis. Structural analysis also reveals that Pro71 functions as a key hydrophobic patch in the folding of the polypeptide of the region (aa 50–102), to prevent heme pocket from the solvent. PMID:22087268

  14. Multiscale Interfacial Strategy to Engineer Mixed Metal-Oxide Anodes toward Enhanced Cycling Efficiency.

    Science.gov (United States)

    Ma, Yue; Tai, Cheuk-Wai; Li, Shaowen; Edström, Kristina; Wei, Bingqing

    2018-06-13

    Interconnected macro/mesoporous structures of mixed metal oxide (MMO) are developed on nickel foam as freestanding anodes for Li-ion batteries. The sustainable production is realized via a wet chemical etching process with bio-friendly chemicals. By means of divalent iron doping during an in situ recrystallization process, the as-developed MMO anodes exhibit enhanced levels of cycling efficiency. Furthermore, this atomic-scale modification coherently synergizes with the encapsulation layer across a micrometer scale. During this step, we develop a quasi-gel-state tri-copolymer, i.e., F127-resorcinol-melamine, as the N-doped carbon source to regulate the interfacial chemistry of the MMO electrodes. Electrochemical tests of the modified Fe x Ni 1- x O@NC-NiF anode in both half-cell and full-cell configurations unravel the favorable suppression of the irreversible capacity loss and satisfactory cyclability at the high rates. This study highlights a proof-of-concept modification strategy across multiple scales to govern the interfacial chemical process of the electrodes toward better reversibility.

  15. Synthesis and characterization of ruthenium fluorides and oxide fluorides with high oxidation states

    International Nuclear Information System (INIS)

    Meublat, L.

    1989-10-01

    The synthesis of ruthenium fluorides and oxide fluorides with high oxidation states was attempted from dioxide RuO 2 and tetroxide RuO 4 . Three fluorinating agents were used: fluorine, chlorine trifluoride and krypton difluoride. The reactions were achieved in anhydrous hydrogen fluoride at room temperature. Thus, the reaction of RuO 4 with CIF 3 enabled us to prepare chloryl hexafluororuthenate (V), CIO 2 + RuF 6 - , a new compound well identified by vibrational spectroscopy (infra-red and Raman), the structure of which was determined. The reaction of KrF 2 with RuO 4 gave the oxide tetrafluoride RuOF 4 , the previously published syntheses and properties of which were not in agreement with each other. This compound was definitely characterized here by chemical analysis, infra-red spectroscopy and X-ray powder diffraction. The product of thermal decomposition (70 0 C) of RuOF 4 is presumably RuF 4 since only oxygen is liberated during this decomposition. At last, the reaction of KrF 2 with RuO 2 probably leads to the formation of the new oxide fluoride RuO 2 F 4 . Indeed, no oxygen is given off during this reaction, the chemical analysis of the red-orange coloured solid residue is almost in agreement with the one proposed and its infra-red absorption spectrum indicates the presence of ruthenium-oxygen and ruthenium-terminal and bridging fluorine bonds [fr

  16. Synthesis and characterization of ruthenium fluorides and oxide fluorides with high oxidation states

    International Nuclear Information System (INIS)

    Meublat, L.

    1989-01-01

    The synthesis of ruthenium fluorides and oxide fluorides with high oxidation states was attempted from dioxide RuO 2 and tetroxide RuO 4 . Three fluorinating agents were used: fluorine, chlorine trifluoride and krypton difluoride. The reactions were achieved in anhydrous hydrogen fluoride at room temperature. Thus, the reaction of RuO 4 with CIF 3 enabled us to prepare chloryl hexafluororuthenate (V), ClO 2 + RuF 6 - , a new compound well idendified by vibrational spectroscopy (infra-red and Raman), the structure of which was determined. The reaction of KrF 2 with RuO 4 gave the oxide tetrafluoride RuOF 4 , the previously published syntheses and properties of which were not in agreement with each other. This compound was definitely characterized here by chemical analysis, infra-red spectroscopy and X-ray powder diffraction. The product of thermal decomposition (70 0 C) of RuOF 4 is presumably RuF 4 since only oxygen is liberated during this decomposition. At last, the reaction of KrF 2 with RuO 2 probably leads to the formation of the new oxide fluoride RuO 2 F 4 . Indeed, no oxygen is given off during this reaction, the chemical analysis of the red-orange coloured solid residue is almost in agreement with the one proposed and its infra-red absorption spectrum indicates the presence of ruthenium-oxygen and ruthenium-terminal and bridging fluorine bonds [fr

  17. Evolution of the Oxidation State of the Earth's Mantle

    Science.gov (United States)

    Danielson, L. R.; Righter, K.; Keller, L.; Christoffersen, E.; Rahman, Z.

    2015-01-01

    The oxidation state of the Earth's mantle during formation remains an unresolved question, whether it was constant throughout planetary accretion, transitioned from reduced to oxidized, or from oxidized to reduced. We investigate the stability of Fe3(+) at depth, in order to constrain processes (water, late accretion, dissociation of FeO) which may reduce or oxidize the Earth's mantle. In our previous experiments on shergottite compositions, variable fO2, T, and P less than 4 GPa, Fe3(+)/sigma Fe decreased slightly with increasing P, similar to terrestrial basalt. For oxidizing experiments less than 7GPa, Fe3(+)/sigma Fe decreased as well, but it's unclear from previous modelling whether the deeper mantle could retain significant Fe3(+). Our current experiments expand our pressure range deeper into the Earth's mantle and focus on compositions and conditions relevant to the early Earth. Preliminary multi-anvil experiments with Knippa basalt as the starting composition were conducted at 5-7 GPa and 1800 C, using a molybdenum capsule to set the fO2 near IW, by buffering with Mo-MoO3. TEM and EELS analyses revealed the run products quenched to polycrystalline phases, with the major phase pyroxene containing approximately equal to Fe3(+)/2(+). Experiments are underway to produce glassy samples that can be measured by EELS and XANES, and are conducted at higher pressures.

  18. Arsenic (+3 oxidation state) methyltransferase and the inorganic arsenic methylation phenotype

    International Nuclear Information System (INIS)

    Li Jiaxin; Waters, Stephen B.; Drobna, Zuzana; Devesa, Vicenta; Styblo, Miroslav; Thomas, David J.

    2005-01-01

    Inorganic arsenic is enzymatically methylated; hence, its ingestion results in exposure to the parent compound and various methylated arsenicals. Both experimental and epidemiological evidences suggest that some of the adverse health effects associated with chronic exposure to inorganic arsenic may be mediated by these methylated metabolites. If i As methylation is an activation process, then the phenotype for inorganic arsenic methylation may determine risk associated with exposure to this metalloid. We examined inorganic arsenic methylation phenotypes and arsenic (+3 oxidation state) methyltransferase genotypes in four species: three that methylate inorganic arsenic (human (Homo sapiens), rat (Rattus norwegicus), and mouse (Mus musculus)) and one that does not methylate inorganic arsenic (chimpanzee, Pan troglodytes). The predicted protein products from arsenic (+3 oxidation state) methyltransferase are similar in size for rat (369 amino acid residues), mouse (376 residues), and human (375 residues). By comparison, a 275-nucleotide deletion beginning at nucleotide 612 in the chimpanzee gene sequence causes a frameshift that leads to a nonsense mutation for a premature stop codon after amino acid 205. The null phenotype for inorganic arsenic methylation in the chimpanzee is likely due to the deletion in the gene for arsenic (+3 oxidation state) methyltransferase that yields an inactive truncated protein. This lineage-specific loss of function caused by the deletion event must have occurred in the Pan lineage after Homo-Pan divergence about 5 million years ago

  19. Approaches to Determining the Oxidation State of Nitrogen and Carbon Atoms in Organic Compounds for High School Students

    Science.gov (United States)

    Jurowski, Kamil; Krzeczkowska, Malgorzata Krystyna; Jurowska, Anna

    2015-01-01

    The concept of oxidation state (or oxidation number) and related issues have always been difficult for students. In addition, there are misunderstandings and obscurities, which can cause improper balancing of the chemical equations (mostly in organic reactions). In particular, these problems are related to determination of the oxidation state of…

  20. On matrix stabilisation of d- and f-transition metal ions in unstable oxidation states

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, Yurii M [Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2009-01-31

    The state-of-the-art in matrix stabilisation of d- and f-transition metal ions in unstable oxidation states is analysed. Main aspects of this problem concerning the genealogy of appropriate matrix systems are classified. Relevant examples are given and the data that contradict the scheme proposed are discussed. The thermodynamics of the matrix stabilisation effect is considered using the concept of isomorphic miscibility. The influence of defects and non-equilibrium on the matrix stabilisation effect is discussed. The problem of identification of the oxidation states in matrix systems is examined and various types of matrix systems are considered.

  1. On matrix stabilisation of d- and f-transition metal ions in unstable oxidation states

    International Nuclear Information System (INIS)

    Kiselev, Yurii M

    2009-01-01

    The state-of-the-art in matrix stabilisation of d- and f-transition metal ions in unstable oxidation states is analysed. Main aspects of this problem concerning the genealogy of appropriate matrix systems are classified. Relevant examples are given and the data that contradict the scheme proposed are discussed. The thermodynamics of the matrix stabilisation effect is considered using the concept of isomorphic miscibility. The influence of defects and non-equilibrium on the matrix stabilisation effect is discussed. The problem of identification of the oxidation states in matrix systems is examined and various types of matrix systems are considered.

  2. Dynamic behaviour of the silica-water-bio electrical double layer in the presence of a divalent electrolyte.

    Science.gov (United States)

    Lowe, B M; Maekawa, Y; Shibuta, Y; Sakata, T; Skylaris, C-K; Green, N G

    2017-01-25

    Electronic devices are becoming increasingly used in chemical- and bio-sensing applications and therefore understanding the silica-electrolyte interface at the atomic scale is becoming increasingly important. For example, field-effect biosensors (BioFETs) operate by measuring perturbations in the electric field produced by the electrical double layer due to biomolecules binding on the surface. In this paper, explicit-solvent atomistic calculations of this electric field are presented and the structure and dynamics of the interface are investigated in different ionic strengths using molecular dynamics simulations. Novel results from simulation of the addition of DNA molecules and divalent ions are also presented, the latter of particular importance in both physiological solutions and biosensing experiments. The simulations demonstrated evidence of charge inversion, which is known to occur experimentally for divalent electrolyte systems. A strong interaction between ions and DNA phosphate groups was demonstrated in mixed electrolyte solutions, which are relevant to experimental observations of device sensitivity in the literature. The bound DNA resulted in local changes to the electric field at the surface; however, the spatial- and temporal-mean electric field showed no significant change. This result is explained by strong screening resulting from a combination of strongly polarised water and a compact layer of counterions around the DNA and silica surface. This work suggests that the saturation of the Stern layer is an important factor in determining BioFET response to increased salt concentration and provides novel insight into the interplay between ions and the EDL.

  3. Facile solid-state synthesis of oxidation-resistant metal nanoparticles at ambient conditions

    Science.gov (United States)

    Lee, Kyu Hyung; Jung, Hyuk Joon; Lee, Ju Hee; Kim, Kyungtae; Lee, Byeongno; Nam, Dohyun; Kim, Chung Man; Jung, Myung-Hwa; Hur, Nam Hwi

    2018-05-01

    A simple and scalable method for the synthesis of metal nanoparticles in the solid-state was developed, which can produce nanoparticles in the absence of solvents. Nanoparticles of coinage metals were synthesized by grinding solid hydrazine and the metal precursors in their acetates and oxides at 25 °C. The silver and gold acetates converted completely within 6 min into Ag and Au nanoparticles, respectively, while complete conversion of the copper acetate to the Cu sub-micrometer particles took about 2 h. Metal oxide precursors were also converted into metal nanoparticles by grinding alone. The resulting particles exhibit distinctive crystalline lattice fringes, indicating the formation of highly crystalline phases. The Cu sub-micrometer particles are better resistant to oxidation and exhibit higher conductivity compared to conventional Cu nanoparticles. This solid-state method was also applied for the synthesis of platinum group metals and intermetallic Cu3Au, which can be further extended to synthesize other metal nanoparticles.

  4. Arsenic K-edge X-ray absorption near-edge spectroscopy to determine oxidation states of arsenic of a coastal aquifer–aquitard system

    International Nuclear Information System (INIS)

    Wang, Ya; Jiao, Jiu Jimmy; Zhu, Sanyuan; Li, Yiliang

    2013-01-01

    Determination of oxidation states of solid-phase arsenic in bulk sediments is a valuable step in the evaluation of its bioavailability and environmental fate in deposits, but is difficult when the sediments have low arsenic contents and heterogeneous distribution of arsenic species. As K-edge X-ray absorption near-edge spectroscopy (XANES) was used to determine quantitatively the oxidation states of arsenic in sediments collected from different depths of boreholes in the Pearl River Delta, China, where the highest aquatic arsenic concentration is 161.4 μg/L, but the highest solid arsenic content only 39.6 mg/kg. The results demonstrated that XANES is efficient in determining arsenic oxidation states of the sediments with low arsenic contents and multiple arsenic species. The study on the high-resolution vertical variations of arsenic oxidation states also indicated that these states are influenced strongly by groundwater activities. With the help of geochemical data, solid arsenic speciation, toxicity and availability were further discussed. -- Highlights: •XANES is efficient in determining arsenic oxidation states of the bulk sediments. •Distribution of arsenic oxidation states is consistent with geochemical conditions. •Arsenic oxidation states are influenced strongly by groundwater activities. -- As K-edge X-ray absorption near-edge spectroscopy is efficient in determining arsenic oxidation states of the bulk sediments with low arsenic contents and heterogeneous distribution of arsenic species

  5. DetOx: a program for determining anomalous scattering factors of mixed-oxidation-state species.

    Science.gov (United States)

    Sutton, Karim J; Barnett, Sarah A; Christensen, Kirsten E; Nowell, Harriott; Thompson, Amber L; Allan, David R; Cooper, Richard I

    2013-01-01

    Overlapping absorption edges will occur when an element is present in multiple oxidation states within a material. DetOx is a program for partitioning overlapping X-ray absorption spectra into contributions from individual atomic species and computing the dependence of the anomalous scattering factors on X-ray energy. It is demonstrated how these results can be used in combination with X-ray diffraction data to determine the oxidation state of ions at specific sites in a mixed-valance material, GaCl(2).

  6. Proof of Concept for Efficient Application of Quantum Chemical Techniques to Model Enviromental Mercury Depletion Reactions Through Transition State Theory

    Science.gov (United States)

    2018-01-02

    SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6...redox reactions. The existence of mercury either in elemental (Hg0) or in oxidized divalent Hg2+ forms affects mercury availability and mobility within...halides formation in presence of water molecules (as water is present in upper atmosphere). Although we could locate the low barrier for the Hg—Br

  7. Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Massachusetts Institute of Technology; Kroll, Jesse H.; Donahue, Neil M.; Jimenez, Jose L.; Kessler, Sean H.; Canagaratna, Manjula R.; Wilson, Kevin R.; Altieri, Katye E.; Mazzoleni, Lynn R.; Wozniak, Andrew S.; Bluhm, Hendrik; Mysak, Erin R.; Smith, Jared D.; Kolb, Charles E.; Worsnop, Douglas R.

    2010-11-05

    A detailed understanding of the sources, transformations, and fates of organic species in the environment is crucial because of the central roles that organics play in human health, biogeochemical cycles, and Earth's climate. However, such an understanding is hindered by the immense chemical complexity of environmental mixtures of organics; for example, atmospheric organic aerosol consists of at least thousands of individual compounds, all of which likely evolve chemically over their atmospheric lifetimes. Here we demonstrate the utility of describing organic aerosol (and other complex organic mixtures) in terms of average carbon oxidation state (OSC), a quantity that always increases with oxidation, and is readily measured using state-of-the-art analytical techniques. Field and laboratory measurements of OSC , using several such techniques, constrain the chemical properties of the organics and demonstrate that the formation and evolution of organic aerosol involves simultaneous changes to both carbon oxidation state and carbon number (nC).

  8. Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides

    Science.gov (United States)

    Lehninger, Albert L.; Vercesi, Anibal; Bababunmi, Enitan A.

    1978-01-01

    Mitochondria from normal rat liver and heart, and also Ehrlich tumor cells, respiring on succinate as energy source in the presence of rotenone (to prevent net electron flow to oxygen from the endogenous pyridine nucleotides), rapidly take up Ca2+ and retain it so long as the pyridine nucleotides are kept in the reduced state. When acetoacetate is added to bring the pyridine nucleotides into a more oxidized state, Ca2+ is released to the medium. A subsequent addition of a reductant of the pyridine nucleotides such as β-hydroxybutyrate, glutamate, or isocitrate causes reuptake of the released Ca2+. Successive cycles of Ca2+ release and uptake can be induced by shifting the redox state of the pyridine nucleotides to more oxidized and more reduced states, respectively. Similar observations were made when succinate oxidation was replaced as energy source by ascorbate oxidation or by the hydrolysis of ATP. These and other observations form the basis of a hypothesis for feedback regulation of Ca2+-dependent substrate- or energy-mobilizing enzymatic reactions by the uptake or release of mitochondrial Ca2+, mediated by the cytosolic phosphate potential and the ATP-dependent reduction of mitochondrial pyridine nucleotides by reversal of electron transport. Images PMID:25436

  9. Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels

    Energy Technology Data Exchange (ETDEWEB)

    Kayaaltı, Zeliha, E-mail: kayaalti@ankara.edu.tr; Akyüzlü, Dilek Kaya; Söylemezoğlu, Tülin

    2015-02-15

    Divalent metal transporter 1 (DMT1), a member of the proton-coupled metal ion transporter family, mediates transport of ferrous iron from the lumen of the intestine into the enterocyte and export of iron from endocytic vesicles. It has an affinity not only for iron but also for other divalent cations including manganese, cobalt, nickel, cadmium, lead, copper, and zinc. DMT1 is encoded by the SLC11a2 gene that is located on chromosome 12q13 in humans and express four major mammalian isoforms (1A/+IRE, 1A/-IRE, 2/+IRE and 2/-IRE). Mutations or polymorphisms of DMT1 gene may have an impact on human health by disturbing metal trafficking. To study the possible association of DMT1 gene with the blood levels of some divalent cations such as iron, lead and cadmium, a single nucleotide polymorphism (SNP) (IVS4+44C/A) in DMT1 gene was investigated in 486 unrelated and healthy individuals in a Turkish population by method of polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). The genotype frequencies were found as 49.8% homozygote typical (CC), 38.3% heterozygote (CA) and 11.9% homozygote atypical (AA). Metal levels were analyzed by dual atomic absorption spectrometer system and the average levels of iron, lead and cadmium in the blood samples were 446.01±81.87 ppm, 35.59±17.72 ppb and 1.25±0.87 ppb, respectively. Individuals with the CC genotype had higher blood iron, lead and cadmium levels than those with AA and CA genotypes. Highly statistically significant associations were detected between IVS4+44 C/A polymorphism in the DMT1 gene and iron and lead levels (p=0.001 and p=0.036, respectively), but no association was found with cadmium level (p=0.344). This study suggested that DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, lead and cadmium levels. - Highlights: • DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, cadmium and lead levels.

  10. Evaluation of the effect of divalent metal transporter 1 gene polymorphism on blood iron, lead and cadmium levels

    International Nuclear Information System (INIS)

    Kayaaltı, Zeliha; Akyüzlü, Dilek Kaya; Söylemezoğlu, Tülin

    2015-01-01

    Divalent metal transporter 1 (DMT1), a member of the proton-coupled metal ion transporter family, mediates transport of ferrous iron from the lumen of the intestine into the enterocyte and export of iron from endocytic vesicles. It has an affinity not only for iron but also for other divalent cations including manganese, cobalt, nickel, cadmium, lead, copper, and zinc. DMT1 is encoded by the SLC11a2 gene that is located on chromosome 12q13 in humans and express four major mammalian isoforms (1A/+IRE, 1A/-IRE, 2/+IRE and 2/-IRE). Mutations or polymorphisms of DMT1 gene may have an impact on human health by disturbing metal trafficking. To study the possible association of DMT1 gene with the blood levels of some divalent cations such as iron, lead and cadmium, a single nucleotide polymorphism (SNP) (IVS4+44C/A) in DMT1 gene was investigated in 486 unrelated and healthy individuals in a Turkish population by method of polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). The genotype frequencies were found as 49.8% homozygote typical (CC), 38.3% heterozygote (CA) and 11.9% homozygote atypical (AA). Metal levels were analyzed by dual atomic absorption spectrometer system and the average levels of iron, lead and cadmium in the blood samples were 446.01±81.87 ppm, 35.59±17.72 ppb and 1.25±0.87 ppb, respectively. Individuals with the CC genotype had higher blood iron, lead and cadmium levels than those with AA and CA genotypes. Highly statistically significant associations were detected between IVS4+44 C/A polymorphism in the DMT1 gene and iron and lead levels (p=0.001 and p=0.036, respectively), but no association was found with cadmium level (p=0.344). This study suggested that DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, lead and cadmium levels. - Highlights: • DMT1 IVS4+44 C/A polymorphism is associated with inter-individual variations in blood iron, cadmium and lead levels.

  11. Influence of Divalent Counterions on the Dynamics in DNA as Probed by Using a Minor-Groove Binder.

    Science.gov (United States)

    Paul, Sneha; Ahmed, Tasnim; Samanta, Anunay

    2017-08-05

    DNA dynamics, to which water, counterions, and DNA motions contribute, is a topic of considerable interest because it is closely related to the efficiency of biological functions performed by it. Simulation studies and experiments suggest that the counterion dynamics in DNA probed by a minor-groove binder are similar for various monovalent counterions. To date, the influence on DNA dynamics of higher-valence counterions, which are also present around DNA and are known to bind more strongly to it than monovalent ions, has not been studied. Herein we investigated DNA dynamics in the presence of Mg 2+ and Ca 2+ , chosen for their relative abundance in cells, by using minor-groove binder 4',6-diamidino-2-phenylindole (DAPI) as a fluorescence probe. The dynamics, as measured from the time-resolved fluorescence Stokes shifts of DAPI bound to calf thymus DNA on a subpicosecond-to-nanosecond timescale, were found to be very similar in the presence of both the divalent ions and Na + ions. The observation is explained by considering the screening of the electric field of the divalent ion by its hydration shell, preferential binding of the ions to the phosphate groups, and displacement of ions from the minor groove by DAPI due to the stronger binding interaction of the latter. Furthermore, the similarity of our results in the presence of Na + to those reported for smaller oligonucleotides suggests that the chain length of DNA does not influence the DNA dynamics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Determining the selectivity of divalent metal cations for the carboxyl group of alginate hydrogel beads during competitive sorption.

    Science.gov (United States)

    An, Byungryul; Lee, Healim; Lee, Soonjae; Lee, Sang-Hyup; Choi, Jae-Woo

    2015-11-15

    To investigate the competitive sorption of divalent metal ions such as Ca(2+), Cu(2+), Ni(2+), and Pb(2+) on alginate hydrogel beads, batch and column tests were conducted. The concentration of carboxyl group was found to be limited in the preparation of spherical hydrogel beads. From kinetic test results, 80% of sorption was observed within 4h, and equilibrium was attained in 48 h. According to the comparison of the total uptake and release, divalent metal ions were found to stoichiometrically interact with the carboxyl group in the alginate polymer chain. From the Langmuir equation, the maximum capacities of Pb(2+), Cu(2+), and Ni(2+) were calculated to be 1.1, 0.48, and 0.13 mmol/g, respectively. The separation factor (α) values for αPb/Cu, αPb/Ni, and αCu/Ni were 14.0, 98.9, and 7.1, respectively. The sorption capacity of Pb(2+) was not affected by the solution pH; however, the sorption capacities of Cu(2+) and Ni(2+) decreased with increasing solution pH, caused by competition with hydrogen. According to the result from the fixed column test, Pb(2+) exhibited the highest affinity, followed by Cu(2+) and Ni(2+), which is in exact agreement with those of kinetic and isotherm tests. The sorbent could be regenerated using 4% HCl, and the regenerated sorbent exhibited 90% capacity upto 9 cycles. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Study on the solid state chemistry of ternary uranium oxides

    International Nuclear Information System (INIS)

    Yamashita, Toshiyuki

    1988-03-01

    With the increase of burnup of uranium oxide fuels, various kinds of fission products are formed, and the oxygen atoms combined with the consumed heavy atoms are freed. The solid state chemical and/or thermodynamic properties of these elements at high temperatures are complex, and have not been well clarified. In the present report, an approach was taken that the chemical interactions between UO 2 and these fission products can be regarded as causing overlapped effects of composing ternary uranium oxides, and formation reactions and phase behavior were studied for several ternary uranium oxides with typical fission product elements such as alkaline earth metals and rare earth elements. Precise determination methods for the composition of ternary uranium oxides were developed. The estimated accuracies for x and y values in M y U 1-y O 2+x were ± 0.006 and ± 0.004, respectively. The thermodynamic properties and the lattice parameters of the phases in the Ca-U-O and Pr-U-O systems were discussed in relation to the composition determined by the methods. Crystal structure analyses of cadmium monouranates were made with X-ray diffraction method. (author) 197 refs

  14. Local vs Nonlocal States in FeTiO3 Probed with 1s2pRIXS: Implications for Photochemistry.

    Science.gov (United States)

    Hunault, Myrtille O J Y; Khan, Wilayat; Minár, Jan; Kroll, Thomas; Sokaras, Dimosthenis; Zimmermann, Patric; Delgado-Jaime, Mario U; de Groot, Frank M F

    2017-09-18

    Metal-metal charge transfer (MMCT) is expected to be the main mechanism that enables the harvesting of solar light by iron-titanium oxides for photocatalysis. We have studied FeTiO 3 as a model compound for MMCT with 1s2pRIXS at the Fe K-edge. The high-energy resolution XANES enables distinguishing five pre-edge features. The three first well distinct RIXS features are assigned to electric quadrupole transitions to the localized Fe* 3d states, shifted to lower energy by the 1s core-hole. Crystal field multiplet calculations confirm the speciation of divalent iron. The contribution of electric dipole absorption due to local p-d mixing allowed by the trigonal distortion of the cation site is supported by DFT and CFM calculations. The two other nonlocal features are assigned to electric dipole transitions to excited Fe* 4p states mixed with the neighboring Ti 3d states. The comparison with DFT calculations demonstrates that MMCT in ilmenite is favored by the hybridization between the Fe 4p and delocalized Ti 3d orbitals via the O 2p orbitals.

  15. Spectroscopic and structural studies on some divalent metal salt of p-aminobenzoic acid (ABA(MG)) tetracyanonickelate complexes

    International Nuclear Information System (INIS)

    Atalay, Y.

    2004-01-01

    Infrared spectra of MLNi (CN) 4 [ M=Mn, Fe, Co, Ni, Zn or Cd and LDivalent metal salt of p- Aminobenzoic Acid or ABA (Mg) ] are reported. Their structure consists of polymeric layers of [M-Ni(CN) 4 ] α with the divalent metal salt of p-aminobenzoic acid [ABA(Mg)] molecules bound directly to the metal (M). These spectra were comparewith powder the Xray diffraction pattern of complexes. It is show that proposed structures for these complexes derived from Mattson 1000 FTIR spectra are consistent with the X-ray powder diffraction measurements and elemental analysis result

  16. Berkelium (4) and cerium (4) extraction with tertiary amines

    International Nuclear Information System (INIS)

    Milyukova, M.S.; Malikov, D.A.; Myasoedov, B.V.

    1978-01-01

    Oxidation of indicator quantities of berkelium and cerium by a mixture of silver nitrate and ammonium persulfate in the solutions of nitric and sulfuric acid has been examined. The stability of the elements in a tetravalent state and their extraction by the solutions of ternary amines have been investigated. It has been established that berkelium and cerium oxidation under these conditions occurs under the effect of ions of divalent silver which is formed owing to oxidation of monovalent silver by peroxide sulfate ions. The following supposition has been put forward: a difference in the behaviour of tetravalent berkelium and cerium during their extraction by ternary amines is explained by their different stability in this state, but not by the formation of complex compounds with nitrate ions

  17. Changes in Specific Surface as observed by NMR, caused by saturation of Chalk with porewater bearing divalent Ions

    DEFF Research Database (Denmark)

    Katika, Konstantina; Addassi, Mouadh; Alam, Mohammad Monzurul

    2014-01-01

    Nuclear Magnetic Resonance (NMR) spectrometry has proved to be a good technique for determining the petrophysical properties of reservoir rocks; such as porosity and pore size distribution. We investigated how pore water rich in divalent ions affect the NMR signal from chalk with two different de......-to-volume ratio of the pore space. The results of this work could benefit the ongoing study on the optimization of the water composition for Enhanced Oil Recovery (EOR) methods and shed light on how it can affect the mechanical and physical properties of the rock....

  18. Synthesis, structure and total conductivity of A-site doped LaTiO3−δ perovskites

    International Nuclear Information System (INIS)

    Bradha, M.; Hussain, S.; Chakravarty, Sujay; Amarendra, G.; Ashok, Anuradha

    2015-01-01

    Highlights: • A-site divalent alkaline earth metal doped LaTiO 3−δ perovskites were synthesised by sol–gel method. • Structural studies revealed no change in crystal symmetry but change in cell dimensions after doping. • After doping divalent cations in A-site, an enhancement in total conductivity was observed in LaTiO 3−δ . • Temperature dependent electrical property was observed in all synthesised perovskites. - Abstract: Oxygen deficient perovskites LaTiO 3−δ and La 0.8 A 0.2 TiO 3−δ (A = Ba, Sr, Ca) were synthesized by sol–gel method. The effect of divalent dopants on microstructure is investigated in detail using X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The oxidation states of La 3+ and Ti 3+ ions have been deduced using X-ray Photoelectron Spectroscopy (XPS). Impedance spectroscopy was used to analyze the total conductivity, an increase in conductivity was observed after doping in the A-site with divalent cations Ba, Ca and Sr. Among the investigated perovskites La 0.8 Ca 0.2 TiO 3−δ exhibited the maximum conductivity of 1.22 × 10 −2 S/cm in air atmosphere at 650 °C

  19. Short review of high-pressure crystal growth and magnetic and electrical properties of solid-state osmium oxides

    Energy Technology Data Exchange (ETDEWEB)

    Yamaura, Kazunari, E-mail: YAMAURA.Kazunari@nims.go.jp [Superconducting Properties Unit, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Graduate School of Chemical Sciences and Engineering, Hokkaido University, North 10 West 8, Kita-ku, Sapporo, Hokkaido 060-0810 (Japan)

    2016-04-15

    High-pressure crystal growth and synthesis of selected solid-state osmium oxides, many of which are perovskite-related types, are briefly reviewed, and their magnetic and electrical properties are introduced. Crystals of the osmium oxides, including NaOsO{sub 3}, LiOsO{sub 3}, and Na{sub 2}OsO{sub 4}, were successfully grown under high-pressure and high-temperature conditions at 6 GPa in the presence of an appropriate amount of flux in a belt-type apparatus. The unexpected discovery of a magnetic metal–insulator transition in NaOsO{sub 3}, a ferroelectric-like transition in LiOsO{sub 3}, and high-temperature ferrimagnetism driven by a local structural distortion in Ca{sub 2}FeOsO{sub 6} may represent unique features of the osmium oxides. The high-pressure and high-temperature synthesis and crystal growth has played a central role in the development of solid-state osmium oxides and the elucidation of their magnetic and electronic properties toward possible use in multifunctional devices. - Graphical Abstract: Flux-grown crystals of NaOsO{sub 3} under high-pressure and high-temperature conditions in a belt-type apparatus. The crystal shows a magnetically driven metal–insulator transition at a temperature of 410 K. - Highlights: • Short review of high-pressure crystal growth of solid-state osmium oxides. • Wide variety of magnetic properties of solid-state osmium oxides. • Perovskite and related dense structures stabilized at 3–17 GPa.

  20. Mechanistic studies on E. coli DNA topoisomerase I: Divalent ion effects

    International Nuclear Information System (INIS)

    Domanico, P.L.; Tse-Dinh, Y.C.

    1991-01-01

    E. coli DNA topoisomerase I catalyzes the hydrolysis of short, single stranded oligodeoxynucleotides. It also forms a covalent protein-DNA complex with negatively supercoiled DNA in the absence of Mg2+ but requires Mg2+ for the relaxation of negatively supercoiled DNA. In this paper we investigate the effects of various divalent metals on catalysis. For the relaxation reaction, maximum enzyme activity plateaus after 2.5 mM Mg2+. However, the rate of cleavage of short oligodeoxynucleotide increased linearly between 0 and 15 mM Mg2+. In the oligodeoxynucleotide cleavage reaction, Ca2+, Mn2+, Co2+, and Zn2+ inhibit enzymatic activity. When these metals are coincubated with Mg2+ at equimolar concentrations, the normal effect of Mg2+ is not detectable. Of these metals, only Ca2+ can be substituted for Mg2+ as a metal cofactor in the relaxation reaction. And when Mg2+ is coincubated with Mn2+, Co2+, or Zn2+ at equimolar concentrations, the normal effect of Mg2+ on relaxation is not detectable. The authors propose that Mg2+ allows the protein-DNA complex to assume a conformation necessary for strand passage and enhance the rate of enzyme turnover

  1. Microbial utilization of low molecular weight organic substrates in soil depends on their carbon oxidation state

    Science.gov (United States)

    Gunina, Anna; Smith, Andrew; Jones, Davey; Kuzyakov, Yakov

    2017-04-01

    Removal of low molecular weight organic substances (LMWOS), originating from plants and microorganisms, from soil solution is regulated by microbial uptake. In addition to the concentration of LMWOS in soil solution, the chemical properties of each substance (e.g. C oxidation state, number of C atoms, number of -COOH groups) can affect their uptake and subsequent partitioning of C within the soil microbial community. The aim of this study was to trace the initial fate of three dominant classes of LMWOS in soil (sugars, carboxylic and amino acids), including their removal from solution and utilization by microorganisms, and to reveal the effect of substance chemical properties on these processes. Soil solution, spiked at natural abundance levels with 14C-labelled glucose, fructose, malate, succinate, formate, alanine or glycine, was added to the soil and 14C was traced in the dissolved organic carbon (DOC), CO2, cytosol and soil organic carbon (SOC) over 24 hours. The half-life time of all LMWOS in the DOC (T1 /2-solution) varied between 0.6-5.0 min showing extremely fast initial uptake of LMWOS. The T1 /2-solution of substances was dependent on C oxidation state, indicating that less oxidized organic substances (with C oxidation state "0") were retained longer in soil solution than oxidized substances. The LMWOS-C T1 /2-fast, characterizing the half-life time of 14C in the fast mineralization pool, ranged between 30 and 80 min, with the T1 /2-fast of carboxylic acids (malic acid) being the fastest and the T1 /2-fast of amino acids (glycine) being the slowest. An absence of correlation between T1 /2-fast and either C oxidation state, number of C atoms, or number of -COOH groups suggests that intercellular metabolic pathways are more important for LMWOS transformation in soil than their basic chemical properties. The CO2 release during LMWOS mineralization accounted for 20-90% of 14C applied. Mineralization of LMWOS was the least for sugars and the greatest for

  2. Influence of steam generator surface state on corrosion and oxide formation

    International Nuclear Information System (INIS)

    Mazenc, Arnaud; Leclercq, Stephanie; Seyeux, Antoine; Galtayries, Anouk; Marcus, Philippe

    2012-09-01

    The corrosion and release of nickel-based alloy Steam Generator tubes are partly due to their surface state. Among the most important parameters influencing the corrosion, the effect of grain size and the effect of grain crystallographic orientation have been chosen to be studied. The aim of this study is to determine how these parameters have an impact on the corrosion of Steam Generator tubes. Thermal treatments (700 deg. C and 1050 deg. C) have been performed on several samples in Alloy 690 to obtain homogeneous grain sizes, varying from 25 μm to 110 μm. Two samples have been oxidised for four days in a recirculating autoclave, reproducing primary conditions. The changes of oxide composition and thickness were examined by ToF-SIMS on samples exposed to primary water conditions. The intensity profiles versus thicknesses of characteristic oxide anions, such as CrO - , NiO - or FeO - enable us to evaluate the effect of grain size and crystallographic orientation on the formation of an enriched inner chromium layer. As regards to the grain size, there was no effect on the growth, but smaller grains led to a chromium-rich oxide layer. The effect of crystallographic orientation was observed on the oxidation kinetics and the composition of oxide scales. (authors)

  3. Adsorption of CO, CO2, H2, and H2O on titania surfaces with different oxidation states

    International Nuclear Information System (INIS)

    Raupp, G.B.; Dumesic, J.A.

    1985-01-01

    The adsorptive properties of titania surfaces with different oxidation states were proved by temperature-programmed desorption (TPD) of CO, H 2 , CO 2 , and H 2 O. Auger electron spectroscopy and X-ray photoelectron spectroscopy revealed that vacuum annealing an oxidized titanium foil at temperatures from 300 to 800 K was an effective means of systematically varying the average surface oxidation state from Ti 4+ to Ti 2+ . Carbon monoxide weakly adsorbed (desorption energy of 44-49 kJ x mol -1 ) in a carbonyl fashion on coordinatively unsaturated cation sites. Titania surfaces were inert with respect to H 2 adsorption and dissociation. Carbon dioxide adsorbed in a linear molecular fashion. Water adsorbed both molecularly and dissociatively. Results are discussed in terms of the role of titania oxidation state in CO hydrogenation over titania-supported metal catalysts. 74 references, 7 figures

  4. Hemolysis of human red blood cells induced by the combination of diethyldithiocarbamate (DDC) and divalent metals: modulation by anaerobiosis, certain antioxidants and oxidants.

    Science.gov (United States)

    Ginsburg, I; Sadovnic, M; Varani, J; Tirosh, O; Kohen, R

    1999-08-01

    The objective of the present communication is to describe the role played by combinations between diethydithiocarbamate (DDC) and divalent metals in hemolysis of human RBC. RBC which had been treated with DDC (10-50 microM) were moderately hemolyzed (about 50%) upon the addition of subtoxic amounts of Cu2+ (50 microM). However, a much stronger and a faster hemolysis occurred either if mixtures of RBC-DDC were immediately treated either by Co2+ (50 microM) or by a premixture of Cu2+ and Co2+ (Cu:Co) (50 microM). While Fe2+ and Ni2+, at 50 microM, initiated 30-50% hemolysis when combined with DDC (50 microM), on a molar basis, Cd2+ was at least 50 fold more efficient than any of the other metals in the initiation of hemolysis by DDC. On the other hand, neither Mn2+ nor Zn2+, had any hemolysis-initiating effects. Co2+ was the only metal which totally blocked hemolysis if added to DDC prior to the addition of the other metals. Hemolysis by mixtures of DDC + (Cu:Co) was strongly inhibited by anaerobiosis (flushing with nitrogen gas), by the reducing agents glutathione, N-acetyl cysteine, mercaptosuccinate, ascorbate, TEMPO, and alpha-tocopherol, by the PLA2 inhibitorbromophenacylbromide (BrPACBr), by tetracycline as well as by phosphatidyl choline, cholesterol and by trypan blue. However, TEMPO, BrPACBr and PC were the only agents which inhibited hemolysis induced by DDC: Cd2+ complexes. On the other hand, none of the classical scavengers of reactive oxygen species (ROS) employed e.g dimethylthiourea, catalase, histidine, mannitol, sodium benzoate, nor the metal chelators desferal and phenanthroline, had any appreciable inhibitory effects on hemolysis induced by DDC + (Cu:Co). DDC oxidized by H2O2 lost its capacity to act in concert either with Cu2+ or with Cd2+ to hemolyze RBC. While either heating RBC to temperatures greater than 37 degrees C or exposure of the cells to glucose-oxidase-generated peroxide diminished their susceptibility to hemolysis, exposure to the

  5. Opposing effects of cationic antimicrobial peptides and divalent cations on bacterial lipopolysaccharides

    Science.gov (United States)

    Smart, Matthew; Rajagopal, Aruna; Liu, Wing-Ki; Ha, Bae-Yeun

    2017-10-01

    The permeability of the bacterial outer membrane, enclosing Gram-negative bacteria, depends on the interactions of the outer, lipopolysaccharide (LPS) layer, with surrounding ions and molecules. We present a coarse-grained model for describing how cationic amphiphilic molecules (e.g., antimicrobial peptides) interact with and perturb the LPS layer in a biologically relevant medium, containing monovalent and divalent salt ions (e.g., Mg2+). In our approach, peptide binding is driven by electrostatic and hydrophobic interactions and is assumed to expand the LPS layer, eventually priming it for disruption. Our results suggest that in parameter ranges of biological relevance (e.g., at micromolar concentrations) the antimicrobial peptide magainin 2 effectively disrupts the LPS layer, even though it has to compete with Mg2+ for the layer. They also show how the integrity of LPS is restored with an increasing concentration of Mg2+. Using the approach, we make a number of predictions relevant for optimizing peptide parameters against Gram-negative bacteria and for understanding bacterial strategies to develop resistance against cationic peptides.

  6. Chelation and stabilization of berkelium in oxidation state +IV

    Science.gov (United States)

    Deblonde, Gauthier J.-P.; Sturzbecher-Hoehne, Manuel; Rupert, Peter B.; An, Dahlia D.; Illy, Marie-Claire; Ralston, Corie Y.; Brabec, Jiri; de Jong, Wibe A.; Strong, Roland K.; Abergel, Rebecca J.

    2017-09-01

    Berkelium (Bk) has been predicted to be the only transplutonium element able to exhibit both +III and +IV oxidation states in solution, but evidence of a stable oxidized Bk chelate has so far remained elusive. Here we describe the stabilization of the heaviest 4+ ion of the periodic table, under mild aqueous conditions, using a siderophore derivative. The resulting Bk(IV) complex exhibits luminescence via sensitization through an intramolecular antenna effect. This neutral Bk(IV) coordination compound is not sequestered by the protein siderocalin—a mammalian metal transporter—in contrast to the negatively charged species obtained with neighbouring trivalent actinides americium, curium and californium (Cf). The corresponding Cf(III)-ligand-protein ternary adduct was characterized by X-ray diffraction analysis. Combined with theoretical predictions, these data add significant insight to the field of transplutonium chemistry, and may lead to innovative Bk separation and purification processes.

  7. Mutational analysis of divalent metal ion binding in the active site of class II α-mannosidase from sulfolobus solfataricus

    DEFF Research Database (Denmark)

    Hansen, Dennis K.; Webb, Helen; Nielsen, Jonas Willum

    2015-01-01

    Mutational analysis of Sulfolobus solfataricus class II α-mannosidase was focused on side chains that interact with the hydroxyls of the-1 mannosyl of the substrate (Asp-534) or form ligands to the active site divalent metal ion (His-228 and His-533) judged from crystal structures of homologous e......, although less dramatically with some activating metal ions. No major differences in the pH dependence between wild-type and mutant enzymes were found in the presence of different metal ions. The pH optimum was 5, but enzyme instability was observed at pH...

  8. Composition and oxidation state of sulfur in atmospheric particulate matter

    Directory of Open Access Journals (Sweden)

    A. F. Longo

    2016-10-01

    Full Text Available The chemical and physical speciation of atmospheric sulfur was investigated in ambient aerosol samples using a combination of sulfur near-edge x-ray fluorescence spectroscopy (S-NEXFS and X-ray fluorescence (XRF microscopy. These techniques were used to determine the composition and oxidation state of sulfur in common primary emission sources and ambient particulate matter collected from the greater Atlanta area. Ambient particulate matter samples contained two oxidation states: S0 and S+VI. Ninety-five percent of the individual aerosol particles (> 1 µm analyzed contain S0. Linear combination fitting revealed that S+VI in ambient aerosol was dominated by ammonium sulfate as well as metal sulfates. The finding of metal sulfates provides further evidence for acidic reactions that solubilize metals, such as iron, during atmospheric transport. Emission sources, including biomass burning, coal fly ash, gasoline, diesel, volcanic ash, and aerosolized Atlanta soil, and the commercially available bacterium Bacillus subtilis, contained only S+VI. A commercially available Azotobacter vinelandii sample contained approximately equal proportions of S0 and S+VI. S0 in individual aerosol particles most likely originates from primary emission sources, such as aerosolized bacteria or incomplete combustion.

  9. Oxidized Nitrogen Balance over 15 Months at Rural and Urban New York State Locations

    Science.gov (United States)

    Schwab, J. J.; Ninneman, M.; Marto, J.; Edgerton, E. S.; Blanchard, C. L.; Shaw, S. L.

    2017-12-01

    Continuous measurements of oxidized nitrogen species (NO, NO2, and HNO3), families of species (NOy, alkyl nitrates [or ANs], and peroxyacetyl nitrates [or PANs]), and particle nitrate (pNO3) were carried out for a fifteen-month period from August 2016 through October 2017 at two locations in New York State. The two sites were a rural research station at Pinnacle State Park in Addison, NY and an urban research station at Queens College in New York City. Four different chemiluminescence analyzers with various converters and denuders were employed to make these measurements. Instrumentation used for the study will be described, as well as some of the challenges created by combining data from these independent analyzers to address the oxidized nitrogen budget at the two sites. The Pinnacle State Park site often experiences quite clean air with low ppb levels of total NOy and a greater fraction of oxidized nitrogen products (NOz species). This contrasts with the urban Queens College location, which experiences stronger NOx sources. Seasonal differences in the NOx/NOy and NOz/NOy ratios, and the makeup of the NOz species, are also significant and will be explored in the presentation.

  10. Quantitative chemical state XPS analysis of first row transition metals, oxides and hydroxides

    International Nuclear Information System (INIS)

    Biesinger, M C; Payne, B P; McIntryre, N S; Hart, B R; Lau, L Wm; Grosvenor, A P; Smart, R StC

    2008-01-01

    Practical quantitative chemical state X-ray photoelectron spectroscopy (XPS) analysis of first row transition metals, oxides and hydroxides is challenging due to the complexity of their M 2p spectra. Complex multiplet splitting, shake-up and plasmon loss structure can play a role in the interpretation of the chemical states present. This paper will show practical curve fitting procedures for the quantitative measurement of different chemical states for metal oxides and hydroxides from a survey of transition metals. It will also discuss some of the limitations and pitfalls present as well as give practical examples of their successful use. These curve-fitting procedures are based on 1) standard spectra from quality reference samples, 2) a survey of appropriate literature databases and/or a compilation of literature references, 3) fitting of multiplet split spectra based on spectra of numerous reference materials and theoretical modelling, 4) spectral subtractions routines, again using reference spectra, and 5) specific literature references where fitting procedures are available

  11. Quantitative chemical state XPS analysis of first row transition metals, oxides and hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Biesinger, M C; Payne, B P; McIntryre, N S [Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7 (Canada); Hart, B R; Lau, L Wm [Surface Science Western, Room G1, Western Science Centre, University of Western Ontario, London, Ontario, N6A 5B7 (Canada); Grosvenor, A P [Department of Chemistry, Gunning/Lemieux Chemistry Centre, University of Alberta, Edmonton, Alberta, T6G 2G2 (Canada); Smart, R StC [ACeSSS, Applied Centre for Structural and Synchrotron Studies, University of South Australia, Mawson Lakes, SA 5095 (Australia)], E-mail: biesingr@uwo.ca

    2008-03-15

    Practical quantitative chemical state X-ray photoelectron spectroscopy (XPS) analysis of first row transition metals, oxides and hydroxides is challenging due to the complexity of their M 2p spectra. Complex multiplet splitting, shake-up and plasmon loss structure can play a role in the interpretation of the chemical states present. This paper will show practical curve fitting procedures for the quantitative measurement of different chemical states for metal oxides and hydroxides from a survey of transition metals. It will also discuss some of the limitations and pitfalls present as well as give practical examples of their successful use. These curve-fitting procedures are based on 1) standard spectra from quality reference samples, 2) a survey of appropriate literature databases and/or a compilation of literature references, 3) fitting of multiplet split spectra based on spectra of numerous reference materials and theoretical modelling, 4) spectral subtractions routines, again using reference spectra, and 5) specific literature references where fitting procedures are available.

  12. Towards the improvement of the oxidation resistance of Nb-silicides in situ composites: A solid state diffusion approach

    International Nuclear Information System (INIS)

    Mathieu, S.; Knittel, S.; François, M.; Portebois, L.; Mathieu, S.; Vilasi, M.

    2014-01-01

    Highlights: •Local equilibrium is attained during oxidation at phase boundaries (steady state conditions). •A solid state diffusion model explains the oxidation mechanism of Nb-silicides composites. •The Nb ss fraction is not the only parameters governing the oxidation rate of Nb-silicides. •Aluminium increases the thermodynamic activity of Si in the Nb-silicides composites. •The results indicate the need to develop a Nb–Ti–Hf–Al–Cr–Si thermodynamic database. -- Abstract: The present study focuses on the oxidation mechanism of Nb-silicide composites and on the effect of the composition on the oxidation rate at 1100 °C. A theoretical approach is proposed based on experimental results and used to optimise the oxidation resistance. The growth model based on multiphase diffusion was experimentally tested and confirmed by manufacturing seven composites with different compositions. It was also found that the effect of the composition has to be evaluated at 1100 °C within a short time duration (50 h), where the oxide scale and the internal oxidation zone both grow according to parabolic kinetics

  13. Effect of surface state on the oxidation behavior of welded 308L in simulated nominal primary water of PWR

    Science.gov (United States)

    Ming, Hongliang; Zhang, Zhiming; Wang, Jiazhen; Zhu, Ruolin; Ding, Jie; Wang, Jianqiu; Han, En-Hou; Ke, Wei

    2015-05-01

    The oxidation behavior of 308L weld metal (WM) with different surface state in the simulated nominal primary water of pressurized water reactor (PWR) was studied by scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) analyzer and X-ray photoelectron spectroscopy (XPS). After 480 h immersion, a duplex oxide film composed of a Fe-rich outer layer (Fe3O4, Fe2O3 and a small amount of NiFe2O4, Ni(OH)2, Cr(OH)3 and (Ni, Fe)Cr2O4) and a Cr-rich inner layer (FeCr2O4 and NiCr2O4) can be formed on the 308L WM samples with different surface state. The surface state has no influence on the phase composition of the oxide films but obviously affects the thickness of the oxide films and the morphology of the oxides (number & size). With increasing the density of dislocations and subgrain boundaries in the cold-worked superficial layer, the thickness of the oxide film, the number and size of the oxides decrease.

  14. Pentavalent Uranium Chemistry - Synthetic Pursuit Of A Rare Oxidation State

    Energy Technology Data Exchange (ETDEWEB)

    Graves, Christopher R [Los Alamos National Laboratory; Kiplinger, Jaqueline L [Los Alamos National Laboratory

    2009-01-01

    This feature article presents a comprehensive overview of pentavalent uranium systems in non-aqueous solution with a focus on the various synthetic avenues employed to access this unusual and very important oxidation state. Selected characterization data and theoretical aspects are also included. The purpose is to provide a perspective on this rapidly evolving field and identify new possibilities for future developments in pentavalent uranium chemistry.

  15. The influence of iridium chemical oxidation state on the performance and durability of oxygen evolution catalysts in PEM electrolysis

    Science.gov (United States)

    Siracusano, S.; Baglio, V.; Grigoriev, S. A.; Merlo, L.; Fateev, V. N.; Aricò, A. S.

    2017-10-01

    Nanosized Ir-black (3 nm) and Ir-oxide (5 nm) oxygen evolution electrocatalysts showing high performance in polymer electrolyte membrane (PEM) water electrolysis based on Aquivion® short-side chain ionomer membrane are investigated to understand the role of the Ir oxidation state on the electrocatalytic activity and stability. Despite the smaller mean crystallite size, the Ir-black electrocatalyst shows significantly lower initial performance than the Ir-oxide. During operation at high current density, the Ir-black shows a decrease of cell potential with time whereas the Ir-oxide catalyst shows increasing cell potential resulting in a degradation rate of about 10 μV/h, approaching 1000 h. The unusual behaviour of the Ir-black results from the oxidation of metallic Ir to IrOx. The Ir-oxide catalyst shows instead a hydrated structure on the surface and a negative shift of about 0.5 eV for the Ir 4f binding energy after 1000 h electrolysis operation. This corresponds to the formation of a sub-stoichiometric Ir-oxide on the surface. These results indicate that a hydrated IrO2 with high oxidation state on the surface is favourable in decreasing the oxygen evolution overpotential. Modifications of the Ir chemical oxidation state during operation can affect significantly the catalytic activity and durability of the electrolysis system.

  16. Measurement of soil carbon oxidation state and oxidative ratio by 13C nuclear magnetic resonance

    Science.gov (United States)

    Hockaday, W.C.; Masiello, C.A.; Randerson, J.T.; Smernik, R.J.; Baldock, J.A.; Chadwick, O.A.; Harden, J.W.

    2009-01-01

    The oxidative ratio (OR) of the net ecosystem carbon balance is the ratio of net O2 and CO2 fluxes resulting from photosynthesis, respiration, decomposition, and other lateral and vertical carbon flows. The OR of the terrestrial biosphere must be well characterized to accurately estimate the terrestrial CO2 sink using atmospheric measurements of changing O2 and CO2 levels. To estimate the OR of the terrestrial biosphere, measurements are needed of changes in the OR of aboveground and belowground carbon pools associated with decadal timescale disturbances (e.g., land use change and fire). The OR of aboveground pools can be measured using conventional approaches including elemental analysis. However, measuring the OR of soil carbon pools is technically challenging, and few soil OR data are available. In this paper we test three solid-state nuclear magnetic resonance (NMR) techniques for measuring soil OR, all based on measurements of the closely related parameter, organic carbon oxidation state (Cox). Two of the three techniques make use of a molecular mixing model which converts NMR spectra into concentrations of a standard suite of biological molecules of known C ox. The third technique assigns Cox values to each peak in the NMR spectrum. We assess error associated with each technique using pure chemical compounds and plant biomass standards whose Cox and OR values can be directly measured by elemental analyses. The most accurate technique, direct polarization solid-state 13C NMR with the molecular mixing model, agrees with elemental analyses to ??0.036 Cox units (??0.009 OR units). Using this technique, we show a large natural variability in soil Cox and OR values. Soil Cox values have a mean of -0.26 and a range from -0.45 to 0.30, corresponding to OR values of 1.08 ?? 0.06 and a range from 0.96 to 1.22. We also estimate the OR of the carbon flux from a boreal forest fire. Analysis of soils from nearby intact soil profiles imply that soil carbon losses associated

  17. The Impact of Environmental Factors in Influencing Epigenetics Related to Oxidative States in the Cardiovascular System

    Directory of Open Access Journals (Sweden)

    Francesco Angelini

    2017-01-01

    Full Text Available Oxidative states exert a significant influence on a wide range of biological and molecular processes and functions. When their balance is shifted towards enhanced amounts of free radicals, pathological phenomena can occur, as the generation of reactive oxygen species (ROS in tissue microenvironment or in the systemic circulation can be detrimental. Epidemic chronic diseases of western societies, such as cardiovascular disease, obesity, and diabetes correlate with the imbalance of redox homeostasis. Current advances in our understanding of epigenetics have revealed a parallel scenario showing the influence of oxidative stress as a major regulator of epigenetic gene regulation via modification of DNA methylation, histones, and microRNAs. This has provided both the biological link and a potential molecular explanation between oxidative stress and cardiovascular/metabolic phenomena. Accordingly, in this review, we will provide current insights on the physiological and pathological impact of changes in oxidative states on cardiovascular disorders, by specifically focusing on the influence of epigenetic regulation. A special emphasis will highlight the effect on epigenetic regulation of human’s current life habits, external and environmental factors, including food intake, tobacco, air pollution, and antioxidant-based approaches. Additionally, the strategy to quantify oxidative states in humans in order to determine which biological marker could best match a subject’s profile will be discussed.

  18. Homoleptic Ce(III) and Ce(IV) Nitroxide Complexes: Significant Stabilization of the 4+ Oxidation State

    Energy Technology Data Exchange (ETDEWEB)

    Bogart, Justin A.; Lewis, Andrew J.; Medling, Scott A.; Piro, Nicholas A.; Carroll, Patrick J.; Booth, Corwin H.; Schelter, Eric J.

    2014-06-25

    Electrochemical experiments performed on the complex Ce-IV[2-((BuNO)-Bu-t)py](4), where [2-((BuNO)-Bu-t)py](-) = N-tert-butyl-N-2-pyridylnitroxide, indicate a 2.51 V stabilization of the 4+ oxidation state of Ce compared to [(Bu4N)-Bu-n](2)[Ce(NO3)(6)] in acetonitrile and a 2.95 V stabilization compared to the standard potential for the ion under aqueous conditions. Density functional theory calculations suggest that this preference for the higher oxidation state is a result of the tetrakis(nitroxide) ligand framework at the Ce cation, which allows for effective electron donation into, and partial covalent overlap with, vacant 4f orbitals with delta symmetry. The results speak to the behavior of CeO2 and related solid solutions in oxygen uptake and transport applications, in particular an inherent local character of bonding that stabilizes the 4+ oxidation state. The results indicate a cerium(IV) complex that has been stabilized to an unprecedented degree through tuning of its ligand-field environment.

  19. Amino propynyl benzoic acid building block in rigid spacers of divalent ligands binding to the Syk SH2 domains with equally high affinity as the natural ligand

    NARCIS (Netherlands)

    Dekker, Frank J; de Mol, Nico J; Fischer, Marcel J E; Liskamp, Rob M J; Dekker, Frank

    2003-01-01

    The construction of rigid spacers composed of amino propynyl benzoic acid building blocks is described. These spacers were used to link two phosphopeptide ligand sites towards obtaining divalent ligands with a high affinity for Syk tandem SH2 domains, which are important in signal transduction. The

  20. The effect of interfaces on solid-state reactions between oxides

    International Nuclear Information System (INIS)

    Johnson, M.T.; Carter, C.B.

    1998-01-01

    A thin-film geometry has been used to study fundamental solid-state reaction processes occurring at interfaces in two spinel-forming oxide systems. In the first system, NiO/Al 2 O 3 , epitactic NiO films were deposited on various orientations of single-crystal α-Al 2 O 3 . In this case, the reaction kinetics were studied and correlated with the interfacial structure (or substrate orientation). In the second, In 2 O 3 /MgO, solid-state reactions were studied under the influence of an electric field. The electric field provides a driving force for mass transport that affects both the reaction process and the morphological stability of an interface

  1. Oxidation of an aluminium-magnesium alloy in liquid state. Methodology of determination of mechanisms from not necessarily repeatable experiments

    International Nuclear Information System (INIS)

    Surla, Karine

    1998-01-01

    This research thesis reports the study of the oxidation of an aluminium-5 pc magnesium alloy in its liquid state in an oxygen environment, using thermogravimetric analysis and that of magnesium in its solid state. In a first part, the author reports a thermodynamic and bibliographical study on magnesium transformation in its solid state (Mg/O 2 and Mg/H 2 O systems, transformation with dry and humid synthetic air, oxidation inhibitors) and on Al-Mg alloy transformation in presence of oxygen (thermodynamic properties of aluminium-rich Al-Mg alloys, Al-Mg/O 2 /N 2 and Al-Mg/O 2 /N 2 /H 2 O systems). The next parts address the selection of reaction systems for the different cases (oxidation of solid magnesium in oxygen, oxidation of the Al-Mg alloy in oxygen), the modelling of the formation of magnesia from solid magnesium and from the Al-Mg alloy, and the modelling of the liquid Al-Mg A5182 alloy oxidation in oxygen [fr

  2. Coupled interactions between volatile activity and Fe oxidation state during arc crustal processes

    Science.gov (United States)

    Humphreys, Madeleine C.S.; Brooker, R; Fraser, D.C.; Burgisser, A; Mangan, Margaret T.; McCammon, C

    2015-01-01

    Arc magmas erupted at the Earth’s surface are commonly more oxidized than those produced at mid-ocean ridges. Possible explanations for this high oxidation state are that the transfer of fluids during the subduction process results in direct oxidation of the sub-arc mantle wedge, or that oxidation is caused by the effect of later crustal processes, including protracted fractionation and degassing of volatile-rich magmas. This study sets out to investigate the effect of disequilibrium crustal processes that may involve coupled changes in H2O content and Fe oxidation state, by examining the degassing and hydration of sulphur-free rhyolites. We show that experimentally hydrated melts record strong increases in Fe3+/∑Fe with increasing H2O concentration as a result of changes in water activity. This is relevant for the passage of H2O-undersaturated melts from the deep crust towards shallow crustal storage regions, and raises the possibility that vertical variations in fO2 might develop within arc crust. Conversely, degassing experiments produce an increase in Fe3+/∑Fe with decreasing H2O concentration. In this case the oxidation is explained by loss of H2 as well as H2O into bubbles during decompression, consistent with thermodynamic modelling, and is relevant for magmas undergoing shallow degassing en route to the surface. We discuss these results in the context of the possible controls on fO2 during the generation, storage and ascent of magmas in arc settings, in particular considering the timescales of equilibration relative to observation as this affects the quality of the petrological record of magmatic fO2.

  3. Ion bombardment effects on surface states in selected oxide systems: rutile and alkaline earth titanates

    International Nuclear Information System (INIS)

    Gruen, D.M.

    1978-01-01

    In this paper, the nature of the surface states of n-type TiO 2 and SrTiO 3 is discussed and the role of ion bombardment in modifying the properties of these states is elucidated. Insofar as possible, the interrelationships between oxide nonstoichiometry, surface states, ion bombardment effects and photoelectrolysis are explored

  4. Optically induced bistable states in metal/tunnel-oxide/semiconductor /MTOS/ junctions

    Science.gov (United States)

    Lai, S. K.; Dressendorfer, P. V.; Ma, T. P.; Barker, R. C.

    1981-01-01

    A new switching phenomenon in metal-oxide semiconductor tunnel junction has been discovered. With a sufficiently large negative bias applied to the electrode, incident visible light of intensity greater than about 1 microW/sq cm causes the reverse-biased junction to switch from a low-current to a high-current state. It is believed that hot-electron-induced impact ionization provides the positive feedback necessary for switching, and causes the junction to remain in its high-current state after the optical excitation is removed. The junction may be switched back to the low-current state electrically. The basic junction characteristics have been measured, and a simple model for the switching phenomenon has been developed.

  5. Effect of high doses of L-ascorbic acid on the antioxidative/oxidative state in the rats

    DEFF Research Database (Denmark)

    Niemiec, T.; Sawosz, E.; Chwalibog, André

    2005-01-01

    The objective of this study was to determine the effects of mega-doses of vitamin C (0.3, 0.6 and 0.9% of diet) as a dietary supplement for rats on selected indices of the antioxidative/oxidative state in 40 growing Wistar rats (4x10). It was found that L-ascorbic acid and Total Antioxidative State...... (TAS) in plasma did not increase with increasing vitamin C supply. The results indicate that high doses of L-ascorbic acid (0.3 and 0.9 but not 0.6%) increased the concentration of this antioxidant in plasma. Supplementation of vitamin C above 0.3% to the diets had pro-oxidative effects on lipid...... structures, while application of 0.9% promoted oxidative degradation of rat livers....

  6. Visualizing chemical states and defects induced magnetism of graphene oxide by spatially-resolved-X-ray microscopy and spectroscopy.

    Science.gov (United States)

    Wang, Y F; Singh, Shashi B; Limaye, Mukta V; Shao, Y C; Hsieh, S H; Chen, L Y; Hsueh, H C; Wang, H T; Chiou, J W; Yeh, Y C; Chen, C W; Chen, C H; Ray, Sekhar C; Wang, J; Pong, W F; Takagi, Y; Ohigashi, T; Yokoyama, T; Kosugi, N

    2015-10-20

    This investigation studies the various magnetic behaviors of graphene oxide (GO) and reduced graphene oxides (rGOs) and elucidates the relationship between the chemical states that involve defects therein and their magnetic behaviors in GO sheets. Magnetic hysteresis loop reveals that the GO is ferromagnetic whereas photo-thermal moderately reduced graphene oxide (M-rGO) and heavily reduced graphene oxide (H-rGO) gradually become paramagnetic behavior at room temperature. Scanning transmission X-ray microscopy and corresponding X-ray absorption near-edge structure spectroscopy were utilized to investigate thoroughly the variation of the C 2p(π*) states that are bound with oxygen-containing and hydroxyl groups, as well as the C 2p(σ*)-derived states in flat and wrinkle regions to clarify the relationship between the spatially-resolved chemical states and the magnetism of GO, M-rGO and H-rGO. The results of X-ray magnetic circular dichroism further support the finding that C 2p(σ*)-derived states are the main origin of the magnetism of GO. Based on experimental results and first-principles calculations, the variation in magnetic behavior from GO to M-rGO and to H-rGO is interpreted, and the origin of ferromagnetism is identified as the C 2p(σ*)-derived states that involve defects/vacancies rather than the C 2p(π*) states that are bound with oxygen-containing and hydroxyl groups on GO sheets.

  7. Solid state synthesis, characterization, surface and catalytic properties of Pr2CoO4 and Pr2NiO4 catalyst

    International Nuclear Information System (INIS)

    Sinha, K.K.; Indu, N.K.; Sinha, S.K.; Pankaj, A.K.

    2008-01-01

    Full text: The most interesting non-stoichiometric oxides are found in transition metal and rare earth oxides at higher temperatures. The role of Solid State properties in the catalysis using mixed metal oxide as catalyst have wide applications in fertilizer, Petro-chemical, Pharmaceutical, cosmetic, paint detergents, plastics and food-stuff industries and these are also resistive towards acids and alkalies. The use of catalyst has opened up new process routes or revolutioned the existing process in terms of economics and efficiency and has radically changed the industrial scenario. The use of catalyst is so pervasive today that nearly 70 % of modern chemical processes are based on it at some stage or other and 90% new processes developed are catalytic nature. A series of non-stoichiometric spinel type of oxide catalyst of Praseodymium with cobalt and nickel were synthesized by their oxalates through Solid State reaction technique at different activation temperatures i.e. 600, 700, 800 and 900 deg C. The characterization of catalyst was done by XRD, FTIR and ESR methods. X-ray powder diffraction study shows that catalysts are made up of well grown crystallinities mostly in single phase crystal and system is of orthorhombic structure. FTIR is related to inadequate decomposition of oxalate ion from the Catalyst. The kinetic decomposition of Urea was employed as a model reaction to study the catalytic potentiality of different catalysts. Surface and Catalytic Properties of catalysts were measured. A relation between activation temperature and surface properties like excess surface oxygen (E.S.O.), surface acidity and surface area was observed. A linear relationship between the surface area of the catalyst and the amount of ammonia gas evolved per gm of the sample was observed also. Nickel containing catalysts were found a bit more catalytic active in comparison to cobalt oxide catalysts. Transition metal ions (i.e. Ni 2+ and Co 2+ ions) are mainly responsible for

  8. Oxidative stress markers in hypertensive states of pregnancy: preterm and term disease.

    Directory of Open Access Journals (Sweden)

    Lesia Olha Kurlak

    2014-08-01

    Full Text Available Discussion continues as to whether de novo hypertension in pregnancy with significant proteinuria (pre-eclampsia; PE and non-proteinuric new hypertension (gestational hypertension; GH are parts of the same disease spectrum or represent different conditions. Non-pregnant hypertension, pregnancy and PE are all associated with oxidative stress. We have established a 6 weeks post-partum clinic for women who experienced a hypertensive pregnancy. We hypothesized that PE and GH could be distinguished by markers of oxidative stress; thiobarbituric acid reactive substances (TBARS and antioxidants (ferric ion reducing ability of plasma; FRAP. Since the severity of PE and GH is greater pre-term, we also compared pre-term and term disease. Fifty-eight women had term PE, 23 pre-term PE, 60 had term GH and 6 pre-term GH, 11 pre-existing (essential hypertension (EH without PE. Limited data were available from normotensive pregnancies (n=7 and non-pregnant controls (n=14. There were no differences in postpartum TBARS or FRAP between hypertensive states; TBARS (P=0.001 and FRAP (P=0.009 were lower in plasma of non-pregnant controls compared to recently-pregnant women. Interestingly FRAP was higher in preterm than term GH (P=0.013. In PE and GH, TBARS correlated with low density lipoprotein (LDL-cholesterol (P=0.036; this association strengthened with inclusion of EH ((P=0.011. The 10 year Framingham index for cardiovascular risk was positively associated with TBARS (P=0.003.Oxidative stress profiles do not differ between hypertensive states but appear to distinguish between recently-pregnant and non-pregnant states. This suggests that pregnancy may alter vascular integrity with changes remaining 6 weeks postpartum. LDL-cholesterol is a known determinant of oxidative stress in cardiovascular disease and we have shown this association to be present in hypertensive pregnancy further emphasizing that such a pregnancy may be revealing a pre-existing cardiovascular

  9. Ultrathin reduced graphene oxide films as transparent top-contacts for light switchable solid-state molecular junctions

    DEFF Research Database (Denmark)

    Li, Tao; Jevric, Martyn; Hauptmann, Jonas Rahlf

    2013-01-01

    A new type of solid-state molecular junction is introduced, which employs reduced graphene oxide as a transparent top contact that permits a self-assembled molecular monolayer to be photoswitched in situ, while simultaneously enabling charge-transport measurements across the molecules. The electr......A new type of solid-state molecular junction is introduced, which employs reduced graphene oxide as a transparent top contact that permits a self-assembled molecular monolayer to be photoswitched in situ, while simultaneously enabling charge-transport measurements across the molecules...

  10. Determination of Pu Oxidation states in the HCl Media Using with UV-Visible Absorption Spectroscopic Techniques

    International Nuclear Information System (INIS)

    Lee, Myung Ho; Suh, Mu Yeol; Park, Kyoung Kyun; Park, Yeong Jae; Kim, Won Ho

    2006-01-01

    The spectroscopic characteristics of Pu (III, IV, V, VI) in the HCl media were investigated by measuring Pu oxidation states using a UV-Vis-NIR spectrophotometer (400-1200 nm) after adjusting Pu oxidation states with oxidation/reduction reagents. Pu in stock solution was reduced to Pu(III) with NH 2 OH · HCl, and oxidized to Pu(IV) and Pu(VI) with NaNO 2 and HCIO 4 , respectively. Also, Pu(V) was adjusted in the Pu(VI) solution with NH 2 OH · HCl. The major absorption peaks of Pu (IV) and Pu(III) were measured in the 470 nm and 600 nm, respectively. The major absorption peaks of Pu (VI) and Pu(V) were measured in the 830 nm and 1135 nm, respectively. There was not found to be significant changes of UV-V is absorption spectra for Pu(III), Pu(IV) and Pu(VI) with aging time, except that an unstable Pu(V) immediately reduced to Pu(III).

  11. Adiabatic differential scanning calorimetric study of divalent cation induced DNA - DPPC liposome formulation compacted for gene delivery

    Directory of Open Access Journals (Sweden)

    Erhan Süleymanoglu

    2004-11-01

    Full Text Available Complexes between nucleic acids and phospholipid vesicles have been developed as stable non-viral gene delivery vehicles. Currently employed approach uses positively charged lipid species and a helper zwitterionic lipid, the latter being applied for the stabilization of the whole complex. However, besides problematic steps during their preparation, cationic lipids are toxic for cells. The present work describes some energetic issues pertinent to preparation and use of neutral lipid-DNA self-assemblies, thus avoiding toxicity of lipoplexes. Differential scanning calorimetry data showed stabilization of polynucleotide helix upon its interaction with liposomes in the presence of divalent metal cations. It is thus possible to suggest this self-assembly as an improved formulation for use in gene delivery.

  12. The effect on phase separation of the oxidation state of molybdenum in a Na2O-B2O3-SiO2 glass

    International Nuclear Information System (INIS)

    Kawamoto, Y.; Clemens, K.; Tomozawa, M.; Warden, J.T.

    1981-01-01

    The effect of oxidation state on phase separation was studied for 13Na 2 O, 49B 2 O 3 , 38SiO 2 (mol%) glasses containing 1 mol% Mo oxide. The glasses were melted under various conditions to vary the oxidation states of Mo ions. The oxidation states of Mo ions were determined by chemical analysis and ESR. The crystallisation tendency, the immiscibility temperature, and the phase separation morphology of the glasses were examined by DTA, x-ray diffraction, opalescence method, and replica electron microscopy. Glasses containing Mo 4+ ions have a great tendency to precipitate MoO 2 crystals. The immiscibility temperature of glass goes through a minimum when the oxidation states of Mo ions are changed. It was suggested that there is an optimum oxidation state to prevent crystallisation and to suppress the phase separation tendency of this system. (author)

  13. Obesity-Associated Oxidative Stress: Strategies Finalized to Improve Redox State

    Directory of Open Access Journals (Sweden)

    Valeria Gasperi

    2013-05-01

    Full Text Available Obesity represents a major risk factor for a plethora of severe diseases, including diabetes, cardiovascular disease, non-alcoholic fatty liver disease, and cancer. It is often accompanied by an increased risk of mortality and, in the case of non-fatal health problems, the quality of life is impaired because of associated conditions, including sleep apnea, respiratory problems, osteoarthritis, and infertility. Recent evidence suggests that oxidative stress may be the mechanistic link between obesity and related complications. In obese patients, antioxidant defenses are lower than normal weight counterparts and their levels inversely correlate with central adiposity; obesity is also characterized by enhanced levels of reactive oxygen or nitrogen species. Inadequacy of antioxidant defenses probably relies on different factors: obese individuals may have a lower intake of antioxidant- and phytochemical-rich foods, such as fruits, vegetables, and legumes; otherwise, consumption of antioxidant nutrients is normal, but obese individuals may have an increased utilization of these molecules, likewise to that reported in diabetic patients and smokers. Also inadequate physical activity may account for a decreased antioxidant state. In this review, we describe current concepts in the meaning of obesity as a state of chronic oxidative stress and the potential interventions to improve redox balance.

  14. Obesity-Associated Oxidative Stress: Strategies Finalized to Improve Redox State

    Science.gov (United States)

    Savini, Isabella; Catani, Maria Valeria; Evangelista, Daniela; Gasperi, Valeria; Avigliano, Luciana

    2013-01-01

    Obesity represents a major risk factor for a plethora of severe diseases, including diabetes, cardiovascular disease, non-alcoholic fatty liver disease, and cancer. It is often accompanied by an increased risk of mortality and, in the case of non-fatal health problems, the quality of life is impaired because of associated conditions, including sleep apnea, respiratory problems, osteoarthritis, and infertility. Recent evidence suggests that oxidative stress may be the mechanistic link between obesity and related complications. In obese patients, antioxidant defenses are lower than normal weight counterparts and their levels inversely correlate with central adiposity; obesity is also characterized by enhanced levels of reactive oxygen or nitrogen species. Inadequacy of antioxidant defenses probably relies on different factors: obese individuals may have a lower intake of antioxidant- and phytochemical-rich foods, such as fruits, vegetables, and legumes; otherwise, consumption of antioxidant nutrients is normal, but obese individuals may have an increased utilization of these molecules, likewise to that reported in diabetic patients and smokers. Also inadequate physical activity may account for a decreased antioxidant state. In this review, we describe current concepts in the meaning of obesity as a state of chronic oxidative stress and the potential interventions to improve redox balance. PMID:23698776

  15. Synthesis, structure and total conductivity of A-site doped LaTiO{sub 3−δ} perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Bradha, M. [Nanotech Research Facility, PSG Institute of Advanced Studies, Coimbatore 641 004, TN (India); Hussain, S.; Chakravarty, Sujay [UGC-DAE CSR, Kalpakkam Node, Kokilamedu 603 104, TN (India); Amarendra, G. [UGC-DAE CSR, Kalpakkam Node, Kokilamedu 603 104, TN (India); Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN (India); Ashok, Anuradha, E-mail: anu.machina@gmail.com [Nanotech Research Facility, PSG Institute of Advanced Studies, Coimbatore 641 004, TN (India)

    2015-03-25

    Highlights: • A-site divalent alkaline earth metal doped LaTiO{sub 3−δ} perovskites were synthesised by sol–gel method. • Structural studies revealed no change in crystal symmetry but change in cell dimensions after doping. • After doping divalent cations in A-site, an enhancement in total conductivity was observed in LaTiO{sub 3−δ}. • Temperature dependent electrical property was observed in all synthesised perovskites. - Abstract: Oxygen deficient perovskites LaTiO{sub 3−δ} and La{sub 0.8}A{sub 0.2}TiO{sub 3−δ} (A = Ba, Sr, Ca) were synthesized by sol–gel method. The effect of divalent dopants on microstructure is investigated in detail using X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The oxidation states of La{sup 3+} and Ti{sup 3+} ions have been deduced using X-ray Photoelectron Spectroscopy (XPS). Impedance spectroscopy was used to analyze the total conductivity, an increase in conductivity was observed after doping in the A-site with divalent cations Ba, Ca and Sr. Among the investigated perovskites La{sub 0.8}Ca{sub 0.2}TiO{sub 3−δ} exhibited the maximum conductivity of 1.22 × 10{sup −2} S/cm in air atmosphere at 650 °C.

  16. Solid-state electrochromic cell with anodic iridium oxide film electrodes

    International Nuclear Information System (INIS)

    Dautremont-Smith, W.C.; Beni, G.; Schiavone, L.M.; Shay, J.L.

    1979-01-01

    A new solid-state electrochromic cell has been fabricated using an anodic iridium oxide film (AIROF) display electrode. The cell has the symmetric sandwich structure AIROFvertical-barNafionvertical-barAIROF, with the Nafion solid electrolyte opacified by an in situ precipitation technique. A symmetric square-wave voltage of 1.5 V amplitude produces clearly perceivable color changes from pale to dark blue-gray in approx. =1 sec when viewed in diffuse reflection. Good open-circuit optical memory is exhibited:

  17. Intestinal Oxidative State Can Alter Nutrient and Drug Bioavailability

    Directory of Open Access Journals (Sweden)

    Faria Ana

    2009-01-01

    Full Text Available Organic cations (OCs are substances of endogenous (e.g., dopamine, choline or exogenous (e.g., drugs like cimetidine origin that are positively charged at physiological ph. since many of these compounds can not pass the cell membrane freely, their transport in or out of cells must be mediated by specific transport systems. Transport by organic cation transporters (OCTs can be regulated rapidly by altering their trafficking and/or affinities in response to stimuli. However, for example, a specific disease could lead to modifications in the expression of OCTs. Chronic exposure to oxidative stress has been suggested to alter regulation and functional activity of proteins through several pathways. According to results from a previous work, oxidation-reduction pathways were thought to be involved in intestinal organic cation uptake modulation. The present work was performed in order to evaluate the influence of oxidative stressors, especially glutathione, on the intestinal organic cation absorption. For this purpose, the effect of compounds with different redox potential (glutathione, an endogenous antioxidant, and procyanidins, diet antioxidants was assessed on MPP+ (1-methyl-4-phenylpyridinium iodide uptake in an enterocyte cell line (Caco-2. Caco-2 cells were subcultured with two different media conditions (physiological: 5 mM glucose, referred as control cells; and high-glucose: 25 mM glucose, referred as HG cells. In HG cells, the uptake was significantly lower than in control cells. Redox changing interventions affected Mpp+ uptake, both in control and in high-glucose Caco-2 cells. Cellular glutathione levels could have an important impact on membrane transporter activity. The results indicate that modifications in the cellular oxidative state modulate MPP+ uptake by Caco-2 cells. Such modifications may reflect in changes of nutrient and drug bioavailability.

  18. Teaching the Properties of Chromium's Oxidation States with a Case Study Method

    Science.gov (United States)

    Ozdilek, Zehra

    2015-01-01

    The purpose of this study was to investigate how a mixed-method case study affects pre-service science teachers' awareness of hexavalent chromium pollution and content knowledge about the properties of chromium's different oxidation states. The study was conducted in Turkey with 55 sophomores during the fall semester of 2013-2014. The students…

  19. Molecular beam epitaxy growth of niobium oxides by solid/liquid state oxygen source and lithium assisted metal-halide chemistry

    Science.gov (United States)

    Tellekamp, M. Brooks; Greenlee, Jordan D.; Shank, Joshua C.; Doolittle, W. Alan

    2015-09-01

    In order to consistently grow high quality niobium oxides and lithium niobium oxides, a novel solid/liquid state oxygen source, LiClO4, has been implemented in a molecular beam epitaxy (MBE) system. LiClO4 is shown to decompose into both molecular and atomic oxygen upon heating. This allows oxidation rates similar to that of molecular oxygen but at a reduced overall beam flux, quantified by in situ Auger analysis. LiClO4 operation is decomposition limited to less than 400 °C, and other material limitations are identified. The design of a custom near-ambient NbCl5 effusion cell is presented, which improves both short and long term stability. Films of Nb oxidation state +2, +3, and +5 are grown using these new tools, including the multi-functional sub-oxide LiNbO2.

  20. Speciation of the oxidation states of plutonium in aqueous solutions by UV/Vis spectroscopy, CE-ICP-MS and CE-RIMS

    International Nuclear Information System (INIS)

    Buerger, S.; Banik, N.L.; Buda, R.A.; Kratz, J.V.; Kuczewski, B.; Trautmann, N.

    2007-01-01

    For the speciation of the plutonium oxidation states in aqueous solutions, the online coupling of capillary electrophoresis (CE) with inductively coupled plasma mass spectrometry (ICP-MS) has been developed. Depending on the radius/electrical charge ratio, the oxidation states III, IV, V, and VI of plutonium are separated by CE, based on the different migration times through the capillary and are detected by ICP-MS. The detection limit is 20 ppb, i.e. 10 9 -10 10 atoms (10 -12 -10 -13 g) for one oxidation state with an uncertainty of the reproducibility of the migration times of ≤ 1% and ≤ 5% for the peak area. The redox kinetics of the different plutonium oxidation states in the presence of humic substances (humic and fulvic acid) have been studied. A relatively rapid reduction of Pu(VI) (10 to 1000 h) in contact with Gorleben fulvic or Aldrich humic acid could be observed, depending on the pH of the solution. Furthermore, at pH=1, a reduction to Pu(III) and Pu(IV) in a mixture of all four oxidation states in contact with Gorleben fulvic acid after one month has been observed. In order to improve the sensitivity of the CE method, the offline coupling of CE to resonance ionization mass spectrometry (RIMS) has been explored. First applications of this new speciation method are presented. (orig.)

  1. Chemical state analysis of oxidation products on steel surface by conversion electron Moessbauer spectrometry

    International Nuclear Information System (INIS)

    Ujihira, Yusuke; Nomura, Kiyoshi

    1978-01-01

    The polished NT-70H steel (Fe: 95.97%, C: 0.56%, diameter: 5 cm, thickness: 0.5 cm) was immersed in deionized water or in solutions containing (0.25 -- 0.5) M of chloride, sulfate and nitrate ions. The chemical states of oxidation products of iron on the surface were identified through the analysis of conversion electron Moessbauer spectra (CEMS). CEMS of the steel surface, which had been dipped in deionized water, revealed that γ-FeOOH was formed on the surface. The thickness of γ-FeOOH layer increased with the increase of the duration of dipping. Dissolved oxygen in the solution played an essential role in the oxidation of iron to γ-FeOOH. Oxidation product of iron dipped in the 0.5 M sodium chloride solution was identified as γ-FeOOH. Amorphous paramagnetic iron (III) compound tended to form in the presence of hydrogen peroxide or ammonium ions in the solutions. The increase of alkalinity of the solution up to pH 12 suppressed the oxidation rate and assisted the formation of green rust, which was confirmed by the appearance of the quadrupole splitting peaks of the green rust. In the 0.25 M sodium sulfate solution, oxidation of the steel surface proceeded slowly and the quadrupole splitting peaks of Fe(OH) 2 were seen in the CEMS. The peak intensity of Fe(OH) 2 gradually decreased and that of γ-FeOOH increased by the extension of immersion of steel in the solution. Magnetite (Fe 3 O 4 ) layer was developed beneath the γ-FeOOH layer, when steel was dipped in 0.5 M sodium nitrate solution. However, the peaks of Fe 3 O 4 were not seen on CEMS of steel surface immersed in 0.5 M ammonium nitrate solution. Thus, applying the feasibility of CEMS for the characterization of oxidated compounds of iron on the steel surface formed by the immersion in solutions, the oxidation mechanism of the steel surface was discussed based upon the results of chemical state analyses. (author)

  2. Solid state chemistry of rare earth oxides. Final report, September 1, 1950--July 31, 1977

    International Nuclear Information System (INIS)

    Eyring, L.

    1977-07-01

    Work under Contract E(11-1)-1109 and its antecedents has been primarily for the purpose of obtaining detailed thermodynamic, kinetic and structural information on the complex rare earth oxides of praseodymium and terbium. These systems exhibit homologous series of ordered phases, order-disorder transformations, wide-range nonstoichiometric phases, chemical hysteresis in two-phase regions and many other solid state reaction phenomena. Fluorite-related materials of importance to ERDA occur as nuclear fuels, radiation power sources, insulators and solid electrolytes. The rare earth oxides serve directly as model systems for such similar materials and, in a more general sense, they serve as models of solids in general since they exhibit nearly the full range of solid state properties

  3. Assigning Oxidation States to Organic Compounds via Predictions from X-Ray Photoelectron Spectroscopy: A Discussion of Approaches and Recommended Improvements

    Science.gov (United States)

    Gupta, Vipul; Ganegoda, Hasitha; Engelhard, Mark H.; Terry, Jeff; Linford, Matthew R.

    2014-01-01

    The traditional assignment of oxidation states to organic molecules is problematic. Accordingly, in 1999, Calzaferri proposed a simple and elegant solution that is based on the similar electronegativities of carbon and hydrogen: hydrogen would be assigned an oxidation state of zero when bonded to carbon. Here, we show that X-ray photoelectron…

  4. SOLID STATE ENERGY CONVERSION ALLIANCE (SECA) SOLID OXIDE FUEL CELL PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2003-06-01

    This report summarizes the progress made during the September 2001-March 2002 reporting period under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program''. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. The overall objective of the program is to demonstrate a modular SOFC system that can be configured to create highly efficient, cost-competitive, and environmentally benign power plants tailored to specific markets. When fully developed, the system will meet the efficiency, performance, life, and cost goals for future commercial power plants.

  5. Solid-phase extraction of plutonium in various oxidation states from simulated groundwater using N-benzoylphenylhydroxylamine

    International Nuclear Information System (INIS)

    Perevalov, S.A.; Malofeeva, G.I.; Kuzovkina, E.V.; Spivakov, B.Ya.

    2013-01-01

    Solid-phase extraction of plutonium in different individual and mixed oxidation states from simulated groundwater (pH 8.5) was studied. The extraction of plutonium species was carried out in a dynamic mode using DIAPAK C16 cartridges modified by N-benzoylphenylhydroxylamine (BPHA). It was shown that the extent of recovery depends on the oxidation state of plutonium. The extraction of Pu(IV) was at the level of 98-99% regardless of the volume and flow-rate of the sample solution. Pu(V) was extracted by 90-95% and 75-80% from 10- and 100-mL aliquots of the samples, respectively, whereas the extraction of Pu(VI) did not exceed 45-50%. An equimolar mixture of Pu(IV), Pu(V), and Pu(VI) was extracted by 74%. The distribution coefficients (K d ) and kinetic exchange capacities (S) of plutonium in various oxidation states were measured. It was found that during the sorption process, Pu(V) was reduced to Pu(IV) by 80-90% after an hour-long contact with the solid phase. Pu(VI) is reduced to Pu(V) by 34% and to Pu(IV) by 55%. In the case of mixed-valent solution of plutonium, only Pu(V) and Pu(IV) were found in the effluents. (author)

  6. Correlation of the oxidation state of cerium in sol-gel glasses as a function of thermal treatment via optical spectroscopy and XANES studies.

    Science.gov (United States)

    Assefa, Zerihun; Haire, R G; Caulder, D L; Shuh, D K

    2004-07-01

    Sol-gel glass matrices containing lanthanides have numerous technological applications and their formation involves several chemical facets. In the case of cerium, its ability to exist in two different oxidation states or in mixed valence state provides additional complexities for the sol-gel process. The oxidation state of cerium present during different facets of preparation of sol-gel glasses, and also as a function of the starting oxidation state of cerium added, were studied both by optical spectroscopy and X-ray absorption near-edge structures (XANES). The findings acquired by each approach were compared. The primary focus was on the redox chemistries associated with sample preparation, gelation, and thermal treatment. When Ce3+ is introduced into the starting sols, the trivalent state normally prevails in the wet and room temperature-dried gels. Heating in air at >100 degrees C can generate a light yellow coloration with partial oxidation to the tetravalent state. Above 200 degrees C and up to approximately 1000 degrees C, cerium is oxidized to its tetravalent state. In contrast, when tetravalent cerium is introduced into the sol, both the wet and room temperature-dried gels lose the yellow-brown color of the initial ceric ammonium nitrate solution. When the sol-gel is heated to 110 degrees C it turns yellowish as the cerium tends to be re-oxidized. The yellow color is believed to represent the effect of oxidation and oligomerization of the cerium-silanol units in the matrix. The luminescence properties are also affected by these changes, the details of which are reported herein.

  7. The [BN{sub 2}]{sup 3-} anion. A carbon dioxide isosteric building unit for a large family of complex nitridoborate structures

    Energy Technology Data Exchange (ETDEWEB)

    Poettgen, Rainer; Reckeweg, Olaf [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie

    2017-07-01

    The crystal chemistry of nitridoborates with the CO{sub 2} analogous [BN{sub 2}]{sup 3-} ion is reviewed. Such nitridoborates form with the alkali and alkaline earth metals as well as with divalent europium. Also quaternary compounds with mixed cations along with nitridoborate nitrides, oxides, halides and hydrides are discussed. The spectroscopic (IR, Raman, solid state NMR and Moessbauer spectroscopy) and magnetic behavior as well as optical properties are discussed in the light of structure-property relationships.

  8. Exploratory Characterization of Phenolic Compounds with Demonstrated Anti-Diabetic Activity in Guava Leaves at Different Oxidation States

    Science.gov (United States)

    Díaz-de-Cerio, Elixabet; Verardo, Vito; Gómez-Caravaca, Ana María; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2016-01-01

    Psidium guajava L. is widely used like food and in folk medicine all around the world. Many studies have demonstrated that guava leaves have anti-hyperglycemic and anti-hyperlipidemic activities, among others, and that these activities belong mainly to phenolic compounds, although it is known that phenolic composition in guava tree varies throughout seasonal changes. Andalusia is one of the regions in Europe where guava is grown, thus, the aim of this work was to study the phenolic compounds present in Andalusian guava leaves at different oxidation states (low, medium, and high). The phenolic compounds in guava leaves were determined by HPLC-DAD-ESI-QTOF-MS. The results obtained by chromatographic analysis reported that guava leaves with low degree of oxidation had a higher content of flavonols, gallic, and ellagic derivatives compared to the other two guava leaf samples. Contrary, high oxidation state guava leaves reported the highest content of cyanidin-glucoside that was 2.6 and 15 times higher than guava leaves with medium and low oxidation state, respectively. The QTOF platform permitted the determination of several phenolic compounds with anti-diabetic properties and provided new information about guava leaf phenolic composition that could be useful for nutraceutical production. PMID:27187352

  9. Exploratory Characterization of Phenolic Compounds with Demonstrated Anti-Diabetic Activity in Guava Leaves at Different Oxidation States

    Directory of Open Access Journals (Sweden)

    Elixabet Díaz-de-Cerio

    2016-05-01

    Full Text Available Psidium guajava L. is widely used like food and in folk medicine all around the world. Many studies have demonstrated that guava leaves have anti-hyperglycemic and anti-hyperlipidemic activities, among others, and that these activities belong mainly to phenolic compounds, although it is known that phenolic composition in guava tree varies throughout seasonal changes. Andalusia is one of the regions in Europe where guava is grown, thus, the aim of this work was to study the phenolic compounds present in Andalusian guava leaves at different oxidation states (low, medium, and high. The phenolic compounds in guava leaves were determined by HPLC-DAD-ESI-QTOF-MS. The results obtained by chromatographic analysis reported that guava leaves with low degree of oxidation had a higher content of flavonols, gallic, and ellagic derivatives compared to the other two guava leaf samples. Contrary, high oxidation state guava leaves reported the highest content of cyanidin-glucoside that was 2.6 and 15 times higher than guava leaves with medium and low oxidation state, respectively. The QTOF platform permitted the determination of several phenolic compounds with anti-diabetic properties and provided new information about guava leaf phenolic composition that could be useful for nutraceutical production.

  10. Exploratory Characterization of Phenolic Compounds with Demonstrated Anti-Diabetic Activity in Guava Leaves at Different Oxidation States.

    Science.gov (United States)

    Díaz-de-Cerio, Elixabet; Verardo, Vito; Gómez-Caravaca, Ana María; Fernández-Gutiérrez, Alberto; Segura-Carretero, Antonio

    2016-05-11

    Psidium guajava L. is widely used like food and in folk medicine all around the world. Many studies have demonstrated that guava leaves have anti-hyperglycemic and anti-hyperlipidemic activities, among others, and that these activities belong mainly to phenolic compounds, although it is known that phenolic composition in guava tree varies throughout seasonal changes. Andalusia is one of the regions in Europe where guava is grown, thus, the aim of this work was to study the phenolic compounds present in Andalusian guava leaves at different oxidation states (low, medium, and high). The phenolic compounds in guava leaves were determined by HPLC-DAD-ESI-QTOF-MS. The results obtained by chromatographic analysis reported that guava leaves with low degree of oxidation had a higher content of flavonols, gallic, and ellagic derivatives compared to the other two guava leaf samples. Contrary, high oxidation state guava leaves reported the highest content of cyanidin-glucoside that was 2.6 and 15 times higher than guava leaves with medium and low oxidation state, respectively. The QTOF platform permitted the determination of several phenolic compounds with anti-diabetic properties and provided new information about guava leaf phenolic composition that could be useful for nutraceutical production.

  11. Elevated oxidative stress monitored via the albumin-thiol redox state is correlated with matrix metalloproteinase-3 elevation in patients with rheumatoid arthritis.

    Science.gov (United States)

    Kizaki, Kazuha; Yoshizumi, Yusuke; Takahashi, Teppei; Era, Seiichi

    2015-01-01

    In rheumatoid arthritis (RA), matrix metalloproteinase-3 (MMP-3) and oxidative stress contribute to joint destruction. However, little is known about the relationship between MMP-3 and oxidative stress in RA. We measured the albumin-thiol redox state as a marker of oxidative stress, MMP-3, and the DAS-28 score calculated using CRP values among forty-seven patients (9 males and 38 females) with RA. According to the serum MMP-3 levels, they were divided into two groups (group A: within normal ranges of 36.9-121.0 ng/mL for men and 17.3-59.7 ng/mL for women; group B: above normal ranges). The albumin-thiol redox state in group B was significantly oxidized compared with that in group A (p < 0.01). The percentage of oxidized albumin-thiol showed a positive correlation with serum MMP-3 (r = 0.52). DAS-28 and CRP were also correlated with the percentage of oxidized albumin-thiol (r = 0.46, r = 0.44). The albumin-thiol redox state was significantly oxidized in correlation with serum MMP-3 elevation in RA.

  12. Electrochemical determination of the oxidation potentials and the thermodynamic stability of the valence states of the transuranium elements in aqueous alkaline media

    International Nuclear Information System (INIS)

    Peretrukhin, V.F.; Spitsyn, V.I.

    1982-01-01

    The oxidation potentials of neptunium, plutonium, and americium in the valance states from (III) to (VII) have been determined experimentally in 0.1-15 M NaOH. Heptavalent plutonium and americium are thermodynamically able to oxidize water with the evolution of oxygen in 0.1-15 M NaOH, neptunium(VII) in 0.1-7 M NaOH. All valance states of plutonium resist disproportionation in alkaline solutions; in the case of neptunium and americium only one disproportionation reaction is possible; of the hexavalent state in to penta- and heptavalent states. The degree of completion of the reaction can be calculated accurately from the oxidation potentials determined

  13. The Behavior of the Ru-bda Water Oxidation Catalysts at Low Oxidation States.

    Science.gov (United States)

    Matheu, Roc; Ghaderian, Abolfazl; Francas, Laia; Chernev, Petko; Ertem, Mehmed; Benet-Buchholz, Jordi; Batista, Victor; Haumann, Michael; Gimbert-Suriñach, Carolina; Sala, Xavier; Llobet, Antoni

    2018-06-13

    The Ru complex [RuII(bda-κ-N2O2)(N-NH2)2], 1, (bda2- = (2,2'-bipyridine)-6,6'-dicarboxylate; N-NH2 = 4-(pyridin-4-yl)aniline) is used as a synthetic intermediate to prepare Ru-bda complexes that contain the NO+, acetonitrile (MeCN) or H2O ligands at oxidation states II and III. Complex 1 reacts with excess NO+ to form a Ru complex where the aryl amine ligands N-NH2 in 1 are transformed into diazonium salts (N-N2+ = 4-(pyridin-4-yl)benzenediazonium)) together with the formation of a new Ru-NO group at the equatorial zone, to generate [RuII(bda-κ-N2O)(NO)(N-N2)2]3+, 23+. Similarly, complex 1 can also react with a coordinating solvent, such as MeCN, at room temperature leading to complex [RuII(bda-κ-N2O)(MeCN)(N-NH2)2], 3. Finally in acidic aqueous solutions solvent water coordinates the Ru center forming {[RuII(bda-κ-(NO)3)(H2O)(N-NH3)2](H2O)n}2+, 42+, that is strongly hydrogen bonded with additional water molecules at the second coordination sphere. We have additionally characterized the one electron oxidized complex {[RuIII(bda-κ-(NO)3.5)(H2O)(N-NH3)2](H2O)n}3+, 53+. The coordination mode of the complexes has been studied both in the solid state and in solution through single-crystal XRD, X-ray absorption spectroscopy, variable-temperature NMR and DFT calculations. While the κ-N2O is the main coordination mode for 23+ and 3, an equilibrium that involves isomers with κ-N2O and κ-NO2 coordination modes and neighboring hydrogen bonded water molecules is observed for 42+ and 53+. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Interface Controlled Oxidation States in Layered Cobalt Oxide Nanoislands on Gold

    DEFF Research Database (Denmark)

    Walton, Alexander; Fester, Jakob; Bajdich, Michal

    2015-01-01

    Layered cobalt oxides have been shown to be highly active catalysts for the oxygen evolution reaction (OER; half of the catalytic “water splitting” reaction), particularly when promoted with gold. However, the surface chemistry of cobalt oxides and in particular the nature of the synergistic effect...

  15. Development of a methodology for the separation of europium and samarium from a mixture of rare earth oxides by electroreduction/ precipitation

    International Nuclear Information System (INIS)

    Chepcanoff, Vera

    2006-01-01

    The rare earths (RE) were first used in 1903, when Welsbach developed a lighter that is still used today. Nowadays, the RE are employed in many different fields, as in the production of super-alloys , as catalysts for petroleum industry, in the manufacture of non-ferrous alloys, color television tubes, x-ray screens, special glasses, ceramics, computer industries, nuclear medicine, lasers, pigments, etc., moving, in the last decade , a market of US$ 2 billions per year. Due to their similar properties, the RE elements are very difficult to separate, requiring complex processes, what make the products very expensive. Elements like Eu and Sm, which contents in the minerals are low (0.05% and 2.0%, respectively, in monazite) are extremely expensive, but their field of application justifies the research for looking for other processes, more simple and/or more effective. Trivalent state is a characteristic of all RE, but some of them presents oxidation state +2, like Ce, Eu, Sm and Yb. In the case of Eu and Sm, the focus of the present work, the divalent state is achieved by electro-reduction in the potentials -0.65 and -1.55 (SCE), respectively. This makes possible the separation of these elements from the other rare earths and from each other. Thus, making use of this characteristic, a process for the individual separation of Eu and Sm in (NH 4 ) 2 SO 4 solution by electro-reduction/precipitation is proposed, where Sm is first separated from the solution as sulfate, and Eu, that remains in the solution, is precipitated after the decrease of temperature and potential applied. The process developed from a synthetic Eu and Sm solution was applied to a mixture of semi-heavy RE oxide, produced at IPEN-CNEN/SP, obtaining the separation of Sm. This product was analyzed by spectrophotometry, showing high purity. (author)

  16. Excellent Tribological Properties of Lower Reduced Graphene Oxide Content Copper Composite by Using a One-Step Reduction Molecular-Level Mixing Process

    Directory of Open Access Journals (Sweden)

    Haibin Nie

    2018-04-01

    Full Text Available Reduced graphene oxide (RGO composite copper matrix powders were fabricated successfully by using a modified molecular-level mixing (MLM method. Divalent copper ions (Cu2+ were adsorbed in oxygen functional groups of graphene oxide (GO as a precursor, then were reduced simultaneously by one step chemical reduction. RGO showed a distribution converting from a random to a three-dimensional network in the copper matrix when its content increased to above 1.0 wt.% The tribological tests indicated that the friction coefficient of the composite with 1.0 wt.% RGO decreased markedly from 0.6 to 0.07 at an applied load of 10 N, and the wear rate was about one-third of pure copper. The excellent tribological properties were attributed to a three-dimensional and uniform distribution, which contributes to improving toughness and adhesion strength.

  17. Triplet-State Dissolved Organic Matter Quantum Yields and Lifetimes from Direct Observation of Aromatic Amine Oxidation.

    Science.gov (United States)

    Schmitt, Markus; Erickson, Paul R; McNeill, Kristopher

    2017-11-21

    Excited triplet state chromophoric dissolved organic matter ( 3 CDOM*) is a short-lived mixture of excited-state species that plays important roles in aquatic photochemical processes. Unlike the study of the triplet states of well-defined molecules, which are amenable to transient absorbance spectroscopy, the study of 3 CDOM* is hampered by it being a complex mixture and its low average intersystem crossing quantum yield (Φ ISC ). This study is an alternative approach to investigating 3 CDOM* using transient absorption laser spectroscopy. The radical cation of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), formed through oxidation by 3 CDOM*, was directly observable by transient absorption spectroscopy and was used to probe basic photophysical properties of 3 CDOM*. Quenching and control experiments verified that TMPD •+ was formed from 3 CDOM* under anoxic conditions. Model triplet sensitizers with a wide range of excited triplet state reduction potentials and CDOM oxidized TMPD at near diffusion-controlled rates. This gives support to the idea that a large cross-section of 3 CDOM* moieties are able to oxidize TMPD and that the complex mixture of 3 CDOM* can be simplified to a single signal. Using the TMPD •+ transient, the natural triplet lifetime and Φ ISC for different DOM isolates and natural waters were quantified; values ranged from 12 to 26 μs and 4.1-7.8%, respectively.

  18. Effect of particle size on iron nanoparticle oxidation state

    International Nuclear Information System (INIS)

    Lombardo, Jeffrey J.; Lysaght, Andrew C.; Goberman, Daniel G.; Chiu, Wilson K.S.

    2012-01-01

    Selecting catalyst particles is a very important part of carbon nanotube growth, although the properties of these nanoscale particles are unclear. In this article iron nanoparticles are analyzed through the use of atomic force microscopy and x-ray photoelectron spectroscopy in order to understand how the size affects the chemical composition of nanoparticles and thus their physical structure. Initially, atomic force microscopy was used to confirm the presence of iron particles, and to determine the average size of the particles. Next an analytical model was developed to estimate particle size as a function of deposition time using inputs from atomic force microscopy measurement. X-ray photoelectron spectroscopy analysis was then performed with a focus on the spectra relating to the 2p Fe electrons to study the chemical state of the particles as a function of time. It was shown that as the size of nanoparticles decreased, the oxidation state of the particles changed due to a high proportion of atoms on the surface.

  19. High-Pressure Reactivity of Kr and F2—Stabilization of Krypton in the +4 Oxidation State

    Directory of Open Access Journals (Sweden)

    Dominik Kurzydłowski

    2017-10-01

    Full Text Available Since the synthesis of the first krypton compound, several other Kr-bearing connections have been obtained. However, in all of them krypton adopts the +2 oxidation state, in contrast to xenon which forms numerous compounds with an oxidation state as high as +8. Motivated by the possibility of thermodynamic stabilization of exotic compounds with the use of high pressure (exceeding 1 GPa = 10 kbar, we present here theoretical investigations into the chemistry of krypton and fluorine at such large compression. In particular we focus on krypton tetrafluoride, KrF4, a molecular crystal in which krypton forms short covalent bonds with neighboring fluorine atoms thus adopting the +4 oxidation state. We find that this hitherto unknown compound can be stabilized at pressures below 50 GPa. Our results indicate also that, at larger compressions, a multitude of other KrmFn fluorides should be stable, among them KrF which exhibits covalent Kr–Kr bonds. Our results set the stage for future high-pressure synthesis of novel krypton compounds.

  20. Operando XAS Study of the Surface Oxidation State on a Monolayer IrOx on RuOx and Ru Oxide Based Nanoparticles for Oxygen Evolution in Acidic Media

    DEFF Research Database (Denmark)

    Pedersen, Anders Filsøe; Escribano, Maria Escudero; Sebok, Bela

    2018-01-01

    that the average Ir oxidation state change is strongly affected by the coverage of atomic O. The observed shifts in oxidation state suggest that the surface has a high coverage of O at potentials just below the potential where oxygen evolution is exergonic in free energy. This observation is consistent...

  1. Determination of Model Kinetics for Forced Unsteady State Operation of Catalytic CH4 Oxidation

    Directory of Open Access Journals (Sweden)

    Effendy Mohammad

    2016-01-01

    Full Text Available The catalytic oxidation of methane for abating the emission vented from coal mine or natural gas transportation has been known as most reliable method. A reverse flow reactor operation has been widely used to oxidize this methane emission due to its capability for autothermal operation and heat production. The design of the reverse flow reactor requires a proper kinetic rate expression, which should be developed based on the operating condition. The kinetic rate obtained in the steady state condition cannot be applied for designing the reactor operated under unsteady state condition. Therefore, new approach to develop the dynamic kinetic rate expression becomes indispensable, particularly for periodic operation such as reverse flow reactor. This paper presents a novel method to develop the kinetic rate expression applied for unsteady state operation. The model reaction of the catalytic methane oxidation over Pt/-Al2O3 catalyst was used with kinetic parameter determined from laboratory experiments. The reactor used was a fixed bed, once-through operation, with a composition modulation in the feed gas. The switching time was set at 3 min by varying the feed concentration, feed flow rate, and reaction temperature. The concentrations of methane in the feed and product were measured and analysed using gas chromatography. The steady state condition for obtaining the kinetic rate expression was taken as a base case and as a way to judge its appropriateness to be applied for dynamic system. A Langmuir-Hinshelwood reaction rate model was developed. The time period during one cycle was divided into some segments, depending on the ratio of CH4/O2. The experimental result shows that there were kinetic regimes occur during one cycle: kinetic regime controlled by intrinsic surface reaction and kinetic regime controlled by external diffusion. The kinetic rate obtained in the steady state operation was not appropriate when applied for unsteady state operation

  2. Manganese oxidation state mediates toxicity in PC12 cells

    International Nuclear Information System (INIS)

    Reaney, S.H.; Smith, D.R.

    2005-01-01

    The role of the manganese (Mn) oxidation state on cellular Mn uptake and toxicity is not well understood. Therefore, undifferentiated PC12 cells were exposed to 0-200 μM Mn(II)-chloride or Mn(III)-pyrophosphate for 24 h, after which cellular manganese levels were measured along with measures of cell viability, function, and cytotoxicity (trypan blue exclusion, medium lactate dehydrogenase (LDH), 8-isoprostanes, cellular ATP, dopamine, serotonin, H-ferritin, transferrin receptor (TfR), Mn-superoxide dismutase (MnSOD), and copper-zinc superoxide dismutase (CuZnSOD) protein levels). Exposures to Mn(III) >10 μM produced 2- to 5-fold higher cellular manganese levels than equimolar exposures to Mn(II). Cell viability and ATP levels both decreased at the highest Mn(II) and Mn(III) exposures (150-200 μM), while Mn(III) exposures produced increases in LDH activity at lower exposures (≥50 μM) than did Mn(II) (200 μM only). Mn(II) reduced cellular dopamine levels more than Mn(III), especially at the highest exposures (50% reduced at 200 μM Mn(II)). In contrast, Mn(III) produced a >70% reduction in cellular serotonin at all exposures compared to Mn(II). Different cellular responses to Mn(II) exposures compared to Mn(III) were also observed for H-ferritin, TfR, and MnSOD protein levels. Notably, these differential effects of Mn(II) versus Mn(III) exposures on cellular toxicity could not simply be accounted for by the different cellular levels of manganese. These results suggest that the oxidation state of manganese exposures plays an important role in mediating manganese cytotoxicity

  3. Proteomic indicators of oxidation and hydration state in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Jeffrey M. Dick

    2016-07-01

    Full Text Available New integrative approaches are needed to harness the potential of rapidly growing datasets of protein expression and microbial community composition in colorectal cancer. Chemical and thermodynamic models offer theoretical tools to describe populations of biomacromolecules and their relative potential for formation in different microenvironmental conditions. The average oxidation state of carbon (ZC can be calculated as an elemental ratio from the chemical formulas of proteins, and water demand per residue ( ${\\overline{n}}_{{\\mathrm{H}}_{2}\\mathrm{O}}$ n ¯ H 2 O is computed by writing the overall formation reactions of proteins from basis species. Using results reported in proteomic studies of clinical samples, many datasets exhibit higher mean ZC or ${\\overline{n}}_{{\\mathrm{H}}_{2}\\mathrm{O}}$ n ¯ H 2 O of proteins in carcinoma or adenoma compared to normal tissue. In contrast, average protein compositions in bacterial genomes often have lower ZC for bacteria enriched in fecal samples from cancer patients compared to healthy donors. In thermodynamic calculations, the potential for formation of the cancer-related proteins is energetically favored by changes in the chemical activity of H2O and fugacity of O2 that reflect the compositional differences. The compositional analysis suggests that a systematic change in chemical composition is an essential feature of cancer proteomes, and the thermodynamic descriptions show that the observed proteomic transformations in host tissue could be promoted by relatively high microenvironmental oxidation and hydration states.

  4. Direct or photostimulated luminescence after X-Ray irradiation of divalent europium in alkaline earth compounds containing some halides; Luminescence directe ou photostimulee apres irradiation X de l'europium divalent dans des familles de composes alcalino-terreux comportant un halogene

    Energy Technology Data Exchange (ETDEWEB)

    Merigou, C

    1990-10-15

    With a view for digitizing of radiological images, the luminescent properties of divalent europium in diverse halogen compounds involving strontium or barium have been studied. In halogen-rich compounds (MCl{sub 2}, M{sub 4}OCl{sub 6}, M{sub 5}SiO{sub 4}Cl{sub 6},... where M is Sr or Ba), the thermal extinction of the emission begins only above 300 K. High densities of coloured spots have been produced with X-ray irradiation. The combining of these 2 features has led to the obtention of high yields for argon laser stimulated luminescence in the case of Sr{sub 5}SiO{sub 4}Cl{sub 5}Br:Eu halogen silicate. Although these yields are high they stay below that of BaXF:Eu which is usually used in photon-stimulated screens.

  5. Surface State Capture Cross-Section at the Interface between Silicon and Hafnium Oxide

    Directory of Open Access Journals (Sweden)

    Fu-Chien Chiu

    2013-01-01

    Full Text Available The interfacial properties between silicon and hafnium oxide (HfO2 are explored by the gated-diode method and the subthreshold measurement. The density of interface-trapped charges, the current induced by surface defect centers, the surface recombination velocity, and the surface state capture cross-section are obtained in this work. Among the interfacial properties, the surface state capture cross-section is approximately constant even if the postdeposition annealing condition is changed. This effective capture cross-section of surface states is about 2.4 × 10−15 cm2, which may be an inherent nature in the HfO2/Si interface.

  6. Origin of major donor states in In–Ga–Zn oxide

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Motoki; Oota, Masashi; Ishihara, Noritaka; Nonaka, Yusuke; Hirohashi, Takuya; Takahashi, Masahiro; Yamazaki, Shunpei [Semiconductor Energy Laboratory Co., Ltd., 398 Hase, Atsugi, Kanagawa 243-0036 (Japan); Obonai, Toshimitsu; Hosaka, Yasuharu; Koezuka, Junichi [Advanced Film Device Inc., 161-2 Masuzuka, Tsuga-machi, Tochigi, Tochigi 328-0114 (Japan)

    2014-12-07

    To clarify the origin of the major donor states in indium gallium zinc oxide (IGZO), we report measurement results and an analysis of several physical properties of IGZO thin films. Specifically, the concentration of H atoms and O vacancies (V{sub O}), carrier concentration, and conductivity are investigated by hard X-ray photoelectron spectroscopy, secondary ion mass spectroscopy, thermal desorption spectroscopy, and Hall effect measurements. The results of these experiments suggest that the origin of major donor states is H occupancy of V{sub O} sites. Furthermore, we use first-principles calculations to investigate the influence of the coexistence of V{sub O} and H in crystalline InGaO{sub 3}(ZnO){sub m} (m = 1). The results indicate that when H is trapped in V{sub O}, a stable complex is created that serves as a shallow-level donor.

  7. Persistence of oxidation state III of gold in thione coordination

    Science.gov (United States)

    Jääskeläinen, Sirpa; Koskinen, Laura; Kultamaa, Matti; Haukka, Matti; Hirva, Pipsa

    2017-05-01

    Ligands N,N'-tetramethylthiourea and 2-mercapto-1-methyl-imidazole form stable Au(III) complexes [AuCl3(N,N'-tetramethylthiourea)] (1) and [AuCl3(2-mercapto-1-methyl-imidazole)] (2) instead of reducing the Au(III) metal center into Au(I), which would be typical for the attachment of sulfur donors. Compounds 1 and 2 were characterized by spectroscopic methods and by X-ray crystallography. The spectroscopic details were explained by simulation of the UV-Vis spectra via the TD-DFT method. Additionally, computational DFT studies were performed in order to find the reason for the unusual oxidation state in the crystalline materials. The preference for Au(III) can be explained via various weak intra- and intermolecular interactions present in the solid state structures. The nature of the interactions was further investigated by topological charge density analysis via the QTAIM method.

  8. Mitochondrial membranes with mono- and divalent salt: changes induced by salt ions on structure and dynamics

    DEFF Research Database (Denmark)

    Pöyry, Sanja; Róg, Tomasz; Karttunen, Mikko

    2009-01-01

    We employ atomistic simulations to consider how mono- (NaCl) and divalent (CaCl(2)) salt affects properties of inner and outer membranes of mitochondria. We find that the influence of salt on structural properties is rather minute, only weakly affecting lipid packing, conformational ordering......, and membrane electrostatic potential. The changes induced by salt are more prominent in dynamical properties related to ion binding and formation of ion-lipid complexes and lipid aggregates, as rotational diffusion of lipids is slowed down by ions, especially in the case of CaCl(2). In the same spirit, lateral...... diffusion of lipids is slowed down rather considerably for increasing concentration of CaCl(2). Both findings for dynamic properties can be traced to the binding of ions with lipid head groups and the related changes in interaction patterns in the headgroup region, where the binding of Na(+) and Ca(2+) ions...

  9. SOLID STATE ENERGY CONVERSION ALLIANCE (SECA) SOLID OXIDE FUEL CELL PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Minh; Jim Powers

    2003-10-01

    This report summarizes the work performed for April 2003--September 2003 reporting period under Cooperative Agreement DE-FC26-01NT41245 for the U.S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid State Energy Conversion Alliance (SECA) Solid oxide Fuel Cell Program''. During this reporting period, the conceptual system design activity was completed. The system design, including strategies for startup, normal operation and shutdown, was defined. Sealant and stack materials for the solid oxide fuel cell (SOFC) stack were identified which are capable of meeting the thermal cycling and degradation requirements. A cell module was tested which achieved a stable performance of 0.238 W/cm{sup 2} at 95% fuel utilization. The external fuel processor design was completed and fabrication begun. Several other advances were made on various aspects of the SOFC system, which are detailed in this report.

  10. Air oxidation of Zr65Cu17.5Ni10Al7.5 in its amorphous and supercooled liquid states, studied by thermogravimetric analysis

    International Nuclear Information System (INIS)

    Dhawan, A.; Sharma, S.K.; Raetzke, K.; Faupel, F.

    2003-01-01

    The oxidation behaviour of the bulk amorphous alloy Zr 65 Cu 17.5 Ni 10 Al 7.5 was studied in air at various temperatures in the temperature range 591-732 K using a thermogravimetric analyser (TGA). The oxidation kinetics of the alloy obeys the parabolic rate law showing two different linear regions (in the plots of mass gain versus square root of oxidation time) which are attributed to the amorphous and the supercooled liquid states of the alloy. The value of the activation energy Q for the amorphous state as calculated from the temperature dependence of the rate constants is found to be 1.80±0.1 eV and the corresponding value obtained for the supercooled liquid state is 1.20±0.1 eV. It is suggested that the rate controlling process during oxidation of the amorphous state is the back-diffusion of Ni, and possibly Cu also, while the oxidation in the supercooled liquid state is dominated by the inward diffusion of oxygen. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Origin of deep subgap states in amorphous indium gallium zinc oxide: Chemically disordered coordination of oxygen

    International Nuclear Information System (INIS)

    Sallis, S.; Williams, D. S.; Butler, K. T.; Walsh, A.; Quackenbush, N. F.; Junda, M.; Podraza, N. J.; Fischer, D. A.; Woicik, J. C.; White, B. E.; Piper, L. F. J.

    2014-01-01

    The origin of the deep subgap states in amorphous indium gallium zinc oxide (a-IGZO), whether intrinsic to the amorphous structure or not, has serious implications for the development of p-type transparent amorphous oxide semiconductors. We report that the deep subgap feature in a-IGZO originates from local variations in the oxygen coordination and not from oxygen vacancies. This is shown by the positive correlation between oxygen composition and subgap intensity as observed with X-ray photoelectron spectroscopy. We also demonstrate that the subgap feature is not intrinsic to the amorphous phase because the deep subgap feature can be removed by low-temperature annealing in a reducing environment. Atomistic calculations of a-IGZO reveal that the subgap state originates from certain oxygen environments associated with the disorder. Specifically, the subgap states originate from oxygen environments with a lower coordination number and/or a larger metal-oxygen separation.

  12. Origin of deep subgap states in amorphous indium gallium zinc oxide: Chemically disordered coordination of oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Sallis, S.; Williams, D. S. [Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States); Butler, K. T.; Walsh, A. [Center for Sustainable Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Quackenbush, N. F. [Department of Physics, Applied Physics, and Astronomy, Binghamton University, Binghamton, New York 13902 (United States); Junda, M.; Podraza, N. J. [Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606 (United States); Fischer, D. A.; Woicik, J. C. [Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); White, B. E.; Piper, L. F. J., E-mail: lpiper@binghamton.edu [Department of Physics, Applied Physics, and Astronomy, Binghamton University, Binghamton, New York 13902 (United States); Materials Science and Engineering, Binghamton University, Binghamton, New York 13902 (United States)

    2014-06-09

    The origin of the deep subgap states in amorphous indium gallium zinc oxide (a-IGZO), whether intrinsic to the amorphous structure or not, has serious implications for the development of p-type transparent amorphous oxide semiconductors. We report that the deep subgap feature in a-IGZO originates from local variations in the oxygen coordination and not from oxygen vacancies. This is shown by the positive correlation between oxygen composition and subgap intensity as observed with X-ray photoelectron spectroscopy. We also demonstrate that the subgap feature is not intrinsic to the amorphous phase because the deep subgap feature can be removed by low-temperature annealing in a reducing environment. Atomistic calculations of a-IGZO reveal that the subgap state originates from certain oxygen environments associated with the disorder. Specifically, the subgap states originate from oxygen environments with a lower coordination number and/or a larger metal-oxygen separation.

  13. Electrode-Impregnable and Cross-Linkable Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) Triblock Polymer Electrolytes with High Ionic Conductivity and a Large Voltage Window for Flexible Solid-State Supercapacitors.

    Science.gov (United States)

    Han, Jae Hee; Lee, Jang Yong; Suh, Dong Hack; Hong, Young Taik; Kim, Tae-Ho

    2017-10-04

    We present cross-linkable precursor-type gel polymer electrolytes (GPEs) that have large ionic liquid uptake capability, can easily penetrate electrodes, have high ion conductivity, and are mechanically strong as high-performance, flexible all-solid-state supercapacitors (SC). Our polymer precursors feature a hydrophilic-hydrophobic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock main-chain structure and trifunctional silane end groups that can be multi-cross-linked with each other through a sol-gel process. The cross-linked solid-state electrolyte film with moderate IL content (200 wt %) shows a well-balanced combination of excellent ionic conductivity (5.0 × 10 -3 S cm -1 ) and good mechanical stability (maximum strain = 194%). Moreover, our polymer electrolytes have various advantages including high thermal stability (decomposition temperature > 330 °C) and the capability to impregnate electrodes to form an excellent electrode-electrolyte interface due to the very low viscosity of the precursors. By assembling our GPE-impregnated electrodes and solid-state GPE film, we demonstrate an all-solid-state SC that can operate at 3 V and provides an improved specific capacitance (112.3 F g -1 at 0.1 A g -1 ), better rate capability (64% capacity retention until 20 A g -1 ), and excellent cycle stability (95% capacitance decay over 10 000 charge/discharge cycles) compared with those of a reference SC using a conventional PEO electrolyte. Finally, flexible SCs with a high energy density (22.6 W h kg -1 at 1 A g -1 ) and an excellent flexibility (>93% capacitance retention after 5000 bending cycles) can successfully be obtained.

  14. Cellulose nanofibers/reduced graphene oxide flexible transparent conductive paper.

    Science.gov (United States)

    Gao, Kezheng; Shao, Ziqiang; Wu, Xue; Wang, Xi; Li, Jia; Zhang, Yunhua; Wang, Wenjun; Wang, Feijun

    2013-08-14

    The cellulose nanofibers (CNFs) paper exhibit high visible light transmittance, high mechanical strength, and excellent flexibility. Therefore, CNFs paper may be an excellent substrate material for flexible transparent electronic devices. In this paper, we endeavor to prepare CNFs-based flexible transparent conductive paper by layer-by-layer (LbL) assembly using divalent copper ions (Cu(2+)) as the crosslinking agent. The thickness of the reduced graphene oxide (RGO) active layer in the CNFs paper can be controlled by the cycle times of the LbL assembly. CNFs/[RGO]20 paper has the sheet resistances of ∼2.5 kΩ/□, and the transmittance of about 76% at a wavelength of 550 nm. Furthermore, CNFs/[RGO]20 paper inherits the excellent mechanical properties of CNFs paper, and the ultimate strength is about 136 MPa. CNFs-based flexible transparent conductive paper also exhibits excellent electrical stability and flexibility. Copyright © 2013. Published by Elsevier Ltd.

  15. Effect of charge state and stoichiometry on the structure and reactivity of nickel oxide clusters with CO

    Science.gov (United States)

    Johnson, Grant E.; Reilly, Nelly M.; Castleman, A. W., Jr.

    2009-02-01

    The collision induced fragmentation and reactivity of cationic and anionic nickel oxide clusters with carbon monoxide were studied experimentally using guided-ion-beam mass spectrometry. Anionic clusters with a stoichiometry containing one more oxygen atom than nickel atom (NiO2-, Ni2O3-, Ni3O4- and Ni4O5-) were found to exhibit dominant products resulting from the transfer of a single oxygen atom to CO, suggesting the formation of CO2. Of these four species, Ni2O3- and Ni4O5- were observed to be the most reactive having oxygen transfer products accounting for approximately 5% and 10% of the total ion intensity at a maximum pressure of 15 mTorr of CO. Our findings, therefore, indicate that anionic nickel oxide clusters containing an even number of nickel atoms and an odd number of oxygen atoms are more reactive than those with an odd number of nickel atoms and an even number of oxygen atoms. The majority of cationic nickel oxides, in contrast to anionic species, reacted preferentially through the adsorption of CO onto the cluster accompanied by the loss of either molecular O2 or nickel oxide units. The adsorption of CO onto positively charged nickel oxides, therefore, is exothermic enough to break apart the gas-phase clusters. Collision induced dissociation experiments, employing inert xenon gas, were also conducted to gain insight into the structural properties of nickel oxide clusters. The fragmentation products were found to vary considerably with size and stoichiometry as well as ionic charge state. In general, cationic clusters favored the collisional loss of molecular O2 while anionic clusters fragmented through the loss of both atomic oxygen and nickel oxide units. Our results provide insight into the effect of ionic charge state on the structure of nickel oxide clusters. Furthermore, we establish how the size and stoichiometry of nickel oxide clusters influences their ability to oxidize CO, an important reaction for environmental pollution abatement.

  16. Molecular water oxidation mechanisms followed by transition metals: state of the art.

    Science.gov (United States)

    Sala, Xavier; Maji, Somnath; Bofill, Roger; García-Antón, Jordi; Escriche, Lluís; Llobet, Antoni

    2014-02-18

    One clean alternative to fossil fuels would be to split water using sunlight. However, to achieve this goal, researchers still need to fully understand and control several key chemical reactions. One of them is the catalytic oxidation of water to molecular oxygen, which also occurs at the oxygen evolving center of photosystem II in green plants and algae. Despite its importance for biology and renewable energy, the mechanism of this reaction is not fully understood. Transition metal water oxidation catalysts in homogeneous media offer a superb platform for researchers to investigate and extract the crucial information to describe the different steps involved in this complex reaction accurately. The mechanistic information extracted at a molecular level allows researchers to understand both the factors that govern this reaction and the ones that derail the system to cause decomposition. As a result, rugged and efficient water oxidation catalysts with potential technological applications can be developed. In this Account, we discuss the current mechanistic understanding of the water oxidation reaction catalyzed by transition metals in the homogeneous phase, based on work developed in our laboratories and complemented by research from other groups. Rather than reviewing all of the catalysts described to date, we focus systematically on the several key elements and their rationale from molecules studied in homogeneous media. We organize these catalysts based on how the crucial oxygen-oxygen bond step takes place, whether via a water nucleophilic attack or via the interaction of two M-O units, rather than based on the nuclearity of the water oxidation catalysts. Furthermore we have used DFT methodology to characterize key intermediates and transition states. The combination of both theory and experiments has allowed us to get a complete view of the water oxidation cycle for the different catalysts studied. Finally, we also describe the various deactivation pathways for

  17. Method of isolation of traces of americium by using the +6 oxidation state properties

    International Nuclear Information System (INIS)

    Kwinta, Jean; Michel, Jean-Jacques

    1969-05-01

    The authors present a method to separate traces of americium from a solution containing fission products and actinides. This method comprises the following steps: firstly, the oxidation of americium at the +6 state by ammonium persulfate and carrying over of actinides and III and IV lanthanides by lanthanum fluoride; secondly, the reduction by hydrazine of the oxidized americium and carrying over of the reduced americium by lutetium fluoride; and thirdly, the americium-lutetium separation by selective extractions either with di 2 ethyl hexyl phosphoric acid, or by fractionated elution on an anionic resin column by a mixture of nitric acid and methanol [fr

  18. Superconducting state parameters of monovalent and polyvalent amorphous

    Energy Technology Data Exchange (ETDEWEB)

    Sonvane, Y. A., E-mail: yas@ashd.svnit.ac.in [Department of Applied Physics, S. V. National Institute of Technology, Surat 395 007, Gujarat (India); Patel, H. P., E-mail: patel.harshal2@gmail.com; Thakor, P. B., E-mail: pbthakor@rediffmail.com [Department of Physics, Veer Narmad South Gujarat University, Surat 395 007, Gujarat (India)

    2015-08-28

    In the present study deals, we have calculated superconducting state parameter (SSP) like electron-phonon coupling strength λ, coulomb pseudo potential, μ*, transition temperature Tc, isotope effect exponent α and effective interaction strength N{sub 0}V of monovalent (Li), divalent (Zn), trivalent (In) and tetravalent (Pb) amorphous. To carry out this work we have used our newly constructed model pseudo potential to describe electron ion interaction along with three different local field correction functions like Hartree, Taylor and Sarkar et al. The present results are found in good agreement with other available theoretical as well as experimental data.

  19. Diversity of Chemical Bonding and Oxidation States in MS4 Molecules of Group 8 Elements.

    Science.gov (United States)

    Huang, Wei; Jiang, Ning; Schwarz, W H Eugen; Yang, Ping; Li, Jun

    2017-08-04

    The geometric and electronic ground-state structures of 30 isomers of six MS 4 molecules (M=Group 8 metals Fe, Ru, Os, Hs, Sm, and Pu) have been studied by using quantum-chemical density functional theory and correlated wavefunction approaches. The MS 4 species were compared to analogous MO 4 species recently investigated (W. Huang, W.-H. Xu, W. H. E. Schwarz, J. Li, Inorg. Chem. 2016, 55, 4616). A metal oxidation state (MOS) with a high value of eight appeared in the low-spin singlet T d geometric species (Os,Hs)S 4 and (Ru,Os,Hs)O 4 , whereas a low MOS of two appeared in the high-spin septet D 2d species Fe(S 2 ) 2 and (slightly excited) metastable Fe(O 2 ) 2 . The ground states of all other molecules had intermediate MOS values, with S 2- , S 2 2- , S 2 1- (and O 2- , O 1- , O 2 2- , O 2 1- ) ligands bonded by ionic, covalent, and correlative contributions. The known tendencies toward lower MOS on going from oxides to sulfides, from Hs to Os to Ru, and from Pu to Sm, and the specific behavior of Fe, were found to arise from the different atomic orbital energies and radii of the (n-1)p core and (n-1)d and (n-2)f valence shells of the metal atoms in row n of the periodic table. The comparative results of the electronic and geometric structures of the MO 4 and MS 4 species provides insight into the periodicity of oxidation states and bonding. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Molecular cloning of a putative divalent-cation transporter gene as a new genetic marker for the identification of Lactobacillus brevis strains capable of growing in beer.

    Science.gov (United States)

    Hayashi, N; Ito, M; Horiike, S; Taguchi, H

    2001-05-01

    Random amplified polymorphic DNA (RAPD) PCR analysis of Lactobacillus brevis isolates from breweries revealed that one of the random primers could distinguish beer-spoilage strains of L. brevis from nonspoilage strains. The 1.1-kb DNA fragment amplified from all beer-spoilers included one open reading frame, termed hitA (hop-inducible cation transporter), which encodes an integral membrane protein with 11 putative trans-membrane domains and a binding protein-dependent transport signature of a non-ATP binding membrane transporter common to several prokaryotic and eukaryotic transporters. The hitA polypeptide is homologous to the natural resistance-associated macrophage protein (Nramp) family characterized as divalent-cation transport proteins in many prokaryotic and eukaryotic organisms. Northern blot analysis indicated that the hitA transcripts are expressed in cells cultivated in MRS broth supplemented with hop bitter compounds, which act as mobile-carrier ionophores, dissipating the trans-membrane pH gradient in bacteria sensitive to the hop bitter compounds by exchanging H+ for cellular divalent cations such as Mn2+. This suggests that the hitA gene products may play an important role in making the bacteria resistant to hop bitter compounds in beer by transporting metal ions such as Mn2+ into cells that no longer maintain the proton gradient.

  1. Electrocatalytic oxidation of methanol by the [Ru3O(OAc6(py2(CH3OH]3+cluster: improving the metal-ligand electron transfer by accessing the higher oxidation states of a multicentered system

    Directory of Open Access Journals (Sweden)

    Henrique E. Toma

    2010-01-01

    Full Text Available The [Ru3O(Ac6(py2(CH3OH]+ cluster provides an effective electrocatalytic species for the oxidation of methanol under mild conditions. This complex exhibits characteristic electrochemical waves at -1.02, 0.15 and 1.18 V, associated with the Ru3III,II,II/Ru3III,III,II/Ru 3III,III,III /Ru3IV,III,III successive redox couples, respectively. Above 1.7 V, formation of two RuIV centers enhances the 2-electron oxidation of the methanol ligand yielding formaldehyde, in agreement with the theoretical evolution of the HOMO levels as a function of the oxidation states. This work illustrates an important strategy to improve the efficiency of the oxidation catalysis, by using a multicentered redox catalyst and accessing its multiple higher oxidation states.

  2. Electronic, elastic and optical properties of divalent (R+2X) and trivalent (R+3X) rare earth monochalcogenides

    Science.gov (United States)

    Kumar, V.; Chandra, S.; Singh, J. K.

    2017-08-01

    Based on plasma oscillations theory of solids, simple relations have been proposed for the calculation of bond length, specific gravity, homopolar energy gap, heteropolar energy gap, average energy gap, crystal ionicity, bulk modulus, electronic polarizability and dielectric constant of rare earth divalent R+2X and trivalent R+3X monochalcogenides. The specific gravity of nine R+2X, twenty R+3X, and bulk modulus of twenty R+3X monochalcogenides have been calculated for the first time. The calculated values of all parameters are compared with the available experimental and the reported values. A fairly good agreement has been obtained between them. The average percentage deviation of two parameters: bulk modulus and electronic polarizability for which experimental data are known, have also been calculated and found to be better than the earlier correlations.

  3. Synthesis and characterization of divalent metal complexes with ligand derived from the reaction of 3-aminopyridine and biacetyl

    Directory of Open Access Journals (Sweden)

    RAMESH KUMAR

    2006-09-01

    Full Text Available Divalent cobalt, nickel and copper salts reacted in situ with 3-aminopyridine and biacetyl to form complexes of the type: [M(Ap2biac2X2], where Ap2biac is the ligand and X=Cl, Br, NO3 or NCS. The complexes were analysed and characterized as distorted octahedral by conductance, molecular weight, magnetic, electronic and IR spectral studies. The electronic spectra were interpreted and tentative aassignments made. The infrared spectral studies revealed that two molecules of 3-aminopyridine were joined by molecules of biacetyl through a two carbon atom bridge and that the ligand coordinated through azomethine nitrogen atoms, whereas the pyridine nitrogen does not participate in the coordination. In the far infrared spectra, various metal–ligand vibrations were observed and are discussed.

  4. Photochemical process of divalent germanium responsible for photorefractive index change in GeO2-SiO2 glasses.

    Science.gov (United States)

    Sakoh, Akifumi; Takahashi, Masahide; Yoko, Toshinobu; Nishii, Junji; Nishiyama, Hiroaki; Miyamoto, Isamu

    2003-10-20

    The photoluminescence spectra of the divalent Ge (Ge2+) center in GeO2-SiO2 glasses with different photosensitivities were investigated by means of excitation-emission energy mapping. The ultraviolet light induced photorefractivity has been correlated with the local structure around the Ge2+ centers. The glasses with a larger photorefractivity tended to exhibit a greater band broadening of the singlet-singlet transition on the higher excitation energy side accompanied by an increase in the Stokes shifts. This strongly suggests the existence of highly photosensitive Ge2+ centers with higher excitation energies. It is also found that the introduction of a hydroxyl group or boron species in GeO2-SiO2 glasses under appropriate conditions modifies the local environment of Ge2+ leading to an enhanced photorefractivity.

  5. Introducing a Simple Equation to Express Oxidation States as an Alternative to Using Rules Associated with Words Alone

    Science.gov (United States)

    Minkiewicz, Piotr; Darewicz, Malgorzata; Iwaniak, Anna

    2018-01-01

    A simple equation to calculate the oxidation states (oxidation numbers) of individual atoms in molecules and ions may be introduced instead of rules associated with words alone. The equation includes two of three categories of bonds, classified as proposed by Goodstein: number of bonds with more electronegative atoms and number of bonds with less…

  6. The Effect of Precursor Ligands and Oxidation State in the Synthesis of Bimetallic Nano-Alloys

    KAUST Repository

    LaGrow, Alec P.; Knudsen, Kristian; AlYami, Noktan; Anjum, Dalaver H.; Bakr, Osman

    2015-01-01

    of variables on the characteristics of bimetallic nanomaterials are not completely understood. In this study, we used a continuous-flow synthetic strategy to explore the effects of the ligands and the oxidation state of a metal precursor in a shape

  7. Probing the transition state region in catalytic CO oxidation on Ru

    Energy Technology Data Exchange (ETDEWEB)

    Ostrom, H. [Stockholm Univ. (Sweden); Oberg, H. [Stockholm Univ. (Sweden); Xin, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); LaRue, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Beye, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Dell' Angela, M. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); Gladh, J. [Stockholm Univ. (Sweden); Ng, M. L. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Sellberg, J. A. [Stockholm Univ. (Sweden); SLAC National Accelerator Lab., Menlo Park, CA (United States); Kaya, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Mercurio, G. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); Nordlund, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hantschmann, M. [Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Hieke, F. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); Kuhn, D. [Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Schlotter, W. F. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Dakovski, G. L. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Turner, J. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Minitti, M. P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Mitra, A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Moeller, S. P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fohlisch, A. [Helmholtz Zentrum Berlin fur Materialien und Energie GmbH, Berlin (Germany); Univ. Potsdam, Potsdam (Germany); Wolf, M. [Fritz-Haber Institute of the Max-Planck-Society, Berlin (Germany); Wurth, W. [Univ. of Hamburg and Center for Free Electron Laser Science, Hamburg (Germany); DESY Photon Science, Hamburg (Germany); Persson, M. [The Univ. of Liverpool, Liverpool (United Kingdom); Norskov, J. K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States); Abild-Pedersen, F. [Stanford Univ., Stanford, CA (United States); Ogasawara, H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Pettersson, L. G. M. [Stockholm Univ. (Sweden); Nilsson, A. [Stockholm Univ. (Sweden); SLAC National Accelerator Lab., Menlo Park, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-02-12

    Femtosecond x-ray laser pulses are used to probe the CO oxidation reaction on ruthenium (Ru) initiated by an optical laser pulse. On a time scale of a few hundred femtoseconds, the optical laser pulse excites motions of CO and O on the surface, allowing the reactants to collide, and, with a transient close to a picosecond (ps), new electronic states appear in the O K-edge x-ray absorption spectrum. Density functional theory calculations indicate that these result from changes in the adsorption site and bond formation between CO and O with a distribution of OC–O bond lengths close to the transition state (TS). After 1 ps, 10% of the CO populate the TS region, which is consistent with predictions based on a quantum oscillator model.

  8. A Semi-Analytical Extraction Method for Interface and Bulk Density of States in Metal Oxide Thin-Film Transistors.

    Science.gov (United States)

    Chen, Weifeng; Wu, Weijing; Zhou, Lei; Xu, Miao; Wang, Lei; Ning, Honglong; Peng, Junbiao

    2018-03-11

    A semi-analytical extraction method of interface and bulk density of states (DOS) is proposed by using the low-frequency capacitance-voltage characteristics and current-voltage characteristics of indium zinc oxide thin-film transistors (IZO TFTs). In this work, an exponential potential distribution along the depth direction of the active layer is assumed and confirmed by numerical solution of Poisson's equation followed by device simulation. The interface DOS is obtained as a superposition of constant deep states and exponential tail states. Moreover, it is shown that the bulk DOS may be represented by the superposition of exponential deep states and exponential tail states. The extracted values of bulk DOS and interface DOS are further verified by comparing the measured transfer and output characteristics of IZO TFTs with the simulation results by a 2D device simulator ATLAS (Silvaco). As a result, the proposed extraction method may be useful for diagnosing and characterising metal oxide TFTs since it is fast to extract interface and bulk density of states (DOS) simultaneously.

  9. A Semi-Analytical Extraction Method for Interface and Bulk Density of States in Metal Oxide Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Weifeng Chen

    2018-03-01

    Full Text Available A semi-analytical extraction method of interface and bulk density of states (DOS is proposed by using the low-frequency capacitance–voltage characteristics and current–voltage characteristics of indium zinc oxide thin-film transistors (IZO TFTs. In this work, an exponential potential distribution along the depth direction of the active layer is assumed and confirmed by numerical solution of Poisson’s equation followed by device simulation. The interface DOS is obtained as a superposition of constant deep states and exponential tail states. Moreover, it is shown that the bulk DOS may be represented by the superposition of exponential deep states and exponential tail states. The extracted values of bulk DOS and interface DOS are further verified by comparing the measured transfer and output characteristics of IZO TFTs with the simulation results by a 2D device simulator ATLAS (Silvaco. As a result, the proposed extraction method may be useful for diagnosing and characterising metal oxide TFTs since it is fast to extract interface and bulk density of states (DOS simultaneously.

  10. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors

    Science.gov (United States)

    Qifeng Zheng; Zhiyong Cai; Zhenqiang Ma; Shaoqin Gong

    2015-01-01

    A novel type of highly flexible and all-solid-state supercapacitor that uses cellulose nanofibril (CNF)/reduced graphene oxide (RGO)/carbon nanotube (CNT) hybrid aerogels as electrodes and H2SO4 poly (vinyl alcohol) PVA gel as the electrolyte was developed and is reported here. These flexible solid-state supercapacitors...

  11. Insights into gelation kinetics and gel front migration in cation-induced polysaccharide hydrogels by viscoelastic and turbidity measurements: Effect of the nature of divalent cations.

    Science.gov (United States)

    Huynh, Uyen T D; Chambin, Odile; du Poset, Aline Maire; Assifaoui, Ali

    2018-06-15

    Polysaccharide-based hydrogels were prepared by the diffusion of various divalent cations (X 2+ ) into the polygalacturonate (polyGal) solution through a dialysis membrane. The diffusion of various divalent cations (Mg 2+ , Ca 2+ , Zn 2+ and Ba 2+ ) was investigated. The polyGal gel growth was studied as a function of the initial cation concentration by both viscoelastic and turbidity measurements. We have demonstrated for the first time that the determination of the spatiotemporal variation of turbidity during the gelation process allowed to study the gel front migration. For Ca-polyGal, Zn-polyGal and Ba-polyGal, the gel front migration was characterized by the presence of a peak at the sol/gel interface. This peak was not observed in the case of Mg-polyGal where the gel was not formed. The apparent diffusion coefficient of the gel front (D app ) which was calculated from the evolution of this peak increased when the initial cation concentration was increased. Moreover, we have suggested a gelation mechanism based on the presence of a threshold molar ratio R* (=[X 2+ ]/[Galacturonic unit]) in which some point-like crosslinks are precursors of the formation of dimers and multimers inducing the contraction of the gel and thus the formation of the gel front. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Synchrotron Micro-XANES Measurements of Vanadium Oxidation State in Glasses as a Function of Oxygen Fugacity: Experimental Calibration of Data Relevant to Partition Coefficient Determination

    Science.gov (United States)

    Delaney, J. S.; Sutton, S. R.; Newville, M.; Jones, J. H.; Hanson, B.; Dyar, M. D.; Schreiber, H.

    2000-01-01

    Oxidation state microanalyses for V in glass have been made by calibrating XANES spectral features with optical spectroscopic measurements. The oxidation state change with fugacity of O2 will strongly influence partitioning results.

  13. Oxidation under electron bombardment. A tool for studying the initial states of silicon oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Carriere, B.; Deville, J.P.; El Maachi, A.

    1987-06-01

    The exciting beam of an Auger electron spectrometer has been used to monitor the oxidation of silicon single crystals at room temperature and very low pressures of oxygen (approx. 10/sup -7/ Torr). This process allows us to build ultra-thin layers of silica on silicon (down to 30 A) but it is mostly used to investigate the mechanisms of the initial stages of oxidation. Auger spectra recorded continuously during the oxidation process provide information on (1) the nature of the silicon-oxygen chemical bonds which are interpreted through fine structure in the Auger peak, and (2) the kinetics of oxide formation which are deduced from curves of Auger signal versus time. An account is given of the contribution of these Auger studies to the description of the intermediate oxide layer during the reaction between silicon and oxygen and the influence of surface structural disorder, induced mainly by argon-ion bombardment, is discussed in terms of reactivity and oxide coverage.

  14. Immobilization of ethylenesulfide on babassu coconut epicarp and mesocarp for divalent cation sorption

    International Nuclear Information System (INIS)

    Santana, Sirlane A.A.; Vieira, Adriana P.; Silva Filho, Edson C. da; Melo, Julio C.P.; Airoldi, Claudio

    2010-01-01

    A new synthetic methodology route consisted in reacting the natural babassu coconut mesocarp (BCM) and babassu coconut epicarp (BCE) with ethylenesufide, for adding basic sulfur centers in pendant chains that possess high potential activity for coordinating divalent cations from aqueous solution. All biomaterials were characterized by elemental analysis, infrared (IR), 13 C NMR and thermogravimetry. The sulfur elemental analysis gave 2.00 ± 0.05 and 8.67 ± 0.01% for BCES and BCMS, which correspond to 0.60 ± 0.01 and 2.71 ± 0.01 mmol of this element per each gram of BCE and BCM, to confer a degree of functionalization of 20.2 ± 0.07 and 86.7 ± 0.01 mg g -1 . This synthesis enabled from IR weak SH band at 2544 cm -1 due to the incorporation of the reagent into the structure. The basic centers favor copper sorption with increasing pH from 2 to 6 observed by a batchwise methodology and the data obtained from the chosen pH 6 were adjusted to Freundlich and Langmuir models, favoring fit for the latter equation. The kinetics of sorption was established at 30 min for both biopolymers with a pseudo-second-order model.

  15. Low-cost label-free electrical detection of artificial DNA nanostructures using solution-processed oxide thin-film transistors.

    Science.gov (United States)

    Kim, Si Joon; Jung, Joohye; Lee, Keun Woo; Yoon, Doo Hyun; Jung, Tae Soo; Dugasani, Sreekantha Reddy; Park, Sung Ha; Kim, Hyun Jae

    2013-11-13

    A high-sensitivity, label-free method for detecting deoxyribonucleic acid (DNA) using solution-processed oxide thin-film transistors (TFTs) was developed. Double-crossover (DX) DNA nanostructures with different concentrations of divalent Cu ion (Cu(2+)) were immobilized on an In-Ga-Zn-O (IGZO) back-channel surface, which changed the electrical performance of the IGZO TFTs. The detection mechanism of the IGZO TFT-based DNA biosensor is attributed to electron trapping and electrostatic interactions caused by negatively charged phosphate groups on the DNA backbone. Furthermore, Cu(2+) in DX DNA nanostructures generates a current path when a gate bias is applied. The direct effect on the electrical response implies that solution-processed IGZO TFTs could be used to realize low-cost and high-sensitivity DNA biosensors.

  16. Quantum confinement-induced tunable exciton states in graphene oxide.

    Science.gov (United States)

    Lee, Dongwook; Seo, Jiwon; Zhu, Xi; Lee, Jiyoul; Shin, Hyeon-Jin; Cole, Jacqueline M; Shin, Taeho; Lee, Jaichan; Lee, Hangil; Su, Haibin

    2013-01-01

    Graphene oxide has recently been considered to be a potential replacement for cadmium-based quantum dots due to its expected high fluorescence. Although previously reported, the origin of the luminescence in graphene oxide is still controversial. Here, we report the presence of core/valence excitons in graphene-based materials, a basic ingredient for optical devices, induced by quantum confinement. Electron confinement in the unreacted graphitic regions of graphene oxide was probed by high resolution X-ray absorption near edge structure spectroscopy and first-principles calculations. Using experiments and simulations, we were able to tune the core/valence exciton energy by manipulating the size of graphitic regions through the degree of oxidation. The binding energy of an exciton in highly oxidized graphene oxide is similar to that in organic electroluminescent materials. These results open the possibility of graphene oxide-based optoelectronic device technology.

  17. Adsorption preference for divalent metal ions by Lactobacillus casei JCM1134.

    Science.gov (United States)

    Endo, Rin; Aoyagi, Hideki

    2018-05-09

    The removal of harmful metals from the intestinal environment can be inhibited by various ions which can interfere with the adsorption of target metal ions. Therefore, it is important to understand the ion selectivity and adsorption mechanism of the adsorbent. In this study, we estimated the adsorption properties of Lactobacillus casei JCM1134 by analyzing the correlation between its maximum adsorption level (q max ) for seven metals and their ion characteristics. Some metal ions showed altered adsorption levels by L. casei JCM1134 as culture growth time increased. Although it was impossible to identify specific adsorption components, adsorption of Sr and Ba may depend on capsular polysaccharide levels. The maximum adsorption of L. casei JCM1134 (9 h of growth in culture) for divalent metal ions was in the following order: Cu 2+  > Ba 2+  > Sr 2+  > Cd 2+  > Co 2+  > Mg 2+  > Ni 2+ . The q max showed a high positive correlation with the ionic radius. Because this tendency is similar to adsorption occurring through an ion exchange mechanism, it was inferred that an ion exchange mechanism contributed greatly to adsorption by L. casei JCM1134. Because the decrease in the amount of adsorption due to prolonged culture time was remarkable for metals with a large ion radius, it is likely that the adsorption components involved in the ion exchange mechanism decomposed over time. These results and analytical concept may be helpful for designing means to remove harmful metals from the intestinal tract.

  18. Actinide Oxidation State and O/M Ratio in Hypostoichiometric Uranium-Plutonium-Americium U0.750Pu0.246Am0.004O2-x Mixed Oxides.

    Science.gov (United States)

    Vauchy, Romain; Belin, Renaud C; Robisson, Anne-Charlotte; Lebreton, Florent; Aufore, Laurence; Scheinost, Andreas C; Martin, Philippe M

    2016-03-07

    Innovative americium-bearing uranium-plutonium mixed oxides U1-yPuyO2-x are envisioned as nuclear fuel for sodium-cooled fast neutron reactors (SFRs). The oxygen-to-metal (O/M) ratio, directly related to the oxidation state of cations, affects many of the fuel properties. Thus, a thorough knowledge of its variation with the sintering conditions is essential. The aim of this work is to follow the oxidation state of uranium, plutonium, and americium, and so the O/M ratio, in U0.750Pu0.246Am0.004O2-x samples sintered for 4 h at 2023 K in various Ar + 5% H2 + z vpm H2O (z = ∼ 15, ∼ 90, and ∼ 200) gas mixtures. The O/M ratios were determined by gravimetry, XAS, and XRD and evidenced a partial oxidation of the samples at room temperature. Finally, by comparing XANES and EXAFS results to that of a previous study, we demonstrate that the presence of uranium does not influence the interactions between americium and plutonium and that the differences in the O/M ratio between the investigated conditions is controlled by the reduction of plutonium. We also discuss the role of the homogeneity of cation distribution, as determined by EPMA, on the mechanisms involved in the reduction process.

  19. General regularity of the oxidation potential variations and high oxidation states in the second half of the actinide series

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Vokhmin, V.G.; Ionova, G.V.; Pershina, V.G.

    1984-01-01

    Oxidation potentials (OP) PHI(4/3), PHI(5/3), PHI(6/3), PHI(5/4) and PHI(6/5) are calculated for the members of the actinide series. A semiemperic relation combining OP with explicit terms for ground level energies of actinide ions in Russell-Saunders approximation as well as known values of formal OP relative to the normal hydrogen electrode potential are used as an extrapolation function. It is shown that an increase of PHI(4/3) OP which occurs after Bsub(k) explains a low stability of the oxidation state 4 in solutions for actinides of the second half of the series. PHI(5/3) and PHI(5/4) OP in the section starting with Cm have the minimum at Cf. PHI(6/3) OP for Cm, Bk, Cf and Es are practically the same but for Cm, Bk and Es they are smaller than PHI(5/3) OP. A principle possibility of Bk(6), Cf(6) and Es(6) preparation is shown

  20. Quantitative evaluation of the effect of H2O degassing on the oxidation state of magmas

    Science.gov (United States)

    Lange, R. A.; Waters, L.

    2014-12-01

    The extent to which degassing of the H2O component affects the oxidation state of hydrous magmas is widely debated. Several researchers have examined how degassing of mixed H-C-O-S-Cl fluids may change the Fe3+/FeT ratio of various magmas, whereas our focus is on the H2O component. There are two ways that degassing of H2O by itself may cause oxidation: (1) the reaction: H2O (melt) + 2FeO (melt) = H2 (fluid) + Fe2O3 (melt), and/or (2) if dissolved water preferentially enhances the activity of ferrous vs. ferric iron in magmatic liquids. In this study, a comparison is made between the pre-eruptive oxidation states of 14 crystal-poor, jet-black obsidian samples (obtained from two Fe-Ti oxides) and their post-eruptive values (analyzed with the Wilson 1960 titration method tested against USGS standards). The obsidians are from Medicine Lake (CA), Long Valley (CA), and the western Mexican arc; all have low FeOT (1.1-2.1 wt%), rendering their Fe2+/Fe3+ ratios highly sensitive to the possible effects of substantial H2O degassing. The Fe-Ti oxide thermometer/oxybarometer of Ghiorso and Evans, (2008) gave temperatures for the 14 samples that range for 720 to 940°C and ΔNNO values of -0.9 to +1.4. With temperature known, the plagioclase-liquid hygrometer was applied and show that ≤ 6.5 wt% H2O was dissolved in the melts prior to eruption. In addition, pre-eruptive Cl and S concentrations were constrained on the basis of apatite analyses (Webster et al., 2009) and sulfur concentrations needed for saturation with pyrrhotite (Clemente et al., 2004), respectively. Maximum pre-eruptive chlorine and sulfur contents are 6000 and 200 ppm, respectively. After eruption, the rhyolites lost nearly all of their volatiles. Our results indicate no detectable change between pre- and post-eruptive Fe2+ concentrations, with an average deviation of ± 0.1 wt % FeO. Although degassing of large concentrations of S and/or Cl may affect the oxidation state of magmas, at the pre-eruptive levels

  1. Impact of A cation size of double perovskite A2AlTaO6 (A = Ca, Sr, Ba) on dielectric and catalytic properties

    International Nuclear Information System (INIS)

    Gorodea, I.; Goanta, M.; Toma, M.

    2015-01-01

    Highlights: • Synthesis by solid state reaction of the double perovskite A 2 AlTaO 6 , where A = Ca, Sr and Ba. • The role of different A-site cations on their synthesis and structures was investigated. • The influence of the divalent A-site cations on the dielectric properties was evaluated by resistivity measurements. • Catalytic properties were evaluated in water splitting process, under gamma-rays irradiation emitted by a 60 Co source, for the first time. - Abstract: Double perovskite-type oxide A 2 AlTaO 6 materials, where A = Ca, Sr and Ba, were prepared using conventional solid state reaction. The role of different A-site cations on their synthesis, structures, dielectric and catalytic properties was investigated. Double perovskite oxide structures were evaluated using X-ray diffraction (XRD). As the average cation size decreases, the crystallographic structure at room temperature evolves from cubic to monoclinic. The influence of the nature of the divalent A-site cations on the dielectric properties was evaluated by resistivity measurements in the frequency range of 10–10 6 Hz. It can be found that relative permittivity and dielectric loss regularly changed with A cation size. Catalytic properties of the obtained compounds were evaluated in water splitting process, under gamma-rays irradiation emitted by a 60 Co source for the first time. From experimental data it was noticed that the double perovskite Ca 2 AlTaO 6 had a higher catalytic effect

  2. Oxidative Stress State Is Associated with Left Ventricular Mechanics Changes, Measured by Speckle Tracking in Essential Hypertensive Patients

    Directory of Open Access Journals (Sweden)

    Luis Antonio Moreno-Ruíz

    2015-01-01

    Full Text Available The oxidative stress state is characterized by an increase in oxygen reactive species that overwhelms the antioxidant defense; we do not know if these pathological changes are correlated with alterations in left ventricular mechanics. The aim was correlating the oxidative stress state with the left ventricular global longitudinal strain (GLS and the left ventricular end diastolic pressure (LVEDP. Twenty-five patients with essential hypertension and 25 controls paired by age and gender were studied. All of the participants were subjected to echocardiography and biochemical determination of oxidative stress markers. The hypertensive patients, compared with control subjects, had significantly (p<0.05 higher levels of oxidized proteins (5.03±1.05 versus 4.06±0.63 nmol/mg, lower levels of extracellular superoxide dismutase (EC-SOD activity (0.045±0.02 versus 0.082±0.02 U/mg, higher LVEDP (16.2±4.5 versus 11.3±1.6 mm Hg, and lower GLS (−12% versus −16%. Both groups had preserved ejection fraction and the results showed a positive correlation of oxidized proteins with GLS (r=0.386, p=0.006 and LVEDP (r=0.389, p=0.005; we also found a negative correlation of EC-SOD activity with GLS (r=-0.404, p=0.004 and LVEDP (r=-0.347, p=0.014.

  3. Chemical states of fission products in irradiated uranium-plutonium mixed oxide fuel

    International Nuclear Information System (INIS)

    Kurosaki, Ken; Uno, Masayoshi; Yamanaka, Shinsuke

    1999-01-01

    The chemical states of fission products (FPs) in irradiated uranium-plutonium mixed oxide (MOX) fuel for the light water reactor (LWR) were estimated by thermodynamic equilibrium calculations on system of fuel and FPs by using ChemSage program. A stoichiometric MOX containing 6.1 wt. percent PuO 2 was taken as a loading fuel. The variation of chemical states of FPs was calculated as a function of oxygen potential. Some pieces of information obtained by the calculation were compared with the results of the post-irradiation examination (PIE) of UO 2 fuel. It was confirmed that the multicomponent and multiphase thermodynamic equilibrium calculation between fuel and FPs system was an effective tool for understanding the behavior of FPs in fuel. (author)

  4. Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries.

    Science.gov (United States)

    Yabuuchi, Naoaki; Nakayama, Masanobu; Takeuchi, Mitsue; Komaba, Shinichi; Hashimoto, Yu; Mukai, Takahiro; Shiiba, Hiromasa; Sato, Kei; Kobayashi, Yuki; Nakao, Aiko; Yonemura, Masao; Yamanaka, Keisuke; Mitsuhara, Kei; Ohta, Toshiaki

    2016-12-23

    Further increase in energy density of lithium batteries is needed for zero emission vehicles. However, energy density is restricted by unavoidable theoretical limits for positive electrodes used in commercial applications. One possibility towards energy densities exceeding these limits is to utilize anion (oxide ion) redox, instead of classical transition metal redox. Nevertheless, origin of activation of the oxide ion and its stabilization mechanism are not fully understood. Here we demonstrate that the suppression of formation of superoxide-like species on lithium extraction results in reversible redox for oxide ions, which is stabilized by the presence of relatively less covalent character of Mn 4+ with oxide ions without the sacrifice of electronic conductivity. On the basis of these findings, we report an electrode material, whose metallic constituents consist only of 3d transition metal elements. The material delivers a reversible capacity of 300 mAh g -1 based on solid-state redox reaction of oxide ions.

  5. Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries

    Science.gov (United States)

    Yabuuchi, Naoaki; Nakayama, Masanobu; Takeuchi, Mitsue; Komaba, Shinichi; Hashimoto, Yu; Mukai, Takahiro; Shiiba, Hiromasa; Sato, Kei; Kobayashi, Yuki; Nakao, Aiko; Yonemura, Masao; Yamanaka, Keisuke; Mitsuhara, Kei; Ohta, Toshiaki

    2016-01-01

    Further increase in energy density of lithium batteries is needed for zero emission vehicles. However, energy density is restricted by unavoidable theoretical limits for positive electrodes used in commercial applications. One possibility towards energy densities exceeding these limits is to utilize anion (oxide ion) redox, instead of classical transition metal redox. Nevertheless, origin of activation of the oxide ion and its stabilization mechanism are not fully understood. Here we demonstrate that the suppression of formation of superoxide-like species on lithium extraction results in reversible redox for oxide ions, which is stabilized by the presence of relatively less covalent character of Mn4+ with oxide ions without the sacrifice of electronic conductivity. On the basis of these findings, we report an electrode material, whose metallic constituents consist only of 3d transition metal elements. The material delivers a reversible capacity of 300 mAh g−1 based on solid-state redox reaction of oxide ions. PMID:28008955

  6. Degradation of S-nitrosocysteine in vascular tissue homogenates: role of divalent ions.

    Science.gov (United States)

    Kostka, P; Xu, B; Skiles, E H

    1999-04-01

    The objective of the study was to inquire about the mechanism(s) involved in the catabolism of S-nitrosothiols by vascular tissue under in vitro conditions. Incubations of S-nitrosocysteine (CYSNO) or S-nitrosoglutathione (GSNO) with homogenates isolated from porcine aortic smooth muscle resulted in only a marginal depletion of S-nitrosothiols from the reaction mixtures, which became statistically significant at relatively high concentrations of homogenate (> or =300 microg of protein/ml). Degradation of CYSNO (but not GSNO) was found to be potentiated several-fold by millimolar concentrations of either Mg2+ or Ca2+ ions. Under such conditions, the degradation of CYSNO was significantly suppressed by the removal of proteins by ultrafiltration (>80% inhibition) and eliminated completely by the alkylation of thiol groups with 1 mM N-ethylmaleimide. The potentiating effect of divalent ions on the degradation of CYSNO was insensitive to 0.1 mM neocuproine (selective chelator of Cu+ ions), although it was enhanced in the presence of 0.1 mM o-phenanthroline (selective chelator of Fe2+ ions). It is concluded that the degradation of CYSNO by tissue homogenate involves the interaction with protein-bound sulfhydryl groups, which is stimulated by Mg2+ or Ca2+ ions. The potentiating effect of o-phenanthroline suggests that the liberation of the nitrosonium moiety in such a process may be accompanied by its transfer to sulfur center(s) by transient formation of dinitrosyl-iron complexes.

  7. Single Crystal Growth of Pure Co3+ Oxidation State Material LaSrCoO4

    Directory of Open Access Journals (Sweden)

    Hanjie Guo

    2016-08-01

    Full Text Available We report on the single crystal growth of the single-layer perovskite cobaltate LaSrCoO4 that was grown by the optical floating zone method using high oxygen pressures. Phase purity and single crystallinity were confirmed by X-ray diffraction techniques. The pure Co3+ oxidation state was confirmed by X-ray absorbtion spectroscopy measurements. A transition to a spin glass state is observed at ∼7 K in magnetic susceptibility and specific heat measurements.

  8. Characteristic of metallic state preperties of mendelevium and other actinoids by thermochcomatography

    International Nuclear Information System (INIS)

    Hubener, S.; Zvara, I.

    1982-01-01

    The adsorption of the heavy actinoids Cf, Es, Fm, and Md on polycrystalline titanium and molybdenum has been studied by thermochromatography in comparison with several well-known metallic elements, in trace amounts. The data lead us to suggest that Es, Fm, and Md are divalent in the metallic state and, moreover, that the position of their f energy levels relativg to the Fermi-energy is lower than in the cases of Cf and Yb. A correlation was found between the experimental enthalpies of adsorption of the heavy actinoids and their predicted enthalpies of sublimation

  9. Rapid Synthesis of Lead Oxide Nanorods by One-step Solid-state Chemical Reaction at Room Temperature

    Institute of Scientific and Technical Information of China (English)

    CAO, Ya-Li(曹亚丽); JIA, Dian-Zeng(贾殿赠); LIU, Lang(刘浪); LUO, Jian-Min(骆建敏)

    2004-01-01

    A simple and facile method was reported to synthesize lead oxide nanorods. Nanorods of lead oxide were obtained directly from grinding solid metal salt and sodium hydroxide in agate mortar with the assistance of a suitable nonionic surfactant in only one step, which is different from the result of hydroxide in solution. The product has been characterized by XRD, TEM and SEM. The formation mechanism of rod-like morphology is discussed and the surfactant plays an important soft-template role in modifying the interface of solid-state reaction and according process of rod-formation.

  10. Inhibition of Na(+) -K+ pump activity by divalent cations in intact peritoneal mast cells of the rat

    DEFF Research Database (Denmark)

    Knudsen, T; Berthelsen, Carsten; Johansen, Torben

    1990-01-01

    1. The inhibition by the divalent cations magnesium, barium and strontium and the trivalent ion lanthanum of the Na(+) -K+ pump in the plasma membrane of rat peritoneal mast cells was studied in pure mast cell populations by measurement of the ouabain-sensitive uptake of the radioactive potassium...... or more, but no decrease was observed after 2 min incubation when the cells are supposed to be loaded with sodium due to the cell isolation procedure. 3. Barium and strontium caused concentration-dependent decreases in the ouabain-sensitive K(+) -(86Rb+) -uptake of the cells but the ouabain......-resistant uptake was not changed. Half maximum decrease in the ouabain-sensitive K+(86Rb+)-uptake was observed with 1.8 mM magnesium, 1.2mM barium and 0.7 mM strontium. 4. The trivalent ion lanthanum blocked almost completely the ouabain-sensitive K+(86Rb+)-uptake at a concentration of 1 microM as does 1 m...

  11. Low oxidation state aluminum-containing cluster anions: Cp{sup ∗}Al{sub n}H{sup −}, n = 1–3

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinxing; Ganteför, Gerd; Bowen, Kit, E-mail: AKandalam@wcupa.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Eichhorn, Bryan [Department of Chemistry, University of Maryland, College Park, Maryland 20742 (United States); Mayo, Dennis [EOD Technology Division, Naval Surface Warfare Center, Indian Head, Maryland 20640 (United States); Sawyer, William H.; Gill, Ann F.; Kandalam, Anil K., E-mail: AKandalam@wcupa.edu, E-mail: kbowen@jhu.edu [Department of Physics, West Chester University of PA, West Chester, Pennsylvania 19383 (United States); Schnöckel, Hansgeorg [Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany)

    2016-08-21

    Three new, low oxidation state, aluminum-containing cluster anions, Cp*Al{sub n}H{sup −}, n = 1–3, were prepared via reactions between aluminum hydride cluster anions, Al{sub n}H{sub m}{sup −}, and Cp*H ligands. These were characterized by mass spectrometry, anion photoelectron spectroscopy, and density functional theory based calculations. Agreement between the experimentally and theoretically determined vertical detachment energies and adiabatic detachment energies validated the computed geometrical structures. Reactions between aluminum hydride cluster anions and ligands provide a new avenue for discovering low oxidation state, ligated aluminum clusters.

  12. Long-living positron and positronium states in zeolites and microcrystalline oxides

    International Nuclear Information System (INIS)

    Kajcsos, Zs.; Liszkay, L.; Varga, L.; Lohonyai, L.; Lazar, K.

    1995-01-01

    Positron annihilation (PA) investigation were performed on zeolites (X, Y and ZSM-5) and on microcrystalline MgO, Al 2 O 3 and SiO 2 , providing long lifetime components attributed to o-Ps atoms. In addition to the positron lifetime (LT) measurements, the energy distribution (ED) of the annihilation gamma radiation spectrum was recorded in the 30 keV - 1.5 MeV range for different samples and was compared to reference distributions for Si and GaAs samples, where no long-living Ps states are formed. Apart from the strong correlation with the water content in the samples, the positron data collected testify much more pronounced positronium hosting features for powders of the mentioned oxides than for zeolites. Positron LT spectroscopy combined with recording of the ED of the annihilation radiation provides reliable information on the forming of long living 3γ states. (author) 15 refs.; 4 figs

  13. SEPARATION OF EUROPIUM FROM OTHER LANTHANIDE RAE EARTHS BY SOLVENT EXTRACTION

    Science.gov (United States)

    Peppard, D.F.; Horwitz, E.P.; Mason, G.W.

    1963-02-12

    This patent deals with a process of separating europium from other lanthanides present in aqueous hydrochloric or sulfuric acid solutions. The europium is selectively reduced to the divalent state with a divalent chromium salt formed in situ from chromium(III) salt plus zinc amalgam. The other trivalent lanthanides are then extracted away from the divalent europium with a nitrogen-flushed phosphoric acid ester or a phosphonic acid ester. (AEC)

  14. Structural oxidation state studies of the manganese cluster in the oxygen evolving complex of photosystem II

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Wenchuan [Univ. of California, Berkeley, CA (United States)

    1994-11-01

    X-ray absorption spectroscopy (XAS) was performed on Photosystem II (PSII)-enriched membranes prepared from spinach to explore: (1) the correlation between structure and magnetic spin state of the Mn cluster in the oxygen evolving complex (OEC) in the S2 state; and (2) the oxidation state changes of the Mn cluster in the flash-induced S-states. The structure of the Mn cluster in the S2 state with the g~4 electron paramagnetic resonance (EPR) signal (S2-g4 state) was compared with that in the S2 state with multiline signal (S2-MLS state) and the S1 state. The S2-g4 state has a higher XAS inflection point energy than that of the S1 state, indicating the oxidation of Mn in the advance from the S1 to the S2-g4 state. Differences in the edge shape and in the extended X-ray absorption fine structure (EXAFS) show that the structure of the Mn cluster in the S2-g4 state is different from that in the S2-MLS or the S1 state. In the S2-g4 state, the second shell of backscatterers from the Mn absorber contains two Mn-Mn distances of 2.73 Å and 2.85 Å. Very little distance disorder exists in the second shell of the S1 or S2-MLS states. The third shell of the S2-g4 state at about 3.3 Å also contains increased heterogeneity relative to that of the S2-MLS or the S1 state. Various S-states were prepared at room-temperature by saturating, single-turnover flashes. The flash-dependent oscillation in the amplitude of the MLS was used to characterize the S-state composition and to construct "pure" S-state Mn K-edge spectra. The edge position shifts to higher energy by 1.8 eV upon the S1 → S2 transition.

  15. Oxidation state of sulfur, iron and tin at the surface of float glasses

    International Nuclear Information System (INIS)

    Lagarde, P; Flank, A-M; Jupille, J; Montigaud, H

    2009-01-01

    Sulfur is an important element of glasses, not because of its amount, always very low (less than 0.4 % in weight of SO 3 ), but because of its role since it actively participates to the refinement process and, combined to other elements, it can be responsible for the coloration of the glass. Iron is also of a major importance in most of the glasses. In the case of the float glass, the two faces, because of the fabrication process, are different in terms of composition (presence of Sn for one face) and also in terms of oxidation state of these minority elements (Fe, Sn, S). There should be a subtle interplay between the concentrations and the oxidation states of these different minority elements, and anyway these variations occur over a thickness of the order of few micrometers below the surface. Using the high intensity and the focusing properties (3 x 3 μm 2 ) of the x-ray beam from the Lucia beamline, we have therefore studied the speciation of iron and sulfur near the face of a float glass in relation with the behavior of tin. This has been obtained by combining elemental x-ray fluorescence cartography and x-ray micro-absorption at the different K-edges.

  16. Oxidation state of sulfur, iron and tin at the surface of float glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lagarde, P; Flank, A-M [Synchrotron SOLEIL, l' Orme des Merisiers, BP 48 91192 Gif/Yvette cedex (France); Jupille, J [IMPMC, Universite P. and M. Curie, Campus de Boucicaut, 140 rue de Lourmel 75015 Paris (France); Montigaud, H [Saint-Gobain Recherche 39, quai Lucien Lefranc, BP 135 93303 Aubervilliers Cedex (France)

    2009-11-15

    Sulfur is an important element of glasses, not because of its amount, always very low (less than 0.4 % in weight of SO{sub 3}), but because of its role since it actively participates to the refinement process and, combined to other elements, it can be responsible for the coloration of the glass. Iron is also of a major importance in most of the glasses. In the case of the float glass, the two faces, because of the fabrication process, are different in terms of composition (presence of Sn for one face) and also in terms of oxidation state of these minority elements (Fe, Sn, S). There should be a subtle interplay between the concentrations and the oxidation states of these different minority elements, and anyway these variations occur over a thickness of the order of few micrometers below the surface. Using the high intensity and the focusing properties (3 x 3 {mu}m{sup 2}) of the x-ray beam from the Lucia beamline, we have therefore studied the speciation of iron and sulfur near the face of a float glass in relation with the behavior of tin. This has been obtained by combining elemental x-ray fluorescence cartography and x-ray micro-absorption at the different K-edges.

  17. Control of lipid oxidation during exercise: role of energy state and mitochondrial factors

    DEFF Research Database (Denmark)

    Sahlin, K; Harris, R C

    2008-01-01

    Despite considerable progress during recent years our understanding of how lipid oxidation (LOx) is controlled during exercise remains incomplete. This review focuses on the role of mitochondria and energy state in the control of LOx. LOx increases in parallel with increased energy demand up...... to an exercise intensity of about 50-60% of VO(2max) after which the contribution of lipid decreases. The switch from lipid to carbohydrate (CHO) is of energetic advantage due to the increased ATP/O(2) yield. In the low-intensity domain (energy state will stimulate both LOx...... during high-intensity exercise. Another potential mechanism, suggested in this review, is that Acyl-CoA synthetase (ACS), an initial step in LCFA catabolism, functions as a regulator of LOx. ACS activity is suggested to be under control of CoASH and energy state. Furthermore, evidence exists...

  18. New 14-membered octaazamacrocyclic complexes of divalent transition metal ions with their antimicrobial and spectral studies

    Science.gov (United States)

    Singh, D. P.; Kumar, Krishan; Sharma, Chetan

    2010-01-01

    A novel series of macrocyclic complexes of the type [M(C 18H 14N 10S 2)X 2]; where M = Co(II), Ni(II), Cu(II), Zn(II) and Cd(II); X = Cl -, NO 3-, CH 3COO - has been synthesized by [2+2] condensation of thiocarbohydrazide and isatin in the presence of divalent metal salts in methanolic medium. The complexes have been characterized with the help of elemental analyses, conductance measurements, magnetic measurements, electronic, NMR and infrared spectral studies. The low value of molar conductance indicates them to be non-electrolytes. On the basis of various studies a distorted octahedral geometry may be proposed for all of these complexes. These metal complexes were also tested for their in vitro antimicrobial activities against some Gram-positive bacteria viz. Staphylococcus aureus, Bacillus subtilis, and some Gram-negative bacteria Escherichia coli, Pseudomonas aeruginosa and some fungal strains Aspergillus niger, Aspergillus flavus (molds), Candida albicans, Saccharomyces cerevisiae (yeasts). The results obtained were compared with standard antibiotic: Ciprofloxacin and the standard antifungal drug: Amphotericin-B.

  19. Influence of commercial (Fluka) naphthenic acids on acid volatile sulfide (AVS) production and divalent metal precipitation.

    Science.gov (United States)

    McQueen, Andrew D; Kinley, Ciera M; Rodgers, John H; Friesen, Vanessa; Bergsveinson, Jordyn; Haakensen, Monique C

    2016-12-01

    Energy-derived waters containing naphthenic acids (NAs) are complex mixtures often comprising a suite of potentially problematic constituents (e.g. organics, metals, and metalloids) that need treatment prior to beneficial use, including release to receiving aquatic systems. It has previously been suggested that NAs can have biostatic or biocidal properties that could inhibit microbially driven processes (e.g. dissimilatory sulfate reduction) used to transfer or transform metals in passive treatment systems (i.e. constructed wetlands). The overall objective of this study was to measure the effects of a commercially available (Fluka) NA on sulfate-reducing bacteria (SRB), production of sulfides (as acid-volatile sulfides [AVS]), and precipitation of divalent metals (i.e. Cu, Ni, Zn). These endpoints were assessed following 21-d aqueous exposures of NAs using bench-scale reactors. After 21-days, AVS molar concentrations were not statistically different (pAVS production was sufficient in all NA treatments to achieve ∑SEM:AVS AVS) could be used to treat metals occurring in NAs affected waters. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Reactions of copper macrocycles with antioxidants and HOCl: potential for biological redox sensing.

    Science.gov (United States)

    Sowden, Rebecca J; Trotter, Katherine D; Dunbar, Lynsey; Craig, Gemma; Erdemli, Omer; Spickett, Corinne M; Reglinski, John

    2013-02-01

    A series of simple copper N(2)S(2) macrocycles were examined for their potential as biological redox sensors, following previous characterization of their redox potentials and crystal structures. The divalent species were reduced by glutathione or ascorbate at a biologically relevant pH in aqueous buffer. A less efficient reduction was also achieved by vitamin E in DMSO. Oxidation of the corresponding univalent copper species by sodium hypochlorite resulted in only partial (~65 %) recovery of the divalent form. This was concluded to be due to competition between metal oxidation and ligand oxidation, which is believed to contribute to macrocycle demetallation. Electrospray mass spectrometry confirmed that ligand oxidation had occurred. Moreover, the macrocyclic complexes could be demetallated by incubation with EDTA and bovine serum albumin, demonstrating that they would be inappropriate for use in biological systems. The susceptibility to oxidation and demetallation was hypothesized to be due to oxidation of the secondary amines. Consequently these were modified to incorporate additional oxygen donor atoms. This modification led to greater resistance to demetallation and ligand oxidation, providing a better platform for further development of copper macrocycles as redox sensors for use in biological systems.

  1. Dissolving method for nuclear fuel oxide

    International Nuclear Information System (INIS)

    Tomiyasu, Hiroshi; Kataoka, Makoto; Asano, Yuichiro; Hasegawa, Shin-ichi; Takashima, Yoichi; Ikeda, Yasuhisa.

    1996-01-01

    In a method of dissolving oxides of nuclear fuels in an aqueous acid solution, the oxides of the nuclear fuels are dissolved in a state where an oxidizing agent other than the acid is present together in the aqueous acid solution. If chlorate ions (ClO 3 - ) are present together in the aqueous acid solution, the chlorate ions act as a strong oxidizing agent and dissolve nuclear fuels such as UO 2 by oxidation. In addition, a Ce compound which generates Ce(IV) by oxidation is added to the aqueous acid solution, and an ozone (O 3 ) gas is blown thereto to dissolve the oxides of nuclear fuels. Further, the oxides of nuclear fuels are oxidized in a state where ClO 2 is present together in the aqueous acid solution to dissolve the oxides of nuclear fuels. Since oxides of the nuclear fuels are dissolved in a state where the oxidizing agent is present together as described above, the oxides of nuclear fuels can be dissolved even at a room temperature, thereby enabling to use a material such as polytetrafluoroethylene and to dissolve the oxides of nuclear fuels at a reduced cost for dissolution. (T.M.)

  2. Modification of thermal sensitivity of Chinese hamster cells by exposure to solutions of monovalent and divalent cationic salts

    International Nuclear Information System (INIS)

    Raaphorst, G.P.; Azzam, E.I.; Vadasz, J.

    1984-06-01

    Chinese hamster V79 cells were heated in culture medium or in 0.155-mol.dm -3 solutions of LiCl, NaCl, KCl, MgCl 2 , CaCl 2 and BaCl 2 . The presence of any one of these ionic solutions during heating increased the thermal sensitivity of the cells. The order of increased thermal sensitivity was KCl > LiCl > NaCl for the monovalent salts and BaCl 2 > MgCl 2 > CaCl 2 for the divalent cation salts. The addition of glucose to LiCl or NaCl solutions did not reduce the thermal sensitization caused by these solutions. When cells were sensitized by LiCl or NaCl treatment, a change in pH from 7.2 to 6.6 did not further increase thermal sensitivity. These data show that nutrient and ionic factors and their interplay are involved in cellular thermal sensitivity

  3. Conjugated polymer zwitterions and solar cells comprising conjugated polymer zwitterions

    Science.gov (United States)

    Emrick, Todd; Russell, Thomas; Page, Zachariah; Liu, Yao

    2018-06-05

    A conjugated polymer zwitterion includes repeating units having structure (I), (II), or a combination thereof ##STR00001## wherein Ar is independently at each occurrence a divalent substituted or unsubstituted C3-30 arylene or heteroarylene group; L is independently at each occurrence a divalent C1-16 alkylene group, C6-30arylene or heteroarylene group, or alkylene oxide group; and R1 is independently at each occurrence a zwitterion. A polymer solar cell including the conjugated polymer zwitterion is also disclosed.

  4. Solid State Electrochemical Sensors for Nitrogen Oxide (NOx) Detection in Lean Exhaust Gases

    OpenAIRE

    Rheaume, Jonathan Michael

    2010-01-01

    Solid state electrochemical sensors that measure nitrogen oxides (NOx) in lean exhaust have been investigated in order to help meet future on-board diagnostic (OBD) regulations for diesel vehicles. This impedancemetric detection technology consists of a planar, single cell sensor design with various sensing electrode materials and yttria-stabilized zirconia (YSZ) as the electrolyte. No reference to ambient air is required. An impedance analysis method yields a signal that is proportional to t...

  5. Enhanced catalytic hydrogenation activity of Ni/reduced graphene oxide nanocomposite prepared by a solid-state method

    Science.gov (United States)

    Li, Yizhao; Cao, Yali; Jia, Dianzeng

    2018-01-01

    A simple solid-state method has been applied to synthesize Ni/reduced graphene oxide (Ni/rGO) nanocomposite under ambient condition. Ni nanoparticles with size of 10-30 nm supported on reduced graphene oxide (rGO) nanosheets are obtained through one-pot solid-state co-reduction among nickel chloride, graphene oxide, and sodium borohydride. The Ni/rGO nanohybrid shows enhanced catalytic activity toward the reduction of p-nitrophenol (PNP) into p-aminophenol compared with Ni nanoparticles. The results of kinetic research display that the pseudo-first-order rate constant for hydrogenation reaction of PNP with Ni/rGO nanocomposite is 7.66 × 10-3 s-1, which is higher than that of Ni nanoparticles (4.48 × 10-3 s-1). It also presents superior turnover frequency (TOF, 5.36 h-1) and lower activation energy ( E a, 29.65 kJ mol-1) in the hydrogenation of PNP with Ni/rGO nanocomposite. Furthermore, composite catalyst can be magnetically separated and reused for five cycles. The large surface area and high electron transfer property of rGO support are beneficial for good catalytic performance of Ni/rGO nanocomposite. Our study demonstrates a simple approach to fabricate metal-rGO heterogeneous nanostructures with advanced functions.

  6. Templated electrodeposition of Ag7NO11 nanowires with very high oxidation states of silver

    NARCIS (Netherlands)

    Rodijk, E.J.B.; Maijenburg, A.W.; Maas, M.G.; Blank, David H.A.; ten Elshof, Johan E.

    2011-01-01

    The templated electrodeposition of 200 nm diameter nanowires of the argentic oxynitrate Ag(Ag3O4)2NO3 phase is reported. Their high surface-to-volume ratio and the high average oxidation state of Ag make these wires promising candidates for nanoscale redox processes in which both a high volumetric

  7. Regarding the rejection performance of a polymeric reverse osmosis membrane for the final purification of two-phase olive mill effluents previously treated by an advanced oxidation process

    International Nuclear Information System (INIS)

    Ochando-Pulido, J.M.; Martínez-Férez, A.

    2017-01-01

    In previous works on olive mill wastewater (OMW), secondary advanced oxidation treatment solved the problem related to the presence of phenolic compounds and considerable chemical oxygen demand. However, the effluent presented a significant salinity after this treatment. In this work, an adequate operation of a reverse osmosis (RO) membrane is addressed to ensure constant performance over a long period of time. In this paper, the effect of the operating parameters on the dynamic membrane rejection performance towards the target species was examined and discussed. Rejection efficiencies of all species were observed to follow a similar pattern, which consisted of slight initial improvement that further decreased over time. Rejection of both divalent ions remained constant at over 99% regardless of the operating conditions. Rejections were noticed to follow the order SO42−> Cl−> NO3− and Ca2+> Mg2+> K+> Na+, as a rule. Divalent species were moderately more highly rejected than monovalent ones, in accordance with their higher charge and molecular size, and sulfate anions were consistently rejected by over 99%. Finally, the RO membrane exiting treated effluent was depleted of the high electro conductivity initially present (above 97% rejection), permitting its re-use as good quality irrigation water (below 1 mS/cm). [es

  8. Non steady-state model for dry oxidation of nuclear wastes metallic containers in long term interim storage conditions

    International Nuclear Information System (INIS)

    Bertrand, Nathalie; Desgranges, Clara; Poquillon, Dominique; Monceau, Daniel

    2006-01-01

    oxidation tests. In a second step, in order to increase the reliability of the long term extrapolations from basic models, a non-steady state numerical model able to take into account several elementary steps is built. The aim is to get a more reliable tool to describe mechanisms that control oxide scale growth in this specific low temperature range. The paper has the following contains: Experimental results; Growth kinetics; Scale morphology; A basic model for kinetics of oxidation; Conclusion of the experimental study; EKINOX: Estimation KINetics OXidation: an advanced model; General description; Equations in the model; Results; Future developments; Conclusion. To summarize, the basic model consists in some extrapolations of available experimental data in the temperature range of interest following simple analytical laws deduced from classical oxidation theories. This leads to a very small oxide scale and thus to the loss of very small amounts of metal even for extrapolations to over 100 years. However, the reliability of this kind of basic models is very poor since it is based on the assumption that a single elementary process controls the oxidation rate. Indeed in the temperature range concerned by long term interim deposit of waste containers, several mechanisms can control the oxidation rate. A numerical model able to take in consideration several growth mechanisms is now in progress. At this stage of development, the originality of the proposed advanced model consists in explicitly calculating the vacancy profiles and treating these as non-conservative species. It is based on an original numerical treatment to correctly and easily describe elimination of vacancies at the metal/oxide interface and thus relative motion between the substrate lattice and the oxide one, even for non-stationary states. It can treat Wagner's model but without the quasi-steady state 'hypothesis or also take into account a partial control of the oxidation process by interfacial reaction. In

  9. Magnetic susceptibility as a direct measure of oxidation state in LiFePO4 batteries and cyclic water gas shift reactors.

    Science.gov (United States)

    Kadyk, Thomas; Eikerling, Michael

    2015-08-14

    The possibility of correlating the magnetic susceptibility to the oxidation state of the porous active mass in a chemical or electrochemical reactor was analyzed. The magnetic permeability was calculated using a hierarchical model of the reactor. This model was applied to two practical examples: LiFePO4 batteries, in which the oxidation state corresponds with the state-of-charge, and cyclic water gas shift reactors, in which the oxidation state corresponds to the depletion of the catalyst. In LiFePO4 batteries phase separation of the lithiated and delithiated phases in the LiFePO4 particles in the positive electrode gives rise to a hysteresis effect, i.e. the magnetic permeability depends on the history of the electrode. During fast charge or discharge, non-uniform lithium distributionin the electrode decreases the hysteresis effect. However, the overall sensitivity of the magnetic response to the state-of-charge lies in the range of 0.03%, which makes practical measurement challenging. In cyclic water gas shift reactors, the sensitivity is 4 orders of magnitude higher and without phase separation, no hysteresis occurs. This shows that the method is suitable for such reactors, in which large changes of the magnetic permeability of the active material occurs.

  10. The state-of-the-art and prospects of the oxidation titration method for the determination of uranium in geological samples

    International Nuclear Information System (INIS)

    Sun Jiayan

    1986-01-01

    The state-of-the-art of the oxidation titration method for the determination of uranium in geological samples is reviewed in some respects such as the prereduction of U(VI), oxidation of U(IV) and the detection of the end-point. Comments are also made on the prospects of further improvements of this method

  11. Impact of Lipid Oxidization on Vertical Structures and Electrostatics of Phospholipid Monolayers Revealed by Combination of Specular X-ray Reflectivity and Grazing-Incidence X-ray Fluorescence.

    Science.gov (United States)

    Korytowski, Agatha; Abuillan, Wasim; Makky, Ali; Konovalov, Oleg; Tanaka, Motomu

    2015-07-30

    The influence of phospholipid oxidization of floating monolayers on the structure perpendicular to the global plane and on the density profiles of ions near the lipid monolayer has been investigated by a combination of grazing incidence X-ray fluorescence (GIXF) and specular X-ray reflectivity (XRR). Systematic variation of the composition of the floating monolayers unravels changes in the thickness, roughness and electron density of the lipid monolayers as a function of molar fraction of oxidized phospholipids. Simultaneous GIXF measurements enable one to qualitatively determine the element-specific density profiles of monovalent (K(+) or Cs(+)) and divalent ions (Ca(2+)) in the vicinity of the interface in the presence and absence of two types of oxidized phospholipids (PazePC and PoxnoPC) with high spatial accuracy (±5 Å). We found the condensation of Ca(2+) near carboxylated PazePC was more pronounced compared to PoxnoPC with an aldehyde group. In contrast, the condensation of monovalent ions could hardly be detected even for pure oxidized phospholipid monolayers. Moreover, pure phospholipid monolayers exhibited almost no ion specific condensation near the interface. The quantitative studies with well-defined floating monolayers revealed how the elevation of lipid oxidization level alters the structures and functions of cell membranes.

  12. Radiation oxidation of polypropylene: A solid-state 13C NMR study using selective isotopic labeling

    International Nuclear Information System (INIS)

    Mowery, Daniel M.; Assink, Roger A.; Derzon, Dora K.; Klamo, Sara B.; Bernstein, Robert; Clough, Roger L.

    2007-01-01

    Polypropylene samples, in which the three different carbon atoms along the chain were selectively labeled with carbon-13, were subjected to radiation under inert and air atmospheres, and to post-irradiation exposure in air at various temperatures. By using solid-state 13 C NMR measurements at room temperature, we have been able to identify and quantify the oxidation products. The isotopic labeling provides insight into chemical reaction mechanisms, since oxidation products can be traced back to their positions of origin on the macromolecule. The major products include peroxides and alcohols, both formed at tertiary carbon sites along the chain. Other products include methyl ketones, acids, esters, peresters, and hemiketals formed from reaction at the tertiary carbon, together with in-chain ketones and esters from reaction at the secondary chain carbon. No evidence is found of products arising from reactions at the methyl side chain. Significant temperature-dependent differences are apparent; for example much higher yields of chain-end methyl ketones, which are the indicator product of chain scission, are generated for both elevated temperature irradiation and for post-irradiation treatment at elevated temperatures. Time-dependent plots of yields of the various oxidation products have been obtained under a wide range of conditions, including the post-irradiation oxidation of a sample at room temperature in air that has been monitored for 2 years. Radiation-oxidation products of polypropylene are contrasted to products measured for 13 C-labeled polyethylene in an earlier investigation: the peroxides formed in irradiated polypropylene are remarkably longer lived, the non-peroxidic products are significantly different, and the overall ratios of oxidation products in polypropylene change relatively little as a function of the extent of oxidation

  13. Studies on O/M ratio determination in uranium oxide, plutonium oxide and uranium-plutonium mixed oxide

    International Nuclear Information System (INIS)

    Sampath, S.; Chawla, K.L.

    1975-01-01

    Thermogravimetric studies were carried out in unsintered and sintered samples of uranium oxide, plutonium oxide and uranium-plutonium mixed oxide under different atmospheric conditions (air, argon and moist argon/hydrogen). Moisture loss was found to occur below 200 0 C for uranium dioxide samples, upto 700 0 C for sintered plutonium dioxide and negligible for sintered samples. The O/M ratios for non-stoichiometric uranium dioxide (sintered and unsintered), plutonium dioxide and mixed uranium and plutonium oxides (sintered) could be obtained with a precision of +- 0.002. Two reference states UOsub(2.000) and UOsub(2.656) were obtained for uranium dioxide and the reference state MOsub(2.000) was used for other cases. For unsintered plutonium dioxide samples, accurate O/M ratios could not be obtained of overlap of moisture loss with oxygen loss/gain. (author)

  14. Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Minh

    2006-07-31

    This report summarizes the work performed for Phase I (October 2001 - August 2006) under Cooperative Agreement DE-FC26-01NT41245 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled 'Solid State Energy Conversion Alliance (SECA) Solid Oxide Fuel Cell Program'. The program focuses on the development of a low-cost, high-performance 3-to-10-kW solid oxide fuel cell (SOFC) system suitable for a broad spectrum of power-generation applications. During Phase I of the program significant progress has been made in the area of SOFC technology. A high-efficiency low-cost system was designed and supporting technology developed such as fuel processing, controls, thermal management, and power electronics. Phase I culminated in the successful demonstration of a prototype system that achieved a peak efficiency of 41%, a high-volume cost of $724/kW, a peak power of 5.4 kW, and a degradation rate of 1.8% per 500 hours. . An improved prototype system was designed, assembled, and delivered to DOE/NETL at the end of the program. This prototype achieved an extraordinary peak efficiency of 49.6%.

  15. Role of the oxidation state of cerium on the ceria surfaces for silicate adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jihoon [WCD Department of Energy Engineering, Hanyang University, Seoul (Korea, Republic of); Moon, Jinok [WCD Department of Energy Engineering, Hanyang University, Seoul (Korea, Republic of); Clean/CMP Technology Team, Memory, Samsung Electronics, Hwaseong (Korea, Republic of); Kim, Joo Hyun; Lee, Kangchun [WCD Department of Energy Engineering, Hanyang University, Seoul (Korea, Republic of); Hwang, Junha [WCD Department of Energy Engineering, Hanyang University, Seoul (Korea, Republic of); Materials R& D Center, K.C.Tech, Anseong (Korea, Republic of); Yoon, Heesung [WCD Department of Energy Engineering, Hanyang University, Seoul (Korea, Republic of); Yi, Dong Kee, E-mail: vitalis@mju.ac.kr [Department of Chemistry, Myongji University, Yongin (Korea, Republic of); Paik, Ungyu, E-mail: upaik@hanyang.ac.kr [WCD Department of Energy Engineering, Hanyang University, Seoul (Korea, Republic of)

    2016-12-15

    Highlights: • We investigated the role of Ce oxidation state (Ce{sup 3+}/Ce{sup 4+}) on the CeO{sub 2} surfaces for the silicate adsorption. • As the Ce{sup 3+} concentration increased from 19.3 to 27.6%, the surface density of −OH group increased from 0.34 to 0.72 OH/nm{sup 2}. • The Freundlich constant for the relative adsorption capacity (K{sub F}) and adsorption intensity (1/n) indicated that CeO{sub 2} NPs with high Ce{sup 3+} concentration show higher adsorption affinity with silicate ions. - Abstract: In this study, we have investigated the role of the Ce oxidation state (Ce{sup 3+}/Ce{sup 4+}) on the CeO{sub 2} surfaces for silicate adsorption. In aqueous medium, the Ce{sup 3+} sites lead to the formation of −OH groups at the CeO{sub 2} surface through H{sub 2}O dissociation. Silicate ions can adsorb onto the CeO{sub 2} surface through interaction with the −OH groups (−Ce−OH− + −Si−O{sup −} ↔ −Ce−O−Si− + OH{sup −}). As the Ce{sup 3+} concentration increased from 19.3 to 27.6%, the surface density of −OH group increased from 0.34 to 0.72 OH/nm{sup 2}. To evaluate the adsorption behaviors of silicate ions onto CeO{sub 2} NPs, we carried out an adsorption isothermal analysis, and the adsorption isotherm data followed the Freundlich model. The Freundlich constant for the relative adsorption capacity (K{sub F}) and adsorption intensity (1/n) indicated that CeO{sub 2} NPs with high Ce{sup 3+} concentration show higher adsorption affinity with silicate ions. As a result, we have demonstrated that the Ce oxidation state (Ce{sup 3+}/Ce{sup 4+}) on the CeO{sub 2} surface can have a significant influence on the silicate adsorption.

  16. Characterization of the Escherichia coli prsA1-encoded mutant phosphoribosylpyrophosphate synthetase identifies a divalent cation-nucleotide binding site

    DEFF Research Database (Denmark)

    Bower, Stanley G.; Harlow, Kenneth W.; Switzer, Robert L.

    1989-01-01

    : DLHAXQIQGFFDI/VPI/VD. There was little alteration in the Km for ribose 5-phosphate. The Km for ATP of the mutant enzyme was increased 27-fold when Mg2+ was the activating cation but only 5-fold when Mn2+ was used. Maximal velocities of the wild type and mutant enzymes were the same. The mutant enzyme has a 6......-fold lower affinity for Ca2+, as judged by the ability of Ca2+ to inhibit the reaction in the presence of 10 mM Mg2+. Wild type PRPP synthetase is subject to product inhibition by AMP, but AMP inhibition of the prsA1 mutant enzyme could not be detected. It has been previously proposed that a divalent...

  17. Synchrotron radiation-based 61Ni Mössbauer spectroscopic study of Li(Ni1/3Mn1/3Co1/3)O2 cathode materials of lithium ion rechargeable battery

    Science.gov (United States)

    Segi, Takashi; Masuda, Ryo; Kobayashi, Yasuhiro; Tsubota, Takayuki; Yoda, Yoshitaka; Seto, Makoto

    2016-12-01

    Layered rocksalt type oxides, such as Li(Ni1/3Mn1/3Co1/3)O2, are widely used as the cathode active materials of lithium-ion rechargeable batteries. Because the nickel ions are associated with the role of the charge compensation at discharge and charge, the 61Ni Mössbauer measurements at 6 K using synchrotron radiation were performed to reveal the role of Ni. The Ni ions of the active materials play two roles for the redox process between the charge and discharge states of lithium-ion batteries. Half of the total Ni ions change to the low-spin Ni3+ with Jahn-Teller distortion from the Ni2+ ions of the discharge state. The remainder exhibit low-spin state divalent Ni ions.

  18. Structural, magnetic and electronic properties of rare earth ternary oxides Li Ln(II) 2 Ln(III)O4

    International Nuclear Information System (INIS)

    Malki, M.

    1987-06-01

    Properties of a new class of rare earth ternary oxides Li Ln(II) 2 Ln(III)O 4 where Ln(II) is a divalent metal (Sr, Eu) and Ln(III) a trivalent rare earth (Eu, Gd, Dy, Er and Y). These orthorhombic compounds (type Li Eu 3 O 4 ) allow the study of many magnetic phenomena and their evolution in function of the nature of Ln(II) and Ln(III): diamagnetic ions Sr 2+ , Y 3+ ; isotrope magnetic ions: Eu 2+ , Gd 3+ and anisotrope magnetic ions Dy 3+ , Er 3+ . Magnetic and electric properties are obtained by classical techniques and from hyperfine interaction by Moessbauer spectroscopy. The possibility to use several Moessbauer resonance (nuclei Eu 151, Gd 155, Dy 161 and Er 166) completes informations obtained by the macroscopic study [fr

  19. V6O13 films by control of the oxidation state from aqueous precursor to crystalline phase.

    Science.gov (United States)

    Peys, Nick; Ling, Yun; Dewulf, Daan; Gielis, Sven; De Dobbelaere, Christopher; Cuypers, Daniel; Adriaensens, Peter; Van Doorslaer, Sabine; De Gendt, Stefan; Hardy, An; Van Bael, Marlies K

    2013-01-28

    An aqueous deposition process for V(6)O(13) films is developed whereby the vanadium oxidation state is continuously controlled throughout the entire process. In the precursor stage, a controlled wet chemical reduction of the vanadium(V) source with oxalic acid is achieved and monitored by (51)Vanadium Nuclear Magnetic Resonance ((51)V-NMR) and Ultraviolet-Visible (UV-Vis) spectroscopy. The resulting vanadium(IV) species in the aqueous solution are identified as mononuclear citrato-oxovanadate(IV) complexes by Electron Paramagnetic Resonance (EPR) and Fourier Transform Infra-Red (FTIR) spectroscopy. This precursor is successfully employed for the deposition of uniform, thin films. The optimal deposition and annealing conditions for the formation of crystalline V(6)O(13), including the control of the vanadium oxidation state, are determined through an elaborate study of processing temperature and O(2) partial pressure. To ensure a sub 100 nm adjustable film thickness, a non-oxidative intermediate thermal treatment is carried out at the end of each deposition cycle, allowing maximal precursor decomposition while still avoiding V(IV) oxidation. The resulting surface hydrophilicity, indispensable for the homogeneous deposition of the next layer, is explained by an increased surface roughness and the increased availability of surface vanadyl groups. Crystalline V(6)O(13) with a preferential (002) orientation is obtained after a post deposition annealing in a 0.1% O(2) ambient for thin films with a thickness of 20 nm.

  20. Solid-State Electrochromic Device Consisting of Amorphous WO3 and Various Thin Oxide Layers

    Science.gov (United States)

    Shizukuishi, Makoto; Shimizu, Isamu; Inoue, Eiichi

    1980-11-01

    A mixed oxide containing Cr2O3 was introduced into an amorphous WO3 solid-state electrochromic device (ECD) in order to improve its colour memory effect. The electrochromic characteristics were greatly affected by the chemical constituents of a dielectric layer on the a-WO3 layer. Particularly, long memory effect and low power dissipation were attained in a solid-state ECD consisting of a-WO3 and Cr2O3\\cdotV2O5(50 wt.%). Some electrochromic characteristics of the a-WO3/Cr2O3\\cdotV2O5 ECD and the role of V2O5 were investigated.

  1. Raman spectroscopy of DNA-metal complexes. I. Interactions and conformational effects of the divalent cations: Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Pd, and Cd

    OpenAIRE

    Duguid, J.; Bloomfield, V.A.; Benevides, J.; Thomas Jr, G.J.

    1993-01-01

    Interactions of divalent metal cations (Mg2+, Ca2+, Ba2+, Sr2+, Mn2+, Co2+, Ni2+, Cu2+, Pd2+, and Cd2+) with DNA have been investigated by laser Raman spectroscopy. Both genomic calf-thymus DNA (> 23 kilobase pairs) and mononucleosomal fragments (160 base pairs) were employed as targets of metal interaction in solutions containing 5 weight-% DNA and metal:phosphate molar ratios of 0.6:1. Raman difference spectra reveal that transition metal cations (Mn2+, Co2+, Ni2+, Cu2+, Pd2+, and Cd2+) ind...

  2. An Aqueous Metal-Ion Capacitor with Oxidized Carbon Nanotubes and Metallic Zinc Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Yuheng; Amal, Rose; Wang, Da-Wei, E-mail: da-wei.wang@unsw.edu.au [School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, NSW (Australia)

    2016-10-03

    An aqueous metal ion capacitor comprising of a zinc anode, oxidized carbon nanotubes (oCNTs) cathode, and a zinc sulfate electrolyte is reported. Since the shuttling cation is Zn{sup 2+}, this typical metal ion capacitor is named as zinc-ion capacitor (ZIC). The ZIC integrates the divalent zinc stripping/plating chemistry with the surface-enabled pseudocapacitive cation adsorption/desorption on oCNTs. The surface chemistry and crystallographic structure of oCNTs were extensively characterized by combining X-ray photoelectron spectroscopy, Fourier-transformed infrared spectroscopy, Raman spectroscopy, and X-ray powder diffraction. The function of the surface oxygen groups in surface cation storage was elucidated by a series of electrochemical measurement and the surface-enabled ZIC showed better performance than the ZIC with an un-oxidized CNT cathode. The reaction mechanism at the oCNT cathode involves the additional reversible Faradaic process, while the CNTs merely show electric double layer capacitive behavior involving a non-Faradaic process. The aqueous hybrid ZIC comprising the oCNT cathode exhibited a specific capacitance of 20 mF cm{sup −2} (corresponding to 53 F g{sup −1}) in the range of 0–1.8 V at 10 mV s{sup −1} and a stable cycling performance up to 5000 cycles.

  3. Behaviour of iron and titanium species in cryolite-alumina melts

    OpenAIRE

    Jentoftsen, Trond Eirik

    2000-01-01

    The solubility of divalent iron oxide in cryolite-based melts was studied. Both electrochemical and chemical techniques were employed. To ensure that only divalent iron was present in solution, the melt was contained in an iron crucible under an atmosphere of argon. The experimental work included investigation of the solubility as a function of alumina concentration, temperature and cryolite ratio (CR = NaF/AlF3 molar ratio). The solubility at 1020 ºC was found to decrease from 4.17 wt% Fe in...

  4. Methanosarcina acetivorans C2A topoisomerase IIIα, an archaeal enzyme with promiscuity in divalent cation dependence.

    Directory of Open Access Journals (Sweden)

    Raymond Morales

    Full Text Available Topoisomerases play a fundamental role in genome stability, DNA replication and repair. As a result, topoisomerases have served as therapeutic targets of interest in Eukarya and Bacteria, two of the three domains of life. Since members of Archaea, the third domain of life, have not been implicated in any diseased state to-date, there is a paucity of data on archaeal topoisomerases. Here we report Methanosarcina acetivorans TopoIIIα (MacTopoIIIα as the first biochemically characterized mesophilic archaeal topoisomerase. Maximal activity for MacTopoIIIα was elicited at 30-35°C and 100 mM NaCl. As little as 10 fmol of the enzyme initiated DNA relaxation, and NaCl concentrations above 250 mM inhibited this activity. The present study also provides the first evidence that a type IA Topoisomerase has activity in the presence of all divalent cations tested (Mg(2+, Ca(2+, Sr(2+, Ba(2+, Mn(2+, Fe(2+, Co(2+, Ni(2+, Cu(2+, Zn(2+ and Cd(2+. Activity profiles were, however, specific to each metal. Known type I (ssDNA and camptothecin and type II (etoposide, novobiocin and nalidixic acid inhibitors with different mechanisms of action were used to demonstrate that MacTopoIIIα is a type IA topoisomerase. Alignment of MacTopoIIIα with characterized topoisomerases identified Y317 as the putative catalytic residue, and a Y317F mutation ablated DNA relaxation activity, demonstrating that Y317 is essential for catalysis. As the role of Domain V (C-terminal domain is unclear, MacTopoIIIα was aligned with the canonical E. coli TopoI 67 kDa fragment in order to construct an N-terminal (1-586 and a C-terminal (587-752 fragment for analysis. Activity could neither be elicited from the fragments individually nor reconstituted from a mixture of the fragments, suggesting that native folding is impaired when the two fragments are expressed separately. Evidence that each of the split domains plays a role in Zn(2+ binding of the enzyme is also provided.

  5. Theoretical studies of positron states and annihilation characteristics at the oxidized Cu(100) surface

    Energy Technology Data Exchange (ETDEWEB)

    Fazleev, N. G. [Department of Physics, Box 19059, University of Texas at Arlington, Arlington Texas 76019 (United States) and Institute of Physics, Kazan Federal University, Kremlevskaya18, Kazan 420008 (Russian Federation); Weiss, A. H. [Department of Physics, Box 19059, University of Texas at Arlington, Arlington Texas 76019 (United States)

    2013-04-19

    In this work we present the results of theoretical studies of positron surface and bulk states and annihilation probabilities of surface-trapped positrons with relevant core electrons at the oxidized Cu(100) surface under conditions of high oxygen coverage. An ab-initio study of the electronic properties of the Cu(100) missing row reconstructed surface at various on surface and sub-surface oxygen coverages has been performed on the basis of the density functional theory (DFT) using the Dmol3 code and the generalized gradient approximation (GGA). Surface structures in calculations have been constructed by adding oxygen atoms to various surface hollow and sub-surface octahedral sites of the 0.5 monolayer (ML) missing row reconstructed phase of the Cu(100) surface with oxygen coverages ranging from 0.5 to 1.5 ML. The charge redistribution at the surface and variations in atomic structure and chemical composition of the topmost layers associated with oxidation and surface reconstruction have been found to affect the spatial extent and localization of the positron surface state wave function and annihilation probabilities of surface trapped positrons with relevant core electrons. Theoretical results are compared with experimental data obtained from studies of oxidation of the Cu(100) surface using positron annihilation induced Auger electron spectroscopy (PAES). It has been shown that positron annihilation probabilities with Cu 3s and 3p core electrons decrease when total (on-surface and sub-surface) oxygen coverage of the Cu(100) surface increases up to 1 ML. The calculations show that for high oxygen coverage when total oxygen coverage is 1. 5 ML the positron is not bound to the surface.

  6. X-ray Absorption Study of Graphene Oxide and Transition Metal Oxide Nanocomposites.

    Science.gov (United States)

    Gandhiraman, Ram P; Nordlund, Dennis; Javier, Cristina; Koehne, Jessica E; Chen, Bin; Meyyappan, M

    2014-08-14

    The surface properties of the electrode materials play a crucial role in determining the performance and efficiency of energy storage devices. Graphene oxide and nanostructures of 3d transition metal oxides were synthesized for construction of electrodes in supercapacitors, and the electronic structure and oxidation states were probed using near-edge X-ray absorption fine structure. Understanding the chemistry of graphene oxide would provide valuable insight into its reactivity and properties as the graphene oxide transformation to reduced-graphene oxide is a key step in the synthesis of the electrode materials. Polarized behavior of the synchrotron X-rays and the angular dependency of the near-edge X-ray absorption fine structures (NEXAFS) have been utilized to study the orientation of the σ and π bonds of the graphene oxide and graphene oxide-metal oxide nanocomposites. The core-level transitions of individual metal oxides and that of the graphene oxide nanocomposite showed that the interaction of graphene oxide with the metal oxide nanostructures has not altered the electronic structure of either of them. As the restoration of the π network is important for good electrical conductivity, the C K edge NEXAFS spectra of reduced graphene oxide nanocomposites confirms the same through increased intensity of the sp 2 -derived unoccupied states π* band. A pronounced angular dependency of the reduced sample and the formation of excitonic peaks confirmed the formation of extended conjugated network.

  7. Comparison of the oxidation state of Fe in comet 81P/Wild 2 and chondritic-porous interplanetary dust particles

    Energy Technology Data Exchange (ETDEWEB)

    Ogliore, Ryan C.; Butterworth, Anna L.; Fakra, Sirine C.; Gainsforth, Zack; Marcus, Matthew A.; Westphal, Andrew J.

    2010-07-16

    The fragile structure of chondritic-porous interplanetary dust particles (CP-IDPs) and their minimal parent-body alteration have led researchers to believe these particles originate in comets rather than asteroids where aqueous and thermal alterations have occurred. The solar elemental abundances and atmospheric entry speed of CP-IDPs also suggest a cometary origin. With the return of the Stardust samples from Jupiter-family comet 81P/Wild 2, this hypothesis can be tested. We have measured the Fe oxidation state of 15 CP-IDPs and 194 Stardust fragments using a synchrotron-based x-ray microprobe. We analyzed {approx}300 ng of Wild 2 material - three orders of magnitude more material than other analyses comparing Wild 2 and CP-IDPs. The Fe oxidation state of these two samples of material are > 2{sigma} different: the CP-IDPs are more oxidized than the Wild 2 grains. We conclude that comet Wild 2 contains material that formed at a lower oxygen fugacity than the parent-body, or parent bodies, of CP-IDPs. If all Jupiter-family comets are similar, they do not appear to be consistent with the origin of CP-IDPs. However, comets that formed from a different mix of nebular material and are more oxidized than Wild 2 could be the source of CP-IDPs.

  8. Hydration of cations: a key to understanding of specific cation effects on aggregation behaviors of PEO-PPO-PEO triblock copolymers.

    Science.gov (United States)

    Lutter, Jacob C; Wu, Tsung-yu; Zhang, Yanjie

    2013-09-05

    This work reports results from the interactions of a series of monovalent and divalent cations with a triblock copolymer, poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO). Phase transition temperatures of the polymer in the presence of chloride salts with six monovalent and eight divalent cations were measured using an automated melting point apparatus. The polymer undergoes a two-step phase transition, consisting of micellization of the polymer followed by aggregation of the micelles, in the presence of all the salts studied herein. The results suggest that hydration of cations plays a key role in determining the interactions between the cations and the polymer. The modulation of the phase transition temperature of the polymer by cations can be explained as a balance between three interactions: direct binding of cations to the oxygen in the polymer chains, cations sharing one water molecule with the polymer in their hydration layer, and cations interacting with the polymer via two water molecules. Monovalent cations Na(+), K(+), Rb(+), and Cs(+) do not bind to the polymer, while Li(+) and NH4(+) and all the divalent cations investigated including Mg(2+), Ca(2+), Sr(2+), Ba(2+), Co(2+), Ni(2+), Cu(2+), and Cd(2+) bind to the polymer. The effects of the cations correlate well with their hydration thermodynamic properties. Mechanisms for cation-polymer interactions are discussed.

  9. Studies on the effect of divalent metal ions on exfoliative toxins from Staphylococcus hyicus: indications of ExhA and ExhB being metalloproteins.

    Science.gov (United States)

    Andresen, L O

    1999-04-01

    The exfoliative toxins ExhA and ExhB produced by Staphylococcus hyicus strains NCTC10350 and 1289D-88, respectively, were investigated with regard to the effect of divalent metal ions on toxin production as measured in indirect enzyme-linked immunosorbent assay (ELISA) using monoclonal antibodies. Data were obtained as endpoint titer values and used as semiquantitative measures for the amount of exfoliative toxin detected in culture supernatants. It was shown that the endpoint titers of ExhA in supernatants from cultures of strain NCTC10350 grown in the presence of 0.5 mM CaCl2, Cu(NO3)2 or ZnSO4 were higher compared to titers obtained by growth in medium supplemented with a number of other divalent metal salts. The titer of ExhB as determined in the indirect ELISA was increased by addition of 0.5 mM CoCl2, Cu(NO3)2 or CuSO4 to the growth medium. When ExhA or ExhB, prepared without addition of metal salt to the liquid growth medium, was subsequently incubated with 25 mM of Co2+, Cu2+ or Zn2+, the endpoint titers of the toxins were increased. Dialysis of ExhA and ExhB prepared with Zn2+ and Co2+, respectively, against certain metal chelators, resulted in a reduction of the titer determined in ELISA. Other metal chelators had varied effect in the detection of the toxins in ELISA. It was, however, not possible to restore the recognition of toxins by the monoclonal antibodies by incubation of EDDHA-dialyzed toxin preparations with Co2+, Cu2+ or Zn2+. The results of this study suggest that ExhA and ExhB are metalloproteins.

  10. State-of-the-art technologies of gallium oxide power devices

    Science.gov (United States)

    Higashiwaki, Masataka; Kuramata, Akito; Murakami, Hisashi; Kumagai, Yoshinao

    2017-08-01

    Gallium oxide (Ga2 O3 ) has gained increased attention for power devices due to its superior material properties and the availability of economical device-quality native substrates. This review illustrates recent advances in Ga2 O3 device technologies, beginning with an overview of the social circumstances that motivate the development of new-generation switching devices. Following an introduction to the material properties of Ga2 O3 from the viewpoint of power electronics, growth technologies of Ga2 O3 bulk single crystals and epitaxial thin films are discussed. The fabrication and performance of state-of-the-art Ga2 O3 transistors and diodes are then described. We conclude by identifying the directions and challenges of Ga2 O3 power device development in the near future.

  11. Oxidation of elemental mercury in the atmosphere; Constraints imposed by global scale modelling

    Energy Technology Data Exchange (ETDEWEB)

    Bergan, Torbjoern; Rodhe, Henning [Stockholm Univ. (Sweden). Dept. of Meteorology

    2000-05-01

    Based on the global mercury model published by Bergan et al. (1999), we present here further results from simulations where the central theme has been to evaluate the role of ozone and the hydroxyl radical as possible gas phase oxidants for the oxidation of elemental mercury in the atmosphere. The magnitude of natural and man-made mercury emissions are taken from recent literature estimates and the flux from land areas is assumed to vary by season. We consider only two mercury reservoirs, elemental mercury, Hg{sup 0}, and the more soluble divalent form, Hgll. Wet and dry deposition of Hgll is explicitly treated. Applying monthly mean fields of ozone for the oxidation of gas phase Hg{sup 0} and using the reaction rate by Hall (1995) yields a global transformation of Hg{sup 0} to Hgll which is too slow to keep the simulated concentration of Hg{sup 0} near observed values. This shows that there are additional important removal processes for Hg{sup 0} or that the reaction rate proposed by Hall (1995) is too slow. A simulation in which the oxidation rate was artificially increased, so that the global turn-over time of Hg{sup 0} was one year and the simulated average concentration of Hg{sup 0} was realistic, produced latitudinal and seasonal variations in Hg{sup 0} that did not support the hypothesis that gas phase reaction with O{sub 3} is the major oxidation process for Hg{sup 0}. Recent studies indicate that OH may be an important gas phase oxidant for Hg{sup 0}. Using OH as the oxidant and applying the preliminary oxidation rate by Sommar et al. (1999) gave an unrealistically large removal of Hg{sup 0} from the atmosphere. From calculations using a slower reaction rate, corresponding to a turn-over time of Hg{sup 0} of one year, we calculated concentrations of both Hg{sup 0} in surface air and Hgll in precipitation which correspond, both in magnitude and temporal variation, to seasonal observations in Europe and North America. This result supports the suggestion that

  12. Dual passivation of intrinsic defects at the compound semiconductor/oxide interface using an oxidant and a reductant.

    Science.gov (United States)

    Kent, Tyler; Chagarov, Evgeniy; Edmonds, Mary; Droopad, Ravi; Kummel, Andrew C

    2015-05-26

    Studies have shown that metal oxide semiconductor field-effect transistors fabricated utilizing compound semiconductors as the channel are limited in their electrical performance. This is attributed to imperfections at the semiconductor/oxide interface which cause electronic trap states, resulting in inefficient modulation of the Fermi level. The physical origin of these states is still debated mainly because of the difficulty in assigning a particular electronic state to a specific physical defect. To gain insight into the exact source of the electronic trap states, density functional theory was employed to model the intrinsic physical defects on the InGaAs (2 × 4) surface and to model the effective passivation of these defects by utilizing both an oxidant and a reductant to eliminate metallic bonds and dangling-bond-induced strain at the interface. Scanning tunneling microscopy and spectroscopy were employed to experimentally determine the physical and electronic defects and to verify the effectiveness of dual passivation with an oxidant and a reductant. While subsurface chemisorption of oxidants on compound semiconductor substrates can be detrimental, it has been shown theoretically and experimentally that oxidants are critical to removing metallic defects at oxide/compound semiconductor interfaces present in nanoscale channels, oxides, and other nanostructures.

  13. Coordination and Oxidation States of Iron Incorporated in Mesoporous MCM41

    International Nuclear Information System (INIS)

    Lazar, K.; Pal-Borbely, G.; Szegedi, A.; Beyer, H. K.

    2002-01-01

    Mesoporous Fe-MCM41 samples (Si/Fe=25) were synthesized and characterized under evacuation and reducing/oxidizing treatments by in situ FTIR and Moessbauer spectroscopies. Both Fe(II) and Fe(III) located in low coordination states in top layers of pore walls exhibit Lewis acidity and may participate in Fe(III) ↔ Fe(II) processes at low temperatures (570 K). Furthermore, Fe(III) ↔ Fe(II) cycles can be achieved and repeated with participation of the full amount of iron at higher temperatures (670 K). The accompanying formation of oxygen vacancies and restoration of the structure in the reverse process does not result in extended damages; the MCM41 structure retains its stability under the conditions applied.

  14. Oxidation state inherited from the magma source and implications for mineralization: Late Jurassic to Early Cretaceous granitoids, Central Lhasa subterrane, Tibet

    Science.gov (United States)

    Cao, MingJian; Qin, KeZhang; Li, GuangMing; Evans, Noreen J.; McInnes, Brent I. A.; Li, JinXiang; Zhao, JunXing

    2018-03-01

    Arc magmas are more oxidized than mid-ocean ridge basalts; however, there is continuing debate as to whether this higher oxidation state is inherited from the source magma or developed during late-stage magmatic differentiation processes. Well-constrained Late Jurassic to Early Cretaceous arc-related intermediate to felsic rocks derived from distinct magma sources provide us with a good opportunity to resolve this enigma. A series of granitoids from the western Central Lhasa subterrane were analyzed for whole-rock magnetic susceptibility, Fe2O3/FeO ratios, and trace elements in zircon. Compared to Late Jurassic samples (1.8 ± 2.0 × 10-4 emu g-1 oe-1, Fe3+/Fetotal = 0.32 ± 0.07, zircon Ce4+/Ce3+* = 15.0 ± 13.4), Early Cretaceous rocks show higher whole-rock magnetic susceptibility (5.8 ± 2.5 × 10-4 emu g-1 oe-1), Fe3+/Fetotal ratios (0.43 ± 0.04), and zircon Ce4+/Ce3+* values (23.9 ± 22.3). In addition, positive correlations among whole-rock magnetic susceptibility, Fe3+/Fetotal ratios, and zircon Ce4+/Ce3+* reveal a slight increase in oxidation state from fO2 = QFM to NNO in the Late Jurassic to fO2 = ˜NNO in the Early Cretaceous. Obvious linear correlation between oxidation indices (whole-rock magnetic susceptibility, zircon Ce4+/Ce3+*) and source signatures (zircon ɛHf(t), TDM C ages) indicates that the oxidation state was predominantly inherited from the source with only a minor contribution from magmatic differentiation. Thus, the sources for both the Late Jurassic and Early Cretaceous rocks were probably influenced by mantle wedge-derived magma, contributing to the increased fO2. Compared to ore-forming rocks at giant porphyry Cu deposits, the relatively low oxidation state (QFM to NNO) and negative ɛHf(t) (-16 to 0) of the studied granitoids implies relative infertility. However, this study demonstrates two potential fast and effective indices ( fO2 and ɛHf(t)) to evaluate the fertility of granitoids for porphyry-style mineralization. In an

  15. The effect of Mg dopants on magnetic and structural properties of iron oxide and zinc ferrite thin films

    Science.gov (United States)

    Saritaş, Sevda; Ceviz Sakar, Betul; Kundakci, Mutlu; Yildirim, Muhammet

    2018-06-01

    Iron oxide thin films have been obtained significant interest as a material that put forwards applications in photovoltaics, gas sensors, biosensors, optoelectronic and especially in spintronics. Iron oxide is one of the considerable interest due to its chemical and thermal stability. Metallic ion dopant influenced superexchange interactions and thus changed the structural, electrical and magnetic properties of the thin film. Mg dopped zinc ferrite (Mg:ZnxFe3-xO4) crystal was used to avoid the damage of Fe3O4 (magnetite) crystal instead of Zn2+ in this study. Because the radius of the Mg2+ ion in the A-site (tetrahedral) is almost equal to that of the replaced Fe3+ ion. Inverse-spinel structure in which oxygen ions (O2-) are arranged to form a face-centered cubic (FCC) lattice where there are two kinds of sublattices, namely, A-site and B-site (octahedral) interstitial sites and in which the super exchange interactions occur. In this study, to increase the saturation of magnetization (Ms) value for iron oxide, inverse-spinal ferrite materials have been prepared, in which the iron oxide was doped by multifarious divalent metallic elements including Zn and Mg. Triple and quaternary; iron oxide and zinc ferrite thin films with Mg metal dopants were grown by using Spray Pyrolysis (SP) technique. The structural, electrical and magnetic properties of Mg dopped iron oxide (Fe2O3) and zinc ferrite (ZnxFe3-xO4) thin films have been investigated. Vibrating Sample Magnetometer (VSM) technique was used to study for the magnetic properties. As a result, we can say that Mg dopped iron oxide thin film has huge diamagnetic and of Mg dopped zinc ferrite thin film has paramagnetic property at bigger magnetic field.

  16. Room air versus carbon dioxide pneumoperitoneum: effects on oxidative state, apoptosis and histology of splanchnic organs.

    Science.gov (United States)

    Ypsilantis, Petros; Lambropoulou, Maria; Tentes, Ioannis; Chryssidou, Maria; Georgantas, Themistoklis; Simopoulos, Constantinos

    2016-04-01

    Although CO2 is the insufflation gas of choice in laparoscopic procedures, room air is usually used in natural orifice transluminal endoscopic surgery. The aim of the present study was to compare the safety of room air versus CO2 pneumoperitoneum in terms of their effect on the oxidative state, apoptosis and tissue injury of splanchnic organs. Eighteen Wistar rats were assigned to three groups (n = 6 per group) and were subjected to 8 mm Hg room air (group Pne-Air) or CO2 pneumoperitoneum (group Pne-CO2) or sham operation for 60 min. Forty-five minutes postdeflation, tissue samples were excised from the liver, stomach, ileum and kidneys for reduced glutathione-to-glutathione disulfide (GSH/GSSG) ratio, caspase-8 and caspase-3 and hypoxia-inducible factor-1α (HIF-1α) immunohistochemical assessment and histopathologic examination. GSH/GSSG ratio substantially declined in both pneumoperitoneum groups. No change was noted in HIF-1α expression. Mild upregulation of caspase-8 and caspase-3 was noted in both pneumoperitoneum groups being less pronounced in group Pne-Air. Histopathologic score was increased in all organs studied, but the stomach, in both pneumoperitoneum groups. Pneumoperitoneum established by either room air or CO2 induced substantial oxidative stress, mild apoptosis and mild tissue injury in splanchnic organs. While air pneumoperitoneum conferred a less pronounced apoptotic effect, the oxidative state and histopathologic profile of splanchnic organs did not differ between insufflation gases.

  17. X-ray Absorption Study of Graphene Oxide and Transition Metal Oxide Nanocomposites

    OpenAIRE

    Gandhiraman, Ram P.; Nordlund, Dennis; Javier, Cristina; Koehne, Jessica E.; Chen, Bin; Meyyappan, M.

    2014-01-01

    The surface properties of the electrode materials play a crucial role in determining the performance and efficiency of energy storage devices. Graphene oxide and nanostructures of 3d transition metal oxides were synthesized for construction of electrodes in supercapacitors, and the electronic structure and oxidation states were probed using near-edge X-ray absorption fine structure. Understanding the chemistry of graphene oxide would provide valuable insight into its reactivity and properties...

  18. Oxidation mechanisms occurring in wines

    OpenAIRE

    Oliveira, Carla Maria; Ferreira, António César Silva; Freitas, Victor De; Silva, Artur M. S.

    2011-01-01

    The present review aims to show the state of the art on the oxidation mechanisms occurring in wines, as well as the methods to monitor, classify and diagnose wine oxidation. Wine oxidation can be divided in enzymatic oxidation and non-enzymatic oxidation. Enzymatic oxidation almost entirely occurs in grape must and is largely correlated with the content of hydroxycinnamates, such as caffeoyltartaric acid and paracoumaroyltartaric acid, and flavan-3-ols. Non-enzymatic oxidation, al...

  19. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: new transition-state searching method for resolving the complex reaction network.

    Science.gov (United States)

    Wang, Hui-Fang; Liu, Zhi-Pan

    2008-08-20

    Ethanol oxidation on Pt is a typical multistep and multiselectivity heterogeneous catalytic process. A comprehensive understanding of this fundamental reaction would greatly benefit design of catalysts for use in direct ethanol fuel cells and the degradation of biomass-derived oxygenates. In this work, the reaction network of ethanol oxidation on different Pt surfaces, including close-packed Pt{111}, stepped Pt{211}, and open Pt{100}, is explored thoroughly with an efficient reaction path searching method, which integrates our new transition-state searching technique with periodic density functional theory calculations. Our new technique enables the location of the transition state and saddle points for most surface reactions simply and efficiently by optimization of local minima. We show that the selectivity of ethanol oxidation on Pt depends markedly on the surface structure, which can be attributed to the structure-sensitivity of two key reaction steps: (i) the initial dehydrogenation of ethanol and (ii) the oxidation of acetyl (CH3CO). On open surface sites, ethanol prefers C-C bond cleavage via strongly adsorbed intermediates (CH2CO or CHCO), which leads to complete oxidation to CO2. However, only partial oxidizations to CH3CHO and CH3COOH occur on Pt{111}. Our mechanism points out that the open surface Pt{100} is the best facet to fully oxidize ethanol at low coverages, which sheds light on the origin of the remarkable catalytic performance of Pt tetrahexahedra nanocrystals found recently. The physical origin of the structure-selectivity is rationalized in terms of both thermodynamics and kinetics. Two fundamental quantities that dictate the selectivity of ethanol oxidation are identified: (i) the ability of surface metal atoms to bond with unsaturated C-containing fragments and (ii) the relative stability of hydroxyl at surface atop sites with respect to other sites.

  20. Poly[(ethylene oxide)-co-(methylene ethylene oxide)]: A hydrolytically-degradable poly(ethylene oxide) platform.

    Science.gov (United States)

    Lundberg, Pontus; Lee, Bongjae F; van den Berg, Sebastiaan A; Pressly, Eric D; Lee, Annabelle; Hawker, Craig J; Lynd, Nathaniel A

    2012-11-20

    A facile method for imparting hydrolytic degradability to poly(ethylene oxide) (PEO), compatible with current PEGylation strategies, is presented. By incorporating methylene ethylene oxide (MEO) units into the parent PEO backbone, complete degradation was defined by the molar incorporation of MEO, and the structure of the degradation byproducts was consistent with an acid-catalyzed vinyl-ether hydrolysis mechanism. The hydrolytic degradation of poly[(ethylene oxide)-co-(methylene ethylene oxide)] was pH-sensitive, with degradation at pH 5 being significantly faster than at pH 7.4 at 37 °C in PBS buffer while long-term stability could be obtained in either the solid-state or at pH 7.4 at 6 °C.

  1. Study of transition metal oxides by photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Rao, C.N.R.; Sarma, D.D.; Vasudevan, S.; Hegde, M.S.

    1979-01-01

    Systematics in the X-ray photoelectron spectra (X.p.e.s.) of Ti, V, Cr, Mn and Nb oxides with the metal ion in different oxidation states as well as of related series of mono-, sesqui- and di-oxides of the first row of transition metals have been investigated in detail. Core level binding energies, spin-orbit splittings and exchange splittings are found to exhibit interesting variations with the oxidation state of the metal or the nuclear charge. The 3d binding energies of the monoxides show a proportionality to Goodenough's (R - RC). Other aspects of interest in the study are the satellite structure and final state effects in the X.p.e.s. of the oxides, and identification of different valence states in oxides of the general formulae Mn02n-1 and M304. The nature of changes in the 3d bands of oxides undergoing metal-insulator transitions is also indicated. (author)

  2. Synchrotron radiation-based {sup 61}Ni Mössbauer spectroscopic study of Li(Ni{sub 1/3}Mn{sub 1/3}Co{sub 1/3})O{sub 2} cathode materials of lithium ion rechargeable battery

    Energy Technology Data Exchange (ETDEWEB)

    Segi, Takashi, E-mail: segi.takashi@kki.kobelco.com [Kobelco Research Institute, Inc. (Japan); Masuda, Ryo; Kobayashi, Yasuhiro [Kyoto University, Research Reactor Institute (Japan); Tsubota, Takayuki [Kobelco Research Institute, Inc. (Japan); Yoda, Yoshitaka [Japan Synchrotron Radiation Research Institute, Research and Utilization Division (Japan); Seto, Makoto [Kyoto University, Research Reactor Institute (Japan)

    2016-12-15

    Layered rocksalt type oxides, such as Li(Ni{sub 1/3}Mn{sub 1/3}Co{sub 1/3})O{sub 2}, are widely used as the cathode active materials of lithium-ion rechargeable batteries. Because the nickel ions are associated with the role of the charge compensation at discharge and charge, the {sup 61}Ni Mössbauer measurements at 6 K using synchrotron radiation were performed to reveal the role of Ni. The Ni ions of the active materials play two roles for the redox process between the charge and discharge states of lithium-ion batteries. Half of the total Ni ions change to the low-spin Ni {sup 3+} with Jahn-Teller distortion from the Ni {sup 2+} ions of the discharge state. The remainder exhibit low-spin state divalent Ni ions.

  3. All-solid-state flexible microsupercapacitors based on reduced graphene oxide/multi-walled carbon nanotube composite electrodes

    Science.gov (United States)

    Mao, Xiling; Xu, Jianhua; He, Xin; Yang, Wenyao; Yang, Yajie; Xu, Lu; Zhao, Yuetao; Zhou, Yujiu

    2018-03-01

    All-solid-state flexible microsupercapacitors have been intensely investigated in order to meet the rapidly growing demands for portable microelectronic devices. Herein, we demonstrate a facile, readily scalable and cost-effective laser induction process for preparing reduced graphene oxide/multi-walled carbon nanotube composite, which can be used as the interdigital electrodes in microsupercapacitors. The obtained composite exhibits high volumetric capacitance about 49.35 F cm-3, which is nearly 5 times higher than that of the pristine reduced graphene oxide film in aqueous 1.0 M H2SO4 solution (measured at a current density of 5 A cm-3 in a three-electrode testing). Additionally, an all-solid-state flexible microsupercapacitor employing these composite electrodes with PVA/H3PO4 gel electrolyte delivers high volumetric energy density of 6.47 mWh cm-3 at 10 mW cm-3 under the current density of 20 mA cm-3 as well as achieve excellent cycling stability retaining 88.6% of its initial value and outstanding coulombic efficiency after 10,000 cycles. Furthermore, the microsupercapacitors array connected in series/parallel can be easily adjusted to achieve the demands in practical applications. Therefore, this work brings a promising new candidate of prepare technologies for all-solid-state flexible microsupercapacitors as miniaturized power sources used in the portable and wearable electronics.

  4. Effect of 50 and 80 MeV phosphorous ions on the contribution of interface and oxide state density in n-channel MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, N.S.; Dhole, S.D.; Kanjilal, D.; Bhoraskar, V.N. E-mail: vnb@physics.unipune.ernet.in

    1999-07-02

    n-channel depletion MOS devices were irradiated with 50 and 80 MeV phosphorous ions, with different fluences varying in the range from 10{sup 11} to 10{sup 13} ions/cm{sup 2}. The pre and post irradiation I-V characteristics were measured and the corresponding threshold shift {delta}V{sub TH} was estimated. In both the cases, the drain current I{sub D} and the threshold voltage V{sub TH} were found to decrease with the ion fluence. The increase in the threshold voltage shift {delta}V{sub TH} with the ion fluence, was greater for the devices irradiated with 80 MeV ions than those irradiated with 50 MeV ions. The interface and oxide state densities were determined through the subthreshold voltage measurements. To separate the contributions of oxide and interface states towards the threshold voltage shift, the ion irradiated MOS devices were annealed at 150 deg. C. The threshold shift during annealing initially decreased and later increased with increasing annealing period. The rate of change of the interface states during annealing was higher than that of the oxide states. It was also found that depletion mode (normally ON) MOSFETs switched operation to enhancement mode (normally OFF)

  5. Magnetic properties and effect of pressure on the electronic state of EuCo2Ge2

    Science.gov (United States)

    Ashitomi, Y.; Kakihana, M.; Honda, F.; Nakamura, A.; Aoki, D.; Uwatoko, Y.; Nakashima, M.; Amako, Y.; Takeuchi, T.; Kida, T.; Tahara, T.; Hagiwara, M.; Haga, Y.; Hedo, M.; Nakama, T.; Ōnuki, Y.

    2018-05-01

    EuCo2Ge2 with the tetragonal structure is a Eu-divalent antiferromagnet with the Néel temperature TN = 23 K. The magnetic easy-axis corresponds to the [100] direction (a-axis), while the [001] direction (c-axis) is a hard-axis. The magnetization for H∥ [ 100 ] indicates a metamagnetic transition at 25 kOe and saturates above 75 kOe. On the other hand, the hard-axis magnetization increases approximately linearly and saturates above 110 kOe. The magnetic phase diagram was constructed. A characteristic feature in EuCo2Ge2 is known as a valence transition under pressure, from Eu 2+δ to Eu 3 - δ ‧(δ, δ ‧ electronic state is changed into a moderate heavy fermion state and approaches the nearly trivalent electronic state.

  6. Application of powerful oxidizers in the synthesis of new high-oxidation state actinide and related species

    International Nuclear Information System (INIS)

    Yeh, S.M.

    1984-11-01

    The fluorinating and oxide scavenging ability of XeF 6 have been studied by bringing XeF 6 into interaction with oxide-fluoride compounds of the third-transition-series elements (W, Re and Os) and uranium, in their highest oxidation states. A + MOF 5 - and A + M 2 O 2 F 9 - (A = K or Cs, M = W or U) were converted to A + MF 7 - by XeF 6 , but the rhenium and osmium compounds, K + ReO 2 F 4 - and XeF 5 + OsO 3 F 3 - , resisted interaction with XeF 6 . Strong interactions between XeF 2 or KrF 2 and the solvent have been observed for their solutions in anhydrous HF. Both XeF 2 and KrF 2 are seen to be effective in breaking up the polymeric (HF)/sub n/ chains. Only weak interactions occur between cations and anions of KrF + AuF 6 - and Kr 2 F 3 + AuF 6 - in HF. The AuF 6 - anions are slightly distorted from O/sub h/ symmetry. Kr 2 F 3 + cations in HF have the same dissymmetric V-shape which occurs in crystalline salts. A low-temperature orthorhombic form, β-ReF 6 + SbF 6 - , a high-temperature rhombohedral form, α-ReF 6 + SbF 6 - , and a ReF 6 + AuF 6 - have been prepared. These compounds possess only kinetic stability at ambient temperature and at approx. 20 0 C are best represented as ReF 6 + ReF 7 MF 6 - MF 5 . Thermochemical energy evaluations indicate that the ionization potential of ReF 6 is 261 kcal mole -1 and that the fluoride-ion affinity of ReF 6 + is -214 kcal mole -1 . This is more exothermal than the corresponding process for IF 6 + (-208 kcal mole -1 ). In contrast, ReOF 5 is shown to be a better fluoro-base than IOF 5 and also is a better base than ReF 7 . ReOF 4 + MF 6 - (M = Sb, Au and As) salts are of higher thermal stability than their ReF 6 + MF 6 - analogues

  7. Anodic oxidation

    CERN Document Server

    Ross, Sidney D; Rudd, Eric J; Blomquist, Alfred T; Wasserman, Harry H

    2013-01-01

    Anodic Oxidation covers the application of the concept, principles, and methods of electrochemistry to organic reactions. This book is composed of two parts encompassing 12 chapters that consider the mechanism of anodic oxidation. Part I surveys the theory and methods of electrochemistry as applied to organic reactions. These parts also present the mathematical equations to describe the kinetics of electrode reactions using both polarographic and steady-state conditions. Part II examines the anodic oxidation of organic substrates by the functional group initially attacked. This part particular

  8. Assigning Oxidation States to Organic Compounds via Predictions from X-ray Photoelectron Spectroscopy: A Discussion of Approaches and Recommended Improvements

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vipul; Ganegoda, Hasitha; Engelhard, Mark H.; Terry, Jeff H.; Linford, Matthew R.

    2014-02-11

    The traditional assignment of oxidation numbers to organic molecules is problematic. Accordingly, in 1999, Calzaferri proposed a simple and elegant solution that is based on the similar electronegativities of carbon and hydrogen: hydrogen would be assigned an oxidation number of zero when bonded to carbon. Here we show that X-ray photoelectron spectroscopy (XPS), a core electron spectroscopy that is sensitive to oxidation states of elements, confirms his suggestion. In particular, in this work we: (i) list the typical rules for assigning oxidation numbers, (ii) discuss the traditional assignment of oxidation numbers to organic molecules, (iii) review Calzaferri’s solution, (iv) introduce X-ray photoelectron spectroscopy (XPS), (v) show the consistency of Calzaferri’s suggestion with XPS results, (vi) provide supporting examples from the literature, (vii) provide examples from our own research, and (viii) further confirm the Calzaferri suggestion/photoelectron spectroscopy results by discussing two organic well-known reactions. We end by reechoing Calzaferri’s suggestion that the traditional rules for assigning oxidation numbers to organic molecules be modified.

  9. pH-sensor properties of electrochemically grown iridium oxide

    NARCIS (Netherlands)

    Olthuis, Wouter; Robben, M.A.M.; Bergveld, Piet; Bos, M.; van der Linden, W.E.

    1990-01-01

    The open-circuit potential of an electrochemically grown iridium oxide film is measured and shows a pH sensitivity between −60 and −80 mV/pH. This sensitivity is found to depend on the state of oxidation of the iridium oxide film; for a higher state of oxidation (or more of the oxide in the high

  10. Homogeneity of Continuum Model of an Unsteady State Fixed Bed Reactor for Lean CH4 Oxidation

    Directory of Open Access Journals (Sweden)

    Subagjo

    2014-07-01

    Full Text Available In this study, the homogeneity of the continuum model of a fixed bed reactor operated in steady state and unsteady state systems for lean CH4 oxidation is investigated. The steady-state fixed bed reactor system was operated under once-through direction, while the unsteady-state fixed bed reactor system was operated under flow reversal. The governing equations consisting of mass and energy balances were solved using the FlexPDE software package, version 6. The model selection is indispensable for an effective calculation since the simulation of a reverse flow reactor is time-consuming. The homogeneous and heterogeneous models for steady state operation gave similar conversions and temperature profiles, with a deviation of 0.12 to 0.14%. For reverse flow operation, the deviations of the continuum models of thepseudo-homogeneous and heterogeneous models were in the range of 25-65%. It is suggested that pseudo-homogeneous models can be applied to steady state systems, whereas heterogeneous models have to be applied to unsteady state systems.

  11. Molybdenum Oxides - From Fundamentals to Functionality.

    Science.gov (United States)

    de Castro, Isabela Alves; Datta, Robi Shankar; Ou, Jian Zhen; Castellanos-Gomez, Andres; Sriram, Sharath; Daeneke, Torben; Kalantar-Zadeh, Kourosh

    2017-10-01

    The properties and applications of molybdenum oxides are reviewed in depth. Molybdenum is found in various oxide stoichiometries, which have been employed for different high-value research and commercial applications. The great chemical and physical characteristics of molybdenum oxides make them versatile and highly tunable for incorporation in optical, electronic, catalytic, bio, and energy systems. Variations in the oxidation states allow manipulation of the crystal structure, morphology, oxygen vacancies, and dopants, to control and engineer electronic states. Despite this overwhelming functionality and potential, a definitive resource on molybdenum oxide is still unavailable. The aim here is to provide such a resource, while presenting an insightful outlook into future prospective applications for molybdenum oxides. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. An unusual high-spin ground state of Co3+ in octahedral coordination in brownmillerite-type cobalt oxide.

    Science.gov (United States)

    Istomin, S Ya; Tyablikov, O A; Kazakov, S M; Antipov, E V; Kurbakov, A I; Tsirlin, A A; Hollmann, N; Chin, Y Y; Lin, H-J; Chen, C T; Tanaka, A; Tjeng, L H; Hu, Z

    2015-06-21

    The crystal and magnetic structures of brownmillerite-like Sr(2)Co(1.2)Ga(0.8)O(5) with a stable Co(3+) oxidation state at both octahedral and tetrahedral sites are refined using neutron powder diffraction data collected at 2 K (S.G. Icmm, a = 5.6148(6) Å, b = 15.702(2) Å, c = 5.4543(6) Å; R(wp) = 0.0339, R(p) = 0.0443, χ(2) = 0.775). The very large tetragonal distortion of CoO(6) octahedra (1.9591(4) Å for Co-O(eq) and 2.257(6) Å for Co-O(ax)) could be beneficial for the stabilization of the long-sought intermediate-spin state of Co(3+) in perovskite-type oxides. However, the large magnetic moment of octahedral Co(3+) (3.82(7)μ(B)) indicates the conventional high-spin state of Co(3+) ions, which is further supported by the results of a combined theoretical and experimental soft X-ray absorption spectroscopy study at the Co-L(2,3) edges on Sr(2)Co(1.2)Ga(0.8)O(5). A high-spin ground state of Co(3+) in Sr(2)Co(1.2)Ga(0.8)O(5) resulted in much lower in comparison with a LaCoO(3) linear thermal expansion coefficient of 13.1 ppm K(-1) (298-1073 K) determined from high-temperature X-ray powder diffraction data collected in air.

  13. METAL OXIDE NANOPARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    FERNANDEZ-GARCIA,M.; RODGRIGUEZ, J.A.

    2007-10-01

    This chapter covers the fundamental science, synthesis, characterization, physicochemical properties and applications of oxide nanomaterials. Explains fundamental aspects that determine the growth and behavior of these systems, briefly examines synthetic procedures using bottom-up and top-down fabrication technologies, discusses the sophisticated experimental techniques and state of the art theory results used to characterize the physico-chemical properties of oxide solids and describe the current knowledge concerning key oxide materials with important technological applications.

  14. The Oxidation State of Fe in Glasses from the Galapagos Archipelago: Variable Oxygen Fugacity as a Function of Mantle Source

    Science.gov (United States)

    Peterson, M. E.; Kelley, K. A.; Cottrell, E.; Saal, A. E.; Kurz, M. D.

    2015-12-01

    The oxidation state of the mantle plays an intrinsic role in the magmatic evolution of the Earth. Here we present new μ-XANES measurements of Fe3+/ΣFe ratios (a proxy for ƒO2) in a suite of submarine glasses from the Galapagos Archipelago. Using previously presented major, trace, and volatile elements and isotopic data for 4 groups of glass that come from distinct mantle sources (depleted upper mantle, 2 recycled, and a primitive mantle source) we show that Fe3+/ΣFe ratios vary both with the influence of shallow level processes and with variations in mantle source. Fe3+/ΣFe ratios increase with differentiation (i.e. decreasing MgO), but show a large variation at a given MgO. Progressive degassing of sulfur accompanies decreasing Fe3+/ΣFe ratios, while assimilation of hydrothermally altered crust (as indicated by increasing Sr/Sr*) is shown to increase Fe3+/ΣFe ratios. After taking these processes into account, there is still variability in the Fe3+/ΣFe ratios of the isotopically distinct sample suites studied, yielding a magmatic ƒO2 that ranges from ΔQFM = +0.16 to +0.74 (error ITE = enriched Sr and Pb isotopes) shows evidence of mixing between oxidized and reduced sources (ITE oxidized end-member = 0.177). This suggests that mantle sources in the Galapagos that are thought to contain recycled components (i.e., WD and ITE groups) have distinct oxidation states. The high 3He/4He Fernandina samples (HHe group) are shown to be the most oxidized (ave. 0.175 ± 0.006). With C/3He ratios an order of magnitude greater than MORB this suggests that the primitive mantle is a more carbonated and oxidized source than the depleted upper mantle.

  15. Measurements of the oxidation state and concentration of plutonium in interstitial waters of the Irish Sea

    International Nuclear Information System (INIS)

    Nelson, D.M.; Lovett, M.B.

    1980-01-01

    The question of plutonium movement in interstitial waters resulting from diffusion along concentration gradients or from advective flow is addressed. The results of measurements of both the concentration and the oxidation state of plutonium in interstitial water collected from sediments near the Windscale discharge, in the solid phases of these sediments and in seawater and suspended solids collected at the coring locations are discussed

  16. N-Oxide-N-oxide interactions and Cl...Cl halogen bonds in pentachloropyridine N-oxide: the many-body approach to interactions in the crystal state.

    Science.gov (United States)

    Wzgarda-Raj, Kinga; Rybarczyk-Pirek, Agnieszka J; Wojtulewski, Sławomir; Palusiak, Marcin

    2018-02-01

    Pentachloropyridine N-oxide, C 5 Cl 5 NO, crystallizes in the monoclinic space group P2 1 /c. In the crystal structure, molecules are linked by C-Cl...Cl halogen bonds into infinite ribbons extending along the crystallographic [100] direction. These molecular aggregates are further stabilized by very short intermolecular N-oxide-N-oxide interactions into herringbone motifs. Computations based on quantum chemistry methods allowed for a more detailed description of the N-oxide-N-oxide interactions and Cl...Cl halogen bonds. For this purpose, Hirshfeld surface analysis and the many-body approach to interaction energy were applied.

  17. Topological evolution and photoluminescent properties of a series of divalent zinc-based metal–organic frameworks tuned via ancillary ligating spacers

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Xiao-Min; Zhao, Wen [Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China); Zhao, Xiao-Li, E-mail: xlzhao@chem.ecnu.edu.cn [Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China)

    2013-04-15

    The combination of divalent zinc ions, 4-(4-carboxybenzamido)benzoic acid and exo-bidendate bipyridine ligands gave rise to a series of new MOFs: [ZnL(bipy)]·DMF·H{sub 2}O (1), [ZnL(bpe)]·1.5H{sub 2}O (2), [ZnL(bpa)]·4H{sub 2}O (3) and [ZnL(bpp)]·1.75H{sub 2}O (4) (MOF=metal-organic framework, bipy=4,4′-bipyridine, bpe=trans-1,2-bis(4-pyridyl)ethylene, bpa=1,2-bis(4-pyridinyl)ethane, bpp=1,3-bis(4-pyridinyl)propane, H{sub 2}L=4,4′-(carbonylimino)dibenzoic acid). Fine tune over the topology of the MOFs was achieved via systematically varying the geometric length of the second ligating bipyridine ligands. Single-crystal X-ray analysis reveals that complex 1 has a triply interpenetrated three-dimensional (3D) framework with elongated primitive cubic topology, whereas isostructural complexes 2 and 3 each possesses a 6-fold interpenetrated diamondiod 3D framework. Further expansion of the length of the bipyridine ligand to bpp leads to the formation of 4, which features an interesting entangled architecture of 2D→3D parallel polycatenation. In addition, the thermogravimetric analyses and solid-state photoluminescent properties of the selected complexes are investigated. - Graphical abstract: The incorporation of exo-bidendate bipyridine spacers into the Zn–H{sub 2}L system has yielded a series of new MOFs exhibiting topological evolution from 3-fold interpenetration to 6-fold interpenetration and 2D→3D parallel polycatenation. Highlights: ► The effect of the pyridyl-based spacers on the formation of MOFs was explored. ► Fine tune over the topology of the MOFs was achieved. ► An interesting structure of 2D→3D parallel polycatenation is reported.

  18. Topological evolution and photoluminescent properties of a series of divalent zinc-based metal–organic frameworks tuned via ancillary ligating spacers

    International Nuclear Information System (INIS)

    Lian, Xiao-Min; Zhao, Wen; Zhao, Xiao-Li

    2013-01-01

    The combination of divalent zinc ions, 4-(4-carboxybenzamido)benzoic acid and exo-bidendate bipyridine ligands gave rise to a series of new MOFs: [ZnL(bipy)]·DMF·H 2 O (1), [ZnL(bpe)]·1.5H 2 O (2), [ZnL(bpa)]·4H 2 O (3) and [ZnL(bpp)]·1.75H 2 O (4) (MOF=metal-organic framework, bipy=4,4′-bipyridine, bpe=trans-1,2-bis(4-pyridyl)ethylene, bpa=1,2-bis(4-pyridinyl)ethane, bpp=1,3-bis(4-pyridinyl)propane, H 2 L=4,4′-(carbonylimino)dibenzoic acid). Fine tune over the topology of the MOFs was achieved via systematically varying the geometric length of the second ligating bipyridine ligands. Single-crystal X-ray analysis reveals that complex 1 has a triply interpenetrated three-dimensional (3D) framework with elongated primitive cubic topology, whereas isostructural complexes 2 and 3 each possesses a 6-fold interpenetrated diamondiod 3D framework. Further expansion of the length of the bipyridine ligand to bpp leads to the formation of 4, which features an interesting entangled architecture of 2D→3D parallel polycatenation. In addition, the thermogravimetric analyses and solid-state photoluminescent properties of the selected complexes are investigated. - Graphical abstract: The incorporation of exo-bidendate bipyridine spacers into the Zn–H 2 L system has yielded a series of new MOFs exhibiting topological evolution from 3-fold interpenetration to 6-fold interpenetration and 2D→3D parallel polycatenation. Highlights: ► The effect of the pyridyl-based spacers on the formation of MOFs was explored. ► Fine tune over the topology of the MOFs was achieved. ► An interesting structure of 2D→3D parallel polycatenation is reported

  19. Ni–Ta–O mixed oxide catalysts for the low temperature oxidative dehydrogenation of ethane to ethylene

    KAUST Repository

    Zhu, Haibo; Rosenfeld, Devon C.; Anjum, Dalaver H.; Sangaru, Shiv; Saih, Youssef; Ould-Chikh, Samy; Basset, Jean-Marie

    2015-01-01

    The "wet" sol-gel and "dry" solid-state methods were used to prepare Ni-Ta-O mixed oxide catalysts. The resulting Ni-Ta oxides exhibit high activity and selectivity for the low temperature oxidative dehydrogenation of ethane to ethylene. The Ta

  20. Serum oxidative-anti-oxidative stress balance is dysregulated in patients with hepatitis C virus-related hepatocellular carcinoma.

    Science.gov (United States)

    Nishimura, Mamoru; Takaki, Akinobu; Tamaki, Naofumi; Maruyama, Takayuki; Onishi, Hideki; Kobayashi, Sayo; Nouso, Kazuhiro; Yasunaka, Tetsuya; Koike, Kazuko; Hagihara, Hiroaki; Kuwaki, Kenji; Nakamura, Shinichiro; Ikeda, Fusao; Iwasaki, Yoshiaki; Tomofuji, Takaaki; Morita, Manabu; Yamamoto, Kazuhide

    2013-10-01

    Oxidative stress is associated with progression of chronic liver disease (CLD). This association is best established in chronic hepatitis C. However, the anti-oxidative state is not well characterized. The objective of the present study was to investigate the balance of oxidative and anti-oxidative stress in CLD patients. We recruited a study population of 208 patients, including healthy volunteers (HV; n = 15), patients with hepatitis B virus (HBV)-related CLD without or with hepatocellular carcinoma (HBV-non-HCC, n = 25, and HBV-HCC, n = 50, respectively), and patients with hepatitis C virus (HCV)-related CLD without or with HCC (HCV-non-HCC, n = 49, and HCV-HCC, n = 69, respectively). Serum levels of reactive oxygen metabolites (ROM) and anti-oxidative markers (OXY-adsorbent test; OXY) were determined, and the balance of these values was used as the oxidative index. Correlations among ROM, OXY, oxidative index and clinical characteristics were investigated. Patients with CLD exhibited elevated ROM and oxidative index compared to HV. Among patients with CLD, HCV positive status correlated with increased ROM. In CLD, HCV-HCC patients exhibited the highest ROM levels. Among HCV-related CLD patients, lower OXY correlated with HCC positive status, but was recovered by eradication of HCC. In HCV-HCC, lower OXY correlated with high PT-INR. HCV positive CLD patients displayed higher oxidative stress and HCV-HCC patients displayed lower anti-oxidative state. Anti-oxidative state depression was associated with liver reservoir-related data in HCV-HCC and could be reversed with HCC eradication. © 2012 The Japan Society of Hepatology.

  1. Evolution of the Oxidation State of the Earth's Mantle: Challenges of High Pressure Quenching

    Science.gov (United States)

    Danielson, L. R.; Righter, K.; Keller, L.; Christoffersen, R.; Rahman, Z.

    2015-01-01

    The oxidation state of the Earth's mantle during formation remains an unresolved question, whether it was constant throughout planetary accretion, transitioned from reduced to oxidized, or from oxidized to reduced. We investigate the stability of Fe3+ at depth, in order to constrain processes (water, late accretion, dissociation of FeO) which may reduce or oxidize the Earth's mantle. Experiments of more mafic compositions and at higher pressures commonly form a polyphase quench intergrowth composed primarily of pyroxenes, with interstitial glass which hosts nearly all of the more volatile minor elements. In our previous experiments on shergottite compositions, variable fO2, T, and P is less than 4 GPa, Fe3+/TotFe decreased slightly with increasing P, similar to terrestrial basalt. For oxidizing experiments less than 7GPa, Fe3+/TotFe decreased as well, but it's unclear from previous modelling whether the deeper mantle could retain significant Fe3+. Our current experiments expand our pressure range deeper into the Earth's mantle and focus on compositions and conditions relevant to the early Earth. Experiments with Knippa basalt as the starting composition were conducted at 1-8 GPa and 1800 C, using a molybdenum capsule to set the fO2 near IW, by buffering with Mo-MoO3. TEM and EELS analyses revealed the run products from 7-8 GPa quenched to polycrystalline phases, with the major phase pyroxene containing approximately equal Fe3+/2+. A number of different approaches have been employed to produce glassy samples that can be measured by EELS and XANES. A more intermediate andesite was used in one experiment, and decompression during quenching was attempted after, but both resulted in a finer grained polyphase texture. Experiments are currently underway to test different capsule materials may affect quench texture. A preliminary experiment using liquid nitrogen to greatly enhance the rate of cooling of the assembly has also been attempted and this technique will be

  2. A Theoretical Study of the Oxidation of Hg0 to HgBr2 in the Troposphere

    DEFF Research Database (Denmark)

    Goodsite, M. E.; Plane, J. M C; Skov, H.

    2004-01-01

    The oxidation of elemental mercury (Hg0) to the divalent gaseous mercury dibromide (HgBr2) has been proposed to account for the removal of Hg0 during depletion events in the springtime Arctic. The mechanism of this process is explored in this paper by theoretical calculations of the relevant rate...... coefficients. Rice-Ramsberger-Kassel-Marcus (RRKM) theory, together with ab initio quantum calculations where required, are used to estimate the following: recombination rate coefficients of Hg with Br, I, and O; the thermal dissociation rate coefficient of HgBr; and the recombination rate coefficients of Hg......Br with Br, I, OH, and O2. A mechanism based on the initial recombination of Hg with Br, followed by the addition of a second radical (Br, I, or OH) in competition with thermal dissociation of HgBr, is able to account for the observed rate of Hg 0 removal, both in Arctic depletion events and at lower...

  3. Effect of divalent impurities on some physical properties of LiF and NaF; Influence des impuretes divalentes sur quelques proprietes physiques du LiF et du NaF

    Energy Technology Data Exchange (ETDEWEB)

    Laj, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-05-01

    The ionic thermo-currents technique is applied to the study of impurity vacancy dipoles in LiF and NaF doped with several divalent cations. In LiF only one ITC band is observed whatever the impurity studied. In NaF on the contrary two ITC bands are present, one corresponding to the one observed in LiF, the other one, intense in the case of small impurities, at lower temperature. A parallel EPR study in the case of Mn{sup 2+} doped samples shows that the band observed in LiF and the corresponding one in NaF are due to the relaxation of dipoles formed by the association of an impurity and a vacancy in the next nearest position. The knowledge of the properties of the dipoles allows to show that the room temperature ionic conductivity of LiF is conditioned by the equilibrium: M{sup ++} {open_square}+ {yields} M{sup ++} + {open_square}+. It is also shown that the isolated cation vacancy originating from this dissociation is responsible for the enhancement of {gamma}-ray coloration of LiF doped with divalent cation impurities. A paramagnetic center ascribed to the presence of Mn{sup 0} isolated in the lattice is also studied. The value of the hyperfine interaction and its temperature dependence are in good agreement with both the theory and the other experimental results. Finally it is shown that the disappearance of dipoles by annealing is related to the formation of complexes involving OH{sup -} ions, probably of the M(OH){sub 2} type, with the two OH{sup -} ions occupying a single fluorine site. (author) [French] La technique des thermocourants ioniques est appliquee a l'etude des dipoles lacune-impurete dans LiF et NaF dopes avec plusieurs cations divalents. Dans LiF on met en evidence un seul pic de thermocourant quelle que soit l'impurete consideree. Dans NaF au contraire deux pics de thermocourants sont presents, l'un correspondant a celui observe dans LiF, l'autre, dominant dans le cas des impuretes de petite taille, a plus basse temperature. Une etude parallelle

  4. Effect of divalent impurities on some physical properties of LiF and NaF; Influence des impuretes divalentes sur quelques proprietes physiques du LiF et du NaF

    Energy Technology Data Exchange (ETDEWEB)

    Laj, C. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-05-01

    The ionic thermo-currents technique is applied to the study of impurity vacancy dipoles in LiF and NaF doped with several divalent cations. In LiF only one ITC band is observed whatever the impurity studied. In NaF on the contrary two ITC bands are present, one corresponding to the one observed in LiF, the other one, intense in the case of small impurities, at lower temperature. A parallel EPR study in the case of Mn{sup 2+} doped samples shows that the band observed in LiF and the corresponding one in NaF are due to the relaxation of dipoles formed by the association of an impurity and a vacancy in the next nearest position. The knowledge of the properties of the dipoles allows to show that the room temperature ionic conductivity of LiF is conditioned by the equilibrium: M{sup ++} {open_square}+ {yields} M{sup ++} + {open_square}+. It is also shown that the isolated cation vacancy originating from this dissociation is responsible for the enhancement of {gamma}-ray coloration of LiF doped with divalent cation impurities. A paramagnetic center ascribed to the presence of Mn{sup 0} isolated in the lattice is also studied. The value of the hyperfine interaction and its temperature dependence are in good agreement with both the theory and the other experimental results. Finally it is shown that the disappearance of dipoles by annealing is related to the formation of complexes involving OH{sup -} ions, probably of the M(OH){sub 2} type, with the two OH{sup -} ions occupying a single fluorine site. (author) [French] La technique des thermocourants ioniques est appliquee a l'etude des dipoles lacune-impurete dans LiF et NaF dopes avec plusieurs cations divalents. Dans LiF on met en evidence un seul pic de thermocourant quelle que soit l'impurete consideree. Dans NaF au contraire deux pics de thermocourants sont presents, l'un correspondant a celui observe dans LiF, l'autre, dominant dans le cas des impuretes de petite taille, a plus basse temperature

  5. Hydrophobic matrix-free graphene-oxide composites with isotropic and nematic states

    Science.gov (United States)

    Wåhlander, Martin; Nilsson, Fritjof; Carlmark, Anna; Gedde, Ulf W.; Edmondson, Steve; Malmström, Eva

    2016-08-01

    We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been immobilised on anionic GO and subsequently grafted with hydrophobic polymer grafts. Dense grafts of PBA, PBMA and PMMA with a wide range of average graft lengths (MW: 1-440 kDa) were polymerised by surface-initiated controlled radical precipitation polymerisation from the statistical MI. The surface modification is designed similarly to bimodal graft systems, where the cationic MI generates nanoparticle repulsion, similar to dense short grafts, while the long grafts offer miscibility in non-polar environments and cohesion. The state-of-the-art dispersions of grafted GO were in the isotropic state. Transparent and translucent matrix-free GO-composites could be melt-processed directly using only grafted GO. After processing, birefringence due to nematic alignment of grafted GO was observed as a single giant Maltese cross, 3.4 cm across. Permeability models for composites containing aligned 2D-fillers were developed, which were compared with the experimental oxygen permeability data and found to be consistent with isotropic or nematic states. The storage modulus of the matrix-free GO-composites increased with GO content (50% increase at 0.67 wt%), while the significant increases in the thermal stability (up to 130 °C) and the glass transition temperature (up to 17 °C) were dependent on graft length. The tuneable matrix-free GO-composites with rapid thermo-responsive shape-memory effects are promising candidates for a vast range of applications, especially selective membranes and sensors.We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been

  6. Nanoscale probing of bandgap states on oxide particles using electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qianlang [School for the Engineering of Matter, Transport and Energy, Arizona State University, 85287 AZ (United States); March, Katia [Laboratoire de Physique des Solides, Bâtiment 510, Université Paris-Sud, 91405 Orsay Cedex (France); Crozier, Peter A., E-mail: CROZIER@asu.edu [School for the Engineering of Matter, Transport and Energy, Arizona State University, 85287 AZ (United States)

    2017-07-15

    Surface and near-surface electronic states were probed with nanometer spatial resolution in MgO and TiO{sub 2} anatase nanoparticles using ultra-high energy resolution electron energy-loss spectroscopy (EELS) coupled to a scanning transmission electron microscope (STEM). This combination allows the surface electronic structure determined with spectroscopy to be correlated with nanoparticle size, morphology, facet etc. By acquiring the spectra in aloof beam mode, radiation damage to the surface can be significantly reduced while maintaining the nanometer spatial resolution. MgO and TiO{sub 2} showed very different bandgap features associated with the surface/sub-surface layer of the nanoparticles. Spectral simulations based on dielectric theory and density of states models showed that a plateau feature found in the pre-bandgap region in the spectra from (100) surfaces of 60 nm MgO nanocubes is consistent with a thin hydroxide surface layer. The spectroscopy shows that this hydroxide species gives rise to a broad filled surface state at 1.1 eV above the MgO valence band. At the surfaces of TiO{sub 2} nanoparticles, pronounced peaks were observed in the bandgap region, which could not be well fitted to defect states. In this case, the high refractive index and large particle size may make Cherenkov or guided light modes the likely causes of the peaks. - Highlights: • Bandgap states detected with aloof beam monochromated EELS on oxide nanoparticle surfaces. • Dielectric theory applied to simulate the spectra and interpret surface structure. • Density of states models also be employed to understand the surface electronic structure. • In MgO, one states associate with water species was found close to the valence band edge. • In anatase, two mid-gap states associated with point defects were found.

  7. The state of itinerant charge carriers and thermoelectric effects in correlated oxide metals

    International Nuclear Information System (INIS)

    Kuzemsky, A.L.; Abdus Salam International Centre for Theoretical Physics, Trieste

    2000-10-01

    We analyzed the physics of transport processes and, in particular, the thermoelectric power in the mercurocuprates and other cuprates to get a better insight into the state of the carriers in these compounds. The actual problems related to the complicated mechanisms of carriers scattering above Tc are discussed. The experimental studies of thermoelectric power showed that the state of carriers in cuprates can be influenced by many complicated scattering processes, however the underlying mechanism for the linear decreasing of the TEP with increasing the temperature for most hole-doped HTSC cuprates is still not yet known. The actual problems related to the complicated mechanisms of carriers scattering above Tc are discussed for a few models of charge transport. A comparison between the analytical and experimental results is also made. It is concluded that the crucial factor for the understanding of the transport properties of correlated oxide metals is the nature of itinerant charge carriers, i.e. renormalized quasiparticles. (author)

  8. Moessbauer effect study of oxidation and coordination states of iron in some sodium borate glasse:;

    International Nuclear Information System (INIS)

    Eissa, N.A.; Sanad, A.M.; Youssef, S.M.; El-Henawii, S.A.; Gomaa, S.Sh.; Mostafa, A.G.

    1980-01-01

    A structural study of some sodium borate glasses containing iron was carried out applying ME spectroscopy. Both oxidation and coordination states of iron were investigated under the effect of gradual replacing of sodium carbonate by sodium nitrate in the glass batches. The glasses were melted in porcelain crucibles using an electrically heated furnace at 1000+-10 deg C, then were quenched on a steel plate at room temperature (R.T.). The ME source was 20 mCi radioactive Co-57 in chromium. The obtained ME spectra indicated that at lower sodium nitrate content both Fe 2+ and Fe 3+ are present in these glasses. At moderate concentrations some Fe 3+ ions were separated in a crystalline phase and the rest of the iron ions appeared as ferric ions in glassy state. At high sodium nitrate content only Fe 3+ ions in glassy state were detected. The values of the ME parameters for all iron ions indicated that all of them are in the octahedral coordination state. The density measurements confirm the separation of a crystalline phase at moderate sodium nitrate content. (author)

  9. Study of the oxidation state of arsenic and uranium in individual particles from uranium mine tailings, Hungary

    International Nuclear Information System (INIS)

    Alsecz, A.; Osan, J.; Palfalvi, J.; Torok, Sz.; Sajo, I.; Mathe, Z.; Simon, R.; Falkenberg, G.

    2007-01-01

    Uranium ore mining and milling have been terminated in the Mecsek Mountains (southwest Hungary) in 1997. Mine tailings ponds are located between two important water bases, which are resources of the drinking water of the city of Pecs and the neighbouring villages. The average U concentration of the tailings material is 71.73 μg/g, but it is inhomogeneous. Some microscopic particles contain orders of magnitude more U than the rest of the tailings material. Other potentially toxic elements are As and Pb of which chemical state is important to estimate mobility, because in mobile form they can risk the water basis and the public health. Individual U-rich particles were selected with solid state nuclear track detector (SSNTD) and after localisation the particles were investigated by synchrotron radiation based microanalytical techniques. The distribution of elements over the particles was studied by micro beam X-ray fluorescence (μ-XRF) and the oxidation state of uranium and arsenic was determined by micro X-ray absorption near edge structure (μ-XANES) spectroscopy. Some of the measured U-rich particles were chosen for studying the heterogeneity with μ-XRF tomography. Arsenic was present mainly in As(V) and uranium in U(VI) form in the original uranium ore particles, but in the mine tailings samples uranium was present mainly in the less mobile U(IV) form. Correlation was found between the oxidation state of As and U in the same analyzed particles. These results suggest that dissolution of uranium is not expected in short term period. (authors)

  10. Investigation of electrochemical behaviour and structure of oxide films on Ni60Nb40 alloy in amorphous and crystalline states

    International Nuclear Information System (INIS)

    Tomashov, N.D.; Skvortsova, I.B.; Gorodetskij, A.E.; Bogomolov, D.B.

    1987-01-01

    Electrochemical properties of Ni 60 Nb 40 alloy in amorphous and crystalline states as well as structure of oxide films forming during anode polarization in electrolytes on the surface of this alloy in both its states are investigated. It is stated that increased passive ability of Ni 60 Nb 40 alloys in amorphous state and high efficiency of chlorine evolution (2 n NaCl+HCl up to pH=0) anode process in comparison with crystalline state are defined by increased homogeneity and uniformity of passive films forming on amorphous alloy and their increased electron conductivity, that is in direct dependence on different structure of passive films forming on alloys in amorphous and crystalline states

  11. OXIDATION OF TRANSURANIC ELEMENTS

    Science.gov (United States)

    Moore, R.L.

    1959-02-17

    A method is reported for oxidizing neptunium or plutonium in the presence of cerous values without also oxidizing the cerous values. The method consists in treating an aqueous 1N nitric acid solution, containing such cerous values together with the trivalent transuranic elements, with a quantity of hydrogen peroxide stoichiometrically sufficient to oxidize the transuranic values to the hexavalent state, and digesting the solution at room temperature.

  12. Single-molecule folding mechanisms of the apo- and Mg2+-bound states of human neuronal calcium sensor-1

    DEFF Research Database (Denmark)

    Naqvi, Mohsin M; Heiðarsson, Pétur Orri; Otazo, Mariela R

    2015-01-01

    , at least transiently, at resting Ca(2+) conditions. Here, we used optical tweezers to study the folding behavior of individual NCS-1 molecules in the presence of Mg(2+) and in the absence of divalent ions. Under tension, the Mg(2+)-bound state of NCS-1 unfolds and refolds in a three-state process...... in a variety of cellular processes in which it has been linked to a number of disorders such as schizophrenia and autism. Despite extensive studies on the Ca(2+)-activated state of NCS proteins, little is known about the conformational dynamics of the Mg(2+)-bound and apo states, both of which are populated...... by populating one intermediate state consisting of a folded C-domain and an unfolded N-domain. The interconversion at equilibrium between the different molecular states populated by NCS-1 was monitored in real time through constant-force measurements and the energy landscapes underlying the observed transitions...

  13. Ni–Ta–O mixed oxide catalysts for the low temperature oxidative dehydrogenation of ethane to ethylene

    KAUST Repository

    Zhu, Haibo

    2015-09-01

    The "wet" sol-gel and "dry" solid-state methods were used to prepare Ni-Ta-O mixed oxide catalysts. The resulting Ni-Ta oxides exhibit high activity and selectivity for the low temperature oxidative dehydrogenation of ethane to ethylene. The Ta/(Ni + Ta) atomic ratios (varying from 0 to 0.11 in "wet" sol-gel method, and from 0 to 0.20 in "dry" solid-state method) as well as the preparation methods used in the synthesis, play important roles in controlling catalyst structure, activity, selectivity and stability in the oxidative dehydrogenation of ethane. Electron microscopy characterizations (TEM, EELS mapping, and HAADF-STEM) clearly demonstrate that the Ta atoms are inserted into NiO crystal lattice, resulting in the formation of a new Ni-Ta oxide solid solution. More Ta atoms are found to be located at the lattice sites of crystal surface in sol-gel catalyst. While, a small amount of thin layer of Ta2O5 clusters are detected in solid-state catalyst. Further characterization by XRD, N2 adsorption, SEM, H2-TPR, XPS, and Raman techniques reveal different properties of these two Ni-Ta oxides. Due to the different properties of the Ni-Ta oxide catalysts prepared by two distinct approaches, they exhibit different catalytic behaviors in the ethane oxidative dehydrogenation reaction at low temperature. Thus, the catalytic performance of Ni-Ta-O mixed oxide catalysts can be systematically modified and tuned by selecting a suitable synthesis method, and then varying the Ta content. ©2015 Elsevier Inc. All rights reserved.

  14. Signatures of Quantized Energy States in Solution-Processed Ultrathin Layers of Metal-Oxide Semiconductors and Their Devices

    KAUST Repository

    Labram, John G.

    2015-02-13

    Physical phenomena such as energy quantization have to-date been overlooked in solution-processed inorganic semiconducting layers, owing to heterogeneity in layer thickness uniformity unlike some of their vacuum-deposited counterparts. Recent reports of the growth of uniform, ultrathin (<5 nm) metal-oxide semiconductors from solution, however, have potentially opened the door to such phenomena manifesting themselves. Here, a theoretical framework is developed for energy quantization in inorganic semiconductor layers with appreciable surface roughness, as compared to the mean layer thickness, and present experimental evidence of the existence of quantized energy states in spin-cast layers of zinc oxide (ZnO). As-grown ZnO layers are found to be remarkably continuous and uniform with controllable thicknesses in the range 2-24 nm and exhibit a characteristic widening of the energy bandgap with reducing thickness in agreement with theoretical predictions. Using sequentially spin-cast layers of ZnO as the bulk semiconductor and quantum well materials, and gallium oxide or organic self-assembled monolayers as the barrier materials, two terminal electronic devices are demonstrated, the current-voltage characteristics of which resemble closely those of double-barrier resonant-tunneling diodes. As-fabricated all-oxide/hybrid devices exhibit a characteristic negative-differential conductance region with peak-to-valley ratios in the range 2-7.

  15. The protonation state around TyrD/TyrD• in photosystem II is reflected in its biphasic oxidation kinetics.

    Science.gov (United States)

    Sjöholm, Johannes; Ho, Felix; Ahmadova, Nigar; Brinkert, Katharina; Hammarström, Leif; Mamedov, Fikret; Styring, Stenbjörn

    2017-02-01

    The tyrosine residue D2-Tyr160 (Tyr D ) in photosystem II (PSII) can be oxidized through charge equilibrium with the oxygen evolving complex in PSII. The kinetics of the electron transfer from Tyr D has been followed using time-resolved EPR spectroscopy after triggering the oxidation of pre-reduced Tyr D by a short laser flash. After its oxidation Tyr D is observed as a neutral radical (Tyr D • ) indicating that the oxidation is coupled to a deprotonation event. The redox state of Tyr D was reported to be determined by the two water positions identified in the crystal structure of PSII [Saito et al. (2013) Proc. Natl. Acad. Sci. USA 110, 7690]. To assess the mechanism of the proton coupled electron transfer of Tyr D the oxidation kinetics has been followed in the presence of deuterated buffers, thereby resolving the kinetic isotope effect (KIE) of Tyr D oxidation at different H/D concentrations. Two kinetic phases of Tyr D oxidation - the fast phase (msec-sec time range) and the slow phase (tens of seconds time range) were resolved as was previously reported [Vass and Styring (1991) Biochemistry 30, 830]. In the presence of deuterated buffers the kinetics was significantly slower compared to normal buffers. Furthermore, although the kinetics were faster at both high pH and pD values the observed KIE was found to be similar (~2.4) over the whole pL range investigated. We assign the fast and slow oxidation phases to two populations of PSII centers with different water positions, proximal and distal respectively, and discuss possible deprotonation events in the vicinity of Tyr D . Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Pu oxidation state distributions in suspensions of the Mont Terri Opalinus Clay isolate Sporomusa sp. MT-2.99

    Energy Technology Data Exchange (ETDEWEB)

    Moll, Henry [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Biogeochemistry; Cherkouk, Andrea [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). HZDR Young Investigator Group; Bok, Frank [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes

    2017-06-01

    The time-dependent {sup 242}Pu oxidation state distribution in the presence of Sporomusa sp. cells as a function of pH with or without Na-pyruvate was analyzed. In all cases, the presence of bacterial cells enhanced removal of Pu from solution and accelerated Pu interaction reactions, e.g. biosorption and bioreduction.

  17. A detailed study on the transition from the blocked to the superparamagnetic state of reduction-precipitated iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Witte, K.; Bodnar, W.; Mix, T.; Schell, N.; Fulda, G.; Woodcock, T.G.; Burkel, E.

    2016-01-01

    Magnetic iron oxide nanoparticles were prepared by salt-assisted solid-state chemical precipitation method with alternating fractions of the ferric iron content. The physical properties of the precipitated nanoparticles mainly consisting of magnetite were investigated by means of transmission electron microscopy, high energy X-ray diffraction, vibrating sample magnetometry and Mössbauer spectroscopy. With particle sizes ranging from 16.3 nm to 2.1 nm, a gradual transition from the blocked state to the superparamagnetic state was observed. The transition was described as a dependence of the ferric iron content used during the precipitation. Composition, mean particle size, coercivity, saturation polarisation, as well as hyperfine interaction parameters and their evolution were studied systematically over the whole series of iron oxide nanoparticles. - Highlights: • Study of superparamagnetic transition of magnetite varying ferric iron content. • Coercivity is mainly influenced by the particle size. • Saturation polarisation influenced by the goethite content and the particle size. • Number of vacancies tend to increase with increasing ferric iron content. • Fe 3 O 4 B-sites are stronger effected by the reduction of particle size than A-sites.

  18. Force-dominated non-equilibrium oxidation kinetics of tantalum

    International Nuclear Information System (INIS)

    Kar, Prasenjit; Wang, Ke; Liang, Hong

    2008-01-01

    Using a combined electrochemical and mechanical manipulation technique, we compared the equilibrium and non-equilibrium oxidation processes and states of tantalum. Experimentally, a setup was developed with an electrochemical system attached to a sliding mechanical configuration capable of friction force measurement. The surface chemistry of a sliding surface, i.e., tantalum, was modified through the electrolyte. The mechanically applied force was fixed and the dynamics of the surface was monitored in situ through a force sensor. The formation of non-equilibrium oxidation states of tantalum was found in oxidation limiting environment of acetic acid. An oxidative environment of deionized water saturated with KCl was used as comparison. We proposed a modified Arrhenius-Eyring equation in which the mechanical factor was considered. We found that the mechanical energy induced the non-stable-state reactions leading to metastable oxidation states of tantalum. This equation can be used to predict mechanochemical reactions that are important in many industrial applications

  19. Pu oxidation state distributions in suspensions of the Mont Terri Opalinus Clay isolate Sporomusa sp. MT-2.99

    International Nuclear Information System (INIS)

    Moll, Henry; Cherkouk, Andrea; Bok, Frank

    2017-01-01

    The time-dependent "2"4"2Pu oxidation state distribution in the presence of Sporomusa sp. cells as a function of pH with or without Na-pyruvate was analyzed. In all cases, the presence of bacterial cells enhanced removal of Pu from solution and accelerated Pu interaction reactions, e.g. biosorption and bioreduction.

  20. Plutonium uptake by the green alga Scenedesmus obliquus (Turp) Kutz, as a function of isotope and oxidation state

    Energy Technology Data Exchange (ETDEWEB)

    Tkacik, M.F.

    1977-01-01

    This study was designed to determine the effect of plutonium chemical valence state on the availability of small concentrations of /sup 238/Pu and /sup 239/Pu to algae. The uptake experiments involved the green alga Scenedesmus obliquus, grown in batch cultures. Plutonium concentrations accumulated by this alga were linearly related to plutonium concentrations. There was no significant difference (rho = 0.05) in algal plutonium accumulations, on a mass basis, of either /sup 238/Pu or /sup 239/Pu in either Pu/sup +4/ or Pu/sup +6/ oxidation state at the concentrations studied.

  1. Plutonium uptake by the green alga Scenedesmus obliquus (Turp) Kutz, as a function of isotope and oxidation state

    International Nuclear Information System (INIS)

    Tkacik, M.F.

    1977-01-01

    This study was designed to determine the effect of plutonium chemical valence state on the availability of small concentrations of 238 Pu and 239 Pu to algae. The uptake experiments involved the green alga Scenedesmus obliquus, grown in batch cultures. Plutonium concentrations accumulated by this alga were linearly related to plutonium concentrations. There was no significant difference (rho = 0.05) in algal plutonium accumulations, on a mass basis, of either 238 Pu or 239 Pu in either Pu +4 or Pu +6 oxidation state at the concentrations studied

  2. Solid-state voltammetry-based electrochemical immunosensor for Escherichia coli using graphene oxide-Ag nanoparticle composites as labels.

    Science.gov (United States)

    Jiang, Xiaochun; Chen, Kun; Wang, Jing; Shao, Kang; Fu, Tao; Shao, Feng; Lu, Donglian; Liang, Jiangong; Foda, M Frahat; Han, Heyou

    2013-06-21

    A new electrochemical immunosensor based on solid-state voltammetry was fabricated for the detection of Escherichia coli (E. coli) by using graphene oxide-Ag nanoparticle composites (P-GO-Ag) as labels. To construct the platform, Au nanoparticles (AuNPs) were first self-assembled on an Au electrode surface through cysteamine and served as an effective matrix for antibody (Ab) attachment. Under a sandwich-type immunoassay format, the analyte and the probe (P-GO-Ag-Ab) were successively captured onto the immunosensor. Finally, the bonded AgNPs were detected through a solid-state redox process in 0.2 M of KCl solution. Combining the advantages of the high-loading capability of graphene oxide with promoted electron-transfer rate of AuNPs, this immunosensor produced a 26.92-fold signal enhancement compared with the unamplified protocol. Under the optimal conditions, the immunosensor exhibited a wide linear dependence on the logarithm of the concentration of E. coli ranging from 50 to 1.0 × 10(6) cfu mL(-1) with a detection limit of 10 cfu mL(-1). Moreover, as a practical application, the proposed immunosensor was used to monitor E. coli in lake water with satisfactory results.

  3. Green synthesis of Ni-Nb oxide catalysts for low-temperature oxidative dehydrogenation of ethane

    KAUST Repository

    Zhu, Haibo; Rosenfeld, Devon C.; Anjum, Dalaver H.; Caps, Valerie; Basset, Jean-Marie

    2015-01-01

    The straightforward solid-state grinding of a mixture of Ni nitrate and Nb oxalate crystals led to, after mild calcination (T<400°C), nanostructured Ni-Nb oxide composites. These new materials efficiently catalyzed the oxidative dehydrogenation (ODH

  4. Solid state solubility of copper oxides in hydroxyapatite

    Science.gov (United States)

    Zykin, Mikhail A.; Vasiliev, Alexander V.; Trusov, Lev A.; Dinnebier, Robert E.; Jansen, Martin; Kazin, Pavel E.

    2018-06-01

    Samples containing copper oxide doped hydroxyapatite with the composition Ca10(PO4)6(CuxOH1-x-δ)2, x = 0.054 - 0.582, in the mixture with CuO/Cu2O were prepared by a solid-state high-temperature treatment at varying annealing temperatures and at different partial water vapor and oxygen pressures. The crystal structures of the apatite compounds were refined using powder X-ray diffraction patterns and the content of copper ions x in the apatite was determined. Copper ions enter exclusively into the apatite trigonal channels formally substituting protons of OH-groups and the hexagonal cell parameters grow approximately linearly with x, the channel volume mostly expanding while the remaining volume of the crystal lattice changing only slightly. The equilibrium copper content in the apatite increases drastically, by almost a factor of 10 with the annealing temperature rising from 800° to 1200°C. The reduction of the water partial pressure leads to a further increase of x, while the dependence of x on the oxygen partial pressure exhibits a maximum. The observed relations are consistent with the proposed chemical reactions implying the copper introduction is followed by the release of a considerable quantity of gaseous products - water and oxygen. The analysis of interatomic distances suggests that the maximum content of copper ions in the channel cannot exceed 2/3.

  5. Development of a methodology for the separation of europium and samarium from a mixture of rare earth oxides by electroreduction/ precipitation; Desenvolvimento de uma metodologia para a separacao de samario e europio a partir de mistura de oxidos de terras raras por reducao eletroquimica/precipitacao

    Energy Technology Data Exchange (ETDEWEB)

    Chepcanoff, Vera

    2006-07-01

    The rare earths (RE) were first used in 1903, when Welsbach developed a lighter that is still used today. Nowadays, the RE are employed in many different fields, as in the production of super-alloys , as catalysts for petroleum industry, in the manufacture of non-ferrous alloys, color television tubes, x-ray screens, special glasses, ceramics, computer industries, nuclear medicine, lasers, pigments, etc., moving, in the last decade , a market of US$ 2 billions per year. Due to their similar properties, the RE elements are very difficult to separate, requiring complex processes, what make the products very expensive. Elements like Eu and Sm, which contents in the minerals are low (0.05% and 2.0%, respectively, in monazite) are extremely expensive, but their field of application justifies the research for looking for other processes, more simple and/or more effective. Trivalent state is a characteristic of all RE, but some of them presents oxidation state +2, like Ce, Eu, Sm and Yb. In the case of Eu and Sm, the focus of the present work, the divalent state is achieved by electro-reduction in the potentials -0.65 and -1.55 (SCE), respectively. This makes possible the separation of these elements from the other rare earths and from each other. Thus, making use of this characteristic, a process for the individual separation of Eu and Sm in (NH{sub 4}){sub 2}SO{sub 4} solution by electro-reduction/precipitation is proposed, where Sm is first separated from the solution as sulfate, and Eu, that remains in the solution, is precipitated after the decrease of temperature and potential applied. The process developed from a synthetic Eu and Sm solution was applied to a mixture of semi-heavy RE oxide, produced at IPEN-CNEN/SP, obtaining the separation of Sm. This product was analyzed by spectrophotometry, showing high purity. (author)

  6. Effect of divalent versus monovalent cations on the MS2 retention capacity of amino-functionalized ceramic filters.

    Science.gov (United States)

    Bartels, J; Hildebrand, N; Nawrocki, M; Kroll, S; Maas, M; Colombi Ciacchi, L; Rezwan, K

    2018-04-25

    Ceramic capillary membranes conditioned for virus filtration via functionalization with n-(3-trimethoxysilylpropyl)diethylenetriamine (TPDA) are analyzed with respect to their virus retention capacity when using feed solutions based on monovalent and divalent salts (NaCl, MgCl2). The log reduction value (LRV) by operating in dead-end mode using the model bacteriophage MS2 with a diameter of 25 nm and an IEP of 3.9 is as high as 9.6 when using feeds containing MgCl2. In contrast, a lesser LRV of 6.4 is observed for feed solutions based on NaCl. The TPDA functionalized surface is simulated at the atomistic scale using explicit-solvent molecular dynamics in the presence of either Na+ or Mg2+ ions. Computational prediction of the binding free energy reveals that the Mg2+ ions remain preferentially adsorbed at the surface, whereas Na+ ions form a weakly bound dissolved ionic layer. The charge shielding between surface and amino groups by the adsorbed Mg2+ ions leads to an upright orientation of the TPDA molecules as opposed to a more tilted orientation in the presence of Na+ ions. The resulting better accessibility of the TPDA molecules is very likely responsible for the enhanced virus retention capacity using a feed solution with Mg2+ ions.

  7. Interaction of divalent cations with basal planes and edge surfaces of phyllosilicate minerals: muscovite and talc.

    Science.gov (United States)

    Yan, Lujie; Masliyah, Jacob H; Xu, Zhenghe

    2013-08-15

    Smooth basal plane and edge surfaces of two platy phyllosilicate minerals (muscovite and talc) were prepared successfully to allow accurate colloidal force measurement using an atomic force microscope (AFM), which allowed us to probe independently interactions of divalent cations with phyllosilicate basal planes and edge surfaces. The Stern potential of basal planes and edge surfaces was obtained by fitting the measured force profiles with the classical DLVO theory. The fitted Stern potential of the muscovite basal plane became less negative with increasing Ca(2+) or Mg(2+) concentration but did not reverse its sign even at Ca(2+) or Mg(2+) concentrations up to 5 mM. In contrast, the Stern potential of the muscovite edge surface reversed at Ca(2+) or Mg(2+) concentrations as low as 0.1 mM. The Stern potential of the talc basal plane became less negative with 0.1 mM Ca(2+) addition and nearly zero with 1 mM Ca(2+) addition. The Stern potential of talc edge surface became reversed with 0.1 mM Ca(2+) or 1 mM Mg(2+) addition, showing not only a different binding mechanism of talc basal planes and edge surfaces with Ca(2+) and Mg(2+), but also different binding mechanism between Ca(2+) and Mg(2+) ions with basal planes and edge surfaces. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Affinity of Smectite and Divalent Metal Ions (Mg(2+), Ca(2+), Cu(2+)) with L-leucine: An Experimental and Theoretical Approach Relevant to Astrobiology.

    Science.gov (United States)

    Pandey, Pramod; Pant, Chandra Kala; Gururani, Kavita; Arora, Priyanka; Pandey, Neetu; Bhatt, Preeti; Sharma, Yogesh; Negi, Jagmohan Singh; Mehata, Mohan Singh

    2015-12-01

    Earth is the only known planet bestowed with life. Several attempts have been made to explore the pathways of the origin of life on planet Earth. The search for the chemistry which gave rise to life has given answers related to the formation of biomonomers, and their adsorption on solid surfaces has gained much attention for the catalysis and stabilization processes related to the abiotic chemical evolution of the complex molecules of life. In this communication, surface interactions of L-leucine (Leu) on smectite (SMT) group of clay (viz. bentonite and montmorillonite) and their divalent metal ion (Mg(2+), Ca(2+) and Cu(2+)) incorporated on SMT has been studied to find the optimal conditions of time, pH, and concentration at ambient temperature (298 K). The progress of adsorption was followed spectrophotometrically and further characterized by FTIR, SEM/EDS and XRD. Leu, a neutral/non polar amino acid, was found to have more affinity in its zwitterionic form towards Cu(2+)- exchanged SMT and minimal affinity for Mg(2+)- exchanged SMT. The vibrational frequency shifts of -NH3 (+) and -COO(-) favor Van der Waal's forces during the course of surface interaction. Quantum calculations using density functional theory (DFT) have been applied to investigate the absolute value of metal ion affinities of Leu (Leu-M(2+) complex, M = Mg(2+), Ca(2+), Cu(2+)) with the help of their physico-chemical parameters. The hydration effect on the relative stability and geometry of the individual species of Leu-M(2+) × (H2O)n, (n =2 and 4) has also been evaluated within the supermolecule approach. Evidence gathered from investigations of surface interactions, divalent metal ions affinities and hydration effects with biomolecules may be important for better understanding of chemical evolution, the stabilization of biomolecules on solid surfaces and biomolecular-metal interactions. These results may have implications for understanding the origin of life and the preservation of

  9. Flow-through lipid nanotube arrays for structure-function studies of membrane proteins by solid-state NMR spectroscopy.

    Science.gov (United States)

    Chekmenev, Eduard Y; Gor'kov, Peter L; Cross, Timothy A; Alaouie, Ali M; Smirnov, Alex I

    2006-10-15

    A novel method for studying membrane proteins in a native lipid bilayer environment by solid-state NMR spectroscopy is described and tested. Anodic aluminum oxide (AAO) substrates with flow-through 175 nm wide and 60-mum-long nanopores were employed to form macroscopically aligned peptide-containing lipid bilayers that are fluid and highly hydrated. We demonstrate that the surfaces of both leaflets of such bilayers are fully accessible to aqueous solutes. Thus, high hydration levels as well as pH and desirable ion and/or drug concentrations could be easily maintained and modified as desired in a series of experiments with the same sample. The method allows for membrane protein NMR experiments in a broad pH range that could be extended to as low as 1 and as high as 12 units for a period of up to a few hours and temperatures as high as 70 degrees C without losing the lipid alignment or bilayers from the nanopores. We demonstrate the utility of this method by a solid-state 19.6 T (17)O NMR study of reversible binding effects of mono- and divalent ions on the chemical shift properties of the Leu(10) carbonyl oxygen of transmembrane pore-forming peptide gramicidin A (gA). We further compare the (17)O shifts induced by binding metal ions to the binding of protons in the pH range from 1 to 12 and find a significant difference. This unexpected result points to a difference in mechanisms for ion and proton conduction by the gA pore. We believe that a large number of solid-state NMR-based studies, including structure-function, drug screening, proton exchange, pH, and other titration experiments, will benefit significantly from the method described here.

  10. Molecular water oxidation catalysis

    CERN Document Server

    Llobet, Antoni

    2014-01-01

    Photocatalytic water splitting is a promising strategy for capturing energy from the sun by coupling light harvesting and the oxidation of water, in order to create clean hydrogen fuel. Thus a deep knowledge of the water oxidation catalysis field is essential to be able to come up with useful energy conversion devices based on sunlight and water splitting. Molecular Water Oxidation Catalysis: A Key Topic for New Sustainable Energy Conversion Schemes presents a comprehensive and state-of-the-art overview of water oxidation catalysis in homogeneous phase, describing in detail the most importan

  11. Current emission trends for nitrogen oxides, sulfur dioxide, and volatile organic compounds by month and state: Methodology and results

    International Nuclear Information System (INIS)

    Kohout, E.J.; Miller, D.J.; Nieves, L.A.; Rothman, D.S.; Saricks, C.L.; Stodolsky, F.; Hanson, D.A.

    1990-08-01

    This report presents estimates of monthly sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), and nonmethane voltatile organic compound (VOC) emissions by sector, region, and state in the contiguous United States for the years 1975 through 1988. This work has been funded as part of the National Acid Precipitation Assessment Program's Emissions and Controls Task Group by the US Department of Energy (DOE) Office of Fossil Energy (FE). The DOE project officer is Edward C. Trexler, DOE/FE Office of Planning and Environment

  12. Remote mixed oxide fabrication facility development. Volume 2. State-of-the-art review of remote maintenance system technology

    International Nuclear Information System (INIS)

    Horgos, R.M.; Masch, M.L.

    1979-06-01

    This report provides a state-of-the-art review of remote systems technology, which includes manipulators, process connectors, vision systems and specialized process systems. A proposed mixed oxide fuel fabrication facility was reviewed and evaluated for identification of major remote maintenance and repair tasks. The technological areas were evaluated on the basis of their suitability or applicability for remote maintenance and repair of a proposed fully remote operating mixed oxide fuel fabrication facility. A technological base exists from which the design criteria for a reliable, remote operating facility can be established. Commercially available systems and components, along with those remote technologies now in development, will require modifications to adapt them to specific plant designs and requirements

  13. The effect of divalent ions on the elasticity and pore collapse of chalk evaluated from compressional wave velocity and low-field Nuclear Magnetic Resonance (NMR)

    DEFF Research Database (Denmark)

    Katika, Konstantina; Addassi, Mouadh; Alam, Mohammad Monzurul

    2015-01-01

    The effects of divalent ions on the elasticity and the pore collapse of chalk were studied through rock-mechanical testing and low-field Nuclear Magnetic Resonance (NMR) measurements. Chalk samples saturated with deionized water and brines containing sodium, magnesium, calcium and sulfate ions were...... subjected to petrophysical experiments, rock mechanical testing and low-field NMR spectroscopy. Petrophysical characterization involving ultrasonic elastic wave velocities in unconfined conditions, porosity and permeability measurements, specific surface and carbonate content determination and backscatter...... electron microscopy of the materials were conducted prior to the experiments. The iso-frame model was used to predict the bulk moduli in dry and saturated conditions from the compressional modulus of water-saturated rocks. The effective stress coefficient, as introduced by Biot, was also determined from...

  14. Control of anode supported SOFCs (solid oxide fuel cells): Part I. mathematical modeling and state estimation within one cell

    International Nuclear Information System (INIS)

    Amedi, Hamid Reza; Bazooyar, Bahamin; Pishvaie, Mahmoud Reza

    2015-01-01

    In this paper, a 3-dimensional mathematical model for one cell of an anode-supported SOFC (solid oxide fuel cells) is presented. The model is derived from the partial differential equations representing the conservation laws of ionic and electronic charges, mass, energy, and momentum. The model is implemented to fully characterize the steady state operation of the cell with countercurrent flow pattern of fuel and air. The model is also used for the comparison of countercurrent with concurrent flow patterns in terms of thermal stress (temperature distribution) and quality of operation (current density). Results reveal that the steady-state cell performance curve and output of simulations qualitatively match experimental data of the literature. Results also demonstrate that countercurrent flow pattern leads to an even distribution of temperature, more uniform current density along the cell and thus is more enduring and superior to the concurrent flow pattern. Afterward, the thorough 3-dimensional model is used for state estimation instead of a real cell. To estimate states, the model is simplified and changed to a 1-dimensional model along flow streams. This simplified model includes uncertainty (because of simplifying assumptions of the model), noise, and disturbance (because of measurements). The behaviors of extended and ensemble Kalman filter as an observer are evaluated in terms of estimating the states and filtering the noises. Results demonstrate that, like extended Kalman filter, ensemble Kalman filter properly estimates the states with 20 sets. - Highlights: • A 3-dimensional model for one cell of SOFC (solid oxide fuel cells) is presented. • Higher voltages and thermal stress in countercurrent than concurrent flow pattern. • State estimation of the cell is examined by ensemble and extended Kalman filters. • Ensemble with 20 sets is as good as extended Kalman filter.

  15. Evaluating chemical extraction techniques for the determination of uranium oxidation state in reduced aquifer sediments

    Science.gov (United States)

    Stoliker, Deborah L.; Campbell, Kate M.; Fox, Patricia M.; Singer, David M.; Kaviani, Nazila; Carey, Minna; Peck, Nicole E.; Barger, John R.; Kent, Douglas B.; Davis, James A.

    2013-01-01

    Extraction techniques utilizing high pH and (bi)carbonate concentrations were evaluated for their efficacy in determining the oxidation state of uranium (U) in reduced sediments collected from Rifle, CO. Differences in dissolved concentrations between oxic and anoxic extractions have been proposed as a means to quantify the U(VI) and U(IV) content of sediments. An additional step was added to anoxic extractions using a strong anion exchange resin to separate dissolved U(IV) and U(VI). X-ray spectroscopy showed that U(IV) in the sediments was present as polymerized precipitates similar to uraninite and/or less ordered U(IV), referred to as non-uraninite U(IV) species associated with biomass (NUSAB). Extractions of sediment containing both uraninite and NUSAB displayed higher dissolved uranium concentrations under oxic than anoxic conditions while extractions of sediment dominated by NUSAB resulted in identical dissolved U concentrations. Dissolved U(IV) was rapidly oxidized under anoxic conditions in all experiments. Uraninite reacted minimally under anoxic conditions but thermodynamic calculations show that its propensity to oxidize is sensitive to solution chemistry and sediment mineralogy. A universal method for quantification of U(IV) and U(VI) in sediments has not yet been developed but the chemical extractions, when combined with solid-phase characterization, have a narrow range of applicability for sediments without U(VI).

  16. Structural analysis of inter-genus complexes of V-antigen and its regulator and their stabilization by divalent metal ions.

    Science.gov (United States)

    Basu, Abhishek; Das, Atanu; Mondal, Abhisek; Datta, Saumen

    2016-03-01

    Gram-negative bacteria like Yersinia, Pseudomonas, and Aeromonas need type III secretion system (T3SS) for their pathogenicity. V-antigen and its regulator are essential for functioning of T3SS. There is significant functional conservation amongst V-antigen and its regulator belonging to the Ysc family. In this study, we have structurally characterized the inter-genus complexes of V-antigen and its regulator. ConSurf analysis demonstrates that V-antigens belonging to the Ysc family show high structural identity predominantly confined to the two long helical regions. The regulator of V-antigen shows high conservation in its first intramolecular coiled-coil domain, responsible for interaction with V-antigen. ∆LcrG(1-70) localizes within the groove formed by long helices of LcrV, as observed in PcrV-∆PcrG(13-72) interaction. Inter-genus complexes of LcrV-PcrG and PcrV-LcrG exhibited elongated conformation and 1:1 heterodimeric state like the native complex of PcrV-PcrG and LcrV-LcrG. Both native and inter-genus complexes showed rigid tertiary structure, solvent-exposed hydrophobic patches, and cooperative melting behavior with high melting temperature. LcrV-PcrG and PcrV-LcrG showed nanomolar affinity of interaction, identical to PcrV-PcrG interaction, but stronger than LcrV-LcrG interaction. Calcium (a secretion blocker of T3SS) propels all the complexes towards a highly monodisperse form. Calcium and magnesium increase the helicity of the native and inter-genus complexes, and causes helix-helix stabilization. Stabilization of helices leads to a slight increase in the melting temperature by 1.5-2.0 °C. However, calcium does not alter the affinity of interaction of V-antigen and its regulator, emphasizing the effect of divalent of cations at the structural level without any regulatory implications. Therefore, the structural conservation of these inter-genus complexes could be the basis for their functional complementation.

  17. Dense high temperature ceramic oxide superconductors

    Science.gov (United States)

    Landingham, Richard L.

    1993-01-01

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  18. Radiolytic synthesis of carbon-supported PtRu nanoparticles using high-energy electron beam: effect of pH control on the PtRu mixing state and the methanol oxidation activity

    International Nuclear Information System (INIS)

    Ohkubo, Yuji; Kageyama, Satoru; Seino, Satoshi; Nakagawa, Takashi; Kugai, Junichiro; Nitani, Hiroaki; Ueno, Koji; Yamamoto, Takao A.

    2013-01-01

    Electrode catalysts composed of carbon-supported PtRu nanoparticles (PtRu/C) for use as a direct methanol fuel cell anode were synthesized by the reduction of precursor ions in an aqueous solution via irradiation with a high-energy electron beam. The effect of pH control in the precursor solution on the PtRu mixing state and the methanol oxidation activity was studied in order to enhance the catalytic activity for methanol oxidation. The PtRu/C structures were characterized by transmission electron microscopy, inductively coupled plasma atomic emission spectrometry, X-ray fluorescence spectrometry, and X-ray diffraction and X-ray absorption fine structure techniques. The methanol oxidation activity was evaluated by linear sweep voltammetry. The initial pH of the precursor solution has little influence on the average grain size for the metal particles (approximately 3.5 nm) on the carbon particle supports, but the dispersibility of the metal particles, PtRu mixing state, and methanol oxidation activity differed. The maintenance of a low pH in the precursor solution gave the best dispersibility of the PtRu nanoparticles supported on the surface of the carbon particles, whereas, a high pH gave the best PtRu mixing state and the highest oxidation current although a low dispersibility of the PtRu nanoparticles supported on the surface of the carbon particles was obtained. The PtRu mixing state strongly correlated with the methanol oxidation current. In addition, a high pH was more effective for PtRu mixing when using an electron beam irradiation reduction method, because the complexation reaction of the chelating agents was improved, which resulted in an enhancement of the catalytic activity for methanol oxidation.

  19. Radiolytic synthesis of carbon-supported PtRu nanoparticles using high-energy electron beam: effect of pH control on the PtRu mixing state and the methanol oxidation activity

    Energy Technology Data Exchange (ETDEWEB)

    Ohkubo, Yuji, E-mail: okubo@mit.eng.osaka-u.ac.jp; Kageyama, Satoru; Seino, Satoshi; Nakagawa, Takashi; Kugai, Junichiro [Osaka University, Graduate School of Engineering (Japan); Nitani, Hiroaki [High Energy Accelerator Research Organization (KEK), Institute of Materials Structure Science (Japan); Ueno, Koji [Japan Electron Beam Irradiation Service Ltd (Japan); Yamamoto, Takao A. [Osaka University, Graduate School of Engineering (Japan)

    2013-05-15

    Electrode catalysts composed of carbon-supported PtRu nanoparticles (PtRu/C) for use as a direct methanol fuel cell anode were synthesized by the reduction of precursor ions in an aqueous solution via irradiation with a high-energy electron beam. The effect of pH control in the precursor solution on the PtRu mixing state and the methanol oxidation activity was studied in order to enhance the catalytic activity for methanol oxidation. The PtRu/C structures were characterized by transmission electron microscopy, inductively coupled plasma atomic emission spectrometry, X-ray fluorescence spectrometry, and X-ray diffraction and X-ray absorption fine structure techniques. The methanol oxidation activity was evaluated by linear sweep voltammetry. The initial pH of the precursor solution has little influence on the average grain size for the metal particles (approximately 3.5 nm) on the carbon particle supports, but the dispersibility of the metal particles, PtRu mixing state, and methanol oxidation activity differed. The maintenance of a low pH in the precursor solution gave the best dispersibility of the PtRu nanoparticles supported on the surface of the carbon particles, whereas, a high pH gave the best PtRu mixing state and the highest oxidation current although a low dispersibility of the PtRu nanoparticles supported on the surface of the carbon particles was obtained. The PtRu mixing state strongly correlated with the methanol oxidation current. In addition, a high pH was more effective for PtRu mixing when using an electron beam irradiation reduction method, because the complexation reaction of the chelating agents was improved, which resulted in an enhancement of the catalytic activity for methanol oxidation.

  20. Sputtered tin oxide and titanium oxide thin films as alternative transparent conductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Boltz, Janika

    2011-12-12

    Alternative transparent conductive oxides to tin doped indium oxide have been investigated. In this work, antimony doped tin oxide and niobium doped titanium oxide have been studied with the aim to prepare transparent and conductive films. Antimony doped tin oxide and niobium doped titanium oxide belong to different groups of oxides; tin oxide is a soft oxide, while titanium oxide is a hard oxide. Both oxides are isolating materials, in case the stoichiometry is SnO{sub 2} and TiO{sub 2}. In order to achieve transparent and conductive films free carriers have to be generated by oxygen vacancies, by metal ions at interstitial positions in the crystal lattice or by cation doping with Sb or Nb, respectively. Antimony doped tin oxide and niobium doped titanium oxide films have been prepared by reactive direct current magnetron sputtering (dc MS) from metallic targets. The process parameters and the doping concentration in the films have been varied. The films have been electrically, optically and structurally analysed in order to analyse the influence of the process parameters and the doping concentration on the film properties. Post-deposition treatments of the films have been performed in order to improve the film properties. For the deposition of transparent and conductive tin oxide, the dominant parameter during the deposition is the oxygen content in the sputtering gas. The Sb incorporation as doping atoms has a minor influence on the electrical, optical and structural properties. Within a narrow oxygen content in the sputtering gas highly transparent and conductive tin oxide films have been prepared. In this study, the lowest resistivity in the as deposited state is 2.9 m{omega} cm for undoped tin oxide without any postdeposition treatment. The minimum resistivity is related to a transition to crystalline films with the stoichiometry of SnO{sub 2}. At higher oxygen content the films turn out to have a higher resistivity due to an oxygen excess. After post

  1. Raman spectroscopy of DNA-metal complexes. I. Interactions and conformational effects of the divalent cations: Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Pd, and Cd.

    Science.gov (United States)

    Duguid, J; Bloomfield, V A; Benevides, J; Thomas, G J

    1993-11-01

    Interactions of divalent metal cations (Mg2+, Ca2+, Ba2+, Sr2+, Mn2+, Co2+, Ni2+, Cu2+, Pd2+, and Cd2+) with DNA have been investigated by laser Raman spectroscopy. Both genomic calf-thymus DNA (> 23 kilobase pairs) and mononucleosomal fragments (160 base pairs) were employed as targets of metal interaction in solutions containing 5 weight-% DNA and metal:phosphate molar ratios of 0.6:1. Raman difference spectra reveal that transition metal cations (Mn2+, Co2+, Ni2+, Cu2+, Pd2+, and Cd2+) induce the greatest structural changes in B-DNA. The Raman (vibrational) band differences are extensive and indicate partial disordering of the B-form backbone, reduction in base stacking, reduction in base pairing, and specific metal interaction with acceptor sites on the purine (N7) and pyrimidine (N3) rings. Many of the observed spectral changes parallel those accompanying thermal denaturation of B-DNA and suggest that the metals link the bases of denatured DNA. While exocyclic carbonyls of dT, dG, and dC may stabilize metal ligation, correlation plots show that perturbations of the carbonyls are mainly a consequence of metal-induced denaturation of the double helix. Transition metal interactions with the DNA phosphates are weak in comparison to interactions with the bases, except in the case of Cu2+, which strongly perturbs both base and phosphate group vibrations. On the other hand, the Raman signature of B-DNA is largely unperturbed by Mg2+, Ca2+, Sr2+, and Ba2+, suggesting much weaker interactions of the alkaline earth metals with both base and phosphate sites. A notable exception is a moderate perturbation by alkaline earths of purine N7 sites in 160-base pair DNA, with Ca2+ causing the greatest effect. Correlation plots demonstrate a strong interrelationship between perturbations of Raman bands assigned to ring vibrations of the bases and those of bands assigned to exocyclic carbonyls and backbone phosphodiester groups. However, strong correlations do not occur between

  2. Oxidation-extraction of uranium from wet-process phosphoric acid

    International Nuclear Information System (INIS)

    Lawes, B.C.

    1985-01-01

    The invention involves an improvement to the reductive stripping process for recovering uranium values from wet-process phosphoric acid solution, where uranium in the solution is oxidized to uranium (VI) oxidation state and then extracted from the solution by contact with a water immiscible organic solvent, by adding sufficient oxidant, hydrogen peroxide, to obtain greater than 90 percent conversion of the uranium to the uranium (VI) oxidation state to the phosphoric acid solution and simultaneously extracting the uranium (VI)

  3. Coherent diffractive imaging of solid state reactions in zinc oxide crystals

    Science.gov (United States)

    Leake, Steven J.; Harder, Ross; Robinson, Ian K.

    2011-11-01

    We investigated the doping of zinc oxide (ZnO) microcrystals with iron and nickel via in situ coherent x-ray diffractive imaging (CXDI) in vacuum. Evaporated thin metal films were deposited onto the ZnO microcrystals. A single crystal was selected and tracked through annealing cycles. A solid state reaction was observed in both iron and nickel experiments using CXDI. A combination of the shrink wrap and guided hybrid-input-output phasing methods were applied to retrieve the electron density. The resolution was 33 nm (half order) determined via the phase retrieval transfer function. The resulting images are nevertheless sensitive to sub-angstrom displacements. The exterior of the microcrystal was found to degrade dramatically. The annealing of ZnO microcrystals coated with metal thin films proved an unsuitable doping method. In addition the observed defect structure of one crystal was attributed to the presence of an array of defects and was found to change upon annealing.

  4. The role of oxidation states in F A1 Tl n+ (n = 1, 3) lasers and CO interactions at the (1 0 0) surface of NaCl: An ab initio study

    International Nuclear Information System (INIS)

    Shalabi, A.S.; Abdel Aal, S.; Kamel, M.A.; Taha, H.O.; Ammar, H.Y.; Abdel Halim, W.S.

    2006-01-01

    The oxidation states of Thallium in F A1 Tl +n (n = 1, 3) color centers at the (1 0 0) surface of NaCl play important role in laser light generation and adsorbate-substrate interactions. Double-well potentials at these surfaces are investigated by using quantum mechanical ab initio methods. Quantum clusters of variable sizes were embedded in the simulated Coulomb fields that closely approximate the Madelung fields of the host surfaces, and ions that were the nearest neighbors to the F A1 Tl +n (n 1, 3) defect site were allowed to relax to equilibrium.The calculated Stokes shifts suggest that laser light generation is sensitive to the oxidation states of Thallium. The relaxed excited states of the defect-containing surface were deep below the lower edge of the conduction bands of the ground state defect-free surface, suggesting that the F A1 Tl +n (n = 1, 3) centers are suitable laser defects. The dependence of the orientational destruction and recording sensitivity on the oxidation state of Thallium is clarified. The Glasner-Tompkins empirical rule is generalized to include the oxidation state of the impurity cation. The adsorption energies of CO and OC over NaCl(1 0 0) was found to be sensitive to the oxidation state of the impurity cation. F A1 Tl +n (n = 1, 3) centers changed the physical adsorption of CO to chemical adsorption. While the artificial flow of charge was significant in the case of Tl +1 impurity, it was negligible in the case of Tl +3 impurity, and the results were explained in terms of the electrostatic potential curves

  5. Oxidation of tertiary amines by cytochrome p450-kinetic isotope effect as a spin-state reactivity probe.

    Science.gov (United States)

    Li, Chunsen; Wu, Wei; Cho, Kyung-Bin; Shaik, Sason

    2009-08-24

    Two types of tertiary amine oxidation processes, namely, N-dealkylation and N-oxygenation, by compound I (Cpd I) of cytochrome P450 are studied theoretically using hybrid DFT calculations. All the calculations show that both N-dealkylation and N-oxygenation of trimethylamine (TMA) proceed preferentially from the low-spin (LS) state of Cpd I. Indeed, the computed kinetic isotope effects (KIEs) for the rate-controlling hydrogen abstraction step of dealkylation show that only the KIE(LS) fits the experimental datum, whereas the corresponding value for the high-spin (HS) process is much higher. These results second those published before for N,N-dimethylaniline (DMA), and as such, they further confirm the conclusion drawn then that KIEs can be a sensitive probe of spin state reactivity. The ferric-carbinolamine of TMA decomposes most likely in a non-enzymatic reaction since the Fe-O bond dissociation energy (BDE) is negative. The computational results reveal that in the reverse reaction of N-oxygenation, the N-oxide of aromatic amine can serve as a better oxygen donor than that of aliphatic amine to generate Cpd I. This capability of the N-oxo derivatives of aromatic amines to transfer oxygen to the heme, and thereby generate Cpd I, is in good accord with experimental data previously reported.

  6. Analyzer for measurement of nitrogen oxide concentration by ozone content reduction in gas using solid state chemiluminescent sensor

    Science.gov (United States)

    Chelibanov, V. P.; Ishanin, G. G.; Isaev, L. N.

    2014-05-01

    Role of nitrogen oxide in ambient air is described and analyzed. New method of nitrogen oxide concentration measurement in gas phase is suggested based on ozone concentration measurement with titration by nitrogen oxide. Research of chemiluminescent sensor composition is carried out on experimental stand. The sensor produced on the base of solid state non-activated chemiluminescent composition is applied as ozone sensor. Composition is put on the surface of polymer matrix with developed surface. Sensor compositions includes gallic acid with addition of rodamine-6G. Model of interaction process between sensor composition and ozone has been developed, main products appeared during reaction are identified. The product determining the speed of luminescense appearance is found. This product belongs to quinone class. Then new structure of chemiluminescent composition was suggested, with absence of activation period and with high stability of operation. Experimental model of gas analyzer was constructed and operation algorithm was developed. It was demonstrated that developed NO measuring instrument would be applied for monitoring purposes of ambient air. This work was partially financially supported by Government of Russian Federation, Grant 074-U01

  7. Final Report for research grant "Development of Methods for High Specific Activity Labeling of Biomolecules Using Astatine-211 in Different Oxidation States"

    Energy Technology Data Exchange (ETDEWEB)

    Wilbur, D. Scott [Univ. of Washington, Seattle, WA (United States)

    2011-12-14

    The overall objective of this research effort was to develop methods for labeling biomolecules with higher oxidation state species of At-211. This was to be done in an effort to develop reagents that had higher in vivo stability than the present carbon-bonded At-211-labeled compounds. We were unsuccessful in that effort, as none of the approaches studied provided reagents that were stable to in vivo deastatination. However, we gained a lot of information about At-211 in higher oxidation states. The studies proved to be very difficult as small changes in pH and other conditions appeared to change the nature of the species that obtained (by HPLC retention time analyses), with many of the species being unidentifiable. The fact that there are no stable isotopes of astatine, and the chemistry of the nearest halogen iodine is quite different, made it very difficult to interpret results of some experiments. With that said, we believe that a lot of valuable information was obtained from the studies. The research effort evaluated: (1) methods for chemical oxidation of At-211, (2) approaches to chelation of oxidized At-211, and (3) approaches to oxidation of astatophenyl compounds. A major hurdle that had to be surmounted to conduct the research was the development of HPLC conditions to separate and identify the various oxidized species formed. Attempts to develop conditions for separation of iodine and astatine species by normal and reversed-phase TLC and ITLC were not successful. However, we were successful in developing conditions (from a large number of attempts) to separate oxidized forms of iodine ([I-125]iodide, [I-125]iodate and [I-125]periodate) and astatine ([At-211]astatide, [At-211]astatate, [At-211]perastatate, and several unidentified At-211 species). Information on the basic oxidation and characterization of At-211 species is provided under Objective 1. Conditions were developed to obtain new At-211 labeling method where At-211 is chelated with the DOTA and

  8. Tantalum high-temperature oxidation kinetics

    International Nuclear Information System (INIS)

    Grigor'ev, Yu.M.; Sarkisyan, A.A.; Merzhanov, A.G.

    1981-01-01

    Kinetics of heat release and scale growth during tantalum oxidation within 650-1300 deg C temperature range in oxygen-containing media is investigated. Kinetic equations and temperature and pressure dependences of constants are ound Applicability of the kinetic Lorie mechanism for the description of the tantalum oxidation kinetics applicably to rapid-passing processes is shown. It is stated that the process rate (reaction ability) is determined by adsorption desorption factors on the external surface of the ''protective'' oxide for the ''linear'' oxidation stage [ru

  9. Characterization of copper oxides, iron oxides, and zinc copper ferrite desulfurization sorbents by X-ray photoelectron spectroscopy and scanning electron microscopy

    Science.gov (United States)

    Siriwardane, Ranjani V.; Poston, James A.

    1993-05-01

    Characterization of copper oxides, iron oxides, and zinc copper ferrite desulfurization sorbents was performed by X-ray photoelectron spectroscopy and scanning electron microscopy/energy-dispersive spectroscopy at temperatures of 298 to 823 K. Analysis of copper oxides indicated that the satellite structure of the Cu22p region was absent in the Cu(I) state but was present in the Cu(II) state. Reduction of CuO at room temperature was observed when the ion gauge was placed close to the sample. The satellite structure was absent in all the copper oxides at 823 K in vacuum. Differentiation of the oxidation state of copper utilizing both Cu(L 3M 4,5M 4,5) X-ray-induced Auger lines and Cu2p satellite structure, indicated that the copper in zinc copper ferrite was in the + 1 oxidation state at 823 K. This + 1 state of copper was not significantly changed after exposure to H 2, CO, and H 2O. There was an increase in Cu/Zn ratio and a decrease in Fe/Zn ratio on the surface of zinc copper ferrite at 823 K compared to that at room temperature. These conditions of copper offered the best sulfidation equilibrium for the zinc copper ferrite desulfurization sorbent. Analysis of iron oxides indicated that there was some reduction of both Fe 2O 3 and FeO at 823K. The iron in zinc copper ferrite was similar to that of Fe 2O 3 at room temperature but there was some reduction of this Fe(III) state to Fe(II) at 823 K. This reduction was more enhanced in the presence of H 2 and CO. Reduction to Fe(II) may not be desirable for the lifetime of the sorbent.

  10. Development of a vacuum distillation process for Pu pyro-chemistry spent salts treatment

    International Nuclear Information System (INIS)

    Bourges, G.; Lambertin, D.; Baudrot, C.; Pescayre, L.; Thiebaut, C.

    2004-01-01

    The pyrochemical purification of plutonium has generated spent salts, which are disposed in nuclear facility. To reduce stored quantities, the development of a pyrochemical treatment is in progress. The feed salt, typically composed of various Pu and Am species spread into monovalent or divalent chloride matrix, is first oxidized to convert the actinides into oxides. Then the chlorides are separated from the actinide oxides by vacuum distillation. Temperatures higher than 750 deg C for mono-chloride salts mixture NaCl/KCl and higher than 1100 deg C for divalent CaCl 2 base salts, are required to produce an industrial flow of vaporization. Inactive qualification of the process for NaCl/KCl base salt has been carried with lanthanide surrogates. Then, a pilot equipment, called Distillator has been designed and built for production-scale distillation of NaCl/KCl and CaCl 2 oxidized plutonium salts. Industrial flows of vaporization have been obtained with this pilot equipment: about 4 g/cm 2 /h for NaCl/KCl at 800 - 900 deg C and 1 Pa, and more than 1.5 g/cm 2 /h for CaCl 2 base salts between 1000 - 1200 deg C at 0.1 Pa. The last step will be the integration of the Distillator into a glove box. (authors)

  11. The Oxides of Nitrogen in Air Pollution.

    Science.gov (United States)

    California State Air Resources Board, Sacramento.

    Research on the health effects of oxides of nitrogen and on the role of oxides of nitrogen in producing photochemical smog effects is presented in this report. Prepared by the California State Department of Public Health at the request of the State Legislature, it gives a comprehensive review of available information, as well as the need for air…

  12. Oxidation and detoxification of trivalent arsenic species

    International Nuclear Information System (INIS)

    Aposhian, H. Vasken; Zakharyan, Robert A.; Avram, Mihaela D.; Kopplin, Michael J.; Wollenberg, Michael L.

    2003-01-01

    Arsenic compounds with a +3 oxidation state are more toxic than analogous compounds with a +5 oxidation state, for example, arsenite versus arsenate, monomethylarsonous acid (MMA III ) versus monomethylarsonic acid (MMA V ), and dimethylarsinous acid (DMA III ) versus dimethylarsinic acid (DMA V ). It is no longer believed that the methylation of arsenite is the beginning of a methylation-mediated detoxication pathway. The oxidation of these +3 compounds to their less toxic +5 analogs by hydrogen peroxide needs investigation and consideration as a potential mechanism for detoxification. Xanthine oxidase uses oxygen to oxidize hypoxanthine to xanthine to uric acid. Hydrogen peroxide and reactive oxygen are also products. The oxidation of +3 arsenicals by the hydrogen peroxide produced in the xanthine oxidase reaction was blocked by catalase or allopurinol but not by scavengers of the hydroxy radical, e.g., mannitol or potassium iodide. Melatonin, the singlet oxygen radical scavenger, did not inhibit the oxidation. The production of H 2 O 2 by xanthine oxidase may be an important route for decreasing the toxicity of trivalent arsenic species by oxidizing them to their less toxic pentavalent analogs. In addition, there are many other reactions that produce hydrogen peroxide in the cell. Although chemists have used hydrogen peroxide for the oxidation of arsenite to arsenate to purify water, we are not aware of any published account of its potential importance in the detoxification of trivalent arsenicals in biological systems. At present, this oxidation of the +3 oxidation state arsenicals is based on evidence from in vitro experiments. In vivo experiments are needed to substantiate the role and importance of H 2 O 2 in arsenic detoxication in mammals

  13. Trace Metals in Groundwater and Vadose Zone Calcite: In Situ Containment and Stabilization of Stronthium-90 and Other Divalent Metals and Radionuclides at Arid Western DOE Sites: Final Report for Award Number DE-FG07-02ER63486 to the University of Idaho (RW Smith) Environmental Management Science Program Project Number 87016

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert W.; Fujita, Yoshiko

    2007-11-07

    Radionuclide and metal contaminants are present in the vadose zone and groundwater throughout the U.S. Department of Energy (DOE) energy research and weapons complex. In situ containment and stabilization of these contaminants represents a cost-effective treatment strategy that minimizes workers’ exposure to hazardous substances, does not require removal or transport of contaminants, and generally does not generate a secondary waste stream. We have investigated an in situ bioremediation approach that immobilizes radionuclides or contaminant metals (e.g., strontium-90) by their microbially facilitated co-precipitation with calcium carbonate in groundwater and vadose zone systems. Calcite, a common mineral in many aquifers and vadose zones in the arid west, can incorporate divalent metals such as strontium, cadmium, lead, and cobalt into its crystal structure by the formation of a solid solution. Collaborative research undertaken by the Idaho National Laboratory (INL), University of Idaho, and University of Toronto as part of this Environmental Management Science Program project has focused on in situ microbially-catalyzed urea hydrolysis, which results in an increase in pH, carbonate alkalinity, ammonium, calcite precipitation, and co-precipitation of divalent cations. In calcite-saturated aquifers, microbially facilitated co-precipitation with calcium carbonate represents a potential long-term contaminant sequestration mechanism. Key results of the project include: **Demonstrating the linkage between urea hydrolysis and calcite precipitation in field and laboratory experiments **Observing strontium incorporation into calcite precipitate by urea hydrolyzers with higher distribution coefficient than in abiotic **Developing and applying molecular methods for characterizing microbial urease activity in groundwater including a quantitative PCR method for enumerating ureolytic bacteria **Applying the suite of developed molecular methods to assess the feasibility of the

  14. Trace Metals in Groundwater and Vadose Zone Calcite: In Situ Containment and Stabilization of Strontium-90 and Other Divalent Metals and Radionuclides at Arid Western DOE Sites: Final Report for Award Number DE-FG07-02ER63486 to the University of Idaho (RW Smith) Environmental Management Science Program Project Number 87016

    International Nuclear Information System (INIS)

    Smith, Robert W.; Fujita, Yoshiko

    2007-01-01

    Radionuclide and metal contaminants are present in the vadose zone and groundwater throughout the U.S. Department of Energy (DOE) energy research and weapons complex. In situ containment and stabilization of these contaminants represents a cost-effective treatment strategy that minimizes workers exposure to hazardous substances, does not require removal or transport of contaminants, and generally does not generate a secondary waste stream. We have investigated an in situ bioremediation approach that immobilizes radionuclides or contaminant metals (e.g., strontium-90) by their microbially facilitated co-precipitation with calcium carbonate in groundwater and vadose zone systems. Calcite, a common mineral in many aquifers and vadose zones in the arid west, can incorporate divalent metals such as strontium, cadmium, lead, and cobalt into its crystal structure by the formation of a solid solution. Collaborative research undertaken by the Idaho National Laboratory (INL), University of Idaho, and University of Toronto as part of this Environmental Management Science Program project has focused on in situ microbially-catalyzed urea hydrolysis, which results in an increase in pH, carbonate alkalinity, ammonium, calcite precipitation, and co-precipitation of divalent cations. In calcite-saturated aquifers, microbially facilitated co-precipitation with calcium carbonate represents a potential long-term contaminant sequestration mechanism. Key results of the project include: **Demonstrating the linkage between urea hydrolysis and calcite precipitation in field and laboratory experiments **Observing strontium incorporation into calcite precipitate by urea hydrolyzers with higher distribution coefficient than in abiotic **Developing and applying molecular methods for characterizing microbial urease activity in groundwater including a quantitative PCR method for enumerating ureolytic bacteria **Applying the suite of developed molecular methods to assess the feasibility of the

  15. Single crystal structures and theoretical calculations of uranium endohedral metallofullerenes (U@C2n , 2n = 74, 82) show cage isomer dependent oxidation states for U.

    Science.gov (United States)

    Cai, Wenting; Morales-Martínez, Roser; Zhang, Xingxing; Najera, Daniel; Romero, Elkin L; Metta-Magaña, Alejandro; Rodríguez-Fortea, Antonio; Fortier, Skye; Chen, Ning; Poblet, Josep M; Echegoyen, Luis

    2017-08-01

    Charge transfer is a general phenomenon observed for all endohedral mono-metallofullerenes. Since the detection of the first endohedral metallofullerene (EMF), La@C 82 , in 1991, it has always been observed that the oxidation state of a given encapsulated metal is always the same, regardless of the cage size. No crystallographic data exist for any early actinide endohedrals and little is known about the oxidation states for the few compounds that have been reported. Here we report the X-ray structures of three uranium metallofullerenes, U@ D 3h -C 74 , U@ C 2 (5)-C 82 and U@ C 2v (9)-C 82 , and provide theoretical evidence for cage isomer dependent charge transfer states for U. Results from DFT calculations show that U@ D 3h -C 74 and U@ C 2 (5)-C 82 have tetravalent electronic configurations corresponding to U 4+ @ D 3h -C 74 4- and U 4+ @ C 2 (5)-C 82 4- . Surprisingly, the isomeric U@ C 2v (9)-C 82 has a trivalent electronic configuration corresponding to U 3+ @ C 2v (9)-C 82 3- . These are the first X-ray crystallographic structures of uranium EMFs and this is first observation of metal oxidation state dependence on carbon cage isomerism for mono-EMFs.

  16. Polyvalent integrin antagonist-decorated superparamagnetic iron oxide nanoparticles for triggering apoptosis in human leukemia cancer cells

    International Nuclear Information System (INIS)

    Say, Rıdvan; Yazar, Suzan; Uğur, Alper; Hür, Deniz; Denizli, Adil; Ersöz, Arzu

    2013-01-01

    Integrin family members are the main mediators of cell adhesion to the extracellular matrix and active as intra- and extracellular signaling molecules in a variety of processes. They bind to their ligands by interacting with short amino acid sequences, that is, RGD (arginine-glycine-aspartic acid) sequence. RGD sequences have been used to enhance cell binding to artificial surfaces, so RGD mimics have been used to block integrin binding to its ligand. Integrin–ligand interactions are dependent on divalent cations, and Mg 2+ provide higher-affinity binding to ligand for many integrins. In this study, we have designed new integrin antagonists using methacryloyl amidoaspartic acid (MAASP) monomer-conjugated silanized super paramagnetic iron oxide nanoparticles (SPIONs, the size of the nanoparticles was verified with an average size of 32.6 nm) and poly(MAASP-co-EDMA) shell-decorated silanized SPIONs. Several mechanisms have been proposed to describe uptake of modified SPIONs into the cells, including receptor-mediated endocytosis. Our aim is to bind these modified SPIONs to the integrin-mediated aspartic acid ends of MAASP monomers and block integrin binding to their ligand.

  17. Polyvalent integrin antagonist-decorated superparamagnetic iron oxide nanoparticles for triggering apoptosis in human leukemia cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Say, R Latin-Small-Letter-Dotless-I dvan, E-mail: rsay@anadolu.edu.tr [Anadolu Universitesi, Kimya Boeluemue, Fen Fakueltesi (Turkey); Yazar, Suzan [Sanovel Pharmaceutical Company (Turkey); Ugur, Alper; Huer, Deniz [Anadolu Universitesi, Kimya Boeluemue, Fen Fakueltesi (Turkey); Denizli, Adil [Hacettepe University, Department of Chemistry (Turkey); Ersoez, Arzu [Anadolu Universitesi, Kimya Boeluemue, Fen Fakueltesi (Turkey)

    2013-01-15

    Integrin family members are the main mediators of cell adhesion to the extracellular matrix and active as intra- and extracellular signaling molecules in a variety of processes. They bind to their ligands by interacting with short amino acid sequences, that is, RGD (arginine-glycine-aspartic acid) sequence. RGD sequences have been used to enhance cell binding to artificial surfaces, so RGD mimics have been used to block integrin binding to its ligand. Integrin-ligand interactions are dependent on divalent cations, and Mg{sup 2+} provide higher-affinity binding to ligand for many integrins. In this study, we have designed new integrin antagonists using methacryloyl amidoaspartic acid (MAASP) monomer-conjugated silanized super paramagnetic iron oxide nanoparticles (SPIONs, the size of the nanoparticles was verified with an average size of 32.6 nm) and poly(MAASP-co-EDMA) shell-decorated silanized SPIONs. Several mechanisms have been proposed to describe uptake of modified SPIONs into the cells, including receptor-mediated endocytosis. Our aim is to bind these modified SPIONs to the integrin-mediated aspartic acid ends of MAASP monomers and block integrin binding to their ligand.

  18. Solid-state ionics: Studies of lithium-conducting sulfide glasses and a superconducting oxide compound

    International Nuclear Information System (INIS)

    Ahn, Byung Tae.

    1989-01-01

    The first part of this work studies lithium-conducting sulfide glasses for battery applications, while the second part studies the thermodynamic properties of a superconducting oxide compound by using an oxide electrolyte. Lithium conducting glasses based on the SiS 2 -Li 2 S system are possible solid electrolytes for high-energy-density lithium batteries. The foremost requirement for solid electrolytes is that they should have high ionic conductivities. Unfortunately, most crystalline lithium conductors have low ionic conductivities at room temperature. However, glass ionic conductors show higher ionic conductivities than do crystalline forms of the same material. In addition to higher ionic conductivities, glasses appear to have several advantages over crystalline materials. These advantages include isotropic conductivity, absence of grain boundary effects, ease of glass forming, and the potential for a wide range of stability to oxidizing and reducing conditions. Using pyrolitic graphite-coated quartz ampoules, new ternary compounds and glasses in the SiS 2 -Li 2 S system were prepared. Several techniques were used to characterize the materials: powder x-ray diffraction, differential thermal analysis, differential scanning calorimetry, and AC impedance spectroscopy. The measured lithium conductivity of the sulfide glasses was one of the highest among the known solid lithium conductors. Measuring the equilibrium open circuit voltages assisted in determining the electrochemical stabilities of the ternary compounds and glasses with respect to pure Li. A solid-state ionic technique called oxygen coulometric titration was used to measure the thermodynamic stability, the oxygen stoichiometry, and the effects of the oxygen stoichiometry, and the effects of the oxygen stoichiometry and the cooling rate on superconductivity of the YBa 2 Cu 3 O 7-x compound were investigated

  19. Stabilization of actinides and lanthanides in unusually high oxidation states

    International Nuclear Information System (INIS)

    Eller, P.G.; Penneman, R.A.

    1986-01-01

    Chemical environments can be chosen which stabilize actinides and lanthanides in unusually high or low oxidation states and in unusual coordination. In many cases, one can rationalize the observed species as resulting from strong charge/size influences provided by specific sites in host lattices (e.g., Tb(IV) in BaTbO 3 or Am(IV) in polytungstate anions). In other cases, the unusual species can be considered from an acid-base viewpoint (e.g., U(III) in AsF 5 /HF solution or Pu(VII) in Li 5 PuO 6 ). In still other cases, an interplay of steric and redox effects can lead to interesting comparisons (e.g., instability of double fluoride salts of Pu(V) and Pu(VI) relative to U, Np, and Am analogues). Generalized ways to rationalize compounds containing actinides and lanthanides in unusual valences (particularly high valences), including the above and numerous other examples, will form the focus of this paper. Recently developed methods for synthesizing high valent f-element fluorides using superoxidizers and superacids at low temperatures will also be described. 65 refs., 8 figs., 9 tabs

  20. Deposition kinetics of extracellular polymeric substances (EPS) on silica in monovalent and divalent salts.

    Science.gov (United States)

    Zhu, Pingting; Long, Guoyu; Ni, Jinren; Tong, Meiping

    2009-08-01

    The deposition kinetics of extracellular polymeric substances (EPS) on silica surfaces were examined in both monovalent and divalent solutions under a variety of environmentally relevant ionic strength and pH conditions by employing a quartz crystal microbalance with dissipation (DCM-D). Soluble EPS (SEPS) and bound EPS (BEPS) were extracted from four bacterial strains with different characteristics. Maximum favorable deposition rates (k(fa)) were observed for all EPS at low ionic strengths in both NaCl and CaCl2 solutions. With the increase of ionic strength, k(fa) decreased due to the simultaneous occurrence of EPS aggregation in solutions. Deposition efficiency (alpha; the ratio of deposition rates obtained under unfavorable versus corresponding favorable conditions) for all EPS increased with increasing ionic strength in both NaCl and CaCl2 solutions, which agreed with the trends of zeta potentials and was consistent with the classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Comparison of alpha for SEPS and BEPS extracted from the same strain showed that the trends of alpha did not totally agree with trends of zeta potentials, indicating the deposition kinetics of EPS on silica surfaces were not only controlled by DLVO interactions, but also non-DLVO forces. Close comparison of alpha for EPS extracted from different sources showed alpha increased with increasing proteins to polysaccharides ratio. Subsequent experiments for EPS extracted from the same strain but with different proteins to polysaccharides ratios and from activated sludge also showed that alpha were largest for EPS with greatest proteins to polysaccharides ratio. Additional experiments for pure protein and solutions with different pure proteins to pure saccharides ratios further corroborated that larger proteins to polysaccharides ratio resulted in greater EPS deposition.

  1. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco

    2007-01-01

    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  2. Application of high-pressure techniques: stabilization and oxidation-state control of novel superconductive and related multi-layered copper oxides

    International Nuclear Information System (INIS)

    Yamauchi, H.; Karppinen, M.

    2000-01-01

    Copper oxide superconductors possess multi-layered structures with a layer sequence of -CuO 2 -(Q-CuO 2 ) n-1 -AO-(MO 1±δ ) m -AO- or -CuO 2 -B-(O 2 -B) s-1 -CuO 2 -AO-(MO 1±δ ) m -AO- along the elongated c axis. Based on this layer sequence, the known copper oxide structures are categorized as members of the homologous series, M m A r Q n-1 Cu n O m+r+2 +n ±δ (M-mr(n-1)n ; category A) or M m A 2k B s Cu 1+k O m +4k +2s±δ (M-m(2k)s (1+k ); category B). Stabilization of such structures especially in the case of high values of the n /s parameter, i.e. the higher members of the homologous series, has been demonstrated to be apparently promoted under high pressures and/or strongly oxidizing conditions. Consequently, techniques for applying both high oxygen gas pressures (10-2000 atm) and ultra-high solid-medium pressures (2-8 GPa) have been advantageously utilized in synthesizing various superconductive copper oxide phases. Especially the ultra-high solid-medium pressure synthesis carried out in the so-called cubic-anvil/belt-type apparatus has proven to be extremely successful in synthesizing novel superconductive phases. In order to achieve high partial pressures of oxygen in the solid-medium environment, 'external' oxygen-generating oxides such as KClO 4 , KClO 3 and Ag 2 O 2 are commonly added to the precursor mixtures. It is emphasized that in some cases it is possible to utilize 'internal' oxidizing agents alone, i.e. highly oxidized precursors such as BaCuO 2+δ and Ba 2 Cu 3 O 5+δ containing metal constituents common with the desired copper oxide phase only. In the present paper, the potential and applications of high-pressure techniques in synthesizing multi-layered copper oxides and related structures are reviewed and discussed with emphasis on the important 'historical' discoveries of novel phases and the present status of controlled production of high-quality samples of such phases. (author)

  3. A study of relaxation mechanisms in the A{sup 2}{Sigma}{sup +} state of nitric oxide by time resolved double resonant polarization spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stampanoni-Panariello, A; Bombach, R; Hemmerling, B; Hubschmid, W [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Double resonant polarization labeling spectroscopy is applied to detect nitric oxide in flames and to characterize rotational energy transfer and orientation changing collisions in its first excited electronic state. (author) 4 figs., 3 refs.

  4. Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation.

    Science.gov (United States)

    Birkner, Nancy; Nayeri, Sara; Pashaei, Babak; Najafpour, Mohammad Mahdi; Casey, William H; Navrotsky, Alexandra

    2013-05-28

    Previous measurements show that calcium manganese oxide nanoparticles are better water oxidation catalysts than binary manganese oxides (Mn3O4, Mn2O3, and MnO2). The probable reasons for such enhancement involve a combination of factors: The calcium manganese oxide materials have a layered structure with considerable thermodynamic stability and a high surface area, their low surface energy suggests relatively loose binding of H2O on the internal and external surfaces, and they possess mixed-valent manganese with internal oxidation enthalpy independent of the Mn(3+)/Mn(4+) ratio and much smaller in magnitude than the Mn2O3-MnO2 couple. These factors enhance catalytic ability by providing easy access for solutes and water to active sites and facile electron transfer between manganese in different oxidation states.

  5. Riboflavin photosensitized oxidation of myoglobin.

    Science.gov (United States)

    Grippa, Juliana M; de Zawadzki, Andressa; Grossi, Alberto B; Skibsted, Leif H; Cardoso, Daniel R

    2014-02-05

    The reaction of the fresh meat pigment oxymyoglobin, MbFe(II)O₂, and its oxidized form metmyoglobin, MbFe(III), with triplet-state riboflavin involves the pigment protein, which is oxidatively cleaved or dimerized as shown by SDS-PAGE and Western blotting. The overall rate constant for oxidation of MbFe(II)O₂ by ³Rib is (3.0 ± 0.5) × 10⁹ L·mol⁻¹·s⁻¹ and (3.1 ± 0.4) × 10⁹ L·mol⁻¹·s⁻¹ for MbFe(III) in phosphate buffer of pH 7.4 at 25 °C as determined by laser flash photolysis. The high rates are rationalized by ground state hydrophobic interactions as detected as static quenching of fluorescence from singlet-excited state riboflavin by myoglobins using time-resolved fluorescence spectroscopy and a Stern-Volmer approach. Binding of riboflavin to MbFe(III) has K(a) = (1.2 ± 0.2) × 10⁴ mol·L⁻¹ with ΔH° = -112 ± 22 kJ·mol⁻¹ and ΔS° = -296 ± 75 J·mol⁻¹·K⁻¹. For meat, riboflavin is concluded to be a photosensitizer for protein oxidation but not for discoloration.

  6. Micro-XANES measurements on experimental spinels and the oxidation state of vanadium in coexisting spinel and silicate melt

    International Nuclear Information System (INIS)

    Righter, K.; Sutton, S.R.; Newville, M.; Le, L.; Schwandt, C.S.

    2006-01-01

    We show that experimental spinels coexisting with silicate melt always have lower valence vanadium, and that spinels typically have 3+, whereas the coexisting melt has 4+ or 5+. Implications of these results for planetary basalts will be discussed. Spinel can be a significant host phase for V which has multiple oxidation states V 2+ , V 3+ , V 4+ or V 5+ at oxygen fugacities relevant to natural systems. The magnitude of D(V) spinel/melt is known to be a function of composition, temperature and fO 2 , but the uncertainty of the oxidation state under the range of natural conditions has made elusive a thorough understanding of D(V) spinel/melt. For example, V 3+ is likely to be stable in spinels, based on exchange with Al in experiments in the CaO-MgO-Al 2 O 3 -SiO 2 system. On the other hand, it has been argued that V 4+ will be stable across the range of natural oxygen fugacities in nature. In order to build on our previous work in more oxidized systems, we have carried out experiments at relatively reducing conditions from the FMQ buffer to 2 log fO 2 units below the IW buffer. These spinel-melt pairs, where V is present in the spinel at natural levels (∼300 ppm V), were analyzed using an electron microprobe at NASA-JSC and mi-cro-XANES at the Advanced Photon Source at Argonne National Laboratory. The new results will be used together with previous results to understand the valence of V in spinel-melt systems across 12 orders of magnitude of oxygen fugacity, and with application to natural systems.

  7. Case study II: application of the divalent cation bridging theory to improve biofloc properties and industrial activated sludge system performance-using alternatives to sodium-based chemicals.

    Science.gov (United States)

    Higgins, Matthew J; Sobeck, David C; Owens, Steven J; Szabo, Lynn M

    2004-01-01

    The objective of this study was to investigate the application of the divalent cation bridging theory (DCBT) as a tool in the chemical selection process at an activated sludge plant to improve settling, dewatering, and effluent quality. According to the DCBT, to achieve improvements, the goal of chemical selection should be to reduce the ratio of monovalent-to-divalent (M/D) cations. A study was conducted to determine the effect of using magnesium hydroxide [Mg(OH)2] as an alternative to sodium hydroxide (NaOH) at a full-scale industrial wastewater treatment plant. Floc properties and treatment plant performance were measured for approximately one year during two periods of NaOH addition and Mg(OH)2 addition. A cost analysis of plant operation during NaOH and Mg(OH)2 use was also performed. During NaOH addition, the M/D ratio was 48, while, during Mg(OH)2 addition, this ratio was reduced to an average of approximately 0.1. During the Mg(OH)2 addition period, the sludge volume index, effluent total suspended solids, and effluent chemical oxygen demand were reduced by approximately 63, 31, and 50%, respectively, compared to the NaOH addition period. The alum and polymer dose used for clarification was reduced by approximately 50 and 60%, respectively, during Mg(OH)2 addition. The dewatering properties of the activated sludge improved dewatering as measured by decreased capillary suction time and specific resistance to filtration (SRF), along with an increase in cake solids from the SRF test. This corresponded to a reduction in the volume of solids thickened by centrifuges at the treatment plant, which reduced the disposal costs of solids. Considering the costs for chemicals and solids disposal, the annual cost of using Mg(OH)2 was approximately 30,000 dollars to 115,000 dollars less than using NaOH, depending on the pricing of NaOH. The results of this study confirm that the DCBT is a useful tool for assessing chemical-addition strategies and their potential effect

  8. Oxidation State of Iron in the Izu-Bonin Arc Initial Magma and Its Influence Factors

    Science.gov (United States)

    Li, H.; Arculus, R. J.; Brandl, P. A.; Hamada, M.; Savov, I. P.; Zhu, S.; Hickey-Vargas, R.; Tepley, F. J., III; Meffre, S.; Yogodzinski, G. M.; McCarthy, A.; Barth, A. P.; Kanayama, K.; Kusano, Y.; Sun, W.

    2014-12-01

    The redox state of mantle-derived magmas is a controversial issue, especially whether island arc basalts are more oxidized than those from mid-ocean ridges. Usually, arc magmas have higher Fe3+/Fe2+ and calculated oxygen fugacity (fO2) than mid-ocean ridge basalts (MORB). It is the high fO2 of arc magma that apparently delays onset of sulfide fractionation and sequestration of precious/base metals thereby facilitating the formation of many giant gold-copper deposits typically associated with subduction zones. But due to a paucity of Fe3+/Fe2+ data for primary mantle-derived arc magmas, the cause for high fO2 of these magma types is still controversial; causes may include inter alia subduction-released oxidized material addition to the mantle wedge source of arc magma, partial melting of subducted slab, and redox changes occurring during ascent of the magma. Fortunately, IODP expedition 351 drilling at IODP Site U1438 in the Amami-Sankaku Basin of the northwestern Philipine Sea, adjacent to the proto-Izu-Bonin Arc at the Kyushu-Palau Ridge (KPR), recovered not only volcaniclastics derived from the inception of Izu-Bonin Mariana (IBM) arc in the Eocene, but also similar materials for the Arc's subsequent evolution through to the Late Oligocene and abandonment of the KPR as a remnant arc. Samples of the pre-Arc oceanic crustal basement were also recovered enabling us to determine the fO2of the mantle preceding arc inception. As the oxidation state of iron in basaltic glass directly relates to the fO2 , the Fe3+/∑Fe ratio [Fe3+/(Fe3++ Fe2+)] of basaltic glass are quantified by synchrotron-facilitated micro X-ray Absorption Near Edge Structure (XANES) spectroscopy to reflect its fO2. Fe K-edge µ-XANES spectra were recorded in fluorescence mode at Beamline 15U1, Shanghai Synchrotron Radiation Facility (SSRF). Synthetic silicate glass with known Fe3+/∑Fe ratio was used in data handling. The experimental results as well as preliminary data from IODP Expedition 351

  9. Correlation of Mn charge state with the electrical resistivity of Mn doped indium tin oxide thin films

    KAUST Repository

    Kumar, S. R. Sarath

    2010-09-15

    Correlation of charge state of Mn with the increase in resistivity with Mn concentration is demonstrated in Mn-doped indium tin oxide films. Bonding analysis shows that Mn 2p3/2 core level can be deconvoluted into three components corresponding to Mn2+ and Mn4+ with binding energies 640.8 eV and 642.7 eV, respectively, and a Mn2+ satellite at ∼5.4 eV away from the Mn2+ peak. The presence of the satellite peak unambiguously proves that Mn exists in the +2 charge state. The ratio of concentration of Mn2+ to Mn4+ of ∼4:1 suggests that charge compensation occurs in the n-type films causing the resistivity increase.

  10. Correlation of Mn charge state with the electrical resistivity of Mn doped indium tin oxide thin films

    KAUST Repository

    Kumar, S. R. Sarath; Hedhili, Mohamed N.; Alshareef, Husam N.; Kasiviswanathan, S.

    2010-01-01

    Correlation of charge state of Mn with the increase in resistivity with Mn concentration is demonstrated in Mn-doped indium tin oxide films. Bonding analysis shows that Mn 2p3/2 core level can be deconvoluted into three components corresponding to Mn2+ and Mn4+ with binding energies 640.8 eV and 642.7 eV, respectively, and a Mn2+ satellite at ∼5.4 eV away from the Mn2+ peak. The presence of the satellite peak unambiguously proves that Mn exists in the +2 charge state. The ratio of concentration of Mn2+ to Mn4+ of ∼4:1 suggests that charge compensation occurs in the n-type films causing the resistivity increase.

  11. Effects of oxide traps, interface traps, and ''border traps'' on metal-oxide-semiconductor devices

    International Nuclear Information System (INIS)

    Fleetwood, D.M.; Winokur, P.S.; Reber, R.A. Jr.; Meisenheimer, T.L.; Schwank, J.R.; Shaneyfelt, M.R.; Riewe, L.C.

    1993-01-01

    We have identified several features of the 1/f noise and radiation response of metal-oxide-semiconductor (MOS) devices that are difficult to explain with standard defect models. To address this issue, and in response to ambiguities in the literature, we have developed a revised nomenclature for defects in MOS devices that clearly distinguishes the language used to describe the physical location of defects from that used to describe their electrical response. In this nomenclature, ''oxide traps'' are simply defects in the SiO 2 layer of the MOS structure, and ''interface traps'' are defects at the Si/SiO 2 interface. Nothing is presumed about how either type of defect communicates with the underlying Si. Electrically, ''fixed states'' are defined as trap levels that do not communicate with the Si on the time scale of the measurements, but ''switching states'' can exchange charge with the Si. Fixed states presumably are oxide traps in most types of measurements, but switching states can either be interface traps or near-interfacial oxide traps that can communicate with the Si, i.e., ''border traps'' [D. M. Fleetwood, IEEE Trans. Nucl. Sci. NS-39, 269 (1992)]. The effective density of border traps depends on the time scale and bias conditions of the measurements. We show the revised nomenclature can provide focus to discussions of the buildup and annealing of radiation-induced charge in non-radiation-hardened MOS transistors, and to changes in the 1/f noise of MOS devices through irradiation and elevated-temperature annealing

  12. Effects of Vanadium Ions in Different Oxidation States on Myosin ATPase Extracted from the Solitary Ascidian, Halocynthia roretzi (Drasche) : Biochemistry

    OpenAIRE

    HITOSHI, MICHIBATA; YUTAKA, ZENKO; KENJI, YAMADA; MASATO, HASEGAWA; TATSURO, TERADA; TAKAHARU, NUMAKUANI; Biological Institute, Faculty of Science, Toyama University; Biological Institute, Faculty of Science, Toyama University; Biological Institute, Faculty of Science, Toyama University; Biological Institute, Faculty of Science, Toyama University; Department of Chemistry, Toyama College of Technology; Marine Biological Station, Tohoku University

    1989-01-01

    Some ascidians are known to accumulate vanadium ion within their tissues by 10^6-fold as that in sea water and store the metal ion in its reduced tetravalent and/or trivalent states. It is also well known that phosphoenzymes are inhibited by pentavalent vanadium ion over a range of 10nM to 1mM. In the present experiment we have therefore examined the effects of vanadium ions in different oxidation states on the activity of myosin ATPase extracted from the mantle of the ascidian, Halocynthia r...

  13. Heterogeneous Partial (ammOxidation and Oxidative Dehydrogenation Catalysis on Mixed Metal Oxides

    Directory of Open Access Journals (Sweden)

    Jacques C. Védrine

    2016-01-01

    reaching steady state, which makes characterisation of active and selective surface sites quite difficult. The use of oxidants other than O2, such as H2O2, N2O or CO2, is also briefly discussed. Based on such analysis and recent discoveries and process developments, our perspective is given.

  14. Control of Surface and Edge Oxidation on Phosphorene.

    Science.gov (United States)

    Kuntz, Kaci L; Wells, Rebekah A; Hu, Jun; Yang, Teng; Dong, Baojuan; Guo, Huaihong; Woomer, Adam H; Druffel, Daniel L; Alabanza, Anginelle; Tománek, David; Warren, Scott C

    2017-03-15

    Phosphorene is emerging as an important two-dimensional semiconductor, but controlling the surface chemistry of phosphorene remains a significant challenge. Here, we show that controlled oxidation of phosphorene determines the composition and spatial distribution of the resulting oxide. We used X-ray photoemission spectroscopy to measure the binding energy shifts that accompany oxidation. We interpreted these spectra by calculating the binding energy shift for 24 likely bonding configurations, including phosphorus oxides and hydroxides located on the basal surface or edges of flakes. After brief exposure to high-purity oxygen or high-purity water vapor at room temperature, we observed phosphorus in the +1 and +2 oxidation states; longer exposures led to a large population of phosphorus in the +3 oxidation state. To provide insight into the spatial distribution of the oxide, transmission electron microscopy was performed at several stages during the oxidation. We found crucial differences between oxygen and water oxidants: while pure oxygen produced an oxide layer on the van der Waals surface, water oxidized the material at pre-existing defects such as edges or steps. We propose a mechanism based on the thermodynamics of electron transfer to interpret these observations. This work opens a route to functionalize the basal surface or edges of two-dimensional (2D) black phosphorus through site-selective chemical reactions and presents the opportunity to explore the synthesis of 2D phosphorene oxide by oxidation.

  15. Solid-state Water-mediated Transport Reduction of Nanostructured Iron Oxides

    International Nuclear Information System (INIS)

    Smirnov, Vladimir M.; Povarov, Vladimir G.; Voronkov, Gennadii P.; Semenov, Valentin G.; Murin, Igor' V.; Gittsovich, Viktor N.; Sinel'nikov, Boris M.

    2001-01-01

    The Fe 2+ /Fe 3+ ratio in two-dimensional iron oxide nanosructures (nanolayers with a thickness of 0.3-1.5 nm on silica surface) may be precisely controlled using the transport reduction (TR) technique. The species ≡-O-Fe(OH) 2 and (≡Si-O-) 2 -FeOH forming the surface monolayer are not reduced at 400-600 deg. C because of their covalent bonding to the silica surface, as demonstrated by Moessbauer spectroscopy. Iron oxide microparticles (microstructures) obtained by the impregnation technique, being chemically unbound to silica, are subjected to reduction at T ≥ 500 deg. C with formation of metallic iron in the form of α-Fe. Transport reduction of supported nanostructures (consisting of 1 or 4 monolayers) at T ≥ 600 deg. C produces bulk iron(II) silicate and metallic iron phases. The structural-chemical transformations occurring in transport reduction of supported iron oxide nanolayers are proved to be governed by specific phase processes in the nanostructures themselves

  16. Electronic state of ruthenium deposited onto oxide supports: An XPS study taking into account the final state effects

    International Nuclear Information System (INIS)

    Larichev, Yurii V.; Moroz, Boris L.; Bukhtiyarov, Valerii I.

    2011-01-01

    The electronic state of ruthenium in the supported Ru/EO x (EO x = MgO, Al 2 O 3 or SiO 2 ) catalysts prepared by with the use of Ru(OH)Cl 3 or Ru(acac) 3 (acac = acetylacetonate) and reduced with H 2 at 723 K is characterized by X-ray photoelectron spectroscopy (XPS) in the Ru 3d, Cl 2p and O 1s regions. The influence of the final state effects (the differential charging and variation of the relaxation energy) on the binding energy (BE) of Ru 3d 5/2 core level measured for supported Ru nanoparticles is estimated by comparison of the Fermi levels and the modified Auger parameters determined for the Ru/EO x samples with the corresponding characteristics of the bulk Ru metal. It is found that the negative shift of the Ru 3d 5/2 peak which is observed in the spectrum of ruthenium deposited onto MgO (BE = 279.5-279.7 eV) with respect to that of Ru black (BE = 280.2 eV) or ruthenium supported on γ-Al 2 O 3 and SiO 2 (BE = 280.4 eV) is caused not by the transfer of electron density from basic sites of MgO, as considered earlier, but by the differential charging of the supported Ru particles compared with the support surface. Correction for the differential charging value reveals that the initial state energies of ruthenium in the Ru/EO x systems are almost identical (BE = 280.5 ± 0.1 eV) irrespectively of acid-base properties of the support, the mean size of supported Ru crystallites (within the range of 2-10 nm) and the surface Cl content. The results obtained suggest that the difference in ammonia synthesis activity between the Ru catalysts supported on MgO and on the acidic supports is accounted for by not different electronic state of ruthenium on the surface of these oxides but by some other reasons.

  17. Viscous properties of aluminum oxide nanotubes and aluminium oxide nanoparticles - silicone oil suspensions

    Science.gov (United States)

    Thapa, Ram; French, Steven; Delgado, Adrian; Ramos, Carlos; Gutierrez, Jose; Chipara, Mircea; Lozano, Karen

    2010-03-01

    Electrorheological (ER) fluids consisting of γ-aluminum oxide nanotubes and γ-aluminum oxide nanoparticles dispersed within silicone oil were prepared. The relationship between shear stress and shear rate was measured and theoretically simulated by using an extended Bingham model for both the rheological and electrorheological features of these systems. Shear stress and viscosity showed a sharp increase for the aluminum oxide nanotubes suspensions subjected to applied electric fields whereas aluminum oxide nanoparticles suspensions showed a moderate change. It was found that the transition from liquid to solid state (mediated by the applied electric field) can be described by a power law and that for low applied voltages the relationship is almost linear.

  18. A first principles investigation of the electronic structure of actinide oxides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Zdzislawa

    2010-01-01

    The ground state electronic structures of the actinide oxides AO, A2O3 and AO2 (A=U, Np, Pu, Am, Cm, Bk, Cf) are determined from first-principles calculations using the selfinteraction corrected local spin-density approximation. Our study reveals a strong link between preferred oxidation number...... and degree of localization. The ionic nature of the actinide oxides emerges from the fact that those oxides where the ground state is calculated to be metallic do not exist in nature, as the corresponding delocalized f-states favour the accommodation of additional O atoms into the crystal lattice....

  19. High pressure Moessbauer spectroscopy of perovskite iron oxide

    International Nuclear Information System (INIS)

    Nasu, Saburo; Suenaga, Tomoya; Morimoto, Shotaro; Kawakami, Takateru; Kuzushita, Kaori; Takano, Mikio

    2003-01-01

    High-pressure 57 Fe Moessbauer spectroscopy using a diamond anvil cell has been performed for perovskite iron oxides SrFeO 3 , CaFeO 3 and La 1/3 Sr 2/3 O 3 . The charge states and the magnetic dependency to pressure were determined. Pressure magnetic phase diagrams of these perovskite iron oxides are determined up to about 70 GPa. To be clear the magnetic ordered state, they are measured up to 7.8 T external magnetic fields at 4.5K. The phase transition of these perovskite oxides to ferromagnetisms with high magnetic ordered temperature is observed. In higher pressure, high spin-low spin transition of oxides besides CaFeO 3 is generated. The feature of Moessbauer spectroscopy, perovskite iron oxide and Moessbauer spectroscopy under high pressure are explained. (S.Y.)

  20. Position Assignment and Oxidation State Recognition of Fe and Co Centers in Heterometallic Mixed-Valent Molecular Precursors for the Low-Temperature Preparation of Target Spinel Oxide Materials

    Energy Technology Data Exchange (ETDEWEB)

    Lieberman, Craig M. [Department of Chemistry, University at Albany, Albany, New York 12222, United States; Barry, Matthew C. [Department of Chemistry, University at Albany, Albany, New York 12222, United States; Wei, Zheng [Department of Chemistry, University at Albany, Albany, New York 12222, United States; Rogachev, Andrey Yu. [Department; Wang, Xiaoping [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States; Liu, Jun-Liang [CNRS, CRPP, UPR 8641, F-33600 Pessac, France; Univ. Bordeaux, UPR 8641, F-33600 Pessac, France; MOE Key Lab of Bioinorganic and Synthetic Chemistry,; Clérac, Rodolphe [CNRS, CRPP, UPR 8641, F-33600 Pessac, France; Univ. Bordeaux, UPR 8641, F-33600 Pessac, France; Chen, Yu-Sheng [ChemMatCARS, Center for Advanced Radiation; Filatov, Alexander S. [Department; Dikarev, Evgeny V. [Department of Chemistry, University at Albany, Albany, New York 12222, United States

    2017-07-31

    A series of mixed-valent, heterometallic (mixed-transition metal) diketonates that can be utilized as prospective volatile single-source precursors for the low-temperature preparation of MxM'3–xO4 spinel oxide materials is reported. Three iron–cobalt complexes with Fe/Co ratios of 1:1, 1:2, and 2:1 were synthesized by several methods using both solid-state and solution reactions. On the basis of nearly quantitative reaction yields, elemental analyses, and comparison of metal–oxygen bonds with those in homometallic analogues, heterometallic compounds were formulated as [FeIII(acac)3][CoII(hfac)2] (1), [CoII(hfac)2][FeIII(acac)3][CoII(hfac)2] (2), and [FeII(hfac)2][FeIII(acac)3][CoII(hfac)2] (3). In the above heteroleptic complexes, the Lewis acidic, coordinatively unsaturated CoII/FeII centers chelated by two hexafluoroacetylacetonate (hfac) ligands maintain bridging interactions with oxygen atoms of acetylacetonate (acac) groups that chelate the neighboring FeIII metal ion. Preliminary assignment of Fe and Co positions/oxidation states in 1–3 drawn from X-ray structural investigation was corroborated by a number of complementary techniques. Single-crystal resonant synchrotron diffraction and neutron diffraction experiments unambiguously confirmed the location of Fe and Co sites in the molecules of dinuclear (1) and trinuclear (2) complexes, respectively. Direct analysis in real time mass spectrometry revealed the presence of FeIII- and CoII-based fragments in the gas phase upon evaporation of precursors 1 and 2 as well as of FeIII, FeII, and CoII species for complex 3. Theoretical investigation of two possible “valent isomers”, [FeIII(acac)3

  1. Study of crystalline morphology and phase structure in poly(styrene-b-ethylene oxide-b-styrene) triblock copolymers bu solid state RMN spin diffusion

    International Nuclear Information System (INIS)

    Mantovani, Gerson L.; Phan, Trang; Bertin, Denis; Azevedo, Eduardo R. de; Bonagamba, Tito J.

    2009-01-01

    The phase structure and crystalline morphology of a series of polystyrene-b-polyethylene oxide-b-polystyrene (PS-b- PEO-b-PS) triblock copolymers, with different compositions and molecular weights, has been studied by solid-state NMR. WAXS and DSC measurements were used to detect the presence of crystalline domains of polyethylene oxide (PEO) blocks at room temperature as a function of the copolymer composition. 1 H NMR spin diffusion analyses provided an estimation of the size of the dispersed phases of the nano structured copolymers. (author)

  2. Amphoteric oxide semiconductors for energy conversion devices: a tutorial review.

    Science.gov (United States)

    Singh, Kalpana; Nowotny, Janusz; Thangadurai, Venkataraman

    2013-03-07

    In this tutorial review, we discuss the defect chemistry of selected amphoteric oxide semiconductors in conjunction with their significant impact on the development of renewable and sustainable solid state energy conversion devices. The effect of electronic defect disorders in semiconductors appears to control the overall performance of several solid-state ionic devices that include oxide ion conducting solid oxide fuel cells (O-SOFCs), proton conducting solid oxide fuel cells (H-SOFCs), batteries, solar cells, and chemical (gas) sensors. Thus, the present study aims to assess the advances made in typical n- and p-type metal oxide semiconductors with respect to their use in ionic devices. The present paper briefly outlines the key challenges in the development of n- and p-type materials for various applications and also tries to present the state-of-the-art of defect disorders in technologically related semiconductors such as TiO(2), and perovskite-like and fluorite-type structure metal oxides.

  3. Examining mechanism of toxicity of copper oxide nanoparticles to Saccharomyces cerevisiae and Caenorhabditis elegans

    Science.gov (United States)

    Mashock, Michael J.

    mutant strains containing gene knockouts in the divalent-metal transporters smf-1 and smf-2 showed increased tolerance to copper exposure. These results lend credence to the hypothesis that some toxicological effects to eukaryotic organisms from copper oxide nanoparticle exposure may be due to properties specific to the nanoparticles and not solely from the released copper ions.

  4. Determination of bulk and interface density of states in metal oxide semiconductor thin-film transistors by using capacitance-voltage characteristics

    Science.gov (United States)

    Wei, Xixiong; Deng, Wanling; Fang, Jielin; Ma, Xiaoyu; Huang, Junkai

    2017-10-01

    A physical-based straightforward extraction technique for interface and bulk density of states in metal oxide semiconductor thin film transistors (TFTs) is proposed by using the capacitance-voltage (C-V) characteristics. The interface trap density distribution with energy has been extracted from the analysis of capacitance-voltage characteristics. Using the obtained interface state distribution, the bulk trap density has been determined. With this method, for the interface trap density, it is found that deep state density nearing the mid-gap is approximately constant and tail states density increases exponentially with energy; for the bulk trap density, it is a superposition of exponential deep states and exponential tail states. The validity of the extraction is verified by comparisons with the measured current-voltage (I-V) characteristics and the simulation results by the technology computer-aided design (TCAD) model. This extraction method uses non-numerical iteration which is simple, fast and accurate. Therefore, it is very useful for TFT device characterization.

  5. Remote Sensing the Thermosphere's State Using Emissions From Carbon Dioxide and Nitric Oxide

    Science.gov (United States)

    Weimer, D. R.; Mlynczak, M. G.; Doornbos, E.

    2017-12-01

    Measurements of emissions from nitric oxide and carbon dioxide in the thermosphere have strong correlations with properties that are very useful to the determination of thermospheric densities. We have compared emissions measured with the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite with neutral density measurements from the Challenging Mini-satellite Payload (CHAMP), the Gravity Recovery and Climate Experiment (GRACE), the Ocean Circulation Explorer (GOCE), and the three Swarm satellites, spanning a time period of over 15 years. It has been found that nitric oxide emissions match changes in the exospheric temperatures that have been derived from the densities through use of the Naval Reasearch Laboratory Mass Spectrometer, Incoherent Scatter Radar Extended Model (NRLMSISE-00) thermosphere model. Similarly, our results indicate that the carbon dioxide emissions have annual and semiannual oscillations that correlate with changes in the amount of oxygen in the thermosphere, also determined by use of the NRLMSISE-00 model. These annual and semi-annual variations are found to have irregular amplitudes and phases, which make them very difficult to accurately predict. Prediction of exospheric temperatures through the use of geomagnetic indices also tends to be inexact. Therefore, it would be possible and very useful to use measurements of the thermosphere's infrared emissions for real-time tracking of the thermosphere's state, so that more accurate calculations of the density may be obtained.

  6. Mn K-edge XANES spectroscopy of photosynthetic water oxidation enzyme in the S0-, S1-, S2- and S3-states induced by flash excitation

    International Nuclear Information System (INIS)

    Ono, Taka-aki; Noguchi, Takumi; Inoue, Yorinao; Kusunoki, Masami; Matsushita, Tadashi; Oyanagi, Hiroyuki.

    1993-01-01

    Electronic and structural rearrangement of the Mn-cluster during the four step oxidation of water in photosynthetic oxygen evolution was studied by XANES spectroscopy. The Mn K-edge energy of the spectrum was changed with flash number to show a clear quadruple oscillation, indicating a periodic change in oxidation and electronic state of the Mn-cluster depending on Joliot and Kok's oxygen clock. (author)

  7. Example of uranium(IV) insertion within a macrocyclic crown ether with coexistence of the metal in two oxidation states

    Energy Technology Data Exchange (ETDEWEB)

    Bombieri, G; De Paoli, G [Consiglio Nazionale delle Ricerche, Padua (Italy). Lab. di Chimica e Tecnologia dei Radioelementi; Immirzi, A

    1978-01-01

    Reaction of UCl/sub 4/ with 18-crown-6 in tetrahydrofuran yields (UCl/sub 4/)/sub 3/ (18-crown-6)/sub 2/ which on recrystallization in nitromethane, gives a partially oxidized and hydrolyzed product whose structure has been investigated by X-ray diffraction. The compound crystallizes in the orthorhombic system. The cell contains eight UCl/sub 3//sup +/ cations each inserted within a crown molecule and four (UO/sub 2/Cl/sub 3/(OH)(H/sub 2/O))/sup 2 -/anions having a pentagonal bipyramidal structure. Four solvated nitromethane molecules are also present. The compound represents one of the very few examples in which uranium exists in two oxidation states, and the first example in which its insertion within a crown macrocycle has been proved by an X-ray diffraction study.

  8. Appearance of the minority dz2 surface state and disappearance of the image-potential state: Criteria for clean Fe(001)

    Science.gov (United States)

    Eibl, Christian; Schmidt, Anke B.; Donath, Markus

    2012-10-01

    The unoccupied surface electronic structure of clean and oxidized Fe(001) was studied with spin-resolved inverse photoemission and target current spectroscopy. For the clean surface, we detected a dz2 surface state with minority spin character just above the Fermi level, while the image-potential surface state disappears. The opposite is observed for the ordered p(1×1)O/Fe(001) surface: the dz2-type surface state is quenched, while the image-potential state shows up as a pronounced feature. This behavior indicates enhanced surface reflectivity at the oxidized surface. The appearance and disappearance of specific unoccupied surface states prove to be decisive criteria for a clean Fe(001) surface. In addition, enhanced spin asymmetry in the unoccupied states is observed for the oxidized surface. Our results have implications for the use of clean and oxidized Fe(001) films as spin-polarization detectors.

  9. Determination of oxidation state of iron in normal and pathologically altered human aortic valves

    Energy Technology Data Exchange (ETDEWEB)

    Czapla-Masztafiak, J. [Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Kraków (Poland); Lis, G.J.; Gajda, M.; Jasek, E. [Department of Histology, Jagiellonian University Medical College, Kopernika 7, 31-034 Kraków (Poland); Czubek, U. [Department of Coronary Disease, Jagiellonian University Medical College, John Paul II Hospital, Prądnicka 80, 31-202 Kraków (Poland); Bolechała, F. [Department of Forensic Medicine, Jagiellonian University Medical College, Grzegórzecka 16, 31-531 Kraków (Poland); Borca, C. [Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI (Switzerland); Kwiatek, W.M. [Institute of Nuclear Physics PAN, Radzikowskiego 152, 31-342 Kraków (Poland)

    2015-12-01

    In order to investigate changes in chemical state of iron in normal and pathologically altered human aortic valves X-ray absorption spectroscopy was applied. Since Fe is suspected to play detrimental role in aortic valve stenosis pathogenesis the oxidation state of this element has been determined. The experimental material consisted of 10 μm sections of valves excised during routine surgery and from autopsies. The experiment was performed at the MicroXAS beamline of the SLS synchrotron facility in Villigen (Switzerland). The Fe K-edge XANES spectra obtained from tissue samples were carefully analyzed and compared with the spectra of reference compounds containing iron in various chemical structures. The analysis of absorption edge position and shape of the spectra revealed that both chemical forms of iron are presented in valve tissue but Fe{sup 3+} is the predominant form. Small shift of the absorption edge toward higher energy in the spectra from stenotic valve samples indicates higher content of the Fe{sup 3+} form in pathological tissue. Such a phenomenon suggests the role of Fenton reaction and reactive oxygen species in the etiology of aortic valve stenosis. The comparison of pre-edge regions of XANES spectra for control and stenotic valve tissue confirmed no differences in local symmetry or spin state of iron in analyzed samples.

  10. The effect of cerium valence states at cerium oxide nanoparticle surfaces on cell proliferation

    KAUST Repository

    Naganuma, Tamaki

    2014-05-01

    Understanding and controlling cell proliferation on biomaterial surfaces is critical for scaffold/artificial-niche design in tissue engineering. The mechanism by which underlying integrin ligates with functionalized biomaterials to induce cell proliferation is still not completely understood. In this study, poly-l-lactide (PL) scaffold surfaces were functionalized using layers of cerium oxide nanoparticles (CNPs), which have recently attracted attention for use in therapeutic application due to their catalytic ability of Ce4+ and Ce3+ sites. To isolate the influence of Ce valance states of CNPs on cell proliferation, human mesenchymal stem cells (hMSCs) and osteoblast-like cells (MG63) were cultured on the PL/CNP surfaces with dominant Ce4+ and Ce3+ regions. Despite cell type (hMSCs and MG63 cells), different surface features of Ce4+ and Ce3+ regions clearly promoted and inhibited cell spreading, migration and adhesion behavior, resulting in rapid and slow cell proliferation, respectively. Cell proliferation results of various modified CNPs with different surface charge and hydrophobicity/hydrophilicity, indicate that Ce valence states closely correlated with the specific cell morphologies and cell-material interactions that trigger cell proliferation. This finding suggests that the cell-material interactions, which influence cell proliferation, may be controlled by introduction of metal elements with different valence states onto the biomaterial surface. © 2014 Elsevier Ltd.

  11. Two ternary mixed-anion chlorides with divalent europium: Eu{sub 2}H{sub 3}Cl and Eu{sub 7}F{sub 12}Cl{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Reckeweg, Olaf [Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301 (United States); Institut fuer Anorganische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany); DiSalvo, Francis J. [Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853-1301 (United States); Wolf, Sarah; Schleid, Thomas [Institut fuer Anorganische Chemie, Universitaet Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany)

    2014-06-15

    Dark ruby-red, transparent, triangular plate-shaped single crystals of Eu{sub 2}H{sub 3}Cl and colorless, transparent, needle-shaped single crystals of Eu{sub 7}F{sub 12}Cl{sub 2} were obtained by solid-state reactions of Eu, NaH, NaCl, and Na (2:4:1:2 molar ratio) or Eu, EuCl{sub 3}, and LiF (1:1:4 molar ratio), respectively, in silica-jacketed tantalum ampoules at 900 C for 13 h. Eu{sub 2}H{sub 3}Cl crystallizes isotypically to Ba{sub 2}H{sub 3}X (X = Cl, Br, I) in the trigonal space group P anti 3m1 (no. 164) with lattice parameters a = 409.67(4) and c = 696.18(7) pm, whereas Eu{sub 7}F{sub 12}Cl{sub 2} crystallizes isotypically to Ba{sub 7}F{sub 12}Cl{sub 2} or Sr{sub 7}H{sub 12}Cl{sub 2} in the hexagonal space group P anti 6 (no. 174) with lattice parameters a = 1002.31(5) and c = 392.54(2) pm. Both compounds contain Eu{sup 2+} cations with coordination numbers as high as nine (Eu{sub 7}F{sub 12}Cl{sub 2}) and ten (Eu{sub 2}H{sub 3}Cl) with respect to the halide anions (F{sup -} or H{sup -} and Cl{sup -}). The structural results are corroborated by EUTAX and MAPLE calculations on both ternary mixed-anion europium(II) chlorides in comparison to these for related binary and ternary compounds with divalent europium. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Crystallization inhibitors for amorphous oxides

    International Nuclear Information System (INIS)

    Reznitskij, L.A.; Filippova, S.E.

    1993-01-01

    Data for the last 10 years, in which experimental results of studying the temperature stabilization of x-ray amorphous oxides (including R 3 Fe 5 O 12 R-rare earths, ZrO 2 , In 2 O 3 , Sc 2 O 3 ) and their solid solution are presented, are generalized. Processes of amorphous oxide crystallization with the production of simple oxides, solid solutions and chemical compounds with different polyhedral structure, are investigated. Energy and crystallochemical criteria for selecting the doping inhibitor-components stabilizing the amorphous state are ascertained, temperatures and enthalpies of amorpous oxide crystallization are determined, examination of certain provisions of iso,orphous miscibility theory is conducted

  13. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn

    International Nuclear Information System (INIS)

    Biesinger, Mark C.; Lau, Leo W.M.; Gerson, Andrea R.; Smart, Roger St.C.

    2010-01-01

    Chemical state X-ray photoelectron spectroscopic analysis of first row transition metals and their oxides and hydroxides is challenging due to the complexity of the 2p spectra resulting from peak asymmetries, complex multiplet splitting, shake-up and plasmon loss structure, and uncertain, overlapping binding energies. A review of current literature shows that all values necessary for reproducible, quantitative chemical state analysis are usually not provided. This paper reports a more consistent, practical and effective approach to curve-fitting the various chemical states in a variety of Sc, Ti, V, Cu and Zn metals, oxides and hydroxides. The curve-fitting procedures proposed are based on a combination of (1) standard spectra from quality reference samples, (2) a survey of appropriate literature databases and/or a compilation of the literature references, and (3) specific literature references where fitting procedures are available. Binding energies, full-width at half maximum (FWHM) values, spin-orbit splitting values, asymmetric peak-shape fitting parameters, and, for Cu and Zn, Auger parameters values are presented. The quantification procedure for Cu species details the use of the shake-up satellites for Cu(II)-containing compounds and the exact binding energies of the Cu(0) and Cu(I) peaks. The use of the modified Auger parameter for Cu and Zn species allows for corroborating evidence when there is uncertainty in the binding energy assignment. These procedures can remove uncertainties in analysis of surface states in nano-particles, corrosion, catalysis and surface-engineered materials.

  14. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn

    Energy Technology Data Exchange (ETDEWEB)

    Biesinger, Mark C., E-mail: biesingr@uwo.ca [Surface Science Western, University of Western Ontario, University of Western Ontario Research Park, Room LL31, 999 Collip Circle, London, Ontario, N6G 0J3 (Canada); ACeSSS (Applied Centre for Structural and Synchrotron Studies), University of South Australia, Mawson Lakes, SA 5095 (Australia); Lau, Leo W.M. [Surface Science Western, University of Western Ontario, University of Western Ontario Research Park, Room LL31, 999 Collip Circle, London, Ontario, N6G 0J3 (Canada); Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7 (Canada); Gerson, Andrea R.; Smart, Roger St.C. [ACeSSS (Applied Centre for Structural and Synchrotron Studies), University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2010-11-15

    Chemical state X-ray photoelectron spectroscopic analysis of first row transition metals and their oxides and hydroxides is challenging due to the complexity of the 2p spectra resulting from peak asymmetries, complex multiplet splitting, shake-up and plasmon loss structure, and uncertain, overlapping binding energies. A review of current literature shows that all values necessary for reproducible, quantitative chemical state analysis are usually not provided. This paper reports a more consistent, practical and effective approach to curve-fitting the various chemical states in a variety of Sc, Ti, V, Cu and Zn metals, oxides and hydroxides. The curve-fitting procedures proposed are based on a combination of (1) standard spectra from quality reference samples, (2) a survey of appropriate literature databases and/or a compilation of the literature references, and (3) specific literature references where fitting procedures are available. Binding energies, full-width at half maximum (FWHM) values, spin-orbit splitting values, asymmetric peak-shape fitting parameters, and, for Cu and Zn, Auger parameters values are presented. The quantification procedure for Cu species details the use of the shake-up satellites for Cu(II)-containing compounds and the exact binding energies of the Cu(0) and Cu(I) peaks. The use of the modified Auger parameter for Cu and Zn species allows for corroborating evidence when there is uncertainty in the binding energy assignment. These procedures can remove uncertainties in analysis of surface states in nano-particles, corrosion, catalysis and surface-engineered materials.

  15. Application of ferrous-chromate and idometric titration for the determination of copper oxidation states in the superconductor YBa2Cu3Oy

    International Nuclear Information System (INIS)

    Oku, Masaoki; Kimura, Jin; Hosoya, Minoru; Takada, Kunio; Hirokawa, Kichinosuke

    1988-01-01

    Oxidation-reduction titration methods, Fe 2+ -Cr 2 O 7 2- and I - -S 2 O 3 2- , were applied to the determination of the oxidation state of copper in the superconductor YBa 2 Cu 3 O y and related compounds. The former method presented problems in the sample dissolution and titration steps. The dissolution of the sample in low concentrations of Fe 2+ -phosphoric acid and Fe 2+ -perchloric acid takes place in two steps, the oxidation of Fe 2+ to Fe 3+ and the liberation of oxygen gas, when the liberation results in low analytical values for Cu 3+ . In addition the coexistence of cuprous ion and acids induces the oxidation of ferrous ion by dissolved oxygen and air. The problems were resolved by dissolution in 0.1 mol/l Fe 2+ -phosphoric acid and titration in an argon atmosphere. The latter method gave good results by controlling the amounts of potassium chloride, the concentration of acetic acid, and by elimination of the dissolved oxygen in acetic acid solution. The results of the two titration methods coincided with each other. (orig.)

  16. Simulation of the chemical state of irradiated oxide fuel; influence of the internal corrosion on the mechanical properties of Zry-4 tubing

    International Nuclear Information System (INIS)

    Hofmann, P.

    1979-03-01

    Zircaloy is not compatible with oxide fuel nor with some fission product elements. Therefore, chemical interaction between the irradiated oxide fuel and the Zry cladding material take place, especially at temperatures that can be reached during reactor incidents (ATWS, LOCA). In order to find out which influence the chemical interaction between the fission products and the Zry cladding material have on the mechanical properties of Zry-4 tubing out-of-pile burst experiments and creep rupture tests have been performed at temperatures >=600 0 C with short tube specimens containing simulated fission products. First of all, assessments of the chemical state of irradiated oxide fuel were performed and a method is described for introducing simulated fission product species into fresh oxide fuel for irradiation tests. As the test results of the out-of-pile studies show, only iodine can lead to a low ductility failure of the Zry-tubing at temperatures >=600 0 C. However, the influence of iodine on the deformation behavior of Zry-tubing can be neglected above 850 0 C. (orig.) [de

  17. Electromotive force and impedance studies of cellulose acetate membranes: Evidence for two binding sites for divalent cations and for an alveolar structure of the skin layer

    DEFF Research Database (Denmark)

    Smith Sørensen, T.; Jensen, J.B.; Malmgren-Hansen, B.

    1991-01-01

    asymmetic membranes. The skin layer in asymmetric membranes is assumed to have properties similar to dense membranes. The EMF measurements were interpreted by means of a Donnan-Nernst-Planck (Teorell-Meyer-Sievers) model, which functions quite well due to the low fixed charge in the membrane. The membrane...... diffusion potential is calculated by the Henderson method and in some cases by solving transcendental equations according to Planck, Pleijel and Schlogl. There is no great difference between the membrane potentials calculated by the two methods, but the ion profiles and the actual rates of electrodiffusion...... of ca. 30 in the alveolar phase is also supported by a simple dielectric calculation of the Nernst distribution of mono- and divalent ions between external water and the alveolar solution. Corrections for activity coefficients only seems important above 0.5 M. The Onsager-Samaras dielectric repulsion...

  18. Solid-state supercapacitors with ionic liquid gel polymer electrolyte based on poly (3, 4-ethylenedioxythiophene), carbon nanotubes, and metal oxides nanocomposites for electrical energy storage

    Science.gov (United States)

    Obeidat, Amr M.

    Clean and renewable energy systems have emerged as an important area of research having diverse and significant new applications. These systems utilize different energy storage methods such as the batteries and supercapacitors. Supercapacitors are electrochemical energy storage devices that are designed to bridge the gap between batteries and conventional capacitors. Supercapacitors which store electrical energy by electrical double layer capacitance are based on large surface area structured carbons. The materials systems in which the Faradaic reversible redox reactions store electrical energy are the transition metal oxides and electronically conducting polymers. Among the different types of conducting polymers, poly (3, 4- ethylenedioxythiophene) (PEDOT) is extensively investigated owing to its chemical and mechanical stability. Due to instability of aqueous electrolytes at high voltages and toxicity of organic electrolytes, potential of supercapacitors has not been fully exploited. A novel aspect of this work is in utilizing the ionic liquid gel polymer electrolyte to design solid-state supercapacitors for energy storage. Various electrochemical systems were investigated including graphene, PEDOT, PEDOT-carbon nanotubes, PEDOT-manganese oxide, and PEDOT-iron oxide nanocomposites. The electrochemical performance of solid-state supercapacitor devices was evaluated based on cyclic voltammetry (CV), charge-discharge (CD), prolonged cyclic tests, and electrochemical impedance spectroscopy (EIS) techniques. Raman spectroscopy technique was also utilized to analyze the bonding structure of the electrode materials. The graphene solid-state supercapacitor system displayed areal capacitance density of 141.83 mF cm-2 based on high potential window up to 4V. The PEDOT solid-state supercapacitor system was synthesized in acetonitrile and aqueous mediums achieving areal capacitance density of 219.17 mF cm-2. The hybrid structure of solid-state supercapacitors was also

  19. Thermoluminescence properties of alkali borate glasses containing neodymium

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, A.F.; Henaish, B.A.; Kenaway, M.A.; Salem, L.R.

    1988-01-01

    The thermoluminescence properties of sodium borate glasses as a function of neodymium oxide content as well as the divalent metal oxides (RO = ZnO, MgO and CaO) in replacement of Na/sub 2/O have been investigated. It is observed that the addition of Nd/sub 2/O/sub 3/ imparts to the host glass a monopeak glow curve according to an active luminescent centre (E approx. = 0.97 eV to 1.232 eV). The gradual addition of neodymium oxide to the sodium borate glass causes gradual enhancement in the TL-intensity up to a quenching concentration value (4 g Nd/sub 2/O/sub 3/ added to 100 g of borate glass) above which a draw back in TL-intensity occurs. On the other hand the replacement of 5 wt% Na/sub 2/O by RO shows that CaO dominates the other two divalent metal oxides used, as it possesses a much deeper luminescent trap (1.232 eV). The results obtained suggest that these glasses can be used in radiation detection and dosimetry. The ..gamma..-induced Tl-signal of such type of glass is found to be reproducible within an acceptable error of not more than 3.5% in all individual and group scattering over the detector samples each of which is used 10 times for evaluating the same ..gamma..-dose.

  20. Control of lipid oxidation at the mitochondrial level

    DEFF Research Database (Denmark)

    Sahlin, Kent

    2009-01-01

    , but the mechanisms regulating fuel preferences remain unclear. During intense exercise, oxidation of long-chain fatty acids (LCFAs) decreases, and the major control is likely to be at the mitochondrial level. Potential mitochondrial sites for control of lipid oxidation include transport of LCFAs into mitochondrial......-oxidation by redox state is thought to be an important mechanism for the slowing of lipid oxidation during intensive exercise....

  1. Graph-representation of oxidative folding pathways

    Directory of Open Access Journals (Sweden)

    Kaján László

    2005-01-01

    Full Text Available Abstract Background The process of oxidative folding combines the formation of native disulfide bond with conformational folding resulting in the native three-dimensional fold. Oxidative folding pathways can be described in terms of disulfide intermediate species (DIS which can also be isolated and characterized. Each DIS corresponds to a family of folding states (conformations that the given DIS can adopt in three dimensions. Results The oxidative folding space can be represented as a network of DIS states interconnected by disulfide interchange reactions that can either create/abolish or rearrange disulfide bridges. We propose a simple 3D representation wherein the states having the same number of disulfide bridges are placed on separate planes. In this representation, the shuffling transitions are within the planes, and the redox edges connect adjacent planes. In a number of experimentally studied cases (bovine pancreatic trypsin inhibitor, insulin-like growth factor and epidermal growth factor, the observed intermediates appear as part of contiguous oxidative folding pathways. Conclusions Such networks can be used to visualize folding pathways in terms of the experimentally observed intermediates. A simple visualization template written for the Tulip package http://www.tulip-software.org/ can be obtained from V.A.

  2. Optimization of divalent cation in Saccharomyces pastorianus ...

    African Journals Online (AJOL)

    USER

    2010-08-16

    Aug 16, 2010 ... 1Department of Food Science and Technology, University of Uyo, Akwa Ibom State, Nigeria. ... potential as a biofuel to replace fossil fuels (Rakin et al.,. 2009). It is one of ... agricultural products or waste materials (Rakin et al.,.

  3. Brain oxidative metabolism of the newborn dog: correlation between 31P NMR spectroscopy and pyridine nucleotide redox state.

    Science.gov (United States)

    Mayevsky, A; Nioka, S; Subramanian, V H; Chance, B

    1988-04-01

    The effects of both anoxia and short- and long-term hypoxia on brain oxidative metabolism were studied in newborn dogs. Oxidative metabolism was evaluated by two independent measures: in vivo continuous monitoring of mitochondrial NADH redox state and energy stores as calculated from the phosphocreatine (PCr)/Pi levels measured by 31P nuclear magnetic resonance (NMR) spectroscopy. The hemodynamic response to low oxygen supply was further evaluated by measuring the changes in the reflected light intensity at 366 nm (the excitation wavelength for NADH). The animal underwent surgery and was prepared for monitoring of the two signals (NADH and PCr/Pi). It was then placed inside a Phosphoenergetics 260-80 NMR spectrometer magnet with a 31-cm bore. Each animal (1-21 days old) was exposed to short-term anoxia or hypoxia as well as to long-term hypoxia (1-2 h). The results can be summarized as follow: (a) In the normoxic brain, the ratio between PCr and Pi was greater than 1 (1.2-1.4), while under hypoxia or asphyxia a significant decrease that was correlated to the FiO2 levels was recorded. (b) A clear correlation was found between the decrease in PCr/Pi values and the increased NADH redox state developed under decreased O2 supply to the brain. (c) Exposing the animal to moderately long-term hypoxia led to a stabilized low-energy state of the brain with a good recovery after rebreathing normal air. (d) Under long-term and severe hypoxia, the microcirculatory autoregulatory mechanism was damaged and massive vasoconstriction was optically recorded simultaneously with a significant decrease in PCr/Pi values.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Divalent metal (Ca, Cd, Mn, Zn) uptake and interactions in the aquatic insect Hydropsyche sparna.

    Science.gov (United States)

    Poteat, Monica D; Díaz-Jaramillo, Mauricio; Buchwalter, David B

    2012-05-01

    Despite their ecological importance and prevalent use as ecological indicators, the trace element physiology of aquatic insects remains poorly studied. Understanding divalent metal transport processes at the water-insect interface is important because these metals may be essential (e.g. Ca), essential and potentially toxic (e.g. Zn) or non-essential and toxic (e.g. Cd). We measured accumulation kinetics of Zn and Cd across dissolved concentrations ranging 4 orders of magnitude and examined interactions with Ca and Mn in the caddisfly Hydropsyche sparna. Here, we provide evidence for at least two transport systems for both Zn and Cd, the first of which operates at concentrations below 0.8 μmol l(-1) (and is fully saturable for Zn). We observed no signs of saturation of a second lower affinity transport system at concentrations up to 8.9 μmol l(-1) Cd and 15.3 μmol l(-1) Zn. In competition studies at 0.6 μmol l(-1) Zn and Cd, the presence of Cd slowed Zn accumulation by 35% while Cd was unaffected by Zn. At extreme concentrations (listed above), Cd accumulation was unaffected by the presence of Zn whereas Zn accumulation rates were reduced by 58%. Increasing Ca from 31.1 μmol l(-1) to 1.35 mmol l(-1) resulted in only modest decreases in Cd and Zn uptake. Mn decreased adsorption of Cd and Zn to the integument but not internalization. The L-type Ca(2+) channel blockers verapamil and nifedipine and the plasma membrane Ca(2+)-ATPase inhibitor carboxyeosin had no influence on Ca, Cd or Zn accumulation rates, while Ruthenium Red, a Ca(2+)-ATPase inhibitor, significantly decreased the accumulation of all three in a concentration-dependent manner.

  5. Towards a Predictive Thermodynamic Model of Oxidation States of Uranium Incorporated in Fe (hydr) oxides

    Energy Technology Data Exchange (ETDEWEB)

    Bagus, Paul S. [Univ. of North Texas, Denton, TX (United States)

    2013-01-01

    -Level Excited States: Consequences For X-Ray Absorption Spectroscopy”, J. Elec. Spectros. and Related Phenom., 200, 174 (2015) describes our first application of these methods. As well as applications to problems and materials of direct interest for our PNNL colleagues, we have pursued applications of fundamental theoretical significance for the analysis and interpretation of XPS and XAS spectra. These studies are important for the development of the fields of core-level spectroscopies as well as to advance our capabilities for applications of interest to our PNNL colleagues. An excellent example is our study of the surface core-level shifts, SCLS, for the surface and bulk atoms of an oxide that provides a new approach to understanding how the surface electronic of oxides differs from that in the bulk of the material. This work has the potential to lead to a new key to understanding the reactivity of oxide surfaces. Our theoretical studies use cluster models with finite numbers of atoms to describe the properties of condensed phases and crystals. This approach has allowed us to focus on the local atomistic, chemical interactions. For these clusters, we obtain orbitals and spinors through the solution of the Hartree-Fock, HF, and the fully relativistic Dirac HF equations. These orbitals are used to form configuration mixing wavefunctions which treat the many-body effects responsible for the open shell angular momentum coupling and for the satellites of the core-level spectra. Our efforts have been in two complementary directions. As well as the applications described above, we have placed major emphasis on the enhancement and extension of our theoretical and computational capabilities so that we can treat complex systems with a greater range of many-body effects. Noteworthy accomplishments in terms of method development and enhancement have included: (1) An improvement in our treatment of the large matrices that must be handled when many-body effects are treated. (2

  6. La2/5Ba2/5Ca1/5

    Indian Academy of Sciences (India)

    Unknown

    2003) are well known for their antiferromagnetic beha- viour as well as for their giant magnetoresistance. Substi- tution of La by monovalent alkali or divalent alkaline earth metal ions induces ferromagnetic behaviour in these oxides. Such substitution of lower valent ions for La3+ ions results in mixed valence at the Mn site, ...

  7. Identification of the iron oxidation state and coordination geometry in iron oxide- and zeolite-based catalysts using pre-edge XAS analysis.

    Science.gov (United States)

    Boubnov, Alexey; Lichtenberg, Henning; Mangold, Stefan; Grunwaldt, Jan Dierk

    2015-03-01

    Analysis of the oxidation state and coordination geometry using pre-edge analysis is attractive for heterogeneous catalysis and materials science, especially for in situ and time-resolved studies or highly diluted systems. In the present study, focus is laid on iron-based catalysts. First a systematic investigation of the pre-edge region of the Fe K-edge using staurolite, FePO4, FeO and α-Fe2O3 as reference compounds for tetrahedral Fe(2+), tetrahedral Fe(3+), octahedral Fe(2+) and octahedral Fe(3+), respectively, is reported. In particular, high-resolution and conventional X-ray absorption spectra are compared, considering that in heterogeneous catalysis and material science a compromise between high-quality spectroscopic data acquisition and simultaneous analysis of functional properties is required. Results, which were obtained from reference spectra acquired with different resolution and quality, demonstrate that this analysis is also applicable to conventionally recorded pre-edge data. For this purpose, subtraction of the edge onset is preferentially carried out using an arctangent and a first-degree polynomial, independent of the resolution and quality of the data. For both standard and high-resolution data, multiplet analysis of pre-edge features has limitations due to weak transitions that cannot be identified. On the other hand, an arbitrary empirical peak fitting assists the analysis in that non-local transitions can be isolated. The analysis of the oxidation state and coordination geometry of the Fe sites using a variogram-based method is shown to be effective for standard-resolution data and leads to the same results as for high-resolution spectra. This method, validated by analysing spectra of reference compounds and their well defined mixtures, is finally applied to track structural changes in a 1% Fe/Al2O3 and a 0.5% Fe/BEA zeolite catalyst during reduction in 5% H2/He. The results, hardly accessible by other techniques, show that Fe(3+) is

  8. Induced spin-polarization of EuS at room temperature in Ni/EuS multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Poulopoulos, P., E-mail: poulop@upatras.gr [Laboratory of High-Tech Materials, School of Engineering, University of Patras, 26504 Patras (Greece); Materials Science Department, University of Patras, 26504 Patras (Greece); Goschew, A.; Straub, A.; Fumagalli, P. [Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin-Dahlem (Germany); Kapaklis, V.; Wolff, M. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Delimitis, A. [Chemical Process and Energy Resources Institute (CPERI), Centre for Research and Technology Hellas (CERTH), 57001 Thermi, Thessaloniki (Greece); Wilhelm, F.; Rogalev, A. [European Synchrotron Radiation Facility (ESRF), B.P.220, 38043 Grenoble (France); Pappas, S. D. [Laboratory of High-Tech Materials, School of Engineering, University of Patras, 26504 Patras (Greece); Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden)

    2014-03-17

    Ni/EuS multilayers with excellent multilayer sequencing are deposited via e-beam evaporation on the native oxide of Si(100) wafers at 4 × 10{sup −9} millibars. The samples have very small surface and interface roughness and show sharp interfaces. Ni layers are nanocrystalline 4–8 nm thick and EuS layers are 2–4 nm thick and are either amorphous or nanocrystalline. Unlike for Co/EuS multilayers, all Eu ions are in divalent (ferromagnetic) state. We show a direct antiferromagnetic coupling between EuS and Ni layers. At room temperature, the EuS layers are spin-polarized due to the proximity of Ni. Therefore, Ni/EuS is a candidate for room-temperature spintronics applications.

  9. High pressure Moessbauer spectroscopy of perovskite iron oxide

    CERN Document Server

    Nasu, S; Morimoto, S; Kawakami, T; Kuzushita, K; Takano, M

    2003-01-01

    High-pressure sup 5 sup 7 Fe Moessbauer spectroscopy using a diamond anvil cell has been performed for perovskite iron oxides SrFeO sub 3 , CaFeO sub 3 and La sub 1 sub / sub 3 Sr sub 2 sub / sub 3 O sub 3. The charge states and the magnetic dependency to pressure were determined. Pressure magnetic phase diagrams of these perovskite iron oxides are determined up to about 70 GPa. To be clear the magnetic ordered state, they are measured up to 7.8 T external magnetic fields at 4.5K. The phase transition of these perovskite oxides to ferromagnetisms with high magnetic ordered temperature is observed. In higher pressure, high spin-low spin transition of oxides besides CaFeO sub 3 is generated. The feature of Moessbauer spectroscopy, perovskite iron oxide and Moessbauer spectroscopy under high pressure are explained. (S.Y.)

  10. Effect of Aging, Antioxidant, and Mono- and Divalent Ions at High Temperature on the Rheology of New Polyacrylamide-Based Co-Polymers

    Directory of Open Access Journals (Sweden)

    Saeed Akbari

    2017-10-01

    Full Text Available The viscosity of four new polymers was investigated for the effect of aging at high temperature, with varying degrees of salinity and hardness. The four sulfonated based polyacrylamide co-polymers were FLOCOMB C7035; AN132 VHM; SUPERPUSHER SAV55; and THERMOASSOCIATIF copolymers. All polymer samples were aged at 80 °C for varying times (from zero to at least 90 days with and without isobutyl alcohol (IBA as an antioxidant. To see the effect of divalent ions on the polymer solution viscosity, parallel experiments were performed in a mixture of CaCl2-NaCl of the same ionic strength as