WorldWideScience

Sample records for diurnal temperature variations

  1. Diurnal variation of tropospheric temperature at a tropical station

    Directory of Open Access Journals (Sweden)

    K. Revathy

    2001-08-01

    Full Text Available The vertical velocity in the troposphere-lower stratosphere region measured using MST radar has been utilized to evaluate the temperature profile in the region. The diurnal variation of the tropospheric temperature on one day in August 1998 at the tropical station Gadanki (13.5° N, 79.2° E has been studied using the MST radar technique. The diurnal variation of the temperature revealed a prominent diurnal variation with the peak in the afternoon hours increasingly delayed in altitude. The tropopause temperature and altitude exhibited a clear diurnal cycle.Key words. Atmospheric composition and structure (pressure, density and temperature; troposphere - composition and chemistry; instruments and technique

  2. Prenatal exposure to diurnal temperature variation and early childhood pneumonia.

    Science.gov (United States)

    Zeng, Ji; Lu, Chan; Deng, Qihong

    2017-04-01

    Childhood pneumonia is one of the leading single causes of mortality and morbidity in children worldwide, but its etiology still remains unclear. We investigate the association between childhood pneumonia and exposure to diurnal temperature variation (DTV) in different timing windows. We conducted a prospective cohort study of 2,598 children aged 3-6 years in Changsha, China. The lifetime prevalence of pneumonia was assessed by a questionnaire administered by the parents. Individual exposure to DTV during both prenatal and postnatal periods was estimated. Logic regression models was used to examine the association between childhood pneumonia and DTV exposure in terms of odds ratios (OR) and 95% confidence interval (CI). Lifetime prevalence of childhood pneumonia in preschool children in Changsha was high up to 38.6%. We found that childhood pneumonia was significantly associated with prenatal DTV exposure, with adjusted OR (95%CI) =1.19 (1.02-1.38), particularly during the second trimester. However, childhood pneumonia not associated with postnatal DTV exposure. Sensitivity analysis indicated that boys are more susceptible to the pneumonia risk of diurnal temperature variation than girls. We further observed that the prevalence of childhood pneumonia was decreased in recent years as DTV shrinked. Early childhood pneumonia was associated with prenatal exposure to the diurnal temperature variation (DTV) during pregnancy, particularly in the second trimester, which suggests fetal origin of childhood pneumonia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Influence of diurnal variations in stream temperature on streamflow loss and groundwater recharge

    Science.gov (United States)

    Constantz, Jim; Thomas, Carole L.; Zellweger, Gary W.

    1994-01-01

    We demonstrate that for losing reaches with significant diurnal variations in stream temperature, the effect of stream temperature on streambed seepage is a major factor contributing to reduced afternoon streamflows. An explanation is based on the effect of stream temperature on the hydraulic conductivity of the streambed, which can be expected to double in the 0° to 25°C temperature range. Results are presented for field experiments in which stream discharge and temperature were continuously measured for several days over losing reaches at St. Kevin Gulch, Colorado, and Tijeras Arroyo, New Mexico. At St. Kevin Gulch in July 1991, the diurnal stream temperature in the 160-m study reach ranged from about 4° to 18°C, discharges ranged from 10 to 18 L/s, and streamflow loss in the study reach ranged from 2.7 to 3.7 L/s. On the basis of measured stream temperature variations, the predicted change in conductivity was about 38%; the measured change in stream loss was about 26%, suggesting that streambed temperature varied less than the stream temperature. At Tijeras Arroyo in May 1992, diurnal stream temperature in the 655-m study reach ranged from about 10° to 25°C and discharge ranged from 25 to 55 L/s. Streamflow loss was converted to infiltration rates by factoring in the changing stream reach surface area and streamflow losses due to evaporation rates as measured in a hemispherical evaporation chamber. Infiltration rates ranged from about 0.7 to 2.0 m/d, depending on time and location. Based on measured stream temperature variations, the predicted change in conductivity was 29%; the measured change in infiltration was also about 27%. This suggests that high infiltration rates cause rapid convection of heat to the streambed. Evapotranspiration losses were estimated for the reach and adjacent flood plain within the arroyo. On the basis of these estimates, only about 5% of flow loss was consumed via stream evaporation and stream-side evapotranspiration

  4. Effects of diurnal variations in temperature on non-accidental mortality among the elderly population of Montreal, Québec, 1984-2007.

    Science.gov (United States)

    Vutcovici, Maria; Goldberg, Mark S; Valois, Marie-France

    2014-07-01

    The association between ambient temperature and mortality has been studied extensively. Recent data suggest an independent role of diurnal temperature variations in increasing daily mortality. Elderly adults-a growing subgroup of the population in developed countries-may be more susceptible to the effects of temperature variations. The aim of this study was to determine whether variations in diurnal temperature were associated with daily non-accidental mortality among residents of Montreal, Québec, who were 65 years of age and over during the period between 1984 and 2007. We used distributed lag non-linear Poisson models constrained over a 30-day lag period, adjusted for temporal trends, mean daily temperature, and mean daily concentrations of nitrogen dioxide and ozone to estimate changes in daily mortality with diurnal temperature. We found, over the 30 day lag period, a cumulative increase in daily mortality of 5.12% [95% confidence interval (CI): 0.02-10.49%] for a change from 5.9 °C to 11.1 °C (25th to 75th percentiles) in diurnal temperature, and a 11.27% (95%CI: 2.08-21.29%) increase in mortality associated with an increase of diurnal temperature from 11.1 to 17.5 °C (75th to 99th percentiles). The results were relatively robust to adjustment for daily mean temperature. We found that, in Montreal, diurnal variations in temperature are associated with a small increase in non-accidental mortality among the elderly population. More studies are needed in different geographical locations to confirm this effect.

  5. Diurnal temperature variations affect development of a herbivorous arthropod pest and its predators.

    Directory of Open Access Journals (Sweden)

    Dominiek Vangansbeke

    Full Text Available The impact of daily temperature variations on arthropod life history remains woefully understudied compared to the large body of research that has been carried out on the effects of constant temperatures. However, diurnal varying temperature regimes more commonly represent the environment in which most organisms thrive. Such varying temperature regimes have been demonstrated to substantially affect development and reproduction of ectothermic organisms, generally in accordance with Jensen's inequality. In the present study we evaluated the impact of temperature alternations at 4 amplitudes (DTR0, +5, +10 and +15°C on the developmental rate of the predatory mites Phytoseiulus persimilis Athias-Henriot and Neoseiulus californicus McGregor (Acari: Phytoseiidae and their natural prey, the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae. We have modelled their developmental rates as a function of temperature using both linear and nonlinear models. Diurnally alternating temperatures resulted in a faster development in the lower temperature range as compared to their corresponding mean constant temperatures, whereas the opposite was observed in the higher temperature range. Our results indicate that Jensen's inequality does not suffice to fully explain the differences in developmental rates at constant and alternating temperatures, suggesting additional physiological responses play a role. It is concluded that diurnal temperature range should not be ignored and should be incorporated in predictive models on the phenology of arthropod pests and their natural enemies and their performance in biological control programmes.

  6. Diurnal Temperature Variations Affect Development of a Herbivorous Arthropod Pest and its Predators

    Science.gov (United States)

    Vangansbeke, Dominiek; Audenaert, Joachim; Nguyen, Duc Tung; Verhoeven, Ruth; Gobin, Bruno; Tirry, Luc; De Clercq, Patrick

    2015-01-01

    The impact of daily temperature variations on arthropod life history remains woefully understudied compared to the large body of research that has been carried out on the effects of constant temperatures. However, diurnal varying temperature regimes more commonly represent the environment in which most organisms thrive. Such varying temperature regimes have been demonstrated to substantially affect development and reproduction of ectothermic organisms, generally in accordance with Jensen’s inequality. In the present study we evaluated the impact of temperature alternations at 4 amplitudes (DTR0, +5, +10 and +15°C) on the developmental rate of the predatory mites Phytoseiulus persimilis Athias-Henriot and Neoseiulus californicus McGregor (Acari: Phytoseiidae) and their natural prey, the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae). We have modelled their developmental rates as a function of temperature using both linear and nonlinear models. Diurnally alternating temperatures resulted in a faster development in the lower temperature range as compared to their corresponding mean constant temperatures, whereas the opposite was observed in the higher temperature range. Our results indicate that Jensen’s inequality does not suffice to fully explain the differences in developmental rates at constant and alternating temperatures, suggesting additional physiological responses play a role. It is concluded that diurnal temperature range should not be ignored and should be incorporated in predictive models on the phenology of arthropod pests and their natural enemies and their performance in biological control programmes. PMID:25874697

  7. Effects of diurnal temperature variation on microbial community and petroleum hydrocarbon biodegradation in contaminated soils from a sub-Arctic site.

    Science.gov (United States)

    Akbari, Ali; Ghoshal, Subhasis

    2015-12-01

    Contaminated soils are subject to diurnal and seasonal temperature variations during on-site ex-situ bioremediation processes. We assessed how diurnal temperature variations similar to that in summer at the site from which petroleum hydrocarbon-contaminated soil was collected affect the soil microbial community and the extent of biodegradation of petroleum hydrocarbons compared with constant temperature regimes. Microbial community analyses for 16S rRNA and alkB genes by pyrosequencing indicated that the microbial community for soils incubated under diurnal temperature variation from 5°C to 15°C (VART5-15) evolved similarly to that for soils incubated at constant temperature of 15°C (CST15). In contrast, under a constant temperature of 5°C (CST5), the community evolved significantly different. The extent of biodegradation of C10-C16 hydrocarbons in the VART5-15 systems was 48%, comparable with the 41% biodegradation in CST15 systems, but significantly higher than CST5 systems at 11%. The enrichment of Gammaproteobacteria was observed in the alkB gene-harbouring communities in VART5-15 and CST15 but not in CST5 systems. However, the Actinobacteria was abundant at all temperature regimes. The results suggest that changes in microbial community composition as a result of diurnal temperature variations can significantly influence petroleum hydrocarbon bioremediation performance in cold regions. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. [Spatial variation in diurnal courses of stem temperature of Betula platyphylla and Fraxinus mandshurica and its influencing factors].

    Science.gov (United States)

    Li, Yu Ran; Wang, Xing Chang; Wang, Chuan Kuan; Liu, Fan; Zhang, Quan Zhi

    2017-10-01

    Plant temperature is an important parameter for estimating energy balance and vegetation respiration of forest ecosystem. To examine spatial variation in diurnal courses of stem temperatures (T s ) and its influencing factors, we measured the T s with copper constantan thermocouples at different depths, heights and azimuths within the stems of two broadleaved tree species with contrasting bark and wood properties, Betula platyphylla and Fraxinus mandshurica. The results showed that the monthly mean diurnal courses of the T s largely followed that of air temperature with a 'sinusoi dal' pattern, but the T s lagged behind the air temperature by 0 h at the stem surface to 4 h at 6 cm depth. The daily maximal values and ranges of the diurnal course of T s decreased gradually with increasing measuring depth across the stem and decreasing measuring height along the stem. The circumferential variation in T s was marginal, with slightly higher daily maximal values in the south and west directions during the daytime of the dormant season. Differences in thermal properties (i.e. , specific heat capacity and thermal conductivity) of both bark and wood tissue between the two species contributed to the inter specific variations in the radial variation in T s through influencing the heat exchange between the stem surface and ambient air as well as heat diffusion within the stem. The higher reflectance of the bark of B. platyphylla decreased the influence of solar radiation on T s . The stepwise regression showed that the diurnal courses of T s could be well predicted by the environmental factors (R 2 > 0.85) with an order of influence ranking as air temperature > water vapor pressure > net radiation > wind speed. It is necessary to take the radial, vertical and inter specific varia-tions in T s into account when estimating biomass heat storage and stem CO2 efflux.

  9. Diurnal variation of intraoral pH and temperature.

    Science.gov (United States)

    Choi, Jung Eun; Lyons, Karl M; Kieser, Jules A; Waddell, Neil J

    2017-01-01

    The aim of this study was to measure continuously the intraoral pH and temperature of healthy individuals to investigate their diurnal variations. Seventeen participants (mean age, 31±9 years) wore a custom-made intraoral appliance fitted with a pH probe and thermocouple for two sets of 24 h, while carrying out normal daily activities including sleep. The continuous changes in intraoral pH and temperature were captured using a sensor placed on the palatal aspect of the upper central incisors. The collected data were categorised into different status (awake and sleep) and periods (morning, afternoon, evening and night). Both quantitative and qualitative analyses were conducted. The intraoral pH change was found to show a distinctive daily rhythm, showing a 12-h interval between maximum (7.73) and minimum (6.6) pH values. The maximum and minimum values were found to repeat after 24 h. The mean pH over 48 h (two sets of 24 h) was found to be 7.27 (±0.74). There was significant difference found in pH when subjects were awake and asleep and different periods during the day ( P pH. There was a significant difference found in temperature depending on the time of the day, except between morning and afternoon ( P =0.78). Our results showed that there is a distinctive daily, circadian-like pattern in intraoral pH variation over a 24-h period, which has been considered as one of the risk factors in sleep-related dental diseases.

  10. Atmospheric diurnal variations observed with GPS radio occultation soundings

    Directory of Open Access Journals (Sweden)

    F. Xie

    2010-07-01

    Full Text Available The diurnal variation, driven by solar forcing, is a fundamental mode in the Earth's weather and climate system. Radio occultation (RO measurements from the six COSMIC satellites (Constellation Observing System for Meteorology, Ionosphere and Climate provide nearly uniform global coverage with high vertical resolution, all-weather and diurnal sampling capability. This paper analyzes the diurnal variations of temperature and refractivity from three-year (2007–2009 COSMIC RO measurements in the troposphere and stratosphere between 30° S and 30° N. The RO observations reveal both propagating and trapped vertical structures of diurnal variations, including transition regions near the tropopause where data with high vertical resolution are critical. In the tropics the diurnal amplitude in refractivity shows the minimum around 14 km and increases to a local maximum around 32 km in the stratosphere. The upward propagating component of the migrating diurnal tides in the tropics is clearly captured by the GPS RO measurements, which show a downward progression in phase from stratopause to the upper troposphere with a vertical wavelength of about 25 km. At ~32 km the seasonal variation of the tidal amplitude maximizes at the opposite side of the equator relative to the solar forcing. The vertical structure of tidal amplitude shows strong seasonal variations and becomes asymmetric along the equator and tilted toward the summer hemisphere in the solstice months. Such asymmetry becomes less prominent in equinox months.

  11. Diurnal Variations of Titan's Surface Temperatures From Cassini -CIRS Observations

    Science.gov (United States)

    Cottini, Valeria; Nixon, Conor; Jennings, Don; Anderson, Carrie; Samuelson, Robert; Irwin, Patrick; Flasar, F. Michael

    The Cassini Composite Infrared Spectrometer (CIRS) observations of Saturn's largest moon, Titan, are providing us with the ability to detect the surface temperature of the planet by studying its outgoing radiance through a spectral window in the thermal infrared at 19 m (530 cm-1) characterized by low opacity. Since the first acquisitions of CIRS Titan data the in-strument has gathered a large amount of spectra covering a wide range of latitudes, longitudes and local times. We retrieve the surface temperature and the atmospheric temperature pro-file by modeling proper zonally averaged spectra of nadir observations with radiative transfer computations. Our forward model uses the correlated-k approximation for spectral opacity to calculate the emitted radiance, including contributions from collision induced pairs of CH4, N2 and H2, haze, and gaseous emission lines (Irwin et al. 2008). The retrieval method uses a non-linear least-squares optimal estimation technique to iteratively adjust the model parameters to achieve a spectral fit (Rodgers 2000). We show an accurate selection of the wide amount of data available in terms of footprint diameter on the planet and observational conditions, together with the retrieved results. Our results represent formal retrievals of surface brightness temperatures from the Cassini CIRS dataset using a full radiative transfer treatment, and we compare to the earlier findings of Jennings et al. (2009). The application of our methodology over wide areas has increased the planet coverage and accuracy of our knowledge of Titan's surface brightness temperature. In particular we had the chance to look for diurnal variations in surface temperature around the equator: a trend with slowly increasing temperature toward the late afternoon reveals that diurnal temperature changes are present on Titan surface. References: Irwin, P.G.J., et al.: "The NEMESIS planetary atmosphere radiative transfer and retrieval tool" (2008). JQSRT, Vol. 109, pp

  12. Diurnal variations of Titan

    Science.gov (United States)

    Cui, J.; Galand, M.; Yelle, R. V.; Vuitton, V.; Wahlund, J.-E.; Lavvas, P. P.; Mueller-Wodarg, I. C. F.; Kasprzak, W. T.; Waite, J. H.

    2009-04-01

    We present our analysis of the diurnal variations of Titan's ionosphere (between 1,000 and 1,400 km) based on a sample of Ion Neutral Mass Spectrometer (INMS) measurements in the Open Source Ion (OSI) mode obtained from 8 close encounters of the Cassini spacecraft with Titan. Though there is an overall ion depletion well beyond the terminator, the ion content on Titan's nightside is still appreciable, with a density plateau of ~700 cm-3 below ~1,300 km. Such a plateau is associated with the combination of distinct diurnal variations of light and heavy ions. Light ions (e.g. CH5+, HCNH+, C2H5+) show strong diurnal variation, with clear bite-outs in their nightside distributions. In contrast, heavy ions (e.g. c-C3H3+, C2H3CNH+, C6H7+) present modest diurnal variation, with significant densities observed on the nightside. We propose that the distinctions between light and heavy ions are associated with their different chemical loss pathways, with the former primarily through "fast" ion-neutral chemistry and the latter through "slow" electron dissociative recombination. The INMS data suggest day-to-night transport as an important source of ions on Titan's nightside, to be distinguished from the conventional scenario of auroral ionization by magnetospheric particles as the only ionizing source on the nightside. This is supported by the strong correlation between the observed night-to-day ion density ratios and the associated ion lifetimes. We construct a time-dependent ion chemistry model to investigate the effects of day-to-night transport on the ionospheric structures of Titan. The predicted diurnal variation has similar general characteristics to those observed, with some apparent discrepancies which could be reconciled by imposing fast horizontal thermal winds in Titan's upper atmosphere.

  13. Ranges of diurnal variation and the pattern of body temperature, blood pressure and heart rate in laboratory beagle dogs.

    Science.gov (United States)

    Miyazaki, Hiroyasu; Yoshida, Mutsumi; Samura, Keiji; Matsumoto, Hiroyoshi; Ikemoto, Fumihiko; Tagawa, Masahiro

    2002-01-01

    Ranges in diurnal variation and the patterns of body temperature (T), blood pressure (BP), heart rate (HR) and locomotor activity (LA) in 61 laboratory beagle dogs were analyzed using a telemetry system. Body temperature, BP, HR and LA increased remarkably at feeding time. Locomotor activity increased sporadically during the other periods. Body temperature was maintained at the higher value after feeding but had decreased by 0.2 C by early the next morning. Blood pressure fell to a lower value after feeding but had increased by 2.8% by early the next morning. Heart rate decreased progressively after feeding and was 14.5% lower the next morning. This study determined that in laboratory beagles the ranges of diurnal variation and patterns of T, BP and HR are significantly different from those reported in humans and rodents, and that over 24 hr these physiological changes were associated with their sporadic wake-sleep cycles of the dogs.

  14. Impact of land convection on temperature diurnal variation in the tropical lower stratosphere inferred from COSMIC GPS radio occultations

    Directory of Open Access Journals (Sweden)

    S. M. Khaykin

    2013-07-01

    Full Text Available Following recent studies evidencing the influence of deep convection on the chemical composition and thermal structure of the tropical lower stratosphere, we explore its impact on the temperature diurnal variation in the upper troposphere and lower stratosphere using the high-resolution COSMIC GPS radio-occultation temperature measurements spanning from 2006 through 2011. The temperature in the lowermost stratosphere over land during summer displays a marked diurnal cycle characterized by an afternoon cooling. This diurnal cycle is shown collocated with most intense land convective areas observed by the Tropical Rainfall Measurement Mission (TRMM precipitation radar and in phase with the maximum overshooting occurrence frequency in late afternoon. Two processes potentially responsible for that are identified: (i non-migrating tides, whose physical nature is internal gravity waves, and (ii local cross-tropopause mass transport of adiabatically cooled air by overshooting turrets. Although both processes can contribute, only the lofting of adiabatically cooled air is well captured by models, making it difficult to characterize the contribution of non-migrating tides. The impact of deep convection on the temperature diurnal cycle is found larger in the southern tropics, suggesting more vigorous convection over clean rain forest continents than desert areas and polluted continents in the northern tropics.

  15. Spectral and diurnal variations in clear sky planetary albedo

    Science.gov (United States)

    Briegleb, B.; Ramanathan, V.

    1982-01-01

    Spectral and diurnal variations in the clear sky planetary albedo of the earth are calculated using a radiative transfer model to obtain January and July values for a 5 deg x 5 deg global grid. The model employs observed climatological values of temperatures, humidities, snow and sea-ice cover. The diurnal cycle of clear sky albedo is calculated in the following intervals: 0.2-0.5, 0.5-0.7, and 0.7-4 microns. Observed ozone distribution is specified as a function of latitude and season. The 0.2-0.5 micron spectral albedo is 10-20% higher than the total albedo for all latitudes because of Rayleigh scattering; the 0.5-0.7 micron albedo differs from the total albedo by 1-2% for most latitudes, while the 0.7-4 micron albedo is 5-10% lower than the total because of strong atmospheric absorption. Planetary albedo decreases from morning to local noon, with diurnal variations being particularly strong over water.

  16. Diurnal variation in soil respiration under different land uses on Taihang Mountain, North China

    Science.gov (United States)

    Liu, Xiuping; Zhang, Wanjun; Zhang, Bin; Yang, Qihong; Chang, Jianguo; Hou, Ke

    2016-01-01

    The aim of this paper is to evaluate the diurnal variation in soil respiration under different land use types on Taihang Mountain, North China, and to understand its response to environmental factors (e.g., soil temperature and moisture) and forest management. Diurnal variations in soil respiration from plantations (Robinia pseudoacacia, Punica granatum, and Ziziphus jujuba), naturally regenerated forests (Vitex negundo var. heterophylla), grasslands (Bothriochloa ischaemum), and farmlands (winter wheat/summer maize) were measured using an LI-8100 automated soil CO2 flux system from May 2012 to April 2013. The results indicated that land use type had a significant effect on the diurnal variation of soil respiration. The diurnal soil respiration from farmlands was highest, followed by Ziziphus jujube, R. pseudoacacia, P. granatum, the lower soil CO2 efflux was found from B. ischaemum and V. negundo var. heterophylla. The diurnal soil respiration across different land use types was significantly affected by soil temperature and moisture, and their interaction. Precipitation-stimulated soil respiration increased more in soil with low water content and less in soil with high water content. The lower diurnal soil respiration from naturally regenerated forests suggests that naturally regenerated vegetation is the optimal vegetation type for reducing global warming.

  17. Diurnal variations of indoor radon progeny for Bangalore metropolitan, India

    International Nuclear Information System (INIS)

    Nagesh, V.; Sathish, L.A.; Nagaraja, K.; Sundareshan, S.

    2010-01-01

    Radon progenies are identified as major causes of the lung cancer if the activity is above its normal. It has not been clear whether radon poses a similar risk of causing lung cancer in humans exposed at generally lower levels found in homes, but a number of indoor radon survey have been carried out in recent years around the world. In view of this an attempt has been made for the measurement of diurnal variation of indoor radon levels for the environment of Bangalore metropolitan, India. The Radon progeny concentrations in terms of working level were measured using Kusnetz's method. The patterns of daily and annual changes in indoor Radon concentration have been observed in a general way for many years. However, understanding of the physical basis for these changes had to await the development of continuous monitors and a more complete knowledge of transport processes in the atmosphere. Over a continent, heating of the ground surface by the Sun during the day and cooling by radiation during the night causes a marked diurnal change in temperature near the surface. As a result cool air near the ground will accumulate radon isotopes from surface flux during the night; while during the day the warm air will be transported upward carrying radon with it. Many buildings show diurnal radon variations. Concentrations are relatively higher during night than daytime. This is influenced by the outdoor-indoor temperature contrast. This effect can be enhanced in buildings with strong diurnal use patterns. Buildings that have high average radon concentrations, but are only occupied for part of the day, may need to be measured during occupied periods to determine if there is significant diurnal radon variation. The results are discussed in detail. (author)

  18. Diurnal Variation of Radon Concentration in the Postojna Cave

    International Nuclear Information System (INIS)

    Gregoric, A.; Vaupotic, J.

    2011-01-01

    Postojna Cave, with 20 km of galleries, is the longest known cave system and also the largest of about 20 show caves in Slovenia and one of the most visited show caves in the world. It is well known that high concentrations of radon are common in karstic caves, although quantities of uranium (238U) in limestone are rather low. The reason for this is low natural ventilation of the underground cavities. Tectonic faults constitute an additional source of radon. Variations of radon concentration in cave air arise from a balance of the emission from cave surfaces and drip waters, decay in cave air, and exchange with the outside atmosphere. Because of its elevated radon concentrations, Postojna Cave has been under permanent radon survey since 1995. The influence of meteorological conditions on the radon levels and their temporal variations depends mostly on the shape of the cave, and the number and directions of cracks, corridors and fissures connecting the cave rooms with the outside atmosphere. The driving force for air movement in horizontal caves, and thus the inflow of fresh air and release of the cave air to the atmosphere, is the temperature difference between the cave air and outdoors, which causes seasonal pattern of radon concentration in the cave with high levels in summer and low in winter. However, on a daily scale different behaviour of radon can be observed at different locations in the cave. In this paper diurnal variation of radon concentration at two locations is presented and discussed. Postojna Cave is a horizontal cave with a stable yearly temperature around 10 degrees of @C. Continuous measurements of radon concentration were carried out from 2005 to 2010 at two locations along the guided tourist trail. Radon concentration was measured with Radim 5 WP monitors (SMM Company, Prague, Czech Republic) with sampling frequency once an hour. The evaluation of five-year radon monitoring at two sites in the Postojna Cave reveals significant diurnal and

  19. Diurnal temperature asymmetries and fog at Churchill, Manitoba

    Science.gov (United States)

    Gough, William A.; He, Dianze

    2015-07-01

    A variety of methods are available to calculate daily mean temperature. We explore how the difference between two commonly used methods provides insight into the local climate of Churchill, Manitoba. In particular, we found that these differences related closely to seasonal fog. A strong statistically significant correlation was found between the fog frequency (hours per day) and the diurnal temperature asymmetries of the surface temperature using the difference between the min/max and 24-h methods of daily temperature calculation. The relationship was particularly strong for winter, spring and summer. Autumn appears to experience the joint effect of fog formation and the radiative effect of snow cover. The results of this study suggests that subtle variations of diurnality of temperature, as measured in the difference of the two mean temperature methods of calculation, may be used as a proxy for fog detection in the Hudson Bay region. These results also provide a cautionary note for the spatial analysis of mean temperatures using data derived from the two different methods particularly in areas that are fog prone.

  20. Multivariate analysis of effects of diurnal temperature and seasonal humidity variations by tropical savanna climate on the emissions of anthropogenic volatile organic compounds.

    Science.gov (United States)

    Liu, Chih-Chung; Chen, Wei-Hsiang; Yuan, Chung-Shin; Lin, Chitsan

    2014-02-01

    Volatile organic compounds (VOCs), particularly those from anthropogenic sources, have been of substantial concern. In this study, the influences of diurnal temperature and seasonal humidity variations by tropical savanna climate on the distributions of VOCs from stationary industrial sources were investigated by analyzing the concentrations during the daytime and nighttime in the dry and wet seasons and assessing the results by principal component analysis (PCA) and cluster analysis. Kaohsiung City in Southern Taiwan, known for its severe VOC pollution, was chosen as the location to be examined. In the results, the VOC concentrations were lower during the daytime and in the wet season, possibly attributed to the stronger photochemical reactions and increasing inhibition of VOC emissions and transports by elevating humidity levels. Certain compounds became appreciably more important at higher humidity, as these compounds were saturated hydrocarbons with relatively low molecular weights. The influence of diurnal temperature variation on VOC distribution behaviors seemed to be less important than and interacted with that of seasonal humidity variation. Heavier aromatic hydrocarbons with more complex structures and some aliphatic compounds were found to be the main species accounting for the maximum variances of the data observed at high humidity, and the distinct grouping of compounds implied a pronounced inherent characteristic of each cluster in the observed VOC distributions. Under the influence of diurnal temperature variation, selected VOCs that may have stronger photochemical resistances and/or longer lifetimes in the atmosphere were clustered with each other in the cluster analysis, whereas the other groups might consist of compounds with different levels of vulnerability to sunlight or high temperatures. These findings prove the complications in the current knowledge regarding the VOC contaminations and providing insight for managing the adverse impacts of

  1. Nighttime Convection, Temperature Inversions, and Diurnal Variations at Low Altitudes in the Martian Tropics

    Science.gov (United States)

    Hinson, D. P.; Haberle, R. M.; Spiga, A.; Tellmann, S.; Paetzold, M.; Asmar, S. W.; Haeusler, B.

    2014-07-01

    We are using radio occultation measurements and numerical simulations to explore the atmospheric structure and diurnal variations in the lowest few scale heights of the martian atmosphere, with emphasis on nighttime convective layers.

  2. Diurnal variations of tritium uptake by plants

    International Nuclear Information System (INIS)

    Hettinger, M.; Diabate, S.; Strack, S.

    1991-02-01

    The influence of the diurnal cycle is important for the behaviour of environmental tritium in the vegetation. A mathematical model has been used to calculate the deposition of tritium in plants as a function of diurnal variations of climatic parameters. The necessary physiological parameters (relationship of net photosynthesis and growth) were derived from growth experiments for tomatoes and maize. In chamber experiments, tomato and maize plants were exposed to tritium with natural diurnal variations of the climatic conditions. Within the range of standard deviations the measured concentrations of tritium in tissue free water of tomatoes correspond well to the estimated values. Furthermore, the incorporation into non-exchangeable organically bound tritium (OBT nx) can be sufficiently modelled and explained. There are deviations from the estimated concentrations in some parts of maize leaves. (orig.) [de

  3. Dopamine transporters govern diurnal variation in extracellular dopamine tone

    OpenAIRE

    Ferris, Mark J.; España, Rodrigo A.; Locke, Jason L.; Konstantopoulos, Joanne K.; Rose, Jamie H.; Chen, Rong; Jones, Sara R.

    2014-01-01

    The mechanism for diurnal (i.e., light/dark) oscillations in extracellular dopamine tone in mesolimbic and nigrostriatal systems is unknown. This is because, unlike other neurotransmitter systems, variation in dopamine tone does not correlate with variation in dopamine cell firing. The current research pinpoints the dopamine transporter as a critical governor of diurnal variation in both extracellular dopamine tone and the intracellular availability of releasable dopamine. These data describe...

  4. Diurnal variations of Titan's ionosphere

    Science.gov (United States)

    Cui, J.; Galand, M.; Yelle, R. V.; Vuitton, V.; Wahlund, J.-E.; Lavvas, P. P.; Müller-Wodarg, I. C. F.; Cravens, T. E.; Kasprzak, W. T.; Waite, J. H.

    2009-06-01

    We present our analysis of the diurnal variations of Titan's ionosphere (between 1000 and 1300 km) based on a sample of Ion Neutral Mass Spectrometer (INMS) measurements in the Open Source Ion (OSI) mode obtained from eight close encounters of the Cassini spacecraft with Titan. Although there is an overall ion depletion well beyond the terminator, the ion content on Titan's nightside is still appreciable, with a density plateau of ˜700 cm-3 below ˜1300 km. Such a plateau is a combined result of significant depletion of light ions and modest depletion of heavy ones on Titan's nightside. We propose that the distinctions between the diurnal variations of light and heavy ions are associated with their different chemical loss pathways, with the former primarily through “fast” ion-neutral chemistry and the latter through “slow” electron dissociative recombination. The strong correlation between the observed night-to-day ion density ratios and the associated ion lifetimes suggests a scenario in which the ions created on Titan's dayside may survive well to the nightside. The observed asymmetry between the dawn and dusk ion density profiles also supports such an interpretation. We construct a time-dependent ion chemistry model to investigate the effect of ion survival associated with solid body rotation alone as well as superrotating horizontal winds. For long-lived ions, the predicted diurnal variations have similar general characteristics to those observed. However, for short-lived ions, the model densities on the nightside are significantly lower than the observed values. This implies that electron precipitation from Saturn's magnetosphere may be an additional and important contributor to the densities of the short-lived ions observed on Titan's nightside.

  5. Observed diurnal variations in Mars Science Laboratory Dynamic Albedo of Neutrons passive mode data

    Science.gov (United States)

    Tate, C. G.; Moersch, J.; Jun, I.; Mitrofanov, I.; Litvak, M.; Boynton, W. V.; Drake, D.; Fedosov, F.; Golovin, D.; Hardgrove, C.; Harshman, K.; Kozyrev, A. S.; Kuzmin, R.; Lisov, D.; Maclennan, E.; Malakhov, A.; Mischna, M.; Mokrousov, M.; Nikiforov, S.; Sanin, A. B.; Starr, R.; Vostrukhin, A.

    2018-06-01

    The Mars Science Laboratory Dynamic Albedo of Neutrons (DAN) experiment measures the martian neutron leakage flux in order to estimate the amount of water equivalent hydrogen present in the shallow regolith. When DAN is operating in passive mode, it is sensitive to neutrons produced through the interactions of galactic cosmic rays (GCR) with the regolith and atmosphere and neutrons produced by the rover's Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). During the mission, DAN passive mode data were collected over the full diurnal cycle at the locations known as Rocknest (sols 60-100) and John Klein (sols 166-272). A weak, but unexpected, diurnal variation was observed in the neutron count rates reported at these locations. We investigate different hypotheses that could be causing these observed variations. These hypotheses are variations in subsurface temperature, atmospheric pressure, the exchange of water vapor between the atmosphere and regolith, and instrumental effects on the neutron count rates. Our investigation suggests the most likely factors contributing to the observed diurnal variations in DAN passive data are instrumental effects and time-variable preferential shielding of alpha particles, with other environmental effects only having small contributions.

  6. Seasonal and diurnal variations of ocular pressure in ocular hypertensive subjects in Pakistan.

    Science.gov (United States)

    Qureshi, I A; Xiao, R X; Yang, B H; Zhang, J; Xiang, D W; Hui, J L

    1999-05-01

    Studies have been shown that intraocular pressure (IOP) shows a diurnal variation in ocular hypertensive subjects, but the amount of change differs from study to study. In recent years it has been noted that intraocular pressure is a dynamic function and is subjected to many influences both acutely and over the long term. The variability in the results may be due to negligence of factors that can affect IOP. Moreover, seasonal variations in the ocular hypertensive subjects have never been described. After placing control on those factors that can affect IOP, this study investigated seasonal and diurnal variations in IOP of ocular hypertensive subjects. IOP was measured each month over the course of 12 months with the Goldmann applanation tonometer in 91 ocular hypertensive male subjects. To see the diurnal changes, subjects were asked to stay in the hospital for 24 hours. The average IOP in the winter months was higher than those in spring, summer, and autumn. The IOP difference between winter and summer was (mean +/- sem) 2.9 +/- 0.9 mmHg (p < 0.001). The peak of mean IOP in diurnal variation curve (25.7 +/- 1.2 mmHg) appeared in the morning when the subjects had just awaken. The mean diurnal variation was found to be 4.2 +/- 0.6 mmHg (p < 0.001). This study confirms that seasons influence IOP and it shows diurnal variations. As compared to other nations, diurnal variations in ocular hypertensive subjects seem to be somewhat less in Pakistan. Knowledge of the seasonal and diurnal variations in IOP may help glaucoma screeners.

  7. Monthly and diurnal variations of limnological conditions of two ponds

    Directory of Open Access Journals (Sweden)

    AKM Fazlur Rahaman

    2017-06-01

    Full Text Available A study on monthly and diurnal changes of limnological conditions of two ponds was conducted in the Bangladesh Agricultural University campus, Mymensingh. The research work was performed by studying the limnological parameters such as transparency, temperature, dissolved oxygen, free carbon dioxide, pH, total alkalinity, nitrate-nitrogen, phosphate-phosphorus and plankton. Diurnal variations of physico-chemical factors were studied fortnightly at 6 hrs intervals at 6 a.m., 12 noon, 6 p.m. and 12 midnight. The amounts of transparency, dissolved oxygen and pH were higher during winter months than in summer months in both the ponds. Transparency, water temperature, total alkalinity, NO3-N and PO4-P were higher during summer months than in winter months in both the ponds. But the amount of free carbon dioxide was higher during winter months than in summer months in pond 1 while in pond 2 the amount of free carbon dioxide was higher during summer months than in winter months. Qualitative and quantitative monthly variations of phytoplankton and zooplankton were observed in both the ponds during the study period. The highest amount of dissolved oxygen, pH and total alkalinity were recorded at 6 p.m. and the lowest amounts of those at 6 a.m. in both the ponds. The highest temperature was recorded at 12 noon and the lowest at 12 midnight. But the highest amount of free carbon dioxide was recorded at 6 a.m. and the lowest at 6 p.m. in both the ponds. All the factors showed appreciable diel variations throughout the study period, which indicate that the ponds are productive.

  8. ANALYSIS THE DIURNAL VARIATIONS ON SELECTED PHYSICAL AND PHYSIOLOGICAL PARAMETERS

    Directory of Open Access Journals (Sweden)

    A. MAHABOOBJAN

    2010-12-01

    Full Text Available The purpose of the study was to analyze the diurnal variations on selected physical and physiological parameters such as speed, explosive power, resting heart rate and breath holding time among college students. To achieve the purpose of this study, a total of twenty players (n=20 from Government Arts College, Salem were selected as subjects To study the diurnal variation of the players on selected physiological and performance variables, the data were collected 4 times a day with every four hours in between the times it from 6.00 to 18.00 hours were selected as another categorical variable. One way repeated measures (ANOVA was used to analyze the data. If the obtained F-ratio was significant, Seheffe’s post-hoc test was used to find out the significant difference if anyamong the paired means. The level of significance was fixed at.05 level. It has concluded that both physical and physiological parameters were significantly deferred with reference to change of temperature in a day

  9. Topography induced spatial variations in diurnal cycles of assimilation and latent heat of Mediterranean forest

    Science.gov (United States)

    van der Tol, C.; Dolman, A. J.; Waterloo, M. J.; Raspor, K.

    2007-02-01

    The aim of this study is to explain topography induced spatial variations in the diurnal cycles of assimilation and latent heat of Mediterranean forest. Spatial variations of the fluxes are caused by variations in weather conditions and in vegetation characteristics. Weather conditions reflect short-term effects of climate, whereas vegetation characteristics, through adaptation and acclimation, long-term effects of climate. In this study measurements of plant physiology and weather conditions are used to explain observed differences in the fluxes. A model is used to study which part of the differences in the fluxes is caused by weather conditions and which part by vegetation characteristics. Data were collected at four experimental sub-Mediterranean deciduous forest plots in a heterogeneous terrain with contrasting aspect, soil water availability, humidity and temperature. We used a sun-shade model to scale fluxes from leaf to canopy, and calculated the canopy energy balance. Parameter values were derived from measurements of light interception, leaf chamber photosynthesis, leaf nitrogen content and 13C isotope discrimination in leaf material. Leaf nitrogen content is a measure of photosynthetic capacity, and 13C isotope discrimination of water use efficiency. For validation, sap-flux based measurements of transpiration were used. The model predicted diurnal cycles of transpiration and stomatal conductance, both their magnitudes and differences in afternoon stomatal closure between slopes of different aspect within the confidence interval of the validation data. Weather conditions mainly responsible for the shape of the diurnal cycles, and vegetation parameters for the magnitude of the fluxes. Although the data do not allow for a quantification of the two effects, the differences in vegetation parameters and weather among the plots and the sensitivity of the fluxes to them suggest that the diurnal cycles were more strongly affected by spatial variations in

  10. Topography induced spatial variations in diurnal cycles of assimilation and latent heat of Mediterranean forest

    Directory of Open Access Journals (Sweden)

    C. van der Tol

    2007-01-01

    Full Text Available The aim of this study is to explain topography induced spatial variations in the diurnal cycles of assimilation and latent heat of Mediterranean forest. Spatial variations of the fluxes are caused by variations in weather conditions and in vegetation characteristics. Weather conditions reflect short-term effects of climate, whereas vegetation characteristics, through adaptation and acclimation, long-term effects of climate. In this study measurements of plant physiology and weather conditions are used to explain observed differences in the fluxes. A model is used to study which part of the differences in the fluxes is caused by weather conditions and which part by vegetation characteristics. Data were collected at four experimental sub-Mediterranean deciduous forest plots in a heterogeneous terrain with contrasting aspect, soil water availability, humidity and temperature. We used a sun-shade model to scale fluxes from leaf to canopy, and calculated the canopy energy balance. Parameter values were derived from measurements of light interception, leaf chamber photosynthesis, leaf nitrogen content and 13C isotope discrimination in leaf material. Leaf nitrogen content is a measure of photosynthetic capacity, and 13C isotope discrimination of water use efficiency. For validation, sap-flux based measurements of transpiration were used. The model predicted diurnal cycles of transpiration and stomatal conductance, both their magnitudes and differences in afternoon stomatal closure between slopes of different aspect within the confidence interval of the validation data. Weather conditions mainly responsible for the shape of the diurnal cycles, and vegetation parameters for the magnitude of the fluxes. Although the data do not allow for a quantification of the two effects, the differences in vegetation parameters and weather among the plots and the sensitivity of the fluxes to them suggest that the diurnal cycles were more strongly affected by spatial

  11. Diurnal variation of zooplankton off Versova (Bombay)

    Digital Repository Service at National Institute of Oceanography (India)

    Gajbhiye, S.N.; Nair, V.R.; Desai, B.N.

    Physicochemical parameters and diurnal variaion of zooplankton were studied off Versova on 17/18 February 1981. Salinity and dissolved oxygen showed limited variation during the period of study. Nutrient values followed the tidal rhythm and high...

  12. Diurnal Variation of Tropical Ice Cloud Microphysics inferred from Global Precipitation Measurement Microwave Imager (GPM-GMI)'s Polarimetric Measurement

    Science.gov (United States)

    Gong, J.; Zeng, X.; Wu, D. L.; Li, X.

    2017-12-01

    Diurnal variation of tropical ice cloud has been well observed and examined in terms of the area of coverage, occurring frequency, and total mass, but rarely on ice microphysical parameters (habit, size, orientation, etc.) because of lack of direct measurements of ice microphysics on a high temporal and spatial resolutions. This accounts for a great portion of the uncertainty in evaluating ice cloud's role on global radiation and hydrological budgets. The design of Global Precipitation Measurement (GPM) mission's procession orbit gives us an unprecedented opportunity to study the diurnal variation of ice microphysics on the global scale for the first time. Dominated by cloud ice scattering, high-frequency microwave polarimetric difference (PD, namely the brightness temperature difference between vertically- and horizontally-polarized paired channel measurements) from the GPM Microwave Imager (GMI) has been proven by our previous study to be very valuable to infer cloud ice microphysical properties. Using one year of PD measurements at 166 GHz, we found that cloud PD exhibits a strong diurnal cycle in the tropics (25S-25N). The peak PD amplitude varies as much as 35% over land, compared to only 6% over ocean. The diurnal cycle of the peak PD value is strongly anti-correlated with local ice cloud occurring frequency and the total ice mass with a leading period of 3 hours for the maximum correlation. The observed PD diurnal cycle can be explained by the change of ice crystal axial ratio. Using a radiative transfer model, we can simulate the observed 166 GHz PD-brightness temperature curve as well as its diurnal variation using different axial ratio values, which can be caused by the diurnal variation of ice microphysical properties including particle size, percentage of horizontally-aligned non-spherical particles, and ice habit. The leading of the change of PD ahead of ice cloud mass and occurring frequency implies the important role microphysics play in the

  13. Effects of sea surface temperature, cloud radiative and microphysical processes, and diurnal variations on rainfall in equilibrium cloud-resolving model simulations

    International Nuclear Information System (INIS)

    Jiang Zhe; Li Xiao-Fan; Zhou Yu-Shu; Gao Shou-Ting

    2012-01-01

    The effects of sea surface temperature (SST), cloud radiative and microphysical processes, and diurnal variations on rainfall statistics are documented with grid data from the two-dimensional equilibrium cloud-resolving model simulations. For a rain rate of higher than 3 mm·h −1 , water vapor convergence prevails. The rainfall amount decreases with the decrease of SST from 29 °C to 27 °C, the inclusion of diurnal variation of SST, or the exclusion of microphysical effects of ice clouds and radiative effects of water clouds, which are primarily associated with the decreases in water vapor convergence. However, the amount of rainfall increases with the increase of SST from 29 °C to 31 °C, the exclusion of diurnal variation of solar zenith angle, and the exclusion of the radiative effects of ice clouds, which are primarily related to increases in water vapor convergence. For a rain rate of less than 3 mm·h −1 , water vapor divergence prevails. Unlike rainfall statistics for rain rates of higher than 3 mm·h −1 , the decrease of SST from 29 °C to 27 °C and the exclusion of radiative effects of water clouds in the presence of radiative effects of ice clouds increase the rainfall amount, which corresponds to the suppression in water vapor divergence. The exclusion of microphysical effects of ice clouds decreases the amount of rainfall, which corresponds to the enhancement in water vapor divergence. The amount of rainfall is less sensitive to the increase of SST from 29 °C to 31 °C and to the radiative effects of water clouds in the absence of the radiative effects of ice clouds. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  14. Effects of light on NO3 uptake in small forested streams: diurnal and day-to-day variations

    Energy Technology Data Exchange (ETDEWEB)

    Mulholland, Patrick J [ORNL

    2006-08-01

    We investigated the effects of autotrophy on short-term variations in nutrient dynamics by measuring diurnal and day-to-day variations in light level, primary productivity, and NO{sub 3}{sup -} uptake during early and late spring in 2 forested streams, the East and West Forks of Walker Branch in eastern Tennessee, USA. We predicted that diurnal and day-to-day variations in NO{sub 3}{sup -} uptake rate would be larger in the West Fork than in the East Fork in early spring because of higher rates of primary productivity resulting from a more stable substratum in the West Fork. We also predicted minimal diurnal variations in both streams in late spring after forest leaf emergence when light levels and primary productivity are uniformly low. Reach-scale rates of gross primary production (GPP) were determined using the diurnal dissolved O{sub 2} change technique, and reach-scale rates of NO{sub 3}{sup -} uptake were determined by tracer {sup 15}N-NO{sub 3}{sup -} additions. In the West Fork, significant diurnal and day-to-day variations in NO{sub 3}{sup -} uptake were related to variations in light level and primary productivity in early spring but not in late spring, consistent with our predictions. In early spring, West Fork NO{sub 3}{sup -} uptake rates were 2 to 3x higher at midday than during predawn hours and 50% higher on 2 clear days than on an overcast day several days earlier. In the East Fork, early spring rates of GPP were 4 to 5x lower than in the West Fork and diurnal and day-to-day variations in NO{sub 3}{sup -} uptake rates were <30%, considerably lower than in the West Fork. However, diurnal variations in NO{sub 3}{sup -} uptake rates were greater in late spring in the East Fork, possibly because of diurnal variation in water temperature. Our results indicate the important role of autotrophs in nutrient uptake in some forested streams, particularly during seasons when forest vegetation is dormant and light levels are relatively high. Our results also

  15. Diurnal variations in wastewater characteristics at main out fall in Lahore

    International Nuclear Information System (INIS)

    Haider, H.; Ali, W.; Ali, W.

    2012-01-01

    Variations in the flow and pollutants concentrations during the day were monitored at the Main Out fall disposal station of the city of Lahore. The laboratory analysis of the wastewater samples collected at 2 hour interval on fifth and sixth May, 2009 for pH, temperature, alkalinity, hardness, Biochemical Oxygen Demand (BOD5), BOD5 Filtered, Total Kjeldahl Nitrogen (TKN), Ammonia Nitrogen (NH/sub 3/-N), chlorides, solids, turbidity, sulphates and nitrates were carried out. Average values and standard deviations were determined to assess the type of wastewater treatment. Correlation between BOD5 and BOD5 Filtered was developed through regression analysis. Diurnal variations in the Ultimate Biochemical Oxygen Demand (BODU) at the Main Out fall based on Carbonaceous Biochemical Oxygen Demand (CBODU) and Nitrogenous Biochemical Oxygen Demand (NBODU) are also estimated. The ratio between CBODU/NBODU ranges between 0.86 to 1.8 during a day at Main Out fall. This variation is primarily due to the large diurnal variation in CBODU values as a result of industrial activities in the study area. The BOD5/ TKN ratio varies between 3.3 and 6.9 and the calculated BODU (i.e., CBODU + NBODU) was found to be almost double of BOD5 during most part of the day primarily due to inclusion of NBOD. The study results reveal the importance of NBOD while designing the wastewater treatment facilities and implementing a water quality control strategy for the River Ravi. (author)

  16. Diurnal Variations of the Flux Imbalance Over Homogeneous and Heterogeneous Landscapes

    Science.gov (United States)

    Zhou, Yanzhao; Li, Dan; Liu, Heping; Li, Xin

    2018-05-01

    It is well known that the sum of the turbulent sensible and latent heat fluxes as measured by the eddy-covariance method is systematically lower than the available energy (i.e., the net radiation minus the ground heat flux). We examine the separate and joint effects of diurnal and spatial variations of surface temperature on this flux imbalance in a dry convective boundary layer using the Weather Research and Forecasting model. Results show that, over homogeneous surfaces, the flux due to turbulent-organized structures is responsible for the imbalance, whereas over heterogeneous surfaces, the flux due to mesoscale or secondary circulations is the main contributor to the imbalance. Over homogeneous surfaces, the flux imbalance in free convective conditions exhibits a clear diurnal cycle, showing that the flux-imbalance magnitude slowly decreases during the morning period and rapidly increases during the afternoon period. However, in shear convective conditions, the flux-imbalance magnitude is much smaller, but slightly increases with time. The flux imbalance over heterogeneous surfaces exhibits a diurnal cycle under both free and shear convective conditions, which is similar to that over homogeneous surfaces in free convective conditions, and is also consistent with the general trend in the global observations. The rapid increase in the flux-imbalance magnitude during the afternoon period is mainly caused by the afternoon decay of the turbulent kinetic energy (TKE). Interestingly, over heterogeneous surfaces, the flux imbalance is linearly related to the TKE and the difference between the potential temperature and surface temperature, ΔT; the larger the TKE and ΔT values, the smaller the flux-imbalance magnitude.

  17. A numerical study of diurnally varying surface temperature on flow patterns and pollutant dispersion in street canyons

    Science.gov (United States)

    Tan, Zijing; Dong, Jingliang; Xiao, Yimin; Tu, Jiyuan

    2015-03-01

    The impacts of the diurnal variation of surface temperature on street canyon flow pattern and pollutant dispersion are investigated based on a two-dimensional street canyon model under different thermal stratifications. Uneven distributed street temperature conditions and a user-defined wall function representing the heat transfer between the air and the street canyon are integrated into the current numerical model. The prediction accuracy of this model is successfully validated against a published wind tunnel experiment. Then, a series of numerical simulations representing four time scenarios (Morning, Afternoon, Noon and Night) are performed at different Bulk Richardson number (Rb). The results demonstrate that uneven distributed street temperature conditions significantly alters street canyon flow structure and pollutant dispersion characteristics compared with conventional uniform street temperature assumption, especially for the morning event. Moreover, air flow patterns and pollutant dispersion are greatly influenced by diurnal variation of surface temperature under unstable stratification conditions. Furthermore, the residual pollutant in near-ground-zone decreases as Rb increases in noon, afternoon and night events under all studied stability conditions.

  18. Diurnal variation of summer precipitation over the Tibetan Plateau. A cloud-resolving simulation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jianyu; Zhang, Bing; Wang, Minghuan [China Meteorological Administration, Wuhan (China). Wuhan Inst. of Heavy Rain; Wang, Huijuan [Weather Modification Office of Hubei Province, Wuhan (China)

    2012-07-01

    In this study, the Weather Research and Forecasting model was used to simulate the diurnal variation in summer precipitation over the Tibetan Plateau (TP) at a cloudresolving scale. Compared with the TRMM, precipitation data shows that the model can well simulate the diurnal rainfall cycle with an overall late-afternoon maximum precipitation in the central TP and a nighttime maximum in the southern edge. The simulated diurnal variations in regional circulation and thermodynamics are in good correspondence with the precipitation diurnal cycles in the central and southern edge of TP, respectively. A possible mechanism responsible for the nocturnal precipitation maximum in the southern edge has been proposed, indicating the importance of the TP in regulating the regional circulation and precipitation. (orig.)

  19. Analysis of the Diurnal Variation of the Global Electric Circuit Obtained From Different Numerical Models

    Science.gov (United States)

    Jánský, Jaroslav; Lucas, Greg M.; Kalb, Christina; Bayona, Victor; Peterson, Michael J.; Deierling, Wiebke; Flyer, Natasha; Pasko, Victor P.

    2017-12-01

    This work analyzes different current source and conductivity parameterizations and their influence on the diurnal variation of the global electric circuit (GEC). The diurnal variations of the current source parameterizations obtained using electric field and conductivity measurements from plane overflights combined with global Tropical Rainfall Measuring Mission satellite data give generally good agreement with measured diurnal variation of the electric field at Vostok, Antarctica, where reference experimental measurements are performed. An approach employing 85 GHz passive microwave observations to infer currents within the GEC is compared and shows the best agreement in amplitude and phase with experimental measurements. To study the conductivity influence, GEC models solving the continuity equation in 3-D are used to calculate atmospheric resistance using yearly averaged conductivity obtained from the global circulation model Community Earth System Model (CESM). Then, using current source parameterization combining mean currents and global counts of electrified clouds, if the exponential conductivity is substituted by the conductivity from CESM, the peak to peak diurnal variation of the ionospheric potential of the GEC decreases from 24% to 20%. The main reason for the change is the presence of clouds while effects of 222Rn ionization, aerosols, and topography are less pronounced. The simulated peak to peak diurnal variation of the electric field at Vostok is increased from 15% to 18% from the diurnal variation of the global current in the GEC if conductivity from CESM is used.

  20. Robust fitting of diurnal brightness temperature cycle

    CSIR Research Space (South Africa)

    Udahemuka, G

    2007-11-01

    Full Text Available for a pixel concerned. Robust fitting of observed Diurnal Temperature Cycle (DTC) taken over a day of a given pixel without cloud cover and other abnormally conditions such as fire can give a data based brightness temperature model for a given pixel...

  1. Simulation of the Universal-Time Diurnal Variation of the Global Electric Circuit Charging Rate

    Science.gov (United States)

    Mackerras, D.; Darvenzia, M.; Orville, R. E.; Williams, E. R.; Goodman, S. J.

    1999-01-01

    A global lightning model that includes diurnal and annual lightning variation, and total flash density versus latitude for each major land and ocean, has been used as the basis for simulating the global electric circuit charging rate. A particular objective has been to reconcile the difference in amplitude ratios [AR=(max-min)/mean] between global lightning diurnal variation (AR approx. = 0.8) and the diurnal variation of typical atmospheric potential gradient curves (AR approx. = 0.35). A constraint on the simulation is that the annual mean charging current should be about 1000 A. The global lightning model shows that negative ground flashes can contribute, at most, about 10-15% of the required current. For the purpose of the charging rate simulation, it was assumed that each ground flash contributes 5 C to the charging process. It was necessary to assume that all electrified clouds contribute to charging by means other than lightning, that the total flash rate can serve as an indirect indicator of the rate of charge transfer, and that oceanic electrified clouds contribute to charging even though they are relatively inefficient in producing lightning. It was also found necessary to add a diurnally invariant charging current component. By trial and error it was found that charging rate diurnal variation curves in Universal time (UT) could be produced with amplitude ratios and general shapes similar to those of the potential gradient diurnal variation curves measured over ocean and arctic regions during voyages of the Carnegie Institute research vessels.

  2. Generation of diurnal variation for influent data for dynamic simulation.

    Science.gov (United States)

    Langergraber, G; Alex, J; Weissenbacher, N; Woerner, D; Ahnert, M; Frehmann, T; Halft, N; Hobus, I; Plattes, M; Spering, V; Winkler, S

    2008-01-01

    When using dynamic simulation for fine tuning of the design of activated sludge (AS) plants diurnal variations of influent data are required. For this application usually only data from the design process and no measured data are available. In this paper a simple method to generate diurnal variations of wastewater flow and concentrations is described. The aim is to generate realistic influent data in terms of flow, concentrations and TKN/COD ratios and not to predict the influent of the AS plant in detail. The work has been prepared within the framework of HSG-Sim (Hochschulgruppe Simulation, http://www.hsgsim.org), a group of researchers from Germany, Austria, Luxembourg, Poland, the Netherlands and Switzerland. (c) IWA Publishing 2008.

  3. Ozone-Temperature Diurnal and Longer Term Correlations, in the Lower Thermosphere, Mesosphere and Stratosphere, Based on Measurements from SABER on TIMED

    Science.gov (United States)

    Huang, Frank T.; Mayr, Hans G.; Russell, James M., III; Mlynczak, Martin G.

    2012-01-01

    The analysis of mutual ozone-temperature variations can provide useful information on their interdependencies relative to the photochemistry and dynamics governing their behavior. Previous studies have mostly been based on satellite measurements taken at a fixed local time in the stratosphere and lower mesosphere. For these data, it is shown that the zonal mean ozone amounts and temperatures in the lower stratosphere are mostly positively correlated, while they are mostly negatively correlated in the upper stratosphere and in the lower mesosphere. The negative correlation, due to the dependence of photochemical reaction rates on temperature, indicates that ozone photochemistry is more important than dynamics in determining the ozone amounts. In this study, we provide new results by extending the analysis to include diurnal variations over 24 hrs of local time, and to larger spatial regimes, to include the upper mesosphere and lower thermosphere (MLT). The results are based on measurements by the SABER instrument on the TIMED satellite. For mean variations (i.e., averages over local time and longitude) in the MLT, our results show that there is a sharp reversal in the correlation near 80 km altitude, above which the ozone mixing ratio and temperature are mostly positively correlated, while they are mostly negatively correlated below 80 km. This is consistent with the view that above -80 km, effects due to dynamics are more important compared to photochemistry. For diurnal variations, both the ozone and temperature show phase progressions in local time, as a function of altitude and latitude. For temperature, the phase progression is as expected, as they represent migrating tides. For day time ozone, we also find regular phase progression in local time over the whole altitude range of our analysis, 25 to 105 km, at least for low latitudes. This was not previously known, although phase progressions had been noted by us and by others at lower altitudes. For diurnal

  4. Diurnal scrotal skin temperature and semen quality. The Danish First Pregnancy Planner Study Team

    DEFF Research Database (Denmark)

    Hjollund, N H; Bonde, Jens Peter; Jensen, Tina Kold

    2000-01-01

    It is well established that heat is associated with reduced sperm production, but the role of physiological variation in temperature has never been scrutinized in humans. We studied diurnal scrotal temperature and markers of male fertility in a population of couples planning their first pregnancy....... Sixty men from a cohort of couples who were planning their first pregnancy were included and scrotal skin temperature was monitored during 3 days using a portable data recorder. Working hours and working postures were recorded daily in a questionnaire. Each man provided a fresh semen sample...

  5. Combined diurnal variations of discharge and hydrochemistry of the Isunnguata Sermia outlet, Greenland Ice Sheet

    Science.gov (United States)

    Graly, Joseph; Harrington, Joel; Humphrey, Neil

    2017-05-01

    In order to examine daily cycles in meltwater routing and storage in the Isunnguata Sermia outlet of the Greenland Ice Sheet, variations in outlet stream discharge and in major element hydrochemistry were assessed over a 6-day period in July 2013. Over 4 days, discharge was assessed from hourly photography of the outlet from multiple vantages, including where midstream naled ice provided a natural gauge. pH, electrical conductivity, suspended sediment, and major element and anion chemistry were measured in samples of stream water collected every 3 h.Photography and stream observations reveal that although river width and stage have only slight diurnal variation, there are large diurnal changes in discharge shown by the doubling in width of what we term the active channel, which is characterized by large standing waves and fast flow. The concentration of dissolved solutes follows a sinusoidal diurnal cycle, except for large and variable increases in dissolved solutes during the stream's waning flow. Solute concentrations vary by ˜ 30 % between diurnal minima and maxima. Discharge maxima and minima lag temperature and surface melt by 3-7 h; diurnal solute concentration minima and maxima lag discharge by 3-6 h.This phase shift between discharge and solute concentration suggests that during high flow, water is either encountering more rock material or is stored in longer contact with rock material. We suggest that expansion of a distributed subglacial hydrologic network into seldom accessed regions during high flow could account for these phenomena, and for a spike of partial silicate reaction products during waning flow, which itself suggests a pressure threshold-triggered release of stored water.

  6. Seasonal and Diurnal Variations of Atmospheric Non-Methane Hydrocarbons in Guangzhou, China

    Directory of Open Access Journals (Sweden)

    Longfeng Li

    2012-05-01

    Full Text Available In recent decades, high ambient ozone concentrations have become one of the major regional air quality issues in the Pearl River Delta (PRD region. Non-methane hydrocarbons (NMHCs, as key precursors of ozone, were found to be the limiting factor in photochemical ozone formation for large areas in the PRD. For source apportioning of NMHCs as well as ozone pollution control strategies, it is necessary to obtain typical seasonal and diurnal patterns of NMHCs with a large pool of field data. To date, few studies have focused on seasonal and diurnal variations of NMHCs in urban areas of Guangzhou. This study explored the seasonal variations of most hydrocarbons concentrations with autumn maximum and spring minimum in Guangzhou. The diurnal variations of most anthropogenic NMHCs typically showed two-peak pattern with one at 8:00 in the morning and another at 20:00 in the evening, both corresponding to traffic rush hours in Guangzhou, whereas isoprene displayed a different bimodal diurnal curve. Propene, ethene, m, p-xylene and toluene were the four largest contributors to ozone formation in Guangzhou, based on the evaluation of individual NMHCs’ photochemical reactivity. Therefore, an effective strategy for controlling ozone pollution may be achieved by the reduction of vehicle emissions in Guangzhou.

  7. Diurnal variations in personal care products in seawater and mussels at three Mediterranean coastal sites.

    Science.gov (United States)

    Picot-Groz, Marina; Fenet, Hélène; Martinez Bueno, Maria Jesus; Rosain, David; Gomez, Elena

    2018-03-01

    The presence of personal care products (PCPs) in the marine environment is of major concern. PCPs, UV filters, and musks can enter the marine environment indirectly through wastewater or directly via recreational activities. We conducted this study to document patterns in the occurrence of seven PCPs at three coastal sites impacted by recreational activities during 1 day. The study focused on diurnal variations in these seven PCPs in seawater and indigenous mussels. In seawater, UV filters showed diurnal variations that mirrored variations in recreational activities at the sites. Ethylhexyl methoxycinnamate (EHMC) and octocrylene (OC) water concentrations increased from under the limit of quantification in the morning to 106 and 369 ng/L, respectively, when recreational activities were the highest. In mussels, diurnal variations in OC were observed, with the lowest concentrations recorded in the morning and then increasing throughout the day. As Mytilus spp. are widely used as sentinels in coastal pollution monitoring programs (mussel watch), our findings on diurnal variations could enhance sampling recommendations for recreational sites impacted by PCPs.

  8. Termite mounds harness diurnal temperature oscillations for ventilation.

    Science.gov (United States)

    King, Hunter; Ocko, Samuel; Mahadevan, L

    2015-09-15

    Many species of millimetric fungus-harvesting termites collectively build uninhabited, massive mound structures enclosing a network of broad tunnels that protrude from the ground meters above their subterranean nests. It is widely accepted that the purpose of these mounds is to give the colony a controlled microclimate in which to raise fungus and brood by managing heat, humidity, and respiratory gas exchange. Although different hypotheses such as steady and fluctuating external wind and internal metabolic heating have been proposed for ventilating the mound, the absence of direct in situ measurement of internal air flows has precluded a definitive mechanism for this critical physiological function. By measuring diurnal variations in flow through the surface conduits of the mounds of the species Odontotermes obesus, we show that a simple combination of geometry, heterogeneous thermal mass, and porosity allows the mounds to use diurnal ambient temperature oscillations for ventilation. In particular, the thin outer flutelike conduits heat up rapidly during the day relative to the deeper chimneys, pushing air up the flutes and down the chimney in a closed convection cell, with the converse situation at night. These cyclic flows in the mound flush out CO2 from the nest and ventilate the colony, in an unusual example of deriving useful work from thermal oscillations.

  9. Standardised Resting Time Prior to Blood Sampling and Diurnal Variation Associated with Risk of Patient Misclassification

    DEFF Research Database (Denmark)

    Bøgh Andersen, Ida; Brasen, Claus L.; Christensen, Henry

    2015-01-01

    .9×10-7) and sodium (p = 8.7×10-16). Only TSH and albumin were clinically significantly influenced by diurnal variation. Resting time had no clinically significant effect. CONCLUSIONS: We found no need for resting 15 minutes prior to blood sampling. However, diurnal variation was found to have a significant......BACKGROUND: According to current recommendations, blood samples should be taken in the morning after 15 minutes' resting time. Some components exhibit diurnal variation and in response to pressures to expand opening hours and reduce waiting time, the aims of this study were to investigate...... the impact of resting time prior to blood sampling and diurnal variation on biochemical components, including albumin, thyrotropin (TSH), total calcium and sodium in plasma. METHODS: All patients referred to an outpatient clinic for blood sampling were included in the period Nov 2011 until June 2014 (opening...

  10. Seasonal and diurnal variations in potential alpha energy concentrations at a location in tropical Australia

    International Nuclear Information System (INIS)

    Quintarelli, F.; Akber, R.

    1998-01-01

    Full text: Atmospheric concentrations of radon progeny activity were measured at two locations in tropical Australia during the time period 1992 - 1994. Meteorological parameters including atmospheric pressure, temperature and humidity were also recorded. The data were analysed for seasonal and diurnal variations, in order to establish correlations and associations amongst radon progeny concentrations and meteorological parameters. The paper describes the findings, including the attachment behaviour of radon progeny to ambient aerosol

  11. Absence of diurnal variation of C-reactive protein concentrations in healthy human subjects

    Science.gov (United States)

    Meier-Ewert, H. K.; Ridker, P. M.; Rifai, N.; Price, N.; Dinges, D. F.; Mullington, J. M.

    2001-01-01

    BACKGROUND: The concentration of C-reactive protein (CRP) in otherwise healthy subjects has been shown to predict future risk of myocardial infarction and stroke. CRP is synthesized by the liver in response to interleukin-6, the serum concentration of which is subject to diurnal variation. METHODS: To examine the existence of a time-of-day effect for baseline CRP values, we determined CRP concentrations in hourly blood samples drawn from healthy subjects (10 males, 3 females; age range, 21-35 years) during a baseline day in a controlled environment (8 h of nighttime sleep). RESULTS: Overall CRP concentrations were low, with only three subjects having CRP concentrations >2 mg/L. Comparison of raw data showed stability of CRP concentrations throughout the 24 h studied. When compared with cutoff values of CRP quintile derived from population-based studies, misclassification of greater than one quintile did not occur as a result of diurnal variation in any of the subjects studied. Nonparametric ANOVA comparing different time points showed no significant differences for both raw and z-transformed data. Analysis for rhythmic diurnal variation using a method fitting a cosine curve to the group data was negative. CONCLUSIONS: Our data show that baseline CRP concentrations are not subject to time-of-day variation and thus help to explain why CRP concentrations are a better predictor of vascular risk than interleukin-6. Determination of CRP for cardiovascular risk prediction may be performed without concern for diurnal variation.

  12. Diurnal modulation and sources of variation affecting ventricular repolarization in Warmblood horses

    DEFF Research Database (Denmark)

    Pedersen, Philip Juul; Moeller, Sine B.; Madsen, Mette Flethøj

    2014-01-01

    Te) are used as repolarization markers. To support the use of these markers in horses, we sought to describe the possible influence of the environment, time of day, day-to-day effects, T wave conformation, age, body weight (BW), and horse-to-horse variation on repolarization measurements. ANIMALS: 12 Warmblood...... affecting these intervals. RESULTS: Differences between individual horses were the largest source of repolarization variability although the environment had a significant effect on repolarization as well. Diurnal variation affected both the RR interval and the repolarization markers. The QT, QTc and Tp......, diurnal variation, the environment, and T wave conformation. These factors must be considered if markers of equine repolarization are used diagnostically....

  13. Biodegradation of Toluene Under Seasonal and Diurnal Fluctuations of Soil-Water Temperature.

    KAUST Repository

    Yadav, Brijesh K; Shrestha, Shristi R; Hassanizadeh, S Majid

    2012-01-01

    An increasing interest in bioremediation of hydrocarbon polluted sites raises the question of the influence of seasonal and diurnal changes on soil-water temperature on biodegradation of BTEX, a widespread group of (sub)-surface contaminants. Therefore, we investigated the impact of a wide range of varying soil-water temperature on biodegradation of toluene under aerobic conditions. To see the seasonal impact of temperature, three sets of batch experiments were conducted at three different constant temperatures: 10°C, 21°C, and 30°C. These conditions were considered to represent (1) winter, (2) spring and/or autumn, and (3) summer seasons, respectively, at many polluted sites. Three additional sets of batch experiments were performed under fluctuating soil-water temperature cases (21<>10°C, 30<>21°C, and 10<>30°C) to mimic the day-night temperature patterns expected during the year. The batches were put at two different temperatures alternatively to represent the day (high-temperature) and night (low-temperature) times. The results of constant- and fluctuating-temperature experiments show that toluene degradation is strongly dependent on soil-water temperature level. An almost two-fold increase in toluene degradation time was observed for every 10°C decrease in temperature for constant-temperature cases. Under fluctuating-temperature conditions, toluene degraders were able to overcome the temperature stress and continued thriving during all considered weather scenarios. However, a slightly longer time was taken compared to the corresponding time at daily mean temperature conditions. The findings of this study are directly useful for bioremediation of hydrocarbon-polluted sites having significant diurnal and seasonal variations of soil-water temperature.

  14. Biodegradation of Toluene Under Seasonal and Diurnal Fluctuations of Soil-Water Temperature.

    Science.gov (United States)

    Yadav, Brijesh K; Shrestha, Shristi R; Hassanizadeh, S Majid

    2012-09-01

    An increasing interest in bioremediation of hydrocarbon polluted sites raises the question of the influence of seasonal and diurnal changes on soil-water temperature on biodegradation of BTEX, a widespread group of (sub)-surface contaminants. Therefore, we investigated the impact of a wide range of varying soil-water temperature on biodegradation of toluene under aerobic conditions. To see the seasonal impact of temperature, three sets of batch experiments were conducted at three different constant temperatures: 10°C, 21°C, and 30°C. These conditions were considered to represent (1) winter, (2) spring and/or autumn, and (3) summer seasons, respectively, at many polluted sites. Three additional sets of batch experiments were performed under fluctuating soil-water temperature cases (2110°C, 3021°C, and 1030°C) to mimic the day-night temperature patterns expected during the year. The batches were put at two different temperatures alternatively to represent the day (high-temperature) and night (low-temperature) times. The results of constant- and fluctuating-temperature experiments show that toluene degradation is strongly dependent on soil-water temperature level. An almost two-fold increase in toluene degradation time was observed for every 10°C decrease in temperature for constant-temperature cases. Under fluctuating-temperature conditions, toluene degraders were able to overcome the temperature stress and continued thriving during all considered weather scenarios. However, a slightly longer time was taken compared to the corresponding time at daily mean temperature conditions. The findings of this study are directly useful for bioremediation of hydrocarbon-polluted sites having significant diurnal and seasonal variations of soil-water temperature.

  15. Biodegradation of Toluene Under Seasonal and Diurnal Fluctuations of Soil-Water Temperature.

    KAUST Repository

    Yadav, Brijesh K

    2012-05-12

    An increasing interest in bioremediation of hydrocarbon polluted sites raises the question of the influence of seasonal and diurnal changes on soil-water temperature on biodegradation of BTEX, a widespread group of (sub)-surface contaminants. Therefore, we investigated the impact of a wide range of varying soil-water temperature on biodegradation of toluene under aerobic conditions. To see the seasonal impact of temperature, three sets of batch experiments were conducted at three different constant temperatures: 10°C, 21°C, and 30°C. These conditions were considered to represent (1) winter, (2) spring and/or autumn, and (3) summer seasons, respectively, at many polluted sites. Three additional sets of batch experiments were performed under fluctuating soil-water temperature cases (21<>10°C, 30<>21°C, and 10<>30°C) to mimic the day-night temperature patterns expected during the year. The batches were put at two different temperatures alternatively to represent the day (high-temperature) and night (low-temperature) times. The results of constant- and fluctuating-temperature experiments show that toluene degradation is strongly dependent on soil-water temperature level. An almost two-fold increase in toluene degradation time was observed for every 10°C decrease in temperature for constant-temperature cases. Under fluctuating-temperature conditions, toluene degraders were able to overcome the temperature stress and continued thriving during all considered weather scenarios. However, a slightly longer time was taken compared to the corresponding time at daily mean temperature conditions. The findings of this study are directly useful for bioremediation of hydrocarbon-polluted sites having significant diurnal and seasonal variations of soil-water temperature.

  16. Effect of average diurnal barn airspace temperatures on prediction of their development during the day

    Directory of Open Access Journals (Sweden)

    Gustav Chládek

    2011-01-01

    Full Text Available A year-round (i.e. 365 days experiment was performed at the Mendel University Training Farm in Žabčice, Czech Republic (GPS 49°0’51.967”N and 16°36’14.614”E, the altitude 179 m with the aim to quantify the effect of the variation of average diurnal barn airspace temperatures on prediction of their changes during the day. Barn airspace temperatures were monitored daily in one-hour intervals and the recorded values were used for calculations of average diurnal temperatures. These were classified into 7 categories (i.e. below 0 °C; 0.1 to 5 °C; 5.1 to 10 °C; 10.1 to 15 °C; 15.1 to 20 °C; 20.1 to 25 °C and above 25 °C. Regarding this classification system, all differences between temperatures measured at identical hours but within various limits were statistically highly significant. The statistical analysis involved also the calculation of the third degree polynomial regression equations, which enabled to characterise the relationship between the temperature and the hour of measurement within the aforementioned categories of diurnal temperatures. Individual equations were markedly different and ranged from y = − 0.0019x3 + 0.0596x2 − 0.3797x − 1.2169 (for temperatures below 0 °C to y = − 0.0108x3 + 0.3297x2 − 1.9367x + 24.3931 (for temperatures above 25 °C. Correlation coefficients (r and coefficients of determination (R2 of these regression equations were generally very high and ranged from 0.872 to 0.976 and from 0.760 to 0.953, respectively. Regarding high values of both coefficients it can be concluded that the calculated equations enable a good and reliable prediction of the diurnal development of barn airspace temperatures.

  17. A combined stochastic analysis of mean daily temperature and diurnal temperature range

    Science.gov (United States)

    Sirangelo, B.; Caloiero, T.; Coscarelli, R.; Ferrari, E.

    2018-03-01

    In this paper, a stochastic model, previously proposed for the maximum daily temperature, has been improved for the combined analysis of mean daily temperature and diurnal temperature range. In particular, the procedure applied to each variable sequentially performs the deseasonalization, by means of truncated Fourier series expansions, and the normalization of the temperature data, with the use of proper transformation functions. Then, a joint stochastic analysis of both the climatic variables has been performed by means of a FARIMA model, taking into account the stochastic dependency between the variables, namely introducing a cross-correlation between the standardized noises. The model has been applied to five daily temperature series of southern Italy. After the application of a Monte Carlo simulation procedure, the return periods of the joint behavior of the mean daily temperature and the diurnal temperature range have been evaluated. Moreover, the annual maxima of the temperature excursions in consecutive days have been analyzed for the synthetic series. The results obtained showed different behaviors probably linked to the distance from the sea and to the latitude of the station.

  18. Diurnal Variations of Airborne Pollen and Spores in Taipei City, Taiwan

    Directory of Open Access Journals (Sweden)

    Yueh-Lin Yang

    2003-09-01

    Full Text Available The diurnal variation of airborne pollen and spores in Taipei City, Taiwan, was investigated during a two-year survey from 1993 to 1994. The pollen and spores were sampled using a Burkard seven-day volumetric pollen trap. The diurnal trends of the total amount of pollen and spores in 1993 and in 1994 were similar to each other, and peaked at 3 to 10 o’clock. The diurnal patterns of airborne pollen and spores of Broussonetia, Fraxinus, Cyathea and Gramineae in 1993 were similar to those in 1994. High concentrations of Broussonetia and Fraxinus were obtained from midnight to the next morning. Cyathea spores peaked from morning till noon, and Gramineae peaked in the afternoon. The diurnal patterns of airborne pollen of Bischofia, Juniperus, Mallotus, Morus, Trema and Urticaceae in 1993 were different to those in 1994. Regular diurnal patterns also associated with the taxa, which produce large pollen or spores, such as Gramineae and Cyathea. In contrast, Bischofia, Juniperus, Mallotus, Morus, Trema and Urticaceae produce relatively small pollen and the diurnal patterns of their airborne pollen were found irregular. The source plants Broussonetia and Fraxinus were close to the collection site so the diurnal patterns of their airborne pollen were regular, suggesting that the diurnal fluctuations of the pollen or spores in air might be affected by the source of plants and the sizes of pollen or spores. The transportation of the smaller pollen or spores in air is probably more easily affected by instability of air currents; they are therefore more likely to exhibit irregular diurnal patterns.

  19. Diurnal variations of summer precipitation over the regions east to Tibetan Plateau

    Science.gov (United States)

    Wu, Yang; Huang, Anning; Huang, Danqing; Chen, Fei; Yang, Ben; Zhou, Yang; Fang, Dexian; Zhang, Lujun; Wen, Lijuan

    2017-12-01

    Based on the hourly gauge-satellite merged precipitation product with the horizontal resolution of 0.1° latitude/longitude during 2008-2014, diurnal variations of the summer precipitation amount (PA), frequency (PF), and intensity (PI) with different duration time over the regions east to Tibetan Plateau have been systematically revealed in this study. Results indicate that the eight typical precipitation diurnal patterns identified by the cluster analysis display pronounced regional features among the plateaus, basins, plains, hilly and coastal areas. The precipitation diurnal cycles are significantly affected by the sub-grid terrain fluctuations. The PA, PF and PI of the total rainfall show much more pronounced double diurnal peaks with the sub-grid topography standard deviation (SD) decreased. Meanwhile, the diurnal peaks of PA and PF (PI) strengthen (weaken) with the sub-grid topography SD enhanced. Over the elevated mountain ranges, southeastern hilly and coastal regions, the PA and PF diurnal patterns of the total rainfall generally show predominant late-afternoon peaks, which are closely associated with the short-duration (≤slant 3 h) rainfall. Along the Tibetan Plateau to its downstream, the diurnal peaks of PA, PF and PI for the total rainfall all exhibit obvious eastward phase time delay mainly due to the diurnal evolutions of long-duration (> 6 h) rainfall. However, the 4-6 h rainfall leads to the eastward phase time delay of the total rainfall along the Taihang Mountains to its downstream. Further mechanism analysis suggests that the midnight to morning diurnal evolution of the long-duration rainfall is closely associated with the diurnal variations of the upward branches of thermally driven mountain-plain solenoids and the water vapor transport associated with the accelerated nocturnal southwesterly winds. The late-afternoon peak of the short-duration PA over the southeastern hilly and coastal regions is ascribed to the strong local thermal

  20. Diurnal variations in iron concentrations and expression of genes involved in iron absorption and metabolism in pigs.

    Science.gov (United States)

    Zhang, Yiming; Wan, Dan; Zhou, Xihong; Long, Ciming; Wu, Xin; Li, Lan; He, Liuqin; Huang, Pan; Chen, Shuai; Tan, Bie; Yin, Yulong

    2017-09-02

    Diurnal variations in serum iron levels have been well documented in clinical studies, and serum iron is an important diagnostic index for iron-deficiency anemia. However, the underlying mechanism of dynamic iron regulation in response to the circadian rhythm is still unclear. In this study, we investigated daily variations in iron status in the plasma and liver of pigs. The transcripts encoding key factors involved in iron uptake and homeostasis were evaluated. The results showed that iron levels in the plasma and liver exhibited diurnal rhythms. Diurnal variations were also observed in transcript levels of divalent metal transporter 1 (DMT1), membrane-associated ferric reductase 1 (DCYTB), and transferrin receptor (TfR) in the duodenum and jejunum, as well as hepcidin (HAMP) and TfR in the liver. Moreover, the results showed a network in which diurnal variations in systemic iron levels were tightly regulated by hepcidin and Tf/TfR via DCYTB and DMT1. These findings provide new insights into circadian iron homeostasis regulation. The diurnal variations in serum iron levels may also have pathophysiological implications for clinical diagnostics related to iron deficiency anemia in pigs. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. High-resolution magnetic resonance imaging of diurnal variations in rheumatoid arthritis

    International Nuclear Information System (INIS)

    Nicholas, R.S.

    2000-09-01

    This thesis describes work that uses high-resolution magnetic resonance imaging (MRI) to give an insight into the aetiology of rheumatoid arthritis (RA) with particular reference to characterising diurnal changes in joint stiffness in the metacarpophalangeal (MCP) joints. The study was performed on a targeted 1.1 T MRI scanner using specialised sequences, including 3-dimensional gradient-echo, magnetisation transfer (MT) and multiple gradient-echo. These enabled tissue-dependent parameters such as MT ratio, effective transverse relaxation time (T 2 *) and proton density (ρ) to be made. Preliminary reproducibility studies of the MRI measurements showed that MT ratio could be measured in vivo to an accuracy of better than 8%. This variation is due to repositioning errors and physiological changes. Equivalent variations in T 2 * and p were 23% and 16% respectively; these poorer figures were contributed to errors in fitting the data to an exponential curve. An MRI study monitoring the diurnal variation of stiffness in RA demonstrated better characterisation of the disease state using MT and T 2 * maps compared to standard gradient-echo imaging. Features associated with arthritis such as bone erosions and cysts were found in the control group and an MT age dependence was measured in the soft tissue on the superior margin of the joint. This region also exhibited a diurnal variation in MT ratio for the patient group. The interaction between this region of tissue and other structures (e.g. the sheath of extensor tendon) within the joint could be a possible cause of joint stiffness. An incidental finding of this study was that Ritchie joint score also showed a diurnal variation. This study has demonstrated that MRI can be used to make reproducible measurements of the diurnal variations in RA. The indication is that the soft tissues in the superior aspect of the joint may be responsible for the symptom of joint stiffness in the MCP joints and future studies should be

  2. Diurnal variation of cosmic ray intensity I. Two approaches to the study

    International Nuclear Information System (INIS)

    Sari, J.W.; Venkatesan, D.; Lanzerotti, L.J.; Maclennan, C.G.

    1978-01-01

    The investigation has been carried out over the past two decades by either of two approaches: the traditional Fourier series method and the more recently introduced power spectral method. A comparison of the two approaches is essential to the proper understanding of the results derived from them. The present study, for the first time, adopts both approaches for investigating the data from the Sulfur Mountain super neutron monitor for the period of mid-December 1965 to April 1966 (extending over five solar rotations), when interplanetary magnetic field data from Pioneer 6 were also available. Problems relating to the analyses of both data sets on a day-to-day basis and on a statistical basis over a number of days are discussed. The power spectral analysis method cannot provide information on the phase of the diurnal variation or information on the diurnal amplitude on a day-to-day basis. This method provides excellent estimates of the diurnal anisotropy amplitude provides a measure of the ambient anisotropy amplitude. The Fourier series method can yield reliable measures of the amplitude and phase on a day-to-day basis, provided the time series is reasonably stationary. This method cannot estimate the ambient anisotropy amplitude which, for small amplitudes, contributes to large uncertainties in the Fourier coefficients. We find that there is a general agreement between the observed diurnal variation and that predicted theoretically. However, for most of the periods examined the ratio of the perpendicular diffusion coefficient to the parallel diffusion coefficient is rather small (K 1 /K < or approx. =0.1). As such the diurnal variation amplitude is generally most sensitive to the interplanetary field direction and the solar wind velocity and not to the calculated values of the diffusion coefficients. Further tests of the theory are discussed

  3. Variability of Diurnal Temperature Range During Winter Over Western Himalaya: Range- and Altitude-Wise Study

    Science.gov (United States)

    Shekhar, M. S.; Devi, Usha; Dash, S. K.; Singh, G. P.; Singh, Amreek

    2018-04-01

    The current trends in diurnal temperature range, maximum temperature, minimum temperature, mean temperature, and sun shine hours over different ranges and altitudes of Western Himalaya during winter have been studied. Analysis of 25 years of data shows an increasing trend in diurnal temperature range over all the ranges and altitudes of Western Himalaya during winter, thereby confirming regional warming of the region due to present climate change and global warming. Statistical studies show significant increasing trend in maximum temperature over all the ranges and altitudes of Western Himalaya. Minimum temperature shows significant decreasing trend over Pir Panjal and Shamshawari range and significant increasing trend over higher altitude of Western Himalaya. Similarly, sunshine hours show significant decreasing trend over Karakoram range. There exists strong positive correlation between diurnal temperature range and maximum temperature for all the ranges and altitudes of Western Himalaya. Strong negative correlation exists between diurnal temperature range and minimum temperature over Shamshawari and Great Himalaya range and lower altitude of Western Himalaya. Sunshine hours show strong positive correlation with diurnal temperature range over Pir Panjal and Great Himalaya range and lower and higher altitudes.

  4. Regimes of Diurnal Variation of Summer Rainfall over Subtropical East Asia

    Energy Technology Data Exchange (ETDEWEB)

    Yuan W.; Lin W.; Yu, R.; Zhang, M.; Chen, H.; Li, J.

    2012-05-01

    Using hourly rain gauge records and Tropical Rainfall Measuring Mission 3B42 from 1998 to 2006, the authors present an analysis of the diurnal characteristics of summer rainfall over subtropical East Asia. The study shows that there are four different regimes of distinct diurnal variation of rainfall in both the rain gauge and the satellite data. They are located over the Tibetan Plateau with late-afternoon and midnight peaks, in the western China plain with midnight to early-morning peaks, in the eastern China plain with double peaks in late afternoon and early morning, and over the East China Sea with an early-morning peak. No propagation of diurnal phases is found from the land to the ocean across the coastlines. The different diurnal regimes are highly correlated with the inhomogeneous underlying surface, such as the plateau, plain, and ocean, with physical mechanisms consistent with the large-scale 'mountain-valley' and 'land-sea' breezes and convective instability. These diurnal characteristics over subtropical East Asia can be used as diagnostic metrics to evaluate the physical parameterization and hydrological cycle of climate models over East Asia.

  5. Diurnal variations of serum erythropoietin at sea level and altitude

    DEFF Research Database (Denmark)

    Klausen, T; Poulsen, T D; Fogh-Andersen, N

    1996-01-01

    in 2, 3 diphosphoglycerate. After 64 h at altitude, six of the nine subjects had down-regulated their serum-EPO concentrations so that median values were three times above those at sea level. These six subjects had significant diurnal variations of serum-EPO concentration at sea level; the nadir......This study tested the hypothesis that the diurnal variations of serum-erythropoietin concentration (serum-EPO) observed in normoxia also exist in hypoxia. The study also attempted to investigate the regulation of EPO production during sustained hypoxia. Nine subjects were investigated at sea level...... and during 4 days at an altitude of 4350 m. Median sea level serum-EPO concentration was 6 (range 6-13) U.l-1. Serum-EPO concentration increased after 18 and 42 h at altitude, [58 (range 39-240) and 54 (range 36-340) U.l-1, respectively], and then decreased after 64 and 88 h at altitude [34 (range 18...

  6. Tidal variations of O2 Atmospheric and OH(6-2 airglow and temperature at mid-latitudes from SATI observations

    Directory of Open Access Journals (Sweden)

    M. J. López-González

    2005-12-01

    Full Text Available Airglow observations with a Spectral Airglow Temperature Imager (SATI, installed at the Sierra Nevada Observatory (37.06° N, 3.38° W at 2900-m height, have been used to investigate the presence of tidal variations at mid-latitudes in the mesosphere/lower thermosphere region. Diurnal variations of the column emission rate and vertically averaged temperature of the O2 Atmospheric (0-1 band and of the OH Meinel (6-2 band from 5 years (1998-2003 of observations have been analysed. From these observations a clear tidal variation of both emission rates and rotational temperatures is inferred. It is found that the amplitude of the daily variation for both emission rates and temperatures is greater from late autumn to spring than during summer. The amplitude decreases by more than a factor of two during summer and early autumn with respect to the amplitude in the winter-spring months. Although the tidal modulations are preferentially semidiurnal in both rotational temperatures and emission rates during the whole year, during early spring the tidal modulations seem to be more consistent with a diurnal modulation in both rotational temperatures and emission rates. Moreover, the OH emission rate from late autumn to early winter has a pattern suggesting both diurnal and semidiurnal tidal modulations.

  7. Diurnal variations of serum erythropoietin at sea level and altitude

    DEFF Research Database (Denmark)

    Klausen, T; Poulsen, T D; Fogh-Andersen, N

    1996-01-01

    in 2, 3 diphosphoglycerate. After 64 h at altitude, six of the nine subjects had down-regulated their serum-EPO concentrations so that median values were three times above those at sea level. These six subjects had significant diurnal variations of serum-EPO concentration at sea level; the nadir...

  8. Pulse pressure and diurnal blood pressure variation

    DEFF Research Database (Denmark)

    Knudsen, Søren Tang; Poulsen, Per Løgstrup; Hansen, Klavs Würgler

    2002-01-01

    retinopathy, nephropathy, macrovascular disease, PP, and diurnal BP variation in a group of type 2 diabetic patients. METHODS: In 80 type 2 diabetic patients we performed 24-h ambulatory BP (AMBP) and fundus photographs. Urinary albumin excretion was evaluated by urinary albumin/creatinine ratio. Presence...... or absence of macrovascular disease was assessed by an independent physician. RESULTS: Forty-nine patients had no detectable retinal changes (grade 1), 13 had grade 2 retinopathy, and 18 had more advanced retinopathy (grades 3-6). Compared to patients without retinopathy (grade 1), patients with grades 2......BACKGROUND: In nondiabetic subjects pulse pressure (PP) is an independent predictor of cardiovascular disease and microalbuminuria. Reduced circadian blood pressure (BP) variation is a potential risk factor for the development of diabetic complications. We investigated the association between...

  9. DIURNAL CHANGES IN LEAF PHOTOSYNTHESIS AND RELATIVE WATER CONTENT OF GRAPEVINE

    Directory of Open Access Journals (Sweden)

    Monica Popescu

    2014-11-01

    Full Text Available Variation in light intensity, air temperature and relative air humidity leads to diurnal variations of photosynthetic rate and leaf relative water content. In order to determine the diurnal changes in net photosynthetic rate of vine plants and influence of the main environmental factors, gas exchange in the vine leaves were measure using a portable plant CO2 analysis package. The results show that diurnal changes in photosynthetic rate could be interpreted as single-peak curve, with a maximum at noon (10.794 μmol CO2 m-2 s-1. Leaf relative water content has maximum value in the morning; the values may slightly decrease during the day (day of June, with normal temperature, no rain, no water restriction in soil.

  10. Investigating riparian groundwater flow close to a losing river using diurnal temperature oscillations at high vertical resolution

    Directory of Open Access Journals (Sweden)

    T. Vogt

    2012-02-01

    Full Text Available River-water infiltration is of high relevance for hyporheic and riparian groundwater ecology as well as for drinking water supply by river-bank filtration. Heat has become a popular natural tracer to estimate exchange rates between rivers and groundwater. However, quantifying flow patterns and velocities is impeded by spatial and temporal variations of exchange fluxes, insufficient sensors spacing during field investigations, or simplifying assumptions for analysis or modeling such as uniform flow. The objective of this study is to investigate lateral shallow groundwater flow upon river-water infiltration at the shoreline of the riverbed and in the adjacent riparian zone of the River Thur in northeast Switzerland. Here we have applied distributed temperature sensing (DTS along optical fibers wrapped around tubes to measure high-resolution vertical temperature profiles of the unsaturated zone and shallow riparian groundwater. Diurnal temperature oscillations were tracked in the subsurface and analyzed by means of dynamic harmonic regression to extract amplitudes and phase angles. Subsequent calculations of amplitude attenuation and time shift relative to the river signal show in detail vertical and temporal variations of heat transport in shallow riparian groundwater. In addition, we apply a numerical two-dimensional heat transport model for the unsaturated zone and shallow groundwater to obtain a better understanding of the observed heat transport processes in shallow riparian groundwater and to estimate the groundwater flow velocity. Our results show that the observed riparian groundwater temperature distribution cannot be described by uniform flow, but rather by horizontal groundwater flow velocities varying over depth. In addition, heat transfer of diurnal temperature oscillations from the losing river through shallow groundwater is influenced by thermal exchange with the unsaturated zone. Neglecting the influence of the unsaturated zone

  11. Diurnal and annual variations of meteor rates at the arctic circle

    Directory of Open Access Journals (Sweden)

    W. Singer

    2004-01-01

    Full Text Available Meteors are an important source for (a the metal atoms of the upper atmosphere metal layers and (b for condensation nuclei, the existence of which are a prerequisite for the formation of noctilucent cloud particles in the polar mesopause region. For a better understanding of these phenomena, it would be helpful to know accurately the annual and diurnal variations of meteor rates. So far, these rates have been little studied at polar latitudes. Therefore we have used the 33 MHz meteor radar of the ALOMAR observatory at 69° N to measure the meteor rates at this location for two full annual cycles. This site, being within 3° of the Arctic circle, offers in addition an interesting capability: The axis of its antenna field points (almost towards the North ecliptic pole once each day of the year. In this particular viewing direction, the radar monitors the meteoroid influx from (almost the entire ecliptic Northern hemisphere. We report on the observed diurnal variations (averaged over one month of meteor rates and their significant alterations throughout the year. The ratio of maximum over minimum meteor rates throughout one diurnal cycle is in January and February about 5, from April through December 2.3±0.3. If compared with similar measurements at mid-latitudes, our expectation, that the amplitude of the diurnal variation is to decrease towards the North pole, is not really borne out. Observations with the antenna axis pointing towards the North ecliptic pole showed that the rate of deposition of meteoric dust is substantially larger during the Arctic NLC season than the annual mean deposition rate. The daylight meteor showers of the Arietids, Zeta Perseids, and Beta Taurids supposedly contribute considerably to the June maximum of meteor rates. We note, though, that with the radar antenna pointing as described above, all three meteor radiants are close to the local horizon but all three radiants were detected.

  12. Is the diurnal pattern sufficient to explain the intraday variation in volatility? A nonparametric assessment

    DEFF Research Database (Denmark)

    Christensen, Kim; Hounyo, Ulrich; Podolskij, Mark

    In this paper, we propose a nonparametric way to test the hypothesis that time-variation in intraday volatility is caused solely by a deterministic and recurrent diurnal pattern. We assume that noisy high-frequency data from a discretely sampled jump-diffusion process are available. The test...... inference, we propose a new bootstrap approach, which leads to almost correctly sized tests of the null hypothesis. We apply the developed framework to a large cross-section of equity high-frequency data and find that the diurnal pattern accounts for a rather significant fraction of intraday variation...

  13. Impact of diurnal temperature fluctuations on larval settlement and growth of the reef coral Pocillopora damicornis

    Science.gov (United States)

    Jiang, Lei; Sun, You-Fang; Zhang, Yu-Yang; Zhou, Guo-Wei; Li, Xiu-Bao; McCook, Laurence J.; Lian, Jian-Sheng; Lei, Xin-Ming; Liu, Sheng; Cai, Lin; Qian, Pei-Yuan; Huang, Hui

    2017-12-01

    Diurnal fluctuations in seawater temperature are ubiquitous on tropical reef flats. However, the effects of such dynamic temperature variations on the early stages of corals are poorly understood. In this study, we investigated the responses of larvae and new recruits of Pocillopora damicornis to two constant temperature treatments (29 and 31 °C) and two diurnally fluctuating treatments (28-31 and 30-33 °C with daily means of 29 and 31 °C, respectively) simulating the 3 °C diel oscillations at 3 m depth on the Luhuitou fringing reef (Sanya, China). Results showed that the thermal stress on settlement at 31 °C was almost negated by the fluctuating treatment. Further, neither elevated temperature nor temperature fluctuations caused bleaching responses in recruits, while the maximum excitation pressure over photosystem II (PSII) was reduced under fluctuating temperatures. Although early growth and development were highly stimulated at 31 °C, oscillations of 3 °C had little effects on budding and lateral growth at either mean temperature. Nevertheless, daytime encounters with the maximum temperature of 33 °C in fluctuating 31 °C elicited a notable reduction in calcification compared to constant 31 °C. These results underscore the complexity of the effects caused by diel temperature fluctuations on early stages of corals and suggest that ecologically relevant temperature variability could buffer warming stress on larval settlement and dampen the positive effects of increased temperatures on coral growth.

  14. Diurnal variation in the performance of rapid response systems: the role of critical care services-a review article.

    Science.gov (United States)

    Sundararajan, Krishnaswamy; Flabouris, Arthas; Thompson, Campbell

    2016-01-01

    The type of medical review before an adverse event influences patient outcome. Delays in the up-transfer of patients requiring intensive care are associated with higher mortality rates. Timely detection and response to a deteriorating patient constitute an important function of the rapid response system (RRS). The activation of the RRS for at-risk patients constitutes the system's afferent limb. Afferent limb failure (ALF), an important performance measure of rapid response systems, constitutes a failure to activate a rapid response team (RRT) despite criteria for calling an RRT. There are diurnal variations in hospital staffing levels, the performance of rapid response systems and patient outcomes. Fewer ward-based nursing staff at night may contribute to ALF. The diurnal variability in RRS activity is greater in unmonitored units than it is in monitored units for events that should result in a call for an RRT. RRT events include a significant abnormality in either the pulse rate, blood pressure, conscious state or respiratory rate. There is also diurnal variation in RRT summoning rates, with most activations occurring during the day. The reasons for this variation are mostly speculative, but the failure of the afferent limb of RRT activation, particularly at night, may be a factor. The term "circadian variation/rhythm" applies to physiological variations over a 24-h cycle. In contrast, diurnal variation applies more accurately to extrinsic systems. Circadian rhythm has been demonstrated in a multitude of bodily functions and disease states. For example, there is an association between disrupted circadian rhythms and abnormal vital parameters such as anomalous blood pressure, irregular pulse rate, aberrant endothelial function, myocardial infarction, stroke, sleep-disordered breathing and its long-term consequences of hypertension, heart failure and cognitive impairment. Therefore, diurnal variation in patient outcomes may be extrinsic, and more easily modifiable

  15. Effects of diurnal temperature range and drought on wheat yield in Spain

    Science.gov (United States)

    Hernandez-Barrera, S.; Rodriguez-Puebla, C.; Challinor, A. J.

    2017-07-01

    This study aims to provide new insight on the wheat yield historical response to climate processes throughout Spain by using statistical methods. Our data includes observed wheat yield, pseudo-observations E-OBS for the period 1979 to 2014, and outputs of general circulation models in phase 5 of the Coupled Models Inter-comparison Project (CMIP5) for the period 1901 to 2099. In investigating the relationship between climate and wheat variability, we have applied the approach known as the partial least-square regression, which captures the relevant climate drivers accounting for variations in wheat yield. We found that drought occurring in autumn and spring and the diurnal range of temperature experienced during the winter are major processes to characterize the wheat yield variability in Spain. These observable climate processes are used for an empirical model that is utilized in assessing the wheat yield trends in Spain under different climate conditions. To isolate the trend within the wheat time series, we implemented the adaptive approach known as Ensemble Empirical Mode Decomposition. Wheat yields in the twenty-first century are experiencing a downward trend that we claim is a consequence of widespread drought over the Iberian Peninsula and an increase in the diurnal range of temperature. These results are important to inform about the wheat vulnerability in this region to coming changes and to develop adaptation strategies.

  16. Using diurnal temperature signals to infer vertical groundwater-surface water exchange

    Science.gov (United States)

    Irvine, Dylan J.; Briggs, Martin A.; Lautz, Laura K.; Gordon, Ryan P.; McKenzie, Jeffrey M.; Cartwright, Ian

    2017-01-01

    Heat is a powerful tracer to quantify fluid exchange between surface water and groundwater. Temperature time series can be used to estimate pore water fluid flux, and techniques can be employed to extend these estimates to produce detailed plan-view flux maps. Key advantages of heat tracing include cost-effective sensors and ease of data collection and interpretation, without the need for expensive and time-consuming laboratory analyses or induced tracers. While the collection of temperature data in saturated sediments is relatively straightforward, several factors influence the reliability of flux estimates that are based on time series analysis (diurnal signals) of recorded temperatures. Sensor resolution and deployment are particularly important in obtaining robust flux estimates in upwelling conditions. Also, processing temperature time series data involves a sequence of complex steps, including filtering temperature signals, selection of appropriate thermal parameters, and selection of the optimal analytical solution for modeling. This review provides a synthesis of heat tracing using diurnal temperature oscillations, including details on optimal sensor selection and deployment, data processing, model parameterization, and an overview of computing tools available. Recent advances in diurnal temperature methods also provide the opportunity to determine local saturated thermal diffusivity, which can improve the accuracy of fluid flux modeling and sensor spacing, which is related to streambed scour and deposition. These parameters can also be used to determine the reliability of flux estimates from the use of heat as a tracer.

  17. Solar tri-diurnal variation of cosmic rays in a wide range of rigidity

    Science.gov (United States)

    Mori, S.; Ueno, H.; Fujii, Z.; Morishita, I.; Nagashima, K.

    1985-01-01

    Solar tri-diurnal variations of cosmic rays have been analyzed in a wide range of rigidity, using data from neutron monitors, and the surface and underground muon telescopes for the period 1978-1983. The rigidity spectrum of the anisotropy in space is assumed to be of power-exponential type as (P/gamma P sub o) to the gamma exp (gamma-P/P sub o). By means of the best-fit method between the observed and the expected variations, it is obtained that the spectrum has a peak at P (=gamma P sub o) approx = 90 GV, where gamma=approx 3.0 and P sub o approx. 30 GV. The phase in space of the tri-diurnal variation is also obtained as 7.0 hr (15 hr and 23 hr LT), which is quite different from that of approx. 1 hr. arising from the axisymmetric distribution of cosmic rays with respect to the IMF.

  18. Diurnal and day-to-day variation of isometric muscle strength in myasthenia gravis.

    Science.gov (United States)

    Vinge, Lotte; Jakobsen, Johannes; Pedersen, Asger Roer; Andersen, Henning

    2016-01-01

    In patients with myasthenia gravis (MG), muscle strength is expected to decrease gradually during the day due to physical activities. Isometric muscle strength at the shoulder, knee, and ankle was determined in 10 MG patients (MGFA class II-IV) who were receiving usual medical treatment and in 10 control subjects. To determine diurnal and day-to-day variation, muscle strength was measured 4 times during day 1 and once at day 2. Knee extension strength decreased during the day in both patients and controls. Neither diurnal nor day-to-day variation of muscle strength was higher in patients compared with controls. Patients with mild to moderate MG did not have increased variation of isometric muscle strength during the day or from day-to-day compared with controls. This suggests that isometric muscle performance can be determined with high reproducibility in similar groups of MG patients without regard to time of day. © 2015 Wiley Periodicals, Inc.

  19. Impact of diurnal temperature fluctuations on larval settlement and growth of the reef coral Pocillopora damicornis

    Directory of Open Access Journals (Sweden)

    L. Jiang

    2017-12-01

    Full Text Available Diurnal fluctuations in seawater temperature are ubiquitous on tropical reef flats. However, the effects of such dynamic temperature variations on the early stages of corals are poorly understood. In this study, we investigated the responses of larvae and new recruits of Pocillopora damicornis to two constant temperature treatments (29 and 31 °C and two diurnally fluctuating treatments (28–31 and 30–33 °C with daily means of 29 and 31 °C, respectively simulating the 3 °C diel oscillations at 3 m depth on the Luhuitou fringing reef (Sanya, China. Results showed that the thermal stress on settlement at 31 °C was almost negated by the fluctuating treatment. Further, neither elevated temperature nor temperature fluctuations caused bleaching responses in recruits, while the maximum excitation pressure over photosystem II (PSII was reduced under fluctuating temperatures. Although early growth and development were highly stimulated at 31 °C, oscillations of 3 °C had little effects on budding and lateral growth at either mean temperature. Nevertheless, daytime encounters with the maximum temperature of 33 °C in fluctuating 31 °C elicited a notable reduction in calcification compared to constant 31 °C. These results underscore the complexity of the effects caused by diel temperature fluctuations on early stages of corals and suggest that ecologically relevant temperature variability could buffer warming stress on larval settlement and dampen the positive effects of increased temperatures on coral growth.

  20. Seasonal and diurnal variations of atmospheric mercury across the US determined from AMNet monitoring data

    Directory of Open Access Journals (Sweden)

    X. Lan

    2012-11-01

    Full Text Available Speciated atmospheric mercury observations collected over the period from 2008 to 2010 at the Environmental Protection Agency and National Atmospheric Deposition Program Atmospheric Mercury Network sites (AMNet were analyzed for its spatial, seasonal, and diurnal characteristics across the US. Median values of gaseous elemental mercury (GEM, gaseous oxidized mercury (GOM and particulate bound mercury (PBM at 11 different AMNet sites ranged from 148–226 ppqv (1.32–2.02 ng m−3, 0.05–1.4 ppqv (0.47–12.4 pg m−3 and 0.18–1.5 ppqv (1.61–13.7 pg m−3, respectively. Common characteristics of these sites were the similar median levels of GEM as well as its seasonality, with the highest mixing ratios occurring in winter and spring and the lowest in fall. However, discernible differences in monthly average GEM were as large as 30 ppqv, which may be caused by sporadic influence from local emission sources. The largest diurnal variation amplitude of GEM occurred in the summer. Seven rural sites displayed similar GEM summer diurnal patterns, in that the lowest levels appeared in the early morning, and then the GEM mixing ratio increased after sunrise and reached its maxima at noon or in the early afternoon. Unlike GEM, GOM exhibited higher mixing ratios in spring and summer. The largest diurnal variation amplitude of GOM occurred in spring for most AMNet sites. The GOM diurnal minima appeared before sunrise and maxima appeared in the afternoon. The increased GOM mixing ratio in the afternoon indicated a photochemically driven oxidation of GEM resulting in GOM formation. PBM exhibited diurnal fluctuations in summertime. The summertime PBM diurnal pattern displayed daily maxima in the early afternoon and lower mixing ratios at night, implying photochemical production of PBM in summer.

  1. Interaction between stream temperature, streamflow, and groundwater exchanges in alpine streams

    Science.gov (United States)

    Constantz, James E.

    1998-01-01

    Four alpine streams were monitored to continuously collect stream temperature and streamflow for periods ranging from a week to a year. In a small stream in the Colorado Rockies, diurnal variations in both stream temperature and streamflow were significantly greater in losing reaches than in gaining reaches, with minimum streamflow losses occurring early in the day and maximum losses occurring early in the evening. Using measured stream temperature changes, diurnal streambed infiltration rates were predicted to increase as much as 35% during the day (based on a heat and water transport groundwater model), while the measured increase in streamflow loss was 40%. For two large streams in the Sierra Nevada Mountains, annual stream temperature variations ranged from 0° to 25°C. In summer months, diurnal stream temperature variations were 30–40% of annual stream temperature variations, owing to reduced streamflows and increased atmospheric heating. Previous reports document that one Sierra stream site generally gains groundwater during low flows, while the second Sierra stream site may lose water during low flows. For August the diurnal streamflow variation was 11% at the gaining stream site and 30% at the losing stream site. On the basis of measured diurnal stream temperature variations, streambed infiltration rates were predicted to vary diurnally as much as 20% at the losing stream site. Analysis of results suggests that evapotranspiration losses determined diurnal streamflow variations in the gaining reaches, while in the losing reaches, evapotranspiration losses were compounded by diurnal variations in streambed infiltration. Diurnal variations in stream temperature were reduced in the gaining reaches as a result of discharging groundwater of relatively constant temperature. For the Sierra sites, comparison of results with those from a small tributary demonstrated that stream temperature patterns were useful in delineating discharges of bank storage following

  2. Global Electric Circuit Diurnal Variation Derived from Storm Overflight and Satellite Optical Lightning Datasets

    Science.gov (United States)

    Mach, Douglas M.; Blakeslee, R. J.; Bateman, M. J.; Bailey, J. C.

    2011-01-01

    We have combined analyses of over 1000 high altitude aircraft observations of electrified clouds with diurnal lightning statistics from the Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) to produce an estimate of the diurnal variation in the global electric circuit. Using basic assumptions about the mean storm currents as a function of flash rate and location, and the global electric circuit, our estimate of the current in the global electric circuit matches the Carnegie curve diurnal variation to within 4% for all but two short periods of time. The agreement with the Carnegie curve was obtained without any tuning or adjustment of the satellite or aircraft data. Mean contributions to the global electric circuit from land and ocean thunderstorms are 1.1 kA (land) and 0.7 kA (ocean). Contributions to the global electric circuit from ESCs are 0.22 kA for ocean storms and 0.04 kA for land storms. Using our analysis, the mean total conduction current for the global electric circuit is 2.0 kA.

  3. Physiological and Molecular Response of Ostrich to the Seasonal and Diurnal Variations in Egyptian conditions

    International Nuclear Information System (INIS)

    Khalil, M.H.; Khalifa, H.H; Elaroussi, M.A.; Elsayed, M.A.; Basuony, H.A.

    2013-01-01

    Twelve immature ostrich›s birds, 7 months old were used to evaluate the effect of ambient temperature variation and diurnal effect on response changes of some physiological and chemical parameters. All birds were reared out doors and exposed to daily ambient temperatures fluctuations during summer and winter. Blood samples were taken twice, one in the morning at 7 Am and once in the afternoon at 3 Pm during a representative 7 hot days of June (summer) (40±2ºC) and the 7 cold days of January (winter) (18±2ºC). Serum calcium, inorganic phosphorus, sodium, potassium, uric acid concentrations and aldosterone level were determined. The amount of total body water (TBW) and serum heat shock proteins (HSP) were estimated. Serum calcium, phosphorus, sodium and potassium concentrations in ostrich were significantly decreased, while uric acid concentration and aldosterone hormone level were significantly increased in summer as compared in winter during both at morning and at afternoon periods. Concerning the diurnal variation, serum calcium, phosphorus, sodium and potassium concentrations and aldosterone hormone level in ostrich were significantly increased, while uric acid concentration was significantly decreased at morning as compared at afternoon during both summer and winter seasons. TBW was significantly higher in summer season by 15.04% than winter season. It is concluded from the present study that heat or cold stress has a negative effect on most of the parameters studied and we recommend must be supplement diet with some nutrients like vitamins C, and E, sodium bicarbonate or yeast to overcome the negative effect and to better perform under such conditions

  4. Diurnal variation of the human adipose transcriptome and the link to metabolic disease

    Directory of Open Access Journals (Sweden)

    Lamb John

    2009-02-01

    Full Text Available Abstract Background Circadian (diurnal rhythm is an integral part of the physiology of the body; specifically, sleep, feeding behavior and metabolism are tightly linked to the light-dark cycle dictated by earth's rotation. Methods The present study examines the effect of diurnal rhythm on gene expression in the subcutaneous adipose tissue of overweight to mildly obese, healthy individuals. In this well-controlled clinical study, adipose biopsies were taken in the morning, afternoon and evening from individuals in three study arms: treatment with the weight loss drug sibutramine/fasted, placebo/fed and placebo/fasted. Results The results indicated that diurnal rhythm was the most significant driver of gene expression variation in the human adipose tissue, with at least 25% of the genes having had significant changes in their expression levels during the course of the day. The mRNA expression levels of core clock genes at a specific time of day were consistent across multiple subjects on different days in all three arms, indicating robust diurnal regulation irrespective of potential confounding factors. The genes essential for energy metabolism and tissue physiology were part of the diurnal signature. We hypothesize that the diurnal transition of the expression of energy metabolism genes reflects the shift in the adipose tissue from an energy-expending state in the morning to an energy-storing state in the evening. Consistent with this hypothesis, the diurnal transition was delayed by fasting and treatment with sibutramine. Finally, an in silico comparison of the diurnal signature with data from the publicly-available Connectivity Map demonstrated a significant association with transcripts that were repressed by mTOR inhibitors, suggesting a possible link between mTOR signaling, diurnal gene expression and metabolic regulation. Conclusion Diurnal rhythm plays an important role in the physiology and regulation of energy metabolism in the adipose

  5. Diurnal variations in the UV albedo of arctic snow

    Directory of Open Access Journals (Sweden)

    O. Meinander

    2008-11-01

    Full Text Available The relevance of snow for climate studies is based on its physical properties, such as high surface reflectivity. Surface ultraviolet (UV albedo is an essential parameter for various applications based on radiative transfer modeling. Here, new continuous measurements of the local UV albedo of natural Arctic snow were made at Sodankylä (67°22'N, 26°39'E, 179 m a.s.l. during the spring of 2007. The data were logged at 1-min intervals. The accumulation of snow was up to 68 cm. The surface layer thickness varied from 0.5 to 35 cm with the snow grain size between 0.2 and 2.5 mm. The midday erythemally weighted UV albedo ranged from 0.6 to 0.8 in the accumulation period, and from 0.5 to 0.7 during melting. During the snow melt period, under cases of an almost clear sky and variable cloudiness, an unexpected diurnal decrease of 0.05 in albedo soon after midday, and recovery thereafter, was detected. This diurnal decrease in albedo was found to be asymmetric with respect to solar midday, thus indicating a change in the properties of the snow. Independent UV albedo results with two different types of instruments confirm these findings. The measured temperature of the snow surface was below 0°C on the following mornings. Hence, the reversible diurnal change, evident for ~1–2 h, could be explained by the daily metamorphosis of the surface of the snowpack, in which the temperature of the surface increases, melting some of the snow to liquid water, after which the surface freezes again.

  6. The impact of diurnal variations of air traffic on contrail radiative forcing

    Directory of Open Access Journals (Sweden)

    N. Stuber

    2007-06-01

    Full Text Available We combined high resolution aircraft flight data from the EU Fifth Framework Programme project AERO2k with analysis data from the ECMWF's integrated forecast system to calculate diurnally resolved 3-D contrail cover. We scaled the contrail cover in order to match observational data for the Bakan area (eastern-Atlantic/western-Europe.

    We found that less than 40% of the global distance travelled by aircraft is due to flights during local night time. Yet, due to the cancellation of shortwave and longwave effects during daytime, night time flights contribute a disproportional 60% to the global annual mean forcing. Under clear sky conditions the night flights contribute even more disproportionally at 76%. There are pronounced regional variations in night flying and the associated radiative forcing. Over parts of the North Atlantic flight corridor 75% of air traffic and 84% of the forcing occurs during local night, whereas only 35% of flights are during local night in South-East Asia, yet these contribute 68% of the radiative forcing. In general, regions with a significant local contrail radiative forcing are also regions for which night time flights amount to less than half of the daily total of flights. Therefore, neglecting diurnal variations in air traffic/contrail cover by assuming a diurnal mean contrail cover can over-estimate the global mean radiative forcing by up to 30%.

  7. Diurnal variation in rates of calcification and carbonate sediment dissolution in Florida Bay

    Science.gov (United States)

    Yates, K.K.; Halley, R.B.

    2006-01-01

    Water quality and circulation in Florida Bay (a shallow, subtropical estuary in south Florida) are highly dependent upon the development and evolution of carbonate mud banks distributed throughout the Bay. Predicting the effect of natural and anthropogenic perturbations on carbonate sedimentation requires an understanding of annual, seasonal, and daily variations in the biogenic and inorganic processes affecting carbonate sediment precipitation and dissolution. In this study, net calcification rates were measured over diurnal cycles on 27 d during summer and winter from 1999 to 2003 on mud banks and four representative substrate types located within basins between mud banks. Substrate types that were measured in basins include seagrass beds of sparse and intermediate density Thalassia sp., mud bottom, and hard bottom communities. Changes in total alkalinity were used as a proxy for calcification and dissolution. On 22 d (81%), diurnal variation in rates of net calcification was observed. The highest rates of net carbonate sediment production (or lowest rates of net dissolution) generally occurred during daylight hours and ranged from 2.900 to -0.410 g CaCO3 m-2 d-1. The lowest rates of carbonate sediment production (or net sediment dissolution) occurred at night and ranged from 0.210 to -1.900 g CaCO3 m -2 night-1. During typical diurnal cycles, dissolution during the night consumed an average of 29% of sediment produced during the day on banks and 68% of sediment produced during the day in basins. Net sediment dissolution also occurred during daylight, but only when there was total cloud cover, high turbidity, or hypersalinity. Diurnal variation in calcification and dissolution in surface waters and surface sediments of Florida Bay is linked to cycling of carbon dioxide through photosynthesis and respiration. Estimation of long-term sediment accumulation rates from diurnal rates of carbonate sediment production measured in this study indicates an overall average

  8. Diurnal-and sex-related difference of metallothionein expression in mice

    Directory of Open Access Journals (Sweden)

    Zhang Dan

    2012-07-01

    Full Text Available Abstract Background Metallothionein (MT is a small, cysteine-rich, metal-binding protein that plays an important role in protecting against toxicity of heavy metal and chemicals. This study was aimed to define diurnal and sex variation of MT in mice. Methods Adult mice were maintained in light- and temperature-controlled facilities for 2 weeks with light on at 8:00 and light off at 20:00. The blood, liver, and kidneys were collected every 4 h during the 24 h period. Total RNA was isolated, purified, and subjected to real-time RT-PCR analysis and MT protein was determined by western blot and the Cd/hemoglobin assay. Results The diurnal variations in mRNA levels of MT-1 and MT-2in liver were dramatic, up to a 40-foldpeak/trough ratio. MT mRNA levels in kidneys and blood also showed diurnal variation, up to 5-fold peak/trough ratio. The diurnal variation of MT mRNAs resembled the clock gene albumin site D-binding protein (Dbp, and was anti-phase to the clock gene Brain and Muscle ARNT-like Protein 1 (Bmal1 in liver and kidneys. The peaks of MT mRNA levels were higher in females than in males. Hepatic MT protein followed a similar pattern, with about a 3-fold difference. Conclusion MT mRNA levels and protein showed diurnal- and sex-variation in liver, kidney, and blood of mice, which could impact the body defense against toxic stimuli.

  9. Atmospheric Structure and Diurnal Variations at Low Altitudes in the Martian Tropics

    Science.gov (United States)

    Hinson, David P.; Spiga, A.; Lewis, S.; Tellmann, S.; Pätzold, M.; Asmar, S.; Häusler, B.

    2013-10-01

    We are using radio occultation measurements from Mars Express, Mars Reconnaissance Orbiter, and Mars Global Surveyor to characterize the diurnal cycle in the lowest scale height above the surface. We focus on northern spring and summer, using observations from 4 Martian years at local times of 4-5 and 15-17 h. We supplement the observations with results obtained from large-eddy simulations and through data assimilation by the UK spectral version of the LMD Mars Global Circulation Model. We previously investigated the depth of the daytime convective boundary layer (CBL) and its variations with surface elevation and surface properties. We are now examining unusual aspects of the temperature structure observed at night. Most important, predawn profiles in the Tharsis region contain an unexpected layer of neutral static stability at pressures of 200-300 Pa with a depth of 4-5 km. The mixed layer is bounded above by a midlevel temperature inversion and below by another strong inversion adjacent to the surface. The narrow temperature minimum at the base of the midlevel inversion suggests the presence of a water ice cloud layer, with the further implication that radiative cooling at cloud level can induce convective activity at lower altitudes. Conversely, nighttime profiles in Amazonis show no sign of a midlevel inversion or a detached mixed layer. These regional variations in the nighttime temperature structure appear to arise in part from large-scale variations in topography, which have several notable effects. First, the CBL is much deeper in the Tharsis region than in Amazonis, owing to a roughly 6-km difference in surface elevation. Second, large-eddy simulations show that daytime convection is not only deeper above Tharsis but also considerably more intense than it is in Amazonis. Finally, the daytime surface temperatures are comparable in the two regions, so that Tharsis acts as an elevated heat source throughout the CBL. These topographic effects are expected to

  10. Diurnal variations of humidity and ice water content in the tropical upper troposphere

    Directory of Open Access Journals (Sweden)

    P. Eriksson

    2010-12-01

    Full Text Available Observational results of diurnal variations of humidity from Odin-SMR and AURA-MLS, and cloud ice mass from Odin-SMR and CloudSat are presented for the first time. Comparisons show that the retrievals of humidity and cloud ice from these two satellite combinations are in good agreement. The retrieved data are combined from four almost evenly distributed times of the day allowing mean values, amplitudes and phases of the diurnal variations around 200 hpa to be estimated. This analysis is applied to six climatologically distinct regions, five located in the tropics and one over the subtropical northern Pacific Ocean. The strongest diurnal cycles are found over tropical land regions, where the amplitude is ~7 RHi for humidity and ~50% for ice mass. The greatest ice mass for these regions is found during the afternoon, and the humidity maximum is observed to lag this peak by ~6 h. Over tropical ocean regions the variations are smaller and the maxima in both ice mass and humidity are found during the early morning. Observed results are compared with output from three climate models (ECHAM, EC-EARTH and CAM3. Direct measurement-model comparisons were not possible because the measured and modelled cloud ice masses represent different quantities. To make a meaningful comparison, the amount of snow had to be estimated from diagnostic parameters of the models. There is a high probability that the models underestimate the average ice mass (outside the 1-σ uncertainty. The models also show clear deficiencies when it comes to amplitude and phase of the regional variations, but to varying degrees.

  11. SMLTM simulations of the diurnal tide: comparison with UARS observations

    Directory of Open Access Journals (Sweden)

    R. A. Akmaev

    1997-09-01

    Full Text Available Wind and temperature observations in the mesosphere and lower thermosphere (MLT from the Upper Atmosphere Research Satellite (UARS reveal strong seasonal variations of tides, a dominant component of the MLT dynamics. Simulations with the Spectral mesosphere/lower thermosphere model (SMLTM for equinox and solstice conditions are presented and compared with the observations. The diurnal tide is generated by forcing specified at the model lower boundary and by in situ absorption of solar radiation. The model incorporates realistic parameterizations of physical processes including various dissipation processes important for propagation of tidal waves in the MLT. A discrete multi-component gravity-wave parameterization has been modified to account for seasonal variations of the background temperature. Eddy diffusion is calculated depending on the gravity-wave energy deposition rate and stability of the background flow. It is shown that seasonal variations of the diurnal-tide amplitudes are consistent with observed variations of gravity-wave sources in the lower atmosphere.

  12. Diurnal variation in glycogen phosphorylase activity in rat liver. A quantitative histochemical study

    NARCIS (Netherlands)

    Frederiks, W. M.; Marx, F.; Bosch, K. S.

    1987-01-01

    The diurnal variations of the glycogen content and of glycogen phosphorylase activity in periportal and pericentral areas of rat liver parenchyma have been analyzed in periodic acid Schiff (PAS)-stained cryostat sections using quantitative microdensitometry. Glycogen content and phosphorylase

  13. Development and evaluation of an empirical diurnal sea surface temperature model

    Science.gov (United States)

    Weihs, R. R.; Bourassa, M. A.

    2013-12-01

    An innovative method is developed to determine the diurnal heating amplitude of sea surface temperatures (SSTs) using observations of high-quality satellite SST measurements and NWP atmospheric meteorological data. The diurnal cycle results from heating that develops at the surface of the ocean from low mechanical or shear produced turbulence and large solar radiation absorption. During these typically calm weather conditions, the absorption of solar radiation causes heating of the upper few meters of the ocean, which become buoyantly stable; this heating causes a temperature differential between the surface and the mixed [or bulk] layer on the order of a few degrees. It has been shown that capturing the diurnal cycle is important for a variety of applications, including surface heat flux estimates, which have been shown to be underestimated when neglecting diurnal warming, and satellite and buoy calibrations, which can be complicated because of the heating differential. An empirical algorithm using a pre-dawn sea surface temperature, peak solar radiation, and accumulated wind stress is used to estimate the cycle. The empirical algorithm is derived from a multistep process in which SSTs from MTG's SEVIRI SST experimental hourly data set are combined with hourly wind stress fields derived from a bulk flux algorithm. Inputs for the flux model are taken from NASA's MERRA reanalysis product. NWP inputs are necessary because the inputs need to incorporate diurnal and air-sea interactive processes, which are vital to the ocean surface dynamics, with a high enough temporal resolution. The MERRA winds are adjusted with CCMP winds to obtain more realistic spatial and variance characteristics and the other atmospheric inputs (air temperature, specific humidity) are further corrected on the basis of in situ comparisons. The SSTs are fitted to a Gaussian curve (using one or two peaks), forming a set of coefficients used to fit the data. The coefficient data are combined with

  14. Radiation balance at the surface in the city of São Paulo, Brazil: diurnal and seasonal variations

    NARCIS (Netherlands)

    Ferreira, M.J.; Oliveira, de A.P.; Soares, J.; Codato, G.; Wilde Barbaro, E.; Escobedo, J.F.

    2012-01-01

    The main goal of this work is to describe the diurnal and seasonal variations of the radiation balance components at the surface in the city of São Paulo based on observations carried out during 2004. Monthly average hourly values indicate that the amplitudes of the diurnal cycles of net radiation

  15. Diurnal variations of airborne fungal spores concentration in the town and rural area

    Directory of Open Access Journals (Sweden)

    Idalia Kasprzyk

    2012-12-01

    Full Text Available Airborne fungal spores were monitored in 2001-2002 in Rzeszów (town and its neighborhood. The aim of investigations was to ascertain if there were differences in diurnal variations of airborne fungal spores concentration between town and rural area. The sampling was carried out using volumetric method. Traps were located at the same heights - app. 12 m. Airborne spores were sampled continuously. Microscopical slides were prepared for each day. Analysis was carried out on one longitudinal band of 48 mm long divided into 24 segments corresponding following hours of day. The results were expressed as mean number of fungal spores per cubic meter per 24 hours. For this survey, five geni of allergenic fungi were selected: Alternaria, Botrytis, Cladosporium, Epicoccum, Ganoderma. The concentrations of their airborne spores were high or very high. It was calculated theoretical day, where the hourly count was the percentage mean of number of spores at that time every chosen day without rainfall from 2001 and 2001 years. The diurnal periodicity of Alternaria, Cladosporium, Epicoccum and Ganoderma showed one peak, while Botrytis two. Anamorphic spores peaked in the afternoon, while their minima occurred in the morning. The highest concentrations of Ganoderma basidiospores were at down or at night, but minima during the day. There were no clear differences in the peak values between two studied sites. The results indicate that maximum concentrations of all spores generally occurred a few hour earlier in the rural area than in the town. Probably, in the rural area airborne spores came from many local sources and their diurnal periodicity reflected rhythm of spore liberation. Towns are characterized by specific microclimate with higher temperature and wind blowing to the centre. In Rzeszów fungal spores could be transported outside and carried out by wind from distant sources. This study showed, among others, that habitat conditions are an important factors

  16. Daily positive events and diurnal cortisol rhythms: Examination of between-person differences and within-person variation.

    Science.gov (United States)

    Sin, Nancy L; Ong, Anthony D; Stawski, Robert S; Almeida, David M

    2017-09-01

    Growing evidence from field studies has linked daily stressors to dysregulated patterns of diurnal cortisol. Less is known about whether naturally-occurring positive events in everyday life are associated with diurnal cortisol. The objectives of this study were to evaluate daily positive events as predictors of between-person differences and within-person (day-to-day) variations in diurnal cortisol parameters, in addition to daily positive events as buffers against the associations between daily stressors and cortisol. In the National Study of Daily Experiences, 1657 adults ages 33-84 (57% female) reported daily experiences during telephone interviews on 8 consecutive evenings. Saliva samples were collected 4 times per day on 4 interview days and assayed for cortisol. Multilevel models were used to estimate associations of daily positive events with cortisol awakening response (CAR), diurnal cortisol slope, and area under the curve (AUC). At the between-person level, people who experienced more frequent positive events exhibited a steeper diurnal cortisol slope, controlling for daily stressors, daily affect, and other covariates. At the within-person level, positive events in the morning (but not prior-night or afternoon/evening events) predicted steeper decline in cortisol across that day; positive events were also marginally associated with lower same-day AUC. Associations were not mediated by daily positive affect, and positive events did not buffer against stressor-related cortisol alterations. These findings indicate that individual differences and day-to-day variations in daily positive events are associated with diurnal cortisol patterns, independent of stressors and affect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Diurnal variation in ruminal pH on the digestibility of highly digestible perennial ryegrass during continuous culture fermentation.

    Science.gov (United States)

    Wales, W J; Kolver, E S; Thorne, P L; Egan, A R

    2004-06-01

    Dairy cows grazing high-digestibility pastures exhibit pronounced diurnal variation in ruminal pH, with pH being below values considered optimal for digestion. Using a dual-flow continuous culture system, the hypothesis that minimizing diurnal variation in pH would improve digestion of pasture when pH was low, but not at a higher pH, was tested. Four treatments were imposed, with pH either allowed to exhibit normal diurnal variation around an average pH of 6.1 or 5.6, or maintained at constant pH. Digesta samples were collected during the last 3 d of each of four, 9-d experimental periods. A constant pH at 5.6 compared with a constant pH of 6.1 reduced the digestibility of organic matter (OM), neutral detergent (NDF), and acid detergent fiber (ADF) by 7, 14, and 21%, respectively. When pH was allowed to vary (averaging 5.6), digestion of OM, NDF, and ADF were reduced by 15,30, and 36%, respectively, compared with pH varying at 6.1. There was little difference in digestion parameters when pH was either constant or varied with an average pH of 6.1. However, when average pH was 5.6, maintaining a constant pH significantly increased digestion of OM, NDF, and ADF by 5, 25, and 24% compared with a pH that exhibited normal diurnal variation. These in vitro results show that gains in digestibility and potential milk production can be made by minimizing diurnal variation in ruminal pH, but only when ruminal pH is low (5.6). However, larger gains in productivity can be achieved by increasing average daily ruminal pH from 5.6 to 6.1.

  18. No diurnal variation in rate or carbon isotope composition of soil respiration in a boreal forest

    International Nuclear Information System (INIS)

    Betson, N.R.; Gottlicher, S.G.; Hogberg, P.; Hall, M.; Wallin, G.; Richter, A.

    2007-01-01

    This study evaluated the diurnal variability in the rate and stable carbon isotope ratio ((delta) 13 C) of soil respiration in a northern boreal forest, measured with opaque chambers after the removal of understory vegetation. The experiment was conducted in June and August 2004 at the Picea abies L. Karst-dominated Flakaliden Research Forest in northern Sweden, using unfertilized girdled-tree plots and unfertilized non-girdled tree plots. Soil respiration and (delta) 13 C of soil-respired carbon dioxide (CO 2 ) were measured every 4 hours on 6 plots, with a total of 11 sampling times over each 48 hour period. The purpose was to clarify an earlier study regarding the origin of diurnal patterns of soil CO 2 flux. This study explored whether the diurnal patterns were the result of photosynthetic CO 2 uptake during the day by the understory or whether there were underlying trends in soil respiration driven by plant root allocation. The sampling campaigns undertaken in this study investigated whether diurnal variations in soil respiration rate and (delta) 13 C exist in this ecosystem when no understory vegetation is present. Shoot photosynthesis and environmental parameters were measured simultaneously. Despite significant variations in climatic conditions and shoot photosynthetic rates in non-girdled trees, no diurnal patterns in soil respiration rates and (delta) 13 C were noted in either treatment. The lack of detectable diurnal changes in both treatments indicates that modeling of daily boreal forest carbon balances based on single instantaneous measurements are unlikely to be misconstrued by substantial diurnal trends. However, it was suggested that spatial variable should be accounted for, given the large standard errors. The impact of tree girdling on soil respiration rates also emphasized the significance of canopy photosynthesis in driving soil processes. 37 refs., 2 figs

  19. Diurnal Variations of Equilibrium Factor and Unattached fraction of Radon Progeny in Some Houses and Laboratories

    International Nuclear Information System (INIS)

    Lee, Seung Chan; Kang, Hee Dong; Kim, Chang Kyu; Lee, Dong Myung

    2001-01-01

    The variation characteristics of radon concentration, equilibrium equivalent concentration and equilibrium factor in some house and laboratory buildings have been studied. The variation of equilibrium factor and the unattached fraction of radon progeny with ventilation condition have been also estimated. The averages of radon concentration, equilibrium equivalent concentration and equilibrium factor were 30 Bq m -3 , 19.6 Bq m -3 and 0.65 in seven houses, while 55.0 Bq m -3 , 31.9 Bq m -3 and 0.58 in three laboratory buildings, respectively. The diurnal variation of radon concentration, equilibrium equivalent concentration and equilibrium factor in indoor showed a typical pattern that the radon concentration, equilibrium equivalent concentration and equilibrium factor increased at dawn and morning, while decreased at midday and evening. While the equilibrium factor rate deceased in the indoor environment which was well ventilated, the unattached fraction of radon progeny increased. The equilibrium factor was in proportion to air pressure and humidity of indoor, whereas in inverse proportion to temperature

  20. Studying Diurnal Variations of Aerosols with NASA MERRA-2 Reanalysis Data

    Science.gov (United States)

    Shen, Suhung; Ostrenga, Dana M.; Zeng, Jian; Vollmer, Bruce E.

    2018-01-01

    Aerosols play an important role in atmospheric dynamics, climate variations, and Earth's energy cycle by altering the radiation balance in the atmosphere through interaction with clouds, providing fertilizer for forests and canopy, and as a supply of iron to the ocean over long time periods. Studies suggest that much of the feedback between dust aerosols and dynamics is associated with diurnal and synoptic scale variability. However, the lack of sub-daily resolution of aerosols from satellite observations makes it difficult to study the diurnal characteristics, especially over tropical and subtropical regions. Investigation of this topic utilizes over 37 years of simulated global aerosol products from NASA atmospheric reanalysis, in the second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) data set, available from NASA Goddard Earth Science Data and Information Services Center (GES DISC). MERRA-2 covers the period 1980-present, and is continuing as an ongoing climate analysis. Aerosol assimilation is included throughout the period, using data from MODIS, MISR, AERONET, and AVHRR (in the pre-EOS period). The aerosols are assimilated using the MERRA-2 aerosol model, which interacts directly with radiation parameterization, and is radiatively coupled with atmospheric model dynamics in the Goddard Earth Observing System Model, Version 5 (GEOS-5). Hourly, monthly, and monthly diurnal data are available at spatial resolution of 0.5o x 0.625o (latitude x longitude). By using MERRA-2 hourly and monthly diurnal products, different aerosol diurnal variabilities are observed over North America, Africa, Asia, and Australia, that may be due to different meteorological conditions and aerosol sources. The presentation will also provide an overview of MERRA-2 data services at GES DISC, such as how to find and download data, and how to quickly visualize and analyze data online with Giovanni.

  1. Some analysis on the diurnal variation of rainfall over the Atlantic Ocean

    Science.gov (United States)

    Gill, T.; Perng, S.; Hughes, A.

    1981-01-01

    Data collected from the GARP Atlantic Tropical Experiment (GATE) was examined. The data were collected from 10,000 grid points arranged as a 100 x 100 array; each grid covered a 4 square km area. The amount of rainfall was measured every 15 minutes during the experiment periods using c-band radars. Two types of analyses were performed on the data: analysis of diurnal variation was done on each of grid points based on the rainfall averages at noon and at midnight, and time series analysis on selected grid points based on the hourly averages of rainfall. Since there are no known distribution model which best describes the rainfall amount, nonparametric methods were used to examine the diurnal variation. Kolmogorov-Smirnov test was used to test if the rainfalls at noon and at midnight have the same statistical distribution. Wilcoxon signed-rank test was used to test if the noon rainfall is heavier than, equal to, or lighter than the midnight rainfall. These tests were done on each of the 10,000 grid points at which the data are available.

  2. Diurnal flight behavior of Ichneumonoidea (Insecta: Hymenoptera) related to environmental factors in a tropical dry forest.

    Science.gov (United States)

    González-Moreno, A; Bordera, S; Leirana-Alcocer, J; Delfín-González, H

    2012-06-01

    The biology and behavior of insects are strongly influenced by environmental conditions such as temperature and precipitation. Because some of these factors present a within day variation, they may be causing variations on insect diurnal flight activity, but scant information exists on the issue. The aim of this work was to describe the patterns on diurnal variation of the abundance of Ichneumonoidea and their relation with relative humidity, temperature, light intensity, and wind speed. The study site was a tropical dry forest at Ría Lagartos Biosphere Reserve, Mexico; where correlations between environmental factors (relative humidity, temperature, light, and wind speed) and abundance of Ichneumonidae and Braconidae (Hymenoptera: Ichneumonoidea) were estimated. The best regression model for explaining abundance variation was selected using the second order Akaike Information Criterion. The optimum values of temperature, humidity, and light for flight activity of both families were also estimated. Ichneumonid and braconid abundances were significantly correlated to relative humidity, temperature, and light intensity; ichneumonid also showed significant correlations to wind speed. The second order Akaike Information Criterion suggests that in tropical dry conditions, relative humidity is more important that temperature for Ichneumonoidea diurnal activity. Ichneumonid wasps selected toward intermediate values of relative humidity, temperature and the lowest wind speeds; while Braconidae selected for low values of relative humidity. For light intensity, braconids presented a positive selection for moderately high values.

  3. Diurnal and seasonal variations in carbon dioxide exchange in ecosystems in the Zhangye oasis area, Northwest China.

    Science.gov (United States)

    Zhang, Lei; Sun, Rui; Xu, Ziwei; Qiao, Chen; Jiang, Guoqing

    2015-01-01

    Quantifying carbon dioxide exchange and understanding the response of key environmental factors in various ecosystems are critical to understanding regional carbon budgets and ecosystem behaviors. For this study, CO2 fluxes were measured in a variety of ecosystems with an eddy covariance observation matrix between June 2012 and September 2012 in the Zhangye oasis area of Northwest China. The results show distinct diurnal variations in the CO2 fluxes in vegetable field, orchard, wetland, and maize cropland. Diurnal variations of CO2 fluxes were not obvious, and their values approached zero in the sandy desert, desert steppe, and Gobi ecosystems. Additionally, daily variations in the Gross Primary Production (GPP), Ecosystem Respiration (Reco) and Net Ecosystem Exchange (NEE) were not obvious in the sandy desert, desert steppe, and Gobi ecosystems. In contrast, the distributions of the GPP, Reco, and NEE show significant daily variations, that are closely related to the development of vegetation in the maize, wetland, orchard, and vegetable field ecosystems. All of the ecosystems are characterized by their carbon absorption during the observation period. The ability to absorb CO2 differed significantly among the tested ecosystems. We also used the Michaelis-Menten equation and exponential curve fitting methods to analyze the impact of Photosynthetically Active Radiation (PAR) on the daytime CO2 flux and impact of air temperature on Reco at night. The results show that PAR is the dominant factor in controlling photosynthesis with limited solar radiation, and daytime CO2 assimilation increases rapidly with PAR. Additionally, the carbon assimilation rate was found to increase slowly with high solar radiation. The light response parameters changed with each growth stage for all of the vegetation types, and higher light response values were observed during months or stages when the plants grew quickly. Light saturation points are different for different species. Nighttime

  4. Diurnal and seasonal variations in carbon dioxide exchange in ecosystems in the Zhangye oasis area, Northwest China.

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    Full Text Available Quantifying carbon dioxide exchange and understanding the response of key environmental factors in various ecosystems are critical to understanding regional carbon budgets and ecosystem behaviors. For this study, CO2 fluxes were measured in a variety of ecosystems with an eddy covariance observation matrix between June 2012 and September 2012 in the Zhangye oasis area of Northwest China. The results show distinct diurnal variations in the CO2 fluxes in vegetable field, orchard, wetland, and maize cropland. Diurnal variations of CO2 fluxes were not obvious, and their values approached zero in the sandy desert, desert steppe, and Gobi ecosystems. Additionally, daily variations in the Gross Primary Production (GPP, Ecosystem Respiration (Reco and Net Ecosystem Exchange (NEE were not obvious in the sandy desert, desert steppe, and Gobi ecosystems. In contrast, the distributions of the GPP, Reco, and NEE show significant daily variations, that are closely related to the development of vegetation in the maize, wetland, orchard, and vegetable field ecosystems. All of the ecosystems are characterized by their carbon absorption during the observation period. The ability to absorb CO2 differed significantly among the tested ecosystems. We also used the Michaelis-Menten equation and exponential curve fitting methods to analyze the impact of Photosynthetically Active Radiation (PAR on the daytime CO2 flux and impact of air temperature on Reco at night. The results show that PAR is the dominant factor in controlling photosynthesis with limited solar radiation, and daytime CO2 assimilation increases rapidly with PAR. Additionally, the carbon assimilation rate was found to increase slowly with high solar radiation. The light response parameters changed with each growth stage for all of the vegetation types, and higher light response values were observed during months or stages when the plants grew quickly. Light saturation points are different for different

  5. Mean diurnal variations of noctilucent clouds during 7 years of lidar observations at ALOMAR

    Directory of Open Access Journals (Sweden)

    J. Fiedler

    2005-06-01

    Full Text Available From 1997 to 2003, noctilucent clouds (NLC were observed by lidar above the ALOMAR observatory in Northern Norway (69° N during a total of 1880 measurement hours. This data set contains NLC signatures for 640h, covering all local times, even during the highest solar background conditions. After data limitation imposing a threshold value of 4x10-10m-1sr-1 for the volume backscatter coefficient of the NLC particles, a measure for the cloud brightness, local time dependencies of the NLC occurrence frequency, altitude, and brightness were determined. On average, over the 7 years NLC occurred during the whole day and preferably in the early morning hours, with a maximum occurrence frequency of ~40% between 4 and 7 LT. Splitting the data into weak and strong clouds yields almost identical amplitudes of diurnal and semidiurnal variations for the occurrence of weak clouds, whereas the strong clouds are dominated by the diurnal variation. NLC occurrence, altitude, as well as brightness, show a remarkable persistence concerning diurnal and semidiurnal variations from 1997 to 2003, suggesting that NLC above ALOMAR are significantly controlled by atmospheric tides. The observed mean anti-phase behavior between cloud altitude and brightness is attributed to a phase shift between the semidiurnal components by ~6h. Investigation of data for each individual year regarding the prevailing oscillation periods of the NLC parameters showed different phase relationships, leading to a complex variability in the cloud parameters.

  6. Developing a Data Record of Lower Troposphere Temperature Profiles for Diurnal Land-Atmosphere Coupling Investigations

    Science.gov (United States)

    Lin, Z.; Li, D.

    2017-12-01

    The lower troposphere, including the planetary boundary layer, is strongly influenced by the land surface at diurnal scales. However, investigations of diurnal land-atmosphere coupling are significantly hindered by the lack of profile measurements that resolve the diurnal cycle. This study aims to bridge this gap by developing a decade-long (from 2007 to 2016) data record of diurnal temperature profiles in the lower troposphere (from the surface to about 4 km above the surface), which is based on the Aircrafts Communications Addressing and Reporting System (ACARS) meteorological observations. We first identify the number of profiles within an hour for each airport over the CONUS. At each airport, only data that passed at least level-1 quality check are retained. 40 airports out of 275 are then selected, which have data for more than 12 hours per day. These selected airports are mainly located along the east and west coasts, as expected. Because the data are recorded at irregular heights, we resample each profile in the lowest 4 km or so to pre-defined vertical coordinates. These temperature profiles are further bias-corrected by comparing to collocated radiosonde observations. This consistent data record of diurnal temperature profiles in the lower troposphere can be also used for regional climatology research, short-term weather forecasts, and numerical model evaluation.

  7. Diurnal and seasonal variations in surface methane at a tropical coastal station: Role of mesoscale meteorology.

    Science.gov (United States)

    Kavitha, M; Nair, Prabha R; Girach, I A; Aneesh, S; Sijikumar, S; Renju, R

    2018-08-01

    In view of the large uncertainties in the methane (CH 4 ) emission estimates and the large spatial gaps in its measurements, studies on near-surface CH 4 on regional basis become highly relevant. This paper presents the first time observational results of a study on the impacts of mesoscale meteorology on the temporal variations of near-surface CH 4 at a tropical coastal station, in India. It is based on the in-situ measurements conducted during January 2014 to August 2016, using an on-line CH 4 analyzer working on the principle of gas chromatography. The diurnal variation shows a daytime low (1898-1925ppbv) and nighttime high (1936-2022ppbv) extending till early morning hours. These changes are closely associated with the mesoscale circulations, namely Sea Breeze (SB) and Land Breeze (LB), as obtained through the meteorological observations, WRF simulations of the circulations and the diurnal variation of boundary layer height as observed by the Microwave Radiometer Profiler. The diurnal enhancement always coincides with the onset of LB. Several cases of different onset timings of LB were examined and results presented. The CH 4 mixing ratio also exhibits significant seasonal patterns being maximum in winter and minimum in pre-monsoon/monsoon with significant inter-annual variations, which is also reflected in diurnal patterns, and are associated with changing synoptic meteorology. This paper also presents an analysis of in-situ measured near-surface CH 4 , column averaged and upper tropospheric CH 4 retrieved by Atmospheric Infrared Sounder (AIRS) onboard Earth Observing System (EOS)/Aqua which gives insight into the vertical distribution of the CH 4 over the location. An attempt is also made to estimate the instantaneous radiative forcing for the measured CH 4 mixing ratio. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Diurnal, seasonal and latitudinal variations of electron temperature measured by the SROSS C2 satellite at 500 km altitude and comparison with the IRI

    Directory of Open Access Journals (Sweden)

    P. K. Bhuyan

    2002-06-01

    Full Text Available The diurnal, seasonal and latitudinal variations of electron temperature Te, measured by the SROSS C2 satellite at equatorial and the low-latitudes during the low solar activity period of 1995–1997 are investigated. The average height of the satellite was ~ 500 km and it covered the latitude belt of –31° to 34° and the longitude range of 40°–100°. Te varies between 700–800 K during night-time (20:00–04:00 LT, rises sharply during sunrise (04:00–06:00 LT to reach a level of ~ 3500 K within a couple of hours and then falls between 07:00–10:00 LT to a daytime average value of ~ 1600 K. A secondary maximum is observed around 16:00–18:00 LT in summer. Latitudinal gradients in Te have been observed during the morning enhancement and daytime hours. Comparison of measured and International Reference Ionosphere (IRI predicted electron temperature reveals that the IRI predicts nighttime Te well within ~ 100 K of observation, but at other local times, the predicted Te is less than that measured in all seasons.Key words. Ionosphere, equatorial ionosphere, plasma temperature, and density

  9. Autoradiographic investigations on the question of diurnal variations of cell proliferation in the jejunal crypt epithelia of mice

    International Nuclear Information System (INIS)

    Herterich, G.C.

    1982-01-01

    In this work the question was investigated whether the proliferation activity of the crypt epithelia of the small intestine of mice is subject to diurnal variations. The results published so far to settle this question are contradictory. The flow rate at the beginning and end of the S phase was measured as a function of daytime for the jejunal crypt epithelia of mice following a double labelling with 3-H and 14-C-TdR. The quotient of the cell flow rate in and out of the S phase is supposed to be = 1 over the whole day if there are no diurnal variations. The method of measurements of the cell flow rate was chosen above all because the quotient is largely independent of the variation from animal to animal. The experiments provided dues as to the presence of deviations of the quotient of cell flow rate at the end and beginning of the S phase and of the mitotic index from the daily mean value. However, on account of the relatively large statistical variations of the values at the different daytimes it is not possible to state clearly whether the cell proliferation of the jejunal epithelium is subject to diurnal variations. Should there be such variations, then they are not large at any rate. (orig./MG) [de

  10. SST diurnal variability in the North Sea and the Baltic Sea

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Høyer, Jacob; Hasager, Charlotte Bay

    2012-01-01

    (σ) between 0.4K and 0.9K. The 5year record with daytime temperature anomalies is used to derive robust statistical description of duration, spatial extent, proximity to coast and water depth of the diurnal warming events. Seasonal and inter-annual variations in the diurnal warming are also...... quantified. Daytime anomalies exceeding 2K are identified during the spring and summer months of every year, peaking at 1500 LT. Events with daily anomalies exceeding 5K are observed. Areas where diurnal variability is often observed coincide with areas of frequently observed low winds and turbid waters...

  11. Diurnal changes of earthquake activity and geomagnetic Sq-variations

    Directory of Open Access Journals (Sweden)

    G. Duma

    2003-01-01

    Full Text Available Statistic analyses demonstrate that the probability of earthquake occurrence in many earthquake regions strongly depends on the time of day, that is on Local Time (e.g. Conrad, 1909, 1932; Shimshoni, 1971; Duma, 1997; Duma and Vilardo, 1998. This also applies to strong earthquake activity. Moreover, recent observations reveal an involvement of the regular diurnal variations of the Earth’s magnetic field, commonly known as Sq-variations, in this geodynamic process of changing earthquake activity with the time of day (Duma, 1996, 1999. In the article it is attempted to quantify the forces which result from the interaction between the induced Sq-variation currents in the Earth’s lithosphere and the regional Earth’s magnetic field, in order to assess the influence on the tectonic stress field and on seismic activity. A reliable model is obtained, which indicates a high energy involved in this process. The effect of Sq-induction is compared with the results of the large scale electromagnetic experiment "Khibiny" (Velikhov, 1989, where a giant artificial current loop was activated in the Barents Sea.

  12. Diurnal variations of summertime precipitation over the Tibetan Plateau in relation to orographically-induced regional circulations

    International Nuclear Information System (INIS)

    Liu Xiaodong; Bai Aijuan; Liu Changhai

    2009-01-01

    The diurnal patterns of variation of summertime precipitation over the Tibetan Plateau were first investigated using the TRMM multi-satellite precipitation analysis product for five summer seasons (i.e. June to August for 2002-2006). Both hourly precipitation amount and precipitation frequency exhibit pronounced daily variability with an overall late-afternoon-evening maximum and a dominant morning minimum. A notable exception is the prevalent nocturnal maximum around the periphery of the Plateau. In terms of the normalized harmonic amplitude, the diurnal signal shows significant regional contrast with the strongest manifestation over the central Plateau and the weakest near the periphery. This remarkable spatial dependence in daily rainfall cycles is clear evidence of orographic and heterogeneous land-surface impacts on convective development. Using six-hourly NCEP FNL data, we then examined the diurnal variability in the atmospheric circulation and thermodynamics in this region. The results show that the Plateau heats (cools) the overlying atmosphere during the day (night) more than the surrounding areas, and as a consequence a relatively stronger confluent circulation in this region occurs during the day than during the night, consistent with the diurnal rainfall cycles. Moreover, the regions with large low-level convergence and upper-level divergence correspond to the strong diurnal rainfall variations. The reversed daily alterations of convergence-divergence patterns in the vicinity of the Plateau edges are in agreement with the observed nighttime rainfall peak therein. This study further demonstrates the importance of the Tibetan Plateau in regulating regional circulation and precipitation.

  13. Daily diurnal variation in admissions for ruptured abdominal aortic aneurysms.

    LENUS (Irish Health Repository)

    Killeen, Shane

    2012-02-03

    BACKGROUND: Many vascular events, such as myocardial infarction and cerebrovascular accident, demonstrate a circadian pattern of presentation. Blood pressure is intimately related to these pathologies and is the one physiological variable consistently associated with abdominal aortic aneurysm rupture. It also demonstrates a diurnal variation. The purpose of this study was to determine if rupture of an abdominal aortic aneurysm (RAAA) exhibits a diurnal variation. METHODS: A retrospective cohort-based study was performed to determine the timing of presentation of RAAA to the vascular unit of Cork University Hospital over a 15-year period. Time of admission, symptom onset, and co-morbidities such as hypertension were noted. Fournier\\'s analysis and chi-squared analysis were performed. To ameliorate possible confounding factors, patients admitted with perforated peptic ulcers were examined in the same manner. RESULTS: A total of 148 cases of RAAA were identified, with a male preponderance (71.7% [124] male versus 29.3% [44] female patients) and a mean age of 74.4 +\\/- 7.2 years at presentation. 70.9% (105) were known to have hypertension, 52.2% (77) were current smokers, and 46.8% (69) were being treated for chronic obstructive airway disease (COAD). Time of symptom onset was recorded in 88.5% (131) of patients. There was a marked early morning peak in RAAA admissions, with the highest number of RAAA being admitted between 08.00 and 09.59. A second, smaller peak was observed at 14.00-15.59. These findings were suggestive of diurnal variation. [chi(2) =16.75, p < 0.003]. Some 40% (59) of patients were admitted between 00.00 and 06.00, an incidence significantly higher than for other time periods (06.00-12.00, 12.00-18.00, and 18.00-24.00) [chi(2) = 18.72; df = 3; p < 0.0003]. A significantly higher number of patients admitted between 00.00 and 06.00 were known hypertensives (chi(2) = 7.94; p < 0.05). CONCLUSIONS: The findings of this study suggest a distinct

  14. Diurnal microstructural variations in healthy adult brain revealed by diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Chunxiang Jiang

    Full Text Available Biorhythm is a fundamental property of human physiology. Changes in the extracellular space induced by cell swelling in response to the neural activity enable the in vivo characterization of cerebral microstructure by measuring the water diffusivity using diffusion tensor imaging (DTI. To study the diurnal microstructural alterations of human brain, fifteen right-handed healthy adult subjects were recruited for DTI studies in two repeated sessions (8∶30 AM and 8∶30 PM within a 24-hour interval. Fractional anisotropy (FA, apparent diffusion coefficient (ADC, axial (λ// and radial diffusivity (λ⊥ were compared pixel by pixel between the sessions for each subject. Significant increased morning measurements in FA, ADC, λ// and λ⊥ were seen in a wide range of brain areas involving frontal, parietal, temporal and occipital lobes. Prominent evening dominant λ⊥ (18.58% was detected in the right inferior temporal and ventral fusiform gyri. AM-PM variation of λ⊥ was substantially left side hemisphere dominant (p<0.05, while no hemispheric preference was observed for the same analysis for ADC (p = 0.77, λ// (p = 0.08 or FA (p = 0.25. The percentage change of ADC, λ//, λ⊥, and FA were 1.59%, 2.15%, 1.20% and 2.84%, respectively, for brain areas without diurnal diffusivity contrast. Microstructural variations may function as the substrates of the phasic neural activities in correspondence to the environment adaptation in a light-dark cycle. This research provided a baseline for researches in neuroscience, sleep medicine, psychological and psychiatric disorders, and necessitates that diurnal effect should be taken into account in following up studies using diffusion tensor quantities.

  15. Changes In Some Physiological And Chemical Parameters Of Ostrich In Response To The Seasonal And Diurnal Temperature Variations

    International Nuclear Information System (INIS)

    Khalil, M.H.; Khalifa, H.H.; Elaroussi, M.A.; Elsayed, M.A.; Basuony, H.A.

    2011-01-01

    The present study was carried out to evaluate the effect of temperature variation during summer and winter seasons and diurnal effect on ostrich performance and changes in some physiological and blood chemical parameters. Twelve immature ostrich birds (7 months old) were exposed to daily natural ambient temperatures during the summer and winter. The birds were fed a grower ration ad libitum (19 % protein and 2450 K cal ME/kg) and the daily feed consumption (g/ bird/day) and water consumption (ml/bird/day) were measured for a representative 7 days during each season. Cloacal temperatures was measured and blood samples were collected twice; one in the morning at 7:00 am and the other in the afternoon at 15.00 pm during a representative 7 hot days of June (40±2 degree C) (summer) and the 7 cold days of January (18±2 degree C) (winter). Red blood cells count (RBC) and total white blood cells count (WBC), hemoglobin (Hb) and packed cell volume (PCV) were determined. Mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and mean corpuscular hemoglobin concentrations (MCHC) were calculated. In serum, levels of total protein (TP), albumin (A) and globulin (G), alanine transaminase (ALT), aspartate transaminase (AST), glucose, triglycerides, cholesterol, triiodothyronine (T 3 ) and cortisol were estimated. Results indicated that feed consumption unlike water consumption was significantly increased during winter than in summer season. Moreover, body temperature was increased significantly during the summer season as compared with the winter season and was significantly elevated at the afternoon than at the morning. Blood picture showed that hemoglobin (Hb), packed cell volume (PCV), red blood cells count (RBC) and total white blood cells count (WBC) were significantly decreased in the summer than in winter at the two diurnal periods. Also, both mean corpuscular volume (MCV) and mean corpuscular hemoglobin (MCH) were significantly increased in summer than winter

  16. Interannual and Intraseasonal Variability of the Diurnal Tide

    Science.gov (United States)

    Riggin, D. M.; Ortland, D. A.; Lieberman, R. S.; Oberheide, J.; Murayama, Y.; Hocking, W. K.; Vincent, R. A.; Reid, I. M.; Kumar, G. K.; Batista, P. P.; Clemesha, B. R.

    2013-12-01

    Temporal variations in the amplitude of the diurnal tide (DT) have been observed by radars with a seasonal dependence that is typically semiannual in the tropics. During some years the wind variation departs from the normal seasonal behavior with anomalously large amplitudes compared to most other years. This anomaly often takes the form of a greatly enhanced boreal spring equinoctal maximum. The boreal spring of 2008 is a example of this behavior. Diurnal amplitudes in the meridional winds are shown in the figure below for the first 6 months of 2008. Note that the diurnal tide undergoes a sharp increase in amplitude up to 80 ms-1 during this event. The characteristics of this event are diagnosed in a variety of global data sets. These include our own physics-based assimilation of SABER temperatures, and gridded analyses from the national weather services (NCAR/NCEP and ECMWF). Tidal amplitude variations are sometimes attributed to nonlinear interaction. However, this type of interaction would be expected to produce non-migrating tides, e.g., westward-2 or standing. SABER data show that the amplitude anomaly is mainly in the migrating DT. The global data sets allow us to explore properties of the anomaly, such as its origin, evolution in time, and associated momentum flux. In addition to this case study, we also investigate the general characteristics of DT interannual variability during the years of the SABER mission (2002-present). Diurnal tide momentum deposition plays a significant role in controlling the zonal mean wind in the mesosphere, We demonstrate its importance in driving the mesospheric semiannual oscillation (MSAO). Diurnal tide wind amplitudes in the meridional component observed at two radar sites, Rarotonga, Cook Islands (22.1°S, 159.8°W), and at Guanacaste, Costa Rica (10.3°N, 85.6°W).

  17. Summer to Winter Diurnal Variabilities of Temperature and Water Vapour in the Lowermost Troposphere as Observed by HAMSTRAD over Dome C, Antarctica

    Science.gov (United States)

    Ricaud, P.; Genthon, C.; Durand, P.; Attié, J.-L.; Carminati, F.; Canut, G.; Vanacker, J.-F.; Moggio, L.; Courcoux, Y.; Pellegrini, A.; Rose, T.

    2012-04-01

    The HAMSTRAD (H2O Antarctica Microwave Stratospheric and Tropospheric Radiometers) microwave radiometer operating at 60 GHz (oxygen line, thus temperature) and 183 GHz (water vapour line) has been permanently deployed at the Dome C station, Concordia, Antarctica [75°06'S, 123°21'E, 3,233 m above mean sea level] in January 2010 to study long-term trends in tropospheric absolute humidity and temperature. The great sensitivity of the instrument in the lowermost troposphere helped to characterize the diurnal cycle of temperature and H2O from the austral summer (January 2010) to the winter (June 2010) seasons from heights of 10 to 200 m in the planetary boundary layer (PBL). The study has characterized the vertical resolution of the HAMSTRAD measurements: 10-20 m for temperature and 25-50 m for H2O. A strong diurnal cycle in temperature and H2O (although noisier) has been measured in summertime at 10 m, decreasing in amplitude with height, and phase-shifted by about 4 h above 50 m with a strong H2O-temperature correlation (>0.8) throughout the entire PBL. In autumn, whilst the diurnal cycle in temperature and H2O is less intense, a 12-h phase shift is observed above 30 m. In wintertime, a weak diurnal signal measured between 10 to 200 m is attributed to the methodology employed, which consists of monthly averaged data, and that combines air masses from different origins (sampling effect) and not to the imprint of the null solar irradiation. In situ sensors scanning the entire 24-h period, radiosondes launched at 2000 local solar time (LST) and European Centre for Medium-Range Weather Forecasts (ECMWF) analyses at 0200, 0800, 1400 and 2000 LST agree very well with the HAMSTRAD diurnal cycles for temperature and relatively well for absolute humidity. For temperature, HAMSTRAD tends to be consistent with all the other datasets but shows a smoother vertical profile from 10 to 100 m compared to radiosondes and in-situ data, with ECMWF profiles even smoother than HAMSTRAD

  18. Diurnal Variation In Behaviour Of Pink-Footed Geese (Anser Brachyrhynchus) During Spring Migration In Trøndelag, Norway

    DEFF Research Database (Denmark)

    Chudzińska, Magda Ewa; Madsen, Jesper; Nabe-Nielsen, Jacob

    During spring migration, Pink-footed Geese Anser brachyrhynchus stop in mid Norway to refuel before their onward flight to the Svalbard breeding grounds. In mid Norway, geese feed on pastures, stubble as well as newly sown grain fields. The aim of the paper is to describe diurnal variations...... in the behaviour of geese and to examine whether these variations are driven by digestibility of food geese feed on or also by external factors such as distance to the roost, disturbance and flock size. Based on diurnal flock scans of activity budgets (observations carried out between 05h00 and 22h00 hrs) in each...... habitat type, we fitted a model containing all predictors we believe may influence geese behaviour. The number of feeding and alert geese on fields displayed a strong diurnal trend, which varied among habitat types, frequent and sporadic disturbance, but not flock size. On roost sites, geese also showed...

  19. An explanation for the different climate sensitivities of land and ocean surfaces based on the diurnal cycle

    Directory of Open Access Journals (Sweden)

    A. Kleidon

    2017-09-01

    Full Text Available Observations and climate model simulations consistently show a higher climate sensitivity of land surfaces compared to ocean surfaces. Here we show that this difference in temperature sensitivity can be explained by the different means by which the diurnal variation in solar radiation is buffered. While ocean surfaces buffer the diurnal variations by heat storage changes below the surface, land surfaces buffer it mostly by heat storage changes above the surface in the lower atmosphere that are reflected in the diurnal growth of a convective boundary layer. Storage changes below the surface allow the ocean surface–atmosphere system to maintain turbulent fluxes over day and night, while the land surface–atmosphere system maintains turbulent fluxes only during the daytime hours, when the surface is heated by absorption of solar radiation. This shorter duration of turbulent fluxes on land results in a greater sensitivity of the land surface–atmosphere system to changes in the greenhouse forcing because nighttime temperatures are shaped by radiative exchange only, which are more sensitive to changes in greenhouse forcing. We use a simple, analytic energy balance model of the surface–atmosphere system in which turbulent fluxes are constrained by the maximum power limit to estimate the effects of these different means to buffer the diurnal cycle on the resulting temperature sensitivities. The model predicts that land surfaces have a 50 % greater climate sensitivity than ocean surfaces, and that the nighttime temperatures on land increase about twice as much as daytime temperatures because of the absence of turbulent fluxes at night. Both predictions compare very well with observations and CMIP5 climate model simulations. Hence, the greater climate sensitivity of land surfaces can be explained by its buffering of diurnal variations in solar radiation in the lower atmosphere.

  20. Diurnal variation in degradation of phytic acid by plant phytase in the pig stomach

    NARCIS (Netherlands)

    Kemme, P.A.; Jongbloed, A.W.; Mroz, Z.; Beynen, A.C.

    1998-01-01

    The effects of plant phytase on the gastric degradation of phytic acid and digestibilities of DM and P, and their diurnal variation were evaluated in pigs from 90 to 115 kg BW fitted with simple duodenal T-cannulas. Three diets were fed to three pigs in four collection periods according to a

  1. Diurnal variation of methane emission from a paddy field in Brazilian Southeast

    Directory of Open Access Journals (Sweden)

    Magda Aparecida de Lima

    2018-04-01

    Full Text Available ABSTRACT: This study aimed to investigate the diurnal variation of methane (CH4 emission in a flooded-irrigated rice field at different stages of the plant development under tropical climate in three growing seasons, in order to determine the most appropriate time for gas sampling in the Brazilian Southeast region. It aimed also to verify correlations between CH4 flux and air, water and soil temperatures, and solar radiation. The CH4 emissions were measured every 3-hour interval on specific days in different development stages of the flooded rice in the Experiment Station of the Agência Paulista de Tecnologia dos Agronegócios (APTA, Pólo Regional Vale do Paraíba, at Pindamonhangaba, State of São Paulo (22°55’ S, 45°30’ W, Brazil. Different CH4 emission rates were observed among the plant growth stages and also among the growing seasons. The CH4 emission showed high correlation with the soil temperature at 2cm depth. At this depth, the CH4 emission activation energy in response to soil temperature was higher in the stage R2. Emission peaks were observed at afternoon, while lower fluxes were recorded at the early morning. The most appropriate local time for gas sampling was estimated at 12:11:15a.m.±01:14:16 and 09:05:49p.m.±01:29:04.

  2. Characterizations of the diurnal shapes of OI 630.0 nm dayglow intensity variations: inferences

    Directory of Open Access Journals (Sweden)

    D. Chakrabarty

    2002-11-01

    Full Text Available Measurements of OI 630.0 nm thermospheric dayglow emission by means of the Dayglow Photometer (DGP at Mt. Abu (24.6° N, 73.7° E, dip lat 19.09° N, a station under the crest of Equatorial Ionization Anomaly (EIA, reveal day-to-day changes in the shapes of the diurnal profiles of dayglow intensity variations. These shapes have been characterized using the magnetometer data from equatorial and low-latitude stations. Substantial changes have been noticed in the shapes of the dayglow intensity variations between 10:00–15:00 IST (Indian Standard Time during the days when normal and counter electrojet events are present over the equator. It is found that the width (the time span corresponding to 0.8 times the maximum dayglow intensity of the diurnal profile has a linear relationship with the integrated electrojet strength. Occasional deviation from this linear relationship is attributed to the presence of substantial mean meridional wind.Key words. Ionosphere (equatorial ionosphere; ionosphere – atmosphere interactions; ionospheric disturbances

  3. Characterizations of the diurnal shapes of OI 630.0 nm dayglow intensity variations: inferences

    Directory of Open Access Journals (Sweden)

    D. Chakrabarty

    Full Text Available Measurements of OI 630.0 nm thermospheric dayglow emission by means of the Dayglow Photometer (DGP at Mt. Abu (24.6° N, 73.7° E, dip lat 19.09° N, a station under the crest of Equatorial Ionization Anomaly (EIA, reveal day-to-day changes in the shapes of the diurnal profiles of dayglow intensity variations. These shapes have been characterized using the magnetometer data from equatorial and low-latitude stations. Substantial changes have been noticed in the shapes of the dayglow intensity variations between 10:00–15:00 IST (Indian Standard Time during the days when normal and counter electrojet events are present over the equator. It is found that the width (the time span corresponding to 0.8 times the maximum dayglow intensity of the diurnal profile has a linear relationship with the integrated electrojet strength. Occasional deviation from this linear relationship is attributed to the presence of substantial mean meridional wind.

    Key words. Ionosphere (equatorial ionosphere; ionosphere – atmosphere interactions; ionospheric disturbances

  4. Diurnal and seasonal variations of greenhouse gas emissions from a naturally ventilated dairy barn in a cold region

    Science.gov (United States)

    Huang, Dandan; Guo, Huiqing

    2018-01-01

    Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions were quantified for a naturally ventilated free-stall dairy barn in the Canadian Prairies climate through continuous measurements for a year from February 2015 to January 2016, with ventilation rate estimated by a CO2 mass balance method. The results were categorized into seasonal emission profiles with monthly data measured on a typical day, and diurnal profiles in cold (January), warm (July), and mild seasons (October) of all three gases. Seasonal CO2, CH4, and N2O concentrations greatly fluctuated within ranges of 593-2433 ppm, 15-152 ppm, and 0.32-0.40 ppm, respectively, with obviously higher concentrations in the cold season. Emission factors of the three gases were summarized: seasonal N2O emission varied between 0.5 and 10 μg s-1 AU-1 with lower emission in the cold season, while seasonal CO2 and CH4 emissions were within narrow ranges of 112-119 mg s-1 AU-1 and 2.5-3.5 mg s-1 AU-1. The result suggested a lower enteric CH4 emission for dairy cows than that estimated by Environment Canada (2014). Significant diurnal effects (P 0.05), but obvious diurnal variations in all seasons. In comparison with previous studies, it was found that the dairy barn in a cold region climate with smaller vent openings had relatively higher indoor CO2 and CH4 concentrations, but comparable CO2 and CH4 emissions to most previous studies. Besides, ventilation rate, temperature, and relative humidity all significantly affected the three gas concentrations with the outdoor temperature being the most relevant factor (P < 0.01); however, they showed less or no statistical relations to emissions.

  5. Diurnal sampling reveals significant variation in CO2 emission from a tropical productive lake.

    Science.gov (United States)

    Reis, P C J; Barbosa, F A R

    2014-08-01

    It is well accepted in the literature that lakes are generally net heterotrophic and supersaturated with CO2 because they receive allochthonous carbon inputs. However, autotrophy and CO2 undersaturation may happen for at least part of the time, especially in productive lakes. Since diurnal scale is particularly important to tropical lakes dynamics, we evaluated diurnal changes in pCO2 and CO2 flux across the air-water interface in a tropical productive lake in southeastern Brazil (Lake Carioca) over two consecutive days. Both pCO2 and CO2 flux were significantly different between day (9:00 to 17:00) and night (21:00 to 5:00) confirming the importance of this scale for CO2 dynamics in tropical lakes. Net heterotrophy and CO2 outgassing from the lake were registered only at night, while significant CO2 emission did not happen during the day. Dissolved oxygen concentration and temperature trends over the diurnal cycle indicated the dependence of CO2 dynamics on lake metabolism (respiration and photosynthesis). This study indicates the importance of considering the diurnal scale when examining CO2 emissions from tropical lakes.

  6. Seasonal temperature variation influences climate suitability for dengue, chikungunya, and Zika transmission.

    Science.gov (United States)

    Huber, John H; Childs, Marissa L; Caldwell, Jamie M; Mordecai, Erin A

    2018-05-01

    Dengue, chikungunya, and Zika virus epidemics transmitted by Aedes aegypti mosquitoes have recently (re)emerged and spread throughout the Americas, Southeast Asia, the Pacific Islands, and elsewhere. Understanding how environmental conditions affect epidemic dynamics is critical for predicting and responding to the geographic and seasonal spread of disease. Specifically, we lack a mechanistic understanding of how seasonal variation in temperature affects epidemic magnitude and duration. Here, we develop a dynamic disease transmission model for dengue virus and Aedes aegypti mosquitoes that integrates mechanistic, empirically parameterized, and independently validated mosquito and virus trait thermal responses under seasonally varying temperatures. We examine the influence of seasonal temperature mean, variation, and temperature at the start of the epidemic on disease dynamics. We find that at both constant and seasonally varying temperatures, warmer temperatures at the start of epidemics promote more rapid epidemics due to faster burnout of the susceptible population. By contrast, intermediate temperatures (24-25°C) at epidemic onset produced the largest epidemics in both constant and seasonally varying temperature regimes. When seasonal temperature variation was low, 25-35°C annual average temperatures produced the largest epidemics, but this range shifted to cooler temperatures as seasonal temperature variation increased (analogous to previous results for diurnal temperature variation). Tropical and sub-tropical cities such as Rio de Janeiro, Fortaleza, and Salvador, Brazil; Cali, Cartagena, and Barranquilla, Colombia; Delhi, India; Guangzhou, China; and Manila, Philippines have mean annual temperatures and seasonal temperature ranges that produced the largest epidemics. However, more temperate cities like Shanghai, China had high epidemic suitability because large seasonal variation offset moderate annual average temperatures. By accounting for seasonal

  7. Seasonal temperature variation influences climate suitability for dengue, chikungunya, and Zika transmission.

    Directory of Open Access Journals (Sweden)

    John H Huber

    2018-05-01

    Full Text Available Dengue, chikungunya, and Zika virus epidemics transmitted by Aedes aegypti mosquitoes have recently (reemerged and spread throughout the Americas, Southeast Asia, the Pacific Islands, and elsewhere. Understanding how environmental conditions affect epidemic dynamics is critical for predicting and responding to the geographic and seasonal spread of disease. Specifically, we lack a mechanistic understanding of how seasonal variation in temperature affects epidemic magnitude and duration. Here, we develop a dynamic disease transmission model for dengue virus and Aedes aegypti mosquitoes that integrates mechanistic, empirically parameterized, and independently validated mosquito and virus trait thermal responses under seasonally varying temperatures. We examine the influence of seasonal temperature mean, variation, and temperature at the start of the epidemic on disease dynamics. We find that at both constant and seasonally varying temperatures, warmer temperatures at the start of epidemics promote more rapid epidemics due to faster burnout of the susceptible population. By contrast, intermediate temperatures (24-25°C at epidemic onset produced the largest epidemics in both constant and seasonally varying temperature regimes. When seasonal temperature variation was low, 25-35°C annual average temperatures produced the largest epidemics, but this range shifted to cooler temperatures as seasonal temperature variation increased (analogous to previous results for diurnal temperature variation. Tropical and sub-tropical cities such as Rio de Janeiro, Fortaleza, and Salvador, Brazil; Cali, Cartagena, and Barranquilla, Colombia; Delhi, India; Guangzhou, China; and Manila, Philippines have mean annual temperatures and seasonal temperature ranges that produced the largest epidemics. However, more temperate cities like Shanghai, China had high epidemic suitability because large seasonal variation offset moderate annual average temperatures. By accounting

  8. Biodegradation of Toluene under seasonal and diurnal fluctuations of soil-water temperature

    NARCIS (Netherlands)

    Yadav, B.K.; Shrestha, S.R.; Hassanizadeh, S.M.

    2012-01-01

    An increasing interest in bioremediation of hydrocarbon polluted sites raises the question of the influence of seasonal and diurnal changes on soil-water temperature on biodegradation of BTEX, a widespread group of (sub)-surface contaminants. Therefore, we investigated the impact of a wide range of

  9. Viscosity changes of riparian water controls diurnal fluctuations of stream-flow and DOC concentration

    Science.gov (United States)

    Schwab, Michael; Klaus, Julian; Pfister, Laurent; Weiler, Markus

    2015-04-01

    Diurnal fluctuations in stream-flow are commonly explained as being triggered by the daily evapotranspiration cycle in the riparian zone, leading to stream flow minima in the afternoon. While this trigger effect must necessarily be constrained by the extent of the growing season of vegetation, we here show evidence of daily stream flow maxima in the afternoon in a small headwater stream during the dormant season. We hypothesize that the afternoon maxima in stream flow are induced by viscosity changes of riparian water that is caused by diurnal temperature variations of the near surface groundwater in the riparian zone. The patterns were observed in the Weierbach headwater catchment in Luxembourg. The catchment is covering an area of 0.45 km2, is entirely covered by forest and is dominated by a schistous substratum. DOC concentration at the outlet of the catchment was measured with the field deployable UV-Vis spectrometer spectro::lyser (scan Messtechnik GmbH) with a high frequency of 15 minutes over several months. Discharge was measured with an ISCO 4120 Flow Logger. During the growing season, stream flow shows a frequently observed diurnal pattern with discharge minima in the afternoon. During the dormant season, a long dry period with daily air temperature amplitudes of around 10 ° C occurred in March and April 2014, with discharge maxima in the afternoon. The daily air temperature amplitude led to diurnal variations in the water temperature of the upper 10 cm of the riparian zone. Higher riparian water temperatures cause a decrease in water viscosity and according to the Hagen-Poiseuille equation, the volumetric flow rate is inversely proportional to viscosity. Based on the Hagen-Poiseuille equation and the viscosity changes of water, we calculated higher flow rates of near surface groundwater through the riparian zone into the stream in the afternoon which explains the stream flow maxima in the afternoon. With the start of the growing season, the viscosity

  10. On the possibility of recovering palaeo-diurnal magnetic variations in transitional lava flows. 2. An experimental case study

    Science.gov (United States)

    Vérard, Christian; Leonhardt, Roman; Winklhofer, Michael; Fabian, Karl

    2008-08-01

    amplitude with increasing blocking temperature, which is contrary to what would be expected if pronounced diurnal external field variations were trapped in the flow.

  11. Seasonal and diurnal variation in concentrations of gaseous and particulate phase endosulfan

    Science.gov (United States)

    Li, Qingbo; Wang, Xianyu; Song, Jing; Sui, Hongqi; Huang, Lei; Li, Lu

    2012-12-01

    Successive 52-week air monitoring of α-endosulfan (α-E), β-endosulfan (β-E) and endosulfan sulfate (E.S) in the gaseous and particulate phases was conducted in Dalian city, northeast China by using an active high-volume sampler. Significant seasonal and diurnal variations in endosulfan concentrations were observed. It was found that the concentration of gaseous-phase α-E peaked in the summer and the concentration of particulate phase α-E peaked in the winter. For E.S, both gaseous and particulate phase concentrations peaked in the summer. α-E was distributed predominantly in the gas phase in the summer but was distributed mainly in the particulate phase in the winter. β-E was distributed mainly in the gas phase in the summer and in the particulate phase at other times of the year. E.S was distributed mainly in the particulate phase throughout the year. Elevated temperatures facilitated the volatilization of α-E from particle surfaces but exerted little effect on β-E and had almost no effect on E.S. Trajectory-based analysis indicates that the seasonal variation in atmospheric concentrations of endosulfan in Dalian city was influenced strongly by the land and sea air masses. In addition, differences in endosulfan concentrations in the particulate phase between day and night were likely due to the circulation of sea/land breezes. The 'cold-condensation' effect occurring during the night may result in the attachment of endosulfan to the particulate phase.

  12. Diurnal Variation of Rainfall Associated with Tropical Depression in South China and its Relationship to Land-Sea Contrast and Topography

    Directory of Open Access Journals (Sweden)

    Yuchun Zhao

    2013-12-01

    Full Text Available Convective precipitation associated with tropical depression (TD is one primary type of post-flooding season rainfall in South China (SC. Observations of the Tropical Rainfall Measuring Mission (TRMM satellite have shown specific diurnal features of convective rainfall in South China, which is somewhat different from that in other seasons or regions of China. Convective precipitation is usually organized into a rainfall band along the southeastern coast of South China in the early morning hours. The rainfall band develops and intensifies quickly in the morning, then moves inland in the afternoon and, finally, diminishes at night. The daily convective rainfall along the coast is much more than that in the inland region, and heavy rainfall is often found along the coast. A long-duration heavy rainfall event associated with tropical depression “Fitow” during the period from 28 August to 6 September 2001, is selected in this study to explore the diurnal feature of convective rainfall and its formation mechanism. Modeling results of the 10-day heavy rainfall event are compared with both rain-gauge observation and satellite-retrieved rainfall. Total precipitation and its spatial distribution, as well as diurnal variations are reasonably simulated and agree well with observations. Further analysis reveals that the development and movement of convective precipitation is mainly related to the land and sea breezes. The anomalous height-latitudinal circulation in the morning-to-noon hours is completely reversed in the afternoon-to-late-evening hours, with the convective rainfall swinging back and forth, following its updraft branch. Sensitivity experiments show that the afternoon convective rainfall in the inland region of SC is caused by the diurnal variation of solar radiation forcing. The mountain range along the coast and the complex topography in the inland region of SC plays a critical role in the enhancement of diurnal convective rainfall

  13. Range of monthly mean hourly land surface air temperature diurnal cycle over high northern latitudes

    Science.gov (United States)

    Wang, Aihui; Zeng, Xubin

    2014-05-01

    Daily maximum and minimum temperatures over global land are fundamental climate variables, and their difference represents the diurnal temperature range (DTR). While the differences between the monthly averaged DTR (MDTR) and the range of monthly averaged hourly temperature diurnal cycle (RMDT) are easy to understand qualitatively, their differences have not been quantified over global land areas. Based on our newly developed in situ data (Climatic Research Unit) reanalysis (Modern-Era Retrospective analysis for Research and Applications) merged hourly temperature data from 1979 to 2009, RMDT in January is found to be much smaller than that in July over high northern latitudes, as it is much more affected by the diurnal radiative forcing than by the horizontal advection of temperature. In contrast, MDTR in January is comparable to that in July over high northern latitudes, but it is much larger than January RMDT, as it primarily reflects the movement of lower frequency synoptic weather systems. The area-averaged RMDT trends north of 40°N are near zero in November, December, and January, while the trends of MDTR are negative. These results suggest the need to use both the traditional MDTR and RMDT suggested here in future observational and modeling studies. Furthermore, MDTR and its trend are more sensitive to the starting hour of a 24 h day used in the calculations than those for RMDT, and this factor also needs to be considered in model evaluations using observational data.

  14. Effects of the Relaxation of Upwelling-Favorable Winds on the Diurnal and Semidiurnal Water Temperature Fluctuations in the Santa Barbara Channel, California

    Science.gov (United States)

    Aristizábal, María. F.; Fewings, Melanie R.; Washburn, Libe

    2017-10-01

    In the Santa Barbara Channel, California, and around the Northern Channel Islands, water temperature fluctuations in the diurnal and semidiurnal frequency bands are intermittent, with amplitudes that vary on time scales of days to weeks. The cause of this intermittency is not well understood. We studied the effects of the barotropic tide, vertical stratification, propagation of coastal-trapped waves, regional wind relaxations, and diurnal-band winds on the intermittency of the temperature fluctuations during 1992-2015. We used temperature data from 43 moorings in 10-200 m water depth and wind data from two buoys and one land station. Subtidal-frequency changes in vertical stratification explain 20-40% of the intermittency in diurnal and semidiurnal temperature fluctuations at time scales of days to weeks. Along the mainland north of Point Conception and at the Northern Channel Islands, the relaxation of upwelling-favorable winds substantially increases vertical stratification, accounting for up to 55% of the subtidal-frequency variability in stratification. As a result of the enhanced stratification, wind relaxations enhance the diurnal and semidiurnal temperature fluctuations at those sites, even though the diurnal-band wind forcing decreases during wind relaxation. A linear model where the background stratification is advected vertically explains a substantial fraction of the temperature fluctuations at most sites. The increase of vertical stratification and subsequent increase in diurnal and semidiurnal temperature fluctuations during wind relaxation is a mechanism that can supply nutrients to the euphotic zone and kelp forests in the Channel in summer when upwelling is weak.

  15. Does diurnal variation in cough reflex testing exist in healthy young adults?

    Science.gov (United States)

    Perry, Sarah; Huckabee, Maggie-Lee

    2017-05-01

    The aim of this study was to investigate whether diurnal variation in cough reflex sensitivity exists in healthy young adults when a tidal-breathing method is used. Fifty-three participants (19-37 years) underwent cough reflex testing on two occasions: once in the morning (between 9 am - midday) and once in the afternoon (between 2-5 pm). The order of testing was counter-balanced. Within each assessment, participants inhaled successively higher citric acid concentrations via a facemask, with saline solution randomly interspersed to control for a placebo response. The lowest concentration that elicited a reflexive cough response was recorded. Morning cough thresholds (mean=0.6mol/L) were not different from afternoon cough thresholds (mean=0.6mol/L), p=0.16, T=101, r=-0.14. We found no evidence of diurnal variability in cough reflex testing. There was, however, an order effect irrespective of time of day, confirming that healthy participants are able to volitionally modulate their cough response. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A simplified model to predict diurnal water temperature dynamics in a shallow tropical water pool

    NARCIS (Netherlands)

    Paaijmans, K.P.; Heusinkveld, B.G.; Jacobs, A.F.G.

    2008-01-01

    Water temperature is a critical regulator in the growth and development of malaria mosquito immatures, as they are poikilothermic. Measuring or estimating the diurnal temperature ranges to which these immatures are exposed is of the utmost importance, as these immatures will develop into adults that

  17. Potential effects of diurnal temperature oscillations on potato late blight with special reference to climate change.

    Science.gov (United States)

    Shakya, S K; Goss, E M; Dufault, N S; van Bruggen, A H C

    2015-02-01

    Global climate change will have effects on diurnal temperature oscillations as well as on average temperatures. Studies on potato late blight (Phytophthora infestans) development have not considered daily temperature oscillations. We hypothesize that growth and development rates of P. infestans would be less influenced by change in average temperature as the magnitude of fluctuations in daily temperatures increases. We investigated the effects of seven constant (10, 12, 15, 17, 20, 23, and 27°C) and diurnally oscillating (±5 and ±10°C) temperatures around the same means on number of lesions, incubation period, latent period, radial lesion growth rate, and sporulation intensity on detached potato leaves inoculated with two P. infestans isolates from clonal lineages US-8 and US-23. A four-parameter thermodynamic model was used to describe relationships between temperature and disease development measurements. Incubation and latency progression accelerated with increasing oscillations at low mean temperatures but slowed down with increasing oscillations at high mean temperatures (P effects of global climate change on disease development.

  18. Evolution of Diurnal Asymmetry of Surface Temperature over Different Climatic Zones

    Science.gov (United States)

    Rajendran, V.; C T, D.; Chakravorty, A.; AghaKouchak, A.

    2016-12-01

    The increase in drought, flood, diseases, crop failure etc. in the recent past has created an alarm amongst the researchers. One of the main reasons behind the intensification of these environmental hazards is the recent revelation of climate change, which is generally attributed to the human induced global warming, represented by an increase in global mean temperature. However, in order to formulate policies to mitigate and prevent the threats due to global warming, its key driving factors should be analysed at high spatial and temporal resolution. Diurnal Temperature Range (DTR) is one of the indicators of global warming. The study of the evolution of the DTR is crucial, since it affects agriculture, health, ecosystems, transport, etc. Recent studies reveal that diurnal asymmetry has decreased globally, whereas a few regional studies report a contradictory pattern and attributed them to localized feedback processes. However, an evident conclusion cannot be made using the linear trend approaches employed in the past studies and the evolution of diurnal asymmetry should be investigated using non-linear trend approach for better perception. Hence, the regional evolution of DTR trend has been analysed using the spatially-temporally Multidimensional Ensemble Empirical Mode Decomposition (MEEMD) method over India and observed a positive trend in over-all mean of DTR, while its rate of increase has declined in the recent decades. Further, the grids showing negative trend in DTR is observed in arid deserts and warm-temperate grasslands and positive trend over the west coast and sub-tropical forest in the North-East. This transition predominantly began from the west coast and is stretched with an increase in magnitude. These changes are more pronounced during winter and post-monsoon seasons, especially in the arid desert and warm-temperate grasslands, where the rate of increase in minimum temperature is higher than that of the maximum temperature. These analyses suggest

  19. Diurnal variation of vascular diameter and reactivity in healthy young men

    Directory of Open Access Journals (Sweden)

    P.F.D. Bau

    2008-06-01

    Full Text Available The higher incidence of cardiovascular events in the morning is accompanied by an increased vascular tone. However, there are few published studies designed to evaluate the diurnal variation of vascular and endothelial parameters in healthy subjects. In the present investigation, we evaluated the diurnal variation in brachial artery diameter (BAD, flow-mediated dilation (FMD and endothelium-independent dilation (NFMD in a homogeneous sample of healthy non-smoker young men. Fifty subjects aged 20.8 ± 0.3 years (range: 18 to 25 years were investigated by brachial artery ultrasound. Exclusion criteria were female gender and evidence of clinically significant health problems, including obesity. Volunteers were asked to rest and avoid fat meals as well as alcoholic beverages 48 h before and until completion of the evaluations. BAD, FMD and NFMD were measured at 7 am, 5 pm, and 10 pm and tested by repeated measures ANOVA. BAD was smaller at 7 am (mean ± SEM, 3.8 ± 0.1 mm in comparison with 5 pm (3.9 ± 0.1 and 10 pm (4.0 ± 0.1 mm; P < 0.001. FMD values did not change significantly during the day, while NFMD increased more at 7 am (18.5 ± 1.1%, when compared to 15.5 ± 0.9% at 10 pm and 15.5 ± 0.9% at 5 pm (P = 0.04. The physiological state of vasoconstriction after awakening, with preserved capability to dilate in the morning, should be considered to be part of the healthy cardiovascular adaptation before considering later life risk factors and endothelial dysfunction.

  20. Study on the Diurnal Variation of the Plasma Immunoreactive Glucagon

    International Nuclear Information System (INIS)

    Lee, Hong Kyu; Hong, Kee Suk; Kim, Byoung Kook; Koh, Chang Soon; Chung, June Key; Kim, Eui Chong

    1984-01-01

    It is well known that glucagon, like insulin, is very important in the moment-to-moment control of the homeostasis of glucose, and of amino acids. Glucagon has been shown to have potent glycogenolytic, gluconeogenic and lipolytic activities. Attention to its role in the pathogenesis of diabetes mellitus and hypoglycemia has been also advanced recently. To evaluate the diurnal variation of plasma glucagon concentration, we measured serum glucose, insulin, and plasma glucagon every 30 minutes or every hour in 7 normal Korean adults. Results were as follows: 1) Although plasma glucagon concentration showed wide individual variations, it had a tendency to decrease after meals. After lunch and dinner, plasma glucagon concentration had gradually declined and reached its nadir at postprandial 2-2.5 hours. The minimal level of plasma glucagon was at 4 A.M. 2) Serum insulin:plasma glucagon ratios were increased promptly after meals. Especially after lunch, its peak was prominent (3.65 ± 1. 95). The minimal level of serum insulin:plasma glucagon ratio appeared at 6 A.M.

  1. Study on the Diurnal Variation of the Plasma Immunoreactive Glucagon

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hong Kyu; Hong, Kee Suk; Kim, Byoung Kook; Koh, Chang Soon [Seoul National University College of Medicine, Seoul (Korea, Republic of); Chung, June Key; Kim, Eui Chong [Seoul District Armed Forces General Hospital, Seoul (Korea, Republic of)

    1984-03-15

    It is well known that glucagon, like insulin, is very important in the moment-to-moment control of the homeostasis of glucose, and of amino acids. Glucagon has been shown to have potent glycogenolytic, gluconeogenic and lipolytic activities. Attention to its role in the pathogenesis of diabetes mellitus and hypoglycemia has been also advanced recently. To evaluate the diurnal variation of plasma glucagon concentration, we measured serum glucose, insulin, and plasma glucagon every 30 minutes or every hour in 7 normal Korean adults. Results were as follows: 1) Although plasma glucagon concentration showed wide individual variations, it had a tendency to decrease after meals. After lunch and dinner, plasma glucagon concentration had gradually declined and reached its nadir at postprandial 2-2.5 hours. The minimal level of plasma glucagon was at 4 A.M. 2) Serum insulin:plasma glucagon ratios were increased promptly after meals. Especially after lunch, its peak was prominent (3.65 +- 1. 95). The minimal level of serum insulin:plasma glucagon ratio appeared at 6 A.M.

  2. Seasonal variation in diurnal atmospheric grass pollen concentration profiles

    DEFF Research Database (Denmark)

    Peel, Robert George; Ørby, Pia Viuf; Skjøth, Carsten Ambelas

    2014-01-01

    the time of day when peak concentrations are most likely to occur using seasonally averaged diurnal profiles. Atmospheric pollen loads are highly dependent upon emissions, and different species of grass are known to flower and emit pollen at different times of the day and during different periods......In this study, the diurnal atmospheric grass pollen concentration profile within the Danish city of Aarhus was shown to change in a systematic manner as the pollen season progressed. Although diurnal grass pollen profiles can differ greatly from day-to-day, it is common practice to establish...... of the pollen season. Pollen concentrations are also influenced by meteorological factors - directly through those parameters that govern pollen dispersion and transport, and indirectly through the weather-driven flowering process. We found that three different profiles dominated the grass pollen season...

  3. Modeling the diurnal tide with dissipation derived from UARS/HRDI measurements

    Directory of Open Access Journals (Sweden)

    M. A. Geller

    1997-09-01

    Full Text Available This paper uses dissipation values derived from UARS/HRDI observations in a recently published diurnal-tide model. These model structures compare quite well with the UARS/HRDI observations with respect to the annual variation of the diurnal tidal amplitudes and the size of the amplitudes themselves. It is suggested that the annual variation of atmospheric dissipation in the mesosphere-lower thermosphere is a major controlling factor in determining the annual variation of the diurnal tide.

  4. Characterizing the Diurnal Cycle of Land Surface Temperature and Evapotranspiration at High Spatial Resolution Using Thermal Observations from sUAS.

    Science.gov (United States)

    Dutta, D.; Drewry, D.; Johnson, W. R.

    2017-12-01

    The surface temperature of plant canopies is an important indicator of the stomatal regulation of plant water use and the associated water flux from plants to atmosphere (evapotranspiration (ET)). Remotely sensed thermal observations using compact, low-cost, lightweight sensors from small unmanned aerial systems (sUAS) have the potential to provide surface temperature (ST) and ET estimates at unprecedented spatial and temporal resolutions, allowing us to characterize the intra-field diurnal variations in canopy ST and ET for a variety of vegetation systems. However, major challenges exist for obtaining accurate surface temperature estimates from low-cost uncooled microbolometer-type sensors. Here we describe the development of calibration methods using thermal chamber experiments, taking into account the ambient optics and sensor temperatures, and applying simple models of spatial non-uniformity correction to the sensor focal-plane-array. We present a framework that can be used to derive accurate surface temperatures using radiometric observations from low-cost sensors, and demonstrate this framework using a sUAS-mounted sensor across a diverse set of calibration and vegetation targets. Further, we demonstrate the use of the Surface Temperature Initiated Closure (STIC) model for computing spatially explicit, high spatial resolution ET estimates across several well-monitored agricultural systems, as driven by sUAS acquired surface temperatures. STIC provides a physically-based surface energy balance framework for the simultaneous retrieval of the surface and atmospheric vapor conductances and surface energy fluxes, by physically integrating radiometric surface temperature information into the Penman-Monteith equation. Results of our analysis over agricultural systems in Ames, IA and Davis, CA demonstrate the power of this approach for quantifying the intra-field spatial variability in the diurnal cycle of plant water use at sub-meter resolutions.

  5. Comparison of data-driven and model-driven approaches to brightness temperature diurnal cycle interpolation

    CSIR Research Space (South Africa)

    Van den Bergh, F

    2006-01-01

    Full Text Available This paper presents two new schemes for interpolating missing samples in satellite diurnal temperature cycles (DTCs). The first scheme, referred to here as the cosine model, is an improvement of the model proposed in [2] and combines a cosine...

  6. RELATIONSHIP OF AIRWAY HYPERRESPONSIVENESS TO RESPIRATORY SYMPTOMS AND DIURNAL PEAK FLOW VARIATION IN PATIENTS WITH OBSTRUCTIVE LUNG-DISEASE

    NARCIS (Netherlands)

    BRAND, PLP; POSTMA, DS; KERSTJENS, HAM; KOETER, GH

    This study reports on the relationship of airway hyperresponsiveness (AH) with respiratory symptoms and diurnal peak flow expiratory (PEF) variation in 221 hyperresponsive patients with moderately severe airways obstruction. The disease was in a stable phase in all patients. Closely adhering to the

  7. Estimation of diurnal air temperature using MSG SEVIRI data in West Africa

    DEFF Research Database (Denmark)

    Stisen, Simon; Sandholt, Inge; Nørgaard, Anette

    2007-01-01

    Spatially distributed estimates of evaporative fraction and actual evapotranspiration are pursued using a simple remote sensing technique based on a remotely sensed vegetation index (NDVI) and diurnal changes in land surface temperature. The technique, known as the triangle method, is improved...... in surface temperature, dTs with an interpretation of the triangular shaped dTs - NDVI space allows for a direct estimation of  evaporative fraction. The mean daytime energy available for evapotranspiration (Rn - G) is estimated using several remote sensors and limited ancillary data. Finally regional...

  8. Dating base flow in streams using dissolved gases and diurnal temperature changes

    Science.gov (United States)

    Sanford, Ward E.; Casile, Gerolamo C.; Haase, Karl B.

    2015-01-01

    A method is presented for using dissolved CFCs or SF6 to estimate the apparent age of stream base flow by indirectly estimating the mean concentration of the tracer in the inflowing groundwater. The mean value is estimated simultaneously with the mean residence times of the gas and water in the stream by sampling the stream for one or both age tracers, along with dissolved nitrogen and argon at a single location over a period of approximately 12–14 h. The data are fitted to an equation representing the temporal in-stream gas exchange as it responds to the diurnal temperature fluctuation. The efficacy of the method is demonstrated by collecting and analyzing samples at six different stream locations across parts of northern Virginia, USA. The studied streams drain watersheds with areas of between 2 and 122 km2 during periods when the diurnal stream temperature ranged between 2 and 5°C. The method has the advantage of estimating the mean groundwater residence time of discharge from the watershed to the stream without the need for the collection of groundwater infiltrating to streambeds or local groundwater sampled from shallow observation wells near the stream.

  9. The interrelationship between dengue incidence and diurnal ranges of temperature and humidity in a Sri Lankan city and its potential applications.

    Science.gov (United States)

    Ehelepola, N D B; Ariyaratne, Kusalika

    2015-01-01

    Temperature, humidity, and other weather variables influence dengue transmission. Published studies show how the diurnal fluctuations of temperature around different mean temperatures influence dengue transmission. There are no published studies about the correlation between diurnal range of humidity and dengue transmission. The goals of this study were to determine the correlation between dengue incidence and diurnal fluctuations of temperature and humidity in the Sri Lankan city of Kandy and to explore the possibilities of using that information for better control of dengue. We calculated the weekly dengue incidence in Kandy during the period 2003-2012, after collecting data on all of the reported dengue patients and estimated midyear populations. Data on daily maximum and minimum temperatures and night-time and daytime humidity were obtained from two weather stations, averaged, and converted into weekly data. The number of days per week with a diurnal temperature range (DTR) of >10°C and humidity range (DHR) of >20 and humidity. There were negative correlations between dengue incidence and a DTR >10°C and a DHR >20% with 3.3-week and 4-week lag periods, respectively. Additionally, positive correlations between dengue incidence and a DTR humidity in the future. We suggest ways and means to use this information for local dengue control and to mitigate the potential effects of the ongoing global reduction of DTR on dengue incidence.

  10. Diurnal and Reproductive Stage-Dependent Variation of Parental Behaviour in Captive Zebra Finches.

    Directory of Open Access Journals (Sweden)

    Boglárka Morvai

    Full Text Available Parental care plays a key role in ontogeny, life-history trade-offs, sexual selection and intra-familial conflict. Studies focusing on understanding causes and consequences of variation in parental effort need to quantify parental behaviour accurately. The applied methods are, however, diverse even for a given species and type of parental effort, and rarely validated for accuracy. Here we focus on variability of parental behaviour from a methodological perspective to investigate the effect of different samplings on various estimates of parental effort. We used nest box cameras in a captive breeding population of zebra finches, Taeniopygia guttata, a widely used model system of sexual selection, intra-familial dynamics and parental care. We investigated diurnal and reproductive stage-dependent variation in parental effort (including incubation, brooding, nest attendance and number of feedings based on 12h and 3h continuous video-recordings taken at various reproductive stages. We then investigated whether shorter (1h sampling periods provided comparable estimates of overall parental effort and division of labour to those of longer (3h sampling periods. Our study confirmed female-biased division of labour during incubation, and showed that the difference between female and male effort diminishes with advancing reproductive stage. We found individually consistent parental behaviours within given days of incubation and nestling provisioning. Furthermore, parental behaviour was consistent over the different stages of incubation, however, only female brooding was consistent over nestling provisioning. Parental effort during incubation did not predict parental effort during nestling provisioning. Our analyses revealed that 1h sampling may be influenced heavily by stochastic and diurnal variation. We suggest using a single longer sampling period (3h may provide a consistent and accurate estimate for overall parental effort during incubation in zebra

  11. Clouds, radiation, and the diurnal cycle of sea surface temperature in the tropical Western Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Webster, P.J.; Clayson, C.A.; Curry, J.A. [Univ. of Colorado, Boulder, CO (United States)

    1996-04-01

    In the tropical Western Pacific (TWP) Ocean, the clouds and the cloud-radiation feedback can only be understood in the context of air/sea interactions and the ocean mixed layer. Considerable interest has been shown in attempting to explain why sea surface temperature (SST) rarely rises above 30{degrees}C, and gradients of the SST. For the most part, observational studies that address this issue have been conducted using monthly cloud and SST data, and the focus has been on intraseasonal and interannual time scales. For the unstable tropical atmosphere, using monthly averaged data misses a key feedback between clouds and SST that occurs on the cloud-SST coupling time scale, which was estimated to be 3-6 days for the unstable tropical atmosphere. This time scale is the time needed for a change in cloud properties, due to the change of ocean surface evaporation caused by SST variation, to feed back to the SST variation, to feed back to the SST through its effect on the surface heat flux. This paper addresses the relationship between clouds, surface radiation flux and SST of the TWP ocean over the diurnal cycle.

  12. The influence of diurnal temperature range on the incidence of respiratory syncytial virus in Japan.

    Science.gov (United States)

    Onozuka, D

    2015-03-01

    The incidence of respiratory syncytial virus (RSV) has been reported to exhibit seasonal variation. However, the impact of diurnal temperature range (DTR) on RSV has not been investigated. After acquiring data related to cases of RSV and weather parameters of DTR in Fukuoka, Japan, between 2006 and 2012, we used negative binomial generalized linear models and distributed lag nonlinear models to assess the possible relationship between DTR and RSV cases, adjusting for confounding factors. Our analysis revealed that the weekly number of RSV cases increased with a relative risk of 3·30 (95% confidence interval 1·65-6·60) for every 1°C increase in DTR. Our study provides quantitative evidence that the number of RSV cases increased significantly with increasing DTR. We suggest that preventive measures for limiting the spread of RSV should be considered during extended periods of high DTR.

  13. Effects of diurnal adjustment on biases and trends derived from inter-sensor calibrated AMSU-A data

    Science.gov (United States)

    Chen, H.; Zou, X.; Qin, Z.

    2018-03-01

    Measurements of brightness temperatures from Advanced Microwave Sounding Unit-A (AMSU-A) temperature sounding instruments onboard NOAA Polarorbiting Operational Environmental Satellites (POES) have been extensively used for studying atmospheric temperature trends over the past several decades. Intersensor biases, orbital drifts and diurnal variations of atmospheric and surface temperatures must be considered before using a merged long-term time series of AMSU-A measurements from NOAA-15, -18, -19 and MetOp-A.We study the impacts of the orbital drift and orbital differences of local equator crossing times (LECTs) on temperature trends derivable from AMSU-A using near-nadir observations from NOAA-15, NOAA-18, NOAA-19, and MetOp-A during 1998-2014 over the Amazon rainforest. The double difference method is firstly applied to estimation of inter-sensor biases between any two satellites during their overlapping time period. The inter-calibrated observations are then used to generate a monthly mean diurnal cycle of brightness temperature for each AMSU-A channel. A diurnal correction is finally applied each channel to obtain AMSU-A data valid at the same local time. Impacts of the inter-sensor bias correction and diurnal correction on the AMSU-A derived long-term atmospheric temperature trends are separately quantified and compared with those derived from original data. It is shown that the orbital drift and differences of LECTamong different POESs induce a large uncertainty in AMSU-A derived long-term warming/cooling trends. After applying an inter-sensor bias correction and a diurnal correction, the warming trends at different local times, which are approximately the same, are smaller by half than the trends derived without applying these corrections.

  14. A study of diurnal variation in peak expiratory flow rates in healthy adult female subjects in South India

    Directory of Open Access Journals (Sweden)

    Jenny Jayapal

    2014-01-01

    Full Text Available Background: Peak Expiratory Flow Rate (PEFR reflects the strength and condition of respiratory muscles and the degree of airflow limitation in large airways. PEFR shows hour to hour variation that follows a specific pattern in asthmatics and healthy individuals. Adequate data is not available for the diurnal variation in normal individuals who are students in professional courses and had a sedentary life style. Hence, this study was undertaken to study the diurnal variation in peak expiratory flow rates in healthy adult female subjects in South India. Materials and Methods: Peak expiratory flow rate was recorded in 50 adult healthy female students aged 18-23 years and studying in professional courses. Mini Wright′s peak flow meter was used to measure the peak expiratory flow rate. PEFR were recorded at 7-8 a.m., 10-11 a.m., 1-2 p.m., 4-5 p.m., and 7-8 p.m. for two consecutive days. Results: On analysis of PEFR records of individual subjects, it was seen that there was an overall dip in the morning at 7-8 h PEFR, which increased in the daytime, peaking in the afternoon at 1-2 p.m. and eventually decreased in the night. Subjects did not show the peak PEFR values at the same time point, 10% of subjects had a rise in PEFR in the early morning, afternoon (1-2 p.m. peak was observed in 48% subjects and evening (4-5 p.m. peak was observed in 16% subjects. 14% subjects showed a peak in the night time (7-8 p.m. PEFR values. Conclusion: This study provided the preliminary reference data of diurnal variation of peak expiratory flow rate in healthy adults. Since, there is a variation in the peak expiratory flow rate recorded during different time points of the day; hence, to compare the PEFR between individuals it is advisable to record the PEFR at the same time point.

  15. Seasonal and diurnal variation of organic ultraviolet filters from personal care products used along the Japanese coast.

    Science.gov (United States)

    Sankoda, Kenshi; Murata, Kotaro; Tanihata, Mai; Suzuki, Kengo; Nomiyama, Kei; Shinohara, Ryota

    2015-02-01

    This study aimed to investigate the behavior of organic ultraviolet (UV) filters released by recreational activities along the Japanese coastline. Seasonal variations of organic UV filters in seawater were investigated at four different recreational beaches (Mogushi, Wakamiya, Tsurugahama, and Otachimisaki beaches) in both summer (July through August) and winter (December). Moreover, short time scale diurnal changes were monitored at Otachimisaki beach in summer. Of the four sunscreen agents tested in this study, two agents-2-ethylhexyl-4-methoxycinnamate (EHMC) and 2-ethylhexyl salicylate (EHS)-were detected in all samples, whereas octyl-dimethyl-p-aminobenzonic acid and 3-(4-methylbenzylidene)-camphor were lower than detection limits. In particular, EHMC, one of the most popular organic UV filters, was dominant. The highest concentration of EHMC was observed at 1,080 ng L(-1), a level that exceeds those of previous studies. Both EHMC and EHS concentrations showed significant (p < 0.05) seasonal variations with advancing summer suggesting direct input from recreational activities. The subsequent examination showed short time scale diurnal changes of organic UV filters on the beach. The results showed that diurnal changes in EHMC concentrations were correlated to the number of bathers. EHMC concentrations increased during the afternoon and decreased during the night, although complete attenuation during the night did not occur. EHMC persists along the coast due to low mobility and may persist the next day. This is the first study to show the natural attenuation behavior of organic UV filters along recreational beaches.

  16. Diurnal and Intra-Annual Variations in Greenhouse Gases at Fixed Sites in the San Francisco Bay Area

    Science.gov (United States)

    Newman, S.; Guha, A.; Martien, P. T.; Bower, J.; Perkins, I.; Randall, S.; Young, A.; Stevenson, E.; Hilken, H.

    2017-12-01

    The Bay Area Air Quality Management District, the San Francisco Bay Area's air quality regulatory agency, has set a goal to reduce the region's greenhouse gas (GHG) emissions to 80% below 1990 levels by 2050, consistent with the State of California's climate goals. Recently, the Air District's governing board adopted a 2017 Clean Air Plan which lays out the agency's vision and includes actions to put the region on a path towards achieving the 2050 goal while also reducing air pollution and related health impacts. The Plan includes GHG rule-making efforts, policy initiatives, local government partnerships, outreach, grants, and incentives, encompassing over 250 specific implementation actions across all economic sectors to effect ambitious emission reductions in the region. To track trends in atmospheric observations of GHGs and associated species and monitor changes in regional emission patterns, the Air District has established a fixed site network (CO2, CH4, CO) of one generally upwind site (Bodega Bay - on the coast north of Marin County) and three receptor sites (Bethel Island - east of the major refineries, in the Sacramento River Delta; Livermore - east of the bulk of the East Bay cities; and San Martin - south of the major city of San Jose). Having collected over a year of data for each of the fixed sites, the Air District is now investigating spatial and temporal variations in GHG emissions. Concentrating on variations in diurnal cycles, we see the commonly observed pattern of seasonal changes in diurnal amplitude at all sites, with larger variations during the winter than the summer, consistent with seasonally varying daily changes in planetary boundary layer heights. Investigations explore the weekday/weekend effect on the diurnal patterns and the effect of seasonal wind direction changes on the intra-annual variations of the local enhancements. The Air District is beginning to investigate the ways in which the fixed site network reflects the dominant

  17. Seasonal, Diurnal, and Solar-Cycle Variations of Electron Density at Two West Africa Equatorial Ionization Anomaly Stations

    Directory of Open Access Journals (Sweden)

    Frédéric Ouattara

    2012-01-01

    Full Text Available We analyse the variability of foF2 at two West Africa equatorial ionization anomaly stations (Ouagadougou and Dakar during three solar cycles (from cycle 20 to cycle 22, that is, from 1966 to 1998 for Ouagadougou and from 1971 to 1997 for Dakar. We examine the effect of the changing levels of solar extreme ultraviolet radiation with sunspot number. The study shows high correlation between foF2 and sunspot number (Rz. The correlation coefficient decreases from cycle 20 to cycle 21 at both stations. From cycle 21 to cycle 22 it decreases at Ouagadougou station and increases at Dakar station. The best correlation coefficient, 0.990, is obtained for Dakar station during solar cycle 22. The seasonal variation displays equinoctial peaks that are asymmetric between March and September. The percentage deviations of monthly average data from one solar cycle to another display variability with respect to solar cycle phase and show solar ultraviolet radiation variability with solar cycle phase. The diurnal variation shows a noon bite out with a predominant late-afternoon peak except during the maximum phase of the solar cycle. The diurnal Ouagadougou station foF2 data do not show a significant difference between the increasing and decreasing cycle phases, while Dakar station data do show it, particularly for cycle 21. The percentage deviations of diurnal variations from solar-minimum conditions show more ionosphere during solar cycle 21 at both stations for all three of the other phases of the solar cycle. There is no significant variability of ionosphere during increasing and decreasing solar cycle phases at Ouagadougou station, but at Dakar station there is a significant variability of ionosphere during these two solar-cycle phases.

  18. Posttranscriptional mechanisms controlling diurnal gene expression cycles by body temperature rhythms.

    Science.gov (United States)

    Gotic, Ivana; Schibler, Ueli

    2017-10-03

    In mammals, body temperature oscillates in a daily fashion around a set point of 36°C-37°C. These fluctuations are controlled by the circadian master clock residing in the brain's suprachiasmatic nucleus and, despite their small amplitudes, contribute to the diurnal expression of genes throughout the organism. By focusing on the mechanisms underlying the temperature-dependent accumulation of the cold-inducible RNA-binding protein CIRBP - a factor involved in the tuning of amplitude and phase in circadian clocks of peripheral tissues - we have recently identified a novel mechanism governing temperature-dependent gene expression. This mechanism involves the differential spicing efficiency of primary RNA transcripts under different temperature conditions and thereby determines the fraction of Cirbp pre-mRNA processed into mature mRNA. A genome-wide transcriptome analysis revealed that this mechanism affects the output of hundreds of genes. Here we discuss our findings and future directions toward the identification of specific factors and parameters governing temperature-sensitive splicing efficacy.

  19. Impact of assimilation window length on diurnal features in a Mars atmospheric analysis

    Directory of Open Access Journals (Sweden)

    Yongjing Zhao

    2015-05-01

    Full Text Available Effective simulation of diurnal variability is an important aspect of many geophysical data assimilation systems. For the Martian atmosphere, thermal tides are particularly prominent and contribute much to the Martian atmospheric circulation, dynamics and dust transport. To study the Mars diurnal variability and Mars thermal tides, the Geophysical Fluid Dynamics Laboratory Mars Global Climate Model with the 4D-local ensemble transform Kalman filter (4D-LETKF is used to perform an analysis assimilating spacecraft temperature retrievals. We find that the use of a ‘traditional’ 6-hr assimilation cycle induces spurious forcing of a resonantly enhanced semi-diurnal Kelvin waves represented in both surface pressure and mid-level temperature by forming a wave 4 pattern in the diurnal averaged analysis increment that acts as a ‘topographic’ stationary forcing. Different assimilation window lengths in the 4D-LETKF are introduced to remove the artificially induced resonance. It is found that short assimilation window lengths not only remove the spurious resonance, but also push the migrating semi-diurnal temperature variation at 50 Pa closer to the estimated ‘true’ tides even in the absence of a radiatively active water ice cloud parameterisation. In order to compare the performance of different assimilation window lengths, short-term to mid-range forecasts based on the hour 00 and 12 assimilation are evaluated and compared. Results show that during Northern Hemisphere summer, it is not the assimilation window length, but the radiatively active water ice clouds that influence the model prediction. A ‘diurnal bias correction’ that includes bias correction fields dependent on the local time is shown to effectively reduce the forecast root mean square differences between forecasts and observations, compensate for the absence of water ice cloud parameterisation and enhance Martian atmosphere prediction. The implications of these results for

  20. The Influence of Roof Material on Diurnal Urban Canyon Breathing

    Science.gov (United States)

    Abuhegazy, Mohamed; Yaghoobian, Neda

    2017-11-01

    Improvements in building energy use, air quality in urban canyons and in general urban microclimates require understanding the complex interaction between urban morphology, materials, climate, and inflow conditions. Review of the literature indicates that despite a long history of valuable urban microclimate studies, more comprehensive approaches are needed to address energy, and heat and flow transport in urban areas. In this study, a more comprehensive simulation of the diurnally varying street canyon flow and associated heat transport is numerically investigated, using Large-eddy Simulation (LES). We use computational modeling to examine the impact of diurnal variation of the heat fluxes from urban surfaces on the air flow and temperature distribution in street canyons with a focus on the role of roof materials and their temperature footprints. A detailed building energy model with a three-dimensional raster-type geometry provides urban surface heat fluxes as thermal boundary conditions for the LES to determine the key aero-thermodynamic factors that affect urban street ventilation.

  1. Effect of diurnal variation, CYP2B6 genotype and age on the pharmacokinetics of nevirapine in African children

    NARCIS (Netherlands)

    Bienczak, A.; Cook, A.; Wiesner, L.; Mulenga, V.; Kityo, C.; Kekitiinwa, A.; Walker, A.S.; Owen, A.; Gibb, D.M.; Burger, D.M.; McIlleron, H.; Denti, P.

    2017-01-01

    OBJECTIVES: To characterize the effects of CYP2B6 polymorphisms, diurnal variation and demographic factors on nevirapine pharmacokinetics in African children. METHODS: Non-linear mixed-effects modelling conducted in NONMEM 7.3 described nevirapine plasma concentration-time data from 414 children

  2. Leaf temperature and stomatal influences on sap velocity diurnal hysteresis in the Amazon rainforest

    Science.gov (United States)

    Jardine, K.; Gimenez, B.; Negron Juarez, R. I.; Koven, C.; Powell, T.; Higuchi, N.; Chambers, J.; Varadharajan, C.

    2016-12-01

    In order to improve our ability to predict terrestrial evapotranspiration fluxes, an understanding of the interactions between plant physiology and environmental conditions is necessary, but remains poorly characterized, especially in tropical ecosystems. In this study we show a tight positive correlation between sap velocity (at 1 m of height) and leaf surface temperature (LST, 20-30 m of height) in canopy dominant trees in two primary rainforest sites in the Amazon basin (Santarém and Manaus, Brazil). As leaf temperatures varied throughout the day, sap velocity responded with little delay (<15 min). Positive sap velocity was often observed at night, but also closely followed night time LSTs. When plotted versus LST, sap velocity showed an exponential increase before reaching a reflection point and a plateau and is characterized as a sigmoidal curve, in all observed trees. Moreover, a clear diurnal hysteresis in sap velocity was evident with morning periods showing higher temperature sensitivities than afternoon and night periods. Diurnal leaf observations showed a morning peak in stomatal conductance ( 10:00-10:30), but a mid-day to afternoon peak in transpiration and leaf temperature (12:00-14:00). Our observations suggest the sap velocity-LST hysteresis pattern arises due to the temporal offset between stomatal conductance and vapor pressure deficits (VPD) and demonstrates the dominating effect of VPD over stomatal conductance in maintaining high transpiration/sap flow rates under elevated temperatures. Our results have important implications for modeling tropical forest transpiration and suggests the possibility of predicting evapotranspiration fluxes at the ecosystem to regional scales based on remote sensed vegetation temperature.

  3. Effect of posture on the diurnal variation in clinically significant diabetic macular edema.

    Science.gov (United States)

    Polito, Antonio; Polini, Giovanni; Chiodini, Raffaella Gortana; Isola, Miriam; Soldano, Franca; Bandello, Francesco

    2007-07-01

    To investigate the role of posture and other systemic factors in the diurnal variation of clinically significant diabetic macular edema (CSDME). Ten eyes of 10 diabetic subjects with CSDME underwent four OCT foveal thickness measurements with StratusOCT at 9 AM and 12, 3, and 6 PM consecutively on two different days, with the subject in an upright position on one and in a recumbent position on the other. For the "recumbent-position" measurements, the patients were admitted the night before and remained in bed during the entire day of testing. Clinical laboratory results at baseline included HbA1c, urinary albumin, and serum creatinine. Refraction and Early Treatment Diabetic Retinopathy Study (ETDRS) visual acuity were also measured before each OCT measurement was taken. Variations in blood pressure, body temperature, plasma glucose, renin, aldosterone, and cortisol levels were measured and then correlated with macular thickness. Foveal thickening decreased in all cases over the course of the day. The decrease, however, was significantly greater for the upright-position measurements (relative mean +/- SD decrease of 20.6% +/- 6.5% in the upright position and 6.2% +/- 4.6% in the recumbent position). Visual acuity improved by at least 1 ETDRS line in three eyes in the upright position as opposed to only one eye in the recumbent position. There seemed to be no association between any of the systemic factors studied and foveal thickening, with the exception of cortisol. The results support the hypothesis that posture and hydrostatic pressure play a major role in determining time-related shifts in CSDME and suggest that the forces of Starling's law can in part, account for CSDME formation.

  4. Simulation of the diurnal variations of the oxygen isotope anomaly (Δ17O of reactive atmospheric species

    Directory of Open Access Journals (Sweden)

    J. Savarino

    2011-04-01

    Full Text Available The isotope anomaly (Δ17O of secondary atmospheric species such as nitrate (NO3− or hydrogen peroxide (H2O2 has potential to provide useful constrains on their formation pathways. Indeed, the Δ17O of their precursors (NOx, HOx etc. differs and depends on their interactions with ozone, which is the main source of non-zero Δ17O in the atmosphere. Interpreting variations of Δ17O in secondary species requires an in-depth understanding of the Δ17O of their precursors taking into account non-linear chemical regimes operating under various environmental settings. This article reviews and illustrates a series of basic concepts relevant to the propagation of the Δ17O of ozone to other reactive or secondary atmospheric species within a photochemical box model. We present results from numerical simulations carried out using the atmospheric chemistry box model CAABA/MECCA to explicitly compute the diurnal variations of the isotope anomaly of short-lived species such as NOx and HOx. Using a simplified but realistic tropospheric gas-phase chemistry mechanism, Δ17O was propagated from ozone to other species (NO, NO2, OH, HO2, RO2, NO3, N2O5, HONO, HNO3, HNO4, H2O2 according to the mass-balance equations, through the implementation of various sets of hypotheses pertaining to the transfer of Δ17O during chemical reactions. The model results confirm that diurnal variations in Δ17O of NOx predicted by the photochemical steady-state relationship during the day match those from the explicit treatment, but not at night. Indeed, the Δ17O of NOx is "frozen" at night as soon as the photolytical lifetime of NOx drops below ca. 10 min. We introduce and quantify the diurnally-integrated isotopic signature (DIIS of sources of atmospheric nitrate and H2O2, which is of particular relevance to larger-scale simulations of Δ17O where high computational costs cannot be afforded.

  5. Diurnal Change of Soil Carbon Flux of Binhai New District

    Science.gov (United States)

    Wang, T. F.; Mao, T. Y.; Ye, W.

    2018-05-01

    In order to investigate the factors influencing diurnal change of soil carbon flux of Binhai New District. Field observation experiments were carried out by using LC pro-SD photosynthetic apparatus. The diurnal changes of soil carbon flux and its environmental factors such as atmosphere temperature and soil temperature were analysed. The results indicated that soil carbon flux appeared single diurnal pattern. The diurnal average of soil carbon flux ranked from 0.2761 to 2.3367μmo1/m2/s. Soil carbon flux varied significantly among different land use regimes(Pequations (Pquadratic correlations between soil carbon flux and soil temperature (10cm). And soil temperature could account for more than 32.27% of the soil carbon flux changes (P<0.05, R2=0.3227-0.7465).

  6. Diurnal variation in the biliary excretion of flomoxef in patients with percutaneous transhepatic biliary drainage.

    Science.gov (United States)

    Hishikawa, S; Kobayashi, E; Sugimoto , K; Miyata, M; Fujimura, A

    2001-07-01

    To examine diurnal variation in biliary excretion of flomoxef. Flomoxef (1 g) was injected intravenously in eight patients with percutaneous transhepatic cholangiography with drainage at 09.00 h and 21.00 h by a cross-over design with a 36 h washout period. Drained biliary fluid was collected for 6 h after each dosing. These patients still had mild to moderate hepatic dysfunction. Bile flow and bile acid excretion for 6 h after dosing did not differ significantly between the 09.00 h and 21.00 h treatments. The maximum concentration of biliary flomoxef was significantly greater and its total excretion for 6 h tended to be greater after the 21.00 h dose [maximum concentration (microg ml(-1)): 34.2 +/- 29.9 (09.00 h dose) vs 43.5 +/- 28.3 (21.00 h dose) (95% confidence interval for difference: 2.6 approximately 15.9, P = 0.013); total excretion (mg 6 h(-1)): 1.4 +/- 1.3 (09.00 h dose) vs 1.6 +/- 1.2 (21.00 h dose) (95% confidence interval for difference: -26.8, 313.7, P = 0.087)]. The period that biliary flomoxef remained above the minimal inhibitory concentration did not differ significantly between the two treatment times. These results suggest that biliary excretion of flomoxef shows diurnal variation. However, as the difference was relatively small, flomoxef could be given at any time of day without any dosage adjustments.

  7. An Investigation on Attributes of Ambient Temperature and Diurnal Temperature Range on Mortality in Five East-Asian Countries.

    Science.gov (United States)

    Lee, Whan-Hee; Lim, Youn-Hee; Dang, Tran Ngoc; Seposo, Xerxes; Honda, Yasushi; Guo, Yue-Liang Leon; Jang, Hye-Min; Kim, Ho

    2017-08-31

    Interest in the health effects of extremely low/high ambient temperature and the diurnal temperature range (DTR) on mortality as representative indices of temperature variability is growing. Although numerous studies have reported on these indices independently, few studies have provided the attributes of ambient temperature and DTR related to mortality, concurrently. In this study, we aimed to investigate and compare the mortality risk attributable to ambient temperature and DTR. The study included data of 63 cities in five East-Asian countries/regions during various periods between 1972 and 2013. The attributable risk of non-accidental death to ambient temperature was 9.36% (95% confidence interval [CI]: 8.98-9.69%) and to DTR was 0.59% (95% CI: 0.53-0.65%). The attributable cardiovascular mortality risks to ambient temperature (15.63%) and DTR (0.75%) are higher than the risks to non-accidental/respiratory-related mortality. We verified that ambient temperature plays a larger role in temperature-associated mortality, and cardiovascular mortality is susceptible to ambient temperature and DTR.

  8. Insights into the diurnal cycle of global Earth outgoing radiation using a numerical weather prediction model

    Science.gov (United States)

    Gristey, Jake J.; Chiu, J. Christine; Gurney, Robert J.; Morcrette, Cyril J.; Hill, Peter G.; Russell, Jacqueline E.; Brindley, Helen E.

    2018-04-01

    A globally complete, high temporal resolution and multiple-variable approach is employed to analyse the diurnal cycle of Earth's outgoing energy flows. This is made possible via the use of Met Office model output for September 2010 that is assessed alongside regional satellite observations throughout. Principal component analysis applied to the long-wave component of modelled outgoing radiation reveals dominant diurnal patterns related to land surface heating and convective cloud development, respectively explaining 68.5 and 16.0 % of the variance at the global scale. The total variance explained by these first two patterns is markedly less than previous regional estimates from observations, and this analysis suggests that around half of the difference relates to the lack of global coverage in the observations. The first pattern is strongly and simultaneously coupled to the land surface temperature diurnal variations. The second pattern is strongly coupled to the cloud water content and height diurnal variations, but lags the cloud variations by several hours. We suggest that the mechanism controlling the delay is a moistening of the upper troposphere due to the evaporation of anvil cloud. The short-wave component of modelled outgoing radiation, analysed in terms of albedo, exhibits a very dominant pattern explaining 88.4 % of the variance that is related to the angle of incoming solar radiation, and a second pattern explaining 6.7 % of the variance that is related to compensating effects from convective cloud development and marine stratocumulus cloud dissipation. Similar patterns are found in regional satellite observations, but with slightly different timings due to known model biases. The first pattern is controlled by changes in surface and cloud albedo, and Rayleigh and aerosol scattering. The second pattern is strongly coupled to the diurnal variations in both cloud water content and height in convective regions but only cloud water content in marine

  9. A study of diurnal variations of radon and thoron concentrations in different indoor environmental conditions

    International Nuclear Information System (INIS)

    Pant, Preeti; Prasad, Mukesh; Ramola, R.C.

    2015-01-01

    The measurements for diurnal variations in radon ( 222 Rn) and thoron ( 220 Rn) concentrations were performed in the different indoor conditions of Tehri Garhwal, Uttarakhand, India by using AlphaGUARD, Portable Radon Monitor and RAD7. While selecting the dwellings, the ventilation conditions, building materials, life style of the inhabitants and their exposure time indoors were also considered. The behavior of indoor radon and thoron concentrations was observed for different type of dwellings with different environmental conditions. The measurement techniques, results obtained and comparison of the results are discussed in details. (author)

  10. Heterogeneity of soil surface temperature induced by xerophytic ...

    Indian Academy of Sciences (India)

    The diurnal maximum and diurnal variations of soil surface temperatures under canopy vary strongly with different .... elevation of 1300 m above sea level), located at the southeastern fringe of ... cipitation is the only source of soil water replenish- ment. ...... 2001 Effects of nutrients and shade on tree-grass inter- actions in an ...

  11. Temporal variations of atmospheric CO2 concentration in a temperate deciduous forest in central Japan

    International Nuclear Information System (INIS)

    Murayama, Shohei; Saigusa, Nobuko; Yamamoto, Susumu; Kondo, Hiroaki; Eguchi, Yozo; Chan, Douglas

    2003-01-01

    In order to examine the temporal variation of the atmospheric CO 2 concentration in a temperate deciduous forest, and its relationship with meteorological conditions, continuous measurements of CO 2 and meteorological parameters have been made since 1993 on a tower at Takayama in the central part of Japan. In addition to an average secular increase in atmospheric CO 2 of 1.8 ppm/yr, diurnal variation with a maximum during the night-time to early morning and a minimum in the afternoon is observed from late spring to early fall; the diurnal cycle is not so clearly observed in the remaining seasons of the year. A concentration difference between above and below the canopy, and its diurnal variation, can also be seen clearly in summer. Daily mean concentration data show a prominent seasonal cycle. The maximum and the minimum of the seasonal cycle occur in April and from mid August to mid September, respectively. Day-to-day changes in the diurnal cycle of CO 2 are highly dependent on the day-to-day variations in meteorological conditions. However, CO 2 variations on longer time scales (>10 d) appear to be linearly related to changes in respiration. At Takayama, variations in the 10-d standard deviation of daily mean CO 2 data and 10-d averaged respiration show distinct relationships with soil temperature during spring and fall seasons. In spring, respiration has a stronger exponential dependence on soil temperature than in fall. Interestingly, in summer when soil temperature becomes greater than about 15 deg C, biological respiration becomes more variable and independent of the soil temperature. Thus, at the Takayama site, the Q10 relationship is seasonally dependent, and does not represent well the biological respiration process when the soil temperature rises above 15 deg C

  12. El Niño-Southern Oscillation effect on quasi-biennial oscillations of temperature diurnal tides in the mesosphere and lower thermosphere

    Science.gov (United States)

    Sun, Yang-Yi; Liu, Huixin; Miyoshi, Yasunobu; Liu, Libo; Chang, Loren C.

    2018-05-01

    In this study, we evaluate the El Niño-Southern Oscillation (ENSO) signals in the two dominant temperature diurnal tides, diurnal westward wavenumber 1 (DW1) and diurnal eastward wavenumber 3 (DE3) on the quasi-biennial oscillation (QBO) scale (18-34 months) from 50 to 100 km altitudes. The tides are derived from the 21-year (January 1996-February 2017) Ground-to-Topside model of Atmosphere and Ionosphere for Aeronomy (GAIA) temperature simulations and 15-year (February 2002-February 2017) Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED)/Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperature observations. The results show that ENSO warm phases shorten the period ( 2 years) of the QBO in DW1 amplitude near the equator and DE3 amplitude at low latitudes of the Northern Hemisphere. In contrast, the QBO period lengthens ( 2.5 years) during the ENSO neutral and cold phases. Correlation analysis shows the long-lasting effect of ENSO on the tidal QBO in the mesosphere and lower thermosphere.[Figure not available: see fulltext.

  13. Variability and trend of diurnal temperature range in China and their relationship to total cloud cover and sunshine duration

    Energy Technology Data Exchange (ETDEWEB)

    Xia, X. [Chinese Academy of Sciences, Beijing (China). LAGEO

    2013-07-01

    This study aims to investigate the effect of total cloud cover (TCC) and sunshine duration (SSD) in the variation of diurnal temperature range (DTR) in China during 1954-2009. As expected, the inter-annual variation of DTR was mainly determined by TCC. Analysis of trends of 30- year moving windows of DTR and TCC time series showed that TCC changes could account for that of DTR in some cases. However, TCC decreased during 1954-2009, which did not support DTR reduction across China. DTRs under sky conditions such as clear, cloudy and overcast showed nearly the same decreasing rate that completely accounted for the overall DTR reduction. Nevertheless, correlation between SSD and DTR was weak and not significant under clear sky conditions in which aerosol direct radiative effect should be dominant. Furthermore, 30-60% of DTR reduction was associated with DTR decrease under overcast conditions in south China. This implies that aerosol direct radiative effect appears not to be one of the main factors determining long-term changes in DTR in China. (orig.)

  14. Diurnal hysteresis between soil CO2 and soil temperature is controlled by soil water content

    Science.gov (United States)

    Diego A. Riveros-Iregui; Ryan E. Emanuel; Daniel J. Muth; L. McGlynn Brian; Howard E. Epstein; Daniel L. Welsch; Vincent J. Pacific; Jon M. Wraith

    2007-01-01

    Recent years have seen a growing interest in measuring and modeling soil CO2 efflux, as this flux represents a large component of ecosystem respiration and is a key determinant of ecosystem carbon balance. Process-based models of soil CO2 production and efflux, commonly based on soil temperature, are limited by nonlinearities such as the observed diurnal hysteresis...

  15. Improvement of Diurnal Blood Pressure Variation by Azilsartan.

    Science.gov (United States)

    Okamura, Keisuke; Shirai, Kazuyuki; Okuda, Tetsu; Urata, Hidenori

    2018-01-01

    Azilsartan is an angiotensin II receptor blocker with a potent antihypertensive effect. In a multicenter, prospective, open-label study, 265 patients with poor blood pressure control despite treatment with other angiotensin II receptor blockers were switched to 20 mg/day of azilsartan (patients on standard dosages) or 40 mg/day of azilsartan (patients on high dosages). Blood pressure was 149/83 mm Hg before switching and was significantly reduced from 1 month after switching until final assessment (132/76 mm Hg, P < 0.001). The pulse rate was 72/min before switching and increased significantly from 3 months after switching until final assessment (74/min, P < 0.005). A significant decrease of home morning systolic and diastolic pressure was observed from 1 and 3 months, respectively. Home morning blood pressure was 143/82 mm Hg before switching and 130/76 mm Hg at final assessment (P < 0.01). The morning-evening difference of systolic blood pressure decreased from 14.6 to 6.6 mm Hg after switching (P = 0.09). The estimated glomerular filtration rate was significantly decreased at 3, 6, and 12 months after switching, and serum uric acid was significantly increased at 12 months. No serious adverse events occurred. Azilsartan significantly reduced the blood pressure and decreased diurnal variation in patients responding poorly to other angiotensin II receptor blockers.

  16. Unexpected and Unexplained Surface Temperature Variations on Mimas

    Science.gov (United States)

    Howett, C.; Spencer, J. R.; Pearl, J. C.; Hurford, T. A.; Segura, M.; Cassini Cirs Team

    2010-12-01

    Until recently it was thought one of the most interesting things about Mimas, Saturn’s innermost classical icy moon, was its resemblance to Star Wars’ Death Star. However, a bizarre pattern of daytime surface temperatures was observed on Mimas using data obtained by Cassini’s Composite Infrared Spectrometer (CIRS) in February 2010. The observations were taken during Cassini’s closest ever encounter with Mimas (<10,000 km) and cover the daytime anti-Saturn hemisphere centered on longitude ~145° W. Instead of surface temperatures smoothly increasing throughout the morning and early afternoon, then cooling in the evening, as expected, a sharp V-shaped boundary is observed separating cooler midday and afternoon temperatures (~77 K) on the leading side from warmer morning temperatures (~92 K) on the trailing side. The boundary’s apex is centered at equatorial latitudes near the anti-Saturn point and extends to low north and south latitudes on the trailing side. Subtle differences in the surface colors have been observed that are roughly spatially correlated with the observed extent of the temperature anomaly, with the cooler regions tending to be bluer (Schenk et al., Submitted). However, visible-wavelength albedo is similar in the two regions, so albedo variations are probably not directly responsible for the thermal anomaly. It is more likely that thermal inertia variations produce the anomaly, with thermal inertia being unusually high in the region with anomalously low daytime temperatures. Comparison of the February 2010 CIRS data to previous lower spatial resolution data taken at different local times tentatively confirm that the cooler regions do indeed display higher thermal inertias. Bombardment of the surface by high energy electrons from Saturn’s radiation belts has been proposed to explain the observed color variations (Schenk et al., Submitted). Electrons above ~1 MeV preferentially impact Mimas’ leading hemisphere at low latitudes where they

  17. Diurnal and Seasonal Variations in the Net Ecosystem CO2 Exchange of a Pasture in the Three-River Source Region of the Qinghai-Tibetan Plateau.

    Directory of Open Access Journals (Sweden)

    Bin Wang

    Full Text Available Carbon dioxide (CO2 exchange between the atmosphere and grassland ecosystems is very important for the global carbon balance. To assess the CO2 flux and its relationship to environmental factors, the eddy covariance method was used to evaluate the diurnal cycle and seasonal pattern of the net ecosystem CO2 exchange (NEE of a cultivated pasture in the Three-River Source Region (TRSR on the Qinghai-Tibetan Plateau from January 1 to December 31, 2008. The diurnal variations in the NEE and ecosystem respiration (Re during the growing season exhibited single-peak patterns, the maximum and minimum CO2 uptake observed during the noon hours and night; and the maximum and minimum Re took place in the afternoon and early morning, respectively. The minimum hourly NEE rate and the maximum hourly Re rate were -7.89 and 5.03 μmol CO2 m-2 s-1, respectively. The NEE and Re showed clear seasonal variations, with lower values in winter and higher values in the peak growth period. The highest daily values for C uptake and Re were observed on August 12 (-2.91 g C m-2 d-1 and July 28 (5.04 g C m-2 day-1, respectively. The annual total NEE and Re were -140.01 and 403.57 g C m-2 year-1, respectively. The apparent quantum yield (α was -0.0275 μmol μmol-1 for the entire growing period, and the α values for the pasture's light response curve varied with the leaf area index (LAI, air temperature (Ta, soil water content (SWC and vapor pressure deficit (VPD. Piecewise regression results indicated that the optimum Ta and VPD for the daytime NEE were 14.1°C and 0.65 kPa, respectively. The daytime NEE decreased with increasing SWC, and the temperature sensitivity of respiration (Q10 was 3.0 during the growing season, which was controlled by the SWC conditions. Path analysis suggested that the soil temperature at a depth of 5 cm (Tsoil was the most important environmental factor affecting daily variations in NEE during the growing season, and the photosynthetic photon

  18. Real T1 relaxation time measurement and diurnal variation analysis of intervertebral discs in a healthy population of 50 volunteers

    International Nuclear Information System (INIS)

    Galley, J.; Maestretti, G.; Koch, G.; Hoogewoud, H-M.

    2017-01-01

    Purpose: To measure the real T1 relaxation time of the lumbar intervertebral discs in a young and healthy population, using different inversion recovery times, and assess diurnal variation. Material and methods: Intervertebral discs from D12 to S1 of 50 healthy volunteers from 18 to 25 years old were evaluated twice the same day, in the morning and in the late afternoon. Dedicated MRI sequences with different inversion recovery times (from 100 to 2500 ms) were used to calculate the real T1 relaxation time. Three regions of interest (ROIs) were defined in each disc, the middle representing the nucleus pulposus (NP) and the outer parts the annulus fibrosus (AF) anterior and posterior. Diurnal variation and differences between each disc level were analyzed. Results: T1 mean values in the NP were 1142 ± 12 ms in the morning and 1085 ± 13 ms in the afternoon, showing a highly significant decrease of 57 ms (p < 0.001). A highly significant difference between the levels of the spine was found. The mean T1 of the anterior part of the AF was 577 ± 9 ms in the morning and 554 ± 8 ms in the afternoon. For the posterior part, the mean values were 633 ± 8 ms in the morning and 581 ± 7 ms in the evening. It shows a highly significant decrease of 23 ms for the anterior part and 51 ms for the posterior part (all p < 0.001). Conclusion: T1 mapping is a promising method of intervertebral disc evaluation. Significant diurnal variation and difference between levels of the lumbar spine were demonstrated. A potential use for longitudinal study in post-operative follow up or sport medicine needs to be evaluated.

  19. Real T1 relaxation time measurement and diurnal variation analysis of intervertebral discs in a healthy population of 50 volunteers

    Energy Technology Data Exchange (ETDEWEB)

    Galley, J., E-mail: galleyjulien@gmail.com [Department of Radiology, HFR Fribourg, Hôpital Cantonal (Switzerland); Maestretti, G. [Department of Orthopedic Surgery, HFR Fribourg, Hôpital Cantonal (Switzerland); Koch, G.; Hoogewoud, H-M. [Department of Radiology, HFR Fribourg, Hôpital Cantonal (Switzerland)

    2017-02-15

    Purpose: To measure the real T1 relaxation time of the lumbar intervertebral discs in a young and healthy population, using different inversion recovery times, and assess diurnal variation. Material and methods: Intervertebral discs from D12 to S1 of 50 healthy volunteers from 18 to 25 years old were evaluated twice the same day, in the morning and in the late afternoon. Dedicated MRI sequences with different inversion recovery times (from 100 to 2500 ms) were used to calculate the real T1 relaxation time. Three regions of interest (ROIs) were defined in each disc, the middle representing the nucleus pulposus (NP) and the outer parts the annulus fibrosus (AF) anterior and posterior. Diurnal variation and differences between each disc level were analyzed. Results: T1 mean values in the NP were 1142 ± 12 ms in the morning and 1085 ± 13 ms in the afternoon, showing a highly significant decrease of 57 ms (p < 0.001). A highly significant difference between the levels of the spine was found. The mean T1 of the anterior part of the AF was 577 ± 9 ms in the morning and 554 ± 8 ms in the afternoon. For the posterior part, the mean values were 633 ± 8 ms in the morning and 581 ± 7 ms in the evening. It shows a highly significant decrease of 23 ms for the anterior part and 51 ms for the posterior part (all p < 0.001). Conclusion: T1 mapping is a promising method of intervertebral disc evaluation. Significant diurnal variation and difference between levels of the lumbar spine were demonstrated. A potential use for longitudinal study in post-operative follow up or sport medicine needs to be evaluated.

  20. Unravelling Diurnal Asymmetry of Surface Temperature in Different Climate Zones.

    Science.gov (United States)

    Vinnarasi, R; Dhanya, C T; Chakravorty, Aniket; AghaKouchak, Amir

    2017-08-04

    Understanding the evolution of Diurnal Temperature Range (DTR), which has contradicting global and regional trends, is crucial because it influences environmental and human health. Here, we analyse the regional evolution of DTR trend over different climatic zones in India using a non-stationary approach known as the Multidimensional Ensemble Empirical Mode Decomposition (MEEMD) method, to explore the generalized influence of regional climate on DTR, if any. We report a 0.36 °C increase in overall mean of DTR till 1980, however, the rate has declined since then. Further, arid deserts and warm-temperate grasslands exhibit negative DTR trends, while the west coast and sub-tropical forest in the north-east show positive trends. This transition predominantly begins with a 0.5 °C increase from the west coast and spreads with an increase of 0.25 °C per decade. These changes are more pronounced during winter and post-monsoon, especially in the arid desert and warm-temperate grasslands, the DTR decreased up to 2 °C, where the rate of increase in minimum temperature is higher than the maximum temperature. We conclude that both maximum and minimum temperature increase in response to the global climate change, however, their rates of increase are highly local and depend on the underlying climatic zone.

  1. Diurnal Variations of Emissions of O2 singlet Delta Near Mars' Northern Summer Solstice

    Science.gov (United States)

    Nosowitz, Jonathon; Ziobron, Elijah; Novak, Robert E.

    2017-10-01

    We are presenting results of O2 singlet Delta emission, a tracer for ozone, in the Martian atmosphere for observations taken before Mars’ Northern summer solstice (Ls = 88o, February 10, 2014 ). The data were taken using CSHELL on the NASA-IRTF telescope located on Mauna Kea in Hawaii. The slit was positioned east-west on Mars and we observed diurnal variations at 20o N and 60o N. Spectral/spatial images were taken with a spectral resolution above 38,000. Mars’ relative velocity of -16 km/s enabled us to separate the Martian emission lines from the telluric absorption lines. Raw images were cleaned by removing dead and hot pixels. The images were then adjusted so that the spatial dimension was perpendicular to the spectral dimension. Extracts at 0.6 arcsec spatial resolution were taken which allowed us to measure Martian emission peaks. The Martian data were calibrated by taking similar observations from a standard star (HR4689) using the temperature, wavelength, and intensity of the star to calibrate the flux density. A Boltzmann analysis was performed on the observed emission peaks to obtain the rotational temperature of the excited O2. From this, the total emission rates were obtained. We found that at both latitudinal locations, the greatest emissions occured between 12:00- 13:00 local time on Mars. The emission intensity increases during the morning hours and then decreases towards sunset. We thank the administration and staff of the NASA-IRTF for observation time and for their assistance during operations of the telescope. We also thank Drs. M. Mumma and G. Villanueva of the NASA Goddard Space Flight Center with whom we collaborate.

  2. Diurnal Cycle of Clouds and Precipitation at the ARM SGP Site

    Science.gov (United States)

    Zhao, W.; Marchand, R.; Fu, Q.

    2016-12-01

    Millimeter Wavelength Cloud Radar (MMCR) data from Dec. 1996 to Dec. 2010, collected at the U. S. Department of Energy Atmospheric Radiation Measurement (ARM) program site in the U.S. Southern Great Plains (SGP), are categorized into clouds (-40dBZe≤reflectivityCRM). Observational and simulated radar reflectivity are compared and further sorted into different atmospheric states identified by Evans (2014). Evans used a neutral network to take ERA-Interim state variables (i.e. horizontal winds, relative humidity, temperature at seven predetermined pressure level and surface pressure) on an 8×8 grid with 1.5º×1.5º spatial resolution centered on the SGP site and found twenty-one atmospheric states which represent specific synoptic conditions. We use these states to study the differences in the diurnal cycle between observations and simulations. Differences in the (mean) annual diurnal cycle between the observations and model are decomposed into errors in the daily mean, errors in the diurnal variation in each state, and errors due to difference in the frequency of occurrence of atmospheric states between ERA and the MMF. The magnitude of various error sources is assessed.

  3. Assessing diel variation of CH4 flux from rice paddies through temperature patterns

    Science.gov (United States)

    Centeno, Caesar Arloo R.; Alberto, Ma Carmelita R.; Wassmann, Reiner; Sander, Bjoern Ole

    2017-10-01

    The diel variation in methane (CH4) flux from irrigated rice was characterized during the dry and wet cropping seasons in 2013 and 2014 using the eddy covariance (EC) technique. The EC technique has the advantage of obtaining measurements of fluxes at an extremely high temporal resolution (10Hz), meaning it records 36,000 measurements per hour. The EC measurements can very well capture the temporal variations of the diel (both diurnal and nocturnal) fluxes of CH4 and the environmental factors (temperature, surface energy flux, and gross ecosystem photosynthesis) at 30-min intervals. The information generated by this technique is important to enhance our mechanistic understanding of the different factors affecting the landscape scale diel CH4 flux. Distinct diel patterns of CH4 flux were observed when the data were partitioned into different cropping periods (pre-planting, growth, and fallow). The temporal variations of the diel CH4 flux during the dry seasons were more pronounced than during the wet seasons because the latter had so much climatic disturbance from heavy monsoon rains and occasional typhoons. Pearson correlation analysis and Granger causality test were used to confirm if the environmental factors evaluated were not only correlated with but also Granger-causing the diel CH4 flux. Soil temperature at 2.5 cm depth (Ts 2.5 cm) can be used as simple proxy for predicting diel variations of CH4 fluxes in rice paddies using simple linear regression during both the dry and wet seasons. This simple site-specific temperature response function can be used for gap-filling CH4 flux data for improving the estimates of CH4 source strength from irrigated rice production.

  4. Climate variations and changes in extreme climate events in Russia

    International Nuclear Information System (INIS)

    Bulygina, O N; Razuvaev, V N; Korshunova, N N; Groisman, P Ya

    2007-01-01

    Daily temperature (mean, minimum and maximum) and atmospheric precipitation data from 857 stations are used to analyze variations in the space-time distribution of extreme temperatures and precipitation across Russia during the past six decades. The seasonal numbers of days (N) when daily air temperatures (diurnal temperature range, precipitation) were higher or lower than selected thresholds are used as indices of climatic extremes. Linear trends in N are calculated for each station for the time period of interest. The seasonal numbers of days (for each season) with maximum temperatures higher than the 95th percentile have increased over most of Russia, with minimum temperatures lower than the 5th percentile having decreased. A tendency for the decrease in the number of days with abnormally high diurnal temperature range is observed over most of Russia. In individual regions of Russia, however, a tendency for an increasing number of days with a large diurnal amplitude is found. The largest tendency for increasing number of days with heavy precipitation is observed in winter in Western Siberia and Yakutia

  5. Diurnal variation and reliability of the urine lactate concentration after maximal exercise.

    Science.gov (United States)

    Nikolaidis, Stefanos; Kosmidis, Ioannis; Sougioultzis, Michail; Kabasakalis, Athanasios; Mougios, Vassilis

    2018-01-01

    The postexercise urine lactate concentration is a novel valid exercise biomarker, which has exhibited satisfactory reliability in the morning hours under controlled water intake. The aim of the present study was to investigate the diurnal variation of the postexercise urine lactate concentration and its reliability in the afternoon hours. Thirty-two healthy children (11 boys and 21 girls) and 23 adults (13 men and 10 women) participated in the study. All participants performed two identical sessions of eight 25 m bouts of maximal freestyle swimming executed every 2 min with passive recovery in between. These sessions were performed in the morning and afternoon and were separated by 3-4 days. Adults performed an additional afternoon session that was also separated by 3-4 days. All swimmers drank 500 mL of water before and another 500 mL after each test. Capillary blood and urine samples were collected before and after each test for lactate determination. Urine creatinine, urine density and body water content were also measured. The intraclass correlation coefficient was used as a reliability index between the morning and afternoon tests, as well as between the afternoon test and retest. Swimming performance and body water content exhibited excellent reliability in both children and adults. The postexercise blood lactate concentration did not show diurnal variation, showing a good reliability between the morning and afternoon tests, as well as high reliability between the afternoon test and retest. The postexercise urine density and lactate concentration were affected by time of day. However, when lactate was normalized to creatinine, it exhibited excellent reliability in children and good-to-high reliability in adults. The postexercise urine lactate concentration showed high reliability between the afternoon test and retest, independent of creatinine normalization. The postexercise blood and urine lactate concentrations were significantly correlated in all

  6. Diurnal variation of precipitation over the Carolina Sandhills region

    Indian Academy of Sciences (India)

    State Climate Office of North Carolina, Raleigh, NC 27695-8208, USA. ∗ e-mail: ... of the weather forecast models experience problems in accounting for the ... effect of vegetation and soil contrasts on thermally induced flow is ... Sandhills; diurnal convection; heat flux gradients; cloud–radiation interaction. J. Earth Syst. Sci.

  7. Diurnal variation of the serum leptin concentration in patients with anorexia nervosa

    DEFF Research Database (Denmark)

    Støving, R K; Vinten, J; Handberg, A

    1998-01-01

    , however, this has been reported to be absent in normal weighted amenorrheic athletes. Anorexia nervosa is associated with multiple endocrine abnormalities. Hypothalamic amenorrhoea often precedes the weight loss and may persist after weight recovery. We hypothesized that leptin could be involved...... in the regulation of eating behaviour and gonadal function in anorexia nervosa. DESIGN: We measured the concentration of leptin in serum samples taken after an overnight fast in 18 female anorexia nervosa patients and 11 controls. To study diurnal variation, eight patients and 11 controls were hospitalized for 24 h...... and had a standardized diet at regular times. Seven blood samples were obtained at 4 h intervals from each subject. PATIENTS: The patients fulfilled the DSM-IV criteria for anorexia nervosa. The mean body mass index for the patients was 14.2 +/- 2.3 kg/m2 and for controls 20.3 +/- 1.7 kg/m2. RESULTS...

  8. Estimation of paracetamol in urine to assess the diurnal variation

    Directory of Open Access Journals (Sweden)

    Mithun Chandro Bhowmik

    2018-05-01

    Full Text Available The aim of the present study was to evaluate the diurnal variation of the pharmacokinetics of paracetamol by estimating the urinary free paracetamol level after single oral administration of paracetamol (500 mg tablet to 24 healthy male volunteers (students of a Medical College. The volunteers were given paracetamol tablet at 0800, 1400 and 2000 hours in three different days (two weeks apart and the urine samples of the volunteers were collected at just before and four hours after paracetamol administration. The samples were analyzed for free paracetamol using HPLC. The mean age was 21.1 ± 1.3 years and the body weight was 63.9 ± 10.9 kg. Three peaks were detected in the HPLC and one of them was identified for free paracetamol (RT= 4.7 min. The urine volume was nearly similar in all three times. After administration at 0800 hour, total free paracetamol excretion was significantly more than at 1400 and 2000 hours (p<0.001. The present study indicates that the dose reduction of paracetamol is required at morning than the afternoon or evening dose. 

  9. Diurnal Variation in the Basal Emission Rate of Isoprene

    Science.gov (United States)

    Jennifer Funk; Clive G. Jones; Christine J. Baker; Heather M. Fuller; Christian P. Giardina; Manuel T. Lerdua

    2003-01-01

    Isoprene is emitted from numerous plant species and profoundly influences tropospheric chemistry. Due to the short lifetime of isoprene in the atmosphere, developing an understanding of emission patterns at small time scales is essential for modeling regional atmospheric chemistry processes. Previous studies suggest that diurnal fluctuations in isoprene emission may be...

  10. Impact of resolving the diurnal cycle in an ocean-atmosphere GCM. Pt. 1: a diurnally forced OGCM

    Energy Technology Data Exchange (ETDEWEB)

    Bernie, D.J. [University of Reading, National Centre for Atmospheric Science - Climate, Department of Meteorology, Reading (United Kingdom); Laboratoire d' Oceanographie et du Climat, Experimentation et Approches Numeriques, IPSL, Paris (France); Met Office Hadley Centre, Exeter, EX1 3PB (United Kingdom); Guilyardi, E. [University of Reading, National Centre for Atmospheric Science - Climate, Department of Meteorology, Reading (United Kingdom); Laboratoire d' Oceanographie et du Climat, Experimentation et Approches Numeriques, IPSL, Paris (France); Madec, G. [Laboratoire d' Oceanographie et du Climat, Experimentation et Approches Numeriques, IPSL, Paris (France); Slingo, J.M.; Woolnough, S.J. [University of Reading, National Centre for Atmospheric Science - Climate, Department of Meteorology, Reading (United Kingdom)

    2007-11-15

    The diurnal cycle is a fundamental time scale in the climate system, at which the upper ocean and atmosphere are routinely observed to vary. Current climate models, however, are not configured to resolve the diurnal cycle in the upper ocean or the interaction of the ocean and atmosphere on these time scales. This study examines the diurnal cycle of the tropical upper ocean and its climate impacts. In the present paper, the first of two, a high vertical resolution ocean general circulation model (OGCM), with modified physics, is developed which is able to resolve the diurnal cycle of sea surface temperature (SST) and current variability in the upper ocean. It is then validated against a satellite derived parameterization of diurnal SST variability and in-situ current observations. The model is then used to assess rectification of the intraseasonal SST response to the Madden-Julian oscillation (MJO) by the diurnal cycle of SST. Across the equatorial Indo-Pacific it is found that the diurnal cycle increases the intraseasonal SST response to the MJO by around 20%. In the Pacific, the diurnal cycle also modifies the exchange of momentum between equatorially divergent Ekman currents and the meridionally convergent geostrophic currents beneath, resulting in a 10% increase in the strength of the Ekman cells and equatorial upwelling. How the thermodynamic and dynamical impacts of the diurnal cycle effect the mean state, and variability, of the climate system cannot be fully investigated in the constrained design of ocean-only experiments presented here. The second part of this study, published separately, addresses the climate impacts of the diurnal cycle in the coupled system by coupling the OGCM developed here to an atmosphere general circulation model. (orig.)

  11. Spatial patterns in timing of the diurnal temperature cycle

    Directory of Open Access Journals (Sweden)

    T. R. H. Holmes

    2013-10-01

    Full Text Available This paper investigates the structural difference in timing of the diurnal temperature cycle (DTC over land resulting from choice of measuring device or model framework. It is shown that the timing can be reliably estimated from temporally sparse observations acquired from a constellation of low Earth-orbiting satellites given record lengths of at least three months. Based on a year of data, the spatial patterns of mean DTC timing are compared between temperature estimates from microwave Ka-band, geostationary thermal infrared (TIR, and numerical weather prediction model output from the Global Modeling and Assimilation Office (GMAO. It is found that the spatial patterns can be explained by vegetation effects, sensing depth differences and more speculatively the orientation of orographic relief features. In absolute terms, the GMAO model puts the peak of the DTC on average at 12:50 local solar time, 23 min before TIR with a peak temperature at 13:13 (both averaged over Africa and Europe. Since TIR is the shallowest observation of the land surface, this small difference represents a structural error that possibly affects the model's ability to assimilate observations that are closely tied to the DTC. The equivalent average timing for Ka-band is 13:44, which is influenced by the effect of increased sensing depth in desert areas. For non-desert areas, the Ka-band observations lag the TIR observations by only 15 min, which is in agreement with their respective theoretical sensing depth. The results of this comparison provide insights into the structural differences between temperature measurements and models, and can be used as a first step to account for these differences in a coherent way.

  12. Diurnal variation, vertical distribution and source apportionment of carcinogenic polycyclic aromatic hydrocarbons (PAHs) in Chiang-Mai, Thailand.

    Science.gov (United States)

    Pongpiachan, Siwatt

    2013-01-01

    Diurnal variation of particulate polycyclic aromatic hydrocarbons (PAHs) was investigated by collecting PM10 at three different sampling altitudes using high buildings in the city center of Chiang-Mai, Thailand, during the relatively cold period in late February 2008. At site-1 (12 m above ground level), B[a]P concentrations ranged from 30.3 -1,673 pg m-3 with an average of 506±477 pg m-3, contributing on average, 8.09±8.69% to ?PAHs. Ind and B[b]F concentrations varied from 54.6 to 4,579 pg m-3 and from 80.7 to 2,292 pg m-3 with the highest average of 1,187±1,058 pg m-3 and 963±656 pg m-3, contributing on average, 19.0±19.3% and 15.4±12.0% to ?PAHs, respectively. Morning maxima were predominantly detected in all observatory sites, which can be described by typical diurnal variations of traffic flow in Chiang-Mai City, showing a morning peak between 6 AM. and 9 AM. Despite the fact that most monitoring sites might be subjected to specific-site impacts, it could be seen that PAH profiles in Site-1 and Site-2 were astonishingly homogeneous. The lack of differences suggests that the source signatures of several PAHs become less distinct possibly due to the impacts of traffic and cooking emissions from ground level.

  13. Model independent result on possible diurnal effect in DAMA/LIBRA-phase1

    Energy Technology Data Exchange (ETDEWEB)

    Bernabei, R.; D' Angelo, S.; Di Marco, A. [Universita di Roma ' ' Tor Vergata' ' , Dipt. di Fisica, Rome (Italy); INFN, Sezione Roma ' ' Tor Vergata' ' , Rome (Italy); Belli, P. [INFN, Sezione Roma ' ' Tor Vergata' ' , Rome (Italy); Cappella, F.; D' Angelo, A.; Prosperi, D. [Universita di Roma ' ' La Sapienza' ' , Dipt. di Fisica, Rome (Italy); INFN, Sezione Roma, Rome (Italy); Caracciolo, V.; Castellano, S.; Cerulli, R. [INFN, Laboratori Nazionali del Gran Sasso, Assergi (Italy); Dai, C.J.; He, H.L.; Kuang, H.H.; Ma, X.H.; Sheng, X.D.; Wang, R.G. [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China); Incicchitti, A. [INFN, Sezione Roma, Rome (Italy); Montecchia, F. [INFN, Sezione Roma ' ' Tor Vergata' ' , Rome (Italy); Universita di Roma ' ' Tor Vergata' ' , Dipt. di Ingegneria Civile e Ingegneria Informatica, Rome (Italy); Ye, Z.P. [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China); University of Jing Gangshan, Jiangxi (China)

    2014-03-15

    The results obtained in the search for possible diurnal effect in the single-hit low energy data collected by DAMA/LIBRA-phase1 (total exposure 1.04 ton x year) deep underground at the Gran Sasso National Laboratory (LNGS) of the INFN are presented. At the present level of sensitivity the presence of any significant diurnal variation and of diurnal time structures in the data can be excluded for both the cases of solar and sidereal time. In particular, the diurnal modulation amplitude expected, because of the Earth diurnal motion, on the basis of the DAMA dark matter annual modulation results is below the present sensitivity. (orig.)

  14. Model independent result on possible diurnal effect in DAMA/LIBRA-phase1

    International Nuclear Information System (INIS)

    Bernabei, R.; D'Angelo, S.; Di Marco, A.; Belli, P.; Cappella, F.; D'Angelo, A.; Prosperi, D.; Caracciolo, V.; Castellano, S.; Cerulli, R.; Dai, C.J.; He, H.L.; Kuang, H.H.; Ma, X.H.; Sheng, X.D.; Wang, R.G.; Incicchitti, A.; Montecchia, F.; Ye, Z.P.

    2014-01-01

    The results obtained in the search for possible diurnal effect in the single-hit low energy data collected by DAMA/LIBRA-phase1 (total exposure 1.04 ton x year) deep underground at the Gran Sasso National Laboratory (LNGS) of the INFN are presented. At the present level of sensitivity the presence of any significant diurnal variation and of diurnal time structures in the data can be excluded for both the cases of solar and sidereal time. In particular, the diurnal modulation amplitude expected, because of the Earth diurnal motion, on the basis of the DAMA dark matter annual modulation results is below the present sensitivity. (orig.)

  15. Short-term cyclic variations and diurnal variations of the Venus upper atmosphere

    Science.gov (United States)

    Keating, G. M.; Taylor, F. W.; Nicholson, J. Y.; Hinson, E. W.

    1979-01-01

    The vertical structure of the nighttime thermosphere and exosphere of Venus was discussed. A comparison of the day and nighttime profiles indicates, contrary to the model of Dickinson and Riley (1977), that densities (principally atomic oxygen) dropped sharply from day to night. It was suggested either that the lower estimates were related to cooler exospheric temperatures at night or that the atomic bulge was flatter than expected at lower altitudes. Large periodic oscillations, in both density and inferred exospheric temperatures, were detected with periods of 5 to 6 days. The possibility that cyclic variations in the thermosphere and stratosphere were caused by planetary-scale waves, propagated upward from the lower atmosphere, was investigated using simultaneous temperature measurements obtained by the Venus radiometric temperature experiment (VORTEX). Inferred exospheric temperatures in the morning were found to be lower than in the evening as if the atmosphere rotated in the direction of the planet's rotation, similar to that of earth. Superrotation of the thermosphere and exosphere was discussed as a possible extension of the 4-day cyclic atmospheric rotation near the cloud tops.

  16. Diurnal adjustment in ultraviolet sunscreen protection is widespread among higher plants.

    Science.gov (United States)

    Barnes, Paul W; Flint, Stephan D; Tobler, Mark A; Ryel, Ronald J

    2016-05-01

    The accumulation of ultraviolet (UV)-absorbing compounds (flavonoids and related phenylpropanoids) in the epidermis of higher plants reduces the penetration of solar UV radiation to underlying tissues and is a primary mechanism of acclimation to changing UV conditions resulting from ozone depletion and climate change. Previously we reported that several herbaceous plant species were capable of rapid, diurnal adjustments in epidermal UV transmittance (T UV), but how widespread this phenomenon is among plants has been unknown. In the present study, we tested the generality of this response by screening 37 species of various cultivated and wild plants growing in four locations spanning a gradient of ambient solar UV and climate (Hawaii, Utah, Idaho and Louisiana). Non-destructive measurements of adaxial T UV indicated that statistically significant midday decreases in T UV occurred in 49 % of the species tested, including both herbaceous and woody growth forms, and there was substantial interspecific variation in the magnitude of these changes. In general, plants in Louisiana exhibited larger diurnal changes in T UV than those in the other locations. Moreover, across all taxa, the magnitude of these changes was positively correlated with minimum daily air temperatures but not daily UV irradiances. Results indicate that diurnal changes in UV shielding are widespread among higher plants, vary both within and among species and tend to be greatest in herbaceous plants growing in warm environments. These findings suggest that plant species differ in their UV protection "strategies" though the functional and ecological significance of this variation in UV sunscreen protection remains unclear at present.

  17. Monthly variations of diurnal rainfall in north coast of West Java Indonesia during boreal winter periods

    Science.gov (United States)

    Yulihastin, E.; Trismidianto

    2018-05-01

    Diurnal rainfall during the active monsoon period is usually associated with the highest convective activity that often triggers extreme rainfall. Investigating diurnal rainfall behavior in the north coast of West Java is important to recognize the behavioral trends of data leading to such extreme events in strategic West Java because the city of Jakarta is located in this region. Variability of diurnal rainfall during the period of active monsoon on December-January-February (DJF) composite during the 2000-2016 period was investigated using hourly rainfall data from Tropical Rainfall Measuring Mission (TRMM) 3B41RT dataset. Through the Empirical Mode Decomposition method was appears that the diurnal rain cycle during February has increased significantly in its amplitude and frequency. It is simultaneously shows that the indication of extreme rainfall events is related to diurnal rain divergences during February shown through phase shifts. The diurnal, semidiurnal, and terdiurnal cycles appear on the characteristics of the DJF composite rainfall data during the 2000-2016 period.The significant increases in amplitude occurred during February are the diurnal (IMF 3) and terdiurnal (IMF 1) of rainfall cycles.

  18. A study of diurnal variations of PM2.5 acidity and related chemical species using a new thermodynamic equilibrium model

    International Nuclear Information System (INIS)

    Behera, Sailesh N.; Betha, Raghu; Liu, Ping; Balasubramanian, Rajasekhar

    2013-01-01

    Aerosol acidity is one of the most important parameters that can influence atmospheric visibility, climate change and human health. Based on continuous field measurements of inorganic aerosol species and their thermodynamic modeling on a time resolution of 1 h, this study has investigated the acidic properties of PM 2.5 and their relation with the formation of secondary inorganic aerosols (SIA). The study was conducted by taking into account the prevailing ambient temperature (T) and relative humidity (RH) in a tropical urban atmosphere. The in-situ aerosol pH (pH IS ) on a 12 h basis ranged from − 0.20 to 1.46 during daytime with an average value of 0.48 and 0.23 to 1.53 during nighttime with an average value of 0.72. These diurnal variations suggest that the daytime aerosol was more acidic than that caused by the nighttime aerosol. The hourly values of pH IS showed a reverse trend as compared to that of in-situ aerosol acidity ([H + ] Ins ). The pH IS had its maximum values at 3:00 and at 20:00 and its minimum during 11:00 to 12:00. Correlation analyses revealed that the molar concentration ratio of ammonium to sulfate (R N/S ), equivalent concentration ratio of cations to anions (R C/A ), T and RH can be used as independent variables for prediction of pH IS . A multi-linear regression model consisting of R N/S , R C/A, T and RH was developed to estimate aerosol pH IS. - Highlights: • Fine aerosol acidic characteristics were evaluated on an hourly basis. • Diurnal variations of in-situ acidity, water content and pH of aerosols were investigated. • Aerosols were more acidic during daytime than during nighttime. • The molar ratio of ammonium to sulfate and equivalent ratio of cations to anions were good indicators of aerosol acidity. • Meteorology had a significant effect on the hygroscopic nature of aerosol

  19. Real world vehicle fleet emission factors: Seasonal and diurnal variations in traffic related air pollutants

    Science.gov (United States)

    Wang, Jonathan M.; Jeong, Cheol-Heon; Zimmerman, Naomi; Healy, Robert M.; Evans, Greg J.

    2018-07-01

    Temporal variations of vehicle emissions are affected by various compounding factors in the real world. The focus of this study is to determine the effects of ambient conditions and post-tailpipe changes on traffic emissions measured in the near-road region. Emission factors allowed for the isolation of the traffic signal and accounted for effects of local meteorology and dilution. Five month-long measurement campaigns were conducted at an urban near-road site that exhibited a broad range of ambient conditions with temperatures ranging between -18 and +30 °C. Particle number emission factors were 2.0× higher in the winter relative to the summer, which was attributed to changes in particles post-tailpipe. Conversely, toluene emissions were 2.5× higher in the summer relative to the winter, attributed to changes in fuel composition. Diurnal trends of emission factors showed substantial increases in emissions during the morning rush hour for black carbon (1.9×), particle number (2.4×), and particle-bound polycyclic aromatic hydrocarbons (3.0×), affected by fleet make-up. In contrast, particle number emission factors were highest midday with mean values 3.7× higher than at night. This midday increase was attributed to particle formation or growth from local traffic emissions and showed different wind direction dependence than regional events.

  20. Application of Synthetic Storm Technique for Diurnal and Seasonal Variation of Slant Path Ka-Band Rain Attenuation Time Series over a Subtropical Location in South Africa

    Directory of Open Access Journals (Sweden)

    J. S. Ojo

    2015-01-01

    Full Text Available As technology advances and more demands are on satellite services, rain-induced attenuation still creates one of the most damaging effects of the atmosphere on the quality of radio communication signals, especially those operating above 10 GHz. System designers therefore require statistical information on rain-induced attenuation over the coverage area in order to determine the appropriate transmitter and receiver characteristics to be adopted. This paper presents results on the time-varying rain characterization and diurnal variation of slant path rain attenuation in the Ka-band frequency simulated with synthetic storm techniques over a subtropical location in South Africa using 10-year rain rate time-series data. The analysis is based on the CDF of one-minute rain rate; time-series seasonal variation of rain rate observed over four time intervals: 00:00–06:00, 06:00–12:00, 12:00–18:00, and 18:00–24:00; diurnal fades margin; and diurnal variation of rain attenuation. Comparison was also made between the synthesized values and measured attenuation data. The predicted statistics are in good agreement with those obtained from the propagation beacon measurement in the area. The overall results will be needed for an acceptable planning that can effectively reduce the fade margin to a very low value for an optimum data communication over this area.

  1. Modelling of diurnal cycle under climate change

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, A V; Bezmenov, K V; Demchenko, P F; Mokhov, I I; Petoukhov, V K [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Atmospheric Physics

    1996-12-31

    The observed diurnal temperature range (DTR) displays remarkable change during last 30 years. Land air DTR generally decreases under global climate warming due to more significant night minimum temperature increase in comparison with day maximum temperature increase. Atmosphere hydrological cycle characteristics change under global warming and possible background aerosol atmosphere content change may cause essential errors in the estimation of DTR tendencies of change under global warming. The result of this study is the investigation of cloudiness effect on the DTR and blackbody radiative emissivity diurnal range. It is shown that in some cases (particularly in cold seasons) it results in opposite change in DTR and BD at doubled CO{sub 2} atmosphere content. The influence of background aerosol is the same as the cloudiness one

  2. Modelling of diurnal cycle under climate change

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, A.V.; Bezmenov, K.V.; Demchenko, P.F.; Mokhov, I.I.; Petoukhov, V.K. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Atmospheric Physics

    1995-12-31

    The observed diurnal temperature range (DTR) displays remarkable change during last 30 years. Land air DTR generally decreases under global climate warming due to more significant night minimum temperature increase in comparison with day maximum temperature increase. Atmosphere hydrological cycle characteristics change under global warming and possible background aerosol atmosphere content change may cause essential errors in the estimation of DTR tendencies of change under global warming. The result of this study is the investigation of cloudiness effect on the DTR and blackbody radiative emissivity diurnal range. It is shown that in some cases (particularly in cold seasons) it results in opposite change in DTR and BD at doubled CO{sub 2} atmosphere content. The influence of background aerosol is the same as the cloudiness one

  3. Diurnal pH variations of a Glacial Stream: a starting point for Inquiry-driven student and teacher Investigations of a Glacial Ecosystem

    Science.gov (United States)

    O'Brien, W. P.; Galbraith, J.; Fatland, D. R.; Heavner, M.

    2009-12-01

    Contemporary geoscience research often operates in a mode that generates huge repositories of data available on the internet to the scientific community and the general public. The SEAMONSTER (SM) online data browser of both archival and real-time data is an example of such a dynamic online ecosystem resource associated with the Juneau Icefield. Although newly developed database navigation tools and geobrowsers make it easy for non-experts to access data of interest, it nonetheless can be daunting to K-16 educators to fashion lesson plans that make effective use of these rich resources. In the following scenario, a student and associated teacher, operating outside the traditional didactic lecture/demo mode, explore and try to make sense of a tiny portion of SM data in a spirit of inquiry guided by curiosity, looking for features that catch their attention as they skim through interactive time-series graphs (96 samples/day) of data from Lemon Creek (which drains Lemon Glacier) for stream hydrological variables (temperature, pH, conductivity, dissolved oxygen, turbidity, discharge) and associated meteorological variables (precipitation, humidity, temperature). Amidst all the complex fluctuations that follow no immediately apparent pattern, one regular and continuous feature does stand out: a seemingly sinusoidal diurnal variation in pH of about 0.1 that peaks daily at noon. This high-frequency signal is superimposed on a slower signal characterized by multiple-day trends and larger fluctuations in pH. The resulting composite signal with its easily identifiable patterns is an ideal candidate for investigating Fourier signal decomposition. They hypothesize that photosynthesis could be a contributing factor to the diurnal signal and then design and run an experiment modeling bioactive streamwater with a blended chloroplast-rich slurry of fresh spinach leaves (spinach soup). They put a recording pH meter in the spinach soup and expose it to high and low levels of light

  4. Estimation of Diurnal Cycle of Land Surface Temperature at High Temporal and Spatial Resolution from Clear-Sky MODIS Data

    Directory of Open Access Journals (Sweden)

    Si-Bo Duan

    2014-04-01

    Full Text Available The diurnal cycle of land surface temperature (LST is an important element of the climate system. Geostationary satellites can provide the diurnal cycle of LST with low spatial resolution and incomplete global coverage, which limits its applications in some studies. In this study, we propose a method to estimate the diurnal cycle of LST at high temporal and spatial resolution from clear-sky MODIS data. This method was evaluated using the MSG-SEVIRI-derived LSTs. The results indicate that this method fits the diurnal cycle of LST well, with root mean square error (RMSE values less than 1 K for most pixels. Because MODIS provides at most four observations per day at a given location, this method was further evaluated using only four MSG-SEVIRI-derived LSTs corresponding to the MODIS overpass times (10:30, 13:30, 22:30, and 01:30 local solar time. The results show that the RMSE values using only four MSG-SEVIRI-derived LSTs are approximately two times larger than those using all LSTs. The spatial distribution of the modeled LSTs at the MODIS pixel scale is presented from 07:00 to 05:00 local solar time of the next day with an increment of 2 hours. The diurnal cycle of the modeled LSTs describes the temporal evolution of the LSTs at the MODIS pixel scale.

  5. Hyper and hypothyroidism change the expression and diurnal variation of thyroid hormone receptor isoforms in rat liver without major changes in their zonal distribution

    NARCIS (Netherlands)

    Zandieh-Doulabi, B.; Platvoet-ter Schiphorst, M.; Kalsbeek, A.; Wiersinga, W. M.; Bakker, O.

    2004-01-01

    We investigated the effect of hypothyroidism or hyperthyroidism on mRNA and protein expression, diurnal variation and zonal distribution of thyroid hormone receptor (TR) isoforms TRalpha1 TRalpha2 and TRbeta1 in rat liver. Hypothyroidism results in increased isoform mRNA and protein expression

  6. Diurnal rhythm in serum levels of inhibin B in normal men

    DEFF Research Database (Denmark)

    Carlsen, E; Olsson, C; Petersen, J H

    1999-01-01

    in the early morning hours and lower values in the late afternoon and evening. We did not find evidence for a role of FSH in this diurnal variation of inhibin B. However, covariation with serum levels of testosterone and estradiol suggested that these hormones might play a role in the diurnal rhythm of inhibin...

  7. Heliospheric Modulation of Galactic Cosmic Rays; Diurnal Variability Abstract Details

    Science.gov (United States)

    Kalu, D. F.; Okpala, K. C.

    2017-12-01

    We have studied the variability of Cosmic rays flux during solar quiet days at mid and high latitudes in the Northern Hemisphere. By using the five (5) quietest days for each month and the five disturbed days for each month, the monthly mean diurnal variation of cosmic ray anisotropy have been derived for the period 1999-2015, which covers part of cycles 23, and cycle 24. This study seeks to understand the heliospheric contribution to the variation of these Cosmic rays on quietest days, three stations (Inuvik, Moscow, Rome) Neutron Monitors were employed. This study seeks to understand the important features of the high latitude and mid latitude diurnal wave, and how solar and geomagnetic activity may be influencing the wave characteristics. Cosmic ray wave characteristics were obtained by discrete Fourier transform (DFT). The mean, diurnal amplitude, phase and dispersion for each month's diurnal wave were calculated and profiled. There was clear indication that the terrestrial effect on the variability of the monthly mean was more associated with geomagnetic activity rather than rigidity of the cosmic rays. Correlation of the time series of these wave characteristic with solar and geomagnetic activity index showed better association with solar activity.

  8. Preeclampsia prediction in type 1 diabetes and diurnal blood pressure methodology

    DEFF Research Database (Denmark)

    Lauszus, Finn

    2016-01-01

    of the papers with the best, validated methodology on BP measurements, which is by no way guaranteed in numerous recent publications. Inherent characteristics of the measurements to be considered are reproducibility, consistency, precision, and trend over scale of measurement. Studies on these issues suggest....... Preeclampsia is associated with urinary albumin excretion rate, reduced night/day ratio, and elevated diurnal blood pressure from first trimester and onwards. However, due to blunting of the diurnal variation, the night/day rhythm provides no good prediction of preeclampsia. Diurnal measurement is a valuable...

  9. Interannual Variation of the Surface Temperature of Tropical Forests from Satellite Observations

    Directory of Open Access Journals (Sweden)

    Huilin Gao

    2016-01-01

    Full Text Available Land surface temperatures (LSTs within tropical forests contribute to climate variations. However, observational data are very limited in such regions. This study used passive microwave remote sensing data from the Special Sensor Microwave/Imager (SSM/I and the Special Sensor Microwave Imager Sounder (SSMIS, providing observations under all weather conditions, to investigate the LST over the Amazon and Congo rainforests. The SSM/I and SSMIS data were collected from 1996 to 2012. The morning and afternoon observations from passive microwave remote sensing facilitate the investigation of the interannual changes of LST anomalies on a diurnal basis. As a result of the variability of cloud cover and the corresponding reduction of solar radiation, the afternoon LST anomalies tend to vary more than the morning LST anomalies. The dominant spatial and temporal patterns for interseasonal variations of the LST anomalies over the tropical rainforest were analyzed. The impacts of droughts and El Niños on this LST were also investigated. Differences between early morning and late afternoon LST anomalies were identified by the remote sensing product, with the morning LST anomalies controlled by humidity (according to comparisons with the National Centers for Environmental Prediction (NCEP reanalysis data.

  10. Diurnal Variation and Spatial Distribution Effects on Sulfur Speciation in Aerosol Samples as Assessed by X-Ray Absorption Near-Edge Structure (XANES

    Directory of Open Access Journals (Sweden)

    Siwatt Pongpiachan

    2012-01-01

    Full Text Available This paper focuses on providing new results relating to the impacts of Diurnal variation, Vertical distribution, and Emission source on sulfur K-edge XANES spectrum of aerosol samples. All aerosol samples used in the diurnal variation experiment were preserved using anoxic preservation stainless cylinders (APSCs and pressure-controlled glove boxes (PCGBs, which were specially designed to prevent oxidation of the sulfur states in PM10. Further investigation of sulfur K-edge XANES spectra revealed that PM10 samples were dominated by S(VI, even when preserved in anoxic conditions. The “Emission source effect” on the sulfur oxidation state of PM10 was examined by comparing sulfur K-edge XANES spectra collected from various emission sources in southern Thailand, while “Vertical distribution effects” on the sulfur oxidation state of PM10 were made with samples collected from three different altitudes from rooftops of the highest buildings in three major cities in Thailand. The analytical results have demonstrated that neither “Emission source” nor “Vertical distribution” appreciably contribute to the characteristic fingerprint of sulfur K-edge XANES spectrum in PM10.

  11. The correlation between dengue incidence and diurnal ranges of temperature of Colombo district, Sri Lanka 2005–2014

    Directory of Open Access Journals (Sweden)

    N. D. B. Ehelepola

    2016-08-01

    Full Text Available Background: Meteorological factors affect dengue transmission. Mechanisms of the way in which different diurnal temperatures, ranging around different mean temperatures, influence dengue transmission were published after 2011. Objective: We endeavored to determine the correlation between dengue incidence and diurnal temperature ranges (DTRs in Colombo district, Sri Lanka, and to explore the possibilities of using our findings to improve control of dengue. Design: We calculated the weekly dengue incidence in Colombo during 2005–2014, after data on all of the reported dengue patients and estimated mid-year populations were collected. We obtained daily maximum and minimum temperatures from two Colombo weather stations, averaged, and converted them into weekly data. Weekly averages of DTR versus dengue incidence graphs were plotted and correlations observed. The count of days per week with a DTR of >7.5°C and 7.5°C with an 8-week lag period, and a positive correlation between dengue incidence and a DTR<7.5°C, also with an 8-week lag. Conclusions: Large DTRs were negatively correlated with dengue transmission in Colombo district. We propose to take advantage of that in local dengue control efforts. Our results agree with previous studies on the topic and with a mathematical model of relative vectorial capacity of Aedes aegypti. Global warming and declining DTR are likely to favor a rise of dengue, and we suggest a simple method to mitigate this.

  12. Long-term stability of diurnal salivary cortisol and alpha-amylase secretion patterns.

    Science.gov (United States)

    Skoluda, Nadine; La Marca, Roberto; Gollwitzer, Mario; Müller, Andreas; Limm, Heribert; Marten-Mittag, Birgitt; Gündel, Harald; Angerer, Peter; Nater, Urs M

    2017-06-01

    This study aimed to investigate long-term stability and variability of diurnal cortisol and alpha-amylase patterns. Diurnal cortisol and alpha-amylase secretion patterns were assessed on a single workday with three waves of measurement across a total time period of 24months in 189 participants. Separate hierarchical linear models were analyzed, with and without a number of potential predictor variables (age, BMI, smoking, chronic stress, stress reactivity). While low long-term stability was found in diurnal cortisol, the stability of diurnal alpha-amylase was moderate across the time period of 24months. Several predictor variables had a positive impact on diurnal cortisol and alpha-amylase secretion patterns averaged across waves. Our findings underpin the notion that long-term stability is not necessarily warranted in longitudinal studies. It is important to choose an appropriate study design when attempting to disentangle clinically and biologically relevant changes from naturally occurring variations in diurnal cortisol and alpha-amylase. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Global climate change: impact of diurnal temperature range on mortality in Guangzhou, China.

    Science.gov (United States)

    Yang, Jun; Liu, Hua-Zhang; Ou, Chun-Quan; Lin, Guo-Zhen; Zhou, Qin; Shen, Gi-Chuan; Chen, Ping-Yan; Guo, Yuming

    2013-04-01

    Diurnal temperature range (DTR) is an important meteorological indicator associated with global climate change, but little is known about the effects of DTR on mortality. We examined the effects of DTR on cause-/age-/education-specific mortality in Guangzhou, a subtropical city in China during 2003-2010. A quasi-Poisson regression model combined with distributed lag non-linear model was used to examine the effects of DTR, after controlling for daily mean temperature, air pollutants, season and day of the week. A 1 °C increase in DTR at lag 0-4 days was associated with a 0.47% (95% confidence interval: 0.01%-0.93%) increase in non-accidental mortality. Stroke mortality was most sensitive to DTR. Female, the elderly and those with low education were more susceptible to DTR than male, the youth and those with high education, respectively. Our findings suggest that vulnerable subpopulations should pay more attention to protect themselves from unstable daily weather. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Associations of day-to-day temperature change and diurnal temperature range with out-of-hospital cardiac arrest.

    Science.gov (United States)

    Onozuka, Daisuke; Hagihara, Akihito

    2017-01-01

    Background Although the impacts of temperature on mortality and morbidity have been documented, few studies have investigated whether day-to-day temperature change and diurnal temperature range (DTR) are independent risk factors for out-of-hospital cardiac arrest (OHCA). Design This was a prospective, population-based, observational study. Methods We obtained all OHCA data from 2005-2013 from six major prefectures in Japan: Hokkaido, Tokyo, Kanagawa, Aichi, Kyoto, and Osaka. We used a quasi-Poisson regression analysis with a distributed-lag non-linear model to assess the associations of day-to-day temperature change and DTR with OHCA for each prefecture. Results In total, 271,698 OHCAs of presumed cardiac origin were reported during the study period. There was a significant increase in the risk of OHCA associated with cold temperature in five prefectures, with relative risks (RRs) ranging from 1.298 (95% confidence interval (CI) 1.022-1.649) in Hokkaido to 3.893 (95% CI 1.713-8.845) in Kyoto. DTR was adversely associated with OHCA on hot days in Aichi (RR 1.158; 95% CI 1.028-1.304) and on cold days in Tokyo (RR 1.030; 95% CI 1.000-1.060), Kanagawa (RR 1.042; 95% CI 1.005-1.082), Kyoto (RR 1.060; 95% CI 1.001-1.122), and Osaka (RR 1.050; 95% CI 1.014-1.088), whereas there was no significant association between day-to-day temperature change and OHCA. Conclusion We found that associations between day-to-day temperature change and DTR and OHCA were generally small compared with the association with mean temperature. Our findings suggest that preventative measures for temperature-related OHCA may be more effective when focused on mean temperature and DTR.

  15. Diurnal Cycle of ITCZ Convection during the MJO Suppressed Phase in DYNAMO

    Science.gov (United States)

    Ciesielski, P. E.; Johnson, R. H.; Schubert, W. H.

    2017-12-01

    During the special observing period of the Dynamics of the MJO (DYNAMO) experiment, conducted over the Indian Ocean from 1 October to 30 November 2011, two sounding arrays - one north and one south of the equator, referred to here as the NSA and SSA, respectively - took 4-8 soundings/day. We augment this 3-h dataset with observations of radiation and rainfall to investigate the diurnal cycle of convection during the suppressed phase of the October MJO. During this 14-day period when convection was suppressed over the NSA but prominent over the SSA, the circulation over the sounding arrays could be characterized as a local Hadley cell embedded within a monsoonal flow. Strong rising motion was present within the ITCZ and compensating subsidence over the NSA. A prominent diurnal pulsing of this cell was observed, impacting conditions on both sides of the equator, with the cell running strongest in the early morning hours (05-08 LT) and notably weakening later in the day (17-20LT). The reduction in evening subsidence over the NSA may have assisted the moistening of the low to mid-troposphere there during the pre-onset stage of the MJO. Apparent heating Q1 within the ITCZ exhibits a diurnal evolution from early morning bottom-heavy profiles to weaker daytime top-heavy profiles. Making use of the weak temperature gradient approximation, results suggest that direct radiative effects played a dominant role in controlling diurnal variations of vertical motion and convection within the ITCZ while non-radiative processes were more prominent over the NSA.

  16. Spatial and temporal variations of diurnal ichthyofauna on surf-zone of São Francisco do Itabapoana beaches, Rio de Janeiro State, Brazil

    Directory of Open Access Journals (Sweden)

    Gomes Marcelo Paes

    2003-01-01

    Full Text Available Spatial and temporal variations of diurnal ichthyofauna and the environmental variables influences on its distribution were studied at the surf-zone of three beaches of São Francisco do Itabapoana, northern coast of Rio de Janeiro, Brazil. From August/1999 to August/2000, three beach seine hauls were made monthly, and environmental variables were recorded. A total number of 4,562 fishes (74,155g were sampled at the three beaches, where estuarine-dependent species prevailed (44%, followed by marine (31%, estuarine (19% and freshwater species (3%. Species richness, number of individuals and wet weight were significantly higher at Gargaú, followed by Manguinhos and Barra do Itabapoana, respectively. Canonical Correspondence Analysis highlighted influences of the rivers flushing, salinity and plant abundance on the diurnal ichthyofauna distribution and dynamics of São Francisco do Itabapoana surf-zone.

  17. Diurnal levels of immunoreactive erythropoietin in normal subjects and subjects with chronic lung disease

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.E.; Garcia, J.F.; Cohen, R.A.; Cronkite, E.P.; Moccia, G.; Acevedo, J.

    1981-10-01

    Serum levels of immunoreactive erythropoietin (Ep) were measured in 48 normal male and female volunteers, ages 20-60 years, to establish a control value for Ep of 18.5 +/- 5.0 (mean +/- SD) mU/ml. Levels of the hormone were also measured sequentially over a 24 h period of time in an additional 17 normal volunteers with no diurnal variation. Diurnal levels of immunoreactive Ep were also measured in 30 subjects, with chronic lung disease. These patients, in contrast to normal subjects exhibited a diurnal variation in the level of immunoreactive Ep with peak levels occurring at midnight. The only variable measured which correlated with the serum immunoreactive Ep level in subjects with chronic lung disease was the level of carboxyhaemoglobin (P less than 0.02).

  18. Seasonal and diurnal variation of outdoor radon (222Rn) concentrations in urban and rural area with reference to meteorological conditions

    International Nuclear Information System (INIS)

    Podstawczynska, A.; Pawlak, W.; Kozak, K.; Mazur, J.

    2010-01-01

    The objective of the study was to investigate temporal variability of outdoor radon ( 222 Rn) concentration registered in the center of Lodz (urban station), at Ciosny (rural station) and Krakow (suburban station) in relation to meteorological parameters (i.e. air temperature, temperature vertical gradient, wind speed, soil heat flux, volumetric water content in soil) with special consideration of urban-rural differences. Continuous measurements of 222 Rn concentration (at 60 min intervals) were performed at a height of 2 m above the ground using AlphaGUARD PQ2000PRO (ionization chamber) from January 2008 to May 2009. 222 Rn levels were characterized by a diurnal cycle with an early morning maximum and a minimum in the afternoon. The well-marked 24 h pattern of radon concentration occurred in summer at anticyclonic weather with cloudless sky, light wind and large diurnal temperature ranges. The urban measurement site was characterized by the lowest atmospheric 222 Rn concentration and an urban-rural differences of radon levels increased from winter to summer and during the nighttime periods. The maximum contrasts of 222 Rn levels between Lodz and Ciosny, reaching - 30 Bq m -3 , were registered in June and July during the urban heat island (UHI) phenomenon (a positive thermal anomaly of a city if compared to rural area) and strong thermal inversion near the ground in the rural area. (authors)

  19. Overestimation of soil CO2 fluxes from closed chamber measurements at low atmospheric turbulence biases the diurnal pattern and the annual soil respiration budget

    DEFF Research Database (Denmark)

    Brændholt, Andreas; Larsen, Klaus Steenberg; Ibrom, Andreas

    2016-01-01

    Abstract Precise quantification of the diurnal and seasonal variation of soil respiration (Rs) is crucial to correctly estimate annual soil carbon fluxes as well as to correctly interpret the response of Rs to biotic and abiotic factors on different time scale. In this study we found a systematic...... day time, i.e. following the course of soil temperatures. This effect on the diurnal pattern was due to low turbulence primarily occurring during night time. We calculated different annual Rs budgets by filtering out fluxes for different levels of u⋆. The highest annual Rs budget was found when...

  20. Global evaluation of ammonia bidirectional exchange and livestock diurnal variation schemes

    Science.gov (United States)

    Bidirectional air–surface exchange of ammonia (NH3) has been neglected in many air quality models. In this study, we implement the bidirectional exchange of NH3 in the GEOS-Chem global chemical transport model. We also introduce an updated diurnal variability scheme for NH3...

  1. SABER (TIMED) and MLS (UARS) Temperature Observations of Mesospheric and Stratospheric QBO and Related Tidal Variations

    Science.gov (United States)

    Huang, Frank T.; Mayr, Hans G.; Reber, Carl A.; Russell, James; Mlynczak, Marty; Mengel, John

    2006-01-01

    More than three years of temperature observations from the SABER (TIMED) and MLS WARS) instruments are analyzed to study the annual and inter-annual variations extending from the stratosphere into the upper mesosphere. The SABER measurements provide data from a wide altitude range (15 to 95 km) for the years 2002 to 2004, while the MLS data were taken in the 16 to 55 km altitude range a decade earlier. Because of the sampling properties of SABER and MLS, the variations with local solar time must be accounted for when estimating the zonal mean variations. An algorithm is thus applied that delineates with Fourier analysis the year-long variations of the migrating tides and zonal mean component. The amplitude of the diurnal tide near the equator shows a strong semiannual periodicity with maxima near equinox, which vary from year to year to indicate the influence from the Quasi-biennial Oscillation (QBO) in the zonal circulation. The zonal mean QBO temperature variations are analyzed over a range of latitudes and altitudes, and the results are presented for latitudes from 48"s to 48"N. New results are obtained for the QBO, especially in the upper stratosphere and mesosphere, and at mid-latitudes. At Equatorial latitudes, the QBO amplitudes show local peaks, albeit small, that occur at different altitudes. From about 20 to 40 km, and within about 15" of the Equator, the amplitudes can approach 3S K for the stratospheric QBO or SQBO. For the mesospheric QBO or MQBO, we find peaks near 70 km, with temperature amplitudes reaching 3.5"K, and near 85 km, the amplitudes approach 2.5OK. Morphologically, the amplitude and phase variations derived from the SABER and MLS measurements are in qualitative agreement. The QBO amplitudes tend to peak at the Equator but then increase again pole-ward of about 15" to 20'. The phase progression with altitude varies more gradually at the Equator than at mid-latitudes. A comparison of the observations with results from the Numerical Spectral

  2. Analysis of Diurnal Variations in Energy Footprint and Its Associated Carbon Emission for Water Supply and Reuse in Arid and Semi-Arid Areas

    Science.gov (United States)

    Sobhani, Reza

    Arid and semi-arid regions throughout the world face water scarcity. Conventional water supply portfolio of these regions encompassed limited surface water, groundwater, and imported water. Current technological innovations technically and economically supplemented new water sources i.e., reclaimed water, desalted water and the groundwater sources that were not potable. The need for more efficient and alternative sources of drinking water supply necessitates studying the impediments e.g., intensive energy required, and emerging concern of the carbon emission. This dissertation discusses the challenges of energy footprint and its carbon emission among the processes involved in water supplies in the aforementioned regions. The conducted studies present time-dependent energy footprint analyses of different water reclamation and reuse processes. This study discusses the energy consumption in four main energy intensive processes inclusive of: activated sludge, microfiltration, reverse osmosis, and advanced oxidation with UV/ H2O2. The results indicate how the diurnal variations of different environmental parameters (e.g. flow and pollutant concentration) amplify the energy footprint variation among these processes. Meanwhile, the results show, due to the different power sources diurnally employed to provide electrical energy, the energy-associated carbon emission has more drastic variation in diurnal period compared to the energy footprint variation. In addition, this study presents the energy footprint of a modular process for treating local brackish groundwater by employing a combination of pellet reactor for radium and hardness minimization, reverse osmosis with intermediate precipitation, and concentrated brine crystallization to achieve high recovery with zero liquid discharge. Also it compares the energy footprint of the aforementioned process with the alternative option (i.e. desalted seawater conveyance with substantial lift). Finally, in coastal regions

  3. Diurnal and seasonal DOC and POC variability in the land-locked sea

    Directory of Open Access Journals (Sweden)

    Beata Szymczycha

    2017-07-01

    Full Text Available Organic matter is a minor yet important component of the marine environment. The aim of this study was to investigate the diurnal and seasonal changes in dissolved and particulate organic carbon (DOC and POC, respectively. Thus, DOC and POC as well as chlorophyll a (Chl a, δ13C, NO3−, NO2−, NH4+, PO43−, salinity, pH, and temperature were regularly measured in samples collected for 24 h (2-h resolution in the Gdańsk Deep (54°44.730′N, 19°08.531′E at three water depths (1, 10, and 40 m during sampling campaigns in 2011 (May, 2014 (May, and 2015 (January, March, May, July, September, November. Seasonal variations in DOC and POC followed the seasonality of Chl a (proportional trend and nutrients (reverse trend concentrations. Diurnal oscillations were detected in six out of the eight measurement series. The strongest diurnal variability in both POC and DOC occurred in May 2011 and March 2015, when phytoplankton activity was highest (high Chl a. The surprisingly low δ13C values (range: −28‰ to −24‰ measured over the course of the study revealed the gaps in our knowledge of the isotopic characteristics of terrestrial- vs. marine-derived particulate organic matter.

  4. Diurnal variability of Synechococcus abundance in Sagami Bay, Japan

    Digital Repository Service at National Institute of Oceanography (India)

    Mitbavkar, S.; Saino, T.

    Synechococcus, the most dominant picophytoplankton in coastal regions, exhibits diurnal variations in the open ocean. The aim of this study was to assess its short-term population dynamics and cell cycle phases through DNA analysis in a coastal...

  5. Biophysical information in asymmetric and symmetric diurnal bidirectional canopy reflectance

    Science.gov (United States)

    Vanderbilt, Vern C.; Caldwell, William F.; Pettigrew, Rita E.; Ustin, Susan L.; Martens, Scott N.; Rousseau, Robert A.; Berger, Kevin M.; Ganapol, B. D.; Kasischke, Eric S.; Clark, Jenny A.

    1991-01-01

    The authors present a theory for partitioning the information content in diurnal bidirectional reflectance measurements in order to detect differences potentially related to biophysical variables. The theory, which divides the canopy reflectance into asymmetric and symmetric functions of solar azimuth angle, attributes asymmetric variation to diurnal changes in the canopy biphysical properties. The symmetric function is attributed to the effects of sunlight interacting with a hypothetical average canopy which would display the average diurnal properties of the actual canopy. The authors analyzed radiometer data collected diurnally in the Thematic Mapper wavelength bands from two walnut canopies that received differing irrigation treatments. The reflectance of the canopies varied with sun and view angles and across seven bands in the visible, near-infrared, and middle infrared wavelength regions. Although one of the canopies was permanently water stressed and the other was stressed in mid-afternoon each day, no water stress signature was unambiguously evident in the reflectance data.

  6. Diurnal variations of wildfire emissions in Europe: analysis of the MODIS and SEVIRI measurements in the framework of the regional scale air pollution modelling

    Science.gov (United States)

    Konovalov, Igor B.; Beekmann, Matthias; Kaiser, Johannes W.; Shudyaev, Anton A.; Yurova, Alla; Kuznetsova, Irina N.

    2013-04-01

    Wildfires episodically provide a major contribution to air pollution in many regions of the world. For example, the extreme air pollution level and strongly reduced visibility were observed in the Central European region of Russia during the intensive wildfire events in summer of 2010. Such episodes provide a strong impetus for further developments in air pollution modeling, aimed at improving the ability of chemistry transport models to simulate and predict evolution of atmospheric composition affected by wildfires. The main goals of our study are (1) to investigate the diurnal cycles of air pollutant emissions from wildfires in several European regions, taking into account the fire radiative power (FRP) satellite measurements for different vegetation land cover types and (2) to examine the possibilities of improving air pollution simulations by assimilating the diurnal variability of the FRP measurements performed by the polar orbiting (MODIS) and geostationary (SEVIRI) satellite instruments into a chemistry transport model. These goals are addressed for the case of wildfires occurred in summer 2010. The analysis of both the MODIS and SEVIRI data indicate that air pollutant emissions from wildfires in Europe in summer 2010 were typically much larger during daytime than during nighttime. The important exception is intensive fires around Moscow, featuring an almost "flat" diurnal cycle. These findings confirm the similar results reported earlier [1] but also extend them by attributing the flat diurnal cycle only to forest fires and by examining a hypothetical association of the "abnormal" diurnal cycle of FRP with peat fires. The derived diurnal variations of wildfire emissions have been used in the framework of the modeling system employed in our previous studies of the atmospheric effects of the 2010 Russian wildfires [2, 3]. The numerical experiments reveal that while the character of the diurnal variation of wildfire emissions has a rather small impact on the

  7. Temporal and vertical variations radon and its progeny related to atmospheric electrical conductivity

    International Nuclear Information System (INIS)

    Pruthvi Rani, K.S.; Chandrashekara, M.S.; Paramesh, L.

    2015-01-01

    Atmospheric radon, its progeny, electrical conductivity and meteorological parameters such as wind, temperature, humidity, pressure and rainfall were continuously monitored during 2012 to 2014 at one location in Mysuru city. The annual mean atmospheric radon concentration at the study location was found to be 16.4 Bqm -3 . The diurnal cycle of radon and its progeny show a peak in the early morning hours followed by a drastic decrease after sunrise and rising to a second peak in the afternoon. It was found that the stability of the atmosphere and ambient temperature played a major role in the diurnal variations. Higher concentrations of radon and its progeny were observed in winter and lower values in summer. This may due to the variations in origin of air mass and meteorological parameters. Wind direction analyses reveal that in sectors with air which has spent a longer period over the granitic region and low wind speeds will lead to higher concentrations of radon. Atmospheric electrical conductivity near the ground is mainly due to the ionization from radon and its progeny. The diurnal variations of conductivity and ionization rate due to radon and its individual progeny were of similar trend. In addition its significant dependence on meteorological parameters is confirmed. The vertical variations of atmospheric electrical conductivity were studied at different heights up to 250 m from the ground level. Higher values were observed close to the ground surface, there was a rapid reduction up to about 10 m and beyond that the conductivity gradually decreases. The diurnal conductivity cycle is studied at 10 m and 100 m showed the expected similar trend at both the heights but early morning maxima were considerably different, this confirms the accumulation of radon gas close to the ground surface during night time leading to increase of conductivity values. (author)

  8. Improved vertical streambed flux estimation using multiple diurnal temperature methods in series

    Science.gov (United States)

    Irvine, Dylan J.; Briggs, Martin A.; Cartwright, Ian; Scruggs, Courtney; Lautz, Laura K.

    2017-01-01

    Analytical solutions that use diurnal temperature signals to estimate vertical fluxes between groundwater and surface water based on either amplitude ratios (Ar) or phase shifts (Δϕ) produce results that rarely agree. Analytical solutions that simultaneously utilize Ar and Δϕ within a single solution have more recently been derived, decreasing uncertainty in flux estimates in some applications. Benefits of combined (ArΔϕ) methods also include that thermal diffusivity and sensor spacing can be calculated. However, poor identification of either Ar or Δϕ from raw temperature signals can lead to erratic parameter estimates from ArΔϕ methods. An add-on program for VFLUX 2 is presented to address this issue. Using thermal diffusivity selected from an ArΔϕ method during a reliable time period, fluxes are recalculated using an Ar method. This approach maximizes the benefits of the Ar and ArΔϕ methods. Additionally, sensor spacing calculations can be used to identify periods with unreliable flux estimates, or to assess streambed scour. Using synthetic and field examples, the use of these solutions in series was particularly useful for gaining conditions where fluxes exceeded 1 m/d.

  9. Changes in diurnal temperature range and national cereal yields

    Energy Technology Data Exchange (ETDEWEB)

    Lobell, D

    2007-04-26

    Models of yield responses to temperature change have often considered only changes in average temperature (Tavg), with the implicit assumption that changes in the diurnal temperature range (DTR) can safely be ignored. The goal of this study was to evaluate this assumption using a combination of historical datasets and climate model projections. Data on national crop yields for 1961-2002 in the 10 leading producers of wheat, rice, and maize were combined with datasets on climate and crop locations to evaluate the empirical relationships between Tavg, DTR, and crop yields. In several rice and maize growing regions, including the two major nations for each crop, there was a clear negative response of yields to increased DTR. This finding reflects a nonlinear response of yields to temperature, which likely results from greater water and heat stress during hot days. In many other cases, the effects of DTR were not statistically significant, in part because correlations of DTR with other climate variables and the relatively short length of the time series resulted in wide confidence intervals for the estimates. To evaluate whether future changes in DTR are relevant to crop impact assessments, yield responses to projected changes in Tavg and DTR by 2046-2065 from 11 climate models were estimated. The mean climate model projections indicated an increase in DTR in most seasons and locations where wheat is grown, mixed projections for maize, and a general decrease in DTR for rice. These mean projections were associated with wide ranges that included zero in nearly all cases. The estimated impacts of DTR changes on yields were generally small (<5% change in yields) relative to the consistently negative impact of projected warming of Tavg. However, DTR changes did significantly affect yield responses in several cases, such as in reducing US maize yields and increasing India rice yields. Because DTR projections tend to be positively correlated with Tavg, estimates of yields

  10. Monitoring stress-related mass variations in Amazon trees using accelerometers

    Science.gov (United States)

    van Emmerik, T. H. M.; Steele-Dunne, S. C.; Gentine, P.; Hut, R.; Guerin, M. F.; Leus, G.; Oliveira, R. S.; Van De Giesen, N.

    2016-12-01

    Containing half of the world's rainforests, the Amazon plays a key role in the global water and carbon budget. However, the Amazon remains poorly understood, but appears to be vulnerable to increasing moisture stress, and future droughts have the potential to considerably change the global water and carbon budget. Field measurements will allow further investigations of the effects of moisture stress and droughts on tree dynamics, and its impact on the water and carbon budget. This study focuses on studying the diurnal mass variations of seven Amazonian tree species. The mass of trees is influenced by physiological processes within the tree (e.g. transpiration and root water uptake), as well as external loads (e.g. intercepted precipitation). Depending on the physiological traits of an individual tree, moisture stress and drought affect processes such as photosynthesis, assimilation, transpiration, and root water uptake. In turn, these have their influence on diurnal mass variations of a tree. Our study uses measured three-dimensional displacement and acceleration of trees, to detect and quantify their diurnal (bio)mass variations. Nineteen accelerometers and dendrometers were installed on seven different tree species in the Amazon rainforest, covering an area of 250 x 250 m. The selected species span a wide range in wood density (0.5 - 1.1), diameter (15 - 40 cm) and height (25 - 60 m). Acceleration was measured with a frequency of 10 Hz, from August 2015 to June 2016, covering both the wet and dry season. On-site additional measurements of net radiation, wind speed at three heights, temperature, and precipitation as available every 15 minutes. Dendrometers measured variation in xylem and bark thickness every 5 minutes. The MUltiple SIgnal Classification (MUSIC) algorithm was applied to the acceleration time series to estimate the frequency spectrum of each tree. A correction was necessary to account for the dominant effect of wind. The resulting spectra reveal

  11. Circadian variation of melatonin, light exposure, and diurnal preference in day and night shift workers of both sexes.

    Science.gov (United States)

    Papantoniou, Kyriaki; Pozo, Oscar J; Espinosa, Ana; Marcos, Josep; Castaño-Vinyals, Gemma; Basagaña, Xavier; Ribas, Ferran Calduch; Mirabent, Joan; Martín, Jordi; Carenys, Gemma; Martín, Celia Reyes; Middleton, Benita; Skene, Debra J; Kogevinas, Manolis

    2014-07-01

    Light-at-night has been shown in experimental studies to disrupt melatonin production but this has only partly been confirmed in studies of night shift workers. In this cross-sectional study, we examined the circadian variation of melatonin in relation to shift status, individual levels of light-at-night exposure, and diurnal preference, an attribute reflecting personal preference for activity in the morning or evening. One hundred and seventeen workers (75 night and 42 day) of both sexes, ages 22 to 64 years, were recruited from four companies. Participants collected urine samples from all voids over 24 hours and wore a data logger continuously recording their light exposure. Sociodemographic, occupational, lifestyle, and diurnal preference information were collected by interview. Concentrations of urinary 6-sulfatoxymelatonin (aMT6s), the main melatonin metabolite, were measured. Mean aMT6s levels were lower in night [10.9 ng/mg creatinine/hour; 95% confidence interval (CI), 9.5-12.6] compared with day workers (15.4; 95% CI, 12.3-19.3). The lowest aMT6s levels were observed in night workers with morning preference (6.4; 95% CI, 3.0-13.6). Peak time of aMT6s production occurred 3 hours later in night (08:42 hour, 95% CI, 07:48-09:42) compared with day workers (05:36 hour, 95% CI, 05:06-06:12). Phase delay was stronger among subjects with higher light-at-night exposure and number of nights worked. Night shift workers had lower levels and a delay in peak time of aMT6s production over a 24-hour period. Differences were modified by diurnal preference and intensity of light-at-night exposure. Night shift work affects levels and timing of melatonin production and both parameters may relate to future cancer risk. ©2014 American Association for Cancer Research.

  12. Seasonal and diurnal variations of particulate nitrate and organic matter at the IfT research station Melpitz

    Directory of Open Access Journals (Sweden)

    L. Poulain

    2011-12-01

    Full Text Available Ammonium nitrate and several organic compounds such as dicarboxylic acids (e.g. succinic acid, glutaric acid, some Polycyclic Aromatic Hydrocarbon (PAHs or some n-alkanes are semi-volatile. The transition of these compounds between the gas and particulate phase may significantly change the aerosol particles radiative properties, the heterogeneous chemical properties, and, naturally, the total particulate mass concentration. To better assess these time-dependent effects, three intensive field experiments were conducted in 2008–2009 at the Central European EMEP research station Melpitz (Germany using an Aerodyne Aerosol Mass Spectrometer (AMS. Data from all seasons highlight organic matter as being the most important particulate fraction of PM1 in summer (59% while in winter, the nitrate fraction was more prevalent (34.4%. The diurnal variation of nitrate always showed the lowest concentration during the day while its concentration increased during the night. This night increase of nitrate concentration was higher in winter (ΔNO3 = 3.6 μg m−3 than in summer (ΔNO3 = 0.7 μg m−3. The variation in particulate nitrate was inherently linked to the gas-to-particle-phase equilibrium of ammonium nitrate and the dynamics of the atmosphere during day. The results of this study suggest that during summer nights, the condensation of HNO3 and NH3 on pre-existing particles represents the most prevalent source of nitrate, whereas during winter, nighttime chemistry is the predominant source of nitrate. During the summer 2008's campaign, a clear diurnal evolution in the oxidation state of the organic matter became evident (Organic Mass to Organic Carbon ratio (OM/OC ranging from 1.65 during night to 1.80 during day and carbon oxidation state (OSc from −0.66 to −0.4, which could be correlated to hydroxyl radical (OH and ozone

  13. Forcing Mechanisms for the Variations of Near-surface Temperature Lapse Rates along the Himalayas, Tibetan Plateau (HTP) and Their Surroundings

    Science.gov (United States)

    Kattel, D. B.; Yao, T.; Ullah, K.; Islam, G. M. T.

    2016-12-01

    This study investigates the monthly characteristics of near-surface temperature lapse rates (TLRs) (i.e., governed by surface energy balance) based on the 176 stations 30-year (1980 to 2010) dataset covering a wide range of topography, climatic regime and relief (4801 m) in the HTP and its surroundings. Empirical analysis based on techniques in thermodynamics and hydrostatic system were used to obtain the results. Steepest TLRs in summer is due to strong dry convection and shallowest in winter is due to inversion effect is the general pattern of TLR that reported in previous studies in other mountainous region. Result of this study reports a contrast variation of TLRs from general patterns, and suggest distinct forcing mechanisms in an annual cycle. Shallower lapse rate occurs in summer throughout the regions is due to strong heat exchange process within the boundary layer, corresponding to the warm and moist atmospheric conditions. There is a systematic differences of TLRs in winter between the northern and southern slopes the Himalayas. Steeper TLRs in winter on the northern slopes is due to intense cooling at higher elevations, corresponding to the continental dry and cold air surges, and considerable snow-temperature feedback. The differences in elevation and topography, as well as the distinct variation of turbulent heating and cooling, explain the contrast TLRs (shallower) values in winter on the southern slopes. Distinct diurnal variations of TLRs and its magnitudes between alpine, dry, humid and coastal regions is due to the variations of adiabatic mixing during the daytime in the boundary layer i.e., associated with the variations in net radiations, elevation, surface roughness and sea surface temperature. The findings of this study is useful to determine the temperature range for accurately modelling in various field such as hydrology, glaciology, ecology, forestry, agriculture, as well as inevitable for climate downscaling in complex mountainous terrain.

  14. Circadian and diurnal variation of circulating immune complexes, complement-mediated solubilization, and the complement split product C3d in rheumatoid arthritis

    DEFF Research Database (Denmark)

    Petersen, Ivan; Baatrup, Gunnar; Brandslund, I

    1986-01-01

    Nine patients with active classical rheumatoid arthritis (ARA criteria) were studied with reference to circadian variation of immunological and clinical parameters. Complement-mediated solubilization (CMS) of immune complexes (IC) and the level of circulating IC were found to be inversely related...... with low CMS and increased IC levels in the morning, and vice versa in the afternoon. Bed rest and exercise did not influence these fluctuations. The C3d concentration in plasma was increased but showed no diurnal or circadian periodic fluctuations when the levels were corrected for fluctuations in plasma...... albumin concentration. Clinical assessment by means of pain score exhibited marked variations, with high scores in the morning, and lower in the daytime, whereas measurements of Ritchie's joint index showed no consistent pattern. The circadian variations in CMS, serum IC and clinical parameters indicate...

  15. Ambient temperature and emergency room admissions for acute coronary syndrome in Taiwan

    Science.gov (United States)

    Liang, Wen-Miin; Liu, Wen-Pin; Chou, Sze-Yuan; Kuo, Hsien-Wen

    2008-01-01

    Acute coronary syndrome (ACS) is an important public health problem around the world. Since there is a considerable seasonal fluctuation in the incidence of ACS, climatic temperature may have an impact on the onset of this disease. The objective of this study was to assess the relationship between the average daily temperature, diurnal temperature range and emergency room (ER) admissions for ACS in an ER in Taichung City, Taiwan. A longitudinal study was conducted which assessed the correlation of the average daily temperature and the diurnal temperature range to ACS admissions to the ER of the city’s largest hospital. Daily ER admissions for ACS and ambient temperature were collected from 1 January 2000 to 31 March 2003. The Poisson regression model was used in the analysis after adjusting for the effects of holiday, season, and air pollutant concentrations. The results showed that there was a negative significant association between the average daily temperature and ER admissions for ACS. ACS admissions to the ER increased 30% to 70% when the average daily temperature was lower than 26.2°C. A positive association between the diurnal temperature range and ACS admissions was also noted. ACS admissions increased 15% when the diurnal temperature range was over 8.3°C. The data indicate that patients suffering from cardiovascular disease must be made aware of the increased risk posed by lower temperatures and larger changes in temperature. Hospitals and ERs should take into account the increased demand of specific facilities during colder weather and wider temperature variations.

  16. Biotic and abiotic controls on diurnal fluctuations in labile soil phosphorus of a wet tropical forest.

    Science.gov (United States)

    Vandecar, Karen L; Lawrence, Deborah; Wood, Tana; Oberbauer, Steven F; Das, Rishiraj; Tully, Katherine; Schwendenmann, Luitgard

    2009-09-01

    The productivity of many tropical wet forests is generally limited by bioavailable phosphorus (P). Microbial activity is a key regulator of P availability in that it determines both the supply of P through organic matter decomposition and the depletion of bioavailable P through microbial uptake. Both microbial uptake and mineralization occur rapidly, and their net effect on P availability varies with soil moisture, temperature, and soil organic matter quantity and quality. Exploring the mechanisms driving P availability at fine temporal scales can provide insight into the coupling of carbon, water, and nutrient cycles, and ultimately, the response of tropical forests to climate change. Despite the recognized importance of P cycling to the dynamics of wet tropical forests and their potential sensitivity to short-term fluctuations in bioavailable P, the diurnal pattern of P remains poorly understood. This study quantifies diurnal fluctuations in labile soil P and evaluates the importance of biotic and abiotic factors in driving these patterns. To this end, measurements of labile P were made every other hour in a Costa Rican wet tropical forest oxisol. Spatial and temporal variation in Bray-extractable P were investigated in relation to ecosystem carbon flux, soil CO2 efflux, soil moisture, soil temperature, solar radiation, and sap-flow velocity. Spatially averaged bi-hourly (every two hours) labile P ranged from 0.88 to 2.48 microg/g across days. The amplitude in labile P throughout the day was 0.61-0.82 microg/g (41-54% of mean P concentrations) and was characterized by a bimodal pattern with a decrease at midday. Labile P increased with soil CO2 efflux and soil temperature and declined with increasing sap flow and solar radiation. Together, soil CO2 efflux, soil temperature, and sap flow explained 86% of variation in labile P.

  17. Boreal lakes moderate seasonal and diurnal temperature variation and perturb atmospheric circulation: Analyses in the Community Earth System Model 1 (CESM1)

    Energy Technology Data Exchange (ETDEWEB)

    Subin, Zachary M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Murphy, Lisa N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Li, Fiyu [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Bonfils, Celine [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Program for Climate Model Diagnosis and Intercomparison; Riley, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.

    2012-01-15

    We used a lake thermal physics model recently coupled into the Community Earth System Model 1 (CESM1) to study the effects of lake distribution in present and future climate. Under present climate, correcting the large underestimation of lake area in CESM1 (denoted CCSM4 in the configuration used here) caused 1 °C spring decreases and fall increases in surface air temperature throughout large areas of Canada and the US. Simulated summer surface diurnal air temperature range decreased by up to 4 °C, reducing CCSM4 biases. These changes were much larger than those resulting from prescribed lake disappearance in some present-day permafrost regions under doubled-CO2 conditions. Correcting the underestimation of lake area in present climate caused widespread high-latitude summer cooling at 850 hPa. Significant remote changes included decreases in the strength of fall Southern Ocean westerlies. We found significantly different winter responses when separately analysing 45-yr subperiods, indicating that relatively long simulations are required to discern the impacts of surface changes on remote conditions. We also investigated the surface forcing of lakes using idealised aqua-planet experiments which showed that surface changes of 2 °C in the Northern Hemisphere extra-tropics could cause substantial changes in precipitation and winds in the tropics and Southern Hemisphere. Shifts in the Inter-Tropical Convergence Zone were opposite in sign to those predicted by some previous studies. Zonal mean circulation changes were consistent in character but much larger than those occurring in the lake distribution experiments, due to the larger magnitude and more uniform surface forcing in the idealised aqua-planet experiments.

  18. Boreal lakes moderate seasonal and diurnal temperature variation and perturb atmospheric circulation: analyses in the Community Earth System Model 1 (CESM1

    Directory of Open Access Journals (Sweden)

    William J. Riley

    2012-02-01

    Full Text Available We used a lake thermal physics model recently coupled into the Community Earth System Model 1 (CESM1 to study the effects of lake distribution in present and future climate. Under present climate, correcting the large underestimation of lake area in CESM1 (denoted CCSM4 in the configuration used here caused 1 °C spring decreases and fall increases in surface air temperature throughout large areas of Canada and the US. Simulated summer surface diurnal air temperature range decreased by up to 4 °C, reducing CCSM4 biases. These changes were much larger than those resulting from prescribed lake disappearance in some present-day permafrost regions under doubled-CO2 conditions. Correcting the underestimation of lake area in present climate caused widespread high-latitude summer cooling at 850 hPa. Significant remote changes included decreases in the strength of fall Southern Ocean westerlies. We found significantly different winter responses when separately analysing 45-yr subperiods, indicating that relatively long simulations are required to discern the impacts of surface changes on remote conditions. We also investigated the surface forcing of lakes using idealised aqua-planet experiments which showed that surface changes of 2 °C in the Northern Hemisphere extra-tropics could cause substantial changes in precipitation and winds in the tropics and Southern Hemisphere. Shifts in the Inter-Tropical Convergence Zone were opposite in sign to those predicted by some previous studies. Zonal mean circulation changes were consistent in character but much larger than those occurring in the lake distribution experiments, due to the larger magnitude and more uniform surface forcing in the idealised aqua-planet experiments.

  19. An Improved Simulation of the Diurnally Varying Street Canyon Flow

    Science.gov (United States)

    Yaghoobian, Neda; Kleissl, Jan; Paw U, Kyaw Tha

    2012-11-01

    The impact of diurnal variation of temperature distribution over building and ground surfaces on the wind flow and scalar transport in street canyons is numerically investigated using the PArallelized LES Model (PALM). The Temperature of Urban Facets Indoor-Outdoor Building Energy Simulator (TUF-IOBES) is used for predicting urban surface heat fluxes as boundary conditions for a modified version of PALM. TUF-IOBES dynamically simulates indoor and outdoor building surface temperatures and heat fluxes in an urban area taking into account weather conditions, indoor heat sources, building and urban material properties, composition of the building envelope (e.g. windows, insulation), and HVAC equipment. Temperature (and heat flux) distribution over urban surfaces of the 3-D raster-type geometry of TUF-IOBES makes it possible to provide realistic, high resolution boundary conditions for the numerical simulation of flow and scalar transport in an urban canopy. Compared to some previous analyses using uniformly distributed thermal forcing associated with urban surfaces, the present analysis shows that resolving non-uniform thermal forcings can provide more detailed and realistic patterns of the local air flow and pollutant dispersion in urban canyons.

  20. Diurnal temperature range trend over North Carolina and the associated mechanisms

    Science.gov (United States)

    Sayemuzzaman, Mohammad; Mekonnen, Ademe; Jha, Manoj K.

    2015-06-01

    This study seeks to investigate the variability and presence of trend in the diurnal surface air temperature range (DTR) over North Carolina (NC) for the period 1950-2009. The significance trend test and the magnitude of trends were determined using the non-parametric Mann-Kendall test and the Theil-Sen approach, respectively. Statewide significant trends (p < 0.05) of decreasing DTR were found in all seasons and annually during the analysis period. Highest (lowest) temporal DTR trends of magnitude - 0.19 (- 0.031) °C/decade were found in summer (winter). Potential mechanisms for the presence/absence of trend in DTR have been highlighted. Historical data sets of the three main moisture components (precipitation, total cloud cover (TCC), and soil moisture) and the two major atmospheric circulation modes (North Atlantic Oscillation and Southern Oscillation) were used for correlation analysis. The DTRs were found to be negatively correlated with the precipitation, TCC and soil moisture across the state for all the seasons and annual basis. It appears that the moisture components related better to the DTR than to the atmospheric circulation modes.

  1. Diurnal changes in ocean color in coastal waters

    Science.gov (United States)

    Arnone, Robert; Vandermeulen, Ryan; Ladner, Sherwin; Ondrusek, Michael; Kovach, Charles; Yang, Haoping; Salisbury, Joseph

    2016-05-01

    Coastal processes can change on hourly time scales in response to tides, winds and biological activity, which can influence the color of surface waters. These temporal and spatial ocean color changes require satellite validation for applications using bio-optical products to delineate diurnal processes. The diurnal color change and capability for satellite ocean color response were determined with in situ and satellite observations. Hourly variations in satellite ocean color are dependent on several properties which include: a) sensor characterization b) advection of water masses and c) diurnal response of biological and optical water properties. The in situ diurnal changes in ocean color in a dynamic turbid coastal region in the northern Gulf of Mexico were characterized using above water spectral radiometry from an AErosol RObotic NETwork (AERONET -WavCIS CSI-06) site that provides up to 8-10 observations per day (in 15-30 minute increments). These in situ diurnal changes were used to validate and quantify natural bio-optical fluctuations in satellite ocean color measurements. Satellite capability to detect changes in ocean color was characterized by using overlapping afternoon orbits of the VIIRS-NPP ocean color sensor within 100 minutes. Results show the capability of multiple satellite observations to monitor hourly color changes in dynamic coastal regions that are impacted by tides, re-suspension, and river plume dispersion. Hourly changes in satellite ocean color were validated with in situ observation on multiple occurrences during different times of the afternoon. Also, the spatial variability of VIIRS diurnal changes shows the occurrence and displacement of phytoplankton blooms and decay during the afternoon period. Results suggest that determining the temporal and spatial changes in a color / phytoplankton bloom from the morning to afternoon time period will require additional satellite coverage periods in the coastal zone.

  2. Sewer infiltration/inflow: long-term monitoring based on diurnal variation of pollutant mass flux.

    Science.gov (United States)

    Bares, V; Stránský, D; Sýkora, P

    2009-01-01

    The paper deals with a method for quantification of infiltrating groundwater based on the variation of diurnal pollutant load and continuous water quality and quantity monitoring. Although the method gives us the potential to separate particular components of wastewater hygrograph, several aspects of the method should be discussed. Therefore, the paper investigates the cost-effectiveness, the relevance of pollutant load from surface waters (groundwater) and the influence of measurement time step. These aspects were studied in an experimental catchment of Prague sewer system, Czech Republic, within a three-month period. The results indicate high contribution of parasitic waters on night minimal discharge. Taking into account the uncertainty of the results and time-consuming maintenance of the sensor, the principal advantages of the method are evaluated. The study introduces a promising potential of the discussed measuring concept for quantification of groundwater infiltrating into the sewer system. It is shown that the conventional approach is sufficient and cost-effective even in those catchments, where significant contribution of foul sewage in night minima would have been assumed.

  3. Change in diurnal variations of meteorological variables induced by anthropogenic aerosols over the North China Plain in summer 2008

    Science.gov (United States)

    Gao, Yi; Zhang, Meigen; Liu, Xiaohong; Wang, Lili

    2016-04-01

    This study investigates the impacts of all anthropogenic aerosols and anthropogenic black carbon (BC) on the diurnal variations of meteorological variables in the atmospheric boundary layer over the North China Plain (NCP) during June to August 2008, using a coupled meteorology and chemistry model (WRF-Chem). The results of the ensemble numerical experiments show that surface air temperature decreases by about 0.6 to 1.2 K with the maximum decrease over the Beijing urban area and the southern part of Hebei province, and the surface relative humidity (RH) increases by 2-4 % owing to all anthropogenic aerosols. On the contrary, anthropogenic BC induces a small change of temperature and RH at surface. Averaged for Beijing, Tianjin, and Hebei province (BTH region) and High Particle Concentration (HPC) periods when PM2.5 surface concentration is more than 60 μg m-3 and daily AOD is more than 0.9, all anthropogenic aerosols decrease air temperature under 850 hPa and increase it between 500 and 850 hPa, while anthropogenic BC increases it for whole atmosphere. The maximum changes occur at 08:00-20:00 (local time). Aerosol-induced surface energy and diabatic heating change leads to a cooling at the surface and in the lower atmosphere and a warming in the middle troposphere at 08:00-17:00, with reversed effects at 20:00-05:00. BC cools the atmosphere at the surface and warms the atmosphere above for the whole day. As a result, the equivalent potential temperature profile change shows that the lower atmosphere is more stable at 08:00 and 14:00. All anthropogenic aerosols decrease the surface wind speed by 20-60 %, while anthropogenic BC decreases the wind speed by 10-40 % over the NCP with the maximum decrease at 08:00. The aerosol-induced stabilization of the lower atmosphere favors the accumulation of air pollutants and thus contributes to deterioration of visibility and fog-haze events.

  4. Local Times of Galactic Cosmic Ray Intensity Maximum and Minimum in the Diurnal Variation

    Directory of Open Access Journals (Sweden)

    Su Yeon Oh

    2006-06-01

    Full Text Available The Diurnal variation of galactic cosmic ray (GCR flux intensity observed by the ground Neutron Monitor (NM shows a sinusoidal pattern with the amplitude of 1sim 2 % of daily mean. We carried out a statistical study on tendencies of the local times of GCR intensity daily maximum and minimum. To test the influences of the solar activity and the location (cut-off rigidity on the distribution in the local times of maximum and minimum GCR intensity, we have examined the data of 1996 (solar minimum and 2000 (solar maximum at the low-latitude Haleakala (latitude: 20.72 N, cut-off rigidity: 12.91 GeV and the high-latitude Oulu (latitude: 65.05 N, cut-off rigidity: 0.81 GeV NM stations. The most frequent local times of the GCR intensity daily maximum and minimum come later about 2sim3 hours in the solar activity maximum year 2000 than in the solar activity minimum year 1996. Oulu NM station whose cut-off rigidity is smaller has the most frequent local times of the GCR intensity maximum and minimum later by 2sim3 hours from those of Haleakala station. This feature is more evident at the solar maximum. The phase of the daily variation in GCR is dependent upon the interplanetary magnetic field varying with the solar activity and the cut-off rigidity varying with the geographic latitude.

  5. The diurnal variation in urine acidification differs between normal individuals and uric acid stone formers

    Science.gov (United States)

    Cameron, Mary Ann; Maalouf, Naim M.; Poindexter, John; Adams-Huet, Beverley; Sakhaee, Khashayar; Moe, Orson W.

    2012-01-01

    Many biologic functions follow circadian rhythms driven by internal and external cues that synchronize and coordinate organ physiology to diurnal changes in the environment and behavior. Urinary acid-base parameters follow diurnal patterns and it is thought these changes are due to periodic surges in gastric acid secretion. Abnormal urine pH is a risk factor for specific types of nephrolithiasis and uric acid stones are typical of excessively low urine pH. Here we placed 9 healthy volunteers and 10 uric acid stone formers on fixed metabolic diets to study the diurnal pattern of urinary acidification. All showed clear diurnal trends in urinary acidification but none of the patterns were affected by inhibitors of the gastric proton pump. Uric acid stone formers had similar patterns of change through the day but their urine pH was always lower compared to healthy volunteers. Uric acid stone formers excreted more acid (normalized to acid ingestion) with the excess excreted primarily as titratable acid rather than ammonium. Urine base excretion was also lower in uric acid stone formers (normalized to base ingestion) along with lower plasma bicarbonate concentrations during part of the day. Thus, increased net acid presentation to the kidney and the preferential use of buffers, other than ammonium, result in much higher concentrations of un-dissociated uric acid throughout the day and consequently an increased risk of uric acid stones. PMID:22297671

  6. Impact of diurnal temperature range on mortality in a high plateau area in southwest China: A time series analysis.

    Science.gov (United States)

    Ding, Zan; Guo, Pi; Xie, Fang; Chu, Huifang; Li, Kun; Pu, Jingbo; Pang, Shaojie; Dong, Hongli; Liu, Yahui; Pi, Fuhua; Zhang, Qingying

    2015-09-01

    Diurnal temperature range (DTR) is an important meteorological indicator that reflects weather stability and is associated with global climate change and urbanization. Previous studies have explored the effect of DTR on human health in coastal cities with small daily temperature variations, but we have little evidence for high plateau regions where large DTRs usually occur. Using daily mortality data (2007-2013), we conducted a time-series analysis to assess the effect of DTR on daily mortality in Yuxi, a high plateau city in southwest China. Poisson regression with distributed lag non-linear model was used to estimate DTR effects on daily mortality, controlling for daily mean temperature, relative humidity, sunshine duration, wind speed, atmospheric pressure, day of the week, and seasonal and long-term trends. The cumulative effects of DTR were J-shaped curves for non-accidental, cardiorespiratory and cardiovascular mortality, with a U-shaped curve for respiratory mortality. Risk assessments showed strong monotonic increases in mortality starting at a DTR of approximately 16 °C. The relative risk of non-accidental morality with extreme high DTR at lag 0 and 0-21 days was 1.03 (95% confidence interval: 0.95-1.11) and 1.33 (0.94-1.89), respectively. The risk of mortality with extreme high DTR was greater for males and age <75 years than females and age ≥75 years. The effect of DTR on mortality was non-linear, with high DTR associated with increased mortality. A DTR of 16 °C may be a cut-off point for mortality prognosis and has implications for developing intervention strategies to address high DTR exposure. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Variations of surface temparature with solar activity at two stations in ...

    African Journals Online (AJOL)

    Nigeria Journal of Pure and Applied Physics ... A consistent and persistent diurnal variation in surface air temperature exists which shows an almost constant level in the early morning hours (0000 0600 hours LT.); a rise at sunrise till about 1500 hr LT., a subsequent fall to the constant level by about 1900 hr LT. at sunset.

  8. The Diurnal Cycle of the Boundary Layer, Convection, Clouds, and Surface Radiation in a Coastal Monsoon Environment (Darwin Australia)

    Energy Technology Data Exchange (ETDEWEB)

    May, Peter T.; Long, Charles N.; Protat, Alain

    2012-08-01

    The diurnal variation of convection and associated cloud and radiative properties remains a significant issue in global NWP and climate models. This study analyzes observed diurnal variability of convection in a coastal monsoonal environment examining the interaction of convective rain clouds, their associated cloud properties, and the impact on the surface radiation and corresponding boundary layer structure during periods where convection is suppressed or active on the large scale. The analysis uses data from the Tropical Warm Pool International Cloud Experiment (TWP-ICE) as well as routine measurements from the Australian Bureau of Meteorology and the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program. Both active monsoonal and large-scale suppressed (buildup and break) conditions are examined and demonstrate that the diurnal variation of rainfall is much larger during the break periods and the spatial distribution of rainfall is very different between the monsoon and break regimes. During the active monsoon the total net radiative input to the surface is decreased by more than 3 times the amount than during the break regime - this total radiative cloud forcing is found to be dominated by the shortwave (SW) cloud effects because of the much larger optical thicknesses and persistence of long-lasting anvils and cirrus cloud decks associated with the monsoon regime. These differences in monsoon versus break surface radiative energy contribute to low-level air temperature differences in the boundary layer over the land surfaces.

  9. Diurnal global variability of the Earth's magnetic field during geomagnetically quiet conditions

    Science.gov (United States)

    Klausner, V.

    2012-12-01

    This work proposes a methodology (or treatment) to establish a representative signal of the global magnetic diurnal variation. It is based on a spatial distribution in both longitude and latitude of a set of magnetic stations as well as their magnetic behavior on a time basis. We apply the Principal Component Analysis (PCA) technique using gapped wavelet transform and wavelet correlation. This new approach was used to describe the characteristics of the magnetic variations at Vassouras (Brazil) and 12 other magnetic stations spread around the terrestrial globe. Using magnetograms from 2007, we have investigated the global dominant pattern of the Sq variation as a function of low solar activity. This year was divided into two seasons for seasonal variation analysis: solstices (June and December) and equinoxes (March and September). We aim to reconstruct the original geomagnetic data series of the H component taking into account only the diurnal variations with periods of 24 hours on geomagnetically quiet days. We advance a proposal to reconstruct the Sq baseline using only the PCA first mode. The first interpretation of the results suggests that PCA/wavelet method could be used to the reconstruction of the Sq baseline.

  10. Diurnal changes in photosynthetic parameters of Populus tremuloides, modulated by elevated concentrations of CO2 and/or O3 and daily climatic variation

    International Nuclear Information System (INIS)

    Kets, Katre; Darbah, Joseph N.T.; Sober, Anu; Riikonen, Johanna; Sober, Jaak; Karnosky, David F.

    2010-01-01

    The diurnal changes in light-saturated photosynthesis (Pn) under elevated CO 2 and/or O 3 in relation to stomatal conductance (g s ), water potential, intercellular [CO 2 ], leaf temperature and vapour-pressure difference between leaf and air (VPD L ) were studied at the Aspen FACE site. Two aspen (Populus tremuloides Michx.) clones differing in their sensitivity to ozone were measured. The depression in Pn was found after 10:00 h. The midday decline in Pn corresponded with both decreased g s and decreased Rubisco carboxylation efficiency, Vc max . As a result of increasing VPD L , g s decreased. Elevated [CO 2 ] resulted in more pronounced midday decline in Pn compared to ambient concentrations. Moreover, this decline was more pronounced under combined treatment compared to elevated CO 2 treatment. The positive impact of CO 2 on Pn was relatively more pronounced in days with environmental stress but relatively less pronounced during midday depression. The negative impact of ozone tended to decrease in both cases. - Diurnal and seasonal patterns of environmental stress (drought, high air temperature) affects a relative impact of elevated concentrations of CO 2 and O 3 on trees.

  11. Using the Atmospheric Radiation Measurement (ARM) Datasets to Evaluate Climate Models in Simulating Diurnal and Seasonal Variations of Tropical Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hailong [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington; Burleyson, Casey D. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington; Ma, Po-Lun [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington; Fast, Jerome D. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington; Rasch, Philip J. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington

    2018-04-01

    We use the long-term Atmospheric Radiation Measurement (ARM) datasets collected at the three Tropical Western Pacific (TWP) sites as a tropical testbed to evaluate the ability of the Community Atmosphere Model (CAM5) to simulate the various types of clouds, their seasonal and diurnal variations, and their impact on surface radiation. We conducted a series of CAM5 simulations at various horizontal grid spacing (around 2°, 1°, 0.5°, and 0.25°) with meteorological constraints from reanalysis. Model biases in the seasonal cycle of cloudiness are found to be weakly dependent on model resolution. Positive biases (up to 20%) in the annual mean total cloud fraction appear mostly in stratiform ice clouds. Higher-resolution simulations do reduce the positive bias in the frequency of ice clouds, but they inadvertently increase the negative biases in convective clouds and low-level liquid clouds, leading to a positive bias in annual mean shortwave fluxes at the sites, as high as 65 W m-2 in the 0.25° simulation. Such resolution-dependent biases in clouds can adversely lead to biases in ambient thermodynamic properties and, in turn, feedback on clouds. Both the CAM5 model and ARM observations show distinct diurnal cycles in total, stratiform and convective cloud fractions; however, they are out-of-phase by 12 hours and the biases vary by site. Our results suggest that biases in deep convection affect the vertical distribution and diurnal cycle of stratiform clouds through the transport of vapor and/or the detrainment of liquid and ice. We also found that the modelled gridmean surface longwave fluxes are systematically larger than site measurements when the grid that the ARM sites reside in is partially covered by ocean. The modeled longwave fluxes at such sites also lack a discernable diurnal cycle because the ocean part of the grid is warmer and less sensitive to radiative heating/cooling compared to land. Higher spatial resolution is more helpful is this regard. Our

  12. Impacts of diurnal variation of ultraviolet-B and photosynthetically active radiation on phycobiliproteins of the hot-spring cyanobacterium Nostoc sp. strain HKAR-2.

    Science.gov (United States)

    Kannaujiya, Vinod K; Sinha, Rajeshwar P

    2017-01-01

    The effects of diurnal variation of photosynthetically active radiation (PAR; 400-700 nm) and ultraviolet-B (UV-B; 280-315 nm) radiation on phycobiliproteins (PBPs) and photosynthetic pigments (PP) have been studied in the hot-spring cyanobacterium Nostoc sp. strain HKAR-2. The variations in PBPs and PP were monitored by alternating light and dark under PAR, UV-B, and PAR + UV-B radiations over a period of 25 h. There was a decline in the amount of Chl a and PBPs during light periods of UV-B and PAR + UV-B and an increase during dark periods showing a circadian rhythm by destruction and resynthesis of pigment-protein complex. However, a marked induction in carotenoids was recorded during light periods of the same radiations. Moreover, the ratio of Chl a/PE and Chl a/PC was increased in dark periods showing the resynthesis of bleached Chl a. The wavelength shift in emission fluorescence of PBPs toward shorter wavelengths further indicated the bleaching and destruction of PBPs during light periods. Oxidative damage upon exposure to PAR, UV-B, and PAR + UV-B was alleviated by induction of antioxidative enzymes such as superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX). The studied cyanobacterium exhibits a significant increase in the activities of SOD, CAT, and APX upon exposure to UV-B and PAR + UV-B radiations. The results indicate that pigment-protein composition of Nostoc sp. stain HKAR-2 was significantly altered during diurnal variation of light/radiation, which might play an important role in optimization for their productivity in a particular cyanobacterium.

  13. The Diurnal Variation of Hydrogen, Nitrogen, and Chlorine Radicals: Implications for the Heterogeneous Production of HNO2

    Science.gov (United States)

    Salawitch, R. J.; Wofsy, S. C.; Wennberg, P. O.; Cohen, R. C.; Anderson, J. G.; Fahey, D. W.; Gao, R. S.; Keim, E. R.; Woodbridge, E. L.; Stimpfle, R. M.; hide

    1994-01-01

    In situ measurements of hydrogen, nitrogen, and chlorine radicals obtained through sunrise and sunset in the lower stratosphere during SPADE are compared to results from a photochemical model constrained by observed concentrations of radical precursors and environmental conditions. Models allowing for heterogeneous hydrolysis of N205 on sulfate aerosols agree with measured concentrations of NO, NO2, and ClO throughout the day, but fail to account for high concentrations of OH and H02 observed near sunrise and sunset. The morning burst of [OH] and [HO2] coincides with the rise of [NO] from photolysis of N02, suggesting a new source of HO, that photolyzes in the near UV (350 to 400 nm) spectral region. A model that allows for the heterogeneous production of HN02 results in an excellent simulation of the diurnal variations of [OH] and [HO2].

  14. Effects of diurnal temperature range on mortality in Hefei city, China

    Science.gov (United States)

    Tang, Jing; Xiao, Chang-chun; Li, Yu-rong; Zhang, Jun-qing; Zhai, Hao-yuan; Geng, Xi-ya; Ding, Rui; Zhai, Jin-xia

    2018-05-01

    Although several studies indicated an association between diurnal temperature range (DTR) and mortality, the results about modifiers are inconsistent, and few studies were conducted in developing inland country. This study aims to evaluate the effects of DTR on cause-specific mortality and whether season, gender, or age might modify any association in Hefei city, China, during 2007-2016. Quasi-Poisson generalized linear regression models combined with a distributed lag non-linear model (DLNM) were applied to evaluate the relationships between DTR and non-accidental, cardiovascular, and respiratory mortality. We observed a J-shaped relationship between DTR and cause-specific mortality. With a DTR of 8.3 °C as the reference, the cumulative effects of extremely high DTR were significantly higher for all types of mortality than effects of lower or moderate DTR in full year. When stratified by season, extremely high DTR in spring had a greater impact on all cause-specific mortality than other three seasons. Male and the elderly (≥ 65 years) were consistently more susceptible to extremely high DTR effect than female and the youth (groups from extremely high DTR especially in the spring.

  15. Diurnal rhythms in psychological reward functioning in healthy young men: 'Wanting', liking, and learning.

    Science.gov (United States)

    Byrne, Jamie E M; Murray, Greg

    2017-01-01

    A range of evidence suggests that human reward functioning is partly driven by the endogenous circadian system, generating 24-hour rhythms in behavioural measures of reward activation. Reward functioning is multifaceted but literature to date is largely limited to measures of self-reported positive mood states. The aim of this study was to advance the field by testing for hypothesised diurnal variation in previously unexplored components of psychological reward: 'wanting', liking, and learning using subjective and behavioural measures. Risky decision making (automatic Balloon Analogue Risk Task), affective responsivity to positive images (International Affective Pictures System), uncued self-reported discrete emotions, and learning-contingent reward (Iowa Gambling Task) were measured at 10.00 hours, 14.00 hours, and 19.00 hours in a counterbalanced repeated measures design with 50 healthy male participants (aged 18-30). As hypothesised, risky decision making (unconscious 'wanting') and ratings of arousal towards positive images (conscious wanting) exhibited a diurnal waveform with indices highest at 14.00 hours. No diurnal rhythm was observed for liking (pleasure ratings to positive images, discrete uncued positive emotions) or in a learning-contingent reward task. Findings reaffirm that diurnal variation in human reward functioning is most pronounced in the motivational 'wanting' components of reward.

  16. Impact of resolving the diurnal cycle in an ocean-atmosphere GCM. Pt. 2. A diurnally coupled CGCM

    Energy Technology Data Exchange (ETDEWEB)

    Bernie, D.J. [Met Office Hadley Centre, Exeter (United Kingdom); University of Reading, National Centre for Atmospheric Science-Climate, Department of Meteorology, Reading (United Kingdom); Numeriques, IPSL, Laboratoire d' Oceanographie et du Climat, Experimentation et Approches, Paris (France); Guilyardi, E. [University of Reading, National Centre for Atmospheric Science-Climate, Department of Meteorology, Reading (United Kingdom); Numeriques, IPSL, Laboratoire d' Oceanographie et du Climat, Experimentation et Approches, Paris (France); Madec, G. [Numeriques, IPSL, Laboratoire d' Oceanographie et du Climat, Experimentation et Approches, Paris (France); Slingo, J.M.; Woolnough, S.J.; Cole, J. [University of Reading, National Centre for Atmospheric Science-Climate, Department of Meteorology, Reading (United Kingdom)

    2008-12-15

    Coupled ocean atmosphere general circulation models (GCM) are typically coupled once every 24 h, excluding the diurnal cycle from the upper ocean. Previous studies attempting to examine the role of the diurnal cycle of the upper ocean and particularly of diurnal SST variability have used models unable to resolve the processes of interest. In part 1 of this study a high vertical resolution ocean GCM configuration with modified physics was developed that could resolve the diurnal cycle in the upper ocean. In this study it is coupled every 3 h to atmospheric GCM to examine the sensitivity of the mean climate simulation and aspects of its variability to the inclusion of diurnal ocean-atmosphere coupling. The inclusion of the diurnal cycle leads to a tropics wide increase in mean sea surface temperature (SST), with the strongest signal being across the equatorial Pacific where the warming increases from 0.2 C in the central and western Pacific to over 0.3 C in the eastern equatorial Pacific. Much of this warming is shown to be a direct consequence of the rectification of daily mean SST by the diurnal variability of SST. The warming of the equatorial Pacific leads to a redistribution of precipitation from the Inter tropical convergence zone (ITCZ) toward the equator. In the western Pacific there is an increase in precipitation between Papa new guinea and 170 E of up to 1.2 mm/day, improving the simulation compared to climatology. Pacific sub tropical cells are increased in strength by about 10%, in line with results of part 1 of this study, due to the modification of the exchange of momentum between the equatorially divergent Ekman currents and the geostropic convergence at depth, effectively increasing the dynamical response of the tropical Pacific to zonal wind stresses. During the spring relaxation of the Pacific trade winds, a large diurnal cycle of SST increases the seasonal warming of the equatorial Pacific. When the trade winds then re-intensify, the increase in

  17. Seasonal Temperature Variations controlling Cave Ventilation Processes in Cueva Larga, Puerto Rico

    Science.gov (United States)

    Winter, A.; Vieten, R.; Warken, S. F.; Schrӧder-Ritzrau, A.; Miller, T. E.; Scholz, D.

    2016-12-01

    Two years of monthly monitoring result in much better understanding of ventilation processes in caves. Cueva Larga, a tropical cave in Puerto Rico is 1440 m long with a large main passage (about 116,000 m3). Cave air pCO2 in the main passage varied seasonally, between 600 ppm in winter and 1800 ppm in summer. The seasonal variability in cave pCO2 made it possible to estimate a cave air exchange time of 36±5 days and a winter ventilation rate of 3,200±800 m3/day for the main cave passage. Calculations of virtual temperature and differences between cave and surface temperature show that the seasonal temperature cycle is the main driver of the alternation between a well-ventilated winter mode and a near-stagnant summer mode. The winter mode is characterized by a positive buoyancy contrast at night leading to maximal cave ventilation, while during summer ventilation is at a minimum. Between winter and summer, a transitional mode of partial cave ventilation is observed. On shorter time scales (diurnal to weekly), cave pCO2 is also influenced by atmospheric pressure but this variation is one order of magnitude lower than the seasonal pCO2 change. The cave morphology of Cueva Larga including its large volume, tubular shape and the obstructed cave entrance geometry are important boundary conditions for the observed ventilation patterns. Our findings emphasize that cave systems with varying morphology have to be studied individually in order to correctly describe ventilation processes.

  18. diurnal climatic pressure on haematology and blood biochemistry of ...

    African Journals Online (AJOL)

    Twelve 2.5-year-old West African Dward (WAD) sheep consisting of eight (8) ewes and four (4) rams with mean body weight 19.4kg were used to study the effects of diurnal (morning and afternoon) climatic variations on the haematological and biochemical responses in WAD sheep. The animals were randomly assigned to ...

  19. Effects of environmental temperature fluctuations on the parameters of a thermoelectric battery

    International Nuclear Information System (INIS)

    Kozlov, Yu.F.; Oganov, E.P.

    1980-01-01

    A numerical analysis is presented for the effects of lags on the output parameters of a radioisotope thermoelectric battery under conditions of diurnal temperature variation in the environment. Allowance for the inertial effects causes a phase shift and change in amplitude of the variations in the thermal and electrical parameters. The amplitude of the temperature fluctuations in the hot junctions is substantially reduced, while the output electrical power increases. The data provide a more rigorous basis for choosing the parameters of radioisotope batteries during design. 9 refs

  20. Design, Analysis and Implementation of an Experimental System to Harvest Energy From Atmospheric Temperature Variations Using Ethyl Chloride Filled Bellows

    Science.gov (United States)

    Ali, Gibran

    The increase in global warming and the dwindling supplies of fossil fuels have shifted the focus from traditional to alternate sources of energy. This has resulted in a concerted effort towards finding new energy sources as well as better understanding traditional renewable energy sources such as wind and solar power. In addition to the shift in focus towards alternate energy, the last two decades have offered a dramatic rise in the use of digital technologies such as wireless sensor networks that require small but isolated power supplies. Energy harvesting, a method to gather energy from ambient sources including sunlight, vibrations, heat, etc., has provided some success in powering these systems. One of the unexplored areas of energy harvesting is the use of atmospheric temperature variations to obtain usable energy. This thesis investigates an innovative mechanism to extract energy from atmospheric variations using ethyl chloride filled mechanical bellows. The energy harvesting process was divided into two parts. The first part consisted of extracting energy from the temperature variations and converting it into the potential energy stored in a linear coil spring. This was achieved by designing and fabricating an apparatus that consisted of an ethyl chloride filled bellows working against a mechanical spring in a closed and controlled environment. The bellows expanded/contracted depending upon the ambient temperature and the energy harvested was calculated as a function of the bellows' length. The experiments showed that 6 J of potential energy may be harvested for a 23°C change in temperature. The numerical results closely correlated to the experimental data with an error magnitude of 1%. In regions with high diurnal temperature variation, such an apparatus may yield approximately 250 microwatts depending on the diurnal temperature range. The second part of the energy harvesting process consisted of transforming linear expansion of the bellows into electric

  1. Diurnal variation of on-road air pollution in an urban street canyon in Seoul

    Science.gov (United States)

    Ho, Woo, Sung; Lee, Seung-Bok; Kim, Kyung Hwan; Bae, Gwi-Nam; Sunwoo, Young; Ma, Young-Il; Han, Dokyoung; Song, Sanghoo

    2014-05-01

    Motor vehicles are a major source of CO, NOx and particulate matters. Especially, in the surroundings of high-raised buildings, so-called an urban street canyon, air pollution levels increase due to limited dispersion of vehicle emissions. In this study, a mobile laboratory was used to measure diurnal variation of on-road concentrations of air pollutants such as NOx, particle-bound polycyclic aromatic hydrocarbons, black carbon and particle number in the urban street canyon on the Teheran road with eight lanes in Seoul, Korea from 5th to 8th November 2013. Each traveling distance was about 3.3km. Traveling vehicle at the middle of the Teheran road was recorded by video camera, and then the car counting by vehicle types. On road measurements conducted for 3~6 hours per day. Hourly average of air pollutant concentration in morning rush hour more than two times higher than those at the daybreak. We will analyze the correlation between air pollution levels and traffic volume by vehicle types. We will discuss about spatial characteristics of on-road air pollution levels in the urban street canyon.

  2. Study of the tidal variations in mesospheric temperature at low and mid latitudes from WINDII and potassium lidar observations

    Directory of Open Access Journals (Sweden)

    M. Shepherd

    2004-04-01

    Full Text Available Zonal mean daytime temperatures from the Wind Imaging Interferometer (WINDII on the Upper Atmosphere Research Satellite (UARS and nightly temperatures from a potassium (K lidar are employed in the study of the tidal variations in mesospheric temperature at low and mid latitudes in the Northern Hemisphere. The analysis is applied to observations at 89km height for winter solstice, December to February (DJF, at 55° N, and for May and November at 28° N. The WINDII results are based on observations from 1991 to 1997. The K-lidar observations for DJF at Kühlungsborn (54° N were from 1996–1999, while those for May and November at Tenerife 28° N were from 1999. To avoid possible effects from year-to-year variability in the temperatures observed, as well as differences due to instrument calibration and observation periods, the mean temperature field is removed from the respective data sets, assuming that only tidal and planetary scale perturbations remain in the temperature residuals. The latter are then binned in 0.5h periods and the individual data sets are fitted in a least-mean square sense to 12-h and 8-h harmonics, to infer semidiurnal and terdiurnal tidal parameters. Both the K-lidar and WINDII independently observed a strong semidiurnal tide in November, with amplitudes of 13K and 7.4K, respectively. Good agreement was also found in the tidal parameters derived from the two data sets for DJF and May. It was recognized that insufficient local time coverage of the two separate data sets could lead to an overestimation of the semidiurnal tidal amplitude. A combined ground-based/satellite data set with full diurnal local time coverage was created which was fitted to 24h+12h+8h harmonics and a novel method applied to account for possible differences between the daytime and nighttime means. The results still yielded a strong semidiurnal tide in November at 28° N with an amplitude of 8.8K which is twice the SD amplitude in May and DJF. The

  3. Influence of ocean tides on the diurnal and semidiurnal earth rotation variations from VLBI observations

    Science.gov (United States)

    Gubanov, V. S.; Kurdubov, S. L.

    2015-05-01

    The International astrogeodetic standard IERS Conventions (2010) contains a model of the diurnal and semidiurnal variations in Earth rotation parameters (ERPs), the pole coordinates and the Universal Time, arising from lunisolar tides in the world ocean. This model was constructed in the mid-1990s through a global analysis of Topex/Poseidon altimetry. The goal of this study is to try to estimate the parameters of this model by processing all the available VLBI observations on a global network of stations over the last 35 years performed within the framework of IVS (International VLBI Service) geodetic programs. The complexity of the problemlies in the fact that the sought-for corrections to the parameters of this model lie within 1 mm and, thus, are at the limit of their detectability by all currently available methods of ground-based positional measurements. This requires applying universal software packages with a high accuracy of reduction calculations and a well-developed system of controlling the simultaneous adjustment of observational data to analyze long series of VLBI observations. This study has been performed with the QUASAR software package developed at the Institute of Applied Astronomy of the Russian Academy of Sciences. Although the results obtained, on the whole, confirm a high accuracy of the basic model in the IERS Conventions (2010), statistically significant corrections that allow this model to be refined have been detected for some harmonics of the ERP variations.

  4. Using mobile monitoring to visualise diurnal variation of traffic pollutants across two near-highway neighbourhoods

    Science.gov (United States)

    Pattinson, Woodrow; Longley, Ian; Kingham, Simon

    2014-09-01

    It is widely accepted that concentrations of primary traffic pollutants can vary substantially across relatively small urban areas. Fixed-site monitors have been shown to be largely inadequate for representing concentrations at nearby locations, resulting in the increasing use of spatial modelling or mobile sampling methods to achieve spatial saturation. In this study, we employ the use of a simple bicycle to sample concentrations of ultrafine particles (UFPs), carbon monoxide (CO) and particulate matter (PM10) at two small areas (arterials and quieter streets, at periods of contrasting meteorological and traffic conditions. A total of 20 sampling runs in each area (five at each of the four timings) were conducted. Meteorological data were logged continuously at background sites within each study area. Results show that the influence of highway traffic (UFPs, CO) was strongest during the mornings and late evenings when wind speeds were low, while for the midday and afternoon timings, concentrations were highest at the arterial and shopping zones. Concentrations of PM10 appeared to be strongest in the residential areas during mornings and late evenings, suggesting an influence of wood burning for home heating. For all timings combined, for all three pollutants, it appears the arterial roads featuring shops and numerous intersections with traffic lights, had a stronger influence on concentrations than the busier but more free-flowing highways. This study provides not only an insight into microspatial hotspot variation across suburbs, but also how this variation shifts diurnally.

  5. Effects of silicon application on diurnal variations of physiological properties of rice leaves of plants at the heading stage under elevated UV-B radiation

    Science.gov (United States)

    Lou, Yun-sheng; Wu, Lei; Lixuan, Ren; Meng, Yan; Shidi, Zhao; Huaiwei, Zhu; Yiwei, Zhang

    2016-02-01

    We investigated the effects of silicon (Si) application on diurnal variations of photosynthetic and transpiration physiological parameters in potted rice ( Oryza sativa L. cv Nanjing 45) at the heading stage. The plants were subjected to two UV-B radiation levels, i.e., reference UV-B (A, ambient, 12.0 kJ m-2 day-1) and elevated UV-B radiation (E, a 20 % higher dose of UV-B than the reference, 14.4 kJ m-2 day-1), and four Si application levels, i.e., Si0 (no silicon supplementation, 0 kg SiO2 ha-1), Si1 (sodium silicate, 100 kg SiO2 ha-1), Si2 (sodium silicate, 200 kg SiO2 ha-1), and Si3 (slag silicon fertilizer, 200 kg SiO2 ha-1). Compared with the reference, elevated UV-B radiation decreased the diurnal mean values of the net photosynthetic rate ( Pn), intercellular carbon dioxide (CO2) concentration ( Ci), transpiration rate ( Tr), stomatal conductivity ( Gs), and water use efficiency (WUE) by 11.3, 5.5, 10.4, 20.3, and 6.3 %, respectively, in plants not supplemented with silicon (Si0), and decreased the above parameters by 3.8-5.5, 0.7-4.8, 4.0-8.7, 7.4-20.2, and 0.7-5.9 %, respectively, in plants treated with silicon (Si1, Si2, and Si3), indicating that silicon application mitigates the negative effects of elevated UV-B radiation. Under elevated UV-B radiation, silicon application (Si1, Si2, and Si3) increased the diurnal mean values of Pn, Ci, Gs, and WUE by 16.9-28.0, 3.5-14.3, 16.8-38.7, and 29.0-51.2 %, respectively, but decreased Tr by 1.9-10.8 %, compared with plants not treated with silicon (E+Si0), indicating that silicon application mitigates the negative effects of elevated UV-B radiation by significantly increasing the P n, C i, G s, and WUE and decreasing the T r of rice. Evident differences existed in mitigating the depressive effects of elevated UV-B radiation on diurnal variations of physiological parameters among different silicon application treatments, exhibiting as Si3>Si2>Si1>Si0. In addition to recycling steel industrial wastes, the

  6. Effects of silicon application on diurnal variations of physiological properties of rice leaves of plants at the heading stage under elevated UV-B radiation.

    Science.gov (United States)

    Lou, Yun-sheng; Wu, Lei; Lixuan, Ren; Meng, Yan; Shidi, Zhao; Huaiwei, Zhu; Yiwei, Zhang

    2016-02-01

    We investigated the effects of silicon (Si) application on diurnal variations of photosynthetic and transpiration physiological parameters in potted rice (Oryza sativa L. cv Nanjing 45) at the heading stage. The plants were subjected to two UV-B radiation levels, i.e., reference UV-B (A, ambient, 12.0 kJ m(-2) day(-1)) and elevated UV-B radiation (E, a 20% higher dose of UV-B than the reference, 14.4 kJ m(-2) day(-1)), and four Si application levels, i.e., Si0 (no silicon supplementation, 0 kg SiO2 ha(-1)), Si1 (sodium silicate, 100 kg SiO2 ha(-1)), Si2 (sodium silicate, 200 kg SiO2 ha(-1)), and Si3 (slag silicon fertilizer, 200 kg SiO2 ha(-1)). Compared with the reference, elevated UV-B radiation decreased the diurnal mean values of the net photosynthetic rate (Pn), intercellular carbon dioxide (CO2) concentration (Ci), transpiration rate (Tr), stomatal conductivity (Gs), and water use efficiency (WUE) by 11.3, 5.5, 10.4, 20.3, and 6.3%, respectively, in plants not supplemented with silicon (Si0), and decreased the above parameters by 3.8-5.5, 0.7-4.8, 4.0-8.7, 7.4-20.2, and 0.7-5.9%, respectively, in plants treated with silicon (Si1, Si2, and Si3), indicating that silicon application mitigates the negative effects of elevated UV-B radiation. Under elevated UV-B radiation, silicon application (Si1, Si2, and Si3) increased the diurnal mean values of Pn, Ci, Gs, and WUE by 16.9-28.0, 3.5-14.3, 16.8-38.7, and 29.0-51.2%, respectively, but decreased Tr by 1.9-10.8%, compared with plants not treated with silicon (E+Si0), indicating that silicon application mitigates the negative effects of elevated UV-B radiation by significantly increasing the P n, C i, G s, and WUE and decreasing the T r of rice. Evident differences existed in mitigating the depressive effects of elevated UV-B radiation on diurnal variations of physiological parameters among different silicon application treatments, exhibiting as Si3>Si2>Si1>Si0. In addition to recycling steel industrial wastes, the

  7. Modulation of the atmospheric quasi-biweekly oscillation on the diurnal variation of the occurrence frequency of the Tibetan Plateau vortices

    Science.gov (United States)

    Li, Lun; Zhang, Renhe; Wen, Min

    2018-06-01

    In this study, modulation of the atmospheric quasi-biweekly oscillation (QBWO) on diurnal variation of the occurrence frequency of Tibetan Plateau vortices (TPVs) during May-August of 2000-2009 was investigated. The diurnal variations of the occurrence frequency of the TPVs (OFTPVs) and the related dynamic and thermodynamic features in the positive and negative phases of QBWO were compared. In both the positive and negative phases, the OFTPVs reaches the maximum from evening to midnight (18-00 LT, LT indicates the local time), and minimum from early morning to noon (06-12 LT). At 18 LT, there is strongest convergence at 500 hPa and ascending motion, as well as the most abundant net water vapor budget over the Tibetan Plateau, which is in favor of the precipitation and the related condensation latent heat release, corresponding to the maximum of OFTPVs in 18-00 LT. On the contrary, in the early morning at 06 LT, the conditions are most unfavorable for genesis of TPVs in 06-12 LT. QBWO leads to stronger convergence at 500 hPa, ascending motion as well as more massive water vapor in the positive phases than those in the negative phases, resulting in larger numbers of TPVs occur in all of the four periods of a day (00-06 LT, 06-12 LT, 12-18 LT, and 18-00 LT) in the former. The TPVs generating from the early morning to noon (06-12 LT) are weaker and more sensitive and fragile to the disadvantageous background, while the TPVs occurring from evening to midnight (18-00 LT) are stronger and seem to be well tolerated, leading to more remarkable contrast between the OFTPVs in the negative and positive phases in 06-12 LT than in 18-00 LT.

  8. An unusual kind of diurnal streamflow variation

    Directory of Open Access Journals (Sweden)

    Cuevas Jaime G.

    2018-03-01

    Full Text Available During hydrological research in a Chilean swamp forest, we noted a pattern of higher streamflows close to midday and lower ones close to midnight, the opposite of an evapotranspiration (Et-driven cycle. We analyzed this diurnal streamflow signal (DSS, which appeared mid-spring (in the growing season. The end of this DSS coincided with a sustained rain event in autumn, which deeply affected stream and meteorological variables. A survey along the stream revealed that the DSS maximum and minimum values appeared 6 and 4 hours earlier, respectively, at headwaters located in the mountain forests/ plantations than at the control point in the swamp forest. Et in the swamp forest was higher in the morning and in the late afternoon, but this process could not influence the groundwater stage. Trees in the mountain headwaters reached their maximum Ets in the early morning and/or close to midday. Our results suggest that the DSS is a wave that moves from forests high in the mountains towards lowland areas, where Et is decoupled from the DSS. This signal delay seems to convert the link between streamflow and Et in an apparent, but spurious positive relationship. It also highlights the role of landscape heterogeneity in shaping hydrological processes.

  9. On the diurnal ranges of Sea Surface Temperature (SST) in the ...

    Indian Academy of Sciences (India)

    (Solomon and Jin 2005). The diurnal change in. SST has also been examined to study the possible feedbacks on the atmosphere (Clayson and Chen. 2002; Bernie et al 2007). Solar heating of the sea surface in low-wind conditions can lead to the development of a stable warm layer of a few meters thickness at the surface.

  10. Reassessing changes in diurnal temperature range: A new data set and characterization of data biases

    Science.gov (United States)

    Thorne, P. W.; Menne, M. J.; Williams, C. N.; Rennie, J. J.; Lawrimore, J. H.; Vose, R. S.; Peterson, T. C.; Durre, I.; Davy, R.; Esau, I.; Klein-Tank, A. M. G.; Merlone, A.

    2016-05-01

    It has been a decade since changes in diurnal temperature range (DTR) globally have been assessed in a stand-alone data analysis. The present study takes advantage of substantively improved basic data holdings arising from the International Surface Temperature Initiative's databank effort and applies the National Centers for Environmental Information's automated pairwise homogeneity assessment algorithm to reassess DTR records. It is found that breakpoints are more prevalent in DTR than other temperature elements and that the resulting adjustments have a broader distribution. This strongly implies that there is an overarching tendency, across the global meteorological networks, for nonclimatic artifacts to impart either random or anticorrelated rather than correlated biases in maximum and minimum temperature series. Future homogenization efforts would likely benefit from simultaneous consideration of DTR and maximum and minimum temperatures, in addition to average temperatures. Estimates of change in DTR are relatively insensitive to whether adjustments are calculated directly or inferred from adjustments returned for the maximum and minimum temperature series. The homogenized series exhibit a reduction in DTR since the midtwentieth century globally (-0.044 K/decade). Adjustments serve to approximately halve the long-term global reduction in DTR in the basic "raw" data. Most of the estimated DTR reduction occurred over 1960-1980. In several regions DTR has apparently increased over 1979-2012, while globally it has exhibited very little change (-0.016 K/decade). Estimated changes in DTR are an order of magnitude smaller than in maximum and minimum temperatures, which have both been increasing rapidly on multidecadal timescales (0.186 K/decade and 0.236 K/decade, respectively, since the midtwentieth century).

  11. Contribution of solar radiation to decadal temperature variability over land.

    Science.gov (United States)

    Wang, Kaicun; Dickinson, Robert E

    2013-09-10

    Global air temperature has become the primary metric for judging global climate change. The variability of global temperature on a decadal timescale is still poorly understood. This paper examines further one suggested hypothesis, that variations in solar radiation reaching the surface (Rs) have caused much of the observed decadal temperature variability. Because Rs only heats air during the day, its variability is plausibly related to the variability of diurnal temperature range (daily maximum temperature minus its minimum). We show that the variability of diurnal temperature range is consistent with the variability of Rs at timescales from monthly to decadal. This paper uses long comprehensive datasets for diurnal temperature range to establish what has been the contribution of Rs to decadal temperature variability. It shows that Rs over land globally peaked in the 1930s, substantially decreased from the 1940s to the 1970s, and changed little after that. Reduction of Rs caused a reduction of more than 0.2 °C in mean temperature during May to October from the 1940s through the 1970s, and a reduction of nearly 0.2 °C in mean air temperature during November to April from the 1960s through the 1970s. This cooling accounts in part for the near-constant temperature from the 1930s into the 1970s. Since then, neither the rapid increase in temperature from the 1970s through the 1990s nor the slowdown of warming in the early twenty-first century appear to be significantly related to changes of Rs.

  12. Reproducibility of summertime diurnal precipitation over northern Eurasia simulated by CMIP5 climate models

    Science.gov (United States)

    Hirota, N.; Takayabu, Y. N.

    2015-12-01

    Reproducibility of diurnal precipitation over northern Eurasia simulated by CMIP5 climate models in their historical runs were evaluated, in comparison with station data (NCDC-9813) and satellite data (GSMaP-V5). We first calculated diurnal cycles by averaging precipitation at each local solar time (LST) in June-July-August during 1981-2000 over the continent of northern Eurasia (0-180E, 45-90N). Then we examined occurrence time of maximum precipitation and a contribution of diurnally varying precipitation to the total precipitation.The contribution of diurnal precipitation was about 21% in both NCDC-9813 and GSMaP-V5. The maximum precipitation occurred at 18LST in NCDC-9813 but 16LST in GSMaP-V5, indicating some uncertainties even in the observational datasets. The diurnal contribution of the CMIP5 models varied largely from 11% to 62%, and their timing of the precipitation maximum ranged from 11LST to 20LST. Interestingly, the contribution and the timing had strong negative correlation of -0.65. The models with larger diurnal precipitation showed precipitation maximum earlier around noon. Next, we compared sensitivity of precipitation to surface temperature and tropospheric humidity between 5 models with large diurnal precipitation (LDMs) and 5 models with small diurnal precipitation (SDMs). Precipitation in LDMs showed high sensitivity to surface temperature, indicating its close relationship with local instability. On the other hand, synoptic disturbances were more active in SDMs with a dominant role of the large scale condensation, and precipitation in SDMs was more related with tropospheric moisture. Therefore, the relative importance of the local instability and the synoptic disturbances was suggested to be an important factor in determining the contribution and timing of the diurnal precipitation. Acknowledgment: This study is supported by Green Network of Excellence (GRENE) Program by the Ministry of Education, Culture, Sports, Science and Technology

  13. Seasonal Variation of Diurnal Cycle of Rainfall in the Eastern Equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.; Pednekar, S.; Katsumata, M.; Antony, M.K.; Kuroda, Y.; Unnikrishnan, A.S.

    The diurnal cycle of rainfall over the eastern equatorial Indian Ocean is studied for the period 23rd October 2001 to 31st October 2003 using the hourly data from the Triton buoy positioned at 1.5°S and 90°E. An analysis of the active and weak...

  14. Using a 1-D model to reproduce diurnal SST signals

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Høyer, Jacob L.

    2014-01-01

    The diurnal variability of SST has been extensively studied as it poses challenges for validating and calibrating satellite sensors, merging SST time series, oceanic and atmospheric modelling. As heat is significantly trapped close to the surface, the diurnal signal’s maximum amplitude is best...... captured by radiometers. The availability of infra-red retrievals from a geostationary orbit allows the hourly monitoring of the diurnal SST evolution. When infra-red SSTs are validated with in situ measurements a general mismatch is found, associated with the different reference depth of each type...... of measurement. A generally preferred approach to bridge the gap between in situ and remotely obtained measurements is through modelling of the upper ocean temperature. This ESA supported study focuses on the implementation of the 1 dimensional General Ocean Turbulence Model (GOTM), in order to resolve...

  15. Latitudinal and longitudinal dependence of the cosmic ray diurnal anisotropy during 2001-2014

    International Nuclear Information System (INIS)

    Tezari, Anastasia; Mavromichalaki, Helen; Katsinis, Dimitrios; Kanellakopoulos, Anastasios; Kolovi, Sofia; Plainaki, Christina; National and Kapodistrian Univ. of Athens; Andriopoulou, Maria

    2016-01-01

    The diurnal anisotropy of cosmic ray intensity for the time period 2001 to 2014 is studied, covering the maximum and the descending phase of solar cycle 23, the minimum between solar cycles 23 and 24, and the ascending phase and maximum of solar cycle 24. Cosmic ray intensity data from 11 neutron monitor stations located at different places around the Northern Hemisphere obtained from the high-resolution Neutron Monitor Database (NMDB) were used. Special software was developed for the calculations of the amplitude and the phase of the diurnal anisotropy vectors on annual and monthly basis using Fourier analysis and for the creation of the harmonic dial diagrams. The geomagnetic bending for each station was taken into account in our calculations determined from the asymptotic cones of each station via the Tsyganenko96 (Tsyganenko and Stern, 1996) magnetospheric model. From our analysis, it was resulted that there is a different behavior of the diurnal anisotropy vectors during the different phases of the solar cycles depending on the solar magnetic field polarity. The latitudinal and longitudinal distribution of the cosmic ray diurnal anisotropy was also examined by grouping the stations according to their geographic coordinates, and it was shown that diurnal variation is modulated not only by the latitude but also by the longitude of the stations. The diurnal anisotropy during strong events of solar and/or cosmic ray activity is discussed.

  16. Latitudinal and longitudinal dependence of the cosmic ray diurnal anisotropy during 2001-2014

    Energy Technology Data Exchange (ETDEWEB)

    Tezari, Anastasia; Mavromichalaki, Helen; Katsinis, Dimitrios; Kanellakopoulos, Anastasios; Kolovi, Sofia [National and Kapodistrian Univ. of Athens (Greece). Nuclear and Particle Physics Dept.; Plainaki, Christina [INAF-IAPS, Rome (Italy); National and Kapodistrian Univ. of Athens (Greece). Nuclear and Particle Physics Dept.; Andriopoulou, Maria [Austrian Academy of Sciences, Graz (Austria). Space Research Inst.

    2016-07-01

    The diurnal anisotropy of cosmic ray intensity for the time period 2001 to 2014 is studied, covering the maximum and the descending phase of solar cycle 23, the minimum between solar cycles 23 and 24, and the ascending phase and maximum of solar cycle 24. Cosmic ray intensity data from 11 neutron monitor stations located at different places around the Northern Hemisphere obtained from the high-resolution Neutron Monitor Database (NMDB) were used. Special software was developed for the calculations of the amplitude and the phase of the diurnal anisotropy vectors on annual and monthly basis using Fourier analysis and for the creation of the harmonic dial diagrams. The geomagnetic bending for each station was taken into account in our calculations determined from the asymptotic cones of each station via the Tsyganenko96 (Tsyganenko and Stern, 1996) magnetospheric model. From our analysis, it was resulted that there is a different behavior of the diurnal anisotropy vectors during the different phases of the solar cycles depending on the solar magnetic field polarity. The latitudinal and longitudinal distribution of the cosmic ray diurnal anisotropy was also examined by grouping the stations according to their geographic coordinates, and it was shown that diurnal variation is modulated not only by the latitude but also by the longitude of the stations. The diurnal anisotropy during strong events of solar and/or cosmic ray activity is discussed.

  17. Lunar and solar daily variations of ionospheric electron content at Delhi

    International Nuclear Information System (INIS)

    Bhuyan, P.K.; Tyagi, T.R.

    1986-01-01

    Ionospheric electron content measurements obtained at Delhi during the period 1975-1980 have been analysed by the Chapman-Miller method to compute lunar and solar daily variations. The results show that the magnitude of the lunar harmonic components is about one-tenth that of the solar harmonic components. Significant seasonal and solar cycle variations were observed for both the lunar and the solar terms. The lunar semi-diurnal component, the most significant term, can be explained as due to the additional 'fountain' effect caused by the lunar semi-diurnal variation of the electric field at the equatorial region. The lunar semi-diurnal variations were found to have significant oceanic and ionospheric components. (author)

  18. Photochemical transformation of aircraft exhausts at their transition from the plume to the large scale dispersion in the Northern temperature belt

    Energy Technology Data Exchange (ETDEWEB)

    Karol, I L; Kiselev, A A [Main Geophysical Observatory, St.Petersburg (Russian Federation)

    1998-12-31

    The 2-D diurnally varying photochemical model of the Northern temperate zonal tropospheric belt with fixed (off line) temperature and air transport is used for the description of the formation of aircraft exhaust concentration distribution in the North Atlantic commercial flight corridor, based on actual flights in summer and winter. A strong diurnal and seasonal variation of emitted NO{sub x} oxidation rate is revealed and evaluated. (author) 11 refs.

  19. Photochemical transformation of aircraft exhausts at their transition from the plume to the large scale dispersion in the Northern temperature belt

    Energy Technology Data Exchange (ETDEWEB)

    Karol, I.L.; Kiselev, A.A. [Main Geophysical Observatory, St.Petersburg (Russian Federation)

    1997-12-31

    The 2-D diurnally varying photochemical model of the Northern temperate zonal tropospheric belt with fixed (off line) temperature and air transport is used for the description of the formation of aircraft exhaust concentration distribution in the North Atlantic commercial flight corridor, based on actual flights in summer and winter. A strong diurnal and seasonal variation of emitted NO{sub x} oxidation rate is revealed and evaluated. (author) 11 refs.

  20. Study of the Army Helicopter Design Hover Criterion Using Temperature and Pressure Altitude

    Science.gov (United States)

    2017-09-01

    DOCUMENTS, DESTROY BY ANY METHOD THAT WILL PREVENT DISCLOSURE OF CONTENTS OR RECONSTRUCTION OF THE DOCUMENT. DISCLAIMER THE FINDINGS IN THIS...ambient temperature design point [Lavallee and Sing, 1965]. However, this recommendation did not account for diurnal temperature variation. In 1975...altitude requirement to 6,000 feet while maintaining the 500 feet per minute VROC with 5 percent power margin capability to account for realistic

  1. ESA STSE Project “Sea Surface Temperature Diurnal Variability: Regional Extend – Implications in Atmospheric Modelling”

    DEFF Research Database (Denmark)

    Karagali, Ioanna

    of the vertical extend of diurnal signals. Drifting buoys provide measurements close to the surface but are not always available. Moored buoys are generally not able to resolve the daily SST signal, which strongly weakens with depth within the upper water column. For such reasons, the General Ocean Turbulence......, atmospheric and oceanic modelling, bio-chemical processes and oceanic CO2 studies. The diurnal variability of SST, driven by the coincident occurrence of low enough wind and solar heating, is currently not properly understood. Atmospheric, oceanic and climate models are currently not adequately resolving...... the daily SST variability, resulting in biases of the total heat budget estimates and therefore, demised model accuracies. The ESA STSE funded project SSTDV:R.EX.-IM.A.M. aimed at characterising the regional extend of diurnal SST signals and their impact in atmospheric modelling. This study will briefly...

  2. Differences of diurnal variations of some aliphatic and polycyclic aromatic hydrocarbons concentrations in aerosols of the urban area of Madrid

    International Nuclear Information System (INIS)

    Perez, M. M.; Perez-Pastor, R. M.; Bea, F. J.; Campos, A.; Gonzalez, D.

    1991-01-01

    A study on daily concentration changes of polycyclic aromatic and aliphatic hydrocarbons (PAH's and AH's), was carried out in aerosols sampled m the Ciudad Universitaria of Madrid. Samples were taken at morning and night during February and June, for short sampling times, on glass fiber filters in Hi-Vol samplers, and then extracted ultrasonically with cyclohexane. Analysis were performed by HRGC with fused-silica capillary columns. The variable traffic rate, and the strong influence during winter periods of domestic heating are characteristic of this place. The aim of this work was to evaluate diurnal and seasonal variations of selected AH and PAH in the urban area of Madrid, by using descriptive parameters, such as total concentrations of AH and PAH, characteristic profiles and predominance carbon index. (Author)

  3. Oral Contraceptives and Renal Water Handling; A diurnal study in young women

    DEFF Research Database (Denmark)

    Graugaard-Jensen, Charlotte; Hvistendahl, Gitte M; Frøkiær, Jørgen

    2017-01-01

    To test the hypothesis that use of oral contraceptives (OC) changes diurnal variation in fluid balance mechanisms including blood pressure, secretion of vasopressin and oxytocin, and renal water and electrolyte excretion. Fifteen naturally cycling (NC) women in mid-follicular phase and 11 long-te...

  4. Diurnal Patterns of Heterotrophic and Autotrophic Soil Respiration in Maize and Switchgrass Bioenergy Cropping Systems

    Science.gov (United States)

    von Haden, A.; Marin-Spiotta, E.; Jackson, R. D.; Kucharik, C. J.

    2016-12-01

    A high proportion of carbon lost from terrestrial ecosystems occurs via soil CO2 respiration. Soil respiration is comprised of two contrasting sources: heterotrophic respiration (RH) from the decomposition of organic matter and autotrophic respiration (RA) from plant root metabolism. Since the two sources of soil respiration vary widely in their origin, the controls of each source are also likely to differ. However, the challenge of partitioning soil respiration sources in situ has limited our mechanistic understanding of RH and RA. Our objective was to evaluate the in situ diurnal controls of RH and RA in maize (Zea mays L.) and switchgrass (Panicum virgatum L.) bioenergy cropping systems. We hypothesized that both RH and RA would follow diurnal soil temperature trends, but that RA would also respond to diel patterns of photosynthetically active radiation (PAR). We also expected that diurnal soil respiration patterns would vary significantly within the growing season. We evaluated our hypothesis with six diurnal soil respiration campaigns during the 2015 and 2016 growing seasons at Arlington, WI, USA. RH showed clear oscillating diel trends, typically peaking in the mid-afternoon when near-surface soil temperatures were highest. Diurnal RA patterns were more nuanced than RH, but were generally highest in the late afternoon and showed the most pronounced diel trends during peak growing season in July. RA also tended to spike in concert with PAR, but this effect was much more prominent in maize than switchgrass. Continuing efforts will attempt to quantitatively separate the effects of soil temperature and PAR on RA.

  5. Diurnal and semi-diurnal tidal currents in the deep mid-Arabian sea

    Digital Repository Service at National Institute of Oceanography (India)

    Shenoi, S.S.C.; Gouveia, A.D.; Shetye, S.R.

    Current meter records from two depths, approximately 1000 m, at three mooring in the deep mid-Arabian Sea were used to study tidal components. Tidal ellipses for the semi-diurnal (M2, S2 and K2) and the diurnal (K1 and P1) tidal constituents have...

  6. Concerted diurnal patterns in riverine nutrient concentrations and physical conditions

    International Nuclear Information System (INIS)

    Scholefield, David; Le Goff, Thierry; Braven, Jim; Ebdon, Les; Long, Terry; Butler, Mark

    2005-01-01

    Several long-term sets of hourly nitrate concentration data were obtained through deployment of a nitrate sensor in an upper reach of the River Taw, a small moorland-fed river in the South West of the UK. Examination of the data obtained during periods of low flow and the absence of rainfall in the catchment revealed the presence of marked diurnal cycles, which were in concert and negatively correlated with diurnal cycles in water temperature. After verifying that these cycles were natural, an intensive 90-h field monitoring campaign was conducted, in which river water was sampled hourly and immediately analysed in the laboratory for molybdate-reactive phosphorus (P), nitrate, nitrite, ammonium, and pH. Coincident measurements of water temperature, river discharge and solar energy were also taken at, or close to, the site. All measurements revealed diurnal patterns and all patterns were concerted. The cycles of P, nitrate, nitrite, and discharge had two maxima and minima per 24 h, while the cycle of water temperature had one, with a maximum at 20.00 and a minimum at 08.00. The amplitudes of the cycles of P and nitrate were each about 30% of the mean values, while the amplitude of the nitrite cycle was as great as 80% of the mean value on occasions. Both biological and physical mechanisms for the cycling could operate through water temperature and/or incident radiation to account for the observed phenomenon, but there remains uncertainty of which is the more important. The observations have important implications for both the accuracy of pollution assessment in rivers and the physiological rhythms of riverine organisms

  7. Concerted diurnal patterns in riverine nutrient concentrations and physical conditions.

    Science.gov (United States)

    Scholefield, David; Le Goff, Thierry; Braven, Jim; Ebdon, Les; Long, Terry; Butler, Mark

    2005-05-15

    Several long-term sets of hourly nitrate concentration data were obtained through deployment of a nitrate sensor in an upper reach of the River Taw, a small moorland-fed river in the South West of the UK. Examination of the data obtained during periods of low flow and the absence of rainfall in the catchment revealed the presence of marked diurnal cycles, which were in concert and negatively correlated with diurnal cycles in water temperature. After verifying that these cycles were natural, an intensive 90-h field monitoring campaign was conducted, in which river water was sampled hourly and immediately analysed in the laboratory for molybdate-reactive phosphorus (P), nitrate, nitrite, ammonium, and pH. Coincident measurements of water temperature, river discharge and solar energy were also taken at, or close to, the site. All measurements revealed diurnal patterns and all patterns were concerted. The cycles of P, nitrate, nitrite, and discharge had two maxima and minima per 24 h, while the cycle of water temperature had one, with a maximum at 20.00 and a minimum at 08.00. The amplitudes of the cycles of P and nitrate were each about 30% of the mean values, while the amplitude of the nitrite cycle was as great as 80% of the mean value on occasions. Both biological and physical mechanisms for the cycling could operate through water temperature and/or incident radiation to account for the observed phenomenon, but there remains uncertainty of which is the more important. The observations have important implications for both the accuracy of pollution assessment in rivers and the physiological rhythms of riverine organisms.

  8. Seasonal, synoptic and diurnal variation of atmospheric water-isotopologues in the boundary layer of Southwestern Germany caused by plant transpiration, cold-front passages and dewfall.

    Science.gov (United States)

    Christner, Emanuel; Dyroff, Christoph; Kohler, Martin; Zahn, Andreas; Gonzales, Yenny; Schneider, Matthias

    2013-04-01

    Atmospheric water is an enormously crucial trace gas. It is responsible for ~70 % of the natural greenhouse effect (Schmidt et al., JGR, 2010) and carries huge amounts of latent heat. The isotopic composition of water vapor is an elegant tracer for a better understanding and quantification of the extremely complex and variable hydrological cycle in Earth's atmosphere (evaporation, cloud condensation, rainout, re-evaporation, snow), which in turn is a prerequisite to improve climate modeling and predictions. As H216O, H218O and HDO differ in vapor pressure and mass, isotope fractionation occurs due to condensation, evaporation and diffusion processes. In contrast to that, plants are able to transpire water with almost no isotope fractionation. For that reason the ratio of isotopologue concentrations in the boundary layer (BL) provides, compared to humidity measurements alone, independent and additional constraints for quantifying the strength of evaporation and transpiration. Furthermore the isotope ratios contain information about transport history of an air mass and microphysical processes, that is not accessible by humidity measurements. Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) a commercial Picarro Analyzer L2120-i is operated at Karlsruhe in Southwestern Germany, which is continuously measuring the isotopologues H216O, HDO and H218O of atmospheric water vapor since January 2012. A one year record of H216O, HDO and H218O shows clear seasonal, synoptic and diurnal characteristics and reveals the main driving processes affecting the isotopic composition of water vapor in the Middle European BL. Changes in continental plant transpiration and evaporation throughout the year lead to a slow seasonal HDO/H216O-variation, that cannot be explained by pure Rayleigh condensation. Furthermore, cold-front passages from NW lead to fast and pronounced depletion of the HDO/H216O-ratio within

  9. Workpiece Temperature Variations During Flat Peripheral Grinding

    Science.gov (United States)

    Smirnov, Vitalii A.; Repko, Aleksandr V.

    2018-06-01

    The paper presents the results of researches of temperature variations during flat peripheral grinding. It is shown that the temperature variations of the workpiece can reach 25...30% of the average values, which can lead to some thermal defects. A nonlinear two-dimensional thermophysical grinding model is suggested. It takes into account local changes in the cutting conditions: the fluctuation of the cut layer and the cutting force, the thermal impact of the cutting grains, and the presence of surface cavities in the intermittent wheel. For the numerical solution of the problem, the method of finite differences is adapted. Researches of the method stability and convergence are made, taking into account the specific nature of the problem. A high accuracy of the approximation of the boundary conditions and the nonlinear heat equation is provided. An experimental verification of the proposed thermophysical model was carried out with the use of installation for simultaneous measurement of the grinding force and temperature. It is shown that the discrepancy between the theoretical and experimental values of the grinding temperature does not exceed 5%. The proposed thermophysical model makes it possible to predict with high accuracy the temperature variations during grinding by the wheel periphery.

  10. Modelled and Observed Diurnal SST Signals: "SSTDV:R.EX.-IM.A.M." Project Preliminary Results

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Høyer, Jacob; LeBorgne, Pierre

    2013-01-01

    This study presents some of the preliminary results from the ESA Support To Science Element (STSE) funded project on the Diurnal Variability of the Sea Surface Temperature, regarding its Regional Extend and Implications in Atmospheric Modelling (SSTDV:R.EX.–IM.A.M.). During this phase of the proj......This study presents some of the preliminary results from the ESA Support To Science Element (STSE) funded project on the Diurnal Variability of the Sea Surface Temperature, regarding its Regional Extend and Implications in Atmospheric Modelling (SSTDV:R.EX.–IM.A.M.). During this phase...

  11. Diurnal cycle and seasonal variation of cloud cover over the Tibetan Plateau as determined from Himawari-8 new-generation geostationary satellite data.

    Science.gov (United States)

    Shang, Huazhe; Letu, Husi; Nakajima, Takashi Y; Wang, Ziming; Ma, Run; Wang, Tianxing; Lei, Yonghui; Ji, Dabin; Li, Shenshen; Shi, Jiancheng

    2018-01-18

    Analysis of cloud cover and its diurnal variation over the Tibetan Plateau (TP) is highly reliant on satellite data; however, the accuracy of cloud detection from both polar-orbiting and geostationary satellites over this area remains unclear. The new-generation geostationary Himawari-8 satellites provide high-resolution spatial and temporal information about clouds over the Tibetan Plateau. In this study, the cloud detection of MODIS and AHI is investigated and validated against CALIPSO measurements. For AHI and MODIS, the false alarm rate of AHI and MODIS in cloud identification over the TP was 7.51% and 1.94%, respectively, and the cloud hit rate was 73.55% and 80.15%, respectively. Using hourly cloud-cover data from the Himawari-8 satellites, we found that at the monthly scale, the diurnal cycle in cloud cover over the TP tends to increase throughout the day, with the minimum and maximum cloud fractions occurring at 10:00 a.m. and 18:00 p.m. local time. Due to the limited time resolution of polar-orbiting satellites, the underestimation of MODIS daytime average cloud cover is approximately 4.00% at the annual scale, with larger biases during the spring (5.40%) and winter (5.90%).

  12. Distinct patterns in the diurnal and seasonal variability in four components of soil respiration in a temperate forest under free-air CO2 enrichment

    Directory of Open Access Journals (Sweden)

    M. A. Gonzalez-Meler

    2011-10-01

    Full Text Available Soil respiration (RS is a major flux in the global carbon (C cycle. Responses of RS to changing environmental conditions may exert a strong control on the residence time of C in terrestrial ecosystems and in turn influence the atmospheric concentration of greenhouse gases. Soil respiration consists of several components oxidizing soil C from different pools, age and chemistry. The mechanisms underlying the temporal variability of RS components are poorly understood. In this study, we used the long-term whole-ecosystem 13C tracer at the Duke Forest Free Air CO2 Enrichment site to separate forest RS into its autotrophic (RR and heterotrophic components (RH. The contribution of RH to RS was further partitioned into litter decomposition (RL, and decomposition of soil organic matter (RSOM of two age classes – up to 8 yr old and SOM older than 8 yr. Soil respiration was generally dominated by RSOM during the growing season (44% of daytime RS, especially at night. The contribution of heterotrophic respiration (RSOM and RL to RS was not constant, indicating that the seasonal variability in RR alone cannot explain seasonal variation in RS. Although there was no diurnal variability in RS, there were significant compensatory differences in the contribution of individual RS components to daytime and nighttime rates. The average contribution of RSOM to RS was greater at night (54% than during the day (44%. The average contribution of RR to total RS was ~30% during the day and ~34% during the night. In contrast, RL constituted 26% of RS during the day and only 12% at night. About 95% of the decomposition of soil C older than 8 yr (Rpre-tr originated from RSOM and showed more pronounced and consistent diurnal variability than any other RS component; nighttime rates were on average 29% higher than daytime rates. In contrast, the decomposition of more recent, post-treatment C (Rpre-tr did not vary diurnally. None of the diurnal variations in components of RH

  13. The upper atmosphere of Uranus - Mean temperature and temperature variations

    Science.gov (United States)

    Dunham, E.; Elliot, J. L.; Gierasch, P. J.

    1980-01-01

    The number-density, pressure, and temperature profiles of the Uranian atmosphere in the pressure interval from 0.3 to 30 dynes/sq cm are derived from observations of the occultation of SAO 158687 by Uranus on 1977 March 10, observations made from the Kuiper Airborne Observatory and the Cape Town station of the South African Astronomical Observatory. The mean temperature is found to be about 95 K, but peak-to-peak variations from 10 K to 20 K or more exist on a scale of 150 km or 3 scale heights. The existence of a thermal inversion is established, but the inversion is much weaker than the analogous inversion on Neptune. The mean temperature can be explained by solar heating in the 3.3 micron methane band with a methane mixing ratio of 4 x 10 to the -6th combined with the cooling effect of ethane with a mixing ratio of not greater than 4 x 10 to the -6th. The temperature variations are probably due to a photochemical process that has formed a Chapman layer.

  14. Diurnal variations in the outcomes of instrumented gait and quiet standing balance assessments and their association with falls history

    International Nuclear Information System (INIS)

    Doheny, Emer P; Greene, Barry R; Foran, Timothy; Cunningham, Clodagh; Fan, Chie Wei; Kenny, Rose Anne

    2012-01-01

    One in three adults aged over 65 falls every year, resulting in enormous costs to society. Incidents of falling vary with time of day, peaking in the early morning. The aim of this study was to determine if the ability of instrumented gait and balance assessments to discriminate between participants based on their falls history varies diurnally. Body-worn sensors were used during a 3 m gait assessment and a series of quiet standing balance tests. Each assessment was performed four times during a single day under supervised conditions in the participant's homes. 40 adults aged over 60 years (19 fallers) participated in this study. A range of parameters were derived for each assessment, and the ability of each parameter to discriminate between fallers and non-fallers at each recording time was examined. The effect of falls history on single support time varied significantly with recording time, with a significantly reduced single support time observed at the first and last recording session of the day. Differences were observed between fallers and non-fallers for a range of other gait parameters; however, these effects did not vary with assessment time. The quiet standing assessments examined in this study revealed significant variations with falls history; however, the sensitivity of the examined quiet standing assessments to falls risk does not appear to be time dependent. These results indicate that, with the exception of single support time, the association of gait and quiet standing balance parameters with falls risk does not vary diurnally. (paper)

  15. The effects of the diurnal atmospheric variability on entry, descent and landing on Mars

    Directory of Open Access Journals (Sweden)

    Marčeta D.

    2014-01-01

    Full Text Available Landing on Mars is extremely challenging task due to the fact that the Martian atmosphere is the most hostile environment in the Solar system to perform the entry, descent and landing (EDL process, because it is thick enough to create substantial heating of the entry vehicle but not thick enough to reduce its velocity to the one necessary for safe landing. Beside this, the atmosphere is very dynamic mainly due to high eccentricity of the Martian orbit, obliquity of the orbital to the equatorial plane and close alignment of the winter solstice and the orbital perihelion. Although seasonal variations of atmospheric parameters are significantly larger than the diurnal, it is very important to analyze diurnal cycles as they can significantly change vertical and horizontal atmospheric profiles in very short time intervals. This can present a serious threat to missions which have very precise timings and specific requirements such as the requirement for the daytime landing to enable ground images acquisition during the descent and landing phase. A 3-degrees-of-freedom trajectory integration routine was combined with the Mars Global Reference Atmospheric Model (Mars-GRAM to identify the dependence of the EDL profiles on the diurnal cycles of atmospheric parameters throughout the Martian year. The obtained results show that the influence of the diurnal cycles is the largest at the equator and decreases relatively symmetrically towards the poles with a slightly stronger influence in the northern hemisphere. Also, there is a significant influence of the orbital position of Mars on the effect of diurnal atmospheric variations which causes that, around the orbital perihelion and winter solstice, there is some kind of inversion of the dependance of optimal entry timing on latitude of the landing site comparing to the rest of the Martian year. [Projekat Ministarstva nauke Republike Srbije, br. 176002

  16. Diurnal and seasonal occurrence of polar patches

    Directory of Open Access Journals (Sweden)

    A. S. Rodger

    1996-05-01

    Full Text Available Analysis of the diurnal and seasonal variation of polar patches, as identified in two years of HF-radar data from Halley, Antarctica during a period near sunspot maximum, shows that there is a broad maximum in occurrence centred about magnetic noon, not local noon. There are minima in occurrence near midsummer and midwinter, with maxima in occurrence between equinox and winter. There are no significant correlations between the occurrence of polar patches and the corresponding hourly averages of the solar wind and IMF parameters, except that patches usually occur when the interplanetary magnetic field has a southward component. The results can be understood in terms of UT and seasonal differences in the plasma concentration being convected from the dayside ionosphere into the polar cap. In summer and winter the electron concentrations in the polar cap are high and low, respectively, but relatively unstructured. About equinox, a tongue of enhanced ionisation is convected into the polar cap; this tongue is then structured by the effects of the interplanetary magnetic field, but these Halley data cannot be used to separate the various competing mechanisms for patch formation. The observed diurnal and seasonal variation in the occurrence of polar patches are largely consistent with predictions of Sojka et al. (1994 when their results are translated into the southern hemisphere. However, the ionospheric effects of flux transfer events are still considered essential in their formation, a feature not yet included in the Sojka et al. model.

  17. Diural TSH variations in hypothyroidism.

    Science.gov (United States)

    Weeke, J; Laurberg, P

    1976-07-01

    There is a circadian variation in serum TSH in euthyroid subjects. A similar diurnal variation has been demonstrated in patients with hypothyroidism. In the present study the 24-hour pattern of serum TSH was investigated in eight patients with hypothyroidism of varying severity and in five hypothyroid patients treated with thyroxine (T4). There was a circadian variation in serum TSH in patients with hypothyroidism of moderate degree, and in patients treated for severe hypothyrodism with thyroxine. The pattern was similar to that found in normal subjects, i.e., low TSH levels in the daytime and higher levels at night. In severely hypothyroid patients, no diurnal variation in serum TSH was observed. A practical consequence is that blood samples for TSH measurements in patients with moderately elevated TSH levels are best taken after 1100 h, when the low day levels are reached.

  18. Seasonal and diurnal variations of Hg° over New England

    Directory of Open Access Journals (Sweden)

    J. D. Hegarty

    2008-03-01

    Full Text Available Factors influencing diurnal to interannual variability in Hg° over New England were investigated using multi-year measurements conducted by AIRMAP at the Thompson Farm (TF coastal site, an inland elevated site at Pac Monadnock (PM, and two month measurements on Appledore Island (AI in the Gulf of Maine. Mixing ratios of Hg° at TF showed distinct seasonality with maxima in March and minima in October. Hg° at AI tracked the trend at TF but with higher minima, while at PM the diurnal and annual cycles were dampened. In winter, Hg° was correlated most strongly with CO and NOy, indicative of anthropogenic emissions as their primary source. Our analysis indicates that Hg° had a regional background level of ~160 fmol/mol in winter, a dry deposition velocity of ~0.20 cm s−1 with a ~16 day lifetime in the coastal boundary layer in summer. The influence of oceanic emissions on ambient Hg° levels was identified using the Hg°-CHBr3 correlation at both TF and AI. Moreover, the lower Hg° levels and steeper decreasing warm season trend at TF (0.5–0.6 fmol/mol d−1 compared to PM (0.2–0.3 fmol/mol d−1 likely reflected the impact of marine halogen chemistry. Large interannual variability in warm season Hg° levels in 2004 versus 2005/2006 may be due to the role of precipitation patterns in influencing surface evasion of Hg°. In contrast, changes in wintertime maximum levels of Hg° were small compared to drastic reductions in CO, CO2, NOy, and SO2 from 2004/2005 to 2006/2007. These trends could be explained by a homogeneous distribution of Hg° over North American in winter due to its long lifetime and/or rapid removal of reactive mercury from anthropogenic sources. We caution that during warmer winters, the Hg°-CO slope possibly reflects Hg° loss relative to changes in CO more than their emission ratio.

  19. Monitoring daily and sub-daily variations in crustal strain with seismic arrays

    Science.gov (United States)

    Mao, S.; Campillo, M.; van der Hilst, R. D.; Brenguier, F.; Hillers, G.

    2017-12-01

    We demonstrate that we can monitor deformation of the shallow crust (with hourly temporal resolution) directly with seismic waves, by measuring relative seismic wave speed changes (dv/v) due to relatively known periodical forcing (tides and changes in atmospheric temperature) at Piton de la Fournaise Volcano (PdF), La Réunion. We use ambient seismic noise recorded (for one month) at VolcArray, an experiment with three arrays of 49 vertical-component geophones deployed on a 7x7 grid of approximately 80 m spacing. Through noise-based coda wave interferometry we infer for each array the average relative changes in propagation speed of seismic waves (dv/v) as a function of time, which relate to temporal changes in medium properties within 100m depth. The variations in dv/v ( 0.05%) on time-scales longer than a day are best explained by effects of precipitation on pore pressure. In contrast, the (weaker) daily and sub-daily fluctuations of dv/v ( 0.01%) are likely to be caused by tidal and thermal effects. We verify that the inferred variations of dv/v are unrelated to spatiotemporal changes of noise wavefields. We further compare the power spectrum of dv/v with spectra of simulated tide-induced volumetric strain, temperature records, very broadband (VBB) seismograms, and borehole tilt records. In all five types of data, dominant peaks are found at around diurnal, semi-diurnal, and ter-diurnal frequencies. A comparison of phase and spectra of the data suggests that the tidal and thermal effects on dv/v are of similar magnitude but vary with frequency. Theoretical modeling of tide- and temperature-induced strain in different frequency bands agrees with the relative magnitude of the two effects on dv/v from passive monitoring.

  20. Soil moisture and temperature profile effects on microwave emission at low frequencies

    International Nuclear Information System (INIS)

    Raju, S.; Chanzy, A.; Wigneron, J.P.; Calvet, J.C.; Kerr, Y.; Laguerre, L.

    1995-01-01

    Soil moisture and temperature vertical profiles vary quickly during the day and may have a significant influence on the soil microwave emission. The objective of this work is to quantify such an influence and the consequences in soil moisture estimation from microwave radiometric information. The analysis is based on experimental data collected by the ground-based PORTOS radiometer at 1.4, 5.05, and 10.65 GHz and data simulated by a coherent model of microwave emission from layered media [Wilheit model (1978)]. In order to simulate diurnal variations of the brightness temperature (TB), the Wilheit model is coupled to a mechanistic model of heat and water flows in the soil. The Wilheit model is validated on experimental data and its performances for estimating TB are compared to those of a simpler approach based on a description of the soil media as a single layer (Fresnel model). When the depth of this single layer (hereafter referred to as the sampling depth) is determined to fit the experimental data, similar accuracy in TB estimation is found with both the Wilheit and Fresnel models. The soil microwave emission is found to be strongly affected by the diurnal variations of soil moisture and temperature profiles. Consequently, the TB sensitivity to soil moisture and temperature profiles has an influence on the estimation, from microwave observations, of the surface soil moisture in a surface layer with a fixed depth (05): the accuracy of θs retrievals and the optimal sampling depth depends both on the variation in soil moisture and temperature profile shape. (author)

  1. Influence of diurnal variation and fasting on serum iron concentrations in a community-based population.

    Science.gov (United States)

    Nguyen, Leonard T; Buse, Joshua D; Baskin, Leland; Sadrzadeh, S M Hossein; Naugler, Christopher

    2017-12-01

    Serum iron is an important clinical test to help identify cases of iron deficiency or overload. Fluctuations caused by diurnal variation and diet are thought to influence test results, which may affect clinical patient management. We examined the impact of these preanalytical factors on iron concentrations in a large community-based cohort. Serum iron concentration, blood collection time, fasting duration, patient age and sex were obtained for community-based clinical testing from the Laboratory Information Service at Calgary Laboratory Services for the period of January 2011 to December 2015. A total of 276,307 individual test results were obtained. Iron levels were relatively high over a long period from 8:00 to 15:00. Mean concentrations were highest at blood collection times of 11:00 for adult men and 12:00 for adult women and children, however iron levels peaked as late as 15:00 in teenagers. With regard to fasting, iron levels required approximately 5h post-prandial time to return to a baseline, except for children and teenage females where no significant variation was seen until after 11h fasting. After 10h fasting, iron concentrations in all patient groups gradually increased to higher levels compared to earlier fasting times. Serum iron concentrations remain reasonably stable during most daytime hours for testing purposes. In adults, blood collection after 5 to 9h fasting provides a representative estimate of a patient's iron levels. For patients who have fasted overnight, i.e. ≥12h fasting, clinicians should be aware that iron concentrations may be elevated beyond otherwise usual levels. Copyright © 2017. Published by Elsevier Inc.

  2. Land surface skin temperature climatology: benefitting from the strengths of satellite observations

    International Nuclear Information System (INIS)

    Jin Menglin; Dickinson, Robert E

    2010-01-01

    Surface skin temperature observations (T skin ), as obtained by satellite remote sensing, provide useful climatological information of high spatial resolution and global coverage that enhances the traditional ground observations of surface air temperature (T air ) and so, reveal new information about land surface characteristics. This letter analyzes nine years of moderate-resolution imaging spectroradiometer (MODIS) skin temperature observations to present monthly skin temperature diurnal, seasonal, and inter-annual variations at a 0.05 deg. latitude/longitude grid over the global land surface and combines these measurements with other MODIS-based variables in an effort to understand the physical mechanisms responsible for T skin variations. In particular, skin temperature variations are found to be closely related to vegetation cover, clouds, and water vapor, but to differ from 2 m surface T air in terms of both physical meaning and magnitude. Therefore, the two temperatures (T skin and T air ) are complementary in their contribution of valuable information to the study of climate change.

  3. Long-term monitoring of streambed sedimentation and scour in a dynamic stream based on streambed temperature time series.

    Science.gov (United States)

    Sebok, Eva; Engesgaard, Peter; Duque, Carlos

    2017-08-24

    This study presented the monitoring and quantification of streambed sedimentation and scour in a stream with dynamically changing streambed based on measured phase and amplitude of the diurnal signal of sediment temperature time series. With the applied method, changes in streambed elevation were estimated on a sub-daily scale with 2-h intervals without continuous maintenance of the measurement system, thus making both high temporal resolution and long-term monitoring of streambed elevations possible. Estimates of streambed elevation showed that during base flow conditions streambed elevation fluctuates by 2-3 cm. Following high stream stages, scouring of 2-5 cm can be observed even at areas with low stream flow and weak currents. Our results demonstrate that weather variability can induce significant changes in the stream water and consequently sediment temperatures influencing the diurnal temperature signal in such an extent that the sediment thickness between paired temperature sensors were overestimated by up to 8 cm. These observations have significant consequences on the design of vertical sensor spacing in high-flux environments and in climates with reduced diurnal variations in air temperature.

  4. Diurnal patterns of methane flux from a seasonal wetland: mechanisms and methodology

    Science.gov (United States)

    Bansal, Sheel; Tangen, Brian; Finocchiaro, Raymond

    2018-01-01

    Methane emissions from wetlands are temporally dynamic. Few chamber-based studies have explored diurnal variation in methane flux with high temporal replication. Using an automated sampling system, we measured methane flux every 2.5 to 4 h for 205 diel cycles during three growing seasons (2013–2015) from a seasonal wetland in the Prairie Pothole Region of North America. During ponded conditions, fluxes were generally positive (i.e., methanogenesis dominant, 10.1 ± 0.8 mg m−2 h−1), had extreme range of variation (from −1 to 70 mg m−2 h−1), and were highest during late day. In contrast, during dry conditions fluxes were very low and primarily negative (i.e., oxidation dominant, −0.05 ± 0.002 mg m−2 h−1), with the highest (least negative) fluxes occurring at pre-dawn. During semi-saturated conditions, methane fluxes also were very low, oscillated between positive and negative values (i.e., balanced between methanogenesis and methane oxidation), and exhibited no diel pattern. Methane flux was positively correlated with air temperature during ponded conditions (r = 0.57) and negatively during dry conditions (r = −0.42). Multiple regression analyses showed that temperature, light and water-filled pore space explained 72% of variation in methane flux. Methane fluxes are highly temporally dynamic and follow contrasting diel patterns that are dependent on dominant microbial processes influenced by saturation state.

  5. A statistical study of diurnal, seasonal and solar cycle variations of F-region and topside auroral upflows observed by EISCAT between 1984 and 1996

    Directory of Open Access Journals (Sweden)

    C. Foster

    Full Text Available A statistical analysis of F-region and topside auroral ion upflow events is presented. The study is based on observations from EISCAT Common Programmes (CP 1 and 2 made between 1984 and 1996, and Common Programme 7 observations taken between 1990 and 1995. The occurrence frequency of ion upflow events (IUEs is examined over the altitude range 200 to 500 km, using field-aligned observations from CP-1 and CP-2. The study is extended in altitude with vertical measurements from CP-7. Ion upflow events were identified by consideration of both velocity and flux, with threshold values of 100 m s–1 and 1013 m–2 s–1, respectively. The frequency of occurrence of IUEs is seen to increase with increasing altitude. Further analysis of the field-aligned observations reveals that the number and nature of ion upflow events vary diurnally and with season and solar activity. In particular, the diurnal distribution of upflows is strongly dependent on solar cycle. Furthermore, events identified by the velocity selection criterion dominate at solar minimum, whilst events identified by the upward field-aligned flux criterion dominated at solar maximum. The study also provides a quantitative estimate of the proportion of upflows that are associated with enhanced plasma temperature. Between 50 and 60% of upflows are simultaneous with enhanced ion temperature, and approximately 80% of events are associated with either increased F-region ion or electron temperatures.

    Key words. Ionosphere (auroral ionosphere; particle acceleration

  6. Assessing the Regional/Diurnal Bias between Satellite Retrievals and GEOS-5/MERRA Model Estimates of Land Surface Temperature

    Science.gov (United States)

    Scarino, B. R.; Smith, W. L., Jr.; Minnis, P.; Bedka, K. M.

    2017-12-01

    Atmospheric models rely on high-accuracy, high-resolution initial radiometric and surface conditions for better short-term meteorological forecasts, as well as improved evaluation of global climate models. Continuous remote sensing of the Earth's energy budget, as conducted by the Clouds and Earth's Radiant Energy System (CERES) project, allows for near-realtime evaluation of cloud and surface radiation properties. It is unfortunately common for there to be bias between atmospheric/surface radiation models and Earth-observations. For example, satellite-observed surface skin temperature (Ts), an important parameter for characterizing the energy exchange at the ground/water-atmosphere interface, can be biased due to atmospheric adjustment assumptions and anisotropy effects. Similarly, models are potentially biased by errors in initial conditions and regional forcing assumptions, which can be mitigated through assimilation with true measurements. As such, when frequent, broad-coverage, and accurate retrievals of satellite Ts are available, important insights into model estimates of Ts can be gained. The Satellite ClOud and Radiation Property retrieval System (SatCORPS) employs a single-channel thermal-infrared method to produce anisotropy-corrected Ts over clear-sky land and ocean surfaces from data taken by geostationary Earth orbit (GEO) satellite imagers. Regional and diurnal changes in model land surface temperature (LST) performance can be assessed owing to the somewhat continuous measurements of the LST offered by GEO satellites - measurements which are accurate to within 0.2 K. A seasonal, hourly comparison of satellite-observed LST with the NASA Goddard Earth Observing System Version 5 (GEOS-5) and the Modern-Era Retrospective Analysis for Research and Applications (MERRA) LST estimates is conducted to reveal regional and diurnal biases. This assessment is an important first step for evaluating the effectiveness of Ts assimilation, as well for determining the

  7. Diurnal variation of stratospheric and lower mesospheric HOCl, ClO and HO2 at the equator: comparison of 1-D model calculations with measurements by satellite instruments

    Directory of Open Access Journals (Sweden)

    M. Khosravi

    2013-08-01

    Full Text Available The diurnal variation of HOCl and the related species ClO, HO2 and HCl measured by satellites has been compared with the results of a one-dimensional photochemical model. The study compares the data from various limb-viewing instruments with model simulations from the middle stratosphere to the lower mesosphere. Data from three sub-millimetre instruments and two infrared spectrometers are used, namely from the Sub-Millimetre Radiometer (SMR on board Odin, the Microwave Limb Sounder (MLS on board Aura, the Superconducting Submillimeter-wave Limb-Emission Sounder (SMILES on the International Space Station, the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS on board ENVISAT, and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS on board SCISAT. Inter-comparison of the measurements from instruments on sun-synchronous satellites (SMR, MLS, MIPAS and measurements from solar occultation instruments (ACE-FTS is challenging since the measurements correspond to different solar zenith angles (or local times. However, using a model which covers all solar zenith angles and data from the SMILES instrument which measured at all local times over a period of several months provides the possibility to verify the model and to indirectly compare the diurnally variable species. The satellite data were averaged for latitudes of 20° S to 20° N for the SMILES observation period from November 2009 to April 2010 and were compared at three altitudes: 35, 45 and 55 km. Besides presenting the SMILES data, the study also shows a first comparison of the latest MLS data (version 3.3 of HOCl, ClO, and HO2 with other satellite observations, as well as a first evaluation of HO2 observations made by Odin/SMR. The MISU-1D model has been carefully initialised and run for conditions and locations of the observations. The diurnal cycle features for the species investigated here are generally well reproduced by the model. The satellite

  8. Outdoor radon variation in Romania

    International Nuclear Information System (INIS)

    Simion, Elena; Simion, Florin

    2008-01-01

    Full text: The results of a long-term survey (1992 - 2006) of the variations of outdoor radon concentrations in semi-natural location from Romania are reported in the present paper. Measurements, covering between two and four sessions of the day (morning, afternoon, evening and night), were performed on a daily bases by 37 Environmental Radioactivity Monitoring Stations from National Environmental Radioactivity Survey Network. The method used was based on indirect determination of outdoor radon from aerosol samples collected on glass micro-fibre filters by drawing the air through the filters. The sampling was performed in a fixed place at a height of 2 m above the ground surface. Total beta counting of aerosol samples collected was performed immediately and after 20 hours. Values recorded during the years of continuous measurement indicated the presence of several patterns in the long-term variation of outdoor radon concentration: diurnal, seasonal and annual variation. For diurnal variation, outdoor radon concentration shows a maximum values in the night (early hours) and minimum values by day (in the afternoon). On average, this maximum is a factor of 2 higher than the minimum. Late autumn - beginning of winter maximum and an early spring minimum are characteristic for seasonal patterns. In the long term a seasonal pattern was observed for diurnal variation, with an average diurnal maximum to minimum ratio of 1.33 in winter compared with 3.0 in the summer months. The variations of outdoor radon levels showed little correlation with the uranium concentration of the ground and were attributed to changes in soil moisture content. In dry seasons, because of the low precipitation, the soil was drying out in the summer allowing fractures to develop and radon to migrate easily through the ground. Depending on micro-climatic and geological conditions, outdoor radon average concentrations in different regions of Romania are from 1200 mBq/mc to 13065 mBq/mc. The smallest

  9. Diurnal Dynamics of Wheat Evapotranspiration Derived from Ground-Based Thermal Imagery

    Directory of Open Access Journals (Sweden)

    Hella Ellen Ahrends

    2014-10-01

    Full Text Available The latent heat flux, one of the key components of the surface energy balance, can be inferred from remotely sensed thermal infrared data. However, discrepancies between modeled and observed evapotranspiration are large. Thermal cameras might provide a suitable tool for model evaluation under variable atmospheric conditions. Here, we evaluate the results from the Penman-Monteith, surface energy balance and Bowen ratio approaches, which estimate the diurnal course of latent heat fluxes at a ripe winter wheat stand using measured and modeled temperatures. Under overcast conditions, the models perform similarly, and radiometric image temperatures are linearly correlated with the inverted aerodynamic temperature. During clear sky conditions, the temperature of the wheat ear layer could be used to predict daytime turbulent fluxes (root mean squared error and mean absolute error: 20–35 W∙m−2, r2: 0.76–0.88, whereas spatially-averaged temperatures caused underestimation of pre-noon and overestimation of afternoon fluxes. Errors are dependent on the models’ ability to simulate diurnal hysteresis effects and are largest during intermittent clouds, due to the discrepancy between the timing of image capture and the time needed for the leaf-air-temperature gradient to adapt to changes in solar radiation. During such periods, we suggest using modeled surface temperatures for temporal upscaling and the validation of image data.

  10. Seasonal variation of malaria cases in children aged less than 5 years following weather change in Zomba district Malawi

    CSIR Research Space (South Africa)

    Hajison, PL

    2017-07-01

    Full Text Available with premature deaths, infirmity from sickness and it inhibits on economic and social development [2]. World Malaria Report 2015, stipulated that, globally, malaria incidence was estimated to be at 214,000,000 infected cases and 438,000 deaths [3]. Malaria... and greater than 27 °C. In Fig. 2b, it is observed that diurnal variations in the tem- perature affect malaria cases negatively (r  =  −1295.57 95% CI −1683.38 to −907.75 p value  <0.001). Large diurnal temperatures lead to lower infections. This sug- gests...

  11. Annual and diurnal variations of gaseous and particulate pollutants in 31 provincial capital cities based on in situ air quality monitoring data from China National Environmental Monitoring Center.

    Science.gov (United States)

    Zhao, Suping; Yu, Ye; Yin, Daiying; He, Jianjun; Liu, Na; Qu, Jianjun; Xiao, Jianhua

    2016-01-01

    Long-term air quality data with high temporal and spatial resolutions are needed to understand some important processes affecting the air quality and corresponding environmental and health effects. The annual and diurnal variations of each criteria pollutant including PM2.5 and PM10 (particulate matter with aerodynamic diameter less than 2.5 μm and 10 μm, respectively), CO (carbon monoxide), NO2 (nitrogen dioxide), SO2 (sulfur dioxide) and O3 (ozone) in 31 provincial capital cities between April 2014 and March 2015 were investigated by cluster analysis to evaluate current air pollution situations in China, and the cities were classified as severely, moderately, and slightly polluted cities according to the variations. The concentrations of air pollutants in winter months were significantly higher than those in other months with the exception of O3, and the cities with the highest CO and SO2 concentrations were located in northern China. The annual variation of PM2.5 concentrations in northern cities was bimodal with comparable peaks in October 2014 and January 2015, while that in southern China was unobvious with slightly high PM2.5 concentrations in winter months. The concentrations of particulate matter and trace gases from primary emissions (SO2 and CO) and NO2 were low in the afternoon (~16:00), while diurnal variation of O3 concentrations was opposite to that of other pollutants with the highest values in the afternoon. The most polluted cities were mainly located in North China Plain, while slightly polluted cities mostly focus on southern China and the cities with high altitude such as Lasa. This study provides a basis for the formulation of future urban air pollution control measures in China. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Empirical analysis of skin friction under variations of temperature

    International Nuclear Information System (INIS)

    Parra Alvarez, A. R. de la; Groot Viana, M. de

    2014-01-01

    In soil geotechnical characterization, strength parameters, cohesion (c) and internal friction angle (Φ) has been traditional measured without taking into account temperature, been a very important issue in energy geostructures. The present document analyzes the variation of these parameters in soil-concrete interface at different temperatures. A traditional shear strength case with a forced plane of failure was used. Several tests were carried out to determine the variation of skin friction in granular and cohesive oils with temperature. (Author)

  13. Tidal and near-inertial peak variations around the diurnal critical latitude

    Science.gov (United States)

    van Haren, Hans

    2005-12-01

    Spectra from historic long-term open-ocean moored current meter data between latitudes 0° shift of the peak frequency to 0.97 +/- 0.01f, or a poleward spreading of enhanced energy. This contrasts with more common blue-shift. The enhancement may be the result of sub-harmonic instability, as supported by sparse significant bicoherence at half-D2, although i) systematic enhancement of diurnal tidal frequencies, notably M1, was not observed, ii) the latitudes of low D2-energy and high f-energy do not coincide. This may be due to a mix of coupled and independent waves, whilst the poleward trapping of sub-f energy suggests non-traditional effects.

  14. Does a weekend effect in diurnal temperature range exist in the eastern and central Tibetan Plateau?

    International Nuclear Information System (INIS)

    You Qinglong; Kang Shichang; Xu Yanwei; Huang Jie; Fluegel, Wolfgang-Albert; Sanchez-Lorenzo, Arturo; Yan Yuping

    2009-01-01

    The 'weekend effect' method (defined here as the average for Saturday through Monday minus the average for Wednesday through Friday) has been used to identify fingerprints of anthropogenic emissions. Based on daily maximum and minimum temperature series from the China Meteorological Administration homogenized dataset, the weekend effect in diurnal temperature range (DTR) at 71 stations with elevations above 2000 m asl in the eastern and central Tibetan Plateau (TP) during 1961-2004 is examined, and principal component analysis (PCA) is performed to cluster series into four subregions with similar weekend effect variability. The DTR demonstrates a much stronger negative weekend effect in autumn and shows larger positive values in winter, which provides a strong evidence of anthropogenic activity in this region, especially in the central TP. Analysis by topographic type and degree of urbanization shows a clear weekly cycle which cannot be explained by a microclimate effect. We hypothesize that the interaction with anthropogenic aerosols from local emissions and transported by atmospheric circulation may account for the weekly cycle in the TP. More caution should be paid to the driving mechanism of the weekend effect in the most remote and clear regions in the world.

  15. Effects of diurnal temperature range on mortality in Hefei city, China

    Science.gov (United States)

    Tang, Jing; Xiao, Chang-chun; Li, Yu-rong; Zhang, Jun-qing; Zhai, Hao-yuan; Geng, Xi-ya; Ding, Rui; Zhai, Jin-xia

    2017-12-01

    Although several studies indicated an association between diurnal temperature range (DTR) and mortality, the results about modifiers are inconsistent, and few studies were conducted in developing inland country. This study aims to evaluate the effects of DTR on cause-specific mortality and whether season, gender, or age might modify any association in Hefei city, China, during 2007-2016. Quasi-Poisson generalized linear regression models combined with a distributed lag non-linear model (DLNM) were applied to evaluate the relationships between DTR and non-accidental, cardiovascular, and respiratory mortality. We observed a J-shaped relationship between DTR and cause-specific mortality. With a DTR of 8.3 °C as the reference, the cumulative effects of extremely high DTR were significantly higher for all types of mortality than effects of lower or moderate DTR in full year. When stratified by season, extremely high DTR in spring had a greater impact on all cause-specific mortality than other three seasons. Male and the elderly (≥ 65 years) were consistently more susceptible to extremely high DTR effect than female and the youth (< 65 years) for non-accidental and cardiovascular mortality. To the contrary, female and the youth were more susceptible to extremely high DTR effect than male and the elderly for respiratory morality. The study suggests that extremely high DTR is a potential trigger for non-accidental mortality in Hefei city, China. Our findings also highlight the importance of protecting susceptible groups from extremely high DTR especially in the spring.

  16. Decadal trends in the diurnal variation of galactic cosmic rays observed using neutron monitor data

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Simon [Reading Univ. (United Kingdom). Dept. of Meteorology; Univ. College London, Dorking (United Kingdom). Mullard Space Science Lab.; Owens, Mathew; Lockwood, Mike [Reading Univ. (United Kingdom). Dept. of Meteorology; Owen, Chris [Univ. College London, Dorking (United Kingdom). Mullard Space Science Lab.

    2017-10-01

    The diurnal variation (DV) in galactic cosmic ray (GCR) flux is a widely observed phenomenon in neutron monitor data. The background variation considered primarily in this study is due to the balance between the convection of energetic particles away from the Sun and the inward diffusion of energetic particles along magnetic field lines. However, there are also times of enhanced DV following geomagnetic disturbances caused by coronal mass ejections or corotating interaction regions. In this study we investigate changes in the DV over four solar cycles using ground-based neutron monitors at different magnetic latitudes and longitudes at Earth. We divide all of the hourly neutron monitor data into magnetic polarity cycles to investigate cycle-to-cycle variations in the phase and amplitude of the DV. The results show, in general, a similarity between each of the A<0 cycles and A>0 cycles, but with a phase change between the two. To investigate this further, we split the neutron monitor data by solar magnetic polarity between times when the dominant polarity was either directed outward (positive) or inward (negative) at the northern solar pole. We find that the maxima and minima of the DV changes by, typically, 1-2 h between the two polarity states for all non-polar neutron monitors. This difference between cycles becomes even larger in amplitude and phase with the removal of periods with enhanced DV caused by solar wind transients. The time difference between polarity cycles is found to vary in a 22-year cycle for both the maximum and minimum times of the DV. The times of the maximum and minimum in the DV do not always vary in the same manner between A>0 and A<0 polarity cycles, suggesting a slight change in the anisotropy vector of GCRs arriving at Earth between polarity cycles. Polar neutron monitors show differences in phase between polarity cycles which have asymptotic directions at mid-to-high latitudes. All neutron monitors show changes in the amplitude of the

  17. The stably stratified internal boundary layer for steady and diurnally varying offshore flow

    Science.gov (United States)

    Garratt, J. R.

    1987-03-01

    A two-dimensional numerical mesoscale model is used to investigate the internal structure and growth of the stably stratified internal boundary layer (IBL) beneath warm, continental air flowing over a cooler sea. Two situations are studied — steady-state and diurnally varying offshore flow. In the steady-state case, vertical profiles of mean quantities and eddy diffusion coefficients ( K) within the IBL show small, but significant, changes with increasing distance from the coast. The top of the IBL is well defined, with large vertical gradients within the layer and a maximum in the coast-normal wind component near the top. Well away from the coast, turbulence, identified by non-zero K, decreases to insignificant levels near the top of the IBL; the IBL itself is characterised by a critical value of the layer-flux Richardson number equal to 0.18. The overall behaviour of the mean profiles is similar to that found in the horizontally homogeneous stable boundary layer over land. A simple physical model is used to relate the depth of the layer h to several relevant physical parameters viz., x, the distance from the coast and U, the large-scale wind (both normal to the coastline) and gδθ/θ, Δθ being the temperature difference between continental mixed-layer air and sea surface, θ is the mean potential temperature and g is the acceleration due to gravity. Excellent agreement with the numerical results is found, with h = 0.014 x 1/2 U ( gδθ/θ)-1/2. In the diurnally varying case, the mean profiles within the IBL show only small differences from the steady-state case, although diurnal variations, particularly in the wind maximum, are evident within a few hundred kilometres of the coast. A mesoscale circulation normal to the coast, and superimposed upon the mean offshore flow, develops seawards of the coastline with maximum vertical velocities about sunset, of depth about 2 km and horizontal scale ≈ 500 km. The circulation is related to the advection, and

  18. Long-term variations of fumarole temperatures on Vulcano Island (Italy

    Directory of Open Access Journals (Sweden)

    Iole Serena Diliberto

    2011-06-01

    Full Text Available Fumarole temperatures are the ultimate results of many processes that are encountered by deep fluids during their passage to the surface. Here, the time variations of high-temperature fumaroles acquired by continuous monitoring are presented, to show the effects of the forces that act on the system. Data acquired by continuous monitoring of fumaroles and the time relationships with the different parameters related to the activity of the volcanic system are discussed. From 1998 to 2010, the temperature and compositional changes of fumarolic gases were monitored at the same time as variations in the number of volcano-seismic events, which indicate frequent variations of energy release (heat and mass flow, and seismic strain release. Geochemical modeling applied to the volcanic system of Vulcano Island suggests that the overall expansion of magmatic gas through the fractured system is an almost iso-enthalpic process at depth, which shifts to an adiabatic process at shallow depth, where the rock permeability increases. Thus, the time variations of the fumarole temperatures reflect various physical variations of the system that can either occur at depth or close to the surface. The temperature monitoring performed in the fumarolic area of La Fossa Cone showed short-term effects related to rain events, and negligible effects related to other external agents (ambient temperature and atmospheric pressure variations. At the same time, the long-term monitoring highlighted some mean-term and long-term variations. These last are the main characters observed in the time-series, and they both appear to be related to endogenous forces that perturb the equilibrium of this complex geochemical system.

  19. Deregulated power prices: comparison of diurnal patterns

    International Nuclear Information System (INIS)

    Ying Li; Flynn, P.C.

    2004-01-01

    We examine electrical power price, and in particular its daily and average weekday vs. weekend pattern of change, for 14 deregulated markets. Power price in deregulated markets shows fundamentally different patterns. North American markets show a monotonic diurnal weekday price pattern, while all other markets studied show more than one price peak. Deregulated power markets differ in maximum vs. minimum daily average price and in average weekday to weekend price, in turn creating a different incentive for a consumer to time shift power consuming activities. Markets differ in the extent to which a small fraction of the days shapes the average diurnal pattern and value of price. Deregulated markets show a wide variation in the correlation between load and price. Some deregulated markets, most notably Britain and Spain, show patterns that are predictable and consistent, and hence that can encourage a customer to shape consumption behaviors. Other markets, for example South Australia, have patterns that are inconsistent and irregular, and hence are hard for a customer to interpret; a customer in such a market will have a higher incentive to escape risk through hedging mechanisms. (Author)

  20. Deregulated power prices: comparison of diurnal patterns

    International Nuclear Information System (INIS)

    Li Ying; Flynn, Peter C.

    2004-01-01

    We examine electrical power price, and in particular its daily and average weekday vs. weekend pattern of change, for 14 deregulated markets. Power price in deregulated markets shows fundamentally different patterns. North American markets show a monotonic diurnal weekday price pattern, while all other markets studied show more than one price peak. Deregulated power markets differ in maximum vs. minimum daily average price and in average weekday to weekend price, in turn creating a different incentive for a consumer to time shift power consuming activities. Markets differ in the extent to which a small fraction of the days shapes the average diurnal pattern and value of price. Deregulated markets show a wide variation in the correlation between load and price. Some deregulated markets, most notably Britain and Spain, show patterns that are predictable and consistent, and hence that can encourage a customer to shape consumption behaviors. Other markets, for example South Australia, have patterns that are inconsistent and irregular, and hence are hard for a customer to interpret; a customer in such a market will have a higher incentive to escape risk through hedging mechanisms

  1. Genetic architecture of local adaptation in lunar and diurnal emergence times of the marine midge Clunio marinus (Chironomidae, Diptera).

    Science.gov (United States)

    Kaiser, Tobias S; Heckel, David G

    2012-01-01

    Circadian rhythms pre-adapt the physiology of most organisms to predictable daily changes in the environment. Some marine organisms also show endogenous circalunar rhythms. The genetic basis of the circalunar clock and its interaction with the circadian clock is unknown. Both clocks can be studied in the marine midge Clunio marinus (Chironomidae, Diptera), as different populations have different local adaptations in their lunar and diurnal rhythms of adult emergence, which can be analyzed by crossing experiments. We investigated the genetic basis of population variation in clock properties by constructing the first genetic linkage map for this species, and performing quantitative trait locus (QTL) analysis on variation in both lunar and diurnal timing. The genome has a genetic length of 167-193 centimorgans based on a linkage map using 344 markers, and a physical size of 95-140 megabases estimated by flow cytometry. Mapping the sex determining locus shows that females are the heterogametic sex, unlike most other Chironomidae. We identified two QTL each for lunar emergence time and diurnal emergence time. The distribution of QTL confirms a previously hypothesized genetic basis to a correlation of lunar and diurnal emergence times in natural populations. Mapping of clock genes and light receptors identified ciliary opsin 2 (cOps2) as a candidate to be involved in both lunar and diurnal timing; cryptochrome 1 (cry1) as a candidate gene for lunar timing; and two timeless (tim2, tim3) genes as candidate genes for diurnal timing. This QTL analysis of lunar rhythmicity, the first in any species, provides a unique entree into the molecular analysis of the lunar clock.

  2. Solar diurnal anisotropy measured using muons in GRAPES-3 ...

    Indian Academy of Sciences (India)

    The mean energy of muons at sea level is ∼4 GeV with a rel- .... of decays of mesons and muons work against each other resulting in temperature coef- ..... The mean muon rate of 16 modules measured every 15 min for one week interval from .... 4. 8. 12. 16. 20. 24. Hours. Figure 12. Solar diurnal anisotropy measured in ...

  3. Maximum weight of greenhouse effect to global temperature variation

    International Nuclear Information System (INIS)

    Sun, Xian; Jiang, Chuangye

    2007-01-01

    Full text: The global average temperature has risen by 0.74 0 C since the late 19th century. Many studies have concluded that the observed warming in the last 50 years may be attributed to increasing concentrations of anthropogenic greenhouse gases. But some scientists have a different point of view. Global climate change is affected not only by anthropogenic activities, but also constraints in climate system natural factors. How much is the influencing weight of C02's greenhouse effects to the global temperature variation? Does global climate continue warming or decreasing in the next 20 years? They are two hot spots in global climate change. The multi-timescales analysis method - Empirical mode decomposition (EMD) is used to diagnose global annual mean air temperature dataset for land surface provided by IPCC and atmospheric content of C02 provided by the Carbon Dioxide Information Analysis Center (CDIAC) during 1881-2002. The results show that: Global temperature variation contains quasi-periodic oscillations on four timescales (3 yr, 6 yr, 20 yr and 60 yr, respectively) and a century-scale warming trend. The variance contribution of IMF1-IMF4 and trend is 17.55%, 11.34%, 6.77%, 24.15% and 40.19%, respectively. The trend and quasi-60 yr oscillation of temperature variation are the most prominent; C02's greenhouse effect on global temperature variation is mainly century-scale trend. The contribution of C02 concentration to global temperature variability is not more than 40.19%, whereas 59.81% contribution to global temperature variation is non-greenhouse effect. Therefore, it is necessary to re-study the dominant factors that induce the global climate change; It has been noticed that on the periods of 20 yr and 60 yr oscillation, the global temperature is beginning to decreased in the next 20 years. If the present C02 concentration is maintained, the greenhouse effect will be too small to countercheck the natural variation in global climate cooling in the next 20

  4. Assessment of broiler surface temperature variation when exposed to different air temperatures

    Directory of Open Access Journals (Sweden)

    GR Nascimento

    2011-12-01

    Full Text Available This study was conducted to determine the effect of the air temperature variation on the mean surface temperature (MST of 7- to 35-day-old broiler chickens using infrared thermometry to estimate MST, and to study surface temperature variation of the wings, head, legs, back and comb as affected by air temperature and broiler age. One hundred Cobb® broilers were used in the experiment. Starting on day 7, 10 birds were weekly selected at random, housed in an environmental chamber and reared under three distinct temperatures (18, 25 and 32 ºC to record their thermal profile using an infrared thermal camera. The recorded images were processed to estimate MST by selecting the whole area of the bird within the picture and comparing it with the values obtained using selected equations in literature, and to record the surface temperatures of the body parts. The MST estimated by infrared images were not statistically different (p > 0.05 from the values obtained by the equations. MST values significantly increased (p < 0.05 when the air temperature increased, but were not affected by bird age. However, age influenced the difference between MST and air temperature, which was highest on day 14. The technique of infrared thermal image analysis was useful to estimate the mean surface temperature of broiler chickens.

  5. Segmental Quantitative MR Imaging analysis of diurnal variation of water content in the lumbar intervertebral discs

    International Nuclear Information System (INIS)

    Zhu, Ting Ting; Ai, Tao; Zhang, Wei; Li, Tao; Li, Xiao Ming

    2015-01-01

    To investigate the changes in water content in the lumbar intervertebral discs by quantitative T2 MR imaging in the morning after bed rest and evening after a diurnal load. Twenty healthy volunteers were separately examined in the morning after bed rest and in the evening after finishing daily work. T2-mapping images were obtained and analyzed. An equally-sized rectangular region of interest (ROI) was manually placed in both, the anterior and the posterior annulus fibrosus (AF), in the outermost 20% of the disc. Three ROIs were placed in the space defined as the nucleus pulposus (NP). Repeated-measures analysis of variance and paired 2-tailed t tests were used for statistical analysis, with p < 0.05 as significantly different. T2 values significantly decreased from morning to evening, in the NP (anterior NP = -13.9 ms; central NP = -17.0 ms; posterior NP = -13.3 ms; all p < 0.001). Meanwhile T2 values significantly increased in the anterior AF (+2.9 ms; p = 0.025) and the posterior AF (+5.9 ms; p < 0.001). T2 values in the posterior AF showed the largest degree of variation among the 5 ROIs, but there was no statistical significance (p = 0.414). Discs with initially low T2 values in the center NP showed a smaller degree of variation in the anterior NP and in the central NP, than in discs with initially high T2 values in the center NP (10.0% vs. 16.1%, p = 0.037; 6.4% vs. 16.1%, p = 0.006, respectively). Segmental quantitative T2 MRI provides valuable insights into physiological aspects of normal discs.

  6. Temperature variation of higher-order elastic constants of MgO

    Indian Academy of Sciences (India)

    series of strains using Taylor's series expansion. The coefficients of quadratic, cu- ... as thermal expansion, specific heat at higher temperature, temperature variation of ultrasonic velocity and attenuation, .... such studies have an impression that linear variation of elastic constant is true. The experimental study shows that ...

  7. Anomalous variations of NmF2 over the Argentine Islands: a statistical study

    Directory of Open Access Journals (Sweden)

    A. V. Pavlov

    2009-04-01

    Full Text Available We present a statistical study of variations in the F2-layer peak electron density, NmF2, and altitude, hmF2, over the Argentine Islands ionosonde. The critical frequencies, foF2, and, foE, of the F2 and E-layers, and the propagation factor, M(3000F2, measured by the ionosonde during the 1957–1959 and 1962–1995 time periods were used in the statistical analysis to determine the values of NmF2 and hmF2. The probabilities to observe maximum and minimum values of NmF2 and hmF2 in a diurnal variation of the electron density are calculated. Our study shows that the main part of the maximum diurnal values of NmF2 is observed in a time sector close to midnight in November, December, January, and February exhibiting the anomalous diurnal variations of NmF2. Another anomalous feature of the diurnal variations of NmF2 exhibited during November, December, and January when the minimum diurnal value of NmF2 is mainly located close to the noon sector. These anomalous diurnal variations of NmF2 are found to be during both geomagnetically quiet and disturbed conditions. Anomalous features are not found in the diurnal variations of hmF2. The statistical study of the NmF2 winter anomaly phenomena over the Argentine Islands ionosonde was carried out. The variations in a maximum daytime value, R, of a ratio of a geomagnetically quiet daytime winter NmF2 to a geomagnetically quiet daytime summer NmF2 taken at a given UT and for approximately the same level of solar activity were studied. The conditional probability of the occurrence of R in an interval of R, the most frequent value of R, the mean expected value of R, and the conditional probability to observe the F2-region winter anomaly during a daytime period were calculated for low, moderate, and high solar activity. The calculations show that the mean expected value of R and the occurrence frequency of the F2-region winter anomaly increase with increasing solar activity.

  8. Analysis on diurnal global geomagnetic variability under quiet-time conditions

    OpenAIRE

    Klausner, Virginia; Domingues, Margarete Oliveira; Mendes Jr, Odim; Papa, Andres Reinaldo Rodriguez; Frick, Peter

    2012-01-01

    This paper describes a methodology (or treatment) to establish a representative signal of the global magnetic diurnal variation based on a spatial distribution in both longitude and latitude of a set of magnetic stations as well as their magnetic behavior on a time basis. For that, we apply the Principal Component Analysis (PCA) technique implemented using gapped wavelet transform and wavelet correlation. The continuous gapped wavelet and the wavelet correlation techniques were used to descri...

  9. Diurnal blood pressure changes.

    Science.gov (United States)

    Asayama, Kei; Satoh, Michihiro; Kikuya, Masahiro

    2018-05-23

    The definition of diurnal blood pressure changes varies widely, which can be confusing. Short-term blood pressure variability during a 24-h period and the dipping status of diurnal blood pressure can be captured by ambulatory blood pressure monitoring, and these metrics are reported to have prognostic significance for cardiovascular complications. Morning blood pressure surge also indicates this risk, but its effect may be limited to populations with specific conditions. Meanwhile, the combined use of conventional office blood pressure and out-of-office blood pressure allows us to identify people with white-coat and masked hypertension. Current home devices can measure nocturnal blood pressure during sleep more conveniently than ambulatory monitoring; however, we should pay attention to blood pressure measurement conditions regardless of whether they are in a home, ambulatory, or office setting. The relatively poor reproducibility of diurnal blood pressure changes, including the nocturnal fall of blood pressure, is another underestimated issue to be addressed. Although information on diurnal blood pressure changes is expected to be used more effectively in the future, we should also keep in mind that blood pressure levels have remained central to the primary and secondary prevention of blood pressure-related cardiovascular diseases in clinical practice.

  10. Differences of diurnal variations of some aliphatic and polycyclic aromatic hydrocarbons concentrations in aerosol of the urban area of Madrid

    International Nuclear Information System (INIS)

    Perez Garcia, M.M.; Perez Pastor, R.M.; Bea, J.F.; Campos, A.; Gonzalez Diaz, D.

    1990-01-01

    A study on daily concentration changes of polycyclic aromatic and aliphatic hydrocarbons (PAH's and AH's), was carried out in aerosols sampled in the Ciudad Universitaria of Madrid. Samples were taken at morning and night during February and June, for short sampling times, on glass fiber filters in Hi-Vol samplers, and then extracted ultrasonically with cyclohexane. Analysis were performed by HRGC with fused-silica capillary columns. The variable traffic rate, and the strong influence during winter periods of domestic heating are characteristic of this place. The aim of this work was to evaluate diurnal and seasonal variations of selected AH and PAH in the urban area of Madrid, by using descriptive parameters, such as total concentrations of AH and PAH, characteristic profiles and predominance carbon index. From these results, it has been tried to identify emission sources of the studied hydrocarbons. (Author). 10 refs

  11. Exhaustion measured by the SF-36 vitality scale is associated with a flattened diurnal cortisol profile

    DEFF Research Database (Denmark)

    Lindeberg, Sara I; Eek, Frida; Lindbladh, Eva

    2008-01-01

    cortisol profile. The study population included 78 working individuals. The study group was dichotomised into exhausted and non-exhausted groups by means of the SF-36 vitality scale. Salivary cortisol was measured at three times during 1 workday: at awakening, 30min after awakening, and in the evening....... The results showed that diurnal cortisol variation was significantly reduced in exhausted individuals. The difference in cortisol variation was mainly due to lowered morning cortisol in the exhausted group. Differences in cortisol levels at each sampling time or in mean diurnal output of cortisol were...... not statistically significant. The results would support the notion that exhaustion is associated with HPA axis hypoactivity as assessed by salivary cortisol. Furthermore, the SF-36 vitality provides a measure of exhaustion that may be useful in epidemiological studies in order to explore long-term health effects...

  12. Diurnal variation in the behaviour of the Pink-footed Goose (Anser brachyrhynchus) during the spring stopover in Trøndelag, Norway

    DEFF Research Database (Denmark)

    Chudzinska, Magda Ewa; Madsen, Jesper; Nabe-Nielsen, Jacob

    2013-01-01

    behaviour at a staging site and assess the extent to which behavioural patterns are attributable to physiological factors (digestibility of the food) and environmental conditions (flock size, type and frequency of disturbance and distance to roost). We found that feeding activity peaked at mid-day, whereas...... different energetic and nutrient demands when at spring staging sites. Seasonal changes in habitat availability as well as density dependence may also affect the birds’ behavioural patterns. A sporadic, unpredictable disturbance reduced the proportion of geese feeding to a greater extent than a predictable...... the birds were most alert in the morning and afternoon. The behaviour of Pink-footed Goose also varied with habitat type, disturbance level and distance to roost. The diurnal variation in feeding activity differed from behaviour reported for geese on the wintering grounds, indicating that the birds have...

  13. [Effects of silicon supply on diurnal variations of physiological properties at rice heading stage under elevated UV-B radiation].

    Science.gov (United States)

    Wu, Lei; Lou, Yun-sheng; Meng, Yan; Wang, Wei-qing; Cui, He-yang

    2015-01-01

    A pot experiment was conducted to investigate the effects of silicon (Si) supply on diurnal variations of photosynthesis and transpiration-related physiological parameters at rice heading stage under elevated UV-B radiation. The experiment was designed with two UV-B radiation levels, i.e. ambient UV-B. (ambient, A) and elevated UV-B (elevated by 20%, E), and four Si supply levels, i.e. Sio (control, 0 kg SiO2 . hm-2), Si, (sodium silicate, 100 kg SiO2 . hm-2), Si2 (sodium silicate, 200 kg SiO2 . hm2), Si3 (slag fertilizer, 200 kg SiO2 . hm-2). The results showed that, compared with ambient UV-B radiation, elevated UV-B radiation decreased the net photosynthesis rate (Pn) , intercellular CO2 concentration (Ci), transpiration rate (Tr), stomatal conductivity (gs) and water use efficiency (WUE) by 11.3%, 5.5%, 10.4%, 20.3% and 6.3%, respectively, in the treatment without Si supply (Si, level), and decreased the above parameters by 3.8%-5.5%, 0.7%-4.8%, 4.0%-8.7%, 7.4%-20.2% and 0.7%-5.9% in the treatments with Si supply (Si1, Si2 and Si3 levels) , respectively. Namely, elevated UV-B radiation decreased the photosynthesis and transpiration-related physiological parameters, but silicon supply could obviously mitigate the depressive effects of elevated UV-B radiation. Under elevated UV-B radiation, compared with control (Si0 level), silicon supply increased Pn, Ci, gs and WUE by 16.9%-28.0%, 3.5%-14.3%, 16.8% - 38.7% and 29.0% - 51.2%, respectively, but decreased Tr by 1.9% - 10.8% in the treatments with Si supply (Si1 , Si2 and Si3 levels). That is, silicon supply could mitigate the depressive effects of elevated UV-B radiation through significantly increasingnP., CigsgK and WUE, but decreasing T,. However, the difference existed in ameliorating the depressive effects of elevated UV-B radiation on diurnal variations of physiological parameters among the treatments of silicon supply, with the sequence of Si3>Si2>1i >Si0. This study suggested that fertilizing slag was

  14. Estimated effects of temperature on secondary organic aerosol concentrations.

    Science.gov (United States)

    Sheehan, P E; Bowman, F M

    2001-06-01

    The temperature-dependence of secondary organic aerosol (SOA) concentrations is explored using an absorptive-partitioning model under a variety of simplified atmospheric conditions. Experimentally determined partitioning parameters for high yield aromatics are used. Variation of vapor pressures with temperature is assumed to be the main source of temperature effects. Known semivolatile products are used to define a modeling range of vaporization enthalpy of 10-25 kcal/mol-1. The effect of diurnal temperature variations on model predictions for various assumed vaporization enthalpies, precursor emission rates, and primary organic concentrations is explored. Results show that temperature is likely to have a significant influence on SOA partitioning and resulting SOA concentrations. A 10 degrees C decrease in temperature is estimated to increase SOA yields by 20-150%, depending on the assumed vaporization enthalpy. In model simulations, high daytime temperatures tend to reduce SOA concentrations by 16-24%, while cooler nighttime temperatures lead to a 22-34% increase, compared to constant temperature conditions. Results suggest that currently available constant temperature partitioning coefficients do not adequately represent atmospheric SOA partitioning behavior. Air quality models neglecting the temperature dependence of partitioning are expected to underpredict peak SOA concentrations as well as mistime their occurrence.

  15. Mechanisms of diurnal precipitation over the US Great Plains: a cloud resolving model perspective

    Science.gov (United States)

    Lee, Myong-In; Choi, Ildae; Tao, Wei-Kuo; Schubert, Siegfried D.; Kang, In-Sik

    2010-02-01

    The mechanisms of summertime diurnal precipitation in the US Great Plains were examined with the two-dimensional (2D) Goddard Cumulus Ensemble (GCE) cloud-resolving model (CRM). The model was constrained by the observed large-scale background state and surface flux derived from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program’s Intensive Observing Period (IOP) data at the Southern Great Plains (SGP). The model, when continuously-forced by realistic surface flux and large-scale advection, simulates reasonably well the temporal evolution of the observed rainfall episodes, particularly for the strongly forced precipitation events. However, the model exhibits a deficiency for the weakly forced events driven by diurnal convection. Additional tests were run with the GCE model in order to discriminate between the mechanisms that determine daytime and nighttime convection. In these tests, the model was constrained with the same repeating diurnal variation in the large-scale advection and/or surface flux. The results indicate that it is primarily the surface heat and moisture flux that is responsible for the development of deep convection in the afternoon, whereas the large-scale upward motion and associated moisture advection play an important role in preconditioning nocturnal convection. In the nighttime, high clouds are continuously built up through their interaction and feedback with long-wave radiation, eventually initiating deep convection from the boundary layer. Without these upper-level destabilization processes, the model tends to produce only daytime convection in response to boundary layer heating. This study suggests that the correct simulation of the diurnal variation in precipitation requires that the free-atmospheric destabilization mechanisms resolved in the CRM simulation must be adequately parameterized in current general circulation models (GCMs) many of which are overly sensitive to the parameterized boundary layer

  16. Diurnal phase of late-night against late-afternoon of stratiform and convective precipitation in summer southern contiguous China

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Rucong [Chinese Academy of Sciences, LASG, Institute of Atmospheric Physics, Beijing (China); China Meteorological Administration, LaSW, Chinese Academy of Meteorological Sciences, Beijing (China); Yuan, Weihua [Chinese Academy of Sciences, LASG, Institute of Atmospheric Physics, Beijing (China); Graduate School of the Chinese Academy of Sciences, Beijing (China); Li, Jian [China Meteorological Administration, LaSW, Chinese Academy of Meteorological Sciences, Beijing (China); Fu, Yunfei [Chinese Academy of Sciences, LASG, Institute of Atmospheric Physics, Beijing (China); University of Science and Technology of China, Laboratory of Satellite Remote Sensing and Climate Environment, Hefei, Anhui (China)

    2010-09-15

    Using the tropical rainfall measuring mission (TRMM) Precipitation Radar (PR) observations combined with the surface rain gauge data during 1998-2006, the robust diurnal features of summer stratiform and convective precipitation over the southern contiguous China are revealed by exploring the diurnal variations of rain rate and precipitation profile. The precipitation over the southern contiguous China exhibits two distinguishing diurnal phases: late-night (2200-0600 LST) and late-afternoon (1400-2200 LST), dependent on the location, precipitation type and duration time. Generally, the maximum rain rate and the highest profile of stratiform precipitation occur in the late-afternoon (late-night) over the southeastern (southwestern) China, while most of the stratiform short-duration rain rate tends to present late-afternoon peaks over the southern China. For convective precipitation, the maximum rain rate and the highest profile occur in the late-afternoon over most of the southern contiguous China, while the convective long-duration rain rate exhibits late-night peaks over the southwestern China. Without regional dependence, the convective precipitation exhibits much larger amplitude of diurnal variations in both near surface rain rate and vertical extension compared with stratiform precipitation and the convective rain top rises most rapidly between noon and afternoon. However, there are two distinctive sub-regions. The diurnal phases of precipitation there are very weakly dependent on precipitation type and duration time. Over the eastern periphery of the Tibetan Plateau, the maximum rain rate and the highest profile of either convective or stratiform precipitation occur in the late-night. Over the southeastern coastal regions, both the near surface rain rate and rain top of convective and stratiform precipitation peak in the late-afternoon. (orig.)

  17. Beam-based analysis of day-night performance variations at the SLC linac

    International Nuclear Information System (INIS)

    Decker, F.J.; Akre, R.; Assmann, R.; Bane, K.L.F.; Minty, M.G.; Phinney, N.; Spence, W.L.

    1998-07-01

    Diurnal temperature variations in the linac gallery of the Stanford Linear Collider (SLC) can affect the amplitude and phase of the rf used to accelerate the beam. The SLC employs many techniques for stabilization and compensation of these effects, but residual uncorrected changes still affect the quality of the delivered beam. This paper presents methods developed to monitor and investigate these errors through the beam response. Variations resulting from errors in the rf amplitude or phase can be distinguished by studying six different beam observables: betatron phase advance, oscillation amplitude growth, rms jitter along the linac, measurements of the beam phase with respect to the rf, changes in the required injection phase, and the global energy correction factor. By quantifying the beam response, an uncorrected variation of 14 degree (S-band) during 28 F temperature swings was found in the main rf drive line system between the front and end of the linac

  18. Surface Temperature Variation Prediction Model Using Real-Time Weather Forecasts

    Science.gov (United States)

    Karimi, M.; Vant-Hull, B.; Nazari, R.; Khanbilvardi, R.

    2015-12-01

    Combination of climate change and urbanization are heating up cities and putting the lives of millions of people in danger. More than half of the world's total population resides in cities and urban centers. Cities are experiencing urban Heat Island (UHI) effect. Hotter days are associated with serious health impacts, heart attaches and respiratory and cardiovascular diseases. Densely populated cities like Manhattan, New York can be affected by UHI impact much more than less populated cities. Even though many studies have been focused on the impact of UHI and temperature changes between urban and rural air temperature, not many look at the temperature variations within a city. These studies mostly use remote sensing data or typical measurements collected by local meteorological station networks. Local meteorological measurements only have local coverage and cannot be used to study the impact of UHI in a city and remote sensing data such as MODIS, LANDSAT and ASTER have with very low resolution which cannot be used for the purpose of this study. Therefore, predicting surface temperature in urban cities using weather data can be useful.Three months of Field campaign in Manhattan were used to measure spatial and temporal temperature variations within an urban setting by placing 10 fixed sensors deployed to measure temperature, relative humidity and sunlight. Fixed instrument shelters containing relative humidity, temperature and illumination sensors were mounted on lampposts in ten different locations in Manhattan (Vant-Hull et al, 2014). The shelters were fixed 3-4 meters above the ground for the period of three months from June 23 to September 20th of 2013 making measurements with the interval of 3 minutes. These high resolution temperature measurements and three months of weather data were used to predict temperature variability from weather forecasts. This study shows that the amplitude of spatial and temporal variation in temperature for each day can be predicted

  19. [Effects of diurnal warming on soil N2O emission in soybean field].

    Science.gov (United States)

    Hu, Zheng-Hua; Zhou, Ying-Ping; Cui, Hai-Ling; Chen, Shu-Tao; Xiao, Qi-Tao; Liu, Yan

    2013-08-01

    To investigate the impact of experimental warming on N2O emission from soil of soybean field, outdoor experiments with simulating diurnal warming were conducted, and static dark chamber-gas chromatograph method was used to measure N2O emission fluxes. Results indicated that: the diurnal warming did not change the seasonal pattern of N2O emissions from soil. In the whole growing season, comparing to the control treatment (CK), the warming treatment (T) significantly enhanced the N2O flux and the cumulative amount of N2O by 17.31% (P = 0.019), and 20.27% (P = 0.005), respectively. The significant correlations were found between soil N2O emission and soil temperature, moisture. The temperature sensitivity values of soil N2O emission under CK and T treatments were 3.75 and 4.10, respectively. In whole growing stage, T treatment significantly increased the crop aboveground and total biomass, the nitrate reductase activity, and total nitrogen in leaves, while significantly decreased NO3(-) -N content in leaves. T treatment significantly increased soil NO3(-) -N content, but had no significant effect on soil organic carbon and total nitrogen contents. The results of this study suggested that diurnal warming enhanced N2O emission from soil in soybean field.

  20. Diurnal variations in water relations of deficit irrigated lemon trees during fruit growth period

    Directory of Open Access Journals (Sweden)

    Y. García-Orellana

    2013-01-01

    Full Text Available Field-grown lemon trees (Citrus limon (L. Burm. fil. cv. Fino were subjected to different drip irrigation treatments: a control treatment, irrigated daily above crop water requirements in order to obtain non-limiting soil water conditions and two deficit irrigation treatments, reducing the water applied according to the maximum daily trunk shrinkage (MDS signal intensity (actual MDS/control treatment MDS threshold values of 1.25 (T1 treatment and 1.35 (T2 treatment, which induced two different drought stress levels. Daily variations in leaf (Yleaf and stem (Ystem water potentials, leaf conductance, net photosynthesis, sap flow (SF and trunk diameter fluctuations were studied on four occasions during the lemon fruit growth period. Ystem and Yleaf revealed a diurnal pattern in response to changes in evaporative demand of the atmosphere. Both water potentials decreased in response to water deficits, which were more pronounced in the T2 treatment. Ystem was seen to be a better plant water status indicator than Yleaf. The difference between the two values of Y (Ystem - Yleaf  = DY was closely correlated with sap flow, making it a suitable measure of leaf transpiration. Using the slope of this relationship, the canopy hydraulic conductance (KC was estimated. When other continuously recorded plant-based indicators are not accessible, the concurrent measurement of leaf and stem water potentials at midday, which are relatively inexpensive to measure and user-friendly, act as sufficiently good indicators of the plant water status in field grown Fino lemon trees.

  1. Seasonal variations of the semi-diurnal and diurnal tides in the MLT: multi-year MF radar observations from 2–70° N, modelled tides (GSWM, CMAM

    Directory of Open Access Journals (Sweden)

    A. H. Manson

    2002-05-01

    Full Text Available In an earlier paper (Manson et al., 1999a tidal data (1990–1997 from six Medium Frequency Radars (MFR were compared with the Global Scale Wave Model (GSWM, original 1995 version. The radars are located between the equator and high northern latitudes: Christmas Island (2° N, Hawaii (22° N, Urbana (40° N, London (43° N, Saskatoon (52° N and Tromsø (70° N. Common harmonic analysis was applied, to ensure consistency of amplitudes and phases in the 75–95 km height range. For the diurnal tide, seasonal agreements between observations and model were excellent while for the semi-diurnal tide the seasonal transitions between clear solstitial states were less well captured by the model. Here the data set is increased by the addition of two locations in the Pacific-North American sector: Yamagawa 31° N, and Wakkanai 45° N. The GSWM model has undergone two additional developments (1998, 2000 to include an improved gravity wave (GW stress parameterization, background winds from UARS systems and monthly tidal forcing for better characterization of seasonal change. The other model, the Canadian Middle Atmosphere Model (CMAM which is a General Circulation Model, provides internally generated forcing (due to ozone and water vapour for the tides. The two GSWM versions show distinct differences, with the 2000 version being either closer to, or further away from, the observations than the original 1995 version. CMAM provides results dependent upon the GW parameterization scheme inserted, but one of the schemes provides very useful tides, especially for the semi-diurnal component.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides

  2. Lagged effect of diurnal temperature range on mortality in a subtropical megacity of China.

    Directory of Open Access Journals (Sweden)

    Yuan Luo

    Full Text Available BACKGROUND: Many studies have found extreme temperature can increase the risk of mortality. However, it is not clear whether extreme diurnal temperature range (DTR is associated with daily disease-specific mortality, and how season might modify any association. OBJECTIVES: To better understand the acute effect of DTR on mortality and identify whether season is a modifier of the DTR effect. METHODS: The distributed lag nonlinear model (DLNM was applied to assess the non-linear and delayed effects of DTR on deaths (non-accidental mortality (NAD, cardiovascular disease (CVD, respiratory disease (RD and cerebrovascular disease (CBD in the full year, the cold season and the warm season. RESULTS: A non-linear relationship was consistently found between extreme DTR and mortality. Immediate effects of extreme low DTR on all types of mortality were stronger than those of extreme high DTR in the full year. The cumulative effects of extreme DTRs increased with the increment of lag days for all types of mortality in cold season, and they were greater for extreme high DTRs than those of extreme low DTRs. In hot season, the cumulative effects for extreme low DTRs increased with the increment of lag days, but for extreme high DTR they reached maxima at a lag of 13 days for all types of mortality except for CBD(at lag6 days, and then decreased. CONCLUSIONS: Our findings suggest that extreme DTR is an independent risk factor of daily mortality, and season is a modifier of the association of DTR with daily mortality.

  3. Diurnal variability in carbon and nitrogen pools within Chesapeake Bay and northern Gulf of Mexico: implications for future ocean color satellite sensors

    Science.gov (United States)

    Mannino, A.; Novak, M. G.; Tzortziou, M.; Salisbury, J.

    2016-02-01

    Relative to their areal extent, estuaries and coastal ocean ecosystems contribute disproportionately more to global biogeochemical cycling of carbon, nitrogen and other elements compared to the open ocean. Applying ocean color satellite data to study biological and biogeochemical processes within coastal ecosystems is challenging due to the complex mixtures of aquatic constituents derived from terrestrial, anthropogenic, and marine sources, human-impacted atmospheric properties, presence of clouds during satellite overpass, fine-scale spatial gradients, and time-varying processes on diurnal scales that cannot be resolved with current sensors. On diurnal scales, biological, photochemical, and biogeochemical processes are regulated by the variation in solar radiation. Other physical factors, such as tides, river discharge, estuarine and coastal ocean circulation, wind-driven mixing, etc., impart further variability on biological and biogeochemical processes on diurnal to multi-day time scales. Efforts to determine the temporal frequency required from a NASA GEO-CAPE ocean color satellite sensor to discern diurnal variability C and N stocks, fluxes and productivity culminated in field campaigns in the Chesapeake Bay and northern Gulf of Mexico. Near-surface drogues were released and tracked in quasi-lagrangian space to monitor hourly changes in community production, C and N stocks, and optical properties. While only small diurnal changes were observed in dissolved organic carbon (DOC) and colored dissolved organic matter (CDOM) absorption in Chesapeake Bay, substantial variation in particulate organic carbon (POC) and nitrogen (PN), chlorophyll-a, and inorganic nitrogen (DIN) were measured. Similar or greater diurnal changes in POC, PN, chlorophyll-a and DIN were found in Gulf of Mexico nearshore and offshore sites. These results suggest that satellite observations at hourly frequency are desirable to capture diurnal variability in carbon and nitrogen stocks, fluxes

  4. Seasonal variations of the semi-diurnal and diurnal tides in the MLT: multi-year MF radar observations from 2 to 70°N, and the GSWM tidal model

    Science.gov (United States)

    Manson, A.; Meek, C.; Hagan, M.; Hall, C.; Hocking, W.; MacDougall, J.; Franke, S.; Riggin, D.; Fritts, D.; Vincent, R.; Burrage, M.

    1999-07-01

    Continuous observations of the wind field have been made by six Medium Frequency Radars (MFRs), located between the equator and high northern latitudes: Christmas Islands (2°N), Hawaii (22°N), Urbana (40°N), London (43°N), Saskatoon (52°N) and Tromsø (70°N). Data have been sought for the time interval 1990-1997, and typically 5 years of data have become available from each station, to demonstrate the level of annual consistency and variability. Common harmonic analysis is applied so that the monthly amplitudes and phases of the semi-diurnal (SD) and diurnal (D) wind oscillations are available in the height range of (typically) 75-95 km in the upper Middle Atmosphere. Comparisons are made with tides from the Global Scale Wave Model (GSWM), which are available for 3-month seasons. The emphasis is upon the monthly climatologies at each location based upon comparisons of profiles, and also latitudinal plots of amplitudes and phases at particular heights. For the diurnal tide, the agreement between observations and model is now quite excellent with modelled values frequently lying within the range of yearly values. Both observations and model demonstrate strong seasonal changes. This result is a striking improvement over the comparisons of 1989 (JATP, Special issue). In particular, the phases and phase-gradients for the non-winter months at mid- to high-latitudes are now in excellent agreement. Some of the low latitude discrepancies are attributed to the existence of non-migrating tidal components associated with tropospheric latent heat release. For the semi-diurnal tide, the observed strong transitions between clear solstitial states are less well captured by the model. There is little evidence for improvement over the promising comparisons of 1989. In particular, the late-summer/autumnal tidal maximum of mid-latitudes is observed to be larger, and with strong monthly variability. Also the summer modelled tide has unobserved short (20 km) wavelengths at high

  5. Sulfur redox chemistry governs diurnal antimony and arsenic cycles at Champagne Pool, Waiotapu, New Zealand

    Science.gov (United States)

    Ullrich, Maria K.; Pope, James G.; Seward, Terry M.; Wilson, Nathaniel; Planer-Friedrich, Britta

    2013-07-01

    Champagne Pool, a sulfidic hot spring in New Zealand, exhibits distinct diurnal variations in antimony (Sb) and arsenic (As) concentrations, with daytime high and night-time low concentrations. To identify the underlying mobilization mechanisms, five sites along the drainage channel of Champagne Pool were sampled every 2 h during a 24 h period. Temporal variations in elemental concentrations and Sb, As, and sulfur (S) speciation were monitored in the discharging fluid. Total trace element concentrations in filtered and unfiltered samples were analyzed using ICP-MS, and Sb, As and S species were determined by IC-ICP-MS. Sulfur speciation in the drainage channel was dominated by thiosulfate and sulfide at night, while sulfate dominated during the day. The distinct diurnal changes suggest that the transformations are caused by phototrophic sulfur-oxidizing bacteria. These bacteria metabolize thiosulfate and sulfide in daylight to form sulfate and, as suggested by modeling with PhreeqC, elemental sulfur. Sulfide consumption during the day results in undersaturation of antimony sulfides, which triggers the additional release of dissolved Sb. For As, diurnal cycles were much more pronounced in speciation than in total concentrations, with di- and trithioarsenate forming at night due to excess sulfide, and monothioarsenate forming from arsenite and elemental sulfur during the day. Sulfur speciation was thus found to control Sb and As in terms of both solubility and speciation.

  6. Scale interactions on diurnal toseasonal timescales and their relevanceto model systematic errors

    Directory of Open Access Journals (Sweden)

    G. Yang

    2003-06-01

    Full Text Available Examples of current research into systematic errors in climate models are used to demonstrate the importance of scale interactions on diurnal,intraseasonal and seasonal timescales for the mean and variability of the tropical climate system. It has enabled some conclusions to be drawn about possible processes that may need to be represented, and some recommendations to be made regarding model improvements. It has been shown that the Maritime Continent heat source is a major driver of the global circulation but yet is poorly represented in GCMs. A new climatology of the diurnal cycle has been used to provide compelling evidence of important land-sea breeze and gravity wave effects, which may play a crucial role in the heat and moisture budget of this key region for the tropical and global circulation. The role of the diurnal cycle has also been emphasized for intraseasonal variability associated with the Madden Julian Oscillation (MJO. It is suggested that the diurnal cycle in Sea Surface Temperature (SST during the suppressed phase of the MJO leads to a triggering of cumulus congestus clouds, which serve to moisten the free troposphere and hence precondition the atmosphere for the next active phase. It has been further shown that coupling between the ocean and atmosphere on intraseasonal timescales leads to a more realistic simulation of the MJO. These results stress the need for models to be able to simulate firstly, the observed tri-modal distribution of convection, and secondly, the coupling between the ocean and atmosphere on diurnal to intraseasonal timescales. It is argued, however, that the current representation of the ocean mixed layer in coupled models is not adequate to represent the complex structure of the observed mixed layer, in particular the formation of salinity barrier layers which can potentially provide much stronger local coupling between the atmosphere and ocean on diurnal to intraseasonal timescales.

  7. Analysis of the energetic metabolism in cyclic Bedouin goats (Capra hircus): Nychthemeral and seasonal variations of some haematochemical parameters in relation with body and ambient temperatures.

    Science.gov (United States)

    Malek, Mouna; Amirat, Zaina; Khammar, Farida; Khaldoun, Mounira

    2016-08-01

    Several studies have examined changes in some haematochemical parameters as a function of the different physiological status (cyclic, pregnant and lactating) of goats, but no relevant literature has exhaustively investigated these variations from anestrous to estrous stages in cyclic goats. In this paper, we report nychthemeral and seasonal variations in ambient and body temperatures, and in some haematochemical parameters (glycemia, cholesterolemia, triglyceridemia, creatininemia and uremia) measured during summer, winter and spring, in seven (7) experimental cyclic female Bedouin goats (Capra hircus) living in the Béni-Abbès region (Algerian Sahara desert). Cosinor rhythmometry procedure was used to determine the rhythmic parameters of ambient temperature and haematochemical parameters. To determine the effect of time of day on the rhythmicity of the studied parameters, as well as their seasonality, repeated measure analysis of variance (ANOVA) was applied. The results showed that in spite of the nychthemeral profile presented by the ambient temperature for each season, the body temperature remained in a narrow range, thus indicating a successful thermoregulation. The rhythmometry analysis showed a circadian rhythmicity of ambient temperature and haematochemical parameters with diurnal acrophases. A statistically significant effect of the time of day was shown on all studied haematochemical parameters, except on creatininemia. It was also found that only uremia, cholesterolemia and triglyceridemia followed the seasonal sexual activity of the studied ruminant. This study demonstrated the good physiological adaptation developed by this breed in response to the harsh climatic conditions of its natural environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Diurnal and semi-diurnal tidal structures due to O2, O3 and H2O ...

    Indian Academy of Sciences (India)

    from World Meteorological Organization (WMO. 1986), while the Rayleigh scattering cross section was calculated using the formula of Nicolet (1984). ..... Figure 5(a) exhibits the exponential growth of diurnal amplitude with altitude, at low to mid lat- itudes. At high latitudes, the diurnal amplitude decreases with altitude due to ...

  9. Diurnal variations in the occurrence and the fate of hormones and antibiotics in activated sludge wastewater treatment in Oslo, Norway

    International Nuclear Information System (INIS)

    Plosz, Benedek Gy.; Leknes, Henriette; Liltved, Helge; Thomas, Kevin V.

    2010-01-01

    We present an assessment of the dynamics in the influent concentration of hormones (estrone, estriol) and antibiotics (trimethoprim, sulfamethoxazole, tetracycline, ciprofloxacin) in the liquid phase including the efficiency of biological municipal wastewater treatment. The concentration of estradiol, 17-α-ethinylestradiol, doxycycline, oxytetracycline, demeclocycline, chlortetracycline, cefuroxime, cyclophosphamide, and ifosfamide were below the limit of detection in all of the sewage samples collected within this study. Two different types of diurnal variation pattern were identified in the influent mass loads of selected antibiotics and hormones that effectively correlate with daily drug administration patterns and with the expected maximum human hormone release, respectively. The occurrence of natural hormones and antimicrobials, administered every 12 hours, shows a daily trend of decreasing contaminant mass load, having the maximum values in the morning hours. The occurrence of antibiotics, typically administered every 8 hours, indicates a daily peak value in samples collected under the highest hydraulic loading. The efficiency of biological removal of both hormones and antibiotics is shown to be limited. Compared to the values obtained in the influent samples, increased concentrations are observed in the biologically treated effluent for trimethoprim, sulfamethoxazole and ciprofloxacin, mainly as a result of deconjugation processes. Ciprofloxacin is shown as the predominant antimicrobial compound in the effluent, and it is present at quantities approximately 10 fold greater than the total mass of the other of the compounds due to poor removal efficiency and alternating solid-liquid partitioning behaviour. Our results suggest that, to increase the micro-pollutant removal and the chemical dosing efficiency in enhanced tertiary treatment, significant benefits can be derived from the optimisation of reactor design and the development of control schemes that

  10. Diurnal variations in the occurrence and the fate of hormones and antibiotics in activated sludge wastewater treatment in Oslo, Norway

    Energy Technology Data Exchange (ETDEWEB)

    Plosz, Benedek Gy., E-mail: benedek.plosz@niva.no [Norwegian Institute for Water Research, NIVA, Gaustadalleen 21, NO-0349, Oslo (Norway); Leknes, Henriette [Norwegian Institute for Air Research NILU, 2027 Kjeller (Norway); Liltved, Helge; Thomas, Kevin V. [Norwegian Institute for Water Research, NIVA, Gaustadalleen 21, NO-0349, Oslo (Norway)

    2010-03-15

    We present an assessment of the dynamics in the influent concentration of hormones (estrone, estriol) and antibiotics (trimethoprim, sulfamethoxazole, tetracycline, ciprofloxacin) in the liquid phase including the efficiency of biological municipal wastewater treatment. The concentration of estradiol, 17-{alpha}-ethinylestradiol, doxycycline, oxytetracycline, demeclocycline, chlortetracycline, cefuroxime, cyclophosphamide, and ifosfamide were below the limit of detection in all of the sewage samples collected within this study. Two different types of diurnal variation pattern were identified in the influent mass loads of selected antibiotics and hormones that effectively correlate with daily drug administration patterns and with the expected maximum human hormone release, respectively. The occurrence of natural hormones and antimicrobials, administered every 12 hours, shows a daily trend of decreasing contaminant mass load, having the maximum values in the morning hours. The occurrence of antibiotics, typically administered every 8 hours, indicates a daily peak value in samples collected under the highest hydraulic loading. The efficiency of biological removal of both hormones and antibiotics is shown to be limited. Compared to the values obtained in the influent samples, increased concentrations are observed in the biologically treated effluent for trimethoprim, sulfamethoxazole and ciprofloxacin, mainly as a result of deconjugation processes. Ciprofloxacin is shown as the predominant antimicrobial compound in the effluent, and it is present at quantities approximately 10 fold greater than the total mass of the other of the compounds due to poor removal efficiency and alternating solid-liquid partitioning behaviour. Our results suggest that, to increase the micro-pollutant removal and the chemical dosing efficiency in enhanced tertiary treatment, significant benefits can be derived from the optimisation of reactor design and the development of control schemes that

  11. Variation of NEE and its affecting factors in a vineyard of arid region of northwest China

    Science.gov (United States)

    Guo, W. H.; Kang, S. Z.; Li, F. S.; Li, S. E.

    2014-02-01

    To understand the variation of net ecosystem CO2 exchange (NEE) in orchard ecosystem and it's affecting factors, carbon flux was measured using eddy covariance system in a wine vineyard in arid northwest China during 2008-2010. Results show that vineyard NEE was positive value at the early growth stage, higher negative value at the mid-growth stage, and lower negative value at the later growth stage. Diurnal variation of NEE was "W" shaped curve in sunny day, but "U" shaped curve in cloudy day. Irrigation and pruning did not affect diurnal variation shape of NEE, however, irrigation reduced the difference between maximal and minimal value of NEE and pruning reduced the carbon sink capacity. The main factors affecting hourly NEE were canopy conductance (gc) and net radiation (Rn). The hourly NEE increased with the increase of gc or Rn when gc was less than 0.02 m·s-1 or Rn was between 0 and 200 W·m-2. The main factors affecting both daily and seasonal NEE were gc, air temperature (Ta), atmospheric CO2 density, vapour pressure deficit (VPD) and soil moisture content.

  12. On the influence of cloud fraction diurnal cycle and sub-grid cloud optical thickness variability on all-sky direct aerosol radiative forcing

    International Nuclear Information System (INIS)

    Min, Min; Zhang, Zhibo

    2014-01-01

    The objective of this study is to understand how cloud fraction diurnal cycle and sub-grid cloud optical thickness variability influence the all-sky direct aerosol radiative forcing (DARF). We focus on the southeast Atlantic region where transported smoke is often observed above low-level water clouds during burning seasons. We use the CALIOP observations to derive the optical properties of aerosols. We developed two diurnal cloud fraction variation models. One is based on sinusoidal fitting of MODIS observations from Terra and Aqua satellites. The other is based on high-temporal frequency diurnal cloud fraction observations from SEVIRI on board of geostationary satellite. Both models indicate a strong cloud fraction diurnal cycle over the southeast Atlantic region. Sensitivity studies indicate that using a constant cloud fraction corresponding to Aqua local equatorial crossing time (1:30 PM) generally leads to an underestimated (less positive) diurnal mean DARF even if solar diurnal variation is considered. Using cloud fraction corresponding to Terra local equatorial crossing time (10:30 AM) generally leads overestimation. The biases are a typically around 10–20%, but up to more than 50%. The influence of sub-grid cloud optical thickness variability on DARF is studied utilizing the cloud optical thickness histogram available in MODIS Level-3 daily data. Similar to previous studies, we found the above-cloud smoke in the southeast Atlantic region has a strong warming effect at the top of the atmosphere. However, because of the plane-parallel albedo bias the warming effect of above-cloud smoke could be significantly overestimated if the grid-mean, instead of the full histogram, of cloud optical thickness is used in the computation. This bias generally increases with increasing above-cloud aerosol optical thickness and sub-grid cloud optical thickness inhomogeneity. Our results suggest that the cloud diurnal cycle and sub-grid cloud variability are important factors

  13. Mechanisms of Diurnal Precipitation over the United States Great Plains: A Cloud-Resolving Model Simulation

    Science.gov (United States)

    Lee, M.-I.; Choi, I.; Tao, W.-K.; Schubert, S. D.; Kang, I.-K.

    2010-01-01

    The mechanisms of summertime diurnal precipitation in the US Great Plains were examined with the two-dimensional (2D) Goddard Cumulus Ensemble (GCE) cloud-resolving model (CRM). The model was constrained by the observed large-scale background state and surface flux derived from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program s Intensive Observing Period (IOP) data at the Southern Great Plains (SGP). The model, when continuously-forced by realistic surface flux and large-scale advection, simulates reasonably well the temporal evolution of the observed rainfall episodes, particularly for the strongly forced precipitation events. However, the model exhibits a deficiency for the weakly forced events driven by diurnal convection. Additional tests were run with the GCE model in order to discriminate between the mechanisms that determine daytime and nighttime convection. In these tests, the model was constrained with the same repeating diurnal variation in the large-scale advection and/or surface flux. The results indicate that it is primarily the surface heat and moisture flux that is responsible for the development of deep convection in the afternoon, whereas the large-scale upward motion and associated moisture advection play an important role in preconditioning nocturnal convection. In the nighttime, high clouds are continuously built up through their interaction and feedback with long-wave radiation, eventually initiating deep convection from the boundary layer. Without these upper-level destabilization processes, the model tends to produce only daytime convection in response to boundary layer heating. This study suggests that the correct simulation of the diurnal variation in precipitation requires that the free-atmospheric destabilization mechanisms resolved in the CRM simulation must be adequately parameterized in current general circulation models (GCMs) many of which are overly sensitive to the parameterized boundary layer heating.

  14. Heat flux variations over sea ice observed at the coastal area of the Sejong Station, Antarctica

    Science.gov (United States)

    Park, Sang-Jong; Choi, Tae-Jin; Kim, Seong-Joong

    2013-08-01

    This study presents variations of sensible heat flux and latent heat flux over sea ice observed in 2011 from the 10-m flux tower located at the coast of the Sejong Station on King George Island, Antarctica. A period from July to September was selected as a sea ice period based on daily record of sea state and hourly photos looking at the Marian Cove in front of the Sejong Station. For the sea ice period, mean sensible heat flux is about -11 Wm-2, latent heat flux is about +2 W m-2, net radiation is -12 W m-2, and residual energy is -3 W m-2 with clear diurnal variations. Estimated mean values of surface exchange coefficients for momentum, heat and moisture are 5.15 × 10-3, 1.19 × 10-3, and 1.87 × 10-3, respectively. The observed exchange coefficients of heat shows clear diurnal variations while those of momentum and moisture do not show diurnal variation. The parameterized exchange coefficients of heat and moisture produces heat fluxes which compare well with the observed diurnal variations of heat fluxes.

  15. Evaluation of NASA GEOS-ADAS Modeled Diurnal Warming Through Comparisons to SEVIRI and AMSR2 SST Observations

    Science.gov (United States)

    Gentemann, C. L.; Akella, S.

    2018-02-01

    An analysis of the ocean skin Sea Surface Temperature (SST) has been included in the Goddard Earth Observing System (GEOS) - Atmospheric Data Assimilation System (ADAS), Version 5 (GEOS-ADAS). This analysis is based on the GEOS atmospheric general circulation model (AGCM) that simulates near-surface diurnal warming and cool skin effects. Analysis for the skin SST is performed along with the atmospheric state, including Advanced Very High Resolution Radiometer (AVHRR) satellite radiance observations as part of the data assimilation system. One month (September, 2015) of GEOS-ADAS SSTs were compared to collocated satellite Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and Advanced Microwave Scanning Radiometer 2 (AMSR2) SSTs to examine how the GEOS-ADAS diurnal warming compares to the satellite measured warming. The spatial distribution of warming compares well to the satellite observed distributions. Specific diurnal events are analyzed to examine variability within a single day. The dependence of diurnal warming on wind speed, time of day, and daily average insolation is also examined. Overall the magnitude of GEOS-ADAS warming is similar to the warming inferred from satellite retrievals, but several weaknesses in the GEOS-AGCM simulated diurnal warming are identified and directly related back to specific features in the formulation of the diurnal warming model.

  16. Effect of camera temperature variations on stereo-digital image correlation measurements

    KAUST Repository

    Pan, Bing

    2015-11-25

    In laboratory and especially non-laboratory stereo-digital image correlation (stereo-DIC) applications, the extrinsic and intrinsic parameters of the cameras used in the system may change slightly due to the camera warm-up effect and possible variations in ambient temperature. Because these camera parameters are generally calibrated once prior to measurements and considered to be unaltered during the whole measurement period, the changes in these parameters unavoidably induce displacement/strain errors. In this study, the effect of temperature variations on stereo-DIC measurements is investigated experimentally. To quantify the errors associated with camera or ambient temperature changes, surface displacements and strains of a stationary optical quartz glass plate with near-zero thermal expansion were continuously measured using a regular stereo-DIC system. The results confirm that (1) temperature variations in the cameras and ambient environment have a considerable influence on the displacements and strains measured by stereo-DIC due to the slightly altered extrinsic and intrinsic camera parameters; and (2) the corresponding displacement and strain errors correlate with temperature changes. For the specific stereo-DIC configuration used in this work, the temperature-induced strain errors were estimated to be approximately 30–50 με/°C. To minimize the adverse effect of camera temperature variations on stereo-DIC measurements, two simple but effective solutions are suggested.

  17. Effect of camera temperature variations on stereo-digital image correlation measurements

    KAUST Repository

    Pan, Bing; Shi, Wentao; Lubineau, Gilles

    2015-01-01

    In laboratory and especially non-laboratory stereo-digital image correlation (stereo-DIC) applications, the extrinsic and intrinsic parameters of the cameras used in the system may change slightly due to the camera warm-up effect and possible variations in ambient temperature. Because these camera parameters are generally calibrated once prior to measurements and considered to be unaltered during the whole measurement period, the changes in these parameters unavoidably induce displacement/strain errors. In this study, the effect of temperature variations on stereo-DIC measurements is investigated experimentally. To quantify the errors associated with camera or ambient temperature changes, surface displacements and strains of a stationary optical quartz glass plate with near-zero thermal expansion were continuously measured using a regular stereo-DIC system. The results confirm that (1) temperature variations in the cameras and ambient environment have a considerable influence on the displacements and strains measured by stereo-DIC due to the slightly altered extrinsic and intrinsic camera parameters; and (2) the corresponding displacement and strain errors correlate with temperature changes. For the specific stereo-DIC configuration used in this work, the temperature-induced strain errors were estimated to be approximately 30–50 με/°C. To minimize the adverse effect of camera temperature variations on stereo-DIC measurements, two simple but effective solutions are suggested.

  18. Modeling fish community dynamics in Florida Everglades: Role of temperature variation

    Science.gov (United States)

    Al-Rabai'ah, H. A.; Koh, H. L.; DeAngelis, Donald L.; Lee, Hooi-Ling

    2002-01-01

    Temperature variation is an important factor in Everglade wetlands ecology. A temperature fluctuation from 17°C to 32°C recorded in the Everglades may have significant impact on fish dynamics. The short life cycles of some of Everglade fishes has rendered this temperature variation to have even more impacts on the ecosystem. Fish population dynamic models, which do not explicitly consider seasonal oscillations in temperature, may fail to describe the details of such a population. Hence, a model for fish in freshwater marshes of the Florida Everglades that explicitly incorporates seasonal temperature variations is developed. The model's main objective is to assess the temporal pattern of fish population and densities through time subject to temperature variations. Fish population is divided into 2 functional groups (FGs) consisting of small fishes; each group is subdivided into 5-day age classes during their life cycles. Many governing sub-modules are set directly or indirectly to be temperature dependent. Growth, fecundity, prey availability, consumption rates and mortality are examples. Several mortality sub-modules are introduced in the model, of which starvation mortality is set to be proportional to the ratio of prey needed to prey available at that particular time step. As part of the calibration process, the model is run for 50 years to ensure that fish densities do not go to extinction, while the simulation period is about 8 years.

  19. Specific diurnal EMG activity pattern observed in occlusal collapse patients: relationship between diurnal bruxism and tooth loss progression.

    Directory of Open Access Journals (Sweden)

    Shigehisa Kawakami

    Full Text Available AIM: The role of parafunctional masticatory muscle activity in tooth loss has not been fully clarified. This study aimed to reveal the characteristic activity of masseter muscles in bite collapse patients while awake and asleep. MATERIALS AND METHODS: Six progressive bite collapse patients (PBC group, six age- and gender-matched control subjects (MC group, and six young control subjects (YC group were enrolled. Electromyograms (EMG of the masseter muscles were continuously recorded with an ambulatory EMG recorder while patients were awake and asleep. Diurnal and nocturnal parafunctional EMG activity was classified as phasic, tonic, or mixed using an EMG threshold of 20% maximal voluntary clenching. RESULTS: Highly extended diurnal phasic activity was observed only in the PBC group. The three groups had significantly different mean diurnal phasic episodes per hour, with 13.29±7.18 per hour in the PBC group, 0.95±0.97 per hour in the MC group, and 0.87±0.98 per hour in the YC group (p<0.01. ROC curve analysis suggested that the number of diurnal phasic episodes might be used to predict bite collapsing tooth loss. CONCLUSION: Extensive bite loss might be related to diurnal masticatory muscle parafunction but not to parafunction during sleep. CLINICAL RELEVANCE SCIENTIFIC RATIONALE FOR STUDY: Although mandibular parafunction has been implicated in stomatognathic system breakdown, a causal relationship has not been established because scientific modalities to evaluate parafunctional activity have been lacking. PRINCIPAL FINDINGS: This study used a newly developed EMG recording system that evaluates masseter muscle activity throughout the day. Our results challenge the stereotypical idea of nocturnal bruxism as a strong destructive force. We found that diurnal phasic masticatory muscle activity was most characteristic in patients with progressive bite collapse. PRACTICAL IMPLICATIONS: The incidence of diurnal phasic contractions could be used for

  20. 40 CFR 1060.105 - What diurnal requirements apply for equipment?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What diurnal requirements apply for... EQUIPMENT Emission Standards and Related Requirements § 1060.105 What diurnal requirements apply for... for controlling diurnal emissions: (1) If you are subject to both running loss and diurnal emission...

  1. Higher cortisol levels at diurnal trough predict greater attentional bias towards threat in healthy young adults.

    Science.gov (United States)

    Hakamata, Yuko; Izawa, Shuhei; Sato, Eisuke; Komi, Shotaro; Murayama, Norio; Moriguchi, Yoshiya; Hanakawa, Takashi; Inoue, Yusuke; Tagaya, Hirokuni

    2013-11-01

    Attentional bias (AB), selective information processing towards threat, can exacerbate anxiety and depression. Despite growing interest, physiological determinants of AB are yet to be understood. We examined whether stress hormone cortisol and its diurnal variation pattern contribute to AB. Eighty-seven healthy young adults underwent assessments for AB, anxious personality traits, depressive symptoms, and attentional function. Salivary cortisol was collected at three time points daily (at awakening, 30 min after awakening, and bedtime) for 2 consecutive days. We performed: (1) multiple regression analysis to examine the relationships between AB and the other measures and (2) analysis of variance (ANOVA) between groups with different cortisol variation patterns for the other measures. Multiple regression analysis revealed that higher cortisol levels at bedtime (pattention and cortisol measurement at three time points daily. We showed that higher cortisol levels at bedtime and blunted cortisol variation are associated with greater AB. Individuals who have higher cortisol levels at diurnal trough might be at risk of clinical anxiety or depression but could also derive more benefits from the attentional-bias-modification program. © 2013 Elsevier B.V. All rights reserved.

  2. Diurnal variations in water relations of deficit irrigated lemon trees during fruit growth period

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Orellana, Y.; Ortuno, M. F.; Conejero, W.; Ruiz-Sanchez, M. C.

    2013-05-01

    Field-grown lemon trees (Citrus limon (L.) Burm. fil. cv. Fino) were subjected to different drip irrigation treatments: a control treatment, irrigated daily above crop water requirements in order to obtain non-limiting soil water conditions and two deficit irrigation treatments, reducing the water applied according to the maximum daily trunk shrinkage (MDS) signal intensity (actual MDS/control treatment MDS) threshold values of 1.25 (T1 treatment) and 1.35 (T2 treatment), which induced two different drought stress levels. Daily variations in leaf (Y{sub l}eaf) and stem (Y{sub s}tem) water potentials, leaf conductance, net photosynthesis, sap flow (SF) and trunk diameter fluctuations were studied on four occasions during the lemon fruit growth period. Ystem and Y{sub l}eaf revealed a diurnal pattern in response to changes in evaporative demand of the atmosphere. Both water potentials decreased in response to water deficits, which were more pronounced in the T2 treatment. Y{sub s}tem was seen to be a better plant water status indicator than Y{sub l}eaf. The difference between the two values of Y (Y{sub s}tem - Y{sub l}eaf {Delta}{Psi}) was closely correlated with sap flow, making it a suitable measure of leaf transpiration. Using the slope of this relationship, the canopy hydraulic conductance (KC) was estimated. When other continuously recorded plant-based indicators are not accessible, the concurrent measurement of leaf and stem water potentials at midday, which are relatively inexpensive to measure and user-friendly, act as sufficiently good indicators of the plant water status in field grown Fino lemon trees. (Author) 40 refs.

  3. High frequency variations of Earth Rotation Parameters from GPS and GLONASS observations.

    Science.gov (United States)

    Wei, Erhu; Jin, Shuanggen; Wan, Lihua; Liu, Wenjie; Yang, Yali; Hu, Zhenghong

    2015-01-28

    The Earth's rotation undergoes changes with the influence of geophysical factors, such as Earth's surface fluid mass redistribution of the atmosphere, ocean and hydrology. However, variations of Earth Rotation Parameters (ERP) are still not well understood, particularly the short-period variations (e.g., diurnal and semi-diurnal variations) and their causes. In this paper, the hourly time series of Earth Rotation Parameters are estimated using Global Positioning System (GPS), Global Navigation Satellite System (GLONASS), and combining GPS and GLONASS data collected from nearly 80 sites from 1 November 2012 to 10 April 2014. These new observations with combining different satellite systems can help to decorrelate orbit biases and ERP, which improve estimation of ERP. The high frequency variations of ERP are analyzed using a de-trending method. The maximum of total diurnal and semidiurnal variations are within one milli-arcseconds (mas) in Polar Motion (PM) and 0.5 milli-seconds (ms) in UT1-UTC. The semidiurnal and diurnal variations are mainly related to the ocean tides. Furthermore, the impacts of satellite orbit and time interval used to determinate ERP on the amplitudes of tidal terms are analyzed. We obtain some small terms that are not described in the ocean tide model of the IERS Conventions 2010, which may be caused by the strategies and models we used or the signal noises as well as artifacts. In addition, there are also small differences on the amplitudes between our results and IERS convention. This might be a result of other geophysical excitations, such as the high-frequency variations in atmospheric angular momentum (AAM) and hydrological angular momentum (HAM), which needs more detailed analysis with more geophysical data in the future.

  4. The influence of sea- and land-breeze circulations on the diurnal variability in precipitation over a tropical island

    Directory of Open Access Journals (Sweden)

    L. Zhu

    2017-11-01

    Full Text Available This study examines the diurnal variation in precipitation over Hainan Island in the South China Sea using gauge observations from 1951 to 2012 and Climate Prediction Center MORPHing technique (CMORPH satellite estimates from 2006 to 2015, as well as numerical simulations. The simulations are the first to use climatological mean initial and lateral boundary conditions to study the dynamic and thermodynamic processes (and the impacts of land–sea breeze circulations that control the rainfall distribution and climatology. Precipitation is most significant from April to October and exhibits a strong diurnal cycle resulting from land–sea breeze circulations. More than 60 % of the total annual precipitation over the island is attributable to the diurnal cycle with a significant monthly variability. The CMORPH and gauge datasets agree well, except that the CMORPH data underestimate precipitation and have a 1 h peak delay. The diurnal cycle of the rainfall and the related land–sea breeze circulations during May and June were well captured by convection-permitting numerical simulations with the Weather Research and Forecasting (WRF model, which were initiated from a 10-year average ERA-Interim reanalysis. The simulations have a slight overestimation of rainfall amounts and a 1 h delay in peak rainfall time. The diurnal cycle of precipitation is driven by the occurrence of moist convection around noontime owing to low-level convergence associated with the sea-breeze circulations. The precipitation intensifies rapidly thereafter and peaks in the afternoon with the collisions of sea-breeze fronts from different sides of the island. Cold pools of the convective storms contribute to the inland propagation of the sea breeze. Generally, precipitation dissipates quickly in the evening due to the cooling and stabilization of the lower troposphere and decrease of boundary layer moisture. Interestingly, the rather high island orography is not a

  5. Variation of thermal parameters in two different color morphs of a diurnal poison toad, Melanophryniscus rubriventris (Anura: Bufonidae).

    Science.gov (United States)

    Sanabria, Eduardo A; Vaira, Marcos; Quiroga, Lorena B; Akmentins, Mauricio S; Pereyra, Laura C

    2014-04-01

    We study the variation in thermal parameters in two contrasting populations Yungas Redbelly Toads (Melanophryniscus rubriventris) with different discrete color phenotypes comparing field body temperatures, critical thermal maximum and heating rates. We found significant differences in field body temperatures of the different morphs. Temperatures were higher in toads with a high extent of dorsal melanization. No variation was registered in operative temperatures between the study locations at the moment of capture and processing. Critical thermal maximum of toads was positively related with the extent of dorsal melanization. Furthermore, we founded significant differences in heating rates between morphs, where individuals with a high extent of dorsal melanization showed greater heating rates than toads with lower dorsal melanization. The color pattern-thermal parameter relationship observed may influence the activity patterns and body size of individuals. Body temperature is a modulator of physiological and behavioral functions in amphibians, influencing daily and seasonal activity, locomotor performance, digestion rate and growth rate. It is possible that some growth constraints may arise due to the relationship of color pattern-metabolism allowing different morphs to attain similar sizes at different locations instead of body-size clines. Copyright © 2014. Published by Elsevier Ltd.

  6. Assessing the diurnal variability of pharmaceutical and personal care products in a full-scale activated sludge plant

    International Nuclear Information System (INIS)

    Salgado, R.; Marques, R.; Noronha, J.P.; Mexia, J.T.; Carvalho, G.; Oehmen, A.; Reis, M.A.M.

    2011-01-01

    An intensive sampling campaign has been carried out in a municipal wastewater treatment plant (WWTP) to assess the dynamics of the influent pharmaceutical active compounds (PhAC) and musks. The mass loadings of these compounds in wastewater influents displayed contrasting diurnal variations depending on the compound. The musks and some groups of PhACs tended to follow a similar diurnal trend as compared to macropollutants, while the majority of PhACs followed either the opposite trend or no repeatable trend. The total musk loading to the WWTP was 0.74 ± 0.25 g d -1 , whereas the total PhAC mass loading was 84.7 ± 63.8 g d -1 . Unlike the PhACs, the musks displayed a high repeatability from one sampling day to the next. The range of PhAC loadings in the influent to WWTPs can vary several orders of magnitude from one day or week to the next, representing a challenge in obtaining data for steady-state modelling purposes. - Highlights: → Investigated the variations in influent wastewater pharmaceutical and musk loadings. → A high number of different pharmaceutical and musk compounds was analysed. → Many pharmaceutical groups displayed different characteristic patterns. → A representative steady-state pattern was observable for musks, not pharmaceuticals. → The results are relevant to the design of sampling campaigns for modelling purposes. - The diurnal variations of pharmaceuticals and musks were studied in an activated sludge plant, where the loadings of the musks were more repeatable than the pharmaceuticals.

  7. Approximate analytical solution to diurnal atmospheric boundary-layer growth under well-watered conditions

    Science.gov (United States)

    The system of governing equations of a simplified slab model of the uniformly-mixed, purely convective, diurnal atmospheric boundary layer (ABL) is shown to allow immediate solutions for the potential temperature and specific humidity as functions of the ABL height and net radiation when expressed i...

  8. Diurnal Cycles of High Resolution Land Surface Temperatures (LSTs) Determined from UAV Platforms Across a Range of Surface Types

    Science.gov (United States)

    McCabe, M.; Rosas Aguilar, J.; Parkes, S. D.; Aragon, B.

    2017-12-01

    Observation of land surface temperature (LST) has many practical uses, from studying boundary layer dynamics and land-atmosphere coupling, to investigating surface properties such as soil moisture status, heat stress and surface heat fluxes. Typically, LST is observed via satellite based sensors such as LandSat or via point measurements using IR radiometers. These measurements provide either good spatial coverage and resolution or good temporal coverage. However, neither are able to provide the needed spatial and temporal resolution for many of the research applications described above. Technological developments in the use of Unmanned Aerial Vehicles (UAVs), together with small thermal frame cameras, has enabled a capacity to overcome this spatiotemporal constraint. Utilising UAV platforms to collect LST measurements across diurnal cycles provides an opportunity to study how meteorological and surface properties vary in both space and time. Here we describe the collection of LST data from a multi-rotor UAV across a study domain that is observed multiple times throughout the day. Flights over crops of Rhodes grass and alfalfa, along with a bare desert surface, were repeated with between 8 and 11 surveys covering the period from early morning to sunset. Analysis of the collected thermal imagery shows that the constructed LST maps illustrate a strong diurnal cycle consistent with expected trends, but with considerable spatial and temporal variability observed within and between the different domains. These results offer new insights into the dynamics of land surface behavior in both dry and wet soil conditions and at spatiotemporal scales that are unable to be replicated using traditional satellite platforms.

  9. Global distribution of total ozone and lower stratospheric temperature variations

    Directory of Open Access Journals (Sweden)

    W. Steinbrecht

    2003-01-01

    Full Text Available This study gives an overview of interannual variations of total ozone and 50 hPa temperature. It is based on newer and longer records from the 1979 to 2001 Total Ozone Monitoring Spectrometer (TOMS and Solar Backscatter Ultraviolet (SBUV instruments, and on US National Center for Environmental Prediction (NCEP reanalyses. Multiple linear least squares regression is used to attribute variations to various natural and anthropogenic explanatory variables. Usually, maps of total ozone and 50 hPa temperature variations look very similar, reflecting a very close coupling between the two. As a rule of thumb, a 10 Dobson Unit (DU change in total ozone corresponds to a 1 K change of 50 hPa temperature. Large variations come from the linear trend term, up to -30 DU or -1.5 K/decade, from terms related to polar vortex strength, up to 50 DU or 5 K (typical, minimum to maximum, from tropospheric meteorology, up to 30 DU or 3 K, or from the Quasi-Biennial Oscillation (QBO, up to 25 DU or 2.5 K. The 11-year solar cycle, up to 25 DU or 2.5 K, or El Niño/Southern Oscillation (ENSO, up to 10 DU or 1 K, are contributing smaller variations. Stratospheric aerosol after the 1991 Pinatubo eruption lead to warming up to 3 K at low latitudes and to ozone depletion up to 40 DU at high latitudes. Variations attributed to QBO, polar vortex strength, and to a lesser degree to ENSO, exhibit an inverse correlation between low latitudes and higher latitudes. Variations related to the solar cycle or 400 hPa temperature, however, have the same sign over most of the globe. Variations are usually zonally symmetric at low and mid-latitudes, but asymmetric at high latitudes. There, position and strength of the stratospheric anti-cyclones over the Aleutians and south of Australia appear to vary with the phases of solar cycle, QBO or ENSO.

  10. Do the earth tides have an influence on short-term variations in radon concentration?

    International Nuclear Information System (INIS)

    Barnet, I.; Prochazka, J.; Skalsky, L.

    1997-01-01

    The short term (diurnal) indoor radon variations are often explained as a result of temperature and air pressure changes inside a dwelling (the so-called stack effect). The observations of indoor and soil gas radon variations related to the temperature and pressure variations in a test dwelling at Lipova, Northern Bohemia, have not proved the expected correlation between the radon and climatic parameters. The stack effect was clearly observed at the beginning of the four week cycles, when the indoor temperature growth was obvious. However, the indoor radon variations were of the same range or higher than at the beginning of the cycles during the whole week cycles, even when the temperature changes were of the 1-3 o C range. A theory is therefore presented, supported by the known fluctuations of the groundwater level caused by the Earth tides, and the widely observed free air radon variations. According to this theory, the Earth tides lead to the compression of the aquifers and synchronous rise of the groundwater level, which displaces the soil gas with radon into the atmosphere or dwellings. The Earth tide components were calculated for the studied locality and time intervals. The very good phase fit of the amplitudes of gravity variations, vertical and volume strain and vertical displacement with the indoor radon variations was found. This agreement leads to the conclusion that the Earth tides can be considered as one of the causes of the indoor radon variations. This conclusion is also supported by the observations of the radon variations in the underground unventilated spaces under constant temperature and air pressure conditions. (Author)

  11. Diurnal modulation due to self-interacting mirror and hidden sector dark matter

    International Nuclear Information System (INIS)

    Foot, R.

    2012-01-01

    Mirror and more generic hidden sector dark matter models can simultaneously explain the DAMA, CoGeNT and CRESST-II dark matter signals consistently with the null results of the other experiments. This type of dark matter can be captured by the Earth and shield detectors because it is self-interacting. This effect will lead to a diurnal modulation in dark matter detectors. We estimate the size of this effect for dark matter detectors in various locations. For a detector located in the northern hemisphere, this effect is expected to peak in April and can be detected for optimistic parameter choices. The diurnal variation is expected to be much larger for detectors located in the southern hemisphere. In particular, if the CoGeNT detector were moved to e.g. Sierra Grande, Argentina then a 5σ dark matter discovery would be possible in around 30 days of operation

  12. Short-term variations in mesozooplankton, ichthyoplankton, and nutrients associated with semi-diurnal tides in a patagonian Gulf

    Science.gov (United States)

    Castro, L. R.; Cáceres, M. A.; Silva, N.; Muñoz, M. I.; León, R.; Landaeta, M. F.; Soto-Mendoza, S.

    2011-03-01

    The relationships between the distribution of different zooplankton and ichthyoplankton stages and physical and chemical variables were studied using samples and data (CTD profiles, ADCP and current meter measurements, nutrients, mesozooplankton, ichthyoplankton) obtained from different strata during two 24-h cycles at two oceanographic stations in a Chilean Patagonian gulf during the CIMAR 10-Fiordos cruise (November, 2004). A station located at the Chacao Channel was dominated by tidal mixing and small increments in surface stratification during high tides, leading to decreased nutrient availability. This agreed with short periods of increased phytoplankton abundance during slack waters at the end of flood currents. Increases in larval density for all zooplankton and ichthyoplankton taxa corresponded to the flooding phases of the tidal cycle. When the larval density data were fit to a sinusoidal model, the regression coefficients were high, suggesting that tides are important features that modulate short-term variations in plankton abundance. All larvae did not vary synchronously with the tidal phase; rather, time lags were observed among species. The abundances of older individuals of the copepodite Rhincalanus nasutus and all zoea stages of the squat lobster Munida gregaria increased during night flood tides, whereas younger stages increased during daytime flood tides. At a station located at the Queullin Pass, which was dominated by vertical stratification patterns, the variations in peak larval density were better fitted to the semi-diurnal sea level fluctuations. Other evidence indicated internal tides below the pycnocline, which could promote larval transport in deeper layers. In the overall picture that emerges from this study, planktonic organisms from different habitats and phylogenetic origins seem to respond to the local tidal regimes. In some cases, this response might be beneficial, transporting these individuals inshore to areas that are rich in

  13. Diurnal variability of surface fluxes at an oceanic station in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, Y.V.B.; Rao, D.P.

    Diurnal variability of the surface fluxes and ocean heat content was studied using the time-series data on marine surface meteorological parameters and upper ocean temperature collected at an oceanic station in the Bay of Bengal during 1st to 8th...

  14. A stochastic differential equation model of diurnal cortisol patterns

    Science.gov (United States)

    Brown, E. N.; Meehan, P. M.; Dempster, A. P.

    2001-01-01

    Circadian modulation of episodic bursts is recognized as the normal physiological pattern of diurnal variation in plasma cortisol levels. The primary physiological factors underlying these diurnal patterns are the ultradian timing of secretory events, circadian modulation of the amplitude of secretory events, infusion of the hormone from the adrenal gland into the plasma, and clearance of the hormone from the plasma by the liver. Each measured plasma cortisol level has an error arising from the cortisol immunoassay. We demonstrate that all of these three physiological principles can be succinctly summarized in a single stochastic differential equation plus measurement error model and show that physiologically consistent ranges of the model parameters can be determined from published reports. We summarize the model parameters in terms of the multivariate Gaussian probability density and establish the plausibility of the model with a series of simulation studies. Our framework makes possible a sensitivity analysis in which all model parameters are allowed to vary simultaneously. The model offers an approach for simultaneously representing cortisol's ultradian, circadian, and kinetic properties. Our modeling paradigm provides a framework for simulation studies and data analysis that should be readily adaptable to the analysis of other endocrine hormone systems.

  15. Day-night variation in operationally retrieved TOVS temperature biases

    Science.gov (United States)

    Kidder, Stanley Q.; Achtemeier, Gary L.

    1986-01-01

    Several authors have reported that operationally retrieved TOVS (TIROS Operational Vertical Sounder) temperatures are biased with respect to rawinsonde temperatures or temperature analyses. This note reports a case study from which it is concluded that, at least for the time period Mar. 26 through Apr. 8, 1979, there was a significant day-night variation in TOVS mean layer virtual temperature biases with respect to objective analyses of rawinsonde data over the U.S.

  16. Observing Seasonal and Diurnal Hydrometeorological Variability Within a Tropical Alpine Valley: Implications for Evapotranspiration

    Science.gov (United States)

    Hellstrom, R. A.; Mark, B. G.

    2007-12-01

    Conditions of glacier recession in the seasonally dry tropical Peruvian Andes motivate research to better constrain the hydrological balance in alpine valleys. There is an outstanding need to better understand the impact of the pronounced tropical hygric seasonality on energy and water budgets within pro-glacial valleys that channel glacier runoff to stream flow. This paper presents a novel embedded network installed in the glacierized Llanganuco valley of the Cordillera Blanca (9°S) comprising eight low-cost, discrete temperature and humidity microloggers ranging from 3470 to 4740 masl and an automatic weather station at 3850 masl. Data are aggregated into distinct dry and wet periods sampled from two full annual cycles (2004-2006) to explore patterns of diurnal and seasonal variability. The magnitude of diurnal solar radiation varies little within the valley between the dry and wet periods, while wet season near-surface air temperatures are cooler. Seasonally characteristic diurnal fluctuations in lapse rate partially regulate convection and humidity. Steep lapse rates during the wet season afternoon promote up-slope convection of warm, moist air and nocturnal rainfall events. Standardized grass reference evapotranspiration (ET0) was estimated using the FAO-56 algorithm of the United Nations Food and Agriculture Organization and compared with estimates of actual ET from the process-based BROOK90 model that incorporates more realistic vegetation parameters. Comparisons of composite diurnal cycles of ET for the wet and dry periods suggest about twice the daily ET0 during the dry period, attributed primarily to the 500% higher vapor pressure deficit and 20% higher daily total solar irradiance. Conversely, the near absence of rainfall during the dry season diminishes actual ET below that of the wet season by two orders of magnitude. Nearly cloud-free daylight conditions are critical for ET during the wet season. We found significant variability of ET with elevation

  17. Specific Diurnal EMG Activity Pattern Observed in Occlusal Collapse Patients: Relationship between Diurnal Bruxism and Tooth Loss Progression

    Science.gov (United States)

    Kawakami, Shigehisa; Kumazaki, Yohei; Manda, Yosuke; Oki, Kazuhiro; Minagi, Shogo

    2014-01-01

    Aim The role of parafunctional masticatory muscle activity in tooth loss has not been fully clarified. This study aimed to reveal the characteristic activity of masseter muscles in bite collapse patients while awake and asleep. Materials and Methods Six progressive bite collapse patients (PBC group), six age- and gender-matched control subjects (MC group), and six young control subjects (YC group) were enrolled. Electromyograms (EMG) of the masseter muscles were continuously recorded with an ambulatory EMG recorder while patients were awake and asleep. Diurnal and nocturnal parafunctional EMG activity was classified as phasic, tonic, or mixed using an EMG threshold of 20% maximal voluntary clenching. Results Highly extended diurnal phasic activity was observed only in the PBC group. The three groups had significantly different mean diurnal phasic episodes per hour, with 13.29±7.18 per hour in the PBC group, 0.95±0.97 per hour in the MC group, and 0.87±0.98 per hour in the YC group (pbruxism as a strong destructive force. We found that diurnal phasic masticatory muscle activity was most characteristic in patients with progressive bite collapse. Practical implications The incidence of diurnal phasic contractions could be used for the prognostic evaluation of stomatognathic system stability. PMID:25010348

  18. Diurnal Reflectance Changes in Vegetation Observed with AVIRIS

    Science.gov (United States)

    Vanderbilt, V. C.; Ambrosia, V. G.; Ustin, S. L.

    1998-01-01

    focused on day-to-day changes in water use, especially for agricultural applications. Ustin et al. showed seasonal changes in canopy water content in chaparral shrub could be estimated using optical methods. Vanderbilt et al. followed asymmetric diurnal changes in the reflectance of a walnut orchard, but could not attribute specific reflectance changes to specific changes in canopy architecture or physiology. Forests and shrub lands in California experience prolonged periods of drought, sometimes extending six months without precipitation. The conifer and evergreen chaparral communities common to the foothill region around the central valley of California retain their foliage throughout the summer and have low transpiration rates despite high net radiation and temperature conditions. In contrast, grasslands and drought resistant deciduous species in the same habitat are seasonally dormant in summer. Because of differences in the mechanisms of drought tolerance, rooting depth and physiology between different plant communities in the region, it is likely that they display differences in diurnal water relations. The presence of diverse plant communities provides an opportunity to investigate possible diurnal landscape patterns in water relations that could be observed by an airborne hyperspectral scanner. This investigation of AVIRIS data collected over forest and shrub land represents the continuation of a prior investigation involving spectral mixture analysis of diurnal effects in the same AVIRIS data set.

  19. Moored surface buoy observations of the diurnal warm layer

    KAUST Repository

    Prytherch, J.

    2013-09-01

    An extensive data set is used to examine the dynamics of diurnal warming in the upper ocean. The data set comprises more than 4700 days of measurements at five sites in the tropics and subtropics, obtained from surface moorings equipped to make comprehensive meteorological, incoming solar and infrared radiation, and high-resolution subsurface temperature (and, in some cases, velocity) measurements. The observations, which include surface warmings of up to 3.4°C, are compared with a selection of existing models of the diurnal warm layer (DWL). A simple one-layer physical model is shown to give a reasonable estimate of both the magnitude of diurnal surface warming (model-observation correlation 0.88) and the structure and temporal evolution of the DWL. Novel observations of velocity shear obtained during 346 days at one site, incorporating high-resolution (1 m) upper ocean (5-15 m) acoustic Doppler current profile measurements, are also shown to be in reasonable agreement with estimates from the physical model (daily maximum shear model-observation correlation 0.77). Physics-based improvements to the one-layer model (incorporation of rotation and freshwater terms) are discussed, though they do not provide significant improvements against the observations reported here. The simplicity and limitations of the physical model are used to discuss DWL dynamics. The physical model is shown to give better model performance under the range of forcing conditions experienced across the five sites than the more empirical models. ©2013. American Geophysical Union. All Rights Reserved.

  20. Moored surface buoy observations of the diurnal warm layer

    KAUST Repository

    Prytherch, J.; Farrar, J. T.; Weller, R. A.

    2013-01-01

    An extensive data set is used to examine the dynamics of diurnal warming in the upper ocean. The data set comprises more than 4700 days of measurements at five sites in the tropics and subtropics, obtained from surface moorings equipped to make comprehensive meteorological, incoming solar and infrared radiation, and high-resolution subsurface temperature (and, in some cases, velocity) measurements. The observations, which include surface warmings of up to 3.4°C, are compared with a selection of existing models of the diurnal warm layer (DWL). A simple one-layer physical model is shown to give a reasonable estimate of both the magnitude of diurnal surface warming (model-observation correlation 0.88) and the structure and temporal evolution of the DWL. Novel observations of velocity shear obtained during 346 days at one site, incorporating high-resolution (1 m) upper ocean (5-15 m) acoustic Doppler current profile measurements, are also shown to be in reasonable agreement with estimates from the physical model (daily maximum shear model-observation correlation 0.77). Physics-based improvements to the one-layer model (incorporation of rotation and freshwater terms) are discussed, though they do not provide significant improvements against the observations reported here. The simplicity and limitations of the physical model are used to discuss DWL dynamics. The physical model is shown to give better model performance under the range of forcing conditions experienced across the five sites than the more empirical models. ©2013. American Geophysical Union. All Rights Reserved.

  1. Phthalate metabolites in Norwegian mothers and children: Levels, diurnal variation and use of personal care products.

    Science.gov (United States)

    Sakhi, Amrit Kaur; Sabaredzovic, Azemira; Cequier, Enrique; Thomsen, Cathrine

    2017-12-01

    Exposure to phthalates has been associated with reproductive and developmental toxicity. Data on levels of these compounds in the Norwegian population is limited. In this study, urine samples were collected from 48 mothers and their children in two counties in Norway. Eleven different phthalate metabolites originating from six commonly used phthalates in consumer products were determined. Concentrations of phthalate metabolites were significantly higher in children compared to mothers except for mono-ethyl phthalate (MEP). The mothers provided several urine samples during 24hours (h) and diurnal variation showed that the concentrations in the morning urine samples (24-8h) were significantly higher than at other time-periods for most of the phthalate metabolites. Intraclass correlation coefficients (ICCs) for 24-hour time-period were in the range of 0.49-0.81. These moderate to high ICCs indicate that one spot urine sample can be used to estimate the exposure to phthalates. Since a significant effect of time of day was observed, it is still advisable to standardize the collection time point to reduce the variation. For the mothers, the use of personal care products (PCPs) were less associated with morning urine samples than early day (8-12h) and evening (16-24h) urine samples. The use of perfume and hair products were positively associated with the urinary concentrations of low molecular weight phthalates. Use of shower soap and shampoo were positively associated with urinary concentration of di(2-ethylhexyl) phthalate (DEHP) metabolites. For children, face cream use was positively associated with phthalate metabolites in the morning samples, and hand soap use was negatively associated with concentration of urinary DEHP metabolites in afternoon/evening samples. Since different PCPs were associated with the urinary phthalate metabolites in different time-periods during a day, more than one spot urine sample might be required to study associations between urinary

  2. High Frequency Variations of Earth Rotation Parameters from GPS and GLONASS Observations

    Directory of Open Access Journals (Sweden)

    Erhu Wei

    2015-01-01

    Full Text Available The Earth’s rotation undergoes changes with the influence of geophysical factors, such as Earth’s surface fluid mass redistribution of the atmosphere, ocean and hydrology. However, variations of Earth Rotation Parameters (ERP are still not well understood, particularly the short-period variations (e.g., diurnal and semi-diurnal variations and their causes. In this paper, the hourly time series of Earth Rotation Parameters are estimated using Global Positioning System (GPS, Global Navigation Satellite System (GLONASS, and combining GPS and GLONASS data collected from nearly 80 sites from 1 November 2012 to 10 April 2014. These new observations with combining different satellite systems can help to decorrelate orbit biases and ERP, which improve estimation of ERP. The high frequency variations of ERP are analyzed using a de-trending method. The maximum of total diurnal and semidiurnal variations are within one milli-arcseconds (mas in Polar Motion (PM and 0.5 milli-seconds (ms in UT1-UTC. The semidiurnal and diurnal variations are mainly related to the ocean tides. Furthermore, the impacts of satellite orbit and time interval used to determinate ERP on the amplitudes of tidal terms are analyzed. We obtain some small terms that are not described in the ocean tide model of the IERS Conventions 2010, which may be caused by the strategies and models we used or the signal noises as well as artifacts. In addition, there are also small differences on the amplitudes between our results and IERS convention. This might be a result of other geophysical excitations, such as the high-frequency variations in atmospheric angular momentum (AAM and hydrological angular momentum (HAM, which needs more detailed analysis with more geophysical data in the future.

  3. Wheel running improves REM sleep and attenuates stress-induced flattening of diurnal rhythms in F344 rats.

    Science.gov (United States)

    Thompson, Robert S; Roller, Rachel; Greenwood, Benjamin N; Fleshner, Monika

    2016-05-01

    Regular physical activity produces resistance to the negative health consequences of stressor exposure. One way that exercise may confer stress resistance is by reducing the impact of stress on diurnal rhythms and sleep; disruptions of which contribute to stress-related disease including mood disorders. Given the link between diurnal rhythm disruptions and stress-related disorders and that exercise both promotes stress resistance and is a powerful non-photic biological entrainment cue, we tested if wheel running could reduce stress-induced disruptions of sleep/wake behavior and diurnal rhythms. Adult, male F344 rats with or without access to running wheels were instrumented for biotelemetric recording of diurnal rhythms of locomotor activity, heart rate, core body temperature (CBT), and sleep (i.e. REM, NREM, and WAKE) in the presence of a 12 h light/dark cycle. Following 6 weeks of sedentary or exercise conditions, rats were exposed to an acute stressor known to disrupt diurnal rhythms and produce behaviors associated with mood disorders. Prior to stressor exposure, exercise rats had higher CBT, more locomotor activity during the dark cycle, and greater %REM during the light cycle relative to sedentary rats. NREM and REM sleep were consolidated immediately following peak running to a greater extent in exercise, compared to sedentary rats. In response to stressor exposure, exercise rats expressed higher stress-induced hyperthermia than sedentary rats. Stressor exposure disrupted diurnal rhythms in sedentary rats; and wheel running reduced these effects. Improvements in sleep and reduced diurnal rhythm disruptions following stress could contribute to the health promoting and stress protective effects of exercise.

  4. Diurnal Patterns and Correlates of Older Adults' Sedentary Behavior.

    Directory of Open Access Journals (Sweden)

    Jelle Van Cauwenberg

    Full Text Available Insights into the diurnal patterns of sedentary behavior and the identification of subgroups that are at increased risk for engaging in high levels of sedentary behavior are needed to inform potential interventions for reducing older adults' sedentary time. Therefore, we examined the diurnal patterns and sociodemographic correlates of older adults' sedentary behavior(s.Stratified cluster sampling was used to recruit 508 non-institutionalized Belgian older adults (≥ 65 years. Morning, afternoon, evening and total sedentary time was assessed objectively using accelerometers. Specific sedentary behaviors, total sitting time and sociodemographic attributes were assessed using an interviewer-administered questionnaire.Participants self-reported a median of 475 (Q1-Q3 = 383-599 minutes/day of total sitting time and they accumulated a mean of 580 ± 98 minutes/day of accelerometer-derived sedentary time. Sedentary time was lowest during the morning and highest during the evening. Older participants were as sedentary as younger participants during the evening, but they were more sedentary during daytime. Compared to married participants, widowers were more sedentary during daytime. Younger participants (< 75 years, men and the higher educated were more likely to engage in (high levels of sitting while driving a car and using the computer. Those with tertiary education viewed 29% and 22% minutes/day less television compared to those with primary or secondary education, respectively. Older participants accumulated 35 sedentary minutes/day more than did younger participants and men accumulated 32 sedentary minutes/day more than did women.These findings highlight diurnal variations and potential opportunities to tailor approaches to reducing sedentary time for subgroups of the older adult population.

  5. Variation between cut chrysanthemum cultivars in response to suboptimal temperature

    NARCIS (Netherlands)

    Ploeg, van der A.; Kularathne, R.J.K.N.; Carvalho, S.M.P.; Heuvelink, E.

    2007-01-01

    To breed for more energy-efficient cut chrysanthemum (Chrysanthemum morifolium Ramat.) cultivars it is important to know the variation of the temperature response existing in modern cultivars. In a greenhouse experiment with 25 chrysanthemum cultivars, a significant variation was observed in

  6. Segregating variation for temperature-dependent sex determination in a lizard.

    Science.gov (United States)

    Rhen, T; Schroeder, A; Sakata, J T; Huang, V; Crews, D

    2011-04-01

    Temperature-dependent sex determination (TSD) was first reported in 1966 in an African lizard. It has since been shown that TSD occurs in some fish, several lizards, tuataras, numerous turtles and all crocodilians. Extreme temperatures can also cause sex reversal in several amphibians and lizards with genotypic sex determination. Research in TSD species indicates that estrogen signaling is important for ovary development and that orthologs of mammalian genes have a function in gonad differentiation. Nevertheless, the mechanism that actually transduces temperature into a biological signal for ovary versus testis development is not known in any species. Classical genetics could be used to identify the loci underlying TSD, but only if there is segregating variation for TSD. Here, we use the 'animal model' to analyze inheritance of sexual phenotype in a 13-generation pedigree of captive leopard geckos, Eublepharis macularius, a TSD reptile. We directly show genetic variance and genotype-by-temperature interactions for sex determination. Additive genetic variation was significant at a temperature that produces a female-biased sex ratio (30°C), but not at a temperature that produces a male-biased sex ratio (32.5°C). Conversely, dominance variance was significant at the male-biased temperature (32.5°C), but not at the female-biased temperature (30°C). Non-genetic maternal effects on sex determination were negligible in comparison with additive genetic variance, dominance variance and the primary effect of temperature. These data show for the first time that there is segregating variation for TSD in a reptile and consequently that a quantitative trait locus analysis would be practicable for identifying the genes underlying TSD.

  7. Effects of temperature variation on MOSFET dosimetry

    International Nuclear Information System (INIS)

    Cheung Tsang; Butson, Martin J; Yu, Peter K N

    2004-01-01

    This note investigates temperature effects on dosimetry using a metal oxide semiconductor field effect transistor (MOSFET) for radiotherapy x-ray treatment. This was performed by analysing the dose response and threshold voltage outputs for MOSFET dosimeters as a function of ambient temperature. Results have shown that the clinical semiconductor dosimetry system (CSDS) MOSFET provides stable dose measurements with temperatures varying from 15 deg. C up to 40 deg. C. Thus standard irradiations performed at room temperature can be directly compared to in vivo dose assessments performed at near body temperature without a temperature correction function. The MOSFET dosimeter threshold voltage varies with temperature and this level is dependent on the dose history of the MOSFET dosimeter. However, the variation can be accounted for in the measurement method. For accurate dosimetry, the detector should be placed for approximately 60 s on a patient to allow thermal equilibrium before measurements are taken with the final reading performed whilst still attached to the patient or conversely left for approximately 120 s after removal from the patient if initial readout was measured at room temperature to allow temperature equilibrium to be established. (note)

  8. Diurnal variation in the coupling of photosynthetic electron transport and carbon fixation in iron-limited phytoplankton in the NE subarctic Pacific

    Science.gov (United States)

    Schuback, Nina; Flecken, Mirkko; Maldonado, Maria T.; Tortell, Philippe D.

    2016-02-01

    Active chlorophyll a fluorescence approaches, including fast repetition rate fluorometry (FRRF), have the potential to provide estimates of phytoplankton primary productivity at an unprecedented spatial and temporal resolution. FRRF-derived productivity rates are based on estimates of charge separation in reaction center II (ETRRCII), which must be converted into ecologically relevant units of carbon fixation. Understanding sources of variability in the coupling of ETRRCII and carbon fixation provides physiological insight into phytoplankton photosynthesis and is critical for the application of FRRF as a primary productivity measurement tool. In the present study, we simultaneously measured phytoplankton carbon fixation and ETRRCII in the iron-limited NE subarctic Pacific over the course of a diurnal cycle. We show that rates of ETRRCII are closely tied to the diurnal cycle in light availability, whereas rates of carbon fixation appear to be influenced by endogenous changes in metabolic energy allocation under iron-limited conditions. Unsynchronized diurnal oscillations of the two rates led to 3.5-fold changes in the conversion factor between ETRRCII and carbon fixation (Kc / nPSII). Consequently, diurnal variability in phytoplankton carbon fixation cannot be adequately captured with FRRF approaches if a constant conversion factor is applied. Utilizing several auxiliary photophysiological measurements, we observed that a high conversion factor is associated with conditions of excess light and correlates with the increased expression of non-photochemical quenching (NPQ) in the pigment antenna, as derived from FRRF measurements. The observed correlation between NPQ and Kc / nPSII requires further validation but has the potential to improve estimates of phytoplankton carbon fixation rates from FRRF measurements alone.

  9. Phase difference between calcification and organic matrix formation in the diurnal growth of otoliths in rainbow trout, Salmo gairdneri

    International Nuclear Information System (INIS)

    Mugiya, Y.

    1987-01-01

    The relative role of calcium and organic matrix deposition in the formation of daily increments in otoliths was studied in in vitro preparations of otolith-containing sacculi of rainbow trout, Salmo gairdneri. Sacculi were incubated in a Ringer solution containing both 45 Ca and 3 H-glutamic acid for 2 hours at 6-h intervals throughout a 24-h period and then the uptake of these isotopes was determined for both otolith and saccular tissue fractions. Serum calcium and sodium concentrations were also analyzed for diurnal variations. Serum calcium concentrations varied diurnally by 8% in a single phasic pattern, reaching a peak at dusk (1600 h) and a nadir at night (2200 h), while sodium concentrations remained almost constant throughout a 24-h period. Diurnal variation in the otolith's uptake of calcium and glutamic acid showed discrete, antiphasic cycles. The rate of calcium uptake varied in a pattern closely resembling that of serum calcium (the peak at 1600 h and the nadir at 2200 h); glutamic acid uptake remained almost constant during the daytime and peaked at night (2200 h). The results indicate that in rainbow trout daily increments of otoliths are formed by the antiphasic deposition of calcium and organic matrix

  10. [Effects of compaction on diurnal variaaton of soil respiration in Larix gmellini plantation in summer].

    Science.gov (United States)

    He, Na; Wang, Li-hai

    2010-12-01

    Taking the Larix gmellinii plantation in the experimental forest farm of Northeast Forestry University as test object, and by using Li-8100 automatic instrument, the daily CO2 emission rate of soil in summer under different degrees of man-made compaction was measured, with the regression models established. There were significant differences in the diurnal variation of soil respiration rate under different degrees of man-made compaction. In CK (no compaction), the maximum value of soil respiration appeared at 15:30-17:30, and the minimum value appeared at 03:30-05:30, which were obviously lagged behind those in compaction treatments. The maximum and minimum values of soil respiration rate in main roads appeared at 09:30-11:30 and 23:30-01:30, and those in branch roads appeared at 11:30 and 01:30-03:30, respectively. In all treatments, soil respiration rate had significant correlations with surface temperature, relative humidity, and the temperature at 10 cm soil depth, but the correlation with the soil moisture at 5 cm depth tended to be not significant when the compaction degree was increasing. Compaction altered surface soil physical structure, decreased surface soil CO2 release rate.

  11. Effects of temperature variations on guided waves propagating in composite structures

    Science.gov (United States)

    Shoja, Siavash; Berbyuk, Viktor; Boström, Anders

    2016-04-01

    Effects of temperature on guided waves propagating in composite materials is a well-known problem which has been investigated in many studies. The majority of the studies is focused on effects of high temperature. Understanding the effects of low temperature has major importance in composite structures and components which are operating in cold climate conditions such as e.g. wind turbines operating in cold climate regions. In this study first the effects of temperature variations on guided waves propagating in a composite plate is investigated experimentally in a cold climate chamber. The material is a common material used to manufacture rotor blades of wind turbines. The temperature range is 25°C to -25°C and effects of temperature variations on amplitude and phase shift of the received signal are investigated. In order to apply the effects of lowering the temperature on the received signal, the Baseline Signal Stretch (BSS) method is modified and used. The modification is based on decomposing the signal into symmetric and asymmetric modes and applying two different stretch factors on each of them. Finally the results obtained based on the new method is compared with the results of application of BSS with one stretch factor and experimental measurements. Comparisons show that an improvement is obtained using the BSS with the mode decomposition method at temperature variations of more than 25°C.

  12. Simulated precipitation diurnal cycles over East Asia using different CAPE-based convective closure schemes in WRF model

    Science.gov (United States)

    Yang, Ben; Zhou, Yang; Zhang, Yaocun; Huang, Anning; Qian, Yun; Zhang, Lujun

    2018-03-01

    Closure assumption in convection parameterization is critical for reasonably modeling the precipitation diurnal variation in climate models. This study evaluates the precipitation diurnal cycles over East Asia during the summer of 2008 simulated with three convective available potential energy (CAPE) based closure assumptions, i.e. CAPE-relaxing (CR), quasi-equilibrium (QE), and free-troposphere QE (FTQE) and investigates the impacts of planetary boundary layer (PBL) mixing, advection, and radiation on the simulation by using the weather research and forecasting model. The sensitivity of precipitation diurnal cycle to PBL vertical resolution is also examined. Results show that the precipitation diurnal cycles simulated with different closures all exhibit large biases over land and the simulation with FTQE closure agrees best with observation. In the simulation with QE closure, the intensified PBL mixing after sunrise is responsible for the late-morning peak of convective precipitation, while in the simulation with FTQE closure, convective precipitation is mainly controlled by advection cooling. The relative contributions of different processes to precipitation formation are functions of rainfall intensity. In the simulation with CR closure, the dynamical equilibrium in the free troposphere still can be reached, implying the complex cause-effect relationship between atmospheric motion and convection. For simulations in which total CAPE is consumed for the closures, daytime precipitation decreases with increased PBL resolution because thinner model layer produces lower convection starting layer, leading to stronger downdraft cooling and CAPE consumption. The sensitivity of the diurnal peak time of precipitation to closure assumption can also be modulated by changes in PBL vertical resolution. The results of this study help us better understand the impacts of various processes on the precipitation diurnal cycle simulation.

  13. Solar and lunar daily geomagnetic variations at Dourbes

    International Nuclear Information System (INIS)

    De Meyer, F.

    1980-01-01

    Spectral analysis of the Dourbes H component hourly data from the period 1960-1978 revealed the existence of a number of minor terms, in addition to the main solar and lunar peaks. The relative amplitudes of oscillations in the geomagnetic spectrum are unrelated with those predicted through lunar tide theory. The minor terms agree more closely with the 27-day amplitude modulation mechanism. A high frequency resolution power spectrum clearly shows the splitting of the solar diurnal and semi-diurnal line, and even of the lunar semi-diurnal line by the annual variation and its harmonics. The correlation between the amplitude of the M 2 wave and the mean sunspot number is of no significance. (author)

  14. Solar flare location effect on the spectral characteristics of the diurnal anisotropy of cosmic ray intensity

    Energy Technology Data Exchange (ETDEWEB)

    Yadava, R S; Kumar, S; Naqvi, T N [Aligarh Muslim Univ. (India)

    1977-01-01

    The spectral parameters of the diurnal anisotropy of cosmic ray intensity are studied separately for days where the solar flares have occurred on the western limb as well as on the eastern limb of the solar disc for both nucleonic as well as mesonic components of the cosmic rays. It is observed that the diurnal amplitude of the cosmic ray intensity in space is larger for days where solar flares have occurred on the western limb of the solar disc as compared to the days where solar flares have occurred on the eartern limb of the solar disc. This is true in both nucleonic as well as mesonic components of the cosmic ray intensity. The average value of the direction in space of diurnal anisotropy in local asymptotic time for various stations is almost same and is observed at around the same hours for flares which occur on the western as well as eastern limb of the solar disc. When these results are compared with the direction of the diurnal anisotropy in space on quiet days, it is found that the direction of the diurnal anisotropy on days where solar flares have occurred on the western limb as well as eastern limb of the solar disc is earlier in comparison to quiet days. This phase shift towards earlier hours is about three hours for nucleonic as well as mesonic components of the cosmic rays intensity. The variation of the rigidity exponent observed on different types of days for the nucleonic component has also been discussed.

  15. Midday Depression vs. Midday Peak in Diurnal Light Interception: Contrasting Patterns at Crown and Leaf Scales in a Tropical Evergreen Tree

    Directory of Open Access Journals (Sweden)

    Agustina Ventre-Lespiaucq

    2018-05-01

    Full Text Available Crown architecture usually is heterogeneous as a result of foraging in spatially and temporally heterogeneous light environments. Ecologists are only beginning to identify the importance of temporal heterogeneity for light acquisition in plants, especially at the diurnal scale. Crown architectural heterogeneity often leads to a diurnal variation in light interception. However, maximizing light interception during midday may not be an optimal strategy in environments with excess light. Instead, long-lived plants are expected to show crown architectures and leaf positions that meet the contrasting needs of light interception and avoidance of excess light on a diurnal basis. We expected a midday depression in the diurnal course of light interception both at the whole-crown and leaf scales, as a strategy to avoid the interception of excessive irradiance. We tested this hypothesis in a population of guava trees (Psidium guajava L. growing in an open tropical grassland. We quantified three crown architectural traits: intra-individual heterogeneity in foliage clumping, crown openness, and leaf position angles. We estimated the diurnal course of light interception at the crown scale using hemispheric photographs, and at the leaf scale using the cosine of solar incidence. Crowns showed a midday depression in light interception, while leaves showed a midday peak. These contrasting patterns were related to architectural traits. At the crown scale, the midday depression of light interception was linked to a greater crown openness and foliage clumping in crown tops than in the lateral parts of the crown. At the leaf scale, an average inclination angle of 45° led to the midday peak in light interception, but with a huge among-leaf variation in position angles. The mismatch in diurnal course of light interception at crown and leaf scales can indicate that different processes are being optimized at each scale. These findings suggest that the diurnal course of

  16. TransCom model simulations of hourly atmospheric CO2: Experimental overview and diurnal cycle results for 2002

    NARCIS (Netherlands)

    Law, R. M.; Peters, W.; RöDenbeck, C.; Aulagnier, C.; Baker, I.; Bergmann, D. J.; Bousquet, P.; Brandt, J.; Bruhwiler, L.; Cameron-Smith, P. J.; Christensen, J. H.; Delage, F.; Denning, A. S.; Fan, S.; Geels, C.; Houweling, S.; Imasu, R.; Karstens, U.; Kawa, S. R.; Kleist, J.; Krol, M. C.; Lin, S.-J.; Lokupitiya, R.; Maki, T.; Maksyutov, S.; Niwa, Y.; Onishi, R.; Parazoo, N.; Patra, P. K.; Pieterse, G.; Rivier, L.; Satoh, M.; Serrar, S.; Taguchi, S.; Takigawa, M.; Vautard, R.; Vermeulen, A. T.; Zhu, Z.

    2008-01-01

    A forward atmospheric transport modeling experiment has been coordinated by the TransCom group to investigate synoptic and diurnal variations in CO2. Model simulations were run for biospheric, fossil, and air-sea exchange of CO2 and for SF6 and radon for 2000-2003. Twenty-five models or model

  17. Lateral temperature variations at the core-mantle boundary deduced from the magnetic field

    Science.gov (United States)

    Bloxham, Jeremy; Jackson, Andrew

    1990-01-01

    Recent studies of the secular variation of the earth's magnetic field over periods of a few centuries have suggested that the pattern of fluid motion near the surface of earth's outer core may be strongly influenced by lateral temperature variations in the lowermost mantle. This paper introduces a self-consistent method for finding the temperature variations near the core surface by assuming that the dynamical balance there is geostrophic and that lateral density variations there are thermal in origin. As expected, the lateral temperature variations are very small. Some agreement is found between this pattern and the pattern of topography of the core-mantle boundary, but this does not conclusively answer to what extent core surface motions are controlled by the mantle, rather than being determined by processes in the core.

  18. Diurnal changes in ocean color sensed in satellite imagery

    Science.gov (United States)

    Arnone, Robert; Vandermuelen, Ryan; Soto, Inia; Ladner, Sherwin; Ondrusek, Michael; Yang, Haoping

    2017-07-01

    Measurements of diurnal changes in ocean color in turbid coastal regions in the Gulf of Mexico were characterized using above water spectral radiometry from a National Aeronautics and Space Administration (aerosol robotic network-WaveCIS CSI-06) site that can provide 8 to 10 observations per day. Satellite capability to detect diurnal changes in ocean color was characterized using hourly overlapping afternoon orbits of the visual infrared imaging radiometer suite (VIIRS) Suomi National Polar-orbiting Partnership ocean color sensor and validated with in situ observations. The monthly cycle of diurnal changes was investigated for different water masses using VIIRS overlaps. Results showed the capability of satellite observations to monitor hourly color changes in coastal regions that can be impacted by vertical movement of optical layers, in response to tides, resuspension, and river plume dispersion. The spatial variability of VIIRS diurnal changes showed the occurrence and displacement of phytoplankton blooming and decaying processes. The diurnal change in ocean color was above 20%, which represents a 30% change in chlorophyll-a. Seasonal changes in diurnal ocean color for different water masses suggest differences in summer and winter responses to surface processes. The diurnal changes observed using satellite ocean color can be used to define the following: surface processes associated with biological activity, vertical changes in optical depth, and advection of water masses.

  19. Adaptive selection of diurnal minimum variation: a statistical strategy to obtain representative atmospheric CO2 data and its application to European elevated mountain stations

    Directory of Open Access Journals (Sweden)

    Y. Yuan

    2018-03-01

    Full Text Available Critical data selection is essential for determining representative baseline levels of atmospheric trace gases even at remote measurement sites. Different data selection techniques have been used around the world, which could potentially lead to reduced compatibility when comparing data from different stations. This paper presents a novel statistical data selection method named adaptive diurnal minimum variation selection (ADVS based on CO2 diurnal patterns typically occurring at elevated mountain stations. Its capability and applicability were studied on records of atmospheric CO2 observations at six Global Atmosphere Watch stations in Europe, namely, Zugspitze-Schneefernerhaus (Germany, Sonnblick (Austria, Jungfraujoch (Switzerland, Izaña (Spain, Schauinsland (Germany, and Hohenpeissenberg (Germany. Three other frequently applied statistical data selection methods were included for comparison. Among the studied methods, our ADVS method resulted in a lower fraction of data selected as a baseline with lower maxima during winter and higher minima during summer in the selected data. The measured time series were analyzed for long-term trends and seasonality by a seasonal-trend decomposition technique. In contrast to unselected data, mean annual growth rates of all selected datasets were not significantly different among the sites, except for the data recorded at Schauinsland. However, clear differences were found in the annual amplitudes as well as the seasonal time structure. Based on a pairwise analysis of correlations between stations on the seasonal-trend decomposed components by statistical data selection, we conclude that the baseline identified by the ADVS method is a better representation of lower free tropospheric (LFT conditions than baselines identified by the other methods.

  20. Adaptive selection of diurnal minimum variation: a statistical strategy to obtain representative atmospheric CO2 data and its application to European elevated mountain stations

    Science.gov (United States)

    Yuan, Ye; Ries, Ludwig; Petermeier, Hannes; Steinbacher, Martin; Gómez-Peláez, Angel J.; Leuenberger, Markus C.; Schumacher, Marcus; Trickl, Thomas; Couret, Cedric; Meinhardt, Frank; Menzel, Annette

    2018-03-01

    Critical data selection is essential for determining representative baseline levels of atmospheric trace gases even at remote measurement sites. Different data selection techniques have been used around the world, which could potentially lead to reduced compatibility when comparing data from different stations. This paper presents a novel statistical data selection method named adaptive diurnal minimum variation selection (ADVS) based on CO2 diurnal patterns typically occurring at elevated mountain stations. Its capability and applicability were studied on records of atmospheric CO2 observations at six Global Atmosphere Watch stations in Europe, namely, Zugspitze-Schneefernerhaus (Germany), Sonnblick (Austria), Jungfraujoch (Switzerland), Izaña (Spain), Schauinsland (Germany), and Hohenpeissenberg (Germany). Three other frequently applied statistical data selection methods were included for comparison. Among the studied methods, our ADVS method resulted in a lower fraction of data selected as a baseline with lower maxima during winter and higher minima during summer in the selected data. The measured time series were analyzed for long-term trends and seasonality by a seasonal-trend decomposition technique. In contrast to unselected data, mean annual growth rates of all selected datasets were not significantly different among the sites, except for the data recorded at Schauinsland. However, clear differences were found in the annual amplitudes as well as the seasonal time structure. Based on a pairwise analysis of correlations between stations on the seasonal-trend decomposed components by statistical data selection, we conclude that the baseline identified by the ADVS method is a better representation of lower free tropospheric (LFT) conditions than baselines identified by the other methods.

  1. The relationship of age-adjusted Charlson comorbidity ındex and diurnal variation of blood pressure.

    Science.gov (United States)

    Kalaycı, Belma; Erten, Yunus Turgay; Akgün, Tunahan; Karabag, Turgut; Kokturk, Furuzan

    2018-03-05

    Charlson Comorbidity index (CCI) is a scoring system to predict prognosis and mortality. It exhibits better utility when combined with age, age-adjusted Charlson Comorbidity Index (ACCI). The aim of this study was to evaluate the relationship between ACCI and diurnal variation of blood pressure parameters in hypertensive patients and normotensive patients. We enrolled 236 patients. All patients underwent a 24-h ambulatory blood pressure monitoring (ABPM) for evaluation of dipper or non-dipper pattern. We searched the correlation between ACCI and dipper or non-dipper pattern and other ABPM parameters. To further investigate the role of these parameters in predicting survival, a multivariate analysis using the Cox proportional hazard model was performed. 167 patients were in the hypertensive group (87 patients in non-dipper status) and 69 patients were in the normotensive group (41 patients in non-dipper status) of all study patients. We found a significant difference and negative correlation between AACI and 24-h diastolic blood pressure (DBP), awake DBP, awake mean blood pressure (MBP) and 24-h MBP and awake systolic blood pressure(SBP). Night decrease ratio of blood pressure had also a negative correlation with ACCI (p = 0.003, r = -0.233). However, we found a relationship with non-dipper pattern and ACCI in the hypertensive patients (p = 0.050). In multivariate Cox analysis sleep MBP was found related to mortality like ACCI (p = 0.023, HR = 1.086, %95 CI 1.012-1.165) Conclusion: ACCI was statistically significantly higher in non-dipper hypertensive patients than dipper hypertensive patients while ACCI had a negative correlation with blood pressure. Sleep MBP may predict mortality.

  2. Multiple origin of diurnality in geckos: evidence from eye lens crystallins

    Science.gov (United States)

    Röll, Beate

    2001-05-01

    The large lizard family Gekkonidae comprises about 90 genera (1000 species). While most geckos are nocturnal, the members of about 15 genera are diurnal. All of these species are 'tertiarily' diurnal, i.e. they are descended from 'secondarily' nocturnal ancestors. They have adapted to a diurnal lifestyle in quite different ways, as can be deduced by the crystallin proteins in their lenses. Evaluation of the heterogeneous lens crystallin compositions of diurnal geckos reveals that there are at least three lineages that regained diurnality independently.

  3. On the Diurnal Periodicity of Representative Earthquakes in Greece: Comparison of Data from Different Observation Systems

    Science.gov (United States)

    Desherevskii, A. V.; Sidorin, A. Ya.

    2017-12-01

    Due to the initiation of the Hellenic Unified Seismic Network (HUSN) in late 2007, the quality of observation significantly improved by 2011. For example, the representative magnitude level considerably has decreased and the number of annually recorded events has increased. The new observational system highly expanded the possibilities for studying regularities in seismicity. In view of this, the authors revisited their studies of the diurnal periodicity of representative earthquakes in Greece that was revealed earlier in the earthquake catalog before 2011. We use 18 samples of earthquakes of different magnitudes taken from the catalog of Greek earthquakes from 2011 to June 2016 to derive a series of the number of earthquakes for each of them and calculate its average diurnal course. To increase the reliability of the results, we compared the data for two regions. With a high degree of statistical significance, we have obtained that no diurnal periodicity can be found for strongly representative earthquakes. This finding differs from the estimates obtained earlier from an analysis of the catalog of earthquakes at the same area for 1995-2004 and 2005-2010, i.e., before the initiation of the Hellenic Unified Seismic Network. The new results are consistent with the hypothesis of noise discrimination (observational selection) explaining the cause of the diurnal variation of earthquakes with different sensitivity of the seismic network in daytime and nighttime periods.

  4. PWR clad ballooning: The effect of circumferential clad temperature variations on the burst strain/burst temperature relationship

    International Nuclear Information System (INIS)

    Barlow, P.

    1983-01-01

    By experiment, it has been shown by other workers that there is a reduction in the creep ductility of Zircaloy 4 in the α+β phase transition region. Results from single rod burst tests also show a reduction in burst strain in the α+β phase region. In this report it is shown theoretically that for single rod burst tests in the presence of circumferential temperature gradients, the temperature dependence of the mean burst strain is not determined by temperature variations in creep ductility, but is governed by the temperature sensitivity of the creep strain rate, which is shown to be a maximum in the α+β phase transition region. To demonstrate this effect, the mean clad strain at burst was calculated for creep straining at different temperature levels in the α, α+β and β phase regions. Cross-pin temperature gradients were applied which produced strain variations around the clad which were greatest in the α+β phase region. The mean strain at burst was determined using a maximum local burst strain (i.e. a creep ductility) which is independent of temperature. By assuming cross-pin temperature gradients which are typical of those observed during burst tests, then the calculated mean burst strain/burst temperature relationship gave good agreement with experiment. The calculations also show that when circumferential temperature differences are present, the calculated mean strain at burst is not sensitive to variations in the magnitude of the assumed creep ductility. This reduces the importance of the assumed burst criterion in the calculations. Hence a temperature independent creep ductility (e.g. 100% local strain) is adequate as a burst criterion for calculations under PWR LOCA conditions. (author)

  5. TransCom model simulations of hourly atmospheric CO2: Experimental overview and diurnal cycle results for 2002

    NARCIS (Netherlands)

    Law, R. M.; Peters, W.; Roedenbeck, C.; Aulagnier, C.; Baker, I.; Bergmann, D. J.; Bousquet, P.; Brandt, J.; Bruhwiler, L.; Cameron-Smith, P. J.; Christensen, J. H.; Delage, F.; Denning, A. S.; Fan, S.; Geels, C.; Houweling, S.; Imasu, R.; Karstens, U.; Kawa, S. R.; Kleist, J.; Krol, M. C.; Lin, S. -J.; Lokupitiya, R.; Maki, T.; Maksyutov, S.; Niwa, Y.; Onishi, R.; Parazoo, N.; Patra, P. K.; Pieterse, G.; Rivier, L.; Satoh, M.; Serrar, S.; Taguchi, S.; Takigawa, M.; Vautard, R.; Vermeulen, A. T.; Zhu, Z.

    2008-01-01

    [1] A forward atmospheric transport modeling experiment has been coordinated by the TransCom group to investigate synoptic and diurnal variations in CO2. Model simulations were run for biospheric, fossil, and air-sea exchange of CO2 and for SF6 and radon for 2000-2003. Twenty-five models or model

  6. Diurnal Solar Energy Conversion and Photoprotection in Rice Canopies.

    Science.gov (United States)

    Meacham, Katherine; Sirault, Xavier; Quick, W Paul; von Caemmerer, Susanne; Furbank, Robert

    2017-01-01

    Genetic improvement of photosynthetic performance of cereal crops and increasing the efficiency with which solar radiation is converted into biomass has recently become a major focus for crop physiologists and breeders. The pulse amplitude modulated chlorophyll fluorescence technique (PAM) allows quantitative leaf level monitoring of the utilization of energy for photochemical light conversion and photoprotection in natural environments, potentially over the entire crop lifecycle. Here, the diurnal relationship between electron transport rate (ETR) and irradiance was measured in five cultivars of rice (Oryza sativa) in canopy conditions with PAM fluorescence under natural solar radiation. This relationship differed substantially from that observed for conventional short term light response curves measured under controlled actinic light with the same leaves. This difference was characterized by a reduced curvature factor when curve fitting was used to model this diurnal response. The engagement of photoprotective processes in chloroplast electron transport in leaves under canopy solar radiation was shown to be a major contributor to this difference. Genotypic variation in the irradiance at which energy flux into photoprotective dissipation became greater than ETR was observed. Cultivars capable of higher ETR at midrange light intensities were shown to produce greater leaf area over time, estimated by noninvasive imaging. © 2017 American Society of Plant Biologists. All Rights Reserved.

  7. Effect of periodic temperature variations on the microstructure of neutron-irradiated metals

    DEFF Research Database (Denmark)

    Zinkle, S.J.; Hashimoto, N.; Hoelzer, D.T.

    2002-01-01

    Specimens of pure copper, a high purity austenitic stainless steel, and V–4Cr–4Ti were exposed to eight cycles of either constant temperature or periodic temperature variations during neutron irradiation in the High Flux Isotopes Reactor to a cumulative damage level of 4–5 displacements per atom.......-induced microstructural features consisted of dislocation loops, stacking fault tetrahedra and voids in the stainless steel, Ti-rich precipitates in the V alloy, and voids (along with a low density of stacking fault tetrahedra) in copper.......Specimens of pure copper, a high purity austenitic stainless steel, and V–4Cr–4Ti were exposed to eight cycles of either constant temperature or periodic temperature variations during neutron irradiation in the High Flux Isotopes Reactor to a cumulative damage level of 4–5 displacements per atom....... Specimens exposed to periodic temperature variations experienced a low temperature (360 °C) during the initial 10% of accrued dose in each of the eight cycles, and a higher temperature (520 °C) during the remaining 90% of accrued dose in each cycle. The microstructures of the irradiated stainless steel...

  8. Mesoscale modeling of Central American smoke transport to the United States: 1. ``Top-down'' assessment of emission strength and diurnal variation impacts

    Science.gov (United States)

    Wang, Jun; Christopher, Sundar A.; Nair, U. S.; Reid, Jeffrey S.; Prins, Elaine M.; Szykman, James; Hand, Jenny L.

    2006-03-01

    As is typical in the Northern Hemisphere spring, during 20 April to 21 May 2003, significant biomass burning smoke from Central America was transported to the southeastern United States (SEUS). A coupled aerosol, radiation, and meteorology model that is built upon the heritage of the Regional Atmospheric Modeling System (RAMS), having newly developed capabilities of Assimilation and Radiation Online Modeling of Aerosols (AROMA) algorithm, was used to simulate the smoke transport and quantify the smoke radiative impacts on surface energetics, boundary layer, and other atmospheric processes. This paper, the first of a two-part series, describes the model and examines the ability of RAMS-AROMA to simulate the smoke transport. Because biomass-burning fire activities have distinct diurnal variations, the FLAMBE hourly smoke emission inventory that is derived from the geostationary satellite (GOES) fire products was assimilated into the model. In the "top-down" analysis, ground-based observations were used to evaluate the model performance, and the comparisons with model-simulated results were used to estimate emission uncertainties. Qualitatively, a 30-day simulation of smoke spatial distribution as well as the timing and location of the smoke fronts are consistent with those identified from the PM2.5 observation network, local air quality reports, and the measurements of aerosol optical thickness (AOT) and aerosol vertical profiles from the Southern Great Plains (SGP) Atmospheric Radiation Measurements (ARM) site in Oklahoma. Quantitatively, the model-simulated daily mean near-surface dry smoke mass correlates well with PM2.5 mass at 34 locations in Texas and with the total carbon mass and nonsoil potassium mass (KNON) at three IMPROVE sites along the smoke pathway (with linear correlation coefficients R = 0.77, 0.74, and 0.69 at the significance level larger than 0.99, respectively). The top-down sensitivity analysis indicates that the total smoke particle emission

  9. Variation of microchannel plate resistance with temperature and applied voltage

    International Nuclear Information System (INIS)

    Pearson, J.F.; Fraser, G.W.; Whiteley, M.J.

    1987-01-01

    The resistance of microchannel plate electron multiplier is well known to be a function of both applied voltage and detector temperature. We show that the apparent variation of resistance with bias voltage is simply due to plate temperature increases resulting from resistive heating. (orig.)

  10. Salinity and temperature variations around Peninsula Malaysia coastal waters

    International Nuclear Information System (INIS)

    Abdul Kadir Ishak; Jeremy Andy Anak Dominic; Nazrul Hizam Yusof; Mohd Rafaei Murtadza

    2004-01-01

    Vertical profiles of salinity and temperature were measured at several offshore stations along east and west coast of Peninsula Malaysia coastal waters. The measurements which covered South China Sea and Straits of Malacca were made during sampling cruises for Marine Database Project for Peninsula Malaysia, and during an IAEA regional training course for Marine Pollution Project. The results show that the water temperature is highest at the surface and minimum at bottom, while the salinity is lowest at the surface and highest at the bottom. In Malacca Straits, the highest surface water temperature was 30.6 degree C and the lowest bottom water temperature was 20.4 degree C, recorded at a station located in Andaman Sea. The same station also recorded the highest surface and bottom salinity i.e. 31.3 ppt and 34.4 ppt, respectively. For South China Sea, the maximum surface water temperature was 30.4 degree C and the minimum bottom temperature was 25.9 degree C, while the highest surface salinity was 33.2 ppt and the highest bottom salinity was 34.1 ppt. The water in South China Sea also showed some degrees of stratifications with thermocline zones located between 10-40 m water depths. In Malacca Straits, stronger thermocline develops at higher latitude, while at lower latitude the water is more readily mixed. Beside the spatial variations, the seawater temperature and salinity around Peninsula Malaysia also subjected to temporal variation as seawater. (Author)

  11. Comparison of diurnal dynamics in evaporation rate between bare soil and moss-crusted soil within a revegetated desert ecosystem of northwestern China

    Science.gov (United States)

    Zhang, Ya-Feng; Wang, Xin-Ping; Pan, Yan-Xia; Hu, Rui

    2016-02-01

    Effects of biological soil crusts (BSCs) on soil evaporation is quite controversial in literature, being either facilitative or inhibitive, and therein few studies have actually conducted direct evaporation measurements. Continuous field measurements of soil water evaporation were conducted on two microlysimeters, i.e., one with sand soil collected from bare sand dune area and the other with moss-crusted soil collected from an area that was revegetated in 1956, from field capacity to dry, at the southeastern edge of the Tengger Desert. We mainly aimed to quantify the diurnal variations of evaporation rate from two soils, and further comparatively discuss the effects of BSCs on soil evaporation after revegetation. Results showed that in clear days with high soil water content (Day 1 and 2), the diurnal variation of soil evaporation rate followed the typical convex upward parabolic curve, reaching its peak around mid-day. Diurnal evaporation rate and the accumulated evaporation amount of moss-crusted soil were lower (an average of 0.90 times) than that of sand soil in this stage. However, as soil water content decreased to a moderately low level (Day 3 and 4), the diurnal evaporation rate from moss-crusted soil was pronouncedly higher (an average of 3.91 times) than that of sand soil, prolonging the duration of this higher evaporation rate stage; it was slightly higher in the final stage (Day 5 and 6) when soil moisture was very low. We conclude that the effects of moss crusts on soil evaporation vary with different evaporation stages, which is closely related to soil water content, and the variation and transition of evaporation rate between bare soil and moss-crusted soil are expected to be predicted by soil water content.

  12. Spatio-temporal behavior of brightness temperature in Tel-Aviv and its application to air temperature monitoring

    International Nuclear Information System (INIS)

    Pelta, Ran; Chudnovsky, A. Alexandra; Schwartz, Joel

    2016-01-01

    This study applies remote sensing technology to assess and examine the spatial and temporal Brightness Temperature (BT) profile in the city of Tel-Aviv, Israel over the last 30 years using Landsat imagery. The location of warmest and coldest zones are constant over the studied period. Distinct diurnal and temporal BT behavior divide the city into four different segments. As an example of future application, we applied mixed regression models with daily random slopes to correlate Landsat BT data with monitored air temperature (Tair) measurements using 14 images for 1989–2014. Our preliminary results show a good model performance with R"2 = 0.81. Furthermore, based on the model's results, we analyzed the spatial profile of Tair within the study domain for representative days. - Highlights: • The location of warmest and coldest zones are constant over the last 30 years. • Distinct diurnal and temporal Brightness Temperature behavior divide the city into four segments. • We assess air temperature from satellite surface temperature (R"2 = 0.81). - The location of warmest and coldest zones are constant over the last 30 years. Distinct diurnal and temporal Surface Temperature behavior divide the city into four different segments.

  13. Diurnal Variation and Twenty-Four Hour Sleep Deprivation Do Not Alter Supine Heart Rate Variability in Healthy Male Young Adults.

    Directory of Open Access Journals (Sweden)

    Daniel S Quintana

    Full Text Available Heart rate variability (HRV has become an increasingly popular index of cardiac autonomic control in the biobehavioral sciences due to its relationship with mental illness and cognitive traits. However, the intraindividual stability of HRV in response to sleep and diurnal disturbances, which are commonly reported in mental illness, and its relationship with executive function are not well understood. Here, in 40 healthy adult males we calculated high frequency HRV-an index of parasympathetic nervous system (PNS activity-using pulse oximetry during brain imaging, and assessed attentional and executive function performance in a subsequent behavioral test session at three time points: morning, evening, and the following morning. Twenty participants were randomly selected for total sleep deprivation whereas the other 20 participants slept as normal. Sleep deprivation and morning-to-night variation did not influence high frequency HRV at either a group or individual level; however, sleep deprivation abolished the relationship between orienting attention performance and HRV. We conclude that a day of wake and a night of laboratory-induced sleep deprivation do not alter supine high frequency HRV in young healthy male adults.

  14. Modification by oxazepam of the diurnal variations in brain 125I-melatonin binding sites in sham-operated and pinealectomized rats

    International Nuclear Information System (INIS)

    Anis, Y.; Zisapel, N.; Nir, I.; Schmidt, U.

    1992-01-01

    Sham-operated and pinealectomized male rats were maintained at 14 h light: 10 h dark cycles (lights-on 5.00 h) and injected daily, for 14 days, with oxazepam or vehicle. 125 I-melatonin binding was recorded in synaptosomes prepared at 10.00, 18.00, and 24.00 h from the hypothalamus, hippocampus and medulla-pons of the rats. In the sham-operated, vehicle treated rats, specific 125 I-melatonin binding in all brain areas studied was higher at 18.00 h, whereas in the oxazepam-treated animals, binding was higher at 24.00 h than at the other times tested. In the pinealectomized, vehicle-treated rats, the binding recorded at 18.00 h in all three brain areas, was lower than at the other times of day tested. Oxazepam treatment decreased 125 I-melatonin binding at 24.00 h in the hippocampus and medulla-pons of the pinealectomized rats and did not significantly affect the binding in the hypothalamus. These results indicate the ability of oxazepam, pinealectomy and their combination, to manipulate the diurnal variations in 125 I-melatonin binding sites in the rat brain

  15. Summertime diurnal variations in the isotopic composition of atmospheric nitrogen dioxide at a small midwestern United States city

    Science.gov (United States)

    Walters, Wendell W.; Fang, Huan; Michalski, Greg

    2018-04-01

    The nitrogen and oxygen stable isotopes (δ15N & δ18O) of nitrogen oxides (NOx = nitric oxide (NO) + nitrogen dioxide (NO2)) may be a useful tool for partitioning NOx emission sources and for evaluating NOx photochemical cycling, but few measurements of in situ NOx exist. In this study, we have collected and characterized the diurnal variability in δ15N and δ18O of NO2 from ambient air at a small Midwestern city (West Lafayette, IN, USA, 40.426° N, 86.908° W) between July 7 to August 5, 2016, using an active sampling technique. Large variations were observed in both δ15N(NO2) and δ18O(NO2) that ranged from -31.4 to 0.4‰ and 41.5-112.5‰, respectively. Daytime averages were -9.2 ± 5.7‰ (x̅ ± 1σ) and 86.5 ± 14.1‰ (n = 11), while nighttime averages were -13.4 ± 7.3‰ and 56.3 ± 7.1‰ (n = 12) for δ15N(NO2) and δ18O(NO2), respectively. The large variability observed in δ15N(NO2) is predicted to be driven by changing contributions of local NOx emission sources, as calculated isotope effects predict a minor impact on δ15N(NO2) relative to δ15N(NOx) that is generally less than 2.5‰ under the sample collection conditions of high ozone concentration ([O3]) relative to [NOx]. A statistical δ15N mass-balance model suggests that traffic-derived NOx is the main contributor to the sampling site (0.52 ± 0.22) with higher relative contribution during the daytime (0.58 ± 0.19) likely due to higher traffic volume than during the nighttime (0.47 ± 0.22). The diurnal cycle observed in δ18O(NO2) is hypothesized to be a result of the photochemical cycling of NOx that elevates δ18O(NO2) during the daytime relative to the nighttime. Overall, this data suggests the potential to use δ15N(NO2) for NOx source partitioning under environmental conditions of high [O3] relative to [NOx] and δ18O(NO2) for evaluating VOC-NOx-O3 chemistry.

  16. [Effects of Morus alba and Setaria italica intercropping on their plant growth and diurnal variation of photosynthesis].

    Science.gov (United States)

    Zhu, Wen-Xu; Zhang, Hui-Hui; Xu, Nan; Wang, Peng; Wang, Shi-Dan; Mu, Shi-Nan; Liang, Ming; Sun, Guang-Yu

    2012-07-01

    A field investigation was conducted to study the effects of intercropping Morus aIba and Setaria italica on their dry matter production, land use efficiency, and diurnal variation of leaf photosynthesis. Under intercropping, the plant height, basal diameter, root length, and branch number of M. alba increased by 6.0%, 13.7%, 6.8%, and 14.8%, respectively, and the leaf yield of M. alba was increased by 31.3%, as compared with monoculture M. alba. In contrast, the plant height and root length of intercropped S. italica had no significant difference with those of monoculture S. italica. Intercropping enhanced the equivalent ratio and use efficiency of arable land. For both M. alba and S. italica in monoculture or intercropping, their leaf photosynthetic depression all occurred at midday (12 :00), but the leaf photosynthetic depression of monoculture M. alba was heavier than that of intercropped M. alba. Intercropping promoted the leaf stomatal conductance (g(s)) and water use efficiency (WUE) of M. alba at midday, increased the photosynthetic carbon assimilation of M. alba, and inhibited the decline of M. alba leaf actual photochemical efficiency of PS II (phi(PS II)), photosynthetic electron transport rate (ETR), and the maximal photochemical of PS II (F(v)/F(m)) , which might contribute to alleviate the leaf photosynthetic depression of M. alba at midday. It was concluded that M. alba and S. italica intercropping could obviously improve the leaf photosynthetic capacity of M. alba.

  17. Solar-forced diurnal regulation of cave drip rates via phreatophyte evapotranspiration

    Directory of Open Access Journals (Sweden)

    K. Coleborn

    2016-11-01

    Full Text Available We present results of a detailed study of drip rate variations at 12 drip discharge sites in Glory Hole Cave, New South Wales, Australia. Our novel time series analysis, using the wavelet synchrosqueezed transform, reveals pronounced oscillations at daily and sub-daily frequencies occurring in 8 out of the 12 monitored sites. These oscillations were not spatially or temporally homogenous, with different drip sites exhibiting such behaviour at different times of year in different parts of the cave. We test several hypotheses for the cause of the oscillations, including variations in pressure gradients between karst and cave due to cave breathing effects or atmospheric and earth tides, variations in hydraulic conductivity due to changes in viscosity of water with daily temperature oscillations, and solar-driven daily cycles of vegetative (phreatophytic transpiration. We conclude that the only hypothesis consistent with the data and hydrologic theory is that daily oscillations are caused by solar-driven pumping by phreatophytic trees which are abundant at the site. The daily oscillations are not continuous and occur sporadically in short bursts (2–14 days throughout the year due to non-linear modification of the solar signal via complex karst architecture. This is the first indirect observation leading to the hypothesis of tree water use in cave drip water. It has important implications for karst hydrology in regards to developing a new protocol to determine the relative importance of trends in drip rate, such as diurnal oscillations, and how these trends change over timescales of weeks to years. This information can also be used to infer karst architecture. This study demonstrates the importance of vegetation on recharge dynamics, information that will inform both process-based karst models and empirical estimation approaches. Our findings support a growing body of research exploring the impact of trees on speleothem paleoclimate proxies.

  18. Diurnal variability in riverine dissolved organic matter composition determined by in situ optical measurement in the San Joaquin River (California, USA)

    Science.gov (United States)

    Spencer, R.G.M.; Pellerin, B.A.; Bergamaschi, B.A.; Downing, B.D.; Kraus, T.E.C.; Smart, D.R.; Dahlgren, R.A.; Hernes, P.J.

    2007-01-01

    Dissolved organic matter (DOM) concentration and composition in riverine and stream systems are known to vary with hydrological and productivity cycles over the annual and interannual time scales. Rivers are commonly perceived as homogeneous with respect to DOM concentration and composition, particularly under steady flow conditions over short time periods. However, few studies have evaluated the impact of short term variability ( DOC) measurement alone. The in situ optical measurements described in this study clearly showed for the first time diurnal variations in DOM measurements, which have previously been related to both composition and concentration, even though diurnal changes were not well reflected in bulk DOC concentrations. An apparent asynchronous trend of DOM absorbance and chlorophyll-a in comparison to chromophoric dissolved organic matter (CDOM) fluorescence and spectral slope S290-350 suggests that no one specific CDOM spectrophotometric measurement explains absolutely DOM diurnal variation in this system; the measurement of multiple optical parameters is therefore recommended. The observed diurnal changes in DOM composition, measured by in situ optical instrumentation likely reflect both photochemical and biologically-mediated processes. The results of this study highlight that short-term variability in DOM composition may complicate trends for studies aiming to distinguish different DOM sources in riverine systems and emphasizes the importance of sampling specific study sites to be compared at the same time of day. The utilization of in situ optical technology allows short-term variability in DOM dynamics to be monitored and serves to increase our understanding of its processing and fundamental role in the aquatic environment. Copyright ?? 2007 John Wiley & Sons, Ltd.

  19. A quantitative analysis of the diurnal evolution of Ionospheric Alfvén resonator magnetic resonance features and calculation of changing IAR parameters

    Directory of Open Access Journals (Sweden)

    S. R. Hebden

    2005-07-01

    Full Text Available Resonance features of the Ionospheric Alfvén Resonator (IAR can be observed in pulsation magnetometer data from Sodankylä, Finland using dynamic spectra visualizations. IAR resonance features were identified on 13 of 30 days in October 1998, with resonance structures lasting for 3 or more hours over 10 intervals. The diurnal evolution of the harmonic features was quantified for these 10 intervals using a manual cursor-clicking technique. The resonance features displayed strong linear relationships between harmonic frequency and harmonic number for all of the time intervals studied, enabling a homogeneous cavity model for the IAR to be adopted to interpret the data. This enabled the diurnal variation of the effective size of the IAR to be obtained for each of the 10 time intervals. The average effective size was found to be 530 km, and to have an average variation of 32% over each time interval: small compared to the average variation in Alfvén velocity of 61%. Thus the diurnal variation of the harmonics is chiefly caused by the changing plasma density within the IAR due to changing insolation. This study confirms Odzimek (2004 that the dominating factor affecting the IAR eigenfrequencies is the variation in the Alfvén velocity at the F-layer ion-density peak, with the changing IAR size affecting the IAR eigenfrequencies to a smaller extent. Another IAR parameter was derived from the analysis of the IAR resonance features associated with the phase matching structure of the standing waves in the IAR. This parameter varied over the time intervals studied by 20% on average, possibly due to changing ionospheric conductivity. Keywords. Ionosphere (Auroral ionosphere;Wave propagation – Radio science (Electromagnetic noise and interference

  20. Estimation of the Land Surface Temperature over the Tibetan Plateau by Using Chinese FY-2C Geostationary Satellite Data.

    Science.gov (United States)

    Hu, Yuanyuan; Zhong, Lei; Ma, Yaoming; Zou, Mijun; Xu, Kepiao; Huang, Ziyu; Feng, Lu

    2018-01-28

    During the process of land-atmosphere interaction, one of the essential parameters is the land surface temperature (LST). The LST has high temporal variability, especially in its diurnal cycle, which cannot be acquired by polar-orbiting satellites. Therefore, it is of great practical significance to retrieve LST data using geostationary satellites. According to the data of FengYun 2C (FY-2C) satellite and the measurements from the Enhanced Observing Period (CEOP) of the Asia-Australia Monsoon Project (CAMP) on the Tibetan Plateau (CAMP/Tibet), a regression approach was utilized in this research to optimize the split window algorithm (SWA). The thermal infrared data obtained by the Chinese geostationary satellite FY-2C over the Tibetan Plateau (TP) was used to estimate the hourly LST time series. To decrease the effects of cloud, the 10-day composite hourly LST data were obtained through the approach of maximal value composite (MVC). The derived LST was used to compare with the product of MODIS LST and was also validated by the field observation. The results show that the LST retrieved through the optimized SWA and in situ data has a better consistency (with correlation coefficient (R), mean absolute error (MAE), mean bias (MB), and root mean square error (RMSE) values of 0.987, 1.91 K, 0.83 K and 2.26 K, respectively) than that derived from Becker and Li's SWA and MODIS LST product, which means that the modified SWA can be applied to achieve plateau-scale LST. The diurnal variation of the LST and the hourly time series of the LST over the Tibetan Plateau were also obtained. The diurnal range of LST was found to be clearly affected by the influence of the thawing and freezing process of soil and the summer monsoon evolution. The comparison between the seasonal and diurnal variations of LST at four typical underlying surfaces over the TP indicate that the variation of LST is closely connected with the underlying surface types as well. The diurnal variation of LST is

  1. Diurnal circulations and their multi-scale interaction leading to rainfall over the South China Sea upstream of the Philippines during intraseasonal monsoon westerly wind bursts

    Energy Technology Data Exchange (ETDEWEB)

    Park, Myung-Sook; Elsberry, Russell L. [Naval Postgraduate School, Department of Meteorology, Monterey, CA (United States); Ho, Chang-Hoi [Seoul National University, School of Earth and Environmental Sciences, Seoul (Korea, Republic of); Kim, Jinwon [University of California in Los Angeles, Department of Meteorology, Berkeley, CA (United States)

    2011-10-15

    The morning diurnal precipitation maximum over the coastal sea upstream of the Philippines during intraseasonal westerly wind bursts is examined from observations and numerical model simulations. A well-defined case of precipitation and large-scale circulation over the coastal sea west of the Philippines during 17-27 June 2004 is selected as a representative case. The hypothesis is that the mesoscale diurnal circulation over the Philippines and a large-scale diurnal circulation that is induced by large-scale differential heating over Asian continent and the surrounding ocean interact to produce the offshore precipitation maximum during the morning. Three-hourly combined satellite microwave and infrared rainfall retrievals define the morning rainfall peak during this period, and then later the stratiform rain area extends toward the open sea. A control numerical simulation in which a grid-nudging four-dimensional data assimilation (FDDA) is applied to force the large-scale diurnal circulation represents reasonably well the morning rainfall maximum. An enhanced low-level convergence similar to observations is simulated due to the interaction of the local- and large-scale diurnal circulations. The essential role of the local-scale diurnal circulation is illustrated in a sensitivity test in which the solar zenith angle is fixed at 7 am to suppress this diurnal circulation. The implication for climate diagnosis or modeling of such upstream coastal sea precipitation maxima is that the diurnal variations of both the local- and the large-scale circulations must be taken into consideration. (orig.)

  2. Diurnal variations in depth profiles of UV-induced DNA damage and inhibition of bacterioplankton production in tropical coastal waters

    NARCIS (Netherlands)

    Visser, PM; Poos, JJ; Scheper, BB; Boelen, P; van Duyl, FC

    2002-01-01

    In this study, diurnal changes in bacterial production and DNA damage in bacterio-plankton (measured as cyclobutane pyrimidine dimers, CPDs) incubated in bags at different depths in tropical coastal waters were investigated. The DNA damage and inhibition of the bacterial production was highest at

  3. Comparison of predicted and measured variations of indoor radon concentration

    International Nuclear Information System (INIS)

    Arvela, H.; Voutilainen, A.; Maekelaeinen, I.; Castren, O.; Winqvist, K.

    1988-01-01

    Prediction of the variations of indoor radon concentration were calculated using a model relating indoor radon concentration to radon entry rate, air infiltration and meteorological factors. These calculated variations have been compared with seasonal variations of 33 houses during 1-4 years, with winter-summer concentration ratios of 300 houses and the measured diurnal variation. In houses with a slab in ground contact the measured seasonal variations are quite often in agreement with variations predicted for nearly pure pressure difference driven flow. The contribution of a diffusion source is significant in houses with large porous concrete walls against the ground. Air flow due to seasonally variable thermal convection within eskers strongly affects the seasonal variations within houses located thereon. Measured and predicted winter-summer concentration ratios demonstrate that, on average, the ratio is a function of radon concentration. The ratio increases with increasing winter concentration. According to the model the diurnal maximum caused by a pressure difference driven flow occurs in the morning, a finding which is in agreement with the measurements. The model presented can be used for differentiating between factors affecting radon entry into houses. (author)

  4. Diurnal cortisol after early institutional care—Age matters

    Directory of Open Access Journals (Sweden)

    Jessica E. Flannery

    2017-06-01

    Full Text Available Several studies have shown that young children who have experienced early caregiving adversity (e.g. previously institutionalization (PI exhibit flattened diurnal cortisol slopes; however, less is known about how these patterns might differ between children and adolescents, since the transition between childhood and adolescence is a time of purported plasticity in the hypothalamic-pituitary-adrenal (HPA axis. PI youth experience a massive improvement in caregiving environment once adopted into families; therefore we anticipated that a developmental increase in HPA axis plasticity during adolescence might additionally allow for an enhanced enrichment effect by the adoptive family. In a cross-sectional sample of 197 youths (PI and Comparison; 4–15 years old we observed age-related group differences in diurnal slope. First replicating previous findings, PI children exhibited flattened diurnal slope. This group difference, however, was not observed in adolescents. Moderation analyses showed that pubertal development, increased time with family, and early adoption contributed to the steeper diurnal cortisol slope in PI adolescents. These findings add support to existing theories positing that the transition between middle childhood and adolescence may mark an additional sensitive period for diurnal cortisol patterning, allowing PI youth to benefit from the enriched environment provided by adoptive parents during this period of development.

  5. Evaluating the performance of ENVI-met model in diurnal cycles for different meteorological conditions

    Science.gov (United States)

    Acero, Juan A.; Arrizabalaga, Jon

    2018-01-01

    Urban areas are known to modify meteorological variables producing important differences in small spatial scales (i.e. microscale). These affect human thermal comfort conditions and the dispersion of pollutants, especially those emitted inside the urban area, which finally influence quality of life and the use of public open spaces. In this study, the diurnal evolution of meteorological variables measured in four urban spaces is compared with the results provided by ENVI-met (v 4.0). Measurements were carried out during 3 days with different meteorological conditions in Bilbao in the north of the Iberian Peninsula. The evaluation of the model accuracy (i.e. the degree to which modelled values approach measured values) was carried out with several quantitative difference metrics. The results for air temperature and humidity show a good agreement of measured and modelled values independently of the regional meteorological conditions. However, in the case of mean radiant temperature and wind speed, relevant differences are encountered highlighting the limitation of the model to estimate these meteorological variables precisely during diurnal cycles, in the considered evaluation conditions (sites and weather).

  6. Daily variation of the radon concentration indoors and outdoors and the influence of meteorological parameters

    International Nuclear Information System (INIS)

    Porstendoerfer, J.; Butterweck, G.; Reineking, A.

    1994-01-01

    Series of continuous radon measurements in the open atmosphere and in a dwelling, including the parallel measurement of meteorological parameters, were performed over a period of several weeks. The radon concentration in indoor and outdoor air depends on meteorological conditions. In the open atmosphere the radon concentration varies between 1 and 100 Bq m -3 , depending on weather conditions and time of day. During time periods of low turbulent air exchange (high pressure weather with clear night sky), especially in the night and early morning hours (night inversion layer), the diurnal variation of the radon concentration showed a pronounced maximum. Cloudy and windy weather conditions yield a small diurnal variation of the radon concentration. Indoors, the average level and the diurnal variation of the indoor radon concentration is also influenced by meteorological conditions. The measurements are consistent with a dependence of indoor radon concentrations on indoor-outdoor pressure differences. 11 refs., 4 figs

  7. Nocturnal to Diurnal Switches with Spontaneous Suppression of Wheel-Running Behavior in a Subterranean Rodent.

    Directory of Open Access Journals (Sweden)

    Patricia Tachinardi

    Full Text Available Several rodent species that are diurnal in the field become nocturnal in the lab. It has been suggested that the use of running-wheels in the lab might contribute to this timing switch. This proposition is based on studies that indicate feed-back of vigorous wheel-running on the period and phase of circadian clocks that time daily activity rhythms. Tuco-tucos (Ctenomys aff. knighti are subterranean rodents that are diurnal in the field but are robustly nocturnal in laboratory, with or without access to running wheels. We assessed their energy metabolism by continuously and simultaneously monitoring rates of oxygen consumption, body temperature, general motor and wheel running activity for several days in the presence and absence of wheels. Surprisingly, some individuals spontaneously suppressed running-wheel activity and switched to diurnality in the respirometry chamber, whereas the remaining animals continued to be nocturnal even after wheel removal. This is the first report of timing switches that occur with spontaneous wheel-running suppression and which are not replicated by removal of the wheel.

  8. Nocturnal to Diurnal Switches with Spontaneous Suppression of Wheel-Running Behavior in a Subterranean Rodent

    Science.gov (United States)

    Tachinardi, Patricia; Tøien, Øivind; Valentinuzzi, Veronica S.; Buck, C. Loren; Oda, Gisele A.

    2015-01-01

    Several rodent species that are diurnal in the field become nocturnal in the lab. It has been suggested that the use of running-wheels in the lab might contribute to this timing switch. This proposition is based on studies that indicate feed-back of vigorous wheel-running on the period and phase of circadian clocks that time daily activity rhythms. Tuco-tucos (Ctenomys aff. knighti) are subterranean rodents that are diurnal in the field but are robustly nocturnal in laboratory, with or without access to running wheels. We assessed their energy metabolism by continuously and simultaneously monitoring rates of oxygen consumption, body temperature, general motor and wheel running activity for several days in the presence and absence of wheels. Surprisingly, some individuals spontaneously suppressed running-wheel activity and switched to diurnality in the respirometry chamber, whereas the remaining animals continued to be nocturnal even after wheel removal. This is the first report of timing switches that occur with spontaneous wheel-running suppression and which are not replicated by removal of the wheel. PMID:26460828

  9. The Seasonal and Intraseasonal Variability of Diurnal Cloud Activity over the Tibetan Plateau

    OpenAIRE

    Hatsuki, Fujinami; Tetsuzo, Yasunari; Institute of Geoscience, University of Tsukuba; Institute of Geoscience, University of Tsukuba

    2001-01-01

    Seasonal variation of diurnal cloud activity(abbreviated DCA)over the Tibetan Plateau throughout the year is examined using 3-hourly geostationary meteorological satellite(GMS)data for 6-years(1989-1994). The DCA shows two distinct variance maxima in the seasonal cycle. One is in spring(pre-monsoon season), and the other is in the summer monsoon season. The DCA begins in late January, and reaches its maximum from March through April. The active DCA extends over almost the whole of the plateau...

  10. Microstructure evolution by neutron irradiation during cyclic temperature variation

    International Nuclear Information System (INIS)

    Kiritani, M.; Yoshiie, T.; Iseki, M.; Kojima, S.; Hamada, K.; Horiki, M.; Kizuka, Y.; Inoue, H.; Tada, T.; Ogasawara, Y.

    1994-01-01

    Utilizing a technique to control the temperature which is not influenced by the operation mode of a reactor, an irradiation during which the temperature was alternatively changed several times between two temperatures (T-cycle) has been performed. Some defect structures are understood as combinations of the defect processes at lower and higher temperatures, and some others are understood if the defect processes during the transient between the two temperatures are taken into consideration. However, the most remarkable characteristic of defect processes associated with the temperature variation is the reaction of point defect clusters induced by lower-temperature irradiation at the higher temperature. During lower-temperature irradiation, there is a greater accumulation of vacancy clusters as stacking fault tetrahedra in fcc metals than that of interstitial clusters as dislocation loops. Vacancies evaporated from the vacancy clusters at higher temperature can eliminate interstitial clusters completely, and the repetition of these processes leads to unexpectedly slow defect structure development by T-cycle irradiation. ((orig.))

  11. Assessing of channel roughness and temperature variations on ...

    African Journals Online (AJOL)

    Assessing of channel roughness and temperature variations on wastewater quality parameters using numerical modeling. ... According to the obtained results, nitrate (NO3) has a decreasing trend when the Manning Roughness Coefficient (N) is higher than 0.04 along the channel, but is reduced when “N” is less than 0.04.

  12. Does the diurnal pattern of enteric methane emissions from dairy cows change over time?

    Science.gov (United States)

    Bell, M J; Craigon, J; Saunders, N; Goodman, J R; Garnsworthy, P C

    2018-02-22

    Diet manipulation and genetic selection are two important mitigation strategies for reducing enteric methane (CH4) emissions from ruminant livestock. The aim of this study was to assess whether the diurnal pattern of CH4 emissions from individual dairy cows changes over time when cows are fed on diets varying in forage composition. Emissions of CH4 from 36 cows were measured during milking in an automatic (robotic) milking station in three consecutive feeding periods, for a total of 84 days. In Periods 1 and 2, the 36 cows were fed a high-forage partial mixed ration (PMR) containing 75% forage, with either a high grass silage or high maize silage content. In Period 3, cows were fed a commercial PMR containing 69% forage. Cows were offered PMR ad libitum plus concentrates during milking and CH4 emitted by individual cows was sampled during 8662 milkings. A linear mixed model was used to assess differences among cows, feeding periods and time of day. Considerable variation was observed among cows in daily mean and diurnal patterns of CH4 emissions. On average, cows produced less CH4 when fed on the commercial PMR in feeding Period 3 than when the same cows were fed on high-forage diets in feeding Periods 1 and 2. The average diurnal pattern for CH4 emissions did not significantly change between feeding periods and as lactation progressed. Emissions of CH4 were positively associated with dry matter (DM) intake and forage DM intake. It is concluded that if the management of feed allocation remains constant then the diurnal pattern of CH4 emissions from dairy cows will not necessarily alter over time. A change in diet composition may bring about an increase or decrease in absolute emissions over a 24-h period without significantly changing the diurnal pattern unless management of feed allocation changes. These findings are important for CH4 monitoring techniques that involve taking measurements over short periods within a day rather than complete 24-h observations.

  13. Sidereal semi-diurnal variation observed at high zenith angles at Mawson, 1968-1984, and the polarity of the solar main field

    International Nuclear Information System (INIS)

    Jacklyn, R.M.; Duldig, M.L.

    1985-01-01

    High zenith-angle North/South telescopes viewing equatorially and at midlatitudes through 40 MWE of atmosphere have been operating at Mawson since early 1968. It is evident that a sidereal semi-diurnal component of galactic origin has been observed, over and above a possible spurious component proposed by Nagashima, arising from a bi-directional component of the solar anisotropy. Although a very pronounced reduction in the semi-diurnal galactic response followed the reversal of polarity of the solar main field during 1969 to 1971, so far the observations indicate that there has been no recurrence of a larger galactic response following the reversal of polarity around 1981. The possible role of the latitudional extent lambda omicron of the wavy neutral sheet is discussed

  14. Diurnal Variations in Serum Glucose, Insulin and C-Peptide of Normal Korean Adults

    International Nuclear Information System (INIS)

    Choi, Du Hyok; Chung, June Key; Lee, Hong Kyu; Koh, Chang Soon; Hong, Kee Suk

    1983-01-01

    It is already well known that many factors are involved in maintaining normal blood glucose level. The amount and components of meal are also thought to be some of the factors which affect the blood glucose and insulin levels. It is reported that as for Koreans sugar takes up over 75% out of 2,098 kcal, the average daily calorie intake per adult. It implies that Koreans take a high-sugar diet compared with Westerners who take 40-50% of sugar out of their total average daily calorie. For the purpose of studying diurnal variations in serum glucose, insulin and C-peptide of normal Koreans adults based on ordinary Korean diet, we selected 13 normal Korean male adults and divided them into two groups, Group I (7 persons) and Group II (6 persons). We put Group I on 3,100 kcal and 75% sugar diet, and Group II on 2,100 kcal and 69% sugar diet per day for over 4 days. Serum glucose, insulin and C-peptide were checked every 30 minutes or every hour throughout 2 hour. Results are as follows: 1. As for serum glucose level, in the preprandial fasting state in the morning, mean±S.D. of Group I was 91.1±3.2 mg%, while that of Group II is 82.5±4.4 mg%. Both groups showed peaks of increased glucose level t postprandial 1 hour after each meal. The peak returned to the level shown during the fasting state at postprandial 1 hour after breakfast while the relatively high glucose levels were maintained respectively even for 2 or 3 hours after lunch and dinner. 2. As for serum insults level, Group I showed mean±S.D. of 14.7±3.0 μU/ml while Group II shows that of 7.0±2.6 μU/ml in the fasting state. Group I particularly showed the largest peak from preprandial a half or one and half an hour to postprandial one hour of lunch, and made relatively small peaks (47.7±10.8 μU/ml) at postprandial 1 hour after breakfast and dinner. No such large peak was marked in Group II, though it showed relatively similar patterns of peak after each meal. 3. As for C-peptide, in the fasting state

  15. Diurnal Variations in Serum Glucose, Insulin and C-Peptide of Normal Korean Adults

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Du Hyok; Chung, June Key; Lee, Hong Kyu; Koh, Chang Soon [Seoul National University College of Medicine, Seoul (Korea, Republic of); Hong, Kee Suk [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1983-03-15

    It is already well known that many factors are involved in maintaining normal blood glucose level. The amount and components of meal are also thought to be some of the factors which affect the blood glucose and insulin levels. It is reported that as for Koreans sugar takes up over 75% out of 2,098 kcal, the average daily calorie intake per adult. It implies that Koreans take a high-sugar diet compared with Westerners who take 40-50% of sugar out of their total average daily calorie. For the purpose of studying diurnal variations in serum glucose, insulin and C-peptide of normal Koreans adults based on ordinary Korean diet, we selected 13 normal Korean male adults and divided them into two groups, Group I (7 persons) and Group II (6 persons). We put Group I on 3,100 kcal and 75% sugar diet, and Group II on 2,100 kcal and 69% sugar diet per day for over 4 days. Serum glucose, insulin and C-peptide were checked every 30 minutes or every hour throughout 2 hour. Results are as follows: 1. As for serum glucose level, in the preprandial fasting state in the morning, mean+-S.D. of Group I was 91.1+-3.2 mg%, while that of Group II is 82.5+-4.4 mg%. Both groups showed peaks of increased glucose level t postprandial 1 hour after each meal. The peak returned to the level shown during the fasting state at postprandial 1 hour after breakfast while the relatively high glucose levels were maintained respectively even for 2 or 3 hours after lunch and dinner. 2. As for serum insults level, Group I showed mean+-S.D. of 14.7+-3.0 muU/ml while Group II shows that of 7.0+-2.6 muU/ml in the fasting state. Group I particularly showed the largest peak from preprandial a half or one and half an hour to postprandial one hour of lunch, and made relatively small peaks (47.7+-10.8 muU/ml) at postprandial 1 hour after breakfast and dinner. No such large peak was marked in Group II, though it showed relatively similar patterns of peak after each meal. 3. As for C-peptide, in the fasting state

  16. Seasonal emanation of radon at Ghuttu, northwest Himalaya: Differentiation of atmospheric temperature and pressure influences.

    Science.gov (United States)

    Kamra, Leena

    2015-11-01

    Continuous monitoring of radon along with meteorological parameters has been carried out in a seismically active area of Garhwal region, northwest Himalaya, within the frame work of earthquake precursory research. Radon measurements are carried out by using a gamma ray detector installed in the air column at a depth of 10m in a 68m deep borehole. The analysis of long time series for 2006-2012 shows strong seasonal variability masked by diurnal and multi-day variations. Isolation of a seasonal cycle by minimising short-time by 31 day running average shows a strong seasonal variation with unambiguous dependence on atmospheric temperature and pressure. The seasonal characteristics of radon concentrations are positively correlated to atmospheric temperature (R=0.95) and negatively correlated to atmospheric pressure (R=-0.82). The temperature and pressure variation in their annual progressions are negatively correlated. The calculations of partial correlation coefficient permit us to conclude that atmospheric temperature plays a dominant role in controlling the variability of radon in borehole, 71% of the variability in radon arises from the variation in atmospheric temperature and about 6% of the variability is contributed by atmospheric pressure. The influence of pressure variations in an annual cycle appears to be a pseudo-effect, resulting from the negative correlation between temperature and pressure variations. Incorporation of these results explains the varying and even contradictory claims regarding the influence of the pressure variability on radon changes in the published literature. Temperature dependence, facilitated by the temperature gradient in the borehole, controls the transportation of radon from the deep interior to the surface. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Tracking the MJO Convection and its Impact on the Diurnal Cycle over the Maritime Continent Using Satellite Observations

    Science.gov (United States)

    Kerns, B. W.; Chen, S. S.

    2017-12-01

    The Indo-Pacific Maritime Continent (MC) is the most active convection center in the tropics, and the most important modes of variability are the diurnal cycle and the Madden-Julian Oscillation (MJO). Previous studies have shown that the MC has strong diurnal variability compared with the rest of the tropics, and the diurnal cycle of convection over the MC is amplified during the passage of an MJO. One outstanding science question is how the passage of the active MJO affects the diurnal cycle. The atmospheric, upper ocean, and land surface forcing factors contributing to the diurnal cycle need to be clarified. In order to address this, large scale precipitation tracking (LPT) is used to identify MJO active and suppressed periods for 2000-2015. To document the diurnal cycle of convection during the active and suppressed periods, TRMM/GPM and mesoscale cloud cluster tracking are used. Finally, the LPT tracking is used to composite the satellite-estimated surface wind, humidity, temperature, cloud cover, and soil moisture over the islands for active versus suppressed MJO periods. In active MJO periods, the diurnal convection in the surrounding marginal seas is enhanced and the diurnal convection over land is decreased. The islands of the MC have greater soil moisture, more cloud cover, and do not warm up as much during the day, leading to a weaker afternoon maximum over land. But how is nocturnal convection over the sea increased? The largest, most mature convective cloud systems are found over the marginal seas in the early morning. This is hypothesized to mainly be a consequence of the longer life cycle of convective systems in the favorable large-scale active MJO. The propagation of the MJO across the MC is facilitated by the enhanced nocturnal deep convection over the sea. In contrast, In the suppressed period the convection is mostly daytime forced convection over land which is locked to the terrain.

  18. Study of Diurnal Cycle Variability of Planetary Boundary Layer Characteristics over the Red Sea and Arabian Peninsula

    KAUST Repository

    Li, Weigang

    2012-07-01

    This work is aimed at investigating diurnal cycle variability of the planetary boundary layer characteristics over the Arabian Peninsula and the Red Sea region. To fulfill this goal the downscaling simulations are performed using Weather Research and Forecasting (WRF) model. We analyze planetary boundary layer height, latent and sensible heat fluxes, and surface air temperature. The model results are compared with observations in different areas, for different seasons, and for different model resolutions. The model results are analyzed in order to better quantify the diurnal cycle variability over the Arabian Peninsula and the Red Sea. The specific features of this region are investigated and discussed.

  19. Diurnal tidal currents attributed to free baroclinic coastal-trapped waves on the Pacific shelf off the southeastern coast of Hokkaido, Japan

    Science.gov (United States)

    Kuroda, Hiroshi; Kusaka, Akira; Isoda, Yutaka; Honda, Satoshi; Ito, Sayaka; Onitsuka, Toshihiro

    2018-04-01

    To understand the properties of tides and tidal currents on the Pacific shelf off the southeastern coast of Hokkaido, Japan, we analyzed time series of 9 current meters that were moored on the shelf for 1 month to 2 years. Diurnal tidal currents such as the K1 and O1 constituents were more dominant than semi-diurnal ones by an order of magnitude. The diurnal tidal currents clearly propagated westward along the coast with a typical phase velocity of 2 m s-1 and wavelength of 200 km. Moreover, the shape and phase of the diurnal currents measured by a bottom-mounted ADCP were vertically homogeneous, except in the vicinity of the bottom boundary layer. These features were very consistent with theoretically estimated properties of free baroclinic coastal-trapped waves of the first mode. An annual (semi-annual) variation was apparent for the phase (amplitude) of the O1 tidal current, which was correlated with density stratification (intensity of an along-shelf current called the Coastal Oyashio). These possible causes are discussed in terms of the propagation and generation of coastal-trapped waves.

  20. Study of TEC, slab-thickness and neutral temperature of the thermosphere in the Indian low latitude sector

    Directory of Open Access Journals (Sweden)

    K. Venkatesh

    2011-09-01

    Full Text Available The ionospheric equivalent slab-thickness is an important parameter which measures the skewness of the electron density profile of the ionosphere. In this paper, the diurnal, seasonal, day-to-day and latitudinal variations of ionospheric parameters namely total electron content (TEC, the peak ionization density of F-layer (NmF2, equivalent slab-thickness (τ and neutral temperature (Tn are presented. The simultaneous data of GPS-TEC and NmF2 from Trivandrum (8.47° N, 76.91° E, Waltair (17.7° N, 83.3° E and Delhi (28.58° N, 77.21° E are used to compute the slab-thickness (τ = TEC/NmF2 of the low sunspot period, 2004–2005. The day-time TEC values at Waltair are found to be greater than those at Trivandrum, while at Delhi the day-time TEC values are much lower compared to those at Trivandrum and Waltair. The trends of variation in the monthly mean diurnal variation of TEC and NmF2 are similar at Delhi, while they are different at Trivandrum and Waltair during the day-time. The slab-thickness (τ has shown a pre-sunrise peak around 05:00 LT at all the three stations, except during the summer months over Delhi. A consistent secondary peak in slab-thickness around noon hours has also been observed at Trivandrum and Waltair. During equinox and winter months a large night-time enhancement in the slab-thickness (comparable to the early morning peak in slab-thickness is observed at Delhi. The latitudinal variation of slab-thickness has shown a decrease from the equatorial station, Trivandrum to the low-mid latitude station, Delhi. The neutral temperatures (Tn computed from the slab-thickness (τ has shown a sharp increase around 05:00 LT over Trivandrum and Waltair. Whereas at Delhi, a double peaking around 05:00 and 23:00 LT is observed during winter and equinoctial months. The neutral temperatures computed are compare well with those of the MSIS-90 model derived temperatures.

  1. Diurnal rhythm and concordance between objective and subjective hot flashes: the Hilo Women's Health Study.

    Science.gov (United States)

    Sievert, Lynnette L; Reza, Angela; Mills, Phoebe; Morrison, Lynn; Rahberg, Nichole; Goodloe, Amber; Sutherland, Michael; Brown, Daniel E

    2010-01-01

    The aims of this study were to test for a diurnal pattern in hot flashes in a multiethnic population living in a hot, humid environment and to examine the rates of concordance between objective and subjective measures of hot flashes using ambulatory and laboratory measures. Study participants aged 45 to 55 years were recruited from the general population of Hilo, HI. Women wore a Biolog hot flash monitor (UFI, Morro Bay, CA), kept a diary for 24 hours, and also participated in 3-hour laboratory measures (n = 199). Diurnal patterns were assessed using polynomial regression. For each woman, objectively recorded hot flashes that matched subjective experience were treated as true-positive readings. Subjective hot flashes were considered the standard for computing false-positive and false-negative readings. True-positive, false-positive, and false-negative readings were compared across ethnic groups by chi analyses. Frequencies of sternal, nuchal, and subjective hot flashes peaked at 1500 +/- 1 hours with no difference by ethnicity. Laboratory results supported the pattern seen in ambulatory monitoring. Sternal and nuchal monitoring showed the same frequency of true-positive measures, but nonsternal electrodes picked up more false-positive readings. Laboratory monitoring showed very low frequencies of false negatives. There were no ethnic differences in the frequency of true-positive or false-positive measures. Women of European descent were more likely to report hot flashes that were not objectively demonstrated (false-negative measures). The diurnal pattern and peak in hot flash occurrence in the hot humid environment of Hilo were similar to results from more temperate environments. Lack of variation in sternal versus nonsternal measures and in true-positive measures across ethnicities suggests no appreciable effect of population variation in sweating patterns.

  2. Quantifying Diurnal Cloud Radiative Effects by Cloud Type in the Tropical Western Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Burleyson, Casey D.; Long, Charles N.; Comstock, Jennifer M.

    2015-06-01

    Cloud radiative effects are examined using long-term datasets collected at the three Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facilities in the tropical western Pacific. We quantify the surface radiation budget, cloud populations, and cloud radiative effects by partitioning the data by cloud type, time of day, and as a function of large scale modes of variability such as El Niño Southern Oscillation (ENSO) phase and wet/dry seasons at Darwin. The novel facet of our analysis is that we break aggregate cloud radiative effects down by cloud type across the diurnal cycle. The Nauru cloud populations and subsequently the surface radiation budget are strongly impacted by ENSO variability whereas the cloud populations over Manus only shift slightly in response to changes in ENSO phase. The Darwin site exhibits large seasonal monsoon related variations. We show that while deeper convective clouds have a strong conditional influence on the radiation reaching the surface, their limited frequency reduces their aggregate radiative impact. The largest source of shortwave cloud radiative effects at all three sites comes from low clouds. We use the observations to demonstrate that potential model biases in the amplitude of the diurnal cycle and mean cloud frequency would lead to larger errors in the surface energy budget compared to biases in the timing of the diurnal cycle of cloud frequency. Our results provide solid benchmarks to evaluate model simulations of cloud radiative effects in the tropics.

  3. Effects of diurnal temperature difference and gamma radiation on the frequency of somatic cell mutations in the stamen hairs

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Kim, Won Rok; Kim, Jae Sung; Shin, Hae Shick; Lee, Jeong Joo

    1998-01-01

    This study deals with the effects of diurnal temperature difference (DTD) on somatic cell mutation frequencies in Tradescantia stamen hairs irradiated with radiation. Potted plants of Tradescantia 4430 were irradiated with 0.3, 0.5, 1.0 and 2.0 Gy of gamma radiation. The irradiated plants were maintained under two different experimental conditions; at constant temperature of 20 degree C (DTD0) and at 28 degree C for 14-h day and 8 degree C for 10-h night (DTD20). The somatic cell mutation rate in 0.5 Gy irradiated group showed a big increase on the 6th day and reached a maximum value on the 10th day after irradiation while the rate in the experimental group under the condition of DTD20 started to increase on the 8th day and got to a maximal value on the 14th day postirradiation. In both of the two experiments, the dose-response relationships were clearly linear. The slope of the DTD20 dose-response curve was much steeper than that of the DTD0 one. In conclusion, a great DTD, as one of environmental stresses, enhanced the effectiveness of radiation in the induction of somatic cell mutations and caused a shift of the peak interval of radiation-induced mutations in Tradescantia stamen hairs

  4. Characterizing submarine ground‐water discharge using fiber‐optic distributed temperature sensing and marine electrical resistivity

    Science.gov (United States)

    Henderson, Rory; Day-Lewis, Frederick D.; Lane, John W.; Harvey, Charles F.; Liu, Lanbo

    2008-01-01

    Submarine ground‐water discharge (SGD) contributes important solute fluxes to coastal waters. Pollutants are transported to coastal ecosystems by SGD at spatially and temporally variable rates. New approaches are needed to characterize the effects of storm‐event, tidal, and seasonal forcing on SGD. Here, we evaluate the utility of two geophysical methods‐fiber‐optic distributed temperature sensing (FO‐DTS) and marine electrical resistivity (MER)—for observing the spatial and temporal variations in SGD and the configuration of the freshwater/saltwater interface within submarine sediments. FO‐DTS and MER cables were permanently installed into the estuary floor on a transect extending 50 meters offshore under Waquoit Bay, Massachusetts, at the Waquoit Bay National Estuarine Research Reserve, and nearly continuous data were collected for 4 weeks in summer 2007. Initial results indicate that the methods are extremely useful for monitoring changes in the complex estuarine environment. The FO‐DTS produced time‐series data at approximately 1‐meter increments along the length of the fiber at approximately 29‐second intervals. The temperature time‐series data show that the temperature at near‐shore locations appears to be dominated by a semi‐diurnal (tidal) signal, whereas the temperature at off‐shore locations is dominated by a diurnal signal (day/night heating and cooling). Dipole‐dipole MER surveys were completed about every 50 minutes, allowing for production of high‐resolution time‐lapse tomograms, which provide insight into the variations of the subsurface freshwater/saltwater interface. Preliminary results from the MER data show a high‐resistivity zone near the shore at low tide, indicative of SGD, and consistent with the FO‐DTS results.

  5. Young modulus variation of a brickwork masonry element submitted to high temperatures

    Directory of Open Access Journals (Sweden)

    Maciá, M. E.

    2013-03-01

    Full Text Available In order to understand the thermal behavior of the masonry elements submitted to high temperatures we need to know the variation of their thermal properties with regard to the temperature. Submitted to high temperatures clay brick masonry presents thermomechanical effects (as the variation of Young's modulus, the thermal expansion of the unit and the mortar, spalling, losses of resistance … as well as variation of the properties of the material as result of its degradation. In this article the variation of the module of elasticity of the unit and the mortar is described with regard to high temperatures according to the state of the knowledge. In this article is also exposed the results obtained from the experimental program carried out on elements of clay brick masonry submitted to high temperatures in order to observe the variation of Young's module related to temperature.

    La definición del comportamiento térmico de los elementos de fábrica sometidos a la acción del fuego requiere del conocimiento de la variación de sus propiedades termomecánicas con respecto a la temperatura. Ante las altas temperaturas la fábrica cerámica presenta efectos termomecánicos, como la variación del módulo de Young entre otros, así como la variación de las propiedades del material debidas a la degradación del mismo. En este artículo se describe la variación del módulo de elasticidad de la pieza y el mortero con respecto a altas temperaturas según el estado del conocimiento y se exponen los resultados obtenidos del programa experimental llevado a cabo sobre elementos de fábrica sometidos a altas temperaturas con el fin de observar la variación del módulo de Young con respecto a la temperatura.

  6. Analysis of Long-Term Temperature Variations in the Human Body.

    Science.gov (United States)

    Dakappa, Pradeepa Hoskeri; Mahabala, Chakrapani

    2015-01-01

    Body temperature is a continuous physiological variable. In normal healthy adults, oral temperature is estimated to vary between 36.1°C and 37.2°C. Fever is a complex host response to many external and internal agents and is a potential contributor to many clinical conditions. Despite being one of the foremost vital signs, temperature and its analysis and variations during many pathological conditions has yet to be examined in detail using mathematical techniques. Classical fever patterns based on recordings obtained every 8-12 h have been developed. However, such patterns do not provide meaningful information in diagnosing diseases. Because fever is a host response, it is likely that there could be a unique response to specific etiologies. Continuous long-term temperature monitoring and pattern analysis using specific analytical methods developed in engineering and physics could aid in revealing unique fever responses of hosts and in different clinical conditions. Furthermore, such analysis can potentially be used as a novel diagnostic tool and to study the effect of pharmaceutical agents and other therapeutic protocols. Thus, the goal of our article is to present a comprehensive review of the recent relevant literature and analyze the current state of research regarding temperature variations in the human body.

  7. Characteristics of diurnal pattern of global photosynthetically-active ...

    African Journals Online (AJOL)

    A two year data (September 1992 August 1994) on photosynhetically-active radiation (PAR) measured at Ilorin (Lat.: 832´N. Long.:434´E) using LI-190SA quantum sensor are analysed both on daily and monthly mean diurnal bases. This was done with the aim of characterizing the diurnal pattern of this radiation at this ...

  8. Temporal variation in temperature determines disease spread and maintenance in Paramecium microcosm populations

    Science.gov (United States)

    Duncan, Alison B.; Fellous, Simon; Kaltz, Oliver

    2011-01-01

    The environment is rarely constant and organisms are exposed to temporal and spatial variations that impact their life histories and inter-species interactions. It is important to understand how such variations affect epidemiological dynamics in host–parasite systems. We explored effects of temporal variation in temperature on experimental microcosm populations of the ciliate Paramecium caudatum and its bacterial parasite Holospora undulata. Infected and uninfected populations of two P. caudatum genotypes were created and four constant temperature treatments (26°C, 28°C, 30°C and 32°C) compared with four variable treatments with the same mean temperatures. Variable temperature treatments were achieved by alternating populations between permissive (23°C) and restrictive (35°C) conditions daily over 30 days. Variable conditions and high temperatures caused greater declines in Paramecium populations, greater fluctuations in population size and higher incidence of extinction. The additional effect of parasite infection was additive and enhanced the negative effects of the variable environment and higher temperatures by up to 50 per cent. The variable environment and high temperatures also caused a decrease in parasite prevalence (up to 40%) and an increase in extinction (absence of detection) (up to 30%). The host genotypes responded similarly to the different environmental stresses and their effect on parasite traits were generally in the same direction. This work provides, to our knowledge, the first experimental demonstration that epidemiological dynamics are influenced by environmental variation. We also emphasize the need to consider environmental variance, as well as means, when trying to understand, or predict population dynamics or range. PMID:21450730

  9. Finite-Temperature Variational Monte Carlo Method for Strongly Correlated Electron Systems

    Science.gov (United States)

    Takai, Kensaku; Ido, Kota; Misawa, Takahiro; Yamaji, Youhei; Imada, Masatoshi

    2016-03-01

    A new computational method for finite-temperature properties of strongly correlated electrons is proposed by extending the variational Monte Carlo method originally developed for the ground state. The method is based on the path integral in the imaginary-time formulation, starting from the infinite-temperature state that is well approximated by a small number of certain random initial states. Lower temperatures are progressively reached by the imaginary-time evolution. The algorithm follows the framework of the quantum transfer matrix and finite-temperature Lanczos methods, but we extend them to treat much larger system sizes without the negative sign problem by optimizing the truncated Hilbert space on the basis of the time-dependent variational principle (TDVP). This optimization algorithm is equivalent to the stochastic reconfiguration (SR) method that has been frequently used for the ground state to optimally truncate the Hilbert space. The obtained finite-temperature states allow an interpretation based on the thermal pure quantum (TPQ) state instead of the conventional canonical-ensemble average. Our method is tested for the one- and two-dimensional Hubbard models and its accuracy and efficiency are demonstrated.

  10. Estimating Sampling Biases and Measurement Uncertainties of AIRS-AMSU-A Temperature and Water Vapor Observations Using MERRA Reanalysis

    Science.gov (United States)

    Hearty, Thomas J.; Savtchenko, Andrey K.; Tian, Baijun; Fetzer, Eric; Yung, Yuk L.; Theobald, Michael; Vollmer, Bruce; Fishbein, Evan; Won, Young-In

    2014-01-01

    We use MERRA (Modern Era Retrospective-Analysis for Research Applications) temperature and water vapor data to estimate the sampling biases of climatologies derived from the AIRS/AMSU-A (Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A) suite of instruments. We separate the total sampling bias into temporal and instrumental components. The temporal component is caused by the AIRS/AMSU-A orbit and swath that are not able to sample all of time and space. The instrumental component is caused by scenes that prevent successful retrievals. The temporal sampling biases are generally smaller than the instrumental sampling biases except in regions with large diurnal variations, such as the boundary layer, where the temporal sampling biases of temperature can be +/- 2 K and water vapor can be 10% wet. The instrumental sampling biases are the main contributor to the total sampling biases and are mainly caused by clouds. They are up to 2 K cold and greater than 30% dry over mid-latitude storm tracks and tropical deep convective cloudy regions and up to 20% wet over stratus regions. However, other factors such as surface emissivity and temperature can also influence the instrumental sampling bias over deserts where the biases can be up to 1 K cold and 10% wet. Some instrumental sampling biases can vary seasonally and/or diurnally. We also estimate the combined measurement uncertainties of temperature and water vapor from AIRS/AMSU-A and MERRA by comparing similarly sampled climatologies from both data sets. The measurement differences are often larger than the sampling biases and have longitudinal variations.

  11. Seasonal Cycle of the Near-Surface Diurnal Wind Field Over the Bay of La Paz, Mexico

    Science.gov (United States)

    Turrent, Cuauhtémoc; Zaitsev, Oleg

    2014-05-01

    The results of numerical simulations of the troposphere over the Bay of La Paz, calculated for the months of January, April, July and October during the period 2006-2010 with the Weather Research and Forecast (WRF v3.5) regional model, are used to describe the seasonal features of the diurnal cycle of planetary boundary-layer winds. Two distinct near-surface diurnal flows with strong seasonal variability were identified: (1) a nocturnal and matutinal breeze directed from the subtropical Pacific Ocean, over the Baja California peninsula and the Bay of La Paz, into the Gulf of California that is associated with the regional sea-surface temperature difference between those two major water bodies; and (2) a mid to late afternoon onshore sea-breeze related to the peninsula's daily cycle of insolation heating that evolves with counter-clockwise rotation over the Bay of La Paz. The model results reveal the interaction over Baja California of opposing afternoon sea-breeze fronts that originate from the subtropical Pacific Ocean and the Gulf of California, with a convergence line forming over the peaks of the peninsula's topography and the associated presence of a closed vertical circulation cell over the Bay of La Paz and the adjacent Gulf. The collision of the opposing sea-breeze fronts over the narrow peninsula drives convection that is relatively weak due to the reduced heat source and only appears to produce precipitation sporadically. The spatial structure of the sea-breeze fronts over the Bay of La Paz region is complex due to shoreline curvature and nearby topographic features. A comparison of the numerical results with available meteorological near-surface observations indicates that the modelling methodology adequately reproduced the observed features of the seasonal variability of the local planetary boundary-layer diurnal wind cycle and confirms that the low-level atmospheric circulation over the Bay of La Paz is dominated by kinetic energy in the diurnal band

  12. Hourly and daily variation of sediment redox potential in tidal wetland sediments

    Science.gov (United States)

    Catallo, W. James

    1999-01-01

    Variation of electrochemical oxidation-reduction (redox) potential was examined in surface salt march sediments under conditions of flooding and tidal simulation in mesocosms and field sites. Time series were generated of redox potential measured in sediment profiles at 2-10 cm depth using combination Pt-Ag/AgCl (ORP) electrodes. Redox potential data were acquired at rapid rates (1-55 samples/h) over extended periods (3-104 days) along with similar times series of temperature (water, air, soil) and pH. It was found that redox potential vaired as a result of water level changes and was unrelated to diurnal changes in temperature or pH, the latter of which changed by 370 mV redox potential decrease in under 48 hours). Attenuatoin of microbial activity by [gamma] y-radiation and toxic chemicals elimintated this response. In tidal salt marsh mesocosms where the sediment-plant assemblages were exposed to a simulated diurnal tide, redox potenial oscillations of 40-300 mV amplitude were recoded that has the same periodicity as the flood-drain cycle. Periodic redoc potential time series were observed repeatedly in sediments receiving tidal pulsing but not in those sediments exposed to static hydrological conditions. Data collected over 12 days from a coastal marsh site experiencing diurnal tides showed similar fluctuations in redox potential. Data from the experimentents indicated that (a) redox potential can be a dynamic, nonlinear variable in coastal and estuarine wetland sediments over hourly and daily scales, and the designs of biogeochemical experiments should reflect this, (b) redox potential can change rapidly and signigicantly in coastal wetland sediments in response of flooding and draining, (c) microbial community processes are primarily determinants of the time course of redox potential in wetland sediments, and elimination of inhibition of microbial activity (e.g. by pollutants) can significantly alter that behavior, and (d) fast redox potential dynamics appear

  13. Specific diurnal EMG activity pattern observed in occlusal collapse patients: relationship between diurnal bruxism and tooth loss progression.

    Science.gov (United States)

    Kawakami, Shigehisa; Kumazaki, Yohei; Manda, Yosuke; Oki, Kazuhiro; Minagi, Shogo

    2014-01-01

    The role of parafunctional masticatory muscle activity in tooth loss has not been fully clarified. This study aimed to reveal the characteristic activity of masseter muscles in bite collapse patients while awake and asleep. Six progressive bite collapse patients (PBC group), six age- and gender-matched control subjects (MC group), and six young control subjects (YC group) were enrolled. Electromyograms (EMG) of the masseter muscles were continuously recorded with an ambulatory EMG recorder while patients were awake and asleep. Diurnal and nocturnal parafunctional EMG activity was classified as phasic, tonic, or mixed using an EMG threshold of 20% maximal voluntary clenching. Highly extended diurnal phasic activity was observed only in the PBC group. The three groups had significantly different mean diurnal phasic episodes per hour, with 13.29±7.18 per hour in the PBC group, 0.95±0.97 per hour in the MC group, and 0.87±0.98 per hour in the YC group (pstability.

  14. Diurnal Salivary Alpha-amylase Dynamics among Dementia Family Caregivers

    Science.gov (United States)

    Liu, Yin; Granger, Douglas A.; Kim, Kyungmin; Klein, Laura C.; Almeida, David M.; Zarit, Steven H.

    2016-01-01

    Objective The study examined diurnal regulation of salivary alpha-amylase (sAA) in association with daily stressors, adult day services (ADS) use, and other caregiving characteristics. Methods A sample of 165 family caregivers of individuals with dementia (IWD) completed an 8-day diary study. Caregivers provided 5 saliva samples across the 8 days. On some days, caregivers provided all or most of the care. On other days, their relative attended ADS for part of the day. A 3-level unconditional linear spline model was fit to describe the typical sAA diurnal rhythms. Predictors were then added to the unconditional model to test the hypotheses on ADS use and daily stressors. Results Daily ADS use did not have an effect on diurnal sAA regulation. However, controlling for daily ADS use, greater ADS use over the 8 days was associated with a more prominent rise between 30 minutes after wake-up and before lunch, and a more prominent decline between before lunch and late afternoon. Fewer ADS days were associated with a more flattened sAA diurnal rhythm. Additionally, greater daily care-related stressor exposures had a within-person association with lower sAA levels in the late afternoon. Care-related stressor exposures had significant within- and between-person associations with sAA diurnal slopes. Furthermore, daily positive experiences had a significant between-person association with sAA diurnal slopes. Conclusions Caring for a disabled family member may heighten the vulnerability to potential physiological conditions. Respite from care stressors from ADS use may have some biobehavioral benefits on sAA regulations. PMID:27786517

  15. Seasonal emanation of radon at Ghuttu, northwest Himalaya: Differentiation of atmospheric temperature and pressure influences

    International Nuclear Information System (INIS)

    Kamra, Leena

    2015-01-01

    Continuous monitoring of radon along with meteorological parameters has been carried out in a seismically active area of Garhwal region, northwest Himalaya, within the frame work of earthquake precursory research. Radon measurements are carried out by using a gamma ray detector installed in the air column at a depth of 10 m in a 68 m deep borehole. The analysis of long time series for 2006–2012 shows strong seasonal variability masked by diurnal and multi-day variations. Isolation of a seasonal cycle by minimising short-time by 31 day running average shows a strong seasonal variation with unambiguous dependence on atmospheric temperature and pressure. The seasonal characteristics of radon concentrations are positively correlated to atmospheric temperature (R=0.95) and negatively correlated to atmospheric pressure (R=−0.82). The temperature and pressure variation in their annual progressions are negatively correlated. The calculations of partial correlation coefficient permit us to conclude that atmospheric temperature plays a dominant role in controlling the variability of radon in borehole, 71% of the variability in radon arises from the variation in atmospheric temperature and about 6% of the variability is contributed by atmospheric pressure. The influence of pressure variations in an annual cycle appears to be a pseudo-effect, resulting from the negative correlation between temperature and pressure variations. Incorporation of these results explains the varying and even contradictory claims regarding the influence of the pressure variability on radon changes in the published literature. Temperature dependence, facilitated by the temperature gradient in the borehole, controls the transportation of radon from the deep interior to the surface. - Highlights: • Seasonal variability of radon in borehole. • Influence of atmospheric temperature and pressure on radon variability. • Partial correlation coefficient.

  16. A study of Sq(H) variations over equatorial electrojet regions | Okeke ...

    African Journals Online (AJOL)

    The newly established geomagnetic field observations in Japan, have enabled us to analyse the 1998 data of Huancayo, Kiritimati (Christmas Island) and Pohnpei where the geomagnetic Sq(H) variations of equatorial electrojet have been studied. The diurnal variation of the monthly means of Sq(H) on the five international ...

  17. SWATS: Diurnal Trends in the Soil Temperature Report

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David [Argonne National Lab. (ANL), Argonne, IL (United States); Theisen, Adam [Univ. of Oklahoma, Norman, OK (United States)

    2017-06-30

    During the processing of data for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility ARMBE2D Value-Added Product (VAP), the developers noticed that the SWATS soil temperatures did not show a decreased temporal variability with increased depth with the new E30+ Extended Facilities (EFs), unlike the older EFs at ARM’s Southern Great Plains (SGP) site. The instrument mentor analyzed the data and reported that all SWATS locations have shown this behavior but that the magnitude of the problem was greatest at EFs E31-E38. The data were analyzed to verify the initial assessments of: 1. 5 cm SWATS data were valid for all EFs and 15 cm soil temperature measurements were valid at all EFs other than E31-E38, 2. Use only nighttime SWATS soil temperature measurements to calculate daily average soil temperatures, 3. Since it seems likely that the soil temperature measurements below 15cm were affected by the solar heating of the enclosure at all but E31-38, and at all depths below 5cm at E31-38, individual measurements of soil temperature at these depths during daylight hours, and daily averages of the same, can ot be trusted on most (particularly sunny) days.

  18. Modeling the Effect of Grain Size Mixing on Thermal Inertia Values Derived from Diurnal and Seasonal THEMIS Measurements

    Science.gov (United States)

    McCarty, C.; Moersch, J.

    2017-12-01

    Sedimentary processes have slowed over Mars' geologic history. Analysis of the surface today can provide insight into the processes that may have affected it over its history. Sub-resolved checkerboard mixtures of materials with different thermal inertias (and therefore different grain sizes) can lead to differences in thermal inertia values inferred from night and day radiance observations. Information about the grain size distribution of a surface can help determine the degree of sorting it has experienced or it's geologic maturity. Standard methods for deriving thermal inertia from measurements made with THEMIS can give values for the same location that vary by as much as 20% between scenes. Such methods make the assumption that each THEMIS pixel contains material that has uniform thermophysical properties. Here we propose that if a mixture of small and large particles is present within a pixel, the inferred thermal inertia will be strongly dominated by whichever particle is warmer at the time of the measurement because the power radiated by a surface is proportional (by the Stefan-Boltzmann law) to the fourth power of its temperature. This effect will result in a change in thermal inertia values inferred from measurements taken at different times of day and night. Therefore, we expect to see correlation between the magnitude of diurnal variations in inferred thermal inertia values and the degree of grain size mixing for a given pixel location. Preliminary work has shown that the magnitude of such diurnal variation in inferred thermal inertias is sufficient to detect geologically useful differences in grain size distributions. We hypothesize that at least some of the 20% variability in thermal inertias inferred from multiple scenes for a given location could be attributed to sub-pixel grain size mixing rather than uncertainty inherent to the experiment, as previously thought. Mapping the difference in inferred thermal inertias from day and night THEMIS

  19. Large variations in diurnal and seasonal patterns of sap flux among Aleppo pine trees in semi-arid forest reflect tree-scale hydraulic adjustments

    Science.gov (United States)

    Preisler, Yakir; Tatarinov, Fyodor; Rohatyn, Shani; Rotenberg, Eyal; Grünzweig, José M.; Klein, Tamir; Yakir, Dan

    2015-04-01

    Adjustments and adaptations of trees to drought vary across different biomes, species and habitats, with important implications for tree mortality and forest dieback associated with global climate change. The aim of this study was to investigate possible links between the patterns of variations in water flux dynamics and drought resistance in Aleppo pine (Pinus halepensis) trees in a semi-arid stand (Yatir forest, Israel). We measured sap flow (SF) and variations in stem diameter, complemented with short-term campaigns of leaf-scale measurements of water vapour and CO2 gas exchange, branch water potential and hydraulic conductivity, as well as eddy flux measurements of evapotranspiration (ET) from a permanent flux tower at the site. SF rates were well synchronized with ET, reaching maximum rates during midday in all trees during the rainy season (Dec-Apr). However, during the dry season (May-Nov), the daily trend in the rates of SF greatly varied among trees, allowing classification into three tree classes: 1) trees with SF maximum rate constantly occurring in mid-day (12:00-13:00); 2)trees showing a shift to an early morning SF peak (04:00-06:00); and 3) trees shifting their daily SF peak to the evening (16:00-18:00). This classification did not change during the four years study period, between 2010 and 2014. Checking for correlation of tree parameters as DBH, tree height, crown size, and competition indices with rates of SF, indicated that timing of maximum SF in summer was mainly related to tree size (DBH), when large trees tended to have a later SF maximum. Dendrometer measurements indicated that large trees (high DBH) had maximum daily diameter in the morning during summer and winter, while small trees typically had maximum daily diameter during midday and afternoon in winter and summer, respectively. Leaf-scale transpiration (T) measurements showed typical morning peak in all trees, and another peak in the afternoon in large trees only. Different diurnal

  20. Climate alters intraspecific variation in copepod effect traits through pond food webs.

    Science.gov (United States)

    Charette, Cristina; Derry, Alison M

    2016-05-01

    Essential fatty acids (EFAs) are primarily generated by phytoplankton in aquatic ecosystems, and can limit the growth, development, and reproduction of higher consumers. Among the most critical of the EFAs are highly unsaturated fatty acids (HUFAs), which are only produced by certain groups of phytoplankton. Changing environmental conditions can alter phytoplankton community and fatty acid composition and affect the HUFA content of higher trophic levels. Almost no research has addressed intraspecific variation in HUFAs in zooplankton, nor intraspecific relationships of HUFAs with body size and fecundity. This is despite that intraspecific variation in HUFAs can exceed interspecific variation and that intraspecific trait variation in body size and fecundity is increasingly recognized to have an important role in food web ecology (effect traits). Our study addressed the relative influences of abiotic selection and food web effects associated with climate change on intraspecific differences and interrelationships between HUFA content, body size, and fecundity of freshwater copepods. We applied structural equation modeling and regression analyses to intraspecific variation in a dominant calanoid copepod, Leptodiatomus minutus, among a series of shallow north-temperate ponds. Climate-driven diurnal temperature fluctuations favored the coexistence of diversity of phytoplankton groups with different temperature optima and nutritive quality. This resulted in unexpected positive relationships between temperature, copepod DHA content and body size. Temperature correlated positively with diatom biovolume, and mediated relationships between copepod HUFA content and body size, and between copepod body size and fecundity. The presence of brook trout further accentuated these positive effects in warm ponds, likely through nutrient cycling and stimulation of phytoplankton resources. Climate change may have previously unrecognized positive effects on freshwater copepod DHA content

  1. Spatial variation in pollinator-mediated selection on phenology, floral display and spur length in the orchid Gymnadenia conopsea.

    Science.gov (United States)

    Chapurlat, Elodie; Ågren, Jon; Sletvold, Nina

    2015-12-01

    Spatial variation in plant-pollinator interactions may cause variation in pollinator-mediated selection on floral traits, but to establish this link conclusively experimental studies are needed. We quantified pollinator-mediated selection on flowering phenology and morphology in four populations of the fragrant orchid Gymnadenia conopsea, and compared selection mediated by diurnal and nocturnal pollinators in two of the populations. Variation in pollinator-mediated selection explained most of the among-population variation in the strength of directional and correlational selection. Pollinators mediated correlational selection on pairs of display traits, and on one display trait and spur length, a trait affecting pollination efficiency. Only nocturnal pollinators selected for longer spurs, and mediated stronger selection on the number of flowers compared with diurnal pollinators in one population. The two types of pollinators caused correlational selection on different pairs of traits and selected for different combinations of spur length and number of flowers. The results demonstrate that spatial variation in interactions with pollinators may result in differences in directional and correlational selection on floral traits in a plant with a semi-generalized pollination system, and suggest that differences in the relative importance of diurnal and nocturnal pollinators can cause variation in selection. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  2. Diurnal rhythm and concordance between objective and subjective hot flashes: The Hilo Women’s Health Study

    Science.gov (United States)

    Sievert, Lynnette L.; Reza, Angela; Mills, Phoebe; Morrison, Lynn; Rahberg, Nichole; Goodloe, Amber; Sutherland, Michael; Brown, Daniel E.

    2010-01-01

    Objective To test for a diurnal pattern in hot flashes in a multi-ethnic population living in a hot, humid environment. To examine rates of concordance between objective and subjective measures of hot flashes using ambulatory and laboratory measures. Methods Study participants aged 45–55 were recruited from the general population of Hilo, Hawaii. Women wore a Biolog hot flash monitor, kept a diary for 24-hours, and also participated in 3-hour laboratory measures (n=199). Diurnal patterns were assessed using polynomial regression. For each woman, objectively recorded hot flashes that matched subjective experience were treated as true positive readings. Subjective hot flashes were considered the standard for computing false positive and false negative readings. True positive, false positive, and false negative readings were compared across ethnic groups by chi-square analyses. Results Frequencies of sternal, nuchal and subjective hot flashes peaked at 15:00 ± 1 hour with no difference by ethnicity. Laboratory results supported the pattern seen in ambulatory monitoring. Sternal and nuchal monitoring showed the same frequency of true positive measures, but non-sternal electrodes picked up more false positive readings. Laboratory monitoring showed very low frequencies of false negatives. There were no ethnic differences in the frequency of true positive or false positive measures. Women of European descent were more likely to report hot flashes that were not objectively demonstrated (false negative measures). Conclusions The diurnal pattern and peak in hot flash occurrence in the hot humid environment of Hilo was similar to results from more temperate environments. Lack of variation in sternal vs. non-sternal measures, and in true positive measures across ethnicities suggests no appreciable effect of population variation in sweating patterns. PMID:20220538

  3. Diurnal Solar Energy Conversion and Photoprotection in Rice Canopies1[OPEN

    Science.gov (United States)

    Quick, W. Paul; von Caemmerer, Susanne; Furbank, Robert

    2017-01-01

    Genetic improvement of photosynthetic performance of cereal crops and increasing the efficiency with which solar radiation is converted into biomass has recently become a major focus for crop physiologists and breeders. The pulse amplitude modulated chlorophyll fluorescence technique (PAM) allows quantitative leaf level monitoring of the utilization of energy for photochemical light conversion and photoprotection in natural environments, potentially over the entire crop lifecycle. Here, the diurnal relationship between electron transport rate (ETR) and irradiance was measured in five cultivars of rice (Oryza sativa) in canopy conditions with PAM fluorescence under natural solar radiation. This relationship differed substantially from that observed for conventional short term light response curves measured under controlled actinic light with the same leaves. This difference was characterized by a reduced curvature factor when curve fitting was used to model this diurnal response. The engagement of photoprotective processes in chloroplast electron transport in leaves under canopy solar radiation was shown to be a major contributor to this difference. Genotypic variation in the irradiance at which energy flux into photoprotective dissipation became greater than ETR was observed. Cultivars capable of higher ETR at midrange light intensities were shown to produce greater leaf area over time, estimated by noninvasive imaging. PMID:27895208

  4. Spatial Variation of Temperature and Precipitation in Bhutan and Links to Vegetation and Land Cover

    Directory of Open Access Journals (Sweden)

    Ugyen Dorji

    2016-02-01

    Full Text Available Bhutan, located in the Himalayas in the South Asian monsoon region, has extremely high variation in elevation, climatic conditions, and land cover despite its small geographical area, as well as great biodiversity. This paper provides the first comprehensive description of climatic conditions in Bhutan. It assesses the spatial variation of temperature and precipitation across the country and evaluates the causes for this variation based on daily data from 70 meteorological stations that have been recording data for time spans ranging from 3 to 21 years. Temperature and precipitation show contrasting spatial variation, with temperature primarily affected by elevation and precipitation by latitude. Models were developed using mixed linear regression models to predict seasonal and annual mean temperature and precipitation based on geographical location. Using linear regression we found that temperatures changed by about 0.5°C for every 100 m of change in elevation, with lapse rates being highest in February, March, and November and lowest from June to August. The lapse rate was highest for minimum temperatures and lowest for maximum temperatures, with the greatest difference during winter. The spatial distribution of precipitation was mainly controlled by latitude, having a quadratic relationship, with the highest rates in the southern foothills of the Himalayan range and the lowest at midlatitudes. The land cover is affected by topography and local climate, with variations in temperature being a main deciding factor for vegetation types; most human settlements and associated land uses are concentrated at lower elevations.

  5. Stable isotopes in a branching coral monitor seasonal temperature variation

    International Nuclear Information System (INIS)

    Dunbar, R.B.; Wellington, G.M.

    1981-01-01

    Results are reported of 18 O composition measurements of specimens of the branching reef coral Pocillopora damicornis, which have grown in the field, while seawater temperatures were continuously recorded. It is shown that seasonal temperature changes are accurately recorded by 18 O variations in branches of this reef coral and that isotopic profiles may be used to estimate growth rates of branching corals, which lack annual density banding. The method provides a technique for high resolution palaeoclimatic reconstruction of seasonal temperature ranges and accurate estimation of rates of reef carbonate production. (U.K.)

  6. On the Origin of Quasi-Periodic Temperature Variations in Kun-1 Well (Kunashir Island)

    Science.gov (United States)

    Demezhko, D. Yu.; Yurkov, A. K.

    2017-12-01

    The results of temperature monitoring in the 300-m kun-1 well (Kunashir Island) in 2011-2015 are considered. Quasi-periodic temperature variations with an amplitude of up to 0.3°C and a variation period of 14-26 h were added from November 2011 to the previously observed temperature variations caused by tidal deformations, free thermal convection, and deformation processes associated with the preparation and occurrence of tectonic earthquakes. Five cycles of such variations lasting from 2 to 6 months have been recorded. Each cycle was initiated by an earthquake with magnitude M > 2.5log( R), where R is the epicentral distance (km). According to their characteristics, the variations are unique and have not been described previously. Assumptions have been made about the possible connection of the registered variations with the inertial currents of the ocean or with hydrothermal processes in the Earth's subsurface. The phenomenon discovered requires further study not only as an object of fundamental science, but also as a feature of an earlier unknown type of geodynamic activity that can be a significant threat to the regional population.

  7. Estimation of evaporation from equilibrium diurnal boundary layer humidity

    Science.gov (United States)

    Salvucci, G.; Rigden, A. J.; Li, D.; Gentine, P.

    2017-12-01

    Simplified conceptual models of the convective boundary layer as a well mixed profile of potential temperature (theta) and specific humidity (q) impinging on an initially stably stratified linear potential temperature profile have a long history in atmospheric sciences. These one dimensional representations of complex mixing are useful for gaining insights into land-atmosphere interactions and for prediction when state of the art LES approaches are infeasible. As previously shown (e.g. Betts), if one neglects the role of q in bouyancy, the framework yields a unique relation between mixed layer Theta, mixed layer height (h), and cumulative sensible heat flux (SH) throughout the day. Similarly assuming an initially q profile yields a simple relation between q, h, and cumulative latent heat flux (LH). The diurnal dynamics of theta and q are strongly dependent on SH and the initial lapse rates of theta (gamma_thet) and q (gamma q). In the estimation method proposed here, we further constrain these relations with two more assumptions: 1) The specific humidity is the same at the start of the period of boundary layer growth and at the collapse; and 2) Once the mixed layer reaches the LCL, further drying occurs proportionally to the deardorff convective velocity scale (omega) multiplied by q. Assumption (1) is based on the idea that below the cloud layer, there are no sinks of moisture within the mixed layer (neglecting lateral humidity divergence). Thus the net mixing of dry air aloft with evaporation from the surface must balance. Inclusion of the simple model of moisture loss above the LCL into the bulk-CBL model allows definition of an equilibrium humidity (q) condition at which the diurnal cycle of q repeats (i.e. additions of q from surface balance entrainment of dry air from above). Surprisingly, this framework allows estimation of LH from q, theta, and estimated net radiation by solving for the value of Evaporative Fraction (EF) for which the diurnal cycle of q

  8. Electrical signature in polar night cloud base variations

    International Nuclear Information System (INIS)

    Harrison, R Giles; Ambaum, Maarten H P

    2013-01-01

    Layer clouds are globally extensive. Their lower edges are charged negatively by the fair weather atmospheric electricity current flowing vertically through them. Using polar winter surface meteorological data from Sodankylä (Finland) and Halley (Antarctica), we find that when meteorological diurnal variations are weak, an appreciable diurnal cycle, on average, persists in the cloud base heights, detected using a laser ceilometer. The diurnal cloud base heights from both sites correlate more closely with the Carnegie curve of global atmospheric electricity than with local meteorological measurements. The cloud base sensitivities are indistinguishable between the northern and southern hemispheres, averaging a (4.0 ± 0.5) m rise for a 1% change in the fair weather electric current density. This suggests that the global fair weather current, which is affected by space weather, cosmic rays and the El Niño Southern Oscillation, is linked with layer cloud properties. (letter)

  9. The Zodiacal Cloud Model applied to the Martian atmosphere. Diurnal variations in meteoric ion layers

    Science.gov (United States)

    Carrillo-Sánchez, J. D.; Plane, J. M. C.; Withers, P.; Fallows, K.; Nesvorny, D.; Pokorný, P.

    2016-12-01

    Sporadic metal layers have been detected in the Martian atmosphere by radio occultation measurements using the Mars Express Orbiter and Mars Global Surveyor spacecraft. More recently, metallic ion layers produced by the meteor storm event following the close encounter between Comet Siding Spring (C/2013 A1) and Mars were identified by the Imaging UltraViolet Spectrograph (IUVS) and the Neutral Gas and Ion Mass Spectrometer (NGIMS) on the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. Work is now in progress to detect the background metal layers produced by the influx of sporadic meteors. In this study we predict the likely appearance of these layers. The Zodiacal Dust Cloud (ZDC) model for particle populations released by asteroids (AST), and dust grains from Jupiter Family Comets (JFCs) and Halley-Type Comets (HTCs) has been combined with a Monte Carlo sampling method and the Chemical ABlation MODel (CABMOD) to predict the ablation rates of Na, K, Fe, Si, Mg, Ca and Al above 40 km altitude in the Martian atmosphere. CABMOD considers the standard treatment of meteor physics, including the balance of frictional heating by radiative losses and the absorption of heat energy through temperature increases, melting phase transitions and vaporization, as well as sputtering by inelastic collisions with the air molecules. The vertical injection profiles are input into the Leeds 1-D Mars atmospheric model which includes photo-ionization, and gas-phase ion-molecule and neutral chemistry, in order to explore the evolution of the resulting metallic ions and atoms. We conclude that the dominant contributor in the Martian's atmosphere is the JFCs over other sources. Finally, we explore the changes of the neutral and ionized Na, Mg and Fe layers over a diurnal cycle.

  10. Diurnal changes of photosynthetic quantum yield in the intertidal macroalga Sargassum thunbergii under simulated tidal emersion conditions

    Science.gov (United States)

    Yu, Yong Qiang; Zhang, Quan Sheng; Tang, Yong Zheng; Li, Xue Meng; Liu, Hong Liang; Li, Li Xia

    2013-07-01

    In this study, a three-way factorial experimental design was used to investigate the diurnal changes of photosynthetic activity of the intertidal macroalga Sargassum thunbergii in response to temperature, tidal pattern and desiccation during a simulated diurnal light cycle. The maximum (Fv/Fm) and effective (ΦPSII) quantum yields of photosystem II (PSII) were estimated by chlorophyll fluorescence using a pulse amplitude modulated fluorometer. Results showed that this species exhibited sun-adapted characteristics, as evidenced by the daily variation of Fv/Fm and ΦPSII. Both yield values decreased with increasing irradiance towards noon and recovered rapidly in the afternoon suggesting a dynamic photoinhibition. The photosynthetic quantum yield of S. thunbergii thalli varied significantly with temperature, tidal pattern and desiccation. Thalli were more susceptible to light-induced damage at high temperature of 25 °C and showed complete recovery of photosynthetic activity only when exposed to 8 °C. In contrast with the mid-morning low tide period, although there was an initial increase in photosynthetic yield during emersion, thalli showed a greater degree of decline at the end of emersion and remained less able to recover when low tide occurred at mid-afternoon. Short-term air exposure of 2 h did not significantly influence the photosynthesis. However, when exposed to moderate conditions (4 h desiccation at 15 °C or 6 h desiccation at 8 °C), a significant inhibition of photosynthesis was followed by partial or complete recovery upon re-immersion in late afternoon. Only extreme conditions (4 h desiccation at 25 °C or 6 h desiccation at 15 °C or 25 °C) resulted in the complete inhibition, with little indication of recovery until the following morning, implying the occurrence of chronic PSII damage. Based on the magnitude of effect, desiccation was the predominant negative factor affecting the photosynthesis under the simulated daytime irradiance period. These

  11. Characterisation and quantification of regional diurnal SST cycles from SEVIRI

    DEFF Research Database (Denmark)

    Karagali, Ioanna; Høyer, J.L.

    2014-01-01

    seas. Six years of SST fields from SEVIRI are validated against the Advanced Along-Track Scanning Radiometer (AATSR) Reprocessed for Climate (ARC) data set. The overall SEVIRI–AATSR bias is −0.07 K, and the standard deviation is 0.51 K, based on more than 53×106 matchups. Identification of the diurnal...... in the tropics. Longer diurnal warming duration is identified in the high latitudes compared to the tropics. The maximum monthly mean diurnal signal can be up to 0.5K in specific regions....

  12. The role of mesoscale convective systems in the diurnal cycle of rainfall and its seasonality over sub-Saharan Northern Africa

    Science.gov (United States)

    Liu, Weiran; Cook, Kerry H.; Vizy, Edward K.

    2018-03-01

    This study evaluates the role of MCSs in the total rainfall distribution as a function of season from a climatological perspective (1998-2014) over sub-Saharan northern Africa and examines how the diurnal cycle of rainfall changes with season. Tropical Rainfall Measuring Mission (TRMM) 3B42V7 rainfall estimates and European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis are used to evaluate the climatology. The percentages of the full TRMM precipitation delivered by MCSs have meridional structures in spring, fall and winter, ranging from 0 to 80% across sub-Saharan northern Africa, while the percentages are homogenous in summer (> 80%). The diurnal cycles of MCS-associated precipitation coincide with the full TRMM rainfall. Attributes of MCSs, including size, count, and intensity, vary synchronously with the diurnal cycle of rainfall. The diurnal peaks are classified into three categories: single afternoon peak, continuous afternoon peak, and nocturnal peak. Single afternoon peaks dominate in spring and fall while continuous afternoon and nocturnal peaks are more common in summer, indicating the seasonality of the diurnal cycle. The continuous afternoon peak combines rainfall from two system types—one locally-generated and one propagating. The seasonality of the diurnal cycle is related to the seasonality of MCS lifetimes, and propagation speeds and directions. The moisture component of the MSE profile contributes to the instability most in summer when convection is more frequent. Low-level temperature, which is related to surface warming and sensible heat fluxes, influences the instability more during winter and spring.

  13. Projection after variation in the finite-temperature Hartree-Fock-Bogoliubov approximation

    Science.gov (United States)

    Fanto, P.

    2017-11-01

    The finite-temperature Hartree-Fock-Bogoliubov (HFB) approximation often breaks symmetries of the underlying many-body Hamiltonian. Restricting the calculation of the HFB partition function to a subspace with good quantum numbers through projection after variation restores some of the correlations lost in breaking these symmetries, although effects of the broken symmetries such as sharp kinks at phase transitions remain. However, the most general projection after variation formula in the finite-temperature HFB approximation is limited by a sign ambiguity. Here, I extend the Pfaffian formula for the many-body traces of HFB density operators introduced by Robledo [L. M. Robledo, Phys. Rev. C. 79, 021302(R) (2009), 10.1103/PhysRevC.79.021302] to eliminate this sign ambiguity and evaluate the more complicated many-body traces required in projection after variation in the most general HFB case. The method is validated through a proof-of-principle calculation of the particle-number-projected HFB thermal energy in a simple model.

  14. Spatial-temporal analysis of building surface temperatures in Hung Hom

    Science.gov (United States)

    Zeng, Ying; Shen, Yueqian

    2015-12-01

    This thesis presents a study on spatial-temporal analysis of building surface temperatures in Hung Hom. Observations were collected from Aug 2013 to Oct 2013 at a 30-min interval, using iButton sensors (N=20) covering twelve locations in Hung Hom. And thermal images were captured in PolyU from 05 Aug 2013 to 06 Aug 2013. A linear regression model of iButton and thermal records is established to calibrate temperature data. A 3D modeling system is developed based on Visual Studio 2010 development platform, using ArcEngine10.0 component, Microsoft Access 2010 database and C# programming language. The system realizes processing data, spatial analysis, compound query and 3D face temperature rendering and so on. After statistical analyses, building face azimuths are found to have a statistically significant relationship with sun azimuths at peak time. And seasonal building temperature changing also corresponds to the sun angle and sun azimuth variations. Building materials are found to have a significant effect on building surface temperatures. Buildings with lower albedo materials tend to have higher temperatures and larger thermal conductivity material have significant diurnal variations. For the geographical locations, the peripheral faces of campus have higher temperatures than the inner faces during day time and buildings located at the southeast are cooler than the western. Furthermore, human activity is found to have a strong relationship with building surface temperatures through weekday and weekend comparison.

  15. A STUDY OF SOLAR PHOTOSPHERIC TEMPERATURE GRADIENT VARIATION USING LIMB DARKENING MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Criscuoli, Serena [National Solar Observatory, Boulder, CO 80303 (United States); Foukal, Peter [192 Willow Road, Nahant, MA 01908 (United States)

    2017-01-20

    The variation in area of quiet magnetic network measured over the sunspot cycle should modulate the spatially averaged photospheric temperature gradient, since temperature declines with optical depth more gradually in magnetic flux tube atmospheres. Yet, limb darkening measurements show no dependence upon activity level, even at an rms precision of 0.04%. We study the sensitivity of limb darkening to changes in area filling factor using a 3D MHD model of the magnetized photosphere. The limb darkening change expected from the measured 11-year area variation lies below the level of measured limb darkening variations, for a reasonable range of magnetic flux in quiet network and internetwork regions. So the remarkably constant limb darkening observed over the solar activity cycle is not inconsistent with the measured 11-year change in area of quiet magnetic network. Our findings offer an independent constraint on photospheric temperature gradient changes reported from measurements of the solar spectral irradiance from the Spectral Irradiance Monitor, and recently, from wavelength-differential spectrophotometry using the Solar Optical Telescope aboard the HINODE spacecraft.

  16. Sensitivity, reliability and the effects of diurnal variation on a test battery of field usable upper limb fatigue measures.

    Science.gov (United States)

    Yung, Marcus; Wells, Richard P

    2017-07-01

    Fatigue has been linked to deficits in production quality and productivity and, if of long duration, work-related musculoskeletal disorders. It may thus be a useful risk indicator and design and evaluation tool. However, there is limited information on the test-retest reliability, the sensitivity and the effects of diurnal fluctuation on field usable fatigue measures. This study reports on an evaluation of 11 measurement tools and their 14 parameters. Eight measures were found to have test-retest ICC values greater than 0.8. Four measures were particularly responsive during an intermittent fatiguing condition. However, two responsive measures demonstrated rhythmic behaviour, with significant time effects from 08:00 to mid-afternoon and early evening. Action tremor, muscle mechanomyography and perceived fatigue were found to be most reliable and most responsive; but additional analytical considerations might be required when interpreting daylong responses of MMG and action tremor. Practitioner Summary: This paper presents findings from test-retest and daylong reliability and responsiveness evaluations of 11 fatigue measures. This paper suggests that action tremor, muscle mechanomyography and perceived fatigue were most reliable and most responsive. However, mechanomyography and action tremor may be susceptible to diurnal changes.

  17. Performance robustness of a magnetorheological seat suspension to temperature variations using skyhook control

    Science.gov (United States)

    Wilson, Nicholas L.; Wereley, Norman M.; Choi, Young-Tai; Hiemenz, Gregory J.; Hu, Wei

    2009-03-01

    The harmonic steady-state responses of an MR seat isolator, designed and fabricated at the University of Maryland for the driver/commander seat of the Expeditionary Fighting Vehicle (EFV), are measured over a temperature range from 100°C to 1000°C, and the damper behavior is characterized using a variant of the nonlinear Bingham plastic model. The effect of damper self-heating on the model parameters is investigated and the trends with temperature variation are presented. Numerical simulations are carried out to investigate seat isolation performance across a broad frequency spectrum as temperature and payload vary. Conclusions are drawn about the performance robustness to temperature variations of the semi-active skyhook control algorithm typically utilized in vibration isolation problems.

  18. Seismic noise level variation in South Korea

    Science.gov (United States)

    Sheen, D.; Shin, J.

    2008-12-01

    The variations of seismic background noise in South Korea have been investigated by means of power spectral analysis. The Korea Institute of Geoscience and Mineral Resources (KIGAM) and the Korea Meteorological Administation (KMA) have national wide seismic networks in South Korea, and, in the end of 2007, there are 30 broadband stations which have been operating for more than a year. In this study, we have estimated the power spectral density of seismic noise for 30 broadband stations from 2005 to 2007. Since we estimate PSDs from a large dataset of continuous waveform in this study, a robust PSD estimate of McNamara and Buland (2004) is used. In the frequency range 1-5 Hz, the diurnal variations of noise are observed at most of stations, which are especially larger at coastal stations and at insular than at inland. Some stations shows daily difference of diurnal variations, which represents that cultural activities contribute to the noise level of a station. The variation of number of triggered stations, however, shows that cultural noise has little influence on the detection capability of seismic network in South Korea. Seasonal variations are observed well in the range 0.1-0.5 Hz, while much less found in the frequency range 1-5 Hz. We observed that strong peaks in the range 0.1-0.5 Hz occur at the summer when Pacific typhoons are close to the Korean Peninsula.

  19. Distortion of the activation energy of high temperature internal friction background due to temperature dependence frequency variations

    International Nuclear Information System (INIS)

    Lambri, O.; Povolo, F.; Molinas, B.

    1991-01-01

    In this work, a study is made of how the variation of frequency with temperature affects an activation enthalpy. This effect is usually neglected, but in some cases like Cu-Au or Zry-4 (an alloy of nuclear interest base or Zr alloyed with Sn, Fe and Cr) such variation can rise up to as much as 16%/4/ and 37%/5/. (Author) [es

  20. Structure of the oceanic mixed layer in western Bay of Bengal during MONEX

    Digital Repository Service at National Institute of Oceanography (India)

    Anto, A.F.; Somayajulu, Y.K.

    layer conditions of the overlying atmosphere. Structure of OML, as delineated with respect to the diurnal variation of temperature with depth, revealed three sub-layers: wave mixed, diurnal thermocline and transition layer. The first two sub...

  1. Local time variations of the middle atmosphere of Venus: Solar-related structures

    Science.gov (United States)

    Zasova, L.; Khatountsev, I. V.; Ignatiev, N. I.; Moroz, V. I.

    Three-dimensional fields (latitude — altitude — local time) of temperature and aerosol in the upper clouds, obtained from the Venera-15 IR spectrometry data, were studied to search for the solar-related structures. The temperature variation at the isobaric levels vs. solar longitude was presented as a superposition of the cosines with periods of 1, 1/2, 1/3 and 1/4 Venusian days. At low latitudes the diurnal tidal component reaches a maximum above 0.2 mb (92km) level. At high latitudes it dominates at P> 50 mb (68 km) in the cold collar, being roughly twice as much as the semidiurnal one and passing through the maximum of 13 K at 400 mb (57 km). The semidiurnal tidal amplitude exceeds the diurnal one below 90 km (where its maximum locates near 83 km), and also in the upper clouds, above 58 km. At low latitudes the 1/3 days component predominates at 10 - 50 mb (68-76 km). In the upper clouds, where most of the solar energy, absorbed in the middle atmosphere, deposits, all four tidal components, including wavenumbers 3 and 4, have significant amplitudes. A position of the upper boundary of the clouds depends on local time in such a way that the lowest height of the clouds is observed in the morning at all selected latitude ranges. At low latitudes the highest position of the upper boundary of the clouds (at 1218 cm -1) is found at 8 - 9 PM, whereas the lowest one is near the morning terminator. At high latitudes the lowest position of the upper boundary of the clouds shifts towards the dayside being at 10:30 AM at 75° in the cold collar and the highest one shifts to 4 PM. The zonal mean altitude of the upper boundary of the clouds decreases from 69 km at 15° to 59 km at 75°. The diurnal tidal component has the highest amplitude in the cold collar (1.5 km). At low latitudes both amplitudes, diurnal and semidiurnal, reach the values 0.8 - 1 km.

  2. Temperature variation in metal ceramic technology analyzed using time domain optical coherence tomography

    Science.gov (United States)

    Sinescu, Cosmin; Topala, Florin I.; Negrutiu, Meda Lavinia; Duma, Virgil-Florin; Podoleanu, Adrian G.

    2014-01-01

    The quality of dental prostheses is essential in providing good quality medical services. The metal ceramic technology applied in dentistry implies ceramic sintering inside the dental oven. Every ceramic material requires a special sintering chart which is recommended by the producer. For a regular dental technician it is very difficult to evaluate if the temperature inside the oven remains the same as it is programmed on the sintering chart. Also, maintaining the calibration in time is an issue for the practitioners. Metal ceramic crowns develop a very accurate pattern for the ceramic layers depending on the temperature variation inside the oven where they are processed. Different patterns were identified in the present study for the samples processed with a variation in temperature of +30 °C to +50 °C, respectively - 30 0°C to -50 °C. The OCT imagistic evaluations performed for the normal samples present a uniform spread of the ceramic granulation inside the ceramic materials. For the samples sintered at a higher temperature an alternation between white and darker areas between the enamel and opaque layers appear. For the samples sintered at a lower temperature a decrease in the ceramic granulation from the enamel towards the opaque layer is concluded. The TD-OCT methods can therefore be used efficiently for the detection of the temperature variation due to the ceramic sintering inside the ceramic oven.

  3. Seasonal and diurnal variations in methane and carbon dioxide in the Kathmandu Valley in the foothills of the central Himalayas

    Science.gov (United States)

    Singh Mahata, Khadak; Panday, Arnico Kumar; Rupakheti, Maheswar; Singh, Ashish; Naja, Manish; Lawrence, Mark G.

    2017-10-01

    .3) ppm in the winter season. The maximum seasonal mean mixing ratio of CH4 in winter was only 0.057 ppm or 2.6 % higher than the seasonal minimum during the pre-monsoon period, while CO2 was 12.8 ppm or 3.1 % higher during the pre-monsoon period (seasonal maximum) than during the monsoon (seasonal minimum). On the other hand, the CO mixing ratio at Bode was 191 % higher during the winter than during the monsoon season. The enhancement in CO2 mixing ratios during the pre-monsoon season is associated with additional CO2 emissions from forest fires and agro-residue burning in northern South Asia in addition to local emissions in the Kathmandu Valley. Published CO/CO2 ratios of different emission sources in Nepal and India were compared with the observed CO/CO2 ratios in this study. This comparison suggested that the major sources in the Kathmandu Valley were residential cooking and vehicle exhaust in all seasons except winter. In winter, brick kiln emissions were a major source. Simultaneous measurements in Bode and Chanban (15 July-3 October 2015) revealed that the mixing ratios of CO2, CH4, and CO were 3.8, 12, and 64 % higher in Bode than Chanban. The Kathmandu Valley thus has significant emissions from local sources, which can also be attributed to its bowl-shaped geography that is conducive to pollution build-up. At Bode, all three gas species (CO2, CH4, and CO) showed strong diurnal patterns in their mixing ratios with a pronounced morning peak (ca. 08:00), a dip in the afternoon, and a gradual increase again through the night until the next morning. CH4 and CO at Chanban, however, did not show any noticeable diurnal variations. These measurements provide the first insights into the diurnal and seasonal variation in key greenhouse gases and air pollutants and their local and regional sources, which is important information for atmospheric research in the region.

  4. Immediate response of the hemoglobin system of the goldfish, Carassius auratu, to temperature change

    Energy Technology Data Exchange (ETDEWEB)

    Houston, A.H.; Rupert, R.

    1976-10-01

    Goldfish acclimated to 3 and 23/sup 0/C were characterized by two- and three-component hemoglobin systems, respectively. After acclimation to a diurnally cycling temperature regime (approximately 3 to approximately 23/sup 0/C), specimens sampled at approximately 23/sup 0/C and approximately 3/sup 0/C were identical in terms of hemoglobin system complexity with those held at equivalent constant temperatures. Abrupt transfer of fish acclimated at constant 23/sup 0/C to 3/sup 0/C, and vice versa, lead to appearance or disappearance of the minor component, G. l, within 3 h. In vitro cooling and warming of whole blood and hemolyzate samples indicated that hemoglobin system modification occurred under cell-free as well as cell-intact conditions. These observations suggest that previously observed quantitative variations in the hemoglobin systems of thermally acclimated teleosts may represent, in part at least, altered aggregation of preexisting subunits rather than de novo hemoglobin synthesis and raise the possibility that teleostean hemoglobin systems may possess a capacity for rapid, adaptative reorganization after environmental temperature variation.

  5. Measuring artificial recharge with fiber optic distributed temperature sensing.

    Science.gov (United States)

    Becker, Matthew W; Bauer, Brian; Hutchinson, Adam

    2013-01-01

    Heat was used as a tracer to measure infiltration rates from a recharge basin. The propagation of diurnal oscillation of surface water temperature into the basin bed was monitored along a transect using Fiber Optic Distributed Temperature Sensing (FODTS). The propagation rate was related to downward specific discharge using standard theory of heat advection and dispersion in saturated porous media. An estimate of the temporal variation of heat propagation was achieved using a wavelet transform to find the phase lag between the surface temperature diurnal oscillation and the correlated oscillation at 0.33 and 0.98 m below the bed surface. The wavelet results compared well to a constant velocity model of thermal advection and dispersion during periods of relatively constant discharge rates. The apparent dispersion of heat was found to be due primarily to hydrodynamic mechanisms rather than thermal diffusion. Specific discharge estimates using the FODTS technique also compared well to water balance estimates over a four month period, although there were occasional deviations that have yet to be adequately explained. The FODTS technique is superior to water balance in that it produces estimates of infiltration rate every meter along the cable transect, every half hour. These high resolution measurements highlighted areas of low infiltration and demonstrated the degradation of basin efficiency due to source waters of high suspended solids. FODTS monitoring promises to be a useful tool for diagnosing basin performance in an era of increasing groundwater demand. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.

  6. Spatial distribution of unidirectional trends in temperature and temperature extremes in Pakistan

    Science.gov (United States)

    Khan, Najeebullah; Shahid, Shamsuddin; Ismail, Tarmizi bin; Wang, Xiao-Jun

    2018-06-01

    Pakistan is one of the most vulnerable countries of the world to temperature extremes due to its predominant arid climate and geographic location in the fast temperature rising zone. Spatial distribution of the trends in annual and seasonal temperatures and temperature extremes over Pakistan has been assessed in this study. The gauge-based gridded daily temperature data of Berkeley Earth Surface Temperature (BEST) having a spatial resolution of 1° × 1° was used for the assessment of trends over the period 1960-2013 using modified Mann-Kendall test (MMK), which can discriminate the multi-decadal oscillatory variations from secular trends. The results show an increase in the annual average of daily maximum and minimum temperatures in 92 and 99% area of Pakistan respectively at 95% level of confidence. The annual temperature is increasing faster in southern high-temperature region compared to other parts of the country. The minimum temperature is rising faster (0.17-0.37 °C/decade) compared to maximum temperature (0.17-0.29 °C/decade) and therefore declination of diurnal temperature range (DTR) (- 0.15 to - 0.08 °C/decade) in some regions. The annual numbers of both hot and cold days are increasing in whole Pakistan except in the northern sub-Himalayan region. Heat waves are on the rise, especially in the hot Sindh plains and the Southern coastal region, while the cold waves are becoming lesser in the northern cold region. Obtained results contradict with the findings of previous studies on temperature trends, which indicate the need for reassessment of climatic trends in Pakistan using the MMK test to understand the anthropogenic impacts of climate change.

  7. Analysis of the kinetics of decohesion process in the conditions of cyclic temperature variations

    International Nuclear Information System (INIS)

    Zuchowski, R.

    1981-01-01

    Specimens made of four types of heat-resistant steels were used in the investigation. Various variants of loading process were applied, resulting in thermal fatigue, cyclic creep and isothermal fatigue. Stress or strain variation as well as intensity of acoustic emission were recorded during the tests as a function of time. Cyclic variations of strain or stress amplitude were found to occur one full period covering few to several cycles. Comparing the relative number of acoustic emission impulses with the variation of stress or strain leads to the conclusion that cyclic character of strain or stress variation results from cyclic character of damage cumulation process. This statement is confirmed by the results of material damage degree determination based on specific strain work measurements. Results of investigation testify to the equivalence of action (in terms of energy) of cyclically variable force field at constant temperature and of constant force field in the conditions of cyclic temperature variations. Damage mechanism can be different in each case, because it depends (for a given material) on loading process parameters and in particular - on temperature and stress value. (orig./HP)

  8. Exploring sub-daily to seasonal variations in methane exchange in a single-crop rice paddy in central Japan

    Science.gov (United States)

    Iwata, Hiroki; Mano, Masayoshi; Ono, Keisuke; Tokida, Takeshi; Kawazoe, Takahiro; Kosugi, Yoshiko; Sakabe, Ayaka; Takahashi, Kenshi; Miyata, Akira

    2018-04-01

    Season-long methane (CH4) exchange was observed in a rice paddy field in central Japan (Kanto Region) using the eddy covariance technique to clarify the variations in environmental controls on CH4 exchange in different stages of cultivation. Before heading of rice plant, the CH4 emission depended on wind speed and soil temperature. The soil temperature dependence can be due to an increase in CH4 production, higher molecular diffusion, and higher conductance within rice plant at higher soil temperature. An occurrence of ebullitive emission was also suggested from the wind speed dependence. After heading was completed, relative humidity and water temperature influenced CH4 emission. The amplitude of the diurnal variation in emission increased from 0.03 μmolm-2s-1 in the late pre-heading stage to 0.13 μmolm-2s-1 in the post-heading stage. Induced convective throughflow within the rice aerenchyma after the change in plant structure was attributable to this variation in environmental controls after the heading. After drainage, CH4 emission was confined to short periods after strong rain events. The water level controlled the timing of emission, most likely by influencing the diffusion efficiency from the anoxic soil to the atmosphere and CH4 oxidation in the surface oxic zone. The variation in the dominant transport pathway needs to be accounted for in terrestrial ecosystem models to accurately predict CH4 emission from rice paddies.

  9. Long-term variation of outdoor radon equilibrium equivalent concentration

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, H. [GSF-Forschungszentrum fuer Umwelt und Gesundheit, Inst. fuer Strahlenschutz, Oberschleissheim (Germany); Winkler, R. [GSF-Forschungszentrum fuer Umwelt und Gesundheit, Inst. fuer Strahlenschutz, Oberschleissheim (Germany)

    1994-10-01

    Long-term variation of outdoor radon equilibrium equivalent concentration was investigated from 1982 to 1992 at a semi-natural location 10 km north of Munich, southern Germany. For this period the continuous measurement yielded a long-term average of 8.6 Bq.m{sup -3} (arithmetic mean) and 6.9 Bq.m{sup -3} (geometric mean), from which an average annual effective dose of 0.14 mSv due to outdoor radon can be derived. A long-term trend of the radon concentration was not detectable over the whole period of observation. However, by time series analysis, a long-term cyclic pattern was identified with two maxima (1984-1986, 1989-1991) and two minima (1982-1983, 1987-1988). The seasonal pattern is characterized by an autumn maximum and an early summer minimum. On average, the seasonal maximum in October was found to be higher by a factor of 2 than the June minimum. The diurnal variation of the radon concentration shows a maximum in the early morning and a minimum in the afternoon. On average, this maximum is a factor of 2 higher than the minimum. In the long term a seasonal pattern was observed for diurnal variation, with an average diurnal maximum to minimum ratio of 1.5 in winter compared with 3.5 in the summer months. The radon concentration is correlated with a meteorological parameter (stagnation index) which takes into account horizontal and vertical exchange processes and the wash-out of aerosols in the lower atmosphere. (orig.)

  10. Long-term variation of outdoor radon equilibrium equivalent concentration

    International Nuclear Information System (INIS)

    Hoetzl, H.; Winkler, R.

    1994-01-01

    Long-term variation of outdoor radon equilibrium equivalent concentration was investigated from 1982 to 1992 at a semi-natural location 10 km north of Munich, southern Germany. For this period the continuous measurement yielded a long-term average of 8.6 Bq.m -3 (arithmetic mean) and 6.9 Bq.m -3 (geometric mean), from which an average annual effective dose of 0.14 mSv due to outdoor radon can be derived. A long-term trend of the radon concentration was not detectable over the whole period of observation. However, by time series analysis, a long-term cyclic pattern was identified with two maxima (1984-1986, 1989-1991) and two minima (1982-1983, 1987-1988). The seasonal pattern is characterized by an autumn maximum and an early summer minimum. On average, the seasonal maximum in October was found to be higher by a factor of 2 than the June minimum. The diurnal variation of the radon concentration shows a maximum in the early morning and a minimum in the afternoon. On average, this maximum is a factor of 2 higher than the minimum. In the long term a seasonal pattern was observed for diurnal variation, with an average diurnal maximum to minimum ratio of 1.5 in winter compared with 3.5 in the summer months. The radon concentration is correlated with a meteorological parameter (stagnation index) which takes into account horizontal and vertical exchange processes and the wash-out of aerosols in the lower atmosphere. (orig.)

  11. Progress in Research on Diurnal and Semidiurnal Earth Rotation Change

    Science.gov (United States)

    Xu, Xueqing

    2015-08-01

    We mainly focus on the progress of research on high frequency changes in the earth rotation. Firstly, we review the development course and main motivating factors of the diurnal and semidiurnal earth rotation change. In recent decades, earth orientation has been monitored with increasing accuracy by advanced space-geodetic techniques, including lunar and satellite laser ranging, very long baseline interferometry and the global positioning system. We are able to obtain the Earth Rotation Parameters (ERP, polar motion and rotation rate changes) by even 1 to 2 hours observation data, form which obvious diurnal and semidiurnal signals can be detected, and compare them with the predicted results by the ocean model. Both the amplitude and phase are in good agreement in the main diurnal and semidiurnal wave frequency, especially for the UT1, whose compliance is 90%, and 60% for polar motion, there are 30% motivating factor of the diurnal and semidiurnal polar motion have not been identified. Then we comprehensively review the different types of global ocean tidal correction models since the last eighties century, as well as the application research on diurnal and semidiurnal polar motion and UT1, the current ocean tidal correction models have 10% to 20% uncertainty, and need for further refinement.

  12. Future changes of temperature and heat waves in Ontario, Canada

    Science.gov (United States)

    Li, Zhong; Huang, Guohe; Huang, Wendy; Lin, Qianguo; Liao, Renfei; Fan, Yurui

    2018-05-01

    Apparent changes in the temperature patterns in recent years brought many challenges to the province of Ontario, Canada. As the need for adapting to climate change challenges increases, the development of reliable climate projections becomes a crucial task. In this study, a regional climate modeling system, Providing Regional Climates for Impacts Studies (PRECIS), is used to simulate the temperature patterns in Ontario. Three PRECIS runs with a resolution of 25 km × 25 km are carried out to simulate the present (1961-1990) temperature variations. There is a good match between the simulated and observed data, which validates the performance of PRECIS in reproducing temperature changes in Ontario. Future changes of daily maximum, mean, and minimum temperatures during the period 2071-2100 are then projected under the IPCC SRES A2 and B2 emission scenarios using PRECIS. Spatial variations of annual mean temperature, mean diurnal range, and temperature seasonality are generated. Furthermore, heat waves defined based on the exceedance of local climatology and their temporal and spatial characteristics are analyzed. The results indicate that the highest temperature and the most intensive heat waves are most likely to occur at the Toronto-Windsor corridor in Southern Ontario. The Northern Ontario, in spite of the relatively low projected temperature, would be under the risk of long-lasting heat waves, and thus needs effective measures to enhance its climate resilience in the future. This study can assist the decision makers in better understanding the future temperature changes in Ontario and provide decision support for mitigating heat-related loss.

  13. Studying Stratospheric Temperature Variation with Cosmic Ray Measurements

    Science.gov (United States)

    Zhang, Xiaohang; He, Xiaochun

    2015-04-01

    The long term stratospheric cooling in recent decades is believed to be equally important as surface warming as evidence of influences of human activities on the climate system. Un- fortunatly, there are some discrepancies among different measurements of stratospheric tem- peratures, which could be partially caused by the limitations of the measurement techniques. It has been known for decades that cosmic ray muon flux is sensitive to stratospheric temperature change. Dorman proposed that this effect could be used to probe the tempera- ture variations in the stratophere. In this talk, a method for reconstructing stratospheric temperature will be discussed. We verify this method by comparing the stratospheric tem- perature measured by radiosonde with the ones derived from cosmic ray measurement at multiple locations around the globe.

  14. Climatology of mesopause region nocturnal temperature, zonal wind, and sodium density observed by sodium lidar over Hefei, China (32°N, 117°E)

    Science.gov (United States)

    Li, T.; Ban, C.; Fang, X.; Li, J.; Wu, Z.; Xiong, J.; Feng, W.; Plane, J. M. C.

    2017-12-01

    The University of Science and Technology of China narrowband sodium temperature/wind lidar, located in Hefei, China (32°N, 117°E), was installed in November 2011 and have made routine nighttime measurements since January 2012. We obtained 154 nights ( 1400 hours) of vertical profiles of temperature, sodium density, and zonal wind, and 83 nights ( 800 hours) of vertical flux of gravity wave (GW) zonal momentum in the mesopause region (80-105 km) during the period of 2012 to 2016. In temperature, it is likely that the diurnal tide dominates below 100 km in spring, while the semidiurnal tide dominates above 100 km throughout the year. A clear semiannual variation in temperature is revealed near 90 km, likely related to the tropical mesospheric semiannual oscillation (MSAO). The variability of sodium density is positively correlated with temperature, suggesting that in addition to dynamics, the chemistry may also play an important role in the formation of sodium atoms. The observed sodium peak density is 1000 cm-3 higher than that simulated by the model. In zonal wind, the diurnal tide dominates in both spring and fall, while semidiurnal tide dominates in winter. The observed semiannual variation in zonal wind near 90 km is out-of-phase with that in temperature, consistent with tropical MSAO. The GW zonal momentum flux is mostly westward in fall and winter, anti-correlated with eastward zonal wind. The annual mean flux averaged over 87-97 km is -0.3 m2/s2 (westward), anti-correlated with eastward zonal wind of 10 m/s. The comparisons of lidar results with those observed by satellite, nearby radar, and simulated by model show generally good agreements.

  15. Diurnal variation in zooplankton in the Zuari Estuary, west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Padmavati, G.; Goswami, S.C.; Vidya, P.S.

    Variations in zooplankton biomass and population density in relation to the prevailing hydrographical conditions were studied in Zuari Estuary, Goa. The physico-chemical parameters showed limited variations. Zooplankton biomass was relatively more...

  16. Chronotype, sleep loss, and diurnal pattern of salivary cortisol in a simulated daylong driving.

    Science.gov (United States)

    Oginska, Halszka; Fafrowicz, Magdalena; Golonka, Krystyna; Marek, Tadeusz; Mojsa-Kaja, Justyna; Tucholska, Kinga

    2010-07-01

    distinct diurnal variation (F = 2.950, p < .019), whereas E types showed a flattened diurnal curve. Cortisol values did not correlate with subjective assessments of workload, arousal, or sleepiness at any time-of-day. Diurnal cortisol pattern parameters (i.e., morning level, mean level, and range of diurnal changes) showed significant positive correlations with sleep length before the experiment (r = .48, .54, and .53, respectively) and with sleep index (r = .63, .64, and .56, respectively). The conclusions of this study are: (i) E-oriented types showed lower salivary cortisol levels and a flattened diurnal curve in comparison with M types; (ii) sleep loss was associated with lower morning cortisol and mean diurnal level, whereas higher cortisol levels were observed in rested individuals. In the context of stress theory, it may be hypothesized that rested subjects perceived the driving task as a challenge, whereas those with reduced sleep were not challenged, but bored/exhausted with the experimental situation.

  17. Individual-based ant-plant networks: diurnal-nocturnal structure and species-area relationship.

    Directory of Open Access Journals (Sweden)

    Wesley Dáttilo

    Full Text Available Despite the importance and increasing knowledge of ecological networks, sampling effort and intrapopulation variation has been widely overlooked. Using continuous daily sampling of ants visiting three plant species in the Brazilian Neotropical savanna, we evaluated for the first time the topological structure over 24 h and species-area relationships (based on the number of extrafloral nectaries available in individual-based ant-plant networks. We observed that diurnal and nocturnal ant-plant networks exhibited the same pattern of interactions: a nested and non-modular pattern and an average level of network specialization. Despite the high similarity in the ants' composition between the two collection periods, ant species found in the central core of highly interacting species totally changed between diurnal and nocturnal sampling for all plant species. In other words, this "night-turnover" suggests that the ecological dynamics of these ant-plant interactions can be temporally partitioned (day and night at a small spatial scale. Thus, it is possible that in some cases processes shaping mutualistic networks formed by protective ants and plants may be underestimated by diurnal sampling alone. Moreover, we did not observe any effect of the number of extrafloral nectaries on ant richness and their foraging on such plants in any of the studied ant-plant networks. We hypothesize that competitively superior ants could monopolize individual plants and allow the coexistence of only a few other ant species, however, other alternative hypotheses are also discussed. Thus, sampling period and species-area relationship produces basic information that increases our confidence in how individual-based ant-plant networks are structured, and the need to consider nocturnal records in ant-plant network sampling design so as to decrease inappropriate inferences.

  18. Do diurnal patterns of branch carbon uptake and transpiration recover after heat waves? Results from a Mediterranean-type ecosystem experiencing seasonal and exceptional drought

    Science.gov (United States)

    Pivovaroff, A. L.; Pesqueira, A.; Sun, W.; Seibt, U.

    2016-12-01

    Mediterranean-type ecosystems are biodiversity hotspots, but increasing temperature and changes in precipitation will have significant impacts on vegetation, as evidenced by the current die-back of many woody species in southern California, USA, due to exceptional drought conditions. We installed flow-through chambers on four native woody plant species at Stunt Ranch, a University of California Natural Reserve System site, in order to continuously monitor fluxes of carbon and water at the branch-scale from the growing season through the annual seasonal drought period. Study species included Heteromeles arbutifolia, Malosma laurina, Salvia leucophylla, and Quercus agrifolia. Here we present the results of diurnal flux patterns before, during, and after two extreme heat waves events, when daily maximum temperatures doubled. Under typical summer conditions, which include hot, sunny days, study species exhibited two peaks in carbon assimilation during a diurnal cycle: a peak in the morning and a smaller, secondary peak in the afternoon, separated by a midday depression. During heat wave events, which generally lasted 3 days, species exhibited a small morning peak and no afternoon peak at all. All study species returned to their pre-heat wave diurnal flux patterns, which included the second afternoon peak, when weather conditions returned to normal. Since soil moisture was not affected by the short-term heat wave events, we conclude that the pronounced changes in diurnal patterns, including disappearance of the secondary afternoon peak, are the result of stomatal regulation in response to atmospheric water demand rather than root responses to soil moisture deficits. Our results demonstrate that carbon uptake of native species may be impacted under ongoing climate change when increased temperatures and drought conditions may be sustained.

  19. Diurnal changes in epidermal UV transmittance of plants in naturally high UV environments.

    Science.gov (United States)

    Barnes, Paul W; Flint, Stephan D; Slusser, James R; Gao, Wei; Ryel, Ronald J

    2008-06-01

    Studies were conducted on three herbaceous plant species growing in naturally high solar UV environments in the subalpine of Mauna Kea, Hawaii, USA, to determine if diurnal changes in epidermal UV transmittance (T(UV)) occur in these species, and to test whether manipulation of the solar radiation regime could alter these diurnal patterns. Additional field studies were conducted at Logan, Utah, USA, to determine if solar UV was causing diurnal T(UV) changes and to evaluate the relationship between diurnal changes in T(UV) and UV-absorbing pigments. Under clear skies, T(UV), as measured with a UV-A-pulse amplitude modulation fluorometer for leaves of Verbascum thapsus and Oenothera stricta growing in native soils and Vicia faba growing in pots, was highest at predawn and sunset and lowest at midday. These patterns in T(UV) closely tracked diurnal changes in solar radiation and were the result of correlated changes in fluorescence induced by UV-A and blue radiation but not photochemical efficiency (F(v)/F(m)) or initial fluorescence yield (F(o)). The magnitude of the midday reduction in T(UV) was greater for young leaves than for older leaves of Verbascum. Imposition of artificial shade eliminated the diurnal changes in T(UV) in Verbascum, but reduction in solar UV had no effect on diurnal T(UV) changes in Vicia. In Vicia, the diurnal changes in T(UV) occurred without detectable changes in the concentration of whole-leaf UV-absorbing compounds. Results suggest that plants actively control diurnal changes in UV shielding, and these changes occur in response to signals other than solar UV; however, the underlying mechanisms responsible for rapid changes in T(UV) remain unclear.

  20. Dopa-sensitive progressive dystonia of childhood with diurnal fluctuations of symptoms: a case report

    Directory of Open Access Journals (Sweden)

    José Luiz Dias Gherpelli

    1995-06-01

    Full Text Available Progressive dystonia with diurnal fluctuations sensitive to levodopa, also known as Segawa's disease, is a rare form of autosomal dominant extrapyramidal disease in the pediatric age group. The dystonic and Parkinson-like symptoms are the main clinical features of the disease and, characteristically but not in all cases, show a diurnal variation. They are absent or present to a lesser extent in the morning, worsening during the day. Treatment with small doses of levodopa results in remission or marked improvement of the symptomatology. We present the case of a 11 years old female patient that developed a dystonic posture in her feet that led her to a tip-toe walking pattern, since the age of 2. Diurnal fluctuations of the symptomatology were noticed by her mother. At 7 years of age she developed a left deviation of the head and an abnormal flexor posture of the left arm. In the next years the symptoms progressed and the fluctuations became less evident. At the age of 10, they were present soon after she woke up in the morning. The neurological examination disclosed a dystonic posturing of the head and left arm, a generalized rigidity of the extremities and a palpebral tremor. Laboratory examinations, including copper and ceruloplasmin, and neuro-imaging studies were negative. She was started on levodopa 150 mg/day with prompt disappearance of the symptomatology. After one-year follow-up she is symptom-free with only 100 mg/day of levodopa. No adverse effect was observed so far.