WorldWideScience

Sample records for disulfide isomerase proteins

  1. Functional differences in yeast protein disulfide isomerases

    DEFF Research Database (Denmark)

    Nørgaard, P; Westphal, V; Tachibana, C

    2001-01-01

    PDI1 is the essential gene encoding protein disulfide isomerase in yeast. The Saccharomyces cerevisiae genome, however, contains four other nonessential genes with homology to PDI1: MPD1, MPD2, EUG1, and EPS1. We have investigated the effects of simultaneous deletions of these genes. In several...

  2. The human protein disulfide isomerase gene family

    Directory of Open Access Journals (Sweden)

    Galligan James J

    2012-07-01

    Full Text Available Abstract Enzyme-mediated disulfide bond formation is a highly conserved process affecting over one-third of all eukaryotic proteins. The enzymes primarily responsible for facilitating thiol-disulfide exchange are members of an expanding family of proteins known as protein disulfide isomerases (PDIs. These proteins are part of a larger superfamily of proteins known as the thioredoxin protein family (TRX. As members of the PDI family of proteins, all proteins contain a TRX-like structural domain and are predominantly expressed in the endoplasmic reticulum. Subcellular localization and the presence of a TRX domain, however, comprise the short list of distinguishing features required for gene family classification. To date, the PDI gene family contains 21 members, varying in domain composition, molecular weight, tissue expression, and cellular processing. Given their vital role in protein-folding, loss of PDI activity has been associated with the pathogenesis of numerous disease states, most commonly related to the unfolded protein response (UPR. Over the past decade, UPR has become a very attractive therapeutic target for multiple pathologies including Alzheimer disease, Parkinson disease, alcoholic and non-alcoholic liver disease, and type-2 diabetes. Understanding the mechanisms of protein-folding, specifically thiol-disulfide exchange, may lead to development of a novel class of therapeutics that would help alleviate a wide range of diseases by targeting the UPR.

  3. Compact conformations of human protein disulfide isomerase.

    Directory of Open Access Journals (Sweden)

    Shang Yang

    Full Text Available Protein disulfide isomerase (PDI composed of four thioredoxin-like domains a, b, b', and a', is a key enzyme catalyzing oxidative protein folding in the endoplasmic reticulum. Large scale molecular dynamics simulations starting from the crystal structures of human PDI (hPDI in the oxidized and reduced states were performed. The results indicate that hPDI adopts more compact conformations in solution than in the crystal structures, which are stabilized primarily by inter-domain interactions, including the salt bridges between domains a and b' observed for the first time. A prominent feature of the compact conformations is that the two catalytic domains a and a' can locate close enough for intra-molecular electron transfer, which was confirmed by the characterization of an intermediate with a disulfide between the two domains. Mutations, which disrupt the inter-domain interactions, lead to decreased reductase activity of hPDI. Our molecular dynamics simulations and biochemical experiments reveal the intrinsic conformational dynamics of hPDI and its biological impact.

  4. Display of disulfide-rich proteins by complementary DNA display and disulfide shuffling assisted by protein disulfide isomerase.

    Science.gov (United States)

    Naimuddin, Mohammed; Kubo, Tai

    2011-12-01

    We report an efficient system to produce and display properly folded disulfide-rich proteins facilitated by coupled complementary DNA (cDNA) display and protein disulfide isomerase-assisted folding. The results show that a neurotoxin protein containing four disulfide linkages can be displayed in the folded state. Furthermore, it can be refolded on a solid support that binds efficiently to its natural acetylcholine receptor. Probing the efficiency of the display proteins prepared by these methods provided up to 8-fold higher enrichment by the selective enrichment method compared with cDNA display alone, more than 10-fold higher binding to its receptor by the binding assays, and more than 10-fold higher affinities by affinity measurements. Cotranslational folding was found to have better efficiency than posttranslational refolding between the two investigated methods. We discuss the utilities of efficient display of such proteins in the preparation of superior quality proteins and protein libraries for directed evolution leading to ligand discovery. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Protein Disulfide Isomerase and Host-Pathogen Interaction

    Directory of Open Access Journals (Sweden)

    Beatriz S. Stolf

    2011-01-01

    Full Text Available Reactive oxygen species (ROS production by immunological cells is known to cause damage to pathogens. Increasing evidence accumulated in the last decade has shown, however, that ROS (and redox signals functionally regulate different cellular pathways in the host-pathogen interaction. These especially affect (i pathogen entry through protein redox switches and redox modification (i.e., intra- and interdisulfide and cysteine oxidation and (ii phagocytic ROS production via Nox family NADPH oxidase enzyme and the control of phagolysosome function with key implications for antigen processing. The protein disulfide isomerase (PDI family of redox chaperones is closely involved in both processes and is also implicated in protein unfolding and trafficking across the endoplasmic reticulum (ER and towards the cytosol, a thiol-based redox locus for antigen processing. Here, we summarise examples of the cellular association of host PDI with different pathogens and explore the possible roles of pathogen PDIs in infection. A better understanding of these complex regulatory steps will provide insightful information on the redox role and coevolutional biological process, and assist the development of more specific therapeutic strategies in pathogen-mediated infections.

  6. Domain architecture of protein-disulfide isomerase facilitates its dual role as an oxidase and an isomerase in Ero1p-mediated disulfide formation

    DEFF Research Database (Denmark)

    Kulp, M. S.; Frickel, E. M.; Ellgaard, Lars

    2006-01-01

    catalytic (A) domain. The specific order of thioredoxin domains in PDI is important in establishing the asymmetry in the rate of oxidation of the two active sites thus allowing A and A', two thioredoxin domains that are similar in sequence and structure, to serve opposing functional roles as a disulfide...... isomerase and disulfide oxidase, respectively. These findings reveal how native disulfide folding is accomplished in the endoplasmic reticulum and provide a context for understanding the proliferation of PDI homologs with combinatorial arrangements of thioredoxin domains.......Native disulfide bond formation in eukaryotes is dependent on protein-disulfide isomerase (PDI) and its homologs, which contain varying combinations of catalytically active and inactive thioredoxin domains. However, the specific contribution of PDI to the formation of new disulfides versus...

  7. Protein disulfide isomerase of Toxoplasma gondii is targeted by mucosal IgA antibodies in humans

    NARCIS (Netherlands)

    Meek, Bob; Back, Jaap Willem; Klaren, Vincent N. A.; Speijer, Dave; Peek, Ron

    2002-01-01

    Mass spectrometric analysis identified a 49 kDa antigen from Toxoplasma gondii as protein disulfide isomerase (PDI). This antigen is generally recognized by IgA in tears of healthy humans. We determined the complete open reading frame and expressed PDI recombinantly. Recombinant PDI was recognized

  8. Structure of the Noncatalytic Domains and Global Fold of the Protein Disulfide Isomerase ERp72

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, G.; Määttänen, P; Schrag, J; Hura, G; Gabrielli, L; Cygler, M; Thomas, D; Gehring, K

    2009-01-01

    Protein disulfide isomerases are a family of proteins that catalyze the oxidation and isomerization of disulfide bonds in newly synthesized proteins in the endoplasmic reticulum. The family includes general enzymes such as PDI that recognize unfolded proteins, and others that are selective for specific classes of proteins. Here, we report the X-ray crystal structure of central non-catalytic domains of a specific isomerase, ERp72 (also called CaBP2 and protein disulfide-isomerase A4) from Rattus norvegicus. The structure reveals strong similarity to ERp57, a PDI-family member that interacts with the lectin-like chaperones calnexin and calreticulin but, unexpectedly, ERp72 does not interact with calnexin as shown by isothermal titration calorimetry and nuclear magnetic resonance (NMR) spectroscopy. Small-angle X-ray scattering (SAXS) of ERp72 was used to develop models of the full-length protein using both rigid body refinement and ab initio simulated annealing of dummy atoms. The two methods show excellent agreement and define the relative positions of the five thioredoxin-like domains of ERp72 and potential substrate or chaperone binding sites.

  9. Rapid expansion of the protein disulfide isomerase gene family facilitates the folding of venom peptides

    DEFF Research Database (Denmark)

    Safavi-Hemami, Helena; Li, Qing; Jackson, Ronneshia L.

    2016-01-01

    Formation of correct disulfide bonds in the endoplasmic reticulum is a crucial step for folding proteins destined for secretion. Protein disulfide isomerases (PDIs) play a central role in this process. We report a previously unidentified, hypervariable family of PDIs that represents the most...... diverse gene family of oxidoreductases described in a single genus to date. These enzymes are highly expressed specifically in the venom glands of predatory cone snails, animals that synthesize a remarkably diverse set of cysteine-rich peptide toxins (conotoxins). Enzymes in this PDI family, termed...

  10. Protein disulfide-isomerase interacts with a substrate protein at all stages along its folding pathway.

    Directory of Open Access Journals (Sweden)

    Alistair G Irvine

    Full Text Available In contrast to molecular chaperones that couple protein folding to ATP hydrolysis, protein disulfide-isomerase (PDI catalyzes protein folding coupled to formation of disulfide bonds (oxidative folding. However, we do not know how PDI distinguishes folded, partly-folded and unfolded protein substrates. As a model intermediate in an oxidative folding pathway, we prepared a two-disulfide mutant of basic pancreatic trypsin inhibitor (BPTI and showed by NMR that it is partly-folded and highly dynamic. NMR studies show that it binds to PDI at the same site that binds peptide ligands, with rapid binding and dissociation kinetics; surface plasmon resonance shows its interaction with PDI has a Kd of ca. 10(-5 M. For comparison, we characterized the interactions of PDI with native BPTI and fully-unfolded BPTI. Interestingly, PDI does bind native BPTI, but binding is quantitatively weaker than with partly-folded and unfolded BPTI. Hence PDI recognizes and binds substrates via permanently or transiently unfolded regions. This is the first study of PDI's interaction with a partly-folded protein, and the first to analyze this folding catalyst's changing interactions with substrates along an oxidative folding pathway. We have identified key features that make PDI an effective catalyst of oxidative protein folding - differential affinity, rapid ligand exchange and conformational flexibility.

  11. MTH1745, a protein disulfide isomerase-like protein from thermophilic archaea, Methanothermobacter thermoautotrophicum involving in stress response.

    Science.gov (United States)

    Ding, Xia; Lv, Zhen-Mei; Zhao, Yang; Min, Hang; Yang, Wei-Jun

    2008-01-01

    MTH1745 is a putative protein disulfide isomerase characterized with 151 amino acid residues and a CPAC active-site from the anaerobic archaea Methanothermobacter thermoautotrophicum. The potential functions of MTH1745 are not clear. In the present study, we show a crucial role of MTH1745 in protecting cells against stress which may be related to its functions as a disulfide isomerase and its chaperone properties. Using real-time polymerase chain reaction analyses, the level of MTH1745 messenger RNA (mRNA) in the thermophilic archaea M. thermoautotrophicum was found to be stress-induced in that it was significantly higher under low (50 degrees C) and high (70 degrees C) growth temperatures than under the optimal growth temperature for the organism (65 degrees C). Additionally, the expression of MTH1745 mRNA was up-regulated by cold shock (4 degrees C). Furthermore, the survival of MTH1745 expressing Escherichia coli cells was markedly higher than that of control cells in response to heat shock (51.0 degrees C). These results indicated that MTH1745 plays an important role in the resistance of stress. By assay of enzyme activities in vitro, MTH1745 also exhibited a chaperone function by promoting the functional folding of citrate synthase after thermodenaturation. On the other hand, MTH1745 was also shown to function as a disulfide isomerase on the refolding of denatured and reduced ribonuclease A. On the basis of its single thioredoxin domain, function as a disulfide isomerase, and its chaperone activity, we suggest that MTH1745 may be an ancient protein disulfide isomerase. These studies may provide clues to the understanding of the function of protein disulfide isomerase in archaea.

  12. Role of protein disulfide isomerase and other thiol-reactive proteins in HIV-1 envelope protein-mediated fusion

    International Nuclear Information System (INIS)

    Ou Wu; Silver, Jonathan

    2006-01-01

    Cell-surface protein disulfide isomerase (PDI) has been proposed to promote disulfide bond rearrangements in HIV-1 envelope protein (Env) that accompany Env-mediated fusion. We evaluated the role of PDI in ways that have not been previously tested by downregulating PDI with siRNA and by overexpressing wild-type or variant forms of PDI in transiently and stably transfected cells. These manipulations, as well as treatment with anti-PDI antibodies, had only small effects on infection or cell fusion mediated by NL4-3 or AD8 strains of HIV-1. However, the cell-surface thiol-reactive reagent 5, 5'-dithiobis(2-nitrobenzoic acid) (DTNB) had a much stronger inhibitory effect in our system, suggesting that cell-surface thiol-containing molecules other than PDI, acting alone or in concert, have a greater effect than PDI on HIV-1 Env-mediated fusion. We evaluated one such candidate, thioredoxin, a PDI family member reported to reduce a labile disulfide bond in CD4. We found that the ability of thioredoxin to reduce the disulfide bond in CD4 is enhanced in the presence of HIV-1 Env gp120 and that thioredoxin also reduces disulfide bonds in gp120 directly in the absence of CD4. We discuss the implications of these observations for identification of molecules involved in disulfide rearrangements in Env during fusion

  13. Identification and characterization of GmPDIL7, a soybean ER membrane-bound protein disulfide isomerase family protein.

    Science.gov (United States)

    Okuda, Aya; Matsusaki, Motonori; Masuda, Taro; Urade, Reiko

    2017-02-01

    Most proteins synthesized in the endoplasmic reticulum (ER) possess intramolecular and intermolecular disulfide bonds, which play an important role in the conformational stability and function of proteins. Hence, eukaryotic cells contain protein disulfide bond formation pathways such as the protein disulfide isomerase (PDI)-ER oxidoreductin 1 (Ero1) system in the ER lumen. In this study, we identified soybean PDIL7 (GmPDIL7), a novel soybean ER membrane-bound PDI family protein, and determined its enzymatic properties. GmPDIL7 has a putative N-terminal signal sequence, a thioredoxin domain with an active center motif (CGHC), and a putative C-terminal transmembrane region. Likewise, we demonstrated that GmPDIL7 is ubiquitously expressed in soybean tissues and is localized in the ER membrane. Furthermore, GmPDIL7 associated with other soybean PDI family proteins in vivo and GmPDIL7 mRNA was slightly upregulated under ER stress. The redox potential of recombinant GmPDIL7 expressed in Escherichia coli was -187 mV, indicating that GmPDIL7 could oxidize unfolded proteins. GmPDIL7 exhibited a dithiol oxidase activity level that was similar to other soybean PDI family proteins. However, the oxidative refolding activity of GmPDIL7 was lower than other soybean PDI family proteins. GmPDIL7 was well oxidized by GmERO1. Taken together, our results indicated that GmPDIL7 primarily plays a role as a supplier of disulfide bonds in nascent proteins for oxidative folding on the ER membrane. The nucleotide sequence data for the GmPDIL7 cDNA are available in the DNA Data Bank of Japan (DDBJ) databases under the accession numbers LC158001. Protein disulfide isomerase: EC 5.3.4.1. © 2016 Federation of European Biochemical Societies.

  14. Patagonfibrase modifies protein expression of tissue factor and protein disulfide isomerase in rat skin.

    Science.gov (United States)

    Peichoto, María Elisa; Santoro, Marcelo Larami

    2016-09-01

    Patagonfibrase is a hemorrhagic metalloproteinase isolated from the venom of the South American rear-fanged snake Philodryas patagoniensis, and is an important contributor to local lesions inflicted by this species. The tissue factor (TF)-factor VIIa complex, besides triggering the coagulation cascade, has been demonstrated to be involved in inflammatory events. Our aim was to determine whether patagonfibrase affects the expression of TF and protein disulfide isomerase (PDI), an enzyme that controls TF biological activity, at the site of patagonfibrase injection, and thus if they may play a role in hemostatic and inflammatory events induced by snake venoms. Patagonfibrase (60 μg/kg) was administered s.c. to rats, and after 3 h blood was collected to evaluate hemostasis parameters, and skin fragments close to the site of injection were taken to assess TF and PDI expression. Patagonfibrase did not alter blood cell counts, plasma fibrinogen levels, or levels of TF activity in plasma. However, by semiquantitative Western blotting, patagonfibrase increased TF expression by 2-fold, and decreased PDI expression by 3-fold in skin samples. In agreement, by immunohistochemical analyses, prominent TF expression was observed in the subcutaneous tissue. Thus, patagonfibrase affects the local expression of TF and PDI without inducing any systemic hemostatic disturbance, although that they may be involved in the local inflammatory events induced by hemorrhagic metalloproteinases. Once antivenom therapy is not totally effective to treat the local injury induced by snake venoms, modulation of the activity and expression of TF and/or PDI might become a strategy for treating snake envenomation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. In vivo reduction-oxidation state of protein disulfide isomerase: the two active sites independently occur in the reduced and oxidized forms

    DEFF Research Database (Denmark)

    Appenzeller-Herzog, Christian; Ellgaard, Lars

    2008-01-01

    Thiol-disulfide oxidoreductases of the human protein disulfide isomerase (PDI) family promote protein folding in the endoplasmic reticulum (ER), while also assisting the retrotranslocation of toxins and misfolded ER proteins to the cytosol. The redox activity of PDI-like proteins is determined by...

  16. Acid-denatured Green Fluorescent Protein (GFP) as model substrate to study the chaperone activity of protein disulfide isomerase.

    Science.gov (United States)

    Mares, Rosa E; Meléndez-López, Samuel G; Ramos, Marco A

    2011-01-01

    Green fluorescent protein (GFP) has been widely used in several molecular and cellular biology applications, since it is remarkably stable in vitro and in vivo. Interestingly, native GFP is resistant to the most common chemical denaturants; however, a low fluorescence signal has been observed after acid-induced denaturation. Furthermore, this acid-denatured GFP has been used as substrate in studies of the folding activity of some bacterial chaperones and other chaperone-like molecules. Protein disulfide isomerase enzymes, a family of eukaryotic oxidoreductases that catalyze the oxidation and isomerization of disulfide bonds in nascent polypeptides, play a key role in protein folding and it could display chaperone activity. However, contrasting results have been reported using different proteins as model substrates. Here, we report the further application of GFP as a model substrate to study the chaperone activity of protein disulfide isomerase (PDI) enzymes. Since refolding of acid-denatured GFP can be easily and directly monitored, a simple micro-assay was used to study the effect of the molecular participants in protein refolding assisted by PDI. Additionally, the effect of a well-known inhibitor of PDI chaperone activity was also analyzed. Because of the diversity their functional activities, PDI enzymes are potentially interesting drug targets. Since PDI may be implicated in the protection of cells against ER stress, including cancer cells, inhibitors of PDI might be able to enhance the efficacy of cancer chemotherapy; furthermore, it has been demonstrated that blocking the reductive cleavage of disulfide bonds of proteins associated with the cell surface markedly reduces the infectivity of the human immunodeficiency virus. Although several high-throughput screening (HTS) assays to test PDI reductase activity have been described, we report here a novel and simple micro-assay to test the chaperone activity of PDI enzymes, which is amenable for HTS of PDI

  17. Protein disulfide isomerase interacts with tau protein and inhibits its fibrillization.

    Directory of Open Access Journals (Sweden)

    Li-Rong Xu

    Full Text Available BACKGROUND: Tau protein is implicated in the pathogenesis of neurodegenerative disorders such as tauopathies including Alzheimer disease, and Tau fibrillization is thought to be related to neuronal toxicity. Physiological inhibitors of Tau fibrillization hold promise for developing new strategies for treatment of Alzheimer disease. Because protein disulfide isomerase (PDI is both an enzyme and a chaperone, and implicated in neuroprotection against Alzheimer disease, we want to know whether PDI can prevent Tau fibrillization. In this study, we have investigated the interaction between PDI and Tau protein and the effect of PDI on Tau fibrillization. METHODOLOGY/PRINCIPAL FINDINGS: As evidenced by co-immunoprecipitation and confocal laser scanning microscopy, human PDI interacts and co-locates with some endogenous human Tau on the endoplasmic reticulum of undifferentiated SH-SY5Y neuroblastoma cells. The results from isothermal titration calorimetry show that one full-length human PDI binds to one full-length human Tau (or human Tau fragment Tau244-372 monomer with moderate, micromolar affinity at physiological pH and near physiological ionic strength. As revealed by thioflavin T binding assays, Sarkosyl-insoluble SDS-PAGE, and transmission electron microscopy, full-length human PDI remarkably inhibits both steps of nucleation and elongation of Tau244-372 fibrillization in a concentration-dependent manner. Furthermore, we find that two molecules of the a-domain of human PDI interact with one Tau244-372 molecule with sub-micromolar affinity, and inhibit both steps of nucleation and elongation of Tau244-372 fibrillization more strongly than full-length human PDI. CONCLUSIONS/SIGNIFICANCE: We demonstrate for the first time that human PDI binds to Tau protein mainly through its thioredoxin-like catalytic domain a, forming a 1∶1 complex and preventing Tau misfolding. Our findings suggest that PDI could act as a physiological inhibitor of Tau

  18. Protein disulfide isomerases: Impact of thapsigargin treatment on their expression in melanoma cell lines.

    Science.gov (United States)

    Silva, Zélia; Veríssimo, Teresa; Videira, Paula A; Novo, Carlos

    2015-08-01

    Anti-cancer treatments usually elevate the content of unfolded or misfolded proteins in the endoplasmic reticulum (ER). Here we aimed to get insights into the relation between sensitivity of melanoma cell lines to the ER stress inducer thapsigargin (THG) and the genetic expression of protein disulfide isomerase family members (PDIs). The expression of PDIs was analysed by flow cytometry and real-time PCR. The results showed that SK-MEL-30, the less THG sensitive cell line, displays higher basal PDIs' expression levels and the sensitivity is increased by the PDIs inhibitor bacitracin. While SK-MEL-30 PDIs' expression is not THG dose-dependent, an increase in glucose related protein 78 (GRP78), PDIA5, PDIA6, and thioredoxin-related-transmembrane proteins' (TMX3 and TMX4) expression, in response to higher drug concentrations, was observed in MNT-1. The differences in PDIs' gene expression in MNT-1 suggest a different response to ER stress compared to the other cell lines and highlight the importance of understanding the diversity among cancer cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Mapping Soluble Guanylyl Cyclase and Protein Disulfide Isomerase Regions of Interaction.

    Directory of Open Access Journals (Sweden)

    Erin J Heckler

    Full Text Available Soluble guanylyl cyclase (sGC is a heterodimeric nitric oxide (NO receptor that produces cyclic GMP. This signaling mechanism is a key component in the cardiovascular system. NO binds to heme in the β subunit and stimulates the catalytic conversion of GTP to cGMP several hundred fold. Several endogenous factors have been identified that modulate sGC function in vitro and in vivo. In previous work, we determined that protein disulfide isomerase (PDI interacts with sGC in a redox-dependent manner in vitro and that PDI inhibited NO-stimulated activity in cells. To our knowledge, this was the first report of a physical interaction between sGC and a thiol-redox protein. To characterize this interaction between sGC and PDI, we first identified peptide linkages between sGC and PDI, using a lysine cross-linking reagent and recently developed mass spectrometry analysis. Together with Flag-immunoprecipitation using sGC domain deletions, wild-type (WT and mutated PDI, regions of sGC involved in this interaction were identified. The observed data were further explored with computational modeling to gain insight into the interaction mechanism between sGC and oxidized PDI. Our results indicate that PDI interacts preferentially with the catalytic domain of sGC, thus providing a mechanism for PDI inhibition of sGC. A model in which PDI interacts with either the α or the β catalytic domain is proposed.

  20. Protein disulfide isomerase ameliorates β-cell dysfunction in pancreatic islets overexpressing human islet amyloid polypeptide.

    Science.gov (United States)

    Montane, Joel; de Pablo, Sara; Obach, Mercè; Cadavez, Lisa; Castaño, Carlos; Alcarraz-Vizán, Gema; Visa, Montserrat; Rodríguez-Comas, Júlia; Parrizas, Marcelina; Servitja, Joan Marc; Novials, Anna

    2016-01-15

    Human islet amyloid polypeptide (hIAPP) is the major component of amyloid deposits in islets of type 2 diabetic patients. hIAPP misfolding and aggregation is one of the factors that may lead to β-cell dysfunction and death. Endogenous chaperones are described to be important for the folding and functioning of proteins. Here, we examine the effect of the endoplasmic reticulum chaperone protein disulfide isomerase (PDI) on β-cell dysfunction. Among other chaperones, PDI was found to interact with hIAPP in human islet lysates. Furthermore, intrinsically recovered PDI levels were able to restore the effect of high glucose- and palmitate-induced β-cell dysfunction by increasing 3.9-fold the glucose-stimulated insulin secretion levels and restoring insulin content up to basal control values. Additionally, PDI transduction decreased induced apoptosis by glucolipotoxic conditions. This approach could reveal a new therapeutic target and aid in the development of strategies to improve β-cell dysfunction in type 2 diabetic patients. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Cell surface protein disulfide isomerase regulates natriuretic peptide generation of cyclic guanosine monophosphate.

    Directory of Open Access Journals (Sweden)

    Shuchong Pan

    Full Text Available The family of natriuretic peptides (NPs, including atrial natriuretic peptide (ANP, B-type natriuretic peptide (BNP, and C-type natriuretic peptide (CNP, exert important and diverse actions for cardiovascular and renal homeostasis. The autocrine and paracrine functions of the NPs are primarily mediated through the cellular membrane bound guanylyl cyclase-linked receptors GC-A (NPR-A and GC-B (NPR-B. As the ligands and receptors each contain disulfide bonds, a regulatory role for the cell surface protein disulfide isomerase (PDI was investigated.We utilized complementary in vitro and in vivo models to determine the potential role of PDI in regulating the ability of the NPs to generate its second messenger, cyclic guanosine monophosphate.Inhibition of PDI attenuated the ability of ANP, BNP and CNP to generate cGMP in human mesangial cells (HMCs, human umbilical vein endothelial cells (HUVECs, and human aortic smooth muscle cells (HASMCs, each of which were shown to express PDI. In LLC-PK1 cells, where PDI expression was undetectable by immunoblotting, PDI inhibition had a minimal effect on cGMP generation. Addition of PDI to cultured LLC-PK1 cells increased intracellular cGMP generation mediated by ANP. Inhibition of PDI in vivo attenuated NP-mediated generation of cGMP by ANP. Surface Plasmon Resonance demonstrated modest and differential binding of the natriuretic peptides with immobilized PDI in a cell free system. However, PDI was shown to co-localize on the surface of cells with GC-A and GC-B by co-immunoprecpitation and immunohistochemistry.These data demonstrate for the first time that cell surface PDI expression and function regulate the capacity of natriuretic peptides to generate cGMP through interaction with their receptors.

  2. GRP78 protects a disintegrin and metalloprotease 17 against protein-disulfide isomerase A6 catalyzed inactivation.

    Science.gov (United States)

    Schäfer, Miriam; Granato, Daniela C; Krossa, Sebastian; Bartels, Anne-Kathrin; Yokoo, Sami; Düsterhöft, Stefan; Koudelka, Tomas; Scheidig, Axel J; Tholey, Andreas; Paes Leme, Adriana F; Grötzinger, Joachim; Lorenzen, Inken

    2017-11-01

    The shedding of ectodomains is a crucial mechanism in many physiological and pathological events. A disintegrin and metalloprotease-17 (ADAM17) is a key sheddase involved in essential processes, such as development, regeneration, and immune defense. ADAM17 exists in two conformations which differ in their disulfide connection in the membrane-proximal domain (MPD). Protein-disulfide isomerases (PDIs) on the cell surface convert the open MPD into a rigid closed form, which corresponds to inactive ADAM17. ADAM17 is expressed in its open activatable form in the endoplasmic reticulum (ER) and consequently must be protected against ER-resident PDI activity. Here, we show that the chaperone 78-kDa glucose-regulated protein (GRP78) protects the MPD against PDI-dependent disulfide-bond isomerization by binding to this domain and, thereby, preventing ADAM17 inhibition. © 2017 Federation of European Biochemical Societies.

  3. Post-streptococcal auto-antibodies inhibit protein disulfide isomerase and are associated with insulin resistance.

    Directory of Open Access Journals (Sweden)

    Adi Aran

    2010-09-01

    Full Text Available Post-streptococcal autoimmunity affects millions worldwide, targeting multiple organs including the heart, brain, and kidneys. To explore the post-streptococcal autoimmunity spectrum, we used western blot analyses, to screen 310 sera from healthy subjects with (33% and without (67% markers of recent streptococcal infections [anti-Streptolysin O (ASLO or anti-DNAse B (ADB]. A 58 KDa protein, reacting strongly with post-streptococcal sera, was identified as Protein Disulfide Isomerase (PDI, an abundant protein with pleiotropic metabolic, immunologic, and thrombotic effects. Anti-PDI autoantibodies, purified from human sera, targeted similar epitopes in Streptolysin O (SLO, P51-61 and PDI (P328-338. The correlation between post-streptococcal status and anti-human PDI auto-immunity was further confirmed in a total of 2987 samples (13.6% in 530 ASLO positive versus 5.6% in 2457 ASLO negative samples, p<0.0001. Finally, anti-PDI auto-antibodies inhibited PDI-mediated insulin degradation in vitro (n = 90, p<0.001, and correlated with higher serum insulin (14.1 iu/ml vs. 12.2 iu/ml, n = 1215, p = 0.039 and insulin resistance (Homeostatic Model Assessment (HOMA 4.1 vs. 3.1, n = 1215, p = 0.004, in a population-based cohort. These results identify PDI as a major target of post-streptococcal autoimmunity, and establish a new link between infection, autoimmunity, and metabolic disturbances.

  4. The C-terminal CGHC motif of protein disulfide isomerase supports thrombosis

    Science.gov (United States)

    Zhou, Junsong; Wu, Yi; Wang, Lu; Rauova, Lubica; Hayes, Vincent M.; Poncz, Mortimer; Essex, David W.

    2015-01-01

    Protein disulfide isomerase (PDI) has two distinct CGHC redox-active sites; however, the contribution of these sites during different physiologic reactions, including thrombosis, is unknown. Here, we evaluated the role of PDI and redox-active sites of PDI in thrombosis by generating mice with blood cells and vessel wall cells lacking PDI (Mx1-Cre Pdifl/fl mice) and transgenic mice harboring PDI that lacks a functional C-terminal CGHC motif [PDI(ss-oo) mice]. Both mouse models showed decreased fibrin deposition and platelet accumulation in laser-induced cremaster arteriole injury, and PDI(ss-oo) mice had attenuated platelet accumulation in FeCl3-induced mesenteric arterial injury. These defects were rescued by infusion of recombinant PDI containing only a functional C-terminal CGHC motif [PDI(oo-ss)]. PDI infusion restored fibrin formation, but not platelet accumulation, in eptifibatide-treated wild-type mice, suggesting a direct role of PDI in coagulation. In vitro aggregation of platelets from PDI(ss-oo) mice and PDI-null platelets was reduced; however, this defect was rescued by recombinant PDI(oo-ss). In human platelets, recombinant PDI(ss-oo) inhibited aggregation, while recombinant PDI(oo-ss) potentiated aggregation. Platelet secretion assays demonstrated that the C-terminal CGHC motif of PDI is important for P-selectin expression and ATP secretion through a non-αIIbβ3 substrate. In summary, our results indicate that the C-terminal CGHC motif of PDI is important for platelet function and coagulation. PMID:26529254

  5. Revisiting the mechanistic basis of the French Paradox: Red wine inhibits the activity of protein disulfide isomerase in vitro.

    Science.gov (United States)

    Galinski, Christine N; Zwicker, Jeffrey I; Kennedy, Daniel R

    2016-01-01

    Although epidemiologic evidence points to cardioprotective activity of red wine, the mechanistic basis for antithrombotic activity has not been established. Quercetin and related flavonoids are present in high concentrations in red but not white wine. Quercetin-glycosides were recently shown to prevent thrombosis in animal models through the inhibition of extracellular protein disulfide isomerase (PDI). We evaluated whether red or white wine inhibited PDI activity in vitro. Quercetin levels in red and white wines were measured by HPLC analysis. Inhibition of PDI activity by red and white wines was assessed by an insulin reduction turbidity assay at various concentrations of wine. PDI inhibition was confirmed using a reduced peptide that contained a disulfide containing peptide as a substrate. The inhibition of PDI related thiol isomerases ERp5 and ERp57 was also assessed. We observed a dose-dependent decrease of PDI activity for a variety of red but not white wines. Red wine diluted to 3% final concentration resulted in over 80% inhibition of PDI activity by insulin reductase assay for all varieties tested. This inhibition was also observed in the peptide based assay. Red grape juice yielded similar results but ethanol alone did not affect PDI activity. Interestingly, red wine also inhibited the PDI related thiol isomerases ERp5 and ERp57, albeit to a lesser degree than PDI. PDI activity is inhibited by red wine and grape juice, identifying a potentially novel mechanism underlying the cardiovascular benefits attributed to wine consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Variation in the Subcellular Localization and Protein Folding Activity among Arabidopsis thaliana Homologs of Protein Disulfide Isomerase

    Directory of Open Access Journals (Sweden)

    Christen Y. L. Yuen

    2013-10-01

    Full Text Available Protein disulfide isomerases (PDIs catalyze the formation, breakage, and rearrangement of disulfide bonds to properly fold nascent polypeptides within the endoplasmic reticulum (ER. Classical animal and yeast PDIs possess two catalytic thioredoxin-like domains (a, a′ and two non-catalytic domains (b, b′, in the order a-b-b′-a′. The model plant, Arabidopsis thaliana, encodes 12 PDI-like proteins, six of which possess the classical PDI domain arrangement (AtPDI1 through AtPDI6. Three additional AtPDIs (AtPDI9, AtPDI10, AtPDI11 possess two thioredoxin domains, but without intervening b-b′ domains. C-terminal green fluorescent protein (GFP fusions to each of the nine dual-thioredoxin PDI homologs localized predominantly to the ER lumen when transiently expressed in protoplasts. Additionally, expression of AtPDI9:GFP-KDEL and AtPDI10: GFP-KDDL was associated with the formation of ER bodies. AtPDI9, AtPDI10, and AtPDI11 mediated the oxidative folding of alkaline phosphatase when heterologously expressed in the Escherichia coli protein folding mutant, dsbA−. However, only three classical AtPDIs (AtPDI2, AtPDI5, AtPDI6 functionally complemented dsbA−. Interestingly, chemical inducers of the ER unfolded protein response were previously shown to upregulate most of the AtPDIs that complemented dsbA−. The results indicate that Arabidopsis PDIs differ in their localization and protein folding activities to fulfill distinct molecular functions in the ER.

  7. Role of cysteine-protease CGHC motifs of ER-60, a protein disulfide isomerase, in hepatic apolipoprotein B100 degradation.

    Science.gov (United States)

    Rutledge, Angela C; Qiu, Wei; Zhang, Rianna; Urade, Reiko; Adeli, Khosrow

    2013-09-01

    Apolipoprotein B100 (apoB), the structural component of very low density lipoproteins (VLDL), is susceptible to misfolding and subsequent degradation by several intracellular pathways. ER-60, which has been implicated in apoB degradation, is a protein disulfide isomerase (PDI) that forms or rearranges disulfide bonds in substrate proteins and also possesses cysteine protease activity. To determine which ER-60 function is important for apoB degradation, adenoviruses encoding wild-type human ER-60 or a mutant form of human ER-60 (C60A, C409A) that lacked cysteine protease activity were overexpressed in HepG2 cells. Overexpression of wild-type ER-60 in HepG2 cells promoted apoB degradation and impaired apoB secretion, but mutant ER-60 overexpression did not. In McArdle RH-7777 cells, VLDL secretion was markedly inhibited following overexpression of wild-type but not mutant ER-60, an effect that could be blocked by oleate treatment. Mutant ER-60 was not trapped on apoB as it was with the control substrate tapasin, suggesting that ER-60's role in apoB degradation is likely unrelated to its protein disulfide isomerase activity. Thus, ER-60 may participate in apoB degradation by acting as a cysteine protease. We postulate that apoB cleavage by ER-60 within the ER lumen could facilitate proteasomal degradation of the C-terminus of translocationally-arrested apoB. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. The multidrug resistance IncA/C transferable plasmid encodes a novel domain-swapped dimeric protein-disulfide isomerase.

    Science.gov (United States)

    Premkumar, Lakshmanane; Kurth, Fabian; Neyer, Simon; Schembri, Mark A; Martin, Jennifer L

    2014-01-31

    The multidrug resistance-encoding IncA/C conjugative plasmids disseminate antibiotic resistance genes among clinically relevant enteric bacteria. A plasmid-encoded disulfide isomerase is associated with conjugation. Sequence analysis of several IncA/C plasmids and IncA/C-related integrative and conjugative elements (ICE) from commensal and pathogenic bacteria identified a conserved DsbC/DsbG homolog (DsbP). The crystal structure of DsbP reveals an N-terminal domain, a linker region, and a C-terminal catalytic domain. A DsbP homodimer is formed through domain swapping of two DsbP N-terminal domains. The catalytic domain incorporates a thioredoxin-fold with characteristic CXXC and cis-Pro motifs. Overall, the structure and redox properties of DsbP diverge from the Escherichia coli DsbC and DsbG disulfide isomerases. Specifically, the V-shaped dimer of DsbP is inverted compared with EcDsbC and EcDsbG. In addition, the redox potential of DsbP (-161 mV) is more reducing than EcDsbC (-130 mV) and EcDsbG (-126 mV). Other catalytic properties of DsbP more closely resemble those of EcDsbG than EcDsbC. These catalytic differences are in part a consequence of the unusual active site motif of DsbP (CAVC); substitution to the EcDsbC-like (CGYC) motif converts the catalytic properties to those of EcDsbC. Structural comparison of the 12 independent subunit structures of DsbP that we determined revealed that conformational changes in the linker region contribute to mobility of the catalytic domain, providing mechanistic insight into DsbP function. In summary, our data reveal that the conserved plasmid-encoded DsbP protein is a bona fide disulfide isomerase and suggest that a dedicated oxidative folding enzyme is important for conjugative plasmid transfer.

  9. The potato sucrose transporter StSUT1 interacts with a DRM-associated protein disulfide isomerase.

    Science.gov (United States)

    Krügel, Undine; He, Hong-Xia; Gier, Konstanze; Reins, Jana; Chincinska, Izabela; Grimm, Bernhard; Schulze, Waltraud X; Kühn, Christina

    2012-01-01

    Organization of proteins into complexes is crucial for many cellular functions. Recently, the SUT1 protein was shown to form homodimeric complexes, to be associated with lipid raft-like microdomains in yeast as well as in plants and to undergo endocytosis in response to brefeldin A. We therefore aimed to identify SUT1-interacting proteins that might be involved in dimerization, endocytosis, or targeting of SUT1 to raft-like microdomains. Therefore, we identified potato membrane proteins, which are associated with the detergent-resistant membrane (DRM) fraction. Among the proteins identified, we clearly confirmed StSUT1 as part of DRM in potato source leaves. We used the yeast two-hybrid split ubiquitin system (SUS) to systematically screen for interaction between the sucrose transporter StSUT1 and other membrane-associated or soluble proteins in vivo. The SUS screen was followed by immunoprecipitation using affinity-purified StSUT1-specific peptide antibodies and mass spectrometric analysis of co-precipitated proteins. A large overlap was observed between the StSUT1-interacting proteins identified in the co-immunoprecipitation and the detergent-resistant membrane fraction. One of the SUT1-interacting proteins, a protein disulfide isomerase (PDI), interacts also with other sucrose transporter proteins. A potential role of the PDI as escort protein is discussed.

  10. Effect of pharmaceutical potential endocrine disruptor compounds on protein disulfide isomerase reductase activity using di-eosin-oxidized-glutathione.

    Directory of Open Access Journals (Sweden)

    Danièle Klett

    Full Text Available BACKGROUND: Protein Disulfide Isomerase (PDI in the endoplasmic reticulum of all cells catalyzes the rearrangement of disulfide bridges during folding of membrane and secreted proteins. As PDI is also known to bind various molecules including hormones such as estradiol and thyroxin, we considered the hypothesis that adverse effects of endocrine-disrupter compounds (EDC could be mediated through their interaction with PDI leading to defects in membrane or secreted proteins. METHODOLOGY/PRINCIPAL FINDINGS: Taking advantage of the recent description of the fluorescence self quenched substrate di-eosin-oxidized-glutathione (DiE-GSSG, we determined kinetically the effects of various potential pharmaceutical EDCs on the in-vitro reductase activity of bovine liver PDI by measuring the fluorescence of the reaction product (E-GSH. Our data show that estrogens (ethynylestradiol and bisphenol-A as well as indomethacin exert an inhibition whereas medroxyprogesteroneacetate and nortestosterone exert a potentiation of bovine PDI reductase activity. CONCLUSIONS: The present data indicate that the tested EDCs could not only affect endocrine target cells through nuclear receptors as previously shown, but could also affect these and all other cells by positively or negatively affecting PDI activity. The substrate DiE-GSSG has been demonstrated to be a convenient substrate to measure PDI reductase activity in the presence of various potential EDCs. It will certainly be usefull for the screening of potential effect of all kinds of chemicals on PDI reductase activity.

  11. The role of protein disulfide isomerase in the post-ligation phase of β3 integrin-dependent cell adhesion.

    Science.gov (United States)

    Leader, Avi; Mor-Cohen, Ronit; Ram, Ron; Sheptovitsky, Vera; Seligsohn, Uri; Rosenberg, Nurit; Lahav, Judith

    2015-12-01

    Protein disulfide isomerase (PDI) catalyzes disulfide bond exchange. It is crucial for integrin-mediated platelet adhesion and aggregation and disulfide bond exchange is necessary for αIIbβ3 and αvβ3 activation. However, the role of disulfide bond exchange and PDI in the post-ligation phase of αIIbβ3 and αvβ3 mediated cell adhesion has yet to be determined. To investigate a possible such role, we expressed wild type (WT) human αIIb and either WT human β3, or β3 harboring single or double cysteine to serine substitutions disrupting Cys473-Cys503 or Cys523-Cys544 bonds, in baby hamster kidney (BHK) cells, leading to expression of both human αIIbβ3 and a chimeric hamster/human αvβ3. Adhesion to fibrinogen-coated wells was studied in the presence or absence of bacitracin, a PDI inhibitor, with and without an αvβ3 blocker. Flow cytometry showed WT and mutant αIIbβ3 expression in BHK cells and indicated that mutated αIIbβ3 receptors were constitutively active while WT αIIbβ3 was inactive. Both αIIbβ3 and αvβ3 integrins, WT and mutants, mediated adhesion to fibrinogen as shown by reduced but still substantial adhesion following treatment with the αvβ3 blocker. Mutated αIIbβ3 integrins disrupted in the Cys523-Cys544 bond still depended on PDI for adhesion as shown by the inhibitory effect of bacitracin in the presence of the αvβ3 blocker. Mutated integrins disrupted in the Cys473-Cys503 bond showed a similar trend. PDI-mediated disulfide bond exchange plays a pivotal role in the post-ligation phase of αIIbβ3-mediated adhesion to fibrinogen, while this step in αvβ3-mediated adhesion is independent of disulfide exchange. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Protein disulfide isomerase-P5, down-regulated in the final stage of boar epididymal sperm maturation, catalyzes disulfide formation to inhibit protein function in oxidative refolding of reduced denatured lysozyme.

    Science.gov (United States)

    Akama, Kuniko; Horikoshi, Tomoe; Sugiyama, Atsushi; Nakahata, Satoko; Akitsu, Aoi; Niwa, Nobuyoshi; Intoh, Atsushi; Kakui, Yasutaka; Sugaya, Michiko; Takei, Kazuo; Imaizumi, Noriaki; Sato, Takaya; Matsumoto, Rena; Iwahashi, Hitoshi; Kashiwabara, Shin-ichi; Baba, Tadashi; Nakamura, Megumi; Toda, Tosifusa

    2010-06-01

    In mammalian spermiogenesis, sperm mature during epididymal transit to get fertility. The pig sharing many physiological similarities with humans is considered a promising animal model in medicine. We examined the expression profiles of proteins from boar epididymal caput, corpus, and cauda sperm by two-dimensional gel electrophoresis and peptide mass fingerprinting. Our results indicated that protein disulfide isomerase-P5 (PDI-P5) human homolog was down-regulated from the epididymal corpus to cauda sperm, in contrast to the constant expression of protein disulfide isomerase A3 (PDIA3) human homolog. To examine the functions of PDIA3 and PDI-P5, we cloned and sequenced cDNAs of pig PDIA3 and PDI-P5 protein precursors. Each recombinant pig mature PDIA3 and PDI-P5 expressed in Escherichia coli showed thiol-dependent disulfide reductase activities in insulin turbidity assay. Although PDIA3 showed chaperone activity to promote oxidative refolding of reduced denatured lysozyme, PDI-P5 exhibited anti-chaperone activity to inhibit oxidative refolding of lysozyme at an equimolar ratio. SDS-PAGE and Western blotting analysis suggested that disulfide cross-linked and non-productively folded lysozyme was responsible for the anti-chaperone activity of PDI-P5. These results provide a molecular basis and insights into the physiological roles of PDIA3 and PDI-P5 in sperm maturation and fertilization. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Fluorometric polyethyleneglycol-peptide hybrid substrates for quantitative assay of protein disulfide isomerase

    DEFF Research Database (Denmark)

    Christiansen, Camilla; St Hilaire, Phaedria M; Winther, Jakob R.

    2004-01-01

    . This means that PDI activity is typically measured in the context of a globular protein folding pathway. The absence of small, well-defined substrates for the quantitation of both oxidation and reduction reactions constitutes an inherent problem in the analysis of PDI activity. We describe a new type...... of substrate for PDI where two cysteine-containing oligopeptides are connected by an onameric ethylene glycol linker. We term such hybrid compounds PEGtides. The oligopeptides are each marked with a fluorescent aminobenzoic acid and a quenching nitrotyrosine group, respectively. The reversible formation...... of an intramolecular disulfide bond between fluorophore-containing and quencher-containing peptide segments results in a redox-dependent fluorescence signal. We find a model compound of this type to be a highly sensitive substrate for PDI both in oxidation and in reduction assays under steady state conditions...

  14. Quality properties and expression profiling of protein disulfide isomerase genes during grain development of three spring wheat near isogenic lines

    Directory of Open Access Journals (Sweden)

    Dong Liwei

    2016-01-01

    Full Text Available Three wheat glutenin near isogenic lines (NILs CB037A, CB037B and CB037C were used to investigate their quality properties and the transcriptional expression profiles of PDI gene family during grain development. Our purpose is to understand the relationships between the dynamic expression of different PDI genes and glutenin allelic compositions related to gluten quality. The results showed that glutenin allelic variations had no significant effects on main agronomic traits and yield performance, but resulted in clear gluten quality changes. CB037B with 5+10 subunits had higher glutenin macropolymer (GMP content and better breadmaking quality than CB037A with 2+12 while the lack of Glu-B3h encoding one abundant B-subunit in CB037C significantly reduced GMP content, dough strength and breadmaking quality. The dynamic expression patterns of eight protein disulfide isomerase (PDI genes during grain development detected by quantitative real-time polymerase chain reaction (qRT-PCR showed the close correlations between higher expression levels of PDI3-1, PDI5-1 and PDI8-1 and the presence of 5+10 subunits. Meanwhile, Glu-B3h silence resulted in significant decrease of expression levels of five PDI genes (PDI3-1, PDI5-1, PDI6-1, PDI7-2 and PDI8-1, suggesting the vital roles of certain PDI genes in glutenin and GMP synthesis and gluten quality formation.

  15. Succination of Protein Disulfide Isomerase Links Mitochondrial Stress and Endoplasmic Reticulum Stress in the Adipocyte During Diabetes.

    Science.gov (United States)

    Manuel, Allison M; Walla, Michael D; Faccenda, Adam; Martin, Stephanie L; Tanis, Ross M; Piroli, Gerardo G; Adam, Julie; Kantor, Boris; Mutus, Bulent; Townsend, Danyelle M; Frizzell, Norma

    2017-12-01

    Protein succination by fumarate increases in the adipose tissue of diabetic mice and in adipocytes matured in high glucose as a result of glucotoxicity-driven mitochondrial stress. The endoplasmic reticulum (ER) oxidoreductase protein disulfide isomerase (PDI) is succinated in adipocytes that are matured in high glucose, and in this study we investigated whether succination would alter PDI oxidoreductase activity, directly linking mitochondrial stress and ER stress. Protein succination and the ER stress marker C/EBP homologous protein (CHOP) were diminished after pharmaceutical targeting of mitochondrial stress with the chemical uncoupler niclosamide in adipocytes matured in high-glucose concentrations. PDI was succinated by fumarate on both CXXC-containing active sites, contributing to reduced enzymatic activity. Succinated PDI decreased reductase activity in adipocytes matured in high glucose, and in db/db epididymal adipose tissue, in association with increased levels of CHOP. PDI succination was increased in fumarase knockdown adipocytes, leading to reduced PDI oxidoreductase activity, increased CHOP levels, and pro-inflammatory cytokine secretion, confirming the specific role of elevated fumarate levels in contributing to ER stress. In addition, PDI succination and ER stress were decreased, and PDI reductase activity was restored when exposure to chronic high glucose was limited, highlighting the importance of calorie restriction in the improvement of adipocyte metabolic function. These experiments identify PDI succination as a novel biochemical mechanism linking altered mitochondrial metabolism to ER stress in the adipocyte during diabetes. The current study demonstrates that early biochemical changes in mitochondrial metabolism have important implications for the development of adipocyte stress. Antioxid. Redox Signal. 27, 1281-1296.

  16. Protein disulfide isomerase-like protein 1-1 controls endosperm development through regulation of the amount and composition of seed proteins in rice.

    Directory of Open Access Journals (Sweden)

    Yeon Jeong Kim

    Full Text Available Protein disulfide isomerase (PDI is a chaperone protein involved in oxidative protein folding by acting as a catalyst and assisting folding in the endoplasmic reticulum (ER. A genome database search showed that rice contains 19 PDI-like genes. However, their functions are not clearly identified. This paper shows possible functions of rice PDI-like protein 1-1 (PDIL1-1 during seed development. Seeds of the T-DNA insertion PDIL1-1 mutant, PDIL1-1Δ, identified by genomic DNA PCR and western blot analysis, display a chalky phenotype and a thick aleurone layer. Protein content per seed was significantly lower and free sugar content higher in PDIL1-1Δ mutant seeds than in the wild type. Proteomic analysis of PDIL1-1Δ mutant seeds showed that PDIL1-1 is post-translationally regulated, and its loss causes accumulation of many types of seed proteins including glucose/starch metabolism- and ROS (reactive oxygen species scavenging-related proteins. In addition, PDIL1-1 strongly interacts with the cysteine protease OsCP1. Our data indicate that the opaque phenotype of PDIL1-1Δ mutant seeds results from production of irregular starch granules and protein body through loss of regulatory activity for various proteins involved in the synthesis of seed components.

  17. On the Role of Protein Disulfide Isomerase in the Retrograde Cell Transport of Secreted Phospholipases A2

    Science.gov (United States)

    Leonardi, Adrijana; Dolinar, Klemen; Pucer Janež, Anja; Križaj, Igor

    2015-01-01

    Following the finding that ammodytoxin (Atx), a neurotoxic secreted phospholipase A2 (sPLA2) in snake venom, binds specifically to protein disulfide isomerase (PDI) in vitro we show that these proteins also interact in living rat PC12 cells that are able to internalize this group IIA (GIIA) sPLA2. Atx and PDI co-localize in both differentiated and non-differentiated PC12 cells, as shown by fluorescence microscopy. Based on a model of the complex between Atx and yeast PDI (yPDI), a three-dimensional model of the complex between Atx and human PDI (hPDI) was constructed. The Atx binding site on hPDI is situated between domains b and b’. Atx interacts hPDI with an extensive area on its interfacial binding surface. The mammalian GIB, GIIA, GV and GX sPLA2s have the same fold as Atx. The first three sPLA2s have been detected intracellularly but not the last one. The models of their complexes with hPDI were constructed by replacement of Atx with the respective mammalian sPLA2 in the Atx—hPDI complex and molecular docking of the structures. According to the generated models, mammalian GIB, GIIA and GV sPLA2s form complexes with hPDI very similar to that with Atx. The contact area between GX sPLA2 and hPDI is however different from that of the other sPLA2s. Heterologous competition of Atx binding to hPDI with GV and GX sPLA2s confirmed the model-based expectation that GV sPLA2 was a more effective inhibitor than GX sPLA2, thus validating our model. The results suggest a role of hPDI in the (patho)physiology of some snake venom and mammalian sPLA2s by assisting the retrograde transport of these molecules from the cell surface. The sPLA2–hPDI model constitutes a valuable tool to facilitate further insights into this process and into the (patho)physiology of sPLA2s in relation to their action intracellularly. PMID:25763817

  18. On the role of protein disulfide isomerase in the retrograde cell transport of secreted phospholipases A2.

    Directory of Open Access Journals (Sweden)

    Jernej Oberčkal

    Full Text Available Following the finding that ammodytoxin (Atx, a neurotoxic secreted phospholipase A2 (sPLA2 in snake venom, binds specifically to protein disulfide isomerase (PDI in vitro we show that these proteins also interact in living rat PC12 cells that are able to internalize this group IIA (GIIA sPLA2. Atx and PDI co-localize in both differentiated and non-differentiated PC12 cells, as shown by fluorescence microscopy. Based on a model of the complex between Atx and yeast PDI (yPDI, a three-dimensional model of the complex between Atx and human PDI (hPDI was constructed. The Atx binding site on hPDI is situated between domains b and b'. Atx interacts hPDI with an extensive area on its interfacial binding surface. The mammalian GIB, GIIA, GV and GX sPLA2s have the same fold as Atx. The first three sPLA2s have been detected intracellularly but not the last one. The models of their complexes with hPDI were constructed by replacement of Atx with the respective mammalian sPLA2 in the Atx-hPDI complex and molecular docking of the structures. According to the generated models, mammalian GIB, GIIA and GV sPLA2s form complexes with hPDI very similar to that with Atx. The contact area between GX sPLA2 and hPDI is however different from that of the other sPLA2s. Heterologous competition of Atx binding to hPDI with GV and GX sPLA2s confirmed the model-based expectation that GV sPLA2 was a more effective inhibitor than GX sPLA2, thus validating our model. The results suggest a role of hPDI in the (pathophysiology of some snake venom and mammalian sPLA2s by assisting the retrograde transport of these molecules from the cell surface. The sPLA2-hPDI model constitutes a valuable tool to facilitate further insights into this process and into the (pathophysiology of sPLA2s in relation to their action intracellularly.

  19. Prokaryotic Soluble Overexpression and Purification of Bioactive Human Growth Hormone by Fusion to Thioredoxin, Maltose Binding Protein, and Protein Disulfide Isomerase

    Science.gov (United States)

    Thi Vu, Thu Trang; Song, Jung-A; Chong, Seon-Ha; Jeong, Boram; Ryu, Han-Bong; Moh, Sang-Hyun; Choe, Han

    2014-01-01

    Human growth hormone (hGH) is synthesized by somatotroph cells of the anterior pituitary gland and induces cell proliferation and growth. This protein has been approved for the treatment of various conditions, including hGH deficiency, chronic renal failure, and Turner syndrome. Efficient production of hGH in Escherichia coli (E. coli) has proven difficult because the E. coli-expressed hormone tends to aggregate and form inclusion bodies, resulting in poor solubility. In this study, seven N-terminal fusion partners, hexahistidine (His6), thioredoxin (Trx), glutathione S-transferase (GST), maltose-binding protein (MBP), N-utilization substance protein A (NusA), protein disulfide bond isomerase (PDI), and the b′a′ domain of PDI (PDIb′a′), were tested for soluble overexpression of codon-optimized hGH in E. coli. We found that MBP and hPDI tags significantly increased the solubility of the hormone. In addition, lowering the expression temperature to 18°C also dramatically increased the solubility of all the fusion proteins. We purified hGH from MBP-, PDIb′a′-, or Trx-tagged hGH expressed at 18°C in E. coli using simple chromatographic techniques and compared the final purity, yield, and activity of hGH to assess the impact of each partner protein. Purified hGH was highly pure on silver-stained gel and contained very low levels of endotoxin. On average, ∼37 mg, ∼12 mg, and ∼7 mg of hGH were obtained from 500 mL-cell cultures of Trx-hGH, MBP-hGH, and PDIb′a′-hGH, respectively. Subsequently, hGH was analyzed using mass spectroscopy to confirm the presence of two intra-molecular disulfide bonds. The bioactivity of purified hGHs was demonstrated using Nb2-11 cell. PMID:24614134

  20. Prokaryotic soluble overexpression and purification of bioactive human growth hormone by fusion to thioredoxin, maltose binding protein, and protein disulfide isomerase.

    Directory of Open Access Journals (Sweden)

    Minh Tan Nguyen

    Full Text Available Human growth hormone (hGH is synthesized by somatotroph cells of the anterior pituitary gland and induces cell proliferation and growth. This protein has been approved for the treatment of various conditions, including hGH deficiency, chronic renal failure, and Turner syndrome. Efficient production of hGH in Escherichia coli (E. coli has proven difficult because the E. coli-expressed hormone tends to aggregate and form inclusion bodies, resulting in poor solubility. In this study, seven N-terminal fusion partners, hexahistidine (His6, thioredoxin (Trx, glutathione S-transferase (GST, maltose-binding protein (MBP, N-utilization substance protein A (NusA, protein disulfide bond isomerase (PDI, and the b'a' domain of PDI (PDIb'a', were tested for soluble overexpression of codon-optimized hGH in E. coli. We found that MBP and hPDI tags significantly increased the solubility of the hormone. In addition, lowering the expression temperature to 18°C also dramatically increased the solubility of all the fusion proteins. We purified hGH from MBP-, PDIb'a'-, or Trx-tagged hGH expressed at 18°C in E. coli using simple chromatographic techniques and compared the final purity, yield, and activity of hGH to assess the impact of each partner protein. Purified hGH was highly pure on silver-stained gel and contained very low levels of endotoxin. On average, ∼37 mg, ∼12 mg, and ∼7 mg of hGH were obtained from 500 mL-cell cultures of Trx-hGH, MBP-hGH, and PDIb'a'-hGH, respectively. Subsequently, hGH was analyzed using mass spectroscopy to confirm the presence of two intra-molecular disulfide bonds. The bioactivity of purified hGHs was demonstrated using Nb2-11 cell.

  1. Cystamine-mediated inhibition of protein disulfide isomerase triggers aggregation of misfolded orexin-A in the Golgi apparatus and prevents extracellular secretion of orexin-A.

    Science.gov (United States)

    Fujita, Issei; Nobunaga, Mizuki; Seki, Takahiro; Kurauchi, Yuki; Hisatsune, Akinori; Katsuki, Hiroshi

    2017-07-22

    Orexins (orexin-A and orexin-B) are neuropeptides that are reduced in narcolepsy, a sleep disorder that is characterized by excessive daytime sleepiness, sudden sleep attacks and cataplexy. However, it remains unclear how orexins in the brain and orexin neurons are reduced in narcolepsy. Orexin-A has two closely located intramolecular disulfide bonds and is prone to misfolding due to the formation of incorrect disulfide bonds. Protein disulfide isomerase (PDI) possesses disulfide interchange activity. PDI can modify misfolded orexin-A to its native form by rearrangement of two disulfide bonds. We have previously demonstrated that sleep deprivation and a high fat diet increase nitric oxide in the brain. This increase triggers S-nitrosation and inactivation of PDI, leading to aggregation of orexin-A and reduction of orexin neurons. However, the relationship between PDI inactivation and loss of orexin neurons has not yet been fully elucidated. In the present study, we used a PDI inhibitor, cystamine, to elucidate the precise molecular mechanism by which PDI inhibition reduces the number of orexin neurons. In rat hypothalamic slice cultures, cystamine induced selective depletion of orexin-A, but not orexin-B and melanin-concentrating hormone. Moreover, cystamine triggered aggregation of orexin-A, but not orexin-B in the Golgi apparatus of hypothalamic slice cultures and in vivo mouse brains. However, cystamine did not induce endoplasmic reticulum (ER) stress, and an ER stress inducer did not trigger aggregation of orexin-A in slice cultures. Finally, we demonstrated that cystamine significantly decreased extracellular secretion of orexin-A in AD293 cells overexpressing prepro-orexin. These findings suggest that cystamine-induced PDI inhibition induces selective depletion, aggregation in the Golgi apparatus and impaired secretion of orexin-A. These effects may represent an initial step in the pathogenesis of narcolepsy. Copyright © 2017. Published by Elsevier Inc.

  2. Th1 stimulatory proteins of Leishmania donovani: comparative cellular and protective responses of rTriose phosphate isomerase, rProtein disulfide isomerase and rElongation factor-2 in combination with rHSP70 against visceral leishmaniasis.

    Science.gov (United States)

    Jaiswal, Anil Kumar; Khare, Prashant; Joshi, Sumit; Kushawaha, Pramod Kumar; Sundar, Shyam; Dube, Anuradha

    2014-01-01

    In visceral leishmaniasis, the recovery from the disease is always associated with the generation of Th1-type of cellular responses. Based on this, we have previously identified several Th1-stimulatory proteins of Leishmania donovani -triose phosphate isomerase (TPI), protein disulfide isomerase (PDI) and elongation factor-2 (EL-2) etc. including heat shock protein 70 (HSP70) which induced Th1-type of cellular responses in both cured Leishmania patients/hamsters. Since, HSPs, being the logical targets for vaccines aimed at augmenting cellular immunity and can be early targets in the immune response against intracellular pathogens; they could be exploited as vaccine/adjuvant to induce long-term immunity more effectively. Therefore, in this study, we checked whether HSP70 can further enhance the immunogenicity and protective responses of the above said Th1-stimulatory proteins. Since, in most of the studies, immunogenicity of HSP70 of L. donovani was assessed in native condition, herein we generated recombinant HSP70 and tested its potential to stimulate immune responses in lymphocytes of cured Leishmania infected hamsters as well as in the peripheral blood mononuclear cells (PBMCs) of cured patients of VL either individually or in combination with above mentioned recombinant proteins. rLdHSP70 alone elicited strong cellular responses along with remarkable up-regulation of IFN-γ and IL-12 cytokines and extremely lower level of IL-4 and IL-10. Among the various combinations, rLdHSP70 + rLdPDI emerged as superior one augmenting improved cellular responses followed by rLdHSP70 + rLdEL-2. These combinations were further evaluated for its protective potential wherein rLdHSP70 + rLdPDI again conferred utmost protection (∼80%) followed by rLdHSP70 + rLdEL-2 (∼75%) and generated a strong cellular immune response with significant increase in the levels of iNOS transcript as well as IFN-γ and IL-12 cytokines which was further supported by the high level of IgG2 antibody

  3. Electrostatic stabilization and general base catalysis in the active site of the human protein disulfide isomerase a domain monitored by hydrogen exchange.

    Science.gov (United States)

    Hernández, Griselda; Anderson, Janet S; LeMaster, David M

    2008-03-25

    The nucleophilic Cys36 thiol of the human protein disulfide isomerase a domain is positioned over the N terminus of the alpha(2) helix. Amides in the active site exhibit diffusion-limited, hydroxide-catalyzed exchange, indicating that the local positive electrostatic potential decreases the pK value for peptide anion formation by at least 2 units so as to equal or exceed the acidity of water. In stark contrast to the pH dependence of exchange for simple peptides, the His38 amide in the reduced enzyme exhibits a maximum rate of exchange at pH 5 due to efficient general base catalysis by the neutral imidazole of its own side chain and suppression of its exchange by the ionization of the Cys36 thiol. Ionization of this thiol and deprotonation of the His38 side chain suppress the Cys39 amide hydroxide-catalyzed exchange by a million-fold. The electrostatic potential within the active site monitored by these exchange experiments provides a means of stabilizing the two distinct transition states that lead to substrate reduction and oxidation. Molecular modeling offers a role for the conserved Arg103 in coordinating the oxidative transition-state complex, thus providing further support for mechanisms of disulfide isomerization that utilize enzymatic catalysis at each step of the overall reaction.

  4. Inhibition of the Functional Interplay between Endoplasmic Reticulum (ER) Oxidoreduclin-1α (Ero1α) and Protein-disulfide Isomerase (PDI) by the Endocrine Disruptor Bisphenol A*

    Science.gov (United States)

    Okumura, Masaki; Kadokura, Hiroshi; Hashimoto, Shoko; Yutani, Katsuhide; Kanemura, Shingo; Hikima, Takaaki; Hidaka, Yuji; Ito, Len; Shiba, Kohei; Masui, Shoji; Imai, Daiki; Imaoka, Susumu; Yamaguchi, Hiroshi; Inaba, Kenji

    2014-01-01

    Bisphenol A (BPA) is an endocrine disruptor that may have adverse effects on human health. We recently isolated protein-disulfide isomerase (PDI) as a BPA-binding protein from rat brain homogenates and found that BPA markedly inhibited PDI activity. To elucidate mechanisms of this inhibition, detailed structural, biophysical, and functional analyses of PDI were performed in the presence of BPA. BPA binding to PDI induced significant rearrangement of the N-terminal thioredoxin domain of PDI, resulting in more compact overall structure. This conformational change led to closure of the substrate-binding pocket in b′ domain, preventing PDI from binding to unfolded proteins. The b′ domain also plays an essential role in the interplay between PDI and ER oxidoreduclin 1α (Ero1α), a flavoenzyme responsible for reoxidation of PDI. We show that BPA inhibited Ero1α-catalyzed PDI oxidation presumably by inhibiting the interaction between the b′ domain of PDI and Ero1α; the phenol groups of BPA probably compete with a highly conserved tryptophan residue, located in the protruding β-hairpin of Ero1α, for binding to PDI. Consistently, BPA slowed down the reoxidation of PDI and caused the reduction of PDI in HeLa cells, indicating that BPA has a great impact on the redox homeostasis of PDI within cells. However, BPA had no effect on the interaction between PDI and peroxiredoxin-4 (Prx4), another PDI family oxidase, suggesting that the interaction between Prx4 and PDI is different from that of Ero1α and PDI. These results indicate that BPA, a widely distributed and potentially harmful chemical, inhibits Ero1-PDI-mediated disulfide bond formation. PMID:25122773

  5. In Silico Identification of Protein Disulfide Isomerase Gene Families in the De Novo Assembled Transcriptomes of Four Different Species of the Genus Conus.

    Directory of Open Access Journals (Sweden)

    Andrea Figueroa-Montiel

    Full Text Available Small peptides isolated from the venom of the marine snails belonging to the genus Conus have been largely studied because of their therapeutic value. These peptides can be classified in two groups. The largest one is composed by peptides rich in disulfide bonds, and referred to as conotoxins. Despite the importance of conotoxins given their pharmacology value, little is known about the protein disulfide isomerase (PDI enzymes that are required to catalyze their correct folding. To discover the PDIs that may participate in the folding and structural maturation of conotoxins, the transcriptomes of the venom duct of four different species of Conus from the peninsula of Baja California (Mexico were assembled. Complementary DNA (cDNA libraries were constructed for each species and sequenced using a Genome Analyzer Illumina platform. The raw RNA-seq data was converted into transcript sequences using Trinity, a de novo assembler that allows the grouping of reads into contigs without a reference genome. An N50 value of 605 was established as a reference for future assemblies of Conus transcriptomes using this software. Transdecoder was used to extract likely coding sequences from Trinity transcripts, and PDI-specific sequence motif "APWCGHCK" was used to capture potential PDIs. An in silico analysis was performed to characterize the group of PDI protein sequences encoded by the duct-transcriptome of each species. The computational approach entailed a structural homology characterization, based on the presence of functional Thioredoxin-like domains. Four different PDI families were characterized, which are constituted by a total of 41 different gene sequences. The sequences had an average of 65% identity with other PDIs. Using MODELLER 9.14, the homology-based three-dimensional structure prediction of a subset of the sequences reported, showed the expected thioredoxin fold which was confirmed by a "simulated annealing" method.

  6. Heat Shock Protein member A2 forms a stable complex with angiotensin converting enzyme and protein disulfide isomerase A6 in human spermatozoa.

    Science.gov (United States)

    Bromfield, Elizabeth G; McLaughlin, Eileen A; Aitken, Robert John; Nixon, Brett

    2016-02-01

    Given the importance of the chaperone Heat Shock Protein A2 (HSPA2) in the regulation of male fertility, this study aimed to identify and characterize additional proteins that may rely on the activity of this chaperone in human spermatozoa. In view of the findings in this study we propose that angiotensin converting enzyme (ACE) and protein disulfide isomerase A6 (PDIA6) are novel interacting proteins of HSPA2 and that this multimeric complex may participate in key elements of the fertilization cascade. The molecular chaperone HSPA2 plays a pivotal role in the remodelling of the sperm surface during capacitation. Indeed, human spermatozoa that are deficient in HSPA2 protein expression lack the ability to recognize human oocytes, resulting in repeated IVF failure in a clinical setting. Moreover, our recent work has shown that defective HSPA2 function induced by oxidative stress leads to the aberrant surface expression of one of its interacting proteins, arylsulfatase A, and thus contributes to a loss of sperm-zona pellucida adhesion. Human spermatozoa were collected from fertile donors, capacitated and prepared for Blue Native Polyacrylamide Gel Electrophoresis (BN-PAGE) analysis. Protein complexes resolved via BN-PAGE were excised and their constituents were identified using mass spectrometry. The interactions between ACE, PDIA6 and HSPA2 were then confirmed using immunoprecipitation and proximity ligation assays and the localization of these proteins was assessed in isolated spermatozoa and commercially available human testis tissue sections. Finally, pharmacological inhibition of ACE was performed to assess the role of ACE in human sperm capacitation. Herein we have identified ACE and PDIA6 as potential HSPA2-interacting proteins and shown that this assemblage resides in membrane raft microdomains located in the peri-acrosomal region of the sperm head. Additionally, the surface expression of PDIA6, but not ACE, was shown to be dynamically regulated during sperm

  7. Autoimmune gastro-pancreatitis with anti-protein disulfide isomerase-associated 2 autoantibody in Aire-deficient BALB/cAnN mice.

    Directory of Open Access Journals (Sweden)

    Hironori Kurisaki

    Full Text Available Although the autoimmune regulator (Aire knockout (KO mouse model has been reported to present various organ-specific autoimmune diseases depending on genetic background, autoimmune pancreatitis in mice of BALB/c background has not yet been reported. Here, we report that Aire KO mice with BALB/cAnN background showed significant lymphoid cell infiltration in the pancreas and stomach. To examine whether the phenotype in the pancreas and stomach is due to autoimmune reaction associated with autoantibody production, indirect immunofluorescence staining followed by Western blot analysis was performed. Consequently, the autoantibody against pancreas and stomach was detected in the sera of Aire KO mice, and the target antigen of the autoantibody was identified as protein disulfide isomerase-associated 2 (Pdia2, which was reported to be expressed preferentially in the pancreas and stomach. Thus, Aire KO mice of BALB/cAnN background can serve as a useful animal model for autoimmune gastro-pancreatitis with anti-Pdia2 autoantibody production.

  8. Autoimmune gastro-pancreatitis with anti-protein disulfide isomerase-associated 2 autoantibody in Aire-deficient BALB/cAnN mice.

    Science.gov (United States)

    Kurisaki, Hironori; Nagao, Yukihiro; Nagafuchi, Seiho; Mitsuyama, Masao

    2013-01-01

    Although the autoimmune regulator (Aire) knockout (KO) mouse model has been reported to present various organ-specific autoimmune diseases depending on genetic background, autoimmune pancreatitis in mice of BALB/c background has not yet been reported. Here, we report that Aire KO mice with BALB/cAnN background showed significant lymphoid cell infiltration in the pancreas and stomach. To examine whether the phenotype in the pancreas and stomach is due to autoimmune reaction associated with autoantibody production, indirect immunofluorescence staining followed by Western blot analysis was performed. Consequently, the autoantibody against pancreas and stomach was detected in the sera of Aire KO mice, and the target antigen of the autoantibody was identified as protein disulfide isomerase-associated 2 (Pdia2), which was reported to be expressed preferentially in the pancreas and stomach. Thus, Aire KO mice of BALB/cAnN background can serve as a useful animal model for autoimmune gastro-pancreatitis with anti-Pdia2 autoantibody production.

  9. Enolase 1 (ENO1 and protein disulfide-isomerase associated 3 (PDIA3 regulate Wnt/β-catenin-driven trans-differentiation of murine alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Kathrin Mutze

    2015-08-01

    Full Text Available The alveolar epithelium represents a major site of tissue destruction during lung injury. It consists of alveolar epithelial type I (ATI and type II (ATII cells. ATII cells are capable of self-renewal and exert progenitor function for ATI cells upon alveolar epithelial injury. Cell differentiation pathways enabling this plasticity and allowing for proper repair, however, are poorly understood. Here, we applied proteomics, expression analysis and functional studies in primary murine ATII cells to identify proteins and molecular mechanisms involved in alveolar epithelial plasticity. Mass spectrometry of cultured ATII cells revealed a reduction of carbonyl reductase 2 (CBR2 and an increase in enolase 1 (ENO1 and protein disulfide-isomerase associated 3 (PDIA3 protein expression during ATII-to-ATI cell trans-differentiation. This was accompanied by increased Wnt/β-catenin signaling, as analyzed by qRT-PCR and immunoblotting. Notably, ENO1 and PDIA3, along with T1α (podoplanin; an ATI cell marker, exhibited decreased protein expression upon pharmacological and molecular Wnt/β-catenin inhibition in cultured ATII cells, whereas CBR2 levels were stabilized. Moreover, we analyzed primary ATII cells from mice with bleomycin-induced lung injury, a model exhibiting activated Wnt/β-catenin signaling in vivo. We observed reduced CBR2 significantly correlating with surfactant protein C (SFTPC, whereas ENO1 and PDIA3 along with T1α were increased in injured ATII cells. Finally, siRNA-mediated knockdown of ENO1, as well as PDIA3, in primary ATII cells led to reduced T1α expression, indicating diminished cell trans-differentiation. Our data thus identified proteins involved in ATII-to-ATI cell trans-differentiation and suggest a Wnt/β-catenin-driven functional role of ENO1 and PDIA3 in alveolar epithelial cell plasticity in lung injury and repair.

  10. Protein disulfide isomerase is required for platelet-derived growth factor-induced vascular smooth muscle cell migration, Nox1 NADPH oxidase expression, and RhoGTPase activation.

    Science.gov (United States)

    Pescatore, Luciana A; Bonatto, Diego; Forti, Fábio L; Sadok, Amine; Kovacic, Hervé; Laurindo, Francisco R M

    2012-08-24

    Vascular Smooth Muscle Cell (VSMC) migration into vessel neointima is a therapeutic target for atherosclerosis and postinjury restenosis. Nox1 NADPH oxidase-derived oxidants synergize with growth factors to support VSMC migration. We previously described the interaction between NADPH oxidases and the endoplasmic reticulum redox chaperone protein disulfide isomerase (PDI) in many cell types. However, physiological implications, as well as mechanisms of such association, are yet unclear. We show here that platelet-derived growth factor (PDGF) promoted subcellular redistribution of PDI concomitant to Nox1-dependent reactive oxygen species production and that siRNA-mediated PDI silencing inhibited such reactive oxygen species production, while nearly totally suppressing the increase in Nox1 expression, with no change in Nox4. Furthermore, PDI silencing inhibited PDGF-induced VSMC migration assessed by distinct methods, whereas PDI overexpression increased spontaneous basal VSMC migration. To address possible mechanisms of PDI effects, we searched for PDI interactome by systems biology analysis of physical protein-protein interaction networks, which indicated convergence with small GTPases and their regulator RhoGDI. PDI silencing decreased PDGF-induced Rac1 and RhoA activities, without changing their expression. PDI co-immunoprecipitated with RhoGDI at base line, whereas such association was decreased after PDGF. Also, PDI co-immunoprecipitated with Rac1 and RhoA in a PDGF-independent way and displayed detectable spots of perinuclear co-localization with Rac1 and RhoGDI. Moreover, PDI silencing promoted strong cytoskeletal changes: disorganization of stress fibers, decreased number of focal adhesions, and reduced number of RhoGDI-containing vesicular recycling adhesion structures. Overall, these data suggest that PDI is required to support Nox1/redox and GTPase-dependent VSMC migration.

  11. SOD1 aggregation in astrocytes following ischemia/reperfusion injury: a role of NO-mediated S-nitrosylation of protein disulfide isomerase (PDI).

    Science.gov (United States)

    Chen, Xueping; Guan, Teng; Li, Chen; Shang, Huifang; Cui, Liying; Li, Xin-Min; Kong, Jiming

    2012-10-12

    Ubiquitinated-protein aggregates are implicated in cerebral ischemia/reperfusion injury. The very presence of these ubiquitinated-protein aggregates is abnormal and seems to be disease-related. However, it is not clear what leads to aggregate formation and whether the aggregations represent a reaction to aggregate-mediated neurodegeneration. To study the nitrosative stress-induced protein aggregation in cerebral ischemia/reperfusion injury, we used primary astrocyte cultures as a cell model, and systematically examined their iNOS expression and consequent NO generation following oxygen glucose deprivation and reperfusion. The expression of protein disulfide isomerase (PDI) and copper-zinc superoxide dismutase (SOD1) were also examined, and the biochemical interaction between PDI and SOD1 was determined by immunoprecipitation. In addition, the levels of S-nitrosylated PDI in cultured astrocytes after oxygen glucose deprivation and reperfusion treatment were measured using the biotin-switch assay. The formation of ubiquitinated-protein aggregates was detected by immunoblot and immunofluorescence staining. Our data showed that the up-regulation of iNOS expression after oxygen glucose deprivation and reperfusion treatment led to excessive NO generation. Up-regulation of PDI and SOD1 was also identified in cultured astrocytes following oxygen glucose deprivation and reperfusion, and these two proteins were found to bind to each other. Furthermore, the increased nitrosative stress due to ischemia/reperfusion injury was highly associated with NO-induced S-nitrosylation of PDI, and this S-nitrosylation of PDI was correlated with the formation of ubiquitinated-protein aggregates; the levels of S-nitrosylated PDI increased in parallel with the formation of aggregates. When NO generation was pharmacologically inhibited by iNOS specific inhibitor 1400W, S-nitrosylation of PDI was significantly blocked. In addition, the formation of ubiquitinated-protein aggregates in cultured

  12. SOD1 aggregation in astrocytes following ischemia/reperfusion injury: a role of NO-mediated S-nitrosylation of protein disulfide isomerase (PDI

    Directory of Open Access Journals (Sweden)

    Chen Xueping

    2012-10-01

    Full Text Available Abstract Background Ubiquitinated-protein aggregates are implicated in cerebral ischemia/reperfusion injury. The very presence of these ubiquitinated-protein aggregates is abnormal and seems to be disease-related. However, it is not clear what leads to aggregate formation and whether the aggregations represent a reaction to aggregate-mediated neurodegeneration. Methods To study the nitrosative stress-induced protein aggregation in cerebral ischemia/reperfusion injury, we used primary astrocyte cultures as a cell model, and systematically examined their iNOS expression and consequent NO generation following oxygen glucose deprivation and reperfusion. The expression of protein disulfide isomerase (PDI and copper-zinc superoxide dismutase (SOD1 were also examined, and the biochemical interaction between PDI and SOD1 was determined by immunoprecipitation. In addition, the levels of S-nitrosylated PDI in cultured astrocytes after oxygen glucose deprivation and reperfusion treatment were measured using the biotin-switch assay. The formation of ubiquitinated-protein aggregates was detected by immunoblot and immunofluorescence staining. Results Our data showed that the up-regulation of iNOS expression after oxygen glucose deprivation and reperfusion treatment led to excessive NO generation. Up-regulation of PDI and SOD1 was also identified in cultured astrocytes following oxygen glucose deprivation and reperfusion, and these two proteins were found to bind to each other. Furthermore, the increased nitrosative stress due to ischemia/reperfusion injury was highly associated with NO-induced S-nitrosylation of PDI, and this S-nitrosylation of PDI was correlated with the formation of ubiquitinated-protein aggregates; the levels of S-nitrosylated PDI increased in parallel with the formation of aggregates. When NO generation was pharmacologically inhibited by iNOS specific inhibitor 1400W, S-nitrosylation of PDI was significantly blocked. In addition, the

  13. The Protein Disulfide Isomerase of Botrytis cinerea: An ER Protein Involved in Protein Folding and Redox Homeostasis Influences NADPH Oxidase Signaling Processes

    Directory of Open Access Journals (Sweden)

    Robert Marschall

    2017-05-01

    Full Text Available Botrytis cinerea is a filamentous plant pathogen, which infects hundreds of plant species; within its lifestyle, the production of reactive oxygen species (ROS and a balanced redox homeostasis are essential parameters. The pathogen is capable of coping with the plant’s oxidative burst and even produces its own ROS to enhance the plant’s oxidative burst. Highly conserved NADPH oxidase (Nox complexes produce the reactive molecules. The membrane-associated complexes regulate a large variety of vegetative and pathogenic processes. Besides their commonly accepted function at the plasma membrane, recent studies reveal that Nox complexes are also active at the membrane of the endoplasmic reticulum. In this study, we identified the essential ER protein BcPdi1 as new interaction partner of the NoxA complex in B. cinerea. Mutants that lack this ER chaperone display overlapping phenotypes to mutants of the NoxA signaling pathway. The protein appears to be involved in all major developmental processes, such as the formation of sclerotia, conidial anastomosis tubes and infection cushions (IC’s and is needed for full virulence. Moreover, expression analyses and reporter gene studies indicate that BcPdi1 affects the redox homeostasis and unfolded protein response (UPR-related genes. Besides the close association between BcPdi1 and BcNoxA, interaction studies provide evidence that the ER protein might likewise be involved in Ca2+ regulated processes. Finally, we were able to show that the potential key functions of the protein BcPdi1 might be affected by its phosphorylation state.

  14. Nitroxide 4-hydroxy-2,2',6,6'-tetramethylpiperidine 1-oxyl (Tempol) inhibits the reductase activity of protein disulfide isomerase via covalent binding to the Cys400residue on CXXC redox motif at the a'active site.

    Science.gov (United States)

    Santos, Gérsika Bitencourt; Gonzalez-Perilli, Lucia; Mastrogiovanni, Mauricio; Aicardo, Adrián; Cerdeira, Cláudio Daniel; Trostchansky, Andrés; Brigagão, Maísa Ribeiro Pereira Lima

    2017-06-25

    Oxidative stress arising from inflammatory processes is a serious cause of cell and tissue damage. Tempol is an efficient antioxidant with superoxide dismutase-like activity. The purpose of this paper is to address the inhibition of protein disulfide isomerase (PDI), an essential redox chaperone whose active sites contain the Cys-Gly-His-Cys (CXXC) motif, by the nitroxide Tempol. In the presence of Tempol (5-120 μM), the reductase activity of PDI was reversibly affected both in vitro and in activated mice neutrophils, with an IC 50 of 22.9 ± 10.8 μM. Inhibitory activity was confirmed by using both the insulin method and fluorescent formation of eosin-glutathione (E-GSH). The capacity of Tempol to bind the enzyme was determined by EPR and mass spectrometry. EPR Tempol signal decreased in the presence of PDI while remained unaffected when PDI thiols were previously blocked with NEM. When total protein was analyzed, 1 and 4 molecules of Tempol were bound to the protein. However, only one was found to be covalently bound to PDI at the a'active site. More specifically, Cys 400 was modified by Tempol. We have shown that the nitroxide Tempol acts as an inhibitor of PDI through covalent binding to the Cys400 of the protein structure. Since PDI is coupled with the assembly of the NADPH oxidase complex of phagocytes, these findings reveal a novel action of Tempol that presents potential clinical applications for therapeutic intervention to target PDI knockdown in pathological processes in which this protein is engaged. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Active site mutations in yeast protein disulfide isomerase cause dithiothreitol sensitivity and a reduced rate of protein folding in the endoplasmic reticulum

    DEFF Research Database (Denmark)

    Holst, B; Tachibana, C; Winther, Jakob R.

    1997-01-01

    . Such mutations had no significant effect on growth. The domains however, were not equivalent since the rate of folding of carboxypeptidase Y (CPY) in vivo was reduced by inactivation of the a domain but not the a' domain. To investigate the relevance of PDI redox potential, the G and H positions of each CGHC...... active site were randomly mutagenized. The resulting mutant PDIs were ranked by their growth phenotype on medium containing increasing concentrations of DTT. The rate of CPY folding in the mutants showed the same ranking as the DTT sensitivity, suggesting that the oxidative power of PDI is an important...... factor in folding in vivo. Mutants with a PDI that cannot perform oxidation reactions on its own (CGHS) had a strongly reduced growth rate. The growth rates, however, did not correlate with CPY folding, suggesting that the protein(s) required for optimal growth are dependent on PDI for oxidation. pdi1...

  16. Functional Role of the Disulfide Isomerase ERp57 in Axonal Regeneration.

    Directory of Open Access Journals (Sweden)

    Valentina Castillo

    Full Text Available ERp57 (also known as grp58 and PDIA3 is a protein disulfide isomerase that catalyzes disulfide bonds formation of glycoproteins as part of the calnexin and calreticulin cycle. ERp57 is markedly upregulated in most common neurodegenerative diseases downstream of the endoplasmic reticulum (ER stress response. Despite accumulating correlative evidence supporting a neuroprotective role of ERp57, the contribution of this foldase to the physiology of the nervous system remains unknown. Here we developed a transgenic mouse model that overexpresses ERp57 in the nervous system under the control of the prion promoter. We analyzed the susceptibility of ERp57 transgenic mice to undergo neurodegeneration. Unexpectedly, ERp57 overexpression did not affect dopaminergic neuron loss and striatal denervation after injection of a Parkinson's disease-inducing neurotoxin. In sharp contrast, ERp57 transgenic animals presented enhanced locomotor recovery after mechanical injury to the sciatic nerve. These protective effects were associated with enhanced myelin removal, macrophage infiltration and axonal regeneration. Our results suggest that ERp57 specifically contributes to peripheral nerve regeneration, whereas its activity is dispensable for the survival of a specific neuronal population of the central nervous system. These results demonstrate for the first time a functional role of a component of the ER proteostasis network in peripheral nerve regeneration.

  17. The disulfide isomerase ERp57 mediates platelet aggregation, hemostasis, and thrombosis

    Science.gov (United States)

    Wu, Yi; Ahmad, Syed S.; Zhou, Junsong; Wang, Lu; Cully, Matthew P.

    2012-01-01

    A close homologue to protein disulfide isomerase (PDI) called ERp57 forms disulfide bonds in glycoproteins in the endoplasmic reticulum and is expressed on the platelet surface. We generated 2 rabbit Abs to ERp57. One Ab strongly inhibited ERp57 in a functional assay and strongly inhibited platelet aggregation. There was minimal cross-reactivity of this Ab with PDI by Western blot or in the functional assay. This Ab substantially inhibited activation of the αIIbβ3 fibrinogen receptor and P-selectin expression. Furthermore, adding ERp57 to platelets potentiated aggregation. In contrast, adding a catalytically inactive ERp57 inhibited platelet aggregation. When infused into mice the inactive ERp57 prolonged the tail bleeding times. We generated 2 IgG2a mAbs that reacted with ERp57 by immunoblot. One of these Abs inhibited both ERp57 activity and platelet aggregation. The other Ab did not inhibit ERp57 activity or platelet aggregation. The inhibitory Ab inhibited activation of αIIbβ3 and P-selectin expression, prolonged tail bleeding times, and inhibited FeCl3-induced thrombosis in mice. Finally, we found that a commonly used mAb to PDI also inhibited ERp57 activity. We conclude that a glycoprotein-specific member of the PDI family, ERp57, is required for platelet aggregation, hemostasis, and thrombosis. PMID:22207737

  18. Protective role for the disulfide isomerase PDIA3 in methamphetamine neurotoxicity.

    Directory of Open Access Journals (Sweden)

    Gurudutt Pendyala

    Full Text Available Methamphetamine abuse continues to be a worldwide problem, damaging the individual user as well as society. Only minimal information exists on molecular changes in the brain that result from methamphetamine administered in patterns typical of human abusers. In order to investigate such changes, we examined the effect of methamphetamine on the transcriptional profile in brains of monkeys. Gene expression profiling of caudate and hippocampus identified protein disulfide isomerase family member A3 (PDIA3 to be significantly up-regulated in the animals treated with methamphetamine as compared to saline treated control monkeys. Methamphetamine treatment of mice also increased striatal PDIA3 expression. Treatment of primary striatal neurons with methamphetamine revealed an up-regulation of PDIA3, showing a direct effect of methamphetamine on neurons to increase PDIA3. In vitro studies using a neuroblastoma cell line demonstrated that PDIA3 expression protects against methamphetamine-induced cell toxicity and methamphetamine-induced intracellular reactive oxygen species production, revealing a neuroprotective role for PDIA3. The current study implicates PDIA3 to be an important cellular neuroprotective mechanism against a toxic drug, and as a potential target for therapeutic investigations.

  19. Catalysis of Protein Disulfide Bond Isomerization in a Homogeneous Substrate†

    Science.gov (United States)

    Kersteen, Elizabeth A.; Barrows, Seth R.; Raines, Ronald T.

    2008-01-01

    Protein disulfide isomerase (PDI) catalyzes the rearrangement of nonnative disulfide bonds in the endoplasmic reticulum of eukaryotic cells, a process that often limits the rate at which polypeptide chains fold into a native protein conformation. The mechanism of the reaction catalyzed by PDI is unclear. In assays involving protein substrates, the reaction appears to involve the complete reduction of some or all of its nonnative disulfide bonds followed by oxidation of the resulting dithiols. The substrates in these assays are, however, heterogeneous, which complicates mechanistic analyses. Here, we report the first analysis of disulfide bond isomerization in a homogeneous substrate. Our substrate is based on tachyplesin I, a 17-mer peptide that folds into a _-hairpin stabilized by two disulfide bonds. We describe the chemical synthesis of a variant of tachyplesin I in which its two disulfide bonds are in a nonnative state and side chains near its N-and C-terminus contain a fluorescence donor (tryptophan) and acceptor (N_-dansyllysine). Fluorescence resonance energy transfer from 280 to 465 nm increases by 28-fold upon isomerization of the disulfide bonds into their native state (which has a lower E°_ = -0.313 V than does PDI). We use this continuous assay to analyze catalysis by wild-type human PDI and a variant in which the C-terminal cysteine residue within each Cys—Gly—His—Cys active site is replaced with alanine. We find that wild-type PDI catalyzes the isomerization of the substrate with kcat/KM = 1.7 _ 105 M–1M s–1, which is the largest value yet reported for catalysis of disulfide bond isomerization. The variant, which is a poor catalyst of disulfide bond reduction and dithiol oxidation, retains virtually all of the activity of wild-type PDI in catalysis of disulfide bond isomerization. Thus, the C-terminal cysteine residues play an insignificant role in the isomerization of the disulfide bonds in nonnative tachyplesin I. We conclude that

  20. Catalysis of protein disulfide bond isomerization in a homogeneous substrate.

    Science.gov (United States)

    Kersteen, Elizabeth A; Barrows, Seth R; Raines, Ronald T

    2005-09-13

    Protein disulfide isomerase (PDI) catalyzes the rearrangement of nonnative disulfide bonds in the endoplasmic reticulum of eukaryotic cells, a process that often limits the rate at which polypeptide chains fold into a native protein conformation. The mechanism of the reaction catalyzed by PDI is unclear. In assays involving protein substrates, the reaction appears to involve the complete reduction of some or all of its nonnative disulfide bonds followed by oxidation of the resulting dithiols. The substrates in these assays are, however, heterogeneous, which complicates mechanistic analyses. Here, we report the first analysis of disulfide bond isomerization in a homogeneous substrate. Our substrate is based on tachyplesin I, a 17-mer peptide that folds into a beta hairpin stabilized by two disulfide bonds. We describe the chemical synthesis of a variant of tachyplesin I in which its two disulfide bonds are in a nonnative state and side chains near its N and C terminus contain a fluorescence donor (tryptophan) and acceptor (N(epsilon)-dansyllysine). Fluorescence resonance energy transfer from 280 to 465 nm increases by 28-fold upon isomerization of the disulfide bonds into their native state (which has a lower E(o') = -0.313 V than does PDI). We use this continuous assay to analyze catalysis by wild-type human PDI and a variant in which the C-terminal cysteine residue within each Cys-Gly-His-Cys active site is replaced with alanine. We find that wild-type PDI catalyzes the isomerization of the substrate with kcat/K(M) = 1.7 x 10(5) M(-1) s(-1), which is the largest value yet reported for catalysis of disulfide bond isomerization. The variant, which is a poor catalyst of disulfide bond reduction and dithiol oxidation, retains virtually all of the activity of wild-type PDI in catalysis of disulfide bond isomerization. Thus, the C-terminal cysteine residues play an insignificant role in the isomerization of the disulfide bonds in nonnative tachyplesin I. We conclude

  1. Functional and structural studies of the disulfide isomerase DsbC from the plant pathogen Xylella fastidiosa reveals a redox-dependent oligomeric modulation in vitro.

    Science.gov (United States)

    Santos, Clelton A; Toledo, Marcelo A S; Trivella, Daniela B B; Beloti, Lilian L; Schneider, Dilaine R S; Saraiva, Antonio M; Crucello, Aline; Azzoni, Adriano R; Souza, Alessandra A; Aparicio, Ricardo; Souza, Anete P

    2012-10-01

    Xylella fastidiosa is a Gram-negative bacterium that grows as a biofilm inside the xylem vessels of susceptible plants and causes several economically relevant crop diseases. In the present study, we report the functional and low-resolution structural characterization of the X. fastidiosa disulfide isomerase DsbC (XfDsbC). DsbC is part of the disulfide bond reduction/isomerization pathway in the bacterial periplasm and plays an important role in oxidative protein folding. In the present study, we demonstrate the presence of XfDsbC during different stages of X. fastidiosa biofilm development. XfDsbC was not detected during X. fastidiosa planktonic growth; however, after administering a sublethal copper shock, we observed an overexpression of XfDsbC that also occurred during planktonic growth. These results suggest that X. fastidiosa can use XfDsbC in vivo under oxidative stress conditions similar to those induced by copper. In addition, using dynamic light scattering and small-angle X-ray scattering, we observed that the oligomeric state of XfDsbC in vitro may be dependent on the redox environment. Under reducing conditions, XfDsbC is present as a dimer, whereas a putative tetrameric form was observed under nonreducing conditions. Taken together, our findings demonstrate the overexpression of XfDsbC during biofilm formation and provide the first structural model of a bacterial disulfide isomerase in solution. © 2012 The Authors Journal compilation © 2012 FEBS.

  2. Measurement of glutathione-protein mixed disulfides

    International Nuclear Information System (INIS)

    Livesey, J.C.; Reed, D.J.

    1984-01-01

    The development of a sensitive and highly specific assay for the presence of mixed disulfides between protein thiol groups and endogenous thiols has been undertaken. Previous investigations on the concentrations of glutathione (GSH), glutathione disulfide (GSSG) and protein glutathione mixed disulfides (ProSSG) have been of limited usefulness because of the poor specificity of the assays used. Our assay for these forms of glutathione is based on high performance liquid chromatography (HPLC) and is an extension of an earlier method. After perchloric acid precipitation, the protein sample is washed with an organic solvent to fully denature the protein. Up to a 10-fold increase in GSH released from fetal bovine serum (FBS) protein has been found when the protein precipitate is washed with ethanol rather than ether, as earlier suggested. Similar effects have been observed with an as yet unidentified thiol which elutes in the chromatography system with a retention volume similar to cysteine

  3. Structures of the Dimerization Domains of the 'Escherichia Coli' Disulfide-Bond Isomerase Enzymes Dsbc And Dsbg

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, S.-M.; Koon, N.; Squire, C.; Metcalf, P.; /Auckland U.

    2007-07-12

    DsbC and DsbG are periplasmic disulfide-bond isomerases, enzymes that facilitate the folding of secreted proteins with multiple disulfide bonds by catalyzing disulfide-bond rearrangement. Both enzymes also have in vitro chaperone activity. The crystal structures of these molecules are similar and both are V-shaped homodimeric modular structures. Each dimeric molecule contains two separate C-terminal thioredoxin-fold domains, joined by hinged helical ''stalks'' to a single N-terminal dimerization domain formed from the N-terminal 67 residues of each monomer. In this work, the crystal structures of the separate DsbC and DsbG dimerization domains have been determined at resolutions of 2.0 and 1.9 angstroms, respectively. The two structures are both similar to the corresponding domains in the full-length molecules, showing that the dimerization domains fold independently of the catalytic portions of the full-length molecules. Localized structural differences between DsbC and DsbG were observed near the dimer interface and may be relevant to the different functions of the two enzymes.

  4. SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm

    Directory of Open Access Journals (Sweden)

    Lobstein Julie

    2012-05-01

    Full Text Available Abstract Background Production of correctly disulfide bonded proteins to high yields remains a challenge. Recombinant protein expression in Escherichia coli is the popular choice, especially within the research community. While there is an ever growing demand for new expression strains, few strains are dedicated to post-translational modifications, such as disulfide bond formation. Thus, new protein expression strains must be engineered and the parameters involved in producing disulfide bonded proteins must be understood. Results We have engineered a new E. coli protein expression strain named SHuffle, dedicated to producing correctly disulfide bonded active proteins to high yields within its cytoplasm. This strain is based on the trxB gor suppressor strain SMG96 where its cytoplasmic reductive pathways have been diminished, allowing for the formation of disulfide bonds in the cytoplasm. We have further engineered a major improvement by integrating into its chromosome a signal sequenceless disulfide bond isomerase, DsbC. We probed the redox state of DsbC in the oxidizing cytoplasm and evaluated its role in assisting the formation of correctly folded multi-disulfide bonded proteins. We optimized protein expression conditions, varying temperature, induction conditions, strain background and the co-expression of various helper proteins. We found that temperature has the biggest impact on improving yields and that the E. coli B strain background of this strain was superior to the K12 version. We also discovered that auto-expression of substrate target proteins using this strain resulted in higher yields of active pure protein. Finally, we found that co-expression of mutant thioredoxins and PDI homologs improved yields of various substrate proteins. Conclusions This work is the first extensive characterization of the trxB gor suppressor strain. The results presented should help researchers design the appropriate protein expression conditions using

  5. ER Stress and Unfolded Protein Response in Amyotrophic Lateral Sclerosis – A Controversial Role of Protein Disulphide Isomerase

    Directory of Open Access Journals (Sweden)

    Merja eJaronen

    2014-12-01

    Full Text Available Accumulation of proteins in aberrant conformation occurs in many neurodegenerative diseases. Furthermore, dysfunctions in protein handling in endoplasmic reticulum (ER and the following ER stress have been implicated in a vast number of diseases, such as amyotrophic lateral sclerosis (ALS. During excessive ER stress unfolded protein response (UPR is activated to return ER to its normal physiological balance. The exact mechanisms of protein misfolding, accumulation and the following ER stress could lead to neurodegeneration and the question whether UPR is a beneficial compensatory mechanism slowing down the neurodegenerative processes are of interest. Protein disulphide isomerase (PDI is a disulfide bond-modulating ER chaperone, which can also facilitate the ER-associated degradation (ERAD of misfolded proteins. In this review we discuss the recent findings of ER stress, UPR and especially the role of PDI in ALS.

  6. Widespread Disulfide Bonding in Proteins from Thermophilic Archaea

    OpenAIRE

    Jorda, Julien; Yeates, Todd O.

    2011-01-01

    Disulfide bonds are generally not used to stabilize proteins in the cytosolic compartments of bacteria or eukaryotic cells, owing to the chemically reducing nature of those environments. In contrast, certain thermophilic archaea use disulfide bonding as a major mechanism for protein stabilization. Here, we provide a current survey of completely sequenced genomes, applying computational methods to estimate the use of disulfide bonding across the Archaea. Microbes belonging to the Crenarchaea...

  7. Widespread Disulfide Bonding in Proteins from Thermophilic Archaea

    Directory of Open Access Journals (Sweden)

    Julien Jorda

    2011-01-01

    Full Text Available Disulfide bonds are generally not used to stabilize proteins in the cytosolic compartments of bacteria or eukaryotic cells, owing to the chemically reducing nature of those environments. In contrast, certain thermophilic archaea use disulfide bonding as a major mechanism for protein stabilization. Here, we provide a current survey of completely sequenced genomes, applying computational methods to estimate the use of disulfide bonding across the Archaea. Microbes belonging to the Crenarchaeal branch, which are essentially all hyperthermophilic, are universally rich in disulfide bonding while lesser degrees of disulfide bonding are found among the thermophilic Euryarchaea, excluding those that are methanogenic. The results help clarify which parts of the archaeal lineage are likely to yield more examples and additional specific data on protein disulfide bonding, as increasing genomic sequencing efforts are brought to bear.

  8. Widespread disulfide bonding in proteins from thermophilic archaea.

    Science.gov (United States)

    Jorda, Julien; Yeates, Todd O

    2011-01-01

    Disulfide bonds are generally not used to stabilize proteins in the cytosolic compartments of bacteria or eukaryotic cells, owing to the chemically reducing nature of those environments. In contrast, certain thermophilic archaea use disulfide bonding as a major mechanism for protein stabilization. Here, we provide a current survey of completely sequenced genomes, applying computational methods to estimate the use of disulfide bonding across the Archaea. Microbes belonging to the Crenarchaeal branch, which are essentially all hyperthermophilic, are universally rich in disulfide bonding while lesser degrees of disulfide bonding are found among the thermophilic Euryarchaea, excluding those that are methanogenic. The results help clarify which parts of the archaeal lineage are likely to yield more examples and additional specific data on protein disulfide bonding, as increasing genomic sequencing efforts are brought to bear.

  9. Multiple ways to make disulfides

    DEFF Research Database (Denmark)

    Bulleid, Neil J; Ellgaard, Lars

    2011-01-01

    Our concept of how disulfides form in proteins entering the secretory pathway has changed dramatically in recent years. The discovery of endoplasmic reticulum (ER) oxidoreductin 1 (ERO1) was followed by the demonstration that this enzyme couples oxygen reduction to de novo formation of disulfides....... However, mammals deficient in ERO1 survive and form disulfides, which suggests the presence of alternative pathways. It has recently been shown that peroxiredoxin 4 is involved in peroxide removal and disulfide formation. Other less well-characterized pathways involving quiescin sulfhydryl oxidase, ER......-localized protein disulfide isomerase peroxidases and vitamin K epoxide reductase might all contribute to disulfide formation. Here we discuss these various pathways for disulfide formation in the mammalian ER and highlight the central role played by glutathione in regulating this process....

  10. Protein disulfide bond formation in the cytoplasm during oxidative stress.

    Science.gov (United States)

    Cumming, Robert C; Andon, Nancy L; Haynes, Paul A; Park, Minkyu; Fischer, Wolfgang H; Schubert, David

    2004-05-21

    The majority of disulfide-linked cytosolic proteins are thought to be enzymes that transiently form disulfide bonds while catalyzing oxidation-reduction (redox) processes. Recent evidence indicates that reactive oxygen species can act as signaling molecules by promoting the formation of disulfide bonds within or between select redox-sensitive proteins. However, few studies have attempted to examine global changes in disulfide bond formation following reactive oxygen species exposure. Here we isolate and identify disulfide-bonded proteins (DSBP) in a mammalian neuronal cell line (HT22) exposed to various oxidative insults by sequential nonreducing/reducing two-dimensional SDS-PAGE combined with mass spectrometry. By using this strategy, several known cytosolic DSBP, such as peroxiredoxins, thioredoxin reductase, nucleoside-diphosphate kinase, and ribonucleotide-diphosphate reductase, were identified. Unexpectedly, a large number of previously unknown DSBP were also found, including those involved in molecular chaperoning, translation, glycolysis, cytoskeletal structure, cell growth, and signal transduction. Treatment of cells with a wide range of hydrogen peroxide concentrations either promoted or inhibited disulfide bonding of select DSBP in a concentration-dependent manner. Decreasing the ratio of reduced to oxidized glutathione also promoted select disulfide bond formation within proteins from cytoplasmic extracts. In addition, an epitope-tagged version of the molecular chaperone HSP70 forms mixed disulfides with both beta4-spectrin and adenomatous polyposis coli protein in the cytosol. Our findings indicate that disulfide bond formation within families of cytoplasmic proteins is dependent on the nature of the oxidative insult and may provide a common mechanism used to control multiple physiological processes.

  11. Steric effects in peptide and protein exchange with activated disulfides.

    Science.gov (United States)

    Kerr, Jason; Schlosser, Jessica L; Griffin, Donald R; Wong, Darice Y; Kasko, Andrea M

    2013-08-12

    Disulfide exchange is an important bioconjugation tool, enabling chemical modification of peptides and proteins containing free cysteines. We previously reported the synthesis of a macromer bearing an activated disulfide and its incorporation into hydrogels. Despite their ability to diffuse freely into hydrogels, larger proteins were unable to undergo in-gel disulfide exchange. In order to understand this phenomenon, we synthesized four different activated disulfide-bearing model compounds (Mn = 300 Da to 10 kDa) and quantified their rate of disulfide exchange with a small peptide (glutathione), a moderate-sized protein (β-lactoglobulin), and a large protein (bovine serum albumin) in four different pH solutions (6.0, 7.0, 7.4, and 8.0) to mimic biological systems. Rate constants of exchange depend significantly on the size and accessibility of the thiolate. pH also significantly affects the rate of reaction, with the faster reactions occurring at higher pH. Surprisingly, little difference in exchange rates is seen between macromolecular disulfides of varying size (Mn = 2 kDa - 10 kDa), although all undergo exchange more slowly than their small molecule analogue (MW = 300 g/mol). The maximum exchange efficiencies (% disulfides exchanged after 24 h) are not siginificantly affected by thiol size or pH, but somewhat affected by disulfide size. Therefore, while all three factors investigated (pH, disulfide size, and thiolate size) can influence the exchange kinetics and extent of reaction, the size of the thiolate and its accessibility plays the most significant role.

  12. Production of Disulfide-Bonded Proteins in Escherichia coli.

    Science.gov (United States)

    Ke, Na; Berkmen, Mehmet

    2014-10-01

    Production of recombinant proteins at high yields in Escherichia coli requires extensive optimization of expression conditions. Production is further complicated for proteins that require specific post-translational modifications for their eventual folding. One common and particularly important post-translational modification is oxidation of the correct pair of cysteines to form a disulfide bond. This unit describes methods to produce disulfide-bonded proteins in E. coli in either the naturally oxidizing periplasm or the cytoplasm of appropriately engineered cells. The focus is on variables key to improving the oxidative folding of disulfide-bonded proteins, with the aim of helping the researcher optimize expression conditions for a protein of interest. Copyright © 2014 John Wiley & Sons, Inc.

  13. Disulfide Linkage Characterization of Disulfide Bond-Containing Proteins and Peptides by Reducing Electrochemistry and Mass Spectrometry

    DEFF Research Database (Denmark)

    Cramer, Christian N; Haselmann, Kim F; Olsen, Jesper V

    2016-01-01

    to avoid disulfide scrambled and incorrectly folded forms in the final product. Mass spectrometry (MS) is a highly utilized analytical tool for this due to fast and accurate characterization. However, disulfide bonds being an additional covalent bond in the protein structure represent a challenge...... link between parent disulfide-linked fragments and free reduced peptides in an LC-EC-MS platform of nonreduced proteolytic protein digestions. Here we report the successful use of EC as a partial reduction approach in mapping of disulfide bonds of intact human insulin (HI) and lysozyme. In addition, we......Unravelling of disulfide linkage patterns is a crucial part of protein characterization, whether it is for a previously uncharacterized protein in basic research or a recombinant pharmaceutical protein. In the biopharmaceutical industry, elucidation of the cysteine connectivities is a necessity...

  14. Efficient soluble expression of disulfide bonded proteins in the cytoplasm of Escherichia coli in fed-batch fermentations on chemically defined minimal media.

    Science.gov (United States)

    Gąciarz, Anna; Khatri, Narendar Kumar; Velez-Suberbie, M Lourdes; Saaranen, Mirva J; Uchida, Yuko; Keshavarz-Moore, Eli; Ruddock, Lloyd W

    2017-06-15

    The production of recombinant proteins containing disulfide bonds in Escherichia coli is challenging. In most cases the protein of interest needs to be either targeted to the oxidizing periplasm or expressed in the cytoplasm in the form of inclusion bodies, then solubilized and re-folded in vitro. Both of these approaches have limitations. Previously we showed that soluble expression of disulfide bonded proteins in the cytoplasm of E. coli is possible at shake flask scale with a system, known as CyDisCo, which is based on co-expression of a protein of interest along with a sulfhydryl oxidase and a disulfide bond isomerase. With CyDisCo it is possible to produce disulfide bonded proteins in the presence of intact reducing pathways in the cytoplasm. Here we scaled up production of four disulfide bonded proteins to stirred tank bioreactors and achieved high cell densities and protein yields in glucose fed-batch fermentations, using an E. coli strain (BW25113) with the cytoplasmic reducing pathways intact. Even without process optimization production of purified human single chain IgA 1 antibody fragment reached 139 mg/L and hen avidin 71 mg/L, while purified yields of human growth hormone 1 and interleukin 6 were around 1 g/L. Preliminary results show that human growth hormone 1 was also efficiently produced in fermentations of W3110 strain and when glucose was replaced with glycerol as the carbon source. Our results show for the first time that efficient production of high yields of soluble disulfide bonded proteins in the cytoplasm of E. coli with the reducing pathways intact is feasible to scale-up to bioreactor cultivations on chemically defined minimal media.

  15. Modulation of Thiol-Disulfide Oxidoreductases for Increased Production of Disulfide-Bond-Containing Proteins in Bacillus subtilis

    NARCIS (Netherlands)

    Kouwen, Thijs R. H. M.; Dubois, Jean-Yves F.; Freudl, Roland; Quax, Wim J.; van Dijl, Jan Maarten

    2008-01-01

    Disulfide bonds are important for the correct folding, structural integrity, and activity of many biotechnologically relevant proteins. For synthesis and subsequent secretion of these proteins in bacteria, such as the well-known "cell factory" Bacillus subtilis, it is often the correct formation of

  16. Structural basis for target protein recognition by the protein disulfide reductase thioredoxin

    DEFF Research Database (Denmark)

    Maeda, Kenji; Hägglund, Per; Finnie, Christine

    2006-01-01

    Thioredoxin is ubiquitous and regulates various target proteins through disulfide bond reduction. We report the structure of thioredoxin (HvTrxh2 from barley) in a reaction intermediate complex with a protein substrate, barley alpha-amylase/subtilisin inhibitor (BASI). The crystal structure...

  17. In-Depth Characterization of Protein Disulfide Bonds by Online Liquid Chromatography-Electrochemistry-Mass Spectrometry

    Science.gov (United States)

    Switzar, Linda; Nicolardi, Simone; Rutten, Julie W.; Oberstein, Saskia A. J. Lesnik; Aartsma-Rus, Annemieke; van der Burgt, Yuri E. M.

    2016-01-01

    Disulfide bonds are an important class of protein post-translational modifications, yet this structurally crucial modification type is commonly overlooked in mass spectrometry (MS)-based proteomics approaches. Recently, the benefits of online electrochemistry-assisted reduction of protein S-S bonds prior to MS analysis were exemplified by successful characterization of disulfide bonds in peptides and small proteins. In the current study, we have combined liquid chromatography (LC) with electrochemistry (EC) and mass analysis by Fourier transform ion cyclotron resonance (FTICR) MS in an online LC-EC-MS platform to characterize protein disulfide bonds in a bottom-up proteomics workflow. A key advantage of a LC-based strategy is the use of the retention time in identifying both intra- and interpeptide disulfide bonds. This is demonstrated by performing two sequential analyses of a certain protein digest, once without and once with electrochemical reduction. In this way, the "parent" disulfide-linked peptide detected in the first run has a retention time-based correlation with the EC-reduced peptides detected in the second run, thus simplifying disulfide bond mapping. Using this platform, both inter- and intra-disulfide-linked peptides were characterized in two different proteins, ß-lactoglobulin and ribonuclease B. In order to prevent disulfide reshuffling during the digestion process, proteins were digested at a relatively low pH, using (a combination of) the high specificity proteases trypsin and Glu-C. With this approach, disulfide bonds in ß-lactoglobulin and ribonuclease B were comprehensively identified and localized, showing that online LC-EC-MS is a useful tool for the characterization of protein disulfide bonds.

  18. Identification of thioredoxin target disulfides in proteins released from barley aleurone layers

    DEFF Research Database (Denmark)

    Hägglund, Per; Bunkenborg, J.; Yang, Fen

    2010-01-01

    Thioredoxins are ubiquitous disulfide reductases involved in a wide range of cellular processes including DNA synthesis, oxidative stress response and apoptosis. In cereal seeds thioredoxins are proposed to facilitate the germination process by reducing disulfide bonds in storage proteins and other...

  19. The unfolded protein response and the role of protein disulphide isomerase in neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Emma ePerri

    2016-01-01

    Full Text Available The maintenance and regulation of proteostasis is a critical function for post-mitotic neurons and dysregulation of proteostasis is increasingly implicated in neurodegenerative diseases. Despite having different clinical manifestations, these disorders share similar pathology; an accumulation of misfolded proteins in neurons and subsequent disruption to cellular proteostasis. The endoplasmic reticulum (ER is an important component of proteostasis, and when the accumulation of misfolded proteins occurs within the ER, this disturbs ER homeostasis, giving rise to ER stress. This triggers the unfolded protein response (UPR, distinct signalling pathways that whilst initially protective, are pro-apoptotic if ER stress is prolonged. ER stress is increasingly implicated in neurodegenerative diseases, and emerging evidence highlights the complexity of the UPR in these disorders, with both protective and detrimental components being described. Protein Disulphide Isomerase (PDI is an ER chaperone induced during ER stress that is responsible for the formation of disulphide bonds in proteins. Whilst initially considered to be protective, recent studies have revealed unconventional roles for PDI in neurodegenerative diseases, distinct from its normal function in the UPR and the ER, although these mechanisms remain poorly defined. However specific aspects of PDI function may offer the potential to be exploited therapeutically in the future. This review will focus on the evidence linking ER stress and the UPR to neurodegenerative diseases, with particular emphasis on the emerging functions ascribed to PDI in these conditions.

  20. Site‐Selective Disulfide Modification of Proteins: Expanding Diversity beyond the Proteome

    OpenAIRE

    Kuan, Seah Ling; Wang, Tao; Weil, Tanja

    2016-01-01

    Abstract The synthetic transformation of polypeptides with molecular accuracy holds great promise for providing functional and structural diversity beyond the proteome. Consequently, the last decade has seen an exponential growth of site‐directed chemistry to install additional features into peptides and proteins even inside living cells. The disulfide rebridging strategy has emerged as a powerful tool for site‐selective modifications since most proteins contain disulfide bonds. In this Revie...

  1. The Mitochondrial Disulfide Relay System: Roles in Oxidative Protein Folding and Beyond

    Directory of Open Access Journals (Sweden)

    Manuel Fischer

    2013-01-01

    Full Text Available Disulfide bond formation drives protein import of most proteins of the mitochondrial intermembrane space (IMS. The main components of this disulfide relay machinery are the oxidoreductase Mia40 and the sulfhydryl oxidase Erv1/ALR. Their precise functions have been elucidated in molecular detail for the yeast and human enzymes in vitro and in intact cells. However, we still lack knowledge on how Mia40 and Erv1/ALR impact cellular and organism physiology and whether they have functions beyond their role in disulfide bond formation. Here we summarize the principles of oxidation-dependent protein import mediated by the mitochondrial disulfide relay. We proceed by discussing recently described functions of Mia40 in the hypoxia response and of ALR in influencing mitochondrial morphology and its importance for tissue development and embryogenesis. We also include a discussion of the still mysterious function of Erv1/ALR in liver regeneration.

  2. Protein disulfide bond generation in Escherichia coli DsbB–DsbA

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, Kenji, E-mail: inaba-k@bioreg.kyushu-u.ac.jp [Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582 (Japan)

    2008-05-01

    The crystal structure of the DsbB–DsbA–ubiquinone ternary complex has revealed a mechanism of protein disulfide bond generation in Escherichia coli. Protein disulfide bond formation is catalyzed by a series of Dsb enzymes present in the periplasm of Escherichia coli. The crystal structure of the DsbB–DsbA–ubiquinone ternary complex provided important insights into mechanisms of the de novo disulfide bond generation cooperated by DsbB and ubiquinone and of the disulfide bond shuttle from DsbB to DsbA. The structural basis for prevention of the crosstalk between the DsbA–DsbB oxidative and the DsbC–DsbD reductive pathways has also been proposed.

  3. Protein disulfide bond generation in Escherichia coli DsbB–DsbA

    International Nuclear Information System (INIS)

    Inaba, Kenji

    2008-01-01

    The crystal structure of the DsbB–DsbA–ubiquinone ternary complex has revealed a mechanism of protein disulfide bond generation in Escherichia coli. Protein disulfide bond formation is catalyzed by a series of Dsb enzymes present in the periplasm of Escherichia coli. The crystal structure of the DsbB–DsbA–ubiquinone ternary complex provided important insights into mechanisms of the de novo disulfide bond generation cooperated by DsbB and ubiquinone and of the disulfide bond shuttle from DsbB to DsbA. The structural basis for prevention of the crosstalk between the DsbA–DsbB oxidative and the DsbC–DsbD reductive pathways has also been proposed

  4. Disulfide-bridging PEGylation during refolding for the more efficient production of modified proteins.

    Science.gov (United States)

    Ginn, Claire; Choi, Ji-Won; Brocchini, Steve

    2016-08-01

    Proteins that are modified by chemical conjugation require at least two separate purification processes. First the bulk protein is purified, and then after chemical conjugation, a second purification process is required to obtain the modified protein. In an effort to develop new enabling technologies to integrate bioprocessing and protein modification, we describe the use of disulfide-bridging conjugation to conduct PEGylation during protein refolding. Preliminary experiments using a PEG-mono-sulfone reagent with partially unfolded leptin and unfolded RNAse T1 indicated that the cysteine thiols underwent disulfide-bridging conjugation to give the PEGylated proteins. Interferon-β1b (IFN-β1b) was then expressed in E.coli as inclusion bodies and found to undergo disulfide bridging-conjugation during refolding. The PEG-IFN-β1b was isolated by ion-exchange chromatography and displayed in vitro biological activity. In the absence of the PEGylation reagent, IFN-β1b refolding was less efficient and yielded protein aggregates. No PEGylation was observed if the cysteines on IFN-β1b were first modified with iodoacetamide prior to refolding. Our results demonstrate that the simultaneous refolding and disulfide bridging PEGylation of proteins could be a useful strategy in the development of affordable modified protein therapeutics. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Shedding light on disulfide bond formation: engineering a redox switch in green fluorescent protein

    DEFF Research Database (Denmark)

    Østergaard, H.; Henriksen, A.; Hansen, Flemming G.

    2001-01-01

    To visualize the formation of disulfide bonds in living cells, a pair of redox-active cysteines was introduced into the yellow fluorescent variant of green fluorescent protein. Formation of a disulfide bond between the two cysteines was fully reversible and resulted in a >2-fold decrease...... the physiological range for redox-active cysteines. In the cytoplasm of Escherichia coli, the protein was a sensitive probe for the redox changes that occur upon disruption of the thioredoxin reductive pathway....... in the intrinsic fluorescence. Inter conversion between the two redox states could thus be followed in vitro as well as in vivoby non- invasive fluorimetric measurements. The 1.5 Angstrom crystal structure of the oxidized protein revealed a disulfide bond- induced distortion of the beta -barrel, as well...

  6. Accurate disulfide-bonding network predictions improve ab initio structure prediction of cysteine-rich proteins.

    Science.gov (United States)

    Yang, Jing; He, Bao-Ji; Jang, Richard; Zhang, Yang; Shen, Hong-Bin

    2015-12-01

    Cysteine-rich proteins cover many important families in nature but there are currently no methods specifically designed for modeling the structure of these proteins. The accuracy of disulfide connectivity pattern prediction, particularly for the proteins of higher-order connections, e.g., >3 bonds, is too low to effectively assist structure assembly simulations. We propose a new hierarchical order reduction protocol called Cyscon for disulfide-bonding prediction. The most confident disulfide bonds are first identified and bonding prediction is then focused on the remaining cysteine residues based on SVR training. Compared with purely machine learning-based approaches, Cyscon improved the average accuracy of connectivity pattern prediction by 21.9%. For proteins with more than 5 disulfide bonds, Cyscon improved the accuracy by 585% on the benchmark set of PDBCYS. When applied to 158 non-redundant cysteine-rich proteins, Cyscon predictions helped increase (or decrease) the TM-score (or RMSD) of the ab initio QUARK modeling by 12.1% (or 14.4%). This result demonstrates a new avenue to improve the ab initio structure modeling for cysteine-rich proteins. http://www.csbio.sjtu.edu.cn/bioinf/Cyscon/ zhng@umich.edu or hbshen@sjtu.edu.cn. Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Shedding light on disulfide bond formation: engineering a redox switch in green fluorescent protein

    DEFF Research Database (Denmark)

    Østergaard, H.; Henriksen, A.; Hansen, Flemming G.

    2001-01-01

    To visualize the formation of disulfide bonds in living cells, a pair of redox-active cysteines was introduced into the yellow fluorescent variant of green fluorescent protein. Formation of a disulfide bond between the two cysteines was fully reversible and resulted in a >2-fold decrease...... in the intrinsic fluorescence. Inter conversion between the two redox states could thus be followed in vitro as well as in vivoby non- invasive fluorimetric measurements. The 1.5 Angstrom crystal structure of the oxidized protein revealed a disulfide bond- induced distortion of the beta -barrel, as well...... as a structural reorganization of residues in the immediate chromophore environment. By combining this information with spectroscopic data, we propose a detailed mechanism accounting for the observed redox state-dependent fluorescence. The redox potential of the cysteine couple was found to be within...

  8. Mechanisms of Neuroprotection by Protein Disulphide Isomerase in Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Adam K. Walker

    2011-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a devastating neurodegenerative disease characterised by the progressive loss of motor neurons, leading to paralysis and death within several years of onset. Although protein misfolding is a key feature of ALS, the upstream triggers of disease remain elusive. Recently, endoplasmic reticulum (ER stress was identified as an early and central feature in ALS disease models as well as in human patient tissues, indicating that ER stress could be an important process in disease pathogenesis. One important chaperone induced by ER stress is protein disulphide isomerase (PDI, which is both upregulated and posttranslationally inhibited by S-nitrosylation in ALS. In this paper, we present evidence from studies of genetics, model organisms, and patient tissues which indicate an active role for PDI and ER stress in ALS disease processes.

  9. Electrochemical reduction of disulfide-containing proteins for hydrogen/deuterium exchange monitored by mass spectrometry

    DEFF Research Database (Denmark)

    Mysling, Simon; Salbo, Rune; Ploug, Michael

    2014-01-01

    requires a high concentration (>200 mM) of the chemical reducing agent Tris(2-carboxyethyl)phosphine (TCEP) as the reduction rate constant is decreased at low pH and temperature. Serious adverse effects on chromatographic and mass spectrometric performances have been reported when using high concentrations......Characterization of disulfide bond-containing proteins by hydrogen/deuterium exchange monitored by mass spectrometry (HDX-MS) requires reduction of the disulfide bonds under acidic and cold conditions, where the amide hydrogen exchange reaction is quenched (pH 2.5, 0°C). The reduction typically...

  10. Microwave-assisted acid and base hydrolysis of intact proteins containing disulfide bonds for protein sequence analysis by mass spectrometry.

    Science.gov (United States)

    Reiz, Bela; Li, Liang

    2010-09-01

    Controlled hydrolysis of proteins to generate peptide ladders combined with mass spectrometric analysis of the resultant peptides can be used for protein sequencing. In this paper, two methods of improving the microwave-assisted protein hydrolysis process are described to enable rapid sequencing of proteins containing disulfide bonds and increase sequence coverage, respectively. It was demonstrated that proteins containing disulfide bonds could be sequenced by MS analysis by first performing hydrolysis for less than 2 min, followed by 1 h of reduction to release the peptides originally linked by disulfide bonds. It was shown that a strong base could be used as a catalyst for microwave-assisted protein hydrolysis, producing complementary sequence information to that generated by microwave-assisted acid hydrolysis. However, using either acid or base hydrolysis, amide bond breakages in small regions of the polypeptide chains of the model proteins (e.g., cytochrome c and lysozyme) were not detected. Dynamic light scattering measurement of the proteins solubilized in an acid or base indicated that protein-protein interaction or aggregation was not the cause of the failure to hydrolyze certain amide bonds. It was speculated that there were some unknown local structures that might play a role in preventing an acid or base from reacting with the peptide bonds therein. 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  11. Resolution of Disulfide Heterogeneity in Nogo Receptor 1 Fusion Proteins by Molecular Engineering

    Energy Technology Data Exchange (ETDEWEB)

    P Weinreb; D Wen; F Qian; C Wildes; E Garber; L Walus; M Jung; J Wang; J Relton; et al.

    2011-12-31

    NgRI (Nogo-66 receptor) is part of a signalling complex that inhibits axon regeneration in the central nervous system. Truncated soluble versions of NgRI have been used successfully to promote axon regeneration in animal models of spinal-cord injury, raising interest in this protein as a potential therapeutic target. The LRR (leucine-rich repeat) regions in NgRI are flanked by N- and C-terminal disulfide-containing 'cap' domains (LRRNT and LRRCT respectively). In the present work we show that, although functionally active, the NgRI(310)-Fc fusion protein contains mislinked and heterogeneous disulfide patterns in the LRRCT domain, and we report the generation of a series of variant molecules specifically designed to prevent this heterogeneity. Using these variants we explored the effects of modifying the NgRI truncation site or the spacing between the NgRI and Fc domains, or replacing cysteines within the NgRI or IgG hinge regions. One variant, which incorporates replacements of Cys{sup 266} and Cys{sup 309} with alanine residues, completely eliminated disulfide scrambling while maintaining functional in vitro and in vivo efficacy. This modified NgRI-Fc molecule represents a significantly improved candidate for further pharmaceutical development, and may serve as a useful model for the optimization of other IgG fusion proteins made from LRR proteins.

  12. Trichinella spiralis: genome database searches for the presence and immunolocalization of protein disulphide isomerase family members.

    Science.gov (United States)

    Freitas, C P; Clemente, I; Mendes, T; Novo, C

    2016-01-01

    The formation of nurse cells in host muscle cells during Trichinella spiralis infection is a key step in the infective mechanism. Collagen trimerization is set up via disulphide bond formation, catalysed by protein disulphide isomerase (PDI). In T. spiralis, some PDI family members have been identified but no localization is described and no antibodies specific for T. spiralis PDIs are available. In this work, computational approaches were used to search for non-described PDIs in the T. spiralis genome database and to check the cross-reactivity of commercial anti-human antibodies with T. spiralis orthologues. In addition to a previously described PDI (PDIA2), endoplasmic reticulum protein (ERp57/PDIA3), ERp72/PDIA4, and the molecular chaperones calreticulin (CRT), calnexin (CNX) and immunoglobulin-binding protein/glucose-regulated protein (BIP/GRP78), we identified orthologues of the human thioredoxin-related-transmembrane proteins (TMX1, TMX2 and TMX3) in the genome protein database, as well as ERp44 (PDIA10) and endoplasmic reticulum disulphide reductase (ERdj5/PDIA19). Immunocytochemical staining of paraffin sections of muscle infected by T. spiralis enabled us to localize some orthologues of the human PDIs (PDIA3 and TMX1) and the chaperone GRP78. A theoretical three-dimensional model for T. spiralis PDIA3 was constructed. The localization and characteristics of the predicted linear B-cell epitopes and amino acid sequence of the immunogens used for commercial production of anti-human PDIA3 antibodies validated the use of these antibodies for the immunolocalization of T. spiralis PDIA3 orthologues. These results suggest that further study of the role of the PDIs and chaperones during nurse cell formation is desirable.

  13. A chalcone isomerase-like protein enhances flavonoid production and flower pigmentation.

    Science.gov (United States)

    Morita, Yasumasa; Takagi, Kyoko; Fukuchi-Mizutani, Masako; Ishiguro, Kanako; Tanaka, Yoshikazu; Nitasaka, Eiji; Nakayama, Masayoshi; Saito, Norio; Kagami, Takashi; Hoshino, Atsushi; Iida, Shigeru

    2014-04-01

    Flavonoids are major pigments in plants, and their biosynthetic pathway is one of the best-studied metabolic pathways. Here we have identified three mutations within a gene that result in pale-colored flowers in the Japanese morning glory (Ipomoea nil). As the mutations lead to a reduction of the colorless flavonoid compound flavonol as well as of anthocyanins in the flower petal, the identified gene was designated enhancer of flavonoid production (EFP). EFP encodes a chalcone isomerase (CHI)-related protein classified as a type IV CHI protein. CHI is the second committed enzyme of the flavonoid biosynthetic pathway, but type IV CHI proteins are thought to lack CHI enzymatic activity, and their functions remain unknown. The spatio-temporal expression of EFP and structural genes encoding enzymes that produce flavonoids is very similar. Expression of both EFP and the structural genes is coordinately promoted by genes encoding R2R3-MYB and WD40 family proteins. The EFP gene is widely distributed in land plants, and RNAi knockdown mutants of the EFP homologs in petunia (Petunia hybrida) and torenia (Torenia hybrida) had pale-colored flowers and low amounts of anthocyanins. The flavonol and flavone contents in the knockdown petunia and torenia flowers, respectively, were also significantly decreased, suggesting that the EFP protein contributes in early step(s) of the flavonoid biosynthetic pathway to ensure production of flavonoid compounds. From these results, we conclude that EFP is an enhancer of flavonoid production and flower pigmentation, and its function is conserved among diverse land plant species. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  14. Structural effects of protein aging: terminal marking by deamidation in human triosephosphate isomerase.

    Directory of Open Access Journals (Sweden)

    Ignacio de la Mora-de la Mora

    Full Text Available Deamidation, the loss of the ammonium group of asparagine and glutamine to form aspartic and glutamic acid, is one of the most commonly occurring post-translational modifications in proteins. Since deamidation rates are encoded in the protein structure, it has been proposed that they can serve as molecular clocks for the timing of biological processes such as protein turnover, development and aging. Despite the importance of this process, there is a lack of detailed structural information explaining the effects of deamidation on the structure of proteins. Here, we studied the effects of deamidation on human triosephosphate isomerase (HsTIM, an enzyme for which deamidation of N15 and N71 has been long recognized as the signal for terminal marking of the protein. Deamidation was mimicked by site directed mutagenesis; thus, three mutants of HsTIM (N15D, N71D and N15D/N71D were characterized. The results show that the N71D mutant resembles, structurally and functionally, the wild type enzyme. In contrast, the N15D mutant displays all the detrimental effects related to deamidation. The N15D/N71D mutant shows only minor additional effects when compared with the N15D mutation, supporting that deamidation of N71 induces negligible effects. The crystal structures show that, in contrast to the N71D mutant, where minimal alterations are observed, the N15D mutation forms new interactions that perturb the structure of loop 1 and loop 3, both critical components of the catalytic site and the interface of HsTIM. Based on a phylogenetic analysis of TIM sequences, we propose the conservation of this mechanism for mammalian TIMs.

  15. Disulfide bond effects on protein stability: designed variants of Cucurbita maxima trypsin inhibitor-V.

    Science.gov (United States)

    Zavodszky, M; Chen, C W; Huang, J K; Zolkiewski, M; Wen, L; Krishnamoorthi, R

    2001-01-01

    Attempts to increase protein stability by insertion of novel disulfide bonds have not always been successful. According to the two current models, cross-links enhance stability mainly through denatured state effects. We have investigated the effects of removal and addition of disulfide cross-links, protein flexibility in the vicinity of a cross-link, and disulfide loop size on the stability of Cucurbita maxima trypsin inhibitor-V (CMTI-V; 7 kD) by differential scanning calorimetry. CMTI-V offers the advantage of a large, flexible, and solvent-exposed loop not involved in extensive intra-molecular interactions. We have uncovered a negative correlation between retention time in hydrophobic column chromatography, a measure of protein hydrophobicity, and melting temperature (T(m)), an indicator of native state stabilization, for CMTI-V and its variants. In conjunction with the complete set of thermodynamic parameters of denaturation, this has led to the following deductions: (1) In the less stable, disulfide-removed C3S/C48S (Delta Delta G(d)(50 degrees C) = -4 kcal/mole; Delta T(m) = -22 degrees C), the native state is destabilized more than the denatured state; this also applies to the less-stable CMTI-V* (Delta Delta G(d)(50 degrees C) = -3 kcal/mole; Delta T(m) = -11 degrees C), in which the disulfide-containing loop is opened by specific hydrolysis of the Lys(44)-Asp(45) peptide bond; (2) In the less stable, disulfide-inserted E38C/W54C (Delta Delta G(d)(50 degrees C) = -1 kcal/mole; Delta T(m) = +2 degrees C), the denatured state is more stabilized than the native state; and (3) In the more stable, disulfide-engineered V42C/R52C (Delta Delta G(d)(50 degrees C) = +1 kcal/mole; Delta T(m) = +17 degrees C), the native state is more stabilized than the denatured state. These results show that a cross-link stabilizes both native and denatured states, and differential stabilization of the two states causes either loss or gain in protein stability. Removal of hydrogen

  16. The Role of S-Nitrosylation and S-Glutathionylation of Protein Disulphide Isomerase in Protein Misfolding and Neurodegeneration

    Directory of Open Access Journals (Sweden)

    M. Halloran

    2013-01-01

    Full Text Available Neurodegenerative diseases involve the progressive loss of neurons, and a pathological hallmark is the presence of abnormal inclusions containing misfolded proteins. Although the precise molecular mechanisms triggering neurodegeneration remain unclear, endoplasmic reticulum (ER stress, elevated oxidative and nitrosative stress, and protein misfolding are important features in pathogenesis. Protein disulphide isomerase (PDI is the prototype of a family of molecular chaperones and foldases upregulated during ER stress that are increasingly implicated in neurodegenerative diseases. PDI catalyzes the rearrangement and formation of disulphide bonds, thus facilitating protein folding, and in neurodegeneration may act to ameliorate the burden of protein misfolding. However, an aberrant posttranslational modification of PDI, S-nitrosylation, inhibits its protective function in these conditions. S-nitrosylation is a redox-mediated modification that regulates protein function by covalent addition of nitric oxide- (NO- containing groups to cysteine residues. Here, we discuss the evidence for abnormal S-nitrosylation of PDI (SNO-PDI in neurodegeneration and how this may be linked to another aberrant modification of PDI, S-glutathionylation. Understanding the role of aberrant S-nitrosylation/S-glutathionylation of PDI in the pathogenesis of neurodegenerative diseases may provide insights into novel therapeutic interventions in the future.

  17. Functional properties of the two redox-active sites in yeast protein disulphide isomerase in vitro and in vivo

    DEFF Research Database (Denmark)

    Westphal, V; Darby, N J; Winther, Jakob R.

    1999-01-01

    Protein folding catalysed by protein disulphide isomerase (PDI) has been studied both in vivo and in vitro using different assays. PDI contains a CGHC active site in each of its two catalytic domains (a and a'). The relative importance of each active site in PDI from Saccharomyces cerevisiae (y...... substrate, procarboxypeptidase Y. In this assay, however, the a' domain active site also appeared to be much more potent than the a-site. These results were unexpected, not only because of the difference with human PDI, but also because analysis of folding of procarboxypeptidase Y in vivo had shown the a...

  18. Occurrence of protein disulfide bonds in different domains of life: a comparison of proteins from the Protein Data Bank.

    Science.gov (United States)

    Bošnjak, I; Bojović, V; Šegvić-Bubić, T; Bielen, A

    2014-03-01

    Disulfide bonds (SS bonds) are important post-translational modifications of proteins. They stabilize a three-dimensional (3D) structure (structural SS bonds) and also have the catalytic or regulatory functions (redox-active SS bonds). Although SS bonds are present in all groups of organisms, no comparative analyses of their frequency in proteins from different domains of life have been made to date. Using the Protein Data Bank, the number and subcellular locations of SS bonds in Archaea, Bacteria and Eukarya have been compared. Approximately three times higher frequency of proteins with SS bonds in eukaryotic secretory organelles (e.g. endoplasmic reticulum) than in bacterial periplasmic/secretory pathways was calculated. Protein length also affects the SS bond frequency: the average number of SS bonds is positively correlated with the length for longer proteins (>200 amino acids), while for the shorter and less stable proteins (proteins (250-350 amino acids) indicated a high number of SS bonds only in Archaea which could be explained by the need for additional protein stabilization in hyperthermophiles. The results emphasize higher capacity for the SS bond formation and isomerization in Eukarya when compared with Archaea and Bacteria.

  19. Identification, activity and disulfide connectivity of C-di-GMP regulating proteins in Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Kajal Gupta

    2010-11-01

    Full Text Available C-di-GMP, a bacterial second messenger plays a key role in survival and adaptation of bacteria under different environmental conditions. The level of c-di-GMP is regulated by two opposing activities, namely diguanylate cyclase (DGC and phosphodiesterase (PDE-A exhibited by GGDEF and EAL domain, respectively in the same protein. Previously, we reported a bifunctional GGDEF-EAL domain protein, MSDGC-1 from Mycobacterium smegmatis showing both these activities (Kumar and Chatterji, 2008. In this current report, we have identified and characterized the homologous protein from Mycobacterium tuberculosis (Rv 1354c named as MtbDGC. MtbDGC is also a bifunctional protein, which can synthesize and degrade c-di-GMP in vitro. Further we expressed Mtbdgc in M. smegmatis and it was able to complement the MSDGC-1 knock out strain by restoring the long term survival of M. smegmatis. Another protein Rv 1357c, named as MtbPDE, is an EAL domain protein and degrades c-di-GMP to pGpG in vitro. Rv1354c and 1357c have seven cysteine amino acids in their sequence, distributed along the full length of the protein. Disulfide bonds play an important role in stabilizing protein structure and regulating protein function. By proteolytic digestion and mass spectrometric analysis of MtbDGC, connectivity between cysteine pairs Cys94-Cys584, Cys2-Cys479 and Cys429-Cys614 was determined, whereas the third cysteine (Cys406 from N terminal was found to be free in MtbDGC protein, which was further confirmed by alkylation with iodoacetamide labeling. Bioinformatics modeling investigations also supported the pattern of disulfide connectivity obtained by Mass spectrometric analysis. Cys406 was mutated to serine by site directed mutagenesis and the mutant MtbC406S was not found to be active and was not able to synthesize or degrade c-di-GMP. The disulfide connectivity established here would help further in understanding the structure - function relationship in MtbDGC.

  20. Co-expression of sulphydryl oxidase and protein disulphide isomerase in Escherichia coli allows for production of soluble CRM197.

    Science.gov (United States)

    Roth, R; van Zyl, P; Tsekoa, T; Stoychev, S; Mamputha, S; Buthelezi, S; Crampton, M

    2017-05-01

    To investigate the production of soluble cross-reacting material 197 (CRM 197 ) in Escherichia coli, a safe and effective T-cell-dependent protein carrier for polysaccharides used in the manufacture and application of multivalent conjugate vaccines. The use of co-expression of a sulphydryl oxidase (SOX) and protein disulphide isomerase for the production of soluble CRM 197 in E. coli is described. CRM 197 contains two disulphide bonds, which are normally unable to form in the reducing environment of the E. coli cytoplasm. It was found that co-expression yielded soluble CRM 197 , at a production rate ~10% of the production of insoluble CRM 197 , in equivalent small-scale cultures. Structural analysis of the purified CRM 197 compared to CRM 197 commercially produced in cultures of recombinant Pseudomonas fluorescens indicated that the E. coli soluble protein compares favourably on all structural levels. SOX and protein disulphide isomerase are enzymes involved in the formation of intra-protein disulphide bonds, and can influence the tertiary structure of the protein being produced, resulting in increased solubility due to the correct folding of the protein. Their use enabled the production of soluble untagged CRM 197 in E. coli, which was previously unachievable. Previous literature reports have shown that CRM 197 can be expressed in E. coli, though only in an insoluble form, or in soluble form as a fusion protein. It is currently commercially produced in cultures of recombinant P. fluorescens. The use of a widely used, well-characterized expression host such as E. coli, rather than P. fluorescens broadens the applicability of the production technology, and the production system described here is worthy of further investigation for scaled up manufacture of CRM 197 . © 2017 The Society for Applied Microbiology.

  1. A novel disulfide-rich protein motif from avian eggshell membranes.

    Directory of Open Access Journals (Sweden)

    Vamsi K Kodali

    2011-03-01

    Full Text Available Under the shell of a chicken egg are two opposed proteinaceous disulfide-rich membranes. They are fabricated in the avian oviduct using fibers formed from proteins that are extensively coupled by irreversible lysine-derived crosslinks. The intractability of these eggshell membranes (ESM has slowed their characterization and their protein composition remains uncertain. In this work, reductive alkylation of ESM followed by proteolytic digestion led to the identification of a cysteine rich ESM protein (abbreviated CREMP that was similar to spore coat protein SP75 from cellular slime molds. Analysis of the cysteine repeats in partial sequences of CREMP reveals runs of remarkably repetitive patterns. Module a contains a C-X(4-C-X(5-C-X(8-C-X(6 pattern (where X represents intervening non-cysteine residues. These inter-cysteine amino acid residues are also strikingly conserved. The evolutionarily-related module b has the same cysteine spacing as a, but has 11 amino acid residues at its C-terminus. Different stretches of CREMP sequences in chicken genomic DNA fragments show diverse repeat patterns: e.g. all a modules; an alternation of a-b modules; or an a-b-b arrangement. Comparable CREMP proteins are found in contigs of the zebra finch (Taeniopygia guttata and in the oviparous green anole lizard (Anolis carolinensis. In all these cases the long runs of highly conserved modular repeats have evidently led to difficulties in the assembly of full length DNA sequences. Hence the number, and the amino acid lengths, of CREMP proteins are currently unknown. A 118 amino acid fragment (representing an a-b-a-b pattern from a chicken oviduct EST library expressed in Escherichia coli is a well folded, highly anisotropic, protein with a large chemical shift dispersion in 2D solution NMR spectra. Structure is completely lost on reduction of the 8 disulfide bonds of this protein fragment. Finally, solid state NMR spectra suggest a surprising degree of order in intact

  2. Redox biology of Mycobacterium tuberculosis H37Rv: protein-protein interaction between GlgB and WhiB1 involves exchange of thiol-disulfide

    Directory of Open Access Journals (Sweden)

    Kishan KV Radha

    2009-01-01

    Full Text Available Abstract Background Mycobacterium tuberculosis, an intracellular pathogen encounters redox stress throughout its life inside the host. In order to protect itself from the redox onslaughts of host immune system, M. tuberculosis appears to have developed accessory thioredoxin-like proteins which are represented by ORFs encoding WhiB-like proteins. We have earlier reported that WhiB1/Rv3219 is a thioredoxin like protein of M. tuberculosis and functions as a protein disulfide reductase. Generally thioredoxins have many substrate proteins. The current study aims to identify the substrate protein(s of M. tuberculosis WhiB1. Results Using yeast two-hybrid screen, we identified alpha (1,4-glucan branching enzyme (GlgB of M. tuberculosis as a interaction partner of WhiB1. In vitro GST pull down assay confirmed the direct physical interaction between GlgB and WhiB1. Both mass spectrometry data of tryptic digests and in vitro labeling of cysteine residues with 4-acetamido-4' maleimidyl-stilbene-2, 2'-disulfonic acid showed that in GlgB, C95 and C658 are free but C193 and C617 form an intra-molecular disulfide bond. WhiB1 has a C37XXC40 motif thus a C40S mutation renders C37 to exist as a free thiol to form a hetero-disulfide bond with the cysteine residue of substrate protein. A disulfide mediated binary complex formation between GlgB and WhiB1C40S was shown by both in-solution protein-protein interaction and thioredoxin affinity chromatography. Finally, transfer of reducing equivalent from WhiB1 to GlgB disulfide was confirmed by 4-acetamido-4' maleimidyl-stilbene-2, 2'-disulfonic acid trapping by the reduced disulfide of GlgB. Two different thioredoxins, TrxB/Rv1471 and TrxC/Rv3914 of M. tuberculosis could not perform this reaction suggesting that the reduction of GlgB by WhiB1 is specific. Conclusion We conclude that M. tuberculosis GlgB has one intra-molecular disulfide bond which is formed between C193 and C617. WhiB1, a thioredoxin like protein

  3. Kinetic analysis of the mechanism and specificity of protein-disulfide isomerase using fluorescence-quenched peptides

    DEFF Research Database (Denmark)

    Westphal, V; Spetzler, J C; Meldal, M

    1998-01-01

    to conventional PDI assays involving larger polypeptides, the starting material for this assay is homogenous. It is furthermore simple and highly sensitive (requires less than 0.5 microgram of PDI/assay) and thus opens the possibility for quantitative determination of PDI activity and specificity....

  4. Probing the structure of human protein disulfide isomerase by chemical cross-linking combined with mass spectrometry

    DEFF Research Database (Denmark)

    Peng, Li; Rasmussen, Morten Ib; Chailyan, Anna

    2014-01-01

    the sample contained soluble calnexin and ERp72. Extensive cross-linking was observed within the PDI molecule, both intra- and inter-domain, as well as between the different components in the mixture. The high sensitivity of the analysis in the current experiments, combined with a likely promiscuous...

  5. A Generic Protocol for Purifying Disulfide-Bonded Domains and Random Protein Fragments Using Fusion Proteins with SUMO3 and Cleavage by SenP2 Protease.

    Science.gov (United States)

    Besir, Hüseyin

    2017-01-01

    Recombinant expression of heterologous proteins in E. coli is well established for a wide range of proteins, although in many cases, purifying soluble and properly folded proteins remains challenging (Sorensen and Mortensen, J Biotechnol 115:113-128, 2005; Correa and Oppezzo, Methods Mol Biol 1258:27-44, 2015). Proteins that contain disulfide bonds (e.g., cytokines, growth factors) are often particularly difficult to purify in soluble form and still need optimizing of protocols in almost every step of the process (Berkmen, Protein Expr Purif 82:240-251, 2012; de Marco, Microb Cell Fact 11:129, 2012). Expression of disulfide bonded proteins in the periplasm of E. coli is one approach that can help to obtain soluble protein with the correct disulfide bridges forming in the periplasm. This offers the appropriate conditions for disulfide formation although periplasmic expression can also result in low expression levels and incorrect folding of the target protein (Schlapschy and Skerra, Methods Mol Biol 705:211-224, 2011). Generation of specific antibodies often requires a specific antigenic sequence of a protein in order to get an efficient immune response and minimize cross-reactivity of antibodies. Larger proteins like GST (Glutathione-S-transferase) or MBP (maltose binding protein) as solubilizing fusion partners are frequently used to keep antigens soluble and immunize animals. This approach has the disadvantage that the immune response against the fusion partner leads to additional antibodies that need to be separated from the antigen-specific antibodies. For both classes of proteins mentioned above, a protocol has been developed and optimized using the human version of small ubiquitin-like modifier 3 (SUMO3) protein and its corresponding protease SenP2. This chapter describes the experimental steps for expression, purification, refolding, and cleavage that are applicable to both disulfide-bonded proteins with a defined structure and random protein fragments for

  6. Protein binding of N-2-mercaptoethyl-1,3-diaminopropane via mixed disulfide formation after oral administration of WR 2721

    Energy Technology Data Exchange (ETDEWEB)

    Tabachnik, N.F.; Blackburn, P.; Peterson, C.M.; Cerami, A.

    1982-02-01

    Earlier studies have shown that WR 2721 (H2N-(CH2)3-NH(CH2)2SPO3H2) is converted to its free thiol form, N-2-mercaptoethyl-1,3-diaminopropane (MDP), at the acidic pH of the stomach. MDP is a radioprotective compound and a mucolytic agent capable of decreasing sputum viscosity in the lungs of patients with cystic fibrosis. Conversion of WR 2721 and MDP to the corresponding sulfonic acid (MDP-SO3H) permits quantitative determination of these compounds in physiological fluids by use of an automatic amino acid analyzer. After oral administration of WR 2721 to human patients and rabbits it is converted to MDP and the free thiol form of the drug associates with plasma proteins by mixed disulfide linkage. The plasma proteins serve as a depot and reservoir of MDP for potential exchange at the tissues. When incubated with whole sputum or with purified mucin solutions in vitro, MDP decreased the viscosity of these solutions by reduction of the accessible disulfide bonds of the mucin molecule and was subsequently found in mixed disulfide association with the mucin molecule. The association of MDP with proteins via mixed disulfide linkage has important implications for the development of optimal dose regimens for administration of WR 2721 to patients.

  7. Protein binding of N-2-mercaptoethyl-1,3-diaminopropane via mixed disulfide formation after oral administration of WR 2721

    International Nuclear Information System (INIS)

    Tabachnik, N.F.; Blackburn, P.; Peterson, C.M.; Cerami, A.

    1982-01-01

    Earlier studies have shown that WR 2721 [H2N-(CH2)3-NH(CH2)2SPO3H2] is converted to its free thiol form, N-2-mercaptoethyl-1,3-diaminopropane (MDP), at the acidic pH of the stomach. MDP is a radioprotective compound and a mucolytic agent capable of decreasing sputum viscosity in the lungs of patients with cystic fibrosis. Conversion of WR 2721 and MDP to the corresponding sulfonic acid (MDP-SO3H) permits quantitative determination of these compounds in physiological fluids by use of an automatic amino acid analyzer. After oral administration of WR 2721 to human patients and rabbits it is converted to MDP and the free thiol form of the drug associates with plasma proteins by mixed disulfide linkage. The plasma proteins serve as a depot and reservoir of MDP for potential exchange at the tissues. When incubated with whole sputum or with purified mucin solutions in vitro, MDP decreased the viscosity of these solutions by reduction of the accessible disulfide bonds of the mucin molecule and was subsequently found in mixed disulfide association with the mucin molecule. The association of MDP with proteins via mixed disulfide linkage has important implications for the development of optimal dose regimens for administration of WR 2721 to patients

  8. Modification of nanoelectrode ensembles by thiols and disulfides to prevent non specific adsorption of proteins

    International Nuclear Information System (INIS)

    Silvestrini, M.; Schiavuta, P.; Scopece, P.; Pecchielan, G.; Moretto, L.M.; Ugo, P.

    2011-01-01

    Highlights: → Complex nanostructures are built on the gold surface of ensembles of nanoelectrodes. → Gold surface of nanoelectrodes was functionalized with SAM of organic sulphurs. → The polycarbonate surrounding nanoelectrodes was functionalized with proteins. → SAMs protect the nanoelectrodes from undesired proteins adsorption. - Abstract: The possibility to functionalize selectively with thiols or disulfides the surface of the gold nanoelectrodes of polycarbonate templated nanoelectrode ensembles (NEEs) is studied. It is shown that the Au nanoelectrodes can be coated by a self assembled monolayer (SAM) of thioctic acid (TA) or 2-mercaptoethanesulfonic (MES) acid. The study of the electrochemical behavior of SAM-modified NEEs by cyclic voltammetry (CV) at different solution pH, using ferrocenecarboxylate as an anionic redox probe (FcCOO - ) and (ferrocenylmethyl)trimethylammonium (FA + ) as a cationic redox probe, demonstrate that the SAM-modified nanoelectrodes are permselective, in that only cationic or neutral probes can access the SAM-coated nanoelectrode surface. CV, AFM and FTIR-ATR data indicate that proteins such as casein or bovine serum albumin, which are polyanionic at pH 7, adsorb on the surface of NEEs untreated with thiols, tending to block the electron transfer of the ferrocenyl redox probes. On the contrary, the pre-treatment of the NEE with an anionic SAM protects the nanoelectrodes from protein fouling, allowing the detection of well shaped voltammetric patterns for the redox probe. Experimental results indicate that, in the case of MES treated NEEs, the protein is bound only onto the polycarbonate surface which surrounds the nanoelectrodes, while the tips of the gold nanoelectrodes remain protein free.

  9. Modification of nanoelectrode ensembles by thiols and disulfides to prevent non specific adsorption of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Silvestrini, M. [Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Santa Marta 2137, 30123 Venice (Italy); Schiavuta, P.; Scopece, P. [Associazione CIVEN, via delle Industrie 5, 30175 Marghera - Venice (Italy); Pecchielan, G.; Moretto, L.M. [Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Santa Marta 2137, 30123 Venice (Italy); Ugo, P., E-mail: ugo@unive.it [Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Santa Marta 2137, 30123 Venice (Italy)

    2011-09-01

    Highlights: > Complex nanostructures are built on the gold surface of ensembles of nanoelectrodes. > Gold surface of nanoelectrodes was functionalized with SAM of organic sulphurs. > The polycarbonate surrounding nanoelectrodes was functionalized with proteins. > SAMs protect the nanoelectrodes from undesired proteins adsorption. - Abstract: The possibility to functionalize selectively with thiols or disulfides the surface of the gold nanoelectrodes of polycarbonate templated nanoelectrode ensembles (NEEs) is studied. It is shown that the Au nanoelectrodes can be coated by a self assembled monolayer (SAM) of thioctic acid (TA) or 2-mercaptoethanesulfonic (MES) acid. The study of the electrochemical behavior of SAM-modified NEEs by cyclic voltammetry (CV) at different solution pH, using ferrocenecarboxylate as an anionic redox probe (FcCOO{sup -}) and (ferrocenylmethyl)trimethylammonium (FA{sup +}) as a cationic redox probe, demonstrate that the SAM-modified nanoelectrodes are permselective, in that only cationic or neutral probes can access the SAM-coated nanoelectrode surface. CV, AFM and FTIR-ATR data indicate that proteins such as casein or bovine serum albumin, which are polyanionic at pH 7, adsorb on the surface of NEEs untreated with thiols, tending to block the electron transfer of the ferrocenyl redox probes. On the contrary, the pre-treatment of the NEE with an anionic SAM protects the nanoelectrodes from protein fouling, allowing the detection of well shaped voltammetric patterns for the redox probe. Experimental results indicate that, in the case of MES treated NEEs, the protein is bound only onto the polycarbonate surface which surrounds the nanoelectrodes, while the tips of the gold nanoelectrodes remain protein free.

  10. Real-time Monitoring of Intermediates Reveals the Reaction Pathway in the Thiol-Disulfide Exchange between Disulfide Bond Formation Protein A (DsbA) and B (DsbB) on a Membrane-immobilized Quartz Crystal Microbalance (QCM) System*

    Science.gov (United States)

    Yazawa, Kenjiro; Furusawa, Hiroyuki; Okahata, Yoshio

    2013-01-01

    Disulfide bond formation protein B (DsbBS-S,S-S) is an inner membrane protein in Escherichia coli that has two disulfide bonds (S-S, S-S) that play a role in oxidization of a pair of cysteine residues (SH, SH) in disulfide bond formation protein A (DsbASH,SH). The oxidized DsbAS-S, with one disulfide bond (S-S), can oxidize proteins with SH groups for maturation of a folding preprotein. Here, we have described the transient kinetics of the oxidation reaction between DsbASH,SH and DsbBS-S,S-S. We immobilized DsbBS-S,S-S embedded in lipid bilayers on the surface of a 27-MHz quartz crystal microbalance (QCM) device to detect both formation and degradation of the reaction intermediate (DsbA-DsbB), formed via intermolecular disulfide bonds, as a mass change in real time. The obtained kinetic parameters (intermediate formation, reverse, and oxidation rate constants (kf, kr, and kcat, respectively) indicated that the two pairs of cysteine residues in DsbBS-S,S-S were more important for the stability of the DsbA-DsbB intermediate than ubiquinone, an electron acceptor for DsbBS-S,S-S. Our data suggested that the reaction pathway of almost all DsbASH,SH oxidation processes would proceed through this stable intermediate, avoiding the requirement for ubiquinone. PMID:24145032

  11. Production of disulfide bond-rich peptides by fusion expression using small transmembrane proteins of Escherichia coli.

    Science.gov (United States)

    Chang, Ziwei; Lu, Ming; Ma, Yunqi; Kwag, Dong-Geon; Kim, Seo-Hyun; Park, Ji-Min; Nam, Bo-Hye; Kim, Young-Ok; An, Cheul-Min; Li, Huayue; Jung, Jee H; Park, Jang-Su

    2015-03-01

    Recombinant expression in Escherichia coli allows the simple, economical, and effective production of bioactive peptides. On the other hand, the production of native peptides, particularly those rich in disulfide bonds, is a major problem. Previous studies have reported that the use of carrier proteins for fusion expression can result in good peptide yields, but few are folded correctly. In this study, two transmembrane small proteins in E. coli, YoaJ and YkgR, which both orientate with their N-termini in cytoplasm and their C-termini in periplasm, were used for fusion expression. The recombinant production of two peptides, asteropsin A (ASPA) and β-defensin (BD), was induced in the periplasm of E. coli using a selected carrier protein. Both peptides were expressed at high levels, at yields of approximately 5-10 mg/L of culture. Mass spectrometry showed that the resulting peptide had the same molecular weight as their natural forms. After purification, single peaks were observed by reversed phase high-performance liquid chromatography (RP-HPLC), demonstrating the absence of isoforms. Furthermore, cytoplasmically expressed fusion proteins with a carrier at their C-termini did not contain disulfide bonds. This study provides new carrier proteins for fusion expression of disulfide bond-rich peptides in E. coli.

  12. Glutamine synthetase and glucose-6-phosphate isomerase are adhesive moonlighting proteins of Lactobacillus crispatus released by epithelial cathelicidin LL-37.

    Science.gov (United States)

    Kainulainen, Veera; Loimaranta, Vuokko; Pekkala, Anna; Edelman, Sanna; Antikainen, Jenni; Kylväjä, Riikka; Laaksonen, Maiju; Laakkonen, Liisa; Finne, Jukka; Korhonen, Timo K

    2012-05-01

    Glutamine synthetase (GS) and glucose-6-phosphate isomerase (GPI) were identified as novel adhesive moonlighting proteins of Lactobacillus crispatus ST1. Both proteins were bound onto the bacterial surface at acidic pHs, whereas a suspension of the cells to pH 8 caused their release into the buffer, a pattern previously observed with surface-bound enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of L. crispatus. The pH shift was associated with a rapid and transient increase in cell wall permeability, as measured by cell staining with propidium iodide. A gradual increase in the release of the four moonlighting proteins was also observed after the treatment of L. crispatus ST1 cells with increasing concentrations of the antimicrobial cationic peptide LL-37, which kills bacteria by disturbing membrane integrity and was here observed to increase the cell wall permeability of L. crispatus ST1. At pH 4, the fusion proteins His(6)-GS, His(6)-GPI, His(6)-enolase, and His(6)-GAPDH showed localized binding to cell division septa and poles of L. crispatus ST1 cells, whereas no binding to Lactobacillus rhamnosus GG was detected. Strain ST1 showed a pH-dependent adherence to the basement membrane preparation Matrigel. Purified His(6)-GS and His(6)-GPI proteins bound to type I collagen, and His(6)-GS also bound to laminin, and their level of binding was higher at pH 5.5 than at pH 6.5. His(6)-GS also expressed a plasminogen receptor function. The results show the strain-dependent surface association of moonlighting proteins in lactobacilli and that these proteins are released from the L. crispatus surface after cell trauma, under conditions of alkaline stress, or in the presence of the antimicrobial peptide LL-37 produced by human cells.

  13. Disulfide scrambling in superoxide dismutase 1 reduces its cytotoxic effect in cultured cells and promotes protein aggregation.

    Directory of Open Access Journals (Sweden)

    Lina Leinartaitė

    Full Text Available Mutations in the gene coding for superoxide dismutase 1 (SOD1 are associated with familiar forms of the neurodegenerative disease amyotrophic lateral sclerosis (ALS. These mutations are believed to result in a "gain of toxic function", leading to neuronal degeneration. The exact mechanism is still unknown, but misfolding/aggregation events are generally acknowledged as important pathological events in this process. Recently, we observed that demetallated apoSOD1, with cysteine 6 and 111 substituted for alanine, is toxic to cultured neuroblastoma cells. This toxicity depended on an intact, high affinity Zn(2+ site. It was therefor contradictory to discover that wild-type apoSOD1 was not toxic, despite of its high affinity for Zn(2+. This inconsistency was hypothesized to originate from erroneous disulfide formation involving C6 and C111. Using high resolution non-reducing SDS-PAGE, we have in this study demonstrated that the inability of wild-type apoSOD1 to cause cell death stems from formation of non-native intra-molecular disulfides. Moreover, monomeric apoSOD1 variants capable of such disulfide scrambling aggregated into ThT positive oligomers under physiological conditions without agitation. The oligomers were stabilized by inter-molecular disulfides and morphologically resembled what has in other neurodegenerative diseases been termed protofibrils. Disulfide scrambling thus appears to be an important event for misfolding and aggregation of SOD1, but may also be significant for protein function involving cysteines, e.g. mitochondrial import and copper loading.

  14. A Pseudo MS3 Approach for Identification of Disulfide-Bonded Proteins: Uncommon Product Ions and Database Search

    Science.gov (United States)

    Chen, Jianzhong; Shiyanov, Pavel; Schlager, John J.; Green, Kari B.

    2012-02-01

    It has previously been reported that disulfide and backbone bonds of native intact proteins can be concurrently cleaved using electrospray ionization (ESI) and collision-induced dissociation (CID) tandem mass spectrometry (MS/MS). However, the cleavages of disulfide bonds result in different cysteine modifications in product ions, making it difficult to identify the disulfide-bonded proteins via database search. To solve this identification problem, we have developed a pseudo MS3 approach by combining nozzle-skimmer dissociation (NSD) and CID on a quadrupole time-of-flight (Q-TOF) mass spectrometer using chicken lysozyme as a model. Although many of the product ions were similar to those typically seen in MS/MS spectra of enzymatically derived peptides, additional uncommon product ions were detected including ci-1 ions (the ith residue being aspartic acid, arginine, lysine and dehydroalanine) as well as those from a scrambled sequence. The formation of these uncommon types of product ions, likely caused by the lack of mobile protons, were proposed to involve bond rearrangements via a six-membered ring transition state and/or salt bridge(s). A search of 20 pseudo MS3 spectra against the Gallus gallus (chicken) database using Batch-Tag, a program originally designed for bottom up MS/MS analysis, identified chicken lysozyme as the only hit with the expectation values less than 0.02 for 12 of the spectra. The pseudo MS3 approach may help to identify disulfide-bonded proteins and determine the associated post-translational modifications (PTMs); the confidence in the identification may be improved by incorporating the fragmentation characteristics into currently available search programs.

  15. Conformational Analysis of Large and Highly Disulfide-Stabilized Proteins by Integrating Online Electrochemical Reduction into an Optimized H/D Exchange Mass Spectrometry Workflow

    DEFF Research Database (Denmark)

    Trabjerg, Esben; Jakobsen, Rasmus U.; Mysling, Simon

    2015-01-01

    Analysis of disulfide-bonded proteins by hydrogen/deuterium exchange mass spectrometry (HDX-MS) requires effective and rapid reduction of disulfide bonds before enzymatic digestion in order to increase sequence coverage. In a conventional HDX-MS workflow, disulfide bonds are reduced chemically...... by addition of a reducing agent to the quench solution (e.g., tris(2-carboxyethyl)phosphine (TCEP)). The chemical reduction, however, is severely limited under quenched conditions due to a narrow time window as well as low pH and temperature. Here, we demonstrate the real-world applicability of integrating...... electrochemical reduction into an online HDX-MS workflow. We have optimized the electrochemical reduction efficiency during HDX-MS analysis of two particularly challenging disulfide stabilized proteins: a therapeutic IgG1-antibody and nerve growth factor-β (NGF). Several different parameters (flow rate...

  16. The KIM-family protein-tyrosine phosphatases use distinct reversible oxidation intermediates: Intramolecular or intermolecular disulfide bond formation.

    Science.gov (United States)

    Machado, Luciana E S F; Shen, Tun-Li; Page, Rebecca; Peti, Wolfgang

    2017-05-26

    The kinase interaction motif (KIM) family of protein-tyrosine phosphatases (PTPs) includes hematopoietic protein-tyrosine phosphatase (HePTP), striatal-enriched protein-tyrosine phosphatase (STEP), and protein-tyrosine phosphatase receptor type R (PTPRR). KIM-PTPs bind and dephosphorylate mitogen-activated protein kinases (MAPKs) and thereby critically modulate cell proliferation and differentiation. PTP activity can readily be diminished by reactive oxygen species (ROS), e.g. H 2 O 2 , which oxidize the catalytically indispensable active-site cysteine. This initial oxidation generates an unstable sulfenic acid intermediate that is quickly converted into either a sulfinic/sulfonic acid (catalytically dead and irreversible inactivation) or a stable sulfenamide or disulfide bond intermediate (reversible inactivation). Critically, our understanding of ROS-mediated PTP oxidation is not yet sufficient to predict the molecular responses of PTPs to oxidative stress. However, identifying distinct responses will enable novel routes for PTP-selective drug design, important for managing diseases such as cancer and Alzheimer's disease. Therefore, we performed a detailed biochemical and molecular study of all KIM-PTP family members to determine their H 2 O 2 oxidation profiles and identify their reversible inactivation mechanism(s). We show that despite having nearly identical 3D structures and sequences, each KIM-PTP family member has a unique oxidation profile. Furthermore, we also show that whereas STEP and PTPRR stabilize their reversibly oxidized state by forming an intramolecular disulfide bond, HePTP uses an unexpected mechanism, namely, formation of a reversible intermolecular disulfide bond. In summary, despite being closely related, KIM-PTPs significantly differ in oxidation profiles. These findings highlight that oxidation protection is critical when analyzing PTPs, for example, in drug screening. © 2017 by The American Society for Biochemistry and Molecular Biology

  17. Synthesis of PAF, an antifungal protein from P. chrysogenum, by native chemical ligation: native disulfide pattern and fold obtained upon oxidative refolding.

    Science.gov (United States)

    Váradi, Györgyi; Tóth, Gábor K; Kele, Zoltán; Galgóczy, László; Fizil, Ádám; Batta, Gyula

    2013-09-16

    The folding of disulfide proteins is of considerable interest because knowledge of this may influence our present understanding of protein folding. However, sometimes even the disulfide pattern cannot be unequivocally determined by the available experimental techniques. For example, the structures of a few small antifungal proteins (PAF, AFP) have been disclosed recently using NMR spectroscopy but with some ambiguity in the actual disulfide pattern. For this reason, we carried out the chemical synthesis of PAF. Probing different approaches, the oxidative folding of the synthetic linear PAF yielded a folded protein that has identical structure and antifungal activity as the native PAF. In contrast, unfolded linear PAF was inactive, a result that may have implications concerning its redox state in the mode of action.

  18. A Disulfide Bond in the Membrane Protein IgaA Is Essential for Repression of the RcsCDB System

    Directory of Open Access Journals (Sweden)

    M. Graciela Pucciarelli

    2017-12-01

    Full Text Available IgaA is an integral inner membrane protein that was discovered as repressor of the RcsCDB phosphorelay system in the intracellular pathogen Salmonella enterica serovar Typhimurium. The RcsCDB system, conserved in many members of the family Enterobacteriaceae, regulates expression of varied processes including motility, biofilm formation, virulence and response to envelope stress. IgaA is an essential protein to which, in response to envelope perturbation, the outer membrane lipoprotein RcsF has been proposed to bind in order to activate the RcsCDB phosphorelay. Envelope stress has also been reported to be sensed by a surface exposed domain of RcsF. These observations support a tight control of the RcsCDB system by RcsF and IgaA via mechanisms that, however, remain unknown. Interestingly, RcsF and IgaA have four conserved cysteine residues in loops exposed to the periplasmic space. Two non-consecutive disulfide bonds were shown to be required for RcsF function. Here, we report mutagenesis studies supporting the presence of one disulfide bond (C404-C425 in the major periplasmic loop of IgaA that is essential for repression of the RcsCDB phosphorelay. Our data therefore suggest that the redox state of the periplasm may be critical for the control of the RcsCDB system by its two upstream regulators, RcsF and IgaA.

  19. Investigation of protein FTT1103 electroactivity using carbon and mercury electrodes. Surface-inhibition approach for disulfide oxidoreductases using silver amalgam powder

    Czech Academy of Sciences Publication Activity Database

    Večerková, R.; Hernychová, L.; Dobeš, P.; Vrba, J.; Josypčuk, Bohdan; Bartošík, M.; Vacek, J.

    2014-01-01

    Roč. 830, JUN 2014 (2014), s. 23-32 ISSN 0003-2670 Institutional support: RVO:61388955 Keywords : Disulfide bond forming protein * Electrochemical sensing * Membrane proteins Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.513, year: 2014

  20. Characterisation of SEQ0694 (PrsA/PrtM) of Streptococcus equi as a functional peptidyl-prolyl isomerase affecting multiple secreted protein substrates.

    Science.gov (United States)

    Ikolo, Felicia; Zhang, Meng; Harrington, Dean J; Robinson, Carl; Waller, Andrew S; Sutcliffe, Iain C; Black, Gary W

    2015-12-01

    Peptidyl-prolyl isomerase (PPIase) lipoproteins have been shown to influence the virulence of a number of Gram-positive bacterial human and animal pathogens, most likely through facilitating the folding of cell envelope and secreted virulence factors. Here, we used a proteomic approach to demonstrate that the Streptococcus equi PPIase SEQ0694 alters the production of multiple secreted proteins, including at least two putative virulence factors (FNE and IdeE2). We demonstrate also that, despite some unusual sequence features, recombinant SEQ0694 and its central parvulin domain are functional PPIases. These data add to our knowledge of the mechanisms by which lipoprotein PPIases contribute to the virulence of streptococcal pathogens.

  1. Effect of NaCl addition during diafiltration on the solubility, hydrophobicity, and disulfide bonds of 80% milk protein concentrate powder.

    Science.gov (United States)

    Mao, X Y; Tong, P S; Gualco, S; Vink, S

    2012-07-01

    We investigated the surface hydrophobicity index based on different fluorescence probes [1-anilinonaphthalene-8-sulfonic acid (ANS) and 6-propionyl-2-(N,N-dimethylamino)-naphthalene (PRODAN)], free sulfhydryl and disulfide bond contents, and particle size of 80% milk protein concentrate (MPC80) powders prepared by adding various amounts of NaCl (0, 50, 100, and 150 mM) during the diafiltration process. The solubility of MPC80 powder was not strictly related to surface hydrophobicity. The MPC80 powder obtained by addition of 150 mM NaCl during diafiltration had the highest solubility but also the highest ANS-based surface hydrophobicity, the lowest PRODAN-based surface hydrophobicity, and the least aggregate formation. Intermolecular disulfide bonds caused by sulfhydryl-disulfide interchange reactions and hydrophobic interactions may be responsible for the lower solubility of the control MPC80 powder. The enhanced solubility of MPC80 powder with addition of NaCl during diafiltration may result from the modified surface hydrophobicity, the reduced intermolecular disulfide bonds, and the associated decrease in mean particle size. Addition of NaCl during the diafiltration process can modify the strength of hydrophobic interactions and sulfhydryl-disulfide interchange reactions and thereby affect protein aggregation and the solubility of MPC powders. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Cysteine Specific Targeting of the Functionally Distinct Peroxiredoxin and Glutaredoxin Proteins by the Investigational Disulfide BNP7787

    Directory of Open Access Journals (Sweden)

    Aulma R. Parker

    2015-03-01

    Full Text Available Glutaredoxin (Grx, peroxiredoxin (Prx, and thioredoxin (Trx are redoxin family proteins that catalyze different types of chemical reactions that impact cell growth and survival through functionally distinct intracellular pathways. Much research is focused on understanding the roles of these redoxin proteins in the development and/or progression of human diseases. Grx and Prx are overexpressed in human cancers, including human lung cancers. BNP7787 is a novel investigational agent that has been evaluated in previous clinical studies, including non-small cell lung cancer (NSCLC studies. Herein, data from activity assays, mass spectrometry analyses, and X-ray crystallographic studies indicate that BNP7787 forms mixed disulfides with select cysteine residues on Grx and Prx and modulates their function. Studies of interactions between BNP7787 and Trx have been conducted and reported separately. Despite the fact that Trx, Grx, and Prx are functionally distinct proteins that impact oxidative stress, cell proliferation and disease processes through different intracellular pathways, BNP7787 can modify each protein and appears to modulate function through mechanisms that are unique to each target protein. Tumor cells are often genomically heterogeneous containing subpopulations of cancer cells that often express different tumor-promoting proteins or that have multiple dysregulated signaling pathways modulating cell proliferation and drug resistance. A multi-targeted agent that simultaneously modulates activity of proteins important in mediating cell proliferation by functionally distinct intracellular pathways could have many potentially useful therapeutic applications.

  3. Efficient on-column conversion of IgG1 trisulfide linkages to native disulfides in tandem with Protein A affinity chromatography.

    Science.gov (United States)

    Aono, Hiromasa; Wen, Dingy; Zang, Li; Houde, Damian; Pepinsky, R Blake; Evans, David R H

    2010-08-06

    Protein trisulfide linkages are generated by the post-translational insertion of a sulfur atom into a disulfide bond. Molecular heterogeneity was detected in a recombinant IgG(1) monoclonal antibody (mAb) and attributed to the presence of a protein trisulfide moiety. The predominant site of trisulfide modification was the bond between the heavy and light chains. The trisulfide was eliminated during purification of the IgG(1) mAb via a cysteine wash step incorporated into Protein A affinity column chromatography. Analysis of the cysteine-treated mAb by electrophoresis and peptide mapping indicated that the trisulfide linkages were efficiently converted to intact disulfide bonds (13% trisulfide decreased consistently to 1% or less) without disulfide scrambling or an increase in free sulfhydryls. The on-column trisulfide conversion caused no change in protein folding detectable by hydrogen/deuterium exchange or differential scanning calorimetry. Consistent with this, binding of the mAb to its antigen in vitro was insensitive to the presence of the trisulfide modification and to its removal by the on-column cysteine treatment. Similar, high efficiency trisulfide conversion was achieved for a second IgG(1) mAb using the column wash strategy (at least 7% trisulfide decreased to 1% or less). Therefore, trisulfide/disulfide heterogeneity can be eliminated from IgG(1) molecules via a convenient and inexpensive procedure compatible with routine Protein A affinity capture. Copyright 2010 Elsevier B.V. All rights reserved.

  4. The Glycolytic Enzyme Triosephosphate Isomerase of Trichomonas vaginalis Is a Surface-Associated Protein Induced by Glucose That Functions as a Laminin- and Fibronectin-Binding Protein

    Science.gov (United States)

    Miranda-Ozuna, Jesús F. T.; Hernández-García, Mar S.; Brieba, Luis G.; Benítez-Cardoza, Claudia G.; Ortega-López, Jaime; González-Robles, Arturo

    2016-01-01

    Triosephosphate isomerase of Trichomonas vaginalis (TvTIM) is a 27-kDa cytoplasmic protein encoded by two genes, tvtim1 and tvtim2, that participates in glucose metabolism. TvTIM is also localized to the parasite surface. Thus, the goal of this study was to identify the novel functions of the surface-associated TvTIM in T. vaginalis and to assess the effect of glucose as an environmental factor that regulates its expression and localization. Reverse transcription-PCR (RT-PCR) showed that the tvtim genes were differentially expressed in response to glucose concentration. tvtim1 was overexpressed under glucose-restricted (GR) conditions, whereas tvtim2 was overexpressed under glucose-rich, or high-glucose (HG), conditions. Western blot and indirect immunofluorescence assays also showed that glucose positively affected the amount and surface localization of TvTIM in T. vaginalis. Affinity ligand assays demonstrated that the recombinant TvTIM1 and TvTIM2 proteins bound to laminin (Lm) and fibronectin (Fn) but not to plasminogen. Moreover, higher levels of adherence to Lm and Fn were detected in parasites grown under HG conditions than in those grown under GR conditions. Furthermore, pretreatment of trichomonads with an anti-TvTIMr polyclonal antibody or pretreatment of Lm- or Fn-coated wells with both recombinant proteins (TvTIM1r and TvTIM2r) specifically reduced the binding of live parasites to Lm and Fn in a concentration-dependent manner. Moreover, T. vaginalis was exposed to different glucose concentrations during vaginal infection of women with trichomoniasis. Our data indicate that TvTIM is a surface-associated protein under HG conditions that mediates specific binding to Lm and Fn as a novel virulence factor of T. vaginalis. PMID:27481251

  5. The Glycolytic Enzyme Triosephosphate Isomerase of Trichomonas vaginalis Is a Surface-Associated Protein Induced by Glucose That Functions as a Laminin- and Fibronectin-Binding Protein.

    Science.gov (United States)

    Miranda-Ozuna, Jesús F T; Hernández-García, Mar S; Brieba, Luis G; Benítez-Cardoza, Claudia G; Ortega-López, Jaime; González-Robles, Arturo; Arroyo, Rossana

    2016-10-01

    Triosephosphate isomerase of Trichomonas vaginalis (TvTIM) is a 27-kDa cytoplasmic protein encoded by two genes, tvtim1 and tvtim2, that participates in glucose metabolism. TvTIM is also localized to the parasite surface. Thus, the goal of this study was to identify the novel functions of the surface-associated TvTIM in T. vaginalis and to assess the effect of glucose as an environmental factor that regulates its expression and localization. Reverse transcription-PCR (RT-PCR) showed that the tvtim genes were differentially expressed in response to glucose concentration. tvtim1 was overexpressed under glucose-restricted (GR) conditions, whereas tvtim2 was overexpressed under glucose-rich, or high-glucose (HG), conditions. Western blot and indirect immunofluorescence assays also showed that glucose positively affected the amount and surface localization of TvTIM in T. vaginalis Affinity ligand assays demonstrated that the recombinant TvTIM1 and TvTIM2 proteins bound to laminin (Lm) and fibronectin (Fn) but not to plasminogen. Moreover, higher levels of adherence to Lm and Fn were detected in parasites grown under HG conditions than in those grown under GR conditions. Furthermore, pretreatment of trichomonads with an anti-TvTIMr polyclonal antibody or pretreatment of Lm- or Fn-coated wells with both recombinant proteins (TvTIM1r and TvTIM2r) specifically reduced the binding of live parasites to Lm and Fn in a concentration-dependent manner. Moreover, T. vaginalis was exposed to different glucose concentrations during vaginal infection of women with trichomoniasis. Our data indicate that TvTIM is a surface-associated protein under HG conditions that mediates specific binding to Lm and Fn as a novel virulence factor of T. vaginalis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Metal Dependence of the Xylose Isomerase from Piromyces sp. E2 Explored by Activity Profiling and Protein Crystallography.

    Science.gov (United States)

    Lee, Misun; Rozeboom, Henriëtte J; de Waal, Paul P; de Jong, Rene M; Dudek, Hanna M; Janssen, Dick B

    2017-11-14

    Xylose isomerase from Piromyces sp. E2 (PirXI) can be used to equip Saccharomyces cerevisiae with the capacity to ferment xylose to ethanol. The biochemical properties and structure of the enzyme have not been described even though its metal content, catalytic parameters, and expression level are critical for rapid xylose utilization. We have isolated the enzyme after high-level expression in Escherichia coli, analyzed the metal dependence of its catalytic properties, and determined 12 crystal structures in the presence of different metals, substrates, and substrate analogues. The activity assays revealed that various bivalent metals can activate PirXI for xylose isomerization. Among these metals, Mn 2+ is the most favorable for catalytic activity. Furthermore, the enzyme shows the highest affinity for Mn 2+ , which was established by measuring the activation constants (K act ) for different metals. Metal analysis of the purified enzyme showed that in vivo the enzyme binds a mixture of metals that is determined by metal availability as well as affinity, indicating that the native metal composition can influence activity. The crystal structures show the presence of an active site similar to that of other xylose isomerases, with a d-xylose binding site containing two tryptophans and a catalytic histidine, as well as two metal binding sites that are formed by carboxylate groups of conserved aspartates and glutamates. The binding positions and conformations of the metal-coordinating residues varied slightly for different metals, which is hypothesized to contribute to the observed metal dependence of the isomerase activity.

  7. Active site mutations in yeast protein disulfide isomerase cause dithiothreitol sensitivity and a reduced rate of protein folding in the endoplasmic reticulum

    DEFF Research Database (Denmark)

    Holst, B; Tachibana, C; Winther, Jakob R.

    1997-01-01

    . Such mutations had no significant effect on growth. The domains however, were not equivalent since the rate of folding of carboxypeptidase Y (CPY) in vivo was reduced by inactivation of the a domain but not the a' domain. To investigate the relevance of PDI redox potential, the G and H positions of each CGHC...

  8. Approach to Characterization of the Higher Order Structure of Disulfide-Containing Proteins Using Hydrogen/Deuterium Exchange and Top-Down Mass Spectrometry

    OpenAIRE

    Wang, Guanbo; Kaltashov, Igor A.

    2014-01-01

    Top-down hydrogen/deuterium exchange (HDX) with mass spectrometric (MS) detection has recently matured to become a potent biophysical tool capable of providing valuable information on higher order structure and conformational dynamics of proteins at an unprecedented level of structural detail. However, the scope of the proteins amenable to the analysis by top-down HDX MS still remains limited, with the protein size and the presence of disulfide bonds being the two most important limiting fact...

  9. Structure of thrombospondin type 3 repeats in bacterial outer membrane protein A reveals its intra-repeat disulfide bond-dependent calcium-binding capability

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Shuyan; Sun, Cancan; Tan, Kemin; Ye, Sheng; Zhang, Rongguang

    2017-09-01

    Eukaryotic thrombospondin type 3 repeat (TT3R) is an efficient calcium ion (Ca2+) binding motif only found in mammalian thrombospondin family. TT3R has also been found in prokaryotic cellulase Cel5G, which was thought to forfeit the Ca2+-binding capability due to the formation of intra-repeat disulfide bonds, instead of the inter-repeat ones possessed by eukaryotic TT3Rs. In this study, we have identified an enormous number of prokaryotic TT3R-containing proteins belonging to several different protein families, including outer membrane protein A (OmpA), an important structural protein connecting the outer membrane and the periplasmic peptidoglycan layer in gram-negative bacteria. Here, we report the crystal structure of the periplasmic region of OmpA from Capnocytophaga gingivalis, which contains a linker region comprising five consecutive TT3Rs. The structure of OmpA-TT3R exhibits a well-ordered architecture organized around two tightly-coordinated Ca2+ and confirms the presence of abnormal intra-repeat disulfide bonds. Further mutagenesis studies showed that the Ca2+-binding capability of OmpA-TT3R is indeed dependent on the proper formation of intra-repeat disulfide bonds, which help to fix a conserved glycine residue at its proper position for Ca2+ coordination. Additionally, despite lacking inter repeat disulfide bonds, the interfaces between adjacent OmpA-TT3Rs are enhanced by both hydrophobic and conserved aromatic-proline interactions.

  10. Expression of metallocarboxypeptidase inhibitors in Escherichia coli: effect of cysteine content and protein size in the secretory production of disulfide-bridged proteins.

    Science.gov (United States)

    Puertas, Juan-Miguel; Caminal, Glòria; González, Glòria

    2011-09-01

    Metallocarboxypeptidase inhibitors are proteins with possible applications in biomedicine given their properties as anticoagulant and antitumoral factors. They are small, eukaryotic polypeptides comprising several disulfide bridges, which makes them hard to express in inexpensive bacterial hosts. In this work, three of them were produced in high-cell-density cultures of Escherichia coli: PCI (39 residues and three bridges), LCI (66 residues and four bridges) and TCI (75 residues and six bridges). The genes coding for the mentioned inhibitors were cloned in an arabinose-inducible plasmid fused to the signal peptide of DsbA in order to have them secreted and grant the formation of the bridges. The trigger-factor defective strain KTD101 was used as the expression host. The resulting recombinant strains were cultured in fed-batch mode employing minimal media and an exponential feed profile, keeping the specific growth rate at μ = 0.1 h(-1) by limitation of the fed carbon source (glycerol). Between 380 and 540 mg l(-1) of active inhibitors were obtained in both the periplasmic extracts and extracellular media of the cultures. Later on, excretion was enhanced using a cell permeabilization treatment, allowing the recovery of over 80% of the products from the extracellular fraction. Protein yields were found to be inversely proportional to cysteine content of the inhibitor, whereas protein excretion rates were inversely proportional to the protein size. Overall, these results offer insight into the secretory production of active disulfide-bridged proteins in high-cell-density cultures of E. coli.

  11. Direct, simple derivatization of disulfide bonds in proteins with organic mercury in alkaline medium without any chemical pre-reducing agents

    Energy Technology Data Exchange (ETDEWEB)

    Campanella, Beatrice; Onor, Massimo [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici-ICCOM- UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Ferrari, Carlo [National Research Council of Italy, C.N.R., Istituto Nazionale di Ottica, INO-UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); D’Ulivo, Alessandro [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici-ICCOM- UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy); Bramanti, Emilia, E-mail: bramanti@pi.iccom.cnr.it [National Research Council of Italy, C.N.R., Istituto di Chimica dei Composti Organo Metallici-ICCOM- UOS Pisa, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy)

    2014-09-16

    Highlights: • A simple procedure for the derivatization of proteins disulfide bonds. • Cysteine groups in several proteins derivatised with pHMB in alkaline media. • 75–100% labelling of cysteines in proteins with pHMB. - Abstract: In this work we have studied the derivatization of protein disulfide bonds with p-Hydroxymercurybenzoate (pHMB) in strong alkaline medium without any preliminary reduction. The reaction has been followed by the determination of the protein–pHMB complex using size exclusion chromatography coupled to a microwave/UV mercury oxidation system for the on-line oxidation of free and protein-complexed pHMB and atomic fluorescence spectrometry (SEC–CVG–AFS) detection. The reaction has been optimized by an experimental design using lysozyme as a model protein and applied to several thiolic proteins. The proposed method reports, for the first time, that it is possible to label 75–100% cysteines of proteins and, thus, to determine thiolic proteins without the need of any reducing step to obtain reduced -SH groups before mercury labelling. We obtained a detection limit of 100 nmol L{sup −1} based on a signal-to-noise ratio of 3 for unbound and complexed pHMB, corresponding to a detection limit of proteins ranged between 3 and 360 nmol L{sup −1}, depending on the number of cysteines in the protein sequence.

  12. Nerve growth factor stimulates interaction of Cayman ataxia protein BNIP-H/Caytaxin with peptidyl-prolyl isomerase Pin1 in differentiating neurons.

    Directory of Open Access Journals (Sweden)

    Jan Paul Buschdorf

    Full Text Available Mutations in ATCAY that encodes the brain-specific protein BNIP-H (or Caytaxin lead to Cayman cerebellar ataxia. BNIP-H binds to glutaminase, a neurotransmitter-producing enzyme, and affects its activity and intracellular localization. Here we describe the identification and characterization of the binding between BNIP-H and Pin1, a peptidyl-prolyl cis/trans isomerase. BNIP-H interacted with Pin1 after nerve growth factor-stimulation and they co-localized in the neurites and cytosol of differentiating pheochromocytoma PC12 cells and the embryonic carcinoma P19 cells. Deletional mutagenesis revealed two cryptic binding sites within the C-terminus of BNIP-H such that single point mutants affecting the WW domain of Pin1 completely abolished their binding. Although these two sites do not contain any of the canonical Pin1-binding motifs they showed differential binding profiles to Pin1 WW domain mutants S16E, S16A and W34A, and the catalytically inert C113A of its isomerase domain. Furthermore, their direct interaction would occur only upon disrupting the ability of BNIP-H to form an intramolecular interaction by two similar regions. Furthermore, expression of Pin1 disrupted the BNIP-H/glutaminase complex formation in PC12 cells under nerve growth factor-stimulation. These results indicate that nerve growth factor may stimulate the interaction of BNIP-H with Pin1 by releasing its intramolecular inhibition. Such a mechanism could provide a post-translational regulation on the cellular activity of BNIP-H during neuronal differentiation.

  13. Sulfur dioxide induced aggregation of wine thaumatin-like proteins: Role of disulfide bonds.

    Science.gov (United States)

    Chagas, Ricardo; Laia, César A T; Ferreira, Ricardo B; Ferreira, Luísa M

    2018-09-01

    Aggregation of heat unstable wine proteins is responsible for the economically and technologically detrimental problem called wine protein haze. This is caused by the aggregation of thermally unfolded proteins that can precipitate in bottled wine. To study the influence of SO 2 in this phenomenon, wine proteins were isolated and thaumatins were identified has the most prone to aggregate in the presence of this compound. Isolated wine thaumatins aggregation was followed by dynamic light scattering (DLS), circular dichroism (CD), fluorescence spectroscopy and size exclusion chromatography (SEC). Our experimental results demonstrate that protein thermal unfolding after exposure of the protein to 70 °C does not present differences whether SO 2 is present or not. Conversely, when the protein solution is cooled to 15 °C (after heat stress) significant analytical changes can be observed between samples with and without SO 2 . A remarkable change of circular dichroism spectra in the region 220-230 nm is observed (which can be related to S-S torsion angles), as well as an increase in tryptophan fluorescence intensity (absence of fluorescence quenching by S-S bonds). Formation of covalently-linked dimeric and tetrameric protein species were also detected by SEC. The ability to dissolve the aggregates with 8 M urea seems to indicate that hydrophobic interactions are prevalent in the formed aggregates. Also, the reduction of these aggregates with tris (2-carboxyethyl) phosphine (TCEP) to only monomeric species reveals the presence of intermolecular S-S bonds. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Approach to characterization of the higher order structure of disulfide-containing proteins using hydrogen/deuterium exchange and top-down mass spectrometry.

    Science.gov (United States)

    Wang, Guanbo; Kaltashov, Igor A

    2014-08-05

    Top-down hydrogen/deuterium exchange (HDX) with mass spectrometric (MS) detection has recently matured to become a potent biophysical tool capable of providing valuable information on higher order structure and conformational dynamics of proteins at an unprecedented level of structural detail. However, the scope of the proteins amenable to the analysis by top-down HDX MS still remains limited, with the protein size and the presence of disulfide bonds being the two most important limiting factors. While the limitations imposed by the physical size of the proteins gradually become more relaxed as the sensitivity, resolution and dynamic range of modern MS instrumentation continue to improve at an ever accelerating pace, the presence of the disulfide linkages remains a much less forgiving limitation even for the proteins of relatively modest size. To circumvent this problem, we introduce an online chemical reduction step following completion and quenching of the HDX reactions and prior to the top-down MS measurements of deuterium occupancy of individual backbone amides. Application of the new methodology to the top-down HDX MS characterization of a small (99 residue long) disulfide-containing protein β2-microglobulin allowed the backbone amide protection to be probed with nearly a single-residue resolution across the entire sequence. The high-resolution backbone protection pattern deduced from the top-down HDX MS measurements carried out under native conditions is in excellent agreement with the crystal structure of the protein and high-resolution NMR data, suggesting that introduction of the chemical reduction step to the top-down routine does not trigger hydrogen scrambling either during the electrospray ionization process or in the gas phase prior to the protein ion dissociation.

  15. Crystal Structure of Mn2+-bound Escherichia coli L-arabinose Isomerase (ECAI) and Implications in Protein Catalytic Mechanism and Thermo-Stability

    International Nuclear Information System (INIS)

    Zhu, W.; Manjasetty, B.; Chance, M.

    2007-01-01

    The functional properties of proteins depend on their three-dimensional shapes. Protein structures can be determined by X-ray crystallography as a tool. The three-dimensional structure of the apo form of the Escherichia coli L-arabinose isomerase (ECAI) has recently been determined. ECAI is responsible for the initial stage of L-arabinose catabolism, converting arabinose into ribulose in vivo. This enzyme also plays a crucial role in catalyzing the conversion of galactose into tagatose (low calorie natural sugar) in vitro. ECAI utilizes Mn 2+ for its catalytic activity. Crystals of the ECAI + Mn 2+ complex helps to investigate the catalytic properties of the enzyme. Therefore, crystals of ECAI + Mn 2+ complex were grown using hanging drop vapor diffusion method at room temperature. Diffraction data were collected at X4C beamline, National Synchrotron Light Source, Brookhaven National Laboratory. The structure was solved by the molecular replacement technique and has been refined to Rwork of 0.23 at 2.8 (angstrom) resolution using X3A beamline computational facility. The structure was deposited to Protein Data Bank (PDB ID 2HXG). Mn 2+ ion was localized to the previously identified putative active site with octahedral coordination. Comparison of apo and holo form of ECAI structures permits the identification of structural features that are of importance to the intrinsic activity and heat stability of AI

  16. Disulfide bond-stabilized physical gels of an asymmetric collagen-inspired telechelic protein polymer

    NARCIS (Netherlands)

    Pham, T.H.T.; Skrzeszewska, P.J.; Werten, M.W.T.; Rombouts, W.H.; Cohen Stuart, M.A.; Wolf, de F.A.; Gucht, van der J.

    2013-01-01

    We designed and produced an asymmetric collagen-inspired telechelic protein polymer with end blocks that can form triple helices of different thermal stabilities. Both end blocks consist of a motif that can form triple helices at low temperature, but one of these blocks carries an additional

  17. Prolyl isomerase Pin1 is highly expressed in Her2-positive breast cancer and regulates erbB2 protein stability

    Directory of Open Access Journals (Sweden)

    Lu Kun

    2008-12-01

    Full Text Available Abstract Overexpression of HER-2/Neu occurs in about 25–30% of breast cancer patients and is indicative of poor prognosis. While Her2/Neu overexpression is primarily a result of erbB2 amplification, it has recently been recognized that erbB2 levels are also regulated on the protein level. However, factors that regulate Her2/Neu protein stability are less well understood. The prolyl isomerase Pin1 catalyzes the isomerization of specific pSer/Thr-Pro motifs that have been phosphorylated in response to mitogenic signaling. We have previously reported that Pin1-catalyzed post-phosphorylational modification of signal transduction modulates the oncogenic pathways downstream from c-neu. The goal of this study was to examine the expression of prolyl isomerase Pin1 in human Her2+ breast cancer, and to study if Pin1 affects the expression of Her2/Neu itself. Methods Immunohistochemistry for Her2 and Pin1 were performed on two hundred twenty-three human breast cancers, with 59% of the specimen from primary cancers and 41% from metastatic sites. Pin1 inhibition was achieved using siRNA in Her2+ breast cancer cell lines, and its effects were studied using cell viability assays, immunoblotting and immunofluorescence. Results Sixty-four samples (28.7% stained positive for Her2 (IHC 3+, and 54% (122/223 of all breast cancers stained positive for Pin1. Of the Her2-positive cancers 40 (62.5% were also Pin1-positive, based on strong nuclear or nuclear and cytoplasmic staining. Inhibition of Pin1 via RNAi resulted in significant suppression of Her2-positive tumor cell growth in BT474, SKBR3 and AU565 cells. Pin1 inhibition greatly increased the sensitivity of Her2-positive breast cancer cells to the mTOR inhibitor Rapamycin, while it did not increase their sensitivity to Trastuzumab, suggesting that Pin1 might act on Her2 signaling. We found that Pin1 interacted with the protein complex that contains ubiquitinated erbB2 and that Pin1 inhibition accelerated erbB2

  18. The P5 disulfide switch: taming the aging unfolded protein response.

    Science.gov (United States)

    Mathew, Akash

    2015-09-01

    Aging cells are characterized by a loss of proteostasis and a decreased ability to survive under environmental stress. Regulation of the UPR in aging cells has been under much scrutiny, and studies have shown that the UPR in these cells differs considerably from younger cells with regard to the induction of apoptosis and chaperone activity. The role of IRE-1 and PERK in UPR-associated apoptosis makes the regulation of these signaling cascades an important target of study. The seemingly contradictory findings regarding the role of P5 in activating and deactivating these responses warrant further investigation and may hold the key to unlocking the role of this protein in various pathological conditions. Another important target for study with regard to P5 is the effects of the localization of this protein in the mitochondria and the consequences, if any, of these effects on the activation of the UPR.

  19. Investigation of protein FTT1103 electroactivity using carbon and mercury electrodes. Surface-inhibition approach for disulfide oxidoreductases using silver amalgam powder.

    Science.gov (United States)

    Večerková, Renata; Hernychová, Lenka; Dobeš, Petr; Vrba, Jiří; Josypčuk, Bohdan; Bartošík, Martin; Vacek, Jan

    2014-06-09

    Recently, it was shown that electrochemical methods can be used for analysis of poorly water-soluble proteins and for study of their structural changes and intermolecular (protein-ligand) interactions. In this study, we focused on complex electrochemical investigation of recombinant protein FTT1103, a disulfide oxidoreductase with structural similarity to well described DsbA proteins. This thioredoxin-like periplasmic lipoprotein plays an important role in virulence of bacteria Francisella tularensis. For electrochemical analyses, adsorptive transfer (ex situ) square-wave voltammetry with pyrolytic graphite electrode, and alternating-current voltammetry and constant-current chronopotentiometric stripping analysis with mercury electrodes, including silver solid amalgam electrode (AgSAE) were used. AgSAE was used in poorly water-soluble protein analysis for the first time. In addition to basic redox, electrocatalytic and adsorption/desorption characterization of FTT1103, electrochemical methods were also used for sensitive determination of the protein at nanomolar level and study of its interaction with surface of AgSA microparticles. Proposed electrochemical protocol and AgSA surface-inhibition approach presented here could be used in future for biochemical studies focused on proteins associated with membranes as well as on those with disulfide oxidoreductase activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Crystal structure of the crenarchaeal ExoIII AP endonuclease SisExoIII reveals a conserved disulfide bond endowing the protein with thermostability.

    Science.gov (United States)

    Yan, Zhou; Yuan, Zenglin; Ni, Jinfeng; Gu, Lichuan; Shen, Yulong

    2017-08-26

    AP endonuclease recognizes and cleaves apurinic/apyrimidinic (AP) sites and plays a critical role in base excision repair. Many ExoIII and EndoIV family AP endonucleases have been characterized both biochemically and structurally in Eukaryote and Bacteria. However, relatively fewer have been studied in Euryarchaeota and there is no such report on an AP endonuclease from Crenarchaeota. Here we report, for the first time, the crystal structure of a crenarchaeal ExoIII AP endonuclease, SisExoIII, from Sulfolobus islandicus REY15A. SisExoIII comprises a two-layer core formed by 10 β-sheets and a shell formed by 9 surrounding α-helices. A disulfide bond connecting β8 and β9 is formed by Cys142 and Cys215. This intra-molecular linkage is conserved among crenarchaeal ExoIII homologs and site-directed mutagenesis revealed that it endows the protein with thermostability, however, disruption of the disulfide bond only has a slight effect on the AP endonuclease activity. We also observed that several key residues within the catalytic center including conserved Glu35 and Asn9 show different conformation compared with known ExoIII proteins and form various intra-molecular salt bridges. The protein possesses three putative DNA binding loops with higher flexibility and hydrophobicity than those of ExoIIIs from other organisms. These features may result in low AP endonuclease activity and defect of exonuclease activity of SisExoIII. The study has deepened our understanding in the structural basis of crenarchaeal ExoIII catalysis and clarified a role of the disulfide bond in maintaining protein thermostability. Copyright © 2017. Published by Elsevier Inc.

  1. The peptidyl-prolyl isomerase motif is lacking in PmpA, the PrsA-like protein involved in the secretion machinery of Lactococcus lactis.

    Science.gov (United States)

    Drouault, Sophie; Anba, Jamila; Bonneau, Sophie; Bolotin, Alexander; Ehrlich, S Dusko; Renault, Pierre

    2002-08-01

    The prsA-like gene from Lactococcus lactis encoding its single homologue to PrsA, an essential protein triggering the folding of secreted proteins in Bacillus subtilis, was characterized. This gene, annotated pmpA, encodes a lipoprotein of 309 residues whose expression is increased 7- to 10-fold when the source of nitrogen is limited. A slight increase in the expression of the PrsA-like protein (PLP) in L. lactis removed the degradation products previously observed with the Staphylococcus hyicus lipase used as a model secreted protein. This shows that PmpA either triggers the folding of the secreted lipase or activates its degradation by the cell surface protease HtrA. Unlike the case for B. subtilis, the inactivation of the gene encoding PmpA reduced only slightly the growth rate of L. lactis in standard conditions. However, it almost stopped its growth when the lipase was overexpressed in the presence of salt in the medium. Like PrsA of B. subtilis and PrtM of L. lactis, the L. lactis PmpA protein could thus have a foldase activity that facilitates protein secretion. These proteins belong to the third family of peptidyl-prolyl cis/trans-isomerases (PPIases) for which parvulin is the prototype. Almost all PLP from gram-positive bacteria contain a domain with the PPIase signature. An exception to this situation was found only in Streptococcaceae, the family to which L. lactis belongs. PLP from Streptococcus pneumoniae and Enterococcus faecalis possess this signature, but those of L. lactis, Streptococcus pyogenes, and Streptococcus mutans do not. However, secondary structure predictions suggest that the folding of PLP is conserved over the entire length of the proteins, including the unconserved signature region. The activity associated with the expression of PmpA in L. lactis and these genomic data show that either the PPIase motif is not necessary for PPIase activity or, more likely, PmpA foldase activity does not necessarily require PPIase activity.

  2. Why is DsbA such an oxidizing disulfide catalyst?

    DEFF Research Database (Denmark)

    Grauschopf, U; Winther, Jakob R.; Korber, P

    1995-01-01

    DsbA, a member of the thioredoxin family of disulfide oxidoreductases, acts in catalyzing disulfide bond formation by donating its disulfide to newly translocated proteins. We have found that the two central residues within the active site Cys-30-Pro-31-His-32-Cys-33 motif are critical in determi...

  3. Effect of N-Ethylmaleimide as a Blocker of Disulfide Crosslinks Formation on the Alkali-Cold Gelation of Whey Proteins

    Science.gov (United States)

    Lei, Zhao; Chen, Xiao Dong

    2016-01-01

    N-ethylmaleimide (NEM) was used to verify that no new disulfide crosslinks were formed during the fascinating rheology of the alkali cold-gelation of whey proteins, which show Sol-Gel-Sol transitions with time at pH > 11.5. These dynamic transitions involve the formation and subsequent destruction of non-covalent interactions between soluble whey aggregates. Therefore, incubation of aggregates with NEM was expected not to affect much the rheology. Experiments show that very little additions of NEM, such as 0.5 mol per mol of protein, delayed and significantly strengthened the metastable gels formed. Interactions between whey protein aggregates were surprisingly enhanced during incubation with NEM as inferred from oscillatory rheometry at different protein concentrations, dynamic swelling, Trp fluorescence and SDS-PAGE measurements. PMID:27732644

  4. Modulation of neutrophil superoxide generation by inhibitors of protein kinase C, calmodulin, diacylglycerol and myosin light chain kinases, and peptidyl prolyl cis-trans isomerase.

    Science.gov (United States)

    Bergstrand, H; Eriksson, T; Hallberg, A; Johansson, B; Karabelas, K; Michelsen, P; Nybom, A

    1992-12-01

    To assess the role of protein kinase C (PKC) in the respiratory burst of adherent human polymorphonuclear leukocytes (PMNL), reduction of ferricytochrome C by cells triggered with a phorbol ester (PMA), ionophore A23187, serum-treated zymosan (STZ) or three lipid derivatives, 3-decanoyl-sn-glycerol (G-3-OCOC9), (R,R)-1,4-diethyl-2-O-decyl-L-tartrate (Tt-2-OC10) and 3-decyloxy-5-hydroxymethylphenol (DHP) was examined in a microtiter plate procedure in the presence of inhibitors of PKC and, for comparison, inhibitors of calmodulin, diacylglycerol and myosin light chain kinases and the peptidyl-prolyl cis-trans isomerase activity of fujiphilin. 1) Of the protein kinase inhibitors examined, Ro 31-7549 and staurosporine reduced responses to all stimuli except possibly STZ; in contrast, K252a and the myosin light chain kinase inhibitors ML-7 and ML-9 blocked responses to A23187 and STZ better than those triggered by PMA. H-7 reduced responses to A23187, DHP and G-3-OCOC9, and calphostin, palmitoyl carnitine, sphingosine and the multifunctional drugs TMB-8 and W-7 reduced A23187; they also, when examined, reduced decane derivative-induced O2- production more effectively than PMA- and STZ-triggered responses. Polymyxin B, 4 alpha-PMA and retinal displayed no inhibitory capacity. 2) Of the selective calmodulin antagonists, CGS 9343B, Ro 22-4839 and calmidazolium did not inhibit the oxidative response irrespective of the stimulus used, whereas metofenazate reduced those evoked by A23187, DHP, G-3-OCOC9 and STZ.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Characterization of Helicobacter pylori HP0231 (DsbK): role in disulfide bond formation, redox homeostasis and production of Helicobacter cystein-rich protein HcpE.

    Science.gov (United States)

    Lester, Jeffrey; Kichler, Sari; Oickle, Brandon; Fairweather, Spencer; Oberc, Alexander; Chahal, Jaspreet; Ratnayake, Dinath; Creuzenet, Carole

    2015-04-01

    Helicobacter pylori is a human gastric pathogen that colonizes ∼ 50% of the world's population. It can cause gastritis, gastric or duodenal ulcers and also gastric cancer. The numerous side effects of available treatments and the emergence of antibiotic resistant strains are severe concerns that justify further research into H. pylori's pathogenic mechanisms. H. pylori produces secreted proteins that may play a role in virulence, including the Helicobacter cysteine-rich protein HcpE (aka HP0235). We demonstrate herein that HcpE is secreted in the culture supernatant both as a soluble protein and in association with outer membrane vesicles. We show that the structure of HcpE comprises an organized array of disulfide bonds. We identify DsbK (aka HP0231) as a folding factor necessary for HcpE production and secretion in H. pylori and show that recombinant DsbK can interact with and refold unprocessed, reduced HcpE in vitro. These experiments highlight the first biologically relevant substrate for DsbK. Furthermore, we show that DsbK has disulfide bond (Dsb) forming activity on reduced lysozyme and demonstrate a DsbA-type of activity for DsbK upon expression in E. coli, despite its similarity with DsbG. Finally, we show a role of DsbK in maintaining redox homeostasis in H. pylori. © 2015 John Wiley & Sons Ltd.

  6. Analysis of Disulfide Bond Formation

    NARCIS (Netherlands)

    Braakman, Ineke; Lamriben, Lydia; van Zadelhoff, Guus; Hebert, Daniel N.

    2017-01-01

    In this unit, protocols are provided for detection of disulfide bond formation in cultures of intact cells and in an in vitro translation system containing isolated microsomes or semi-permeabilized cells. First, the newly synthesized protein of interest is biosynthetically labeled with radioactive

  7. Conserved protein YecM from Escherichia coli shows structural homology to metal-binding isomerases and oxygenases.

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R.; Duke, N.; Laskowski, R.; Evdokimova, E.; Skarina, T.; Edwards, A.; Joachimiak, A.; Savchenko, A.; Univ. of Toronto; Univ. Health Network; Birbeck Coll.

    2003-01-01

    The crystal structure of protein YecM{sup 1} has been determined at 1.6 {angstrom} resolution as a part of the ongoing structural genomics initiative (http://www.mcsg.anl.gov). The YecM is a conserved, hypothetical Escherichia coli protein with sequence homologs found exclusively in bacteria, including Salmonella typhimunium, Yersinia pestis, Vibrio cholerae, Haemophilus influenza, and Pasteurella multocida. YecM (188 residues) shows also sequence similarity to proteins in COG database (http://www.ncbi.nlm.nih.gov/cgi-bin/COG/palox-?COG3102). YecM (Pfam-B domain 24546) was selected as a structural genomics target it shows no sequence similarity with proteins of known three-dimensional structure and therefore, may contain a previously unobserved field.

  8. Reactivity of disulfide bonds is markedly affected by structure and environment

    DEFF Research Database (Denmark)

    Karimi, Maryam; Ignasiak, Marta T; Chan, Bun

    2016-01-01

    that selected disulfides react extremely rapidly, with a variation of 10(4) in rate constants. Five-membered ring disulfides are particularly reactive compared with acyclic (linear) disulfides or six-membered rings. Particular disulfides in proteins also show enhanced reactivity. This variation occurs...

  9. Co-expression of sulphydryl oxidase and protein disulphide isomerase in Escherichia coli allows for production of soluble CRM197

    CSIR Research Space (South Africa)

    Roth, Robyn L

    2017-04-01

    Full Text Available The aim of this article is to investigate the production of soluble cross-reacting material 197 (CRM(sub197)) in Escherichia coli, a safe and effective T-cell-dependent protein carrier for polysaccharides used in the manufacture and application...

  10. The roles of protein disulphide isomerase family A, member 3 (ERp57) and surface thiol/disulphide exchange in human spermatozoa-zona pellucida binding.

    Science.gov (United States)

    Wong, Chi-Wai; Lam, Kevin K W; Lee, Cheuk-Lun; Yeung, William S B; Zhao, Wei E; Ho, Pak-Chung; Ou, Jian-Ping; Chiu, Philip C N

    2017-04-01

    Are multimeric sperm plasma membrane protein complexes, ERp57 and sperm surface thiol content involved in human spermatozoa-zona pellucida (ZP) interaction? ERp57 is a component of a multimeric spermatozoa-ZP receptor complex involved in regulation of human spermatozoa-ZP binding via up-regulation of sperm surface thiol content. A spermatozoon acquires its fertilization capacity within the female reproductive tract by capacitation. Spermatozoa-ZP receptor is suggested to be a composite structure that is assembled into a functional complex during capacitation. Sperm surface thiol content is elevated during capacitation. ERp57 is a protein disulphide isomerase that modulates the thiol-disulphide status of proteins. The binding ability and components of protein complexes in extracted membrane protein fractions of spermatozoa were studied. The roles of capacitation, thiol-disulphide reagent treatments and ERp57 on sperm functions and sperm surface thiol content were assessed. Spermatozoa were obtained from semen samples from normozoospermic men. Human oocytes were obtained from an assisted reproduction programme. Blue native polyacrylamide gel electrophoresis, western ligand blotting and mass spectrometry were used to identify the components of solubilized ZP/ZP3-binding complexes. The localization and expression of sperm surface thiol and ERp57 were studied by immunostaining and sperm surface protein biotinylation followed by western blotting. Sperm functions were assessed by standard assays. Several ZP-binding complexes were isolated from the cell membrane of capacitated spermatozoa. ERp57 was a component of one of these complexes. Capacitation significantly increased the sperm surface thiol content, acrosomal thiol distribution and ERp57 expression on sperm surface. Sperm surface thiol and ERp57 immunoreactivity were localized to the acrosomal region of spermatozoa, a region responsible for ZP-binding. Up-regulation of the surface thiol content or ERp57 surface

  11. Assigning Peptide Disulfide Linkage Pattern Among Regio-Isomers via Methoxy Addition to Disulfide and Tandem Mass Spectrometry

    Science.gov (United States)

    Durand, Kirt L.; Tan, Lei; Stinson, Craig A.; Love-Nkansah, Chasity B.; Ma, Xiaoxiao; Xia, Yu

    2017-06-01

    Pinpointing disulfide linkage pattern is critical in the characterization of proteins and peptides consisting of multiple disulfide bonds. Herein, we report a method based on coupling online disulfide modification and tandem mass spectrometry (MS/MS) to distinguish peptide disulfide regio-isomers. Such a method relies on a new disulfide bond cleavage reaction in solution, involving methanol as a reactant and 254 nm ultraviolet (UV) irradiation. This reaction leads to selective cleavage of a disulfide bond and formation of sulfenic methyl ester (-SOCH3) at one cysteine residue and a thiol (-SH) at the other. Under low energy collision-induced dissociation (CID), cysteine sulfenic methyl ester motif produces a signature methanol loss (-32 Da), allowing its identification from other possible isomeric structures such as S-hydroxylmethyl (-SCH2OH) and methyl sulfoxide (-S(O)-CH3). Since disulfide bond can be selectively cleaved and modified upon methoxy addition, subsequent MS2 CID of the methoxy addition product provides enhanced sequence coverage as demonstrated by the analysis of bovine insulin. More importantly, this reaction does not induce disulfide scrambling, likely due to the fact that radical intermediates are not involved in the process. An approach based on methoxy addition followed by MS3 CID has been developed for assigning disulfide linkage patterns in peptide disulfide regio-isomers. This methodology was successfully applied to characterizing peptide systems having two disulfide bonds and three disulfide linkage isomers: side-by-side, overlapped, and looped-within-a-loop configurations. [Figure not available: see fulltext.

  12. Spectromicroscopy of self-assembled protein clusters

    Energy Technology Data Exchange (ETDEWEB)

    Schonschek, O.; Hormes, J.; Herzog, V. [Univ. of Bonn (Germany)

    1997-04-01

    The aim of this project is to use synchrotron radiation as a tool to study biomedical questions concerned with the thyroid glands. The biological background is outlined in a recent paper. In short, Thyroglobulin (TG), the precursor protein of the hormone thyroxine, forms large (20 - 500 microns in diameter) clusters in the extracellular lumen of thyrocytes. The process of the cluster formation is still not well understood but is thought to be a main storage mechanism of TG and therefore thyroxine inside the thyroid glands. For human thyroids, the interconnections of the proteins inside the clusters are mainly disulfide bondings. Normally, sulfur bridges are catalyzed by an enzyme called Protein Disulfide Bridge Isomerase (PDI). While this enzyme is supposed to be not present in any extracellular space, the cluster formation of TG takes place in the lumen between the thyrocytes. A possible explanation is the autocatalysis of TG.

  13. The effect of oxidant and the non-oxidant alteration of cellular thiol concentration on the formation of protein mixed-disulfides in HEK 293 cells.

    Directory of Open Access Journals (Sweden)

    Jasen Lee Gilge

    Full Text Available Cellular molecules possess various mechanisms in responding to oxidant stress. In terms of protein responses, protein S-glutathionylation is a unique post-translational modification of protein reactive cysteines forming disulfides with glutathione molecules. This modification has been proposed to play roles in antioxidant, regulatory and signaling in cells under oxidant stress. Recently, the increased level of protein S-glutathionylation has been linked with the development of diseases. In this report, specific S-glutathionylated proteins were demonstrated in human embryonic kidney 293 cells treated with two different oxidative reagents: diamide and hydrogen peroxide. Diamide is a chemical oxidizing agent whereas hydrogen peroxide is a physiological oxidant. Under the experimental conditions, these two oxidants decreased glutathione concentration without toxicity. S-glutathionylated proteins were detected by immunoblotting and glutathione concentrations were determined by high performance liquid chromatography. We further show the effect of alteration of the cellular thiol pool on the amount of protein S-glutathionylation in oxidant-treated cells. Cellular thiol concentrations were altered either by a specific way using buthionine sulfoximine, a specific inhibitor of glutathione biosynthesis or by a non-specific way, incubating cells in cystine-methionine deficient media. Cells only treated with either buthionine sulfoximine or cystine-methionine deficient media did not induce protein S-glutathionylation, even though both conditions decreased 65% of cellular glutathione. Moreover, the amount of protein S-glutathionylation under both conditions in the presence of oxidants was not altered when compared to the amount observed in regular media with oxidants present. Protein S-glutathionylation is a dynamic reaction which depends on the rate of adding and removing glutathione. Phenylarsine oxide, which specifically forms a covalent adduct with

  14. Improved production of single domain antibodies with two disulfide bonds by co-expression of chaperone proteins in the Escherichia coli periplasm.

    Science.gov (United States)

    Shriver-Lake, Lisa C; Goldman, Ellen R; Zabetakis, Daniel; Anderson, George P

    2017-04-01

    Single domain antibodies are recombinantly expressed variable domains derived from camelid heavy chain antibodies. Natural single domain antibodies can have noncanonical disulfide bonds between their complementarity-determining regions that help position the binding site. In addition, engineering a second disulfide bond serves to tie together β-sheets thereby inhibiting unfolding. Unfortunately, the additional disulfide bond often significantly decreases yield, presumably due to formation of incorrect disulfide bonds during the folding process. Here, we demonstrate that inclusion of the helper plasmid pTUM4, which results in the expression of four chaperones, DsbA, DsbC, FkpA, and SurA, increased yield on average 3.5-fold for the nine multi-disulfide bond single domain antibodies evaluated. No increase in production was observed for single domain antibodies containing only the canonical disulfide bond. Published by Elsevier B.V.

  15. Optimal expression of a Fab-effector fusion protein in Escherichia coli by removing the cysteine residues responsible for an interchain disulfide bond of a Fab molecule.

    Science.gov (United States)

    Kang, Hyeon-Ju; Kim, Hye-Jin; Jung, Mun-Sik; Han, Jae-Kyu; Cha, Sang-Hoon

    2017-04-01

    Development of novel bi-functional or even tri-functional Fab-effector fusion proteins would have a great potential in the biomedical sciences. However, the expression of Fab-effector fusion proteins in Escherichia coli is problematic especially when a eukaryotic effector moiety is genetically linked to a Fab due to the lack of proper chaperone proteins and an inappropriate physicochemical environment intrinsic to the microbial hosts. We previously reported that a human Fab molecule, referred to as SL335, reactive to human serum albumin has a prolonged in vivo serum half-life in rats. We, herein, tested six discrete SL335-human growth hormone (hGH) fusion constructs as a model system to define an optimal Fab-effector fusion format for E. coli expression. We found that one variant, referred to as HserG/Lser, outperformed the others in terms of a soluble expression yield and functionality in that HserG/Lser has a functional hGH bioactivity and possesses an serum albumin-binding affinity comparable to SL335. Our results clearly demonstrated that the genetic linkage of an effector domain to the C-terminus of Fd (V H +C H1 ) and the removal of cysteine (Cys) residues responsible for an interchain disulfide bond (IDB) ina Fab molecule optimize the periplasmic expression of a Fab-effector fusion protein in E. coli. We believe that our approach can contribute the development of diverse bi-functional Fab-effector fusion proteins by providing a simple strategy that enables the reliable expression of a functional fusion proteins in E. coli. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  16. Variability in automated assignment of NOESY spectra and three-dimensional structure determination: A test case on three small disulfide-bonded proteins

    Energy Technology Data Exchange (ETDEWEB)

    Savarin, Philippe; Zinn-Justin, Sophie; Gilquin, Bernard [CEA-Saclay, Departement d' Ingenierie et d' Etudes des Proteines (Bat. 152) (France)

    2001-01-15

    Three independent runs of automatic assignment and structure calculations were performed on three small proteins, calcicludine from the venom of the green mamba Dendroaspis angusticeps, {kappa}-conotoxin PVIIA from the purple cone Conus purpurascens and HsTX1, a short scorpion toxin from the venom of Heterometrus spinnifer. At the end of all the runs, the number of cross peaks which remained unassigned (0.6%, 1.4% and 2% for calcicludine, {kappa}-conotoxin and HsTX1, respectively), as well as the number of constraints which were rejected as producing systematic violations (2.7%, 1.0%, and 1.4% for calcicludine, {kappa}-conotoxin and HsTX1, respectively) were low. The conformation of the initial model used in the procedure (linear model or constructed by homology) has no influence on the final structures. Mainly two parameters control the procedure: the chemical shift tolerance and the cut-off distance. Independent runs of structure calculations, using the same parameters, yield structures for which the rmsd between averaged structures and the rmsd around each averaged structure were of the same order of magnitude. A different cut-off distance and a different chemical shift tolerance yield rmsd values on final average structures which did not differ more than 0.5 A compared to the rmsd obtained around the averaged structure for each calculation. These results show that the procedure is robust when applied to such a small disulfide-bonded protein.

  17. Rv2969c, essential for optimal growth in Mycobacterium tuberculosis, is a DsbA-like enzyme that interacts with VKOR-derived peptides and has atypical features of DsbA-like disulfide oxidases

    International Nuclear Information System (INIS)

    Premkumar, Lakshmanane; Heras, Begoña; Duprez, Wilko; Walden, Patricia; Halili, Maria; Kurth, Fabian; Fairlie, David P.; Martin, Jennifer L.

    2013-01-01

    The gene product of M. tuberculosis Rv2969c is shown to be a disulfide oxidase enzyme that has a canonical DsbA-like fold with novel structural and functional characteristics. The bacterial disulfide machinery is an attractive molecular target for developing new antibacterials because it is required for the production of multiple virulence factors. The archetypal disulfide oxidase proteins in Escherichia coli (Ec) are DsbA and DsbB, which together form a functional unit: DsbA introduces disulfides into folding proteins and DsbB reoxidizes DsbA to maintain it in the active form. In Mycobacterium tuberculosis (Mtb), no DsbB homologue is encoded but a functionally similar but structurally divergent protein, MtbVKOR, has been identified. Here, the Mtb protein Rv2969c is investigated and it is shown that it is the DsbA-like partner protein of MtbVKOR. It is found that it has the characteristic redox features of a DsbA-like protein: a highly acidic catalytic cysteine, a highly oxidizing potential and a destabilizing active-site disulfide bond. Rv2969c also has peptide-oxidizing activity and recognizes peptide segments derived from the periplasmic loops of MtbVKOR. Unlike the archetypal EcDsbA enzyme, Rv2969c has little or no activity in disulfide-reducing and disulfide-isomerase assays. The crystal structure of Rv2969c reveals a canonical DsbA fold comprising a thioredoxin domain with an embedded helical domain. However, Rv2969c diverges considerably from other DsbAs, including having an additional C-terminal helix (H8) that may restrain the mobility of the catalytic helix H1. The enzyme is also characterized by a very shallow hydrophobic binding surface and a negative electrostatic surface potential surrounding the catalytic cysteine. The structure of Rv2969c was also used to model the structure of a paralogous DsbA-like domain of the Ser/Thr protein kinase PknE. Together, these results show that Rv2969c is a DsbA-like protein with unique properties and a limited

  18. Unique phenotypic expression of glucosephosphate isomerase deficiency.

    Science.gov (United States)

    Paglia, D E; Paredes, R; Valentine, W N; Dorantes, S; Konrad, P N

    1975-01-01

    Studies of a Mexican kindred present evidence for a unique phenotype of erythrocyte glucosephosphate isomerase, GPI Valle Hermoso. The proband was apparently the homozygous recipient of a mutant autosomal allele governing production of an isozyme characterized by decreased activity, marked thermal instability, normal kinetics and pH optimum, and normal starch gel electrophoretic patterns. Unlike previously known cases, leukocyte and plasma GPI activities were unimpaired. This suggested that the structural alteration primarily induced enzyme instability without drastically curtailing catalytic effectiveness, thereby allowing compensation by cells capable of continued protein synthesis. Age-related losses of GPI, however, were not evident by density-gradient fractionation of affected erythrocytes.

  19. Cloning and characterization of peptidylprolyl isomerase B in the ...

    African Journals Online (AJOL)

    Peptidylprolyl isomerases (PPIases) play essential roles in protein folding and are implicated in immune response and cell cycle control. Our previous proteomic analysis indicated that Bombyx mori PPIases may be involved in anti- Bombyx mori nucleopolyhedrovirus (BmNPV) response. To help investigate this mechanism, ...

  20. Structural and biochemical characterization of a recombinant triosephosphate isomerase from Rhipicephalus (Boophilus) microplus

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Jorge; Arreola, Rodrigo; Cabrera, Nallely; Saramago, Luiz; Freitas, Daniela; Masuda, Aoi; da Silva Vaz Jr., Itabajara; Tuena de Gomez-Puyou, Marietta; Perez-Montfort, Ruy; Gomez-Puyou, Armando; Logullo, Carlos (UNICAMP); (UFRGS-Brazil); (UNAM-Mexico)

    2012-02-06

    Triosephosphate isomerase (TIM) is an enzyme with a role in glycolysis and gluconeogenesis by catalyzing the interconversion between glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. This enzyme has been used as a target in endoparasite drug development. In this work we cloned, expressed, purified and studied kinetic and structural characteristics of TIM from tick embryos, Rhipicephalus (Boophilus) microplus (BmTIM). The Km and Vmax of the recombinant BmTIM with glyceraldehyde 3-phosphate as substrate, were 0.47 mM and 6031 {micro}mol min{sup -1} mg protein{sup -1}, respectively. The resolution of the diffracted crystal was estimated to be 2.4 {angstrom} and the overall data showed that BmTIM is similar to other reported dimeric TIMs. However, we found that, in comparison to other TIMs, BmTIM has the highest content of cysteine residues (nine cysteine residues per monomer). Only two cysteines could make disulfide bonds in monomers of BmTIM. Furthermore, BmTIM was highly sensitive to the action of the thiol reagents dithionitrobenzoic acid and methyl methane thiosulfonate, suggesting that there are five cysteines exposed in each dimer and that these residues could be employed in the development of species-specific inhibitors.

  1. Two fibrinogen-like proteins, FGL1 and FGL2 are disulfide-linked subunits of oligomers that specifically bind nonviable spermatozoa.

    Science.gov (United States)

    Nagdas, Subir K; Winfrey, Virginia P; Olson, Gary E

    2016-11-01

    Nevertheless, a nonviable sperm population is present in the cauda epididymidis of many species. Degenerating spermatozoa release enzymes that could have detrimental effects on the viability of neighboring cells, and they are source of autoantigens that induce an autoimmune response if they escape the blood-epididymis barrier. Does the epididymis have specialized protective mechanism(s) to segregate the viable sperm population from defective spermatozoa? Previously, we identified a fibrinogen-like protein-2 (fgl2) that specifically binds to and polymerizes into a cocoon-like complex coating defective spermatozoa and sperm fragments. The objective of the present study is to identify the subunit composition of the fgl2-containing oligomers both in the soluble and cocoon-like complex. Our proteomic studies indicate that the 260/280kDa oligomers (termed eFGL) contain two distinct disulfide-linked subunits; 64kDa fgl2 and 33kDa fgl1. Utilizing a PCR-based cloning strategy, the 33kDa polypeptide has been identified as fibrinogen-like protein-1 (fgl1). Immunocytochemical studies revealed that fgl1 selectively binds to defective spermatozoa in the cauda epididymidis. Northern blot analysis and in situ hybridization demonstrated the high expression of fgl1 in the principal cells of the proximal cauda epididymidis. Co-immunoprecipitation analyses of cauda epididymal fluid, using anti-fgl2, demonstrate that both fgl1 and fgl2 are present in the soluble eFGL. Our study is the first to show an association of fgl1 and fgl2 both in the soluble and in the sperm-associated eFGL. We conclude that our results provide new insights into the mechanisms by which the potentially unique epididymal protein functions in the recognition and elimination of defective spermatozoa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The impact of disulfide bond dynamics in wheat gluten protein on the development of fermented pastry crumb.

    Science.gov (United States)

    Ooms, Nand; Jansens, Koen J A; Pareyt, Bram; Reyniers, Stijn; Brijs, Kristof; Delcour, Jan A

    2018-03-01

    Gluten proteins functionality during pastry production was examined by including redox agents in the ingredient bill. Addition of reducing and oxidizing agents respectively increased and decreased dough height during fermentation. The presence of large gas bubbles in the samples with oxidizing agents may have caused a 'stacking'-effect and a more effective dough lift. During baking, the level of extractable proteins decreased to comparable values for all samples, except when potassium iodate (KIO 3 ) was used in the recipe. As a result of its use, a lower level of gliadin was incorporated into the gluten polymer and dough layers tended to 'slide' apart during baking, thereby causing collapse. Most likely, KIO 3 caused glutenin oxidation within each individual dough layer to such extent during the dough stage that insufficient thiol groups were available for forming dough layer interconnections during baking, after margarine melting. Furthermore, addition of redox agents impacted the product's crumb structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Development of novel sugar isomerases by optimization of active sites in phosphosugar isomerases for monosaccharides.

    Science.gov (United States)

    Yeom, Soo-Jin; Kim, Yeong-Su; Oh, Deok-Kun

    2013-02-01

    Phosphosugar isomerases can catalyze the isomerization of not only phosphosugar but also of monosaccharides, suggesting that the phosphosugar isomerases can be used as sugar isomerases that do not exist in nature. Determination of active-site residues of phosphosugar isomerases, including ribose-5-phosphate isomerase from Clostridium difficile (CDRPI), mannose-6-phosphate isomerase from Bacillus subtilis (BSMPI), and glucose-6-phosphate isomerase from Pyrococcus furiosus (PFGPI), was accomplished by docking of monosaccharides onto the structure models of the isomerases. The determinant residues, including Arg133 of CDRPI, Arg192 of BSMPI, and Thr85 of PFGPI, were subjected to alanine substitutions and found to act as phosphate-binding sites. R133D of CDRPI, R192 of BSMPI, and T85Q of PFGPI displayed the highest catalytic efficiencies for monosaccharides at each position. These residues exhibited 1.8-, 3.5-, and 4.9-fold higher catalytic efficiencies, respectively, for the monosaccharides than the wild-type enzyme. However, the activities of these 3 variant enzymes for phosphosugars as the original substrates disappeared. Thus, R133D of CDRPI, R192 of BSMPI, and T85Q of PFGPI are no longer phosphosugar isomerases; instead, they are changed to a d-ribose isomerase, an l-ribose isomerase, and an l-talose isomerase, respectively. In this study, we used substrate-tailored optimization to develop novel sugar isomerases which are not found in nature based on phosphosugar isomerases.

  4. Complete Mapping of Complex Disulfide Patterns with Closely-Spaced Cysteines by In-Source Reduction and Data-Dependent Mass Spectrometry

    DEFF Research Database (Denmark)

    Cramer, Christian N; Kelstrup, Christian D; Olsen, Jesper V

    2017-01-01

    Mapping of disulfide bonds is an essential part of protein characterization to ensure correct cysteine pairings. For this, mass spectrometry (MS) is the most widely used technique due to fast and accurate characterization. However, MS-based disulfide mapping is challenged when multiple disulfide...... of individual disulfide bonds could be done in species containing closely spaced disulfide bonds. The strength of this methodology was demonstrated by complete mapping of all four disulfide bonds in lysozyme and all 17 disulfide bonds in human serum albumin, including nested disulfide bonds and motifs...

  5. Multidrug Resistance-associated Protein-1 (MRP-1)-dependent Glutathione Disulfide (GSSG) Efflux as a Critical Survival Factor for Oxidant-enriched Tumorigenic Endothelial Cells.

    Science.gov (United States)

    Gordillo, Gayle M; Biswas, Ayan; Khanna, Savita; Spieldenner, James M; Pan, Xueliang; Sen, Chandan K

    2016-05-06

    Endothelial cell tumors are the most common soft tissue tumors in infants. Tumor-forming endothelial (EOMA) cells are able to escape cell death fate despite excessive nuclear oxidant burden. Our previous work recognized perinuclear Nox-4 as a key contributor to EOMA growth. The objective of this work was to characterize the mechanisms by which EOMA cells evade oxidant toxicity and thrive. In EOMA cells, compared with in the cytosol, the nuclear GSSG/GSH ratio was 5-fold higher. Compared to the ratio observed in healthy murine aortic endothelial (MAE) cells, GSSG/GSH was over twice as high in EOMA cells. Multidrug resistance-associated protein-1 (MRP-1), an active GSSG efflux mechanism, showed 2-fold increased activity in EOMA compared with MAE cells. Hyperactive YB-1 and Ape/Ref-1 were responsible for high MRP-1 expression in EOMA. Proximity ligand assay demonstrated MRP-1 and YB-1 binding. Such binding enabled the nuclear targeting of MRP-1 in EOMA in a leptomycin-B-sensitive manner. MRP-1 inhibition as well as knockdown trapped nuclear GSSG, causing cell death of EOMA. Disulfide loading of cells by inhibition of GSSG reductase (bischoloronitrosourea) or thioredoxin reductase (auranofin) was effective in causing EOMA death as well. In sum, EOMA cells survive a heavy oxidant burden by rapid efflux of GSSG, which is lethal if trapped within the cell. A hyperactive MRP-1 system for GSSG efflux acts as a critical survival factor for these cells, making it a potential target for EOMA therapeutics. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Multidrug Resistance-associated Protein-1 (MRP-1)-dependent Glutathione Disulfide (GSSG) Efflux as a Critical Survival Factor for Oxidant-enriched Tumorigenic Endothelial Cells*

    Science.gov (United States)

    Gordillo, Gayle M.; Biswas, Ayan; Khanna, Savita; Spieldenner, James M.; Pan, Xueliang; Sen, Chandan K.

    2016-01-01

    Endothelial cell tumors are the most common soft tissue tumors in infants. Tumor-forming endothelial (EOMA) cells are able to escape cell death fate despite excessive nuclear oxidant burden. Our previous work recognized perinuclear Nox-4 as a key contributor to EOMA growth. The objective of this work was to characterize the mechanisms by which EOMA cells evade oxidant toxicity and thrive. In EOMA cells, compared with in the cytosol, the nuclear GSSG/GSH ratio was 5-fold higher. Compared to the ratio observed in healthy murine aortic endothelial (MAE) cells, GSSG/GSH was over twice as high in EOMA cells. Multidrug resistance-associated protein-1 (MRP-1), an active GSSG efflux mechanism, showed 2-fold increased activity in EOMA compared with MAE cells. Hyperactive YB-1 and Ape/Ref-1 were responsible for high MRP-1 expression in EOMA. Proximity ligand assay demonstrated MRP-1 and YB-1 binding. Such binding enabled the nuclear targeting of MRP-1 in EOMA in a leptomycin-B-sensitive manner. MRP-1 inhibition as well as knockdown trapped nuclear GSSG, causing cell death of EOMA. Disulfide loading of cells by inhibition of GSSG reductase (bischoloronitrosourea) or thioredoxin reductase (auranofin) was effective in causing EOMA death as well. In sum, EOMA cells survive a heavy oxidant burden by rapid efflux of GSSG, which is lethal if trapped within the cell. A hyperactive MRP-1 system for GSSG efflux acts as a critical survival factor for these cells, making it a potential target for EOMA therapeutics. PMID:26961872

  7. Purification of correctly oxidized MHC class I heavy-chain molecules under denaturing conditions: a novel strategy exploiting disulfide assisted protein folding

    DEFF Research Database (Denmark)

    Ferré, Henrik; Ruffet, Emmanuel; Blicher, Thomas

    2003-01-01

    with correct disulfide bonding are formed under non-reducing denaturing conditions and separated from scrambled disulfide bond forms by hydrophobic interaction chromatography. In the second step, rapid refolding of the oxidized heavy chains is afforded by disulfide bond-assisted folding in the presence of beta......The aim of this study has been to develop a strategy for purifying correctly oxidized denatured major histocompability complex class I (MHC-I) heavy-chain molecules, which on dilution, fold efficiently and become functional. Expression of heavy-chain molecules in bacteria results in the formation...... of insoluble cellular inclusion bodies, which must be solubilized under denaturing conditions. Their subsequent purification and refolding is complicated by the fact that (1). correct folding can only take place in combined presence of beta(2)-microglobulin and a binding peptide; and (2). optimal in vitro...

  8. Conformational differences in protein disulfide linkages between normal hair and hair from subjects with trichothiodystrophy: a quantitative analysis by Raman microspectroscopy.

    Science.gov (United States)

    Schlücker, S; Liang, C; Strehle, K R; DiGiovanna, J J; Kraemer, K H; Levin, I W

    2006-08-15

    Raman spectra of normal hair shafts and hair shafts from patients exhibiting trichothiodystrophy (TTD) were obtained using line focus laser illumination. Because hair from TTD patients has a significant decrease in the content of the sulfur-containing amino acids in comparison to normal hair, the 550-500 cm(-1) disulfide stretching mode region of the Raman spectrum was examined in detail. A quantitative spectral analysis demonstrates significant increases in the two energetically less favored gauche-gauche-trans (g-g-t) and trans-gauche-trans (t-g-t) forms. These observations suggest that the increased amounts of these less stable disulfide conformers are contributing factors to or associated with the hair brittleness observed for this congenital disorder. Structure-spectra correlations for the three dominant disulfide conformers are confirmed by quantum chemical calculations using modern density functional theory (DFT). Copyright 2006 Wiley Periodicals, Inc.

  9. Structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC118

    International Nuclear Information System (INIS)

    Lobley, Carina M. C.; Aller, Pierre; Douangamath, Alice; Reddivari, Yamini; Bumann, Mario; Bird, Louise E.; Nettleship, Joanne E.; Brandao-Neto, Jose; Owens, Raymond J.; O’Toole, Paul W.; Walsh, Martin A.

    2012-01-01

    The crystal structure of ribose 5-phosphate isomerase has been determined to 1.72 Å resolution and is presented with a brief comparison to other known ribose 5-phosphate isomerase A structures. The structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC188 has been determined at 1.72 Å resolution. The structure was solved by molecular replacement, which identified the functional homodimer in the asymmetric unit. Despite only showing 57% sequence identity to its closest homologue, the structure adopted the typical α and β d-ribose 5-phosphate isomerase fold. Comparison to other related structures revealed high homology in the active site, allowing a model of the substrate-bound protein to be proposed. The determination of the structure was expedited by the use of in situ crystallization-plate screening on beamline I04-1 at Diamond Light Source to identify well diffracting protein crystals prior to routine cryocrystallography

  10. Automated Yeast Transformation Protocol to Engineer S. cerevisiae Strains for Cellulosic Ethanol Production with Open Reading Frames that Express Proteins Binding to Xylose Isomerase Identified using Robotic Two-hybrid Screen

    Science.gov (United States)

    Commercialization of fuel ethanol production from lignocellulosic biomass has focused on engineering the glucose-fermenting industrial yeast Saccharomyces cerevisiae to utilize pentose sugars. Since S. cerevisiae naturally metabolizes xylulose, one approach involves introducing xylose isomerase (XI...

  11. Additional disulfide bonds in insulin

    DEFF Research Database (Denmark)

    Vinther, Tine N; Pettersson, Ingrid; Huus, Kasper

    2015-01-01

    The structure of insulin, a glucose homeostasis-controlling hormone, is highly conserved in all vertebrates and stabilized by three disulfide bonds. Recently, we designed a novel insulin analogue containing a fourth disulfide bond located between positions A10-B4. The N-terminus of insulin's B......-chain is flexible and can adapt multiple conformations. We examined how well disulfide bond predictions algorithms could identify disulfide bonds in this region of insulin. In order to identify stable insulin analogues with additional disulfide bonds, which could be expressed, the Cβ cut-off distance had...... in comparison to analogues with additional disulfide bonds that were more difficult to predict. In contrast, addition of the fourth disulfide bond rendered all analogues resistant to fibrillation under stress conditions and all stable analogues bound to the insulin receptor with picomolar affinities. Thus...

  12. Investigation of reference gene expression during human herpesvirus 6B infection indicates peptidylprolyl isomerase A as a stable reference gene and TATA box binding protein as a gene up-regulated by this virus.

    Science.gov (United States)

    Engdahl, Elin; Dunn, Nicky; Fogdell-Hahn, Anna

    2016-01-01

    When using relative gene expression for quantification of RNA it is crucial that the reference genes used for normalization do not change with the experimental condition. We aimed at investigating the expressional stability of commonly used reference genes during Human herpesvirus 6B (HHV-6B) infection. Expression of eight commonly used reference genes were investigated with quantitative PCR in a T-cell line infected with HHV-6B. The stability of genes was investigated using the 2(-ΔΔCT) method and the algorithms BestKeeper, GeNorm and NormFinder. Our results indicate that peptidylprolyl isomerase A (PPIA) is the most stably expressed gene while TATA box binding protein (TBP) is the least stably expressed gene during HHV-6B infection. In a confirmatory experiment, TBP was demonstrated to be dose and time dependently upregulated by HHV-6B. The stability of PPIA is in line with other studies investigating different herpesvirus infections whereas the finding that HHV-6B significantly upregulates TBP is novel and most likely specific to HHV-6B. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. DLX5, FGF8 and the Pin1 isomerase control ΔNp63α protein stability during limb development: a regulatory loop at the basis of the SHFM and EEC congenital malformations.

    Science.gov (United States)

    Restelli, Michela; Lopardo, Teresa; Lo Iacono, Nadia; Garaffo, Giulia; Conte, Daniele; Rustighi, Alessandra; Napoli, Marco; Del Sal, Giannino; Perez-Morga, David; Costanzo, Antonio; Merlo, Giorgio Roberto; Guerrini, Luisa

    2014-07-15

    Ectrodactyly, or Split-Hand/Foot Malformation (SHFM), is a congenital condition characterized by the loss of central rays of hands and feet. The p63 and the DLX5;DLX6 transcription factors, expressed in the embryonic limb buds and ectoderm, are disease genes for these conditions. Mutations of p63 also cause the ectodermal dysplasia-ectrodactyly-cleft lip/palate (EEC) syndrome, comprising SHFM. Ectrodactyly is linked to defects of the apical ectodermal ridge (AER) of the developing limb buds. FGF8 is the key signaling molecule in this process, able to direct proximo-distal growth and patterning of the skeletal primordial of the limbs. In the limb buds of both p63 and Dlx5;Dlx6 murine models of SHFM, the AER is poorly stratified and FGF8 expression is severely reduced. We show here that the FGF8 locus is a downstream target of DLX5 and that FGF8 counteracts Pin1-ΔNp63α interaction. In vivo, lack of Pin1 leads to accumulation of the p63 protein in the embryonic limbs and ectoderm. We show also that ΔNp63α protein stability is negatively regulated by the interaction with the prolyl-isomerase Pin1, via proteasome-mediated degradation; p63 mutant proteins associated with SHFM or EEC syndromes are resistant to Pin1 action. Thus, DLX5, p63, Pin1 and FGF8 participate to the same time- and location-restricted regulatory loop essential for AER stratification, hence for normal patterning and skeletal morphogenesis of the limb buds. These results shed new light on the molecular mechanisms at the basis of the SHFM and EEC limb malformations. © The Author 2014. Published by Oxford University Press.

  14. Thiol-Disulfide Exchange between Glutaredoxin and Glutathione

    DEFF Research Database (Denmark)

    Iversen, Rasmus; Andersen, Peter Anders; Jensen, Kristine Steen

    2010-01-01

    Glutaredoxins are ubiquitous thiol-disulfide oxidoreductases which catalyze the reduction of glutathione-protein mixed disulfides. Belonging to the thioredoxin family, they contain a conserved active site CXXC motif. The N-proximal active site cysteine can form a mixed disulfide with glutathione ...... has been replaced with serine. The exchange reaction between the reduced protein and oxidized glutathione leading to formation of the mixed disulfide could readily be monitored by isothermal titration calorimetry (ITC) due to the enthalpic contributions from the noncovalent interactions...... and the protonation of glutathione thiolate. An algorithm for the analysis of this type of reaction by ITC was developed and showed that the interaction is enthalpy driven with a large entropy penalty. The applicability of the method was verified by a mass spectrometry-based approach, which gave a standard reduction...

  15. Antigen-specific over-expression of human cartilage glycoprotein 39 on CD4+ CD25+ forkhead box protein 3+ regulatory T cells in the generation of glucose-6-phosphate isomerase-induced arthritis.

    Science.gov (United States)

    Tanaka, Y; Matsumoto, I; Inoue, A; Umeda, N; Takai, C; Sumida, T

    2014-08-01

    Human cartilage gp-39 (HC gp-39) is a well-known autoantigen in rheumatoid arthritis (RA). However, the exact localization, fluctuation and function of HC gp-39 in RA are unknown. Therefore, using a glucose-6-phosphate isomerase (GPI)-induced model of arthritis, we investigated these aspects of HC gp-39 in arthritis. The rise in serum HC gp-39 levels was detected on the early phase of GPI-induced arthritis (day 7) and the HC gp-39 mRNA was increased significantly on splenic CD4(+) T cells on day7, but not on CD11b(+) cells. Moreover, to identify the characterization of HC gp-39(+) CD4(+) T cells, we assessed the analysis of T helper (Th) subsets. As a result, HC gp-39 was expressed dominantly in CD4(+) CD25(+) forkhead box protein 3 (FoxP3)(+) refulatory T cells (T(reg)), but not in Th1, Th2 or Th17 cells. Furthermore, to investigate the effect of HC gp-39 to CD4(+) T cells, T cell proliferation assay and cytokine production from CD4(+) T cells using recombinant HC gp-39 was assessed. We found that GPI-specific T cell proliferation and interferon (IFN)-γ or interleukin (IL)-17 production were clearly suppressed by addition of recombinant HC gp-39. Antigen-specific over-expression of HC gp-39 in splenic CD4(+) CD25(+) FoxP3(+) T(reg) cells occurs in the induction phase of GPI-induced arthritis, and addition of recombinant HC gp-39 suppresses antigen-specific T-cell proliferation and cytokine production, suggesting that HC gp-39 in CD4(+) T cells might play a regulatory role in arthritis. © 2014 British Society for Immunology.

  16. A Tale of Two Isomerases: Compact versus Extended Active Sites in Ketosteroid Isomerase and Phosphoglucose Isomerase

    Energy Technology Data Exchange (ETDEWEB)

    Somarowthu, Srinivas; Brodkin, Heather R.; D’Aquino, J. Alejandro; Ringe, Dagmar; Ondrechen, Mary Jo; Beuning, Penny J. (Brandeis); (NEU)

    2012-07-11

    Understanding the catalytic efficiency and specificity of enzymes is a fundamental question of major practical and conceptual importance in biochemistry. Although progress in biochemical and structural studies has enriched our knowledge of enzymes, the role in enzyme catalysis of residues that are not nearest neighbors of the reacting substrate molecule is largely unexplored experimentally. Here computational active site predictors, THEMATICS and POOL, were employed to identify functionally important residues that are not in direct contact with the reacting substrate molecule. These predictions then guided experiments to explore the active sites of two isomerases, Pseudomonas putida ketosteroid isomerase (KSI) and human phosphoglucose isomerase (PGI), as prototypes for very different types of predicted active sites. Both KSI and PGI are members of EC 5.3 and catalyze similar reactions, but they represent significantly different degrees of remote residue participation, as predicted by THEMATICS and POOL. For KSI, a compact active site of mostly first-shell residues is predicted, but for PGI, an extended active site in which residues in the first, second, and third layers around the reacting substrate are predicted. Predicted residues that have not been previously tested experimentally were investigated by site-directed mutagenesis and kinetic analysis. In human PGI, single-point mutations of the predicted second- and third-shell residues K362, H100, E495, D511, H396, and Q388 show significant decreases in catalytic activity relative to that of the wild type. The results of these experiments demonstrate that, as predicted, remote residues are very important in PGI catalysis but make only small contributions to catalysis in KSI.

  17. Reactive copolymers based on N-vinyl lactams with pyridyl disulfide side groups via RAFT polymerization and postmodification via thiol-disulfide exchange reaction

    NARCIS (Netherlands)

    Peng, Huan; Rübsam, Kristin; Huang, Xiaobin; Jakob, Felix; Karperien, Marcel; Schwaneberg, Ulrich; Pich, Andrij

    2016-01-01

    Herein, we report the synthesis of a series of novel pyridyl disulfide (PDS)-functionalized statistical reactive copolymers that enable facile access to complex polymeric architectures through highly selective thiol-disulfide exchange reaction with thiol-containing ligands or proteins. Functional

  18. A structural model of pestivirus E(rns) based on disulfide bond connectivity and homology modeling reveals an extremely rare vicinal disulfide

    NARCIS (Netherlands)

    Langedijk, J.P.M.; Veelen, van P.A.; Schaaper, W.M.M.; Ru, de A.H.; Meloen, R.H.; Hulst, M.M.

    2002-01-01

    Erns is a pestivirus envelope glycoprotein and is the only known viral surface protein with RNase activity. Erns is a disulfide-linked homodimer of 100 kDa; it is found on the surface of pestivirus-infected cells and is secreted into the medium. In this study, the disulfide arrangement of the nine

  19. Essential role of copper in the activity and regular periodicity of a recombinant, tumor-associated, cell surface, growth-related and time-keeping hydroquinone (NADH) oxidase with protein disulfide-thiol interchange activity (ENOX2).

    Science.gov (United States)

    Tang, Xiaoyu; Chueh, P-J; Jiang, Ziying; Layman, Sara; Martin, Berdine; Kim, Chinpal; Morré, Dorothy M; Morré, D James

    2010-10-01

    ECTO-NOX proteins are growth-related cell surface proteins that catalyze both hydroquinone or NADH oxidation and protein disulfide interchange and exhibit time-keeping and prion-like properties. A bacterially expressed truncated recombinant 46 kDa ENOX2 with full ENOX2 activity bound ca 2 moles copper and 2 moles of zinc per mole of protein. Unfolding of the protein in trifluoroacetic acid in the presence of the copper chelator bathocuproine resulted in reversible loss of both enzymatic activities and of a characteristic pattern in the Amide I to Amide II ratios determined by FTIR with restoration by added copper. The H546-V-H together with His 562 form one copper binding site and H582 represents a second copper site as determined from site-directed mutagenesis. Bound copper emerges as having an essential role in ENOX2 both for enzymatic activity and for the structural changes that underly the periodic alternations in activity that define the time-keeping cycle of the protein.

  20. Studies on the production of glucose isomerase by Bacillus licheniformis

    Directory of Open Access Journals (Sweden)

    Nwokoro Ogbonnaya

    2015-09-01

    Full Text Available This work reports the effects of some culture conditions on the production of glucose isomerase by Bacillus licheniformis. The bacterium was selected based on the release of 3.62 mg/mL fructose from the fermentation of glucose. Enzyme was produced using a variety of carbon substrates but the highest enzyme activity was detected in a medium containing 0.5% xylose and 1% glycerol (specific activity = 6.88 U/mg protein. Media containing only xylose or glucose gave lower enzyme productivies (specific activities= 4.60 and 2.35 U/mg protein respectively. The effects of nitrogen substrates on glucose isomerase production showed that yeast extract supported maximum enzyme activity (specific activity = 5.24 U/mg protein. Lowest enzyme activity was observed with sodium trioxonitrate (specific activity = 2.44 U/mg protein. In general, organic nitrogen substrates supported higher enzyme productivity than inorganic nitrogen substrates. Best enzyme activity was observed in the presence of Mg2+ (specific activity = 6.85 U/mg protein while Hg2+ was inhibitory (specific activity = 1.02 U/mg protein. The optimum pH for best enzyme activity was 6.0 while optimum temperature for enzyme production was 50ºC.

  1. Arabidopsis Phosphomannose Isomerase 1, but Not Phosphomannose Isomerase 2, Is Essential for Ascorbic Acid Biosynthesis*S⃞

    OpenAIRE

    Maruta, Takanori; Yonemitsu, Miki; Yabuta, Yukinori; Tamoi, Masahiro; Ishikawa, Takahiro; Shigeoka, Shigeru

    2008-01-01

    We studied molecular and functional properties of Arabidopsis phosphomannose isomerase isoenzymes (PMI1 and PMI2) that catalyze reversible isomerization between d-fructose 6-phosphate and d-mannose 6-phosphate (Man-6P). The apparent Km and Vmax values for Man-6P of purified recombinant PMI1 were 41.3 ± 4.2 μm and 1.89 μmol/min/mg protein, respectively, whereas those of purified recombinant PMI2 were 372 ± 13 μm and 22.5 μmol/min/mg protein, respectively. Both PMI1 ...

  2. The Case of Ketosteroid Isomerase

    Science.gov (United States)

    Fried, Stephen D.; Boxer, Steven G.

    2011-01-01

    Structures of enzymes invariably reveal the proximity of acidic and basic residues to reactive sites on the substrate, so it is natural and common to suggest that enzymes employ concerted mechanisms to catalyze their difficult reactions. Ketosteroid Isomerase (KSI) has served as a paradigm of enzymatic proton transfer chemistry, and its catalytic effect has previously been attributed to concerted proton transfer. We employ a specific inhibitor that contains an IR probe that reports directly and quantitatively on the ionization state of the ligand when bound in the active site of KSI. Measurement of the fractional ionization provides a missing link in a thermodynamic cycle that can discriminate the free energy advantage of a concerted versus non-concerted mechanism. It is found that the maximum thermodynamic advantage that KSI could capture from a concerted mechanism (ΔΔG∘ = 0.5 kcal mol−1) is quite small. PMID:22148842

  3. Genetics Home Reference: glucose phosphate isomerase deficiency

    Science.gov (United States)

    ... Breme K, Laspe P, Muirhead H, Davies C, Winkler H, Schröter W, Lakomek M. Molecular basis of ... 4):450-4. Citation on PubMed Lakomek M, Winkler H. Erythrocyte pyruvate kinase- and glucose phosphate isomerase ...

  4. Prolyl isomerase Pin1 negatively regulates AMP-activated protein kinase (AMPK) by associating with the CBS domain in the γ subunit.

    Science.gov (United States)

    Nakatsu, Yusuke; Iwashita, Misaki; Sakoda, Hideyuki; Ono, Hiraku; Nagata, Kengo; Matsunaga, Yasuka; Fukushima, Toshiaki; Fujishiro, Midori; Kushiyama, Akifumi; Kamata, Hideaki; Takahashi, Shin-Ichiro; Katagiri, Hideki; Honda, Hiroaki; Kiyonari, Hiroshi; Uchida, Takafumi; Asano, Tomoichiro

    2015-10-02

    AMP-activated protein kinase (AMPK) plays a critical role in metabolic regulation. In this study, first, it was revealed that Pin1 associates with any isoform of γ, but not with either the α or the β subunit, of AMPK. The association between Pin1 and the AMPK γ1 subunit is mediated by the WW domain of Pin1 and the Thr(211)-Pro-containing motif located in the CBS domain of the γ1 subunit. Importantly, overexpression of Pin1 suppressed AMPK phosphorylation in response to either 2-deoxyglucose or biguanide stimulation, whereas Pin1 knockdown by siRNAs or treatment with Pin1 inhibitors enhanced it. The experiments using recombinant Pin1, AMPK, LKB1, and PP2C proteins revealed that the protective effect of AMP against PP2C-induced AMPKα subunit dephosphorylation was markedly suppressed by the addition of Pin1. In good agreement with the in vitro data, the level of AMPK phosphorylation as well as the expressions of mitochondria-related genes, such as PGC-1α, which are known to be positively regulated by AMPK, were markedly higher with reduced triglyceride accumulation in the muscles of Pin1 KO mice as compared with controls. These findings suggest that Pin1 plays an important role in the pathogenic mechanisms underlying impaired glucose and lipid metabolism, functioning as a negative regulator of AMPK. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Anterior gradient protein 3 is associated with less aggressive tumors and better outcome of breast cancer patients

    Directory of Open Access Journals (Sweden)

    Obacz J

    2015-06-01

    Full Text Available Joanna Obacz,1 Veronika Brychtova,1 Jan Podhorec,1 Pavel Fabian,2 Petr Dobes,1 Borivoj Vojtesek,1 Roman Hrstka1 1Regional Centre for Applied Molecular Oncology (RECAMO, 2Department of Pathology, Masaryk Memorial Cancer Institute, Brno, Czech Republic Abstract: Anterior gradient protein (AGR 3 is a highly related homologue of pro-oncogenic AGR2 and belongs to the family of protein disulfide isomerases. Although AGR3 was found in breast, ovary, prostate, and liver cancer, it remains of yet poorly defined function in tumo-rigenesis. This study aimed to determine AGR3 expression in a cohort of 129 primary breast carcinomas and evaluate the clinical and prognostic significance of AGR3 in these tumors. The immunohistochemical analysis revealed the presence of AGR3 staining to varying degrees in 80% of analyzed specimens. The percentage of AGR3-positive cells significantly correlated with estrogen receptor, progesterone receptor (both P<0.0001 as well as low histological grade (P=0.003, and inversely correlated with the level of Ki-67 expression (P<0.0001. In the whole cohort, AGR3 expression was associated with longer progression-free survival (PFS, whereas AGR3-positive subgroup of low-histological grade tumors showed both significantly longer PFS and overall survival. In conclusion, AGR3 is associated with the level of differentiation, slowly proliferating tumors, and more favorable prognosis of breast cancer patients. Keywords: AGR3, patient survival, protein disulfide isomerase, ER-positive breast cancer, immuno­histochemistry

  6. Enhancement of protective efficacy through adenoviral vectored vaccine priming and protein boosting strategy encoding triosephosphate isomerase (SjTPI) against Schistosoma japonicum in mice.

    Science.gov (United States)

    Dai, Yang; Wang, Xiaoting; Tang, Jianxia; Zhao, Song; Xing, Yuntian; Dai, Jianrong; Jin, Xiaolin; Zhu, Yinchang

    2015-01-01

    Schistosomiasis japonica is a zoonotic parasitic disease; developing transmission blocking veterinary vaccines are urgently needed for the prevention and control of schistosomiasis in China. Heterologous prime-boost strategy, a novel vaccination approach, is more effective in enhancing vaccine efficacy against multiple pathogens. In the present study, we established a novel heterologous prime-boost vaccination strategy, the rAdV-SjTPI.opt intramuscular priming and rSjTPI subcutaneous boosting strategy, and evaluated its protective efficacy against Schistosoma japonicum in mice. Adenoviral vectored vaccine (rAdV-SjTPI.opt) and recombinant protein vaccine (rSjTPI) were prepared and used in different combinations as vaccines in a mouse model. The specific immune responses and protective efficacies were evaluated. Furthermore, the longevity of protective efficacy was also determined. Results showed that the rAdV-SjTPI.opt priming-rSjTPI boosting strategy elicited higher levels of specific IgG responses and broad-spectrum specific cellular immune responses. The protective efficacy could reach up to nearly 70% and 50% of protection could be observed at 10 weeks after the last immunization in mice. The rAdV-SjTPI.opt intramuscular priming-rSjTPI subcutaneous boosting vaccination strategy is a novel, highly efficient, and stable approach to developing vaccines against Schistosoma japonicum infections in China.

  7. Enhancement of protective efficacy through adenoviral vectored vaccine priming and protein boosting strategy encoding triosephosphate isomerase (SjTPI against Schistosoma japonicum in mice.

    Directory of Open Access Journals (Sweden)

    Yang Dai

    Full Text Available Schistosomiasis japonica is a zoonotic parasitic disease; developing transmission blocking veterinary vaccines are urgently needed for the prevention and control of schistosomiasis in China. Heterologous prime-boost strategy, a novel vaccination approach, is more effective in enhancing vaccine efficacy against multiple pathogens. In the present study, we established a novel heterologous prime-boost vaccination strategy, the rAdV-SjTPI.opt intramuscular priming and rSjTPI subcutaneous boosting strategy, and evaluated its protective efficacy against Schistosoma japonicum in mice.Adenoviral vectored vaccine (rAdV-SjTPI.opt and recombinant protein vaccine (rSjTPI were prepared and used in different combinations as vaccines in a mouse model. The specific immune responses and protective efficacies were evaluated. Furthermore, the longevity of protective efficacy was also determined. Results showed that the rAdV-SjTPI.opt priming-rSjTPI boosting strategy elicited higher levels of specific IgG responses and broad-spectrum specific cellular immune responses. The protective efficacy could reach up to nearly 70% and 50% of protection could be observed at 10 weeks after the last immunization in mice.The rAdV-SjTPI.opt intramuscular priming-rSjTPI subcutaneous boosting vaccination strategy is a novel, highly efficient, and stable approach to developing vaccines against Schistosoma japonicum infections in China.

  8. Participation of Low Molecular Weight Electron Carriers in Oxidative Protein Folding

    Directory of Open Access Journals (Sweden)

    József Mandl

    2009-03-01

    Full Text Available Oxidative protein folding is mediated by a proteinaceous electron relay system, in which the concerted action of protein disulfide isomerase and Ero1 delivers the electrons from thiol groups to the final acceptor. Oxygen appears to be the final oxidant in aerobic living organisms, although the existence of alternative electron acceptors, e.g. fumarate or nitrate, cannot be excluded. Whilst the protein components of the system are well-known, less attention has been turned to the role of low molecular weight electron carriers in the process. The function of ascorbate, tocopherol and vitamin K has been raised recently. In vitro and in vivo evidence suggests that these redox-active compounds can contribute to the functioning of oxidative folding. This review focuses on the participation of small molecular weight redox compounds in oxidative protein folding.

  9. Electrostatic influence of local cysteine environments on disulfide exchange kinetics.

    Science.gov (United States)

    Snyder, G H; Cennerazzo, M J; Karalis, A J; Field, D

    1981-11-10

    The ionic strength dependence of the bimolecular rate constant for reaction of the negative disulfide 5,5'-dithiobis (2-nitrobenzoic acid) with cysteines in fragments of naturally occurring proteins was determined by stopped-flow spectroscopy. The Debye-Hückel relationship was applied to determine the effective charge at the cysteine and thereby determine the extent to which nearby neighbors in the primary sequence influence the kinetics. Corrections for the secondary salt effect on cysteine pKs were determined by direct spectrometric pH titration of sulfhydryl groups or by observation of the ionic strength dependence of kinetics of cysteine reaction with the neutral disulfide 2,2'-dithiodipyridine. Quantitative expressions was verified by model studies with N-acetyl-cystein. At ionic strengths equal to or greater than 20 mM, the net charge at the polypeptide cysteine site is the sum of the single negative charge of the thiolate anion and the charges of the amino acids immediately preceding and following the cysteine in the primary sequence. At lower ionic strengths, more distant residues influence kinetics. At pH 7.0, 23 degree C, and an ionic strength of 20 mM, rate constants for reaction of the negative disulfide with a cysteine having two positive neighbors, one positive and one neutral neighbor, or two neutral neighbors are 132000, 3350, and 367 s-1 M-1, respectively. This corresponds to a contribution to the activation energy of 0.65- 1.1 kcal/mol per ion pair involved in collision between the cysteine and disulfide regions. The results permit the estimation that cysteine local environments may provide a means of achieving a 10(6)-fold range in rate constants in disulfide exchange reactions in random-coil proteins. This range may prove useful in developing strategies for directing disulfide pairing in synthetic proteins.

  10. Cell size increased in tissues from transgenic mice overexpressing a cell surface growth-related and cancer-specific hydroquinone oxidase, tNOX, with protein disulfide-thiol interchange activity.

    Science.gov (United States)

    Yagiz, Kader; Snyder, Paul W; Morré, D James; Morré, Dorothy M

    2008-12-15

    tNOX (ENOX2), a cancer-specific and growth-related cell surface protein with protein disulfide-thiol interchange and hydroquinone (NADH) oxidase activities was overexpressed in a transgenic mouse model. Female transgenic mice grew faster than wild type as did embryonic fibroblast cells prepared from the transgenic mice. The tissue expression of tNOX mRNA was greatest in heart, lung and liver. When these tissues were analyzed for cell size, the cells from the tissues of transgenic animals were, on average, 20% larger in surface area than cells from corresponding wild-type tissues. Also analyzed were cells of intestine, spleen and kidney in which tNOX overexpression was observed but to a lesser extent. Cell size was increased as well with intestine and kidney but less so with spleen. At the end of the study, carcass weights of the transgenic animals were greater than those of wild type. This increase in carcass weight was reflected in an increase in femur weight and thickness in both male and female transgenic mice but not in femur length. Other carcass parameters such as skin weight and body fat or body fluids were unchanged or changes were insufficient to account for the increased carcass weight. The findings are consistent with the property of tNOX observed in studies with cultured cells as contributing to the enlargement phase of cell growth.

  11. Structures of the Ets Protein DNA-binding Domains of Transcription Factors Etv1, Etv4, Etv5, and Fev: DETERMINANTS OF DNA BINDING AND REDOX REGULATION BY DISULFIDE BOND FORMATION.

    Science.gov (United States)

    Cooper, Christopher D O; Newman, Joseph A; Aitkenhead, Hazel; Allerston, Charles K; Gileadi, Opher

    2015-05-29

    Ets transcription factors, which share the conserved Ets DNA-binding domain, number nearly 30 members in humans and are particularly involved in developmental processes. Their deregulation following changes in expression, transcriptional activity, or by chromosomal translocation plays a critical role in carcinogenesis. Ets DNA binding, selectivity, and regulation have been extensively studied; however, questions still arise regarding binding specificity outside the core GGA recognition sequence and the mode of action of Ets post-translational modifications. Here, we report the crystal structures of Etv1, Etv4, Etv5, and Fev, alone and in complex with DNA. We identify previously unrecognized features of the protein-DNA interface. Interactions with the DNA backbone account for most of the binding affinity. We describe a highly coordinated network of water molecules acting in base selection upstream of the GGAA core and the structural features that may account for discrimination against methylated cytidine residues. Unexpectedly, all proteins crystallized as disulfide-linked dimers, exhibiting a novel interface (distant to the DNA recognition helix). Homodimers of Etv1, Etv4, and Etv5 could be reduced to monomers, leading to a 40-200-fold increase in DNA binding affinity. Hence, we present the first indication of a redox-dependent regulatory mechanism that may control the activity of this subset of oncogenic Ets transcription factors. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Computational design of disulfide cyclic peptide as potential ...

    African Journals Online (AJOL)

    Development of genomic and proteomic studies coupled with computational sciences could facilitate the discovery of various target proteins and potential inhibitor to be developed as drugs. Several researches by molecular docking method have been conducted to design disulfide cyclic peptide ligand as potential inhibitors ...

  13. Thermoinactivation Mechanism of Glucose Isomerase

    Science.gov (United States)

    Lim, Leng Hong; Saville, Bradley A.

    In this article, the mechanisms of thermoinactivation of glucose isomerase (GI) from Streptomyces rubiginosus (in soluble and immobilized forms) were investigated, particularly the contributions of thiol oxidation of the enzyme's cysteine residue and a "Maillard-like" reaction between the enzyme and sugars in high fructose corn syrup (HFCS). Soluble GI (SGI) was successfully immobilized on silica gel (13.5 μm particle size), with an activity yield between 20 and 40%. The immobilized GI (IGI) has high enzyme retention on the support during the glucose isomerization process. In batch reactors, SGI (half-life =145 h) was more stable than IGI (half-life=27 h) at 60°C in HFCS, whereas at 80°C, IGI (half-life=12 h) was more stable than SGI (half-life=5.2 h). IGI was subject to thiol oxidation at 60°C, which contributed to the enzyme's deactivation. IGI was subject to thiol oxidation at 80°C, but this did not contribute to the deactivation of the enzyme. SGI did not undergo thiol oxidation at 60°C, but at 80°C SGI underwent severe precipitation and thiol oxidation, which caused the enzyme to deactivate. Experimental results show that immobilization suppresses the destablizing effect of thiol oxidation on GI. A "Maillard-like" reaction between SGI and the sugars also caused SGI thermoinactivation at 60, 70, and 80°C, but had minimal effect on IGI. At 60 and 80°C, IGI had higher thermostability in continuous reactors than in batch reactors, possibily because of reduced contact with deleterious compounds in HFCS.

  14. Identification of liver protein targets modified by tienilic acid metabolites using a two-dimensional Western blot-mass spectrometry approach

    Science.gov (United States)

    Methogo, Ruth Menque; Dansette, Patrick M.; Klarskov, Klaus

    2007-12-01

    A combined approach based on two-dimensional electrophoresis-immuno-blotting and nanoliquid chromatography coupled on-line with electrospray ionization mass spectrometry (nLC-MS/MS) was used to identify proteins modified by a reactive intermediate of tienilic acid (TA). Liver homogenates from rats exposed to TA were fractionated using ultra centrifugation; four fractions were obtained and subjected to 2D electrophoresis. Following transfer to PVDF membranes, modified proteins were visualized after India ink staining, using an anti-serum raised against TA and ECL detection. Immuno-reactive spots were localized on the PVDF membrane by superposition of the ECL image, protein spots of interest were excised, digested on the membrane with trypsin followed by nLC-MS/MS analysis and protein identification. A total of 15 proteins were identified as likely targets modified by a TA reactive metabolite. These include selenium binding protein 2, senescence marker protein SMP-30, adenosine kinase, Acy1 protein, adenosylhomocysteinase, capping protein (actin filament), protein disulfide isomerase, fumarylacetoacetase, arginase chain A, ketohexokinase, proteasome endopeptidase complex, triosephosphate isomerase, superoxide dismutase, dna-type molecular chaperone hsc73 and malate dehydrogenase.

  15. Molecular and industrial aspects of glucose isomerase.

    OpenAIRE

    Bhosale, S H; Rao, M B; Deshpande, V V

    1996-01-01

    Glucose isomerase (GI) (D-xylose ketol-isomerase; EC. 5.3.1.5) catalyzes the reversible isomerization of D-glucose and D-xylose to D-fructose and D-xylulose, respectively. The enzyme has the largest market in the food industry because of its application in the production of high-fructose corn syrup (HFCS). HFCS, an equilibrium mixture of glucose and fructose, is 1.3 times sweeter than sucrose and serves as a sweetener for use by diabetics. Interconversion of xylose to xylulose by GI serves a ...

  16. Native Conformation and Canonical Disulfide Bond Formation Are Interlinked Properties of HIV-1 Env Glycoproteins.

    Science.gov (United States)

    Go, Eden P; Cupo, Albert; Ringe, Rajesh; Pugach, Pavel; Moore, John P; Desaire, Heather

    2015-12-30

    We investigated whether there is any association between a native-like conformation and the presence of only the canonical (i.e., native) disulfide bonds in the gp120 subunits of a soluble recombinant human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein. We used a mass spectrometry (MS)-based method to map the disulfide bonds present in nonnative uncleaved gp140 proteins and native-like SOSIP.664 trimers based on the BG505 env gene. Our results show that uncleaved gp140 proteins were not homogeneous, in that substantial subpopulations (20 to 80%) contained aberrant disulfide bonds. In contrast, the gp120 subunits of the native-like SOSIP.664 trimer almost exclusively retained the canonical disulfide bond pattern. We also observed that the purification method could influence the proportion of an Env protein population that contained aberrant disulfide bonds. We infer that gp140 proteins may always contain a variable but substantial proportion of aberrant disulfide bonds but that the impact of this problem can be minimized via design and/or purification strategies that yield native-like trimers. The same factors may also be relevant to the production and purification of monomeric gp120 proteins that are free of aberrant disulfide bonds. It is widely thought that a successful HIV-1 vaccine will include a recombinant form of the Env protein, a trimer located on the virion surface. To increase yield and simplify purification, Env proteins are often made in truncated, soluble forms. A consequence, however, can be the loss of the native conformation concomitant with the virion-associated trimer. Moreover, some soluble recombinant Env proteins contain aberrant disulfide bonds that are not expected to be present in the native trimer. To assess whether these observations are linked, to determine the extent of disulfide bond scrambling, and to understand why scrambling occurs, we determined the disulfide bond profiles of two soluble Env proteins with

  17. [Cloning of Escherichia coli K12 xylose isomerase (glucose isomerase) and studying the enzymatic properties of its expression product].

    Science.gov (United States)

    Rozanov, A S; Zagrebel'nyĭ, S N; Beklemishchev, A B

    2009-01-01

    The coding region of Escherichia coli K12 xylose (glucose) isomerase gene was inserted into the pRAC expression vector and cloned in E. coli BL21 (DE3) cells. After induction of expression of the cloned gene, the proportion of recombinant xylose isomerase accounted for 40% of the total protein content. As a result of one-stage purification by affinity chromatography, a protein preparation of 90% purity was obtained. The recombinant enzyme catalyzed the isomerization of glucose to fructose and exhibited maximum activity (0.8 U/mg) at 45 degrees C and pH 6.8. The enzyme required Mg2+ ions as a cofactor. When Mg2+ and Co2+ ions were simultaneously present in the reaction medium, the enzyme activity increased by 15-20%. Complete replacement of Mg2+ with Co2+ decreased the enzyme activity. In the presence of Ca2+ at concentrations comparable to the concentration of Mg2+, the enzyme was not inhibited, although published data reported inhibition of similar enzymes by Ca2+. The recombinant enzyme exhibited a very low thermostability: it underwent a slow inactivation when incubated at 45 degrees C and was completely inactivated after incubation at 65 degrees C for 1 h.

  18. Identification of Reduction-Susceptible Disulfide Bonds in Transferrin by Differential Alkylation Using O16/O18 Labeled Iodoacetic Acid

    Science.gov (United States)

    Wang, Shunhai; Kaltashov, Igor A.

    2015-05-01

    Stabilization of native three-dimensional structure has been considered for decades to be the main function of disulfide bonds in proteins. More recently, it was becoming increasingly clear that in addition to this static role, disulfide bonds are also important for many other aspects of protein behavior, such as regulating protein function in a redox-sensitive fashion. Dynamic disulfide bonds can be taken advantage of as candidate anchor sites for site-specific modification (such as PEGylation of conjugation to a drug molecule), but are also frequently implicated in protein aggregation (through disulfide bond scrambling leading to formation of intermolecular covalent linkages). A common feature of all these labile disulfide bonds is their high susceptibility to reduction, as they need to be selectively regulated by either specific local redox conditions in vivo or well-controlled experimental conditions in vitro. The ability to identify labile disulfide bonds in a cysteine-rich protein can be extremely beneficial for a variety of tasks ranging from understanding the mechanistic aspects of protein function to identification of troublesome "hot spots" in biopharmaceutical products. Herein, we describe a mass spectrometry (MS)-based method for reliable identification of labile disulfide bonds, which consists of limited reduction, differential alkylation with an O18-labeled reagent, and LC-MS/MS analysis. Application of this method to a cysteine-rich protein transferrin allows the majority of its native disulfide bonds to be measured for their reduction susceptibility, which appears to reflect both solvent accessibility and bond strain energy.

  19. Disulfide-bond scrambling promotes amorphous aggregates in lysozyme and bovine serum albumin.

    Science.gov (United States)

    Yang, Mu; Dutta, Colina; Tiwari, Ashutosh

    2015-03-12

    Disulfide bonds are naturally formed in more than 50% of amyloidogenic proteins, but the exact role of disulfide bonds in protein aggregation is still not well-understood. The intracellular reducing agents and/or improper use of antioxidants in extracellular environment can break proteins disulfide bonds, making them unstable and prone to misfolding and aggregation. In this study, we report the effect of disulfide-reducing agent dithiothreitol (DTT) on hen egg white lysozyme (lysozyme) and bovine serum albumin (BSA) aggregation at pH 7.2 and 37 °C. BSA and lysozyme proteins treated with disulfide-reducing agents form very distinct amorphous aggregates as observed by scanning electron microscope. However, proteins with intact disulfide bonds were stable and did not aggregate over time. BSA and lysozyme aggregates show unique but measurable differences in 8-anilino-1-naphthalenesulfonic acid (ANS) and 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) fluorescence, suggesting a loose and flexible aggregate structure for lysozyme but a more compact aggregate structure for BSA. Scrambled disulfide-bonded protein aggregates were observed by nonreducing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) for both proteins. Similar amorphous aggregates were also generated using a nonthiol-based reducing agent, tris(2-carboxyethyl)phosphine (TCEP), at pH 7.2 and 37 °C. In summary, formation of distinct amorphous aggregates by disulfide-reduced BSA and lysozyme suggests an alternate pathway for protein aggregation that may be relevant to several proteins.

  20. The C-terminal domain of human grp94 protects the catalytic subunit of protein kinase CK2 (CK2alpha) against thermal aggregation. Role of disulfide bonds

    DEFF Research Database (Denmark)

    Roher, N; Miró, F; Boldyreff, B

    2001-01-01

    The C-terminal domain (residues 518-803) of the 94 kDa glucose regulated protein (grp94) was expressed in Escherichia coli as a fusion protein with a His6-N-terminal tag (grp94-CT). This truncated form of grp94 formed dimers and oligomers that could be dissociated into monomers by treatment...... with dithiothreitol. Grp94-CT conferred protection against aggregation on the catalytic subunit of protein kinase CK2 (CK2alpha), although it did not protect against thermal inactivation. This anti-aggregation effect of grp94-CT was concentration dependent, with full protection achieved at grp94-CT/CK2alpha molar...

  1. Phosphoglucose isomerase polymorphism in cultivated groundnut ...

    African Journals Online (AJOL)

    Horizontal starch gel electrophoresis was used to study one of the enzymes involved in glycolysis, Phosphoglucose isomerase subunits (PGI) (EC 5.3.1.9), in the cultivated groundnut, Arachis hypogaea, and some of its wild relatives. Two gene loci specifying PGI were detected. The more anodal locus, Pgi-1, was ...

  2. Glucose (xylose) isomerase production from thermotolerant and ...

    African Journals Online (AJOL)

    Glucose (xylose) isomerase (GI) is one of the most important industrial enzymes. It is used widely to catalyze the reversible conversion of D-glucose to D-fructose in vivo. The latter is used on a wide scale in the production of the high fructose corn syrup (HFCS) from corn starch. The great need of a thermostable GI, which is ...

  3. Atomic structure of the sweet-tasting protein thaumatin I at pH 8.0 reveals the large disulfide-rich region in domain II to be sensitive to a pH change

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Tetsuya, E-mail: t2masuda@kais.kyoto-u.ac.jp [Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Department of Natural Resources, Graduate School of Global Environmental Studies, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Ohta, Keisuke [Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Department of Natural Resources, Graduate School of Global Environmental Studies, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Mikami, Bunzo [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kitabatake, Naofumi [Department of Foods and Human Nutrition, Notre Dame Seishin University, Okayama 700-8516 (Japan); Tani, Fumito [Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Department of Natural Resources, Graduate School of Global Environmental Studies, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2012-03-02

    Highlights: Black-Right-Pointing-Pointer Structure of a recombinant thaumatin at pH 8.0 determined at a resolution of 1.0 A. Black-Right-Pointing-Pointer Substantial fluctuations of a loop in domain II was found in the structure at pH 8.0. Black-Right-Pointing-Pointer B-factors for Lys137, Lys163, and Lys187 were significantly affected by pH change. Black-Right-Pointing-Pointer An increase in mobility might play an important role in the heat-induced aggregation. -- Abstract: Thaumatin, an intensely sweet-tasting plant protein, elicits a sweet taste at 50 nM. Although the sweetness remains when thaumatin is heated at 80 Degree-Sign C for 4 h under acid conditions, it rapidly declines when heating at a pH above 6.5. To clarify the structural difference at high pH, the atomic structure of a recombinant thaumatin I at pH 8.0 was determined at a resolution of 1.0 A. Comparison to the crystal structure of thaumatin at pH 7.3 and 7.0 revealed the root-mean square deviation value of a C{alpha} atom to be substantially greater in the large disulfide-rich region of domain II, especially residues 154-164, suggesting that a loop region in domain II to be affected by solvent conditions. Furthermore, B-factors of Lys137, Lys163, and Lys187 were significantly affected by pH change, suggesting that a striking increase in the mobility of these lysine residues, which could facilitate a reaction with a free sulfhydryl residue produced via the {beta}-elimination of disulfide bonds by heating at a pH above 7.0. The increase in mobility of lysine residues as well as a loop region in domain II might play an important role in the heat-induced aggregation of thaumatin above pH 7.0.

  4. T47D Cells Expressing Myeloperoxidase Are Able to Process, Traffic and Store the Mature Protein in Lysosomes: Studies in T47D Cells Reveal a Role for Cys319 in MPO Biosynthesis that Precedes Its Known Role in Inter-Molecular Disulfide Bond Formation

    Science.gov (United States)

    Laura, Richard P.; Dong, David; Reynolds, Wanda F.; Maki, Richard A.

    2016-01-01

    Among the human heme-peroxidase family, myeloperoxidase (MPO) has a unique disulfide-linked oligomeric structure resulting from multi-step processing of the pro-protein monomer (proMPO) after it exits the endoplasmic reticulum (ER). Related family members undergo some, but not all, of the processing steps involved with formation of mature MPO. Lactoperoxidase has its pro-domain proteolytically removed and is a monomer in its mature form. Eosinophil peroxidase undergoes proteolytic removal of its pro-domain followed by proteolytic separation into heavy and light chains and is a heterodimer. However, only MPO undergoes both these proteolytic modifications and then is further oligomerized into a heterotetramer by a single inter-molecular disulfide bond. The details of how and where the post-ER processing steps of MPO occur are incompletely understood. We report here that T47D breast cancer cells stably transfected with an MPO expression plasmid are able to efficiently replicate all of the processing steps that lead to formation of the mature MPO heterotetramer. MPO also traffics to the lysosome granules of T47D cells where it accumulates, allowing in-depth immunofluorescent microscopy studies of MPO trafficking and storage for the first time. Using this novel cell model we show that formation of MPO’s single inter-molecular disulfide bond can occur normally in the absence of the proteolytic events that lead to separation of the MPO heavy and light chains. We further demonstrate that Cys319, which forms MPO’s unique inter-molecular disulfide bond, is important for events that precede this step. Mutation of this residue alters the glycosylation and catalytic activity of MPO and blocks its entry into the endocytic pathway where proteolytic processing and disulfide bonding occur. Finally, using the endocytic trafficking of lysosomal hydrolases as a guide, we investigate the role of candidate receptors in the endocytic trafficking of MPO. PMID:26890638

  5. T47D Cells Expressing Myeloperoxidase Are Able to Process, Traffic and Store the Mature Protein in Lysosomes: Studies in T47D Cells Reveal a Role for Cys319 in MPO Biosynthesis that Precedes Its Known Role in Inter-Molecular Disulfide Bond Formation.

    Directory of Open Access Journals (Sweden)

    Richard P Laura

    Full Text Available Among the human heme-peroxidase family, myeloperoxidase (MPO has a unique disulfide-linked oligomeric structure resulting from multi-step processing of the pro-protein monomer (proMPO after it exits the endoplasmic reticulum (ER. Related family members undergo some, but not all, of the processing steps involved with formation of mature MPO. Lactoperoxidase has its pro-domain proteolytically removed and is a monomer in its mature form. Eosinophil peroxidase undergoes proteolytic removal of its pro-domain followed by proteolytic separation into heavy and light chains and is a heterodimer. However, only MPO undergoes both these proteolytic modifications and then is further oligomerized into a heterotetramer by a single inter-molecular disulfide bond. The details of how and where the post-ER processing steps of MPO occur are incompletely understood. We report here that T47D breast cancer cells stably transfected with an MPO expression plasmid are able to efficiently replicate all of the processing steps that lead to formation of the mature MPO heterotetramer. MPO also traffics to the lysosome granules of T47D cells where it accumulates, allowing in-depth immunofluorescent microscopy studies of MPO trafficking and storage for the first time. Using this novel cell model we show that formation of MPO's single inter-molecular disulfide bond can occur normally in the absence of the proteolytic events that lead to separation of the MPO heavy and light chains. We further demonstrate that Cys319, which forms MPO's unique inter-molecular disulfide bond, is important for events that precede this step. Mutation of this residue alters the glycosylation and catalytic activity of MPO and blocks its entry into the endocytic pathway where proteolytic processing and disulfide bonding occur. Finally, using the endocytic trafficking of lysosomal hydrolases as a guide, we investigate the role of candidate receptors in the endocytic trafficking of MPO.

  6. T47D Cells Expressing Myeloperoxidase Are Able to Process, Traffic and Store the Mature Protein in Lysosomes: Studies in T47D Cells Reveal a Role for Cys319 in MPO Biosynthesis that Precedes Its Known Role in Inter-Molecular Disulfide Bond Formation.

    Science.gov (United States)

    Laura, Richard P; Dong, David; Reynolds, Wanda F; Maki, Richard A

    2016-01-01

    Among the human heme-peroxidase family, myeloperoxidase (MPO) has a unique disulfide-linked oligomeric structure resulting from multi-step processing of the pro-protein monomer (proMPO) after it exits the endoplasmic reticulum (ER). Related family members undergo some, but not all, of the processing steps involved with formation of mature MPO. Lactoperoxidase has its pro-domain proteolytically removed and is a monomer in its mature form. Eosinophil peroxidase undergoes proteolytic removal of its pro-domain followed by proteolytic separation into heavy and light chains and is a heterodimer. However, only MPO undergoes both these proteolytic modifications and then is further oligomerized into a heterotetramer by a single inter-molecular disulfide bond. The details of how and where the post-ER processing steps of MPO occur are incompletely understood. We report here that T47D breast cancer cells stably transfected with an MPO expression plasmid are able to efficiently replicate all of the processing steps that lead to formation of the mature MPO heterotetramer. MPO also traffics to the lysosome granules of T47D cells where it accumulates, allowing in-depth immunofluorescent microscopy studies of MPO trafficking and storage for the first time. Using this novel cell model we show that formation of MPO's single inter-molecular disulfide bond can occur normally in the absence of the proteolytic events that lead to separation of the MPO heavy and light chains. We further demonstrate that Cys319, which forms MPO's unique inter-molecular disulfide bond, is important for events that precede this step. Mutation of this residue alters the glycosylation and catalytic activity of MPO and blocks its entry into the endocytic pathway where proteolytic processing and disulfide bonding occur. Finally, using the endocytic trafficking of lysosomal hydrolases as a guide, we investigate the role of candidate receptors in the endocytic trafficking of MPO.

  7. The multisubunit structure of synaptophysin. Relationship between disulfide bonding and homo-oligomerization.

    Science.gov (United States)

    Johnston, P A; Südhof, T C

    1990-05-25

    Synaptophysin, a major membrane protein of synaptic vesicles, contains four transmembrane regions and two intravesicular loops. Synaptophysin monomers associate into homopolymers that have the potential to form channels in the synaptic vesicle membrane. Here we show that in native synaptophysin, homopolymers are linked by noncovalent forces. The molecule contains unstable intramolecular disulfide bonds that undergo disulfide exchange during solubilization, thereby covalently cross-linking neighboring synaptophysin molecules. The locations of the intramolecular disulfide bonds in synaptophysin were determined, revealing that each of the two intravesicular loops of synaptophysin is circularized by a single disulfide bond. Cross-linking of synaptophysin by disulfide bonds can be triggered in synaptic vesicles and in intact cells by a cycle of reduction and oxidation, suggesting that native synaptophysin is a homomultimer in situ. In addition, chemical cross-linking of native synaptophysin demonstrates that a low molecular weight protein is specifically associated with synaptophysin complexes and is lost upon reduction of the intramolecular disulfide bonds. These data suggest that native synaptophysin forms a noncovalent homomultimeric complex whose structure and interaction with other proteins are dependent on the integrity of its intramolecular disulfide bonds and phospholipid environment.

  8. Structures and related properties of helical, disulfide-stabilized peptides

    Energy Technology Data Exchange (ETDEWEB)

    Pagel, Mark D. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1993-11-01

    The three dimensional structure of several peptides were determined by NMR spectroscopy and distance geometry calculations. Each peptide formed a predictable, rigid structure, consisting of an α-helix, a "scaffold" region which packed along one face of the helix, and two disulfide bridges which covalently connect the helix and scaffold regions. The peptide Apa-M5 was designed to constrain the M5 peptide from MLCK in a helical geometry using the apamin disulfide scaffold. This scaffold constrains the N- terminal end of the helix with two disulfide bridges and a reverse turn. Like the M5 peptide, Apa-M5 was found to bind calmodulin in a Ca2+-dependent 1:1 stoichiometry. However, the dissociation constant of the (Apa-M5)-calmodulin complex, 107 nM, was 100-fold higher than the dissociation constant of the M5-calmodulin complex. This difference was due to a putative steric overlap between the Apa-M5 scaffold and calmodulin. The peptide Apa-Cro was designed to replace the large structural protein matrix of λ Cro with the apamin disulfide scaffold. However, Apa-Cro did not bind the consensus DNA operator half-site of λ Cro, probably due to a steric overlap between the Apa-Cro disulfide framework and the DNA. The amino acid sequence of the scaffold-disulfide bridge arrangement of the peptide Max was derived from the core sequence of scyllatoxin, which contains an α-helix constrained at the C-terminal end by two disulfide bridges and a two-stranded βsheet scaffold. Max was shown to fold with >84% yield to form a predictable, stable structure that is similar to scyllatoxin. The folding and stability properties of Max make this scaffold and disulfide bridge arrangement an ideal candidate for the development of hybrid sequence peptides. The dynamics of a fraying C-terminal end of the helix of the peptide Apa-AlaN was determined by analysis of 15N NMR relaxation properties.

  9. A preliminary time-of-flight neutron diffraction study of Streptomyces rubiginosus D-xylose isomerase.

    Science.gov (United States)

    Hanson, B Leif; Langan, Paul; Katz, Amy K; Li, Xinmin; Harp, Joel M; Glusker, Jenny P; Schoenborn, Benno P; Bunick, Gerard J

    2004-02-01

    The metalloenzyme D-xylose isomerase forms well ordered crystals that diffract X-rays to ultrahigh resolution (diffraction data has as yet been unable to differentiate between several postulated mechanisms that describe the catalytic activity of this enzyme. Neutrons, with their greater scattering sensitivity to H atoms, could help to resolve this by determining the protonation states within the active site of the enzyme. As the first step in the process of investigating the mechanism of action of D-xylose isomerase from Streptomyces rubiginosus using neutron diffraction, data to better than 2.0 A were measured from the unliganded protein at the Los Alamos Neutron Science Center Protein Crystallography Station. Measurement of these neutron diffraction data represents several milestones: this is one of the largest biological molecules (a tetramer, MW approximately 160 000 Da, with unit-cell lengths around 100 A) ever studied at high resolution using neutron diffraction. It is also one of the first proteins to be studied using time-of-flight techniques. The success of the initial diffraction experiments with D-xylose isomerase demonstrate the power of spallation neutrons for protein crystallography and should provide further impetus for neutron diffraction studies of biologically active and significant proteins. Further data will be measured from the enzyme with bound substrates and inhibitors in order to provide the specific information needed to clarify the catalytic mechanism of this enzyme.

  10. The significance of disulfide bonding in biological activity of HB-EGF, a mutagenesis approach

    OpenAIRE

    Hoskins, J.T.; Zhou, Z.; Harding, P.A.

    2008-01-01

    A site-directed mutagenesis approach was taken to disrupt each of 3 disulfide bonds within human HB-EGF by substituting serine for both cysteine residues that contribute to disulfide bonding. Each HB-EGF disulfide analogue (HB-EGF-Cys/Ser108/121, HB-EGF-Cys/Ser116/132, and HB-EGF-Cys/Ser134/143) was cloned under the regulation of the mouse metallothionein (MT) promoter and stably expressed in mouse fibroblasts. HB-EGF immunoreactive proteins with Mr of 6.5, 21 and 24kDa were observed from lys...

  11. Acting on Folding Effectors to Improve Recombinant Protein Yields and Functional Quality.

    Science.gov (United States)

    de Marco, Ario

    2017-01-01

    Molecular and chemical chaperones /foldases can strongly contribute to improve the amounts and the structural quality of recombinant proteins. Several methodologies have been proposed to optimize their beneficial effects. This chapter presents a condensed summary of the biotechnological opportunities offered by this approach followed by a protocol describing the method we use for expressing disulfide bond-dependent recombinant antibodies in the cytoplasm of bacteria engineered to overexpress sulfhydryl oxidase and DsbC isomerase. The system is based on the possibility to trigger the foldase expression independently and before the induction of the target protein. As a consequence, the recombinant antibody synthesis starts only after enough foldases have accumulated to promote correct folding of the antibody.

  12. Phthalic Acid Chemical Probes Synthesized for Protein-Protein Interaction Analysis

    Directory of Open Access Journals (Sweden)

    Chin-Jen Wu

    2013-06-01

    Full Text Available Plasticizers are additives that are used to increase the flexibility of plastic during manufacturing. However, in injection molding processes, plasticizers cannot be generated with monomers because they can peel off from the plastics into the surrounding environment, water, or food, or become attached to skin. Among the various plasticizers that are used, 1,2-benzenedicarboxylic acid (phthalic acid is a typical precursor to generate phthalates. In addition, phthalic acid is a metabolite of diethylhexyl phthalate (DEHP. According to Gene_Ontology gene/protein database, phthalates can cause genital diseases, cardiotoxicity, hepatotoxicity, nephrotoxicity, etc. In this study, a silanized linker (3-aminopropyl triethoxyslane, APTES was deposited on silicon dioxides (SiO2 particles and phthalate chemical probes were manufactured from phthalic acid and APTES–SiO2. These probes could be used for detecting proteins that targeted phthalic acid and for protein-protein interactions. The phthalic acid chemical probes we produced were incubated with epithelioid cell lysates of normal rat kidney (NRK-52E cells to detect the interactions between phthalic acid and NRK-52E extracted proteins. These chemical probes interacted with a number of chaperones such as protein disulfide-isomerase A6, heat shock proteins, and Serpin H1. Ingenuity Pathways Analysis (IPA software showed that these chemical probes were a practical technique for protein-protein interaction analysis.

  13. Linalool isomerase, a membrane-anchored enzyme in the anaerobic monoterpene degradation in Thauera linaloolentis 47Lol.

    Science.gov (United States)

    Marmulla, Robert; Šafarić, Barbara; Markert, Stephanie; Schweder, Thomas; Harder, Jens

    2016-03-15

    Thauera linaloolentis 47Lol uses the tertiary monoterpene alcohol (R,S)-linalool as sole carbon and energy source under denitrifying conditions. The conversion of linalool to geraniol had been observed in carbon-excess cultures, suggesting the presence of a 3,1-hydroxyl-Δ(1)-Δ(2)-mutase (linalool isomerase) as responsible enzyme. To date, only a single enzyme catalyzing such a reaction is described: the linalool dehydratase/isomerase (Ldi) from Castellaniella defragrans 65Phen acting only on (S)-linalool. The linalool isomerase activity was located in the inner membrane. It was enriched by subcellular fractionation and sucrose gradient centrifugation. MALDI-ToF MS analysis of the enriched protein identified the corresponding gene named lis that codes for the protein in the strain with the highest similarity to the Ldi. Linalool isomerase is predicted to have four transmembrane helices at the N-terminal domain and a cytosolic domain. Enzyme activity required a reductant for activation. A specific activity of 3.42 ± 0.28 nkat mg * protein(-1) and a kM value of 455 ± 124 μM were determined for the thermodynamically favored isomerization of geraniol to both linalool isomers at optimal conditions of pH 8 and 35 °C. The linalool isomerase from T. linaloolentis 47Lol represents a second member of the enzyme class 5.4.4.4, next to the linalool dehydratase/isomerase from C. defragrans 65Phen. Besides considerable amino acid sequence similarity both enzymes share common characteristics with respect to substrate affinity, pH and temperature optima, but differ in the dehydratase activity and the turnover of linalool isomers.

  14. l-Arabinose Isomerase and d-Xylose Isomerase from Lactobacillus reuteri: Characterization, Coexpression in the Food Grade Host Lactobacillus plantarum, and Application in the Conversion of d-Galactose and d-Glucose

    OpenAIRE

    Staudigl, Petra; Haltrich, Dietmar; Peterbauer, Clemens K.

    2014-01-01

    The l-arabinose isomerase (l-AI) and the d-xylose isomerase (d-XI) encoding genes from Lactobacillus reuteri (DSMZ 17509) were cloned and overexpressed in Escherichia coli BL21 (DE3). The proteins were purified to homogeneity by one-step affinity chromatography and characterized biochemically. l-AI displayed maximum activity at 65 °C and pH 6.0, whereas d-XI showed maximum activity at 65 °C and pH 5.0. Both enzymes require divalent metal ions. The genes were also ligated into the inducible la...

  15. Hydrogen/deuterium exchange and mass spectrometric analysis of a protein containing multiple disulfide bonds: Solution structure of recombinant macrophage colony stimulating factor-beta (rhM-CSFβ)

    Science.gov (United States)

    Yan, Xuguang; Zhang, Heidi; Watson, Jeffrey; Schimerlik, Michael I.; Deinzer, Max L.

    2002-01-01

    Studies with the homodimeric recombinant human macrophage colony-stimulating factor beta (rhM-CSFβ), show for the first time that a large number (9) of disulfide linkages can be reduced after amide hydrogen/deuterium (H/D) exchange, and the protein digested and analyzed successfully for the isotopic composition by electrospray mass spectrometry. Analysis of amide H/D after exchange-in shows that in solution the conserved four-helix bundle of (rhM-CSFβ) has fast and moderately fast exchangeable sections of amide hydrogens in the αA helix, and mostly slow exchanging sections of amide hydrogens in the αB, αC, and αD helices. Most of the amide hydrogens in the loop between the β1 and β4 sheets exhibited fast or moderately fast exchange, whereas in the amino acid 63–67 loop, located at the interface of the two subunits, the exchange was slow. Solvent accessibility as measured by H/D exchange showed a better correlation with the average depth of amide residues calculated from reported X-ray crystallographic data for rhM-CSFα than with the average B-factor. The rates of H/D exchange in rhM-CSFβ appear to correlate well with the exposed surface calculated for each amino acid residue in the crystal structure except for the αD helix. Fast hydrogen isotope exchange throughout the segment amino acids 150–221 present in rhM-CSFβ, but not rhM-CSFα, provides evidence that the carboxy-terminal region is unstructured. It is, therefore, proposed that the anomalous behavior of the αD helix is due to interaction of the carboxy-terminal tail with this helical segment. PMID:12192067

  16. Quantifying the global cellular thiol-disulfide status

    DEFF Research Database (Denmark)

    Hansen, Rosa E; Roth, Doris; Winther, Jakob R

    2009-01-01

    It is widely accepted that the redox status of protein thiols is of central importance to protein structure and folding and that glutathione is an important low-molecular-mass redox regulator. However, the total cellular pools of thiols and disulfides and their relative abundance have never been...... cell types. However, when cells are exposed to a sublethal dose of the thiol-specific oxidant diamide, PSSG levels increase to >15% of all protein cysteine. Glutathione is typically characterized as the "cellular redox buffer"; nevertheless, our data show that protein thiols represent a larger active...

  17. Structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC118.

    Science.gov (United States)

    Lobley, Carina M C; Aller, Pierre; Douangamath, Alice; Reddivari, Yamini; Bumann, Mario; Bird, Louise E; Nettleship, Joanne E; Brandao-Neto, Jose; Owens, Raymond J; O'Toole, Paul W; Walsh, Martin A

    2012-12-01

    The structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC188 has been determined at 1.72 Å resolution. The structure was solved by molecular replacement, which identified the functional homodimer in the asymmetric unit. Despite only showing 57% sequence identity to its closest homologue, the structure adopted the typical α and β D-ribose 5-phosphate isomerase fold. Comparison to other related structures revealed high homology in the active site, allowing a model of the substrate-bound protein to be proposed. The determination of the structure was expedited by the use of in situ crystallization-plate screening on beamline I04-1 at Diamond Light Source to identify well diffracting protein crystals prior to routine cryocrystallography.

  18. Adiporedoxin, an upstream regulator of ER oxidative folding and protein secretion in adipocytes.

    Science.gov (United States)

    Jedrychowski, Mark P; Liu, Libin; Laflamme, Collette J; Karastergiou, Kalypso; Meshulam, Tova; Ding, Shi-Ying; Wu, Yuanyuan; Lee, Mi-Jeong; Gygi, Steven P; Fried, Susan K; Pilch, Paul F

    2015-11-01

    Adipocytes are robust protein secretors, most notably of adipokines, hormone-like polypeptides, which act in an endocrine and paracrine fashion to affect numerous physiological processes such as energy balance and insulin sensitivity. To understand how such proteins are assembled for secretion we describe the function of a novel endoplasmic reticulum oxidoreductase, adiporedoxin (Adrx). Adrx knockdown and overexpressing 3T3-L1 murine adipocyte cell lines and a knockout mouse model were used to assess the influence of Adrx on secreted proteins as well as the redox state of ER resident chaperones. The metabolic phenotypes of Adrx null mice were characterized and compared to WT mice. The correlation of Adrx levels BMI, adiponectin levels, and other inflammatory markers from adipose tissue of human subjects was also studied. Adiporedoxin functions via a CXXC active site, and is upstream of protein disulfide isomerase whose direct function is disulfide bond formation, and ultimately protein secretion. Over and under expression of Adrx in vitro enhances and reduces, respectively, the secretion of the disulfide-bonded proteins including adiponectin and collagen isoforms. On a chow diet, Adrx null mice have normal body weights, and glucose tolerance, are moderately hyperinsulinemic, have reduced levels of circulating adiponectin and are virtually free of adipocyte fibrosis resulting in a complex phenotype tending towards insulin resistance. Adrx protein levels in human adipose tissue correlate positively with adiponectin levels and negatively with the inflammatory marker phospho-Jun kinase. These data support the notion that Adrx plays a critical role in adipocyte biology and in the regulation of mouse and human metabolism via its modulation of adipocyte protein secretion.

  19. Crystallization, solubility and thermodynamics of the highly thermostable glucose isomerase from Streptomyces sp. strain.

    Science.gov (United States)

    Borgi, Mohamed A; Rhimi, Moez; Kadri, Adel

    2014-01-01

    The crystallization behaviour of the highly thermostable glucose isomerase from the Streptomyces sp. strain isolated from Tunisian soil was investigated using ammonium sulfate as a precipitating agent. We established phase diagrams at different temperatures and protein concentrations. It was found that the solubility increased with increasing temperature and decreased with increasing salt concentration. The temperature-dependent solubility was used to characterize the thermodynamic parameters of crystallization such as enthalpy, entropy and free energy.

  20. Roles of Prolyl Isomerases in RNA-Mediated Gene Expression

    Directory of Open Access Journals (Sweden)

    Roopa Thapar

    2015-05-01

    Full Text Available The peptidyl-prolyl cis-trans isomerases (PPIases that include immunophilins (cyclophilins and FKBPs and parvulins (Pin1, Par14, Par17 participate in cell signaling, transcription, pre-mRNA processing and mRNA decay. The human genome encodes 19 cyclophilins, 18 FKBPs and three parvulins. Immunophilins are receptors for the immunosuppressive drugs cyclosporin A, FK506, and rapamycin that are used in organ transplantation. Pin1 has also been targeted in the treatment of Alzheimer’s disease, asthma, and a number of cancers. While these PPIases are characterized as molecular chaperones, they also act in a nonchaperone manner to promote protein-protein interactions using surfaces outside their active sites. The immunosuppressive drugs act by a gain-of-function mechanism by promoting protein-protein interactions in vivo. Several immunophilins have been identified as components of the spliceosome and are essential for alternative splicing. Pin1 plays roles in transcription and RNA processing by catalyzing conformational changes in the RNA Pol II C-terminal domain. Pin1 also binds several RNA binding proteins such as AUF1, KSRP, HuR, and SLBP that regulate mRNA decay by remodeling mRNP complexes. The functions of ribonucleoprotein associated PPIases are largely unknown. This review highlights PPIases that play roles in RNA-mediated gene expression, providing insight into their structures, functions and mechanisms of action in mRNP remodeling in vivo.

  1. A Strategy for Production of Correctly Folded Disulfide-Rich Peptides in the Periplasm of E. coli.

    Science.gov (United States)

    Saez, Natalie J; Cristofori-Armstrong, Ben; Anangi, Raveendra; King, Glenn F

    2017-01-01

    Recombinant expression of disulfide-reticulated peptides and proteins is often challenging. We describe a method that exploits the periplasmic disulfide-bond forming machinery of Escherichia coli and combines this with a cleavable, solubility-enhancing fusion tag to obtain higher yields of correctly folded target protein than is achievable via cytoplasmic expression. The protocols provided herein cover all aspects of this approach, from vector construction and transformation to purification of the cleaved target protein and subsequent quality control.

  2. Purification and characterization of a linoleate isomerase from ...

    African Journals Online (AJOL)

    Linoleate isomerase (EC 5.2.1.5) catalyzes the isomerization of linoleic acid to generate conjugated linoleic acid. Previously, we isolated a strain of Lactobacillus plantarum ZS2058 with great capacity for producing conjugated linoleic acid from fermented vegetables. This work aimed to purify the linoleate isomerase from L.

  3. 21 CFR 184.1372 - Insoluble glucose isomerase enzyme preparations.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Insoluble glucose isomerase enzyme preparations... enzyme preparations. (a) Insoluble glucose isomerase enzyme preparations are used in the production of... additional requirements for enzyme preparations in the Food Chemicals Codex, 3d Ed. (1981), p. 107, which is...

  4. Process for the production of a new glucose isomerase enzyme

    NARCIS (Netherlands)

    Luiten, Rudolf Gijsbertus Marie; Quax, Wim; Mrabet, Nadir; Schuurhuizen, Paul William

    1990-01-01

    This invention relates to a process for the production of new mutant glucose isomerases which have improved properties under application conditions. These glucose isomerases are obtained by the expression of a gene which codes for the said enzyme which has an amino acid sequence which differs by at

  5. INCREASING PRODUCTION OF PROTEINS IN GRAM-POSITIVE MICROORGANISMS

    NARCIS (Netherlands)

    Quax, Wim; Caldwell, Robert M

    1999-01-01

    The present invention relates to secretion in Gram-positive microorganisms. The present invention provides the nuclei acid and amino acid sequences for the Bacillus subtilis disulfide bond isomerases, Dsb1 and Dsb2. The present invention also provides means for increasing the secretion of

  6. Cloning and characterization of the l-ribose isomerase gene from Cellulomonas parahominis MB426.

    Science.gov (United States)

    Morimoto, Kenji; Terami, Yuji; Maeda, Yu-ichiro; Yoshihara, Akihide; Takata, Goro; Izumori, Ken

    2013-04-01

    A newly isolated bacterium, Cellulomonas parahominis MB426, produced l-ribose isomerase (CeLRI) on a medium containing l-ribose as a sole carbon source. A 32 kDa protein isomerizing l-ribose to l-ribulose was purified to homogeneity from this bacterium. A set of degenerated primers were synthesized based on amino acid sequences of the purified CeLRI, and a 747 bp gene encoding CeLRI was cloned, sequenced and overexpressed in Escherichia coli. This gene encoded a 249 amino acid protein with a calculated molecular mass of 27,435. The deduced amino acid sequence of this gene showed the highest identity with l-ribose isomerase from Acinetobacter calcoaceticus DL-28 (71%). The recombinant l-ribose isomerase (rCeLRI) was optimally active at pH 9.0 and 40°C, and was stable up to 40°C for 1 h and not dependent for metallic ions for its activity. The rCeLRI showed widely substrate specificity for the rare sugar which involved l-erythro form such as l-ribose, d-lyxose, d-talose, d-mannose, l-gulose, and l-allose. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Purification and Partial Characterization of Trypanosoma cruzi Triosephosphate Isomerase

    Directory of Open Access Journals (Sweden)

    Bourguignon SC

    1998-01-01

    Full Text Available The enzyme triosephosphate isomerase (TPI, EC 5.3.1.1 was purified from extracts of epimastigote forms of Trypanosoma cruzi. The purification steps included: hydrophobic interaction chromatography on phenyl-Sepharose, CM-Sepharose, and high performance liquid gel filtration chromatography. The CM-Sepharose material contained two bands (27 and 25 kDa with similar isoelectric points (pI 9.3-9.5 which could be separated by gel filtration in high performance liquid chromatography. Polyclonal antibodies raised against the porcine TPI detected one single polypeptide on western blot with a molecular weight (27 kDa identical to that purified from T. cruzi. These antibodies also recognized only one band of identical molecular weight in western blots of several other trypanosomatids (Blastocrithidia culicis, Crithidia desouzai, Phytomonas serpens, Herpertomonas samuelpessoai. The presence of only one enzymatic form of TPI in T. cruzi epimastigotes was confirmed by agarose gel activity assay and its localization was established by immunocytochemical analysis. The T. cruzi purified TPI (as well as other trypanosomatid' TPIs is a dimeric protein, composed of two identical subunits with an approximate mw of 27,000 and it is resolved on two dimensional gel electrophoresis with a pI of 9.3. Sequence analysis of the N-terminal portion of the 27 kDa protein revealed a high homology to Leishmania mexicana and T. brucei proteins

  8. Physiological and Pathogenic Roles of Prolyl Isomerase Pin1 in Metabolic Regulations via Multiple Signal Transduction Pathway Modulations

    Directory of Open Access Journals (Sweden)

    Yusuke Nakatsu

    2016-09-01

    Full Text Available Prolyl isomerases are divided into three groups, the FKBP family, Cyclophilin and the Parvulin family (Pin1 and Par14. Among these isomerases, Pin1 is a unique prolyl isomerase binding to the motif including pSer/pThr-Pro that is phosphorylated by kinases. Once bound, Pin1 modulates the enzymatic activity, protein stability or subcellular localization of target proteins by changing the cis- and trans-formations of proline. Several studies have examined the roles of Pin1 in the pathogenesis of cancers and Alzheimer’s disease. On the other hand, recent studies have newly demonstrated Pin1 to be involved in regulating glucose and lipid metabolism. Interestingly, while Pin1 expression is markedly increased by high-fat diet feeding, Pin1 KO mice are resistant to diet-induced obesity, non-alcoholic steatohepatitis and diabetic vascular dysfunction. These phenomena result from the binding of Pin1 to several key factors regulating metabolic functions, which include insulin receptor substrate-1, AMPK, Crtc2 and NF-κB p65. In this review, we focus on recent advances in elucidating the physiological roles of Pin1 as well as the pathogenesis of disorders involving this isomerase, from the viewpoint of the relationships between signal transductions and metabolic functions.

  9. Physiological and Pathogenic Roles of Prolyl Isomerase Pin1 in Metabolic Regulations via Multiple Signal Transduction Pathway Modulations.

    Science.gov (United States)

    Nakatsu, Yusuke; Matsunaga, Yasuka; Yamamotoya, Takeshi; Ueda, Koji; Inoue, Yuki; Mori, Keiichi; Sakoda, Hideyuki; Fujishiro, Midori; Ono, Hiraku; Kushiyama, Akifumi; Asano, Tomoichiro

    2016-09-07

    Prolyl isomerases are divided into three groups, the FKBP family, Cyclophilin and the Parvulin family (Pin1 and Par14). Among these isomerases, Pin1 is a unique prolyl isomerase binding to the motif including pSer/pThr-Pro that is phosphorylated by kinases. Once bound, Pin1 modulates the enzymatic activity, protein stability or subcellular localization of target proteins by changing the cis- and trans-formations of proline. Several studies have examined the roles of Pin1 in the pathogenesis of cancers and Alzheimer's disease. On the other hand, recent studies have newly demonstrated Pin1 to be involved in regulating glucose and lipid metabolism. Interestingly, while Pin1 expression is markedly increased by high-fat diet feeding, Pin1 KO mice are resistant to diet-induced obesity, non-alcoholic steatohepatitis and diabetic vascular dysfunction. These phenomena result from the binding of Pin1 to several key factors regulating metabolic functions, which include insulin receptor substrate-1, AMPK, Crtc2 and NF-κB p65. In this review, we focus on recent advances in elucidating the physiological roles of Pin1 as well as the pathogenesis of disorders involving this isomerase, from the viewpoint of the relationships between signal transductions and metabolic functions.

  10. The secreted L-arabinose isomerase displays anti-hyperglycemic effects in mice.

    Science.gov (United States)

    Rhimi, Moez; Bermudez-Humaran, Luis G; Huang, Yuan; Boudebbouze, Samira; Gaci, Nadia; Garnier, Alexandrine; Gratadoux, Jean-Jacques; Mkaouar, Héla; Langella, Philippe; Maguin, Emmanuelle

    2015-12-21

    The L-arabinose isomerase is an intracellular enzyme which converts L-arabinose into L-ribulose in living systems and D-galactose into D-tagatose in industrial processes and at industrial scales. D-tagatose is a natural ketohexose with potential uses in pharmaceutical and food industries. The D-galactose isomerization reaction is thermodynamically equilibrated, and leads to secondary subproducts at high pH. Therefore, an attractive L-arabinose isomerase should be thermoactive and acidotolerant with high catalytic efficiency. While many reports focused on the set out of a low cost process for the industrial production of D-tagatose, these procedures remain costly. When compared to intracellular enzymes, the production of extracellular ones constitutes an interesting strategy to increase the suitability of the biocatalysts. The L-arabinose isomerase (L-AI) from Lactobacillus sakei was expressed in Lactococcus lactis in fusion with the signal peptide of usp45 (SP(Usp45)). The L-AI protein and activity were detected only in the supernatant of the induced cultures of the recombinant L. lactis demonstrating the secretion in the medium of the intracellular L. sakei L-AI in an active form. Moreover, we showed an improvement in the enzyme secretion using either (1) L. lactis strains deficient for their two major proteases, ClpP and HtrA, or (2) an enhancer of protein secretion in L. lactis fused to the recombinant L-AI with the SP(Usp45). Th L-AI enzyme secreted by the recombinant L. lactis strains or produced intracellularly in E. coli, showed the same functional properties than the native enzyme. Furthermore, when mice are fed with the L. lactis strain secreting the L-AI and galactose, tagatose was produced in vivo and reduced the glycemia index. We report for the first time the secretion of the intracellular L-arabinose isomerase in the supernatant of food grade L. lactis cultures with hardly display other secreted proteins. The secreted L-AI originated from the food

  11. Purification and characterization of an extremely stable glucose isomerase from Geobacillus thermodenitrificans TH2.

    Science.gov (United States)

    Konak, L; Kolcuoğlu, Y; Ozbek, E; Colak, A; Ergenoglu, B

    2014-01-01

    The D-glucose/D-xylose isomerase was purified from a thermophilic bacterium, Geobacillus thermodenitrificans TH2, by precipitating with heat shock and using Q-Sepharose ion exchange column chromatography, and then characterized. The purified enzyme had a single band having molecular weight of 49 kDa on SDS-PAGE. In the presence of D-glucose as a substrate, the optimum temperature and pH of the enzyme were found to be 80 degrees C and 7.5, respectively. The purified xylose isomerase of G. thermodenitrificans TH2 was extremely stable at pH 7.5 after 96 h incubation at 4 degrees C and 50 degrees C. When the thermal stability profile was analyzed, it was determined that the purified enzyme was extremely stable during incubation periods of 4 months and 4 days at 4 degrees C and 50 degrees C, respectively. The K(m) and V(max) values of the purified xylose isomerase from G. thermodenitrificans TH2 were calculated as 32 mM and 4.68 micromol/min per mg of protein, respectively. Additionally, it was detected that some metal ions affected the enzyme activity at different ratios. The enzyme was active and stable at high temperatures and nearly neutral pHs which are desirable for the usage in the food and ethanol industry.

  12. Selective Isolation of Acidophilic Streptomyces Strains for Glucose Isomerase Production

    OpenAIRE

    Bok, Song H.; Seidman, Martin; Wopat, Paula W.

    1984-01-01

    Approximately 260 Streptomyces strains were isolated from neutral pH farmland soil and evaluated for their ability to produce glucose isomerase. The number of acidophilic Streptomyces organisms growing at pH 4.0 was low, i.e., 103 organisms per g of soil. All of the isolates showed glucose isomerase activity when they were grown in a medium containing d-xylose, an inducer for glucose isomerase. More than half of the strains tested developed heavy growth in 24 h, and many produced high titers ...

  13. Inactivation of barley limit dextrinase inhibitor by thioredoxin-catalysed disulfide reduction

    DEFF Research Database (Denmark)

    Jensen, Johanne Mørch; Hägglund, Per; Christensen, Hans Erik Mølager

    2012-01-01

    Barley limit dextrinase (LD) that catalyses hydrolysis of α-1,6 glucosidic linkages in starch-derived dextrins is inhibited by limit dextrinase inhibitor (LDI) found in mature seeds. LDI belongs to the chloroform/methanol soluble protein family (CM-protein family) and has four disulfide bridges...

  14. Identification of rice proteins recognized by the IgE antibodies of patients with food allergies.

    Science.gov (United States)

    Goliáš, Jaroslav; Humlová, Zuzana; Halada, Petr; Hábová, Věra; Janatková, Ivana; Tučková, Ludmila

    2013-09-18

    Similarity among food allergens is a great problem affecting the specificity of diagnosis and treatment of allergic patients. We have observed that 80% of patients with food (including wheat) and pollen allergies have increased IgE antibodies against rice proteins. By immunoblotting, we documented that boiling decreased solubility and IgE reactivity of PBS-extracted rice and wheat proteins, yet in SDS extracts this reactivity was only slightly changed. The sera of patients highly positive on the IgE immunoblot and positive in basophil activation and skin prick test with boiled rice components were used for characterizing the IgE-binding proteins separated by 1D or 2D electrophoresis. Using mass spectrometry, we identified 22 rice SDS soluble proteins. Six of them were new thermostable potential rice allergens: glutelin C precursor, granule-bound starch synthase 1 protein, disulfide isomerase-like 1-1 protein, hypothetical protein OsI_13867, putative acid phosphatase precursor 1, and a protein encoded by locus Os02g0453600. All of the identified rice proteins differed from known wheat allergens, except proteins belonging to the α-amylase/trypsin inhibitor family. Furthermore, we would suggest that in patients with high IgE reactivity to wheat and rice components, the IgE immunoblot and skin prick test with boiled rice proteins could be beneficial before diet recommendation.

  15. Disruption of reducing pathways is not essential for efficient disulfide bond formation in the cytoplasm of E. coli

    Directory of Open Access Journals (Sweden)

    Hatahet Feras

    2010-09-01

    Full Text Available Abstract Background The formation of native disulfide bonds is a complex and essential post-translational modification for many proteins. The large scale production of these proteins can be difficult and depends on targeting the protein to a compartment in which disulfide bond formation naturally occurs, usually the endoplasmic reticulum of eukaryotes or the periplasm of prokaryotes. It is currently thought to be impossible to produce large amounts of disulfide bond containing protein in the cytoplasm of wild-type bacteria such as E. coli due to the presence of multiple pathways for their reduction. Results Here we show that the introduction of Erv1p, a sulfhydryl oxidase and FAD-dependent catalyst of disulfide bond formation found in the inter membrane space of mitochondria, allows the efficient formation of native disulfide bonds in heterologously expressed proteins in the cytoplasm of E. coli even without the disruption of genes involved in disulfide bond reduction, for example trxB and/or gor. Indeed yields of active disulfide bonded proteins were higher in BL21 (DE3 pLysSRARE, an E. coli strain with the reducing pathways intact, than in the commercial Δgor ΔtrxB strain rosetta-gami upon co-expression of Erv1p. Conclusions Our results refute the current paradigm in the field that disruption of at least one of the reducing pathways is essential for the efficient production of disulfide bond containing proteins in the cytoplasm of E. coli and open up new possibilities for the use of E. coli as a microbial cell factory.

  16. Characterization of Disulfide-Linked Peptides Using Tandem Mass Spectrometry Coupled with Automated Data Analysis Software

    Science.gov (United States)

    Liang, Zhidan; McGuinness, Kenneth N.; Crespo, Alejandro; Zhong, Wendy

    2018-01-01

    Disulfide bond formation is critical for maintaining structure stability and function of many peptides and proteins. Mass spectrometry has become an important tool for the elucidation of molecular connectivity. However, the interpretation of the tandem mass spectral data of disulfide-linked peptides has been a major challenge due to the lack of appropriate tools. Developing proper data analysis software is essential to quickly characterize disulfide-linked peptides. A thorough and in-depth understanding of how disulfide-linked peptides fragment in mass spectrometer is a key in developing software to interpret the tandem mass spectra of these peptides. Two model peptides with inter- and intra-chain disulfide linkages were used to study fragmentation behavior in both collisional-activated dissociation (CAD) and electron-based dissociation (ExD) experiments. Fragments generated from CAD and ExD can be categorized into three major types, which result from different S-S and C-S bond cleavage patterns. DiSulFinder is a computer algorithm that was newly developed based on the fragmentation observed in these peptides. The software is vendor neutral and capable of quickly and accurately identifying a variety of fragments generated from disulfide-linked peptides. DiSulFinder identifies peptide backbone fragments with S-S and C-S bond cleavages and, more importantly, can also identify fragments with the S-S bond still intact to aid disulfide linkage determination. With the assistance of this software, more comprehensive disulfide connectivity characterization can be achieved. [Figure not available: see fulltext.

  17. Human triosephosphate isomerase deficiency resulting from mutation of Phe-240

    Energy Technology Data Exchange (ETDEWEB)

    Minling Chang; Xiaoyun Wu; Maquat, L.E. (Roswell Park Cancer Inst., Buffalo, NY (United States)); Artymiuk, P.J. (Univ. of Sheffield (United Kingdom)); Hollan, S. (National Inst. of Hematology and Blood Transfusion, Budapest (Hungary)); Lammi, A. (Children' s Hospital, Sydney (Australia))

    1993-06-01

    Triosephosphate isomerase (TPI; D-glyceraldehyde-3-phosphate ketolisomerase [E.C.5.3.1.1]) deficiency is an autosomal recessive disorder that typically results in chronic, nonspherocytic hemolytic anemia and in neuromuscular impairment. The molecular basis of this disease was analyzed for one Hungarian family and for two Australian families by localizing the defects in TPI cDNA and by determining how each defect affects TPI gene expression. The Hungarian family is noteworthy in having the first reported case of an individual, A. Jo., who harbors two defective TPI alleles but who does not manifest neuromuscular disabilities. This family was characterized by two mutations that have never been described. One is a missense mutation within codon 240 (TTC [Phe][r arrow]CTC [Leu]), which creates a thermolabile protein, as indicated by the results of enzyme activity assays using cell extracts. This substitution, which changes a phylogenetically conserved amino acid, may affect enzyme activity by dusrupting intersubunit contacts or substrate binding, as deduced from enzyme structural studies. The other mutation has yet to be localized but reduces the abundance of TPI mRNA 10--20-fold. Each of the Australian families was characterized by a previously described mutation within codon 104 (GAG [Glu][r arrow]GAC [Asp]), which also results in thermolabile protein. 49 refs., 6 figs., 1 tab.

  18. Crystal Structure of Triosephosphate Isomerase from Trypanosoma cruzi in Hexane

    Science.gov (United States)

    Gao, Xiu-Gong; Maldonado, Ernesto; Perez-Montfort, Ruy; Garza-Ramos, Georgina; Tuena de Gomez-Puyou, Marietta; Gomez-Puyou, Armando; Rodriguez-Romero, Adela

    1999-08-01

    To gain insight into the mechanisms of enzyme catalysis in organic solvents, the x-ray structure of some monomeric enzymes in organic solvents was determined. However, it remained to be explored whether the structure of oligomeric proteins is also amenable to such analysis. The field acquired new perspectives when it was proposed that the x-ray structure of enzymes in nonaqueous media could reveal binding sites for organic solvents that in principle could represent the starting point for drug design. Here, a crystal of the dimeric enzyme triosephosphate isomerase from the pathogenic parasite Trypanosoma cruzi was soaked and diffracted in hexane and its structure solved at 2- angstrom resolution. Its overall structure and the dimer interface were not altered by hexane. However, there were differences in the orientation of the side chains of several amino acids, including that of the catalytic Glu-168 in one of the monomers. No hexane molecules were detected in the active site or in the dimer interface. However, three hexane molecules were identified on the surface of the protein at sites, which in the native crystal did not have water molecules. The number of water molecules in the hexane structure was higher than in the native crystal. Two hexanes localized at <4 angstrom from residues that form the dimer interface; they were in close proximity to a site that has been considered a potential target for drug design.

  19. The significance of disulfide bonding in biological activity of HB-EGF, a mutagenesis approach

    International Nuclear Information System (INIS)

    Hoskins, J.T.; Zhou, Z.; Harding, P.A.

    2008-01-01

    A site-directed mutagenesis approach was taken to disrupt each of 3 disulfide bonds within human HB-EGF by substituting serine for both cysteine residues that contribute to disulfide bonding. Each HB-EGF disulfide analogue (HB-EGF-Cys/Ser 108/121 , HB-EGF-Cys/Ser 116/132 , and HB-EGF-Cys/Ser 134/143 ) was cloned under the regulation of the mouse metallothionein (MT) promoter and stably expressed in mouse fibroblasts. HB-EGF immunoreactive proteins with M r of 6.5, 21 and 24 kDa were observed from lysates of HB-EGF and each HB-EGF disulfide analogue. HB-EGF immunohistochemical analyses of each HB-EGF stable cell line demonstrated ubiquitous protein expression except HB-EGF-Cys/Ser 108/121 and HB-EGF-Cys/Ser 116/132 stable cell lines which exhibited accumulated expression immediately outside the nucleus. rHB-EGF, HB-EGF, and HB-EGF 134/143 proteins competed with 125 I-EGF in an A431 competitive binding assay, whereas HB-EGF-Cys/Ser 108/121 and HB-EGF-Cys/Ser 116/132 failed to compete. Each HB-EGF disulfide analogue lacked the ability to stimulate tyrosine phosphorylation of the 170 kDa EGFR. These results suggest that HB-EGF-Cys/Ser 134/143 antagonizes EGFRs

  20. Thiol/disulfide homeostasis in postmenopausal osteoporosis.

    Science.gov (United States)

    Korkmaz, V; Kurdoglu, Z; Alisik, M; Turgut, E; Sezgın, O O; Korkmaz, H; Ergun, Y; Erel, O

    2017-04-01

    To evaluate the impact of postmenopausal osteoporosis on thiol/disulfide homeostasis. A total of 75 participants were divided into two groups: Group 1 (n = 40) was composed of healthy postmenopausal women, and group 2 (n = 35) was composed of women with postmenopausal osteoporosis. Clinical findings and thiol/disulfide homeostasis were compared between the two groups. The disulfide/native thiol ratio was 8.6% ± 3.6 in group 1 and 12.7% ± 8.4 in group 2 (p = 0.04). The disulfide/native thiol percent ratio was significantly higher in group 2 after adjustment for the years since menopause and age (p menopause and age (p menopause in postmenopausal osteoporosis.

  1. Influence of Acute High Glucose on Protein Abundance Changes in Murine Glomerular Mesangial Cells

    Directory of Open Access Journals (Sweden)

    Michelle T. Barati

    2016-01-01

    Full Text Available The effects of acute exposure to high glucose levels as experienced by glomerular mesangial cells in postprandial conditions and states such as in prediabetes were investigated using proteomic methods. Two-dimensional gel electrophoresis and matrix assisted laser desorption ionization time of flight mass spectrometry methods were used to identify protein expression patterns in immortalized rat mesangial cells altered by 2 h high glucose (HG growth conditions as compared to isoosmotic/normal glucose control (NG⁎ conditions. Unique protein expression changes at 2 h HG treatment were measured for 51 protein spots. These proteins could be broadly grouped into two categories: (1 proteins involved in cell survival/cell signaling and (2 proteins involved in stress response. Immunoblot experiments for a protein belonging to both categories, prohibitin (PHB, supported a trend for increased total expression as well as significant increases in an acidic PHB isoform. Additional studies confirmed the regulation of proteasomal subunit alpha-type 2 and the endoplasmic reticulum chaperone and oxidoreductase PDI (protein disulfide isomerase, suggesting altered ER protein folding capacity and proteasomal function in response to acute HG. We conclude that short term high glucose induces subtle changes in protein abundances suggesting posttranslational modifications and regulation of pathways involved in proteostasis.

  2. Identification of antibody-interacting proteins that contribute to the production of recombinant antibody in mammalian cells.

    Science.gov (United States)

    Nishimiya, Daisuke; Ogura, Yuji; Sakurai, Hidetaka; Takahashi, Tohru

    2012-11-01

    Protein folding and assembly processes are essential for antibody secretion; however, the endogenous proteins involved in these processes remain largely unknown. Therefore, except for some well-known endoplasmic reticulum (ER) chaperones such as GRP78/Bip and protein disulfide isomerase, enhancement of recombinant antibody expression by co-expression of interacting proteins has been largely elusive. Here, in addition to known ER chaperones, we identified additional endogenous proteins that interact with recombinant antibody in mammalian cells by immunoprecipitation coupled with liquid chromatography-tandem mass spectrometry. Most of our identified proteins enhanced antibody production, and furthermore, some of their combinations resulted in greater enhancement. In particular, eukaryotic initiation factor 4A combined with other proteins had approximately fourfold higher effect on antibody production. Identified proteins that could improve antibody expression contain not only ER-resident proteins like GRP78/Bip but also non-ER-resident proteins. These results suggest that this method could be effective in the investigation of novel proteins that are involved in enhancing recombinant antibody production because immunoprecipitation coupled with mass spectroscopy could identify proteins which directly interact with the antibody.

  3. Quantifying changes in the cellular thiol-disulfide status during differentiation of B cells into antibody-secreting plasma cells

    DEFF Research Database (Denmark)

    Hansen, Rosa Rebecca Erritzøe; Otsu, Mieko; Braakman, Ineke

    2013-01-01

    Plasma cells produce and secrete massive amounts of disulfide-containing antibodies. To accommodate this load on the secretory machinery, the differentiation of resting B cells into antibody-secreting plasma cells is accompanied by a preferential expansion of the secretory compartments of the cells...... and by an up-regulation of enzymes involved in redox regulation and protein folding. We have quantified the absolute levels of protein thiols, protein disulfides, and glutathionylated proteins in whole cells. The results show that while the global thiol-disulfide state is affected to some extent...... by the differentiation, steady-state levels of glutathionylated protein thiols are less than 0.3% of the total protein cysteines, even in fully differentiated cells, and the overall protein redox state is not affected until late in differentiation, when large-scale IgM production is ongoing. A general expansion...

  4. Processing and turnover of the Hedgehog protein in the endoplasmic reticulum.

    Science.gov (United States)

    Chen, Xin; Tukachinsky, Hanna; Huang, Chih-Hsiang; Jao, Cindy; Chu, Yue-Ru; Tang, Hsiang-Yun; Mueller, Britta; Schulman, Sol; Rapoport, Tom A; Salic, Adrian

    2011-03-07

    The Hedgehog (Hh) signaling pathway has important functions during metazoan development. The Hh ligand is generated from a precursor by self-cleavage, which requires a free cysteine in the C-terminal part of the protein and results in the production of the cholesterol-modified ligand and a C-terminal fragment. In this paper, we demonstrate that these reactions occur in the endoplasmic reticulum (ER). The catalytic cysteine needs to form a disulfide bridge with a conserved cysteine, which is subsequently reduced by protein disulfide isomerase. Generation of the C-terminal fragment is followed by its ER-associated degradation (ERAD), providing the first example of an endogenous luminal ERAD substrate that is constitutively degraded. This process requires the ubiquitin ligase Hrd1, its partner Sel1, the cytosolic adenosine triphosphatase p97, and degradation by the proteasome. Processing-defective mutants of Hh are degraded by the same ERAD components. Thus, processing of the Hh precursor competes with its rapid degradation, explaining the impaired Hh signaling of processing-defective mutants, such as those causing human holoprosencephaly.

  5. Bifunctional phosphoglucose/phosphomannose isomerases from the Archaea Aeropyrum pernix and Thermoplasma acidophilum constitute a novel enzyme family within the phosphoglucose isomerase superfamily.

    Science.gov (United States)

    Hansen, Thomas; Wendorff, Daniel; Schönheit, Peter

    2004-01-16

    The hyperthermophilic crenarchaeon Aeropyrum pernix contains phosphoglucose isomerase (PGI) activity. However, obvious homologs with significant identity to known PGIs could not be identified in the sequenced genome of this organism. The PGI activity from A. pernix was purified and characterized. Kinetic analysis revealed that, unlike all known PGIs, the enzyme catalyzed reversible isomerization not only of glucose 6-phosphate but also of epimeric mannose 6-phosphate at similar catalytic efficiency, thus defining the protein as bifunctional phosphoglucose/phosphomannose isomerase (PGI/PMI). The gene pgi/pmi encoding PGI/PMI (open reading frame APE0768) was identified by matrix-assisted laser desorption ionization time-of-flight analyses; the gene was overexpressed in Escherichia coli as functional PGI/PMI. Putative PGI/PMI homologs were identified in several (hyper)thermophilic archaea and two bacteria. The homolog from Thermoplasma acidophilum (Ta1419) was overexpressed in E. coli, and the recombinant enzyme was characterized as bifunctional PGI/PMI. PGI/PMIs showed low sequence identity to the PGI superfamily and formed a distinct phylogenetic cluster. However, secondary structure predictions and the presence of several conserved amino acids potentially involved in catalysis indicate some structural and functional similarity to the PGI superfamily. Thus, we propose that bifunctional PGI/PMI constitutes a novel protein family within the PGI superfamily.

  6. The peptidyl prolyl cis/trans isomerase Pin1/Ess1 inhibits phosphorylation and toxicity of tau in a yeast model for Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Ann De Vos

    2015-04-01

    Full Text Available Since hyperphosphorylation of protein tau is a crucial event in Alzheimer’s disease, additional mechanisms besides the interplay of kinase and phosphatase activities are investigated, such as the effect of the peptidyl prolyl cis/trans isomerase Pin1. This isomerase was shown to bind and isomerize phosphorylated protein tau, thereby restoring the microtubule associated protein function of tau as well as promoting the dephosphorylation of the protein by the trans-dependent phosphatase PP2A. In this study we used models based on Saccharomyces cerevisiae to further elucidate the influence of Pin1 and its yeast ortholog Ess1 on tau phosphorylation and self-assembly. We could demonstrate that in yeast, a lack of Pin1 isomerase activity leads to an increase in phosphorylation of tau at Thr231, comparable to AD brain and consistent with earlier findings in other model organisms. However, we could also distinguish an effect by Pin1 on other residues of tau, i.e. Ser235 and Ser198/199/202. Furthermore, depletion of Pin1 isomerase activity results in reduced growth of the yeast cells, which is enhanced upon expression of tau. This suggests that the accumulation of hyperphosphorylated and aggregation-prone tau causes cytotoxicity in yeast. This study introduces yeast as a valuable model organism to characterize in detail the effect of Pin1 on the biochemical characteristics of protein tau, more specifically its phosphorylation and aggregation.

  7. Structural and biochemical characterization of a recombinant triosephosphate isomerase from Rhipicephalus (Boophilus) microplus.

    Science.gov (United States)

    Moraes, Jorge; Arreola, Rodrigo; Cabrera, Nallely; Saramago, Luiz; Freitas, Daniela; Masuda, Aoi; da Silva Vaz, Itabajara; Tuena de Gomez-Puyou, Marietta; Perez-Montfort, Ruy; Gomez-Puyou, Armando; Logullo, Carlos

    2011-06-01

    Triosephosphate isomerase (TIM) is an enzyme with a role in glycolysis and gluconeogenesis by catalyzing the interconversion between glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. This enzyme has been used as a target in endoparasite drug development. In this work we cloned, expressed, purified and studied kinetic and structural characteristics of TIM from tick embryos, Rhipicephalus (Boophilus) microplus (BmTIM). The Km and Vmax of the recombinant BmTIM with glyceraldehyde 3-phosphate as substrate, were 0.47 mM and 6031 μmol min⁻¹ mg protein⁻¹, respectively. The resolution of the diffracted crystal was estimated to be 2.4 Å and the overall data showed that BmTIM is similar to other reported dimeric TIMs. However, we found that, in comparison to other TIMs, BmTIM has the highest content of cysteine residues (nine cysteine residues per monomer). Only two cysteines could make disulfide bonds in monomers of BmTIM. Furthermore, BmTIM was highly sensitive to the action of the thiol reagents dithionitrobenzoic acid and methyl methane thiosulfonate, suggesting that there are five cysteines exposed in each dimer and that these residues could be employed in the development of species-specific inhibitors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. S-Nitrosylation and uncompetitive/fast off-rate (UFO) drug therapy in neurodegenerative disorders of protein misfolding.

    Science.gov (United States)

    Nakamura, T; Lipton, S A

    2007-07-01

    Although activation of glutamate receptors is essential for normal brain function, excessive activity leads to a form of neurotoxicity known as excitotoxicity. Key mediators of excitotoxic damage include overactivation of N-methyl-D-aspartate (NMDA) receptors, resulting in excessive Ca(2+) influx with production of free radicals and other injurious pathways. Overproduction of free radical nitric oxide (NO) contributes to acute and chronic neurodegenerative disorders. NO can react with cysteine thiol groups to form S-nitrosothiols and thus change protein function. S-nitrosylation can result in neuroprotective or neurodestructive consequences depending on the protein involved. Many neurodegenerative diseases manifest conformational changes in proteins that result in misfolding and aggregation. Our recent studies have linked nitrosative stress to protein misfolding and neuronal cell death. Molecular chaperones - such as protein-disulfide isomerase, glucose-regulated protein 78, and heat-shock proteins - can provide neuroprotection by facilitating proper protein folding. Here, we review the effect of S-nitrosylation on protein function under excitotoxic conditions, and present evidence that NO contributes to degenerative conditions by S-nitrosylating-specific chaperones that would otherwise prevent accumulation of misfolded proteins and neuronal cell death. In contrast, we also review therapeutics that can abrogate excitotoxic damage by preventing excessive NMDA receptor activity, in part via S-nitrosylation of this receptor to curtail excessive activity.

  9. Molecular and industrial aspects of glucose isomerase.

    Science.gov (United States)

    Bhosale, S H; Rao, M B; Deshpande, V V

    1996-06-01

    Glucose isomerase (GI) (D-xylose ketol-isomerase; EC. 5.3.1.5) catalyzes the reversible isomerization of D-glucose and D-xylose to D-fructose and D-xylulose, respectively. The enzyme has the largest market in the food industry because of its application in the production of high-fructose corn syrup (HFCS). HFCS, an equilibrium mixture of glucose and fructose, is 1.3 times sweeter than sucrose and serves as a sweetener for use by diabetics. Interconversion of xylose to xylulose by GI serves a nutritional requirement in saprophytic bacteria and has a potential application in the bioconversion of hemicellulose to ethanol. The enzyme is widely distributed in prokaryotes. Intensive research efforts are directed toward improving its suitability for industrial application. Development of microbial strains capable of utilizing xylan-containing raw materials for growth or screening for constitutive mutants of GI is expected to lead to discontinuation of the use of xylose as an inducer for the production of the enzyme. Elimination of Co2+ from the fermentation medium is desirable for avoiding health problems arising from human consumption of HFCS. Immobilization of GI provides an efficient means for its easy recovery and reuse and lowers the cost of its use. X-ray crystallographic and genetic engineering studies support a hydride shift mechanism for the action of GI. Cloning of GI in homologous as well as heterologous hosts has been carried out, with the prime aim of overproducing the enzyme and deciphering the genetic organization of individual genes (xylA, xylB, and xylR) in the xyl operon of different microorganisms. The organization of xylA and xylB seems to be highly conserved in all bacteria. The two genes are transcribed from the same strand in Escherichia coli and Bacillus and Lactobacillus species, whereas they are transcribed divergently on different strands in Streptomyces species. A comparison of the xylA sequences from several bacterial sources revealed the

  10. On the relevance of sophisticated structural annotations for disulfide connectivity pattern prediction.

    Directory of Open Access Journals (Sweden)

    Julien Becker

    Full Text Available Disulfide bridges strongly constrain the native structure of many proteins and predicting their formation is therefore a key sub-problem of protein structure and function inference. Most recently proposed approaches for this prediction problem adopt the following pipeline: first they enrich the primary sequence with structural annotations, second they apply a binary classifier to each candidate pair of cysteines to predict disulfide bonding probabilities and finally, they use a maximum weight graph matching algorithm to derive the predicted disulfide connectivity pattern of a protein. In this paper, we adopt this three step pipeline and propose an extensive study of the relevance of various structural annotations and feature encodings. In particular, we consider five kinds of structural annotations, among which three are novel in the context of disulfide bridge prediction. So as to be usable by machine learning algorithms, these annotations must be encoded into features. For this purpose, we propose four different feature encodings based on local windows and on different kinds of histograms. The combination of structural annotations with these possible encodings leads to a large number of possible feature functions. In order to identify a minimal subset of relevant feature functions among those, we propose an efficient and interpretable feature function selection scheme, designed so as to avoid any form of overfitting. We apply this scheme on top of three supervised learning algorithms: k-nearest neighbors, support vector machines and extremely randomized trees. Our results indicate that the use of only the PSSM (position-specific scoring matrix together with the CSP (cysteine separation profile are sufficient to construct a high performance disulfide pattern predictor and that extremely randomized trees reach a disulfide pattern prediction accuracy of [Formula: see text] on the benchmark dataset SPX[Formula: see text], which corresponds to

  11. Roles of Protein Synthesis Elongation Factor EF-Tu in Heat Tolerance in Plants

    Directory of Open Access Journals (Sweden)

    Jianming Fu

    2012-01-01

    Full Text Available EF-Tu proteins of plastids, mitochondria, and the cytosolic counterpart EF-1α in plants, as well as EF-Tu proteins of bacteria, are highly conserved and multifunctional. The functions of EF-Tu include transporting the aminoacyl-tRNA complex to the A site of the ribosome during protein biosynthesis; chaperone activity in protecting other proteins from aggregation caused by environmental stresses, facilitating renaturation of proteins when conditions return to normal; displaying a protein disulfide isomerase activity; participating in the degradation of N-terminally blocked proteins by the proteasome; eliciting innate immunity and triggering resistance to pathogenic bacteria in plants; participating in transcription when an E. coli host is infected with phages. EF-Tu genes are upregulated by abiotic stresses in plants, and EF-Tu plays important role in stress responses. Expression of a plant EF-Tu gene confers heat tolerance in E. coli, maize knock-out EF-Tu null mutants are heat susceptible, and over-expression of an EF-Tu gene improves heat tolerance in crop plants. This review paper summarizes the current knowledge of EF-Tu proteins in stress responses in plants and progress on application of EF-Tu for developing crop varieties tolerant to abiotic stresses, such as high temperatures.

  12. Molecular characterization of the glucose isomerase from the thermophilic bacterium Fervidobacterium gondwanense

    NARCIS (Netherlands)

    Kluskens, L.D.; Zeilstra, J.B.; Geerling, A.C.M.; Vos, de W.M.; Oost, van der J.

    2010-01-01

    The gene coding for xylose isomerase from the thermophilic bacterium Fervidobacterium gondwanense was cloned and overexpressed in Escherichia coli. The produced xylose isomerase (XylA), which closely resembles counterparts from Thermotoga maritima and T. neapolitana, was purified and characterized.

  13. Purification, crystallization and preliminary crytallographic analysis of phosphoglucose isomerase from the hyperthermophilic archaeon Pyrococcus furiosus

    NARCIS (Netherlands)

    Akerboom, A.P.; Turnbull, A.P.; Hargreaves, D.; Fischer, M.; Geus, de D.; Sedelnikova, S.E.; Berrisford, J.M.; Baker, P.J.; Verhees, C.H.; Oost, van der J.; Rice, D.W.

    2003-01-01

    The glycolytic enzyme phosphoglucose isomerase catalyses the reversible isomerization of glucose 6-phosphate to fructose 6-phosphate. The phosphoglucose isomerase from the hyperthermophilic archaeon Pyrococcus furiosus, which shows no sequence similarity to any known bacterial or eukaryotic

  14. Brain MRI findings of carbon disulfide poisoning

    International Nuclear Information System (INIS)

    Cha, Joo Hee; Kim, Mi Jung; Yim, Sang Hyuk; Kim, Sam Soo; Han, Heon; Kim, Rok Ho

    2002-01-01

    To evaluate the findings of brain MRI in patients with carbon disulfide poisoning. Ninety-one patients who had suffered carbon disulfide poisoning [male:female=87:4; age, 32-74 (mean 53.3) years] were included in this study. To determine the extent of white matter hyperintensity (Grade 0-V) and lacunar infarction, T2-weighted MR imaging of the brain was performed. T2-weighted images depicted white matter hyperintensity in 70 patients (76.9%) and lacunar infarcts in 27 (29.7%). In these patients, the prevalent findings at T2-weighted MR imaging of the brain were white matter hyperintensity and lacunar infarcts. Disturbance of the cardiovascular system by carbon disulfide might account for these results

  15. Preliminary crystallographic analysis of two hypothetical ribose-5-phosphate isomerases from Streptococcus mutans

    International Nuclear Information System (INIS)

    Wang, Chen; Fan, Xuexin; Cao, Xiaofang; Liu, Xiang; Li, Lanfen; Su, Xiaodong

    2012-01-01

    Two hypothetical ribose-5-phosphate isomerases from S. mutans have been produced in E. coli and crystallized. The crystals diffracted to high resolutions suitable for crystallographic analyses. Study of the enzymes from sugar metabolic pathways may provide a better understanding of the pathogenesis of the human oral pathogen Streptococcus mutans. Bioinformatics, biochemical and crystallization methods were used to characterize and understand the function of two putative ribose-5-phosphate isomerases: SMU1234 and SMU2142. The proteins were cloned and constructed with N-terminal His tags. Protein purification was performed by Ni 2+ -chelating and size-exclusion chromatography. The crystals of SUM1234 diffracted to 1.9 Å resolution and belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 48.97, b = 98.27, c = 101.09 Å, α = β = γ = 90°. The optimized SMU2142 crystals diffracted to 2.7 Å resolution and belonged to space group P1, with unit-cell parameters a = 53.7, b = 54.1, c = 86.5 Å, α = 74.2, β = 73.5, γ = 83.7°. Initial phasing of both proteins was attempted by molecular replacement; the structure of SMU1234 could easily be solved, but no useful results were obtained for SMU2142. Therefore, SeMet-labelled SMU2142 will be prepared for phasing

  16. Disulfide bond within mu-calpain active site inhibits activity and autolysis.

    Science.gov (United States)

    Lametsch, René; Lonergan, Steven; Huff-Lonergan, Elisabeth

    2008-09-01

    Oxidative processes have the ability to influence mu-calpain activity. In the present study the influence of oxidation on activity and autolysis of mu-calpain was examined. Furthermore, LC-MS/MS analysis was employed to identify and characterize protein modifications caused by oxidation. The results revealed that the activity of mu-calpain is diminished by oxidation with H2O2 in a reversible manner involving cysteine and that the rate of autolysis of mu-calpain concomitantly slowed. The LC-MS/MS analysis of the oxidized mu-calpain revealed that the amino acid residues 105-133 contained a disulfide bond between Cys(108) and Cys(115). The finding that the active site cysteine in mu-calpain is able to form a disulfide bond has, to our knowledge, not been reported before. This could be part of a unique oxidation mechanism for mu-calpain. The results also showed that the formation of the disulfide bond is limited in the control (no oxidant added), and further limited in a concentration-dependent manner when beta-mercaptoethanol is added. However, the disulfide bond is still present to some extent in all conditions indicating that the active site cysteine is potentially highly susceptible to the formation of this intramolecular disulfide bond.

  17. Delicate balance of electrostatic interactions and disulfide bridges in thermostability of firefly luciferase.

    Science.gov (United States)

    Karimzadeh, Somayeh; Moradi, Maryam; Hosseinkhani, Saman

    2012-12-01

    The wild type Photinus pyralis luciferase does not have any disulfide bridge. Disulfide bridges are determinant in inherent stability of protein at moderate temperatures. Meanwhile, arginin is responsible for thermostability at higher temperatures. In this study, by concomitant introduction of disulfide bridge and a surface arginin in a mutant (A296C-A326C/I232R), the contribution of disulfide bridge introduction and surface hydrophilic residue on activity and global stability of P. pyralis luciferase is investigated. In addition to the mentioned mutant; I232R, A296C-A326C and wild type luciferases are characterized. Though addition of Arg caused stability against proteolysis but in combination with disulfide bridge resulted in decreased thermal stability compared to A296C-A326C mutant. In spite of long distance of two different mutations (A296C-A326C and I232R) from each other in the three-dimensional structure, combination of their effects on the stability of luciferase was not cumulative. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Short arm region of laminin-5 gamma2 chain: structure, mechanism of processing and binding to heparin and proteins

    DEFF Research Database (Denmark)

    Sasaki, T; Göhring, W; Mann, K

    2001-01-01

    which required in addition disulfide reshuffling by isomerases. The liberated segment bound through its L4 m module to heparin, nidogen-1, fibulin-1 and fibulin-2. A further heparin/sulfatide-binding site could be attributed to some arginine residues in module LE1. The gamma2LE4-6 segment remaining...

  19. Dynamic combinatorial chemistry with diselenides and disulfides in water

    DEFF Research Database (Denmark)

    Rasmussen, Brian; Sørensen, Anne; Gotfredsen, Henrik

    2014-01-01

    Diselenide exchange is introduced as a reversible reaction in dynamic combinatorial chemistry in water. At neutral pH, diselenides are found to mix with disulfides and form dynamic combinatorial libraries of diselenides, disulfides, and selenenylsulfides. This journal is...

  20. Folding and activity of hybrid sequence, disulfide-stabilized peptides

    Energy Technology Data Exchange (ETDEWEB)

    Pease, J.H.B.; Storrs, R.W.; Wemmer, D.E. (Univ. of California, Berkeley (USA))

    1990-08-01

    Peptides have been synthesized that have hybrid sequences, partially derived from the bee venom peptide apamin and partially from the S peptide of ribonuclease A. The hybrid peptides were demonstrated by NMR spectroscopy to fold, forming the same disulfides and basic three-dimensional structure as native apamin, containing a {beta}-turn and an {alpha}-helix. These hybrids were active in complementing S protein, reactivating nuclease activity. In addition, the hybrid peptide was effective in inducing antibodies that cross-react with the RNase, without conjugation to a carrier protein. The stability of the folded structure of this peptide suggests that it should be possible to elicit antibodies that will react not only with a specific sequence, but also with a specific secondary structure. Hybrid sequence peptides also provide opportunities to study separately nucleation and propagation steps in formation of secondary structure. The authors show that in S peptide the {alpha}-helix does not end abruptly but rather terminates gradually over four or five residues. In general, these hybrid sequence peptides, which fold predictably because of disulfide bond formation, can provide opportunities for examining structure - function relationships for many biologically active sequences.

  1. Folding and activity of hybrid sequence, disulfide-stabilized peptides

    International Nuclear Information System (INIS)

    Pease, J.H.B.; Storrs, R.W.; Wemmer, D.E.

    1990-01-01

    Peptides have been synthesized that have hybrid sequences, partially derived from the bee venom peptide apamin and partially from the S peptide of ribonuclease A. The hybrid peptides were demonstrated by NMR spectroscopy to fold, forming the same disulfides and basic three-dimensional structure as native apamin, containing a β-turn and an α-helix. These hybrids were active in complementing S protein, reactivating nuclease activity. In addition, the hybrid peptide was effective in inducing antibodies that cross-react with the RNase, without conjugation to a carrier protein. The stability of the folded structure of this peptide suggests that it should be possible to elicit antibodies that will react not only with a specific sequence, but also with a specific secondary structure. Hybrid sequence peptides also provide opportunities to study separately nucleation and propagation steps in formation of secondary structure. The authors show that in S peptide the α-helix does not end abruptly but rather terminates gradually over four or five residues. In general, these hybrid sequence peptides, which fold predictably because of disulfide bond formation, can provide opportunities for examining structure - function relationships for many biologically active sequences

  2. Screening for salt-responsive proteins in two contrasting alfalfa cultivars using a comparative proteome approach.

    Science.gov (United States)

    Rahman, Md Atikur; Alam, Iftekhar; Kim, Yong-Goo; Ahn, Na-Young; Heo, Sung-Hyun; Lee, Dong-Gi; Liu, Gongshe; Lee, Byung-Hyun

    2015-04-01

    A comparative proteomic approach was carried out between two contrasting alfalfa cultivars, nonomu (NM-801; salt tolerant) and vernal (VN; salt intolerant) in terms of salt tolerance. Seedlings were subjected to salt stress (50 and 100 mM NaCl) for three days. Several physiological parameters (leaf water, chlorophyll, root Na(+), K(+), and Ca(2+)) and root proteome profile were analyzed. Comparison of physiological status revealed that NM-801 is more tolerant to salt than VN. Eighty three differentially expressed proteins were found on 2-DE maps, of which 50 were identified by MALDI-TOF or MALDI-TOF/TOF mass spectrometry. These proteins were involved in ion homeostasis, protein turnover and signaling, protein folding, cell wall components, carbohydrate and energy metabolism, reactive oxygen species regulation and detoxification, and purine and fatty acid metabolism. The comparative proteome analysis showed that 33 salt-responsive proteins were significantly changed in both cultivars, while 17 (14 in VN and 3 in NM-801) were cultivar-specific. Peroxidase, protein disulfide-isomerase, NAD synthetase, and isoflavone reductase were up-regulated significantly only in NM-801 in all salt concentrations. In addition, we identified novel proteins including NAD synthetase and biotin carboxylase-3 that were not reported previously as salt-responsive. Taken together, these results provide new insights of salt stress tolerance in alfalfa. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. Proteomic analysis of endothelial cell autoantigens recognized by anti-dengue virus nonstructural protein 1 antibodies.

    Science.gov (United States)

    Cheng, Hsien-Jen; Lin, Chiou-Feng; Lei, Huan-Yao; Liu, Hsiao-Sheng; Yeh, Trai-Ming; Luo, Yueh-Hsia; Lin, Yee-Shin

    2009-01-01

    We previously showed the occurrence of autoimmune responses in dengue virus (DV) infection, which has potential implications for the pathogenesis of dengue hemorrhagic syndrome. In the present study, we have used a proteomic analysis to identify several candidate proteins on HMEC-1 endothelial cells recognized by anti-DV nonstructural protein 1 (NS1) antibodies. The target proteins, including ATP synthase beta chain, protein disulfide isomerase, vimentin, and heat shock protein 60, co-localize with anti-NS1 binding sites on nonfixed HMEC-1 cells using immunohistochemical double staining and confocal microscopy. The cross-reactivity of anti-target protein antibodies with HMEC-1 cells was inhibited by NS1 protein pre-absorption. Furthermore, a cross-reactive epitope on NS1 amino acid residues 311-330 (P311-330) was predicted using homologous sequence alignment. The reactivity of dengue hemorrhagic patient sera with HMEC-1 cells was blocked by synthetic peptide P311-330 pre-absorption. Taken together, our results identify putative targets on endothelial cells recognized by anti-DV NS1 antibodies, where NS1 P311-330 possesses the shared epitope.

  4. Overexpression, crystallization and preliminary X-ray crystallographic analysis of a putative xylose isomerase from Bacteroides thetaiotaomicron.

    Science.gov (United States)

    Cho, Jea-Won; Han, Byeong-Gu; Park, Sang Youn; Kim, Seung Jun; Kim, Myoung-Dong; Lee, Byung Il

    2013-10-01

    Bacteroides thetaiotaomicron BT0793, a putative xylose isomerase, was overexpressed in Escherichia coli, purified and crystallized using polyethylene glycol monomethyl ether 550 as the precipitant. X-ray diffraction data were collected to 2.10 Å resolution at 100 K using synchrotron X-rays. The crystal was found to belong to space group P1, with unit-cell parameters a=96.3, b=101.7, c=108.3 Å, α=82.8, β=68.2, γ=83.0°. The asymmetric unit contained eight subunits of xylose isomerase with a crystal volume per protein weight (VM) of 2.38 Å3 Da(-1) and a solvent content of 48.3%.

  5. Glucose(xylose isomerase production by Streptomyces sp. CH7 grown on agricultural residues

    Directory of Open Access Journals (Sweden)

    Kankiya Chanitnun

    2012-09-01

    Full Text Available Streptomyces sp. CH7 was found to efficiently produce glucose(xylose isomerase when grown on either xylan or agricultural residues. This strain produced a glucose(xylose isomerase activity of roughly 1.8 U/mg of protein when it was grown in medium containing 1% xylose as a carbon source. Maximal enzymatic activities of about 5 and 3 U/mg were obtained when 1% xylan and 2.5% corn husks were used, respectively. The enzyme was purified from a mycelial extract to 16-fold purity with only two consecutive column chromatography steps using Macro-prep DEAE and Sephacryl-300, respectively. The approximate molecular weight of the purified enzyme is 170 kDa, and it has four identical subunits of 43.6 kDa as estimated by SDS-PAGE. Its Km values for glucose and xylose were found to be 258.96 and 82.77 mM, respectively, and its Vmax values are 32.42 and 63.64 μM/min/mg, respectively. The purified enzyme is optimally active at 85ºC and pH 7.0. It is stable at pH 5.5-8.5 and at temperatures up to 60ºC after 30 min. These findings indicate that glucose(xylose isomerase from Streptomyces sp. CH7 has the potential for industrial applications, especially for high-fructose syrup production and bioethanol fermentation from hemicellulosic hydrolysates by Saccharomyces cerevisiae.

  6. Free and Immobilized Glucose Isomerase from Streptomyces phaeochromogenes1

    Science.gov (United States)

    Strandberg, Gerald W.; Smiley, Karl L.

    1971-01-01

    Properties were determined of the glucose isomerase from Streptomyces phaeochromogenes NRRL B-3559. The enzyme exhibited a temperature optimum of 80 C and a pH optimum of about 8. The effect of various buffers on activity of the enzyme and the optimum pH were studied. Michaelis constants for glucose and Mg2+ were 0.25 and 0.025 m, respectively. Co2+ enhanced enzyme activity. A functional polyacrylamide-entrapped glucose isomerase was prepared. The conditions for entrapment and use of the bound enzyme were examined. PMID:5575565

  7. Neutrophils Turn Plasma Proteins into Weapons against HIV-1.

    Directory of Open Access Journals (Sweden)

    Cornelia Speth

    Full Text Available As a consequence of innate immune activation granulocytes and macrophages produce hypochlorite/hypochlorous acid (HOCl via secretion of myeloperoxidase (MPO to the outside of the cells, where HOCl immediately reacts with proteins. Most proteins that become altered by this system do not belong to the invading microorganism but to the host. While there is no doubt that the myeloperoxidase system is capable of directly inactivating HIV-1, we hypothesized that it may have an additional indirect mode of action. We show in this article that HOCl is able to chemically alter proteins and thus turn them into Idea-Ps (Idea-P = immune defence-altered protein, potent amyloid-like and SH-groups capturing antiviral weapons against HIV-1. HOCl-altered plasma proteins (Idea-PP have the capacity to bind efficiently and with high affinity to the HIV-1 envelope protein gp120, and to its receptor CD4 as well as to the protein disulfide isomerase (PDI. Idea-PP was able to inhibit viral infection and replication in a cell culture system as shown by reduced number of infected cells and of syncytia, resulting in reduction of viral capsid protein p24 in the culture supernatant. The unmodified plasma protein fraction had no effect. HOCl-altered isolated proteins antithrombin III and human serum albumin, taken as representative examples of the whole pool of plasma proteins, were both able to exert the same activity of binding to gp120 and inhibition of viral proliferation. These data offer an opportunity to improve the understanding of the intricacies of host-pathogen interactions and allow the generation of the following hypothetical scheme: natural immune defense mechanisms generate by posttranslational modification of plasma proteins a potent virucidal weapon that immobilizes the virus as well as inhibits viral fusion and thus entry into the host cells. Furthermore simulation of this mechanism in vitro might provide an interesting new therapeutic approach against

  8. Neutrophils Turn Plasma Proteins into Weapons against HIV-1.

    Science.gov (United States)

    Speth, Cornelia; Brodde, Martin F; Hagleitner, Magdalena; Rambach, Günter; Van Aken, Hugo; Dierich, Manfred; Kehrel, Beate E

    2013-01-01

    As a consequence of innate immune activation granulocytes and macrophages produce hypochlorite/hypochlorous acid (HOCl) via secretion of myeloperoxidase (MPO) to the outside of the cells, where HOCl immediately reacts with proteins. Most proteins that become altered by this system do not belong to the invading microorganism but to the host. While there is no doubt that the myeloperoxidase system is capable of directly inactivating HIV-1, we hypothesized that it may have an additional indirect mode of action. We show in this article that HOCl is able to chemically alter proteins and thus turn them into Idea-Ps (Idea-P = immune defence-altered protein), potent amyloid-like and SH-groups capturing antiviral weapons against HIV-1. HOCl-altered plasma proteins (Idea-PP) have the capacity to bind efficiently and with high affinity to the HIV-1 envelope protein gp120, and to its receptor CD4 as well as to the protein disulfide isomerase (PDI). Idea-PP was able to inhibit viral infection and replication in a cell culture system as shown by reduced number of infected cells and of syncytia, resulting in reduction of viral capsid protein p24 in the culture supernatant. The unmodified plasma protein fraction had no effect. HOCl-altered isolated proteins antithrombin III and human serum albumin, taken as representative examples of the whole pool of plasma proteins, were both able to exert the same activity of binding to gp120 and inhibition of viral proliferation. These data offer an opportunity to improve the understanding of the intricacies of host-pathogen interactions and allow the generation of the following hypothetical scheme: natural immune defense mechanisms generate by posttranslational modification of plasma proteins a potent virucidal weapon that immobilizes the virus as well as inhibits viral fusion and thus entry into the host cells. Furthermore simulation of this mechanism in vitro might provide an interesting new therapeutic approach against microorganisms.

  9. Efficient export of human growth hormone, interferon α2b and antibody fragments to the periplasm by the Escherichia coli Tat pathway in the absence of prior disulfide bond formation.

    Science.gov (United States)

    Alanen, Heli I; Walker, Kelly L; Lourdes Velez Suberbie, M; Matos, Cristina F R O; Bönisch, Sarah; Freedman, Robert B; Keshavarz-Moore, Eli; Ruddock, Lloyd W; Robinson, Colin

    2015-03-01

    Numerous therapeutic proteins are expressed in Escherichia coli and targeted to the periplasm in order to facilitate purification and enable disulfide bond formation. Export is normally achieved by the Sec pathway, which transports proteins through the plasma membrane in a reduced, unfolded state. The Tat pathway is a promising alternative means of export, because it preferentially exports correctly folded proteins; however, the reducing cytoplasm of standard strains has been predicted to preclude export by Tat of proteins that contain disulfide bonds in the native state because, in the reduced state, they are sensed as misfolded and rejected. Here, we have tested a series of disulfide-bond containing biopharmaceuticals for export by the Tat pathway in CyDisCo strains that do enable disulfide bond formation in the cytoplasm. We show that interferon α2b, human growth hormone (hGH) and two antibody fragments are exported with high efficiency; surprisingly, however, they are efficiently exported even in the absence of cytoplasmic disulfide formation. The exported proteins acquire disulfide bonds in the periplasm, indicating that the normal disulfide oxidation machinery is able to act on the proteins. Tat-dependent export of hGH proceeds even when the disulfide bonds are removed by substitution of the Cys residues involved, suggesting that these substrates adopt tertiary structures that are accepted as fully-folded by the Tat machinery. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Identification of differentially regulated maize proteins conditioning Sugarcane mosaic virus systemic infection.

    Science.gov (United States)

    Chen, Hui; Cao, Yanyong; Li, Yiqing; Xia, Zihao; Xie, Jipeng; Carr, John P; Wu, Boming; Fan, Zaifeng; Zhou, Tao

    2017-08-01

    Sugarcane mosaic virus (SCMV) is the most important cause of maize dwarf mosaic disease. To identify maize genes responsive to SCMV infection and that may be involved in pathogenesis, a comparative proteomic analysis was performed using the first and second systemically infected leaves (termed 1 SL and 2 SL, respectively). Seventy-one differentially expressed proteins were identified in 1 SL and 2 SL upon SCMV infection. Among them, eight proteins showed the same changing patterns in both 1 SL and 2 SL. Functional annotations of regulated proteins and measurement of photosynthetic activity revealed that photosynthesis was more inhibited and defensive gene expression more pronounced in 1 SL than in 2 SL. Knockdown of regulated proteins in both 1 SL and 2 SL by a brome mosaic virus-based gene silencing vector in maize indicated that protein disulfide isomerase-like and phosphoglycerate kinase were required for optimal SCMV replication. By contrast, knockdown of polyamine oxidase (ZmPAO) significantly increased SCMV accumulation, implying that ZmPAO activity might contribute to resistance or tolerance. The results suggest that combining comparative proteomic analyses of different tissues and virus-induced gene silencing is an efficient way to identify host proteins supporting virus replication or enhancing resistance to virus infection. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  11. Potential hydrophobic protein markers of breast cancer in Malaysian Chinese, Malay and Indian patients.

    Science.gov (United States)

    Liang, Seng; Singh, Manjit; Gam, Lay-Harn

    Breast cancer is a leading cause of worldwide mortality in females. In Malaysia, breast cancer is the most commonly diagnosed cancer in women. Of these, the Chinese had the most number of breast cancer cases, followed by the Indian and the Malay. The most common type of breast cancer is infiltrating ductal carcinoma (IDC). A proteomic approach was used to identify protein profile changes in cancerous tissues compared with the normal tissues, the tissues were collected from patients of three different ethnicities, i.e. Chinese, Malay and Indian. Ten differentially expressed hydrophobic proteins were identified. We had evaluated the potential of these proteins as biomarker for infiltrating ducal carcinoma (IDC) and the ethnic-specific expression of these proteins was also determined. The data showed that peroxiredoxin-2, heat shock protein 60, protein disulfide isomerase and calreticulin may serve as ethnic-related potential markers for either one or combination of Chinese, Malay and Indian cohorts as their expression levels were significantly high in the cancerous tissues compared to the normal tissues in the ethnic group tested.

  12. Crystallographic studies evidencing the high energy tolerance to disrupting the interface disulfide bond of thioredoxin 1 from white leg shrimp Litopenaeus vannamei.

    Science.gov (United States)

    Campos-Acevedo, Adam A; Rudiño-Piñera, Enrique

    2014-12-15

    Thioredoxin (Trx) is a small 12-kDa redox protein that catalyzes the reduction of disulfide bonds in proteins from different biological systems. A recent study of the crystal structure of white leg shrimp thioredoxin 1 from Litopenaeus vannamei (LvTrx) revealed a dimeric form of the protein mediated by a covalent link through a disulfide bond between Cys73 from each monomer. In the present study, X-ray-induced damage in the catalytic and the interface disulfide bond of LvTrx was studied at atomic resolution at different transmission energies of 8% and 27%, 12.8 keV at 100 K in the beamline I-24 at Diamond Light Source. We found that at an absorbed dose of 32 MGy, the X-ray induces the cleavage of the disulfide bond of each catalytic site; however, the interface disulfide bond was cleaved at an X-ray adsorbed dose of 85 MGy; despite being the most solvent-exposed disulfide bond in LvTrx (~50 Å2). This result clearly established that the interface disulfide bond is very stable and, therefore, less susceptible to being reduced by X-rays. In fact, these studies open the possibility of the existence in solution of a dimeric LvTrx.

  13. Crystallographic Studies Evidencing the High Energy Tolerance to Disrupting the Interface Disulfide Bond of Thioredoxin 1 from White Leg Shrimp Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Adam A. Campos-Acevedo

    2014-12-01

    Full Text Available Thioredoxin (Trx is a small 12-kDa redox protein that catalyzes the reduction of disulfide bonds in proteins from different biological systems. A recent study of the crystal structure of white leg shrimp thioredoxin 1 from Litopenaeus vannamei (LvTrx revealed a dimeric form of the protein mediated by a covalent link through a disulfide bond between Cys73 from each monomer. In the present study, X-ray-induced damage in the catalytic and the interface disulfide bond of LvTrx was studied at atomic resolution at different transmission energies of 8% and 27%, 12.8 keV at 100 K in the beamline I-24 at Diamond Light Source. We found that at an absorbed dose of 32 MGy, the X-ray induces the cleavage of the disulfide bond of each catalytic site; however, the interface disulfide bond was cleaved at an X-ray adsorbed dose of 85 MGy; despite being the most solvent-exposed disulfide bond in LvTrx (~50 Å2. This result clearly established that the interface disulfide bond is very stable and, therefore, less susceptible to being reduced by X-rays. In fact, these studies open the possibility of the existence in solution of a dimeric LvTrx.

  14. Production of recombinant disulfide-rich venom peptides for structural and functional analysis via expression in the periplasm of E. coli.

    Directory of Open Access Journals (Sweden)

    Julie K Klint

    Full Text Available Disulfide-rich peptides are the dominant component of most animal venoms. These peptides have received much attention as leads for the development of novel therapeutic agents and bioinsecticides because they target a wide range of neuronal receptors and ion channels with a high degree of potency and selectivity. In addition, their rigid disulfide framework makes them particularly well suited for addressing the crucial issue of in vivo stability. Structural and functional characterization of these peptides necessitates the development of a robust, reliable expression system that maintains their native disulfide framework. The bacterium Escherichia coli has long been used for economical production of recombinant proteins. However, the expression of functional disulfide-rich proteins in the reducing environment of the E. coli cytoplasm presents a significant challenge. Thus, we present here an optimised protocol for the expression of disulfide-rich venom peptides in the periplasm of E. coli, which is where the endogenous machinery for production of disulfide-bonds is located. The parameters that have been investigated include choice of media, induction conditions, lysis methods, methods of fusion protein and peptide purification, and sample preparation for NMR studies. After each section a recommendation is made for conditions to use. We demonstrate the use of this method for the production of venom peptides ranging in size from 2 to 8 kDa and containing 2-6 disulfide bonds.

  15. Differential hepatic protein tyrosine nitration of mouse due to aging - effect on mitochondrial energy metabolism, quality control machinery of the endoplasmic reticulum and metabolism of drugs.

    Science.gov (United States)

    Marshall, Adrienne; Lutfeali, Reshma; Raval, Alpan; Chakravarti, Deb N; Chakravarti, Bulbul

    2013-01-04

    Aging is the inevitable fate of life which leads to the gradual loss of functions of different organs and organelles of all living organisms. The liver is no exception. Oxidative damage to proteins and other macromolecules is widely believed to be the primary cause of aging. One form of oxidative damage is tyrosine nitration of proteins, resulting in the potential loss of their functions. In this study, the effect of age on the nitration of tyrosine in mouse liver proteins was examined. Liver proteins from young (19-22 weeks) and old (24 months) C57/BL6 male mice were separated using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and electroblotted onto nitrocellulose membranes. Proteins undergoing tyrosine nitration were identified using anti-nitrotyrosine antibody. Three different protein bands were found to contain significantly increased levels of nitrotyrosine in old mice (Wilconxon rank-sum test, p<0.05). Electrospray ionization liquid chromatography tandem mass spectrometry (ESI-LC-MS/MS) was used to identify the proteins in these bands, which included aldehyde dehydrogenase 2, Aldehyde dehydrogenase family 1, subfamily A1, ATP synthase, H(+) transporting, mitochondrial F1 complex, β subunit, selenium-binding protein 2, and protein disulfide-isomerase precursor. The possible impairment of their functions can lead to altered hepatic activity and have been discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Characterization of intramolecular disulfide bonds and secondary modifications of the glycoprotein from viral hemorrhagic septicemia virus, a fish rhabdovirus

    DEFF Research Database (Denmark)

    Einer-Jensen, Katja; Nielsen, Thomas Krogh; Roepstorff, Peter

    1998-01-01

    of the protein, The present study was initiated to identify the disulfide bonds and other structural aspects relevant to vaccine design. The N-terminal amino acid residue was identified as being a pyroglutamic acid, corresponding to Gln21 of the primary transcript, Peptides from endoproteinase-degraded G protein...

  17. Characteristics of chalcone isomerase promoter in crabapple leaves ...

    African Journals Online (AJOL)

    Anthocyanins are secondary metabolites found in higher plants that contribute to the colors of plants and chalcone isomerase (CHI) is one of the key enzymes in anthocyanin biosynthetic pathway. What characteristic is CHI promoter known as the regulation sequence of CHI gene, has been rarely investigated. We isolated A ...

  18. Purification and some properties of glucose isomerase from Bacillus ...

    African Journals Online (AJOL)

    The objective of this study is to produce and purify glucose isomerase (GI) from Bacillus megaterium and to determine some of its properties. Soil sample was collected from cassava starch processing site and used immediately for bacterial isolation. Selected isolate produced the best GI activity in a preliminary test.

  19. Biochemical properties of L-arabinose isomerase from Clostridium hylemonae to produce D-tagatose as a functional sweetener.

    Science.gov (United States)

    Nguyen, Tien-Kieu; Hong, Moon-Gi; Chang, Pahn-Shick; Lee, Byung-Hoo; Yoo, Sang-Ho

    2018-01-01

    d-Tagatose has gained substantial interest due to its potential functionalities as a sucrose substitute. In this study, the gene araA, encoding l-arabinose isomerase (l-AI) from Clostridium hylemonae (DSM 15053), was cloned and expressed in Escherichia coli BL21 (DE3). This gene consists of 1,506 nucleotides and encodes a protein of 501 amino acid residues with a calculated molecular mass of 56,554 Da. Since l-AI was expressed as an intracellular inclusion body, this enzyme was solubilized with guanidine hydrochloride, refolded, and activated with a descending concentration gradient of urea. The purified enzyme exhibited the greatest activity at 50°C, pH 7-7.5, and required 1 mM of Mg2+ as a cofactor. Notably, the catalytic efficiency (3.69 mM-1sec-1) of l-AI from C. hylemonae on galactose was significantly greater than that of other previously reported enzymes. The bioconversion yield of d-tagatose using the C. hylemonae l-arabinose isomerase at 60°C reached approximately 46% from 10 mM of d-galactose after 2 h. From these results, it is suggested that the l-arabinose isomerase from C. hylemonae could be utilized as a potential enzyme for d-tagatose production due to its high conversion yield at an industrially competitive temperature.

  20. A mutation in the rice chalcone isomerase gene causes the golden hull and internode 1 phenotype.

    Science.gov (United States)

    Hong, Lilan; Qian, Qian; Tang, Ding; Wang, Kejian; Li, Ming; Cheng, Zhukuan

    2012-07-01

    The biosynthesis of flavonoids, important secondary plant metabolites, has been investigated extensively, but few mutants of genes in this pathway have been identified in rice (Oryza sativa). The rice gold hull and internode (gh) mutants exhibit a reddish-brown pigmentation in the hull and internode and their phenotype has long been used as a morphological marker trait for breeding and genetic study. Here, we characterized that the gh1 mutant was a mutant of the rice chalcone isomerase gene (OsCHI). The result showed that gh1 had a Dasheng retrotransposon inserted in the 5′ UTR of the OsCHI gene, which resulted in the complete loss of OsCHI expression. gh1 exhibited golden pigmentation in hulls and internodes once the panicles were exposed to light. The total flavonoid content in gh1 hulls was increased threefold compared to wild type. Consistent with the gh1 phenotype, OsCHI transcripts were expressed in most tissues of rice and most abundantly in internodes. It was also expressed at high levels in panicles before heading, distributed mainly in lemmas and paleae, but its expression decreased substantially after the panicles emerged from the sheath. OsCHI encodes a protein functionally and structurally conserved to chalcone isomerases in other species. Our findings demonstrated that the OsCHI gene was indispensable for flux of the flavonoid pathway in rice.

  1. Overexpression, purification, crystallization and preliminary diffraction studies of the Protaminobacter rubrum sucrose isomerase SmuA

    International Nuclear Information System (INIS)

    Ravaud, Stéphanie; Watzlawick, Hildegard; Haser, Richard; Mattes, Ralf; Aghajari, Nushin

    2005-01-01

    The P. rubrum sucrose isomerase SmuA, a key enzyme in the industrial production of isomaltulose, was crystallized and diffraction data were collected to 1.95 Å resolution. Palatinose (isomaltulose, α-d-glucosylpyranosyl-1,6-d-fructofuranose), a nutritional and acariogenic reducing sugar, is industrially obtained from sucrose by using immobilized cells of Protaminobacter rubrum that produce the sucrose isomerase SmuA. The isomerization of sucrose catalyzed by this enzyme also results in the formation of trehalulose (α-d-glucosylpyranosyl-1,1-d-fructofuranose) in smaller amounts and glucose, fructose and eventually isomaltose as by-products, which lower the yield of the reaction and complicate the recovery of palatinose. The determination of the three-dimensional structure of SmuA will provide a basis for rational protein-engineering studies in order to optimize the industrial production of palatinose. A recombinant form of the 67.3 kDa SmuA enzyme has been crystallized in the native state by the vapour-diffusion method. Crystals belong to the orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 61.6, b = 81.4, c = 135.6 Å, and diffract to 1.95 Å resolution on a synchrotron-radiation source

  2. Proteome of conidial surface associated proteins of Aspergillus fumigatus reflecting potential vaccine candidates and allergens.

    Science.gov (United States)

    Asif, Abdul R; Oellerich, Michael; Amstrong, Victor W; Riemenschneider, Birgit; Monod, Michel; Reichard, Utz

    2006-04-01

    Aspergillus fumigatus is a mold causing most of the invasive fungal lung infections in the immunocompromised host. In addition, the species is the causative agent of certain allergic diseases. Both in invasive and in allergic diseases, the conidial surface mediates the first contact with the human immune system. Thus, conidial surface proteins may be reasonable vaccine candidates as well as important allergens. To broaden the list of those antigens, intact viable Aspergillus conidia were extracted with mild alkaline buffer at pH 8.5 in the presence of a 1,3-beta-glucanase. The proteome of this fraction was separated by two- dimensional gel electrophoresis (2-DE) and analyzed by liquid chromatography coupled with tandem mass spectrometry. Altogether 26 different A. fumigatus proteins were identified, twelve of which contain a signal for secretion. Among these were the known major conidial surface protein rodlet A, one acid protease PEP2, one lipase, a putative disulfide isomerase and a putative fructose-1,6-biphosphatase. The known allergen Aspf 3 was identified among the proteins without a signal for secretion. On the basis of the recently annotated A. fumigatus genome (Nature 2005, 438, 1151-1156), proteome analysis is now a powerful tool to confirm expression of hypothetical proteins and, thereby to identify additional vaccine candidates and possible new allergens of this important fungal pathogen.

  3. Effects of peptidyl-prolyl isomerase 1 depletion in animal models of prion diseases.

    Science.gov (United States)

    Legname, Giuseppe; Virgilio, Tommaso; Bistaffa, Edoardo; De Luca, Chiara Maria Giulia; Catania, Marcella; Zago, Paola; Isopi, Elisa; Campagnani, Ilaria; Tagliavini, Fabrizio; Giaccone, Giorgio; Moda, Fabio

    2018-04-20

    Pin1 is a peptidyl-prolyl isomerase that induces the cis-trans conversion of specific Ser/Thr-Pro peptide bonds in phosphorylated proteins, leading to conformational changes through which Pin1 regulates protein stability and activity. Since down-regulation of Pin1 has been described in several neurodegenerative disorders, including Alzheimer's Disease (AD), Parkinson's Disease (PD) and Huntington's Disease (HD), we investigated its potential role in prion diseases. Animals generated on wild-type (Pin1 +/+ ), hemizygous (Pin1 +/- ) or knock-out (Pin1 -/- ) background for Pin1 were experimentally infected with RML prions. The study indicates that, neither the total depletion nor reduced levels of Pin1 significantly altered the clinical and neuropathological features of the disease.

  4. Identification of cellular proteins that interact with Newcastle Disease Virus and human Respiratory Syncytial Virus by a two-dimensional virus overlay protein binding assay (VOPBA).

    Science.gov (United States)

    Holguera, Javier; Villar, Enrique; Muñoz-Barroso, Isabel

    2014-10-13

    Although it is well documented that the initial attachment receptors for Newcastle Disease Virus (NDV) and Respiratory Syncytial Virus (RSV) are sialic acid-containing molecules and glycosaminoglycans respectively, the exact nature of the receptors for both viruses remains to be deciphered. Moreover, additional molecules at the host cell surface might be involved in the entry mechanism. With the aim of identifying the cellular proteins that interact with NDV and RSV at the cell surface, we performed a virus overlay protein binding assay (VOPBA). Cell membrane lysates were separated by two dimensional (2D) gel electrophoresis and electrotransferred to PVDF membranes, after which they were probed with high viral concentrations. NDV interacted with a Protein Disulfide Isomerase from chicken fibroblasts. In the case of RSV, we detected 15 reactive spots, which were identified as six different proteins, of which nucleolin was outstanding. We discuss the possible role of PDI and nucleolin in NDV and RSV entry, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. The small subunit 1 of the Arabidopsis isopropylmalate isomerase is required for normal growth and development and the early stages of glucosinolate formation.

    Science.gov (United States)

    Imhof, Janet; Huber, Florian; Reichelt, Michael; Gershenzon, Jonathan; Wiegreffe, Christoph; Lächler, Kurt; Binder, Stefan

    2014-01-01

    In Arabidopsis thaliana the evolutionary and functional relationship between Leu biosynthesis and the Met chain elongation pathway, the first part of glucosinolate formation, is well documented. Nevertheless the exact functions of some pathway components are still unclear. Isopropylmalate isomerase (IPMI), an enzyme usually involved in Leu biosynthesis, is a heterodimer consisting of a large and a small subunit. While the large protein is encoded by a single gene (isopropylmalate isomerase large subunit1), three genes encode small subunits (isopropylmalate isomerase small subunit1 to 3). We have now analyzed small subunit 1 (isopropylmalate isomerase small subunit1) employing artificial microRNA for a targeted knockdown of the encoding gene. Strong reduction of corresponding mRNA levels to less than 5% of wild-type levels resulted in a severe phenotype with stunted growth, narrow pale leaf blades with green vasculature and abnormal adaxial-abaxial patterning as well as anomalous flower morphology. Supplementation of the knockdown plants with leucine could only partially compensate for the morphological and developmental abnormalities. Detailed metabolite profiling of the knockdown plants revealed changes in the steady state levels of isopropylmalate and glucosinolates as well as their intermediates demonstrating a function of IPMI SSU1 in both leucine biosynthesis and the first cycle of Met chain elongation. Surprisingly the levels of free leucine slightly increased suggesting an imbalanced distribution of leucine within cells and/or within plant tissues.

  6. Dissecting the role of disulfide bonds on the amyloid formation of insulin

    International Nuclear Information System (INIS)

    Li, Yang; Gong, Hao; Sun, Yue; Yan, Juan; Cheng, Biao; Zhang, Xin; Huang, Jing; Yu, Mengying; Guo, Yu; Zheng, Ling; Huang, Kun

    2012-01-01

    Highlights: ► We dissect how individual disulfide bond affects the amyloidogenicity of insulin. ► A controlled reduction system for insulin is established in this study. ► Disulfide breakage is associated with unfolding and increased amyloidogenicity. ► Breakage of A6-A11 is associated with significantly increased cytotoxicity. ► Analogs without A6-A11 have a higher potency to form high order toxic oligomers. -- Abstract: Disulfide bonds play a critical role in the stability and folding of proteins. Here, we used insulin as a model system, to investigate the role of its individual disulfide bond during the amyloid formation of insulin. Tris(2-carboxyethyl)phosphine (TCEP) was applied to reduce two of the three disulfide bonds in porcine insulin and the reduced disulfide bonds were then alkylated by iodoacetamide. Three disulfide bond-modified insulin analogs, INS-2 (lack of A6-A11), INS-3 (lack of A7-B7) and INS-6 (lack of both A6-A11 and A7-B7), were obtained. Far-UV circular dichroism (CD) spectroscopy results indicated that the secondary structure of INS-2 was the closest to insulin under neutral conditions, followed by INS-3 and INS-6, whereas in an acidic solution all analogs were essentially unfolded. To test how these modifications affect the amyloidogenicity of insulin, thioflavin-T (ThT) fluorescence and transmission electronic microscopy (TEM) were performed. Our results showed that all analogs were more prone to aggregation than insulin, with the order of aggregation rates being INS-6 > INS-3 > INS-2. Cross-linking of unmodified proteins (PICUP) assay results showed that analogs without A6-A11 (INS-2 and INS-6) have a higher potential for oligomerization than insulin and INS-3, which is accompanied with a higher cytotoxicity as the hemolytic assays of human erythrocytes suggested. The results indicated that breakage of A7-B7 induced more unfolding of the insulin structure and a higher amyloidogenicity than breakage of A6-A11, but breakage of A6

  7. Disulfide bridges remain intact while native insulin converts into amyloid fibrils.

    Directory of Open Access Journals (Sweden)

    Dmitry Kurouski

    Full Text Available Amyloid fibrils are β-sheet-rich protein aggregates commonly found in the organs and tissues of patients with various amyloid-associated diseases. Understanding the structural organization of amyloid fibrils can be beneficial for the search of drugs to successfully treat diseases associated with protein misfolding. The structure of insulin fibrils was characterized by deep ultraviolet resonance Raman (DUVRR and Nuclear Magnetic Resonance (NMR spectroscopy combined with hydrogen-deuterium exchange. The compositions of the fibril core and unordered parts were determined at single amino acid residue resolution. All three disulfide bonds of native insulin remained intact during the aggregation process, withstanding scrambling. Three out of four tyrosine residues were packed into the fibril core, and another aromatic amino acid, phenylalanine, was located in the unordered parts of insulin fibrils. In addition, using all-atom MD simulations, the disulfide bonds were confirmed to remain intact in the insulin dimer, which mimics the fibrillar form of insulin.

  8. Plant antimicrobial peptides snakin-1 and snakin-2: chemical synthesis and insights into the disulfide connectivity.

    Science.gov (United States)

    Harris, Paul W R; Yang, Sung-Hyun; Molina, Antonio; López, Gemma; Middleditch, Martin; Brimble, Margaret A

    2014-04-22

    Antimicrobial peptides and proteins represent an important class of plant defensive compounds against pathogens and provide a rich source of lead compounds in the field of drug discovery. We describe the effective preparation of the cysteine-rich snakin-1 and -2 antimicrobial peptides by using a combination of solid-phase synthesis and native chemical ligation. A subsequent cysteine/cystine mediated oxidative folding to form the six internal disulfide bonds concurrently gave the folded proteins in 40-50 % yield. By comparative evaluation of mass spectrometry, HPLC, biological data and trypsin digest mapping of folded synthetic snakin-2 compared to natural snakin-2, we demonstrated that synthetic snakin-2 possesses full antifungal activity and displayed similar chromatographic behaviour to natural snakin-2. Trypsin digest analysis allowed tentative assignment of three of the purported six disulfide bonds. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Cloning and expression of the Clostridium thermosulfurogenes glucose isomerase gene in Escherichia coli and Bacillus subtilis.

    OpenAIRE

    Lee, C Y; Bhatnagar, L; Saha, B C; Lee, Y E; Takagi, M; Imanaka, T; Bagdasarian, M; Zeikus, J G

    1990-01-01

    The gene that encodes thermostable glucose isomerase in Clostridium thermosulfurogenes was cloned by complementation of glucose isomerase activity in a xylA mutant of Escherichia coli. A new assay method for thermostable glucose isomerase activity on agar plates, using a top agar mixture containing fructose, glucose oxidase, peroxidase, and benzidine, was developed. One positive clone, carrying plasmid pCGI38, was isolated from a cosmid library of C. thermosulfurogenes DNA. The plasmid was fu...

  10. Thiol-Disulfide Exchange in Peptides Derived from Human Growth Hormone during Lyophilization and Storage in the Solid State

    Science.gov (United States)

    Chandrasekhar, Saradha; Topp, Elizabeth M.

    2015-01-01

    Lyophilization (freeze-drying) is frequently used to stabilize protein therapeutics. However, covalent modifications such as thiol-disulfide exchange and disulfide scrambling can occur even in the solid state. The effects of lyophilization and storage of lyophilized powders on the mechanism and kinetics of thioldisulfide exchange have not been elucidated and are explored here. Reaction kinetics were monitored in peptides corresponding to tryptic fragments of human growth hormone (T20 + T20-T21 or T20 + cT20-T21) during different stages of lyophilization and during storage of the lyophilized powders at 22 °C and ambient RH. The concentrations of reactants and products were determined using RP-HPLC and product identity confirmed using LC-MS. Loss of native disulfide was observed for the reaction of T20 with both linear (T20-T21) and cyclic (cT20-T21) peptides during the primary drying step, however, the native disulfides were regenerated during secondary drying with no further change till the end of lyophilization. Deviations from Arrhenius parameters predicted from solution studies and the absence of buffer effects during lyophilization suggest that factors such as temperature, initial peptide concentration, buffer type and concentration do not influence thiol-disulfide exchange during lyophilization. Results from a ‘cold finger’ method used to study peptide adsorption to ice indicate that there is no preferential adsorption to the ice surface and that its presence may not influence disulfide reactivity during primary drying. Overall, reaction rates and product distribution differ for the reaction of T20 with T20-T21 or cT20-T21 in the solid state and aqueous solution, while the mechanism of thiol-disulfide remains unchanged. Increased reactivity of the cyclic peptide in the solid state suggests that peptide cyclization does not offer protection against lyophilization and that damage induced by a process stress further affects storage stability at 22 °C and

  11. Isolation and sequence analysis of the gene encoding triose phosphate isomerase from Zygosaccharomyces bailii.

    Science.gov (United States)

    Merico, A; Rodrigues, F; Côrte-Real, M; Porro, D; Ranzi, B M; Compagno, C

    2001-06-30

    The ZbTPI1 gene encoding triose phosphate isomerase (TIM) was cloned from a Zygosaccharomyces bailii genomic library by complementation of the Saccharomyces cerevisiae tpi1 mutant strain. The nucleotide sequence of a 1.5 kb fragment showed an open reading frame (ORF) of 746 bp, encoding a protein of 248 amino acid residues. The deduced amino acid sequence shares a high degree of homology with TIMs from other yeast species, including some highly conserved regions. The analysis of the promoter sequence of the ZbTPI1 revealed the presence of putative motifs known to have regulatory functions in S. cerevisiae. The GenBank Accession No. of ZbTPI1 is AF325852. Copyright 2001 John Wiley & Sons, Ltd.

  12. In silico cloning and B/T cell epitope prediction of triosephosphate isomerase from Echinococcus granulosus.

    Science.gov (United States)

    Wang, Fen; Ye, Bin

    2016-10-01

    Cystic echinococcosis is a worldwide zoonosis caused by Echinococcus granulosus. Because the methods of diagnosis and treatment for cystic echinococcosis were limited, it is still necessary to screen target proteins for the development of new anti-hydatidosis vaccine. In this study, the triosephosphate isomerase gene of E. granulosus was in silico cloned. The B cell and T cell epitopes were predicted by bioinformatics methods. The cDNA sequence of EgTIM was composition of 1094 base pairs, with an open reading frame of 753 base pairs. The deduced amino acid sequences were composed of 250 amino acids. Five cross-reactive epitopes, locating on 21aa-35aa, 43aa-57aa, 94aa-107aa, 115-129aa, and 164aa-183aa, could be expected to serve as candidate epitopes in the development of vaccine against E. granulosus. These results could provide bases for gene cloning, recombinant expression, and the designation of anti-hydatidosis vaccine.

  13. Structure-Based Annotation of a Novel Sugar Isomerase from the Pathogenic E. coli O157:H7

    Energy Technology Data Exchange (ETDEWEB)

    van Staalduinen, L.; Park, C; Yeom, S; Adams-Cioaba, M; Oh, D; Jia, C

    2010-01-01

    Prokaryotes can use a variety of sugars as carbon sources in order to provide a selective survival advantage. The gene z5688 found in the pathogenic Escherichia coli O157:H7 encodes a 'hypothetical' protein of unknown function. Sequence analysis identified the gene product as a putative member of the cupin superfamily of proteins, but no other functional information was known. We have determined the crystal structure of the Z5688 protein at 1.6 {angstrom} resolution and identified the protein as a novel E. coli sugar isomerase (EcSI) through overall fold analysis and secondary-structure matching. Extensive substrate screening revealed that EcSI is capable of acting on D-lyxose and D-mannose. The complex structure of EcSI with fructose allowed the identification of key active-site residues, and mutagenesis confirmed their importance. The structure of EcSI also suggested a novel mechanism for substrate binding and product release in a cupin sugar isomerase. Supplementation of a nonpathogenic E. coli strain with EcSI enabled cell growth on the rare pentose d-lyxose.

  14. Human cyclophilin B: A second cyclophilin gene encodes a peptidyl-prolyl isomerase with a signal sequence

    International Nuclear Information System (INIS)

    Price, E.R.; Zydowsky, L.D.; Jin, Mingjie; Baker, C.H.; McKeon, F.D.; Walsh, C.T.

    1991-01-01

    The authors report the cloning and characterization of a cDNA encoding a second human cyclosporin A-binding protein (hCyPB). Homology analyses reveal that hCyPB is a member of the cyclophilin B (CyPB) family, which includes yeast CyPB, Drosophila nina A, and rat cyclophilin-like protein. This family is distinguished from the cyclophilin A (CyPA) family by the presence of endoplasmic reticulum (ER)-directed signal sequences. hCyPB has a hydrophobic leader sequence not found in hCyPA, and its first 25 amino acids are removed upon expression in Escherichia coli. Moreover, they show that hCyPB is a peptidyl-prolyl cis-trans isomerase which can be inhibited by cyclosporin A. These observations suggest that other members of the CyPB family will have similar enzymatic properties. Sequence comparisons of the CyPB proteins show a central, 165-amino acid peptidyl-prolyl isomerase and cyclosprorin A-binding domain, flanked by variable N-terminal and C-terminal domains. These two variable regions may impart compartmental specificity and regulation to this family of cyclophilin proteins containing the conserved core domain. Northern blot analyses show that hCyPB mRNA is expressed in the Jurkat T-cell line, consistent with its possible target role in cyclosporin A-mediated immunosuppression

  15. Disulfide Chromophore and Its Optical Activity

    Czech Academy of Sciences Publication Activity Database

    Maloň, Petr; Bednárová, Lucie; Straka, Michal; Krejčí, Lucie; Kumprecht, Lukáš; Kraus, Tomáš; Kubáňová, M.; Baumruk, V.

    2010-01-01

    Roč. 22, 1E (2010), E47-E55 ISSN 0899-0042 R&D Projects: GA ČR(CZ) GA203/07/1335; GA ČR GA203/06/1550; GA ČR GA203/09/2037; GA ČR GAP208/10/0376; GA AV ČR IAA400550810 Institutional research plan: CEZ:AV0Z40550506 Keywords : disulfide chromophore * Raman optical activity * vibrational optical activity * circular dichroism Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.892, year: 2010

  16. Single-layer Molybdenum disulfide photodetectors

    OpenAIRE

    López Sánchez, Oriol

    2012-01-01

    Projecte realitzat mitjançant programa de mobilitat. École polytechnique fédérale de Lausanne [ANGLÈS] Two-dimensional (2D) materials are very attractive candidates for use in next-generation nanoelectronic devices. Compared to one-dimensional materials, with 2D materials is relatively easy to fabricate complex structures. 2D materials, such as molybdenum disulfide (MoS2), have attracted increasing attention for their electronic and optoelectronic particular properties and size. MoS2 is a...

  17. A novel glucose 6-phosphate isomerase from Listeria monocytogenes.

    Science.gov (United States)

    Cech, David L; Wang, Pan-Fen; Holt, Melissa C; Assimon, Victoria A; Schaub, Jeffrey M; Holler, Tod P; Woodard, Ronald W

    2014-10-01

    D-Arabinose 5-phosphate isomerases (APIs) catalyze the interconversion of D-ribulose 5-phosphate and D-arabinose 5-phosphate (A5P). A5P is an intermediate in the biosynthesis of 3-deoxy-D-manno-octulosonate (Kdo), an essential component of lipopolysaccharide, the lipopolysaccharide found in the outer membrane of Gram-negative bacteria. The genome of the Gram-positive pathogen Listeria monocytogenes contains a gene encoding a putative sugar isomerase domain API, Q723E8, with significant similarity to c3406, the only one of four APIs from Escherichia coli CFT073 that lacks a cystathionine-β-synthase domain. However, L. monocytogenes lacks genes encoding any of the other enzymes of the Kdo biosynthesis pathway. Realizing that the discovery of an API in a Gram-positive bacterium could provide insight into an alternate physiological role of A5P in the cell, we prepared and purified recombinant Q723E8. We found that Q723E8 does not possess API activity, but instead is a novel GPI (D-glucose 6-phosphate isomerase). However, the GPI activity of Q723E8 is weak compared with previously described GPIS. L. monocytogenes contains an ortholog of the well-studied two-domain bacterial GPI, so this maybe redundant. Based on this evidence glucose utilization is likely not the primary physiological role of Q723E8.

  18. The road to the first, fully active and more stable human insulin variant with an additional disulfide bond

    DEFF Research Database (Denmark)

    Vinther, Tine N.; Kjeldsen, Thomas B.; Jensen, Knud Jørgen

    2015-01-01

    Insulin, a small peptide hormone, is crucial in maintaining blood glucose homeostasis. The stability and activity of the protein is directed by an intricate system involving disulfide bonds to stabilize the active monomeric species and by their non-covalent oligomerization. All known insulin vari...

  19. Antagonistic effect of disulfide-rich peptide aptamers selected by cDNA display on interleukin-6-dependent cell proliferation

    International Nuclear Information System (INIS)

    Nemoto, Naoto; Tsutsui, Chihiro; Yamaguchi, Junichi; Ueno, Shingo; Machida, Masayuki; Kobayashi, Toshikatsu; Sakai, Takafumi

    2012-01-01

    Highlights: ► Disulfide-rich peptide aptamer inhibits IL-6-dependent cell proliferation. ► Disulfide bond of peptide aptamer is essential for its affinity to IL-6R. ► Inhibitory effect of peptide depends on number and pattern of its disulfide bonds. -- Abstract: Several engineered protein scaffolds have been developed recently to circumvent particular disadvantages of antibodies such as their large size and complex composition, low stability, and high production costs. We previously identified peptide aptamers containing one or two disulfide-bonds as an alternative ligand to the interleukin-6 receptor (IL-6R). Peptide aptamers (32 amino acids in length) were screened from a random peptide library by in vitro peptide selection using the evolutionary molecular engineering method “cDNA display”. In this report, the antagonistic activity of the peptide aptamers were examined by an in vitro competition enzyme-linked immunosorbent assay (ELISA) and an IL-6-dependent cell proliferation assay. The results revealed that a disulfide-rich peptide aptamer inhibited IL-6-dependent cell proliferation with similar efficacy to an anti-IL-6R monoclonal antibody.

  20. Phospho-carboxyl-terminal domain binding and the role of a prolyl isomerase in pre-mRNA 3'-End formation.

    Science.gov (United States)

    Morris, D P; Phatnani, H P; Greenleaf, A L

    1999-10-29

    A phospho-carboxyl-terminal domain (CTD) affinity column created with yeast CTD kinase I and the CTD of RNA polymerase II was used to identify Ess1/Pin1 as a phospho-CTD-binding protein. Ess1/Pin1 is a peptidyl prolyl isomerase involved in both mitotic regulation and pre-mRNA 3'-end formation. Like native Ess1, a GSTEss1 fusion protein associates specifically with the phosphorylated but not with the unphosphorylated CTD. Further, hyperphosphorylated RNA polymerase II appears to be the dominant Ess1 binding protein in total yeast extracts. We demonstrate that phospho-CTD binding is mediated by the small WW domain of Ess1 rather than the isomerase domain. These findings suggest a mechanism in which the WW domain binds the phosphorylated CTD of elongating RNA polymerase II and the isomerase domain reconfigures the CTD though isomerization of proline residues perhaps by a processive mechanism. This process may be linked to a variety of pre-mRNA maturation events that use the phosphorylated CTD, including the coupled processes of pre-mRNA 3'-end formation and transcription termination.

  1. Nicotinamidase/pyrazinamidase of Mycobacterium tuberculosis forms homo-dimers stabilized by disulfide bonds.

    Science.gov (United States)

    Rueda, Daniel; Sheen, Patricia; Gilman, Robert H; Bueno, Carlos; Santos, Marco; Pando-Robles, Victoria; Batista, Cesar V; Zimic, Mirko

    2014-12-01

    Recombinant wild-pyrazinamidase from H37Rv Mycobacterium tuberculosis was analyzed by gel electrophoresis under differential reducing conditions to evaluate its quaternary structure. PZAse was fractionated by size exclusion chromatography under non-reducing conditions. PZAse activity was measured and mass spectrometry analysis was performed to determine the identity of proteins by de novo sequencing and to determine the presence of disulfide bonds. This study confirmed that M. tuberculosis wild type PZAse was able to form homo-dimers in vitro. Homo-dimers showed a slightly lower specific PZAse activity compared to monomeric PZAse. PZAse dimers were dissociated into monomers in response to reducing conditions. Mass spectrometry analysis confirmed the existence of disulfide bonds (C72-C138 and C138-C138) stabilizing the quaternary structure of the PZAse homo-dimer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Conversion of a disulfide bond into a thioacetal group during echinomycin biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Hotta, Kinya; Keegan, Ronan M.; Ranganathan, Soumya; Fang, Minyi; Bibby, Jaclyn; Winn, Martyn D.; Sato, Michio; Lian, Mingzhu; Watanabe, Kenji; Rigden, Daniel J.; Kim, Chu-Young (Liverpool); (Daresbury); (NU Singapore); (Shizuoka); (RAL)

    2013-12-02

    Echinomycin is a nonribosomal depsipeptide natural product with a range of interesting bioactivities that make it an important target for drug discovery and development. It contains a thioacetal bridge, a unique chemical motif derived from the disulfide bond of its precursor antibiotic triostin A by the action of an S-adenosyl-L-methionine-dependent methyltransferase, Ecm18. The crystal structure of Ecm18 in complex with its reaction products S-adenosyl-L-homocysteine and echinomycin was determined at 1.50 Å resolution. Phasing was achieved using a new molecular replacement package called AMPLE, which automatically derives search models from structure predictions based on ab initio protein modelling. Structural analysis indicates that a combination of proximity effects, medium effects, and catalysis by strain drives the unique transformation of the disulfide bond into the thioacetal linkage.

  3. Determination of Disulfide Bond Connectivity of Cysteine-rich Peptide IpTx{sub a}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chul Won; Kim, Jim Il [Chonnam National Univ., Gwangju (Korea, Republic of); Sato, Kazuki [Fukuoka Women' s Univ., Fukuoka (Japan)

    2013-06-15

    Cysteine-rich peptides stabilized by intramolecular disulfide bonds have often been isolated from venoms of microbes, animals and plants. These peptides typically have much higher stability and improved biopharmaceutical properties compared to their linear counterparts. Therefore the correct disulfide bond formation of small proteins and peptides has been extensively studied for a better understanding of their folding mechanism and achieving efficient generation of the naturally occurring biologically active product. Imperatoxin A (IpTx{sub a}), a peptide toxin containing 6 cysteine residues, was isolated from the venom of scorpion Pandinus imperator, selectively binds the ryanodine receptors and activates Ca{sup 2+} release from sarcoplasmic reticulum (SR). IpTx{sub a} increases the binding of ryanodine to ryanodine receptors (RyRs) and encourages reconstituted single channel to induce subconductance states.

  4. The acid-tolerant L-arabinose isomerase from the mesophilic Shewanella sp. ANA-3 is highly active at low temperatures.

    Science.gov (United States)

    Rhimi, Moez; Bajic, Goran; Ilhammami, Rimeh; Boudebbouze, Samira; Maguin, Emmanuelle; Haser, Richard; Aghajari, Nushin

    2011-11-10

    L-arabinose isomerases catalyse the isomerization of L-arabinose into L-ribulose at insight biological systems. At industrial scale of this enzyme is used for the bioconversion of D-galactose into D-tagatose which has many applications in pharmaceutical and agro-food industries. The isomerization reaction is thermodynamically equilibrated, and therefore the bioconversion rates is shifted towards tagatose when the temperature is increased. Moreover, to prevent secondary reactions it will be of interest to operate at low pH. The profitability of this D-tagatose production process is mainly related to the use of lactose as cheaper raw material. In many dairy products it will be interesting to produce D-tagatose during storage. This requires an efficient L-arabinose isomerase acting at low temperature and pH values. The gene encoding the L-arabinose isomerase from Shewanella sp. ANA-3 was cloned and overexpressed in Escherichia coli. The purified protein has a tetrameric arrangement composed by four identical 55 kDa subunits. The biochemical characterization of this enzyme showed that it was distinguishable by its maximal activity at low temperatures comprised between 15-35°C. Interestingly, this biocatalyst preserves more than 85% of its activity in a broad range of temperatures from 4.0 to 45°C. Shewanella sp. ANA-3 L-arabinose isomerase was also optimally active at pH 5.5-6.5 and maintained over 80% of its activity at large pH values from 4.0 to 8.5. Furthermore, this enzyme exhibited a weak requirement for metallic ions for its activity evaluated at 0.6 mM Mn2+. Stability studies showed that this protein is highly stable mainly at low temperature and pH values. Remarkably, T268K mutation clearly enhances the enzyme stability at low pH values. Use of this L-arabinose isomerase for D-tagatose production allows the achievement of attractive bioconversion rates of 16% at 4°C and 34% at 35°C. Here we reported the purification and the biochemical characterization of

  5. The acid-tolerant L-arabinose isomerase from the mesophilic Shewanella sp. ANA-3 is highly active at low temperatures

    Science.gov (United States)

    2011-01-01

    Background L-arabinose isomerases catalyse the isomerization of L-arabinose into L-ribulose at insight biological systems. At industrial scale of this enzyme is used for the bioconversion of D-galactose into D-tagatose which has many applications in pharmaceutical and agro-food industries. The isomerization reaction is thermodynamically equilibrated, and therefore the bioconversion rates is shifted towards tagatose when the temperature is increased. Moreover, to prevent secondary reactions it will be of interest to operate at low pH. The profitability of this D-tagatose production process is mainly related to the use of lactose as cheaper raw material. In many dairy products it will be interesting to produce D-tagatose during storage. This requires an efficient L-arabinose isomerase acting at low temperature and pH values. Results The gene encoding the L-arabinose isomerase from Shewanella sp. ANA-3 was cloned and overexpressed in Escherichia coli. The purified protein has a tetrameric arrangement composed by four identical 55 kDa subunits. The biochemical characterization of this enzyme showed that it was distinguishable by its maximal activity at low temperatures comprised between 15-35°C. Interestingly, this biocatalyst preserves more than 85% of its activity in a broad range of temperatures from 4.0 to 45°C. Shewanella sp. ANA-3 L-arabinose isomerase was also optimally active at pH 5.5-6.5 and maintained over 80% of its activity at large pH values from 4.0 to 8.5. Furthermore, this enzyme exhibited a weak requirement for metallic ions for its activity evaluated at 0.6 mM Mn2+. Stability studies showed that this protein is highly stable mainly at low temperature and pH values. Remarkably, T268K mutation clearly enhances the enzyme stability at low pH values. Use of this L-arabinose isomerase for D-tagatose production allows the achievement of attractive bioconversion rates of 16% at 4°C and 34% at 35°C. Conclusions Here we reported the purification and the

  6. The acid-tolerant L-arabinose isomerase from the mesophilic Shewanella sp. ANA-3 is highly active at low temperatures

    Directory of Open Access Journals (Sweden)

    Rhimi Moez

    2011-11-01

    Full Text Available Abstract Background L-arabinose isomerases catalyse the isomerization of L-arabinose into L-ribulose at insight biological systems. At industrial scale of this enzyme is used for the bioconversion of D-galactose into D-tagatose which has many applications in pharmaceutical and agro-food industries. The isomerization reaction is thermodynamically equilibrated, and therefore the bioconversion rates is shifted towards tagatose when the temperature is increased. Moreover, to prevent secondary reactions it will be of interest to operate at low pH. The profitability of this D-tagatose production process is mainly related to the use of lactose as cheaper raw material. In many dairy products it will be interesting to produce D-tagatose during storage. This requires an efficient L-arabinose isomerase acting at low temperature and pH values. Results The gene encoding the L-arabinose isomerase from Shewanella sp. ANA-3 was cloned and overexpressed in Escherichia coli. The purified protein has a tetrameric arrangement composed by four identical 55 kDa subunits. The biochemical characterization of this enzyme showed that it was distinguishable by its maximal activity at low temperatures comprised between 15-35°C. Interestingly, this biocatalyst preserves more than 85% of its activity in a broad range of temperatures from 4.0 to 45°C. Shewanella sp. ANA-3 L-arabinose isomerase was also optimally active at pH 5.5-6.5 and maintained over 80% of its activity at large pH values from 4.0 to 8.5. Furthermore, this enzyme exhibited a weak requirement for metallic ions for its activity evaluated at 0.6 mM Mn2+. Stability studies showed that this protein is highly stable mainly at low temperature and pH values. Remarkably, T268K mutation clearly enhances the enzyme stability at low pH values. Use of this L-arabinose isomerase for D-tagatose production allows the achievement of attractive bioconversion rates of 16% at 4°C and 34% at 35°C. Conclusions Here we

  7. 9-Fluorenylmethyl (Fm) Disulfides: Biomimetic Precursors for Persulfides

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chung-Min; Johnson, Brett A.; Duan, Jicheng; Park, Jeong-Jin; Day, Jacob J.; Gang, David; Qian, Wei-Jun; Xian, Ming

    2016-03-04

    Protein S-sulfhydration has been recognized as an important post-translational modification that regulates H2S signals. However, the reactivity and biological implications of the products of S-sulfhydration, i.e. persulfides, are still unclear. This is mainly due to the instability of persulfides and difficulty to access these molecules. Under physiological conditions persulfides mainly exist in anionic forms because of their low pKa values. However, current methods do not allow for the direct generation of persulfide anions under biomimetic and non-H2S conditions. Herein we report the development of a functional disulfide, FmSSPy-A (Fm =9-fluorenylmethyl; Py = pyridinyl). This reagent can effectively convert both small molecule and protein thiols (-SH) to form –S-SFm adducts under mild conditions. It allows for a H2S-free and biomimetic protocol to generate highly reactive persulfides (in their anionic forms). We also demonstrated the high nucleophilicity of persulfides toward a number of thiol-blocking reagents. This method holds promise for further understanding the chemical biology of persulfides and S-sulfhydration.

  8. Identification of Thioredoxin Disulfide Targets Using a Quantitative Proteomics Approach Based on Isotope-Coded Affinity Tags

    DEFF Research Database (Denmark)

    Hägglund, Per; Bunkenborg, Jakob; Maeda, Kenji

    2008-01-01

    Thioredoxin (Trx) is a ubiquitous protein disulfide reductase involved in a wide range of cellular redox processes. A large number of putative target proteins have been identified using proteomics approaches, but insight into target specificity at the molecular level is lacking since the reactivity......, protein extract of embryos from germinated barley seeds was treated +/- Trx, and thiols released from target protein disulfides were irreversibly blocked with iodoacetamide. The remaining cysteine residues in the Trx-treated and the control (-Trx) samples were then chemically reduced and labeled...... with the "light" (C-12) and "heavy" (C-13) ICAT reagent, respectively. The extent of Trx-mediated reduction was thus quantified for individual cysteine residues based on ratios of tryptic peptides labeled with the two ICAT reagents as measured by liquid chromatography coupled with mass spectrometry (LC...

  9. Thiol/disulfide homeostasis in untreated schizophrenia patients.

    Science.gov (United States)

    Topcuoglu, Canan; Bakirhan, Abdurrahim; Yilmaz, Fatma Meric; Neselioglu, Salim; Erel, Ozcan; Sahiner, Safak Yalcin

    2017-05-01

    The aim of the study was to investigate dynamic thiol/disulfide (SH/SS) homeostasis in untreated schizophrenia. Blood thiol/disulfide homeostasis status, which reflects native thiol-disulfide exchanges, was investigated in 87 untreated patients (52 males, 35 females), and the obtained results were compared with 86 healthy controls. Blood serum native thiol and total thiol (ToSH) concentrations were measured in a paired test. The half value of the difference between native thiol and ToSH concentrations was calculated as the disulfide bond amount. SH and ToSH concentrations were found to be significantly lower (pschizophrenia compared with the control group, whereas disulfide levels were significantly higher (pSchizophrenia patients had significantly higher SS/ToSH and SS/SH ratios and a significantly lower SH/ToSH ratio compared to those of healthy individuals. SH and ToSH amounts were found to be insufficient in untreated schizophrenia patients. Additionally, according to the results of the study, thiol/disulfide homeostasis was also disturbed by a shift to the disulfide bond formation side. This might affect the neurotransmission processes, which are known to be related with many symptoms observed in schizophrenia. The replacement of the thiol gap and the reduction of excess SS amounts might have a positive effect in supporting therapy for schizophrenia patients. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  10. Chemoreactomic analysis of thiamine disulfide, thiamine hydrochloride, and benfotiamine molecules

    Directory of Open Access Journals (Sweden)

    O. A. Gromova

    2017-01-01

    Full Text Available Objective: to analyze the interactions that could indicate the potential pharmacological properties of the molecules of thiamin, thiamine disulfide, and others.Material and methods. The investigators simulated the properties of thiamine disulfide (bistiamin versus those of the reference molecules of thiamin hydrochloride and benfotiamine. The study was performed using chemoreactomic simulation that is the newest area in post-genome pharmacology.Results and discussion. Chemoreactomic analysis has shown that thiamine disulfide can inhibit the molecular receptors involved in blood pressure regulation: adrenoceptors, vasopressin receptor, and angiotensin receptor. Thiamine disulfide can inhibit the reuptake of serotonin, increase its levels, inhibit benzodiazepine receptor and dopamine reuptake, and enhance neuronal acetylcholine release to a large extent than benfotiamine. These molecular effects are consistent with the sedative and anticonvulsant action profile of thiamine disulfide. Simulation has indicated that thiamine disulfide has neuroprotective, anti-inflammatory, normolipidemic, and antitumor activities.Conclusion. The simulation results are confirmed by the available clinical and experimental findings and indicate the virtually unstudied molecular mechanisms of action of thiamine disulfide, benfotiamine, and thiamin hydrochloride. 

  11. Nucleotide sequence of the triosephosphate isomerase gene from Macaca mulatta

    Energy Technology Data Exchange (ETDEWEB)

    Old, S.E.; Mohrenweiser, H.W. (Univ. of Michigan, Ann Arbor (USA))

    1988-09-26

    The triosephosphate isomerase gene from a rhesus monkey, Macaca mulatta, charon 34 library was sequenced. The human and chimpanzee enzymes differ from the rhesus enzyme at ASN 20 and GLU 198. The nucleotide sequence identity between rhesus and human is 97% in the coding region and >94% in the flanking regions. Comparison of the rhesus and chimp genes, including the intron and flanking sequences, does not suggest a mechanism for generating the two TPI peptides of proliferating cells from hominoids and a single peptide from the rhesus gene.

  12. Disulfide bridges in tomato pectinesterase: variations from pectinesterases of other species; conservation of possible active site segments.

    Science.gov (United States)

    Markovic, O; Jörnvall, H

    1992-10-01

    Analysis of tomato pectinesterase by carboxymethylation, with and without reduction, shows that the enzyme has two intrachain disulfide bridges. Analysis of fragments obtained from the native enzyme after digestion with pepsin identified bridges connecting Cys-98 with Cys-125, and Cys-166 with Cys-200. The locations of disulfide bridges in tomato pectinesterase are not identical to those in three distantly related pectinesterases (18-33% residue identities) from microorganisms. However, one half-Cys (i.e., Cys-166) position is conserved in all four enzymes. Sequence comparisons of the overall structures suggest a special importance for three short segments of the entire protein. One segment is at the N-terminal part of the tomato pectinesterase, another in the C-terminal portion near the distal end of the second disulfide loop, and the third segment is located in the central part between the two disulfide bridges. The latter segment, encompassing only 40 residues of the entire protein, appears to high-light a functional site in a midchain segment.

  13. Hop proanthocyanidins induce apoptosis, protein carbonylation, and cytoskeleton disorganization in human colorectal adenocarcinoma cells via reactive oxygen species

    Science.gov (United States)

    Chung, Woon-Gye; Miranda, Cristobal L.; Stevens, Jan F.; Maier, Claudia S.

    2009-01-01

    Proanthocyanidins (PCs) have been shown to suppress the growth of diverse human cancer cells and are considered as promising additions to the arsenal of chemopreventive phytochemicals. An oligomeric mixture of PCs from hops (Humulus lupulus) significantly decreased cell viability of human colon cancer HT-29 cells in a dose-dependent manner. Hop PCs, at 50 or 100 μg/ml, exhibited apoptosis-inducing properties as shown by the increase in caspase-3 activity. Increased levels of intracellular reactive oxygen species (ROS) was accompanied by an augmented accumulation of protein carbonyls. Mass spectrometry-based proteomic analysis in combination with 2-alkenal-specific immunochemical detection identified β-actin and protein disulfide isomerase as major putative targets of acrolein adduction. Incubation of HT-29 cells with hop PCs resulted in morphological changes that indicated disruption of the actin cytoskeleton. PC-mediated hydrogen peroxide (H2O2) formation in the cell culture media was also quantified; but, the measured H2O2 levels would not explain the observed changes in the oxidative modifications of actin. These findings suggest new modes of action for proanthocyandins as antitumorgenic agents in human colon cancer cells, namely, promotion of protein oxidative modifications and cytoskeleton derangement. PMID:19271284

  14. Leptin and Fasting Regulate Rat Gastric Glucose-Regulated Protein 58

    Directory of Open Access Journals (Sweden)

    Susana B. Bravo

    2011-01-01

    Full Text Available The stomach secretes a wide range of peptides with essential metabolic functions, and thereby plays an important role in the regulation of energy homeostasis. Disulfide isomerase glucose-regulated protein 58 (GRp58 is a molecular chaperone member of the endoplasmic reticulum (ER stress signaling pathway, which is a marker for human gastric cancer. Since GRp58 seems to be regulated by a phosphorylation/dephosphorylation pattern shift, we used the 2DE gel methodology and peptide mass fingerprinting-protein identification by means of MALDI-TOF mass spectrometry. We show that gastric mucosa GRp58 is dephosphorylated by fasting, and this effect is blunted when fasted rats are treated with leptin. Furthermore, we assessed the gene expression of GRp58 under different physiological settings known to be associated with energy homeostasis (fasting, leptin treatment and leptin deficiency. We found that intraperitoneal administration of leptin increases whereas leptin deficiency decreases GRp58 mRNA levels. However, GRp58 expression remains unchanged after fasting, indicating that leptin actions on GRp58 are no direct sensitivity to fasting. Dissection of the molecular pathways mediating the interactions between ER stress-related factors and nutrient availability, as well as their target genes, may open a new avenue for the study of obesity and other metabolic disorders.

  15. {sup 13}C-NMR studies on disulfide bond isomerization in bovine pancreatic trypsin inhibitor (BPTI)

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Mitsuhiro [Kumamoto University, Department of Structural BioImaging, Faculty of Life Sciences (Japan); Miyanoiri, Yohei [Nagoya University, Structural Biology Research Center, Graduate School of Science (Japan); Terauchi, Tsutomu [Tokyo Metropolitan University, Graduate School of Science and Engineering (Japan); Kainosho, Masatsune, E-mail: kainosho@tmu.ac.jp [Nagoya University, Structural Biology Research Center, Graduate School of Science (Japan)

    2016-09-15

    Conformational isomerization of disulfide bonds is associated with the dynamics and thus the functional aspects of proteins. However, our understanding of the isomerization is limited by experimental difficulties in probing it. We explored the disulfide conformational isomerization of the Cys14–Cys38 disulfide bond in bovine pancreatic trypsin inhibitor (BPTI), by performing an NMR line-shape analysis of its Cys carbon peaks. In this approach, 1D {sup 13}C spectra were recorded at small temperature intervals for BPTI samples selectively labeled with site-specifically {sup 13}C-enriched Cys, and the recorded peaks were displayed in the order of the temperature after the spectral scales were normalized to a carbon peak. Over the profile of the line-shape, exchange broadening that altered with temperature was manifested for the carbon peaks of Cys14 and Cys38. The Cys14–Cys38 disulfide bond reportedly exists in equilibrium between a high-populated (M) and two low-populated states (m{sub c14} and m{sub c38}). Consistent with the three-site exchange model, biphasic exchange broadening arising from the two processes was observed for the peak of the Cys14 α-carbon. As the exchange broadening is maximized when the exchange rate equals the chemical shift difference in Hz between equilibrating sites, semi-quantitative information that was useful for establishing conditions for {sup 13}C relaxation dispersion experiments was obtained through the carbon line-shape profile. With respect to the m{sub c38} isomerization, the {sup 1}H-{sup 13}C signals at the β-position of the minor state were resolved from the major peaks and detected by exchange experiments at a low temperature.

  16. (13)C-NMR studies on disulfide bond isomerization in bovine pancreatic trypsin inhibitor (BPTI).

    Science.gov (United States)

    Takeda, Mitsuhiro; Miyanoiri, Yohei; Terauchi, Tsutomu; Kainosho, Masatsune

    2016-09-01

    Conformational isomerization of disulfide bonds is associated with the dynamics and thus the functional aspects of proteins. However, our understanding of the isomerization is limited by experimental difficulties in probing it. We explored the disulfide conformational isomerization of the Cys14-Cys38 disulfide bond in bovine pancreatic trypsin inhibitor (BPTI), by performing an NMR line-shape analysis of its Cys carbon peaks. In this approach, 1D (13)C spectra were recorded at small temperature intervals for BPTI samples selectively labeled with site-specifically (13)C-enriched Cys, and the recorded peaks were displayed in the order of the temperature after the spectral scales were normalized to a carbon peak. Over the profile of the line-shape, exchange broadening that altered with temperature was manifested for the carbon peaks of Cys14 and Cys38. The Cys14-Cys38 disulfide bond reportedly exists in equilibrium between a high-populated (M) and two low-populated states (m c14 and m c38). Consistent with the three-site exchange model, biphasic exchange broadening arising from the two processes was observed for the peak of the Cys14 α-carbon. As the exchange broadening is maximized when the exchange rate equals the chemical shift difference in Hz between equilibrating sites, semi-quantitative information that was useful for establishing conditions for (13)C relaxation dispersion experiments was obtained through the carbon line-shape profile. With respect to the m c38 isomerization, the (1)H-(13)C signals at the β-position of the minor state were resolved from the major peaks and detected by exchange experiments at a low temperature.

  17. 13C-NMR studies on disulfide bond isomerization in bovine pancreatic trypsin inhibitor (BPTI)

    International Nuclear Information System (INIS)

    Takeda, Mitsuhiro; Miyanoiri, Yohei; Terauchi, Tsutomu; Kainosho, Masatsune

    2016-01-01

    Conformational isomerization of disulfide bonds is associated with the dynamics and thus the functional aspects of proteins. However, our understanding of the isomerization is limited by experimental difficulties in probing it. We explored the disulfide conformational isomerization of the Cys14–Cys38 disulfide bond in bovine pancreatic trypsin inhibitor (BPTI), by performing an NMR line-shape analysis of its Cys carbon peaks. In this approach, 1D 13 C spectra were recorded at small temperature intervals for BPTI samples selectively labeled with site-specifically 13 C-enriched Cys, and the recorded peaks were displayed in the order of the temperature after the spectral scales were normalized to a carbon peak. Over the profile of the line-shape, exchange broadening that altered with temperature was manifested for the carbon peaks of Cys14 and Cys38. The Cys14–Cys38 disulfide bond reportedly exists in equilibrium between a high-populated (M) and two low-populated states (m c14 and m c38 ). Consistent with the three-site exchange model, biphasic exchange broadening arising from the two processes was observed for the peak of the Cys14 α-carbon. As the exchange broadening is maximized when the exchange rate equals the chemical shift difference in Hz between equilibrating sites, semi-quantitative information that was useful for establishing conditions for 13 C relaxation dispersion experiments was obtained through the carbon line-shape profile. With respect to the m c38 isomerization, the 1 H- 13 C signals at the β-position of the minor state were resolved from the major peaks and detected by exchange experiments at a low temperature.

  18. Characterization of a mutant glucose isomerase from Thermoanaerobacterium saccharolyticum.

    Science.gov (United States)

    Xu, Heng; Shen, Dong; Wu, Xue-Qiang; Liu, Zhi-Wei; Yang, Qi-He

    2014-10-01

    A series of site-directed mutant glucose isomerase at tryptophan 139 from Thermoanaerobacterium saccharolyticum strain B6A were purified to gel electrophoretic homogeneity, and the biochemical properties were determined. W139F mutation is the most efficient mutant derivative with a tenfold increase in its catalytic efficiency toward glucose compared with the native GI. With a maximal activity at 80 °C of 59.58 U/mg on glucose, this mutant derivative is the most active type ever reported. The enzyme activity was maximal at 90 °C and like other glucose isomerase, this mutant enzyme required Co(2+) or Mg(2+) for enzyme activity and thermal stability (stable for 20 h at 80 °C in the absence of substrate). Its optimum pH was around 7.0, and it had 86 % of its maximum activity at pH 6.0 incubated for 12 h at 60 °C. This enzyme was determined as thermostable and weak-acid stable. These findings indicated that the mutant GI W139F from T. saccharolyticum strain B6A is appropriate for use as a potential candidate for high-fructose corn syrup producing enzyme.

  19. Mechanistic insight of photo-induced aggregation of chicken egg white lysozyme: the interplay between hydrophobic interactions and formation of intermolecular disulfide bonds.

    Science.gov (United States)

    Xie, Jinbing; Qin, Meng; Cao, Yi; Wang, Wei

    2011-08-01

    Recently, it was reported that ultraviolet (UV) illumination could trigger the unfolding of proteins by disrupting the buried disulfide bonds. However, the consequence of such unfolding has not been adequately evaluated. Here, we report that unfolded chicken egg white lysozyme (CEWL) triggered by UV illumination can form uniform globular aggregates as confirmed by dynamic light scattering, atomic force microscopy, and transmission electron microscopy. The assembling process of such aggregates was also monitored by several other methods, such as circular dichroism, fluorescence spectroscopy, mass spectrometry based on chymotrypsin digestion, ANS-binding assay, Ellman essay, and SDS-PAGE. Our finding is that due to the dissociation of the native disulfide bonds by UV illumination, CEWL undergoes drastic conformational changes resulting in the exposure of some hydrophobic residues and free thiols. Subsequently, these partially unfolded molecules self-assemble into small granules driven by intermolecular hydrophobic interaction. With longer UV illumination or longer incubation time, these granules can further self-assemble into larger globular aggregates. The combined effects from both the hydrophobic interaction and the formation of intermolecular disulfide bonds dominate this process. Additionally, similar aggregation behavior can also be found in other three typical disulfide-bonded proteins, that is, α-lactalbumin, RNase A, and bovine serum albumin. Thus, we propose that such aggregation behavior might be a general mechanism for some disulfide-bonded proteins under UV irradiation. Copyright © 2011 Wiley-Liss, Inc.

  20. l-Arabinose Isomerase and d-Xylose Isomerase from Lactobacillus reuteri: Characterization, Coexpression in the Food Grade Host Lactobacillus plantarum, and Application in the Conversion of d-Galactose and d-Glucose

    Science.gov (United States)

    2014-01-01

    The l-arabinose isomerase (l-AI) and the d-xylose isomerase (d-XI) encoding genes from Lactobacillus reuteri (DSMZ 17509) were cloned and overexpressed in Escherichia coli BL21 (DE3). The proteins were purified to homogeneity by one-step affinity chromatography and characterized biochemically. l-AI displayed maximum activity at 65 °C and pH 6.0, whereas d-XI showed maximum activity at 65 °C and pH 5.0. Both enzymes require divalent metal ions. The genes were also ligated into the inducible lactobacillal expression vectors pSIP409 and pSIP609, the latter containing a food grade auxotrophy marker instead of an antibiotic resistance marker, and the l-AI- and d-XI-encoding sequences/genes were coexpressed in the food grade host Lactobacillus plantarum. The recombinant enzymes were tested for applications in carbohydrate conversion reactions of industrial relevance. The purified l-AI converted d-galactose to d-tagatose with a maximum conversion rate of 35%, and the d-XI isomerized d-glucose to d-fructose with a maximum conversion rate of 48% at 60 °C. PMID:24443973

  1. L-Arabinose isomerase and D-xylose isomerase from Lactobacillus reuteri: characterization, coexpression in the food grade host Lactobacillus plantarum, and application in the conversion of D-galactose and D-glucose.

    Science.gov (United States)

    Staudigl, Petra; Haltrich, Dietmar; Peterbauer, Clemens K

    2014-02-19

    The L-arabinose isomerase (L-AI) and the D-xylose isomerase (D-XI) encoding genes from Lactobacillus reuteri (DSMZ 17509) were cloned and overexpressed in Escherichia coli BL21 (DE3). The proteins were purified to homogeneity by one-step affinity chromatography and characterized biochemically. L-AI displayed maximum activity at 65 °C and pH 6.0, whereas D-XI showed maximum activity at 65 °C and pH 5.0. Both enzymes require divalent metal ions. The genes were also ligated into the inducible lactobacillal expression vectors pSIP409 and pSIP609, the latter containing a food grade auxotrophy marker instead of an antibiotic resistance marker, and the L-AI- and D-XI-encoding sequences/genes were coexpressed in the food grade host Lactobacillus plantarum . The recombinant enzymes were tested for applications in carbohydrate conversion reactions of industrial relevance. The purified L-AI converted D-galactose to D-tagatose with a maximum conversion rate of 35%, and the D-XI isomerized D-glucose to D-fructose with a maximum conversion rate of 48% at 60 °C.

  2. Chemoreactomic analysis of thiamine disulfide, thiamine hydrochloride, and benfotiamine molecules

    OpenAIRE

    O. A. Gromova; I. Yu. Torshin; L. V. Stakhovskaya; L. E. Fedotova

    2017-01-01

    Objective: to analyze the interactions that could indicate the potential pharmacological properties of the molecules of thiamin, thiamine disulfide, and others.Material and methods. The investigators simulated the properties of thiamine disulfide (bistiamin) versus those of the reference molecules of thiamin hydrochloride and benfotiamine. The study was performed using chemoreactomic simulation that is the newest area in post-genome pharmacology.Results and discussion. Chemoreactomic analysis...

  3. Tailoring protein nanomechanics with chemical reactivity

    Science.gov (United States)

    Beedle, Amy E. M.; Mora, Marc; Lynham, Steven; Stirnemann, Guillaume; Garcia-Manyes, Sergi

    2017-06-01

    The nanomechanical properties of elastomeric proteins determine the elasticity of a variety of tissues. A widespread natural tactic to regulate protein extensibility lies in the presence of covalent disulfide bonds, which significantly enhance protein stiffness. The prevalent in vivo strategy to form disulfide bonds requires the presence of dedicated enzymes. Here we propose an alternative chemical route to promote non-enzymatic oxidative protein folding via disulfide isomerization based on naturally occurring small molecules. Using single-molecule force-clamp spectroscopy, supported by DFT calculations and mass spectrometry measurements, we demonstrate that subtle changes in the chemical structure of a transient mixed-disulfide intermediate adduct between a protein cysteine and an attacking low molecular-weight thiol have a dramatic effect on the protein's mechanical stability. This approach provides a general tool to rationalize the dynamics of S-thiolation and its role in modulating protein nanomechanics, offering molecular insights on how chemical reactivity regulates protein elasticity.

  4. Solubilization and folding of a fully active recombinant Gaussia luciferase with native disulfide bonds by using a SEP-Tag.

    Science.gov (United States)

    Rathnayaka, Tharangani; Tawa, Minako; Nakamura, Takashi; Sohya, Shihori; Kuwajima, Kunihiro; Yohda, Masafumi; Kuroda, Yutaka

    2011-12-01

    Gaussia luciferase (GLuc) is the smallest known bioluminescent protein and is attracting much attention as a potential reporter protein. However, its 10 disulfide bond forming cysteines have hampered the efficient production of recombinant GLuc and thus limited its use in bio-imaging application. Here, we demonstrate that the addition of a short solubility enhancement peptide tag (SEP-Tag) to the C-terminus of GLuc (GLuc-C9D) significantly increased the fraction of soluble protein at a standard expression temperature. The expression time was much shorter, and the final yield of GLuc-C9D was significantly higher than with our previous pCold expression system. Reversed phase HPLC indicated that the GLuc-C9D variant folded with a single disulfide bond pattern after proper oxidization. Further, the thermal denaturation of GLuc-C9D was completely reversible, and its secondary structure content remained unchanged until 40°C as assessed by CD spectroscopy. The (1)H-NMR spectrum of GLuc indicated sharp well dispersed peaks typical for natively folded proteins. GLuc-C9D bioluminescence activity was strong and fully retained even after incubation at high temperatures. These results suggest that solubilization using SEP-Tags can be useful for producing large quantities of proteins containing multiple disulfide bonds. Copyright © 2011. Published by Elsevier B.V.

  5. Regulation of a phage endolysin by disulfide caging.

    Science.gov (United States)

    Kuty, Gabriel F; Xu, Min; Struck, Douglas K; Summer, Elizabeth J; Young, Ry

    2010-11-01

    In contrast to canonical phage endolysins, which require holin-mediated disruption of the membrane to gain access to attack the cell wall, signal anchor release (SAR) endolysins are secreted by the host sec system, where they accumulate in an inactive form tethered to the membrane by their N-terminal SAR domains. SAR endolysins become activated by various mechanisms upon release from the membrane. In its inactive form, the prototype SAR endolysin, Lyz(P1), of coliphage P1, has an active-site Cys covalently blocked by a disulfide bond; activation involves a disulfide bond isomerization driven by a thiol in the newly released SAR domain, unblocking the active-site Cys. Here, we report that Lyz(103), the endolysin of Erwinia phage ERA103, is also a SAR endolysin. Although Lyz(103) does not have a catalytic Cys, genetic evidence suggests that it also is activated by a thiol-disulfide isomerization triggered by a thiol in the SAR domain. In this case, the inhibitory disulfide in nascent Lyz(103) is formed between cysteine residues flanking a catalytic glutamate, caging the active site. Thus, Lyz(P1) and Lyz(103) define subclasses of SAR endolysins that differ in the nature of their inhibitory disulfide, and Lyz(103) is the first enzyme found to be regulated by disulfide bond caging of its active site.

  6. Crystal Structure of Escherichia coli L-Arabinose Isomerase (ECAI), The Putative Target of Biological Tagatose Production

    Energy Technology Data Exchange (ETDEWEB)

    Manjasetty,B.; Chance, M.

    2006-01-01

    Escherichia coli L-arabinose isomerase (ECAI; EC 5.3.1.4) catalyzes the isomerization of L-arabinose to L-ribulose in vivo. This enzyme is also of commercial interest as it catalyzes the conversion of D-galactose to D-tagatose in vitro. The crystal structure of ECAI was solved and refined at 2.6 Angstroms resolution. The subunit structure of ECAI is organized into three domains: an N-terminal, a central and a C-terminal domain. It forms a crystallographic trimeric architecture in the asymmetric unit. Packing within the crystal suggests the idea that ECAI can form a hexameric assembly. Previous electron microscopic and biochemical studies supports that ECAI is hexameric in solution. A comparison with other known structures reveals that ECAI adopts a protein fold most similar to E. coli fucose isomerase (ECFI) despite very low sequence identity 9.7%. The structural similarity between ECAI and ECFI with regard to number of domains, overall fold, biological assembly, and active site architecture strongly suggests that the enzymes have functional similarities. Further, the crystal structure of ECAI forms a basis for identifying molecular determinants responsible for isomerization of arabinose to ribulose in vivo and galactose to tagatose in vitro.

  7. Identification of human basic fetoprotein as glucose-6-phosphate isomerase by using N- and C-terminal sequence tags and terminal tag database.

    Science.gov (United States)

    Kuyama, Hiroki; Yoshizawa, Akiyasu C; Nakajima, Chihiro; Hosako, Mutsumi; Tanaka, Koichi

    2015-08-10

    Human basic fetoprotein (BFP), found in fetal serum and tissue extracts as well as in extracts of various cancer tissues, has long been known as a marker protein for cancers; however, the primary sequence has not yet been reported. This paper describes the identification of BFP using the N- and C-terminal amino acid sequence tags (Ac-AALTRDPQFQ and QQREARVQ, respectively) clarified by mass spectrometry-based methods, and a terminal tag database (ProteinCarta). In this study, BFP was identified as glucose-6-phosphate isomerase (G6PI_HUMAN). Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Kinetics and Mechanisms of Thiol–Disulfide Exchange Covering Direct Substitution and Thiol Oxidation-Mediated Pathways

    Science.gov (United States)

    2013-01-01

    Abstract Significance: Disulfides are important building blocks in the secondary and tertiary structures of proteins, serving as inter- and intra-subunit cross links. Disulfides are also the major products of thiol oxidation, a process that has primary roles in defense mechanisms against oxidative stress and in redox regulation of cell signaling. Although disulfides are relatively stable, their reduction, isomerisation, and interconversion as well as their production reactions are catalyzed by delicate enzyme machineries, providing a dynamic system in biology. Redox homeostasis, a thermodynamic parameter that determines which reactions can occur in cellular compartments, is also balanced by the thiol–disulfide pool. However, it is the kinetic properties of the reactions that best represent cell dynamics, because the partitioning of the possible reactions depends on kinetic parameters. Critical Issues: This review is focused on the kinetics and mechanisms of thiol–disulfide substitution and redox reactions. It summarizes the challenges and advances that are associated with kinetic investigations in small molecular and enzymatic systems from a rigorous chemical perspective using biological examples. The most important parameters that influence reaction rates are discussed in detail. Recent Advances and Future Directions: Kinetic studies of proteins are more challenging than small molecules, and quite often investigators are forced to sacrifice the rigor of the experimental approach to obtain the important kinetic and mechanistic information. However, recent technological advances allow a more comprehensive analysis of enzymatic systems via using the systematic kinetics apparatus that was developed for small molecule reactions, which is expected to provide further insight into the cell's machinery. Antioxid. Redox Signal. 18, 1623–1641. PMID:23075118

  9. Cigarette smoke induces an unfolded protein response in the human lung: a proteomic approach.

    Science.gov (United States)

    Kelsen, Steven G; Duan, Xunbao; Ji, Rong; Perez, Oscar; Liu, Chunli; Merali, Salim

    2008-05-01

    Cigarette smoking, which exposes the lung to high concentrations of reactive oxidant species (ROS) is the major risk factor for chronic obstructive pulmonary disease (COPD). Recent studies indicate that ROS interfere with protein folding in the endoplasmic reticulum and elicit a compensatory response termed the "unfolded protein response" (UPR). The importance of the UPR lies in its ability to alter expression of a variety of genes involved in antioxidant defense, inflammation, energy metabolism, protein synthesis, apoptosis, and cell cycle regulation. The present study used comparative proteomic technology to test the hypothesis that chronic cigarette smoking induces a UPR in the human lung. Studies were performed on lung tissue samples obtained from three groups of human subjects: nonsmokers, chronic cigarette smokers, and ex-smokers. Proteomes of lung samples from chronic cigarette smokers demonstrated 26 differentially expressed proteins (20 were up-regulated, 5 were down-regulated, and 1 was detected only in the smoking group) compared with nonsmokers. Several UPR proteins were up-regulated in smokers compared with nonsmokers and ex-smokers, including the chaperones, glucose-regulated protein 78 (GRP78) and calreticulin; a foldase, protein disulfide isomerase (PDI); and enzymes involved in antioxidant defense. In cultured human airway epithelial cells, GRP78 and the UPR-regulated basic leucine zipper, transcription factors, ATF4 and Nrf2, which enhance expression of important anti-oxidant genes, increased rapidly (< 24 h) with cigarette smoke extract. These data indicate that cigarette smoke induces a UPR response in the human lung that is rapid in onset, concentration dependent, and at least partially reversible with smoking cessation. We speculate that activation of a UPR by cigarette smoke may protect the lung from oxidant injury and the development of COPD.

  10. Efficient production of (2)H, (13)C, (15)N-enriched industrial enzyme Rhizopus chinensis lipase with native disulfide bonds.

    Science.gov (United States)

    Zhang, Meng; Yu, Xiao-Wei; Swapna, G V T; Xiao, Rong; Zheng, Haiyan; Sha, Chong; Xu, Yan; Montelione, Gaetano T

    2016-07-13

    In order to use most modern methods of NMR spectroscopy to study protein structure and dynamics, isotope-enriched protein samples are essential. Especially for larger proteins (>20 kDa), perdeuterated and Ile (δ1), Leu, and Val methyl-protonated protein samples are required for suppressing nuclear relaxation to provide improved spectral quality, allowing key backbone and side chain resonance assignments needed for protein structure and dynamics studies. Escherichia coli and Pichia pastoris are two of the most popular expression systems for producing isotope-enriched, recombinant protein samples for NMR investigations. The P. pastoris system can be used to produce (13)C, (15)N-enriched and even (2)H,(13)C, (15)N-enriched protein samples, but efficient methods for producing perdeuterated proteins with Ile (δ1), Leu and Val methyl-protonated groups in P. pastoris are still unavailable. Glycosylation heterogeneity also provides challenges to NMR studies. E. coli expression systems are efficient for overexpressing perdeuterated and Ile (δ1), Leu, Val methyl-protonated protein samples, but are generally not successful for producing secreted eukaryotic proteins with native disulfide bonds. The 33 kDa protein-Rhizopus chinensis lipase (RCL), an important industrial enzyme, was produced using both P. pastoris and E. coli BL21 trxB (DE3) systems. Samples produced from both systems exhibit identical native disulfide bond formation and similar 2D NMR spectra, indicating similar native protein folding. The yield of (13)C, (15)N-enriched r27RCL produced using P. pastoris was 1.7 times higher that obtained using E. coli, while the isotope-labeling efficiency was ~15 % lower. Protein samples produced in P. pastoris exhibit O-glycosylation, while the protein samples produced in E. coli were not glycosylated. The specific activity of r27RCL from P. pastoris was ~1.4 times higher than that produced in E. coli. These data demonstrate efficient production of (2)H, (13)C, (15)N

  11. Accumulation of β-Conglycinin in Soybean Cotyledon through the Formation of Disulfide Bonds between α′- and α-Subunits1[W][OA

    Science.gov (United States)

    Wadahama, Hiroyuki; Iwasaki, Kensuke; Matsusaki, Motonori; Nishizawa, Keito; Ishimoto, Masao; Arisaka, Fumio; Takagi, Kyoko; Urade, Reiko

    2012-01-01

    β-Conglycinin, one of the major soybean (Glycine max) seed storage proteins, is folded and assembled into trimers in the endoplasmic reticulum and accumulated into protein storage vacuoles. Prior experiments have used soybean β-conglycinin extracted using a reducing buffer containing a sulfhydryl reductant such as 2-mercaptoethanol, which reduces both intermolecular and intramolecular disulfide bonds within the proteins. In this study, soybean proteins were extracted from the cotyledons of immature seeds or dry beans under nonreducing conditions to prevent the oxidation of thiol groups and the reduction or exchange of disulfide bonds. We found that approximately half of the α′- and α-subunits of β-conglycinin were disulfide linked, together or with P34, prior to amino-terminal propeptide processing. Sedimentation velocity experiments, size-exclusion chromatography, and two-dimensional polyacrylamide gel electrophoresis (PAGE) analysis, with blue native PAGE followed by sodium dodecyl sulfate-PAGE, indicated that the β-conglycinin complexes containing the disulfide-linked α′/α-subunits were complexes of more than 720 kD. The α′- and α-subunits, when disulfide linked with P34, were mostly present in approximately 480-kD complexes (hexamers) at low ionic strength. Our results suggest that disulfide bonds are formed between α′/α-subunits residing in different β-conglycinin hexamers, but the binding of P34 to α′- and α-subunits reduces the linkage between β-conglycinin hexamers. Finally, a subset of glycinin was shown to exist as noncovalently associated complexes larger than hexamers when β-conglycinin was expressed under nonreducing conditions. PMID:22218927

  12. The role of carotenoid isomerase in maintenance of photosynthetic oxygen evolution in rice plant.

    Science.gov (United States)

    Wei, Jiali; Xu, Min; Zhang, Dabing; Mi, Hualing

    2010-07-01

    Carotenoid isomerase (CRTISO) has been suggested to protect photosystem II (PS II) from photodamage, probably through its product lutein. However, the mechanism of the photoprotection still remains to be further elucidated. In this work, we cloned a point mutated gene reported to encode a CRTISO which is responsible for the accumulation of lutein in rice mutant zel1 by a map-based cloning approach. The mutant phenotype was rescued by transformation with the corresponding gene of the wild type (WT). The activity of photosynthetic oxygen evolution was evidently suppressed in zel1. The amount of the core protein of PS II CP47 was much lower in all the PS II complexes especially in the LHCII-PS II supercomplexes and CP43-free PS II of zel1 than that of WT. On the other hand, the amount of another core protein of PS II CP43 of zel1 was decreased in the higher supercomplexes, whereas it was increased in the lower ones and PS II monomer. The immunodetection displayed that CP43, CP47, and the oxygen-evolving extrinsic proteins PsbO and PsbP were reduced, but the amount of reaction center protein D1 did not show significant change in zel1. Northern blot analysis showed that the transcriptional level of CP43 was down-regulated but not that of CP47 or D1 in zel1. In addition, the plastoquinone (PQ) Q(A) was in a reduced state in zel1. On the basis of the results, we suggest that CRTISO might function in regulating the transcription of CP43 and the translation of CP47 by affecting the redox state of the PQ to stabilize the extrinsic proteins of oxygen evolution complexes in the rice plant.

  13. Dissecting molecular interactions involved in recognition of target disulfides by the barley thioredoxin system

    DEFF Research Database (Denmark)

    Björnberg, Olof; Maeda, Kenji; Svensson, Birte

    2012-01-01

    thioredoxin reductase. HvTrxh2 M88G and M88A adjacent to the invariant cis-proline lost efficiency in both BASI disulfide reduction and recycling by thioredoxin reductase. These effects were further pronounced in M88P lacking a backbone NH group. Remarkably, HvTrxh2 E86R in the same loop displayed overall...... reductase. The findings support important roles in target recognition of backbone-backbone hydrogen bond and electrostatic interactions and are discussed in relation to earlier structural and functional studies of thioredoxins and related proteins. © 2012 American Chemical Society....

  14. Human glucose phosphate isomerase: Exon mapping and gene structure

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Weiming; Lee, Pauline; Beutler, E. [Scripps Research Inst., La Jolla, CA (United States)

    1995-10-10

    The structure of the gene for human glucose phosphate isomerase (GPI) has been determined. Three GPI clones were isolated from a human genomic library by using a full-length GPI cDNA probe and were characterized. Oligonucleotides based on the known cDNA sequence were used as primers in amplification and sequence analyses. This led to the identification of the exon-intron junctions. By this approach, 18 exons and 17 introns have been identified. The exons range in size from 44 to 431 nucleotides. The intronic sequences surrounding the exons provide useful information for the identification of mutations that give rise to human GPI deficiency associated with chronic hemolytic anemia. 13 refs., 4 figs., 1 tab.

  15. Optimizing crystal volume for neutron diffraction: D-xylose isomerase.

    Science.gov (United States)

    Snell, Edward H; van der Woerd, Mark J; Damon, Michael; Judge, Russell A; Myles, Dean A A; Meilleur, Flora

    2006-09-01

    Neutron diffraction is uniquely sensitive to hydrogen positions and protonation state. In that context structural information from neutron data is complementary to that provided through X-ray diffraction. However, there are practical obstacles to overcome in fully exploiting the potential of neutron diffraction, i.e. low flux and weak scattering. Several approaches are available to overcome these obstacles and we have investigated the simplest: increasing the diffracting volume of the crystals. Volume is a quantifiable metric that is well suited for experimental design and optimization techniques. By using response surface methods we have optimized the xylose isomerase crystal volume, enabling neutron diffraction while we determined the crystallization parameters with a minimum of experiments. Our results suggest a systematic means of enabling neutron diffraction studies for a larger number of samples that require information on hydrogen position and/or protonation state.

  16. Mammalian peptide isomerase: platypus-type activity is present in mouse heart.

    Science.gov (United States)

    Koh, Jennifer M S; Chow, Stephanie J P; Crossett, Ben; Kuchel, Philip W

    2010-06-01

    Male platypus (Ornithorhynchus anatinus) venom has a peptidyl aminoacyl L/D-isomerase (hereafter called peptide isomerase) that converts the second amino acid residue in from the N-terminus from the L- to the D-form, and vice versa. A reversed-phase high-performance liquid chromatography (RP-HPLC) assay has been developed to monitor the interconversion using synthetic hexapeptides derived from defensin-like peptide-2 (DLP-2) and DLP-4 as substrates. It was hypothesised that animals other than the platypus would have peptide isomerase with the same substrate specificity. Accordingly, eight mouse tissues were tested and heart was shown to have the activity. This is notable for being the first evidence of a peptide isomerase being present in a higher mammal and heralds finding the activity in man.

  17. Relationship between deficiency of phosphoglucose isomerase in Coprinus macrorhizus and fruiting body formation.

    OpenAIRE

    Nyunoya, H; Ishikawa, T

    1980-01-01

    A mutant (pgi) of Coprinus macrorhizus deficient in phosphoglucose isomerase did not grow on fructose and grew poorly on glucose. The pgi mutation inhibited the formation of monokaryotic and dikaryotic fruiting bodies.

  18. INDUCTION AND REPRESSION OF l-ARABINOSE ISOMERASE IN PEDIOCOCCUS PENTOSACEUS1

    Science.gov (United States)

    Dobrogosz, Walter J.; DeMoss, Ralph D.

    1963-01-01

    Dobrogosz, Walter J. (University of Illinois, Urbana) and Ralph D. DeMoss. Induction and repression of l-arabinose isomerase in Pediococcus pentosaceus. J. Bacteriol. 85:1350–1355. 1963.—The inducible l-arabinose isomerase of Pediococcus pentosaceus can be rapidly and conveniently measured in whole-cell preparations by use of a standard colorimetric procedure originally developed for studies with cell-free enzyme preparations. The enzyme is measured by its ability to catalyze the isomerization of l-arabinose to l-ribulose. Whole cells suspended in a suitable buffer and pretreated with toluene were shown to exhibit this isomerase activity at a level comparable with that observed in cell-free enzyme preparations. Conditions for optimal induction of l-arabinose isomerase are described. In addition, it was determined that the formation of this enzyme is subject to repression by glucose, i.e., via catabolite repression. PMID:14047229

  19. Structure of conkunitzin-S1, a neurotoxin and Kunitz-fold disulfide variant from cone snail

    Energy Technology Data Exchange (ETDEWEB)

    Dy, Catherine Y. [Biology, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112-0840 (United States); Buczek, Pawel [Cognetix Inc., 421 Wakara Way, Suite 201, Salt Lake City, Utah 84108 (United States); Imperial, Julita S. [Biology, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112-0840 (United States); Bulaj, Grzegorz [Biology, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112-0840 (United States); Cognetix Inc., 421 Wakara Way, Suite 201, Salt Lake City, Utah 84108 (United States); Horvath, Martin P., E-mail: horvath@biology.utah.edu [Biology, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112-0840 (United States)

    2006-09-01

    Most Kunitz proteins like BPTI and α-dendrotoxin are stabilized by three disulfide bonds. The crystal structure shows how subtle repacking of non-covalent interactions may compensate for disulfide bond loss in a naturally occurring two-disulfide variant, conkunitzin-S1, the first discovered member of a new conotoxin family. Cone snails (Conus) are predatory marine mollusks that immobilize prey with venom containing 50–200 neurotoxic polypeptides. Most of these polypeptides are small disulfide-rich conotoxins that can be classified into families according to their respective ion-channel targets and patterns of cysteine–cysteine disulfides. Conkunitzin-S1, a potassium-channel pore-blocking toxin isolated from C. striatus venom, is a member of a newly defined conotoxin family with sequence homology to Kunitz-fold proteins such as α-dendrotoxin and bovine pancreatic trypsin inhibitor (BPTI). While conkunitzin-S1 and α-dendrotoxin are 42% identical in amino-acid sequence, conkunitzin-S1 has only four of the six cysteines normally found in Kunitz proteins. Here, the crystal structure of conkunitzin-S1 is reported. Conkunitzin-S1 adopts the canonical 3{sub 10}–β–β–α Kunitz fold complete with additional distinguishing structural features including two completely buried water molecules. The crystal structure, although completely consistent with previously reported NMR distance restraints, provides a greater degree of precision for atomic coordinates, especially for S atoms and buried solvent molecules. The region normally cross-linked by cysteines II and IV in other Kunitz proteins retains a network of hydrogen bonds and van der Waals interactions comparable to those found in α-dendrotoxin and BPTI. In conkunitzin-S1, glycine occupies the sequence position normally reserved for cysteine II and the special steric properties of glycine allow additional van der Waals contacts with the glutamine residue substituting for cysteine IV. Evolution has thus defrayed

  20. Surprising Intrinsic Photostability of the Disulfide Bridge Common in Proteins

    DEFF Research Database (Denmark)

    Stephansen, Anne Boutrup; Brogaard, Rasmus Yding; Kuhlman, Thomas Scheby

    2012-01-01

    on the femtosecond time scale and found the reason for the existence of the S–S bridge as a natural building block in folded structures. The sulfur atoms will indeed move apart on the excited state but only to oscillate around the S–S center of mass. At long S–S distances, there is a strong coupling to the ground...... state, and the oscillatory motion enables the molecules to continuously revisit that particular region of the potential energy surface. When a structural feature such as a ring prevents the sulfur radicals from flying apart and thus assures a sufficient residence time in the active region...

  1. A single and two step isomerization process for d-tagatose and l-ribose bioproduction using l-arabinose isomerase and d-lyxose isomerase.

    Science.gov (United States)

    Patel, Manisha J; Akhani, Rekha C; Patel, Arti T; Dedania, Samir R; Patel, Darshan H

    2017-02-01

    l-ribose and d-tagatose are biochemically synthesized using sugar isomerases. The l-arabinose isomerase gene from Shigella flexneri (Sf-AI) was cloned and expressed in Escherichia coli BL-21. Sf-AI was applied for the bioproduction of d-tagatose from d-galactose. l-ribose synthesis was performed by two step isomerization using Sf-AI and d-lyxose/ribose isomerase from Cohnella laevoribosii. The overall 22.3% and 25% conversion rate were observed for d-tagatose and l-ribose production from d-galactose and l-arabinose respectively. In the present manuscript, synthesis of rare sugars from naturally available sugars is discussed along with the biochemical characterization of Sf-AI and its efficiency. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Disulfide bridges as essential elements for the thermostability of lytic polysaccharide monooxygenase LPMO10C from Streptomyces coelicolor.

    Science.gov (United States)

    Tanghe, Magali; Danneels, Barbara; Last, Matthias; Beerens, Koen; Stals, Ingeborg; Desmet, Tom

    2017-05-01

    Lytic polysaccharide monooxygenases (LPMOs) are crucial components of cellulase mixtures but their stability has not yet been studied in detail, let alone been engineered for industrial applications. In this work, we have evaluated the importance of disulfide bridges for the thermodynamic stability of Streptomyces coelicolor LPMO10C. Interestingly, this enzyme was found to retain 34% of its activity after 2-h incubation at 80°C while its apparent melting temperature (Tm) is only 51°C. When its three disulfide bridges were broken, however, irreversible unfolding occurred and no residual activity could be detected after a similar heat treatment. Based on these findings, additional disulfide bridges were introduced, as predicted by computational tools (MOdelling of DIsulfide bridges in Proteins (MODiP) and Disulfide by Design (DbD)) and using the most flexible positions in the structure as target sites. Four out of 16 variants displayed an improvement in Tm, ranging from 2 to 9°C. Combining the positive mutations yielded additional improvements (up to 19°C) but aberrant unfolding patterns became apparent in some cases, resulting in a diminished capacity for heat resistance. Nonetheless, the best variant, a combination of A143C-P183C and S73C-A115C, displayed a 12°C increase in Tm and was able to retain and was able to retain no less than 60% of its activity after heat treatment. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. MexT functions as a redox-responsive regulator modulating disulfide stress resistance in Pseudomonas aeruginosa.

    Science.gov (United States)

    Fargier, Emilie; Mac Aogáin, Micheál; Mooij, Marlies J; Woods, David F; Morrissey, John P; Dobson, Alan D W; Adams, Claire; O'Gara, Fergal

    2012-07-01

    MexT is a global LysR transcriptional regulator known to modulate antibiotic resistance and virulence in Pseudomonas aeruginosa. In this study, a novel role for MexT in mediating intrinsic disulfide stress resistance was demonstrated, representing the first identified phenotype associated with inactivation of this regulator in wild-type cells. Disruption of mexT resulted in increased susceptibility to the disulfide stress elicitor diamide [diazenedicarboxylic acid bis(N,N,-di-methylamide)]. This compound is known to elicit a specific stress response via depletion of reduced glutathione and alteration of the cellular redox environment, implicating MexT in redox control. In support of this, MexT-regulated targets, including the MexEF-OprN multidrug efflux system, were induced by subinhibitory concentrations of diamide. A mexF insertion mutant also exhibited increased diamide susceptibility, implicating the MexEF-OprN efflux system in MexT-associated disulfide stress resistance. Purified MexT protein was observed to form an oligomeric complex in the presence of oxidized glutathione, with a calculated redox potential of -189 mV. This value far exceeds the thiol-disulfide redox potential of the bacterial cytoplasm, ensuring that MexT remains reduced under normal physiological conditions. MexT is activated by mutational disruption of the predicted quinone oxidoreductase encoded by mexS. Alterations in the cellular redox state were observed in a mexS mutant (PA14nfxC), supporting a model whereby the perception of MexS-associated redox signals by MexT leads to the induction of the MexEF-OprN efflux system, which, in turn, may mediate disulfide stress resistance via efflux of electrophilic compounds.

  4. Non-Catalytic Participation of the Pin1 Peptidyl-Prolyl Isomerase Domain in Target Binding

    Directory of Open Access Journals (Sweden)

    Brendan Tooke Innes

    2013-02-01

    Full Text Available Pin1 is a phosphorylation-dependent peptidyl-prolyl isomerase that has the potential to add an additional level of regulation within protein kinase mediated signaling pathways. Furthermore, there is a mounting body of evidence implicating Pin1 in the emergence of pathological phenotypes in neurodegeneration and cancer through the isomerization of a wide variety of substrates at peptidyl-prolyl bonds where the residue preceding proline is a phosphorylated serine or threonine residue (ie. pS/T-P motifs. A key step in this regulatory process is the interaction of Pin-1 with its substrates. This is a complex process since Pin1 is composed of two domains, the catalytic PPIase domain, and a type IV WW domain, both of which recognize pS/T-P motifs. The observation that the WW domain exhibits considerably higher binding affinity for pS/T-P motifs has led to predictions that the two domains may have distinct roles in mediating the actions of Pin1 on its substrates. To evaluate the participation of its individual domains in target binding, we performed GST pulldowns to monitor interactions between various forms of Pin1 and mitotic phospho-proteins that revealed two classes of Pin-1 interacting proteins, differing in their requirement for residues within the PPIase domain. From these observations, we consider models for Pin1-substrate interactions and the potential functions of the different classes of Pin1 interacting proteins. We also compare sequences that are recognized by Pin1 within its individual interaction partners to investigate the underlying basis for its different types of interactions.

  5. The prolyl isomerase Pin1 increases β-cell proliferation and enhances insulin secretion.

    Science.gov (United States)

    Nakatsu, Yusuke; Mori, Keiichi; Matsunaga, Yasuka; Yamamotoya, Takeshi; Ueda, Koji; Inoue, Yuki; Mitsuzaki-Miyoshi, Keiko; Sakoda, Hideyuki; Fujishiro, Midori; Yamaguchi, Suguru; Kushiyama, Akifumi; Ono, Hiraku; Ishihara, Hisamitsu; Asano, Tomoichiro

    2017-07-14

    The prolyl isomerase Pin1 binds to the phosphorylated Ser/Thr-Pro motif of target proteins and enhances their cis-trans conversion. This report is the first to show that Pin1 expression in pancreatic β cells is markedly elevated by high-fat diet feeding and in ob/ob mice. To elucidate the role of Pin1 in pancreatic β cells, we generated β-cell-specific Pin1 KO (βPin1 KO) mice. These mutant mice showed exacerbation of glucose intolerance but had normal insulin sensitivity. We identified two independent factors underlying impaired insulin secretion in the βPin1 KO mice. Pin1 enhanced pancreatic β-cell proliferation, as indicated by a reduced β-cell mass in βPin1 KO mice compared with control mice. Moreover, a diet high in fat and sucrose failed to increase pancreatic β-cell growth in the βPin1 KO mice, an observation to which up-regulation of the cell cycle protein cyclin D appeared to contribute. The other role of Pin1 was to activate the insulin-secretory step: Pin1 KO β cells showed impairments in glucose- and KCl-induced elevation of the intracellular Ca 2+ concentration and insulin secretion. We also identified salt-inducible kinase 2 (SIK2) as a Pin1-binding protein that affected the regulation of Ca 2+ influx and found Pin1 to enhance SIK2 kinase activity, resulting in a decrease in p35 protein, a negative regulator of Ca 2+ influx. Taken together, our observations demonstrate critical roles of Pin1 in pancreatic β cells and that Pin1 both promotes β-cell proliferation and activates insulin secretion. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Suppression of glucose-6-phosphate-isomerase induced arthritis by oral administration of transgenic rice seeds expressing altered peptide ligands of glucose-6-phosphate-isomerase.

    Science.gov (United States)

    Hirota, Tomoya; Tsuboi, Hiroto; Iizuka-Koga, Mana; Takahashi, Hiroyuki; Asashima, Hiromitsu; Yokosawa, Masahiro; Kondo, Yuya; Ohta, Masaru; Wakasa, Yuhya; Matsumoto, Isao; Takaiwa, Fumio; Sumida, Takayuki

    2017-05-01

    To investigate the effects of transgenic rice seeds expressing the altered peptide ligand (APL) of human glucose-6-phosphate-isomerase (hGPI 325-339 ) in mice model of GPI-induced arthritis (GIA). We generated transgenic rice expressing T-cell epitope of hGPI 325-339 and APL12 contained in the seed endosperm. The transgenic rice seeds were orally administered prophylactically before the induction of GIA. The severity of arthritis and titers of serum anti-GPI antibodies were evaluated. We examined for IL-17 production in splenocytes and inguinal lymph node (iLN) cells, and analyzed the expression levels of functional molecules in splenocytes. Prophylactic treatment of GIA mice with APL12 transgenic (APL12-TG) rice seeds significantly reduced the severity of arthritis and titers of serum anti-GPI antibodies compared with non-transgenic (Non-TG) rice-treated mice. APL12-TG and hGPI 325-339 transgenic (hGPI 325-339 -TG) rice seeds improved the histopathological arthritis scores and decreased IL-17 production compared with non-TG rice-treated mice. APL12-TG rice-treated GIA mice showed upregulation of Foxp3 and GITR protein in CD4  +  CD25  +  Foxp3 +  cells in the spleen compared with non-TG rice- and hGPI 325-339 -TG rice-treated mice. APL12-TG rice seeds improved the severity of GIA through a decrease in production of IL-17 and anti-GPI antibodies via upregulation of Foxp3 and GITR expression on Treg cells in spleen.

  7. Peptidyl Prolyl Isomerase PIN1 Directly Binds to and Stabilizes Hypoxia-Inducible Factor-1α.

    Directory of Open Access Journals (Sweden)

    Hyeong-Jun Han

    Full Text Available Peptidyl prolyl isomerase (PIN1 regulates the functional activity of a subset of phosphoproteins through binding to phosphorylated Ser/Thr-Pro motifs and subsequently isomerization of the phosphorylated bonds. Interestingly, PIN1 is overexpressed in many types of malignancies including breast, prostate, lung and colon cancers. However, its oncogenic functions have not been fully elucidated. Here, we report that PIN1 directly interacts with hypoxia-inducible factor (HIF-1α in human colon cancer (HCT116 cells. PIN1 binding to HIF-1α occurred in a phosphorylation-dependent manner. We also found that PIN1 interacted with HIF-1α at both exogenous and endogenous levels. Notably, PIN1 binding stabilized the HIF-1α protein, given that their levels were significantly increased under hypoxic conditions. The stabilization of HIF-1α resulted in increased transcriptional activity, consequently upregulating expression of vascular endothelial growth factor, a major contributor to angiogenesis. Silencing of PIN1 or pharmacologic inhibition of its activity abrogated the angiogenesis. By utilizing a bioluminescence imaging technique, we were able to demonstrate that PIN1 inhibition dramatically reduced the tumor volume in a subcutaneous mouse xenograft model and angiogenesis as well as hypoxia-induced transcriptional activity of HIF-1α. These results suggest that PIN1 interacting with HIF-1α is a potential cancer chemopreventive and therapeutic target.

  8. Engineering the l-Arabinose Isomerase from Enterococcus Faecium for d-Tagatose Synthesis

    Directory of Open Access Journals (Sweden)

    Marylane de Sousa

    2017-12-01

    Full Text Available l-Arabinose isomerase (EC 5.3.1.4 (l-AI from Enterococcus faecium DBFIQ E36 was overproduced in Escherichia coli by designing a codon-optimized synthetic araA gene. Using this optimized gene, two N- and C-terminal His-tagged-l-AI proteins were produced. The cloning of the two chimeric genes into regulated expression vectors resulted in the production of high amounts of recombinant N-His-l-AI and C-His-l-AI in soluble and active forms. Both His-tagged enzymes were purified in a single step through metal-affinity chromatography and showed different kinetic and structural characteristics. Analytical ultracentrifugation revealed that C-His-l-AI was preferentially hexameric in solution, whereas N-His-l-AI was mainly monomeric. The specific activity of the N-His-l-AI at acidic pH was higher than that of C-His-l-AI and showed a maximum bioconversion yield of 26% at 50 °C for d-tagatose biosynthesis, with Km and Vmax parameters of 252 mM and 0.092 U mg−1, respectively. However, C-His-l-AI was more active and stable at alkaline pH than N-His-l-AI. N-His-l-AI follows a Michaelis-Menten kinetic, whereas C-His-l-AI fitted to a sigmoidal saturation curve.

  9. Engineering the l-Arabinose Isomerase from Enterococcus Faecium for d-Tagatose Synthesis.

    Science.gov (United States)

    de Sousa, Marylane; Manzo, Ricardo M; García, José L; Mammarella, Enrique J; Gonçalves, Luciana R B; Pessela, Benevides C

    2017-12-06

    l-Arabinose isomerase (EC 5.3.1.4) (l-AI) from Enterococcus faecium DBFIQ E36 was overproduced in Escherichia coli by designing a codon-optimized synthetic araA gene. Using this optimized gene, two N- and C-terminal His-tagged-l-AI proteins were produced. The cloning of the two chimeric genes into regulated expression vectors resulted in the production of high amounts of recombinant N -His-l-AI and C -His-l-AI in soluble and active forms. Both His-tagged enzymes were purified in a single step through metal-affinity chromatography and showed different kinetic and structural characteristics. Analytical ultracentrifugation revealed that C -His-l-AI was preferentially hexameric in solution, whereas N -His-l-AI was mainly monomeric. The specific activity of the N -His-l-AI at acidic pH was higher than that of C -His-l-AI and showed a maximum bioconversion yield of 26% at 50 °C for d-tagatose biosynthesis, with Km and Vmax parameters of 252 mM and 0.092 U mg -1 , respectively. However, C -His-l-AI was more active and stable at alkaline pH than N -His-l-AI. N -His-l-AI follows a Michaelis-Menten kinetic, whereas C -His-l-AI fitted to a sigmoidal saturation curve.

  10. Species-Specific Inactivation of Triosephosphate Isomerase from Trypanosoma brucei: Kinetic and Molecular Dynamics Studies

    Directory of Open Access Journals (Sweden)

    Alejandra Vázquez-Raygoza

    2017-11-01

    Full Text Available Human African Trypanosomiasis (HAT, a disease that provokes 2184 new cases a year in Sub-Saharan Africa, is caused by Trypanosoma brucei. Current treatments are limited, highly toxic, and parasite strains resistant to them are emerging. Therefore, there is an urgency to find new drugs against HAT. In this context, T. brucei depends on glycolysis as the unique source for ATP supply; therefore, the enzyme triosephosphate isomerase (TIM is an attractive target for drug design. In the present work, three new benzimidazole derivatives were found as TbTIM inactivators (compounds 1, 2 and 3 with an I50 value of 84, 82 and 73 µM, respectively. Kinetic analyses indicated that the three molecules were selective when tested against human TIM (HsTIM activity. Additionally, to study their binding mode in TbTIM, we performed a 100 ns molecular dynamics simulation of TbTIM-inactivator complexes. Simulations showed that the binding of compounds disturbs the structure of the protein, affecting the conformations of important domains such as loop 6 and loop 8. In addition, the physicochemical and drug-like parameters showed by the three compounds suggest a good oral absorption. In conclusion, these molecules will serve as a guide to design more potent inactivators that could be used to obtain new drugs against HAT.

  11. Comparison between serum levels of carcinoembryonic antigen, sialic acid and phosphohexose isomerase in lung cancer

    International Nuclear Information System (INIS)

    Patel, P.S.; Raval, G.N.; Rawal, R.M.; Balar, D.B.; Patel, G.H.; Shah, P.M.; Patel, D.D.

    1995-01-01

    The identification and application of quantifiable tumor markers as adjuncts to clinical care is a story of both success and failure. The present study compared serum levels of carcinoembryogenic antigen (CEA) with total sialic acid/total protein (TSA/TP) ration and phosphohexose isomerase (PHI) in 192 untreated lung cancer patients as well as 80 age and sex matched controls (44 non-smokers). CEA values were significantly raised (p < 0.001) in smokers as compared to the non-smokers; whereas, TSA/TP and PHI values were comparable between the groups of the groups of the controls. All the bio-markers were significantly elevated (p < 0.00.1) in untreated lung cancer patients as compared to the controls. Receiver operating characteristic curve analysis revealed higher sensitivities of TSA/TP and PHI as compared to CEA at different specificity levels between 60% and 95%. Mean values of CEA, TSA/TP and PHI were higher in non-responders compared to the responders. The results indicate that TSA/TP and PHI are superior tumor markers than CEA for lung cancer patients. (author)

  12. Identification of triosephosphate isomerase as a novel allergen in Octopus fangsiao.

    Science.gov (United States)

    Yang, Yang; Chen, Zhong-Wei; Hurlburt, Barry K; Li, Gui-Ling; Zhang, Yong-Xia; Fei, Dan-Xia; Shen, Hai-Wang; Cao, Min-Jie; Liu, Guang-Ming

    2017-05-01

    Octopus is an important mollusk in human dietary for its nutritional value, however it also causes allergic reactions in humans. Major allergens from octopus have been identified, while the knowledge of novel allergens remains poor. In the present study, a novel allergen with molecular weight of 28kDa protein was purified from octopus (Octopus fangsiao) and identified as triosephosphate isomerase (TIM) by mass spectrometry. TIM aggregated beyond 45°C, and its IgE-binding activity was affected under extreme pH conditions due to the altered secondary structure. In simulated gastric fluid digestion, TIM can be degraded into small fragments, while retaining over 80% of the IgE-binding activity. The full-length cDNA of O. fangsiao TIM (1140bp) was cloned, which encodes 247 amino acid residues, and the entire recombinant TIM was successfully expressed in Escherichia coli BL21, which showed similar immunoreactivity to the native TIM. Different intensity of cross-reactivity among TIM from related species revealed the complexity of its epitopes. Eight linear epitopes of TIM were predicted following bioinformatic analysis. Furthermore, a conformational epitope (A 71 G 74 S 69 D 75 T 73 F 72 V 67 ) was confirmed by the phage display technology. The results revealed the physicochemical and immunological characteristics of TIM, which is significant in the development of hyposensitivity food and allergy diagnosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Genetic variants in glucose-6-phosphate isomerase gene as prognosis predictors in hepatocellular carcinoma.

    Science.gov (United States)

    Lyu, Zhuomin; Chen, Yibing; Guo, Xu; Zhou, Feng; Yan, Zhaoyong; Xing, Jinliang; An, Jiaze; Zhang, Hongxin

    2016-12-01

    Metabolic reprogramming is an important hallmark of cancer cells, including the alterations of activity and expression of enzymes in glucose metabolism. Previous studies have demonstrated the critical role of glucise-6-phosphate isomerase (GPI) in cancer initiation, metastasis and progression. However, the significance of single nucleotide polymorphisms (SNPs) in GPI gene has not been investigated in hepatocellular carcinoma (HCC). In this study, a total of 3 functional SNPs in GPI gene were genotyped in 492 HCC patients with surgical treatment. Multivariate Cox proportional hazards model and Kaplan-Meier curve were used for the analysis of overall survival (OS) and recurrence-free survival (RFS). The homozygous variant genotypes of rs7248411 in mRNA splice sites of GPI gene were significantly associated with an increased risk of death in the multivariate analysis (Hazard ratio [HR], 2.07; 95% confidence interval [95% CI]: 1.16-3.68 in a recessive model). In stratified analysis, the association remained significant in patients with high α-fetal protein (AFP) level (HR=2.37, 95% CI 1.25-4.49). Moreover, we identified the interaction between rs7248411 and AFP level in predicting the prognosis of HCC patients (P for interaction<0.001). Our data suggest that GPI gene polymorphism may serve as potential biomarkers to predict the OS of HCC. Further studies with different ethnicities are needed to validate our findings and generalize its clinical utility. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. A preliminary X-ray study of sedoheptulose-7-phosphate isomerase from Burkholderia pseudomallei.

    Science.gov (United States)

    Kim, Mi Sun; Shin, Dong Hae

    2009-11-01

    Sedoheptulose-7-phosphate isomerase (GmhA) converts d-sedoheptulose 7-phosphate to d,d-heptose 7-phosphate. This is the first step in the biosynthesis pathway of NDP-heptose, which is responsible for the pleiotropic phenotype. This biosynthesis pathway is the target of inhibitors to increase the membrane permeability of Gram-negative pathogens or of adjuvants working synergistically with known antibiotics. Burkholderia pseudomallei is the causative agent of melioidosis, a seriously invasive disease in animals and humans in tropical and subtropical areas. GmhA from B. pseudomallei is one of the targets of antibiotic adjuvants for melioidosis. In this study, GmhA has been cloned, expressed, purified and crystallized. Synchrotron X-ray data were also collected to 1.9 angstrom resolution. The crystal belonged to the primitive orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 61.3, b = 84.2, c = 142.3 angstrom. A full structural determination is under way in order to provide insights into the structure- function relationships of this protein.

  15. Expression of a Nitric Oxide Synthesizing Protein in Arterial Endothelial Cells in Response to Different Anti-Anginal Agents Used in Acute Coronary Syndromes.

    Science.gov (United States)

    Bank, Sarbashri; Jana, Pradipta; Girish, G V; Sinha, Asru K; Maiti, Smarajit

    2017-01-01

    Organic "nitro" compounds such as nitroglycerine, isosorbide dinitrate are useful in the control of chest pain in acute coronary syndrome. But the mechanism of it in pain regulation remains speculative. Here, increase of NO production was investigated by the possible regulation of constitutive nitric oxide synthase (cNOS) function from goat arterial endothelial cells. This protein was purified and sequence wise characterized as protein disulfide isomerase (PDI) in response to different nitro compounds. The NO generating protein was isolated from arterial endothelial cells and prepared to homogeneity. NO was determined by methemoglobin method. Protein sequence was analyzed by (µLC/MS/MS). A protein of Mr. ~57 kDa was isolated and found to be activated by not only "nitro" compounds but also by acetyl salicylic acid, insulin and glucose. The global BLAST of the protein sequence showed a significant alignment of the protein sequence with PDI. This protein trivially called pluri activator stimulated endothelial NOS (PLASENOS). The enzyme was stimulated by the above-mentioned activators in the presence of Ca2+. Lineweaver-Burk plot of this NOS like activities were demonstrated with its specific substrate l-arginine as Vmax = 5(nmol NO/mg of protein/hr) and Km≈ 0.5µM by the above activators. The enzyme activity was inhibited by the l-NAME, the specific inhibitor of NOS. The organic nitro compounds, acetyl salicylic acid, insulin and glucose were found to activate PLASENOS in the arterial endothelial cells for a continuous supply of NO to control the chest pain in acute coronary syndrome. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. A molybdenum disulfide/carbon nanotube heterogeneous complementary inverter.

    Science.gov (United States)

    Huang, Jun; Somu, Sivasubramanian; Busnaina, Ahmed

    2012-08-24

    We report a simple, bottom-up/top-down approach for integrating drastically different nanoscale building blocks to form a heterogeneous complementary inverter circuit based on layered molybdenum disulfide and carbon nanotube (CNT) bundles. The fabricated CNT/MoS(2) inverter is composed of n-type molybdenum disulfide (MOS(2)) and p-type CNT transistors, with a high voltage gain of 1.3. The CNT channels are fabricated using directed assembly while the layered molybdenum disulfide channels are fabricated by mechanical exfoliation. This bottom-up fabrication approach for integrating various nanoscale elements with unique characteristics provides an alternative cost-effective methodology to complementary metal-oxide-semiconductors, laying the foundation for the realization of high performance logic circuits.

  17. Identification of Disulfides from the Biodegradation of Dibenzothiophene

    Science.gov (United States)

    Bressler, David C.; Fedorak, Phillip M.

    2001-01-01

    Several investigations have identified benzothiophene-2,3-dione in the organic solvent extracts of acidified cultures degrading dibenzothiophene via the Kodama pathway. In solution at neutral pH, the 2,3-dione exists as 2-mercaptophenylglyoxylate, which cyclizes upon acidification and is extracted as the 2,3-dione. The fate of these compounds in microbial cultures has never been determined. This study investigated the abiotic reactions of 2-mercaptophenylglyoxylate incubated aerobically in mineral salts medium at neutral pH. Oxidation led to the formation of 2-oxo-2-(2-thiophenyl)ethanoic acid disulfide, formed from two molecules of 2-mercaptophenylglyoxylate. Two sequential abiotic, net losses of both a carbon and an oxygen atom produced two additional disulfides, 2-oxo-2-(2-thiophenyl)ethanoic acid 2-benzoic acid disulfide and 2,2′-dithiosalicylic acid. The methods developed to extract and detect these three disulfides were then used for the analysis of a culture of Pseudomonas sp. strain BT1d grown on dibenzothiophene as its sole carbon and energy source. All three of the disulfides were detected, indicating that 2-mercaptophenylglyoxylate is an important, short-lived intermediate in the breakdown of dibenzothiophene via the Kodama pathway. The disulfides eluded previous investigations because of (i) their high polarity, being dicarboxylic acids; (ii) the need to lower the pH of the aqueous medium to <1 to extract them into an organic solvent such as dichloromethane; (iii) their poor solubility in organic solvents, (iv) their removal from organic extracts of cultures during filtration through the commonly used drying agent anhydrous sodium sulfate; and (v) their high molecular masses (362, 334, and 306 Da) compared to that of dibenzothiophene (184 Da). PMID:11679330

  18. Inhibition of enzyme activity of Rhipicephalus (Boophilus) microplus triosephosphate isomerase and BME26 cell growth by monoclonal antibodies.

    Science.gov (United States)

    Saramago, Luiz; Franceschi, Mariana; Logullo, Carlos; Masuda, Aoi; Vaz, Itabajara da Silva; Farias, Sandra Estrazulas; Moraes, Jorge

    2012-10-12

    In the present work, we produced two monoclonal antibodies (BrBm37 and BrBm38) and tested their action against the triosephosphate isomerase of Rhipicephalus (Boophilus) microplus (RmTIM). These antibodies recognize epitopes on both the native and recombinant forms of the protein. rRmTIM inhibition  by BrBm37 was up to 85% whereas that of BrBrm38 was 98%, depending on the antibody-enzyme ratio. RmTIM activity was lower in ovarian, gut, and fat body tissue extracts treated with BrBm37 or BrBm38 mAbs. The proliferation of the embryonic tick cell line (BME26) was inhibited by BrBm37 and BrBm38 mAbs. In summary, the results reveal that it is possible to interfere with the RmTIM function using antibodies, even in intact cells.

  19. Inhibition of Enzyme Activity of Rhipicephalus (Boophilus microplus Triosephosphate Isomerase and BME26 Cell Growth by Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Jorge Moraes

    2012-10-01

    Full Text Available In the present work, we produced two monoclonal antibodies (BrBm37 and BrBm38 and tested their action against the triosephosphate isomerase of Rhipicephalus (Boophilus microplus (RmTIM. These antibodies recognize epitopes on both the native and recombinant forms of the protein. rRmTIM inhibition  by BrBm37 was up to 85% whereas that of BrBrm38 was 98%, depending on the antibody-enzyme ratio. RmTIM activity was lower in ovarian, gut, and fat body tissue extracts treated with BrBm37 or BrBm38 mAbs. The proliferation of the embryonic tick cell line (BME26 was inhibited by BrBm37 and BrBm38 mAbs. In summary, the results reveal that it is possible to interfere with the RmTIM function using antibodies, even in intact cells.

  20. Glucose isomerization in simulated moving bed reactor by Glucose isomerase

    Directory of Open Access Journals (Sweden)

    Eduardo Alberto Borges da Silva

    2006-05-01

    Full Text Available Studies were carried out on the production of high-fructose syrup by Simulated Moving Bed (SMB technology. A mathematical model and numerical methodology were used to predict the behavior and performance of the simulated moving bed reactors and to verify some important aspects for application of this technology in the isomerization process. The developed algorithm used the strategy that considered equivalences between simulated moving bed reactors and true moving bed reactors. The kinetic parameters of the enzymatic reaction were obtained experimentally using discontinuous reactors by the Lineweaver-Burk technique. Mass transfer effects in the reaction conversion using the immobilized enzyme glucose isomerase were investigated. In the SMB reactive system, the operational variable flow rate of feed stream was evaluated to determine its influence on system performance. Results showed that there were some flow rate values at which greater purities could be obtained.Neste trabalho a tecnologia de Leito Móvel Simulado (LMS reativo é aplicada no processo de isomerização da glicose visando à produção de xarope concentrado de frutose. É apresentada a modelagem matemática e uma metodologia numérica para predizer o comportamento e o desempenho de unidades reativas de leito móvel simulado para verificar alguns aspectos importantes para o emprego desta tecnologia no processo de isomerização. O algoritmo desenvolvido utiliza a abordagem que considera as equivalências entre as unidades reativas de leito móvel simulado e leito móvel verdadeiro. Parâmetros cinéticos da reação enzimática são obtidos experimentalmente usando reatores em batelada pela técnica Lineweaver-Burk. Efeitos da transferência de massa na conversão de reação usando a enzima imobilizada glicose isomerase são verificados. No sistema reativo de LMS, a variável operacional vazão da corrente de alimentação é avaliada para conhecer o efeito de sua influência no

  1. Chemical and Photochemical Reactions of Thioctic Acid and RelatedDisulfides

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, Melvin

    1954-06-10

    The carbon cycle of photosynthesis is briefly reviewed in its entirety and the experiments involving it which led to the implication of disulfide rupture in photosynthesis are indicated. A review of the organic, physical and photochemistry of disulfides, with particular reference to the five-membered disulfide rings as they appear in thioctic acid, is given.

  2. Prokaryotic Soluble Overexpression and Purification of Human VEGF165 by Fusion to a Maltose Binding Protein Tag.

    Directory of Open Access Journals (Sweden)

    Minh Tan Nguyen

    Full Text Available Human vascular endothelial growth factor (VEGF is a key regulator of angiogenesis and plays a central role in the process of tumor growth and metastatic dissemination. Escherichia coli is one of the most common expression systems used for the production of recombinant proteins; however, expression of human VEGF in E. coli has proven difficult because the E. coli-expressed VEGF tends to be misfolded and forms inclusion bodies, resulting in poor solubility. In this study, we successfully produced semi-preparative amounts of soluble bioactive human VEGF165 (hVEGF. We created seven N-terminal fusion tag constructs with hexahistidine (His6, thioredoxin (Trx, glutathione S-transferase (GST, maltose-binding protein (MBP, N-utilization substance protein A (NusA, human protein disulfide isomerase (PDI, and the b'a' domain of PDI (PDIb'a', and tested each construct for soluble overexpression in E. coli. We found that at 18°C, 92.8% of the MBP-tagged hVEGF to be soluble and that this tag significantly increased the protein's solubility. We successfully purified 0.8 mg of pure hVEGF per 500 mL cell culture. The purified hVEGF is stable after tag cleavage, contains very low levels of endotoxin, and is 97.6% pure. Using an Flk1+ mesodermal precursor cell (MPC differentiation assay, we show that the purified hVEGF is not only bioactive but has similar bioactivity to hVEGF produced in mammalian cells. Previous reports on producing hVEGF in E. coli have all been based on refolding of the protein from inclusion bodies. To our knowledge, this is the first report on successfully expressing and purifying soluble hVEGF in E. coli.

  3. Interactions between soy protein hydrolyzates and wheat proteins in noodle making dough.

    Science.gov (United States)

    Guo, Xingfeng; Sun, Xiaohong; Zhang, Yingying; Wang, Ruihong; Yan, Xin

    2018-04-15

    Soy protein hydrolyzate has been used as supplements in wheat flour to enhance the nutritional value of its products, but it may negatively affect the gluten properties simultaneously. In order to explore the mechanism of this effect, protein characteristics including disulfide bond, protein composition, intermolecular force of dough proteins, and atomic force microscope images of gluten were obtained. Results showed that disulfide bonds in dough increased when soy protein hydrolyzate was added, but glutenin macropolymer decreased. Atomic force microscope images showed that gluten were weakened by soy protein hydrolyzate. Based on these results, a model was developed to describe the interaction between soy protein hydrolyzates and wheat proteins: soy protein hydrolyzates linked with wheat proteins through disulfide bond, disrupted the glutenins polymerization, thus hindered gluten networks formation. The interaction between wheat proteins and soy protein hydrolyzates in noodle making dough could be described with this model reasonably. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Crystallization and preliminary X-ray diffraction analysis of the peptidylprolyl isomerase Par27 of Bordetella pertussis

    International Nuclear Information System (INIS)

    Wohlkönig, Alexandre; Hodak, Hélène; Clantin, Bernard; Sénéchal, Magalie; Bompard, Coralie; Jacob-Dubuisson, Françoise; Villeret, Vincent

    2008-01-01

    Par27 from B. pertussis, the prototype of a new group of parvulins has been crystallized in two different crystal forms. Proteins with both peptidylprolyl isomerase (PPIase) and chaperone activities play a crucial role in protein folding in the periplasm of Gram-negative bacteria. Few such proteins have been structurally characterized and to date only the crystal structure of SurA from Escherichia coli has been reported. Par27, the prototype of a new group of parvulins, has recently been identified. Par27 exhibits both chaperone and PPIase activities in vitro and is the first identified parvulin protein that forms dimers in solution. Par27 has been expressed in E. coli. The protein was purified using affinity and gel-filtration chromatographic techniques and crystallized in two different crystal forms. Form A, which belongs to space group P2 (unit-cell parameters a = 42.2, b = 142.8, c = 56.0 Å, β = 95.1°), diffracts to 2.8 Å resolution, while form B, which belongs to space group C222 (unit-cell parameters a = 54.6, b = 214.1, c = 57.8 Å), diffracts to 2.2 Å resolution. Preliminary diffraction data analysis agreed with the presence of one monomer in the asymmetric unit of the orthorhombic crystal form and two in the monoclinic form

  5. Metal-free oxidative coupling of thiols to disulfides using ...

    Indian Academy of Sciences (India)

    Abstract. Efficient combination of nitro urea or guanidinium nitrate and silica sulfuric acid (SiO2OSO3H) as a new oxidizing system is able to oxidize a variety of aliphatic or aromatic thiols to the corresponding disulfides. The process reported here is operationally simple, environmentally benign and reactions have been ...

  6. Alpha-cyclodextrins reversibly capped with disulfide bonds

    Czech Academy of Sciences Publication Activity Database

    Kumprecht, Lukáš; Buděšínský, Miloš; Bouř, Petr; Kraus, Tomáš

    2010-01-01

    Roč. 34, č. 10 (2010), s. 2254-2260 ISSN 1144-0546 R&D Projects: GA AV ČR IAA400550810 Institutional research plan: CEZ:AV0Z40550506 Keywords : cyclodextrin s * disulfide bond * dynamic covalent bond Subject RIV: CC - Organic Chemistry Impact factor: 2.631, year: 2010

  7. Metal-free oxidative coupling of thiols to disulfides using ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 123; Issue 4. Metal-free oxidative coupling of thiols to disulfides using guanidinium nitrate or nitro urea in the presence of silica sulfuric acid. Arash Ghorbani-Choghamarani Mohsen Nikoorazm Hamid Goudarziafshar Alireza Shokr Hosein Almasi. Volume 123 Issue 4 ...

  8. Dynamic thiol-disulfide homeostasis in hyperemesis gravidarum.

    Science.gov (United States)

    Ergin, M; Cendek, B D; Neselioglu, S; Avsar, A F; Erel, O

    2015-10-01

    To determine serum thiol-disulfide homeostasis in hyperemesis gravidarum. Twenty-six pregnant women with hyperemesis gravidarum and 37 healthy pregnant women were included in the study. Native thiol, disulfide and total thiol concentrations were measured with a novel automated method. Serum disulfide levels were 15.68±4.41 μmol l(-1) in the hyperemesis gravidarum group and 13.49±2.81 μmol l(-1) in the healthy group (P=0.031). Native thiol levels were 213.86±26.29 μmol l(-1) in the hyperemesis gravidarum group and 232.18±19.21 μmol l(-1) in healthy group (P=0.004), and total thiol levels were 245.23±28.58 μmol l(-1) in the hyperemesis gravidarum group and 259.17±19.94 μmol l(-1) in the healthy group (P=0.038). Native and total thiol were deficient in the hyperemesis gravidarum group and this deficiency was correlated with the severity of the disease. The thiol-disulfide balance has shifted to the oxidative side. This metabolic disturbance may have a role in the pathogenesis of hyperemesis gravidarum.

  9. Impaired Thiol-Disulfide Balance in Acute Brucellosis.

    Science.gov (United States)

    Kolgelier, Servet; Ergin, Merve; Demir, Lutfi Saltuk; Inkaya, Ahmet Cagkan; Aktug Demir, Nazlim; Alisik, Murat; Erel, Ozcan

    2017-05-24

    The objective of this study was to examine a novel profile: thiol-disulfide homeostasis in acute brucellosis. The study included 90 patients with acute brucellosis, and 27 healthy controls. Thiol-disulfide profile tests were analyzed by a recently developed method, and ceruloplasmin levels were determined. Native thiol levels were 256.72 ± 48.20 μmol/L in the acute brucellosis group and 461.13 ± 45.37 μmol/L in the healthy group, and total thiol levels were 298.58 ± 51.78 μmol/L in the acute brucellosis group and 504.83 ± 51.05 μmol/L in the healthy group (p brucellosis than in the healthy controls (p brucellosis. The strong associations between thiol-disulfide parameters and a positive acute-phase reactant reflected the disruption of the balance between the antioxidant and oxidant systems. Since thiol groups act as anti-inflammatory mediators, the alteration in the thiol-disulfide homeostasis may be involved in brucellosis.

  10. Solubility and crystallization of xylose isomerase from Streptomyces rubiginosus

    Science.gov (United States)

    Vuolanto, Antti; Uotila, Sinikka; Leisola, Matti; Visuri, Kalevi

    2003-10-01

    We have studied the crystallization and crystal solubility of xylose isomerase (XI) from Streptomyces rubiginosus. In this paper, we show a rational approach for developing a large-scale crystallization process for XI. Firstly, we measured the crystal solubility in salt solutions with respect to salt concentration, temperature and pH. In ammonium sulfate the solubility of XI decreased logarithmically when increasing the salt concentration. Surprisingly, the XI crystals had a solubility minimum at low concentration of magnesium sulfate. The solubility of XI in 0.17 M magnesium sulfate was less than 0.5 g l -1. The solubility of XI increased logarithmically when increasing the temperature. We also found a solubility minimum around pH 7. This is far from the isoelectric point of XI (pH 3.95). Secondly, based on the solubility study, we developed a large-scale crystallization process for XI. In a simple and economical cooling crystallization of XI from 0.17 M magnesium sulfate solution, the recovery of crystalline active enzyme was over 95%. Moreover, we developed a process for production of uniform crystals and produced homogenous crystals with average crystal sizes between 12 and 360 μm.

  11. Disulfiram as a novel inactivator of Giardia lamblia triosephosphate isomerase with antigiardial potential

    Directory of Open Access Journals (Sweden)

    Adriana Castillo-Villanueva

    2017-12-01

    Full Text Available Giardiasis, the infestation of the intestinal tract by Giardia lamblia, is one of the most prevalent parasitosis worldwide. Even though effective therapies exist for it, the problems associated with its use indicate that new therapeutic options are needed. It has been shown that disulfiram eradicates trophozoites in vitro and is effective in vivo in a murine model of giardiasis; disulfiram inactivation of carbamate kinase by chemical modification of an active site cysteine has been proposed as the drug mechanism of action. The triosephosphate isomerase from G. lamblia (GlTIM has been proposed as a plausible target for the development of novel antigiardial pharmacotherapies, and chemical modification of its cysteine 222 (C222 by thiol-reactive compounds is evidenced to inactivate the enzyme. Since disulfiram is a cysteine modifying agent and GlTIM can be inactivated by modification of C222, in this work we tested the effect of disulfiram over the recombinant and trophozoite-endogenous GlTIM. The results show that disulfiram inactivates GlTIM by modification of its C222. The inactivation is species-specific since disulfiram does not affect the human homologue enzyme. Disulfiram inactivation induces only minor conformational changes in the enzyme, but substantially decreases its stability. Recombinant and endogenous GlTIM inactivates similarly, indicating that the recombinant protein resembles the natural enzyme. Disulfiram induces loss of trophozoites viability and inactivation of intracellular GlTIM at similar rates, suggesting that both processes may be related. It is plausible that the giardicidal effect of disulfiram involves the inactivation of more than a single enzyme, thus increasing its potential for repurposing it as an antigiardial drug. Keywords: Giardiasis, Drug repurposing, Neglected disease, Recombinant protein, Enzyme inactivation

  12. Immobilization of Recombinant Glucose Isomerase for Efficient Production of High Fructose Corn Syrup.

    Science.gov (United States)

    Jin, Li-Qun; Xu, Qi; Liu, Zhi-Qiang; Jia, Dong-Xu; Liao, Cheng-Jun; Chen, De-Shui; Zheng, Yu-Guo

    2017-09-01

    Glucose isomerase is the important enzyme for the production of high fructose corn syrup (HFCS). One-step production of HFCS containing more than 55% fructose (HFCS-55) is receiving much attention for its industrial applications. In this work, the Escherichia coli harboring glucose isomerase mutant TEGI-W139F/V186T was immobilized for efficient production of HFCS-55. The immobilization conditions were optimized, and the maximum enzyme activity recovery of 92% was obtained. The immobilized glucose isomerase showed higher pH, temperature, and operational stabilities with a K m value of 272 mM and maximum reaction rate of 23.8 mM min -1 . The fructose concentration still retained above 55% after the immobilized glucose isomerase was reused for 10 cycles, and more than 85% of its initial activity was reserved even after 15 recycles of usage at temperature of 90 °C. The results highlighted the immobilized glucose isomerase as a potential biocatalyst for HFCS-55 production.

  13. Structure-based design of a disulfide-linked oligomeric form of the simian virus 40 (SV40) large T antigen DNA-binding domain

    International Nuclear Information System (INIS)

    Meinke, Gretchen; Phelan, Paul; Fradet-Turcotte, Amélie; Archambault, Jacques; Bullock, Peter A.

    2011-01-01

    With the aim of forming the ‘lock-washer’ conformation of the origin-binding domain of SV40 large T antigen in solution, using structure-based analysis an intermolecular disulfide bridge was engineered into the origin-binding domain to generate higher order oligomers in solution. The 1.7 Å resolution structure shows that the mutant forms a spiral in the crystal and has the de novo disulfide bond at the protein interface, although structural rearrangements at the interface are observed relative to the wild type. The modular multifunctional protein large T antigen (T-ag) from simian virus 40 orchestrates many of the events needed for replication of the viral double-stranded DNA genome. This protein assembles into single and double hexamers on specific DNA sequences located at the origin of replication. This complicated process begins when the origin-binding domain of large T antigen (T-ag ODB) binds the GAGGC sequences in the central region (site II) of the viral origin of replication. While many of the functions of purified T-ag OBD can be studied in isolation, it is primarily monomeric in solution and cannot assemble into hexamers. To overcome this limitation, the possibility of engineering intermolecular disulfide bonds in the origin-binding domain which could oligomerize in solution was investigated. A recent crystal structure of the wild-type T-ag OBD showed that this domain forms a left-handed spiral in the crystal with six subunits per turn. Therefore, we analyzed the protein interface of this structure and identified two residues that could potentially support an intermolecular disulfide bond if changed to cysteines. SDS–PAGE analysis established that the mutant T-ag OBD formed higher oligomeric products in a redox-dependent manner. In addition, the 1.7 Å resolution crystal structure of the engineered disulfide-linked T-ag OBD is reported, which establishes that oligomerization took place in the expected manner

  14. Processing, disulfide pattern, and biological activity of a sugar beet defensin, AX2, expressed in Pichia pastoris

    DEFF Research Database (Denmark)

    Kristensen, A K; Brunstedt, J; Nielsen, J E

    1999-01-01

    AX2 is a 46-amino-acid cysteine-rich peptide isolated from sugar beet leaves infected with the fungus Cercospora beticola (Sacc.). AX2 strongly inhibits the growth of C. beticola and other filamentous fungi, but has little or no effect against bacteria. AX2 is produced in very low amounts in sugar...... beet leaves, and to study the protein in greater detail with respect to biological function and protein structural analysis, the methylotrophic yeast Pichia pastoris was used for large-scale production. The amino acid sequence, processing of the signal peptide, disulfide bridges, and biological...

  15. Structural Role of the Terminal Disulfide Bond in the Sweetness of Brazzein

    Science.gov (United States)

    Dittli, Sannali M.; Rao, Hongyu; Tonelli, Marco; Quijada, Jeniffer; Markley, John L.; Max, Marianna

    2011-01-01

    Brazzein, a 54 residue sweet-tasting protein, is thought to participate in a multipoint binding interaction with the sweet taste receptor. Proposed sites for interaction with the receptor include 2 surface loops and the disulfide bond that connects the N- and C-termini. However, the importance of each site is not well understood. To characterize the structural role of the termini in the sweetness of brazzein, the position of the disulfide bond connecting the N- and C-termini was shifted by substituting K3-C4-K5 with C3-K4-R5. The apparent affinity and Vmax of the C3-K4-R5-brazzein (CKR-brazzein) variant were only modestly decreased compared with the wild-type (WT) brazzein. We determined a high-resolution structure of CKR-brazzein by nuclear magnetic resonance spectroscopy (backbone root mean square deviation of 0.39 Å). Comparing the structure of CKR-brazzein with that of WT-brazzein revealed that the terminal β-strands of the variant display extended β-structure and increased dynamics relative to WT-brazzein. These results support previous mutagenesis studies and further suggest that, whereas interactions involving the termini are necessary for full function of brazzein, the termini do not constitute the primary site of interaction between brazzein and the sweet taste receptor. PMID:21765060

  16. Disulfide bond assignment in human interleukin-7 by matrix-assisted laser desorption/ionization mass spectroscopy and site-directed cysteine to serine mutational analysis.

    Science.gov (United States)

    Cosenza, L; Sweeney, E; Murphy, J R

    1997-12-26

    Interleukin-7 (IL-7) is a proteinaceous biological response modifier that has a bioactive tertiary structure dependent on disulfide bond formation. Disulfide bond assignments in human (h)IL-7 are based upon the results of matrix-assisted laser desorption/ionization (MALDI) mass spectroscopy and Cys to Ser mutational analyses. A gene encoding the hIL-7 was synthesized incorporating Escherichia coli codon usage bias and was used to express biologically active protein as determined by stimulation of precursor B-cell proliferation. MALDI mass spectroscopic analysis of trypsin-digested hIL-7 was performed and compared with the anticipated results of a simulated tryptic digestion. Many of the anticipated hIL-7 tryptic fragments were detected including one with a molecular mass equivalent to the sum of two polypeptides linked through a disulfide bond formed from Cys residues (Cys3 and Cys142). Subsequently, Cys to Ser substitution mutational analyses were performed. A hIL-7 variant with all six Cys substituted with Ser was found to be biologically inactive (EC50 > 1 x 10(-7) M). In contrast, a family of single disulfide bond-forming variants of hIL-7 were constructed by reintroducing Cys pairs (Cys3-Cys142, Cys35-Cys130, and Cys48-Cys93), and each could stimulate cell proliferation with an EC50 of 4 x 10(-9), 2 x 10(-8), and 2 x 10(-9) M, respectively. In single disulfide bond-forming mutants of hIL-7, the ability to stimulate cell proliferation was abolished in the presence of 2 mM dithiothreitol. The results presented strongly suggest that only a single disulfide bond is required for hIL-7 to form a tertiary structure capable of stimulating precursor B-cell proliferation.

  17. High production of D-tagatose, a potential sugar substitute, using immobilized L-arabinose isomerase.

    Science.gov (United States)

    Kim, P; Yoon, S H; Roh, H J; Choi, J H

    2001-01-01

    An L-arabinose isomerase of Escherichia coli was immobilized using covalent binding to agarose to produce D-tagatose, a bulking sweetener that can be economically used as a sugar substitute. The immobilized L-arabinose isomerase stably produced an average of 7.5 g-tagatose/L.day for 7 days with a productivity exceeding that of the free enzyme (0.47 vs 0.30 mg/U.day). Using a scaled-up immobilized enzyme system, 99.9 g-tagatose/L was produced from galactose with 20% equilibrium in 48 h. The process was repeated two more times with production of 104.1 and 103.5 g-tagatose/L. D-Tagatose production using an immobilized L-arabinose isomerase has a high potential for commercial application.

  18. Involvement of alanine 103 residue in kinetic and physicochemical properties of glucose isomerases from Streptomyces species.

    Science.gov (United States)

    Borgi, Mohamed Ali; Rhimi, Moez; Bejar, Samir

    2007-02-01

    The Ala103 to Gly mutation, introduced within the glucose isomerase from Streptomyces sp. SK (SKGI) decreased its catalytic efficiency (k(cat)/K(m)) toward D-glucose from 7.1 to 3 mM(-1) min(-1). The reverse counterpart replacement Gly103Ala introduced into the glucose isomerase of Streptomyces olivochromogenes (SOGI) considerably improved its catalytic efficiency to be 6.7 instead of 3.2 mM(-1) min(-1). This later mutation also increased the half-life time of the enzyme from 70 to 95 min at 80 degrees C and mainly modified its pH profile. These results provide evidence that the residue Ala103 plays an essential role in the kinetic and physicochemical properties of glucose isomerases from Streptomyces species.

  19. Post-duplication charge evolution of phosphoglucose isomerases in teleost fishes through weak selection on many amino acid sites

    Directory of Open Access Journals (Sweden)

    Sato Yukuto

    2007-10-01

    Full Text Available Abstract Background The partitioning of ancestral functions among duplicated genes by neutral evolution, or subfunctionalization, has been considered the primary process for the evolution of novel proteins (neofunctionalization. Nonetheless, how a subfunctionalized protein can evolve into a more adaptive protein is poorly understood, mainly due to the limitations of current analytical methods, which can detect only strong selection for amino acid substitutions involved in adaptive molecular evolution. In this study, we employed a comparative evolutionary approach to this question, focusing on differences in the structural properties of a protein, specifically the electric charge, encoded by fish-specific duplicated phosphoglucose isomerase (Pgi genes. Results Full-length cDNA cloning, RT-PCR based gene expression analyses, and comparative sequence analyses showed that after subfunctionalization with respect to the expression organ of duplicate Pgi genes, the net electric charge of the PGI-1 protein expressed mainly in internal tissues became more negative, and that of PGI-2 expressed mainly in muscular tissues became more positive. The difference in net protein charge was attributable not to specific amino acid sites but to the sum of various amino acid sites located on the surface of the PGI molecule. Conclusion This finding suggests that the surface charge evolution of PGI proteins was not driven by strong selection on individual amino acid sites leading to permanent fixation of a particular residue, but rather was driven by weak selection on a large number of amino acid sites and consequently by steady directional and/or purifying selection on the overall structural properties of the protein, which is derived from many modifiable sites. The mode of molecular evolution presented here may be relevant to various cases of adaptive modification in proteins, such as hydrophobic properties, molecular size, and electric charge.

  20. Post-duplication charge evolution of phosphoglucose isomerases in teleost fishes through weak selection on many amino acid sites.

    Science.gov (United States)

    Sato, Yukuto; Nishida, Mutsumi

    2007-10-29

    The partitioning of ancestral functions among duplicated genes by neutral evolution, or subfunctionalization, has been considered the primary process for the evolution of novel proteins (neofunctionalization). Nonetheless, how a subfunctionalized protein can evolve into a more adaptive protein is poorly understood, mainly due to the limitations of current analytical methods, which can detect only strong selection for amino acid substitutions involved in adaptive molecular evolution. In this study, we employed a comparative evolutionary approach to this question, focusing on differences in the structural properties of a protein, specifically the electric charge, encoded by fish-specific duplicated phosphoglucose isomerase (Pgi) genes. Full-length cDNA cloning, RT-PCR based gene expression analyses, and comparative sequence analyses showed that after subfunctionalization with respect to the expression organ of duplicate Pgi genes, the net electric charge of the PGI-1 protein expressed mainly in internal tissues became more negative, and that of PGI-2 expressed mainly in muscular tissues became more positive. The difference in net protein charge was attributable not to specific amino acid sites but to the sum of various amino acid sites located on the surface of the PGI molecule. This finding suggests that the surface charge evolution of PGI proteins was not driven by strong selection on individual amino acid sites leading to permanent fixation of a particular residue, but rather was driven by weak selection on a large number of amino acid sites and consequently by steady directional and/or purifying selection on the overall structural properties of the protein, which is derived from many modifiable sites. The mode of molecular evolution presented here may be relevant to various cases of adaptive modification in proteins, such as hydrophobic properties, molecular size, and electric charge.

  1. Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Lee, Sun-Mi; Jellison, Taylor; Alper, Hal S

    2012-08-01

    The heterologous expression of a highly functional xylose isomerase pathway in Saccharomyces cerevisiae would have significant advantages for ethanol yield, since the pathway bypasses cofactor requirements found in the traditionally used oxidoreductase pathways. However, nearly all reported xylose isomerase-based pathways in S. cerevisiae suffer from poor ethanol productivity, low xylose consumption rates, and poor cell growth compared with an oxidoreductase pathway and, additionally, often require adaptive strain evolution. Here, we report on the directed evolution of the Piromyces sp. xylose isomerase (encoded by xylA) for use in yeast. After three rounds of mutagenesis and growth-based screening, we isolated a variant containing six mutations (E15D, E114G, E129D, T142S, A177T, and V433I) that exhibited a 77% increase in enzymatic activity. When expressed in a minimally engineered yeast host containing a gre3 knockout and tal1 and XKS1 overexpression, the strain expressing this mutant enzyme improved its aerobic growth rate by 61-fold and both ethanol production and xylose consumption rates by nearly 8-fold. Moreover, the mutant enzyme enabled ethanol production by these yeasts under oxygen-limited fermentation conditions, unlike the wild-type enzyme. Under microaerobic conditions, the ethanol production rates of the strain expressing the mutant xylose isomerase were considerably higher than previously reported values for yeast harboring a xylose isomerase pathway and were also comparable to those of the strains harboring an oxidoreductase pathway. Consequently, this study shows the potential to evolve a xylose isomerase pathway for more efficient xylose utilization.

  2. Xylose isomerase improves growth and ethanol production rates from biomass sugars for both Saccharomyces pastorianus and Saccharomyces cerevisiae.

    Science.gov (United States)

    Miller, Kristen P; Gowtham, Yogender Kumar; Henson, J Michael; Harcum, Sarah W

    2012-01-01

    The demand for biofuel ethanol made from clean, renewable nonfood sources is growing. Cellulosic biomass, such as switch grass (Panicum virgatum L.), is an alternative feedstock for ethanol production; however, cellulosic feedstock hydrolysates contain high levels of xylose, which needs to be converted to ethanol to meet economic feasibility. In this study, the effects of xylose isomerase on cell growth and ethanol production from biomass sugars representative of switch grass were investigated using low cell density cultures. The lager yeast species Saccharomyces pastorianus was grown with immobilized xylose isomerase in the fermentation step to determine the impact of the glucose and xylose concentrations on the ethanol production rates. Ethanol production rates were improved due to xylose isomerase; however, the positive effect was not due solely to the conversion of xylose to xylulose. Xylose isomerase also has glucose isomerase activity, so to better understand the impact of the xylose isomerase on S. pastorianus, growth and ethanol production were examined in cultures provided fructose as the sole carbon. It was observed that growth and ethanol production rates were higher for the fructose cultures with xylose isomerase even in the absence of xylose. To determine whether the positive effects of xylose isomerase extended to other yeast species, a side-by-side comparison of S. pastorianus and Saccharomyces cerevisiae was conducted. These comparisons demonstrated that the xylose isomerase increased ethanol productivity for both the yeast species by increasing the glucose consumption rate. These results suggest that xylose isomerase can contribute to improved ethanol productivity, even without significant xylose conversion. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  3. Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae.

    Science.gov (United States)

    Brat, Dawid; Boles, Eckhard; Wiedemann, Beate

    2009-04-01

    In industrial fermentation processes, the yeast Saccharomyces cerevisiae is commonly used for ethanol production. However, it lacks the ability to ferment pentose sugars like d-xylose and l-arabinose. Heterologous expression of a xylose isomerase (XI) would enable yeast cells to metabolize xylose. However, many attempts to express a prokaryotic XI with high activity in S. cerevisiae have failed so far. We have screened nucleic acid databases for sequences encoding putative XIs and finally were able to clone and successfully express a highly active new kind of XI from the anaerobic bacterium Clostridium phytofermentans in S. cerevisiae. Heterologous expression of this enzyme confers on the yeast cells the ability to metabolize d-xylose and to use it as the sole carbon and energy source. The new enzyme has low sequence similarities to the XIs from Piromyces sp. strain E2 and Thermus thermophilus, which were the only two XIs previously functionally expressed in S. cerevisiae. The activity and kinetic parameters of the new enzyme are comparable to those of the Piromyces XI. Importantly, the new enzyme is far less inhibited by xylitol, which accrues as a side product during xylose fermentation. Furthermore, expression of the gene could be improved by adapting its codon usage to that of the highly expressed glycolytic genes of S. cerevisiae. Expression of the bacterial XI in an industrially employed yeast strain enabled it to grow on xylose and to ferment xylose to ethanol. Thus, our findings provide an excellent starting point for further improvement of xylose fermentation in industrial yeast strains.

  4. Molecular characterization of the glucose isomerase from the thermophilic bacterium Fervidobacterium gondwanense.

    Science.gov (United States)

    Kluskens, L D; Zeilstra, J; Geerling, A C M; de Vos, W M; van der Oost, J

    2010-09-01

    The gene coding for xylose isomerase from the thermophilic bacterium Fervidobacterium gondwanense was cloned and overexpressed in Escherichia coli. The produced xylose isomerase (XylA), which closely resembles counterparts from Thermotoga maritima and T. neapolitana, was purified and characterized. It is optimally active at 70 degrees C, pH 7.3, with a specific activity of 15.0 U/mg for the interconversion of glucose to fructose. When compared with T. maritima XylA at 85 degrees C, a higher catalytic efficiency was observed. Divalent metal ions Co2+ and Mg2+ were found to enhance the thermostability.

  5. Proteomic Characterization of Annexin l (ANX1 and Heat Shock Protein 27 (HSP27 as Biomarkers for Invasive Hepatocellular Carcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Ruo-Chiau Wang

    Full Text Available To search for reliable biomarkers and drug targets for management of hepatocellular carcinoma (HCC, we performed a global proteomic analysis of a pair of HCC cell lines with distinct differentiation statuses using 2-DE coupled with MALDI-TOF MS. In total, 106 and 55 proteins were successfully identified from the total cell lysate and the cytosolic, nuclear and membrane fractions in well-differentiated (HepG2 and poorly differentiated (SK-Hep-1 HCC clonal variants, respectively. Among these proteins, nine spots corresponding to proteins differentially expressed between HCC cell types were selected and confirmed by immunofluorescence staining and western blotting. Notably, Annexin 1 (ANX1, ANX-2, vimentin and stress-associated proteins, such as GRP78, HSP75, HSC-70, protein disulfide isomerase (PDI, and heat shock protein-27 (HSP27, were exclusively up-regulated in SK-Hep-1 cells. Elevated levels of ANX-4 and antioxidant/metabolic enzymes, such as MnSOD, peroxiredoxin, NADP-dependent isocitrate dehydrogenase, α-enolase and UDP-glucose dehydrogenase, were observed in HepG2 cells. We functionally demonstrated that ANX1 and HSP27 were abundantly overexpressed only in highly invasive types of HCC cells, such as Mahlavu and SK-Hep-1. Knockdown of ANX1 or HSP27 in HCC cells resulted in a severe reduction in cell migration. The in-vitro observations of ANX1 and HSP27 expressions in HCC sample was demonstrated by immunohistochemical stains performed on HCC tissue microarrays. Poorly differentiated HCC tended to have stronger ANX1 and HSP27 expressions than well-differentiated or moderately differentiated HCC. Collectively, our findings suggest that ANX1 and HSP27 are two novel biomarkers for predicting invasive HCC phenotypes and could serve as potential treatment targets.

  6. Deciphering a molecular mechanism of neonatal diabetes mellitus by the chemical synthesis of a protein diastereomer, [D-AlaB8]human proinsulin.

    Science.gov (United States)

    Avital-Shmilovici, Michal; Whittaker, Jonathan; Weiss, Michael A; Kent, Stephen B H

    2014-08-22

    Misfolding of proinsulin variants in the pancreatic β-cell, a monogenic cause of permanent neonatal-onset diabetes mellitus, provides a model for a disease of protein toxicity. A hot spot for such clinical mutations is found at position B8, conserved as glycine within the vertebrate insulin superfamily. We set out to investigate the molecular basis of the aberrant properties of a proinsulin clinical mutant in which residue Gly(B8) is replaced by Ser(B8). Modular total chemical synthesis was used to prepare the wild-type [Gly(B8)]proinsulin molecule and three analogs: [D-Ala(B8)]proinsulin, [L-Ala(B8)]proinsulin, and the clinical mutant [L-Ser(B8)]proinsulin. The protein diastereomer [D-Ala(B8)]proinsulin produced higher folding yields at all pH values compared with the wild-type proinsulin and the other two analogs, but showed only very weak binding to the insulin receptor. The clinical mutant [L-Ser(B8)]proinsulin impaired folding at pH 7.5 even in the presence of protein-disulfide isomerase. Surprisingly, although [L-Ser(B8)]proinsulin did not fold well under the physiological conditions investigated, once folded the [L-Ser(B8)]proinsulin protein molecule bound to the insulin receptor more effectively than wild-type proinsulin. Such paradoxical gain of function (not pertinent in vivo due to impaired secretion of the mutant insulin) presumably reflects induced fit in the native mechanism of hormone-receptor engagement. This work provides insight into the molecular mechanism of a clinical mutation in the insulin gene associated with diabetes mellitus. These results dramatically illustrate the power of total protein synthesis, as enabled by modern chemical ligation methods, for the investigation of protein folding and misfolding. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Heterologous expression and characterization of Bacillus coagulans L-arabinose isomerase.

    Science.gov (United States)

    Zhou, Xingding; Wu, Jin Chuan

    2012-05-01

    Bacillus coagulans has been of great commercial interest over the past decade owing to its strong ability of producing optical pure L: -lactic acid from both hexose and pentose sugars including L: -arabinose with high yield, titer and productivity under thermophilic conditions. The L: -arabinose isomerase (L-AI) from Bacillus coagulans was heterologously over-expressed in Escherichia coli. The open reading frame of the L-AI has 1,422 nucleotides encoding a protein with 474 amino acid residues. The recombinant L-AI was purified to homogeneity by one-step His-tag affinity chromatography. The molecular mass of the enzyme was estimated to be 56 kDa by SDS-PAGE. The enzyme was most active at 70°C and pH 7.0. The metal ion Mn(2+) was shown to be the best activator for enzymatic activity and thermostability. The enzyme showed higher activity at acidic pH than at alkaline pH. The kinetic studies showed that the K (m), V (max) and k (cat)/K (m) for the conversion of L: -arabinose were 106 mM, 84 U/mg and 34.5 mM(-1)min(-1), respectively. The equilibrium ratio of L: -arabinose to L: -ribulose was 78:22 under optimal conditions. L: -ribulose (97 g/L) was obtained from 500 g/l of L: -arabinose catalyzed by the enzyme (8.3 U/mL) under the optimal conditions within 1.5 h, giving at a substrate conversion of 19.4% and a production rate of 65 g L(-1) h(-1).

  8. Isolation of xylose isomerases by sequence- and function-based screening from a soil metagenomic library

    Directory of Open Access Journals (Sweden)

    Parachin Nádia

    2011-05-01

    Full Text Available Abstract Background Xylose isomerase (XI catalyses the isomerisation of xylose to xylulose in bacteria and some fungi. Currently, only a limited number of XI genes have been functionally expressed in Saccharomyces cerevisiae, the microorganism of choice for lignocellulosic ethanol production. The objective of the present study was to search for novel XI genes in the vastly diverse microbial habitat present in soil. As the exploitation of microbial diversity is impaired by the ability to cultivate soil microorganisms under standard laboratory conditions, a metagenomic approach, consisting of total DNA extraction from a given environment followed by cloning of DNA into suitable vectors, was undertaken. Results A soil metagenomic library was constructed and two screening methods based on protein sequence similarity and enzyme activity were investigated to isolate novel XI encoding genes. These two screening approaches identified the xym1 and xym2 genes, respectively. Sequence and phylogenetic analyses revealed that the genes shared 67% similarity and belonged to different bacterial groups. When xym1 and xym2 were overexpressed in a xylA-deficient Escherichia coli strain, similar growth rates to those in which the Piromyces XI gene was expressed were obtained. However, expression in S. cerevisiae resulted in only one-fourth the growth rate of that obtained for the strain expressing the Piromyces XI gene. Conclusions For the first time, the screening of a soil metagenomic library in E. coli resulted in the successful isolation of two active XIs. However, the discrepancy between XI enzyme performance in E. coli and S. cerevisiae suggests that future screening for XI activity from soil should be pursued directly using yeast as a host.

  9. Endoplasmic Reticulum Protein TXNDC5 Augments Myocardial Fibrosis by Facilitating Extracellular Matrix Protein Folding and Redox-Sensitive Cardiac Fibroblast Activation.

    Science.gov (United States)

    Shih, Ying-Chun; Chen, Chao-Ling; Zhang, Yan; Mellor, Rebecca L; Kanter, Evelyn M; Fang, Yun; Wang, Hua-Chi; Hung, Chen-Ting; Nong, Jing-Yi; Chen, Hui-Ju; Lee, Tzu-Han; Tseng, Yi-Shuan; Chen, Chiung-Nien; Wu, Chau-Chung; Lin, Shuei-Liong; Yamada, Kathryn A; Nerbonne, Jeanne M; Yang, Kai-Chien

    2018-03-13

    Rationale: Cardiac fibrosis plays a critical role in the pathogenesis of heart failure (HF). Excessive accumulation of extracellular matrix (ECM) resulting from cardiac fibrosis impairs cardiac contractile function and increases arrhythmogenicity. Current treatment options for cardiac fibrosis, however, are limited and there is a clear need to identify novel mediators of cardiac fibrosis to facilitate the development of better therapeutics. Exploiting co-expression gene network analysis on RNA sequencing data from failing human heart, we identified thioredoxin domain containing 5 (TXNDC5), a cardiac fibroblast (CF)-enriched endoplasmic reticulum (ER) protein, as a potential novel mediator of cardiac fibrosis and we completed experiments to test this hypothesis directly. Objective: To determine the functional role of TXNDC5 in the pathogenesis of cardiac fibrosis. Methods and Results: RNASeq and Western blot analyses revealed that TXNDC5 mRNA and protein were highly upregulated in failing human left ventricles (LV) and in hypertrophied/failing mouse LV. In addition, cardiac TXNDC5 mRNA expression levels were positively correlated with those of transcripts encoding transforming growth factor β1 (TGFβ1) and ECM proteins in vivo. TXNDC5 mRNA and protein were increased in human CF (hCF) under TGFβ1 stimulation in vitro. Knockdown of TXNDC5 attenuated TGFβ1-induced hCF activation and ECM protein upregulation independent of SMAD3, whereas increasing expression of TXNDC5 triggered hCF activation and proliferation and increased ECM protein production. Further experiments showed that TXNDC5, a protein disulfide isomerase, facilitated ECM protein folding and that depletion of TXNDC5 led to ECM protein misfolding and degradation in CF. In addition, TXNDC5 promotes hCF activation and proliferation by enhancing JNK activity via increased reactive oxygen species, derived from NAD(P)H oxidase 4. TGFβ1-induced TXNDC5 upregulation in hCF was dependent on ER stress and

  10. Dynamic Combinatorial Chemistry with Diselenides, Disulfides, Imines and Metal Coordination

    DEFF Research Database (Denmark)

    Sørensen, Anne

    The design and preparation of strong and selective artificial receptors, especially biomi-metic receptors that function in aqueous solution, has proved truly challenging. In this thesis it will be described how the strengths of dynamic combinatorial chemistry can be used to great advantage...... in this field. The aim of this project has therefore been to develop new ways of using dynamic combinatorial libraries for molecular recognition in aqueous media. The focus has been on using what has been learned from the well-established di-sulfide exchange chemistry to incorporate a new reaction into dynamic...... experimentally and theoretically and found to be unique in organoselenium chemistry by proceeding through a four-membered cyclic transition state following first-order kinetics. Subsequently, this thesis illustrates how an aliphatic diselenide could be used to catalyse the formation of a disulfide based dynamic...

  11. Diagnostic value of glucose-6-phosphate isomerase in rheumatoid arthritis.

    Science.gov (United States)

    Fan, Lie Ying; Zong, Ming; Wang, Qiang; Yang, Lin; Sun, Li Shan; Ye, Qin; Ding, Yuan Yuan; Ma, Jian Wei

    2010-12-14

    Although glucose-6-phosphate isomerase (G6PI), anti-G6PI antibodies and G6PI-containing immune complexes (G6PI-CIC) have proved high expression in patients with rheumatoid arthritis (RA), comprehensive evaluation of the G6PI-derived markers, G6PI antigen, anti-G6PI Abs, G6PI-CIC and G6PI mRNA, in the diagnosis of RA remains necessary. We measured G6PI antigen, anti-G6PI Abs, C1q/G6PI-CIC as well as anti-cyclic citrullinated peptide antibodies (anti-CCP Abs) in serum and concomitantly synovial fluid (SF) by ELISA in RA, other rheumatic diseases and healthy controls. The G6PI mRNA expression in peripheral blood mononuclear cells (PBMCs) was assessed with real-time PCR. As compared with non-RA patients, RA patients had increased levels of G6PI antigen, anti-G6PI Abs, C1q/G6PI-CIC and G6PI mRNA expression in sera or PBMCs, and increased levels of G6PI and C1q/G6PI-CIC in SF. The serum G6PI levels in RA patients positively correlated with anti-G6PI Abs, C1q/G6PI-CIC, G6PI mRNA, anti-CCP Abs, RF, CRP and ESR, respectively. The area under curve analyses demonstrated that serum G6PI had the best discriminating power for RA and active RA followed by C1q/G6PI-CIC, anti-G6PI Abs and G6PI mRNA. The simultaneous use of serum G6PI and anti-CCP Abs assays in the form of either of them tested positive gave improved sensitivities of 88.1% for RA and 95.8% for active RA. Despite the elevated expression of all G6PI-derived markers in RA, the serum G6PI has the best discriminating power among the four G6PI-derived markers. The serum G6PI determination either alone or in combination with anti-CCP Abs improves the diagnosis of RA. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Screening and selection of wild strains for L-arabinose isomerase production

    Directory of Open Access Journals (Sweden)

    R. M. Manzo

    2013-12-01

    Full Text Available The majority of L-arabinose isomerases have been isolated by recombinant techniques, but this methodology implies a reduced technological application. For this reason, 29 bacterial strains, some of them previously characterized as L-arabinose isomerase producers, were assayed as L-arabinose fermenting strains by employing conveniently designed culture media with 0.5% (w/v L-arabinose as main carbon source. From all evaluated bacterial strains, Enterococcus faecium DBFIQ ID: E36, Enterococcus faecium DBFIQ ID: ETW4 and Pediococcus acidilactici ATCC ID: 8042 were, in this order, the best L-arabinose fermenting strains. Afterwards, to assay L-arabinose metabolization and L-arabinose isomerase activity, cell-free extract and saline precipitated cell-free extract of the three bacterial cultures were obtained and the production of ketoses was determined by the cysteine carbazole sulfuric acid method. Results showed that the greater the L-arabinose metabolization ability, the higher the enzymatic activity achieved, so Enterococcus faecium DBFIQ ID: E36 was selected to continue with production, purification and characterization studies. This work thus describes a simple microbiological method for the selection of L-arabinose fermenting bacteria for the potential production of the enzyme L-arabinose isomerase.

  13. Crystal structure of Pyrococcus furiosus phosphoglucose isomerase: Implications for substrate binding and catalysis

    NARCIS (Netherlands)

    Berrisford, J.M.; Akerboom, A.P.; Turnbull, A.P.; Geus, de D.; Sedelnikova, S.E.; Staton, I.; McLeod, C.W.; Verhees, C.H.; Oost, van der J.; Rice, D.W.; Baker, P.J.

    2003-01-01

    Phosphoglucose isomerase (PGI) catalyzes the reversible isomerization between D-fructose 6-phosphate and D-glucose 6-phosphate as part of the glycolytic pathway. PGI from the Archaea Pyrococcus furiosus (Pfu) was crystallized, and its structure was determined by x-ray diffraction to a 2-Angstrom

  14. Effect of gamma irradiation on whole-cell glucose isomerase. Pt. 2

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, S.; Gebicka, L.

    1984-06-01

    Several properties of Actinoplanes missouriensis and Streptomyces olivaceus glucose isomerase have been studied after irradiation of the enzyme of the dose of 10 kGy in dry state. The temperature at which the Actinoplanes missouriensis cells show the highest activity decreased by at least five centigrades. Other investigated enzymatic properties have been found to show no significant differences after irradiation.

  15. Characterisation of Aspergillus niger phosphoglucose isomerase. Use for quantitative determination of erythrose 4-phosphate

    NARCIS (Netherlands)

    Ruijter, G.J.G.; Visser, J.

    1999-01-01

    Phosphoglucose isomerase (PGI) was purified from Aspergillus niger and the in vitro kinetic properties of the enzyme were related to its functioning in vivo. A new assay method was developed to study the forward reaction making use of mannitol 1-P dehydrogenase as the coupling enzyme. In this simple

  16. Substrate specificity of a glucose-6-phosphate isomerase from Pyrococcus furiosus for monosaccharides.

    Science.gov (United States)

    Yoon, Ran-Young; Yeom, Soo-Jin; Park, Chang-Su; Oh, Deok-Kun

    2009-05-01

    We purified recombinant glucose-6-phosphate isomerase from Pyrococcus furiosus using heat treatment and Hi-Trap anion-exchange chromatography with a final specific activity of 0.39 U mg(-1). The activity of the glucose-6-phosphate isomerase for L: -talose isomerization was optimal at pH 7.0, 95 degrees C, and 1.5 mM Co(2+). The half-lives of the enzyme at 65 degrees C, 75 degrees C, 85 degrees C, and 95 degrees C were 170, 41, 19, and 7.9 h, respectively. Glucose-6-phosphate isomerase catalyzed the interconversion between two different aldoses and ketose for all pentoses and hexoses via two isomerization reactions. This enzyme has a unique activity order as follows: aldose substrates with hydroxyl groups oriented in the same direction at C2, C3, and C4 > C2 and C4 > C2 and C3 > C3 and C4. L: -Talose and D: -ribulose exhibited the most preferred substrates among the aldoses and ketoses, respectively. L: -Talose was converted to L: -tagatose and L: -galactose by glucose-6-phosphate isomerase with 80% and 5% conversion yields after about 420 min, respectively, whereas D: -ribulose was converted to D: -ribose and D: -arabinose with 53% and 8% conversion yields after about 240 min, respectively.

  17. Evidence supporting a cis-enediol-based mechanism for Pyrococcus furiosus phosphoglucose isomerase

    NARCIS (Netherlands)

    Berrisford, J.M.; Hounslow, A.M.; Akerboom, A.P.; Hagen, W.R.; Brouns, S.J.J.; Oost, van der J.; Murray, I.A.; Blackburn, G.M.; Waltho, J.P.; Rice, D.W.; Baker, P.J.

    2006-01-01

    The enzymatic aldose ketose isomerisation of glucose and fructose sugars involves the transfer of a hydrogen between their C1 and C2 carbon atoms and, in principle, can proceed through either a direct hydride shift or via a cis-enediol intermediate. Pyrococcus furiosus phosphoglucose isomerase

  18. Functional redundancy of mitochondrial enoyl-CoA isomerases in the oxidation of unsaturated fatty acids

    NARCIS (Netherlands)

    van Weeghel, Michel; te Brinke, Heleen; van Lenthe, Henk; Kulik, Wim; Minkler, Paul E.; Stoll, Maria S. K.; Sass, Jörn Oliver; Janssen, Uwe; Stoffel, Wilhelm; Schwab, K. Otfried; Wanders, Ronald J. A.; Hoppel, Charles L.; Houten, Sander M.

    2012-01-01

    Mitochondrial enoyl-CoA isomerase (ECI1) is an auxiliary enzyme involved in unsaturated fatty acid oxidation. In contrast to most of the other enzymes involved in fatty acid oxidation, a deficiency of ECI1 has yet to be identified in humans. We used wild-type (WT) and Eci1-deficient knockout (KO)

  19. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation.

    Science.gov (United States)

    Kuyper, Marko; Hartog, Miranda M P; Toirkens, Maurice J; Almering, Marinka J H; Winkler, Aaron A; van Dijken, Johannes P; Pronk, Jack T

    2005-02-01

    After an extensive selection procedure, Saccharomyces cerevisiae strains that express the xylose isomerase gene from the fungus Piromyces sp. E2 can grow anaerobically on xylose with a mu(max) of 0.03 h(-1). In order to investigate whether reactions downstream of the isomerase control the rate of xylose consumption, we overexpressed structural genes for all enzymes involved in the conversion of xylulose to glycolytic intermediates, in a xylose-isomerase-expressing S. cerevisiae strain. The overexpressed enzymes were xylulokinase (EC 2.7.1.17), ribulose 5-phosphate isomerase (EC 5.3.1.6), ribulose 5-phosphate epimerase (EC 5.3.1.1), transketolase (EC 2.2.1.1) and transaldolase (EC 2.2.1.2). In addition, the GRE3 gene encoding aldose reductase was deleted to further minimise xylitol production. Surprisingly the resulting strain grew anaerobically on xylose in synthetic media with a mu(max) as high as 0.09 h(-1) without any non-defined mutagenesis or selection. During growth on xylose, xylulose formation was absent and xylitol production was negligible. The specific xylose consumption rate in anaerobic xylose cultures was 1.1 g xylose (g biomass)(-1) h(-1). Mixtures of glucose and xylose were sequentially but completely consumed by anaerobic batch cultures, with glucose as the preferred substrate.

  20. Structural analysis of an intact monoclonal antibody by online electrochemical reduction of disulfide bonds and Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Nicolardi, Simone; Deelder, André M; Palmblad, Magnus; van der Burgt, Yuri E M

    2014-06-03

    Structural confirmation and quality control of recombinant monoclonal antibodies (mAbs) by top-down mass spectrometry is still challenging due to the size of the proteins, disulfide content, and post-translational modifications such as glycosylation. In this study we have applied electrochemistry (EC) to overcome disulfide bridge complexity in top-down analysis of mAbs. To this end, an electrochemical cell was coupled directly to an electrospray ionization (ESI) source and a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer (MS) equipped with a 15 T magnet. By performing online EC-assisted reduction of interchain disulfide bonds in an intact mAb, the released light chains could be selected for tandem mass spectrometry (MS/MS) analysis without interference from heavy-chain fragments. Moreover, the acquisition of full MS scans under denaturing conditions allowed profiling of all abundant mAb glycoforms. Ultrahigh-resolution FTICR-MS measurements provided fully resolved isotopic distributions of intact mAb and enabled the identification of the most abundant adducts and other interfering species. Furthermore, it was found that reduction of interchain disulfide bonds occurs in the ESI source dependent on capillary voltage and solvent composition. This phenomenon was systematically evaluated and compared with the results obtained from reduction in the electrochemical cell.

  1. Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains

    Directory of Open Access Journals (Sweden)

    Hahn-Hägerdal Bärbel

    2008-10-01

    Full Text Available Abstract Background Ethanolic fermentation of lignocellulosic biomass is a sustainable option for the production of bioethanol. This process would greatly benefit from recombinant Saccharomyces cerevisiae strains also able to ferment, besides the hexose sugar fraction, the pentose sugars, arabinose and xylose. Different pathways can be introduced in S. cerevisiae to provide arabinose and xylose utilisation. In this study, the bacterial arabinose isomerase pathway was combined with two different xylose utilisation pathways: the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways, respectively, in genetically identical strains. The strains were compared with respect to aerobic growth in arabinose and xylose batch culture and in anaerobic batch fermentation of a mixture of glucose, arabinose and xylose. Results The specific aerobic arabinose growth rate was identical, 0.03 h-1, for the xylose reductase/xylitol dehydrogenase and xylose isomerase strain. The xylose reductase/xylitol dehydrogenase strain displayed higher aerobic growth rate on xylose, 0.14 h-1, and higher specific xylose consumption rate in anaerobic batch fermentation, 0.09 g (g cells-1 h-1 than the xylose isomerase strain, which only reached 0.03 h-1 and 0.02 g (g cells-1h-1, respectively. Whereas the xylose reductase/xylitol dehydrogenase strain produced higher ethanol yield on total sugars, 0.23 g g-1 compared with 0.18 g g-1 for the xylose isomerase strain, the xylose isomerase strain achieved higher ethanol yield on consumed sugars, 0.41 g g-1 compared with 0.32 g g-1 for the xylose reductase/xylitol dehydrogenase strain. Anaerobic fermentation of a mixture of glucose, arabinose and xylose resulted in higher final ethanol concentration, 14.7 g l-1 for the xylose reductase/xylitol dehydrogenase strain compared with 11.8 g l-1 for the xylose isomerase strain, and in higher specific ethanol productivity, 0.024 g (g cells-1 h-1 compared with 0.01 g (g cells-1 h-1

  2. Rational Design of Disulfide Bonds Increases Thermostability of a Mesophilic 1,3-1,4-β-Glucanase from Bacillus terquilensis.

    Directory of Open Access Journals (Sweden)

    Chengtuo Niu

    Full Text Available 1,3-1,4-β-glucanase is an important biocatalyst in brewing industry and animal feed industry, while its low thermostability often reduces its application performance. In this study, the thermostability of a mesophilic β-glucanase from Bacillus terquilensis was enhanced by rational design and engineering of disulfide bonds in the protein structure. Protein spatial configuration was analyzed to pre-exclude the residues pairs which negatively conflicted with the protein structure and ensure the contact of catalytic center. The changes in protein overall and local flexibility among the wild-type enzyme and the designated mutants were predicted to select the potential disulfide bonds for enhancement of thermostability. Two residue pairs (N31C-T187C and P102C-N125C were chosen as engineering targets and both of them were proved to significantly enhance the protein thermostability. After combinational mutagenesis, the double mutant N31C-T187C/P102C-N125C showed a 48.3% increase in half-life value at 60°C and a 4.1°C rise in melting temperature (Tm compared to wild-type enzyme. The catalytic property of N31C-T187C/P102C-N125C mutant was similar to that of wild-type enzyme. Interestingly, the optimal pH of double mutant was shifted from pH6.5 to pH6.0, which could also increase its industrial application. By comparison with mutants with single-Cys substitutions, the introduction of disulfide bonds and the induced new hydrogen bonds were proved to result in both local and overall rigidification and should be responsible for the improved thermostability. Therefore, the introduction of disulfide bonds for thermostability improvement could be rationally and highly-effectively designed by combination with spatial configuration analysis and molecular dynamics simulation.

  3. Formation of an Intramolecular Periplasmic Disulfide Bond in TcpP Protects TcpP and TcpH from Degradation in Vibrio cholerae.

    Science.gov (United States)

    Morgan, Sarah J; French, Emily L; Thomson, Joshua J; Seaborn, Craig P; Shively, Christian A; Krukonis, Eric S

    2016-02-01

    and disruption of the intramolecular disulfide bond in TcpP decreased the stability of TcpP and reduced virulence gene expression. Normally TcpH, another membrane-localized periplasmic protein, protects TcpP from degradation. However, we found that TcpH was also unstable when intramolecular disulfides could not be formed in TcpP, indicating that the periplasmic cysteines of TcpP are required for functional interaction with TcpH and that this interaction is required for both TcpP and TcpH stability. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Structural and Biochemical Characterization of the Human Cyclophilin Family of Peptidyl-Prolyl Isomerases

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Tara L.; Walker, John R.; Campagna-Slater, Valérie; Finerty, Jr., Patrick J.; Paramanathan, Ragika; Bernstein, Galina; MacKenzie, Farrell; Tempel, Wolfram; Ouyang, Hui; Lee, Wen Hwa; Eisenmesser, Elan Z.; Dhe-Paganon, Sirano (Toronto); (Colorado)

    2011-12-14

    Peptidyl-prolyl isomerases catalyze the conversion between cis and trans isomers of proline. The cyclophilin family of peptidyl-prolyl isomerases is well known for being the target of the immunosuppressive drug cyclosporin, used to combat organ transplant rejection. There is great interest in both the substrate specificity of these enzymes and the design of isoform-selective ligands for them. However, the dearth of available data for individual family members inhibits attempts to design drug specificity; additionally, in order to define physiological functions for the cyclophilins, definitive isoform characterization is required. In the current study, enzymatic activity was assayed for 15 of the 17 human cyclophilin isomerase domains, and binding to the cyclosporin scaffold was tested. In order to rationalize the observed isoform diversity, the high-resolution crystallographic structures of seven cyclophilin domains were determined. These models, combined with seven previously solved cyclophilin isoforms, provide the basis for a family-wide structure:function analysis. Detailed structural analysis of the human cyclophilin isomerase explains why cyclophilin activity against short peptides is correlated with an ability to ligate cyclosporin and why certain isoforms are not competent for either activity. In addition, we find that regions of the isomerase domain outside the proline-binding surface impart isoform specificity for both in vivo substrates and drug design. We hypothesize that there is a well-defined molecular surface corresponding to the substrate-binding S2 position that is a site of diversity in the cyclophilin family. Computational simulations of substrate binding in this region support our observations. Our data indicate that unique isoform determinants exist that may be exploited for development of selective ligands and suggest that the currently available small-molecule and peptide-based ligands for this class of enzyme are insufficient for isoform

  5. Differential expression of anterior gradient protein 3 in intrahepatic cholangiocarcinoma and hepatocellular carcinoma.

    Science.gov (United States)

    Brychtova, Veronika; Zampachova, Vita; Hrstka, Roman; Fabian, Pavel; Novak, Jiri; Hermanova, Marketa; Vojtesek, Borivoj

    2014-06-01

    Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver cancer next to hepatocellular carcinoma (HCC). Despite the significant difference of the therapeutic strategy for both diseases, their histological appearance may be very similar. Thus the correct diagnosis is crucial for treatment choice but is often difficult to achieve. The aim of our study was to evaluate anterior gradient 3 (AGR3) as a new diagnostic marker helping to distinguish between ICC and HCC. AGR3 is a putative transmembrane protein implicated in breast, prostate and ovary tumorigenesis and belongs to the family of protein disulfide isomerases. Since there is little information on how AGR3 is expressed in normal and diseased tissues and what its exact function is, we analyzed its expression pattern in normal liver and tumor tissue of ICC and HCC. The immunohistochemical analysis in normal tissue revealed specific AGR3 expression in intrahepatic bile duct cholangiocytes which was not present in liver hepatocytes. Consequently we analyzed AGR3 expression in 74 representative samples of puncture biopsies, tissue excisions and resection specimens from which 48 samples were diagnosed as HCC and 26 as ICC. Our results showed AGR3 expression negative and weakly positive respectively in hepatocellular carcinomas compared to stronger AGR3 positivity in cholangiocellular carcinomas. AGR3 expression statistically significantly correlated to acid mucopolysaccharide expression and negatively correlated to glypican-3 expression. We conclude that according to receiver operating characteristics (ROC) analysis AGR3 expression is relatively specific for ICC and is potentially linked to mucosecretion, which may indicate potential implication in treatment resistance. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. [Cloning and functional characterization of a cDNA encoding isopentenyl diphosphate isomerase involved in taxol biosynthesis in Taxus media].

    Science.gov (United States)

    Shen, Tian; Qiu, Fei; Chen, Min; Lan, Xiao-zhong; Liao, Zhi-hua

    2015-05-01

    Taxol is one of the most potent anti-cancer agents, which is extracted from the plants of Taxus species. Isopentenyl diphosphate isomerase (IPI) catalyzes the reversible transformation between IPP and DMAPP, both of which are the general 5-carbon precursors for taxol biosynthesis. In the present study, a new gene encoding IPI was cloned from Taxus media (namely TmIPI with the GenBank Accession Number KP970677) for the first time. The full-length cDNA of TmIPI was 1 232 bps encoding a polypeptide with 233 amino acids, in which the conserved domain Nudix was found. Bioinformatic analysis indicated that the sequence of TmIPI was highly similar to those of other plant IPI proteins, and the phylogenetic analysis showed that there were two clades of plant IPI proteins, including IPIs of angiosperm plants and IPIs of gymnosperm plants. TmIPI belonged to the clade of gymnosperm plant IPIs, and this was consistent with the fact that Taxus media is a plant species of gymnosperm. Southern blotting analysis demonstrated that there was a gene family of IPI in Taxus media. Finally, functional verification was applied to identify the function of TmIPI. The results showed that biosynthesis of β-carotenoid was enhanced by overexpressing TmIPI in the engineered E. coli strain, and this suggested that TmIPI might be a key gene involved in isoprenoid/terpenoid biosynthesis.

  7. Negative Regulation of the Stability and Tumor Suppressor Function of Fbw7 by the Pin1 Prolyl Isomerase

    Science.gov (United States)

    Min, Sang-Hyun; Lau, Alan W.; Lee, Tae Ho; Inuzuka, Hiroyuki; Wei, Shuo; Huang, Pengyu; Shaik, Shavali; Lee, Daniel Yenhong; Finn, Greg; Balastik, Martin; Chen, Chun-Hau; Luo, Manli; Tron, Adriana E.; DeCaprio, James A.; Zhou, Xiao Zhen; Wei, Wenyi; Lu, Kun Ping

    2012-01-01

    SUMMARY Fbw7 is the substrate recognition component of the SCF (Skp1-Cullin-F-box)-type E3 ligase complex and a well-characterized tumor suppressor that targets numerous oncoproteins for destruction. Genomic deletion or mutation of FBW7 has been frequently found in various types of human cancers, however, little is known about the upstream signaling pathway(s) governing Fbw7 stability and cellular functions. Here we report that Fbw7 protein destruction and tumor suppressor function are negatively regulated by the prolyl isomerase Pin1. Pin1 interacts with Fbw7 in a phoshorylation-dependent manner and promotes Fbw7 self-ubiquitination and protein degradation by disrupting Fbw7 dimerization. Consequently, over-expressing Pin1 reduces Fbw7 abundance and suppresses Fbw7’s ability to inhibit proliferation and transformation. By contrast, depletion of Pin1 in cancer cells leads to elevated Fbw7 expression, which subsequently reduces Mcl-1 abundance, sensitizing cancer cells to Taxol. Thus, Pin1-mediated inhibition of Fbw7 contributes to oncogenesis and Pin1 may be a promising drug target for anti-cancer therapy. PMID:22608923

  8. Enolase1 (ENO1) and glucose-6-phosphate isomerase (GPI) are good markers to predict human sperm freezability.

    Science.gov (United States)

    Jiang, Xu-ping; Wang, Shang-qian; Wang, Wei; Xu, Yang; Xu, Zhen; Tang, Jing-yuan; Sun, Hong-yong; Wang, Zeng-jun; Zhang, Wei

    2015-08-01

    Sperm cryopreservation is a method to preserve sperm samples for a long period. However, the fertility of sperm decreases markedly after freezing and thawing in a certain amount of samples. The aim of the present study was to find useful and reliable predictive biomarkers of the capacity to withstand the freeze-thawing process in human ejaculates. Previous researches have shown that enolase1 (ENO1) and glucose-6-phosphate isomerase (GPI) are closely related to spermatozoa quality. We chose the two proteins as probable markers of sperm freezing capacity. Ejaculate samples were separated into good freezability ejaculates (GFE) and poor freezability ejaculates (PFE) according to progressive motility of the sperm after thawing. Before starting cryopreservation protocols, the two proteins from each group were compared using western blot analysis and immunofluorescence. Results showed that normalized content of ENO1 (P<0.05) and GPI (P<0.01) were both significantly higher in GFE than in PFE. The association of ENO1 and GPI with postthaw sperm viability and motility was confirmed using Pearson's linear correlation. In conclusion, ENO1 and GPI can be used as markers of human sperm freezability before starting the cryopreservation procedure. Copyright © 2015. Published by Elsevier Inc.

  9. Glucose-6-phosphate isomerase is an endogenous inhibitor to myofibril-bound serine proteinase of crucian carp (Carassius auratus).

    Science.gov (United States)

    Sun, Le-Chang; Zhou, Li-Gen; Du, Cui-Hong; Cai, Qiu-Feng; Hara, Kenji; Su, Wen-Jin; Cao, Min-Jie

    2009-06-24

    Glucose-6-phosphate isomerase (GPI) was purified to homogeneity from the skeletal muscle of crucian carp ( Carassius auratus ) by ammonium sulfate fractionation, column chromatographies of Q-Sepharose, SP-Sepharose, and Superdex 200 with a yield of 8.0%, and purification folds of 468. The molecular mass of GPI was 120 kDa as estimated by gel filtration, while on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), two subunits (55 and 65 kDa) were identified, suggesting that it is a heterodimer. Interestingly, GPI revealed specific inhibitory activity toward a myofibril-bound serine proteinase (MBSP) from crucian carp, while no inhibitory activity was identified toward other serine proteinases, such as white croaker MBSP and crucian carp trypsin. Kinetic analysis showed that GPI is a competitive inhibitor toward MBSP, and the K(i) was 0.32 microM. Our present results indicated that the multifunctional protein GPI is an endogenous inhibitor to MBSP and may play a significant role in the regulation of muscular protein metabolism in vivo.

  10. Identification and comparative analysis of sixteen fungal peptidyl-prolyl cis/trans isomerase repertoires

    Directory of Open Access Journals (Sweden)

    Pemberton Trevor J

    2006-09-01

    Full Text Available Abstract Background The peptidyl-prolyl cis/trans isomerase (PPIase class of proteins is present in all known eukaryotes, prokaryotes, and archaea, and it is comprised of three member families that share the ability to catalyze the cis/trans isomerisation of a prolyl bond. Some fungi have been used as model systems to investigate the role of PPIases within the cell, however how representative these repertoires are of other fungi or humans has not been fully investigated. Results PPIase numbers within these fungal repertoires appears associated with genome size and orthology between repertoires was found to be low. Phylogenetic analysis showed the single-domain FKBPs to evolve prior to the multi-domain FKBPs, whereas the multi-domain cyclophilins appear to evolve throughout cyclophilin evolution. A comparison of their known functions has identified, besides a common role within protein folding, multiple roles for the cyclophilins within pre-mRNA splicing and cellular signalling, and within transcription and cell cycle regulation for the parvulins. However, no such commonality was found with the FKBPs. Twelve of the 17 human cyclophilins and both human parvulins, but only one of the 13 human FKBPs, identified orthologues within these fungi. hPar14 orthologues were restricted to the Pezizomycotina fungi, and R. oryzae is unique in the known fungi in possessing an hCyp33 orthologue and a TPR-containing FKBP. The repertoires of Cryptococcus neoformans, Aspergillus fumigatus, and Aspergillus nidulans were found to exhibit the highest orthology to the human repertoire, and Saccharomyces cerevisiae one of the lowest. Conclusion Given this data, we would hypothesize that: (i the evolution of the fungal PPIases is driven, at least in part, by the size of the proteome, (ii evolutionary pressures differ both between the different PPIase families and the different fungi, and (iii whilst the cyclophilins and parvulins have evolved to perform conserved

  11. Functionalized linear poly(amidoamine)s are efficient vectors for intracellular protein delivery

    NARCIS (Netherlands)

    Coué, G.M.J.P.C.; Engbersen, Johannes F.J.

    2011-01-01

    An effective intracellular protein delivery system was developed based on functionalized linear poly(amidoamine)s (PAAs) that form self-assembled cationic nanocomplexes with oppositely charged proteins. Three differently functionalized PAAs were synthesized, two of these having repetitive disulfide

  12. The influence of zinc(II) on thioredoxin/glutathione disulfide exchange: QM/MM studies to explore how zinc(II) accelerates exchange in higher dielectric environments.

    Science.gov (United States)

    Kurian, Roby; Bruce, Mitchell R M; Bruce, Alice E; Amar, François G

    2015-08-01

    QM/MM studies were performed to explore the energetics of exchange reactions of glutathione disulfide (GSSG) and the active site of thioredoxin [Cys32-Gly33-Pro34-Cys35] with and without zinc(II), in vacuum and solvated models. The activation energy for exchange, in the absence of zinc, is 29.7 kcal mol(-1) for the solvated model. This is 3.3 kcal mol(-1) higher than the activation energy for exchange in the gas phase, due to ground state stabilization of the active site Cys-32 thiolate in a polar environment. In the presence of zinc, the activation energy for exchange is 4.9 kcal mol(-1) lower than in the absence of zinc (solvated models). The decrease in activation energy is attributed to stabilization of the charge-separated transition state, which has a 4-centered, cyclic arrangement of Zn-S-S-S with an estimated dipole moment of 4.2 D. A difference of 4.9 kcal mol(-1) in activation energy would translate to an increase in rate by a factor of about 4000 for zinc-assisted thiol-disulfide exchange. The calculations are consistent with previously reported experimental results, which indicate that metal-thiolate, disulfide exchange rates increase as a function of solvent dielectric. This trend is opposite to that observed for the influence of the dielectric environment on the rate of thiol-disulfide exchange in the absence of metal. The results suggest a dynamic role for zinc in thiol-disulfide exchange reactions, involving accessible cysteine sites on proteins, which may contribute to redox regulation and mechanistic pathways during oxidative stress.

  13. A mathematical analysis of Prx2-STAT3 disulfide exchange rate constants for a bimolecular reaction mechanism.

    Science.gov (United States)

    Langford, Troy F; Deen, William M; Sikes, Hadley D

    2018-03-22

    Appreciation of peroxiredoxins as the major regulators of H 2 O 2 concentrations in human cells has led to a new understanding of redox signaling. In addition to their status as the primary reducers of H 2 O 2 to water, the oxidized peroxiredoxin byproduct of this reaction has recently been shown capable of participation in H 2 O 2 -mediated signaling pathways through disulfide exchange reactions with the transcription factor STAT3. The dynamics of peroxidase-transcription factor disulfide exchange reactions have not yet been considered in detail with respect to how these reactions fit into the larger network of competing reactions in human cells. In this study, we used a kinetic model of oxidation and reduction reactions related to H 2 O 2 metabolism in the cytosol of human cells to study the dynamics of peroxiredoxin-2 mediated oxidation of the redox-regulated transcription factor STAT3. In combination with previously reported experimental data, the model was used to estimate the rate coefficient of a biomolecular reaction between Prx2 and STAT3 for two sets of assumptions that constitute lower and upper bound cases. Using these estimates, we calculated the relative rates of the reaction of oxidized peroxiredoxin-2 and STAT3 and other competing reactions in the cytosol. These calculations revealed that peroxiredoxin-2-mediated oxidation of STAT3 likely occurs at a much slower rate than competing reactions in the cytosol. This analysis suggests the existence of more complex mechanisms, potentially involving currently unknown protein-protein recognition partners, which facilitate disulfide exchange reactions between peroxiredoxin-2 and STAT3. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Genomic analysis of a xylose operon and characterization of novel xylose isomerase and xylulokinase from Bacillus coagulans NL01.

    Science.gov (United States)

    Zheng, Zhaojuan; Lin, Xi; Jiang, Ting; Ye, Weihua; Ouyang, Jia

    2016-08-01

    To investigate the xylose operon and properties of xylose isomerase and xylulokinase in Bacillus coagulans that can effectively ferment xylose to lactic acid. The xylose operon is widely present in B. coagulans. It is composed of four putative ORFs. Novel xylA and xylB from B. coagulans NL01 were cloned and expressed in Escherichia coli. Sequence of xylose isomerase was more conserved than that of xylulokinase. Both the enzymes exhibited maximum activities at pH 7-8 but with a high temperature maximum of 80-85 °C, divalent metal ion was prerequisite for their activation. Xylose isomerase and xylulokinase were most effectively activated by Ni(2+) and Co(2+), respectively. Genomic analysis of xylose operon has contributed to understanding xylose metabolism in B. coagulans and the novel xylose isomerase and xylulokinase might provide new alternatives for metabolic engineering of other strains to improve their fermentation performance on xylose.

  15. Monocrotaline pyrrole-induced megalocytosis of lung and breast epithelial cells: Disruption of plasma membrane and Golgi dynamics and an enhanced unfolded protein response

    International Nuclear Information System (INIS)

    Mukhopadhyay, Somshuvra; Shah, Mehul; Patel, Kirit; Sehgal, Pravin B.

    2006-01-01

    The pyrrolizidine alkaloid monocrotaline (MCT) initiates pulmonary hypertension by inducing a 'megalocytosis' phenotype in target pulmonary arterial endothelial, smooth muscle and Type II alveolar epithelial cells. In cultured endothelial cells, a single exposure to the pyrrolic derivative of monocrotaline (MCTP) results in large cells with enlarged endoplasmic reticulum (ER) and Golgi and increased vacuoles. However, these cells fail to enter mitosis. Largely based upon data from endothelial cells, we proposed earlier that a disruption of the trafficking and mitosis-sensor functions of the Golgi (the 'Golgi blockade' hypothesis) may represent the subcellular mechanism leading to MCTP-induced megalocytosis. In the present study, we investigated the applicability of the Golgi blockade hypothesis to epithelial cells. MCTP induced marked megalocytosis in cultures of lung A549 and breast MCF-7 cells. This was associated with a change in the distribution of the cis-Golgi scaffolding protein GM130 from a discrete juxtanuclear localization to a circumnuclear distribution consistent with an anterograde block of GM130 trafficking to/through the Golgi. There was also a loss of plasma membrane caveolin-1 and E-cadherin, cortical actin together with a circumnuclear accumulation of clathrin heavy chain (CHC) and α-tubulin. Flotation analyses revealed losses/alterations in the association of caveolin-1, E-cadherin and CHC with raft microdomains. Moreover, megalocytosis was accompanied by an enhanced unfolded protein response (UPR) as evidenced by nuclear translocation of Ire1α and glucose regulated protein 58 (GRP58/ER-60/ERp57) and a circumnuclear accumulation of PERK kinase and protein disulfide isomerase (PDI). These data further support the hypothesis that an MCTP-induced Golgi blockade and enhanced UPR may represent the subcellular mechanism leading to enlargement of ER and Golgi and subsequent megalocytosis

  16. Melanogenesis stimulation in B16-F10 melanoma cells induces cell cycle alterations, increased ROS levels and a differential expression of proteins as revealed by proteomic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Elizabeth S.; Kawahara, Rebeca [Departamento de Bioquimica e Biologia Molecular, Setor de Ciencias Biologicas, Universidade Federal do Parana, P.O. Box 19046, CEP 81531-990, Curitiba, PR (Brazil); Kadowaki, Marina K. [Universidade Estadual do Oeste do Parana, Cascavel, PR (Brazil); Amstalden, Hudson G.; Noleto, Guilhermina R.; Cadena, Silvia Maria S.C.; Winnischofer, Sheila M.B. [Departamento de Bioquimica e Biologia Molecular, Setor de Ciencias Biologicas, Universidade Federal do Parana, P.O. Box 19046, CEP 81531-990, Curitiba, PR (Brazil); Martinez, Glaucia R., E-mail: grmartinez@ufpr.br [Departamento de Bioquimica e Biologia Molecular, Setor de Ciencias Biologicas, Universidade Federal do Parana, P.O. Box 19046, CEP 81531-990, Curitiba, PR (Brazil)

    2012-09-10

    Considering that stimulation of melanogenesis may lead to alterations of cellular responses, besides melanin production, our main goal was to study the cellular effects of melanogenesis stimulation of B16-F10 melanoma cells. Our results show increased levels of the reactive oxygen species after 15 h of melanogenesis stimulation. Following 48 h of melanogenesis stimulation, proliferation was inhibited (by induction of cell cycle arrest in the G1 phase) and the expression levels of p21 mRNA were increased. In addition, melanogenesis stimulation did not induce cellular senescence. Proteomic analysis demonstrated the involvement of proteins from other pathways besides those related to the cell cycle, including protein disulfide isomerase A3, heat-shock protein 70, and fructose biphosphate aldolase A (all up-regulated), and lactate dehydrogenase (down-regulated). In RT-qPCR experiments, the levels of pyruvate kinase M2 mRNA dropped, whereas the levels of ATP synthase (beta-F1) mRNA increased. These data indicate that melanogenesis stimulation of B16-F10 cells leads to alterations in metabolism and cell cycle progression that may contribute to an induction of cell quiescence, which may provide a mechanism of resistance against cellular injury promoted by melanin synthesis. -- Highlights: Black-Right-Pointing-Pointer Melanogenesis stimulation by L-tyrosine+NH{sub 4}Cl in B16-F10 melanoma cells increases ROS levels. Black-Right-Pointing-Pointer Melanogenesis inhibits cell proliferation, and induced cell cycle arrest in the G1 phase. Black-Right-Pointing-Pointer Proteomic analysis showed alterations in proteins of the cell cycle and glucose metabolism. Black-Right-Pointing-Pointer RT-qPCR analysis confirmed alterations of metabolic targets after melanogenesis stimulation.

  17. Hydrogen/deuterium exchange mass spectrometry and site-directed disulfide cross-linking suggest an important dynamic interface between the two lysostaphin domains.

    Science.gov (United States)

    Lu, Hai-Rong; Gu, Mei-Gang; Huang, Qiang; Huang, Jin-jiang; Lu, Wan-Ying; Lu, Hong; Huang, Qing-Shan

    2013-04-01

    Lysostaphin is a peptidoglycan hydrolase secreted by Staphylococcus simulans. It can specifically lyse Staphylococcus aureus and is being tested as a novel antibacterial agent. The protein contains an N-terminal catalytic domain and a C-terminal cell wall targeting domain. Although the two domains from homologous enzymes were structurally determined, the structural organization of lysostaphin domains remains unknown. We used hydrogen/deuterium exchange mass spectrometry (H/DX-MS) and site-directed disulfide cross-linking to probe the interface between the lysostaphin catalytic and targeting domains. H/DX-MS-mediated comparison of peptides from full-length lysostaphin and the separated domains identified four peptides of lower solvent accessibility in the full-length protein. Cross-linking analysis using cysteine pair substitutions within those peptides showed that two pairs of cysteines can form disulfide bonds, supporting the domain association role of the targeted peptides. The cross-linked mutant exhibited a binding capacity to S. aureus that was similar to that of the wild-type protein but reduced bacteriolytic activity probably because of restraint in conformation. The diminished activity was further reduced with increasing NaCl concentrations that can cause contractions of bacterial peptidoglycan. The lytic activity, however, could be fully recovered by reducing the disulfide bonds. These results suggest that lysostaphin may require dynamic association of the two domains for coordinating substrate binding and target cleavage on the elastic peptidoglycan. Our study will help develop site-specific PEGylated lysostaphin to treat systemic S. aureus infections.

  18. Crystal structures of the reduced, sulfenic acid, and mixed disulfide forms of SarZ, a redox active global regulator in Staphylococcus aureus.

    Science.gov (United States)

    Poor, Catherine B; Chen, Peng R; Duguid, Erica; Rice, Phoebe A; He, Chuan

    2009-08-28

    SarZ is a global transcriptional regulator that uses a single cysteine residue, Cys(13), to sense peroxide stress and control metabolic switching and virulence in Staphylococcus aureus. SarZ belongs to the single-cysteine class of OhrR-MgrA proteins that play key roles in oxidative resistance and virulence regulation in various bacteria. We present the crystal structures of the reduced form, sulfenic acid form, and mixed disulfide form of SarZ. Both the sulfenic acid and mixed disulfide forms are structurally characterized for the first time for this class of proteins. The Cys(13) sulfenic acid modification is stabilized through two hydrogen bonds with surrounding residues, and the overall DNA-binding conformation is retained. A further reaction of the Cys(13) sulfenic acid with an external thiol leads to formation of a mixed disulfide bond, which results in an allosteric change in the DNA-binding domains, disrupting DNA binding. Thus, the crystal structures of SarZ in three different states provide molecular level pictures delineating the mechanism by which this class of redox active regulators undergoes activation. These structures help to understand redox-mediated virulence regulation in S. aureus and activation of the MarR family proteins in general.

  19. In situ TEM observations of the lithiation of molybdenum disulfide

    International Nuclear Information System (INIS)

    Janish, Matthew T.; Carter, C. Barry

    2015-01-01

    The lithiation of molybdenum disulfide (MoS 2 ) has been directly studied in situ in the TEM by observing specimens with the viewing direction parallel to the basal planes. The MoS 2 lamella was characterized by bright-field imaging during the lithiation, and both selected-area diffraction and high-resolution imaging before and after. An overall expansion of ∼5% along the c-direction was observed with concurrent local contraction. The contraction can be related to the expulsion of Mo as Li reduces it to form Li 2 S

  20. Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice

    Science.gov (United States)

    Philippi, Vanessa; Stockhausen, Sven; Busse, Johanna; Antonelli, Antonella; Miller, Meike; Schubert, Irene; Hoseinpour, Parandis; Chandraratne, Sue; von Brühl, Marie-Luise; Gaertner, Florian; Lorenz, Michael; Agresti, Alessandra; Coletti, Raffaele; Antoine, Daniel J.; Heermann, Ralf; Jung, Kirsten; Reese, Sven; Laitinen, Iina; Schwaiger, Markus; Walch, Axel; Sperandio, Markus; Nawroth, Peter P.; Reinhardt, Christoph; Jäckel, Sven; Bianchi, Marco E.; Massberg, Steffen

    2016-01-01

    Deep venous thrombosis (DVT) is one of the most common cardiovascular diseases, but its pathophysiology remains incompletely understood. Although sterile inflammation has recently been shown to boost coagulation during DVT, the underlying molecular mechanisms are not fully resolved, which could potentially identify new anti-inflammatory approaches to prophylaxis and therapy of DVT. Using a mouse model of venous thrombosis induced by flow reduction in the vena cava inferior, we identified blood-derived high-mobility group box 1 protein (HMGB1), a prototypical mediator of sterile inflammation, to be a master regulator of the prothrombotic cascade involving platelets and myeloid leukocytes fostering occlusive DVT formation. Transfer of platelets into Hmgb1−/− chimeras showed that this cell type is the major source of HMGB1, exposing reduced HMGB1 on their surface upon activation thereby enhancing the recruitment of monocytes. Activated leukocytes in turn support oxidation of HMGB1 unleashing its prothrombotic activity and promoting platelet aggregation. This potentiates the amount of HMGB1 and further nurtures the accumulation and activation of monocytes through receptor for advanced glycation end products (RAGE) and Toll-like receptor 2, leading to local delivery of monocyte-derived tissue factor and cytokines. Moreover, disulfide HMGB1 facilitates formation of prothrombotic neutrophil extracellular traps (NETs) mediated by RAGE, exposing additional HMGB1 on their extracellular DNA strands. Eventually, a vicious circle of coagulation and inflammation is set in motion leading to obstructive DVT formation. Therefore, platelet-derived disulfide HMGB1 is a central mediator of the sterile inflammatory process in venous thrombosis and could be an attractive target for an anti-inflammatory approach for DVT prophylaxis. PMID:27574188

  1. Linalool isomerase, a membrane-anchored enzyme in the anaerobic monoterpene degradation in Thauera linaloolentis 47Lol

    OpenAIRE

    Marmulla, Robert; ?afari?, Barbara; Markert, Stephanie; Schweder, Thomas; Harder, Jens

    2016-01-01

    Background Thauera linaloolentis 47Lol uses the tertiary monoterpene alcohol (R,S)-linalool as sole carbon and energy source under denitrifying conditions. The conversion of linalool to geraniol had been observed in carbon-excess cultures, suggesting the presence of a 3,1-hydroxyl-?1-?2-mutase (linalool isomerase) as responsible enzyme. To date, only a single enzyme catalyzing such a reaction is described: the linalool dehydratase/isomerase (Ldi) from Castellaniella defragrans 65Phen acting o...

  2. Protein-Engineered Radiometal Chelates for Immunotherapy of Breast Cancer

    National Research Council Canada - National Science Library

    Foote, Jefferson

    1999-01-01

    .... We attempted to address this problem by modifying the binding site design, expressing the protein within protease-negative host strains, and subcloning disulfide oxido-reductases into our expression...

  3. Characterization of a mutated Geobacillus stearothermophilus L-arabinose isomerase that increases the production rate of D-tagatose.

    Science.gov (United States)

    Kim, H-J; Kim, J-H; Oh, H-J; Oh, D-K

    2006-07-01

    Characterization of a mutated Geobacillus stearothermophilus L-arabinose isomerase used to increase the production rate of D-tagatose. A mutated gene was obtained by an error-prone polymerase chain reaction using L-arabinose isomerase gene from G. stearothermophilus as a template and the gene was expressed in Escherichia coli. The expressed mutated L-arabinose isomerase exhibited the change of three amino acids (Met322-->Val, Ser393-->Thr, and Val408-->Ala), compared with the wild-type enzyme and was then purified to homogeneity. The mutated enzyme had a maximum galactose isomerization activity at pH 8.0, 65 degrees C, and 1.0 mM Co2+, while the wild-type enzyme had a maximum activity at pH 8.0, 60 degrees C, and 1.0-mM Mn2+. The mutated L-arabinose isomerase exhibited increases in D-galactose isomerization activity, optimum temperature, catalytic efficiency (kcat/Km) for D-galactose, and the production rate of D-tagatose from D-galactose. The mutated L-arabinose isomerase from G. stearothermophilus is valuable for the commercial production of D-tagatose. This work contributes knowledge on the characterization of a mutated L-arabinose isomerase, and allows an increased production rate for D-tagatose from D-galactose using the mutated enzyme.

  4. A zebrafish model of congenital disorders of glycosylation with phosphomannose isomerase deficiency reveals an early opportunity for corrective mannose supplementation

    Directory of Open Access Journals (Sweden)

    Jaime Chu

    2013-01-01

    Individuals with congenital disorders of glycosylation (CDG have recessive mutations in genes required for protein N-glycosylation, resulting in multi-systemic disease. Despite the well-characterized biochemical consequences in these individuals, the underlying cellular defects that contribute to CDG are not well understood. Synthesis of the lipid-linked oligosaccharide (LLO, which serves as the sugar donor for the N-glycosylation of secretory proteins, requires conversion of fructose-6-phosphate to mannose-6-phosphate via the phosphomannose isomerase (MPI enzyme. Individuals who are deficient in MPI present with bleeding, diarrhea, edema, gastrointestinal bleeding and liver fibrosis. MPI-CDG patients can be treated with oral mannose supplements, which is converted to mannose-6-phosphate through a minor complementary metabolic pathway, restoring protein glycosylation and ameliorating most symptoms, although liver disease continues to progress. Because Mpi deletion in mice causes early embryonic lethality and thus is difficult to study, we used zebrafish to establish a model of MPI-CDG. We used a morpholino to block mpi mRNA translation and established a concentration that consistently yielded 13% residual Mpi enzyme activity at 4 days post-fertilization (dpf, which is within the range of MPI activity detected in fibroblasts from MPI-CDG patients. Fluorophore-assisted carbohydrate electrophoresis detected decreased LLO and N-glycans in mpi morphants. These deficiencies resulted in 50% embryonic lethality by 4 dpf. Multi-systemic abnormalities, including small eyes, dysmorphic jaws, pericardial edema, a small liver and curled tails, occurred in 82% of the surviving larvae. Importantly, these phenotypes could be rescued with mannose supplementation. Thus, parallel processes in fish and humans contribute to the phenotypes caused by Mpi depletion. Interestingly, mannose was only effective if provided prior to 24 hpf. These data provide insight into treatment efficacy

  5. Cloning and characterization of peptidylprolyl isomerase B in the ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-15

    Dec 15, 2009 ... prising that they have been found to play essential roles in a variety of biological processes, including protein quality control, protein trafficking, immune system, virus infection/replication and Ca2. +-mediated intracellular signaling ( Göthel and Marahiel, 1999; Galat, 2003; Yao et al., 2005). The PPIases are ...

  6. The Chemistry of Alk-1-yn-1-yl DisulfidesA Review

    DEFF Research Database (Denmark)

    Senning, Alexander Erich Eugen

    2009-01-01

    The preparation and the properties of the elusive alk-1-yn-1-yl disulfides are reviewed, including the most recent quantum chemical findings with regard to their reactivity.......The preparation and the properties of the elusive alk-1-yn-1-yl disulfides are reviewed, including the most recent quantum chemical findings with regard to their reactivity....

  7. Inhibition of carbon disulfide on bio-desulfurization in the process of ...

    African Journals Online (AJOL)

    Biological desulfurization is a novel technology for the removal of hydrogen sulfide from some biogas or sour gas, in which there are always a certain amounts of carbon disulfide together with much hydrogen sulfide. Nowadays, carbon disulfide is found to have negative effect on the biological desulfurization, but seldom ...

  8. Selective inhibition of nicotinamide adenine dinucleotide kinases by dinucleoside disulfide mimics of nicotinamide adenine dinucleotide analogues.

    Science.gov (United States)

    Petrelli, Riccardo; Sham, Yuk Yin; Chen, Liqiang; Felczak, Krzysztof; Bennett, Eric; Wilson, Daniel; Aldrich, Courtney; Yu, Jose S; Cappellacci, Loredana; Franchetti, Palmarisa; Grifantini, Mario; Mazzola, Francesca; Di Stefano, Michele; Magni, Giulio; Pankiewicz, Krzysztof W

    2009-08-01

    Diadenosine disulfide (5) was reported to inhibit NAD kinase from Listeria monocytogenes and the crystal structure of the enzyme-inhibitor complex has been solved. We have synthesized tiazofurin adenosine disulfide (4) and the disulfide 5, and found that these compounds were moderate inhibitors of human NAD kinase (IC(50)=110 microM and IC(50)=87 microM, respectively) and Mycobacterium tuberculosis NAD kinase (IC(50)=80 microM and IC(50)=45 microM, respectively). We also found that NAD mimics with a short disulfide (-S-S-) moiety were able to bind in the folded (compact) conformation but not in the common extended conformation, which requires the presence of a longer pyrophosphate (-O-P-O-P-O-) linkage. Since majority of NAD-dependent enzymes bind NAD in the extended conformation, selective inhibition of NAD kinases by disulfide analogues has been observed. Introduction of bromine at the C8 of the adenine ring restricted the adenosine moiety of diadenosine disulfides to the syn conformation making it even more compact. The 8-bromoadenosine adenosine disulfide (14) and its di(8-bromoadenosine) analogue (15) were found to be the most potent inhibitors of human (IC(50)=6 microM) and mycobacterium NAD kinase (IC(50)=14-19 microM reported so far. None of the disulfide analogues showed inhibition of lactate-, and inosine monophosphate-dehydrogenase (IMPDH), enzymes that bind NAD in the extended conformation.

  9. Kinetic and Thermodynamic Aspects of Cellular Thiol-Disulfide Redox Regulation

    DEFF Research Database (Denmark)

    Jensen, Kristine Steen; Hansen, Rosa Erritzøe; Winther, Jakob R

    2009-01-01

    that affect the rate of thiol-disulfide exchange and stability of disulfide bonds are discussed within the framework of the underlying chemical foundations. This includes the effect of thiol acidity (pKa), the local electrostatic environment, molecular strain and entropy. Even though a thiol...

  10. Enhanced catalytic stability of lipase immobilized on oxidized and disulfide-rich eggshell membrane for esters hydrolysis and transesterification.

    Science.gov (United States)

    Jiang, Chenyu; Cheng, Chuanchuan; Hao, Mei; Wang, Hongbin; Wang, Ziying; Shen, Cai; Cheong, Ling-Zhi

    2017-12-01

    Eggshell membrane (ESM) is an industrial waste that is available in abundance from food industry. Present study investigated the physicochemical properties of oxidized ESM and compared the efficiency of ESM and oxidized ESM as carrier for Burkholderia cepacia lipase (BCL) used in esters hydrolysis and transesterification. Following oxidation treatment, FTIR analysis and Ellman's assay showed amino acid cysteine in ESM was oxidized to form disulfide bond-containing cystine. In addition, AFM analysis showed ESM which exhibited a highly porous filamentous structure appeared to be coalesce following oxidation treatment. Oxidized ESM also showed reduced porosity (38.67%) in comparison to native ESM (51.65%). BCL were successfully immobilized on oxidized ESM through carrier activation method (enzyme loading of 5.01mg protein/g oxidized ESM). These immobilized lipase demonstrated significantly (Ptransesterification (7.83±0.05) activity for at least 10 consecutive runs. Enhanced catalytic stability of BCL immobilized on oxidized ESM might be due to stabilization of the protein structure in oxidized ESM by disulfide bonds which helped formation of a stable bonding with BCL. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The Expression of Millettia pinnata Chalcone Isomerase in Saccharomyces cerevisiae Salt-Sensitive Mutants Enhances Salt-Tolerance

    Directory of Open Access Journals (Sweden)

    Baiqu Huang

    2013-04-01

    Full Text Available The present study demonstrates a new Millettia pinnata chalcone isomerase (MpCHI whose transcription level in leaf was confirmed to be enhanced after being treated by seawater or NaCl (500 mM via transcriptome sequencing and Real-Time Quantitative Reverse Transcription PCR (QRT-PCR analyses. Its full length cDNA (666 bp was obtained by 3'-end and 5'-end Rapid Amplification of cDNA Ends (RACE. The analysis via NCBI BLAST indicates that both aminoacid sequence and nucleotide sequence of the MpCHI clone share high homology with other leguminous CHIs (73%–86%. Evolutionarily, the phylogenic analysis further revealed that the MpCHI is a close relative of leguminous CHIs. The MpCHI protein consists of 221 aminoacid (23.64 KDa, whose peptide length, amino acid residues of substrate-binding site and reactive site are very similar to other leguminous CHIs reported previously. Two pYES2-MpCHI transformed salt-sensitive Saccharomyces cerevisiae mutants (Δnha1 and Δnhx1 showed improved salt-tolerance significantly compared to pYES2-vector transformed yeast mutants, suggesting the MpCHI or the flavonoid biosynthesis pathway could regulate the resistance to salt stress in M. pinnata.

  12. The expression of Millettia pinnata chalcone isomerase in Saccharomyces cerevisiae salt-sensitive mutants enhances salt-tolerance.

    Science.gov (United States)

    Wang, Hui; Hu, Tangjin; Huang, Jianzi; Lu, Xiang; Huang, Baiqu; Zheng, Yizhi

    2013-04-24

    The present study demonstrates a new Millettia pinnata chalcone isomerase (MpCHI) whose transcription level in leaf was confirmed to be enhanced after being treated by seawater or NaCl (500 mM) via transcriptome sequencing and Real-Time Quantitative Reverse Transcription PCR (QRT-PCR) analyses. Its full length cDNA (666 bp) was obtained by 3'-end and 5'-end Rapid Amplification of cDNA Ends (RACE). The analysis via NCBI BLAST indicates that both aminoacid sequence and nucleotide sequence of the MpCHI clone share high homology with other leguminous CHIs (73%-86%). Evolutionarily, the phylogenic analysis further revealed that the MpCHI is a close relative of leguminous CHIs. The MpCHI protein consists of 221 aminoacid (23.64 KDa), whose peptide length, amino acid residues of substrate-binding site and reactive site are very similar to other leguminous CHIs reported previously. Two pYES2-MpCHI transformed salt-sensitive Saccharomyces cerevisiae mutants (Δnha1 and Δnhx1) showed improved salt-tolerance significantly compared to pYES2-vector transformed yeast mutants, suggesting the MpCHI or the flavonoid biosynthesis pathway could regulate the resistance to salt stress in M. pinnata.

  13. Thermostable L-arabinose isomerase from Bacillus stearothermophilus IAM 11001 for D-tagatose production: gene cloning, purification and characterisation.

    Science.gov (United States)

    Cheng, Lifang; Mu, Wanmeng; Jiang, Bo

    2010-06-01

    D-Tagatose, as one of the rare sugars, has been found to be a natural and safe low-calorie sweetener in food products and is classified as a GRAS substance. L-Arabinose isomerase (L-AI, EC 5.3.1.4), catalysing the isomerisations of L-arabinose and D-galactose to L-ribulose and D-tagatose respectively, is considered to be the most promising enzyme for the production of D-tagatose. The araA gene encoding an L-AI from Bacillus stearothermophilus IAM 11001 was cloned, sequenced and overexpressed in Escherichia coli. The gene is composed of 1491 bp nucleotides and codes for a protein of 496 amino acid residues. The recombinant L-AI was purified to electrophoretical homogeneity by affinity chromatography. The purified enzyme was optimally active at 65 degrees C and pH 7.5 and had an absolute requirement for the divalent metal ion Mn(2+) for both catalytic activity and thermostability. The enzyme was relatively active and stable at acidic pH of 6. The bioconversion yield of D-galactose to D-tagatose by the purified L-AI after 12 h at 65 degrees C reached 36%. The purified L-AI from B. stearothermophilus IAM 11001 was characterised and shown to be a good candidate for potential application in D-tagatose production. Copyright (c) 2010 Society of Chemical Industry.

  14. Glucose-6-phosphate isomerase promotes the proliferation and inhibits the apoptosis in fibroblast-like synoviocytes in rheumatoid arthritis.

    Science.gov (United States)

    Zong, Ming; Lu, Tianbao; Fan, Shasha; Zhang, Hui; Gong, Ruhan; Sun, Lishan; Fu, Zhiyan; Fan, Lieying

    2015-04-14

    Fibroblast-like synoviocytes (FLS) play an important role in the pathogenesis of rheumatoid arthritis (RA). This study aimed to investigate the role of glucose 6-phosphate isomerase (GPI) in the proliferation of RA-FLS. The distribution of GPI in synovial tissues from RA and osteoarthritis (OA) patients was examined by immunohistochemical analysis. FLS were isolated and cultured, cellular GPI level was detected by real-time polymerase chain reaction (PCR) and Western blot analysis, and secreted GPI was detected by Western blot and enzyme-linked immunosorbent assay (ELISA). Doxorubicin (Adriamycin, ADR) was used to induce apoptosis. Cell proliferation was determined by MTS assay. Flow cytometry was used to detect cell cycle and apoptosis. Secreted pro-inflammatory cytokines were measured by ELISA. GPI was abundant in RA-FLS and was an autocrine factor of FLS. The proliferation of both RA and OA FLS was increased after GPI overexpression, but was decreased after GPI knockdown. Meanwhile, exogenous GPI stimulated, while GPI antibody inhibited, FLS proliferation. GPI positively regulated its receptor glycoprotein 78 and promoted G1/S phase transition via extracellular regulated protein kinases activation and Cyclin D1 upregulation. GPI inhibited ADR-induced apoptosis accompanied by decreased Fas and increased Survivin in RA FLS. Furthermore, GPI increased the secretion of tumor necrosis factor-α and interleukin-1β by FLS. GPI plays a pathophysiologic role in RA by stimulating the proliferation, inhibiting the apoptosis, and increasing pro-inflammatory cytokine secretion of FLS.

  15. Peptidylarginine deiminase type 4 deficiency reduced arthritis severity in a glucose-6-phosphate isomerase-induced arthritis model.

    Science.gov (United States)

    Seri, Yu; Shoda, Hirofumi; Suzuki, Akari; Matsumoto, Isao; Sumida, Takayuki; Fujio, Keishi; Yamamoto, Kazuhiko

    2015-08-21

    Peptidyl arginine deiminase 4 (PAD4) is an enzyme that is involved in protein citrullination, and is a target for anti-citrullinated peptide antibodies (ACPAs) in rheumatoid arthritis (RA). Genetic polymorphisms in the PADI4 gene encoding PAD4 are associated with RA susceptibility. We herein analyzed the roles of PADI4 in inflammatory arthritis using a glucose-6-phosphate isomerase (GPI)-induced arthritis (GIA) model in Padi4 knockout (KO) mice. Arthritis severity, serum anti-GPI antibody titers, and IL-6 concentrations were significantly reduced in Padi4 KO mice. The frequency of Th17 cells was decreased in GPI-immunized Padi4 KO mice, whereas WT and Padi4-deficient naïve CD4(+) T cells displayed the same efficiencies for Th17 cell differentiation in vitro. In addition, the numbers of myeloid lineage cells were reduced with the increased expression of pro-apoptotic genes in GPI-immunized Padi4 KO mice. Furthermore, the survival of Padi4-deficient neutrophils was impaired in vitro. Our results suggest that PADI4 exacerbates arthritis with diverse immunological modifications.

  16. Bacterial L-arabinose isomerases: industrial application for D-tagatose production.

    Science.gov (United States)

    Boudebbouze, Samira; Maguin, Emmanuelle; Rhimi, Moez

    2011-12-01

    D-tagatose is a natural monosaccharide with a low caloric value and has an anti-hyperglycemiant effect. This hexose has potential applications both in pharmaceutical and agro-food industries. However, the use of D-tagatose remains limited by its production cost. Many production procedures including chemical and biological processes were developed and patented. The most profitable production way is based on the use of L-arabinose isomerase which allows the manufacture of D-tagatose with an attractive rate. Future developments are focused on the generation of L-arabinose isomerases having biochemical properties satisfying the industrial applications. This report provides a brief review of the most recent patents that have been published relating to this area.

  17. Expression, purification, crystallization and preliminary X-ray diffraction analysis of Bifidobacterium adolescentis xylose isomerase.

    Science.gov (United States)

    Dos Reis, Caio Vinicius; Bernardes, Amanda; Polikarpov, Igor

    2013-05-01

    Xylose isomerase (EC 5.3.1.5) is a key enzyme in xylose metabolism which is industrially important for the transformation of glucose and xylose into fructose and xylulose, respectively. The Bifidobacterium adolescentis xylA gene (NC_008618.1) encoding xylose isomerase (XI) was cloned and the enzyme was overexpressed in Escherichia coli. Purified recombinant XI was crystallized using the sitting-drop vapour-diffusion method with polyethylene glycol 3350 as the precipitating agent. A complete native data set was collected to 1.7 Å resolution using a synchrotron-radiation source. The crystals belonged to the orthorhombic space group P21212, with unit-cell parameters a = 88.78, b = 123.98, c = 78.63 Å.

  18. Molecularly imprinted polymers prepared using protein-conjugated cleavable monomers followed by site-specific post-imprinting introduction of fluorescent reporter molecules.

    Science.gov (United States)

    Suga, Yusuke; Sunayama, Hirobumi; Ooya, Tooru; Takeuchi, Toshifumi

    2013-10-04

    Molecularly imprinted polymers were prepared using a protein-conjugated disulfide cleavable monomer. After removing the protein by disulfide reduction, a thiol-reactive fluorophore was introduced into the thiol residue located only inside the imprinted cavity, resulting in specific transduction of the binding events into fluorescence spectral change.

  19. Air oxidation method employed for the disulfide bond formation of natural and synthetic peptides.

    Science.gov (United States)

    Calce, Enrica; Vitale, Rosa Maria; Scaloni, Andrea; Amodeo, Pietro; De Luca, Stefania

    2015-08-01

    Among the available protocols, chemically driven approaches to oxidize cysteine may not be required for molecules that, under the native-like conditions, naturally fold in conformations ensuring an effective pairing of the right disulfide bridge pattern. In this contest, we successfully prepared the distinctin, a natural heterodimeric peptide, and some synthetic cyclic peptides that are inhibitors of the CXCR4 receptor. In the first case, the air oxidation reaction allowed to connect two peptide chains via disulfide bridge, while in the second case allowed the cyclization of rationally designed peptides by an intramolecular disulfide bridge. Computational approaches helped to either drive de-novo design or suggest structural modifications and optimal oxidization protocols for disulfide-containing molecules. They are able to both predict and to rationalize the propensity of molecules to spontaneously fold in suitable conformations to achieve the right disulfide bridges.

  20. Role of the ERp57 protein (1,25D3-MARRS receptor) in murine mammary gland growth and development.

    Science.gov (United States)

    Wilkin, Allison M; Harnett, Amber; Underschultz, Michael; Cragg, Cheryl; Meckling, Kelly A

    2018-02-23

    The protein disulfide isomerase ERp57 (GRp58/PDIA3/1,25D3-MARRS) has been implicated in a multitude of signaling pathways throughout the entire body. Most thoroughly studied for its protein-folding role, ERp57 has also been found to have multiple binding partners, and have significant effects on cellular growth. ERp57 has been studied n the context of several neurodegenerative disorders, metabolic conditions, and can be used as a prognosis marker in certain cancers. One role, as an alternate vitamin D binding receptor, has prompted research in tissues with known vitamin D activity, such as the intestine and bone. Vitamin D has been studied in relation to mammary gland growth and development, but it is not yet known if ERp57 plays an independent role in this tissue. In this study, ERp57 was knocked out in murine mammary gland epithelial cells of 30 4-week old mice. Several markers of mammary gland growth were measured, including number of terminal end buds (TEB), ductal coverage of the fat pad, and ductal extension. It was found the knockout animals had decreased numbers of TEBs (p = 0.019), and decreased ductal extension (p = 0.018) compared to wildtype animals, with no differences in gross body weight. Immunohistochemistry analysis of mammary glands showed ERp57 localized to the apical side of alveolar branches, and on leading edges of TEBs. These results provide further evidence for ERp57 functioning separately to the VDR, and further insights into the roles of ERp57. Copyright © 2018. Published by Elsevier Inc.

  1. Genome sequence of carboxylesterase, carboxylase and xylose isomerase producing alkaliphilic haloarchaeon Haloterrigena turkmenica WANU15

    Directory of Open Access Journals (Sweden)

    Samy Selim

    2016-03-01

    Full Text Available We report draft genome sequence of Haloterrigena turkmenica strain WANU15, isolated from Soda Lake. The draft genome size is 2,950,899 bp with a G + C content of 64% and contains 49 RNA sequence. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LKCV00000000. Keywords: Soda Lake, Haloterrigena turkmenica, Carboxylesterase, Carboxylase, Xylose isomerase, Whole genome sequencing

  2. Peptidyl prolyl isomerase Pin1-inhibitory activity of D-glutamic and D-aspartic acid derivatives bearing a cyclic aliphatic amine moiety.

    Science.gov (United States)

    Nakagawa, Hidehiko; Seike, Suguru; Sugimoto, Masatoshi; Ieda, Naoya; Kawaguchi, Mitsuyasu; Suzuki, Takayoshi; Miyata, Naoki

    2015-12-01

    Pin1 is a peptidyl prolyl isomerase that specifically catalyzes cis-trans isomerization of phosphorylated Thr/Ser-Pro peptide bonds in substrate proteins and peptides. Pin1 is involved in many important cellular processes, including cancer progression, so it is a potential target of cancer therapy. We designed and synthesized a novel series of Pin1 inhibitors based on a glutamic acid or aspartic acid scaffold bearing an aromatic moiety to provide a hydrophobic surface and a cyclic aliphatic amine moiety with affinity for the proline-binding site of Pin1. Glutamic acid derivatives bearing cycloalkylamino and phenylthiazole groups showed potent Pin1-inhibitory activity comparable with that of known inhibitor VER-1. The results indicate that steric interaction of the cyclic alkyl amine moiety with binding site residues plays a key role in enhancing Pin1-inhibitory activity. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Neutron structure of the cyclic glucose-bound xylose isomerase E186Q mutant.

    Science.gov (United States)

    Munshi, Parthapratim; Snell, Edward H; van der Woerd, Mark J; Judge, Russell A; Myles, Dean A A; Ren, Zhong; Meilleur, Flora

    2014-02-01

    Ketol-isomerases catalyze the reversible isomerization between aldoses and ketoses. D-Xylose isomerase carries out the first reaction in the catabolism of D-xylose, but is also able to convert D-glucose to D-fructose. The first step of the reaction is an enzyme-catalyzed ring opening of the cyclic substrate. The active-site amino-acid acid/base pair involved in ring opening has long been investigated and several models have been proposed. Here, the structure of the xylose isomerase E186Q mutant with cyclic glucose bound at the active site, refined against joint X-ray and neutron diffraction data, is reported. Detailed analysis of the hydrogen-bond networks at the active site of the enzyme suggests that His54, which is doubly protonated, is poised to protonate the glucose O5 position, while Lys289, which is neutral, promotes deprotonation of the glucose O1H hydroxyl group via an activated water molecule. The structure also reveals an extended hydrogen-bonding network that connects the conserved residues Lys289 and Lys183 through three structurally conserved water molecules and residue 186, which is a glutamic acid to glutamine mutation.

  4. Crystal structure of the platelet activator convulxin, a disulfide-linked alpha4beta4 cyclic tetramer from the venom of Crotalus durissus terrificus.

    Science.gov (United States)

    Murakami, M T; Zela, S P; Gava, L M; Michelan-Duarte, S; Cintra, A C O; Arni, R K

    2003-10-17

    Convulxin (CVX), a C-type lectin, isolated from the venom of the South American rattlesnake Crotalus durissus terrificus, causes cardiovascular and respiratory disturbances and is a potent platelet activator which binds to platelet glycoprotein GPVI. The structure of CVX has been solved at 2.4A resolution to a crystallographic residual of 18.6% (R(free)=26.4%). CVX is a disulfide linked heterodimer consisting of homologous alpha and beta chains. The heterodimers are additionally linked by disulfide bridges to form cyclic alpha(4)beta(4)heterotetramers. These domains exhibit significant homology to the carbohydrate-binding domains of C-type lectins, to the factor IX-binding protein (IX-bp), and to flavocetin-A (Fl-A) but sequence and structural differences are observed in both the domains in the putative Ca(2+)and carbohydrate binding regions.

  5. The 2.2 Å Resolution Structure of RpiB/AlsB from Escherichia coli Illustrates a New Approach to the Ribose-5-phosphate Isomerase Reaction

    Science.gov (United States)

    Zhang, Rong-Guang; Andersson, C. Evalena; Skarina, Tatiana; Evdokimova, Elena; Edwards, Aled M.; Joachimiak, Andrzej; Savchenko, Alexei; Mowbray, Sherry L.

    2009-01-01

    Ribose-5-phosphate isomerases (EC 5.3.1.6) interconvert ribose 5-phosphate and ribulose 5-phosphate. This reaction permits the synthesis of ribose from other sugars, as well as the recycling of sugars from nucleotide breakdown. Two unrelated types of enzyme can catalyze the reaction. The most common, RpiA, is present in almost all organisms (including Escherichia coli), and is highly conserved. The second type, RpiB, is present in some bacterial and eukaryotic species and is well conserved. In E. coli, RpiB is sometimes referred to as AlsB, because it can take part in the metabolism of the rare sugar, allose, as well as the much more common ribose sugars. We report here the structure of RpiB/AlsB from E. coli, solved by multi-wavelength anomalous diffraction (MAD) phasing, and refined to 2.2 Å resolution. RpiB is the first structure to be solved from pfam02502 (the RpiB/LacAB family). It exhibits a Rossmann-type αβα-sandwich fold that is common to many nucleotide-binding proteins, as well as other proteins with different functions. This structure is quite distinct from that of the previously solved RpiA; although both are, to some extent, based on the Rossmann fold, their tertiary and quaternary structures are very different. The four molecules in the RpiB asymmetric unit represent a dimer of dimers. Active-site residues were identified at the interface between the subunits, such that each active site has contributions from both subunits. Kinetic studies indicate that RpiB is nearly as efficient as RpiA, despite its completely different catalytic machinery. The sequence and structural results further suggest that the two homologous components of LacAB (galactose-6-phosphate isomerase) will compose a bi-functional enzyme; the second activity is unknown. PMID:14499611

  6. The 2.2 A resolution structure of RpiB/AlsB from Escherichia coli illustrates a new approach to the ribose-5-phosphate isomerase reaction.

    Science.gov (United States)

    Zhang, Rong-Guang; Andersson, C Evalena; Skarina, Tatiana; Evdokimova, Elena; Edwards, Aled M; Joachimiak, Andrzej; Savchenko, Alexei; Mowbray, Sherry L

    2003-10-03

    Ribose-5-phosphate isomerases (EC 5.3.1.6) interconvert ribose 5-phosphate and ribulose 5-phosphate. This reaction permits the synthesis of ribose from other sugars, as well as the recycling of sugars from nucleotide breakdown. Two unrelated types of enzyme can catalyze the reaction. The most common, RpiA, is present in almost all organisms (including Escherichia coli), and is highly conserved. The second type, RpiB, is present in some bacterial and eukaryotic species and is well conserved. In E.coli, RpiB is sometimes referred to as AlsB, because it can take part in the metabolism of the rare sugar, allose, as well as the much more common ribose sugars. We report here the structure of RpiB/AlsB from E.coli, solved by multi-wavelength anomalous diffraction (MAD) phasing, and refined to 2.2A resolution. RpiB is the first structure to be solved from pfam02502 (the RpiB/LacAB family). It exhibits a Rossmann-type alphabetaalpha-sandwich fold that is common to many nucleotide-binding proteins, as well as other proteins with different functions. This structure is quite distinct from that of the previously solved RpiA; although both are, to some extent, based on the Rossmann fold, their tertiary and quaternary structures are very different. The four molecules in the RpiB asymmetric unit represent a dimer of dimers. Active-site residues were identified at the interface between the subunits, such that each active site has contributions from both subunits. Kinetic studies indicate that RpiB is nearly as efficient as RpiA, despite its completely different catalytic machinery. The sequence and structural results further suggest that the two homologous components of LacAB (galactose-6-phosphate isomerase) will compose a bi-functional enzyme; the second activity is unknown.

  7. Disulfide proteomics of rice cultured cells in response to OsRacl and probenazole-related immune signaling pathway in rice.

    Science.gov (United States)

    Morino, Kazuko; Kimizu, Mayumi; Fujiwara, Masayuki

    2016-01-01

    Reactive oxygen species (ROS) production is an early event in the immune response of plants. ROS production affects the redox-based modification of cysteine residues in redox proteins, which contribute to protein functions such as enzymatic activity, protein-protein interactions, oligomerization, and intracellular localization. Thus, the sensitivity of cysteine residues to changes in the cellular redox status is critical to the immune response of plants. We used disulfide proteomics to identify immune response-related redox proteins. Total protein was extracted from rice cultured cells expressing constitutively active or dominant-negative OsRacl, which is a key regulator of the immune response in rice, and from rice cultured cells that were treated with probenazole, which is an activator of the plant immune response, in the presence of the thiol group-specific fluorescent probe monobromobimane (mBBr), which was a tag for reduced proteins in a differential display two-dimensional gel electrophoresis. The mBBr fluorescence was detected by using a charge-coupled device system, and total protein spots were detected using Coomassie brilliant blue staining. Both of the protein spots were analyzed by gel image software and identified using MS spectrometry. The possible disulfide bonds were identified using the disulfide bond prediction software. Subcellular localization and bimolecular fluorescence complementation analysis were performed in one of the identified proteins: Oryza sativa cold shock protein 2 (OsCSP2). We identified seven proteins carrying potential redox-sensitive cysteine residues. Two proteins of them were oxidized in cultured cells expressing DN-OsRac1, which indicates that these two proteins would be inactivated through the inhibition of OsRac1 signaling pathway. One of the two oxidized proteins, OsCSP2, contains 197 amino acid residues and six cysteine residues. Site-directed mutagenesis of these cysteine residues revealed that a Cys 140 mutation causes

  8. Mutations in the RAM network confer resistance to the thiol oxidant 4,4'-dipyridyl disulfide

    DEFF Research Database (Denmark)

    López-Mirabal, H Reynaldo; Winther, Jakob R; Thorsen, Michael

    2008-01-01

    -specific oxidant dipyridyl disulfide (DPS) yielded tao3-516, which is impaired in the function of the RAM signaling network protein Tao3/Pag1p. We suggest that the DPS-resistance of the tao3-516 mutant might be due to deficient cell-cycle-regulated production of the chitinase Cts1p, which functions in post......-mitotic cell separation and depends on Tao3p and the RAM network for regulated expression. Consistent with this, deletion of other RAM genes or CTS1 also resulted in increased resistance to DPS. Exposure to DPS caused extensive depolarization of the actin cytoskeleton. We found that tao3-516 is resistant...... to latrunculin, a specific inhibitor of actin polymerization, and that ram, Deltaace2, and Deltacts1 mutants are resistant to benomyl, a microtubule-destabilizing drug. Since septum build-up depends on the organization of cytoskeletal proteins, the resistance to cytoskeletal stress of Cts1p-deficient mutants...

  9. Protein fusion tags for efficient expression and purification of recombinant proteins in the periplasmic space of E. coli.

    Science.gov (United States)

    Malik, Ajamaluddin

    2016-06-01

    Disulfide bonds occurred in majority of secreted protein. Formation of correct disulfide bonds are must for achieving native conformation, solubility and activity. Production of recombinant proteins containing disulfide bond for therapeutic, diagnostic and various other purposes is a challenging task of research. Production of such proteins in the reducing cytosolic compartment of E. coli usually ends up in inclusion bodies formation. Refolding of inclusion bodies can be difficult, time and labor consuming and uneconomical. Translocation of these proteins into the oxidative periplasmic compartment provides correct environment to undergo proper disulfide bonds formation and thus achieving native conformation. However, not all proteins can be efficiently translocated to the periplasm with the help of bacterial signal peptides. Therefore, fusion to a small well-folded and stable periplasmic protein is more promising for periplasmic production of disulfide bonded proteins. In the past decades, several full-length proteins or domains were used for enhancing translocation and solubility. Here, protein fusion tags that significantly increase the yields of target proteins in the periplasmic space are reviewed.

  10. Simple Formation of Nanostructured Molybdenum Disulfide Thin Films by Electrodeposition

    Directory of Open Access Journals (Sweden)

    S. K. Ghosh

    2013-01-01

    Full Text Available Nanostructured molybdenum disulfide thin films were deposited on various substrates by direct current (DC electrolysis form aqueous electrolyte containing molybdate and sulfide ions. Post deposition annealing at higher temperatures in the range 450–700°C transformed the as-deposited amorphous films to nanocrystalline structure. High temperature X-ray diffraction studies clearly recorded the crystal structure transformations associated with grain growth with increase in annealing temperature. Surface morphology investigations revealed featureless structure in case of as-deposited surface; upon annealing it converts into a surface with protruding nanotubes, nanorods, or dumbbell shape nanofeatures. UV-visible and FTIR spectra confirmed about the presence of Mo-S bonding in the deposited films. Transmission electron microscopic examination showed that the annealed MoS2 films consist of nanoballs, nanoribbons, and multiple wall nanotubes.

  11. Tuning thermal conductivity in molybdenum disulfide by electrochemical intercalation

    Science.gov (United States)

    Zhu, Gaohua; Liu, Jun; Zheng, Qiye; Zhang, Ruigang; Li, Dongyao; Banerjee, Debasish; Cahill, David G.

    2016-01-01

    Thermal conductivity of two-dimensional (2D) materials is of interest for energy storage, nanoelectronics and optoelectronics. Here, we report that the thermal conductivity of molybdenum disulfide can be modified by electrochemical intercalation. We observe distinct behaviour for thin films with vertically aligned basal planes and natural bulk crystals with basal planes aligned parallel to the surface. The thermal conductivity is measured as a function of the degree of lithiation, using time-domain thermoreflectance. The change of thermal conductivity correlates with the lithiation-induced structural and compositional disorder. We further show that the ratio of the in-plane to through-plane thermal conductivity of bulk crystal is enhanced by the disorder. These results suggest that stacking disorder and mixture of phases is an effective mechanism to modify the anisotropic thermal conductivity of 2D materials. PMID:27767030

  12. Contact-induced doping in aluminum-contacted molybdenum disulfide

    Science.gov (United States)

    Shimazu, Yoshihiro; Arai, Kensuke; Iwabuchi, Tatsuya

    2018-01-01

    The interface between two-dimensional semiconductors and metal contacts is an important topic of research of nanoelectronic devices based on two-dimensional semiconducting materials such as molybdenum disulfide (MoS2). We report transport properties of thin MoS2 flakes in a field-effect transistor geometry with Ti/Au and Al contacts. In contrast to widely used Ti/Au contacts, the conductance of flakes with Al contacts exhibits a smaller gate-voltage dependence, which is consistent with a substantial electron doping effect of the Al contacts. The temperature dependence of two-terminal conductance for the Al contacts is also considerably smaller than for the Ti/Au contacts, in which thermionic emission and thermally assisted tunneling play a dominant role. This result is explained in terms of the assumption that the carrier injection mechanism at an Al contact is dominated by tunneling that is not thermally activated.

  13. Tuning thermal conductivity in molybdenum disulfide by electrochemical intercalation.

    Science.gov (United States)

    Zhu, Gaohua; Liu, Jun; Zheng, Qiye; Zhang, Ruigang; Li, Dongyao; Banerjee, Debasish; Cahill, David G

    2016-10-21

    Thermal conductivity of two-dimensional (2D) materials is of interest for energy storage, nanoelectronics and optoelectronics. Here, we report that the thermal conductivity of molybdenum disulfide can be modified by electrochemical intercalation. We observe distinct behaviour for thin films with vertically aligned basal planes and natural bulk crystals with basal planes aligned parallel to the surface. The thermal conductivity is measured as a function of the degree of lithiation, using time-domain thermoreflectance. The change of thermal conductivity correlates with the lithiation-induced structural and compositional disorder. We further show that the ratio of the in-plane to through-plane thermal conductivity of bulk crystal is enhanced by the disorder. These results suggest that stacking disorder and mixture of phases is an effective mechanism to modify the anisotropic thermal conductivity of 2D materials.

  14. Solution structure of the single-domain prolyl cis/trans isomerase PIN1At from Arabidopsis thaliana.

    Science.gov (United States)

    Landrieu, Isabelle; Wieruszeski, Jean-Michel; Wintjens, René; Inzé, Dirk; Lippens, Guy

    2002-07-05

    The 119-amino acid residue prolyl cis/trans isomerase from Arabidopsis thaliana (PIN1At) is similar to the catalytic domain of the human hPIN1. However, PIN1At lacks the N-terminal WW domain that appears to be essential for the hPIN1 function. Here, the solution structure of PIN1At was determined by three-dimensional nuclear magnetic resonance spectroscopy. The PIN1At fold could be superimposed on that of the catalytic domain of hPIN1 and had a 19 residue flexible loop located between strand beta1 and helix alpha1. The dynamical features of this beta1/alpha1-loop, which are characteristic for a region involved in protein-protein interactions, led to exchange broadening in the NMR spectra. When sodium sulfate salt was added to the protein sample, the beta1/alpha1 loop was stabilized and, hence, a complete backbone resonance assignment was obtained. Previously, with a phospho-Cdc25 peptide as substrate, PIN1At had been shown to catalyze the phosphoserine/phosphothreonine prolyl cis/trans isomerization specifically. To map the catalytic site of PIN1At, the phospho-Cdc25 peptide or sodium sulfate salt was added in excess to the protein and chemical shift changes in the backbone amide protons were monitored in the (1)H(N)-(15)N heteronuclear single quantum coherence spectrum. The peptide caused perturbations in the loops between helix alpha4 and strand beta3, between strands beta3 and beta4, in the alpha3 helix, and in the beta1/alpha1 loop. The amide groups of the residues Arg21 and Arg22 showed large chemical shift perturbations upon phospho-Cdc25 peptide or sulfate addition. We conclude that this basic cluster formed by Arg21 and Arg22, both located in the beta1/alpha1 loop, is homologous to that found in the hPIN1 crystal structure (Arg68 and Arg69), which also is involved in sulfate ion binding. We showed that the sulfate group competed for the interaction between PIN1At and the phospho-Cdc25 peptide. In the absence of the WW domain, three hydrophobic residues (Ile

  15. Preliminary crystallographic data of the three homologues of the thiol–disulfide oxidoreductase DsbA in Neisseria meningitidis

    Energy Technology Data Exchange (ETDEWEB)

    Lafaye, Céline [Laboratoire des Protéines Membranaires, Institut de Biologie Structurale, CEA/CNRS/Université Joseph Fourier, 41 Rue Jules Horowitz, 38027 Grenoble CEDEX 01 (France); Iwena, Thomas; Ferrer, Jean-Luc [Laboratoire de Cristallogénèse et Cristallisation des Protéines, Institut de Biologie Structurale, CEA/CNRS/Université Joseph Fourier, 41 Rue Jules Horowitz, 38027 Grenoble CEDEX 01 (France); Kroll, J. Simon [Department of Paediatrics, Imperial College London, St Mary’s Hospital Campus, Norfolk Place, London W2 1PG (United Kingdom); Griat, Mickael; Serre, Laurence, E-mail: laurence.serre@ibs.fr [Laboratoire des Protéines Membranaires, Institut de Biologie Structurale, CEA/CNRS/Université Joseph Fourier, 41 Rue Jules Horowitz, 38027 Grenoble CEDEX 01 (France)

    2008-02-01

    The Neisseria meningitidis genome possesses three genes encoding active DsbAs. To throw light on the reason for this genetic multiplicity, the three enzymes have been purified and crystallized. Bacterial virulence depends on the correct folding of surface-exposed proteins, a process that is catalyzed by the thiol-disulfide oxidoreductase DsbA, which facilitates the synthesis of disulfide bonds in Gram-negative bacteria. Uniquely among bacteria, the Neisseria meningitidis genome possesses three genes encoding active DsbAs: DsbA1, DsbA2 and DsbA3. DsbA1 and DsbA2 have been characterized as lipoproteins involved in natural competence and in host-interactive biology, while the function of DsbA3 remains unknown. In an attempt to shed light on the reason for this multiplicity of dsbA genes, the three enzymes from N. meningitidis have been purified and crystallized in the presence of high concentrations of ammonium sulfate. The best crystals were obtained using DsbA1 and DsbA3; they belong to the orthorhombic and tetragonal systems and diffract to 1.5 and 2.7 Å resolution, respectively.

  16. Proline isomerase Pin1 represses terminal differentiation and myocyte enhancer factor 2C function in skeletal muscle cells.

    Science.gov (United States)

    Magli, Alessandro; Angelelli, Cecilia; Ganassi, Massimo; Baruffaldi, Fiorenza; Matafora, Vittoria; Battini, Renata; Bachi, Angela; Messina, Graziella; Rustighi, Alessandra; Del Sal, Giannino; Ferrari, Stefano; Molinari, Susanna

    2010-11-05

    Reversible proline-directed phosphorylation at Ser/Thr-Pro motifs has an essential role in myogenesis, a multistep process strictly regulated by several signaling pathways that impinge on two families of myogenic effectors, the basic helix-loop-helix myogenic transcription factors and the MEF2 (myocyte enhancer factor 2) proteins. The question of how these signals are deciphered by the myogenic effectors remains largely unaddressed. In this study, we show that the peptidyl-prolyl isomerase Pin1, which catalyzes the isomerization of phosphorylated Ser/Thr-Pro peptide bonds to induce conformational changes of its target proteins, acts as an inhibitor of muscle differentiation because its knockdown in myoblasts promotes myotube formation. With the aim of clarifying the mechanism of Pin1 function in skeletal myogenesis, we investigated whether MEF2C, a critical regulator of the myogenic program that is the end point of several signaling pathways, might serve as a/the target for the inhibitory effects of Pin1 on muscle differentiation. We show that Pin1 interacts selectively with phosphorylated MEF2C in skeletal muscle cells, both in vitro and in vivo. The interaction with Pin1 requires two novel critical phospho-Ser/Thr-Pro motifs in MEF2C, Ser(98) and Ser(110), which are phosphorylated in vivo. Overexpression of Pin1 decreases MEF2C stability and activity and its ability to cooperate with MyoD to activate myogenic conversion. Collectively, these findings reveal a novel role for Pin1 as a regulator of muscle terminal differentiation and suggest that Pin1-mediated repression of MEF2C function could contribute to this function.

  17. Bioproduction of D-Tagatose from D-Galactose Using Phosphoglucose Isomerase from Pseudomonas aeruginosa PAO1.

    Science.gov (United States)

    Patel, Manisha J; Patel, Arti T; Akhani, Rekha; Dedania, Samir; Patel, Darshan H

    2016-07-01

    Pseudomonas aeruginosa PAO1 phosphoglucose isomerase was purified as an active soluble form by a single-step purification using Ni-NTA chromatography that showed homogeneity on SDS-PAGE with molecular mass ∼62 kDa. The optimum temperature and pH for the maximum isomerization activity with D-galactose were 60 °C and 7.0, respectively. Generally, sugar phosphate isomerases show metal-independent activity but PA-PGI exhibited metal-dependent isomerization activity with aldosugars and optimally catalyzed the D-galactose isomerization in the presence of 1.0 mM MnCl2. The apparent Km and Vmax for D-galactose under standardized conditions were calculated to be 1029 mM (±31.30 with S.E.) and 5.95 U/mg (±0.9 with S.E.), respectively. Equilibrium reached after 180 min with production of 567.51 μM D-tagatose from 1000 mM of D-galactose. Though, the bioconversion ratio is low but it can be increased by immobilization and enzyme engineering. Although various L-arabinose isomerases have been characterized for bioproduction of D-tagatose, P. aeruginosa glucose phosphate isomerase is distinguished from the other L-arabinose isomerases by its optimal temperature (60 °C) for D-tagatose production being mesophilic bacteria, making it an alternate choice for bulk production.

  18. D-xylose isomerase from a marine bacterium, Vibrio sp. strain XY-214, and D-xylulose production from β-1,3-xylan.

    Science.gov (United States)

    Umemoto, Yoshiaki; Shibata, Toshiyuki; Araki, Toshiyoshi

    2012-02-01

    The xylA gene from a marine bacterium, Vibrio sp. strain XY-214, encoding D-xylose isomerase (XylA) was cloned and expressed in Escherichia coli. The xylA gene consisted of 1,320-bp nucleotides encoding a protein of 439 amino acids with a predicted molecular weight of 49,264. XylA was classified into group II xylose isomerases. The native XylA was estimated to be a homotetramer with a molecular mass of 190 kDa. The purified recombinant XylA exhibited maximal activity at 60°C and pH 7.5. Its apparent K (m) values for D-xylose and D-glucose were 7.93 and 187 mM, respectively. Furthermore, we carried out D-xylulose production from β-1,3-xylan, a major cell wall polysaccharide component of the killer alga Caulerpa taxifolia. The synergistic action of β-1,3-xylanase (TxyA) and β-1,3-xylosidase (XloA) from Vibrio sp. strain XY-214 enabled efficient saccharification of β-1,3-xylan to D-xylose. D-xylose was then converted to D-xylulose by using XylA from the strain XY-214. The conversion rate of D-xylose to D-xylulose by XylA was found to be approximately 40% in the presence of 4 mM sodium tetraborate after 2 h of incubation. These results demonstrated that TxyA, XloA, and XylA from Vibrio sp. strain XY-214 are useful tools for D-xylulose production from β-1,3-xylan. Because D-xylulose can be used as a source for ethanol fermentation by yeast Saccharomyces cerevisiae, the present study will provide a basis for ethanol production from β-1,3-xylan.

  19. An Internal Disulfide Locks a Misfolded Aggregation-prone Intermediate in Cataract-linked Mutants of Human γD-Crystallin.

    Science.gov (United States)

    Serebryany, Eugene; Woodard, Jaie C; Adkar, Bharat V; Shabab, Mohammed; King, Jonathan A; Shakhnovich, Eugene I

    2016-09-02

    Considerable mechanistic insight has been gained into amyloid aggregation; however, a large number of non-amyloid protein aggregates are considered "amorphous," and in most cases, little is known about their mechanisms. Amorphous aggregation of γ-crystallins in the eye lens causes cataract, a widespread disease of aging. We combined simulations and experiments to study the mechanism of aggregation of two γD-crystallin mutants, W42R and W42Q: the former a congenital cataract mutation, and the latter a mimic of age-related oxidative damage. We found that formation of an internal disulfide was necessary and sufficient for aggregation under physiological conditions. Two-chain all-atom simulations predicted that one non-native disulfide in particular, between Cys(32) and Cys(41), was likely to stabilize an unfolding intermediate prone to intermolecular interactions. Mass spectrometry and mutagenesis experiments confirmed the presence of this bond in the aggregates and its necessity for oxidative aggregation under physiological conditions in vitro Mining the simulation data linked formation of this disulfide to extrusion of the N-terminal β-hairpin and rearrangement of the native β-sheet topology. Specific binding between the extruded hairpin and a distal β-sheet, in an intermolecular chain reaction similar to domain swapping, is the most probable mechanism of aggregate propagation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. An Internal Disulfide Locks a Misfolded Aggregation-prone Intermediate in Cataract-linked Mutants of Human γD-Crystallin*

    Science.gov (United States)

    Serebryany, Eugene; Woodard, Jaie C.; Adkar, Bharat V.; Shabab, Mohammed; King, Jonathan A.; Shakhnovich, Eugene I.

    2016-01-01

    Considerable mechanistic insight has been gained into amyloid aggregation; however, a large number of non-amyloid protein aggregates are considered “amorphous,” and in most cases, little is known about their mechanisms. Amorphous aggregation of γ-crystallins in the eye lens causes cataract, a widespread disease of aging. We combined simulations and experiments to study the mechanism of aggregation of two γD-crystallin mutants, W42R and W42Q: the former a congenital cataract mutation, and the latter a mimic of age-related oxidative damage. We found that formation of an internal disulfide was necessary and sufficient for aggregation under physiological conditions. Two-chain all-atom simulations predicted that one non-native disulfide in particular, between Cys32 and Cys41, was likely to stabilize an unfolding intermediate prone to intermolecular interactions. Mass spectrometry and mutagenesis experiments confirmed the presence of this bond in the aggregates and its necessity for oxidative aggregation under physiological conditions in vitro. Mining the simulation data linked formation of this disulfide to extrusion of the N-terminal β-hairpin and rearrangement of the native β-sheet topology. Specific binding between the extruded hairpin and a distal β-sheet, in an intermolecular chain reaction similar to domain swapping, is the most probable mechanism of aggregate propagation. PMID:27417136

  1. Edge eigen-stress and eigen-displacement of armchair molybdenum disulfide nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Quan; Li, Xi [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing 100083 (China); Volinsky, Alex A., E-mail: volinsky@usf.edu [Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620 (United States); Su, Yanjing, E-mail: yjsu@ustb.edu.cn [Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing 100083 (China)

    2017-05-10

    Edge effects on mechanical properties of armchair molybdenum disulfide nanoribbons were investigated using first principles calculations. The edge eigen-stress model was applied to explain the relaxation process of forming molybdenum disulfide nanoribbon. Edge effects on surface atoms fluctuation degree were obtained from each fully relaxed nanoribbon with different width. Changes of the relaxed armchair molybdenum disulfide nanoribbons structure can be expressed using hexagonal perimeters pattern. Based on the thickness change, relaxed armchair molybdenum disulfide nanoribbons tensile/compression tests were simulated, providing intrinsic edge elastic parameters, such as eigen-stress, Young's modulus and Poisson's ratio. - Highlights: • Edge effects on mechanical properties of armchair MoS{sub 2} nanoribbons were investigated. • Structure changes of different width armchair MoS{sub 2} nanoribbons were obtained. • Tensile/compressive tests were conducted to determine elastic constants. • Mechanical properties are compared for two and three dimensional conditions.

  2. Monitoring of transcriptional regulation in Pichia pastoris under protein production conditions

    Directory of Open Access Journals (Sweden)

    Bhattacharyya Anamitra

    2007-06-01

    Full Text Available Abstract Background It has become evident that host cells react to recombinant protein production with a variety of metabolic and intrinsic stresses such as the unfolded protein response (UPR pathway. Additionally, environmental conditions such as growth temperature may have a strong impact on cell physiology and specific productivity. However, there is little information about the molecular reactions of the host cells on a genomic level, especially in context to recombinant protein secretion. For the first time, we monitored transcriptional regulation of a subset of marker genes in the common production host Pichia pastoris to gain insights into the general physiological status of the cells under protein production conditions, with the main focus on secretion stress related genes. Results Overexpression of the UPR activating transcription factor Hac1p was employed to identify UPR target genes in P. pastoris and the responses were compared to those known for Saccharomyces cerevisiae. Most of the folding/secretion related genes showed similar regulation patterns in both yeasts, whereas genes associated with the general stress response were differentially regulated. Secretion of an antibody Fab fragment led to induction of UPR target genes in P. pastoris, however not to the same magnitude as Hac1p overproduction. Overexpression of S. cerevisiae protein disulfide isomerase (PDI1 enhances Fab secretion rates 1.9 fold, but did not relief UPR stress. Reduction of cultivation temperature from 25°C to 20°C led to a 1.4-fold increase of specific product secretion rate in chemostat cultivations, although the transcriptional levels of the product genes (Fab light and heavy chain were significantly reduced at the lower temperature. A subset of folding related genes appeared to be down-regulated at the reduced temperature, whereas transcription of components of the ER associated degradation and the secretory transport was enhanced. Conclusion Monitoring of

  3. Molybdenum disulfide for ultra-low detection of free radicals: electrochemical response and molecular modeling

    Science.gov (United States)

    Gupta, Ankur; Rawal, Takat B.; Neal, Craig J.; Das, Soumen; Rahman, Talat S.; Seal, Sudipta

    2017-06-01

    Two-dimensional (2D) molybdenum disulfide (MoS2) offers attractive properties due to its band gap modulation and has led to significant research-oriented applications (i.e. DNA and protein detection, cell imaging (fluorescent label) etc.). In biology, detection of free radicals (i.e. reactive oxygen species and reactive nitrogen (NO*) species are very important for early discovery and treatment of diseases. Herein, for the first time, we demonstrate the ultra-low (pico-molar) detection of pharmaceutically relevant free radicals using MoS2 for electrochemical sensing. We present pico- to nano- molar level sensitivity in smaller MoS2 with S-deficiency as revealed by x-ray photoelectron spectroscopy. Furthermore, the detection mechanism and size-dependent sensitivity have been investigated by density functional theory (DFT) showing the change in electronic density of states of Mo atoms at edges which lead to the preferred adsorption of H2O2 on Mo edges. The DFT analysis signifies the role of size and S-deficiency in the higher catalytic activity of smaller MoS2 particles and, thus, ultra-low detection.

  4. Crystal Structure and Substrate Specificity of D-Galactose-6-Phosphate Isomerase Complexed with Substrates

    Science.gov (United States)

    Lee, Jung-Kul; Pan, Cheol-Ho

    2013-01-01

    D-Galactose-6-phosphate isomerase from Lactobacillus rhamnosus (LacAB; EC 5.3.1.26), which is encoded by the tagatose-6-phosphate pathway gene cluster (lacABCD), catalyzes the isomerization of D-galactose-6-phosphate to D-tagatose-6-phosphate during lactose catabolism and is used to produce rare sugars as low-calorie natural sweeteners. The crystal structures of LacAB and its complex with D-tagatose-6-phosphate revealed that LacAB is a homotetramer of LacA and LacB subunits, with a structure similar to that of ribose-5-phosphate isomerase (Rpi). Structurally, LacAB belongs to the RpiB/LacAB superfamily, having a Rossmann-like αβα sandwich fold as has been identified in pentose phosphate isomerase and hexose phosphate isomerase. In contrast to other family members, the LacB subunit also has a unique α7 helix in its C-terminus. One active site is distinctly located at the interface between LacA and LacB, whereas two active sites are present in RpiB. In the structure of the product complex, the phosphate group of D-tagatose-6-phosphate is bound to three arginine residues, including Arg-39, producing a different substrate orientation than that in RpiB, where the substrate binds at Asp-43. Due to the proximity of the Arg-134 residue and backbone Cα of the α6 helix in LacA to the last Asp-172 residue of LacB with a hydrogen bond, a six-carbon sugar-phosphate can bind in the larger pocket of LacAB, compared with RpiB. His-96 in the active site is important for ring opening and substrate orientation, and Cys-65 is essential for the isomerization activity of the enzyme. Two rare sugar substrates, D-psicose and D-ribulose, show optimal binding in the LacAB-substrate complex. These findings were supported by the results of LacA activity assays. PMID:24015281

  5. Characterization of an L-arabinose isomerase from Bacillus thermoglucosidasius for D-tagatose production.

    Science.gov (United States)

    Seo, Myung-Ji

    2013-01-01

    L-Arabinose isomerase from Bacillus thermoglucosidasius KCTC 1828 (BTAI) was expressed in Escherichia coli. The optimal temperature and pH for the activity of the purified BTAI were 40 °C and pH 7.0. The Mn(2+) ion was an activator of BTAI activity. The kinetic parameters of BTAI for D-galactose were a K(m) of 175 mM and a k(cat)/K(m) of 2.8 mM(-1)min(-1). The conversion ratio by BTAI to D-tagatose reached 45.6% at 40 °C.

  6. Crystal structure and substrate specificity of D-galactose-6-phosphate isomerase complexed with substrates.

    Directory of Open Access Journals (Sweden)

    Woo-Suk Jung

    Full Text Available D-Galactose-6-phosphate isomerase from Lactobacillus rhamnosus (LacAB; EC 5.3.1.26, which is encoded by the tagatose-6-phosphate pathway gene cluster (lacABCD, catalyzes the isomerization of D-galactose-6-phosphate to D-tagatose-6-phosphate during lactose catabolism and is used to produce rare sugars as low-calorie natural sweeteners. The crystal structures of LacAB and its complex with D-tagatose-6-phosphate revealed that LacAB is a homotetramer of LacA and LacB subunits, with a structure similar to that of ribose-5-phosphate isomerase (Rpi. Structurally, LacAB belongs to the RpiB/LacAB superfamily, having a Rossmann-like αβα sandwich fold as has been identified in pentose phosphate isomerase and hexose phosphate isomerase. In contrast to other family members, the LacB subunit also has a unique α7 helix in its C-terminus. One active site is distinctly located at the interface between LacA and LacB, whereas two active sites are present in RpiB. In the structure of the product complex, the phosphate group of D-tagatose-6-phosphate is bound to three arginine residues, including Arg-39, producing a different substrate orientation than that in RpiB, where the substrate binds at Asp-43. Due to the proximity of the Arg-134 residue and backbone Cα of the α6 helix in LacA to the last Asp-172 residue of LacB with a hydrogen bond, a six-carbon sugar-phosphate can bind in the larger pocket of LacAB, compared with RpiB. His-96 in the active site is important for ring opening and substrate orientation, and Cys-65 is essential for the isomerization activity of the enzyme. Two rare sugar substrates, D-psicose and D-ribulose, show optimal binding in the LacAB-substrate complex. These findings were supported by the results of LacA activity assays.

  7. Hemolytic anemia and progressive neurologic impairment: think about triosephosphate isomerase deficiency.

    Science.gov (United States)

    Aissa, Khaoula; Kamoun, Fatma; Sfaihi, Lamia; Ghedira, Elyes Slim; Aloulou, Hajer; Kamoun, Thouraya; Pissard, Serge; Hachicha, Mongia

    2014-08-01

    We have reported the first Tunisian case of triosephosphate isomerase (TPI) deficiency in a 2-year-old girl. She was the first child of a nonconsanguineous couple. The disease included a neonatal onset of chronic hemolytic anemia, recurrent low-respiratory infections then progressive neurological involvement. The diagnosis was made after her death from the TPI values of her parents who exhibited intermediate enzyme deficiency. Molecular study of TPI genes showed that the father and the mother are heterozygous for Glu105Asp mutation. Pediatricians must be alert to the differential diagnosis in patients having hemolytic anemia and other concomitant manifestations.

  8. Effect of gamma irradiation on whole-cell glucose isomerase. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Bachman, S.; Gebicka, L.

    1984-03-01

    Gamma-rays induced inactivation of Actinoplanes missouriensis and Streptomyces olivaceus glucose isomerase has been studied. This enzyme exhibits high resistance against ionizing radiation. The D/sub 37/ value was found to be equal to 131 kGy for Actinoplanes missouriensis cells and 88 kGy for Streptomyces olivaceus cells when irradiated in the dry state in the presence of air. Mg/sup 2 +/ ions do not affect the radiosensitivity of the enzyme in cells, while the addition of Co/sup 2 +/ ions to the cell suspension increases its stability against ionizing radiation.

  9. TM0416, a Hyperthermophilic Promiscuous Nonphosphorylated Sugar Isomerase, Catalyzes Various C5 and C6 Epimerization Reactions.

    Science.gov (United States)

    Shin, Sun-Mi; Cao, Thinh-Phat; Choi, Jin Myung; Kim, Seong-Bo; Lee, Sang-Jae; Lee, Sung Haeng; Lee, Dong-Woo

    2017-05-15

    There is currently little information on nonphosphorylated sugar epimerases, which are of potential interest for producing rare sugars. We found a gene (the TM0416 gene) encoding a putative d-tagatose-3-epimerase-related protein from the hyperthermophilic bacterium Thermotoga maritima We overexpressed the TM0416 gene in Escherichia coli and purified the resulting recombinant protein for detailed characterization. Amino acid sequence alignment and a structural similarity search revealed that TM0416 is a putative nonphosphorylated sugar epimerase. The recombinant enzyme exhibited maximal C-3 epimerization of l-ribulose to l-xylulose at ∼80°C and pH 7 in the presence of 1 mM Mn 2+ In addition, this enzyme showed unusually high activity for the epimerization of d-tagatose to d-sorbose, with a conversion yield of 20% after 6 h at 80°C. Remarkably, the enzyme catalyzed the isomerization of d-erythrose or d-threose to d-erythrulose significantly, with conversion yields of 71% and 54.5%, respectively, after 6 h at 80°C at pH 7. To further investigate the substrate specificity of TM0416, we determined its crystal structures in complex with divalent metal ions and l-erythrulose at resolutions of 1.5 and 1.6 Å. Detailed inspection of the structural features and biochemical data clearly demonstrated that this metalloenzyme, with a freely accessible substrate-binding site and neighboring hydrophobic residues, exhibits different and promiscuous substrate preferences, compared with its mesophilic counterparts. Therefore, this study suggests that TM0416 can be functionally classified as a novel type of l-ribulose 3-epimerase (R3E) with d-erythrose isomerase activity. IMPORTANCE Rare sugars, which occur naturally in small amounts, have attracted considerable attention in the food and drug industries. However, there is little information on nonphosphorylated sugar epimerases, which might potentially be applied for the production of rare sugars. This study describes the

  10. Bovicin HJ50-like lantibiotics, a novel subgroup of lantibiotics featured by an indispensable disulfide bridge.

    Directory of Open Access Journals (Sweden)

    Jian Wang

    Full Text Available Lantibiotics are ribosomally-synthesized and posttranslationally modified peptides with potent antimicrobial activities. Discovery of novel lantibiotics has been greatly accelerated with the soaring release of genomic information of microorganisms. As a unique class II lantibiotic, bovicin HJ50 is produced by Streptococcus bovis HJ50 and contains one rare disulfide bridge. By using its precursor BovA as a drive sequence, 16 BovA-like peptides were revealed in a wide variety of species. From them, three representative novel lan loci from Clostridium perfringens D str. JGS1721, Bacillus cereus As 1.348 and B. thuringiensis As 1.013 were identified by PCR screening. The corresponding mature lantibiotics designated perecin, cerecin and thuricin were obtained and structurally elucidated to be bovicin HJ50-like lantibiotics especially by containing a conserved disulfide bridge. The disulfide bridge was substantiated to be essential for the function of bovicin HJ50-like lantibiotics as its disruption eliminated their antimicrobial activities. Further analysis indicated that the disulfide bridge played a crucial role in maintaining the hydrophobicity of bovicin HJ50, which might facilitate it to exert antimicrobial function. This study unveiled a novel subgroup of disulfide-containing lantibiotics from bacteria of different niches and further demonstrated the indispensable role of disulfide bridge in these novel bovicin HJ50-like lantibiotics.

  11. Targeting prolyl-isomerase Pin1 prevents mitochondrial oxidative stress and vascular dysfunction: insights in patients with diabetes.

    Science.gov (United States)

    Paneni, Francesco; Costantino, Sarah; Castello, Lorenzo; Battista, Rodolfo; Capretti, Giuliana; Chiandotto, Sergio; D'Amario, Domenico; Scavone, Giuseppe; Villano, Angelo; Rustighi, Alessandra; Crea, Filippo; Pitocco, Dario; Lanza, Gaetano; Volpe, Massimo; Del Sal, Giannino; Lüscher, Thomas F; Cosentino, Francesco

    2015-04-01

    Diabetes is a major driver of cardiovascular disease, but the underlying mechanisms remain elusive. Prolyl-isomerase Pin1 recognizes specific peptide bonds and modulates function of proteins altering cellular homoeostasis. The present study investigates Pin1 role in diabetes-induced vascular disease. In human aortic endothelial cells (HAECs) exposed to high glucose, up-regulation of Pin1-induced mitochondrial translocation of pro-oxidant adaptor p66(Shc) and subsequent organelle disruption. In this setting, Pin1 recognizes Ser-116 inhibitory phosphorylation of endothelial nitric oxide synthase (eNOS) leading to eNOS-caveolin-1 interaction and reduced NO availability. Pin1 also mediates hyperglycaemia-induced nuclear translocation of NF-κB p65, triggering VCAM-1, ICAM-1, and MCP-1 expression. Indeed, gene silencing of Pin1 in HAECs suppressed p66(Shc)-dependent ROS production, restored NO release and blunted NF-kB p65 nuclear translocation. Consistently, diabetic Pin1(-/-) mice were protected against mitochondrial oxidative stress, endothelial dysfunction, and vascular inflammation. Increased expression and activity of Pin1 were also found in peripheral blood monocytes isolated from diabetic patients when compared with age-matched healthy controls. Interestingly, enough, Pin1 up-regulation was associated with impaired flow-mediated dilation, increased urinary 8-iso-prostaglandin F2α and plasma levels of adhesion molecules. Pin1 drives diabetic vascular disease by causing mitochondrial oxidative stress, eNOS dysregulation as well as NF-kB-induced inflammation. These findings provide molecular insights for novel mechanism-based therapeutic strategies in patients with diabetes. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  12. Conserved cysteine residues provide a protein-protein interaction surface in dual oxidase (DUOX) proteins.

    Science.gov (United States)

    Meitzler, Jennifer L; Hinde, Sara; Bánfi, Botond; Nauseef, William M; Ortiz de Montellano, Paul R

    2013-03-08

    Intramolecular disulfide bond formation is promoted in oxidizing extracellular and endoplasmic reticulum compartments and often contributes to protein stability and function. DUOX1 and DUOX2 are distinguished from other members of the NOX protein family by the presence of a unique extracellular N-terminal region. These peroxidase-like domains lack the conserved cysteines that confer structural stability to mammalian peroxidases. Sequence-based structure predictions suggest that the thiol groups present are solvent-exposed on a single protein surface and are too distant to support intramolecular disulfide bond formation. To investigate the role of these thiol residues, we introduced four individual cysteine to glycine mutations in the peroxidase-like domains of both human DUOXs and purified the recombinant proteins. The mutations caused little change in the stabilities of the monomeric proteins, supporting the hypothesis that the thiol residues are solvent-exposed and not involved in disulfide bonds that are critical for structural integrity. However, the ability of the isolated hDUOX1 peroxidase-like domain to dimerize was altered, suggesting a role for these cysteines in protein-protein interactions that could facilitate homodimerization of the peroxidase-like domain or, in the full-length protein, heterodimeric interactions with a maturation protein. When full-length hDUOX1 was expressed in HEK293 cells, the mutations resulted in decreased H2O2 production that correlated with a decreased amount of the enzyme localized to the membrane surface rather than with a loss of activity or with a failure to synthesize the mutant proteins. These results support a role for the cysteine residues in intermolecular disulfide bond formation with the DUOX maturation factor DUOXA1.

  13. Optical Controlled Terahertz Modulator Based on Tungsten Disulfide Nanosheet.

    Science.gov (United States)

    Fan, Zhiyuan; Geng, Zhaoxin; Lv, Xiaoqin; Su, Yue; Yang, Yuping; Liu, Jian; Chen, Hongda

    2017-11-01

    The terahertz (THz) modulator, which will be applied in next-generation wireless communication, is a key device in a THz communication system. Current THz modulators based on traditional semiconductors and metamaterials have limited modulation depth or modulation range. Therefore, a THz modulator based on annealed tungsten disulfide (WS 2 , p-type) and high-resistivity silicon (n-type) is demonstrated. Pumped by a laser, the modulator presents a laser power-dependent modulation effect. Ranging from 0.25 to 2 THz, the modulation depth reaches 99% when the pumping laser is 2.59 W/cm 2 . The modulator works because the p-n heterojunction can separate and limit carriers to change the conductivity of the device, which results in a modulation of the THz wave. The wide band gap of WS 2 can promote the separation and limitation of carriers to obtain a larger modulation depth, which provides a new direction for choosing new materials and new structures to fabricate a better THz modulator.

  14. Oxidation Effect in Octahedral Hafnium Disulfide Thin Film.

    Science.gov (United States)

    Chae, Sang Hoon; Jin, Youngjo; Kim, Tae Soo; Chung, Dong Seob; Na, Hyunyeong; Nam, Honggi; Kim, Hyun; Perello, David J; Jeong, Hye Yun; Ly, Thuc Hue; Lee, Young Hee

    2016-01-26

    Atomically smooth van der Waals materials are structurally stable in a monolayer and a few layers but are susceptible to oxygen-rich environments. In particular, recently emerging materials such as black phosphorus and perovskite have revealed stronger environmental sensitivity than other two-dimensional layered materials, often obscuring the interesting intrinsic electronic and optical properties. Unleashing the true potential of these materials requires oxidation-free sample preparation that protects thin flakes from air exposure. Here, we fabricated few-layer hafnium disulfide (HfS2) field effect transistors (FETs) using an integrated vacuum cluster system and study their electronic properties and stability under ambient conditions. By performing all the device fabrication and characterization procedure under an oxygen- and moisture-free environment, we found that few-layer AA-stacking HfS2-FETs display excellent field effect responses (Ion/Ioff ≈ 10(7)) with reduced hysteresis compared to the FETs prepared under ambient conditions. Oxidation of HfS2 occurs uniformly over the entire area, increasing the film thickness by 250% at a prolonged oxidation time of >120 h, while defects on the surface are the preferential initial oxidation sites. We further demonstrated that the stability of the device in air is significantly improved by passivating FETs with BN in a vacuum cluster.

  15. Ferroelectric memory based on molybdenum disulfide and ferroelectric hafnium oxide