WorldWideScience

Sample records for distributed polypropylene hydrophobic

  1. Residual stress distribution in extruded polypropylene pipes

    Czech Academy of Sciences Publication Activity Database

    Poduška, Jan; Kučera, J.; Hutař, Pavel; Ševčík, Martin; Křivánek, J.; Sadílek, J.; Náhlík, Luboš

    2014-01-01

    Roč. 2014, č. 40 (2014), s. 88-98 ISSN 0142-9418 R&D Projects: GA ČR(CZ) GAP108/12/1560 Institutional support: RVO:68081723 Keywords : polypropylene * extruded polymer pipe * residual stress * curved beam methodology * numerical simulations Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.240, year: 2014 http://www.sciencedirect.com/science/article/pii/S0142941814001809

  2. Polypropylene/hydrophobic-silica-aerogel-composite separator induced enhanced safety and low polarization for lithium-ion batteries

    Science.gov (United States)

    Feng, Guanhua; Li, Zihe; Mi, Liwei; Zheng, Jinyun; Feng, Xiangming; Chen, Weihua

    2018-02-01

    Separator as an important part of lithium-ion batteries, allowing the ion to transfer and preventing the direct contact of anode with cathode, determines the safety of the batteries. In this work, a kind of polypropylene/hydrophobic silica-aerogel-composite (SAC) separator is fabricated through combining hydrophobic silica aerogel and polypropylene (PP) separator. The rationally designed SAC effectively increases the thermal stability of the separator with slightly growing weight (the area retention rate is 30% higher than that of the PP separator after being heated for 30 min at 160 °C). In addition, the hydrophobic silica aerogel layer in SAC significantly improves the wettability of PP separator to electrolyte owning to the introduced hydrophobic functional groups of -Si(CH3)3 and porous structure, and the contact angles of SAC separator to several common organic electrolytes (EC/DMC, DMC/DOL, Diglyme) are close to 0°. Electrochemical tests show that the prepared SAC separator can decrease the polarization of Li-ion batteries and leads to improved power performance and cycle stability. And the SAC separator is firm with neglectable abscission after folding 200 times. This work provides a new way to improve the safety and simultaneously reduce the polarization of the batteries, implying promising application potential in power batteries.

  3. Adsorption of phthalic acid esters (PAEs) by amphiphilic polypropylene nonwoven from aqueous solution: the study of hydrophilic and hydrophobic microdomain.

    Science.gov (United States)

    Zhou, Xiangyu; Wei, Junfu; Zhang, Huan; Liu, Kai; Wang, Han

    2014-05-30

    A kind of amphiphilic polypropylene nonwoven with hydrophilic and hydrophobic microdomain was prepared through electron beam induced graft polymerization and subsequent ring opening reaction and then utilized in the adsorption of phthalic acid esters (PAEs). To elucidate the superiority of such amphiphilic microdomain, a unique structure without hydrophilic part was constructed as comparison. In addition, the adsorption behaviors including adsorption kinetics, isotherms and pH effect were systematically investigated. The result indicated that the amphiphilic structure and the synergy between hydrophilic and hydrophobic microdomain could considerably improve the adsorption capacities, rate and affinity. Particularly the existence of hydrophilic microdomain could reduce the diffusion resistance and energy barrier in the adsorption process. These adsorption results showed that the amphiphilic PP nonwoven have the potential to be used in environmental application. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Hydrophilicity and hydrophobicity control of polypropylene films by UV-assisted irradiation in the presence of reactive vapors

    International Nuclear Information System (INIS)

    Leal, Pedro H. de M.; Ramanathan, Rajajeyaganthan; Weibel, Daniel E.

    2009-01-01

    Polypropylene (PP) thin film surfaces were modified using the UV-assisted technique in the presence of reactive vapors producing films with hydrophobic or hydrophilic properties. The irradiations were carried out in the presence of Trimethoxypropylsilane (TMPSi) or Acrylic Acid (AA) vapors. When TMPSi was used as reactive vapor atmosphere the final PP surface obtained was hydrophobic with a contact angle (WCA) of ∼ 145 degrees. On the contrary, when AA vapors were used during irradiation the treated surface presented hydrophilic properties (WCA ∼ 40 degree). The surface modifications were analyzed by WCA and FTIR-ATR (UFRGS) and by NEXAFS spectroscopy (Laboratorio Nacional de Luz Sincrotron, LNLS, Campinas). NEXAFS spectroscopy showed evidence that new films with different chemical properties to PP were formed. For example, when AA vapors were used during the UV photolysis, a polyacrylic film was formed on the PP surface. XPS analysis of the modified films is under way. (author)

  5. The effects of non-solvent on surface morphology and hydrophobicity of dip-coated polypropylene membrane

    Science.gov (United States)

    Faiqotul Himma, Nurul; Kusuma Wardani, Anita; Gede Wenten, I.

    2017-05-01

    Polypropylene (PP) has been widely used for fabrication of hydrophobic microporous membrane due to its good thermal and chemical stability. However, the hydrophobicity of PP is inadequate to prevent membrane wetting which hinders its application in long-term operation of membrane contactor and other hydrophobic membrane processes. Endowing the membrane with superhydrophobicity has become an attractive way to improve wetting resistance. In this work, superhydrophobic PP membrane was prepared by coating with roughened polymer film. A simple technique of two-step dip-coating was used for deposition of the non-solvent solution and polymer solution. The effects of five non-solvent types were investigated, including ethanol, isopropyl alcohol (IPA), acetone, methyl ethyl ketone (MEK), and cyclohexanone. All non-solvents increased the surface roughness, leading to an improvement of membrane hydrophobicity. Superhydrophobic PP membranes with high water contact angle (WCA) of 150.4° and 151.3° have been successfully prepared by using IPA and MEK, respectively. Morphology characterization revealed that both modified membranes had more uniform and larger number of smaller aggregates which might minimize surface area in contact with liquid, resulting in increased contact angle. As the coating was conducted separately, the utilization of non-solvent could be more effective.

  6. Adsorption of phthalic acid esters (PAEs) by amphiphilic polypropylene nonwoven from aqueous solution: The study of hydrophilic and hydrophobic microdomain

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiangyu [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300387 (China); School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387 (China); Wei, Junfu, E-mail: weijunfu1963@163.com [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300387 (China); School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387 (China); Zhang, Huan; Liu, Kai; Wang, Han [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300387 (China); School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387 (China)

    2014-05-01

    Highlights: • Amphiphilic PP-g-GMA-OA nonwoven was prepared and characterized. • Synergy between hydrophilic and hydrophobic microdomain was elucidated. • The effects of hydrophilic microdomain on diffusion resistance and energy barrier were elucidated. • Adsorbent material with amphiphilic structures showed faster adsorption rate and lager adsorption capacity. - Abstract: A kind of amphiphilic polypropylene nonwoven with hydrophilic and hydrophobic microdomain was prepared through electron beam induced graft polymerization and subsequent ring opening reaction and then utilized in the adsorption of phthalic acid esters (PAEs). To elucidate the superiority of such amphiphilic microdomain, a unique structure without hydrophilic part was constructed as comparison. In addition, the adsorption behaviors including adsorption kinetics, isotherms and pH effect were systematically investigated. The result indicated that the amphiphilic structure and the synergy between hydrophilic and hydrophobic microdomain could considerably improve the adsorption capacities, rate and affinity. Particularly the existence of hydrophilic microdomain could reduce the diffusion resistance and energy barrier in the adsorption process. These adsorption results showed that the amphiphilic PP nonwoven have the potential to be used in environmental application.

  7. Adsorption of phthalic acid esters (PAEs) by amphiphilic polypropylene nonwoven from aqueous solution: The study of hydrophilic and hydrophobic microdomain

    International Nuclear Information System (INIS)

    Zhou, Xiangyu; Wei, Junfu; Zhang, Huan; Liu, Kai; Wang, Han

    2014-01-01

    Highlights: • Amphiphilic PP-g-GMA-OA nonwoven was prepared and characterized. • Synergy between hydrophilic and hydrophobic microdomain was elucidated. • The effects of hydrophilic microdomain on diffusion resistance and energy barrier were elucidated. • Adsorbent material with amphiphilic structures showed faster adsorption rate and lager adsorption capacity. - Abstract: A kind of amphiphilic polypropylene nonwoven with hydrophilic and hydrophobic microdomain was prepared through electron beam induced graft polymerization and subsequent ring opening reaction and then utilized in the adsorption of phthalic acid esters (PAEs). To elucidate the superiority of such amphiphilic microdomain, a unique structure without hydrophilic part was constructed as comparison. In addition, the adsorption behaviors including adsorption kinetics, isotherms and pH effect were systematically investigated. The result indicated that the amphiphilic structure and the synergy between hydrophilic and hydrophobic microdomain could considerably improve the adsorption capacities, rate and affinity. Particularly the existence of hydrophilic microdomain could reduce the diffusion resistance and energy barrier in the adsorption process. These adsorption results showed that the amphiphilic PP nonwoven have the potential to be used in environmental application

  8. Effect of Reinforcement of Hydrophobic Grade Banana (Musa ornata Bark Fiber on the Physicomechanical Properties of Isotactic Polypropylene

    Directory of Open Access Journals (Sweden)

    Md. Mamunur Rashid

    2016-01-01

    Full Text Available This research studied the physicomechanical as well as morphological properties of alkali treated (NaOH and KMnO4 and untreated banana bark fiber (BBF reinforced polypropylene composites. A detailed structural and morphological characterization was performed using Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (SEM, and mechanical properties testing (tensile strength, flexural strength, and microhardness. Chemical treatments improved the hydrophobic property of the fiber and it is found to be better for KMnO4 treatment. Composites with 0, 5, 10, and 15 wt.% loadings were then compared for water uptake studies and revealed that KMnO4 treated fiber composites absorb less water compared to others. KMnO4 treatment with 15% fiber loading improved the tensile strength, flexural strength, and microhardness of the composites compared to raw and NaOH treated fiber loadings. TGA analysis also shows onset temperature at 400~500°C that is associated with the decomposition of the banana fibers constituents including lignin, cellulose, and hemicelluloses which suggests better thermomechanical stability. All of the values suggest that 15% KMnO4 treated banana bark fiber (BBF/PP composites were found to be better than those of the raw and NaOH treated ones.

  9. Using Raman spectroscopic imaging for non-destructive analysis of filler distribution in chalk filled polypropylene

    DEFF Research Database (Denmark)

    Boros, Evelin; Porse, Peter Bak; Nielsen, Inga

    2016-01-01

    A feasibility study on using Raman spectral imaging for visualization and analysis of filler distribution in chalk filled poly-propylene samples has been carried out. The spectral images were acquired using a Raman spectrometer with 785 nm light source.Eight injection-molded samples with concentr...

  10. Unprecedented Development of Ultrahigh Expansion Injection-Molded Polypropylene Foams by Introducing Hydrophobic-Modified Cellulose Nanofibers.

    Science.gov (United States)

    Wang, Long; Ishihara, Shota; Hikima, Yuta; Ohshima, Masahiro; Sekiguchi, Takafumi; Sato, Akihiro; Yano, Hiroyuki

    2017-03-22

    Herein, an ultrahigh 18-fold expansion of isotactic polypropylene (iPP)/cellulose nanofiber (CNF) nanocomposite foams was achieved for the first time using a core-back foam injection molding technique. It was found that CNFs were well dispersed and aligned along the cell wall in the core-back direction. Interestingly, the formations of a hybrid shish-kebab of CNFs and classic shish-kebab of PP were simultaneously achieved in the PP/CNF composites. Finally, we proposed that the combination of local strong melt strength, probably resulting from the strong alignment of CNFs and subsequent formation of hybrid shish-kebab structures, and weak melt strength in the unreinforced PP melt might be the driving force for remarkably enhancing the PP foamability.

  11. Mechanical Properties Distribution within Polypropylene Injection Molded Samples: Effect of Mold Temperature under Uneven Thermal Conditions

    Directory of Open Access Journals (Sweden)

    Sara Liparoti

    2017-11-01

    Full Text Available The quality of the polymer parts produced by injection molding is strongly affected by the processing conditions. Uncontrolled deviations from the proper process parameters could significantly affect both internal structure and final material properties. In this work, to mimic an uneven temperature field, a strong asymmetric heating is applied during the production of injection-molded polypropylene samples. The morphology of the samples is characterized by optical and atomic force microscopy (AFM, whereas the distribution of mechanical modulus at different scales is obtained by Indentation and HarmoniX AFM tests. Results clearly show that the temperature differences between the two mold surfaces significantly affect the morphology distributions of the molded parts. This is due to both the uneven temperature field evolutions and to the asymmetric flow field. The final mechanical property distributions are determined by competition between the local molecular stretch and the local structuring achieved during solidification. The cooling rate changes affect internal structures in terms of relaxation/reorganization levels and give rise to an asymmetric distribution of mechanical properties.

  12. Evaporation Flux Distribution of Drops on a Hydrophilic or Hydrophobic Flat Surface by Molecular Simulations.

    Science.gov (United States)

    Xie, Chiyu; Liu, Guangzhi; Wang, Moran

    2016-08-16

    The evaporation flux distribution of sessile drops is investigated by molecular dynamic simulations. Three evaporating modes are classified, including the diffusion dominant mode, the substrate heating mode, and the environment heating mode. Both hydrophilic and hydrophobic drop-substrate interactions are considered. To count the evaporation flux distribution, which is position dependent, we proposed an azimuthal-angle-based division method under the assumption of spherical crown shape of drops. The modeling results show that the edge evaporation, i.e., near the contact line, is enhanced for hydrophilic drops in all the three modes. The surface diffusion of liquid molecular absorbed on solid substrate for hydrophilic cases plays an important role as well as the space diffusion on the enhanced evaporation rate at the edge. For hydrophobic drops, the edge evaporation flux is higher for the substrate heating mode, but lower than elsewhere of the drop for the diffusion dominant mode; however, a nearly uniform distribution is found for the environment heating mode. The evidence shows that the temperature distribution inside drops plays a key role in the position-dependent evaporation flux.

  13. Charge, size distribution and hydrophobicity of viruses: Effect of propagation and purification methods.

    Science.gov (United States)

    Shi, Hang; Tarabara, Volodymyr V

    2018-02-10

    Two virus propagation methods (in broth and on double agar overlay) and three purification procedures (PEG precipitation, centrifugal diafiltration and CsCl density gradient centrifugation) were comparatively evaluated using MS2 and P22 bacteriophages as model viruses. The prepared stocks were characterized in terms of electrophoretic mobility as a function of pH, particle size distribution, surface tension components and overall hydrophobicity of the virus, as well as the percentage of infectious and total virus recovered. The obtained data were used to rank the purification methods according to six criteria of likely practical relevance. Regardless of the purification method applied, virus propagation in broth media resulted in higher purity virus stocks as the growth on double agar overlay introduced difficult-to-remove residual agar. CsCl density gradient centrifugation gave the highest quality bacteriophage suspensions, recovered infectious P22 at least as efficiently as the other two purification methods and selected for intact P22 virions over damaged ones. The impurities remaining in the virus suspension after PEG precipitation and centrifugal diafiltration broadened the size distribution and interfered with electrophoretic mobility measurements. The residual impurities had a major impact on the free energy of virus-virus interfacial interaction (the quantitative measure of virus hydrophobicity/hydrophilicity) leading to an incorrect determination of P22 bacteriophage as hydrophilic. The trends in measured physicochemical properties can be rationalized by considering impurity-coated virions as permeable soft particles. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Controlled peroxide-induced degradation of polypropylene in a twin-screw extruder: change of molecular weight distribution under conditions controlled by micromixing

    NARCIS (Netherlands)

    Iedema, P.D.; Remerie, K.; van der Ham, M.; Biemond, E.; Tacx, J.

    2011-01-01

    Controlled degradation of polypropylene (PP) by peroxide was carried out in a laboratory twin-screw extruder ZSK 18 and the change in Molecular Weight Distribution (MWD) was measured using Size Exclusion Chromatography-Differential Viscosimetry (SEC-DV). The MWD results were compared to MWD

  15. Observation of the charge distribution on the surface of polypropylene with spherulites charged by contact with mercury; Kyushoka polypropylene no suigin tono sesshoku taiden ni yoru hyomen denka bunpu

    Energy Technology Data Exchange (ETDEWEB)

    Goto, T.; Kubota, K.; Murata, Y. [Science University of Tokyo, Tokyo (Japan)

    1999-06-12

    The surface charge distribution of polypropylene with spherulites was investigated using charged sub-micron solid particles after the surface was charged by contact with mercury. The charge polarity of the sample surface after contact was negative and that of solid particles was positive. We observed that many particles accumulated in the interface region between spherulites as well as that between spherulites and outer non-spherulitic region, and also in the non-spherulitic region. These results can be explained by means of distribution of electron traps. (author)

  16. Polypeptoids from N -Substituted Glycine N -Carboxyanhydrides: Hydrophilic, Hydrophobic, and Amphiphilic Polymers with Poisson Distribution

    KAUST Repository

    Fetsch, Corinna

    2011-09-13

    Preparation of defined and functional polymers has been one of the hottest topics in polymer science and drug delivery in the recent decade. Also, research on (bio)degradable polymers gains more and more interest, in particular at the interface of these two disciplines. However, in the majority of cases, combination of definition, functionality and degradability, is problematic. Here we present the preparation and characterization (MALDI-ToF MS, NMR, GPC) of nonionic hydrophilic, hydrophobic, and amphiphilic N-substituted polyglycines (polypeptoids), which are expected to be main-chain degradable and are able to disperse a hydrophobic model compound in aqueous media. Polymerization kinetics suggest that the polymerization is well controlled with strictly linear pseudo first-order kinetic plots to high monomer consumption. Moreover, molar mass distributions of products are Poisson-type and molar mass can be controlled by the monomer to initiator ratio. The presented polymer platform is nonionic, backbone degradable, and synthetically highly flexible and may therefore be valuable for a broad range of applications, in particular as a biomaterial. © 2011 American Chemical Society.

  17. Study of injection moulded long glass fibre-reinforced polypropylene and the effect on the fibre length and orientation distribution

    Science.gov (United States)

    Parveeen, B.; Caton-Rose, P.; Costa, F.; Jin, X.; Hine, P.

    2014-05-01

    Long glass fibre (LGF) composites are extensively used in manufacturing to produce components with enhanced mechanical properties. Long fibres with length 12 to 25mm are added to a thermoplastic matrix. However severe fibre breakage can occur in the injection moulding process resulting in shorter fibre length distribution (FLD). The majority of this breakage occurs due to the melt experiencing extreme shear stress during the preparation and injection stage. Care should be taken to ensure that the longer fibres make it through the injection moulding process without their length being significantly degraded. This study is based on commercial 12 mm long glass-fibre reinforced polypropylene (PP) and short glass fibre Nylon. Due to the semi-flexiable behaviour of long glass fibres, the fibre orientation distribution (FOD) will differ from the orientation distribution of short glass fibre in an injection molded part. In order to investigate the effect the change in fibre length has on the fibre orientation distribution or vice versa, FOD data was measured using the 2D section image analyser. The overall purpose of the research is to show how the orientation distribution chnages in an injection moulded centre gated disc and end gated plaque geometry and to compare this data against fibre orientation predictions obtained from Autodesk Moldflow Simulation Insight.

  18. Hydrophobic silver nanoparticles trapped in lipid bilayers: Size distribution, bilayer phase behavior, and optical properties

    Directory of Open Access Journals (Sweden)

    Bothun Geoffrey D

    2008-11-01

    Full Text Available Abstract Background Lipid-based dispersion of nanoparticles provides a biologically inspired route to designing therapeutic agents and a means of reducing nanoparticle toxicity. Little is currently known on how the presence of nanoparticles influences lipid vesicle stability and bilayer phase behavior. In this work, the formation of aqueous lipid/nanoparticle assemblies (LNAs consisting of hydrophobic silver-decanethiol particles (5.7 ± 1.8 nm embedded within 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC bilayers is demonstrated as a function of the DPPC/Ag nanoparticle (AgNP ratio. The effect of nanoparticle loading on the size distribution, bilayer phase behavior, and bilayer fluidity is determined. Concomitantly, the effect of bilayer incorporation on the optical properties of the AgNPs is also examined. Results The dispersions were stable at 50°C where the bilayers existed in a liquid crystalline state, but phase separated at 25°C where the bilayers were in a gel state, consistent with vesicle aggregation below the lipid melting temperature. Formation of bilayer-embedded nanoparticles was confirmed by differential scanning calorimetry and fluorescence anisotropy, where increasing nanoparticle concentration suppressed the lipid pretransition temperature, reduced the melting temperature, and disrupted gel phase bilayers. The characteristic surface plasmon resonance (SPR wavelength of the embedded nanoparticles was independent of the bilayer phase; however, the SPR absorbance was dependent on vesicle aggregation. Conclusion These results suggest that lipid bilayers can distort to accommodate large hydrophobic nanoparticles, relative to the thickness of the bilayer, and may provide insight into nanoparticle/biomembrane interactions and the design of multifunctional liposomal carriers.

  19. Spatial distribution of gamma-crystals in metallocene-made isotactic polypropylene crystallized under combined thermal and flow fields.

    Science.gov (United States)

    Wang, Yan; Pan, Ji-Lin; Mao, Yimin; Li, Zhong-Ming; Li, Liangbin; Hsiao, Benjamin S

    2010-05-27

    The present Article reports the relationships between molecular orientation, formation, and spatial distribution of gamma-crystals in metallocene-made isotactic polypropylene (m-iPP) samples prepared by two industrial processes: conventional injection molding (CIM) and oscillatory shear injection molding (OSIM), in which combined thermal and flow fields typically exist. In particular, spatial distributions of crystallinity, fraction of gamma-crystal (f(gamma)) with respect to alpha-crystal, and lamella-branched shish-kebab structure in the shaped samples were characterized by synchrotron two-dimensional (2D) wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques. The results showed that the crystallinity in any given region of OSIM samples was always higher than that of CIM samples. The value of f(gamma) increased monotonously from skin to core in CIM samples, whereas the corresponding f(gamma) increased nonmonotonically in OSIM samples. The spatial distribution of gamma-crystal in OSIM samples can be explained by the epitaxial arrangement between gamma- and alpha-crystal in a lamella-branched shish-kebab structure. In the proposed model, the parent lamellae of alpha-crystal provide secondary nucleation sites for daughter lamellae of alpha-crystal and gamma-crystal, and the different content of parent lamellae results in varying amounts of gamma-crystal. In OSIM samples, the smallest parent-daughter ratio ([R]) = 1.38) in the core region led to the lowest fraction of gamma-crystal (0.57), but relatively higher gamma-crystal content (0.69) at 600 and 1200 mum depth of the samples (corresponding to [R] of 4.5 and 5.8, respectively). This is consistent with the proposed model where more parent lamellae provide more nucleation sites for crystallization, thus resulting in higher content of gamma-crystal. The melting behavior of CIM and OSIM samples was studied by differential scanning calorimetery (DSC). The observed double-melting peaks

  20. Spatial Distribution of -Crystals in Metallocene-Made Isotactic Polypropylene Crystallized under Combined Thermal and Flow Fields

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Pan, J; Mao, Y; Li, Z; Li, L; Hsiao, B

    2010-01-01

    The present Article reports the relationships between molecular orientation, formation, and spatial distribution of {gamma}-crystals in metallocene-made isotactic polypropylene (m-iPP) samples prepared by two industrial processes: conventional injection molding (CIM) and oscillatory shear injection molding (OSIM), in which combined thermal and flow fields typically exist. In particular, spatial distributions of crystallinity, fraction of {gamma}-crystal (f{gamma}) with respect to {alpha}-crystal, and lamella-branched shish-kebab structure in the shaped samples were characterized by synchrotron two-dimensional (2D) wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques. The results showed that the crystallinity in any given region of OSIM samples was always higher than that of CIM samples. The value of f{gamma} increased monotonously from skin to core in CIM samples, whereas the corresponding f{gamma} increased nonmonotonically in OSIM samples. The spatial distribution of {gamma}-crystal in OSIM samples can be explained by the epitaxial arrangement between {gamma}- and {alpha}-crystal in a lamella-branched shish-kebab structure. In the proposed model, the parent lamellae of {alpha}-crystal provide secondary nucleation sites for daughter lamellae of {alpha}-crystal and {gamma}-crystal, and the different content of parent lamellae results in varying amounts of {gamma}-crystal. In OSIM samples, the smallest parent-daughter ratio ([R] = 1.38) in the core region led to the lowest fraction of {gamma}-crystal (0.57), but relatively higher {gamma}-crystal content (0.69) at 600 and 1200 {micro}m depth of the samples (corresponding to [R] of 4.5 and 5.8, respectively). This is consistent with the proposed model where more parent lamellae provide more nucleation sites for crystallization, thus resulting in higher content of {gamma}-crystal. The melting behavior of CIM and OSIM samples was studied by differential scanning calorimetery (DSC). The

  1. Occurrence, distribution and bioaccumulation behaviour of hydrophobic organic contaminants in a large-scale constructed wetland in Singapore.

    Science.gov (United States)

    Wang, Qian; Kelly, Barry C

    2017-09-01

    This study involved a field-based investigation to assess the occurrence, distribution and bioaccumulation behaviour of hydrophobic organic contaminants in a large-scale constructed wetland. Samples of raw leachate, water and wetland plants, Typha angustifolia, were collected for chemical analysis. Target contaminants included polychlorinated biphenyls (PCBs), organochlorine pesticides (OCP), as well as several halogenated flame retardants (HFRs) and personal care products (triclosan and synthetic musks). In addition to PCBs and OCPs, synthetic musks, triclosan (TCS) and dechlorane plus stereoisomers (syn- and anti-DPs) were frequently detected. Root concentration factors (log RCF L/kg wet weight) of the various contaminants ranged between 3.0 and 7.9. Leaf concentration factors (log LCF L/kg wet weight) ranged between 2.4 and 8.2. syn- and anti-DPs exhibited the greatest RCF and LCF values. A strong linear relationship was observed between log RCF and octanol-water partition coefficient (log K OW ). Translocation factors (log TFs) were negatively correlated with log K OW . The results demonstrate that more hydrophobic compounds exhibit higher degrees of partitioning into plant roots and are less effectively transported from roots to plant leaves. Methyl triclosan (MTCS) and 2,8-dichlorodibenzo-p-dioxin (DCDD), TCS degradation products, exhibited relatively high concentrations in roots and leaves., highlighting the importance of degradation/biotransformation. The results further suggest that Typha angustifolia in this constructed wetland can aid the removal of hydrophobic organic contaminants present in this landfill leachate. The findings will aid future investigations regarding the fate and bioaccumulation of hydrophobic organic contaminants in constructed wetlands. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Green aqueous surface modification of polypropylene for novel polymer nanocomposites.

    Science.gov (United States)

    Thakur, Vijay Kumar; Vennerberg, Danny; Kessler, Michael R

    2014-06-25

    Polypropylene is one of the most widely used commercial commodity polymers; among many other applications, it is used for electronic and structural applications. Despite its commercial importance, the hydrophobic nature of polypropylene limits its successful application in some fields, in particular for the preparation of polymer nanocomposites. Here, a facile, plasma-assisted, biomimetic, environmentally friendly method was developed to enhance the interfacial interactions in polymer nanocomposites by modifying the surface of polypropylene. Plasma treated polypropylene was surface-modified with polydopamine (PDA) in an aqueous medium without employing other chemicals. The surface modification strategy used here was based on the easy self-polymerization and strong adhesion characteristics of dopamine (DA) under ambient laboratory conditions. The changes in surface characteristics of polypropylene were investigated using FTIR, TGA, and Raman spectroscopy. Subsequently, the surface modified polypropylene was used as the matrix to prepare SiO2-reinforced polymer nanocomposites. These nanocomposites demonstrated superior properties compared to nanocomposites prepared using pristine polypropylene. This simple, environmentally friendly, green method of modifying polypropylene indicated that polydopamine-functionalized polypropylene is a promising material for various high-performance applications.

  3. Design dopamine-modified polypropylene fibers towards removal of heavy metal ions from water

    OpenAIRE

    K. Liu; N. Y. Zhou; C. X. Xie; B. Mou; Y. N. Ai

    2017-01-01

    A simple approach to preparing dopamine-modified polypropylene fibers with a controllable polydopamine amount is supplied. By the dopamine modification, the hydrophobic polypropylene fibers have been changed into hydrophilic. The hydrophilicity can be improved by increasing the amount of polydopamine, as revealed by the contact angle evolutions. The hydrophilic dopamine-modified polypropylene fibers can rapidly and effectively remove copper and lead ions in water. Moreover, the performance of...

  4. Size distributions of hydrophilic and hydrophobic fractions of water-soluble organic carbon in an urban atmosphere in Hong Kong

    Science.gov (United States)

    Wang, Nijing; Yu, Jian Zhen

    2017-10-01

    Water-soluble organic carbon (WSOC) is a significant part of ambient aerosol and plays an active role in contributing to aerosol's effect on visibility degradation and radiation budget through its interactions with atmospheric water. Size-segregated aerosol samples in the range of 0.056-18 μm were collected using a ten-stage impactor sampler at an urban site in Hong Kong over one-year period. The WSOC samples were separated into hydrophilic (termed WSOC_h) and hydrophobic fractions (i.e., the humic-like substances (HULIS) fraction) through solid-phase extraction procedure. Carbon in HULIS accounted for 40 ± 14% of WSOC. The size distribution of HULIS was consistently characterized in all seasons with a dominant droplet mode (46-71%) and minor condensation (9.0-18%) and coarse modes (20-35%). The droplet mode had a mass median aerodynamic diameter in the range of 0.7-0.8 μm. This size mode showed the largest seasonal variation in abundance, lowest in the summer (0.41 μg/m3) and highest in the winter (3.3 μg/m3). WSOC_h also had a dominant droplet mode, but was more evenly distributed among different size modes. Inter-species correlations within the same size mode suggest that the condensation-mode HULIS was partly associated with combustion sources and the droplet-mode was strongly associated with secondary sulfate formation and biomass burning particle aging processes. There is evidence to suggest that the coarse-mode HULIS largely originated from coagulation of condensation-mode HULIS with coarse soil/sea salt particles. The formation process and possible sources of WSOC_h was more complicated and multiple than HULIS and need further investigation. Our measurements indicate that WSOC components contributed a dominant fraction of water-soluble aerosol mass in particles smaller than 0.32 μm while roughly 20-30% in the larger particles.

  5. Radiation treatment of polypropylene

    International Nuclear Information System (INIS)

    DeNicola, A.J.; Galambos, A.F.; Wolkowicz, M.D.

    1992-01-01

    Structural changes in polypropylene resulting from high energy electron beam irradiation have been examined. Polymer irradiated in a nitrogen atmosphere is characterized as containing long chain branch structures. A branching index, defined as the ratio of intrinsic viscosity of irradiated polymer to the intrinsic viscosity of linear polymer of equivalent molecular weight, is used to quantify the extent of branching. Polymer crystallization and solution properties undergo significant changes as a result of radiation treatment. Treated polypropylene is highly nucleated. Nucleation density is several orders of magnitude greater than linear polypropylene. Temperature rising elution fractionation (TREF) indicates that the long-chain branched structure contributes to increasing the solubility of polypropylene without greatly reducing the crystallizability and melting point of the solubilized fractions. The presence of long chain branching has a pronounced effect on the polymers extensional rheology in the molten state. Radiation treated polymer exhibits strain hardening elongational viscosity

  6. Radiation resistant modified polypropylene

    International Nuclear Information System (INIS)

    Bojarski, J.; Zimek, Z.

    1997-01-01

    Radiation technology for production of radiation resistant polypropylene for medical use has been presented. The method consists in radiation induced copolymerization of polypropylene with ethylene and addition of small amount of copolymer of polyethylene and vinyl acetate. The material of proposed composition has a very good mechanical properties and elevated radiation resistivity decided on possibility of radiosterilization of products made of this material and designed for medical use. 3 figs, 3 tabs

  7. Biodegradation of Polypropylene Nonwovens

    Science.gov (United States)

    Keene, Brandi Nechelle

    The primary aim of the current research is to document the biodegradation of polypropylene nonwovens and filament under composting environments. To accelerate the biodegradat ion, pre-treatments and additives were incorporated into polypropylene filaments and nonwovens. The initial phase (Chapter 2) of the project studied the biodegradation of untreated polypropylene with/without pro-oxidants in two types of composting systems. Normal composting, which involved incubation of samples in food waste, had little effect on the mechanical properties of additive-free spunbond nonwovens in to comparison prooxidant containing spunbond nonwovens which were affected significantly. Modified composting which includes the burial of samples with food and compressed air, the polypropylene spunbond nonwovens with/without pro-oxidants displayed an extreme loss in mechanical properties and cracking on the surface cracking. Because the untreated spunbond nonwovens did not completely decompose, the next phase of the project examined the pre-treatment of gamma-irradiation or thermal aging prior to composting. After exposure to gamma-irradiation and thermal aging, polypropylene is subjected to oxidative degradation in the presence of air and during storage after irradiat ion. Similar to photo-oxidation, the mechanism of gamma radiation and thermal oxidative degradation is fundamentally free radical in nature. In Chapter 3, the compostability of thermal aged spunbond polypropylene nonwovens with/without pro-oxidant additives. The FTIR spectrum confirmed oxidat ion of the polypropylene nonwovens with/without additives. Cracking on both the pro-oxidant and control spunbond nonwovens was showed by SEM imaging. Spunbond polypropylene nonwovens with/without pro-oxidants were also preirradiated by gamma rays followed by composting. Nonwovens with/without pro-oxidants were severely degraded by gamma-irradiation after up to 20 kGy exposure as explained in Chapter 4. Furthermore (Chapter 5), gamma

  8. Temperature distribution of a water droplet moving on a heated super-hydrophobic surface under the icing condition

    Science.gov (United States)

    Yamazaki, Masafumi; Sumino, Yutaka; Morita, Katsuaki

    2017-11-01

    In the aviation industry, ice accretion on the airfoil has been a hazardous issue since it greatly declines the aerodynamic performance. Electric heaters and bleed air, which utilizes a part of gas emissions from engines, are used to prevent the icing. Nowadays, a new de-icing system combining electric heaters and super hydrophobic coatings have been developed to reduce the energy consumption. In the system, the heating temperature and the coating area need to be adjusted. Otherwise, the heater excessively consumes energy when it is set too high and when the coating area is not properly located, water droplets which are once dissolved possibly adhere again to the rear part of the airfoil as runback ice In order to deal with these problems, the physical phenomena of water droplets on the hydrophobic surface demand to be figured out. However, not many investigations focused on the behavior of droplets under the icing condition have been conducted. In this research, the temperature profiling of the rolling droplet on a heated super-hydrophobic surface is experimentally observed by the dual luminescent imaging.

  9. Hydrophilic/hydrophobic surface modification impact on colloid lithography: Schottky-like defects, dislocation, and ideal distribution

    Science.gov (United States)

    Burtsev, Vasilii; Marchuk, Valentina; Kugaevskiy, Artem; Guselnikova, Olga; Elashnikov, Roman; Miliutina, Elena; Postnikov, Pavel; Svorcik, Vaclav; Lyutakov, Oleksiy

    2018-03-01

    Nano-spheres lithography is actually considered as a powerful tool to manufacture various periodic structures with a wide potential in the field of nano- and micro-fabrication. However, during self-assembling of colloid microspheres, various defects and mismatches can appear. In this work the size and quality of single-domains of closed-packed polystyrene (PS), grown up on thin Au layers modified by hydrophilic or hydrophobic functional groups via diazonium chemistry was studied. The effects of the surface modification on the quality and single-domain size of polystyrene (PS) microspheres array were investigated and discussed. Modified surfaces were characterized using the AFM and wettability tests. PS colloidal suspension was deposited using the drop evaporation method. Resulted PS microspheres array was characterized using the SEM, AFM and confocal microscopy technique.

  10. Functional Block Copolymers as Compatibilizers for Nanoclays in Polypropylene Nanocomposites

    DEFF Research Database (Denmark)

    Jankova Atanasova, Katja; Daugaard, Anders Egede; Stribeck, Norbert

    2011-01-01

    With the aim of creating tough nanocomposits (NC) [1] based on polypropylene (PP) and nanoclay (NCl) in the framework of the 7th EU program NANOTOUGH we have designed amphiphilic block copolymers utilizing Atom Transfer Radical Polymerization (ATRP) [2]. They consist of a hydrophobic block...... crystallites) is replaced by alien-reinforcement (of the MMT). Furthermore, the results from the impact strength and cyclic test of the prepared PP nanocomposites [3] are promicing....

  11. Comparative study of intraperitoneal adhesions associated with the use of meshes of polypropylene and polypropylene coated with omega-3 fatty acid.

    Science.gov (United States)

    Kist, Caroline; Manna, Bibiana Borges; Montes, Juliano Hermes Maeso; Bigolin, André Vicente; Grossi, João Vicente Machado; Cavazzola, Leandro Totti

    2012-01-01

    To compare intraperitoneal adhesion formation with placement of polypropylene mesh and use of lightweight polypropylene mesh coated with omega-3 fatty in rats. Twenty-seven Wistar rats were randomized into three groups. In group 0 no mesh was placed; in group 1 we implanted a polypropylene mesh; and in group 2 there was implantation of a polypropylene mesh coated with omega-3 fatty acid. We evaluated adhesions presence and degree, breaking strength, percentage of area covered and retraction of the implanted meshes. Group 0 had no adhesion. Groups 1 and 2 showed adhesions on the surface of the mesh, omentum, liver and intestinal loops. There were grades 1 and 2 adhesions in 100% of the polypropylene coated group and in 60% of the polypropylene group. The remaining were grade 3 adhesions, and differed significantly between groups (p polypropylene coated group was significantly higher than with the polypropylene alone (p = 0.016). There was no difference in mesh retraction or area covered by the mesh. The analysis of the mesh coated with omega-3 fatty acid distribution showed adhesions preferentially located at the edges when compared to polypropylene, predominantly in the center. The type of adhesions, percentage of surface affected and retraction were not significantly different between meshes. The fatty acids coated mesh had a lower degree of adhesions and these required a greater force to rupture, possibly by their occurrence at the edges of the mesh.

  12. Design dopamine-modified polypropylene fibers towards removal of heavy metal ions from water

    Directory of Open Access Journals (Sweden)

    K. Liu

    2017-04-01

    Full Text Available A simple approach to preparing dopamine-modified polypropylene fibers with a controllable polydopamine amount is supplied. By the dopamine modification, the hydrophobic polypropylene fibers have been changed into hydrophilic. The hydrophilicity can be improved by increasing the amount of polydopamine, as revealed by the contact angle evolutions. The hydrophilic dopamine-modified polypropylene fibers can rapidly and effectively remove copper and lead ions in water. Moreover, the performance of removing heavy metals is prominently improved as the polydopamine amount increases. This is because the polydopamine introduction can supply many available sites for adsorbing heavy metal ions, as revealed by theoretical simulation results. These results are crucial in future engineering fiber filters towards efficiently removing heavy metal ions using dopamine-modified polypropylene fibers.

  13. Utilization of recycled polypropylene-acrylate grafted nonwoven for the removal of oil from water.

    Science.gov (United States)

    Li, Shaoning; Wei, Junfu; Wang, Lei; Wang, Ao; Yang, Hang; Nie, Yuexia

    2012-09-01

    To solve water pollution caused by oil spillage, a new sorbent was prepared by radiation-induced graft polymerization. Acrylate monomer was introduced to polypropylene nonwoven and hydrophobic groups were introduced by the grafting method. The grafting degree of sorbent was determined as a function of monomer concentration and solvent solubility for monomer. Fourier transform-infrared spectra and static contact angle measurements were used to characterize the chemical changes of the polypropylene nonwoven surface. The grafted sorbent showed a fast sorption rate and a maximum sorption capacity of 13.56 g/g for diesel oil, while the original polypropylene nonwoven was only 7.48 g/g. In addition, retention measurement and the reusability test were conducted to evaluate the suitability of the polypropylene-acrylate grafted nonwoven for the treatment of oil spillage.

  14. [INFLUENCE OF TITANIUM COATING ON THE BIOCOMPATIBILITY OF POLYPROPYLENE IMPLANTS].

    Science.gov (United States)

    Babichenko, I I; Kazantsev, A A; Titarov, D L; Shemyatovsky, K A; Ghevondian, N M; Melchenko, D; Alekhin, A I

    2016-01-01

    Comparative analysis of the proliferative activity of inflammatory cells and distribution of collagen types I and III was carried out around the net materials of polypropylene and titanium coating polypropylene using im- munohistochemical method and polarization microscopy. Experimental modeling of implanted mesh material were made in the soft tissues of the lumbar region of rats. On the 7th postoperative day, quantitative analysis of proliferating cells delected using antibodies to the Ki-67 protein showed, a significant decrease (p polypropylene (29.1 ± 5.7 %), when com- pared to similar figures of infiltrates in titanium coating polypropylene (33.6 ± 3.1 %). Similar patterns were found on the 30th day of the experiment--15.9 ± 4.3 and 26.9 ± 3.6%--respectively (p polypropylene was 1.085 ± 0.022 and this rati around materials of titanium coated polypropylene was higher--1.107 ± 0.013 (p = 0.017). On the 30th posto- perative day in the interface area ratio I/III collagen significantly increased and amounted to 1.174 ± 0.036 and 1.246 ± 0.102, respectively (p = 0.045). Assessing the impact of the use of titanium as a coating on the po- lypropylene, it can be argued that it promotes the formation of collagen I type and a more mature connective tis- sue around the mesh of the implants.

  15. Sorption capacity of plastic debris for hydrophobic organic chemicals.

    Science.gov (United States)

    Lee, Hwang; Shim, Won Joon; Kwon, Jung-Hwan

    2014-02-01

    The occurrence of microplastics (MPs) in the ocean is an emerging world-wide concern. Due to high sorption capacity of plastics for hydrophobic organic chemicals (HOCs), sorption may play an important role in the transport processes of HOCs. However, sorption capacity of various plastic materials is rarely documented except in the case of those used for environmental sampling purposes. In this study, we measured partition coefficients between MPs and seawater (KMPsw) for 8 polycyclic aromatic hydrocarbons (PAHs), 4 hexachlorocyclohexanes (HCHs) and 2 chlorinated benzenes (CBs). Three surrogate polymers - polyethylene, polypropylene, and polystyrene - were used as model plastic debris because they are the major components of microplastic debris found. Due to the limited solubility of HOCs in seawater and their long equilibration time, a third-phase partitioning method was used for the determination of KMPsw. First, partition coefficients between polydimethylsiloxane (PDMS) and seawater (KPDMSsw) were measured. For the determination of KMPsw, the distribution of HOCs between PDMS or plastics and solvent mixture (methanol:water=8:2 (v/v)) was determined after apparent equilibrium up to 12 weeks. Plastic debris was prepared in a laboratory by physical crushing; the median longest dimension was 320-440 μm. Partition coefficients between polyethylene and seawater obtained using the third-phase equilibrium method agreed well with experimental partition coefficients between low-density polyethylene and water in the literature. The values of KMPsw were generally in the order of polystyrene, polyethylene, and polypropylene for most of the chemicals tested. The ranges of log KMPsw were 2.04-7.87, 2.18-7.00, and 2.63-7.52 for polyethylene, polypropylene, and polystyrene, respectively. The partition coefficients of plastic debris can be as high as other frequently used partition coefficients, such as 1-octanol-water partition coefficients (Kow) and log KMPsw showed good linear

  16. The radiation degradation of polypropylene

    International Nuclear Information System (INIS)

    De Hollain, G.

    1977-04-01

    Polypropylene is used extensively in the manufacture of disposable medical devices because of its superior properties. Unfortunately this polymer does not lend itself well to radiation sterilization, undergoing serious degradation which affects the mechanical properties of the polymer. In this paper the effects of radiation on the mechanical and physical properties of polypropylene are discussed. A programme of research to minimize the radiation degradation of this polymer through the addition of crosslinking agents to counteract the radiation degradation is proposed. It is furthermore proposed that a process of annealing of the irradiated polymer be investigated in order to minimize the post-irradiation degradation of the polypropylene [af

  17. High Ion-Exchange Capacity Semihomogeneous Cation Exchange Membranes Prepared via a Novel Polymerization and Sulfonation Approach in Porous Polypropylene.

    Science.gov (United States)

    Jiang, Shanxue; Ladewig, Bradley P

    2017-11-08

    Semihomogeneous cation exchange membranes with superior ion exchange capacity (IEC) were synthesized via a novel polymerization and sulfonation approach in porous polypropylene support. The IEC of membranes could reach up to 3 mmol/g because of high mass ratio of functional polymer to membrane support. Especially, theoretical IEC threshold value agreed well with experimental threshold value, indicating that IEC could be specifically designed without carrying out extensive experiments. Also, sulfonate groups were distributed both on membrane surface and across the membranes, which corresponded well with high IEC of the synthesized membranes. In addition, the semifinished membrane showed hydrophobic property because of the formation of polystyrene. In contrast, the final membranes demonstrated super hydrophilic property, indicating the adequate sulfonation of polystyrene. Furthermore, when sulfonation reaction time increased, the conductivity of membranes also showed a tendency to increase, revealing the positive relationship between conductivity and IEC. Finally, the final membranes showed sufficient thermal stability for electrodialysis applications such as water desalination.

  18. Neutral polypropylene laser welding

    Science.gov (United States)

    Mandolfino, Chiara; Lertora, Enrico; Gambaro, Carla

    2016-10-01

    The joining of polymeric materials is a technology used in many industrial applications, from transport to telecommunications and the medical sector. A new technology for the joining of polymers is the laser welding process. In particular, fibre laser welding is a flexible technology which allows high process speed and the realization of good quality joints. Despite its application becoming more widespread in the production of assemblies of high precision, the application of laser technology for the welding of polymers has not been the subject of many studies up to now. This study focused on the welding of neutral polypropylene. The window process parameter was identified, without the use of additives to increase radiation absorption, and a mechanical characterization was conducted in order to evaluate the quality of the joints realized.

  19. Model of phase distribution of hydrophobic organic chemicals in cyclodextrin-water-air-solid sorbent systems as a function of salinity, temperature, and the presence of multiple CDs

    Science.gov (United States)

    Blanford, W. J.

    2013-12-01

    Environmental and other applications of cyclodextrins (CD) often require usage of high concentra- tion aqueous solutions of derivatized CDs. In an effort to reduce the costs, these studies also typically use technical grades where the purity of the CD solution and the degree of substitution has not been reported. Further, this grade of CD often included high levels of salt and it is commonly applied in high salinity systems. The mathematical models for water and air partitioning coefficients of hydrophobic organic chemicals (HOC) with CDs that have been used in these studies under-estimate the level of HOC within CDs. This is because those models (1) do not take into account that high concentrations of CDs result in significantly lower levels of water in solution and (2) they do not account for the reduction in HOC aqueous solubility due to the presence of salt. Further, because they have poor knowledge of the CD molar concentration in their solu- tions, it is difficult to draw comparisons between studies. Herein is developed a mathematical model where cyclo- dextrin is treated as a separate phase whose relative volume is calculated from its apparent molar volume in solution and the CD concentration of the solution. The model also accounts for the affects of temperature and the presence of salt in solution through inclusion of modified versions of the Van't Hoff and Setschenow equations. With these capabilities, additional equations have been developed for calculating HOC phase distribution in air-water-CD-solid sorbent systems for a single HOC and between water and CD for a system containing multiple HOCs as well as multiple types of cyclodextrin.

  20. Remarkably improved electrical insulating performances of lightweight polypropylene nanocomposites with fullerene

    Science.gov (United States)

    Dang, Bin; Hu, Jun; Zhou, Yao; He, Jinliang

    2017-11-01

    A polypropylene/fullerene nanocomposite was fabricated via solution processing with good dispersion of the fullerene nanoparticles. It was observed that a small amount of fullerene (~1 wt. ‰) can significantly improve the direct current (DC) electrical insulation performance (i.e. improved space charge distribution, greater DC dielectric breakdown strength, and larger DC volume resistivity) of polypropylene. Thermally stimulated depolarization current tests indicate that fullerene doping remarkably increases the deep trap density of pure polypropylene. The mechanisms by which the electrical properties of the polypropylene nanocomposites were improved are the introduction of deep traps and the high electron affinity of fullerene. The deep traps result from the interfaces between polypropylene and fullerene. This work provides a potential method to tailor lightweight nanodielectric materials with excellent electrical insulating performances.

  1. Subcutaneous implants of polypropylene filaments.

    Science.gov (United States)

    Liebert, T C; Chartoff, R P; Cosgrove, S L; McCuskey, R S

    1976-11-01

    Extruded filaments of unmodified polypropylene (PP) with and without antioxidant were implanted subcutaneously in hamsters in order to determine their rate of degradation. Specimens were removed periodically during a 5 month test period and analyzed by infrared spectroscopy and dynamic mechanical testing. The analyses show that degradation beigns to occur after only a few days. Although the reaction sequence is not known, several factors suggest that the in vivo degradation process is similar to autoxidation which occurs in air or oxygen. The infrared data indicate that the hydroxyl content of the implants increases at a rate of 0.061 mg/g polypropylene per day during the initiation phase of the reaction. An induction time of 108 days was extablished. Carbonyl bonds appear after an implantation time of 50--90 days and increase therafter. Mechanical tests indicate a decrease in the dynamic loss tangent, tan delta, during the first month of implantation for unmodified polypropylene. No change in the infrared spectra or tan delta was observed, however, for implants containing an antioxidant. Thus, it is apparent that polypropylene filaments implanted subcutaneously in hamsters degrade by an oxidation process which is retarded effectively by using an antioxidant. While the findings reported are specific to subcutaneous polypropylene implants, they suggest that degradation of other systems may involve similar processes. This notion suggests directions for further research on increasing the in vivo stability of synthetic polymers. Long-term effects of polymer implantation upon tissue were not studied in this work.

  2. Surface modification of polypropylene membrane by polyethylene glycol graft polymerization.

    Science.gov (United States)

    Abednejad, Atiye Sadat; Amoabediny, Ghasem; Ghaee, Azadeh

    2014-09-01

    Polypropylene hollow fiber microporous membranes have been used in a wide range of applications, including blood oxygenator. The hydrophobic feature of the polypropylene surface causes membrane fouling. To minimize fouling, a modification consisting of three steps: surface activation in H2 and O2 plasma, membrane immersion in polyethylene glycol (PEG) and plasma graft polymerization was performed. The membranes were characterized by contact angle measurement, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), tensile test, scanning electron microscopy (SEM) and atomic force microscopy (AFM). Oxygen transfer of modified membranes was also tested. The stability of grafted PEG was measured in water and in phosphate buffer saline (PBS) at 37°C. Blood compatibility of modified surfaces was evaluated by the platelet adhesion method. Water contact angel reduction from 110° to 72° demonstrates the enhanced hydrophilicity, and XPS results verify the presence of oxygenated functional groups due to the peak existence in 286 eV as a result of PEG grafting. The results clearly indicate that plasma graft-polymerization of PEG is an effective way for antifouling improvement of polypropylene membranes. Also, the results show that oxygen transfer changes in PEG grafted membranes are not significant. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Polypropylene mesh: evidence for lack of carcinogenicity

    Science.gov (United States)

    Moalli, Pamela; Brown, Bryan; Reitman, Maureen T. F.

    2016-01-01

    Tumors related to the implantation of surgical grade polypropylene in humans have never been reported. In this commentary we present a balanced review of the information on what is known regarding the host response to polypropylene and provide data as to why the potential for carcinogenicity of polypropylene mesh is exceedingly small. PMID:24614956

  4. Immobilization of surface active compounds on polymer supports using glow discharge processess. 1. Sodium dodecyl sulfate on poly(propylene)

    NARCIS (Netherlands)

    Terlingen, J.G.A.; Terlingen, Johannes G.A.; Feijen, Jan; Hoffman, Allan S.

    1993-01-01

    A new method has been developed in which a reversibly adsorbed layer of a surfactant (sodium dodecyl sulfate, SDS) is covalently immobilized in one step onto a hydrophobic substrate (poly(propylene), PP) by applying an argon plasma treatment. The adsorption of SDS from aqueous solutions onto PP

  5. Evaluation of polypropylene and poly (butylmethacrylate-co-hydroxyethylmethacrylate) nonwoven material as oil absorbent.

    Science.gov (United States)

    Zhao, Jian; Xiao, Changfa; Xu, Naiku

    2013-06-01

    Polypropylene (PP) and poly(butylmethacrylate-co-hydroxyethylmethacrylate) (PBMA-co-HEMA) nonwoven materials as oil absorbents have been fabricated for the first time via melt blown method. As-prepared nonwovens were investigated in terms of mass per unit area, density, air permeability, contact angle, and morphology observations for fiber diameter distribution and single fiber surface by a field emission scanning electron microscope. The nonwovens are demonstrated as fast and efficient absorbents for various kinds of oils with oil absorbency up to seven to ten times their own weight. The nonwovens show excellent water repulsion but superoleophilic properties. The measured contact angles for water and toluene are more than 127° and ca. 0°, respectively. The addition of PBMA-co-HEMA makes the nonwoven surface more hydrophobic while conserving superoleophilicity. Compared with PP nonwoven, broad diameter distribution of the blend nonwoven is attributed to poor melt fluidity of PBMA-co-HEMA. In terms of single fiber, coarse surface and the presence of point-like convexities lead to the fibers being more readily wetted by oil. More interesting, oil-water separation and oil recovery can be easily carried out by filter and absorption-desorption process, the recovered materials contained hardly any oil droplet and could be reused for next cycles.

  6. Torrefied biomass-polypropylene composites

    Science.gov (United States)

    Torrefied almond shells and wood chips were incorporated into polypropylene as fillers to produce torrefied biomass-polymer composites. Response surface methodology was used to examine the effects of filler concentration, filler size, and lignin factor (relative lignin to cellulose concentration) on...

  7. 21 CFR 878.5010 - Nonabsorbable polypropylene surgical suture.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nonabsorbable polypropylene surgical suture. 878... Nonabsorbable polypropylene surgical suture. (a) Identification. Nonabsorbable polypropylene surgical suture is... known as polypropylene and is indicated for use in soft tissue approximation. The polypropylene surgical...

  8. Prediction of protein retention times in hydrophobic interaction chromatography by robust statistical characterization of their atomic-level surface properties.

    NARCIS (Netherlands)

    Hanke, A.T.; Klijn, M.E.; Verhaert, P.D.; Wielen, van der L.; Ottens, M.; Eppink, M.H.M.; Sandt, van de E.J.A.X.

    2016-01-01

    The correlation between the dimensionless retention times (DRT) of proteins in hydrophobic interaction chromatography (HIC) and their surface properties were investigated. A ternary atomic-level hydrophobicity scale was used to calculate the distribution of local average hydrophobicity across the

  9. Novel PEPA-functionalized graphene oxide for fire safety enhancement of polypropylene

    International Nuclear Information System (INIS)

    Xu, Jia You; Liu, Jie; Li, Kai Dan; Miao, Lei; Tanemura, Sakae

    2015-01-01

    Polypropylene (PP) is a general-purpose plastic, but some applications are constrained by its high flammability. Thus, flame retardant PP is urgently demanded. In this article, intumescent flame retardant PP (IFRPP) composites with enhanced fire safety were prepared using 1-oxo-4-hydroxymethyl-2,6,7-trioxa-1-phosphabicyclo [2.2.2] octane (PEPA) functionalized graphene oxide (PGO) as synergist. The PGO was prepared through a mild chemical reaction by the covalent attachment of a caged-structure organic compound, PEPA, onto GO nanosheets using toluene diisocynate (TDI) as the intermediary agent. The novel PEPA-functionalized graphene oxide not only improves the heat resistance of GO but also converts GO and PEPA from hydrophobic to hydrophilic materials, which leads to even distribution in PP. In our case, 7 wt% addition of PGO as one of the fillers for IFRPP composites significantly reduces its inflammability and fire hazards when compared with PEPA, by the improvement of first release rate peak (PHRR), total heat release, first smoke release rate peak (PSRR) and total smoke release, suggesting its great potential as the IFR synergist in industry. The reason is mainly attributed to the barrier effect of the unburned graphene sheets, which protects by the decomposition products of PEPA and TDI, promotes the formation of graphitized carbon and inhibits the heat and gas release. (paper)

  10. Novel PEPA-functionalized graphene oxide for fire safety enhancement of polypropylene

    Science.gov (United States)

    You Xu, Jia; Liu, Jie; Li, Kai Dan; Miao, Lei; Tanemura, Sakae

    2015-04-01

    Polypropylene (PP) is a general-purpose plastic, but some applications are constrained by its high flammability. Thus, flame retardant PP is urgently demanded. In this article, intumescent flame retardant PP (IFRPP) composites with enhanced fire safety were prepared using 1-oxo-4-hydroxymethyl-2,6,7-trioxa-1-phosphabicyclo [2.2.2] octane (PEPA) functionalized graphene oxide (PGO) as synergist. The PGO was prepared through a mild chemical reaction by the covalent attachment of a caged-structure organic compound, PEPA, onto GO nanosheets using toluene diisocynate (TDI) as the intermediary agent. The novel PEPA-functionalized graphene oxide not only improves the heat resistance of GO but also converts GO and PEPA from hydrophobic to hydrophilic materials, which leads to even distribution in PP. In our case, 7 wt% addition of PGO as one of the fillers for IFRPP composites significantly reduces its inflammability and fire hazards when compared with PEPA, by the improvement of first release rate peak (PHRR), total heat release, first smoke release rate peak (PSRR) and total smoke release, suggesting its great potential as the IFR synergist in industry. The reason is mainly attributed to the barrier effect of the unburned graphene sheets, which protects by the decomposition products of PEPA and TDI, promotes the formation of graphitized carbon and inhibits the heat and gas release.

  11. Additive manufacturing with polypropylene microfibers.

    Science.gov (United States)

    Haigh, Jodie N; Dargaville, Tim R; Dalton, Paul D

    2017-08-01

    The additive manufacturing of small diameter polypropylene microfibers is described, achieved using a technique termed melt electrospinning writing. Sequential fiber layering, which is important for accurate three-dimensional fabrication, was achieved with the smallest fiber diameter of 16.4±0.2μm obtained. The collector speed, temperature and melt flow rate to the nozzle were optimized for quality and minimal fiber pulsing. Of particular importance to the success of this method is appropriate heating of the collector plate, so that the electrostatically drawn filament adheres during the direct-writing process. By demonstrating the direct-writing of polypropylene, new applications exploiting the favorable mechanical, stability and biocompatible properties of this polymer are envisaged. Copyright © 2017. Published by Elsevier B.V.

  12. Buttock Lifting with Polypropylene Strips.

    Science.gov (United States)

    Ballivian Rico, José; Esteche, Atilio; Hanke, Carlos José Ramírez; Ribeiro, Ricardo Cavalcanti

    2016-04-01

    The purpose of this study was to evaluate the results of gluteal suspension with polypropylene strips. Ninety healthy female patients between the ages of 20 and 50 years (mean, 26 years), who wished to remodel their buttocks from December 2004 to February 2013 were studied retrospectively. All 90 patients were treated with 2 strips of polypropylene on each buttock using the following procedures: 27 (30 %) patients were suspended with polypropylene strips; 63 (70 %) patients were treated with tumescent liposuction in the sacral "V", lower back, supragluteal regions, and flanks to improve buttocks contour (aspirated volume of fat from 350 to 800 cc); 16 (18 %) patients underwent fat grafting in the subcutaneous and intramuscular layers (up to 300 cc in each buttock to increase volume); 5 (6 %) patients received implants to increase volume; and 4 (4.4 %) patients underwent removal and relocation of intramuscular gluteal implants to improve esthetics. Over an 8-year period, 90 female patients underwent gluteal suspension surgeries. Good esthetic results without complications were obtained in 75 of 90 (84 %) cases. Complications occurred in 15 of 90 (16.6 %) patients, including strip removal due to postoperative pain in 1 (1.1 %) patient, and seroma in both subgluteal sulci in 3 (3.3 %) patients. The results of this study performed in 90 patients over 8 years showed that the suspension with polypropylene strips performed as a single procedure or in combination with other cosmetic methods helps to enhance and lift ptosed gluteal and paragluteal areas. This journal requires that the authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

  13. Physical and dielectric properties of irradiated polypropylene and poly(ethylene terephthalate)

    International Nuclear Information System (INIS)

    Kita, H.; Okamoto, K.

    1986-01-01

    The effect of high-energy electron irradiation in air and in nitrogen on the physical and dielectric properties of polypropylene and poly(ethylene terephthalate) has been studied by measurements of electric strength, dielectric constant, dissipation factor, tensile strength, gel fraction and molecular weight distribution. Electric strength of polypropylene was improved by irradiation, while dielectric properties of poly(ethylene terephthalate) were virtually unaffected by irradiation of 1.0-20 Mrad. Possible mechanisms for increasing electric strength are discussed from the point of view of degradation and oxidation taking place simultaneously with crosslinking of polypropylene. The maximum dose level to improve the electric strength of polypropylene is determined to be about 5 Mrad. (author)

  14. Thermal Degradation Kinetics of Isotactic and Atactic Polypropylene

    OpenAIRE

    Kumar, Ravi; Madras, Giridhar

    2003-01-01

    The thermal degradation of isotactic and atactic polypropylene was investigated in bulk and in solution. The degradation in bulk was studied with thermogravimetric analysis, and the degradation in solution was studied by the dissolution of the polymer in paraffin oil. The degradation in solution was investigated from 230 to $350^ \\circ C$. The effect of the hydrogen donor on the degradation of the polymer in solution was also studied at $350^ \\circ C$. Continuous distribution kinetics were em...

  15. Elaboration of highly hydrophobic polymeric surface — a potential strategy to reduce the adhesion of pathogenic bacteria?

    Energy Technology Data Exchange (ETDEWEB)

    Poncin-Epaillard, F., E-mail: fabienne.poncin-epaillard@univ-lemans.fr [Institut des Molécules et Matériaux du Mans (IMMM), département Polymères, Colloïdes et Interfaces, UMR CNRS 6283 Université LUNAM, av. O. Messiaen, 72085 Le Mans (France); Herry, J.M. [INRA-AgroParisTech, UMR 1319 MICALIS, équipe B2HM, 25 avenue de la République, 91300 Massy (France); Marmey, P.; Legeay, G. [CTTM, 20 rue Thalès de Milet 72000 Le Mans (France); Debarnot, D. [Institut des Molécules et Matériaux du Mans (IMMM), département Polymères, Colloïdes et Interfaces, UMR CNRS 6283 Université LUNAM, av. O. Messiaen, 72085 Le Mans (France); Bellon-Fontaine, M.N. [INRA-AgroParisTech, UMR 1319 MICALIS, équipe B2HM, 25 avenue de la République, 91300 Massy (France)

    2013-04-01

    Different polymeric surfaces have been modified in order to reach a high hydrophobic character, indeed the superhydrophobicity property. For this purpose, polypropylene and polystyrene have been treated by RF or μwaves CF{sub 4} plasma with different volumes, the results were compared according to the density of injected power. The effect of pretreatment such as mechanical abrasion or plasma activation was also studied. The modified surfaces were shown as hydrophobic, or even superhydrophobic depending of defects density. They were characterized by measurement of wettability and roughness at different scales, i.e. macroscopic, mesoscopic and atomic. It has been shown that a homogeneous surface at the macroscopic scale could be heterogeneous at lower mesoscopic scale. This was associated with the crystallinity of the material. The bioadhesion tests were performed with Gram positive and negative pathogenic strains: Listeria monocytogenes, Pseudomonas aeruginosa and Hafnia alvei. They have demonstrated an antibacterial efficiency of very hydrophobic and amorphous PS treated for all strains tested and a strain-dependent efficiency with modified PP surface being very heterogeneous at the mesoscopic scale. Thus, these biological results pointed out not only the respective role of the surface chemistry and topography in bacterial adhesion, but also the dependence on the peaks and valley distribution at bacteria dimension scale. Highlights: ► Simple, eco-friendly modification of polymers leading to highly hydrophobic property ► Plasma treatment inducing surface fluorination and roughness ► Study of non-adhesion of different types of bacteria onto such polymeric surfaces ► Dependence of their non-adhesion on surface topography whatever their characteristics.

  16. Photo-grafting polymerization, microstructure and hydrophilicity of spun-blown polypropylene nonwoven fabrics

    Science.gov (United States)

    Zhu, X.; Shi, X.; Pan, Z.; Fang, Y.; Wu, Y.

    2017-10-01

    The non-polarity and poor hygroscopicity of polypropylene (PP) impede its wide application. The polar monomers, glycidyl methacrylate (GMA), hydroxyethyl methacrylate (HEMA) and methacrylamido propyl trimethyl ammonium chloride (MAPTAC) were grafted onto the spun-blown polypropylene nonwoven fabric (SMS) under ultraviolet irradiation, and the subsequent functionalization of the grafted fabrics was implemented as well. The results show that both the monomer and the polymer of HEMA are hydrophilic and are grafted uniformly onto the fabric surface as well as into the melt-blown layer with the hydrophilicity being enhanced slightly, whereas the hydrophilic monomer yet the hydrophobic polymer of MAPTAC prefer to be grafted onto the melt-blown fibre with the wicking effect. Both the monomer and the polymer of GMA are hydrophobic and are favourably grafted into the meltblown layer with no hydrophilicity being improved. The grafting diminishes the fibre crystallinity and melting temperature, especially significant for the graftings of hydrophobic polymers, PGMA and PMAPTAC. All the grafting reduces the water flux of the grafted fabrics no matter what the grafting polymers are hydrophilicity or hydrophobicity not.

  17. Distribution of Candida albicans and non-albicans Candida species in oral candidiasis patients: Correlation between cell surface hydrophobicity and biofilm forming activities.

    Science.gov (United States)

    Muadcheingka, Thaniya; Tantivitayakul, Pornpen

    2015-06-01

    The purposes of this investigation were to study the prevalence of Candida albicans and non-albicans Candida (NAC) species from oral candidiasis patients and evaluate the cell surface hydrophobicity (CSH) and biofilm forming capacity of the clinical isolates Candida species from oral cavity. This study identified a total of 250 Candida strains isolated from 207 oral candidiasis patients with PCR-RFLP technique. CSH value, total biomass of biofilm and biofilm forming ability of 117 oral Candida isolates were evaluated. C. albicans (61.6%) was still the predominant species in oral candidiasis patients with and without denture wearer, respectively, followed by C. glabrata (15.2%), C. tropicalis (10.4%), C. parapsilosis (3.2%), C. kefyr (3.6%), C. dubliniensis (2%), C. lusitaniae (2%), C. krusei (1.6%), and C. guilliermondii (0.4%). The proportion of mixed colonization with more than one Candida species was 18% from total cases. The relative CSH value and biofilm biomass of NAC species were greater than C. albicans (poral isolates NAC species had biofilm forming ability, whereas 78% of C. albicans were biofilm formers. Furthermore, the significant difference of relative CSH values between biofilm formers and non-biofilm formers was observed in the NAC species (poral cavity was gradually increasing. The possible contributing factors might be high cell surface hydrophobicity and biofilm forming ability. The relative CSH value could be a putative factor for determining biofilm formation ability of the non-albicans Candida species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Wetting behavior of flax fibers as reinforcement for polypropylene.

    Science.gov (United States)

    Aranberri-Askargorta, Ibon; Lampke, Thomas; Bismarck, Alexander

    2003-07-15

    The wetting behavior of several flax (cellulose as reference) and polypropylene fibers is characterized by measuring the wetting rates (penetration velocities) of a series of liquids using the capillary rise technique. This present paper aims to provide a deeper understanding of the complex nature of natural fibers and their surface properties. The fiber surface tensions are estimated from plots of the normalized wetting rate as a function of the surface tension of the liquids assuming, in analogy to Zisman's method, that the maximum of the normalized wetting rate corresponds to the solid surface tension. The estimated surface tensions of the investigated flax fibers indicate that all the fibers are quite "hydrophobic." The method used to separate the fibers from the rest of the plants has a large influence on the estimated fiber surface tensions. In the case of polypropylene (PP) fibers, the estimated surface tension corresponds well with literature data. Grafting small amounts of maleic acid anhydrite (MAH) onto the PP surfaces will not affect the wetting behavior and, therefore, the surface tension, whereas grafting larger amounts (10 wt%) of MAH causes the polymer surface tension to increase significantly. Additional pH-dependent zeta-potential measurements show that even the "pure" PP-fibers contain acidic surface functions, possibly due to further processing at elevated temperatures (thermal degradation or other aging processes).

  19. The Performance of Barium Sulfate Nanoparticles/polypropylene Hybrid Multifilament

    Science.gov (United States)

    Li, Ying; Wang, Xuanjun; Mu, Xiaoxi; Zhang, Shujuan

    2012-01-01

    Nanosize barium sulfate (BaSO4) particles prepared with dodecyl benzene sulfonic acid (DBSA) in ethanol-water reaction system are used to prepare BaSO4/polypropylene (PP) nanocomposites by melt mixing method. It is then made into hybrid fibers by melt spinning and subsequent drawing with different ratios. The hybrid fibers are characterized by rheology, morphology, thermal stability and mechanical properties, respectively. The results indicate that the DBSA-modified BaSO4 can improve the spinnability of BaSO4/PP hybrid multifilament even at high BaSO4 nanoparticles concentration. DBSA can be used as compatibilizer to enhance the interface interaction of BaSO4/PP nanocomposites, because DBSA contains both hydrophobicity long alkyl chain and hydrophilic sulfonic group. Therefore, it can improve the performances of BaSO4/PP hybrid multifilament.

  20. Argon plasma irradiation of polypropylene

    Czech Academy of Sciences Publication Activity Database

    Slepička, P.; Vasina, A.; Kolská, Z.; Luxbacher, T.; Malinský, Petr; Macková, Anna; Švorčík, V.

    2010-01-01

    Roč. 268, 11-12 (2010), s. 2111-2114 ISSN 0168-583X. [19th International conference on Ion beam analysis. Cambridge, 07.09.2009-11.09.2009] R&D Projects: GA ČR GA106/09/0125; GA MŠk(CZ) LC06041; GA AV ČR(CZ) KAN400480701 Institutional research plan: CEZ:AV0Z10480505 Keywords : Polypropylene * Plasma treatment * RBS Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.042, year: 2010

  1. Supercritical CO2 Foaming of Radiation Cross-Linked Isotactic Polypropylene in the Presence of TAIC

    Directory of Open Access Journals (Sweden)

    Chen-Guang Yang

    2016-12-01

    Full Text Available Since the maximum foaming temperature window is only about 4 °C for supercritical CO2 (scCO2 foaming of pristine polypropylene, it is important to raise the melt strength of polypropylene in order to more easily achieve scCO2 foaming. In this work, radiation cross-linked isotactic polypropylene, assisted by the addition of a polyfunctional monomer (triallylisocyanurate, TAIC, was employed in the scCO2 foaming process in order to understand the benefits of radiation cross-linking. Due to significantly enhanced melt strength and the decreased degree of crystallinity caused by cross-linking, the scCO2 foaming behavior of polypropylene was dramatically changed. The cell size distribution, cell diameter, cell density, volume expansion ratio, and foaming rate of radiation-cross-linked polypropylene under different foaming conditions were analyzed and compared. It was found that radiation cross-linking favors the foamability and formation of well-defined cell structures. The optimal absorbed dose with the addition of 2 wt % TAIC was 30 kGy. Additionally, the foaming temperature window was expanded to about 8 °C, making the handling of scCO2 foaming of isotactic polypropylene much easier.

  2. ECM hydrogel coating mitigates the chronic inflammatory response to polypropylene mesh.

    Science.gov (United States)

    Faulk, Denver M; Londono, Ricardo; Wolf, Matthew T; Ranallo, Christian A; Carruthers, Christopher A; Wildemann, Justin D; Dearth, Christopher L; Badylak, Stephen F

    2014-10-01

    Polypropylene has been used as a surgical mesh material for several decades. This non-degradable synthetic polymer provides mechanical strength, a predictable host response, and its use has resulted in reduced recurrence rates for ventral hernia and pelvic organ prolapse. However, polypropylene and similar synthetic materials are associated with a chronic local tissue inflammatory response and dense fibrous tissue deposition. These outcomes have prompted variations in mesh design to minimize the surface area interface and increase integration with host tissue. In contrast, biologic scaffold materials composed of extracellular matrix (ECM) are rapidly degraded in-vivo and are associated with constructive tissue remodeling and minimal fibrosis. The objective of the present study was to assess the effects of an ECM hydrogel coating on the long-term host tissue response to polypropylene mesh in a rodent model of abdominal muscle injury. At 14 days post implantation, the ECM coated polypropylene mesh devices showed a decreased inflammatory response as characterized by the number and distribution of M1 macrophages (CD86+/CD68+) around mesh fibers when compared to the uncoated mesh devices. At 180 days the ECM coated polypropylene showed decreased density of collagen and amount of mature type I collagen deposited between mesh fibers when compared to the uncoated mesh devices. This study confirms and extends previous findings that an ECM coating mitigates the chronic inflammatory response and associated scar tissue deposition characteristic of polypropylene. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Improvement of physico-mechanical properties of coir-polypropylene biocomposites by fiber chemical treatment

    International Nuclear Information System (INIS)

    Mir, Samia Sultana; Nafsin, Nazia; Hasan, Mahbub; Hasan, Najib; Hassan, Azman

    2013-01-01

    Highlights: • Coir-polypropylene biocomposites were manufactured using hot press technique. • OH groups in raw coir cellulose were converted to OH−Cr groups during treatment. • SEM indicates improved interfacial adhesion between coir and PP upon treatment. • Chemically treated composites yielded the best set of mechanical properties. - Abstract: In preparing polymer–matrix composites, natural fibers are widely used as “reinforcing agents” because of their biodegradable characteristic. In present research, coir fiber reinforced polypropylene biocomposites were manufactured using hot press method. In order to increase the compatibility between the coir fiber and polypropylene matrix, raw coir fiber was chemically treated with basic chromium sulfate and sodium bicarbonate salt in acidic media. Both raw and treated coir at different fiber loading (10, 15 and 20 wt%) were utilized during composite manufacturing. During chemical treatment, hydrophilic –OH groups in the raw coir cellulose were converted to hydrophobic –OH−Cr groups. Microstructural analysis and mechanical tests were conducted. Scanning electron microscopic analysis indicates improvement in interfacial adhesion between the coir and polypropylene matrix upon treatment. Chemically treated specimens yielded the best set of mechanical properties. On the basis of fiber loading, 20% fiber reinforced composites had the optimum set of mechanical properties among all composites manufactured

  4. Electret Stability Related to the Crystallinity in Polypropylene

    DEFF Research Database (Denmark)

    Thyssen, Anders; Almdal, Kristoffer; Thomsen, Erik Vilain

    2015-01-01

    Through mixing isotactic-polypropylene (i-PP) and atactic-polypropylene (a-PP), we have demonstrated the importance of the crystallinity in polypropylene as an electret material. A high degree of crystallinity in polypropylene, used as an electret, gives a better charge stability towards...

  5. Role of textile substrate hydrophobicity on the adsorption of hydrosoluble nonionic block copolymers.

    Science.gov (United States)

    Song, Junlong; Salas, Carlos; Rojas, Orlando J

    2015-09-15

    The adsorption of polyalkylene glycols and co-polymers of ethylene oxide and propylene oxide on substrates relevant to textiles with varying surface energies (cellulose, polypropylene, nylon and polyester) was studied by using quartz crystal microgravimetry. Langmuirian-type isotherms were observed for the adsorption profiles of nonionic block polymers of different architectures. The affinity with the surfaces is discussed based on experimental observations, which highlights the role of hydrophobic effects. For a given type of block polymer, micellar and monomeric adsorption is governed by the balance of polymer structure (mainly, chain length of hydrophobic segments) and substrate's surface energy. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Production and properties of polypropylene track membranes

    International Nuclear Information System (INIS)

    Kravets, L.I.; Dmitriev, S.N.; Apel', P.Yu.

    1995-01-01

    The results of the method of manufacturing the polypropylene track membranes produced by physico-chemical treatment under irradiation of accelerated heavy ions of polymer films are given. The 'Torayfan' (Japan) biaxially oriented polypropylene films 10 μm in thickness have been used. The developed method allows to produce membranes 0.1-0.2 μm in diameter and with more enhanced structural and physico-chemical properties. Polypropylene track membranes of a novel sample are characterized by high uniformity of pore sizes in magnitude, significant mechanical strength, increased thermostability and resistance in agressive media. It opens new fields for their usage. (author). 16 refs., 5 figs., 4 tabs

  7. Water and water vapor sorption studies in polypropylene-zeolite composites

    OpenAIRE

    Pehlivan, H.; Özmıhçı, Filiz; Tıhmınlıoğlu, Funda; Balköse, Devrim; Ülkü, Semra

    2003-01-01

    Water and water vapor sorption to porous polypropylene-zeolite composites prepared by hot pressing have been studied as a function of zeolite loading. This work presents the first report on the effect of the zeolite as a filler on the water-sorption properties of PP composites. Water swelling experiments were conducted at 25°C using pure PP and PP-zeolite films samples having different zeolite loadings (6-40 wt %). Because PP is a hydrophobic polymer, it does not sorp any water, but the compo...

  8. Folate and CD44 receptors dual-targeting hydrophobized hyaluronic acid paclitaxel-loaded polymeric micelles for overcoming multidrug resistance and improving tumor distribution.

    Science.gov (United States)

    Liu, Yanhua; Sun, Jin; Lian, He; Cao, Wen; Wang, Yongjun; He, Zhonggui

    2014-05-01

    The drug efflux mediated by P-glycoprotein (P-gp) transporter is one of the important factors responsible for multidrug resistance (MDR), and then the efficient intracellular drug delivery is an important strategy to overcome MDR of tumor cells. We describe and compare CD44 receptor single-targeting and folate (FA), CD44 receptors dual-targeting hyaluronic acid-octadecyl (HA-C18 ) micellar formulations to overcome MDR of tumor cells and to improve tumor distribution. In comparison with Taxol solution, the cytotoxicity of paclitaxel (PTX) loaded in HA-C18 and FA-HA-C18 micelles against drug-resistant tumor cells was improved significantly because of the increased intracellular delivery by active receptor-mediated endocytosis. Compared with the single-targeting micelles, dual-targeting micelles possessed better MDR-overcoming performance. Pharmacokinetic study demonstrated HA-C18 and FA-HA-C18 PTX-loaded micelles possessed much longer circulation and moderately larger AUC than Taxol solution. Above all, the tumor distribution in MCF-7 tumor-bearing mice of PTX encapsulated in HA-C18 and FA-HA-C18 micelles were 2.8 and 4.0 times higher than that of Taxol solution. It was concluded that dual-targeting FA-HA-C18 micelles demonstrate excellent MDR-overcoming ability and improved tumor distribution, and provide a novel effective nanoplatform for anticancer drug delivery in cancer chemotherapy. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. Highly Conductive Polypropylene-Graphene Nonwoven Composite via Interface Engineering.

    Science.gov (United States)

    Pan, Qin; Shim, Eunkyoung; Pourdeyhimi, Behnam; Gao, Wei

    2017-08-01

    Here we report a highly conductive polypropylene-graphene nonwoven composite via direct coating of melt blown polypropylene (PP) nonwoven fabrics with graphene oxide (GO) dispersions in N,N-dimethylformamide (DMF), followed by the chemical reduction of GO with hydroiodic acid (HI). GO as an amphiphilic macromolecule can be dispersed in DMF homogeneously at a concentration of 5 mg/mL, which has much lower surface tension (37.5 mN/m) than that of GO in water (72.9 mN/m, at 5 mg/mL). The hydrophobic PP nonwoven has a surface energy of 30.1 mN/m, close to the surface tension of GO in DMF. Therefore, the PP nonwoven can be easily wetted by the GO/DMF dispersion without any pretreatment. Soaking PP nonwoven in a GO/DMF dispersion leads to uniform coatings of GO on PP-fiber surfaces. After chemical reduction of GO to graphene, the resulting PP/graphene nonwoven composite offers an electrical conductivity of 35.6 S m -1 at graphene loading of 5.2 wt %, the highest among the existing conductive PP systems reported, indicating that surface tension of coating baths has significant impact on the coating uniformity and affinity. The conductivity of our PP/graphene nonwoven is also stable against stirring washing test. In addition, here we demonstrate a monolithic supercapacitor derived from the PP-GO nonwoven composite by using a direct laser-patterning process. The resulted sandwich supercapacitor shows a high areal capacitance of 4.18 mF/cm 2 in PVA-H 2 SO 4 gel electrolyte. The resulting highly conductive or capacitive PP/graphene nonwoven carries great promise to be used as electronic textiles.

  10. Multi response optimization of sheet forming of Kenaf-Polypropylene composites using grey based fuzzy algorithm

    Science.gov (United States)

    Oktariani, Erfina; Istikowati, Rita; Tomo, Hendro Sat Setijo; Rizal, Rafliansyah; Pratama, Yosea

    2018-02-01

    Composites from natural fiber reinforcement are developed as the alternative sheet materials of plastic composite for small-size bodywork parts in automotive industries. Kenaf fiber is selected as the reinforcement of plastic composite. Press forming of Kenaf-Polypropylene is experimentally produced in this study. The aim of this study is to obtain the optimal factor of the process of sheet forming of Kenaf-Polypropylene. The Kenaf delignified is cut into 5 cm lengths and distributed on the surface of Polypropylene sheet for 3 and 5 ply layers. The layers of Kenaf-Polypropylene then pressed by hot press at 190 and 210°C, 40 and 50 bar, for 3 and 5 minutes. However, there are limitations in handling multi responses in design of experiments. The application of the fuzzy logic theory to the grey relational analysis may further develop its performance in solving multi-response problems for process parameter optimization. The layer of Kenaf and Polypropylene, temperature, the duration of hot press and pressure are factors that affect the process. The result of experimental investigation and as well as analysis, shows that the best combination values were 3 ply layer, 210°C, 5 minutes of hot press and 50 bar.

  11. Characterization of calcium carbonate obtained from oyster and mussel shells and incorporation in polypropylene

    Directory of Open Access Journals (Sweden)

    Michele Regina Rosa Hamester

    2012-04-01

    Full Text Available There is a high content of calcium carbonate in mussel and oyster shells, which can be used in the formulation of medicine, in construction or as filler in polymer materials. This work has as its main objective to obtain calcium carbonate from mussel and oyster shells and used as filler in polypropylene compared their properties with polypropylene and commercial calcium carbonate composites. The shellfish was milling and heated at 500 ºC for 2 hours. The powder obtained from shellfish were characterized by scanning electron microscopy (SEM, X-ray fluorescence, particle size distribution and abrasiveness and compared with commercial CaCO3 and mixed with polypropylene. The thermal and mechanical properties of polypropylene with CaCO3 obtained from oyster and mussel shells and with commercial CaCO3 were analysed. The results showed that CaCO3­ can be obtained from oyster and mussel shell and is technically possible to replace the commercial CaCO3 for that obtained from the shells of shellfish in polypropylene composites.

  12. Interfacial enhancement of polypropylene composites modified with sorbitol derivatives and siloxane-silsesquioxane resin

    Energy Technology Data Exchange (ETDEWEB)

    Dobrzyńska-Mizera, Monika, E-mail: monika.dobrzynska-mizera@doctorate.put.poznan.pl; Sterzyński, Tomasz [Poznan University of Technology, Institute of Materials Technology, Polymer Division, Piotrowo, 3, 61-138 Poznan (Poland); Dutkiewicz, Michał [Centre for Advanced Technologies, Adam Mickiewicz University, Umultowska 89 C, 61-614 Poznan (Poland); Di Lorenzo, Maria Laura [Consiglio Nazionale delle Ricerche, Istituto per i Polimeri, Compositi e Biomateriali, c/o Comprensorio Olivetti, Via Campi Flegrei, 34, 80078 Pozzuoli (Italy)

    2015-12-17

    Composites based on polypropylene (iPP) modified with a sorbitol derivative (NX8000) and siloxane-silsesquioxane resin (SiOPh) containing maleated polypropylene (MAPP) as compatibilizer were prepared by melt extrusion. Calorimetric investigations were carried out using differential scanning calorimetry (DSC), whereas the morphological and mechanical properties were investigated by scanning electron microscopy (SEM) and static tensile tests. DSC measurements revealed no influence of SiOPh and a slight effect of MAPP addition on the crystallization kinetics of polypropylene. Additionally, the introduction of MAPP into the iPP+NX8000+SiOPh composites increased plastic properties of the samples. All the above was attributed to the compatibilizing effect of MAPP which improved interfacial adhesion between iPP, NX8000 and SiOPh. This phenomenon was also confirmed by the SEM images illustrating more homogenous distribution of the filler in the compatibilized samples.

  13. Water on a Hydrophobic surface

    Science.gov (United States)

    Scruggs, Ryan; Zhu, Mengjue; Poynor, Adele

    2012-02-01

    Hydrophobicity, meaning literally fear of water, is exhibited on the surfaces of non-stick cooking pans and water resistant clothing, on the leaves of the lotus plan, or even during the protein folding process in our bodies. Hydrophobicity is directly measured by determining a contact angle between water and an objects surface. Associated with a hydrophobic surface is the depletion layer, a low density region approximately 0.2 nm thick. We study this region by comparing data found in lab using surface plasmon resonance techniques to theoretical calculations. Experiments use gold slides coated in ODT and Mercapto solutions to model both hydrophobic and hydrophilic surfaces respectively.

  14. Spatially Resolved Characterization of Cellulose Nanocrystal-Polypropylene Composite by Confocal Raman Microscopy

    Science.gov (United States)

    Umesh P. Agarwal; Ronald Sabo; Richard S. Reiner; Craig M. Clemons; Alan W. Rudie

    2012-01-01

    Raman spectroscopy was used to analyze cellulose nanocrystal (CNC)–polypropylene (PP) composites and to investigate the spatial distribution of CNCs in extruded composite filaments. Three composites were made from two forms of nanocellulose (CNCs from wood pulp and the nanoscale fraction of microcrystalline cellulose) and two of the three composites investigated used...

  15. Chapter 1.4: Spatially Resolved Characterization of CNC-Polypropylene composite by Confocal Raman Microscopy

    Science.gov (United States)

    Umesh Agarwal; Ronald Sabo; Richard Reiner; Craig Clemons; Alan Rudie

    2013-01-01

    Raman spectroscopy was used to analyze cellulose nanocrystal (CNC)-polypropylene (PP) composites and to investigate the spatial distribution of CNCs in extruded composite filaments. Three composites were made from two forms of nanocellulose (CNCs from wood pulp and the nanoscale fraction of microcrystalline cellulose), and two of the three composites...

  16. Design Fatigue Lives of Polypropylene Fibre Reinforced Polymer Concrete Composites

    Directory of Open Access Journals (Sweden)

    Raman Bedi

    2014-09-01

    Full Text Available Flexural fatigue behavior of Poly-propylene fibre reinforced polymer concrete composites (PFRPCC has been investigated at various stress levels and the statistical analysis of the data thus obtained has been carried out. Polymer Concrete Composite (PCC samples without addition of any type of fibres were also tested for flexural fatigue.  Forty specimens of PCC and One hundred and Forty One specimens of PFRPCC containing 0.5%, 1.0% and 2.0% polypropylene fibres were tested in fatigue using a MTS servo controlled test system. Fatigue life distributions of PCC as well as PFRPCC are observed to approximately follow a two parameter Weibull distribution with correlation coefficient exceeding 0.9. The parameters of the Weibull distribution have been obtained by various methods. Failure probability, which is an important parameter in the fatigue design of materials, has been used to obtain the design fatigue lives for the material. Comparison of design fatigue life of PCC and PFRPCC has been carried out and it is observed that addition of fibres enhances the design fatigue life of PCC.

  17. Aksa plans polypropylene joint venture

    International Nuclear Information System (INIS)

    Alperowicz, N.

    1992-01-01

    Turkish acrylic fiber maker Aksa (Yalova), part of the Akkok textile conglomerate, is studying construction of a world-scale polypropylene (PP) plant as part of its diversification plans. The company says it is engaged in discussions with three 'multinations in the PP business' on the possibility of a joint venture. One of the firms is understood to be Amoco. Aksa is looking at three possible locations for the 100,000 m.t.-150,000 m.t./year plant: Yalova, near Istanbul, where its existing plants are located; Zonguldak, on the Black Sea coast; and within one of the existing complexes or a new site belonging to state-owned Petkim. Aksa has not yet discussed that option with Petkim, which recently received approval to build a $2.5-billion petrochemical complex. The Aksa PP plant would cost about $100 million and would use propylene from world markets. The onstream date depends on Aksa's ability to link up with a foreign partner, but it hopes to complete the unit within three years. Turkey has only one PP plant, a 65,000-m.t./year Petkim unit at Aliaga. The domestic market is currently two to three times that amount and is growing. Petkim also plans a 200,000-m.t./year PP plant as part of its new complex

  18. Facile synthesis of flexible macroporous polypropylene sponges for separation of oil and water

    Science.gov (United States)

    Wang, Guowei; Uyama, Hiroshi

    2016-02-01

    Oil spill disasters always occur accidentally, accompanied by the release of plenty of crude oil that could spread quickly over a wide area, creating enormous damage to the fragile marine ecological system. Therefore, the facile large-scale synthesis of hydrophobic three-dimensional (3-D) porous sorbents from low cost raw materials is in urgent demand. In this study, we report the facile template-free synthesis of polypropylene (PP) sponge by using a thermally-induced phase separation (TIPS) technique. The obtained sponge showed macroporous structure, excellent mechanical property, high hydrophobicity, and superoleophilicity. Oil could be separated from an oil/water mixture by simple immersing the sponge into the mixture and subsequent squeezing the sponge. All of these features make this sponge the most promising oil sorbent that will replace commercial non-woven PP fabrics.

  19. Agave nonwovens in polypropylene composites: mechanical and thermal studies

    CSIR Research Space (South Africa)

    John, MJ

    2015-03-01

    Full Text Available Blends of agave fibres with wool waste, pineapple leaf fibres and polypropylene fibres were manufactured by needle-punching technique. Composites were prepared with polypropylene matrix by the process of compression moulding. The effects of blend...

  20. Hydrophilic and hydrophobic adsorption on Y zeolites

    Science.gov (United States)

    Halasz, Istvan; Kim, Song; Marcus, Bonnie

    The uniform large micropores of hydrothermally stable Y zeolites are used widely to confine both polar and non-polar molecules. This paper compares the physisorption of water, methanol, cyclohexane, benzene and other adsorbates over various Y zeolites. These adsorbents are commercial products with reproducibly controllable physical and chemical characteristics. Results indicate that the type I isotherms typical for micropore adsorption can turn into type II or type III isotherms depending on either or both the hydrophobicity of the adsorbent and the polarity of the adsorbate. Methanol produced a rare type V isotherm not reported over zeolites before. Canonical and grand canonical Monte Carlo molecular simulations with Metropolis importance sampling reproduced the experimental isotherms and showed characteristic geometric patterns for molecules confined in Na-X, Na-Y, dealuminated Y, and ZSM5 structures. Adsorbate-adsorbate interactions seem to determine the micropore condensation of both polar and non-polar molecules. Exchanged ions and lattice defects play a secondary role in shaping the adsorption isotherms. The force field of hydrophobic Y appears to exert an as yet unexplored sieving effect on adsorbates having different dipole moments and partial charge distributions. This mechanism is apparently different from both the monolayer formation controlled adsorption on hydrophobic mesopores and macropores and the polarizability and small-pore opening controlled micropore confinement in hydrophobic ZSM5.

  1. [Polypropylene-polyester prostheses. Experimental studies].

    Science.gov (United States)

    Staniszewska, J

    1980-01-01

    Polypropylene-polyester prostheses invented by the Research and Development Center of the Textile Industry in łódź are composed of two knitted polyester layers with perpendicular columns arrangement laminated by polypropylene. The prostheses were implanted in 10 pigs into the sternum and shoulder blade, the abdominal wall and peritoneal cavity. The autopsies of the animals were made 90 to 180 days after the operation. Both in bone and soft tissues, the prostheses healed up without local or general complications. The results obtained in surgical post-operative, macroscopic and microscopic examinations prove that the polypropylene-polyester prostheses fulfill the basic conditions for biomaterials. The different moulders of these materials may be used as temporary or permanent implants.

  2. Microstructural evolution during tensile deformation of polypropylenes

    International Nuclear Information System (INIS)

    Dasari, A.; Rohrmann, J.; Misra, R.D.K.

    2003-01-01

    Tensile deformation processes occurring at varying strain rates in high and low crystallinity polypropylenes and ethylene-propylene di-block copolymers have been investigated by scanning electron microscopy. This is examined for both long and short chain polymeric materials. The deformation processes in different polymeric materials show striking dissimilarities in spite of the common propylene matrix. Additionally, the deformation behavior of long and their respective short chain polymers was different. Deformation mechanisms include crazing/tearing, wedging, ductile ploughing, fibrillation, and brittle fracture. The different modes of deformation are depicted in the form of strain rate-strain diagrams. At a constant strain rate, the strain to fracture follows the sequence: high crystallinity polypropylenes< low crystallinity polypropylenes< ethylene-propylene di-block copolymers, indicative of the trend in resistance to plastic deformation

  3. Coir dust reinforced recycled polypropylene composites

    International Nuclear Information System (INIS)

    Santos, Bianca B. dos; Costa, Marysilvia F. da; Thire, Rossana M. da S.M.

    2015-01-01

    The environmental impacts caused by disposed plastics encourage the search for new alternatives. Recycling polymers leads to the degradation of their mechanical properties, which can be modified by the addition of fillers. In this paper, recycled polypropylene from plastic cups with 2%, 5% and 10% of coir dust were produced with and without the addition of additives. These composites were characterized by tensile tests, X-ray diffraction, differential scanning calorimetry and scanning electron microscopy on the fracture surface. It was verified the effectiveness of the addition of coir dust in improving the elasticity modulus of recycled polypropylene besides the effectiveness of additives used in promoting the adhesion of the powder to the matrix. However, higher levels of coir dust caused the appearance of air bubbles inside the material, which contributed to its embrittlement. The addition of coir dust promoted a decrease in the degree of polypropylene crystallinity. (author)

  4. Pectus excavatum repair using Prolene polypropylene mesh.

    Science.gov (United States)

    Rasihashemi, Seyed Ziaeddin; Ramouz, Ali

    2016-02-01

    We aimed to assess the clinical outcomes of our surgical technique for repair of pectus excavatum using Prolene polypropylene mesh. Among 29 patients with pectus excavatum, the major complaint was cosmetic dissatisfaction, and the main symptom was exercise dyspnea in 15 patients. The Haller index used to assess pectus excavatum severity; it was significant in 22 patients. In all patients, a 2-layer sheet of Prolene polypropylene mesh was placed behind the sternum. No serious complication was observed postoperatively, and all patients were satisfied with the cosmetic result. Mitral valve prolapse improved in all cases after 3 months. Spirometry revealed improved pulmonary function after surgery. With due attention to the advantages of Prolene polypropylene mesh, such as remaining permanently in place, adapting to various stresses encountered in the body, resisting degradation by tissue enzymes, and trimming without unraveling, we concluded that this mesh is suitable for use as posterior sternal support in pectus excavatum patients. © The Author(s) 2016.

  5. Effects of amino silicone oil modification on properties of ramie fiber and ramie fiber/polypropylene composites

    International Nuclear Information System (INIS)

    He, Liping; Li, Wenjun; Chen, Dachuan; Zhou, Dianwu; Lu, Gang; Yuan, Jianmin

    2015-01-01

    Highlights: • Ramie fiber (RF) changed to be hydrophobic after amino silicone oil modification. • Mechanical properties of RF/PP composites improved after fiber being modified. • N−H=O and O−H=N hydrogen bonds formed at the interface of modifier and fiber. • Amino silicone molecular interacts with cellulose in a preferred orientation. - Abstract: The effects of amino silicone oil modification on the properties of ramie fiber and ramie/polypropylene composites were investigated with experiments and molecular dynamics simulation. First, the effects of amino silicone oil treatments on the properties of ramie and ramie/polypropylene composites were investigated by experiments. The results indicated that the amino silicone oil modification can change the surface properties of ramie fiber from hydrophilic to hydrophobic and improve the mechanical properties of ramie/polypropylene composites. And then, the amino silicone oil modification mechanism at atomic and molecular levels was investigated by the molecular dynamics simulation. The simulation work elucidate that the surface modification mechanism can be described as: the amino silicone oil can interact with cellulose by the intermolecular forces, and the molecular chain of amino silicone oil tends to be an orientation that the hydrophobic alkyl groups project outward and the polar amino groups point to the surface of cellulose. Therefore, the surface of ramie fiber was covered with amino silicone oil, and the surface property of ramie fiber was changed from hydrophilic to hydrophobic. So the surface modification with amino silicone oil can improve the interfacial compatibility between ramie fiber and polymer

  6. Electret Stability Related to Spherulites in Polypropylene

    DEFF Research Database (Denmark)

    Thyssen, Anders; Almdal, Kristoffer; Thomsen, Erik Vilain

    2015-01-01

    Electret charge stability has been related to the size of the spherulites in polypropylene. As the size of the spherulites is decreased the stability is increased. This is seen for isothermal conditions at 90 °C and 120 °C as well as for 90 % relative humidity at 50 °C. The charge release...... temperature is also increased in thermally stimulated voltage discharge experiments as the size of the spherulites is decreased. The size of the spherulites is controlled though the cooling rate from polypropylenes liquid state....

  7. Nonwoven polypropylene as a novel extractant phase holder for the determination of insecticides in environmental water samples.

    Science.gov (United States)

    Hu, Lu; Li, Songqing; Zhang, Panjie; Yang, Xiaoling; Yang, Miyi; Lu, Runhua; Gao, Haixiang

    2014-09-01

    In this work, a novel liquid-phase microextraction approach using nonwoven polypropylene as the extraction solvent holder was developed. Nonwoven polypropylene, a hydrophobic material, is widely used in the cleanup of oil spills. Due to its large surface area, efficient, and full extraction can be achieved. Nonwoven polypropylene containing an ionic liquid was used to extract benzoylurea insecticides (diflubenzuron, teflubenzuron, flufenoxuron, and chlorfluazuron) through vortex-assisted liquid-liquid microextraction. The parameters that affected the extraction efficiency included the type and volume of the extractant, the extraction time, the time and solvent volume for desorption and the mass and surface area of the nonwoven polypropylene. Under the optimized conditions, good linearity was obtained, with coefficients of determination greater than 0.9996, and the limit of detections of these compounds, calculated at S/N = 3, were in the range of 0.73-5.0 ng/mL. The recoveries of the four insecticides at two spiked levels ranged from 93.3 to 102.0%, with relative standard deviations of less than 4.0%. The proposed method was then successfully used for the rapid determination of benzoylurea insecticides in spiked real water samples before liquid chromatographic analysis. The procedure is simple, inexpensive, easy to execute, and can be widely used. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Repair of iridodialysis using 8-0 polypropylene.

    Science.gov (United States)

    Dağlioğlu, Mutlu Cihan; Coşkun, Mesut; Ilhan, Nilüfer; Ayintap, Emre; Tuzcu, Esra Ayhan; Ilhan, Ozgür; Oksüz, Hüseyin

    2014-05-01

    Investigate the effectiveness of repair of iridodialysis with 8-0 polypropylene. We present four cases of traumatic iridodialysis that were repaired by 8-0 polypropylene suture. Better iris reposition and stability were achieved with 8-0 polypropylene suture despite wide degree traumatic iridodialysis in all patients. In this study, we used 8-0 polypropylene suture, which is thicker, cheaper, and more durable than 10-0 sutures. We suggest that usage of 8-0 polypropylene sutures may provide better iris repositioning.

  9. THERMAL properties and morphology of Polypropylene/Polycarbonate/Polypropylene-Graft-Maleic anhydride blends

    OpenAIRE

    Mat-Shayuti M. S.; Abdullah M. Z.; Megat-Yusoff P. S. M.

    2016-01-01

    This work investigates the effect of blending polycarbonate (PC) into polypropylene (PP) matrix polymer on thermal properties and morphology. The blends, containing 5% to 35% of polycarbonate and 5% compatibilizer, were compounded using twin-screw extruder and fabricated into standard tests samples using injection or compression molding. The compatibilizer used was polypropylene-graft-maleic anhydride (PP-g-MA). Thermogravimetric analysis (TGA) showed improved thermal degradation temperature ...

  10. Degradation study of polypropylene (PP) and bioriented polypropylene (BOPP) in the environment

    OpenAIRE

    Longo,Carina; Savaris,Michele; Zeni,Mára; Brandalise,Rosmary Nichele; Grisa,Ana Maria Coulon

    2011-01-01

    Polymers are vastly employed for numerous purposes in different industrial segments and generate soaring quantities of discarding in the environment. This research analyzed the degradability/biodegradability of polypropylene films (PP) and Bioriented polypropylene (BOPP) polymers after 11 months interred in the São Giácomo landfill in Caxias do Sul. Comparing the buried PP film to a sample of virgin PP, two peaks of degrading activity appeared at the TG curve as well as structure modification...

  11. Stability of cyclosporine solutions stored in polypropylene-polyolefin bags and polypropylene syringes.

    Science.gov (United States)

    Li, Mengqing; Forest, Jean-Marc; Coursol, Christian; Leclair, Grégoire

    2011-09-01

    The stability of cyclosporine diluted to 0.2 or 2.5 mg/mL with 0.9% sodium chloride injection or 5% dextrose injection and stored in polypropylene-polyolefin containers or polypropylene syringes was evaluated. Intravenous cyclosporine solutions (0.2 and 2.5 mg/mL) were aseptically prepared and transferred to 250-mL polypropylene-polyolefin bags or 60-mL polypropylene syringes. Chemical stability was measured using a stability-indicating high-performance liquid chromatography (HPLC) assay. Physical stability was assessed by visual inspection and a dynamic light scattering (DLS) method. After 14 days, HPLC assay showed that the samples of i.v. cyclosporine stored in polypropylene-polyolefin bags remained chemically stable (>98% of initial amount remaining); the physical stability of the samples was confirmed by DLS and visual inspection. The samples stored in polypropylene syringes were found to contain an impurity (attributed to leaching of a syringe component by the solution) that could be detected by HPLC after 1 day; on further investigation, no leaching was detected when the syringes were exposed to undiluted i.v. cyclosporine 50 mg/mL for 10 minutes. Samples of i.v. cyclosporine solutions of 0.2 and 2.5 mg/mL diluted in 0.9% sodium chloride injection or 5% dextrose injection and stored at 25 °C in polypropylene-polyolefin bags were physically and chemically stable for at least 14 days. When stored in polypropylene syringes, the samples were contaminated by an impurity within 1 day; however, the short-term (i.e., ≤10 minutes) use of the syringes for the preparation and transfer of i.v. cyclosporine solution is considered safe.

  12. Functionalization of Silica Nanoparticles for Polypropylene Nanocomposite Applications

    Directory of Open Access Journals (Sweden)

    Diego Bracho

    2012-01-01

    Full Text Available Synthetic silica nanospheres of 20 and 100 nm diameter were produced via the sol-gel method to be used as filler in polypropylene (PP composites. Modification of the silica surface was further performed by reaction with organic chlorosilanes in order to improve the particles interaction with the hydrophobic polyolefin matrix. These nanoparticles were characterized using transmission electronic microscopy (TEM, elemental analysis, thermogravimetric analysis (TGA, and solid-state nuclear magnetic resonance (NMR spectroscopy. For unmodified silica, it was found that the 20 nm particles have a greater effect on both mechanical and barrier properties of the polymeric composite. In particular, at 30 wt%, Young's modulus increases by 70%, whereas water vapor permeability (WVP increases by a factor of 6. Surface modification of the 100 nm particles doubles the value of the composite breaking strain compared to unmodified particles without affecting Young's modulus, while 20 nm modified particles presented a slight increase on both Young's modulus and breaking strain. Modified 100 nm particles showed a higher WVP compared to the unmodified particles, probably due to interparticle condensation during the modification step. Our results show that the addition of nanoparticles on the composite properties depends on both particle size and surface modifications.

  13. Extractables Screening of Polypropylene Resins Used in Pharmaceutical Packaging for Safety Hazards.

    Science.gov (United States)

    Jenke, Dennis

    2017-01-01

    Pharmaceutical products are packaged in containers so that they can be manufactured, distributed, and used. Because extractables from such containers are precursors of leachable impurities in the product, extractables represent potential hazards to user safety. Polypropylene resins are frequently used as materials of construction for packaging of liquid parenteral drug products. Thus, extractables profiling of polypropylene resins may be an effective means of hazard identification associated with the resin's safe use. Twenty-one polypropylene resins were extracted using aqueous and organic extraction solvents, and the resulting extracts were screened for extractables using appropriate general chemistry, chromatographic, and spectroscopic methodologies. The resulting extractables profiles were toxicologically reviewed by a defined process to identify potential hazards given a specified therapeutic application involving long-term use of a large-volume aqueous parenteral drug product. The organic extractables profiles of individual polypropylene resins were variable in terms of the individual extractable identified and their extracted levels, consistent with high variability in polypropylene resin formulations and pharmaceutical product manufacturing. However, the profiles were similar in terms of the groups of extractables measured. Thus, for example, all the resins had extractables associated with antioxidants, as all the resins contained antioxidants but the specific extractables for a given resin depended on the specific antioxidants present in that resin. Few of the targeted extractable elements were present in the extracts at measurable levels, although most resins had measurable levels of extracted aluminum, silicon, and alkali and alkaline earths. A worst-case extractables profile (all the extractables measured in individual resins at their highest levels) was toxicologically reviewed considering an aqueous large-volume parenteral drug product. This review

  14. Electrical properties of ion irradiated polypropylene films

    Indian Academy of Sciences (India)

    Unknown

    and drugs. PP is used as capacitor dielectric because of its very low dielectric loss and excellent dielectric strength. Polypropylene belongs to the family of polyolefin. It is a vinyl polymer having hydrogen atom ... 3.1 Conductivity vs frequency. Figure 1 shows the dependence of conductivity of PP films on log frequency (F in ...

  15. Structure-Property Relationships in Isotactic Polypropylene

    NARCIS (Netherlands)

    van der Meer, D.W.

    2003-01-01

    This thesis is the result of a project initiated by the Dutch Polymer Institute (DPI). The general theme involves "molecular characterization and morphology development in polypropylene obtained by metallocene polymerization". Throughout this investigation, the general theme was shaped and filled in

  16. Plant growth responses to polypropylene--biocontainers

    Science.gov (United States)

    The influence of bio-fillers incorporated into polypropylene (PP) on the growth of plants was evaluated. Biocontainers were created by injection molding of PP with 25-40% by weight of Osage orange tree, Paulownia tree, coffee tree wood or dried distillers grain and 5% by weight of maleated polypropy...

  17. Synthesis And Thermal Characterization Of Polypropylene ...

    African Journals Online (AJOL)

    The present work investigates the heat transfer and specifically, thermal conductivity, diffusivity and specific heat in Aluminium composite materials. The composites were obtained by mixing polypropylene (PP) with oxidized Aluminium (Al) under various volume fractions. Two sizes of filler are used in the sample composite ...

  18. Laparoscopic Pelvic Floor Repair Using Polypropylene Mesh

    Directory of Open Access Journals (Sweden)

    Shih-Shien Weng

    2008-09-01

    Conclusion: Laparoscopic pelvic floor repair using a single piece of polypropylene mesh combined with uterosacral ligament suspension appears to be a feasible procedure for the treatment of advanced vaginal vault prolapse and enterocele. Fewer mesh erosions and postoperative pain syndromes were seen in patients who had no previous pelvic floor reconstructive surgery.

  19. The nonlinear viscoelastic behavior of polypropylene

    DEFF Research Database (Denmark)

    Drozdov, Aleksey D.; Christiansen, Jesper de Claville

    2002-01-01

    A series of tensile relaxation tests is performed on isotactic polypropylene in the sub-yield and post-yield regions at room temperature. Constitutive equations are derived for the time-dependent response of a semicrystalline polymer at isothermal loading with small strains. Adjustable parameters...

  20. New functionalized polypropylenes as controlled architecture compatibilizers for polypropylene layered silicates nanocomposites.

    Science.gov (United States)

    Augier, Sylvain; Coiai, Serena; Pratelli, Daniele; Conzatti, Lucia; Passaglia, Elisa

    2009-08-01

    Polypropylene (PP) samples functionalized with Maleic Anhydride (MAH) were used as interfacial coupling agents during the preparation of PP based layered silicate nanocomposites (PP-LSN). To prepare these functionalized PP samples, butyl 3-(2-furyl)propenoate (BFA) was used as coagent during the radical post-functionalization with MAH to avoid the polymer degradation. The obtained materials, differing from the functionalization degree (FD) and structure (MW and molecular weight distribution), were accurately characterized and firstly employed as polymer matrices for PP-LSN preparation to study the influence of their architecture on clay dispersion and thus on their intercalation capability. Successively, PP-LSNs were prepared by using PP as matrix and 5 phr of the above compatibilizers. Morphological, thermal, mechanical and thermo-mechanical analyses of the nanocomposites pointed out that the higher molecular weight PP-g-MAH samples allow to achieve simultaneously a good intercalation within the filler and a significant compatibilization with pristine PP chains, leading to high performances PP-LSNs.

  1. Weld line morphology of injection molded polypropylene

    Science.gov (United States)

    Mielewski, Deborah Frances

    One of the main goals of this research was to develop an understanding of the specific cause(s) of mechanical weakness at weld lines in injection molded plastic parts. In this study, a variety of techniques have been used to evaluate polypropylene weld lines: optical microscopy, electron microscopy, x-ray photoelectron microscopy, Fourier transform infrared spectroscopy and mechanical property measurements. Optical microscopy results showed that the weld line penetrates about 10 microns into the sample, and that the crystalline morphology near the weld line was very different than in the polymer further removed. Transmission electron microscopy was used to determine that the material at the weld line was of slightly different density and stained differently than the rest of the polypropylene material. X-ray photoelectron spectroscopy (XPS) determined that the material at the flow front was enriched in elemental sulfur and oxygen, which helped identify it as an antioxidant additive. Finally, FTIR was used to confirm that the flow front tip was enriched in the antioxidant material by comparing spectra of the neat antioxidant. The data cumulatively demonstrate that a low concentration (polypropylene system studied. Other low concentration additives were also found to accumulate at polypropylene weld lines, also making the interface weak. Even an incompatible, higher surface free energy polymer, polystyrene, when added at low concentration to polypropylene, was found to accumulate at the weld line. Therefore, surface free energy was found not to play a role in these accumulations. Homogeneous elongation was found not to reproduce the enrichments observed. The mechanism by which low concentration additives accumulate at flow fronts is speculated to involve incompatible droplets experiencing a stress gradient due to the elongation gradient at the flow front during fountain flow which "pushes" them out toward the free surface. In addition, large concentrations of the heat

  2. The influence of antioxidant on positron annihilation in polypropylene

    International Nuclear Information System (INIS)

    Djourelov, N.; He, C.; Suzuki, T.; Ito, Y; Kondo, K.; Ito, Y.; Shantarovich, V.P.

    2003-01-01

    The purpose of this report is to check the influence of the carbonyl groups (CG), created by oxygen naturally dissolved in a polymer matrix and by the source irradiation, on annihilation characteristics of free positrons using the positron annihilation lifetime spectroscopy (PALS) and coincidence Doppler-broadening spectroscopy (CDBS). Positron annihilation in a pure polypropylene (PP) and in an antioxidant-containing polypropylene (PPA) sample at room and low temperatures has been studied by CDBS. PALS has been used as an o-Ps (orth-positronium) formation monitor. The momentum density distributions of electrons obtained by CDBS at the beginning of measurements have been compared to that at the o-Ps intensity saturation level. It has been shown that the initial concentration of carbonyl groups in a PP sample is high, while for an antioxidant-containing sample, PPA, carbonyl groups are not detected by CDBS. CDBS spectra for a PP can be explained by annihilation of free positrons with the oxygen contained in the carbonyl groups. For a PPA sample, no significant contribution of annihilation with oxygen core electrons can be concluded. (Y. Kazumata)

  3. Wear resistance of hydrophobic surfaces

    Science.gov (United States)

    Martinez, MA; Abenojar, J.; Pantoja, M.; López de Armentia, S.

    2017-05-01

    Nature has been an inspiration source to develop artificial hydrophobic surfaces. During the latest years the development of hydrophobic surfaces has been widely researched due to their numerous ranges of industrial applications. Industrially the use of hydrophobic surfaces is being highly demanded. This is why many companies develop hydrophobic products to repel water, in order to be used as coatings. Moreover, these coating should have the appropriated mechanical properties and wear resistance. In this work wear study of a hydrophobic coating on glass is carried out. Hydrophobic product used was Sika Crystal Dry by Sika S.A.U. (Alcobendas, Spain). This product is currently used on car windshield. To calculate wear resistance, pin-on-disk tests were carried out in dry and water conditions. The test parameters were rate, load and sliding distance, which were fixed to 60 rpm, 5 N and 1000 m respectively. A chamois was used as pin. It allows to simulate a real use. The friction coefficient and loss weight were compared to determinate coating resistance

  4. Hierarchically mesoporous silica materials prepared from the uniaxially stretched polypropylene membrane and surfactant templates

    International Nuclear Information System (INIS)

    Wang Xiaocong; Ma Jin; Liu Jin; Zhou Chen; Zhao, Yan; Yi Shouzhi; Yang Zhenzhong

    2006-01-01

    Hierarchically mesoporous silica materials with a bimodal distribution were template-prepared from uniaxially stretched polypropylene membrane in the presence of a surfactant via a sol-gel process. Their regularity and morphologies were characterized by transmission electron microscopy (TEM), x-ray diffraction and Brunauer-Emmett-Teller (BET) surface area analysis. The larger channel pores formed by removing the microfibrils of uniaxially stretched polypropylene membrane have a broad pore size distribution, and their size is around 13 nm. In contrast, the smaller mesopores formed by surfactant templates have a narrow distribution; their size is about 3.9 nm. The size of the smaller pores could be tuned from 2 to 6 nm by selecting different surfactants and by changing the concentration of reactants

  5. Enhancing the hydrophobic effect in confined water nanodrops.

    Science.gov (United States)

    Rao, Palla Venkata Gopala; Gandhi, K S; Ayappa, K G

    2007-12-18

    The distribution of hydrophobic solutes, such as methane, enclosed in a nanosized water droplet contained in a reverse micelle of diameter 2.82 nm is investigated using Monte Carlo simulations. The effect of the hydrophobic solute's atomic diameter on the solute-solute potential of mean force is also studied. The study reveals that confinement has a strong influence on the solute's tendency to associate. The potential of mean force exhibits only a single minimum, indicating that the contact pair is the only stable configuration between solutes. The solvent-separated pair that is universally observed for small solutes in bulk water is conspicuously absent. This enhanced hydrophobic effect is attributed to the lack of sufficient water to completely hydrate and stabilize the solvent-separated configurations. The study is expected to be important in understanding the role of hydrophobic forces during protein folding and nucleation under confinement.

  6. Hydrophobicity Tuning by the Fast Evolution of Mold Temperature during Injection Molding

    Directory of Open Access Journals (Sweden)

    Sara Liparoti

    2018-03-01

    Full Text Available The surface topography of a molded part strongly affects its functional properties, such as hydrophobicity, cleaning capabilities, adhesion, biological defense and frictional resistance. In this paper, the possibility to tune and increase the hydrophobicity of a molded polymeric part was explored. An isotactic polypropylene was injection molded with fast cavity surface temperature evolutions, obtained adopting a specifically designed heating system layered below the cavity surface. The surface topology was characterized by atomic force microscopy (AFM and, concerning of hydrophobicity, by measuring the water static contact angle. Results show that the hydrophobicity increases with both the temperature level and the time the cavity surface temperature was kept high. In particular, the contact angle of the molded sample was found to increase from 90°, with conventional molding conditions, up to 113° with 160 °C of cavity surface temperature kept for 18 s. This increase was found to be due to the presence of sub-micro and nano-structures characterized by high values of spatial frequencies which could be more accurately replicated by adopting high heating temperatures and times. The surface topography and the hydrophobicity resulted therefore tunable by selecting appropriate injection molding conditions.

  7. Cell surface hydrophobicity: a key component in the degradation of polyethylene succinate by Pseudomonas sp. AKS2.

    Science.gov (United States)

    Tribedi, P; Sil, A K

    2014-02-01

    Polyethylene succinate (PES) contains hydrolysable ester bonds that make it a potential substitute for polyethylene (PE) and polypropylene (PP). Towards bioremediation of PES, we have already reported that a new strain of Pseudomonas, Pseudomonas sp. AKS2, can efficiently degrade PES and hypothesized that cell surface hydrophobicity plays an important role in this degradation process. In this study, our efforts were targeted towards establishing a correlation between cell surface hydrophobicity and PES degradation. We have manipulated cell surface hydrophobicity of AKS2 by varying concentrations of glucose and ammonium sulphate in the growth medium and subsequently examined the extent of PES degradation. We observed an increase in PES degradation by AKS2 with an increase in cell surface hydrophobicity. The increased surface hydrophobicity caused an enhanced biofilm formation on PES surface that resulted in better polymer degradation. The current study establishes a direct correlation between cell surface hydrophobicity of an organism and its potential to degrade a nonpolar polymer like PES. Cell surface hydrophobicity manipulation can be used as an important strategy to increase bioremediation of nonpolar polymer like PES. © 2013 The Society for Applied Microbiology.

  8. Hydro-physical processes and soil properties correlated with origin of soil hydrophobicity

    Directory of Open Access Journals (Sweden)

    Eduardo Saldanha Vogelmann

    2013-09-01

    Full Text Available Hydrophobicity is the phenomenon where the soil has reduced wettability, usually associated with coating of soil particles by hydrophobic organic substances. This study aimed to provide a description of the hydrophobicity occurrence, highlight recent discoveries about the origin of phenomenon and discuss the main hydro-physical properties and chemical processes linked to the development of hydrophobic behavior in soils. Hydrophobicity is associated with other factors such as soil moisture, presence of some fungi species, particle size, soil pH and occurrence of burnings. The causative substances may be provided by local vegetation, through deposition or decomposition. The dependence and combination of different factors that influence hydrophobicity in soils lead to a spatial and temporal variability of the phenomenon, with negative consequences in the processes of infiltration and water percolation, affecting the three-dimensional distribution and dynamics of soil moisture. Thus, the occurrence of a hydrophobic character requires special attention, especially regarding soil use and management.

  9. 21 CFR 870.3470 - Intracardiac patch or pledget made of polypropylene, polyethylene terephthalate, or...

    Science.gov (United States)

    2010-04-01

    ... polypropylene, polyethylene terephthalate, or polytetrafluoroethylene. 870.3470 Section 870.3470 Food and Drugs... polypropylene, polyethylene terephthalate, or polytetrafluoroethylene. (a) Identification. An intracardiac patch or pledget made of polypropylene, polyethylene terephthalate, or polytetrafluoroethylene is a fabric...

  10. Tailored Nanocomposites of Polypropylene with Layered Silicates

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L.; Nakajima, H; Manias, E; Krishnamoorti, R

    2009-01-01

    The melt rheological properties of layered silicate nanocomposites with maleic anhydride (MA) functionalized polypropylene are contrasted to those based on ammonium-terminated polypropylene. While the MA functionalized PP based nanocomposites exhibit solid-like linear viscoelastic behavior, consistent with the formation of a long-lived percolated nanoparticle network, the single-end ammonium functionalized PP based nanocomposites demonstrated liquid-like behavior at comparable montmorillonite concentrations. The differences in the linear viscoelasticity are attributed to the presence of bridging interactions in MA functionalized nanocomposites. Further, the transient shear stress of the MA functionalized nanocomposites in start-up of steady shear is a function of the shear strain alone, and the steady shear response is consistent with that of non-Brownian systems. The weak dependence of the steady first normal stress difference on the steady shear stress suggests that the polymer chain mediated silicate network contributes to such unique flow behavior.

  11. Electrical properties of foamed polypropylene/carbon black composites

    Science.gov (United States)

    Iliev, M.; Kotzev, G.; Vulchev, V.

    2016-02-01

    Polypropylene composites containing carbon black fillers were produced by vibration assisted extrusion process. Solid (unfoamed) composite samples were molded by conventional injection molding method, while structural foams were molded by a low pressure process. The foamed samples were evidenced to have a solid skin-foamed core structure which main parameters were found to depend on the quantity of material injected in the mold. The average bubbles' sizes and their distribution were investigated by scanning electron microscopy. It is established that the conductivity of the foamed samples gradually decreases when reducing the sample density. Nevertheless, the conductivity is found to be lower than the conductivity of the unfoamed samples both being of the same order. The flexural properties of the composites were studied and the results were discussed in the context of the structure parameters of the foamed samples.

  12. Multiwalled Carbon Nanotubes Reinforced Polypropylene Composite Material

    Directory of Open Access Journals (Sweden)

    Juan Li

    2017-01-01

    Full Text Available Polypropylene (PP composites reinforced with multiwalled carbon nanotubes (MWNTs were prepared by using twin screw extruder. The experimental results showed that with the increasing amount of MWNTs the elongation at break decreased whereas the tensile strength, bending strength, and impact strength increased. By using scanning electron microscope (SEM, we find that the hydroxyl-modified carbon nanotube has better dispersion performance in PP and better mechanical properties.

  13. Copper slag concrete admixed with polypropylene fibres

    OpenAIRE

    Chakrawarthi, Vijayaprabha; Darmar, Brindha; Elangovan, Ashokkumar

    2016-01-01

    A sustainable concrete design has become an imperative requirement for the present-day concrete industry. A part of an extensive research project aimed at studying possibilities for using copper slag (CS) and polypropylene (PP) fibres in concrete is presented and analysed. Measurements were conducted to investigate the workability, density, compressive strength, tensile strength, and micro-structural properties of concrete, as well as the ultimate load carrying capacity of reinforced-concrete...

  14. High strain rate behaviour of polypropylene microfoams

    Directory of Open Access Journals (Sweden)

    Martínez A.B.

    2012-08-01

    Full Text Available Microcellular materials such as polypropylene foams are often used in protective applications and passive safety for packaging (electronic components, aeronautical structures, food, etc. or personal safety (helmets, knee-pads, etc.. In such applications the foams which are used are often designed to absorb the maximum energy and are generally subjected to severe loadings involving high strain rates. The manufacture process to obtain polymeric microcellular foams is based on the polymer saturation with a supercritical gas, at high temperature and pressure. This method presents several advantages over the conventional injection moulding techniques which make it industrially feasible. However, the effect of processing conditions such as blowing agent, concentration and microfoaming time and/or temperature on the microstructure of the resulting microcellular polymer (density, cell size and geometry is not yet set up. The compressive mechanical behaviour of several microcellular polypropylene foams has been investigated over a wide range of strain rates (0.001 to 3000 s−1 in order to show the effects of the processing parameters and strain rate on the mechanical properties. High strain rate tests were performed using a Split Hopkinson Pressure Bar apparatus (SHPB. Polypropylene and polyethylene-ethylene block copolymer foams of various densities were considered.

  15. High strain rate behaviour of polypropylene microfoams

    Science.gov (United States)

    Gómez-del Río, T.; Garrido, M. A.; Rodríguez, J.; Arencón, D.; Martínez, A. B.

    2012-08-01

    Microcellular materials such as polypropylene foams are often used in protective applications and passive safety for packaging (electronic components, aeronautical structures, food, etc.) or personal safety (helmets, knee-pads, etc.). In such applications the foams which are used are often designed to absorb the maximum energy and are generally subjected to severe loadings involving high strain rates. The manufacture process to obtain polymeric microcellular foams is based on the polymer saturation with a supercritical gas, at high temperature and pressure. This method presents several advantages over the conventional injection moulding techniques which make it industrially feasible. However, the effect of processing conditions such as blowing agent, concentration and microfoaming time and/or temperature on the microstructure of the resulting microcellular polymer (density, cell size and geometry) is not yet set up. The compressive mechanical behaviour of several microcellular polypropylene foams has been investigated over a wide range of strain rates (0.001 to 3000 s-1) in order to show the effects of the processing parameters and strain rate on the mechanical properties. High strain rate tests were performed using a Split Hopkinson Pressure Bar apparatus (SHPB). Polypropylene and polyethylene-ethylene block copolymer foams of various densities were considered.

  16. Influence of the elastomeric polypropylene addition on the properties of commercial metallocenic polypropylene

    Directory of Open Access Journals (Sweden)

    Maria de Fátima V. Marques

    2001-10-01

    Full Text Available Polypropylene with special properties can be obtained by metallocenic catalysts. These catalytic systems represent the beginning of a new age in polyolefins technology. In this work, the influence of the addition of a syndiotactic polypropylene (s-PP on the processability and mechanical properties of a commercial isotactic polypropylene (i-PP obtained by metallocenic catalysts was evaluated. Increasing addition of s-PP promoted better processability, with an increase in the impact strength and a decrease in the stress at break. A reduction of the crystallinity in the polymeric blends was verified. The more significant influence of the s-PP addition was observed for the mi-PP, compared to the ZNi-PP.

  17. Co-deposition of tannic acid and diethlyenetriamine for surface hydrophilization of hydrophobic polymer membranes

    Science.gov (United States)

    Zhang, Xi; Ren, Peng-Fei; Yang, Hao-Cheng; Wan, Ling-Shu; Xu, Zhi-Kang

    2016-01-01

    We report a novel approach toward the surface modification of commercial polymer membranes via co-deposition of tannic acid (TA) and diethlyenetriamine (DETA). Particle-free, superhydrophilic, and almost colorless coatings are fabricated on the surfaces of polypropylene, poly(vinylidene fluoride), and poly(tetrafluoroethlene) microfiltration membranes. Cross-linking between TA and DETA plays a crucial role during the co-deposition process, as well as the adhesion of TA on the hydrophobic membrane surfaces. Both the surface wettability and water permeation flux are dramatically improved for the studied membranes after the co-deposition. The results indicate that co-deposition of TA and DETA is great potential for the surface modification of hydrophobic membranes.

  18. Electret Stability Related to the Crystallinity in Polypropylene

    DEFF Research Database (Denmark)

    Thyssen, Anders; Almdal, Kristoffer; Thomsen, Erik Vilain

    2017-01-01

    preparation processes and characteristics can be identical. This is important since the performance of an electret material is sensitive to its previous process history. Activation energies used for predicting the thermal potential decay are determined from thermally stimulated current and isothermal......Through mixing isotactic-polypropylene (i-PP) and atactic-polypropylene (a-PP), we have demonstrated the importance of the crystallinity in polypropylene as an electret material. Samples with crystallinities between 7 % and 47 % were used. A high degree of crystallinity in polypropylene, used...

  19. Collagen/Polypropylene composite mesh biocompatibility in abdominal wall reconstruction.

    Science.gov (United States)

    Lukasiewicz, Aleksander; Skopinska-Wisniewska, Joanna; Marszalek, Andrzej; Molski, Stanislaw; Drewa, Tomasz

    2013-05-01

    Intraperitoneal placement of polypropylene mesh leads to extensive visceral adhesions and is contraindicated. Different coatings are used to improve polypropylene mesh properties. Collagen is a protein with unique biocompatibility and cell ingrowth enhancement potential. A novel acetic acid extracted collagen coating was developed to allow placement of polypropylene mesh in direct contact with viscera. The authors' aim was to evaluate the long-term influence of acetic acid extracted collagen coating on surgical aspects and biomechanical properties of polypropylene mesh implanted in direct contact with viscera, including complications, adhesions with viscera, strength of incorporation, and microscopic inflammatory reaction. Forty adult Wistar rats were divided into two groups: experimental (polypropylene mesh/acetic acid extracted collagen coating) and control (polypropylene mesh only). Astandardized procedure of mesh implantation was performed. Animals were killed 3 months after surgery and analyzed for complications, mesh area covered by adhesions, type of adhesions, strength of incorporation, and intensity of inflammatory response. The mean adhesion area was lower for polypropylene mesh/acetic acid extracted collagen coating (14.5 percent versus 69.9 percent, p polypropylene mesh are significantly reduced because of acetic acid extracted collagen coating. The collagen coating does not increase complications or induce alterations of polypropylene mesh incorporation.

  20. Thermo-mechanical degradation and VOC emission of unstabilized and stabilized polypropylene copolymer during multiple Extrusions

    OpenAIRE

    Cáceres,Carlos Alberto; Zborowski,Leonardo; Canevarolo,Sebastião Vicente

    2011-01-01

    The thermo-mechanical degradation during the multi-extrusion of unstabilized and stabilized polypropylene copolymer (cPP) was analyzed using the Chain Scission Distribution Function (CSDF) method. During the first extrusion of unstabilized cPP almost 60% of the initial polymeric chains were submitted to chain scission. The calculations using CSDF show a random chain scission process of chains with molecular weight below 100 kg.mol-1, and above that a preferential chain scission process. When ...

  1. Effects of nitrofurazone on correction of abdominal wall defect treated with polypropylene mesh involved by fibrous tissue.

    Science.gov (United States)

    Yasojima, Edson Yuzur; Ribeiro Júnior, Rubens Fernando Gonçalves; Pessôa, Thyago Cezar Prado; Cavalcante, Lainy Carollyne da Costa; Ramos, Suzana Rodrigues; Serruya, Yuri Aarão Amaral; de Moraes, Mateus Malta

    2015-10-01

    To evaluate the effects of nitrofurazone on the correction of abdominal wall defect treated with polypropylene mesh involved by fibrous tissue in rats. A defect in the abdominal wall was created and corrected with polypropylene mesh in 20 rats. They were randomly distributed into four groups: control, fibrous mesh, nitrofurazone and nitrofurazone dip in the mesh. Euthanasia was performed in 21 post-operative days. The healing process was analyzed regarding the meshes and macroscopic and microscopic aspects. All animals had adhesions. However, no statistically significant difference (p>0.05) when compared between groups. Similarly microscopic analysis, in which there was no statistical significance level for the evaluated parameters such as mono and polymorphonuclear lymphocytes, granuloma, fibrosis, necrosis and collagen proliferation. There was no significant effect on the abdominal wall defect repair with polypropylene mesh surrounded by fibrous tissue when dipped in nitrofurazone 2%.

  2. Effect of the surface roughness on contact charging of polypropylene with mercury; Polypropylene to suigin tono sesshoku taiden ni oyobosu hyomen arasa no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Hori, Y.; Saito, K. [Nagoya Institute of Technology, Nagoya (Japan)

    2000-02-14

    The effect of the surface roughness on the contact charging of polypropylene with mercury has been studied by measuring the two-dimensional surface charge distribution. For each sample film, one half of its area was made rough by sandpaper, and the other half was left untreated. These two portions were charged by contacting them simultaneously with mercury, and the two-dimensional surface charge distribution was measured over the entire sample. Our observations show that the behavior of the contact charging clearly depends on physical roughness. The charge density on rough surface was lower than that on smooth surface. Moreover, when the surface was made exceedingly rough, no contact charging occurred. (author)

  3. Multivariate analysis of hydrophobic descriptors

    Directory of Open Access Journals (Sweden)

    Stefan Dove

    2014-04-01

    Full Text Available Multivariate approaches like principal component analysis (PCA are powerful tools to investigate hydrophobic descriptors and to discriminate between intrinsic hydrophobicity and polar contributions as hydrogen bonds and other electronic effects. PCA of log P values measured for 37 solutes in eight solvent-water systems and of hydrophobic octanol-water substituent constants p for 25 meta- and para-substituents from seven phenyl series were performed (re-analysis of previous work. In both cases, the descriptors are repro­duced within experimental errors by two principal components, an intrinsic hydrophobic component and a second component accounting for differences between the systems due to electronic interactions. Underlying effects were identified by multiple linear regression analysis. Log P values depend on the water solubility of the solvents and hydrogen bonding capabilities of both the solute and the solvents. Results indicate different impacts of hydrogen bonds in nonpolar and polar solvent-water systems on log P and their dependence on isotropic and hydrated surface areas. In case of the p-values, the second component (loadings and scores correlates with electronic substituent constants. More detailed analysis of the data as p-values of disubstituted benzenes XPhY has led to extended symmetric bilinear Hammett-type models relating interaction increments to cross products pX sY, pY sX and sX sY which are mainly due to mutual effects on hydrogen-bonds with octanol.

  4. Storage stability of bevacizumab in polycarbonate and polypropylene syringes

    Science.gov (United States)

    Khalili, H; Sharma, G; Froome, A; Khaw, P T; Brocchini, S

    2015-01-01

    Purpose To compare and examine the storage stability of compounded bevacizumab in polycarbonate (PC) and polypropylene (PP) syringes over a 6-month period. PC syringes have been used in a recent clinical study and bevacizumab stability has not been reported for this type of syringe. Methods Repackaged bevacizumab was obtained from Moorfields Pharmaceuticals in PC and PP syringes. Bevacizumab from the stored syringes was analysed at monthly time points for a 6-month period and compared with bevacizumab from a freshly opened vial at each time point. SDS-PAGE electrophoresis and size-exclusion chromatography (SEC) was used to observe aggregation and degradation. Dynamic light scattering (DLS) provided information about the hydrodynamic size and particle size distribution of bevacizumab in solution. VEGF binding and the active concentration of bevacizumab was determined by surface plasmon resonance (SPR) using Biacore. Results SDS-PAGE and SEC analysis did not show any changes in the presence of higher molecular weight species (HMWS) or degradation products in PC and PP syringes from T0 to T6 compared with bevacizumab sampled from a freshly opened vial. The hydrodynamic diameter of bevacizumab in the PC syringe after 6 months of storage was not significantly different to bevacizumab taken from a freshly opened vial. Using SPR, the VEGF binding activity of bevacizumab in the PC syringe was comparable to bevacizumab taken from a freshly opened vial. Conclusion No significant difference over a 6-month period was observed in the quality of bevacizumab repackaged into prefilled polycarbonate and polypropylene syringes when compared with bevacizumab that is supplied from the vial. PMID:25853399

  5. Explosive spalling of concrete, the mitigating effect of Polypropylene Fibres

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt

    2003-01-01

    This paper briefly describes the main results of a recent investigation on the influence of polypropylene fibres and restraint on the susceptibility of concrete to explosive spalling at high temperatures. The results suggest that polypropylene fibres may prevent spalling in both unstrained...

  6. Melt rheological properties of natural fiber-reinforced polypropylene

    Science.gov (United States)

    Jarrod J. Schemenauer; Tim A. Osswald; Anand R. Sanadi; Daniel F. Caulfield

    2000-01-01

    The melt viscosities and mechanical properties of 3 different natural fiber-polypropylene composites were investigated. Coir (coconut), jute, and kenaf fibers were compounded with polypropylene at 30% by weight content. A capillary rheometer was used to evaluate melt viscosity. The power-law model parameters are reported over a shear rate range between 100 to 1000 s–1...

  7. Properties of antibacterial polypropylene/nanometal composite fibers

    Science.gov (United States)

    Melt spinning of polypropylene fibers containing silver and zinc nanoparticles was investigated. The nanometals were generally uniformly dispersed in polypropylene, but aggregation of these materials was observed on fiber surface and in fiber cross-sections. The mechanical properties of the resulted...

  8. Are N-methyl groups of Tetramethylurea (TMU) Hydrophobic? A ...

    Indian Academy of Sciences (India)

    In addition, red edge excitation effects have been observed at very dilute TMU concentration suggesting distribution of C153 among heterogeneous envi- ronments. All these results indicate hydrophobic interaction-induced aggregation of TMU in dilute aqueous solutions which corroborate well with the existing simulation ...

  9. Water structure near single and multi-layer nanoscopic hydrophobic ...

    Indian Academy of Sciences (India)

    Wintec

    Abstract. We have performed a series of molecular dynamics simulations of water containing two nano- scopic hydrophobic plates to investigate the modifications of the density and hydrogen bond distributions of water in the vicinity of the surfaces. Our primary goal is to look at the effects of plate thickness, solute–.

  10. Gamma-Irradiation modified polypropylene and nano silver hybrid films: antibacterial activity

    International Nuclear Information System (INIS)

    Oliani, Washigton L.; Alcantara, Mara T.S.; Lima, Luis F.C.P. de; Bueno, Nelson R.; Rogero, Sizue O.; Lugao, Ademar B.; Parra, Duclerc F.; Huenuman, Nilton E.L.; Santos, Priscila M. dos

    2013-01-01

    This paper presents a study of films based on blends of polypropylene (PP) with radiation modified PP and insertion of silver nanoparticles aiming bactericide effect. The use of silver (Ag) gives important antibacterial properties since silver is highly toxic for bacteria. The blend of 50/50 PP and gamma irradiated PP was processed in a twin screw extruder. The polypropylene was processed for five PP-Nanocomposite AgNPs in different concentrations of 0.25%; 0.5%; 1.0%; 2.0% and 4.0% in wt%. The material was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), cytotoxicity assay and reduction colony-forming unit (CFU). The analyzed films showed agglomeration of silver particles and regions with homogeneous distribution of the particles. The interactions of the nano silver bactericidal effect with E. coli and S. aureus were assessed. (author)

  11. Topological and thermal properties of polypropylene composites based on oil palm biomass

    International Nuclear Information System (INIS)

    Bhat, A. H.; Dasan, Y. K.

    2014-01-01

    Roughness on pristine and polymer composite surfaces is of enormous practical importance for polymer applications. This study deals with the use of varying quantity of oil palm ash as a nanofiller in a polypropylene based matrix. The oil palm ash sample was preprocessed to break the particles into small diameter by using ultra sonication before using microfluidizer for further deduction in size and homogenization. The oil palm ash was made to undergo many passes through the microfluidizer for fine distribution of particles. Polypropylene based composites containing different loading percentage oil palm ash was granulated by twin screw extruder and then injection molded. The surface morphology of the OPA passed through microfluidizer was analyzed by Tapping Mode - Atomic Force Microscopy (TMAFM). Thermal analysis results showed an increase in the activation energy values. The thermal stability of the composite samples showed improvement as compared to the virgin polymer as corroborated by the on-set degradation temperatures and the temperatures at which 50% degradation occurred

  12. Topological and thermal properties of polypropylene composites based on oil palm biomass

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, A. H., E-mail: aamir.bhat@petronas.com.my, E-mail: anie-yal88@yahoo.com; Dasan, Y. K., E-mail: aamir.bhat@petronas.com.my, E-mail: anie-yal88@yahoo.com [Department of Fundamental and Applied Sciences, Universiti Teknologi Petronas, 31750 Perak (Malaysia)

    2014-10-24

    Roughness on pristine and polymer composite surfaces is of enormous practical importance for polymer applications. This study deals with the use of varying quantity of oil palm ash as a nanofiller in a polypropylene based matrix. The oil palm ash sample was preprocessed to break the particles into small diameter by using ultra sonication before using microfluidizer for further deduction in size and homogenization. The oil palm ash was made to undergo many passes through the microfluidizer for fine distribution of particles. Polypropylene based composites containing different loading percentage oil palm ash was granulated by twin screw extruder and then injection molded. The surface morphology of the OPA passed through microfluidizer was analyzed by Tapping Mode - Atomic Force Microscopy (TMAFM). Thermal analysis results showed an increase in the activation energy values. The thermal stability of the composite samples showed improvement as compared to the virgin polymer as corroborated by the on-set degradation temperatures and the temperatures at which 50% degradation occurred.

  13. Study of the stress oscillation phenomenon in syndiotactic polypropylene/montmorillonite nanocomposites

    Directory of Open Access Journals (Sweden)

    2010-04-01

    Full Text Available The phenomenon of Stress Oscillation (SO was studied in syndiotactic polypropylene and syndiotactic polypropylene nanocomposites with montmorillonite. The effect was provoked by varying the crosshead speed during tensile testing of thin stripes. The internal morphology of the stress oscillated specimens was studied by scanning electron microscopy on chemically etched samples revealing that cavitation prevails inside the opaque stripes of the yielded areas. Differential scanning calorimetry proved that there exists virtually no crystallinity differentiation between the characteristic alternating opaque/transparent stripes that mark the stress oscillation during necking. Finally a simple finite element model of the necking area of the specimens revealed non-uniform internal stress distributions of yield-point magnitudes.

  14. Topological and thermal properties of polypropylene composites based on oil palm biomass

    Science.gov (United States)

    Bhat, A. H.; Dasan, Y. K.

    2014-10-01

    Roughness on pristine and polymer composite surfaces is of enormous practical importance for polymer applications. This study deals with the use of varying quantity of oil palm ash as a nanofiller in a polypropylene based matrix. The oil palm ash sample was preprocessed to break the particles into small diameter by using ultra sonication before using microfluidizer for further deduction in size and homogenization. The oil palm ash was made to undergo many passes through the microfluidizer for fine distribution of particles. Polypropylene based composites containing different loading percentage oil palm ash was granulated by twin screw extruder and then injection molded. The surface morphology of the OPA passed through microfluidizer was analyzed by Tapping Mode - Atomic Force Microscopy (TMAFM). Thermal analysis results showed an increase in the activation energy values. The thermal stability of the composite samples showed improvement as compared to the virgin polymer as corroborated by the on-set degradation temperatures and the temperatures at which 50% degradation occurred.

  15. Gamma-Irradiation modified polypropylene and nano silver hybrid films: antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Oliani, Washigton L.; Alcantara, Mara T.S.; Lima, Luis F.C.P. de; Bueno, Nelson R.; Rogero, Sizue O.; Lugao, Ademar B.; Parra, Duclerc F., E-mail: washoliani@usp.br [Instituto de Pesquisas Energeticas Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil); Huenuman, Nilton E.L.; Santos, Priscila M. dos [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Dept. of Microbiologia; Riella, Humberto G. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2013-07-01

    This paper presents a study of films based on blends of polypropylene (PP) with radiation modified PP and insertion of silver nanoparticles aiming bactericide effect. The use of silver (Ag) gives important antibacterial properties since silver is highly toxic for bacteria. The blend of 50/50 PP and gamma irradiated PP was processed in a twin screw extruder. The polypropylene was processed for five PP-Nanocomposite AgNPs in different concentrations of 0.25%; 0.5%; 1.0%; 2.0% and 4.0% in wt%. The material was characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), cytotoxicity assay and reduction colony-forming unit (CFU). The analyzed films showed agglomeration of silver particles and regions with homogeneous distribution of the particles. The interactions of the nano silver bactericidal effect with E. coli and S. aureus were assessed. (author)

  16. Assessment of extrusion-sonication process on flame retardant polypropylene by rheological characterization

    Directory of Open Access Journals (Sweden)

    Guadalupe Sanchez-Olivares

    2016-05-01

    Full Text Available In this work, the rheological behavior of flame retardant polypropylene composites produced by two methods: 1 twin-screw extrusion and 2 ultrasound application combined with a static mixer die single-screw extrusion is analyzed in detail; results are related to the morphology of the composites. The flame retardant polymer composites are composed of a polypropylene matrix, an intumescent flame retardant system and functionalized clay. Scanning electron microscopy revealed that the combination of the static mixer die and on-line sonication reduced particle size and improved the dispersion and distribution of the intumescent additives in the polypropylene matrix at the micrometric level. From linear viscoelastic properties, the Han, Cole-Cole and van Gurp-Palmen diagrams characterized the improved particle dispersion of the flame retardant additives. Two well-defined rheological behaviors were observed in these diagrams. These behaviors are independent on clay presence and concentration. In fact, the ultrasound device generates a 3D highly interconnected structure similar to a co-continuous pattern observed in polymer blends as evidenced by rheological measurements. This improvement in the dispersion and distribution of the additives is attributed to the combined effect of the static mixer die and on-line sonication that allowed reducing the additive content while achieving the optimum classification UL94-V0.

  17. Hydrophobic nano-carrier for lysozyme adsorption

    Indian Academy of Sciences (India)

    phobic interaction chromatography' to describe the separation of proteins adsorbed onto hydrophobic medium by salts [19]. HIC is based on the interaction between hydrophobic ligand carrying support material and hydrophobic amino acids bear- ing non-polar regions of protein surface [20]. The main driv- ing force for this ...

  18. 21 CFR 584.700 - Hydrophobic silicas.

    Science.gov (United States)

    2010-04-01

    ...) Product. Amorphous fumed hydrophobic silica or precipitated hydrophobic silica (CAS Reg. No. 68611-0944... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hydrophobic silicas. 584.700 Section 584.700 Food... DRUGS, FEEDS, AND RELATED PRODUCTS FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE IN FEED AND...

  19. Ice friction: The effects of surface roughness, structure, and hydrophobicity

    Science.gov (United States)

    Kietzig, Anne-Marie; Hatzikiriakos, Savvas G.; Englezos, Peter

    2009-07-01

    The effect of surface roughness, structure, and hydrophobicity on ice friction is studied systematically over a wide range of temperature and sliding speeds using several metallic interfaces. Hydrophobicity in combination with controlled roughness at the nanoscale is achieved by femtosecond laser irradiation to mimic the lotus effect on the slider's surface. The controlled roughness significantly increases the coefficient of friction at low sliding speeds and temperatures well below the ice melting point. However, at temperatures close to the melting point and relatively higher speeds, roughness and hydrophobicity significantly decrease ice friction. This decrease in friction is mainly due to the suppression of capillary bridges in spite of the presence of surface asperities that facilitate their formation. Finally, grooves oriented in the sliding direction also significantly decrease friction in the low velocity range compared to scratches and grooves randomly distributed over a surface.

  20. Degradation of polypropylene carbonate through plasmonic heating

    Science.gov (United States)

    Haas, Kaitlin M.; Lear, Benjamin J.

    2013-05-01

    We report the thermal degradation of a solid film of polypropylene carbonate, driven by the photothermal effect of gold nanoparticles. We provide characterization of the products of this chemical reaction and use the known activation barrier for this chemical reaction to discuss the temperatures obtained in the film. In addition, we report the efficiency of the reaction as a function of nanoparticle concentration and find nanoparticles to be significantly more effective than an organic dye at driving this reaction.We report the thermal degradation of a solid film of polypropylene carbonate, driven by the photothermal effect of gold nanoparticles. We provide characterization of the products of this chemical reaction and use the known activation barrier for this chemical reaction to discuss the temperatures obtained in the film. In addition, we report the efficiency of the reaction as a function of nanoparticle concentration and find nanoparticles to be significantly more effective than an organic dye at driving this reaction. Electronic supplementary information (ESI) available: Table of data presented in Fig. 1b. Details of determination of quantum efficiency of Sudan IV. See DOI: 10.1039/c3nr01498c

  1. Preparation and Characterization of Polypropylene / MWCNT Dispersions

    Science.gov (United States)

    Pujari, Saswati; Burghardt, Wesley; Ramanathan, Thillaiyan; Brinson, L. Catherine; Kasimatis, Kosmas; Torkelson, John

    2008-03-01

    Dispersions of multiwall carbon nanotubes in polypropylene are prepared via melt batch mixing and solid-state shear pulverization, and characterized via linear viscoelastic measurements, SEM, polypropylene crystallization kinetics, electrical conductivity and dynamic mechanical analysis. Increasing the intensity or duration of the melt mixing leads to higher dispersion, evidenced by increases in a low-frequency elastic plateau and accelerated PP crystallization kinetics attributed to more effective heterogeneous nucleation. The sample prepared by pulverization exhibits faster crystallization kinetics than any of the melt blended samples, but in contrast shows no measurable low frequency elastic plateau. Electrical conductivity measurements similarly show higher conductivity in melt blended samples. This may be attributable to scission of the nanotubes during pulverization, such that even well dispersed tubes cannot form an entangled network at a given concentration. At the same time, pulverized composites show marked increase in stiffness at low loadings, indicating that tube scission due to pulverization is not catastrophic. Conversely, long mixing times required in melt blending cause substantial thermal degradation of the polymer matrix with a corresponding loss of mechanical properties.

  2. Recycled Polypropylene Improved with Thermoplastic Elastomers

    Directory of Open Access Journals (Sweden)

    Ecaterina Matei

    2017-01-01

    Full Text Available The use of recycled polypropylene (RPP as raw material for various industries has been known. However, the mechanical and thermal properties of recycled products are lower than those of raw material. The objective of this study was to obtain and investigate the modified recycled polypropylene (RPP with commercial elastomers for possible applications. The compounded RPP-based thermoplastic elastomers were investigated in order to determine their thermal properties (melt flow index (MFI, differential scanning calorimetry (DSC, VICAT softening temperature (VST, and heat deflection temperature (HDT, structural characteristics (optical microscopy, atomic force microscopy (AFM, and X-ray diffraction (XRD, and mechanical properties (tensile properties, density, and IZOD impact. The RPP compounded with 10% elastomer recorded higher tensile properties than the unmodified RPP. Also, IZOD impact strength increased from 4.3±0.2 kJ/m2 (registered for RPP to 21.7±2.5 kJ/m2 for the PPR/SIS30 compound, while the degree of crystallinity decreased for all compounds. The obtained results recommend the RPP/elastomers compounds both for environmental remediation from postconsumer PP wastes and to realize new goods with high performance for various applications.

  3. Hydrophobic-Core Microcapsules and Their Formation

    Science.gov (United States)

    Calle, Luz M. (Inventor); Li, Wenyan (Inventor); Buhrow, Jerry W. (Inventor); Jolley, Scott T. (Inventor)

    2016-01-01

    Hydrophobic-core microcapsules and methods of their formation are provided. A hydrophobic-core microcapsule may include a shell that encapsulates a hydrophobic substance with a core substance, such as dye, corrosion indicator, corrosion inhibitor, and/or healing agent, dissolved or dispersed therein. The hydrophobic-core microcapsules may be formed from an emulsion having hydrophobic-phase droplets, e.g., containing the core substance and shell-forming compound, dispersed in a hydrophilic phase. The shells of the microcapsules may be capable of being broken down in response to being contacted by an alkali, e.g., produced during corrosion, contacting the shell.

  4. Post-implantation alterations of polypropylene in the human.

    Science.gov (United States)

    Sternschuss, Gina; Ostergard, Donald R; Patel, Hiren

    2012-07-01

    We reviewed the mechanisms by which polypropylene mesh changes after implantation in the human body. The existing polymer and medical literature was reviewed regarding polypropylene, including its chemical characteristics, and compositional and physical properties, which undergo alteration after implantation at various human body locations. We also reviewed the changes in those physical properties that were demonstrable in explanted specimens. Polypropylene in mesh form is commonly considered inert and without adverse reactions after implantation in humans. The literature suggests otherwise with reports of various degrees of degradation, including depolymerization, cross-linking, oxidative degradation by free radicals, additive leaching, hydrolysis, stress cracking and mesh shrinkage along with infection, chronic inflammation and the stimulation of sclerosis. Many substances added to polypropylene for various purposes during manufacture behave as toxic substances that are released during the degradation process. The material may also absorb various substances. These alterations in the chemical structure of polypropylene are responsible for visibly demonstrable fiber changes, resulting in the loss of structural integrity through material embrittlement. The heat of manufacturing polypropylene fibers begins the degradation process, which is augmented by the post-production heat used to flatten the mesh to prevent curling and attach anchoring appendages. Based on available evidence the polypropylene used for surgical treatment of various structural defects is not inert after implantation in the human body. The quest for the perfect mesh must continue. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  5. Water on hydrophobic surfaces: Mechanistic modeling of hydrophobic interaction chromatography.

    Science.gov (United States)

    Wang, Gang; Hahn, Tobias; Hubbuch, Jürgen

    2016-09-23

    Mechanistic models are successfully used for protein purification process development as shown for ion-exchange column chromatography (IEX). Modeling and simulation of hydrophobic interaction chromatography (HIC) in the column mode has been seldom reported. As a combination of these two techniques is often encountered in biopharmaceutical purification steps, accurate modeling of protein adsorption in HIC is a core issue for applying holistic model-based process development, especially in the light of the Quality by Design (QbD) approach. In this work, a new mechanistic isotherm model for HIC is derived by consideration of an equilibrium between well-ordered water molecules and bulk-like ordered water molecules on the hydrophobic surfaces of protein and ligand. The model's capability of describing column chromatography experiments is demonstrated with glucose oxidase, bovine serum albumin (BSA), and lysozyme on Capto™ Phenyl (high sub) as model system. After model calibration from chromatograms of bind-and-elute experiments, results were validated with batch isotherms and prediction of further gradient elution chromatograms. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Polypropylene film with silver nanoparticles and nanoclay aiming to action biocidal

    International Nuclear Information System (INIS)

    Oliani, W.L.; Lima, L.F.C.P.; Lugao, A.B.; Parra, D.F.; Fermino, D.M.; Diaz, F.R.V.

    2014-01-01

    This paper presents an initial study of films made of polypropylene nanoclay and silver nanoparticles. The nanocomposite of polypropylene (iPP), commercial organoclay - montmorillonite (MMT), Cloisite 20A at concentrations of 1.0% and silver nanoparticles (AgNPs) at a concentration of 0.1% were prepared in a twin-screw-extruder, using polypropylene with maleic anhydride (PP-g-MA) as coupling agent. The properties of nanocomposites of PP/MMT/AgNPs are closely related to the dispersion of silver particles and the distribution of sheets of MMT in the polymer matrix, which define its efficiency in the case of the particles and their interaction clay/polymer matrix. However, this combination of MMT and AgNPs that are polar, with the polymer matrix nonpolar in the molten state, presents a challenge. The characterization of the film was performed by analysis of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and reduction of colony forming unit (CFU %). The results indicate the formation of predominantly exfoliated microstructures and agglomeration of silver nanoparticles in the film. The effect of silver nanoparticles was evaluated against bacteria E.coli and S.aureus. (author)

  7. An FE model of a cellular polypropylene: exploring mechanical properties

    Science.gov (United States)

    Sgardelis, Pavlos; Pozzi, Michele

    2017-05-01

    Several analytical models have been suggested to describe the changes in the electromechanical properties of Cellular Polypropylene (Cell-PP) due to charging. However, there is a limited number of studies considering the non-linear dependence of the piezoelectric coefficient d33 on the mechanical load applied. One of the main reasons for this nonlinearity is the stiffness of the film that increases proportionally to the applied mechanical load. Moreover the size and shape distribution of the enclosed voids is an important determinant of the electromechanical properties. In this work, the geometry of a 3D model of Cell-PP is designed on the basis of analytical Splines. Both the manufacturing procedure of Cell-PP films (bi-axial stretching) and the pressure expansion treatment were simulated in order to account for a realistic void distribution. The FEA is done on a 2D cross-section of the modelled film. The modelled mechanical response is analysed based on increasing mechanical load applied. The load-deflection curves obtained from the analysis are then compared to the experimental results acquired via Dynamical Mechanical Analyzer (DMA) to validate the model. Four types of Cell-PP films, expanded at different pressures, were used in this validation. The aim is to develop a model that describes the effect of morphological parameters on the stiffness of the films by simulating the manufacturing procedure.

  8. Mechanical Properties of Isotactic Polypropylene Modified with Thermoplastic Potato Starch

    Science.gov (United States)

    Knitter, M.; Dobrzyńska-Mizera, M.

    2015-05-01

    In this paper selected mechanical properties of isotactic polypropylene (iPP) modified with potato starch have been presented. Thermoplastic starch (TPS) used as a modifier in the study was produced from potato starch modified with glycerol. Isotactic polypropylene/thermoplastic potato starch composites (iPP/TPS) that contained 10, 30, 50 wt.% of modified starch were examined using dynamic mechanical-thermal analysis, static tensile, Brinell hardness, and Charpy impact test. The studies indicated a distinct influence of a filler content on the mechanical properties of composites in comparison with non-modified polypropylene.

  9. Strength of laser welded joints of polypropylene composites

    Science.gov (United States)

    Votrubec, V.; Hisem, P.; Vinšová, L.; Lukášová, V.

    2017-11-01

    This paper deals with experimental tests of laser welded polypropylene composites. Polymers, such as polypropylene, are often filled with fibres in order to increase their mechanical properties. The welding procedure can also influence material properties nearby weld joints. Therefore the strength of weld joints is lower than strength of primary materials. This effect is proved by realized shear tests. Polymer specimens were filled with 20 % and 40 % of glass fibres and all possible combinations of specimens were welded for experiments. There is also discussed influence of volume fraction of glass fibres in polypropylene on the strength of weld joint.

  10. [Investigation of the chain structure and thermal property of xylene solubles of impact polypropylene copolymers].

    Science.gov (United States)

    Luo, Hua-Lin; Zhao, Ying; Wu, Jin-Guang; Wang, Du-Jin

    2012-12-01

    Impact polypropylene copolymers (IPC) are in-situ blends of polypropylene homopolymer and ethylene-alpha-olefin copolymers formed in the reactor, which is a multiphasic complex material with isotactic polypropylene (iPP) as a matrix in which poly(ethylene-alpha-olefin) elastomeric copolymer is finely dispersed, and ethylene-alpha-olefin random copolymer (EPR) acts as an elastomer to improve the impact resistance properties of iPP at room temperature and low temperature. In the present, the content of xylene soluble is used to evaluate the content of EPR rubber phase in IPC. The content, the chain structure, and glass transition temperature (T(g)) of EPR rubber are critical to the toughness of IPC. In the present report, Fourier transform infrared spectroscopy(FTIR), nuclear magnetic resonance (NMR) and differential scanning calorimetry(DSC) were utilized to study the comonomer content, chain structure and thermal property of xylene soluble of two IPC prepared by different catalysts. The results indicated that there are small amount of ethylene-propylene segmented copolymers containing short methylene sequence that is crystallizable in the xylene soluble in addition to the ethylene-propylene random copolymers. And the sequence length of crystallizable methylene group of ethylene-propylene segmented copolymers in these two kinds of xylene soluble is different. The random distribution degree of ethylene and propylene monomer in the ethylene-propylene copolymers in these two kinds of xylene soluble is similar. The xylene soluble with lower content of PPP sequence and higher content of ethylene monomer has lower T(g), which will benefit the improvement of impact resistance property of polypropylene.

  11. Comparative study between polypropylene and polypropylene/poliglecaprone meshes used in the correction of abdominal wall defect in rats.

    Science.gov (United States)

    Utrabo, Carlos Alberto Lima; Czeczko, Nicolau Gregori; Busato, Cesar Roberto; Montemor-Netto, Mario Rodrigues; Malafaia, Osvaldo; Dietz, Ulrich Andreas

    2012-04-01

    To evaluate the healing process of a defect in the ventral abdominal wall of rats, comparing the polypropylene and polypropylene/poliglecaprone meshes on the 30(th) and 60(th) postoperative day. Thirty two Wistar rats were submitted to a ventral abdominal wall defect, with integrity of the parietal peritoneum. In the repair, were used polypropylene (group A) and polypropylene/poliglecaprone (group B) meshes. The groups were subdivided into four subgroups of eight animals euthanized on the 30(th) (A30 and B30) and 60(th) postoperative day (A60 and B60). Fragments of the abdominal wall of the animals were submitted to macroscopic, tensiometric and histological evaluations. The tensiometry on subgroup A30 showed a mean average break point of 0.78 MPa and in A60, 0.66 Mpa. In subgroup B30 it was 0.84 MPa and in B60, 1.27 Mpa. The score of the inflammatory process showed subacute phase on A30 and B30 sub-groups and chronic inflammatory process in subgroups A30 and 60B. The tensile strength was higher on the wall repaired by polypropylene/poliglecaprone mesh in the 60(th) post-operative day. Histology showed higher concentration of fibrosis on the surface of the polypropylene mesh with a tendency to encapsulation. In polypropylene/poliglecaprone subgroups the histology showed higher concentration of fibrosis on the surface of mesh filaments.

  12. Determination of Partition Coefficients of Selected Model Migrants between Polyethylene and Polypropylene and Nanocomposite Polypropylene

    Directory of Open Access Journals (Sweden)

    Pablo Otero-Pazos

    2016-01-01

    Full Text Available Studies on nanoparticles have focused the attention of the researchers because they can produce nanocomposites that exhibit unexpected hybrid properties. Polymeric materials are commonly used in food packaging, but from the standpoint of food safety, one of the main concerns on the use of these materials is the potential migration of low molecular substances from the packaging into the food. The key parameters of this phenomenon are the diffusion and partition coefficients. Studies on migration from food packaging with nanomaterials are very scarce. This study is focused on the determination of partition coefficients of different model migrants between the low-density polyethylene (LDPE and polypropylene (PP and between LDPE and nanocomposite polypropylene (naPP. The results show that the incorporation of nanoparticles in polypropylene increases the mass transport of model migrants from LDPE to naPP. This quantity of migrants absorbed into PP and naPP depends partially on the nature of the polymer and slightly on the chemical features of the migrant. Relation (RPP/naPP between partition coefficient KLDPE/PP and partition coefficient KLDPE/naPP at 60°C and 80°C shows that only BHT at 60°C has a RPP/naPP less than 1. On the other hand, bisphenol A has the highest RPP/naPP with approximately 50 times more.

  13. Is Br2 hydration hydrophobic?

    Science.gov (United States)

    Alcaraz-Torres, A; Gamboa-Suárez, A; Bernal-Uruchurtu, M I

    2017-02-28

    The spectroscopic properties of bromine in aqueous systems suggest it can behave as either hydrophilic or hydrophobic solute. In small water clusters, the halogen bond and the hydrogen-halogen interaction are responsible for its specific way of binding. In water hydrates, it is efficiently hosted by two different cages forming the crystal structure and it has been frequently assumed that there is little or no interaction between the guest and the host. Bromine in liquid solution poses a challenging question due to its non-negligible solubility and the large blue shift measured in its absorption spectra. Using a refined semi-empirical force field, PM3-PIF, we performed a Born-Oppenheimer molecular dynamics study of bromine in liquid water. Here we present a detailed study in which we retrieved the most representative hydration structures in terms of the most frequent positions around bromine and the most common water orientations. Albeit being an approximate description of the total hydration phenomenon, it captures the contribution of the leading molecular interactions in form of the recurrent structures. Our findings confirm that the spectroscopic signature is mainly caused by the closest neighbors. The dynamics of the whole first hydration shell strongly suggests that the external molecules in that structure effectively isolate the bulk from the presence of bromine. The solvation structure fluctuates from a hydrophilic to a hydrophobic-like environment along the studied trajectory.

  14. Radiation effects on polypropylene for sterilization.

    Science.gov (United States)

    Khang, G; Lee, H B; Park, J B

    1996-01-01

    In order to improve the resistance of gamma-radiation sterilization of polypropylene (PP), the formulations of the additives such as antioxidants, crosslinking agent, and trans-stilbene oxide (StO) have been carried out. The irradiated PP and ethylene-propylene copolymer samples with control and additives were characterized by mechanical tester, colorimetry, and Fourier transform infrared spectroscopy with total attenuated reflectance mode (FTIR-ATR). Crosslinking agent and StO formulated PP showed remarkable radiation resistance and minimum discoloration. Also, radiation resistance of ethylene-propylene copolymers with 3% of ethylene contents was better than that of PP homopolymers in the case of no additives. The proposed mechanisms of radiation stabilization with additives are also discussed.

  15. Decontamination of polypropylene fabrics by dry cleaning

    International Nuclear Information System (INIS)

    Severa, J.; Knajfl, J.

    1983-01-01

    Polypropylene fabrics can efficiently be decontaminated by dry cleaning in benzine or perchloroethylene, this also in case the fabric was greased in addition to radioactive contamination. For heavily soiled fabric, it is advantageous to first dry clean it and then wash it. The positive effect was confirmed of intensifiers on the cleaning process, especially of benzine soap. In practice, its concentration should be selected within 1 and 10 g.dm - 3 . Decontamination by dry cleaning and subsequent washing is advantageous in that that the resulting activity of waste water from the laundry is low. Radioactive wastes from the dry cleaning process have a low weight and can be handled as solid waste. (M.D.)

  16. Mechanical Properties of Nanofilled Polypropylene Composites

    Directory of Open Access Journals (Sweden)

    Cristina-Elisabeta PELIN

    2015-06-01

    Full Text Available The paper presents a study concerning mechanical performance of thermoplastic nanocomposites based on isotactic polypropylene matrix, nanofilled with montmorillonite modified with quaternary ammonium salt and carboxyl functionalized carbon nanotubes, respectively, added in the same concentration relative to the matrix. The nanofilled and single polymer materials were obtained by simple melt compounding through extrusion process followed by injection molding into specific shape specimens for mechanical testing of the samples. Mechanical properties were evaluated by tensile and 3 point bending tests. In terms of modulus of elasticity, the results showed overall positive effects concerning the effect of nanofiller addition to the thermoplastic polymer. The fracture cross section of the tested specimens was characterized by FT-IR spectroscopy and SEM microscopy.

  17. Cryogenic performance of single polymer polypropylene composites

    Science.gov (United States)

    Atli-Veltin, Bilim

    2018-03-01

    The main objective of the experimental study detailed in this paper is to investigate the performance of fully recyclable, lightweight, low-cost, thermoplastic Polypropylene (PP) composite tapes at low temperatures. Coupons made of [±45] and [0/90] laminates are subjected to tensile and 3-point bending tests at room temperature as well as at -196 °C. In addition to that, cryogenic low velocity impact tests at 268 J and 777 J impact energies are performed on tubular structures. The results are indicating that the laminates made of PP tapes have sufficient ductility for cryogenic applications. Low velocity impact tests showed that the viscoelastic behavior of the material is preserved, even at such low temperatures and more than 72% of impact energy is absorbed by the material.

  18. Ex-situ catalytic co-pyrolysis of lignin and polypropylene to upgrade bio-oil quality by microwave heating.

    Science.gov (United States)

    Duan, Dengle; Wang, Yunpu; Dai, Leilei; Ruan, Roger; Zhao, Yunfeng; Fan, Liangliang; Tayier, Maimaitiaili; Liu, Yuhuan

    2017-10-01

    Microwave-assisted fast co-pyrolysis of lignin and polypropylene for bio-oil production was conducted using the ex-situ catalysis technology. Effects of catalytic temperature, feedstock/catalyst ratio, and lignin/polypropylene ratio on product distribution and chemical components of bio-oil were investigated. The catalytic temperature of 250°C was the most conducive to bio-oil production in terms of the yield. The bio-oil yield decreased with the addition of catalyst during ex-situ catalytic co-pyrolysis. When the feedstock/catalyst ratio was 2:1, the minimum char and coke values were 21.22% and 1.54%, respectively. The proportion of cycloalkanes decreased and the aromatics increased with the increasing catalyst loading. A positive synergistic effect was observed between lignin and polypropylene. The char yield dramatically deceased and the bio-oil yield improved during co-pyrolysis compared with those during lignin pyrolysis alone. The proportion of oxygenates dramatically and the minimum value of 6.74% was obtained when the lignin/polypropylene ratio was 1:1. Copyright © 2017. Published by Elsevier Ltd.

  19. Graft copolimerization of hydrophilic monomers onto irradiated polypropylene fibers

    International Nuclear Information System (INIS)

    Sundardi, F.

    1978-01-01

    A method of graft copolymerization of hydrophilic monomers, such as 1-vinyl-2-pyrrolidone, acrylonitrile, acrylic acid, and acrylamide, onto irradiated polypropylene fibers has been studied. γ ray as well as electron beam were employed for the irradiation processes. Graft-copolymerization kinetics and the properties of grafted fibers have been investigated. Moisture regain, dyes absorption, and melting point of the grafted fibers were found to increase with the increasing of the degree of grafting. Polypropylene for 1-vinyl-2-pyrrolidone grafted fibers showed excellent dye absorption for almost all kinds of dyes such as direct, basic, acid, reactive, disper, and naphthol dyes. However, for polypropylene acrylic acid grafted fibers, the colorfastness to washing was found to be unsatisfactory. The colorfastness to washing for polypropylene 1-vinyl-2-pyrrolidone grafted fibers was found to be fairly good for certain types of dyes such as vat and naphthol dyes. (author)

  20. The effects of normal paraffins mobilizers on irradiated polypropylene

    International Nuclear Information System (INIS)

    Chen Wenxiu; Gao Ling

    1995-01-01

    The n-paraffins blended with polypropylene (PP) as mobilizer had been investigated. The effectiveness of mobilizer (n-paraffins) on irradiated polypropylene is dependent on the molecular weight of mobilizer and its content on polypropylene. The n-docosame (n-C 22 ) possesses the best effectiveness of radiation tolerance on PP among the mobilizer paraffins: n-decane (n-C 10 ), n-hexadecane (n-C 16 ), n-docosane (n-C 22 ) and n-hexatriacontane (n-C 36 ). The 2% (w/w) content of a given mobilizer is the most effective at reducing the embrittlement of irradiated PP as evidenced by the elongation at break. The physical properties of polypropylene with mobilizers such as density, Young's modulus, the Fraction of free volume and the weight swelling ratio in p-xylene at room temperature were measured. Above phenomena are related with the constructive of blended PP and demonstrated by its physical properties

  1. an experimental study on the use of polypropylene waste

    African Journals Online (AJOL)

    HOD

    PM) asphalt concrete. The specimens ... as poor materials selection and quality, design and construction lapses, climatic ... AN EXPERIMENTAL STUDY ON THE USE OF POLYPROPYLENE WASTE IN BITUMINOUS MIX. H. S. Otuoze & A. A. ...

  2. In vivo oxidative degradation of polypropylene pelvic mesh.

    Science.gov (United States)

    Imel, Adam; Malmgren, Thomas; Dadmun, Mark; Gido, Samuel; Mays, Jimmy

    2015-12-01

    Commercial polypropylene pelvic mesh products were characterized in terms of their chemical compositions and molecular weight characteristics before and after implantation. These isotactic polypropylene mesh materials showed clear signs of oxidation by both Fourier-transform infrared spectroscopy and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDS). The oxidation was accompanied by a decrease in both weight-average and z-average molecular weights and narrowing of the polydispersity index relative to that of the non-implanted material. SEM revealed the formation of transverse cracking of the fibers which generally, but with some exceptions, increased with implantation time. Collectively these results, as well as the loss of flexibility and embrittlement of polypropylene upon implantation as reported by other workers, may only be explained by in vivo oxidative degradation of polypropylene. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Development of hemp fibre reinforced polypropylene composite - Journal Article

    CSIR Research Space (South Africa)

    Hargitai, H

    2005-06-01

    Full Text Available Nonwoven mats from hemp and polypropylene fibres in various proportions were produced and hot pressed to make composite material. The effect of fibre content and the anisotropy in nonwoven mat resulting from the carding technology were examined...

  4. Characterisation of nanomaterial hydrophobicity using engineered surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Desmet, Cloé; Valsesia, Andrea; Oddo, Arianna; Ceccone, Giacomo; Spampinato, Valentina; Rossi, François; Colpo, Pascal, E-mail: pascal.colpo@ec.europa.eu [Directorate Health, Consumer and Reference Materials, Consumer Products Safety Unit (Italy)

    2017-03-15

    Characterisation of engineered nanomaterials (NMs) is of outmost importance for the assessment of the potential risks arising from their extensive use. NMs display indeed a large variety of physico-chemical properties that drastically affect their interaction with biological systems. Among them, hydrophobicity is an important property that is nevertheless only slightly covered by the current physico-chemical characterisation techniques. In this work, we developed a method for the direct characterisation of NM hydrophobicity. The determination of the nanomaterial hydrophobic character is carried out by the direct measurement of the affinity of the NMs for different collectors. Each collector is an engineered surface designed in order to present specific surface charge and hydrophobicity degrees. Being thus characterised by a combination of surface energy components, the collectors enable the NM immobilisation with surface coverage in relation to their hydrophobicity. The experimental results are explained by using the extended DLVO theory, which takes into account the hydrophobic forces acting between NMs and collectors.

  5. Extruded Films From Modified Polypropylene Resin: Dielectric and Breakdown Studies

    Science.gov (United States)

    1992-04-01

    antioxidants which would be normally adsorbed on powdered resin surfaces. These species would have become trapped within the PP film during melt extrusion ...AD-A261 382 SResearch and Development Technical Report SLCET-TR-91-29 EXTRUDED FILMS FROM MODIFIED POLYPROPYLENE RESIN: DIELECTRIC AND BREAKDOWN...Auq 91 ’ m u’ . .. . . -. ;M A . .. . .AS EXTRUDED FILMS FROM MODIFIED POLYPROPYLENE RESIN: PE: 61102 DIELECTRIC AND BREAKDOWN STUDIES PR: ILI B

  6. Preparation of Polypropylene/Montmorillonite Nanocomposites Using Ionizing Radiation

    International Nuclear Information System (INIS)

    Güven, Olgun; Zengin, Fatma

    2011-01-01

    Polymer/clay nanocomposites are new generation materials that bring significant changes in mechanical, thermal and permeation properties of base polymers by low clay loading. In this study, polypropylene/montmorillonite nanocomposites were prepared by melt intercalation method by using batch type mixer. Two polypropylene samples with different melt flow indexes are used as the matrix, maleic anhydride grafted polypropylene (PP-g-MAH), and polypropylene granules oxidized by radiation/ozone are used as compatibilizer and unmodified clay (Na + montmorillonite, MMT) as the filler. Aim of this study is to examine the effect of different compatibilizers in the mechanical properties of polypropylene composite. Firstly, PP/clay samples were prepared and the effect of clay was examined, then 5, 10, 20kGy oxidized/degraded polypropylenes were used as compatibilizer and, 10 kGy was determined to be the most suitable irradiation dose for the best compatibilizing effect. Polypropylene granules were ozonated until they contained carbonyl groups equivalent to 10kGy oxidized PP, which was checked by FTIR-ATR spectroscopy. UV-visible reflectance measurements were also made on film samples and no significant changes were observed in visible region. Nano structures of some nanocomposites were characterized by PALS (Positron Annihilation Lifetime Spectroscopy) where it was observed that the addition of clay decreased the number of free volume holes and free volume hole radia. The dispersion state of MMT within polymer matrix was analyzed by XRD (X-ray diffraction). Tensile tests were made and the effect of the addition of clay and compatibilizers investigated. At low melt flow index PP, 1% MMT of PP/10kGyPP/MMT nanocomposite showed an increase in E-modulus 26% and in tensile strength 8% as compared to those of pristine PP. In conclusion radiation degraded (chain scissioned and oxidized) PP has been found to show very good compatibilizing effect for the natural montmorillonite/polypropylene

  7. Polypropylene/graphite nanocomposites by in situ polymerization

    International Nuclear Information System (INIS)

    Milani, Marceo A.; Galland, Giselda B.; Quijada, Raul

    2011-01-01

    This work presents the synthesis of nanocomposites of polypropylene/graphite by in situ polymerization using metallocene catalyst and graphene nanosheets. Initially was analyzed which of the metallocene catalysts rac-Et(Ind) 2 ZrCl 2 or rac-Me 2 Si(Ind) 2 ZrCl 2 produces polypropylene with mechanical properties more relevant. Then it were performed the in situ polymerization reactions to obtain the nanocomposites. The polymeric materials were characterized by XRD, DSC, GPC and DMTA. (author)

  8. Application of gas chromatography to the investigations on polypropylene radiolysis

    International Nuclear Information System (INIS)

    Zagorski, Z.P.; Gluszewski, W.

    2006-01-01

    Refinement of the gas chromatography (GC) instrumental approach permitted not only improvement of investigation in basic research, but also development of a new kind of polypropylene blends, more suitable for the production of medical devices and radiation sterilization. It has been shown, that using the GC method not only methane and carbon dioxide can be measured, but also the consumption of oxygen which reacts with free radicals on the polypropylene chain

  9. Radiation resistant modified polypropylene; Polipropylen modyfikowany odporny radiacyjnie

    Energy Technology Data Exchange (ETDEWEB)

    Bojarski, J.; Zimek, Z. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    1997-10-01

    Radiation technology for production of radiation resistant polypropylene for medical use has been presented. The method consists in radiation induced copolymerization of polypropylene with ethylene and addition of small amount of copolymer of polyethylene and vinyl acetate. The material of proposed composition has a very good mechanical properties and elevated radiation resistivity decided on possibility of radiosterilization of products made of this material and designed for medical use. 3 figs, 3 tabs.

  10. Altering surface characteristics of polypropylene mesh via sodium hydroxide treatment.

    Science.gov (United States)

    Regis, Shawn; Jassal, Manisha; Mukherjee, Nilay; Bayon, Yves; Scarborough, Nelson; Bhowmick, Sankha

    2012-05-01

    Incisional hernias represent a serious and common complication following laparotomy. The use of synthetic (e.g. polypropylene) meshes to aid repair of these hernias has considerably reduced recurrence rates. While polypropylene is biocompatible and has a long successful clinical history in treating hernias and preventing reherniation, this material may suffer some limitations, particularly in challenging patients at risk of wound failure due to, for example, an exaggerated inflammation reaction, delayed wound healing, and infection. Surface modification of the polypropylene mesh without sacrificing its mechanical properties, critical for hernia repair, represents one way to begin to address these clinical complications. Our hypothesis is treatment of a proprietary polypropylene mesh with sodium hydroxide (NaOH) will increase in vitro NIH/3T3 cell attachment, predictive of earlier and improved cell colonization and tissue integration of polypropylene materials. Our goal is to achieve this altered surface functionality via enhanced removal of chemicals/oils used during material synthesis without compromising the mechanical properties of the mesh. We found that NaOH treatment does not appear to compromise the mechanical strength of the material, despite roughly a 10% decrease in fiber diameter. The treatment increases in vitro NIH/3T3 cell attachment within the first 72 h and this effect is sustained up to 7 days in vitro. This research demonstrates that sodium hydroxide treatment is an efficient way to modify the surface of polypropylene hernia meshes without losing the mechanical integrity of the material. This simple procedure could also allow the attachment of a variety of biomolecules to the polypropylene mesh that may aid in reducing the complications associated with polypropylene meshes today. Copyright © 2012 Wiley Periodicals, Inc.

  11. Nanostructured coatings for super hydrophobic textiles

    Indian Academy of Sciences (India)

    Author for correspondence (mangala@textile.iitd.ac.in) silica based surfaces on glass is by adding polypropylene gly- col (PPG) polymer into the silica precursor ... free silk (Wong et al 2006), to reduce the friction and wear of nylon-6 (Garci et al 2004) and polyurethane coating. (Song et al 2008) and to increase the flame ...

  12. Correlação entre o Índice de Fluxo à Fusão e a Função da Distribuição de Cisão de Cadeia durante a degradação termo-mecânica do polipropileno Correlation between Melt Flow Index and Chain Scission Distribution Function during the thermo-mechanical degradation of polypropylene

    Directory of Open Access Journals (Sweden)

    Carlos A. Cáceres C.

    2006-12-01

    Full Text Available Mudanças no Índice de Fluxo à Fusão (MFI foram correlacionadas com o deslocamento da curva de distribuição de massa molar (MWD geradas pela degradação termo-mecânica do polipropileno (PP sujeito a múltiplas extrusões. A degradação foi modelada utilizando-se a Função de Distribuição de Cisão de Cadeia (CSDF, que pode quantificar o deslocamento da curva de distribuição de massa molar com o número de extrusões. O efeito normalmente envolve a redução da massa molar, o que implica em valores positivos da CSDF e redução da viscosidade do estado fundido. O deslocamento da massa molar média (LogMw(0 - LogMw(D, calculado a partir das massas molares ponderais médias, antes e após a degradação, se sobrepõe às curvas de CSDF e apresenta uma relação linear com os valores de MFI. O processo de degradação termo-mecânica do polipropileno pode ser mais bem visualizado correlacionando-se curvas de CSDF e os valores de MFI.Changes in the Melt Flow Index were related to the shift in the Molecular Weight Distribution Curve (MWD produced by the thermo-mechanical degradation of polypropylene (PP during multiprocessing. The degradation was modelled using the Chain Scission Distribution Function (CSDF, which quantifies the shift in the molecular weight distribution curve as a function of the number of extrusions. The effect is normally the reduction of the molecular weight, which means positive values for CSDF and reduction of the polymer melt viscosity. The average molecular weight shift (LogMw(0 - LogMw(D calculated from the average weight molecular weight before and after the degradation overlaps the CSDF curve and shows a linear relationship with the MFI values. The thermo-mechanical degradation process of polypropylene can be better visualized when CSDF curves are correlated with MFI values.

  13. Liquid Water may Stick on Hydrophobic Surfaces

    Indian Academy of Sciences (India)

    IAS Admin

    Indian Institute of Technology Kharagpur, India. Liquid Water may Stick on Hydrophobic. Surfaces. Suman Chakraborty. Professor. Department of Mechanical Engineering, IIT Kharagpur, India. July, 2016 ...

  14. Hydrophobic solvation of nonspherical solutes

    International Nuclear Information System (INIS)

    Pratt, L.R.; Chandler, D.

    1980-01-01

    The theory of hydrophobic effects presented by Pratt and Chandler is generalized to include nonpolar solutes which are distinctly aspherical. The theory is used to study the solvation of simple aspherical hydrocarbon solutes in liquid water. The radial solvation of each component of diatomiclike solutes is studied as a function of their separation, or bond length. From these results it is found that when the bond length is large enough that one water molecule can fit between the apolar pair, the radial solvation of each is the same as that when the bond length approaches infinity. The solvation of the various sites of the homologous series methane, ethane, propane, and n-butane is also studied, and effects of the geometrical structure of the solutes on their solvation is discussed

  15. Fluctuations of water near extended hydrophobic and hydrophilic surfaces

    OpenAIRE

    Patel, Amish J.; Chandler, David

    2009-01-01

    We use molecular dynamics simulations of the SPC-E model of liquid water to derive probability distributions for water density fluctuations in probe volumes of different shapes and sizes, both in the bulk as well as near hydrophobic and hydrophilic surfaces. To obtain our results, we introduce a biased sampling of coarse-grained densities, which in turn biases the actual solvent density. The technique is easily combined with molecular dynamics integration algorithms. Our principal result is t...

  16. Positron annihilation in polypropylene studied by lifetime and coincidence Doppler-broadening spectroscopy

    Science.gov (United States)

    Djourelov, N.; He, C.; Suzuki, T.; Shantarovich, V. P.; Ito, Y.; Kondo, K.; Ito, Y.

    2003-12-01

    The momentum density distributions (MDDs) of electrons taking part in the annihilation processes in polypropylene (PP) have been measured by coincidence Doppler-broadening spectroscopy. MDDs at the beginning of measurements to those at the saturation level of Ps formation have been compared in order to follow the possible changes in concentration of carbonyl groups (CG). A high initial CG concentration in PP has been observed, while for antioxidant-containing PP no significant presence of CG has been detected, and no changes have been observed during positron irradiation.

  17. Micromechanical Characterization of Complex Polypropylene Morphologies by HarmoniX AFM

    Directory of Open Access Journals (Sweden)

    S. Liparoti

    2017-01-01

    Full Text Available This paper examines the capability of the HarmoniX Atomic Force Microscopy (AFM technique to draw accurate and reliable micromechanical characterization of complex polymer morphologies generally found in conventional thermoplastic polymers. To that purpose, injection molded polypropylene samples, containing representative morphologies, have been characterized by HarmoniX AFM. Mapping and distributions of mechanical properties of the samples surface are determined and analyzed. Effects of sample preparation and test conditions are also analyzed. Finally, the AFM determination of surface elastic moduli has been compared with that obtained by indentation tests, finding good agreement among the results.

  18. Permanent hydrophilic modification of polypropylene and poly(vinyl alcohol) films by vacuum ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Belmonte, Guilherme Kretzmann [Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Charles, German [Centro de Química Aplicada (CEQUIMAP), Facultad de Ciencias Químicas, Unversidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Edificio de Ciencias II, Ciudad Universitaria, Córdoba 5000 (Argentina); Strumia, Miriam Cristina [Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, IPQA-Conicet, Haya de la Torre y Medina Allende, Edificio de Ciencias II, Ciudad Universitaria, Córdoba 5000 (Argentina); Weibel, Daniel Eduardo, E-mail: danielw@iq.ufrgs.br [Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil)

    2016-09-30

    Highlights: • Polypropylene and Poly(vinyl alcohol) were surface modified by vacuum ultraviolet (VUV) irradiation. • The hydrophilicity of the treated films was permanent and resisted aging for several months. • Grafting of styrene monomer was only observed in the VUV irradiated regions. • The obtained results showed the potential in the use of VUV treatment for surface modification and processing of polymers which lack chromophores in the UV region. - Abstract: Polypropylene (PP) and Poly(vinyl alcohol) (PVA) both synthetics polymers but one of them biodegradable, were surface modified by vacuum ultraviolet (VUV) irradiation. After VUV irradiation in an inert nitrogen atmosphere, the films were exposed to oxygen gas. The treated films were characterized by water contact angle measurements (WCA), optical profilometry, FTIR-ATR, XPS, UPS and NEXAFS techniques. PP and PVA VUV-treated films reached superhydrophilic conditions (WCAs <10°) in about 30 min of irradiation under our experimental conditions. It was observed that when the WCAs reached about 35–40° the hydrophilicity was permanent in both polymers. These results contrasted with typical plasma treatments were a rapid hydrophobic recovery with aging time is usually observed. UPS and XPS data showed the presence of new functionalities on the PP and PVA surfaces that were assigned to COO, C=O, C−O and C=C functional groups. Finally, grafting of styrene (ST) as a typical monomer was tested on PP films. It was confirmed that only in the VUV irradiated region an efficient grafting of ST or polymerized ST was found. Outside the irradiated regions no ST grafted was observed. Our results showed the potential use of VUV treatment for surface modification and processing of polymers which lack chromophores in the UV region.

  19. Study on grafting acrylonitrile and acrylic acid onto polypropylene nonwoven fabrics polypropylene nonwoven fabrics

    International Nuclear Information System (INIS)

    Geng Jiannuan; Qiu Nongxue; Wang Pengfei; Yan Long

    2005-01-01

    In this paper, co-grafting reaction of acrylonitrile and acrylic acid onto pre-irradiated polypropylene nonwoven fabrics in air medium has been studied. The degree of grafting has been determined as a function of irradiation dose, reaction temperature, reaction time, monomer concentration, ratio of monomers and the concentration of Mohr's. The results showed that the best condition of grafting reaction was reaction temperature 75 degree C, reaction time 4 h, monomer concentration 50%. Structure of the grafted polymer have been studied by FT-IR. (authors)

  20. Granulation of increasingly hydrophobic formulations using a twin screw granulator.

    Science.gov (United States)

    Yu, Shen; Reynolds, Gavin K; Huang, Zhenyu; de Matas, Marcel; Salman, Agba D

    2014-11-20

    The application of twin screw granulation in the pharmaceutical industry has generated increasing interest due to its suitability for continuous processing. However, an understanding of the impact of formulation properties such as hydrophobicity on intermediate and finished product quality has not yet been established. Hence, the current work investigated the granulation behaviour of three formulations containing increasing amounts of hydrophobic components using a Consigma™-1 twin screw granulator. Process conditions including powder feed rate, liquid to solid ratio, granulation liquid composition and screw configuration were also evaluated. The size of the wet granules was measured in order to enable exploration of granulation behaviour in isolation without confounding effects from downstream processes such as drying. The experimental observations indicated that the granulation process was not sensitive to the powder feed rate. The hydrophobicity led to heterogeneous liquid distribution and hence a relatively large proportion of un-wetted particles. Increasing numbers of kneading elements led to high shear and prolonged residence time, which acted to enhance the distribution of liquid and feeding materials. The bimodal size distributions considered to be characteristic of twin screw granulation were primarily ascribed to the breakage of relatively large granules by the kneading elements. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. [Investigation on degradation of polypropylene/stabilizers composites irradiated by gamma rays].

    Science.gov (United States)

    Zhou, Li-juan; Zhang, Xiu-qin; Zhao, Ying; Yang, Ming-shu; Wang, Du-jin; Xu, Duan-fu

    2010-10-01

    The degradation behavior of polypropylene and polypropylene/stabilizer composites, caused by gamma radiation, was studied in the present work The stabilizers used were hindered phenol antioxidant and hindered amine light stabilizer. FTIR spectroscopy and DSC analysis were used to determine the structural variation induced by gamma radiation. It can be seen that the evolution of PP and composites PP/stabilizers on gamma irradiation is an increase in absorbance in the hydroxyl and carbonyl absorption regions. Carbonyl index calculated from FTIR spectra was used to characterize the rate of degradation. When the irradiation dose was small (polypropylene and polypropylene/stabilizers composites was not obvious; while the irradiation dose increased (> or =50 kGy), the carbonyl indexes of all the samples increased obviously, and the degradation degree of polypropylene/stabilizer composites was bigger than pure polypropylene. This result might be partially attributed to the molecular chain scission of hindered phenol and hindered amine under larger irradiation dose. The chain scission of stabilizers forms hydroperoxides and peroxide radicals, catalyzing the degradation of polypropylene. As the irradiation dose was small (polypropylene and polypropylene/stabilizer composites all showed no remarkable changes; as the irradiation dose exceeded 50 kGy, the crystallization temperatures of pure polypropylene and polypropylene/stabilizer composites all decreased obviously. Correspondingly, the melting peaks of both pure polypropylene and polypropylene/stabilizer composites moved to lower temperature and split into two peaks with increasing the irradiation dose. The decrease of crystallization and melting temperatures might be attributed to the destruction of chemical structure and stereo-regularity of the molecular chain, due to the increasing of carbonyl and hydroxyl groups brought by the oxidation of polypropylene molecular chain. At the same irradiation dose (> or = 50 k

  2. Durability of hydrophobic treatment of concrete

    NARCIS (Netherlands)

    Vries, J. de; Polder, R.B.; Borsje, H.

    1998-01-01

    The subject of this study was the performance of hydrophobic treatment to protect concrete against chloride penetration from de-icing salts. Hydrophobic treatment makes a concrete surface absorb less water and less chloride. Several types of tests were carried out to study the performance of

  3. Dynamics of Wetting of Ultra Hydrophobic Surfaces

    Science.gov (United States)

    Mohammad Karim, Alireza; Kim, Jeong-Hyun; Rothstein, Jonathan; Kavehpour, Pirouz; Mechanical and Industrial Engineering, University of Massachusetts, Amherst Collaboration

    2013-11-01

    Controlling the surface wettability of hydrophobic and super hydrophobic surfaces has extensive industrial applications ranging from coating, painting and printing technology and waterproof clothing to efficiency increase in power and water plants. This requires enhancing the knowledge about the dynamics of wetting on these hydrophobic surfaces. We have done experimental investigation on the dynamics of wetting on hydrophobic surfaces by looking deeply in to the dependency of the dynamic contact angles both advancing and receding on the velocity of the three-phase boundary (Solid/Liquid/Gas interface) using the Wilhelmy plate method with different ultra-hydrophobic surfaces. Several fluids with different surface tension and viscosity are used to study the effect of physical properties of liquids on the governing laws.

  4. Polypropylene matrix composites reinforced with coconut fibers

    Directory of Open Access Journals (Sweden)

    Maria Virginia Gelfuso

    2011-09-01

    Full Text Available Polypropylene matrix composites reinforced with treated coconut fibers were produced. Fibers chemically treated (alkalization-CCUV samples or mechanically treated (ultrasonic shockwave-CMUV samples were dried using UV radiation. The goal was to combine low cost and eco-friendly treatments to improve fiber-matrix adhesion. Composite samples containing up to 20 vol. (% of untreated and treated coconut fibers were taken from boxes fabricated by injection molding. Water absorption and mechanical properties were investigated according to ASTM D570-98 and ASTM D638-03, respectively. Electrical characterizations were carried out to identify applications of these composites in the electrical sector. NBR 10296-Electrical Tracking Standard (specific to industry applications and conductivity measurements were obtained applying 5 kV DC to the samples. CMUV samples containing 5 vol. (% fiber presented superior tensile strength values (σ~28 MPa compared to the untreated fibers composite (σ~22 MPa or alkali treatment (σ~24 MPa. However, CMUV composites containing 10 vol. (% fiber presented best results for the electrical tracking test and electrical resistivity (3 × 10(7 Ω.m. The results suggest that composites reinforced with mechanically treated coconut fibers are suitable for electrical applications.

  5. Optical Properties of Polypropylene upon Recycling

    Directory of Open Access Journals (Sweden)

    Felice De Santis

    2013-01-01

    Full Text Available In the last few years there has been an increasing interest in the possibility of recycling polymeric materials, using physical recycling. However, is it well known that polymers experience a depletion of all the properties upon recycling. These effects have been widely characterized in the literature for what concerns the mechanical or rheological properties. The changes of optical properties after recycling have been much less studied, even if, especially in food packaging, optical characteristics (above all the opacity are of extreme importance, and thus it is quite significant to assess the effect of recycling on these properties. In this work, the influence of recycling steps on the opacity of films of a commercial grade of isotactic polypropylene (i-PP was studied. The material was extruded several times to mimic the effect of recycling procedures. After extrusion, films were obtained by cooling samples of material at different cooling rates. The opacity of the obtained films was then measured and related to their crystallinity and morphology. It was found that opacity generally increases on increasing the amount of α phase and for the same amount of α phase on increasing the size of the spherulites.

  6. Optical Properties of Polypropylene upon Recycling

    Science.gov (United States)

    2013-01-01

    In the last few years there has been an increasing interest in the possibility of recycling polymeric materials, using physical recycling. However, is it well known that polymers experience a depletion of all the properties upon recycling. These effects have been widely characterized in the literature for what concerns the mechanical or rheological properties. The changes of optical properties after recycling have been much less studied, even if, especially in food packaging, optical characteristics (above all the opacity) are of extreme importance, and thus it is quite significant to assess the effect of recycling on these properties. In this work, the influence of recycling steps on the opacity of films of a commercial grade of isotactic polypropylene (i-PP) was studied. The material was extruded several times to mimic the effect of recycling procedures. After extrusion, films were obtained by cooling samples of material at different cooling rates. The opacity of the obtained films was then measured and related to their crystallinity and morphology. It was found that opacity generally increases on increasing the amount of α phase and for the same amount of α phase on increasing the size of the spherulites. PMID:24288478

  7. Optical properties of polypropylene upon recycling.

    Science.gov (United States)

    De Santis, Felice; Pantani, Roberto

    2013-01-01

    In the last few years there has been an increasing interest in the possibility of recycling polymeric materials, using physical recycling. However, is it well known that polymers experience a depletion of all the properties upon recycling. These effects have been widely characterized in the literature for what concerns the mechanical or rheological properties. The changes of optical properties after recycling have been much less studied, even if, especially in food packaging, optical characteristics (above all the opacity) are of extreme importance, and thus it is quite significant to assess the effect of recycling on these properties. In this work, the influence of recycling steps on the opacity of films of a commercial grade of isotactic polypropylene (i-PP) was studied. The material was extruded several times to mimic the effect of recycling procedures. After extrusion, films were obtained by cooling samples of material at different cooling rates. The opacity of the obtained films was then measured and related to their crystallinity and morphology. It was found that opacity generally increases on increasing the amount of α phase and for the same amount of α phase on increasing the size of the spherulites.

  8. Needleless Melt-Electrospinning of Polypropylene Nanofibres

    Directory of Open Access Journals (Sweden)

    Jian Fang

    2012-01-01

    Full Text Available Polypropylene (PP nanofibres have been electrospun from molten PP using a needleless melt-electrospinning setup containing a rotary metal disc spinneret. The influence of the disc spinneret (e.g., disc material and diameter, operating parameters (e.g., applied voltage, spinning distance, and a cationic surfactant on the fibre formation and average fibre diameter were examined. It was shown that the metal material used for making the disc spinneret had a significant effect on the fibre formation. Although the applied voltage had little effect on the fibre diameter, the spinning distance affected the fibre diameter considerably, with shorter spinning distance resulting in finer fibres. When a small amount of cationic surfactant (dodecyl trimethyl ammonium bromide was added to the PP melt for melt-electrospinning, the fibre diameter was reduced considerably. The finest fibres produced from this system were 400±290 nm. This novel melt-electrospinning setup may provide a continuous and efficient method to produce PP nanofibres.

  9. Nanostructured Antibacterial Silver Deposited on Polypropylene Nonwovens

    Science.gov (United States)

    Hong-Bo, Wang; Jin-Yan, Wang; Qu-Fu, Wei; Jian-Han, Hong; Xiao-Yan, Zhao

    Nanostructured silver films were deposited on polypropylene (PP) nonwovens by RF magnetron sputter coating to obtain the antibacterial properties. Shake flask test was used to evaluate the antibacterial properties of the materials. Atomic force microscope (AFM) was utilized to observe the surface morphology. Energy-dispersive X-ray (EDX) was also employed to analyze the surface elemental compositions. The antibacterial results indicated that the prolonged deposition time led to a significant improvement in antibacterial effect, and sputtering power and argon pressure did not show obvious effect on antibacterial performance. It is believed that the total amount of silver ions released from the silver coating was increased as the deposition time increased. AFM images and quantitative analysis of EDX, respectively revealed that increase in deposition time led to the increased coverage of silver film and the increased silver weight percentage per unit surface, which provided evidences for the increased release rate of silver ions from the coating. Moreover, it was found that the optimum silver coating thickness was about 3 nm, taking antibacterial effect and cost of production into account.

  10. Solution properties of hydrophobically modified

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sabagh

    2016-12-01

    Full Text Available We tested nine hydrophobically modified polyacrylamides with molecular weights situated between 1.58 and 0.89 × 106 g/mol for enhanced oil recovery applications. Their solution properties were investigated in the distilled water, brine solution, formation water and sea water. Their critical association concentrations were determined from the relationship between their concentrations and the corresponding apparent viscosities (ηapp at 30 °C at shear rate 6 s−1. They were between 0.4 and 0.5 g/dl. The brine solutions of 0.5 g/dl of HM-PAMs were investigated at different conditions regarding their apparent viscosities. Such conditions were mono and divalent cations, temperature ranging from 30 to 90 °C, the shear rate ranging from 6 to 30 s−1 and the aging time for 45 days. The surface and interfacial tensions for the HM-PAMs were measured for concentration range from 0.01 to 1 g/dl brine solutions at 30 °C and their emulsification efficiencies were investigated for 7 days. The discrepancy in the properties and efficiencies of the tested copolymers was discussed in the light of their chemical structure.

  11. United States based agricultural {open_quotes}waste products{close_quotes} as fillers in a polypropylene homopolymer

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, R.E.; Rowell, R.M.; Caulfield, D.F. [Forest Products Lab., Madison, WI (United States)] [and others

    1995-11-01

    With the advent of modern coupling agents (MAPP or maleic anhydride grafted polypropylene), the potential use of various types of renewable, sustainable agricultural byproducts as fillers in thermoplastics is explored. Over 7.7 billion pounds of fillers were used in the plastics industry in 1993. With sharp price increases in commodity thermoplastics (i.e. approximately 25% in 94`), the amount of fillers in thermoplastic materials will increase throughout the 90`s. Various types of agricultural fibers are evaluated for mechanical properties vs. 50% wood flour and 40% talc filled polypropylene (PP). The fibers included in this study are: kenaf core, oat straw, wheat straw, oat hulls, wood flour (pine), corncob, hard corncob, rice hulls, peanut hulls, corn fiber, soybean hull, residue, and jojoba seed meal. Composite interfaces were modified with MAPP to improve the mechanical properties through increased adhesion between the hydrophilic and polar fibers with the hydrophobic and non-polar matrix. The agro-waste composites had compositions of 50% agro-waste/48% PP/2% MAPP. All of the agricultural waste by-products were granulated through a Wiley mill with a 30 mesh screen and compounded in a high intensity shear-thermo kinetic mixer. The resultant blends were injection molded into ASTM standard samples and tested for tensile, flexural, and impact properties. This paper reports on the mechanical properties of the twelve resultant composites and compares them to wood flour and talc-filled polypropylene composites. The mechanical properties of kenaf core, oat straw, wheat straw, and oat hulls compare favorably to the wood flour and talc-filled PP, which are both commercially available and used in the automotive and furniture markets.

  12. Plasma modification of polypropylene surfaces and its alloying with styrene in situ

    International Nuclear Information System (INIS)

    Ma Guiqiu; Liu Ben; Li Chen; Huang Dinghai; Sheng Jing

    2012-01-01

    The treatment of polypropylene surfaces has been studied by dielectric barrier discharges plasma of Ar. The structure and morphology of polypropylene surfaces of Ar plasma modification are characterized by X-ray photoelectron spectroscopy, Fourier transform infrared spectrometers and scanning electron microscope. The modified by plasma treatment of iPP (isotactic polypropylene) surface properties have been examined in a determination of free radicals. The modified active surfaces of polypropylene can induce grafting copolymerization of styrene onto polypropylene. The structure of grafting copolymer is characterized and the grafting percent of styrene onto polypropylene is calculated. The homopolymer of styrene can be formed under grafting copolymerization of styrene onto polypropylene, which follows that the alloying of polypropylene with styrene is achieved in situ.

  13. Plasma modification of polypropylene surfaces and its alloying with styrene in situ

    Energy Technology Data Exchange (ETDEWEB)

    Ma Guiqiu, E-mail: magq@tju.edu.cn [School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072 (China); Liu Ben; Li Chen; Huang Dinghai; Sheng Jing [School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072 (China)

    2012-01-15

    The treatment of polypropylene surfaces has been studied by dielectric barrier discharges plasma of Ar. The structure and morphology of polypropylene surfaces of Ar plasma modification are characterized by X-ray photoelectron spectroscopy, Fourier transform infrared spectrometers and scanning electron microscope. The modified by plasma treatment of iPP (isotactic polypropylene) surface properties have been examined in a determination of free radicals. The modified active surfaces of polypropylene can induce grafting copolymerization of styrene onto polypropylene. The structure of grafting copolymer is characterized and the grafting percent of styrene onto polypropylene is calculated. The homopolymer of styrene can be formed under grafting copolymerization of styrene onto polypropylene, which follows that the alloying of polypropylene with styrene is achieved in situ.

  14. Nanoscale morphology for high hydrophobicity of a hard sol-gel thin film

    International Nuclear Information System (INIS)

    Wu, Y.L.; Chen, Z.; Zeng, X.T.

    2008-01-01

    It is challenging to obtain a hydrophobic smooth coating with high optical and mechanical properties at the same time because the hydrophobic additives are soft in nature resulting in reduced hardness and durability. This paper reports a durable hydrophobic transparent coating on glass fabricated by sol-gel technology and a low volume medium pressure (LVMP) spray process. The sol-gel formula consists of a pre-linked hydrophobic nano-cluster from hydroxyl-terminated polydimethylsiloxane, titanium tetraisopropoxide and a silica-based sol-gel matrix with silica hard fillers. Polydimethylsiloxane (PDMS) is uniformly distributed throughout the coating layer providing durable hydrophobic property. Mechanical properties are achieved by the hard matrix and hard fillers with the nano-structures. Due to the surface nano-morphology, a high degree of hydrophobicity was maintained with only 10 vol.% PDMS, while the hardness and abrasion resistance of the coatings were not significantly compromised. Chemical analyses by FTIR confirmed the uniform distribution of the PDMS and surface morphology analyses by atomic force microscopy (AFM) displayed the nano-surface structures that enhanced the hydrophobicity. The special surface nanostructures can be quantified using surface Kurtosis and ratio between asperity peak height to distance between peaks. The LVMP process influences the spray droplet size resulting in different surface structures

  15. Nanoscale morphology for high hydrophobicity of a hard sol-gel thin film

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.L. [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore)], E-mail: ylwu@simtech.a-star.edu.sg; Chen, Z. [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Zeng, X.T. [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore)

    2008-08-30

    It is challenging to obtain a hydrophobic smooth coating with high optical and mechanical properties at the same time because the hydrophobic additives are soft in nature resulting in reduced hardness and durability. This paper reports a durable hydrophobic transparent coating on glass fabricated by sol-gel technology and a low volume medium pressure (LVMP) spray process. The sol-gel formula consists of a pre-linked hydrophobic nano-cluster from hydroxyl-terminated polydimethylsiloxane, titanium tetraisopropoxide and a silica-based sol-gel matrix with silica hard fillers. Polydimethylsiloxane (PDMS) is uniformly distributed throughout the coating layer providing durable hydrophobic property. Mechanical properties are achieved by the hard matrix and hard fillers with the nano-structures. Due to the surface nano-morphology, a high degree of hydrophobicity was maintained with only 10 vol.% PDMS, while the hardness and abrasion resistance of the coatings were not significantly compromised. Chemical analyses by FTIR confirmed the uniform distribution of the PDMS and surface morphology analyses by atomic force microscopy (AFM) displayed the nano-surface structures that enhanced the hydrophobicity. The special surface nanostructures can be quantified using surface Kurtosis and ratio between asperity peak height to distance between peaks. The LVMP process influences the spray droplet size resulting in different surface structures.

  16. THERMAL properties and morphology of Polypropylene/Polycarbonate/Polypropylene-Graft-Maleic anhydride blends

    Directory of Open Access Journals (Sweden)

    Mat-Shayuti M. S.

    2016-01-01

    Full Text Available This work investigates the effect of blending polycarbonate (PC into polypropylene (PP matrix polymer on thermal properties and morphology. The blends, containing 5% to 35% of polycarbonate and 5% compatibilizer, were compounded using twin-screw extruder and fabricated into standard tests samples using injection or compression molding. The compatibilizer used was polypropylene-graft-maleic anhydride (PP-g-MA. Thermogravimetric analysis (TGA showed improved thermal degradation temperature of PP/PC/PP-g-MA blends compared to pure PP. As PC content increased, the thermal degradation temperature also improved. The highest improvement of thermal degradation temperature was 23.3%, demonstrated by 60/35/5 composition. It was found that the thermal stability of PP/PC blends was improved with the addition of PP-g-MA. PP-g-MA was suspected to enhance the phase adhesion between PP and PC, thus improving thermal stability. Microscopy analysis showed PC reinforcement phase existed as particulates dispersed in PP matrix phase. PC also was in irregular shapes of fibers or flakes in certain compositions, depending on PC fraction and compatibilizer content.

  17. Degradation study of polypropylene (PP and bioriented polypropylene (BOPP in the environment

    Directory of Open Access Journals (Sweden)

    Carina Longo

    2011-12-01

    Full Text Available Polymers are vastly employed for numerous purposes in different industrial segments and generate soaring quantities of discarding in the environment. This research analyzed the degradability/biodegradability of polypropylene films (PP and Bioriented polypropylene (BOPP polymers after 11 months interred in the São Giácomo landfill in Caxias do Sul. Comparing the buried PP film to a sample of virgin PP, two peaks of degrading activity appeared at the TG curve as well as structure modification typified by occurrence of new absorption bands at FTIR, which can be credited to changes in crystallinity. Thermal analysis carried out on the buried PP and BOPP showed decreases in the percentage of crystallinity due to chain scission. The major reduction was observed in the PP, since its crystallinity is a consequence of polymerization instead of chain orientation processes, as in BOPP. Cracks and erosion of the polymer surface were detected in both PP and BOPP, indicating degrading processes by microorganisms.

  18. Effects of multistress aging (radiation, thermal, electrical) on polypropylene

    Science.gov (United States)

    Cygan, S. P.; Laghari, J. R.

    1991-06-01

    Capacitor-grade polypropylene films were aged under multiple stresses (electrical, thermal, and radiation). The aging experiments were performed for both singular and simultaneous combined stresses. The polypropylene was exposed to combined neutron-gamma radiation with a total dose of 1.6*10/sup 6/ rad, electrical stress at 40 V/sub rms// mu m, and thermal stress at 90 degrees C. Post-aging diagnostics consisting of electrical, mechanical, physical and chemical characterization were carried out to identify degradation mechanisms for polypropylene films under multifactor stress aging. The most pronounced changes were observed in the mechanical properties of the film. Significant decrease in elongation at break and tensile strength proved deterioration of the polypropylene under combined neutron-gamma radiation. This decrease was caused by chain-scission of the polypropylene molecules. The temperature stress had an opposite effect, causing an increase in the above-mentioned properties and offsetting, therefore, the negative effect of radiation. Although changes were observed in the electrical properties, they were not as significant as those for the mechanical characteristics. It can be concluded, that the failure mechanism of the electrical insulation under multistress aging conditions could be a mechanical failure of the material, rather than direct homogeneous decay in the dielectric strength or thermal breakdown of the polymer.

  19. Nonwoven polypropylene prosthesis in large abdominal wall defects in rats.

    Science.gov (United States)

    Reis, Patrick dos Santos Barros dos; Chagas, Vera Lucia Antunes; Silva, Jéssica Marquet; Silva, Paulo Cesar; Jamel, Nelson; Schanaider, Alberto

    2012-10-01

    To evaluate, in large abdominal wall defects surgically shaped in rats, if a synthetic polypropylene nonwoven prosthesis could be used as a therapeutic option to conventional polypropylene mesh. Twenty four (24) Wistar rats were enrolled into three groups. Group 1 (Simulation group) with an abdominal wall defect of 3 X 3 left untreated and Groups 2 and 3, respectively treated with a conventional polypropylene mesh and a polypropylene nonwoven (NWV) prosthesis to cover the breach. At the 45th postoperatively day, adhesion (area and strength) and vascularization of Groups 2 and 3 were evaluated. The histological preparations with Hematoxylin-Eosin, Tricromium of Masson, Pricrosirius red and polarization with birefringence, and also the structural analysis of the prostheses carried on by Thermogravimetry and Differential Scanning Calorimetry were also assessed. There were no significant differences between the Groups 2 and 3. In rats, the polypropylene nonwoven prosthesis showed to be safe and has to be considered as an alternative to conventional mesh manufactured by weaving in the treatment of great defects of the abdominal wall.

  20. Macrophage polarization in response to ECM coated polypropylene mesh.

    Science.gov (United States)

    Wolf, Matthew T; Dearth, Christopher L; Ranallo, Christian A; LoPresti, Samuel T; Carey, Lisa E; Daly, Kerry A; Brown, Bryan N; Badylak, Stephen F

    2014-08-01

    The host response to implanted biomaterials is a highly regulated process that influences device functionality and clinical outcome. Non-degradable biomaterials, such as knitted polypropylene mesh, frequently elicit a chronic foreign body reaction with resultant fibrosis. Previous studies have shown that an extracellular matrix (ECM) hydrogel coating of polypropylene mesh reduces the intensity of the foreign body reaction, though the mode of action is unknown. Macrophage participation plays a key role in the development of the foreign body reaction to biomaterials, and therefore the present study investigated macrophage polarization following mesh implantation. Spatiotemporal analysis of macrophage polarization was conducted in response to uncoated polypropylene mesh and mesh coated with hydrated and dry forms of ECM hydrogels derived from either dermis or urinary bladder. Pro-inflammatory M1 macrophages (CD86+/CD68+), alternatively activated M2 macrophages (CD206+/CD68+), and foreign body giant cells were quantified between 3 and 35 days. Uncoated polypropylene mesh elicited a dominant M1 response at the mesh fiber surface, which was decreased by each ECM coating type beginning at 7 days. The diminished M1 response was accompanied by a reduction in the number of foreign body giant cells at 14 and 35 days, though there was a minimal effect upon the number of M2 macrophages at any time. These results show that ECM coatings attenuate the M1 macrophage response and increase the M2/M1 ratio to polypropylene mesh in vivo. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Enzymatic hydrophobization of jute fabrics and its effect on the mechanical and interfacial properties of jute/PP composites

    Directory of Open Access Journals (Sweden)

    A. Dong

    2016-05-01

    Full Text Available In this work, a hydrophobic surface of lignocellulosic jute fabric was achieved via the laccase-mediated grafting of octadecylamine (OA on lignin moieties of jute aiming to improve the interfacial compatibility with the hydrophobic polypropylene (PP resins in the fiber-reinforced composites. Firstly, the surface and total elemental compositions of the modified jute fabrics were investigated by X-ray photoelectron spectroscopy (XPS and elemental analysis, respectively. The increases in the surface C/O ratio and total nitrogen content of jute fabrics after the laccase/OA treatment indicated that OA molecules were successfully grafted onto the jute surface mediated by laccase. The grafting percentage of OA on jute fabrics was 0.96%. The surface hydrophobicity of jute fabrics with static contact angle of 112.5°, advancing angle of 116.4° and receding angle of 42.7° supported the presence of nonpolar alkyl chains on the jute surface after the laccase-mediated OA-grafting. The tensile strength, tensile modulus as well as the elongation at break of the hydrophobized jute/PP composites were increased. The fracture surface of the composites became neat and the jute fibers on the section surface were surrounded by PP resins closely, which suggested better interfacial adhesion between the jute reinforcement and the PP resin.

  2. Gas solubility in hydrophobic confinement.

    Science.gov (United States)

    Luzar, Alenka; Bratko, Dusan

    2005-12-01

    Measured forces between apolar surfaces in water have often been found to be sensitive to exposure to atmospheric gases despite low gas solubilities in bulk water. This raises questions as to how significant gas adsorption is in hydrophobic confinement, whether it is conducive to water depletion at such surfaces, and ultimately if it can facilitate the liquid-to-gas phase transition in the confinement. Open Ensemble molecular simulations have been used here to determine saturated concentrations of atmospheric gases in water-filled apolar confinements as a function of pore width at varied gas fugacities. For paraffin-like confinements of widths barely exceeding the mechanical instability threshold (spinodal) of the liquid-to-vapor transition of confined water (aqueous film thickness between three and four molecular diameters), mean gas concentrations in the pore were found to exceed the bulk values by a factor of approximately 30 or approximately 15 in cases of N2 and CO2, respectively. At ambient conditions, this does not result in visible changes in the water density profile next to the surfaces. Whereas the barrier to capillary evaporation has been found to decrease in the presence of dissolved gas (Leung, K.; Luzar, A.; and Bratko, D. Phys. Rev. Lett. 2003, 90, 065502), gas concentrations much higher than those observed at normal atmospheric conditions would be needed to produce noticeable changes in the kinetics of capillary evaporation. In simulations, dissolved gas concentrations corresponding to fugacities above approximately 40 bar for N2, or approximately 2 bar for CO2, were required to trigger expulsion of water from a hydrocarbon slit as narrow as 1.4 nm. For nanosized pore widths corresponding to the mechanical instability threshold or above, no significant coupling between adsorption layers at opposing confinement walls was observed. This finding explains the approximately linear increase in gas solubility with inverse confinement width and the

  3. Synthesis of polyether-based block copolymers based on poly(propylene oxide) and terephthalates

    NARCIS (Netherlands)

    van der Schuur, J.M.; Feijen, Jan; Gaymans, R.J.

    2005-01-01

    Poly(propylene oxide) (PPO) is a low reactive telechelic polyether and the synthesis of high molecular weight poly(propylene oxide)-based block copolymers was studied. The poly(propylene oxide) used was end capped with 20 wt % ethylene oxide and had a molecular weight of 2300 g/mol (ultra-low monol

  4. The role of defect microstructure in the crystallization behavior of metallocene and MgCl2-supported Ziegler-Natta isotactic poly(propylenes

    Directory of Open Access Journals (Sweden)

    Rufina G. Alamo

    2003-12-01

    Full Text Available The intermolecular defect distribution of poly(propylenes of the Ziegler-Natta (ZN and metallocene (M types is assessed by classical fractionation and analysis of the fractions by GPC and 13C NMR. In addition, the linear growth rates, a property sensitive to differences in defects distribution in the poly(propylene chain, are used to infer the stereoblock-like intramolecular distribution of defects in industrial type ZN iPPs and their fractions. The behavior of fractions from a matched metallocene iPP provide direct evidence of the single-site nature of the catalyst. Metallocene poly(propylenes enable a quantitative assessment of the molecular, thermodynamic and kinetic factors that govern the formation and concentrations of the a and g polymorphs. Short continuous crystallizable sequences and high crystallization temperatures favor the formation of this polymorph in homo poly(propylenes and random propylene copolymers. Differences in the partitioning of the comonomer between the crystalline and non-crystalline regions leads to contents of the gamma phase that differ among the copolymers at any given crystallization temperature. Qualitatively these differences can be used to assess the degree to which a counit participates in the crystallite.

  5. Super-hydrophobic fluorine containing aerogels

    Science.gov (United States)

    Coronado, Paul R [Livermore, CA; Poco, John F [Livermore, CA; Hrubesh, Lawrence W [Pleasanton, CA

    2007-05-01

    An aerogel material with surfaces containing fluorine atoms which exhibits exceptional hydrophobicity, or the ability to repel liquid water. Hydrophobic aerogels are efficient absorbers of solvents from water. Solvents miscible with water are separated from it because the solvents are more volatile than water and they enter the porous aerogel as a vapor across the liquid water/solid interface. Solvents that are immisicble with water are separated from it by selectively wetting the aerogel. The hydrophobic property is achieved by formulating the aerogel using fluorine containing molecules either directly by addition in the sol-gel process, or by treating a standard dried aerogel using the vapor of fluorine containing molecules.

  6. Stabilization of enzyme by using hydrophobic ligands

    Energy Technology Data Exchange (ETDEWEB)

    Ota, H.; Yamahara, K.; Kuboi, R. [Osaka University, Osaka (Japan)

    1998-02-01

    The protection (stabilization) effect of various hydrophobic ligands on the denaturation and aggregation of carbonic anhydrase from bovine (CAB) has been quantitatively investigated under various heat stress conditions. In a limited temperature range (40-60degC), where the protein was only partially denatured and the local hydrophobicities (LH) of CAB were positive effective stabilization of the protein is achieved by the addition of various ligands. The importance of balance between hydrophobic head and hydrophilic tail of the ligands is hypothesized. 18 refs., 5 figs.

  7. PEG-b-PPS diblock copolymer aggregates for hydrophobic drug solubilization and release: cyclosporin A as an example.

    Science.gov (United States)

    Velluto, Diana; Demurtas, Davide; Hubbell, Jeffrey A

    2008-01-01

    Micelles formed from amphiphilic block copolymers have been explored in recent years as carriers for hydrophobic drugs. In an aqueous environment, the hydrophobic blocks form the core of the micelle, which can host lipophilic drugs, while the hydrophilic blocks form the corona or outer shell and stabilize the interface between the hydrophobic core and the external medium. In the present work, mesophase behavior and drug encapsulation were explored in the AB block copolymeric amphiphile composed of poly(ethylene glycol) (PEG) as a hydrophile and poly(propylene sulfide) PPS as a hydrophobe, using the immunosuppressive drug cyclosporin A (CsA) as an example of a highly hydrophobic drug. Block copolymers with a degree of polymerization of 44 on the PEG and of 10, 20 and 40 on the PPS respectively (abbreviated as PEG44-b-PPS10, PEG44-b-PPS20, PEG44-b-PPS40) were synthesized and characterized. Drug-loaded polymeric micelles were obtained by the cosolvent displacement method as well as the remarkably simple method of dispersing the warm polymer melt, with drug dissolved therein, in warm water. Effective drug solubility up to 2 mg/mL in aqueous media was facilitated by the PEG- b-PPS micelles, with loading levels up to 19% w/w being achieved. Release was burst-free and sustained over periods of 9-12 days. These micelles demonstrate interesting solubilization characteristics, due to the low glass transition temperature, highly hydrophobic nature, and good solvent properties of the PPS block.

  8. Antioxidant action in irradiated polypropylene studied by ultraviolet spectroscopy

    Science.gov (United States)

    Milosavljevic, B. H.; Novakovic, Lj.

    1999-05-01

    Ultraviolet spectrum of 0.2 mm thick film of polypropylene containing 0.5% ORGANOX 1010 showed that in the sample prepared by slow cooling about 15% of the antioxidant reacted during the preparation process. The difference in turbidity between the samples obtained in the slow and the fast cooling process is attributed to the degree of crystallinity, which is in agreement with the DSC data. Very pronounced effects of the oxygen concentration and the degree of crystallinity on antioxidant uptake in irradiated polypropylene films were observed and discussed. It was also shown that a Febetron 707 pulsed electron accelerator is capable of producing both the single pulse dose (50 kGy) and the dose rate (2.5 TGy/s) large enough to enable a comparison of dose rate effects and LET effects in the study of the antioxidant reactions in polypropylene.

  9. Antioxidant action in irradiated polypropylene studied by ultraviolet spectroscopy

    International Nuclear Information System (INIS)

    Milosavljevic, B.H.; Novakovic, Lj.

    1999-01-01

    Ultraviolet spectrum of 0.2 mm thick film of polypropylene containing 0.5% ORGANOX 1010 showed that in the sample prepared by slow cooling about 15% of the antioxidant reacted during the preparation process. The difference in turbidity between the samples obtained in the slow and the fast cooling process is attributed to the degree of crystallinity, which is in agreement with the DSC data. Very pronounced effects of the oxygen concentration and the degree of crystallinity on antioxidant uptake in irradiated polypropylene films were observed and discussed. It was also shown that a Febetron 707 pulsed electron accelerator is capable of producing both the single pulse dose (50 kGy) and the dose rate (2.5 TGy/s) large enough to enable a comparison of dose rate effects and LET effects in the study of the antioxidant reactions in polypropylene

  10. Use of radiation graft polymerization for modification of polypropylene

    Directory of Open Access Journals (Sweden)

    Saule Nauryzova

    2016-06-01

    Full Text Available The article investigates the process of applying the conductive layer on isotactic polypropylene modified by the radiation grafting monomer for improving the wettability of the surface. Presented IR spectra, the results of measuring the contact angle of the modified material indicate the improved surface hydrophilicity. The degree of grafting functional groups to the surface of isotactic polypropylene is determined. A scheme of gradual modification of polypropylene surface is presented. As the primary layer for the polymer metallization, copper-phosphorus film may be used. Copper-phosphorus films were obtained by reduction of copper compounds with phosphine gas. Experimental results show that the copper phosphide is electrically conductive coating and imparts an increased hardness.

  11. Surface and mechanical properties of polypropylene/clay nanocomposite

    Directory of Open Access Journals (Sweden)

    Dibaei Asl Husein

    2013-01-01

    Full Text Available Huge consumption of polypropylene in the industries like automotive motivates academic and industrial R&Ds to find new and excellent approaches to improve the mechanical properties of this polymer, which has no degradation effect on other required performance properties like impact resistance, controlled crystallinity, toughness and shrinkage. Nowadays, nanoparticles play a key role in improving the mechanical and surface properties of polypropylene. In this study, three compositions of "Polypropylene/nanoclay", containing 0%, 2% and 5% of nanoclay were prepared in internal mixer. For characterizing the nanoclay dispersion in polymer bulk, TEM and XRD tests were used. For scratch resistance test, scratch lines were created on the load of 900 grain on sheets and SEM images were taken and compared with neat PP scratch image. Crystallinity and mechanical behavior were studied. The results showed that mechanical properties and scratch resistance of the composites have been improved.

  12. High-voltage pulsed life of multistressed polypropylene capacitor dielectric

    International Nuclear Information System (INIS)

    Laghari, J.R.

    1992-01-01

    High-voltage polypropylene capacitors were aged under singular as well as simultaneous multiple stresses (electrical, thermal, and radiation) at the University of Buffalo's 2 MW thermal nuclear reactor. These stresses were combined neutron-gamma radiation with a total dose of 1.6 x 10 6 rad, electrical stress at 40 V rms /μm, and thermal stress at 90 degrees C. After exposure, the polypropylene dielectric was tested for life (number of pulses to fail) under high-voltage high-repetition-rate (100 pps) pulses. Pulsed life data were also compared with ac life data. Results show that radiation stress causes the most degradation in life, either acting alone or in combination with other stresses. The largest reduction in life occurs when polypropylene is aged under simultaneous multiple stresses (electrical, thermal, and radiation). In this paper, it is shown that pulsed life can be equivalently compared with ac life

  13. Oxidation and degradation of polypropylene transvaginal mesh.

    Science.gov (United States)

    Talley, Anne D; Rogers, Bridget R; Iakovlev, Vladimir; Dunn, Russell F; Guelcher, Scott A

    2017-04-01

    Polypropylene (PP) transvaginal mesh (TVM) repair for stress urinary incontinence (SUI) has shown promising short-term objective cure rates. However, life-altering complications have been associated with the placement of PP mesh for SUI repair. PP degradation as a result of the foreign body reaction (FBR) has been proposed as a contributing factor to mesh complications. We hypothesized that PP oxidizes under in vitro conditions simulating the FBR, resulting in degradation of the PP. Three PP mid-urethral slings from two commercial manufacturers were evaluated. Test specimens (n = 6) were incubated in oxidative medium for up to 5 weeks. Oxidation was assessed by Fourier Transform Infrared Spectroscopy (FTIR), and degradation was evaluated by scanning electron microscopy (SEM). FTIR spectra of the slings revealed evidence of carbonyl and hydroxyl peaks after 5 weeks of incubation time, providing evidence of oxidation of PP. SEM images at 5 weeks showed evidence of surface degradation, including pitting and flaking. Thus, oxidation and degradation of PP pelvic mesh were evidenced by chemical and physical changes under simulated in vivo conditions. To assess changes in PP surface chemistry in vivo, fibers were recovered from PP mesh explanted from a single patient without formalin fixation, untreated (n = 5) or scraped (n = 5) to remove tissue, and analyzed by X-ray photoelectron spectroscopy. Mechanical scraping removed adherent tissue, revealing an underlying layer of oxidized PP. These findings underscore the need for further research into the relative contribution of oxidative degradation to complications associated with PP-based TVM devices in larger cohorts of patients.

  14. Is there an association between polypropylene midurethral slings and malignancy?

    Science.gov (United States)

    King, Ashley B; Zampini, Anna; Vasavada, Sandip; Moore, Courtenay; Rackley, Raymond R; Goldman, Howard B

    2014-10-01

    To examine any association between polypropylene mesh used in midurethral slings and malignancy in humans. Macroporous, monofilament polypropylene midurethral slings have been established as a safe and effective treatment for stress urinary incontinence. However, despite long-term studies supporting the efficacy and safety of midurethral slings, there have been concerns regarding the general risks of using mesh in transvaginal surgery. In addition, concerns have recently been raised about synthetic midurethral slings and a possible link with malignancy. Therefore, the goal of this work was to further assess any association between polypropylene mesh slings and malignancy. All sling procedures performed at our institution from 2004 to 2013 were retrospectively reviewed. From within this group, the International Classification of Disease codes for urethral cancer, vaginal cancer, and bladder cancer were reviewed. From 2004-2013, 2545 procedures were performed. Of these, 2361 (96.3%) underwent polypropylene midurethral sling placement. Average follow-up after sling placement was 42.0 ± 38.6 months, with follow-up extending up to 122.3 months. The rate of bladder cancer after the sling procedure was 1 of 2361 (0.0%), with the same rate of vaginal cancer. No sarcomas were noted. Overall, the rate of malignancy after polypropylene mesh midurethral sling placement in our series was 0.0% (2 of 2361). With a mean follow-up of almost 4 years and follow-up extending up to a maximum of 122.3 months, our series does not support any association between the polypropylene mesh used for midurethral slings and the development of malignancy in humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Mesoscopic Simulations of the Phase Behavior of Aqueous EO 19 PO 29 EO 19 Solutions Confined and Sheared by Hydrophobic and Hydrophilic Surfaces

    KAUST Repository

    Liu, Hongyi

    2012-01-25

    The MesoDyn method is used to investigate associative structures in aqueous solution of a nonionic triblock copolymer consisting of poly(propylene oxide) capped on both ends with poly(ethylene oxide) chains. The effect of adsorbing (hydrophobic) and nonadsorbing (hydrophilic) solid surfaces in contact with aqueous solutions of the polymer is elucidated. The macromolecules form self-assembled structures in solution. Confinement under shear forces is investigated in terms of interfacial behavior and association. The formation of micelles under confinement between hydrophilic surfaces occurs faster than in bulk aqueous solution while layered structures assemble when the polymers are confined between hydrophobic surfaces. Micelles are deformed under shear rates of 1 μs -1 and eventually break to form persistent, adsorbed layered structures. As a result, surface damage under frictional forces is prevented. Overall, this study indicates that aqueous triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) (Pluronics, EO mPO nEO m) act as a boundary lubricant for hydrophobic surfaces but not for hydrophilic ones. © 2011 American Chemical Society.

  16. Investigation of thermal degradation of branched polypropylene via rheology

    Science.gov (United States)

    Drabek, Jiri; Zatloukal, Martin

    2015-04-01

    In this work, virgin as well as thermally degraded branched polypropylenes were investigated by using rotational and Sentmanat extensional rheometers. Based on the shear and extensional rheology data it was deduced that both chain scission and chain branching takes place during thermal degradation of the tested polypropylene. It was found that simple phenomenological constitutive equations such as Generalized Newtonian law and modified White Metzner model can be used to describe the measured steady state shear and uniaxial extensional viscosity data as well as for the simple quantification of the extensional strain hardening via their model parameters.

  17. Preparation of organophilic clays and polypropylene nano composites

    International Nuclear Information System (INIS)

    Lima, Martha Fogliato S.; Nascimento, Vinicius G. do; Lenz, Denise M.; Schenato, Flavia

    2011-01-01

    Polypropylene/montmorillonite nano composites were prepared by the melt intercalation technique. The clay was organically modified with different quaternary ammonium salts to obtain the organo clay. The modified clays with the quaternary ammonium salts were introduced in a polypropylene matrix with 3 wt. % of clay. The interlayer distance (d001) of the clay particles were obtained by X- ray diffraction and the thermal stability of the systems were investigated by thermogravimetry. The organo clay presence in the polymer matrix increased the degradation temperature in relation to the pure polymer. (author)

  18. The nonlinear time-dependent response of isotactic polypropylene

    DEFF Research Database (Denmark)

    Drozdov, Aleksey D.; Christiansen, Jesper de Claville

    2002-01-01

    Tensile creep tests, tensile relaxation tests and a tensile test with a constant strain rate are performed on injection-molded isotactic polypropylene at room temperature. A constitutive model is derived for the time-dependent behavior of semicrystalline polymers. A polymer is treated as an equiv......Tensile creep tests, tensile relaxation tests and a tensile test with a constant strain rate are performed on injection-molded isotactic polypropylene at room temperature. A constitutive model is derived for the time-dependent behavior of semicrystalline polymers. A polymer is treated...

  19. Hydrophobicity of carbohydrates and related hydroxy compounds.

    Science.gov (United States)

    Buttersack, Christoph

    2017-06-29

    The hydrophobic interaction of carbohydrates and other hydroxy compounds with a C18-modified silica gel column was measured with pure water as eluent, thereby expanding the range of measurements already published. The interaction is augmented by structure strengthening salts and decreasing temperature. Although the interaction of the solute with the hydrophobic interface is expected to only imperfectly reflect its state in aqueous bulk solution, the retention can be correlated to hydration numbers calculated from molecular mechanics studies given in the literature. No correlation can be established towards published hydration numbers obtained by physical methods (isentropic compressibility, O-17 NMR relaxation, terahertz spectroscopy, and viscosity). The hydrophobicity is discussed with respect to the chemical structure. It increases with the fraction and size of hydrophobic molecular surface regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Surface analysis of selected hydrophobic materials

    Science.gov (United States)

    Wisniewska, Sylwia Katarzyna

    This dissertation contains a series of studies on hydrophobic surfaces by various surface sensitive techniques such as contact angle measurements, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Hydrophobic surfaces have been classified as mineral surfaces, organic synthetic surfaces, or natural biological surfaces. As a model hydrophobic mineral surface, elemental sulfur has been selected. The sulfur surface has been characterized for selected allotropic forms of sulfur such as rhombic, monoclinic, plastic, and cyclohexasulfur. Additionally, dextrin adsorption at the sulfur surface was measured. The structure of a dextrin molecule showing hydrophobic sites has been presented to support the proposed hydrophobic bonding nature of dextrin adsorption at the sulfur surface. As a model organic hydrophobic surface, primary fatty amines such as dodecylamine, hexadecylamine, and octadecylamine were chosen. An increase of hydrophobicity, significant changes of infrared bands, and surface topographical changes with time were observed for each amine. Based on the results it was concluded that hydrocarbon chain rearrangement associated with recrystallization took place at the surface during contact with air. A barley straw surface was selected as a model of biological hydrophobic surfaces. The differences in the contact angles for various straw surfaces were explained by the presence of a wax layer. SEM images confirmed the heterogeneity and complexity of the wax crystal structure. AFM measurements provided additional structural details including a measure of surface roughness. Additionally, straw degradation as a result of conditioning in an aqueous environment was studied. Significant contact angle changes were observed as soon as one day after conditioning. FTIR studies showed a gradual wax layer removal due to straw surface decomposition. SEM and AFM images revealed topographical changes and biological

  1. Preparation and Characterization of Extruded Composites Based on Polypropylene and Chitosan Compatibilized with Polypropylene-Graft-Maleic Anhydride

    Science.gov (United States)

    Carrasco-Guigón, Fernando Javier; Rodríguez-Félix, Dora Evelia; Castillo-Ortega, María Mónica; Santacruz-Ortega, Hisila C.; Burruel-Ibarra, Silvia E.; Encinas-Encinas, Jose Carmelo; Plascencia-Jatomea, Maribel; Herrera-Franco, Pedro Jesus; Madera-Santana, Tomas Jesus

    2017-01-01

    The preparation of composites of synthetic and natural polymers represent an interesting option to combine properties; in this manner, polypropylene and chitosan extruded films using a different proportion of components and polypropylene-graft-maleic anhydride (PPgMA) as compatibilizer were prepared. The effect of the content of the biopolymer in the polypropylene (PP) matrix, the addition of compatibilizer, and the particle size on the properties of the composites was analyzed using characterization by fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), tensile strength, and contact angle, finding that in general, the addition of the compatibilizer and reducing the particle size of the chitosan, favored the physicochemical and morphological properties of the films. PMID:28772464

  2. Reference interaction site model with hydrophobicity induced density inhomogeneity: An analytical theory to compute solvation properties of large hydrophobic solutes in the mixture of polyatomic solvent molecules.

    Science.gov (United States)

    Cao, Siqin; Sheong, Fu Kit; Huang, Xuhui

    2015-08-07

    Reference interaction site model (RISM) has recently become a popular approach in the study of thermodynamical and structural properties of the solvent around macromolecules. On the other hand, it was widely suggested that there exists water density depletion around large hydrophobic solutes (>1 nm), and this may pose a great challenge to the RISM theory. In this paper, we develop a new analytical theory, the Reference Interaction Site Model with Hydrophobicity induced density Inhomogeneity (RISM-HI), to compute solvent radial distribution function (RDF) around large hydrophobic solute in water as well as its mixture with other polyatomic organic solvents. To achieve this, we have explicitly considered the density inhomogeneity at the solute-solvent interface using the framework of the Yvon-Born-Green hierarchy, and the RISM theory is used to obtain the solute-solvent pair correlation. In order to efficiently solve the relevant equations while maintaining reasonable accuracy, we have also developed a new closure called the D2 closure. With this new theory, the solvent RDFs around a large hydrophobic particle in water and different water-acetonitrile mixtures could be computed, which agree well with the results of the molecular dynamics simulations. Furthermore, we show that our RISM-HI theory can also efficiently compute the solvation free energy of solute with a wide range of hydrophobicity in various water-acetonitrile solvent mixtures with a reasonable accuracy. We anticipate that our theory could be widely applied to compute the thermodynamic and structural properties for the solvation of hydrophobic solute.

  3. Synthesis, Characterization and Application of Hydrophobic Zeolites

    OpenAIRE

    Heidari, Rulis

    2016-01-01

    The aim of the thesis was to design and synthesize a type of zeolite with the characteristics of hydrophobicity, high porosity, and proper pore size, which can be used for high-performance adsorption of ethanol from aqueous solution. In addition, the aim was to synthesize hydrophobic microporous zeolites including theoretic and experimental content. The experiment was carried out using hydroxide basic system and hydrogen fluoride neutral based on hydrothermal methods. Pure silica zeolites...

  4. Heat-resistant hydrophobic-oleophobic coatings

    OpenAIRE

    Uyanik, Mehmet; Arpac, Ertugrul; Schmidt, Helmut K.; Akarsu, Murat; Sayilkan, Funda; Sayilkan, Hikmet

    2006-01-01

    Thermally and chemically durable hydrophobic oleophobic coatings, containing different ceramic particles such as SiO2, SiC, Al 2O3, which can be alternative instead of Teflon, have been developed and applied on the aluminum substrates by spin-coating method. Polyimides, which are high-thermal resistant heteroaromatic polymers, were synthesized, and fluor oligomers were added to these polymers to obtain hydrophobic-oleophobic properties. After coating, Al surface was subjected to Taber-abrasio...

  5. Increasing prion propensity by hydrophobic insertion.

    Directory of Open Access Journals (Sweden)

    Aaron C Gonzalez Nelson

    Full Text Available Prion formation involves the conversion of proteins from a soluble form into an infectious amyloid form. Most yeast prion proteins contain glutamine/asparagine-rich regions that are responsible for prion aggregation. Prion formation by these domains is driven primarily by amino acid composition, not primary sequence, yet there is a surprising disconnect between the amino acids thought to have the highest aggregation propensity and those that are actually found in yeast prion domains. Specifically, a recent mutagenic screen suggested that both aromatic and non-aromatic hydrophobic residues strongly promote prion formation. However, while aromatic residues are common in yeast prion domains, non-aromatic hydrophobic residues are strongly under-represented. Here, we directly test the effects of hydrophobic and aromatic residues on prion formation. Remarkably, we found that insertion of as few as two hydrophobic residues resulted in a multiple orders-of-magnitude increase in prion formation, and significant acceleration of in vitro amyloid formation. Thus, insertion or deletion of hydrophobic residues provides a simple tool to control the prion activity of a protein. These data, combined with bioinformatics analysis, suggest a limit on the number of strongly prion-promoting residues tolerated in glutamine/asparagine-rich domains. This limit may explain the under-representation of non-aromatic hydrophobic residues in yeast prion domains. Prion activity requires not only that a protein be able to form prion fibers, but also that these fibers be cleaved to generate new independently-segregating aggregates to offset dilution by cell division. Recent studies suggest that aromatic residues, but not non-aromatic hydrophobic residues, support the fiber cleavage step. Therefore, we propose that while both aromatic and non-aromatic hydrophobic residues promote prion formation, aromatic residues are favored in yeast prion domains because they serve a dual

  6. Filament Winding of Co-Extruded Polypropylene Tapes for Fully Recyclable All-Polypropylene Composite Products

    Science.gov (United States)

    Cabrera, N. O.; Alcock, B.; Klompen, E. T. J.; Peijs, T.

    2008-01-01

    The creation of high-strength co-extruded polypropylene (PP) tapes allows the production of recyclable “all-polypropylene” (all-PP) composite products, with a large temperature processing window and a high fibre volume fraction. Available technologies for all-PP composites are mostly based on manufacturing processes such as thermoforming of pre-consolidated sheets. The objective of this research is to assess the potential of filament winding as a manufacturing process for all-PP composites made directly from co-extruded tapes or woven fabric. Filament wound pipes or rings were tested either by the split-disk method or a hydrostatic pressure test in order to determine the hoop properties, while an optical strain mapping system was used to measure the deformation of the pipe surfaces.

  7. Influence of absorbed moisture on surface hydrophobization of ethanol pretreated and plasma treated ramie fibers

    International Nuclear Information System (INIS)

    Zhou Zhou; Wang Jilong; Huang Xiao; Zhang Liwen; Moyo, Senelisile; Sun Shiyuan; Qiu Yiping

    2012-01-01

    The existence of moisture in the substrate material may influence the effect of atmospheric pressure plasma treatment. Our previous study has found that the employment of ethanol pretreatment and plasma treatment can effectively induce hydrophobic surface modification of cellulose fiber to enhance the compatibility to polypropylene (PP) matrix, and this study aims to investigate the influence of fiber moisture regain on the treatment effect of this technique. Ramie fibers with three different moisture regains (MR) (2.5, 6.1 and 23.5%) are pretreated with ethanol followed by atmospheric pressure plasma treatment. Scanning electron microscope (SEM) shows that the 2.5% MR group has the most significant plasma etching effect. X-ray photoelectron spectroscopy (XPS) analysis indicates an increase of C-C and a decrease of C-O bond in the plasma treated groups, and the largest raise of C-C bond for the 2.5% MR group. The water contact angles of the 2.5 and 6.1% MR groups increase, whereas no significant change is showed in the 23.5% MR group. The interfacial shear strengths (IFSS) measured by microbond pull-out test are raised by 44 and 25% when moisture regains are 2.5 and 6.1%, while presented no apparent improvement at high moisture regain of 23.5%. Therefore, it can be concluded that moisture regain has negative influence on the surface hydrophobization of ramie fibers in the improvement of adhesion property to PP matrix.

  8. Effect of cellulose nanocrystals (CNCs) on crystallinity, mechanical and rheological properties of polypropylene/CNCs nanocomposites

    Science.gov (United States)

    Bagheriasl, D.; Carreau, P. J.; Dubois, C.; Riedl, B.

    2015-05-01

    Rheological and mechanical properties of polypropylene (PP)/CNCs nanocomposites were compared with those of nanocomposites containing poly(ethylene-co-vinyl alcohol) as a compatibilizer. The nanocomposites were prepared by a Brabender internal mixer at CNC contents of 5 wt%. The compression molded nanocomposite dog-bones and disks were characterized regarding their tensile and dynamic rheological behavior, respectively. The complex viscosity of the nanocomposites samples containing the compatibilizer were increased, slightly, compared to the non-compatibilized nanocomposite samples. Moreover, an overshoot in the transient start-up viscosity of the compatibilized nanocomposite was observed. The Young modulus of the nanocomposite samples containing the compatibilizer were increased up to ca. 37% compared to the neat PP. The elongation at break was decreased in all PP/CNC nanocomposite samples, but less for the nanocomposite samples containing the compatibilizer. The crystalline content of the PP in the nanocomposites and also the crystallization temperature were increased after compatibilization. These results could be ascribed to the efficiency of the poly(ethylene-co-vinyl alcohol) as a compatibilizer that favors a better dispersion and wetting of the hydrophilic CNCs within the hydrophobic PP.

  9. Effect of atmospheric pressure plasma treatment condition on adhesion of ramie fibers to polypropylene for composite

    International Nuclear Information System (INIS)

    Li, Ying; Manolache, Sorin; Qiu, Yiping; Sarmadi, Majid

    2016-01-01

    Graphical abstract: - Highlights: • The continuous ethanol flow technique can successfully modify ramie fiber surface with an increase in IFSS value up to 50%. • Response surface methodology was applied to design the plasma treatment parameters for ramie fiber modification. • The ethanol flow rate was the most influential treatment parameter in plasma modification process. - Abstract: In order to improve the interfacial adhesion between hydrophilic ramie fibers and hydrophobic polypropylene (PP) matrices, ramie fibers are modified by atmospheric pressure dielectric barrier discharge (DBD) plasma with our continuous ethanol flow technique in helium environment. A central composite design of experiments with different plasma processing parameter combinations (treatment current, treatment time and ethanol flow rate) is applied to find the most influential parameter and to obtain the best modification effect. Field emission scanning electron microscope (SEM) shows the roughened surfaces of ramie fibers from the treated groups due to plasma etching effect. Dynamic contact angle analysis (DCAA) demonstrates that the wettability of the treated fibers drastically decreases. Microbond pullout test shows that the interfacial shear strength (IFSS) between treated ramie fibers and PP matrices increases significantly. Residual gas analysis (RGA) confirms the creation of ethyl groups during plasma treatment. This study shows that our continuous ethanol flow technique is effective in the plasma modification process, during which the ethanol flow rate is the most influential parameter but all parameters have simultaneous influence on plasma modification effect of ramie fibers.

  10. Effect of atmospheric pressure plasma treatment condition on adhesion of ramie fibers to polypropylene for composite

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [College of Material and Textile Engineering, Jiaxing University, Jiaxing 314033 (China); Center for Plasma-Aided Manufacturing, Madison, WI 53706 (United States); School of Human Ecology, University of Wisconsin-Madison, Madison, WI 53706 (United States); Manolache, Sorin [Center for Plasma-Aided Manufacturing, Madison, WI 53706 (United States); US Forest Products Laboratory, Madison, WI 53726 (United States); Qiu, Yiping, E-mail: ypqiu@dhu.edu.cn [College of Textiles, Donghua University, Shanghai 201620 (China); Sarmadi, Majid, E-mail: majidsar@wisc.edu [Center for Plasma-Aided Manufacturing, Madison, WI 53706 (United States); School of Human Ecology, University of Wisconsin-Madison, Madison, WI 53706 (United States); Materials Science Program, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2016-02-28

    Graphical abstract: - Highlights: • The continuous ethanol flow technique can successfully modify ramie fiber surface with an increase in IFSS value up to 50%. • Response surface methodology was applied to design the plasma treatment parameters for ramie fiber modification. • The ethanol flow rate was the most influential treatment parameter in plasma modification process. - Abstract: In order to improve the interfacial adhesion between hydrophilic ramie fibers and hydrophobic polypropylene (PP) matrices, ramie fibers are modified by atmospheric pressure dielectric barrier discharge (DBD) plasma with our continuous ethanol flow technique in helium environment. A central composite design of experiments with different plasma processing parameter combinations (treatment current, treatment time and ethanol flow rate) is applied to find the most influential parameter and to obtain the best modification effect. Field emission scanning electron microscope (SEM) shows the roughened surfaces of ramie fibers from the treated groups due to plasma etching effect. Dynamic contact angle analysis (DCAA) demonstrates that the wettability of the treated fibers drastically decreases. Microbond pullout test shows that the interfacial shear strength (IFSS) between treated ramie fibers and PP matrices increases significantly. Residual gas analysis (RGA) confirms the creation of ethyl groups during plasma treatment. This study shows that our continuous ethanol flow technique is effective in the plasma modification process, during which the ethanol flow rate is the most influential parameter but all parameters have simultaneous influence on plasma modification effect of ramie fibers.

  11. Rheology of High-Melt-Strength Polypropylene for Additive Manufacturing

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Kamleitner, Florian; Jagenteufel, Ralf

    Acrylonitrile butadiene styrene (ABS) is a widely used material for additive manufacturing (AM) fused deposition modeling (FDM). The rheological properties of high-melt-strength polypropylene (HMS-PP) were compared to commercially available ABS 250 filament to study the possibility of using this ...

  12. Coir fiber reinforced polypropylene composite panel for automotive interior applications

    Science.gov (United States)

    Nadir Ayrilmis; Songklod Jarusombuti; Vallayuth Fueangvivat; Piyawade Bauchongkol; Robert H. White

    2011-01-01

    In this study, physical, mechanical, and flammability properties of coconut fiber reinforced polypropylene (PP) composite panels were evaluated. Four levels of the coir fiber content (40, 50, 60, and 70 % based on the composition by weight) were mixed with the PP powder and a coupling agent, 3 wt % maleic anhydride grafted PP (MAPP) powder. The water resistance and the...

  13. Study on photodegradationof injection-moulded .beta.-polypropylenes

    Czech Academy of Sciences Publication Activity Database

    Obadal, M.; Čermák, R.; Raab, Miroslav; Verney, V.; Commereuc, S.; Fraisse, F.

    2006-01-01

    Roč. 91, 3-4 (2006), s. 459-463 ISSN 0141-3910 Institutional research plan: CEZ:AV0Z40500505 Keywords : .beta.-polypropylene * injection moulding * photo-oxidation Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.174, year: 2006

  14. ANALYSIS OF WELDED POLYPROPYLENE STRUCTURES: COMBINATION OF EXPERIMENTS AND SIMULATIONS

    Directory of Open Access Journals (Sweden)

    Theresa Distlbacher

    2016-02-01

    Full Text Available The effect of joining by extrusion welding on the tensional stiffness and strength of a Polypropylene copolymer was analysed. Short-term and creep tests with laboratory specimens were conducted. Welded joint sub-components were simulated with the finite element method and the results were validated by experiments.

  15. Nucleation of isotactic polypropylene crystallization by gold nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Masirek, R.; Szkudlarek, E.; Piorkowska, E.; Šlouf, Miroslav; Kratochvíl, Jaroslav; Baldrian, Josef

    2010-01-01

    Roč. 48, č. 4 (2010), s. 469-478 ISSN 0887-6266 R&D Projects: GA AV ČR KAN200520704 Institutional research plan: CEZ:AV0Z40500505 Keywords : crystallization * isotactic polypropylene * nanoparticles Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.300, year: 2010

  16. Preliminary Results on Polypropylene Mesh Use for Abdominal ...

    African Journals Online (AJOL)

    Background: Incisional hernia is a major surgical problem. Several methods of hernia repair have been described but their outcome has been disappointing. This preliminary retrospective study reports on our experience with polypropylene mesh repair. Methods: The technique of mesh placement on anterior rectus ...

  17. Long chain branching on linear polypropylene by solid state reactions

    NARCIS (Netherlands)

    Borsig, E.; Gotsis, A. D.; Picchioni, F.

    A method was developed for the long chain branching (LCB) of isotactic polypropylene (iPP) via modification in the solid state. PP long chains have been linked as branches to the original linear iPP chains using solid state reactions in the presence of a free radical initiator and a multifunctional

  18. Environmental and Cost Assessment of a Polypropylene Nanocomposite

    NARCIS (Netherlands)

    Roes, A.L.|info:eu-repo/dai/nl/303022388; Marsili, E.; Nieuwlaar, E.|info:eu-repo/dai/nl/073931373; Patel, M.K.|info:eu-repo/dai/nl/18988097X

    2007-01-01

    This paper describes a study on the use of a polypropylene (PP)/layered silicate nanocomposite as packaging film, agricultural film, and automotive panels. The study’s main question was “Are the environmental impacts and costs throughout the life cycle of nanocomposite products lower than those of

  19. Effects of moisture on aspen-fiber/polypropylene composites

    Science.gov (United States)

    Roger M. Rowell; Sandra E. Lange; Rodney E. Jacobson

    2004-01-01

    Moisture sorption in fiber-thermoplastic composites leads to dimensional instability and biological attack. To determine the pick up of moisture this type of composite, aspen fiber/polypropylene composites were made using several different levels of aspen fiber (30 to 60% by weight) with and without the addition of a compatibilizer (maleic anhydride grafted...

  20. Impact of UV radiation on the physical properties of polypropylene ...

    African Journals Online (AJOL)

    The purpose of this study was to analyse the influence of simulated sun light radiation (xenon lamp) on physical properties of polypropylene (PP) nonwoven material, which is used for the production of agrotextiles. The research showed that the properties of row cover change when radiated with UV light. Tensile, tearing ...

  1. SET-LRP of the Hydrophobic Biobased Menthyl Acrylate.

    Science.gov (United States)

    Bensabeh, Nabil; Ronda, Joan C; Galià, Marina; Cádiz, Virginia; Lligadas, Gerard; Percec, Virgil

    2018-04-09

    Cu(0) wire-catalyzed single electron transfer-living radical polymerization (SET-LRP) of (-)-menthyl acrylate, a biobased hydrophobic monomer, was investigated at 25 °C in ethanol, isopropanol, ethyl lactate, 2,2,2-trifluoroethanol (TFE), and 2,2,3,3-tetrafluoropropanol (TFP). All solvents are known to promote, in the presence of N ligands, the mechanistically required self-regulated disproportionation of Cu(I)Br into Cu(0) and Cu(II)Br 2 . Both fluorinated alcohols brought out their characteristics of universal SET-LRP solvents and showed the proper polarity balance to mediate an efficient polymerization of this bulky and hydrophobic monomer. Together with the secondary alkyl halide initiator, methyl 2-bromopropionate (MBP), and the tris(2-dimethylaminoethyl)amine (Me 6 -TREN) ligand, TFE and TPF mediated an efficient SET-LRP of MnA at room temperature that proceeds through a self-generated biphasic system. The results presented here demonstrate that Cu(0) wire-catalyzed SET-LRP can be used to target polyMnA with different block lengths and narrow molecular weight distribution at room temperature. Indeed, the use of a combination of techniques that include GPC, 1 H NMR, MALDI-TOF MS performed before and after thioetherification of bromine terminus via "thio-bromo" click chemistry, and in situ reinitiation copolymerization experiments supports the near perfect chain end functionality of the synthesized biobased hydrophobic polymers. These results expand the possibilities of SET-LRP into the area of renewable resources where hydrophobic compounds are widespread.

  2. Bio-composites fabricated by sandwiching sisal fibers with polypropylene (PP)

    International Nuclear Information System (INIS)

    Sosiati, H.; Nahyudin, A.; Fauzi, I.; Wijayanti, D. A.; Triyana, K.

    2016-01-01

    Sisal fibers reinforced polypropylene (PP) composites were successfully fabricated using sandwiching sisal fibers with PP sheets. The ratio of fiber and polymer matrix was 50:50 (wt. %). Untreated short and long sisal fibers, and alkali treated short sisal fibers in 6% NaOH at 100°C for 1 and 3 h were used as reinforcement or fillers. A small amount (3 wt. %) of maleic anhydride grafted polypropylene (MAPP) was added as a coupling agent. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy were used to characterize the surface morphology and chemical composition of the fibers, respectively. Flexural test of sisal/PP composites was done according to ASTM D 790-02. The results showed that flexural strength of untreated long fiber reinforced composite is much higher than that of the untreated and alkali treated short fibers reinforced composites with and without the addition of MAPP. Alkalization related to fiber surface modification, fiber length/fiber orientation and a composite fabrication technique are important factors in contributing to the fiber distribution within the matrix, the bonding between the fiber and the matrix and the enhancement of flexural strength of the bio-composite.

  3. Bio-composites fabricated by sandwiching sisal fibers with polypropylene (PP)

    Science.gov (United States)

    Sosiati, H.; Nahyudin, A.; Fauzi, I.; Wijayanti, D. A.; Triyana, K.

    2016-04-01

    Sisal fibers reinforced polypropylene (PP) composites were successfully fabricated using sandwiching sisal fibers with PP sheets. The ratio of fiber and polymer matrix was 50:50 (wt. %). Untreated short and long sisal fibers, and alkali treated short sisal fibers in 6% NaOH at 100°C for 1 and 3 h were used as reinforcement or fillers. A small amount (3 wt. %) of maleic anhydride grafted polypropylene (MAPP) was added as a coupling agent. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy were used to characterize the surface morphology and chemical composition of the fibers, respectively. Flexural test of sisal/PP composites was done according to ASTM D 790-02. The results showed that flexural strength of untreated long fiber reinforced composite is much higher than that of the untreated and alkali treated short fibers reinforced composites with and without the addition of MAPP. Alkalization related to fiber surface modification, fiber length/fiber orientation and a composite fabrication technique are important factors in contributing to the fiber distribution within the matrix, the bonding between the fiber and the matrix and the enhancement of flexural strength of the bio-composite.

  4. Thermal properties of light-weight concrete with waste polypropylene aggregate

    Science.gov (United States)

    Záleská, Martina; Pokorný, Jaroslav; Pavlíková, Milena; Pavlík, Zbyšek

    2017-07-01

    Thermal properties of a sustainable light-weight concrete incorporating high volume of waste polypropylene as partial substitution of natural aggregate were studied in the paper. Glass fiber reinforced polypropylene (GFPP), a by-product of PP tubes production, partially substituted fine natural silica aggregate in 10, 20, 30, 40, and 50 mass%. In order to quantify the effect of GFPP use on concrete properties, a reference concrete mix without plastic waste was studied as well. For the applied GFPP, bulk density, matrix density, and particle size distribution were measured. Specific attention was paid to thermal transport and storage properties of GFPP that were examined in dependence on compaction time. For the developed light-weight concrete, thermal properties were accessed using transient impulse technique, whereas the measurement was done in dependence on moisture content, from the dry state to fully water saturated state. Additionally, the investigated thermal properties were plotted as function of porosity. The tested light-weight concrete was found to be prospective construction material possessing improved thermal insulation function. Moreover, the reuse of waste plastics in concrete composition was beneficial both from the environmental and financial point of view considering plastics low biodegradability and safe disposal.

  5. Application of Glass Fiber Waste Polypropylene Aggregate in Lightweight Concrete – thermal properties

    Science.gov (United States)

    Citek, D.; Rehacek, S.; Pavlik, Z.; Kolisko, J.; Dobias, D.; Pavlikova, M.

    2018-03-01

    Actual paper focus on thermal properties of a sustainable lightweight concrete incorporating high volume of waste polypropylene aggregate as partial substitution of natural aggregate. In presented experiments a glass fiber reinforced polypropylene (GFPP) which is a by-product of PP tubes production, partially substituted fine natural silica aggregate in 10, 20, 30, 40 and 50 mass %. Results were compared with a reference concrete mix without plastic waste in order to quantify the effect of GFPP use on concrete properties. Main material physical parameters were studied (bulk density, matrix density without air content, and particle size distribution). Especially a thermal transport and storage properties of GFPP were examined in dependence on compaction time. For the developed lightweight concrete, thermal properties were accessed using transient impulse technique, where the measurement was done in dependence on moisture content (from the fully water saturated state to dry state). It was found that the tested lightweight concrete should be prospective construction material possessing improved thermal insulation function and the reuse of waste plastics in concrete composition was beneficial both from the environmental and financial point of view.

  6. Spinning, drawing and physical properties of polypropylene nanocomposite fibers with fumed nanosilica

    Directory of Open Access Journals (Sweden)

    I. Dabrowska

    2015-03-01

    Full Text Available Nanocomposite fibers of isotactic polypropylene – fumed silica AR805 were prepared by melt compounding using a two-step process: melt-spinning and hot drawing at various draw ratios up to 15. Transmission electron microscopy revealed uniform dispersion of the silica nanoparticles in polypropylene matrix, although at higher concentrations and lower draw ratios the nanoparticles showed increasing tendency to form small agglomerates. On the other hand, at low concentrations the uniform distribution of fumed silica improved mechanical properties of the composite fibers, especially at higher draw ratios. Crystallinity and melting temperature of fibers were found to significantly increase after drawing. Elastic modulus at draw ratio = 10 rose from 5.3 GPa for neat PP up to 6.2–8.1 GPa for compositions in the range 0.25–2 vol% of the filler. Moreover, higher tensile strength and creep resistance were achieved, while strain at break was rather insensitive to the filler fraction. Considering all experimental results, a failure model was proposed to explain the toughness improvement during the drawing process by the induced orientation of polymer chains and the formation of voids.

  7. Molecular orientation behavior of isotactic polypropylene under uniaxial stretching by rheo-Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    T. Kida

    2016-08-01

    Full Text Available The molecular orientation behavior of isotactic polypropylene (iPP is investigated by using in situ Raman spectroscopy under tensile tests. A versatile method of the tilt-angle correction for the orientation parameters is newly developed, where the molecular orientation in highly oriented specimens is assumed to be entropically favorable. The real-time changes of orientation parameters and orientation distribution functions are determined for the molecular chain axis of iPP during uniaxial stretching. The molecular orientation remains random in the elastic region, and increases after the first yield point. In the yielding region, a broad distribution of orientation toward an intermediate angle of 30–70° from the stretching direction is observed. This is interpreted as reorientation of the crystalline chains being hindered by rigid, bulky lamellar cluster units. After the yielding region, orientation toward the stretching direction proceeds rapidly, approaching highly oriented states.

  8. Evaporation rate of water in hydrophobic confinement.

    Science.gov (United States)

    Sharma, Sumit; Debenedetti, Pablo G

    2012-03-20

    The drying of hydrophobic cavities is believed to play an important role in biophysical phenomena such as the folding of globular proteins, the opening and closing of ligand-gated ion channels, and ligand binding to hydrophobic pockets. We use forward flux sampling, a molecular simulation technique, to compute the rate of capillary evaporation of water confined between two hydrophobic surfaces separated by nanoscopic gaps, as a function of gap, surface size, and temperature. Over the range of conditions investigated (gaps between 9 and 14 Å and surface areas between 1 and 9 nm(2)), the free energy barrier to evaporation scales linearly with the gap between hydrophobic surfaces, suggesting that line tension makes the predominant contribution to the free energy barrier. The exponential dependence of the evaporation rate on the gap between confining surfaces causes a 10 order-of-magnitude decrease in the rate when the gap increases from 9 to 14 Å. The computed free energy barriers are of the order of 50 kT and are predominantly enthalpic. Evaporation rates per unit area are found to be two orders of magnitude faster in confinement by the larger (9 nm(2)) than by the smaller (1 nm(2)) surfaces considered here, at otherwise identical conditions. We show that this rate enhancement is a consequence of the dependence of hydrophobic hydration on the size of solvated objects. For sufficiently large surfaces, the critical nucleus for the evaporation process is a gap-spanning vapor tube.

  9. Preparation and Characterization of Antibacterial Polypropylene Meshes with Covalently Incorporated β-Cyclodextrins and Captured Antimicrobial Agent for Hernia Repair

    Directory of Open Access Journals (Sweden)

    Noor Sanbhal

    2018-01-01

    Full Text Available Polypropylene (PP light weight meshes are commonly used as hernioplasty implants. Nevertheless, the growth of bacteria within textile knitted mesh intersections can occur after surgical mesh implantation, causing infections. Thus, bacterial reproduction has to be stopped in the very early stage of mesh implantation. Herein, novel antimicrobial PP meshes grafted with β-CD and complexes with triclosan were prepared for mesh infection prevention. Initially, PP mesh surfaces were functionalized with suitable cold oxygen plasma. Then, hexamethylene diisocyanate (HDI was successfully grafted on the plasma-activated PP surfaces. Afterwards, β-CD was connected with the already HDI reacted PP meshes and triclosan, serving as a model antimicrobial agent, was loaded into the cyclodextrin (CD cavity for desired antibacterial functions. The hydrophobic interior and hydrophilic exterior of β-CD are well suited to form complexes with hydrophobic host guest molecules. Thus, the prepared PP mesh samples, CD-TCL-2 and CD-TCL-6 demonstrated excellent antibacterial properties against Staphylococcus aureus and Escherichia coli that were sustained up to 11 and 13 days, respectively. The surfaces of chemically modified PP meshes showed dramatically reduced water contact angles. Moreover, X-ray diffractometer (XRD, differential scanning calorimeter (DSC, and Thermogravimetric (TGA evidenced that there was no significant effect of grafted hexamethylene diisocyanate (HDI and CD on the structural and thermal properties of the PP meshes.

  10. [The influence of 'potassium orotate' on neocollagenogenesis in implantation of polypropylene endoprosthesis and polypropylene combined with polylactic acid endoprosthesis].

    Science.gov (United States)

    Ivanov, S V; Lazarenko, V A; Ivanov, I S; Parfenov, I P; Tsukanov, A V; Tarabrin, D V; Ob''edkov, E G

    To study neocollagenogenesis after implantation of polypropylene endoprosthesis and polypropylene combined with polylactic acid endoprosthesis on background of «potassium orotate» administration. We used two different types of endoprosthesis in the experiment. The first type was made of just polypropylene, the second type was made of polypropylene combined with polylactic acid. Histological examination was performed using polarizing microscopy. Collagen types I and III ratio in connective tissue around the prosthesis was analyzed according to the color that was individual for each type. The results were significantly better in case of collagenogenesis stimulation with Potassium orotate within 30 days and later for one type of endoprosthesis. Also we revealed that collagenogenesis and paraprosthesis capsule formation were more active in case of combined endoprosthesis. We revealed stimulating action of «Potassium Orotate» for collegenogenesis process, this fact was proved by increased collagen I/III ratio. Optimization of collagenogenesis was based on persistent 1,37-fold increase of collagen I/III ratio in case of combined endoprosthesis after 90 days. It was manifested by accelerated formation of connective tissue capsule and facilitated early isolation of the implant from surrounding tissues.

  11. Development of foams from linear polypropylene (PP) and high melt strength polypropylene (HMSPP) polymeric blends

    International Nuclear Information System (INIS)

    Cardoso, Elisabeth Carvalho Leite

    2009-01-01

    Foamed polymers are future materials, with a comprehensive application field. They can be used in order to improve appearance of insulation structures, for example, or to reduce costs involving materials. This work address to Isotactic Polypropylene / High Melt Strength Polypropylene blends, for foams production. Rheological behavior of polymer melt, especially referring to viscosity in processing temperature, plays a decisive role in applications where dominates extensional flow, as in case of foaming. If the viscosity is very low, it will correspond to a low melt strength, as in case of linear homopolymer (Isotact PP), and the foam will be prejudiced, due to the impossibility of expansion. Otherwise, if the viscosity is very high, with a high melt strength, the foam will collapse immediately after its formation. In order to get foams with an homogeneous and defined cellular structure, there were accomplished blends, 50% in weight, between linear homopolymer (isotactic PP) and HMSPP, from PP modified as per gamma radiation, in acetylene environment and at a 12.5 kGy doses. Extrusion process used a soluble foaming methodology, according to a processing/dissolution principle, which involves the dissolution of a Physical Blowing Agent (PBA), under 30 bar pressure, homogeneously mixed with polymeric melt. Extrusion conditions, that generally involve temperature, pressure and viscoelastic material flow control were experimentally investigated to define prevalent characteristics for producing foams. Nitrogen was the used PBA and process extrusion parameters were adapted to PP, HMSPP and their 50% in weight mixtures thereof. Major PP and HMSPP characteristics were obtained via melt Index and melt strength and thermal analyses (DSC/TGA), in order to make viable and to reproduce foaming as per extrusion process. Foams cellular morphology of PP, HMSPP and their 50% in weight mixtures thereof was investigated, with and without talc addition, as nucleating agent, by using

  12. Controllable picoliter pipetting using hydrophobic microfluidic valves

    Science.gov (United States)

    Zhang, M.; Huang, J.; Qian, X.; Mi, S.; Wang, X.

    2017-06-01

    A picoliter pipetting technique using the microfluidic method is presented. Utilizing the hydrophobic self-assembled monolayer films patterned in microchannels as pressure-controlled valves, a small volume of liquid can be separated by a designed channel trap and then ejected from the channel end at a higher pressure. The liquid trap section is composed of a T-shaped channel junction and a hydrophobic patch. The liquid volume can be precisely controlled by varying the distance of the hydrophobic patch from the T-junction. By this means, liquid less than 100 pl can be separated and pipetted. The developed device is potentially useful for sample dispensing in biological, medical, and chemical applications.

  13. Biosurfactant-enhanced bioremediation of hydrophobic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Cameotra, S.S.; Makkar, R.S. [Inst. of Microbial Technology, Chandigarh (India)

    2010-01-15

    Biosurfactants are surface-active compounds synthesized by a wide variety of microorganisms. They are molecules that have both hydrophobic and - philic domains and are capable of lowering the surface tension and the interfacial tension of the growth medium. Biosurfactants possess different chemical structures-lipopeptides, glycolipids, neutral lipids, and fatty acids. They are nontoxic biomolecules that are biodegradable. Biosurfactants also exhibit strong emulsification of hydrophobic compounds and form stable emulsions. Polycyclic aromatic hydrocarbons (PAHs), crude on sludge, and pesticides call be toxic, mutagenic, and carcinogenic compounds that pollute the environment. They are released into the environment as a result of oil spillage and by-products of coal treatment processes. The low water solubility of these compounds limits their availability to microorganisms, which is a potential problem for bioremediation of contaminated sites. Microbially produced surfactants enhance the bioavailability of these hydrophobic compounds for bioremediation. Therefore, biosurfactant-enhanced solubility of pollutants has potential hioremediation applications.

  14. Effect of Feed Gas Flow Rate on CO2 Absorption through Super Hydrophobic Hollow Fiber membrane Contactor

    Science.gov (United States)

    Kartohardjono, Sutrasno; Alexander, Kevin; Larasati, Annisa; Sihombing, Ivander Christian

    2018-03-01

    Carbon dioxide is pollutant in natural gas that could reduce the heating value of the natural gas and cause problem in transportation due to corrosive to the pipeline. This study aims to evaluate the effects of feed gas flow rate on CO2 absorption through super hydrophobic hollow fiber contactor. Polyethyleneglycol-300 (PEG-300) solution was used as absorbent in this study, whilst the feed gas used in the experiment was a mixture of 30% CO2 and 70% CH4. There are three super hydrophobic hollow fiber contactors sized 6 cm and 25 cm in diameter and length used in this study, which consists of 1000, 3000 and 5000 fibers, respectively. The super hydrophobic fiber membrane used is polypropylene-based with outer and inner diameter of about 525 and 235 μm, respectively. In the experiments, the feed gas was sent through the shell side of the membrane contactor, whilst the absorbent solution was pumped through the lumen fibers. The experimental results showed that the mass transfer coefficient, flux, absorption efficiency for CO2-N2 system and CO2 loading increased with the feed gas flow rate, but the absorption efficiency for CO2-N2 system decreased. The mass transfer coefficient and the flux, at the same feed gas flow rate, decreased with the number of fibers in the membrane contactor, but the CO2 absorption efficiency and the CO2 loading increased.

  15. Water interaction with hydrophobic and hydrophilic soot particles.

    Science.gov (United States)

    Popovicheva, Olga; Persiantseva, Natalia M; Shonija, Natalia K; DeMott, Paul; Koehler, Kirsten; Petters, Markus; Kreidenweis, Sonia; Tishkova, Victoria; Demirdjian, Benjamin; Suzanne, Jean

    2008-05-07

    The interaction of water with laboratory soots possessing a range of properties relevant for atmospheric studies is examined by two complementary methods: gravimetrical measurement of water uptake coupled with chemical composition and porosity analysis and HTDMA (humidified tandem differential mobility analyzer) inference of water uptake accompanied by separate TEM (transmission electron microscopy) analysis of single particles. The first method clarifies the mechanism of water uptake for bulk soot and allows the classification of soot with respect to its hygroscopicity. The second method highlights the dependence of the soot aerosol growth factor on relative humidity (RH) for quasi-monodisperse particles. Hydrophobic and hydrophilic soot are qualitatively defined by their water uptake and surface polarity: laboratory soot particles are thus classified from very hydrophobic to very hydrophilic. Thermal soot particles produced from natural gas combustion are classified as hydrophobic with a surface of low polarity since water is found to cover only half of the surface. Graphitized thermal soot particles are proposed for comparison as extremely hydrophobic and of very low surface polarity. Soot particles produced from laboratory flame of TC1 aviation kerosene are less hydrophobic, with their entire surface being available for statistical monolayer water coverage at RH approximately 10%. Porosity measurements suggest that, initially, much of this surface water resides within micropores. Consequently, the growth factor increase of these particles to 1.07 at RH > 80% is attributed to irreversible swelling that accompanies water uptake. Hysteresis of adsorption/desorption cycles strongly supports this conclusion. In contrast, aircraft engine soot, produced from burning TC1 kerosene in a gas turbine engine combustor, has an extremely hydrophilic surface of high polarity. Due to the presence of water soluble organic and inorganic material it can be covered by many water

  16. Polypropylene/calcium carbonate nanocomposites – effects of processing techniques and maleated polypropylene compatibiliser

    Directory of Open Access Journals (Sweden)

    2010-10-01

    Full Text Available The mechanical properties and crystalline characteristics of polypropylene (PP and nano precipitated calcium carbonate (NPCC nanocomposites prepared via melt mixing in an internal mixer and melt extrusion in a twin screw extruder, were compared. The effect of maleic anhydride grafted PP (PP-g-MAH as a compatibiliser was also studied using the internal mixer. At low filler concentration of 5 wt%, impact strength was better for the nanocomposites produced using the internal mixer. At higher filler loading of more than 10 wt%, the extrusion technique was more effective to disperse the nanofillers resulting in better impact properties. The impact results are consistent with the observations made from Scanning Electron Microscope (SEM morphology study. As expected, the flexural modulus of the nanocomposites increased with filler concentration regardless of the techniques utilised. At a same filler loading, there was also no significant difference in the moduli for the two techniques. The tensile strength of the mixed nanocomposites were found to be inferior to the extruded nanocomposites. Introduction of PP-g-MAH improved the impact strength, tensile strength and modulus of the mixed nanocomposites. The improvements may be attributed to better interfacial adhesion, as evident from the SEM micrographs which displayed better dispersion of the NPCC in the presence of the compatibiliser. Though NPCC particles have weak nucleating effect on the crystallization of the PP, addition of PP-g-MAH into the mixed nanocomposites has induced significant crystallization of the PP.

  17. [Female genital prolapse surgery using ultra lightweight polypropylene mesh].

    Science.gov (United States)

    Filimonov, V B; Vasin, R V; Vasina, I V; Kaprin, A D; Kostin, A A

    2017-06-01

    To compare the results of female genital prolapse (FGP) surgery via vaginal access using lightweight and ultra-lightweight polypropylene mesh. From 2007 to 2011, 93 women aged from 46 to 71 years with II-IV stage FGP (POP-Q classification) were examined and underwent the vaginal extra-peritoneal colpopexy using polypropylene implants in the Department of Urology. Patients were divided into 2 groups. In patients of group 1 (n=50) the surgery was performed according to a newly developed technique using perforated ultra-lightweight (surface density 19 g/m2) domestically manufactured polypropylene implant. In group 2, a standard trocar set with light (surface density of 42.7 g/m2) foreign-made polypropylene implants was used. Long-term follow-up was from 1 to 5 years. General surgical complications (urinary bladder injury, blood loss over 300 ml, perineal and vaginal hematomas) were detected in 2 (4%) patients of group 1 and in 7 (16.3%) patients of group 2. The most common specific mesh-related complication was the vaginal wall erosion, which was observed in 4 (9.3%) patients of group 2 and in 1 (2%) patient of group 1. FGP recurrence was diagnosed in 5 (10%) patients of group 1 in the non-treated part and in 8 (18.6%) patients of group 2. Three patients (7%) in group 2 developed recurrent cystocele due to the shrinkage of the mesh implant which was not observed in group 1. At 12 month follow-up, the results of FGP surgical treatment were estimated as good (full functional recovery and no FGP recurrence) in 41 (82%) and 32 (74.4%) patients of groups 1 and 2, respectively. We have developed a method of vaginal extra-peritoneal colpopexy using a perforated ultra-lightweight polypropylene implant. This technique has resulted in the absence of recurrence in the treated part of FGP, and 4.1, 4.2 and 4.7 fold reductions in the incidence of general surgical complications, vaginal wall erosions and perineal and vaginal hematomas, respectively, compared with FGP patients

  18. Comparative study of intraperitoneal adhesions related to light-weight polypropylene mesh and type I polymerized and purified bovine collagen coated light-weight polypropylene mesh in rabbits.

    Science.gov (United States)

    Garcia, Diego Paim Carvalho; Santos, Clarissa; Nunes, Cristiana Buzelin; Buzelin, Marcelo Araújo; Petroianu, Andy; Figueiredo, Luiza Ohasi de; Motta, Andreia Souto da; Gaspar, Cristiane de Barros; Alberti, Luiz Ronaldo

    2017-11-01

    To compare the effectiveness of light-weight polypropylene mesh coated with polymerized and purified bovine type I collagen (Surgidry HNB) in the treatment of abdominal wall defect and the degree of adhesion formation. Two types of polypropylene mesh were implanted after creation of defect measuring 6.0cm X 5.5cm in the anterior abdominal wall of 32 male New Zealand breed rabbits, divided in two groups (n = 32): (1) light-weigh macroporous polypropylene, (2) type I polymerized and purified bovine collagen coated light-weigh macroporous polypropylene. These animals were further accessed for adhesions, histological evaluation of inflammation and wall's thickness. The percentage of the area adhered in group 1 (62.31 ± 16.6) was higher compared to group 2 (22.19 ± 14.57) (p polypropylene mesh showed to be effective in the repair of abdominal wall defects and reducing adhesion formation.

  19. Microstructure of a cement matrix composite reinforced with polypropylene fibers

    Directory of Open Access Journals (Sweden)

    Rincón, J. M.

    2004-06-01

    Full Text Available The present investigation deals with the microstructural characterization of a composite material, which is comprised of polypropylene fibers in an cement matrix, by means of environmental scanning electron microscopy (ESEM and field emission scanning electron microscopy (FESEM. The microstructure of the different phases that compose the matrix is very heterogeneous, though there is a uniform distribution of the fibers inside it. The surface of this composite is different after setting, cured and hardening depending if the zone is or not in touch with the walls of the mould. The interface between the different crystalline regions of the cement matrix and the dispersed fibers shows compatibility between the matrix and the polymeric fibers. The mechanical properties (compression and bending strength have also been evaluated. The use of melamine formaldehyde as additive leads to a reinforcement of the cement matrix and to the improvement of the mechanical properties.

    Se ha llevado a cabo una observacíón microestructural detallada de un material compuesto de fibras de polipropileno embebidas en una matriz de cemento usando los nuevos tipos de microscopía electrónica de barrido, tales como: un microscopio electrónico medioambiental (acrónimo en inglés: ESEM y uno de emisión de campo (acrónimo en inglés: FESEM. La microestructura de las diferentes fases que componen la matriz es muy heterogénea, aunque hay una distribución uniforme de las fibras dentro de ellas. La superficie de este material compuesto es diferente después del fraguado, curado y endurecimiento según qué zonas estén o no en contacto con las paredes del molde. La interfase entre las diferentes fases cristalinas de la matriz de cemento y las fibras dispersadas se ha observado a diferentes aumentos, comprobándose compatibilidad entre la matriz y las fibras poliméricas. Las propiedades de resistencia mecánica (tanto a flexión como a compresión han sido tambi

  20. Separation of hydrophobic polymer additives by microemulsion electrokinetic chromatography.

    Science.gov (United States)

    Hilder, E F; Klampfl, C W; Buchberger, W; Haddad, P R

    2001-07-13

    Microemulsion electrokinetic chromatography (MEEKC) has been applied to the separation of some phenolic antioxidants [Irganox 1024, Irganox 1035, Irganox 1076, Irganox 1010, Irganox 1330, Irgafos 138, Irganox 168 and 2,6-di-tert.-butyl-4-methylphenol (BHT)]. Due to the extremely hydrophobic nature of these analytes, they could not be separated using standard MEEKC conditions and two alternative approaches were investigated. Using an acidic buffer (phosphate, pH 2.5) to effectively suppress the electroosmotic flow, the addition of 2-propanol to the aqueous phase of the microemulsion buffer to improve partitioning of the analytes, and a negative separation voltage, separation of five of the analytes in under 10 min was possible. The second approach, using a basic buffer (borate, pH 9.2) and a positive separation voltage resulted in complete resolution of all eight analytes. A mixed surfactant system comprising the anionic sodium dodecyl sulfate (SDS) and neutral Brij 35 was used to reduce the overall charge and with it the mobility of the droplets, and hence the separation time. Using an optimised MEEKC buffer consisting of 2.25% (w/w) SDS, 0.75% (w/w) Brij 35, 0.8% (w/w) n-octane, 6.6% (w/w) 1-butanol, 25% (w/w) 2-propanol and 64.6% (w/w) 10 mM borate buffer (pH 9.2) the eight target analytes were baseline separated in under 25 min. For these analytes, MEEKC was found to be superior to micellar electrokinetic chromatography in every respect. Specifically, the solubility of the analytes was better, the selectivity was more favourable, the analysis time was shorter and the separation efficiency was up to 72% higher when using the MEEKC method. Detection limits from 5.4 to 26 microg/ml were obtained and the calibration plot was linear over more than one order of magnitude. The optimised method could be applied to the determination of Irganox 1330 and Irganox 1010 in polypropylene.

  1. Hydrophobization of Concrete Using Granular Nanostructured Aggregate

    Science.gov (United States)

    Ogurtsova, Y. N.; Strokova, V. V.; Labuzova, M. V.

    2017-11-01

    The possibility of giving hydrophobical properties to the fine-grained concrete matrix by using a granular nanostructured aggregate (GNA) with a hydrophobizing additive is investigated in this work. GNA is obtained by granulating the silica raw material with an alkaline component. The introduction of a hydrophobizing additive into the raw mix of GNA allows to encapsulate it reducing the negative effect on hydration processes, the intensity of migration of moisture and efflorescence in concrete and, consequently, improving the performance characteristics of fine-grained concrete products. The hydrophobizing ability of a solution of sodium polysilicates formed in the core of GNA during concrete heat and moisture treatment is proved. The analysis of IR spectra after the impregnation of cement stone samples with a solution of sodium polysilicates showed an increase in the degree of hydration and the formation of framework water aluminosilicates. Atmospheric processes modelling showed that the use of GNA on the basis of gaize with calcium stearate and on the basis of fly ash with GKZh-11 makes it possible to increase the resistance of fine-grained concrete to the atmospheric effect of the medium, namely, the outwashing of readily soluble compounds.

  2. A method for detecting hydrophobic patches protein

    NARCIS (Netherlands)

    Lijnzaad, P.; Berendsen, H.J.C.; Argos, P.

    1996-01-01

    A method for the detection of hydrophobic patches on the surfaces of protein tertiary structures is presented, it delineates explicit contiguous pieces of surface of arbitrary size and shape that consist solely of carbon and sulphur atoms using a dot representation of the solvent-accessible surface,

  3. Hydrophobic interactions of phenoxazine modulators with bovine ...

    Indian Academy of Sciences (India)

    concentration of the drugs, higher numbers being obtained at higher drug concentrations. These results suggest that phenothiazine derivatives are bound by hydrophobic interaction to the aromatic amino acids of the BSA molecule and that, under the influence of high drug concentrations, the number of available sites ...

  4. hydrophobic silica membranes for gas separation

    NARCIS (Netherlands)

    de Vos, R.M.; Maier, Wilhelm F.; Verweij, H.

    1999-01-01

    The synthesis and properties of hydrophobic silica membranes are described. These membranes show very high gas permeance for small molecules, such as H2, CO2, N2, O2, and CH4, and permselectivities of 20–50 for these gases with respect to SF6 and larger alkanes like C3H8 and i-C4H10. The membranes

  5. Responsive gelation of hydrophobized linear polymer

    DEFF Research Database (Denmark)

    Madsen, Claus Greve; Toeth, Joachim; Jørgensen, Lene

    In this study we present the rheological properties of a physically linked polymer network, composed of linear hydrophilic chains, modified with hydrophobic moieties in each end. Solutions of the polymer in ethanol-water mixtures showed Newtonian behaviour up to about 99 % ethanol, with the highest...

  6. Liquid Water may Stick on Hydrophobic Surfaces

    Indian Academy of Sciences (India)

    IAS Admin

    The behavior of fluid on a solid surface under static and dynamic conditions are usually clubbed together. • On a wetting surface (hydrophilic), liquid water is believed to adhere to the surface causing multilayer sticking. • On a non-wetting surface (hydrophobic), water is believed to glide across the surface leading to slip ...

  7. The new view of hydrophobic free energy.

    Science.gov (United States)

    Baldwin, Robert L

    2013-04-17

    In the new view, hydrophobic free energy is measured by the work of solute transfer of hydrocarbon gases from vapor to aqueous solution. Reasons are given for believing that older values, measured by solute transfer from a reference solvent to water, are not quantitatively correct. The hydrophobic free energy from gas-liquid transfer is the sum of two opposing quantities, the cavity work (unfavorable) and the solute-solvent interaction energy (favorable). Values of the interaction energy have been found by simulation for linear alkanes and are used here to find the cavity work, which scales linearly with molar volume, not accessible surface area. The hydrophobic free energy is the dominant factor driving folding as judged by the heat capacity change for transfer, which agrees with values for solvating hydrocarbon gases. There is an apparent conflict with earlier values of hydrophobic free energy from studies of large-to-small mutations and an explanation is given. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  8. Radiation resistant polypropylene blended with mobilizer, antioxidants and nucleating agent

    Energy Technology Data Exchange (ETDEWEB)

    Shamshad, A.; Basfar, A.A. E-mail: abasfar@kacst.edu.sa

    2000-03-01

    Post-irradiation storage of medical disposables prepared from isotactic polypropylene renders them brittle due to degradation. To avoid this, isotactic polypropylene [(is)PP] was blended with a mobilizer, dioctyl pthallate (DOP), three antioxidants (hindered amines and a secondary antioxidant) and benzoic acid to obtain radiation-resistant, thermally-stable and transparent material. Different formulations prepared were subjected to gamma radiation to doses of 25 and 50 kGy. Tests of breakage on bending after ageing in an oven at 70 deg. C up to 12 months have shown that the addition of DOP and the antioxidants imparts improved radiation and thermal stability as compared to (is)PP alone or its blend with DOP. All the formulations irradiated or otherwise demonstrated excellent colour stability even after accelerated ageing at 70 deg. C for prolonged periods. (author)

  9. Radiation resistant polypropylene blended with mobilizer,. antioxidants and nucleating agent

    Science.gov (United States)

    Shamshad, A.; Basfar, A. A.

    2000-03-01

    Post-irradiation storage of medical disposables prepared from isotactic polypropylene renders them brittle due to degradation. To avoid this, isotactic polypropylene [(is)PP] was blended with a mobilizer, dioctyl pthallate (DOP), three antioxidants (hindered amines and a secondary antioxidant) and benzoic acid to obtain radiation-resistant, thermally-stable and transparent material. Different formulations prepared were subjected to gamma radiation to doses of 25 and 50 kGy. Tests of breakage on bending after ageing in an oven at 70°C up to 12 months have shown that the addition of DOP and the antioxidants imparts improved radiation and thermal stability as compared to (is)PP alone or its blend with DOP. All the formulations irradiated or otherwise demonstrated excellent colour stability even after accelerated ageing at 70°C for prolonged periods.

  10. High-voltage pulsed life for multistressed polypropylene capacitor dielectric

    Science.gov (United States)

    Laghari, J. R.

    1992-02-01

    High-voltage polypropylene capacitors were aged under singular as well as simultaneous multiple stresses (electrical, thermal, and radiation) at the University at Buffalo's 2-MW thermal nuclear reactor. These stresses were combined neutron-gamma radiation with a total dose of 1.6*10/sup 6/ rad, electrical stress at 40 V/sub rms// mu m, and thermal stress at 90 degrees C. After exposure, the polypropylene dielectric was tested for life (number of pulses to fail) under high-voltage high-repetition-rate (100 pps) pulses. Pulsed life data were also compared with AC life data. Results show that radiation stress causes the most degradation in life, either acting alone or in combination with other stresses.

  11. Mechanical properties of pineapple leaf fibre reinforced polypropylene composites

    International Nuclear Information System (INIS)

    Arib, R.M.N.; Sapuan, S.M.; Ahmad, M.M.H.M.; Paridah, M.T.; Zaman, H.M.D. Khairul

    2006-01-01

    Pineapple leaf fibre, which is rich in cellulose, relative inexpensive and abundantly available has the potential for polymer-reinforced composite. The present study investigates the tensile and flexural behaviours of pineapple leaf fibre-polypropylene composites as a function of volume fraction. The tensile modulus and tensile strength of the composites were found to be increasing with fibre content in accordance with the rule of mixtures. The tensile modulus and tensile strength with a volume fraction 10.8% are 687.02 and 37.28 MPa, respectively. The flexural modulus gives higher value at 2.7% volume fraction. The flexural strength of the composites containing 5.4% volume fraction was found to be higher than that of pure polypropylene resin by 5.1%. Scanning electron microscopic studies were carried out to understand the fibre-matrix adhesion and fibre breakage

  12. Carbon ion irradiation induced surface modification of polypropylene

    International Nuclear Information System (INIS)

    Saha, A.; Chakraborty, V.; Dutta, R.K.; Chintalapudi, S.N.

    2001-01-01

    Polypropylene was irradiated with 12 C ions of 3.6 and 5.4 MeV energies in the fluence range of 5x10 13 -5x10 14 ions/cm 2 using 3 MV tandem accelerator. Ion penetration was limited to a few microns and surface modifications were investigated by scanning electron microscopy. At the lowest ion fluence only blister formation of various sizes (1-6 μm) were observed, but at higher fluence (1x10 14 ions/cm 2 ) a three-dimensional network structure was found to form. A gradual degradation in the network structure was observed with further increase in the ion fluence. The dose dependence of the changes on surface morphology of polypropylene is discussed

  13. Carbon ion irradiation induced surface modification of polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Saha, A. E-mail: abhijit@alpha.iuc.res.in; Chakraborty, V.; Dutta, R.K.; Chintalapudi, S.N

    2001-12-01

    Polypropylene was irradiated with {sup 12}C ions of 3.6 and 5.4 MeV energies in the fluence range of 5x10{sup 13}-5x10{sup 14} ions/cm{sup 2} using 3 MV tandem accelerator. Ion penetration was limited to a few microns and surface modifications were investigated by scanning electron microscopy. At the lowest ion fluence only blister formation of various sizes (1-6 {mu}m) were observed, but at higher fluence (1x10{sup 14} ions/cm{sup 2}) a three-dimensional network structure was found to form. A gradual degradation in the network structure was observed with further increase in the ion fluence. The dose dependence of the changes on surface morphology of polypropylene is discussed.

  14. Properties of Recycled Aggregate Concrete Reinforced with Polypropylene Fibre

    Directory of Open Access Journals (Sweden)

    Wan Mohammad Wan Nur Syazwani

    2016-01-01

    Full Text Available This research work is aimed to investigate how the addition of various proportion of polypropylene fibre affects the mechanical strength and permeability characteristics of recycled aggregate concrete (RAC which has been produced with treated coarse recycled concrete aggregate (RCA. Further research on RAC properties and their applications is of great importance as the scarcity of virgin aggregate sources in close proximity to major urban centers is becoming a worldwide problem. In this study, the hardened RAC properties at the curing age of 7 and 28 days such as compressive strength, flexural strength, ultrasonic pulse velocity (UPV, water absorption and total porosity were evaluated and compare with control specimens. Experimental result indicates that although the inclusion of the treated coarse RCA can enhance the mechanical strength and permeability properties of RAC, Further modification by addition of polypropylene fibre can optimize the results.

  15. Functionalization of silica nanoparticles for polypropylene nanocomposites applications

    International Nuclear Information System (INIS)

    Bracho, Diego; Palza, Humberto; Quijada, Raul; Dougnac, Vivianne

    2011-01-01

    Synthetic silica nanospheres of different diameters produced via the sol-gel method were used in order to enhance the barrier properties of the polypropylene-silica nanocomposites. Modification of the silica surface by reaction with organic chlorosilanes was performed in order to improve the particles interaction with the polypropylene matrix and its dispersion. Unmodified and modified silica nanoparticles were characterized using electronic microscopy (TEM), elemental analysis, thermo gravimetric analysis (TGA), and solid state nuclear magnetic resonance (NMR) spectroscopy. Preliminary permeability tests of the polymer-silica nanocomposite films showed no significant change at low particles load (3 wt%) regardless its size or surface functionality, mainly because of the low aspect ratio of the silica nanospheres. However, it is expected that at a higher concentration of silica particles differences will be observed. (author)

  16. Mechanical properties of pineapple leaf fibre reinforced polypropylene composites

    Energy Technology Data Exchange (ETDEWEB)

    Arib, R.M.N. [Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Sapuan, S.M. [Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia)]. E-mail: sapuan@eng.upm.edu.my; Ahmad, M.M.H.M. [Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Paridah, M.T. [Faculty of Forestry, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Zaman, H.M.D. Khairul [Radiation Processing Technology Division, Malaysian Institute for Nuclear Technology Research (MINT), Bangi 43000 Kajang, Selangor (Malaysia)

    2006-07-01

    Pineapple leaf fibre, which is rich in cellulose, relative inexpensive and abundantly available has the potential for polymer-reinforced composite. The present study investigates the tensile and flexural behaviours of pineapple leaf fibre-polypropylene composites as a function of volume fraction. The tensile modulus and tensile strength of the composites were found to be increasing with fibre content in accordance with the rule of mixtures. The tensile modulus and tensile strength with a volume fraction 10.8% are 687.02 and 37.28 MPa, respectively. The flexural modulus gives higher value at 2.7% volume fraction. The flexural strength of the composites containing 5.4% volume fraction was found to be higher than that of pure polypropylene resin by 5.1%. Scanning electron microscopic studies were carried out to understand the fibre-matrix adhesion and fibre breakage.

  17. Ziegler-Natta catalyst for polypropylene and polyethylene nanocomposites preparation

    International Nuclear Information System (INIS)

    Silvino, Alexandre C.; Dias, Marcos L.; Bezerra, Ana Beatriz F.

    2009-01-01

    Polypropylene and polyethylene nanocomposites are well known for their improved properties when compared with the neat polymers. In this work we report the preparation, characterization and the activity studies of a fourth generation Ziegler-Natta catalyst for the preparation of polyolefin/clay nanocomposites. The catalyst was prepared treating an organo-modified silicate with magnesium and titanium compounds. The content of titanium and that of the magnesium of the catalyst were determined by UV-vis spectroscopy and atomic absorption respectively. The first results show that the catalyst is active for propylene polymerization being suitable for polypropylene/clay nanocomposite preparation. The catalyst activity for ethylene polymerization was also investigated. The X-ray diffraction patterns of the polyethylene samples suggest the clay exfoliation occurs in the in situ polymerization, even with high clay loading (about 9 %) indicating that a nanocomposite was formed. (author)

  18. Hydrophobic and hydrophilic control in polyphosphazene materials

    Science.gov (United States)

    Steely, Lee Brent

    This thesis is the culmination of several recent studies focused on the surface characterization of polyphosphazenes specifically the properties of water repellency or hydrophobicity. Chapter 1 is a background account of polyphosphazene chemistry and the hydrophobicity of polyphosphazenes. Chapter 2 provides an examination of the role of surface morphology on hydrophobicity. This study deals in depth with the electrospinning of poly[bis(2,2,2-trifluoroethoxy)phosphazene] in tetrahydrofuran. This process yields fiber mats or bead and fiber mats which exhibit roughness in continuous contact with the water droplet (fiber mats) or discontinuous contact (bead and fiber mats). These surface roughness types are compared to spun cast films using water contact angles to measure the air-water-polymer interface. The influence of aromatic moieties and fluorine content on the air-water-polymer interface is examined in Chapter 3. This study examines the influence of fluorine content and aryloxy groups on the hydrophobicity of a polyphosphazene surface via static water contact angle measurements on a goniometer. Polymer surfaces of spun cast and electrospun mats were probed with advancing, receeding, and static water contact angle and dip coated slides of the same materials were also examined with a Langmuir-Blogett trough. Chapter 4 is a description of the environmental plasma surface treatments of polyphosphazenes as a method of functionalizing solid polymer surfaces. The treatment procedure of functionalizing spun cast and electrospun poly[bis(2,2,2-trifluoroethoxy)phosphazene] surfaces with plasma gases of oxygen, nitrogen, methane, and tetrafluoromethane is detailed. The resulting functionalization of the surface is examined with XPS and water contact angle data. In Chapter 5 fluoroalkoxy polyphosphazenes were processed with liquid carbon dioxide into foams. The foams were then tested for flame retardance and hydrophobicity. Appendixes A-C contain studies on moisture

  19. Mapping Hydrophobicity on the Protein Molecular Surface at Atom-Level Resolution

    Science.gov (United States)

    Nicolau Jr., Dan V.; Paszek, Ewa; Fulga, Florin; Nicolau, Dan V.

    2014-01-01

    A precise representation of the spatial distribution of hydrophobicity, hydrophilicity and charges on the molecular surface of proteins is critical for the understanding of the interaction with small molecules and larger systems. The representation of hydrophobicity is rarely done at atom-level, as this property is generally assigned to residues. A new methodology for the derivation of atomic hydrophobicity from any amino acid-based hydrophobicity scale was used to derive 8 sets of atomic hydrophobicities, one of which was used to generate the molecular surfaces for 35 proteins with convex structures, 5 of which, i.e., lysozyme, ribonuclease, hemoglobin, albumin and IgG, have been analyzed in more detail. Sets of the molecular surfaces of the model proteins have been constructed using spherical probes with increasingly large radii, from 1.4 to 20 Å, followed by the quantification of (i) the surface hydrophobicity; (ii) their respective molecular surface areas, i.e., total, hydrophilic and hydrophobic area; and (iii) their relative densities, i.e., divided by the total molecular area; or specific densities, i.e., divided by property-specific area. Compared with the amino acid-based formalism, the atom-level description reveals molecular surfaces which (i) present an approximately two times more hydrophilic areas; with (ii) less extended, but between 2 to 5 times more intense hydrophilic patches; and (iii) 3 to 20 times more extended hydrophobic areas. The hydrophobic areas are also approximately 2 times more hydrophobicity-intense. This, more pronounced “leopard skin”-like, design of the protein molecular surface has been confirmed by comparing the results for a restricted set of homologous proteins, i.e., hemoglobins diverging by only one residue (Trp37). These results suggest that the representation of hydrophobicity on the protein molecular surfaces at atom-level resolution, coupled with the probing of the molecular surface at different geometric resolutions

  20. Effect of atmospheric oxidative plasma treatments on polypropylenic fibers surface: Characterization and reaction mechanisms

    International Nuclear Information System (INIS)

    Nisticò, Roberto; Magnacca, Giuliana; Faga, Maria Giulia; Gautier, Giovanna; D’Angelo, Domenico; Ciancio, Emanuele; Lamberti, Roberta; Martorana, Selanna

    2013-01-01

    Atmospheric pressure plasma-dielectric barrier discharge (APP-DBD, open chamber configuration) was used to functionalize polypropylene (PP) fibers surface in order to generate oxidized-reactive groups such as hydroperoxides, alcohols and carbonyl species (i.e. ketones and others). Such a species increased the surface polarity, without causing material degradation. Three different types of plasma mixture (He, He/O 2 , He/O 2 /H 2 O) under three different values of applied power (750, 1050, 1400 W) were investigated. The formed plasma species (O 2 + , O single atom and OH radical) and their distribution were monitored via optical emission spectrometry (OES) measurements, and the plasma effects on PP surface species formation were followed by X-ray photoemission spectroscopy (XPS). Results allowed to better understand the reaction pathways between plasma phase and PP fibers. In fact, two reaction mechanisms were proposed, the first one concerning the plasma phase reactions and the second one involving material surface modifications.

  1. PERFORMANCE OF CEMENT COMPOSITES REINFORCED WITH SURFACE-MODIFIED POLYPROPYLENE MICRO- AND MACRO-FIBERS

    Directory of Open Access Journals (Sweden)

    Jakub Antoš

    2017-11-01

    Full Text Available This paper focuses on the mechanical properties investigation of cement pastes reinforced with surface treated polymer fibers. The cement matrix was composed of Portland cement (CEM I 42.5 R, w/c ratio equal to 0.4. Two polypropylene fiber types (micro- and macro-fibers were used as randomly distributed and oriented reinforcement in volume amount of 2 %. The fibers were modified in the low-pressure inductively coupled cold oxygen plasma in order to enhance their surface interaction with the cement matrix. The investigated composite mechanical properties (load bearing capacity and response during loading were examined indirectly by means of four-point bending mechanical destructive tests. A response of loaded samples containing treated fibers were compared to samples with reference fibers. Moreover, cracking behavior development was monitored using digital image correlation (DIC. This method enabled to record the micro-cracks system evaluation of both fiber reinforced samples.

  2. CHANGES OF RHEOLOGICAL PARAMETERS OF POLYPROPYLENE AND POLYETHYLENE AFTER EXPOSURE IN ALIPHATIC n-HEXANE

    Directory of Open Access Journals (Sweden)

    Tatiana Liptáková

    2012-11-01

    Full Text Available Rheological properties of thermoplastic polymer materials before and after exposure to a chemical solution were evaluated using the frequency sweep test, which monitors changes in viscoelastic properties of polymers with respect to their molecular structure and their behavior in thermoplastic processing. As experimental material thermoplastic polyethylene and polypropylene samples were used and subjected to influence of n hexane solution for period of 3 and 6 months. Measurements were performed using oscillating rheometer Physica Rheometer MCR301 and carried out at the temperatures of 160 °C and 80 °C. Degradation process resulted in changes of complex dynamic viscosity, storage and loss modulus, changes in molar mass and its distribution which sufficiently prove the rheological changes.

  3. Influence of Rubber Powders on Foaming Behavior and Mechanical Properties of Foamed Polypropylene Composites

    Directory of Open Access Journals (Sweden)

    HE Yue

    2017-02-01

    Full Text Available Polypropylene/rubber powders composites with different kinds of rubber powders were foamed by injection molding machine equipped with volume-adjustable cavity. The effect of dispersity of rubber powders and crystallization behavior of composites on the foaming behavior and mechanical properties was investigated. The results show that the addition of rubber powders can improve the cell structure of foamed PP with fine and uniform cell distribution. And cell density and size of PP/PP-MAH/NBR foams are 7.64×106cell/cm3 and 29.78μm respectively, which are the best among these foams. Combining cell structures with mechanical properties, notch impact strength of PP/PP-MAH/CNBR composites increases approximately by 2.2 times while tensile strength is reduced just by 26% compared with those of the pure PP. This indicates that PP/PP-MAH/CNBR composites are ideal foamed materials.

  4. Effect of recycling on properties of rice husk-filled-polypropylene

    OpenAIRE

    Jutarat Prachayawarakorn; Niracha Yaembunying

    2005-01-01

    This research concerned with the use of rice husk (Oryza sativa) as a filler for polypropylene and its recycle ability. Rice husk (200 mesh and 40% by weight) and polypropylene were compounded in a twinscrew extruder and injection moulding technique was applied in order to obtain testing specimens. It was found that tensile, flexural and impact properties as well as % water absorption of the rice husk-filled polypropylene were only slightly dropped upon recycling process, presenting the abili...

  5. Investigation of Effect of Adding Hydrophobically Modified Water Soluble Polymers on the Structure and Viscosity of Anionic Vesicle Dispersion

    Directory of Open Access Journals (Sweden)

    Marco Sandjaja

    2017-04-01

    Full Text Available This present study was conducted to investigate the effect of adding hydrophobically modified end-capped (HM polymers with various polyethylene oxide (PEO chain lengths on the structure and viscosity of anionic vesicles dispersion. A pronounced increase in viscosity was observed upon adding small amount of such polymers. Based on the dynamic light scattering (DLS and small angle neutron scattering (SANS analysis, 10 to 30 polymer molecules per vesicles can reach maximum viscosity and where polymer molecules can interconnect the vesicles without disrupting their structure. In addition, the kinetic stability of the vesicle dispersion also enhanced. From the measurement of the electrical conductivity of the dispersion, it was observed that the presence of the PEO and polypropylene oxide (PPO group could induce the permeability of the vesicle membrane by altering their internal structure. Controlling viscosity of vesicles dispersion without changing its structure is useful for the further application of vesicles system such as in drug delivery, cosmetics and biomedical.

  6. Photooxidation of Polypropylene/Montmorillonite Nanocomposites. 2. Interactions with Antioxidants.

    OpenAIRE

    Gardette, Jean-Luc; Morlat-Therias, Sandrine; Mailhot, Bénédicte; Gonzalez, David

    2005-01-01

    2005 American Chemical Society; The influence of stabilizing additives on the photooxidation of polypropylene/montmorillonite (PP/ MMt) nanocomposites exposed to UV light was studied. Two différent stabilizers were used, a phenolic antioxidant and a redox antioxidant. A significant reduction in the induction period of oxidation was observed in the presence of MMt. This is believed to arise from interactions between the additives and the nanoclay. The interactions could involve the adsorption ...

  7. Rheology of high melt strength polypropylene for additive manufacturing

    OpenAIRE

    Jagenteufel, Ralf; Hofstätter, Thomas; Kamleitner, Florian; Pedersen, David Bue; Tosello, Guido; Hansen, Hans Nørgaard

    2017-01-01

    Rheological measurements of high melt strength polypropylene (HMS-PP) were used in order to generate master curves describing the shear-dependent viscosity in comparison to acrylonitrile butadiene styrene copolymer (ABS). The latter material showed specific disadvantages in terms of thermal stability, whereas HMS-PP showed a more stable behavior at the investigated temperatures. Hereafter, the material was used in a fused deposition modeling additive manufacturing process, focusing on the inv...

  8. Water flow through the polypropylene-based geotextiles.

    CSIR Research Space (South Africa)

    Patanaik, A

    2008-06-01

    Full Text Available the Polypropylene-Based Geotextiles Asis Patanaik,1,2 Rajesh D. Anandjiwala1,2 1CSIR Materials Science and Manufacturing, Fibers and Textiles Competence Area, Port Elizabeth 6000, South Africa 2Department of Textile Science, Faculty of Science, Nelson Mandela...) through the nonwoven fabrics plays an important role in many applications such as medical and hygiene, fil- tration, composite manufacturing, etc. Nonwoven geotextiles are fibrous structures capable of doing more than one functions simultaneously, i...

  9. Modification of bentonite clay and application on polypropylene nano composites

    International Nuclear Information System (INIS)

    Oliveira, Akidauana D.B.; Rodrigues, Andre W.B.; Agrawal, Pankaj; Araujo, Edcleide M.; Melo, Tomas J.A.

    2009-01-01

    This work consisted on the modification of Brasgel PA clay with ionic surfactant Praepagen WB and its incorporation into polypropylene. The results of infrared and DR-X was showed that the intercalation of surfactant in the clay and the incorporation of organoclay in PP matrix resulted in the formation of an intercalated structure. The impact strength of PP increased with the incorporation of organoclay. (author)

  10. Comparative Study on Mechanical Properties between Pure and Recycled Polypropylenes

    OpenAIRE

    Ariadne L. Juwono; Bernadeth Jong Hiong Jun

    2010-01-01

    Polypropylene (PP) is one type of thermoplastics that is widely used in our daily activities. A combination of the high demand and the easiness of recycling process, the recycled PP has been generally applied. In this study, the structure and the mechanical properties of the as-received PPs, recycled PPs, and commercial recycled PPs were compared, especially for cloth hanger application. DSC test results showed that recycling process did not cause a significant change to the material's meltin...

  11. Polypropylene/organoclay/SEBS nanocomposites with toughness-stiffness properties

    DEFF Research Database (Denmark)

    Sanporean (nee Potarniche), Catalina-Gabriela; Vuluga, Zina; Radovici, Constantin

    2014-01-01

    Polypropylene nanocomposites with a different amount of styrene-ethylene-butylene-styrene block copolymer (SEBS)/clay were prepared via a melt mixing technique. To improve the dispersion of commercial organoclay (denoted as OMMT), various amounts of SEBS were incorporated. At a fixed content of O....... The nanomaterials presented an improved decomposition temperature, a small decrease in tensile strength, a higher Young's modulus and a spectacular increase of 300% in impact strength....

  12. Polydioxanone versus polypropylene closure for midline abdominal incisions

    International Nuclear Information System (INIS)

    Naz, S.; Jamali, M.A.

    2017-01-01

    Background: Midline laparotomy is the most common technique of abdominal incisions because it is simple, provides adequate exposure to all four quadrants, and is rapid to open. A major problem after midline laparotomy remains the adequate technique of abdominal fascia closure. This study was conducted to see the role of Polydioxanone and Prolene for midline abdominal closure in terms of postoperative wound infection and wound pain. Methods: This study was carried out at surgical unit II, Federal Government Services Hospital Islamabad. Patients were equally divided in two groups, i.e., A and B. Groups A and B patients undergone midline abdominal closure with Polydioxanone number 1 and Polypropylene number 1 sutures respectively. Results: Total 620 patients were included in this study. Post-operative wound pain score according to Visual analogue scale (VAS) was compared in terms of no pain (0), mild pain (1-3), moderate pain (4-6), severe pain (7-9). In group A (Polydioxanone), the frequency and percentages of no, mild, moderate and severe pain were 101 (32.6%), 95 (30.6%), 81 (26.1%) and 33 (10.6%) respectively, where as in group B (polypropylene) it was 82 (26.5%), 43 (13.9%), 59 (19%) and 126 (40.6%) respectively. Similarly, the frequency and percentages of post-operative wound infection in group A (Polydioxanone) and group B (polypropylene) was 105 (33.9%) and 208 (67.1%) respectively. Conclusion: Polydioxanone results in less wound pain and wound infection when compared to Polypropylene. (author)

  13. Properties of recycled polypropylene based composites incorporating treated hardwood sawdust

    Science.gov (United States)

    Shulga, Galia; Jaunslavietis, Jevgenijs; Ozolins, Jurijs; Neiberte, Brigita; Verovkins, Anrijs; Vitolina, Sanita; Shakels, Vadims

    2016-05-01

    The effect of different treatment of hardwood sawdust under mild conditions on contact angles, adhesion energy and water sorption was studied. A comparison of these indices for the hardwood treated sawdust and the composites filled with them was performed. The treatment promoted the compatibility between the recycled polypropylene and the hardwood filler. The inclusion of the lignin-based compatibiliser in the composite, containing the ammoxidised wood filler, essentially improved its mechanical properties.

  14. Nanocomposites of irradiated polypropylene with clay are degradable?

    Science.gov (United States)

    Komatsu, L. G. H.; Oliani, W. L.; Lugao, A. B.; Parra, D. F.

    2016-01-01

    In nowadays, polypropylene (PP) based nanocomposites containing organically modified montmorillonite (MMT), have gained great attention in the automobilistic industries, construction, paints, packageing, plastic components of the telecommunication industries. The HMSPP (high melt strength polypropylene) is a polypropylene modified by irradiation process, under acetylene atmosphere, in which irradiation occurs in 60Co gamma source. However, when those materials are submitted to environmental ageing nanocomposites demonstrated high decomposition level after 1 year. This fact can be due to presence the metallic ions present in the montmorillonite. The HMS-PP and the Cloisite 20A (MMT) were mixed in twin-screw extruder using maleic anhydride as compatibilizer. In this work two formulations of nanocomposites at 0.1 and 5 wt% of clay were submitted to the environmental and thermal ageing to analyze the effects of degradation on the HMSPP nanocomposites. The evaluation of thermal properties was analyzed by Differential Scanning Calorimetry (DSC) and the chemical alterations were investigated by Carbonyl Index (CI), through Fourier Transformed Infrared (FTIR) technique. The basal distance was measured by X-ray diffraction (DRX) and the clay elements were analyzed by X-ray Fluorescence (WDXRF). The aim of this work was to understand the effects of degradation of the HMS-PP/clay nanocomposites.

  15. Study of gel formation in polypropylene modified by gamma irradiation

    International Nuclear Information System (INIS)

    Oliani, W.L.; Parra, D.F.; Fermino, D.M.; Lima, L.F.C.P.; Lugao, A.B.; Riella, H.G.

    2010-01-01

    The linearity of the chains of iPP (isotactic polypropylene) confers to this, low melt strength. This fact limits the use of iPP in processes that demand high stretching. The graft of branches confers improvements in its extensional viscosity, resulting in Polypropylene with High Melt Strength (HMS-PP). Preparation process of the HMS-PP, included iPP in pellets, conditioned in plastic container containing acetylene under pressure of 110 kPa and radiation with γ source of 60 Co in the doses of 5, 12.5 and 20 kGy. The gel fraction of the samples was determined by the extraction of soluble components in xylene under boiling for 12 hours at 138 deg C. The soluble part of the samples was decanted with the total volatilization of the xylene to the room temperature (25 deg C) and deposition in glass blades. These samples had been characterized by Optic Microscopy, Scanning Electron Microscopy and Infrared Spectroscopy. In this study of the morphology, we obtained the formation of gel and microgel of polypropylene with higher incidence in HMS-PP 20 kGy. (author)

  16. Quality evaluation of polypropylene packaged corn yogurt during storage

    Science.gov (United States)

    Aini, Nur; Prihananto, V.; Sustriawan, B.; Astuti, Y.; Maulina, M. R.

    2018-01-01

    Packaging is an important factor to control the process of quality decrease of any food product, including to determine the shelf life. The objective of this study was to determine changes quality of corn yogurt packaged using polypropylene. The method were using was package yogurt polypropylene, then it was stored in a refrigerator at 5, 10, or 15°C during 21 days. The yogurt was analysed every 7 days over a 21-day period. The results indicate that protein content decreased during storage, while the lactic acid bacteria, total acid, pH, viscosity, and total solids were increased. At the end of storage, the amount of lactic acid bacteria still fulfil the minimum requirements of a probiotic food, with a count of 6.407 log CFU/g. Overal scoring by panelist (scores ranged from 0 to 5) have a 4.78 at the beginning of storage. By the 21st day of storage, yogurt was packaging using transparent polypropylene having a score of 3.85, and that stored in opaque white packaging having a value of 3.95.

  17. Structural and optical properties of polypropylene-montmorillonite nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Betega de Paiva, Lucilene [Departamento de Tecnologia de Polimeros, Faculdade de Engenharia Quimica, Universidade Estadual de Campinas, Av. Albert Einstein, 500, Caixa Postal 6066, 13083-970 Campinas, Sao Paulo (Brazil)]. E-mail: lucilenebetega@yahoo.com.br; Morales, Ana Rita [Departamento de Tecnologia de Polimeros, Faculdade de Engenharia Quimica, Universidade Estadual de Campinas, Av. Albert Einstein, 500, Caixa Postal 6066, 13083-970 Campinas, Sao Paulo (Brazil)]. E-mail: morales@dtp.feq.unicamp.br; Ribeiro Guimaraes, Thiago [Departamento de Engenharia Metalurgica e de Materiais, Escola Politecnica, Universidade de Sao Paulo, Av. Prof. Mello Moraes 2463, 05508-900 Sao Paulo, SP (Brazil)

    2007-02-25

    In this work, polypropylene-commercial montmorillonite organophilic clay nanocomposites were prepared using a Werner Pfleiderer twin-screw extruder. Considering the nonpolar characteristic of the polypropylene, polypropylene-graft-maleic anhydride (PP-g-MA) was used as a coupling agent to improve the intercalation process into the layers of montmorillonite. The materials containing 2.5, 5.0, 7.5 and 10.0% of the clay (N2.5, N5, N7.5 and N10) and PP and two extra compositions containing only PP and 15.0 and 30.0% of PP-g-MA (PP, P15 and P30), respectively, were investigated upon the nanocomposites structures. The properties of materials were characterized by X-ray diffraction (XRD), SEM analysis and reflectance spectrophotometry. The X-ray diffraction showed exfoliated or intercalated structure for different concentrations; the SEM analysis showed a good dispersion of the clay in the PP matrix and the spectrophotometric analysis showed that the amount of clay used in the compositions resulted in different levels of opacity.

  18. Degradation of Polypropylene Membranes Applied in Membrane Distillation Crystallizer

    Directory of Open Access Journals (Sweden)

    Marek Gryta

    2016-03-01

    Full Text Available The studies on the resistance to degradation of capillary polypropylene membranes assembled in a membrane crystallizer were performed. The supersaturation state of salt was achieved by evaporation of water from the NaCl saturated solutions using membrane distillation process. A high feed temperature (363 K was used in order to enhance the degradation effects and to shorten the test times. Salt crystallization was carried out by the application of batch or fluidized bed crystallizer. A significant membrane scaling was observed regardless of the method of realized crystallization. The SEM-EDS, DSC, and FTIR methods were used for investigations of polypropylene degradation. The salt crystallization onto the membrane surface accelerated polypropylene degradation. Due to a polymer degradation, the presence of carbonyl groups on the membranes’ surface was identified. Besides the changes in the chemical structure a significant mechanical damage of the membranes, mainly caused by the internal scaling, was also found. As a result, the membranes were severely damaged after 150 h of process operation. A high level of salt rejection was maintained despite damage to the external membrane surface.

  19. Fabrication of polypropylene/silver nanocomposites for biocidal applications.

    Science.gov (United States)

    Oliani, Washington Luiz; Parra, Duclerc Fernandes; Komatsu, Luiz Gustavo Hiroki; Lincopan, Nilton; Rangari, Vijaya Kumar; Lugao, Ademar Benevolo

    2017-06-01

    This paper presents a study on biocidal effect of polymer nanocomposite films of gamma irradiated polypropylene (PP) and silver nanoparticles. The modified polypropylene was obtained from isotactic polypropylene (iPP) in pellets form by irradiation with gamma rays in the presence of acetylene. A new morphology with long chain branching of PP and distinct rheology is obtained by this process. The blend of 50/50wt% neat PP and PP modified by gamma radiation were further mixed using a twin screw extruder. The AgNPs were infused into this polymer blend at different concentrations of: 0.1%; 0.25%; 0.5%; 1.0%; 1.0% (PVP), 2.0% and 4.0% by wt%. These polymer nanocomposites were characterized by Raman spectroscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), thermogravimetric analysis (TG), differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), cytotoxicity test and Kirby-Bauer disk diffusion techniques. The bactericidal effect of Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) were assessed in detail. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. [Using polypropylene mesh in surgery for stress urinary incontinence].

    Science.gov (United States)

    Murguía-Flores, Erick Arturo; Quintero-Granados, Fernando; Torres-Gómez, Luis Guillermo; Chávez-Navarro, Mariela Mariela; Vázquez-Gómez, Martha Berenice; Rodríguez-Rodríguez, Elizabeth

    2017-01-01

    Stress urinary incontinence (SUI) is defined as the involuntary leakage of urine while making an effort, such as coughing, sneezing or during activity. Since SUI generates high costs and affects the quality of life, it is important to make a proper diagnosis and, consequently, manage SUI efficiently. The objective was to know whether it is appropriate to use polypropylene mesh for SUI. A historical cohort was conducted by reviewing records of patients with SUI treated with polypropylene mesh during 2013 with a follow-up of 12 months. Urinary continence was achieved in 98% of patients at one year. The complication rate was 2%. Only 12% of patients had normal weight. The most commonly used surgery was the placement of tension-free transobturator tape. The healing average reported worldwide is 90%, while the average for complications is 10%. In this study we achieved similar results. Using polypropylene mesh for surgical correction of SUI is a safe and effective alternative; however, studies with larger populations and more extensive monitoring to clarify this situation are required.

  1. Property Relationship in Organosilanes and Nanotubes Filled Polypropylene Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Alejandra J. Monsiváis-Barrón

    2014-10-01

    Full Text Available Polypropylene composites with different filler contents were prepared by creating a masterbatch containing 3 wt%. filler. A variety of silanol groups were used to synthetized three compounds in different media trough a sol-gel process with acetic acid, formic acid and ammonium hydroxide as catalysts. Besides, four different nanotubular fillers were also used to analyze their behavior and compare it with the effect caused by the silanol groups. These tubular structures comprise: unmodified halloysite, carbon nanotubes and functionalized halloysite and carbon nanotubes. Morphological characterization in SEM and STEM/TEM showed dispersion in the polypropylene matrix. According to TGA and DSC measurements thermal behavior remain similar for all the composites. Mechanical test in tension demonstrate that modulus of the composites increases for all samples with a major impact for materials containing silanol groups synthetized in formic acid. Rheological measurements show a significantly increment in viscosity for samples containing unmodified and modified carbon nanotubes. No difference was found for samples containing silanol groups and halloysite when compared to neat polypropylene. Finally, the oxygen transmission rate increased for all samples showing high barrier properties only for samples containing natural and functionalized halloysite nanotubes.

  2. Mechanical behavior of composite based polypropylene: Recycling and strain rate effects

    Science.gov (United States)

    Bahlouli, N.; Pessey, D.; Ahzi, S.; Rémond, Y.

    2006-08-01

    Recycling effects on the dynamic response of composite based polypropylene is studied in this paper. Materials used here are filled and unfilled impact modified polypropylene. Nodules of EPDM represent the elastomeric phase for the filled composite based polypropylene. Fillers are particles of talc. For the unfilled polypropylene, the elastomeric phase is nodules of EPR. Different tensile tests, until rupture, were performed from quasi static to high strain rates. Virgin specimens were recycled in order to study the degradation due to the effect of recycling under dynamic loading. Thus microstructural effects due to dynamic loading and recycling were observed by SEM.

  3. Grafting of maleic anhydride on polypropylene by reactive extrusion: Effect of maleic anhydride and peroxide concentrations on reaction yield and products characteristics

    OpenAIRE

    Berzin, Françoise; Flat, Jean-Jacques; Vergnes, Bruno

    2013-01-01

    International audience; A series of polypropylenes (PPs) grafted with maleic anhydride (MA), prepared by reactive extrusion in a twin screw extruder with different contents of peroxide and MA, was characterized. For each sample, the amount of grafted MA, the molecular weight distribution, the viscoelastic properties in small amplitude oscillatory shear and the transition temperatures and enthalpies were measured. The respective influence of initial MA and peroxide concentrations on these para...

  4. Cork extractives exhibit thermo-oxidative protection properties in polypropylene-cork composites and as direct additives for polypropylene

    OpenAIRE

    Aroso, Ivo Manuel Ascensão; Fernandes, E. M.; Pires, R. A.; Mano, J. F.; Reis, R. L.

    2015-01-01

    The thermo-oxidative stability of polypropylene (PP) in composites containing 15 wt.% of cork and the performance of selected cork extracts as stabilizing additives for PP was evaluated by Oxidation Induction Time (OIT) and by Oxidation Onset Temperature (OOT). The results showed that cork increases the OIT of PP in the composite and it was identified that the cork extractives fraction is responsible for such behavior. Selected cork extracts with high antioxidant capacity (determined by dpph ...

  5. Monotonic and cyclic responses of impact polypropylene and continuous glass fiber-reinforced impact polypropylene composites at different strain rates

    KAUST Repository

    Yudhanto, Arief

    2016-03-08

    Impact copolymer polypropylene (IPP), a blend of isotactic polypropylene and ethylene-propylene rubber, and its continuous glass fiber composite form (glass fiber-reinforced impact polypropylene, GFIPP) are promising materials for impact-prone automotive structures. However, basic mechanical properties and corresponding damage of IPP and GFIPP at different rates, which are of keen interest in the material development stage and numerical tool validation, have not been reported. Here, we applied monotonic and cyclic tensile loads to IPP and GFIPP at different strain rates (0.001/s, 0.01/s and 0.1/s) to study the mechanical properties, failure modes and the damage parameters. We used monotonic and cyclic tests to obtain mechanical properties and define damage parameters, respectively. We also used scanning electron microscopy (SEM) images to visualize the failure mode. We found that IPP generally exhibits brittle fracture (with relatively low failure strain of 2.69-3.74%) and viscoelastic-viscoplastic behavior. GFIPP [90]8 is generally insensitive to strain rate due to localized damage initiation mostly in the matrix phase leading to catastrophic transverse failure. In contrast, GFIPP [±45]s is sensitive to the strain rate as indicated by the change in shear modulus, shear strength and failure mode.

  6. Polypropylene and polypropylene/polyglecaprone (Ultrapro®) meshes in the repair of incisional hernia in rats.

    Science.gov (United States)

    Utiyama, Edivaldo Massazo; Rosa, Maria Beatriz Sartor de Faria; Andres, Marina de Paula; Miranda, Jocielle Santos de; Damous, Sérgio Henrique Bastos; Birolini, Cláudio Augusto Vianna; Damous, Luciana Lamarão; Montero, Edna Frasson de Souza

    2015-06-01

    To compare the inflammatory response of three different meshes on abdominal hernia repair in an experimental model of incisional hernia. Median fascial incision and skin synthesis was performed on 30 Wistar rats. After 21 days, abdominal hernia developed was corrected as follows: 1) No mesh; 2) Polypropylene mesh; and, 3) Ultrapro(r) mesh. After 21 days, the mesh and surrounding tissue were submitted to macroscopic (presence of adhesions, mesh retraction), microscopic analysis to identify and quantify the inflammatory and fibrotic response using a score based on a predefined scale of 0-3 degrees, evaluating infiltration of macrophages, giant cells, neutrophils and lymphocytes. No significant difference was seen among groups in adherences, fibrosis, giant cells, macrophages, neutrophils or lymphocytes (p>0.05). Mesh shrinkage was observed in all groups, but also no difference was observed between polypropylene and Ultrapro mesh (7.0±9.9 vs. 7.4±10.1, respectively, p=0.967). Post-operatory complications included fistula, abscess, dehiscence, serohematic collection and reherniation, but with no difference among groups (p=0.363). There is no difference between polypropylene (high-density) and Ultrapro(r) (low-density) meshes at 21 days after surgery in extraperitoneal use in rats, comparing inflammatory response, mesh shortening, adhesions or complications.

  7. Dewetting-induced collapse of hydrophobic particles.

    Science.gov (United States)

    Huang, X; Margulis, C J; Berne, B J

    2003-10-14

    A molecular dynamics study of the depletion of water (drying) around a single and between two hydrophobic nanoscale oblate plates in explicit water as a function of the distance of separation between them, their size, and the strength of the attraction between the plates and the water molecules is presented. A simple macroscopic thermodynamic model based on Young's law successfully predicts drying between the stacked plates and accounts for the free-energy barriers to this drying. However, because drying around a single plate is not macroscopic, a molecular theory is required to describe it. The data are consistent with the rate-determining step in the hydrophobic collapse of the two plates being a large-scale drying fluctuation, characterized by a free-energy barrier that grows with particle size.

  8. Hydrophobic modification of polyethyleneimine for gene transfectants

    International Nuclear Information System (INIS)

    Kim, Sung Tae; Choi, Joon Sig; Jang, Hyung Suk; Suh, Hea Ran; Park, Jong Sang

    2001-01-01

    A new gene transfer system was developed by using polylipoplexes, which were prepared by hydrophobic modification of polyethyleneimine (PEI, MW 2000). PEI 25kDa is well known for its excellent transfection efficiency but it has extreme cytotoxicity; therefore, its application for medical use is strictly limited. PEI 2kDa is able to form complexes with DNA and has low cytotoxicity. However, unfortunately, it shows no transfection efficiency so it can not be a candidate carrier for gene therapy. We designed novel polycationic amphilphiles by conjugating hydrophobic moieties, such as cholesterol and myristate, to PEI 2kDa. Cholesterol-conjugated PEI (PEI-Chol: P10C, P17C and P30C) and myristate-conjugated PEI (PEI-Myr:P10M, P16M and P26M) are different from the other cationic lipids in that they can form lipopolyplexes with plasmid DNA that have extra multi-positive charges in their hydrophilic parts. From a different point of view, they are also considered to be PEI derivatives with a small proportion of hydrophobic moiety. As a result of the modification, PEI-Chol and PEI-Myr showed much enhanced transfection activity but somewhat increased cytotoxicity. We also examined the effect of the amount of hydrophobic moiety on lipopolyplex-mediated gene transfer and observed that P17C and P26M are the most effective carriers in the series of two groups. MTT assay indicated that the more myristyl groups were attached to PEI, the more injurious results were observed. In the case of PEI-Chol, however, the opposite tendency was observed

  9. Influence of Hydrophobicity on Polyelectrolyte Complexation

    Energy Technology Data Exchange (ETDEWEB)

    Sadman, Kazi [Department; amp, Engineering, Northwestern University, Evanston, Illinois 60208, United States; Wang, Qifeng [Department; amp, Engineering, Northwestern University, Evanston, Illinois 60208, United States; Chen, Yaoyao [Department; amp, Engineering, Northwestern University, Evanston, Illinois 60208, United States; Keshavarz, Bavand [Department; Jiang, Zhang [X-ray; Shull, Kenneth R. [Department; amp, Engineering, Northwestern University, Evanston, Illinois 60208, United States

    2017-11-16

    Polyelectrolyte complexes are a fascinating class of soft materials that can span the full spectrum of mechanical properties from low viscosity fluids to glassy solids. This spectrum can be accessed by modulating the extent of electrostatic association in these complexes. However, to realize the full potential of polyelectrolyte complexes as functional materials their molecular level details need to be clearly correlated with their mechanical response. The present work demonstrates that by making simple amendments to the chain architecture it is possible to affect the salt responsiveness of polyelectrolyte complexes in a systematic manner. This is achieved by quaternizing poly(4-vinylpyridine) (QVP) with methyl, ethyl and propyl substituents– thereby increasing the hydrophobicity with increasing side chain length– and complexing them with a common anionic polyelectrolyte, poly(styrene sulfonate). The mechanical 1 ACS Paragon Plus Environment behavior of these complexes is compared to the more hydrophilic system of poly(styrene sulfonate) and poly(diallyldimethylammonium) by quantifying the swelling behavior in response to salt stimuli. More hydrophobic complexes are found to be more resistant to doping by salt, yet the mechanical properties of the complex remain contingent on the overall swelling ratio of the complex itself, following near universal swelling-modulus master curves that are quantified in this work. The rheological behavior of QVP complex coacervates are found to be approximately the same, only requiring higher salt concentrations to overcome strong hydrophobic interactions, demonstrating that hydrophobicity can be used as an important parameter for tuning the stability of polyelectrolyte complexes in general, while still preserving the ability to be processed “saloplastically”.

  10. A randomized controlled experimental study comparing chitosan coated polypropylene mesh and Proceed™ mesh for abdominal wall defect closure

    Directory of Open Access Journals (Sweden)

    S.T. Jayanth

    2015-12-01

    Conclusion: Chitosan coated polypropylene mesh was found to have similar efficacy to Proceed™ mesh. Chitosan coated polypropylene mesh, can act as an anti adhesive barrier when used in the repair of incisional hernias and abdominal wall defects.

  11. Hydrophobic-hydrophilic forces in protein folding.

    Science.gov (United States)

    Durell, Stewart R; Ben-Naim, Arieh

    2017-08-01

    The process of protein folding is obviously driven by forces exerted on the atoms of the amino-acid chain. These forces arise from interactions with other parts of the protein itself (direct forces), as well as from interactions with the solvent (solvent-induced forces). We present a statistical-mechanical formalism that describes both these direct and indirect, solvent-induced thermodynamic forces on groups of the protein. We focus on 2 kinds of protein groups, commonly referred to as hydrophobic and hydrophilic. Analysis of this result leads to the conclusion that the forces on hydrophilic groups are in general stronger than on hydrophobic groups. This is then tested and verified by a series of molecular dynamics simulations, examining both hydrophobic alkanes of different sizes and hydrophilic moieties represented by polar-neutral hydroxyl groups. The magnitude of the force on assemblies of hydrophilic groups is dependent on their relative orientation: with 2 to 4 times larger forces on groups that are able to form one or more direct hydrogen bonds. © 2017 Wiley Periodicals, Inc.

  12. Liposomes coated with hydrophobically modified hydroxyethyl cellulose: Influence of hydrophobic chain length and degree of modification.

    Science.gov (United States)

    Smistad, Gro; Nyström, Bo; Zhu, Kaizheng; Grønvold, Marthe Karoline; Røv-Johnsen, Anne; Hiorth, Marianne

    2017-08-01

    Nanoparticulate systems with an uncharged hydrophilic surface may have a great potential in mucosal drug delivery. In the present study liposomes were coated with hydrophobically modified hydroxyethyl cellulose (HM-HEC) to create a sterically stabilized liposomal system with an uncharged surface. The aim was to clarify the influence of the amount of hydrophobic modification of HEC and the length of the hydrophobic moiety, on the stability of the system and on the release properties. HM-HEC with different degrees of hydrophobic modification (1 and 2mol%) and hydrophobic groups with different chain lengths (C8, C12, C16) were included in the study, as well as fluid phase and gel phase liposomes. Both types of liposomes were successfully coated with HM-HEC containing 1mol% of hydrophobic groups, while 2mol% did not work for the intended pharmaceutical applications. The polymer coated gel phase liposomes were stable (size, zeta potential, leakage) for 24 weeks at 4°C, with no differences between the C8 and C16 HM-HEC coating. For the fluid phase liposomes a size increase was observed after 24 weeks at 4°C for all formulations; the C8 HM-HEC coated liposomes increased the most. No differences in the leakage during storage at 4°C or in the release at 35°C were observed between the fluid phase formulations. To conclude; HM-HEC with a shorter hydrophobic chain length resulted in a less stable product for the fluid phase liposomes, while no influence of the chain length was observed for the gel phase liposomes (1mol% HM). Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Construction of amphiphilic segments on polypropylene nonwoven surface and its application in removal of endocrine disrupting compounds (EDCs) from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kai [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300160 (China); School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300160 (China); Wei, Junfu, E-mail: junfuwei1963@163.com [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300160 (China); School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300160 (China); Zhou, Xiangyu [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300160 (China); School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300160 (China); School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300160 (China); Liu, Nana [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300160 (China); School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300160 (China)

    2015-05-15

    Highlights: • The amphiphilic segments on polypropylene nonwoven surface were constructed successfully. • The adsorption behavior for EDCs of the amphiphilic adsorption materials was systematically studied. • The novel amphiphilic adsorption materials have broad application prospects in EDCs removal from aqueous solution. - Abstract: The amphiphilic segments on polypropylene nonwoven (PP nonwoven) surface were constructed using the ultraviolet (UV) irradiation graft polymerization for the removal of endocrine disrupting compounds (EDCs) with different polarity from aqueous solution. The stearyl acrylate (SA) as hydrophobic functional monomer was introduced onto the surface of PP nonwoven fabric at first stage and then the hydroxyethyl acrylate (HEA) as hydrophilic functional monomer was introduced subsequently. The effect of functional monomer concentration and UV irradiation time on grafting ratio was studied and discussed. The novel amphiphilic structure was designed and constructed based on adsorption capacity for the target micropollutants. The structure and composition of the amphiphilic adsorption materials were characterized by Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and contact angle (CA). The adsorption behaviors for EDCs of the amphiphilic adsorption materials were studied and the results indicated that the adsorption capacity and adsorption rate were superior to single SA grafted PP nonwoven (PP-g-SA) and single HEA grafted PP nonwoven (PP-g-HEA). The novel amphiphilic adsorption material was efficient for the removal of EDCs with different polarity and could be utilized as a potential adsorption material for removing EDCs from aqueous solution.

  14. Construction of amphiphilic segments on polypropylene nonwoven surface and its application in removal of endocrine disrupting compounds (EDCs) from aqueous solution

    International Nuclear Information System (INIS)

    Liu, Kai; Wei, Junfu; Zhou, Xiangyu; Liu, Nana

    2015-01-01

    Highlights: • The amphiphilic segments on polypropylene nonwoven surface were constructed successfully. • The adsorption behavior for EDCs of the amphiphilic adsorption materials was systematically studied. • The novel amphiphilic adsorption materials have broad application prospects in EDCs removal from aqueous solution. - Abstract: The amphiphilic segments on polypropylene nonwoven (PP nonwoven) surface were constructed using the ultraviolet (UV) irradiation graft polymerization for the removal of endocrine disrupting compounds (EDCs) with different polarity from aqueous solution. The stearyl acrylate (SA) as hydrophobic functional monomer was introduced onto the surface of PP nonwoven fabric at first stage and then the hydroxyethyl acrylate (HEA) as hydrophilic functional monomer was introduced subsequently. The effect of functional monomer concentration and UV irradiation time on grafting ratio was studied and discussed. The novel amphiphilic structure was designed and constructed based on adsorption capacity for the target micropollutants. The structure and composition of the amphiphilic adsorption materials were characterized by Fourier transform infrared spectrometer (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and contact angle (CA). The adsorption behaviors for EDCs of the amphiphilic adsorption materials were studied and the results indicated that the adsorption capacity and adsorption rate were superior to single SA grafted PP nonwoven (PP-g-SA) and single HEA grafted PP nonwoven (PP-g-HEA). The novel amphiphilic adsorption material was efficient for the removal of EDCs with different polarity and could be utilized as a potential adsorption material for removing EDCs from aqueous solution

  15. Specific ion effects on the hydrophobic interaction of benzene self-assembled monolayers

    DEFF Research Database (Denmark)

    Dobberschütz, Sören; Pedersen, Morten Rimmen; Hassenkam, Tue

    2015-01-01

    The interaction of aromatic compounds with various ions in aqueous solutions plays a role in a number of fields, as diverse as protein folding and enhanced oil recovery, among others. Therefore, we have investigated the effect of the four electrolytes, KCl, NaCl, MgCl2 and CaCl2, on the hydrophobic...... interaction of benzene self-assembled monolayers. Using the jump to contact phenomenon of an atomic force microscope (AFM) tip as an indicator of attractive forces between the surfaces of a sample and the tip, we discovered lower frequencies in the snap in as well as narrower distributions for the snap....... Bridging capillaries, i.e. nanometre scale gas bubbles, are some of the factors contributing to the long range hydrophobic interaction. The results demonstrate how ions influence the attraction of hydrophobic entities in aqueous solutions....

  16. Instrumented impact testing of kenaf fiber reinforced polypropylene composites: effects of temperature and composition

    Science.gov (United States)

    Craig Merrill Clemons; Anand R. Sanadi

    2007-01-01

    An instrumented Izod test was used to investigate the effects of fiber content, coupling agent, and temperature on the impact performance of kenaf fiber reinforced polypropylene (PP). Composites containing 0-60% (by weight) kenaf fiber and 0 or 2% maleated polypropylene (MAPP) and PP/wood flour composites were tested at room temperature and between -50 °C and +...

  17. Modification of low density polyethylene, isostatic polypropylene and their blends by gamma radiation

    International Nuclear Information System (INIS)

    Santos Rosa, D. dos

    1991-01-01

    The effects of the gamma radiation (of a 60 Co source), over low density polyethylene, isostatic polypropylene and their blends of low density polyethylene / polypropylene were studied. The structures modifications were attended by infrared spectrometry (IV), differential scanning calorimeter (DSC), strain-strain measurement, density measurement and scanning electron microscope (SEM). (author)

  18. Changes to the chemical structure of isotactic-polypropylene induced by ion-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Oka, T., E-mail: oka.toshitaka@jaea.go.j [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), Naka, Ibaraki 319-1195 (Japan); Oshima, A. [The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Motohashi, R.; Seto, N.; Watanabe, Y.; Kobayashi, R.; Saito, K. [Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Kudo, H. [School of Engineering, The University of Tokyo, Naka, Ibaraki 319-1188 (Japan); Murakami, T. [Department of Accelerator Physics and Engineering, National Institute of Radiological Sciences, Inage, Chiba 263-8555 (Japan); Washio, M.; Hama, Y. [Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555 (Japan)

    2011-02-15

    The chemical structures of various ion-beam irradiated isotactic-polypropylene samples were studied. Results of micro-Fourier transform infrared spectroscopy and ultraviolet-visible spectroscopy suggest not only the linear energy transfer, but also the fluence is effective in local transformation of the isotactic-polypropylene.

  19. Use and application of MADYMO 5.3 foam material model for expanded polypropylene foam

    NARCIS (Netherlands)

    Kant, A.R.; Suffis, B.; Lüsebrink, H.

    1998-01-01

    The dynamic material characteristics of expanded polypropylene are discussed. The in-depth studies, carried out by JSP International, in cooperation with TNO, are used to validate the MADYMO foam material model. The dynamic compression of expanded polypropylene follows a highly non-linear

  20. High-resolution solid-state NMR study of isotactic polypropylenes

    Czech Academy of Sciences Publication Activity Database

    Fričová, O.; Uhrínová, M.; Hronský, V.; Koval'aková, M.; Olčák, D.; Chodák, I.; Spěváček, Jiří

    2012-01-01

    Roč. 6, č. 3 (2012), s. 204-212 ISSN 1788-618X Institutional research plan: CEZ:AV0Z40500505 Keywords : material testing * metallocene isotactic polypropylene * Ziegler-Natta isotactic polypropylene Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.294, year: 2012

  1. Effect of particle size, coupling agent and DDGS additions on Paulownia wood polypropylene composites

    Science.gov (United States)

    The mechanical, flexural, thermal, and physical characteristics of wood plastic composites employing Paulownia wood (PP) flour derived from 36-mo-old trees blended with polypropylene (PP) were analyzed. Composites of 25% and 40% w/w of PW and 0-10% by weight of maleated polypropylene (MAPP) were pr...

  2. Polypropylene mesh repair of a unilateral, congenital hernia in the inguinal region in a Thoroughbred filly

    Science.gov (United States)

    Moorman, Valerie J.; Jann, Henry W.

    2009-01-01

    A 2-day-old Thoroughbred intact female was presented for a large subcutaneous swelling in the right inguinal region. Surgical repair was performed using a double layer polypropylene mesh. To the authors’ knowledge, there have been no previous reports of surgical repair of congenital body wall hernias with polypropylene mesh in foals. PMID:19721780

  3. Dynamic fracture toughness of cellulose-fiber-reinforced polypropylene : preliminary investigation of microstructural effects

    Science.gov (United States)

    Craig M. Clemons; Daniel F. Caulfield; A. Jeffrey. Giacomin

    1999-10-01

    In this study, the microstructure of injection-molded polypropylene reinforced with cellulose fiber was investigated. Scanning electron microscopy of the fracture surfaces and X-ray diffraction were used to investigate fiber orientation. The polypropylene matrix was removed by solvent extraction, and the lengths of the residual fibers were optically determined. Fiber...

  4. Polypropylene obtained through zeolite supported catalysts

    Directory of Open Access Journals (Sweden)

    Queli C. Bastos

    2004-01-01

    Full Text Available Propylene polymerizations were carried out with f2C(Flu(CpZrCl2 and SiMe2(Ind2ZrCl2 catalysts supported on silica, zeolite sodic mordenite (NaM and acid mordenite (HM. The polymerizations were performed at different temperatures and varying aluminium/zirconium molar ratios ([Al]/[Zr]. The effect of these reaction parameters on the catalyst activity was investigated using a proposed statistical experimental planning. In the case of f2C(Flu(CpZrCl2, SiO2 and NaM were used as support and the catalyst performance evaluated using toluene and pentane as polymerization solvent. The molecular weight, molecular weight distribution, melting point and crystallinity of the polymers were examined. The results indicate very high activities for the syndiospecific heterogeneous system. Also, the polymers obtained had superior Mw and stereoregularity.

  5. How hydrophobic nanoparticles aggregate in the interior of membranes: A computer simulation

    Science.gov (United States)

    Tian, Falin; Zhang, Xianren; Dong, Wei

    2014-11-01

    Lipid-based dispersion of hydrophobic nanoparticles (NPs) not only gives fundamental insight into how nanomaterials distribute in live cells and organisms, but also provides a quite general route to designing nanocarrier agents in triggered drug delivery and medical imaging. It is not clearly understood how hydrophobic NPs arrange in the interior of a membrane. In this paper, with computer simulation techniques, we demonstrate that hydrophobic NPs having a diameter compared to the hydrophobic thickness of the membrane are capable of clustering in the hydrophobic interior of a cell membrane. Except from the isotropic aggregation, an unexpected linear arrangement of spherical NPs, which is still not found from experiments, is identified here. The free-energy costs associated with linear and isotropic aggregations are computed explicitly to interpret aggregation behavior and the obtained phase diagrams give us a comprehensive understanding of where linear aggregation is expected. In this work we also shows that NP size and membrane tension play key roles in determining the NP aggregate, while the effects of NP concentration and membrane curvature seem to be relatively weak.

  6. Polypropylene Track Membranes for Mikro and Ultrafiltration of Chemically Aggressive Agents

    CERN Document Server

    Kravets, L I; Apel, P Yu

    2000-01-01

    A production process for track membranes on the basis of chemically resistant polymer polypropylene has been developed. Research in all stages of the formation of the polypropylene track membranes has been conducted: the main principles of the process of chemical etching of polypropylene irradiated with accelerated ions have been investigated, the most effective structure of the etchant for a selective etching of the heavy ion tracks has been selected, the parameters of etching have been optimized. A method for sensibilization of latent tracks in polypropylene by effect of solvents has been developed. It helps to reach a significant increase in etching selectivity. A method for destruction of an absorbed chromocontaining layer on the surface of polypropylene track membranes formed during etching has been elaborated. Experimental samples of the membranes for micro and ultrafiltration have been obtained and their properties have been studied in course of their exploitation in chemically aggressive agents. For t...

  7. Use of polypropylene mesh in hernioplasty by Lichtenstein's technique

    International Nuclear Information System (INIS)

    Montejo Sainz, Jesus Enrique; Pisonero Socias, Juan Jose

    2011-01-01

    INTRODUCTION. The aim of present study was to assess the benefit using the prosthesis (polypropylene mesh) in the hernioplasty using the Lichtenstein's technique in the 'Joaquin Albarran' Clinical Surgical Hospital. METHODS. A prospective study (with an interval of 14 months) was conducted in 140 surgical interventions carried out using the Lichtenstein's technique in patients presenting with inguinal hernia. One hundred and ten patients were excluded due to interventions were of ambulatory method. The following data were studied: type of hernia found in the physical examination, age, sex, and race, type of job, intervention's date, and technique used as well as the complications during the immediate postoperative time. Also, the hernia's relapse after operation, surgical complications and tolerance to polypropylene mesh were taking into account. RESULTS. There was predominance of male sex confirming a direct influence among types of jobs requiring a strong physical effort and the appearance of inguinal hernias (63,3 %). There were only three complications: a hematoma and two seromas. There were not relapses and any case of infection, both local and systemic. The use of prophylactic antibiotics showed an appropriate cost-benefit relationship. CONCLUSIONS. The old age, the male sex and a sustained physical effort have a directly proportional relation to appearance of inguinal hernias. The feasibility of Lichtenstein's hernioplasty, the null incidence of hernia relapses and no appearance of complications including the rejection to prosthetic material, favoured the use of polypropylene in this plasty. Authors recommended the use of perioperative prophylactic antibiotic therapy to avoid wound's infection and thus to secure the result of surgical intervention and its durability. (author)

  8. Synthesis and characterization of CNTs using polypropylene waste as precursor

    Energy Technology Data Exchange (ETDEWEB)

    Bajad, Ganesh S. [Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010 (India); Tiwari, Saurabh K. [Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Vijayakumar, R.P., E-mail: vijayakumarrp@che.vnit.ac.in [Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010 (India)

    2015-04-15

    Graphical abstract: - Highlights: • A facile method for producing CNTs from polypropylene waste is proposed. • Optimization of Ni/Mo mole ratio using RSM suggests the adequacy of cubic model. • Process parameters were optimized by RSM using Box–Behnken four factorial design. • Maximum desirability of one suggested that 514% of CNTs would yield over Ni{sub 4}Mo{sub 0.2}MgO{sub 1}. • Increase in Ni/Mo ratio from 0.5 to 20, inner diameter of CNTs decreases from 25 to 2 nm. - Abstract: We study the synthesis of MWCNTs using polypropylene waste as a precursor and Ni/Mo/MgO as a catalyst by the combustion technique. Molar ratios of Ni, Mo and MgO in the Ni/Mo/MgO catalyst were optimized using response surface methodology (RSM) to obtain the maximum yield of CNTs. The mole ratio 4/0.2/1 was found to yield more carbon product. Further, process parameters such as combustion temperature, combustion time, polymer and catalyst weight were optimized by RSM using Box–Behnken three-level and four-factorial design. The best possible combination of process parameters (combustion time of 10 min, combustion temperature of 800 °C, polymer weight of 5 g and catalyst weight of 150 mg) for maximum yield of CNTs was obtained. HRTEM indicates that the diameter of CNTs depends on the catalyst composition used for the synthesis of CNTs. The results of the study indicate a facile method for producing CNTs from polypropylene waste.

  9. Synthesis and characterization of CNTs using polypropylene waste as precursor

    International Nuclear Information System (INIS)

    Bajad, Ganesh S.; Tiwari, Saurabh K.; Vijayakumar, R.P.

    2015-01-01

    Graphical abstract: - Highlights: • A facile method for producing CNTs from polypropylene waste is proposed. • Optimization of Ni/Mo mole ratio using RSM suggests the adequacy of cubic model. • Process parameters were optimized by RSM using Box–Behnken four factorial design. • Maximum desirability of one suggested that 514% of CNTs would yield over Ni 4 Mo 0.2 MgO 1 . • Increase in Ni/Mo ratio from 0.5 to 20, inner diameter of CNTs decreases from 25 to 2 nm. - Abstract: We study the synthesis of MWCNTs using polypropylene waste as a precursor and Ni/Mo/MgO as a catalyst by the combustion technique. Molar ratios of Ni, Mo and MgO in the Ni/Mo/MgO catalyst were optimized using response surface methodology (RSM) to obtain the maximum yield of CNTs. The mole ratio 4/0.2/1 was found to yield more carbon product. Further, process parameters such as combustion temperature, combustion time, polymer and catalyst weight were optimized by RSM using Box–Behnken three-level and four-factorial design. The best possible combination of process parameters (combustion time of 10 min, combustion temperature of 800 °C, polymer weight of 5 g and catalyst weight of 150 mg) for maximum yield of CNTs was obtained. HRTEM indicates that the diameter of CNTs depends on the catalyst composition used for the synthesis of CNTs. The results of the study indicate a facile method for producing CNTs from polypropylene waste

  10. Processing and characterization of halloysite nanotubes filled polypropylene nanocomposites based on a masterbatch route: effect of halloysites treatment on structural and mechanical properties

    Directory of Open Access Journals (Sweden)

    2011-04-01

    Full Text Available Halloysites/polypropylene nanocomposites with different nanotubes contents were prepared by diluting a masterbatch containing 30 wt.% halloysites with polypropylene (PP. Unmodified (HNTs and quaternary ammonium salt treated (QM-HNTs halloysite nanotubes were used. Both degree of crystallinity and crystallization temperature increase upon addition of halloysites into PP, thus indicating a potential nucleation effect induced by the nanotubes. An homogeneous distribution and dispersion of nanotubes was observed throughout the PP matrix, with a slightly better dispersion in the case of modified QM-HNTs compared to unmodified HNTs. Mechanical tests in tension, bending and notched impact demonstrated that strength and modulus of the nanocomposites significantly increase with addition of halloysites without significant loss of ductility. An halloysite content of 6 wt.% appears as an optimum. Modified halloysites (QM-HNTs lead to globally better performances due to strong interfacial interaction between the polymer matrix and the nanotubes.

  11. Impact Strenght and Thermal Degradation of Waste Polypropylene (wPP)/Oil Palm Empty Fruit Bunch (OPEFB) Composites: Effect of Maleic Anhydride-g-polypropylene (MAPP) Addition

    OpenAIRE

    Nasution, Halimatuddahliana; Pandia, Setiaty; Maulida; Sinaga, Mersi Suriani

    2015-01-01

    Halimatuddahliana Nasution The effect of maleic anhydride-g-polypropylene (MAPP) addition on the impact strength and thermal degradation of waste polypropylene (wPP) / oil palm empty fruit bunch (OPEFB) composites was investigated. Several contents of MAPP viz. 2, 4, 6, 8 weight percent (wt%) were prepared. Corresponding wPP/OPEFB composite without MAPP addition was also made for comparison. The OPEFB composition was fixed at 30 wt%, while wPP was 70 wt% and reduced correspondingly on the ...

  12. Increased protein hydrophobicity in response to aging and Alzheimer disease.

    Science.gov (United States)

    Dasuri, Kalavathi; Ebenezer, Philip; Zhang, Le; Fernandez-Kim, Sun Ok; Bruce-Keller, Annadora J; Markesbery, William R; Keller, Jeffrey N

    2010-05-15

    Increased levels of misfolded and damaged proteins occur in response to brain aging and Alzheimer disease (AD), which presumably increase the amount of aggregation-prone proteins via elevations in hydrophobicity. The proteasome is an intracellular protease that degrades oxidized and ubiquitinated proteins, and its function is known to be impaired in response to both aging and AD. In this study we sought to determine the potential for increased levels of protein hydrophobicity occurring in response to aging and AD, to identify the contribution of proteasome inhibition to increased protein hydrophobicity, and last to identify the contribution of ubiquitinated and oxidized proteins to the pool of hydrophobic proteins. In our studies we identified that aging and AD brain exhibited increases in protein hydrophobicity as detected using Bis ANS, with dietary restriction (DR) significantly decreasing age-related increases in protein hydrophobicity. Affinity chromatography purification of hydrophobic proteins from aging and AD brains identified increased levels of oxidized and ubiquitinated proteins in the pool of hydrophobic proteins. Pharmacological inhibition of the proteasome in neurons, but not astrocytes, resulted in an increase in protein hydrophobicity. Taken together, these data indicate that there is a relationship between increased protein oxidation and protein ubiquitination and elevations in protein hydrophobicity within the aging and the AD brain, which may be mediated in part by impaired proteasome activity in neurons. Our studies also suggest a potential role for decreased oxidized and hydrophobic proteins in mediating the beneficial effects of DR. Published by Elsevier Inc.

  13. Natural zeolite polypropylene composite film preparation and characterization

    OpenAIRE

    Özmıhçı, Filiz; Balköse, Devrim; Ülkü, Semra

    2001-01-01

    In this research, the preparation and characterization of polypropylene (PP) and natural zeolite composites were studied. Natural zeolite mined in Gördes, Turkey was used as an alternative filler to CaCO3. Films were prepared by the extrusion of PP, and surface-modified zeolite was made by polyethylene glycol 4000 with 2-4% zeolite. Zeolite-filled composites had densities between 0.73 and 0.83 g/cm3 and had void fractions of 0.07-0.20. Although the permeability of water vapour through 2% zeol...

  14. Physical changes associated with gamma doses on Wood/ Polypropylene Composites

    Science.gov (United States)

    Ndiaye, Diène; Tidjani, Adams

    2014-08-01

    The effect of gamma- radiation on the morphology, thermal behavior and mechanical properties of wood polypropylene composites has been investigated. Simultaneous thermo gravimetric analysis (TGA) and differential scanning calorimetry (DSC) have been performed on WPC samples of (9.5 ± 0.1) mg. These samples were exposed to different gamma-dose in the range 10 to 100kGy. The results indicated that gamma radiation improves the mechanical properties while the thermal stability is decreased. With gamma radiation, the scanning electron microscopy (SEM) of the micrographs became smoother and we can notice an improvement of interaction between polymer and wood fibers.

  15. Surface modifications of polypropylene by high energy carbon ions

    International Nuclear Information System (INIS)

    Saha, A.; Chakraborty, V.; Dutta, R.K.; Chintalapudi, S.N.

    2000-01-01

    Polypropylene was irradiated with 12 C ions of 3.6 and 5.4 MeV energies using 3 MV tandem accelerator. The surface modification was investigated by Scanning Electron Microscopy (SEM). Optical changes were monitored by UV-VIS and FTIR spectroscopy. At the lowest ion fluence, only blister formation of various sizes (1-6 μm) was observed. Polymer when irradiated at a fluence of 1x10 14 ions/cm 2 exhibited a network structure. A comparative study on dose dependence of surface and bulk modification has been described. (author)

  16. Polypropylene-polyethylene blends modified by gamma radiation

    International Nuclear Information System (INIS)

    Terence, Mauro C.; Ruiz, Francisco C.

    2009-01-01

    One way to obtain a better mechanical property of polypropylene and polyethylene is to increasing the number of polymer chains cross-linked by gamma radiation. After irradiation a network is formed as a result of various chemical reactions and the radicals formed are concentrated in the amorphous phase. With the objective to improve the mechanical properties of PP, blends with PE were prepared and irradiated in doses up to 500 kGy, in atmospheric ambient. The molecular characterization of the blends was made by infrared spectroscopy and the data showed an increase in rigidity and a unique behaviour in Izod impact resistance. (author)

  17. Laser welding of polypropylene using two different sources

    Science.gov (United States)

    Mandolfino, Chiara; Brabazon, Dermot; McCarthy, Éanna; Lertora, Enrico; Gambaro, Carla; Ahad, Inam Ul

    2017-10-01

    In this paper, laser weldability of neutral polypropylene has been investigated using fibre and carbon dioxide lasers. A design of experiment (DoE) was conducted in order to establish the influence of the main working parameters on the welding strength of the two types of laser. The welded samples were characterized by carrying out visual and microscopic inspection for the welding morphology and cross-section, and by distinguishing the tensile strength. The resulting weld quality was investigated by means of optical microscopy at weld cross-sections. The tensile strength of butt-welded materials was measured and compared to that of a corresponding bulk material.

  18. Optimization of fall height setting for drop weight tested polypropylene

    Directory of Open Access Journals (Sweden)

    Hylova Lenka

    2017-01-01

    Full Text Available This study deals with polypropylene (PP which was subjected the drop-weight test. PP is a semicrystalline thermoplastic polymer which is commonly used in many indoor applications and also in the automotive industry in the car interiors. The injection moulded PP samples were subjected the penetration test at different fall heights and the results were subsequently evaluated and discussed. It was found out that the fall heights from 100 to 230 J are suitable for PP penetration, but the optimal one is 100 J. Higher heights are not needed because of increasing power consumption of the test device.

  19. Packing parameters effect on injection molding of polypropylene nanostructured surfaces

    DEFF Research Database (Denmark)

    Calaon, Matteo; Tosello, Guido; Hansen, Hans Nørgaard

    2012-01-01

    In today´s industry, applications involving surface patterning of sub-μm to nanometer scale structures have shown a high growth potential. To investigate the injection molding capability of replicating sub-μm surface texture on a large scale area, a 30x80 mm2 tool insert with surface structures...... having a diameter of 500 nm was employed. The tool insert surface was produced using chemical-based-batch techniques such aluminum anodization and nickel electroplating. During the injection molding process, polypropylene (PP) was employed as material and packing phase parameters (packing time, packing...

  20. Rheology of high melt strength polypropylene for additive manufacturing

    DEFF Research Database (Denmark)

    Jagenteufel, Ralf; Hofstätter, Thomas; Kamleitner, Florian

    2017-01-01

    Rheological measurements of high melt strength polypropylene (HMS-PP) were used in order to generate master curves describing the shear-dependent viscosity in comparison to acrylonitrile butadiene styrene copolymer (ABS). The latter material showed specific disadvantages in terms of thermal......, adapted parameters for HMS-PP were determined using a fused deposition modeling test bench. The rheological survey clearly showed changes in the melt viscosity of both ABS and HMS-PP due to thermal degradation. However, the comparison of rheological data of the virgin materials with those of printed...

  1. Co-pyrolysis of polypropylene waste with Brazilian heavy oil.

    Science.gov (United States)

    Assumpção, Luiz C F N; Carbonell, Montserrat M; Marques, Mônica R C

    2011-01-01

    To evaluate the chemical recycling of plastic residues, co-pyrolysis of polypropylene (PP) waste with Brazilian crude oil was evaluated varying the temperature (400°C to 500°C) and the amount of PP fed to the reactor. The co-pyrolysis of plastic waste in an inert atmosphere provided around 80% of oil pyrolytic, and of these, half represent the fraction of diesel oil. This study can be used as a reference in chemical recycling of plastics, specially associated with plastics co-pyrolysis.

  2. Acacia bark residues as filler in polypropylene composites

    Directory of Open Access Journals (Sweden)

    Ticiane Taflick

    2015-06-01

    Full Text Available AbstractLarge amounts of acacia bark residues are produced each day after tannin extraction with hot water, being generally burned. This by-product was chemically characterized and used as filler in polypropylene (PP composites, considering different particle sizes and concentrations. The materials produced by melt blending had their mechanical and thermal properties evaluated. It was verified that, even containing a significant amount of extractable compounds, the acacia bark particles can produce PP composites with higher impact properties, higher crystallization temperature and higher degradation temperature in comparison to the polymer matrix.

  3. Raman Spectroscopy of Isotactic Polypropylene-Halloysite Nanocomposites

    Directory of Open Access Journals (Sweden)

    Elamin E. Ibrahim

    2012-01-01

    Full Text Available Raman spectroscopy investigations on nanocomposites obtained by dispersing halloysite within isotactic polypropylene are reported. A detailed analysis of the modifications of the regularity band associated to the polymeric matrix is presented. The Raman lines assigned to the polymeric matrix are broadened and weakened as the loading with halloysite is increased. The analysis of Raman lines indicates that the polymeric matrix becomes less crystalline upon the loading with halloysite and that the nanofiller is experiencing a weak dehydration upon dispersion within the polymeric matrix, probably due to the related thermal processing used to achieve the dispersion of halloysite.

  4. The hydrophobic effect: Molecular dynamics simulations of water confined between extended hydrophobic and hydrophilic surfaces

    DEFF Research Database (Denmark)

    Jensen, Morten Østergaard; Mouritsen, Ole G.; Peters, Günther H.J.

    2004-01-01

    Structural and dynamic properties of water confined between two parallel, extended, either hydrophobic or hydrophilic crystalline surfaces of n-alkane C36H74 or n-alcohol C35H71OH, are studied by molecular dynamics simulations. Electron density profiles, directly compared with corresponding...... at both surfaces. The ordering is characteristically different between the surfaces and of longer range at the hydrophilic surface. Furthermore, the dynamic properties of water are different at the two surfaces and different from the bulk behavior. In particular, at the hydrophobic surface, time......-correlation functions reveal that water molecules have characteristic diffusive behavior and orientational ordering due to the lack of hydrogen bonding interactions with the surface. These observations suggest that the altered dynamical properties of water in contact with extended hydrophobic surfaces together...

  5. Desorption modeling of hydrophobic organic chemicals from plastic sheets using experimentally determined diffusion coefficients in plastics.

    Science.gov (United States)

    Lee, Hwang; Byun, Da-Eun; Kim, Ju Min; Kwon, Jung-Hwan

    2018-01-01

    To evaluate rate of migration from plastic debris, desorption of model hydrophobic organic chemicals (HOCs) from polyethylene (PE)/polypropylene (PP) films to water was measured using PE/PP films homogeneously loaded with the HOCs. The HOCs fractions remaining in the PE/PP films were compared with those predicted using a model characterized by the mass transfer Biot number. The experimental data agreed with the model simulation, indicating that HOCs desorption from plastic particles can generally be described by the model. For hexachlorocyclohexanes with lower plastic-water partition coefficients, desorption was dominated by diffusion in the plastic film, whereas desorption of chlorinated benzenes with higher partition coefficients was determined by diffusion in the aqueous boundary layer. Evaluation of the fraction of HOCs remaining in plastic films with respect to film thickness and desorption time showed that the partition coefficient between plastic and water is the most important parameter influencing the desorption half-life. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Investigation adding of Nano clay particles and compatibilizer on the properties of composite made of polypropylene- Haloxylon wood flour

    Directory of Open Access Journals (Sweden)

    afsaneh shahraki

    2016-12-01

    Full Text Available This study, with aim of investigation the effect of Nano clay particles and amount of compatibilizer on the physical and mechanical properties of wood-plastic composites from the polypropylene- Haloxylon wood flour was done. For this purpose, Haloxylon wood flour with 50% weight ratio with polypropylene were mixed. Maleic anhydride modified polypropylene maple to compatibilizer at two levels and Nano clay at three levels to filler were used. Mixed process of materials in extruding machine was done and test specimens were fabricated by using the injection molding machine. Then, the mechanical tests include bending, tension and impact and physical tests include water absorption and thickness swelling according to the ASTM standards was done on the samples. For investigation to how operation of compatibilizer from Fourier Transfer Infrared spectroscopy (FTIR was used. Morphological study of Nano composites with X-ray diffraction (XRD and scanning electron microscopy (SEM was done. The result showed that with addition of the amount of Nano clay particles to 4 percent, physical and mechanical properties were improved, but impact strength decreased. Also by adding the compatibilizer, physical and mechanical properties were improved. The results of Infrared spectroscopy showed that the amount of hydroxyl groups (OH Due to linkage with Maleic Anhydride and the formation of ester groups decreased with adding the compatibilizer. Also, investigation the morphology of Nano composite by X-ray diffraction showed that the distribution of clay nanoparticles in polymeric matrix was intercalation and with adding of the amount Nano clay the distance between layers increases. The results of scanning electron microscopy was also showed improvement in the interface between the fibers and the polymer matrix with adding the compatibilizer.

  7. Phenomenological Model of Hydrophobic and Hydrophilic Interactions

    Science.gov (United States)

    Menshikov, L. I.; Menshikov, P. L.; Fedichev, P. O.

    2017-12-01

    Hydration forces acting between macroscopic bodies at distances L ≤ 3 nm in pure water are calculated based on the phenomenological model of polar liquids. It is shown that depending on the properties of the bodies, the interacting surfaces polarize the liquid differently, and wetting properties of the surfaces are completely characterized by two parameters. If the surfaces are hydrophilic, liquid molecules are polarized at right angles to the surfaces, and the interaction is the short-range repulsion (the forces of interaction decrease exponentially over the characteristic length λ ≈ 0.2 nm). The interaction between the hydrophobic surfaces is more diversified and has been studied less. For L ≤ 3 nm, the interaction exhibits universal properties, while for L ≤ 3 nm, it considerably depends on the properties of the surfaces and on the distances between them, as well as on the composition of the polar liquid. In full agreement with the available experimental results we find that if the interfaces are mostly hydrophobic, then the interaction is attractive and long-range (the interaction forces diminish exponentially with decay length 1.2 nm). In this case, the resultant polarization of water molecules is parallel to the surface. It is shown that hydration forces are determined by nonlinear effects of polarization of the liquid in the bulk or by analogous nonlinearity of the interaction of water with a submerged body. This means that the forces of interaction cannot be calculated correctly in the linear response approximation. The forces acting between hydrophobic or hydrophilic surfaces are of the entropy type or electrostatic, respectively. It is shown that hydrophobic and hydrophilic surfaces for L ≤ 3 nm repel each other. The calculated intensity of their interaction is in agreement with experimental data. We predict the existence of an intermediate regime in which a body cannot order liquid molecules, which results in a much weaker attraction that

  8. Peritoneostomy with latex coated polypropylene: experimental study in rats Peritoniostomia com polipropileno revestido por látex: estudo experimental em ratos

    Directory of Open Access Journals (Sweden)

    Renato Hugues Atique Claudio

    2006-12-01

    Full Text Available PURPOSE: To evaluate if latex coated polypropylene mesh leads to less adhesions formation. METHODS: 90 rats were distributed in three groups. Group I (control was submitted to median laparotomy and posterior synthesis; Group II (polypropylene was submitted to a segment resection of the abdominal wall, and the defect was corrected with a polypropylene mesh; Group III using the new material (latex coated polypropylene. After 45 days the euthanasia procedure was done and the adhesions were evaluated in 2 ways: 1 classification in a grading system; 2 evaluation of the adhesion area, which was calculated by resection of the adhesions after dying with Indian blue ink. RESULTS: The classification in a grading system showed that Group III animals had less adhesions formation (P0.05. The severe complications (fistula, evisceration and obstruction, which were lethal, were not reduced by the latex coated material. CONCLUSION: Latex coated polypropylene causes fewer adhesion formations than polypropylene alone, although it does not diminish the severe early complications.OBJETIVO: Avaliar se o revestimento da tela de polipropileno com látex leva a menor formação de aderências. MÉTODOS: Foram utilizados 90 ratos, distribuídos em três grupos de 30: grupo I (controle animais submetidos a laparotomia mediana e posterior síntese; grupo II (polipropileno ressecção de segmento da parede abdominal e síntese com tela de polipropileno; grupo III, (polipropileno revestido por látex. Eutanásia foi realizada após 45 dias e as aderências avaliadas sob duas formas: 1 classificação em graus; 2 avaliação da área aderida, calculada corando-se o segmento da parede contendo as aderências que posteriormente foram ressecadas produzindo uma região clara em contraste com o restante da peça, corada. RESULTADOS: Na avaliação por meio de graus, o grupo III apresentou menor formação de aderências (p0,05. As complicações graves não foram reduzidas pelo

  9. Effect of Hydrophobic Modification Methods on the Gelation and Agregation of O-Methyl Cellulose

    Science.gov (United States)

    Ginzburg, Inna; Karpassas, Mark; Gottlieb, Moshe

    2001-03-01

    Gelation of o-metylcellulose (MC) in aqueous solution is believed to be caused primarily by the hydrophobic interaction between molecules containing methoxyl substitution. Recently it has been shown that different aggregates such as micelles, vesicles, and 'pearl-necklaces' are formed during different stages of the gelation process. In this paper we examine the effect of distribution on the gelation and aggregation processes. Two types of molecules have been used: the first with block-like amphiphilic structure and the second with a more homogeneous distribution of substituted hydrophobic group. The systems were examined by means of Small Angle X-ray Scattering, Speckle pattern analysis and rheology. Large differences exist between the two types of systems indicating that gelation is more readily accomplished in the case of highly heterogeneous substituent distribution. It was also found that relaxation processes are very slow in these systems and structure evolves over periods extending to several days.

  10. Nano-Charged Polypropylene Application: Realistic Perspectives for Enhancing Durability.

    Science.gov (United States)

    Naddeo, Carlo; Vertuccio, Luigi; Barra, Giuseppina; Guadagno, Liberata

    2017-08-14

    Isotactic polypropylene/multi-walled carbon nanotube (iPP/MWCNTs) films have been exposed to accelerated weathering in a UV device for increasing times. The effect of UV irradiation on the structural and chemical changes has been investigated. The resistance to accelerated photooxidation of (iPP/MWCNTs) films has been compared to the photooxidation behaviour of unfilled polypropylene films with the same structural organization. The chemical and structural modifications resulting from photooxidation have been followed using infrared spectroscopy, calorimetric and diffractometric analysis. MWCNTs embedded in the polymeric matrix are able to strongly contrast the degradation mechanisms and the structural and morphological rearrangements caused by the UV treatment on the unfilled polymer. MWCNTs determine an induction period (IP) before the increase of the carbonyl and hydroxyl groups. The extent of the IP is strictly correlated to the amount of MWCNTs. The low electrical percolation threshold (EPT) and the electrical conductivity of the nanocomposites, together with their excellent thermal and photooxidative stability, make them promising candidates to fulfill many industrial requirements.

  11. Reinforced polypropylene composites: effects of chemical compositions and particle size.

    Science.gov (United States)

    Ashori, Alireza; Nourbakhsh, Amir

    2010-04-01

    In this work, the effects of wood species, particle sizes and hot-water treatment on some physical and mechanical properties of wood-plastic composites were studied. Composites of thermoplastic reinforced with oak (Quercus castaneifolia) and pine (Pinus eldarica) wood were prepared. Polypropylene (PP) and maleic anhydride grafted polypropylene (MAPP) were used as the polymer matrix and coupling agent, respectively. The results showed that pine fiber had significant effect on the mechanical properties considered in this study. This effect is explained by the higher fiber length and aspect ratio of pine compared to the oak fiber. The hot-water treated (extractive-free) samples, in both wood species, improved the tensile, flexural and impact properties, but increased the water absorption for 24h. This work clearly showed that lignocellulosic materials in both forms of fiber and flour could be effectively used as reinforcing elements in PP matrix. Furthermore, extractives have marked effects on the mechanical and physical properties. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Chemical modification of polypropylene induced by high energy carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Saha, A.; Chakraborty, V.; Chintalapudi, S.N. E-mail: snc@gamma.iuc.res.in

    2000-06-01

    Polypropylene was irradiated with {sup 12}C{sup +} ions of 3.6 and 5.4 MeV energy using 3 MV Pelletron. The spectral changes owing to ion bombardment were investigated by UV-VIS and Fourier-transform infrared (FTIR) spectroscopy. A gradual increase in absorbance was observed around visible and near visible region with increase in fluence of bombarding ions. The difference absorption spectra show formation of chromophoric groups with wavelength maximum near 380 nm at lower fluence, but at high fluence a shift in peak is observed. The chromophoric groups are likely to be the extended conjugated polyene system and the red shift in peak position at high fluence may be attributed to the greater degree of conjugation. The formation of unsaturated linkage is confirmed by the FTIR spectra with observed stretching band around 1650 cm{sup -1} and its intensity was found to increase with increase in ion fluence studied. The gases (in the range 2-80 amu) which were evolved due to interaction of polypropylene with {sup 12}C{sup +} ions were measured with Residual Gas Analyzer (RGA). A large number of gaseous components were detected. This shows that polymer chains break into some smaller fragments which concomitantly leads to extended conjugation.

  13. Reinforcement of Recycled Foamed Asphalt Using Short Polypropylene Fibers

    Directory of Open Access Journals (Sweden)

    Yongjoo Kim

    2013-01-01

    Full Text Available This paper presents the reinforcing effects of the inclusion of short polypropylene fibers on recycled foamed asphalt (RFA mixture. Short polypropylene fibers of 10 mm length with a 0.15% by weight mixing ratio of the fiber to the asphalt binder were used. The Marshall stability test, the indirect tensile strength test, the resilient modulus test, and wheel tracking test of the RFA mixtures were conducted. The test results were compared to find out the reinforcing effects of the inclusion of the fiber and the other mixtures, which included the conventional recycled foamed asphalt (RFA mixtures; the cement reinforced recycled foamed asphalt (CRFA mixtures; the semihot recycled foamed asphalt (SRFA mixtures; and recycled hot-mix asphalt (RHMA mixtures. It is found that the FRFA mixture shows higher Marshall stability than the RFA and SRFA mixtures, higher indirect tensile strength than the RFA mixture, and higher rut resistance than the RFA, SRFA, and RHMA mixtures as seen from the wheel tracking test.

  14. The mechanisms of reinforcement of polypropylene by graphene nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Siti Rohana; Xue, Chengzhe; Young, Robert J., E-mail: robert.young@manchester.ac.uk

    2017-02-15

    Highlights: • The thermal stability of the polypropylene is improved significantly with the GNPs. • The melting temperature and degree of crystallinity of the PP are both increased. • The effective Young’s modulus of the GNP reinforcement is 100 GPa. • The same effective Young’s modulus is found from Raman band shifts. - Abstract: A detailed analysis has been undertaken of the mechanisms of reinforcement of polypropylene (PP) by the addition of graphene nanoplatelets (GNP). The PP/GNP nanocomposites were processed by melt mixing followed by injection moulding and microstructure was fully characterized. It was found that the GNPs increased the thermal stability of the PP and aided crystal nucleation. The mechanical properties of the nanocomposites were evaluated using both tensile testing and dynamic mechanical thermal analysis. The addition of GNPs led to a significant increase in the Young’s modulus of the PP, coupled with a decrease in the yield stress and a reduction in the elongation to failure. Stress transfer from the PP matrix to the GNP reinforcement was followed from stress-induced shifts of the 2D Raman band and the effective Young’s modulus of the GNPs in the nanocomposites was found to be about 100 GPa, shown to be consistent with the expected value.

  15. Structural characterization and mechanical properties of polypropylene reinforced natural fibers

    Science.gov (United States)

    Karim, M. A. A.; Zaman, I.; Rozlan, S. A. M.; Berhanuddin, N. I. C.; Manshoor, B.; Mustapha, M. S.; Khalid, A.; Chan, S. W.

    2017-10-01

    Recently the development of natural fiber composite instead of synthetics fiber has lead to eco-friendly product manufacturing to meet various applications in the field of automotive, construction and manufacturing. The use of natural fibers offer an alternative to the reinforcing fibers because of their good mechanical properties, low density, renewability, and biodegradability. In this present research, the effects of maleic anhydride polypropylene (MAPP) on the mechanical properties and material characterization behaviour of kenaf fiber and coir fiber reinforced polypropylene were investigated. Different fractions of composites with 10wt%, 20wt% and 30wt% fiber content were prepared by using brabender mixer at 190°C. The 3wt% MAPP was added during the mixing. The composites were subsequently molded with injection molding to prepare the test specimens. The mechanical properties of the samples were investigated according to ISO 527 to determine the tensile strength and modulus. These results were also confirmed by the SEM machine observations of fracture surface of composites and FTIR analysis of the chemical structure. As the results, the presence of MAPP helps increasing the mechanical properties of both fibers and 30wt% kenaf fiber with 3wt% MAPP gives the best result compare to others.

  16. Stability of erythropoietin repackaging in polypropylene syringes for clinical use

    Directory of Open Access Journals (Sweden)

    Angela Marsili

    2017-02-01

    Full Text Available Introduction: Epoetin alfa (Eprex® is a subcutaneous, injectable formulation of short half-life recombinant human erythropoietin (rHuEPO. To current knowledge there are no published studies regarding the stability of rHuEPO once repackaging occurs (r-EPO for clinical trial purposes. Materials and methods: We assessed EPO concentration in Eprex® and r-EPO syringes at 0, 60, 90, and 120 days after repackaging in polypropylene syringes. R-EPO was administered to 56 patients taking part in a clinical trial in Friedreich Ataxia. Serum EPO levels were measured at baseline and 48 h after r-EPO administration. Results: No differences were found between r-EPO and Eprex® syringes, but both globally decreased in total EPO content during storage at 4 °C. Patients receiving r-EPO had similar levels in EPO content as expected from previous trials in Friedreich Ataxia and from pharmacokinetics studies in healthy volunteers. Discussion: We demonstrate that repackaging of EPO does not alter its concentration if compared to the original product (Eprex®. This is true both for repackaging procedures and for the stability in polypropylene tubes. The expiration date of r-EPO can be extended from 1 to 4 months after repackaging, in accordance with pharmacopeia rules.

  17. Morphology and properties of recycled polypropylene/bamboo fibers composites

    Science.gov (United States)

    Phuong, Nguyen Tri; chuong, Bui; Guinault, Alain; Sollogoub, Cyrille

    2011-05-01

    Polypropylene (PP) is among the most widely used thermoplastics in many industrial fields. However, like other recycled polymers, its properties usually decrease after recycling process and sometimes are degraded to poor properties level for direct re-employment. The recycled products, in general, need to be reinforced to have competitive properties. Short bamboo fibers (BF) have been added in a recycled PP (RPP) with and without compatibilizer type maleic anhydride polypropylene (MAPP). Several properties of composite materials, such as helium gas permeability and mechanical properties before and after ageing in water, were examined. The effects of bamboo fiber content and fiber chemical treatment have been also investigated. We showed that the helium permeability increases if fiber content is higher than 30% because of a poor adhesion between untreated bamboo fiber and polymer matrix. The composites reinforced by acetylated bamboo fibers show better helium permeability due to grafting of acetyl groups onto cellulose fibers surface and thus improves compatibility between bamboo fibers and matrix, which has been shown by microscopic observations. Besides, mechanical properties of composite decrease with ageing in water but the effect is less pronounced with low bamboo fiber content.

  18. Photodegradation of a polypropylene filled with lanthanide complexes

    Directory of Open Access Journals (Sweden)

    Valérie Massardier

    2015-01-01

    Full Text Available Abstract This research aims at studying the photodegradation of a polypropylene formulation filled with lanthanide complexes. These complexes can be used as tracers for the identification of polymer materials in order to facilitate an high speed automatic sorting of plastic wastes for an economically efficient recycling. By paying attention to the evolution of carbonyl absorption bands in FTIR spectra, it is observed that the addition of lanthanide complexes into our formulation improves UV stability of polypropylene by reducing the extent of photo-degradation. Furthermore, TG analyses show that the traced blends can maintain better thermal properties, after irradiation. A significant increase of the crystallinity degree and a decrease of the melting temperature are more pronounced for the unfilled UV–irradiated PP. This might result from chemi-crystallization that can occur when chain entanglements are broken as a result of chain scissions. From SEM analyses, it is observed that the severity of surface cracks induced by photo degradation is reduced for filled PP. The mechanical tests are in agreement with this result and show a fundamental change in the behavior of the as-exposed blends from a ductile to a brittle material.

  19. Nano-Charged Polypropylene Application: Realistic Perspectives for Enhancing Durability

    Directory of Open Access Journals (Sweden)

    Carlo Naddeo

    2017-08-01

    Full Text Available Isotactic polypropylene/multi-walled carbon nanotube (iPP/MWCNTs films have been exposed to accelerated weathering in a UV device for increasing times. The effect of UV irradiation on the structural and chemical changes has been investigated. The resistance to accelerated photooxidation of (iPP/MWCNTs films has been compared to the photooxidation behaviour of unfilled polypropylene films with the same structural organization. The chemical and structural modifications resulting from photooxidation have been followed using infrared spectroscopy, calorimetric and diffractometric analysis. MWCNTs embedded in the polymeric matrix are able to strongly contrast the degradation mechanisms and the structural and morphological rearrangements caused by the UV treatment on the unfilled polymer. MWCNTs determine an induction period (IP before the increase of the carbonyl and hydroxyl groups. The extent of the IP is strictly correlated to the amount of MWCNTs. The low electrical percolation threshold (EPT and the electrical conductivity of the nanocomposites, together with their excellent thermal and photooxidative stability, make them promising candidates to fulfill many industrial requirements.

  20. Hydrophobicity diversity in globular and nonglobular proteins measured with the Gini index.

    Science.gov (United States)

    Carugo, Oliviero

    2017-12-01

    Amino acids and their properties are variably distributed in proteins and different compositions determine all protein features, ranging from solubility to stability and functionality. Gini index, a tool to estimate distribution uniformity, is widely used in macroeconomics and has numerous statistical applications. Here, Gini index is used to analyze the distribution of hydrophobicity in proteins and to compare hydrophobicity distribution in globular and intrinsically disordered proteins. Based on the analysis of carefully selected high-quality data sets of proteins extracted from the Protein Data Bank (http://www.rcsb.org) and from the DisProt database (http://www.disprot.org/), it is observed that hydrophobicity is distributed in a more diverse way in intrinsically disordered proteins than in folded and soluble globular proteins. This correlates with the observation that the amino acid composition deviates from the uniformity (estimate with the Shannon and the Gini-Simpson indices) more in intrinsically disordered proteins than in globular and soluble proteins. Although statistical tools tike the Gini index have received little attention in molecular biology, these results show that they allow one to estimate sequence diversity and that they are useful to delineate trends that can hardly be described, otherwise, in simple and concise ways. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Structure of Hydrophobically Modified Phytoglycogen Nanoparticles

    Science.gov (United States)

    Atkinson, John; Nickels, Jonathan; Dutcher, John; Katsaras, John

    Phytoglycogen is a highly branched, polysaccharide nanoparticle produced by some varieties of plants including sweet corn. These particles are attractive candidates for cosmetic, industrial and biomedical applications. Many of these applications result from phytoglycogen's unique interaction with water: (1) high solubility; (2) low viscosity and high stability in aqueous dispersions; and (3) a remarkable capacity to sequester and retain water. Neutron scattering measurements of native phytoglycogen revealed that the particles have uniform size, uniform radial particle density, and a high level of hydration. Hydrophobically modifying the outer surface of the hydrophilic nanoparticles opens up new applications in food and biomedicine, such as solubilizing and stabilizing bioactive compounds. One such modification is octenyl succinate anhydride (OSA), where the hydrophobicity can be tuned by adjusting the degree of substitution. I will present the results of small angle neutron scattering (SANS) measurements of aqueous dispersions of OSA-modified phytoglycogen with two different degrees of modification. Contrast series SANS measurements have yielded information about the radial density profile, providing insight into the nature of the chemical modification of the particles.

  2. Hydrophobic effects on partial molar volume.

    Science.gov (United States)

    Imai, Takashi; Hirata, Fumio

    2005-03-01

    The hydrophobic effects on partial molar volume (PMV) are investigated as a PMV change in the transfer of a benzenelike nonpolar solute from the nonpolar solvent to water, using an integral equation theory of liquids. The volume change is divided into two effects. One is the "packing" effect in the transfer from the nonpolar solvent to hypothetical "nonpolar water" without hydrogen bonding networks. The other is the "iceberg" effect in the transfer from nonpolar water to water. The results indicate that the packing effect is negative and a half compensated by the positive iceberg effect. The packing effect is explained by the difference in the solvent compressibility. Further investigation shows that the sign and magnitude of the volume change depend on the solute size and the solvent compressibility. The finding gives a significant implication that the exposure of a hydrophobic residue caused by protein denaturation can either increase or decrease the PMV of protein depending on the size of the residue and the fluctuation of its surroundings.

  3. Hydrophobic Calcium Carbonate for Cement Surface

    Directory of Open Access Journals (Sweden)

    Shashi B. Atla

    2017-12-01

    Full Text Available This report describes a novel way to generate a highly effective hydrophobic cement surface via a carbonation route using sodium stearate. Carbonation reaction was carried out at different temperatures to investigate the hydrophobicity and morphology of the calcium carbonate formed with this process. With increasing temperatures, the particles changed from irregular shapes to more uniform rod-like structures and then aggregated to form a plate-like formation. The contact angle against water was found to increase with increasing temperature; after 90 °C there was no further increase. The maximum contact angle of 129° was obtained at the temperature of 60 °C. It was also found that carbonation increased the micro hardness of the cement material. The micro hardness was found to be dependent on the morphology of the CaCO3 particles. The rod like structures which caused increased mineral filler produced a material with enhanced strength. The 13C cross polarization magic-angle spinning NMR spectra gave plausible explanation of the interaction of organic-inorganic moieties.

  4. Polypropylene non-woven fabric membrane via surface modification with biomimetic phosphorylcholine in Ce(IV)/HNO3 redox system

    International Nuclear Information System (INIS)

    Zhao Jie; Shi Qiang; Luan Shifang; Song Lingjie; Yang Huawei; Stagnaro, Paola; Yin Jinghua

    2012-01-01

    Surface modification of polypropylene non-woven fabric membrane (NWF) for improving its hemocompatibility was developed by grafting a biomimic monomer, 2-methacryloyloxyethyl phosphorycholine (MPC). The NWF membrane surface was first activated by potassium peroxydisulfate to form hydroxyl groups, and then grafted with MPC using ceric (IV) ammonium nitrate as the redox initiator. The surface chemical changes before and after modification were confirmed by Fourier transform infrared spectroscopy with an ATR unit (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS); the water contact angle results showed the gradual changes in wettability from hydrophobic to hydrophilic surface. Meanwhile, the hemocompatibility of these samples was also evaluated by protein adsorption and platelet adhesion. These experimental results exhibited that the introduction of poly(MPC) onto the NWF membrane surfaces substantially improved their hemocompatibility. The feasibility and simplicity of this procedure may lead to potential applications of NWF membranes in biomedical separation and blood purification. - Graphical abstract: 2-methacryloyloxyethyl phosphorycholine (MPC), was grafted onto non-woven fabric (NWF) membrane surface by Ce(IV)/HNO 3 redox system. The protein adsorption and platelet adhesion were substantially suppressed by the introduction of poly(MPC). Highlights: ► MPC was successfully grafted onto NWF PP membrane surface. ► Obviously enhanced hemocompatibility was acquired by the modified samples. ► A facile redox grafting was adopted in the whole process.

  5. Adlayers of palladium particles and their aggregates on porous polypropylene hollow fiber membranes as hydrogenization contractors/reactors.

    Science.gov (United States)

    Volkov, V V; Lebedeva, V I; Petrova, I V; Bobyl, A V; Konnikov, S G; Roldughin, V I; van Erkel, J; Tereshchenko, G F

    2011-05-11

    Principal approaches for the preparation of catalytic membrane reactors based on polymer membranes containing palladium nanoparticles and for the description of their characteristics are presented. The method for the development of adlayers composed of palladium nanoparticles and their aggregates on the surface of hydrophobic polypropylene porous hollow fiber membranes is proposed, and their comprehensive study is performed. Various regimes of the deposition of palladium on individual fibers and on membrane surface inside membrane modulus are considered. The sizes of primary Pd particles range from 10 to 500 nm, and dimensions of their aggregates vary from 200 nm to tens of microns. The sizes of primary particles in a free state and in their aggregates are estimated by the methods of X-ray analysis and scanning electron microscopy. The proposed approach is used for the preparation of catalytic membrane contactors/reactors for the removal of dissolved oxygen from water. In the systems under study, the limiting stage of dissolved oxygen removal is concerned with diffusion-controlled delivery of oxygen to the surface of catalytic particles. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Hemocompatible control of sulfobetaine-grafted polypropylene fibrous membranes in human whole blood via plasma-induced surface zwitterionization.

    Science.gov (United States)

    Chen, Sheng-Han; Chang, Yung; Lee, Kueir-Rarn; Wei, Ta-Chin; Higuchi, Akon; Ho, Feng-Ming; Tsou, Chia-Chun; Ho, Hsin-Tsung; Lai, Juin-Yih

    2012-12-21

    In this work, the hemocompatibility of zwitterionic polypropylene (PP) fibrous membranes with varying grafting coverage of poly(sulfobetaine methacrylate) (PSBMA) via plasma-induced surface polymerization was studied. Charge neutrality of PSBMA-grafted layers on PP membrane surfaces was controlled by the low-pressure and atmospheric plasma treatment in this study. The effects of grafting composition, surface hydrophilicity, and hydration capability on blood compatibility of the membranes were determined. Protein adsorption onto the different PSBMA-grafted PP membranes from human fibrinogen solutions was measured by enzyme-linked immunosorbent assay (ELISA) with monoclonal antibodies. Blood platelet adhesion and plasma clotting time measurements from a recalcified platelet-rich plasma solution were used to determine if platelet activation depends on the charge bias of the grafted PSBMA layer. The charge bias of PSBMA layer deviated from the electrical balance of positively and negatively charged moieties can be well-controlled via atmospheric plasma-induced interfacial zwitterionization and was further tested with human whole blood. The optimized PSBMA surface graft layer in overall charge neutrality has a high hydration capability and keeps its original blood-inert property of antifouling, anticoagulant, and antithrmbogenic activities when it comes into contact with human blood. This work suggests that the hemocompatible nature of grafted PSBMA polymers by controlling grafting quality via atmospheric plasma treatment gives a great potential in the surface zwitterionization of hydrophobic membranes for use in human whole blood.

  7. Effect of compatibilizing agents on the interface and mechanical behaviour of polypropylene/hemp bast fiber biocomposites

    Science.gov (United States)

    Boruvka, M.; Lenfeld, P.; Brdlik, P.; Behalek, L.

    2015-07-01

    During the last years automotive industry has given a lot of attention to the biobased polymers that are sustainable and eco-friendly. Nevertheless fully green composites are currently too expensive for most applications. A viable solution and logical starting point at this material revolution lies in reinforced synthetic thermoplastics based on plant derived biodegradable fibers. Plant fibers (PF's) have potential to reduce weight of composite vehicle parts up to 40% compared with the main automotive composites filler, glass fibers (GF's). Production of GF's composites is much more energy intensive and polluting compared with growing, harvesting and preparing of PF's. The main disadvantage of PF's lies in combination of non-polar hydrophobic polymer matrix and polar hydrophilic fibers. This combination creates poor interface with low adhesion of both components. That implies poor wettability of fibres by polymer matrix and low mechanical properties of biocomposites. Therefore specific compatibilizing agents (Struktol SA1012, Fusabond P353, Smart + Luperox) were used in order to enhance compatibility between reinforcement and matrix. In this paper sets of biocomposite compounds were prepared by twin screw extrusion considering different type and weight percentage (wt. %) of compatibilizing agents, hemp bast fibres (HBF's) within ratio 20 (wt. %) and polypropylene (PP) THERMOFIL PP E020M matrix. Resulting compounds were than injection molded and tested samples were characterized by means of scanning electron microscopy (SEM) and mechanical testing.

  8. Non-uniform dispersion of toughening agents and its influence on the mechanical properties of polypropylene

    Directory of Open Access Journals (Sweden)

    Q. Fu

    2014-04-01

    Full Text Available To achieve excellent properties of polymer blends and composites, good dispersion and uniform distribution of second component or filler in the matrix are often required. However, more and more evidences reveal that uniform distribution is not always the best. To further prove this idea, in this work, we purposely designed and prepared different samples of isotactic polypropylene (iPP/elastomer or iPP/β-nucleating agent with uniform and non-uniform distribution of the modifiers via stacking the blending sheets in different sequence. It was found that for a given amount of toughening agent, the impact strength of polymer blends with non-uniform distribution of elastomer or β-nucleating agent could be much higher than its uniformly dispersed counterpart, while the tensile strength and tensile modulus remain relatively constant. The instrumented impact test confirmed that among the samples with different layered structures, the absorbed energy during crack initiation differs little from each other. Whereas absorbed energy during crack propagation process shows the same trend as final impact strength, making it the controlling parameter during the impact process. When cracks are initiated at higher toughening agents content side, the relatively smooth fracture surfaces near the crack edge area proved that they absorb small energy and the adjacent inner part showed obviously plastic deformation, corresponding to higher energy absorption. Our work demonstrates again that design and control of the hierarchical structure of polymer articles is vital for high performance properties and non-uniform distribution of filler could be much better than the uniform distribution.

  9. Susceptibility to scratch surface damage of wollastonite- and talc-containing polypropylene micrometric composites

    International Nuclear Information System (INIS)

    Hadal, R.; Dasari, A.; Rohrmann, J.; Misra, R.D.K.

    2004-01-01

    The paper describes the effect of wollastonite and talc on the scratch deformation behavior of low and high crystallinity polypropylenes under identical test conditions. The vertical resolution of atomic force microscopy and lateral resolution of scanning electron microscopy is utilized to examine the characteristics of scratch damage. Contrary to the expectations that high crystallinity and stiffness of polypropylene composites should increase resistance to scratch deformation, the susceptibility to mechanical deformation depends on bonding of mineral particles to the polymer matrix. Scratch deformed regions in neat polypropylenes were free of voids and grooves, while reinforced-polypropylenes exhibited voids and debonding/detachment of filler particles. The severity of plastic deformation in reinforced polypropylenes is a function of debonding/detachment of mineral particles, which is comparatively more for talc-reinforced polypropylenes than wollastonite-reinforced polypropylenes because of the layered structure of talc that encourages delamination. Usage of coating and coupling agents improved the resistance to scratch deformation by promoting adhesion and bonding between the reinforcement and matrix

  10. A statistical analysis of fibre size and shape distribution after compounding in composites reinforced by natural fibres

    NARCIS (Netherlands)

    Moigne, Le N.; Oever, van den M.J.A.; Budtova, T.

    2011-01-01

    Using high resolution optical microscopy coupled with image analysis software and statistical methods, fibre length and aspect ratio distributions in polypropylene composites were characterized. Three types of fibres, flax, sisal and wheat straw, were studied. Number and surface weighted

  11. Effect of Surface Modification of Palygorskite on the Properties of Polypropylene/Polypropylene-g-Maleic Anhydride/Palygorskite Nanocomposites

    Directory of Open Access Journals (Sweden)

    David Cisneros-Rosado

    2017-01-01

    Full Text Available The effect of surface modification of palygorskite (Pal on filler dispersion and on the mechanical and thermal properties of polypropylene (PP/polypropylene grafted maleic anhydride (PP-g-MAH/palygorskite (Pal nanocomposites was evaluated. A natural Pal mineral was purified and individually surface modified with hexadecyl tributyl phosphonium bromide and (3-Aminopropyltrimethoxysilane; the pristine and modified Pals were melt-compounded with PP to produce nanocomposites using PP-g-MAH as compatibilizer. The grafting of Pal surface was verified by FT-IR and the change in surface hydrophilicity was estimated by the contact angle of sessile drops of ethylene glycol on Pal tablets. The extent of Pal dispersion and the degree of improvement in both the mechanical and thermal properties were related to the surface treatment of Pal. Modified Pals were better dispersed during melt processing and improved Young’s modulus and strength; however, maximum deformation tended to decrease. The thermal stability of PP/PP-g-MAH/Pal nanocomposites was considerably improved with the content of modified Pals. The degree of crystallinity increased with Pal content, regardless of the surface modification. Surfactant modified Pal exhibited better results in comparison with silane Pal; it is possible that longer alkyl chains from surfactant molecules promoted interactions with polymer chains, thereby improving nanofiller dispersion and enhancing the properties.

  12. Improving amphiphilic polypropylenes by grafting poly(vinylpyrrolidone) and poly(ethylene glycol) methacrylate segments on a polypropylene microporous membrane

    Science.gov (United States)

    Chen, Huirong; Ma, Wenzhong; Xia, Yanping; Gu, Yi; Cao, Zheng; Liu, Chunlin; Yang, Haicun; Tao, Shengxi; Geng, Haoran; Tao, Guoliang; Matsuyama, Hideto

    2017-10-01

    An amphiphilic polypropylene-g-poly[vinylpyrrolidone-co-poly(ethylene glycol) methacrylate] (PP-g-(NVP-co-PEGMA)) modifier was prepared by melt grafting polymerization using N-vinyl pyrrolidone (NVP) as the grafting monomer and poly(ethylene glycol) (PEGMA) as the comonomer. Fourier transform infrared (FTIR) spectroscopy and elemental analysis showed that the hydrophilic branched chains (NVP-g-PEGMA) were successfully grafted to polypropylene (PP) macromolecular chains. The largest NVP grafting degree for PP-g-(NVP-co-PEGMA) (up to 20.4%) was obtained when the mass ratio of PP/NVP/PEGMA was 100/30/15. Hydrophilic PP microporous membranes were prepared by stretching cast films of PP/PP-g-(NVP-co-PEGMA) blends. The membrane thermostability (including the modifier) was better than that of the pure PP membrane with a similar surface pore structure. The porosity of the modified membranes was only slightly lower than that of the pure PP membranes. Contact angle measurements were used to examine the hydrophilicity of the membranes. The water contact angle of the membranes decreased when PP-g-(NVP-co-PEGMA) was added, and the minimum contact angle was 64.5°. Therefore, this work provides a good application for stretched hydrophilic PP membrane fabrication.

  13. Influence of Magnetite Nanoparticles on the Dielectric Properties of Metal Oxide/Polymer Nanocomposites Based on Polypropylene

    Science.gov (United States)

    Maharramov, A. A.; Ramazanov, M. A.; Di Palma, Luca; Shirinova, H. A.; Hajiyeva, F. V.

    2018-01-01

    Structure and dielectric properties of polymer nanocomposites based on isotactic polypropylene and iron oxide (Fe3O4) nanoparticles are studied. Distribution of magnetite nanoparticles in a polymer matrix was studied by scanning electron microscopy (SEM, Carl Zeiss). Dielectric properties of nanocomposites were examined by means of E7-21 impedance spectrometer in the frequency range of 102-106 Hz and temperature interval of 298-433 K. The frequency and temperature dependences of the dielectric permittivity ɛ, as well as the temperature dependence of log (ρ) were constructed. It is shown that introduction of the magnetite (Fe3O4) nanoparticles into a polypropylene matrix increases the dielectric permittivity of nanocomposites. An increase in the dielectric permittivity is explained by the increase in the polarization ability of nanocomposites. It is found that a decrease in the specific resistance with increasing temperature up to 318 K is associated with an increase in the ionic conductivity of nanocomposites. An increase in the resistance at temperatures higher than 358 K is due to the destruction of the crystalline phase of the polymer, as a result of which the distance between the Fe3O4 nanoparticles increases.

  14. An in-depth analysis of the physico-mechanical properties imparted by agricultural fibers and food processing residues in polypropylene biocomposites

    Science.gov (United States)

    Murdy, Rachel Campbell; Mak, Michelle; Misra, Manjusri; Mohanty, Amar K.

    2015-05-01

    The use of agricultural and food processing residues as potential reinforcements in plastics has been extensively studied. However, there is a large variation in the mechanical performance of agricultural fiber-based biocomposites due to different processing materials and parameters. An in-depth comparison of the resulting effect of the agricultural filler on the matrix is often not possible given the discrepancy in processing conditions. This study seeks to determine the intrinsic properties of agricultural fibers and food processing residues for their use in polypropylene biocomposites based on a standardization of experimental design. The effect of 25wt% loading of miscanthus, fall-and spring-harvest switchgrass, wheat straw, oat hull, soy hull, soy stalk, hemp and flax on the physico-mechanical properties of polypropylene biocomposites was investigated. The addition of fiber led to an improvement in flexural strength, flexural modulus, and tensile modulus, and a general decrease in tensile strength at yield, elongation at break and Izod impact strength. Scanning electron microscopy highlighted the interfacial adhesion, orientation and distribution of the fibers within the matrix, confirming that fiber length and dispersion within the matrix are positively correlated with mechanical properties. The crystallization of the polypropylene phase and a compositional analysis of the agricultural fibers and processing residues were also compared to offer insight into the effect of the filler's intrinsic properties on the resulting material performance.

  15. An in-depth analysis of the physico-mechanical properties imparted by agricultural fibers and food processing residues in polypropylene biocomposites

    International Nuclear Information System (INIS)

    Murdy, Rachel Campbell; Mak, Michelle; Misra, Manjusri; Mohanty, Amar K.

    2015-01-01

    The use of agricultural and food processing residues as potential reinforcements in plastics has been extensively studied. However, there is a large variation in the mechanical performance of agricultural fiber-based biocomposites due to different processing materials and parameters. An in-depth comparison of the resulting effect of the agricultural filler on the matrix is often not possible given the discrepancy in processing conditions. This study seeks to determine the intrinsic properties of agricultural fibers and food processing residues for their use in polypropylene biocomposites based on a standardization of experimental design. The effect of 25wt% loading of miscanthus, fall-and spring-harvest switchgrass, wheat straw, oat hull, soy hull, soy stalk, hemp and flax on the physico-mechanical properties of polypropylene biocomposites was investigated. The addition of fiber led to an improvement in flexural strength, flexural modulus, and tensile modulus, and a general decrease in tensile strength at yield, elongation at break and Izod impact strength. Scanning electron microscopy highlighted the interfacial adhesion, orientation and distribution of the fibers within the matrix, confirming that fiber length and dispersion within the matrix are positively correlated with mechanical properties. The crystallization of the polypropylene phase and a compositional analysis of the agricultural fibers and processing residues were also compared to offer insight into the effect of the filler’s intrinsic properties on the resulting material performance

  16. Polypropylene film with silver nanoparticles and nanoclay aiming to action biocidal; Filme de polipropileno com nanoargila e nanoparticulas de prata visando a acao biocida

    Energy Technology Data Exchange (ETDEWEB)

    Oliani, W.L.; Lima, L.F.C.P.; Lugao, A.B.; Parra, D.F., E-mail: washoliani@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Fermino, D.M.; Diaz, F.R.V. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Departamento de Engenharia Metalurgica e de Materiais; Santos, P.M. dos [Universidade de Sao Paulo (USP), SP (Brazil)

    2014-07-01

    This paper presents an initial study of films made of polypropylene nanoclay and silver nanoparticles. The nanocomposite of polypropylene (iPP), commercial organoclay - montmorillonite (MMT), Cloisite 20A at concentrations of 1.0% and silver nanoparticles (AgNPs) at a concentration of 0.1% were prepared in a twin-screw-extruder, using polypropylene with maleic anhydride (PP-g-MA) as coupling agent. The properties of nanocomposites of PP/MMT/AgNPs are closely related to the dispersion of silver particles and the distribution of sheets of MMT in the polymer matrix, which define its efficiency in the case of the particles and their interaction clay/polymer matrix. However, this combination of MMT and AgNPs that are polar, with the polymer matrix nonpolar in the molten state, presents a challenge. The characterization of the film was performed by analysis of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and reduction of colony forming unit (CFU %). The results indicate the formation of predominantly exfoliated microstructures and agglomeration of silver nanoparticles in the film. The effect of silver nanoparticles was evaluated against bacteria E.coli and S.aureus. (author)

  17. An in-depth analysis of the physico-mechanical properties imparted by agricultural fibers and food processing residues in polypropylene biocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Murdy, Rachel Campbell; Mak, Michelle [Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, ON N1G 2W1 (Canada); Misra, Manjusri; Mohanty, Amar K. [Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, Guelph, ON N1G 2W1 (Canada); School of Engineering, Thornbrough Building, University of Guelph, ON N1G 2W1 (Canada)

    2015-05-22

    The use of agricultural and food processing residues as potential reinforcements in plastics has been extensively studied. However, there is a large variation in the mechanical performance of agricultural fiber-based biocomposites due to different processing materials and parameters. An in-depth comparison of the resulting effect of the agricultural filler on the matrix is often not possible given the discrepancy in processing conditions. This study seeks to determine the intrinsic properties of agricultural fibers and food processing residues for their use in polypropylene biocomposites based on a standardization of experimental design. The effect of 25wt% loading of miscanthus, fall-and spring-harvest switchgrass, wheat straw, oat hull, soy hull, soy stalk, hemp and flax on the physico-mechanical properties of polypropylene biocomposites was investigated. The addition of fiber led to an improvement in flexural strength, flexural modulus, and tensile modulus, and a general decrease in tensile strength at yield, elongation at break and Izod impact strength. Scanning electron microscopy highlighted the interfacial adhesion, orientation and distribution of the fibers within the matrix, confirming that fiber length and dispersion within the matrix are positively correlated with mechanical properties. The crystallization of the polypropylene phase and a compositional analysis of the agricultural fibers and processing residues were also compared to offer insight into the effect of the filler’s intrinsic properties on the resulting material performance.

  18. High-energy radiation forming chain scission and branching in polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Otaguro, H.; Lima, L.F.C.P. de; Parra, D.F.; Lugao, A.B. [Nuclear Energy Research Institute, Lineu Prestes, 2242, 05508-000 - Sao Paulo (Brazil); Chinelatto, M.A. [Materials Characterization and Development Center- CCDM-UFSCar/Dema, Km 235 - Sao Carlos (Brazil); Canevarolo, S.V., E-mail: caneva@dema.ufscar.b [Materials Engineering Department of Federal University of Sao Carlos, Km 235 - Sao Carlos (Brazil)

    2010-03-15

    The degradation of high molecular weight isotactic polypropylene (iPP) subjected to gamma rays irradiation up to 100 kGy in inert atmosphere was analyzed. The investigation relied upon complex viscosity, elastic modulus, gel fraction, morphology of the insoluble fraction and deconvoluted molecular weight distribution (MWD) curves. At low irradiation doses, already at 5 kGy, the MWD curve is strongly shifted to the low molecular weight side showing chain scission, which is confirmed using the calculated chain scission distribution function (CSDF). At high dose levels, the appearance of a shoulder in the high molecular weight side of the MWD curve indicates the formation of chain branching. The presence of a considerable insoluble fraction at these high dose levels indicates also the formation of cross-linking, which has different morphology then the insoluble fraction present in the original iPP. The rheological results show changes in the molecular structure of irradiated samples in agreement with the gel content data. The chromatographic and rheological data has shown that gamma irradiation of iPP produces chain scission, branching and cross-linking.

  19. Films of post-consumer polypropylene composites for the support layer in synthetic paper

    Directory of Open Access Journals (Sweden)

    Cristiano R. de Santi

    2006-06-01

    Full Text Available Composite films were studied as possible candidates for the central or support layer of synthetic paper in a multilayer structure. Recycled post-consumer polypropylene films were reinforced with inorganic fillers at various compositions and under several processing conditions, with the aim of optimizing the physical and mechanical properties of rigidity and low density. Three types of CaCO3, with and without surface treatment of the particles, were used, but only the treated ones were suitable for use in paper films. These samples were then used to analyze possible correlations of properties with composition and processing conditions, varying the CaCO3 particle size distribution and the film processing method, from casting extrusion (flat die to blown-film extrusion (tubular die. An increase in film stiffness was observed as a function of CaCO3 content and a concentration of 30% CaCO3 was found to be best for the specific application. The flat films were stiffer than the tubular ones. The densities of all the composite films were considered high, compared to a pulp-based paper and a commercial synthetic paper. No significant effect on the physical-mechanical properties analyzed was observed when the CaCO3 particle size distribution was varied. Microcavities were found to form at the surface of flat films submitted to a bi-orientation process performed at laboratory scale; no other sample showed this surface morphology.

  20. Modelling of polypropylene fibre-matrix composites using finite element analysis

    Directory of Open Access Journals (Sweden)

    2009-01-01

    Full Text Available Polypropylene (PP fibre-matrix composites previously prepared and studied experimentally were modelled using finite element analysis (FEA in this work. FEA confirmed that fibre content and composition controlled stress distribution in all-PP composites. The stress concentration at the fibre-matrix interface became greater with less fibre content. Variations in fibre composition were more significant in higher stress regions of the composites. When fibre modulus increased, the stress concentration at the fibres decreased and the shear stress at the fibre-matrix interface became more intense. The ratio between matrix modulus and fibre modulus was important, as was the interfacial stress in reducing premature interfacial failure and increasing mechanical properties. The model demonstrated that with low fibre concentration, there were insufficient fibres to distribute the applied stress. Under these conditions the matrix yielded when the applied stress reached the matrix yield stress, resulting in increased fibre axial stress. When the fibre content was high, there was matrix depletion and stress transfer was inefficient. The predictions of the FEA model were consistent with experimental and published data.

  1. Development of polypropylene/wood flour ecocomposites. Evaluation of silane as coupling agent

    International Nuclear Information System (INIS)

    Bouza, R.; Barral, L.; Abad, M. J.; Montero, B.

    2010-01-01

    The effects of Pinus Sylvestris wood flour as filler in polypropylene matrix was evaluated. The mechanical properties and the morphology of different wood flour/polypropylene composites (WPC) were studied. The composites materials were prepared with several amounts of wood flour from 10 to 30% wt. Mechanical properties show that the wood flour incorporation increases the rigidity of the composites. Morphological analysis indicates that agglomerates are formed, with amounts exceeding 30% of wood flour. For the silane--treated composites, the dispersion of the filler into the polypropylene (PP) matrix improved. Shore D hardness of the composites is decreased with the addition of the coupling agent.

  2. The Study on the Mechanical Properties of Multi-walled Carbon Nanotube/Polypropylene Fibers

    Science.gov (United States)

    Youssefi, Mostafa; Safaie, Banafsheh

    2018-01-01

    Polypropylene (PP) is an important semicrystalline polymer with various applications. Polypropylene fibers containing 1 wt% of multi-walled carbon nanotube was spun using a conventional melt spinning apparatus. The produced fibers were drawn with varying levels of draw ratio. The mechanical properties of the composites were studied. Tensile strength and modulus of the composite fibers were increased with the increase in draw ratio. Molecular orientation and helical content of the composite fibers were increased after drawing. To conclude, tensile properties and molecular orientation of the composite fibers were higher than those of neat polypropylene fibers with the same draw ratio.

  3. Polypropylene microtitre plates modified with [Cr(OH)6]3-for enhanced ELISA sensitivity.

    Science.gov (United States)

    Welch, Nicholas G; Lebot, Cedric J; Easton, Christopher D; Scoble, Judith A; Pigram, Paul J; Muir, Benjamin W

    2017-07-01

    Chromium solutions have been used as wet chemical modifiers for polymer microtitre plates used in improving immunoassay performance. However, polypropylene has been excluded from the list of potentially modifiable substrates (AnteoTechnologies, 2015). Here we show that untreated polypropylene microtitre plates can indeed be modified using a [Cr(OH) 6 ] 3- complex. Compared to unmodified polypropylene, the chromium modified surfaces demonstrate an up to 4-fold improvement in both assay sensitivity and signal intensity in an antigen capture ELISA. Atomic force microscope (AFM) images indicate that the chromium complex facilitates dispersion of the antibody, reducing aggregation. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Preparation, characterization and properties of nano-hydroxyapatite/polypropylene carbonate biocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Jianguo, E-mail: liaojianguo10@hpu.edu.cn [School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000 (China); Li, Yanqun [School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000 (China); Zou, Qin [Analytical & Testing Center, Sichuan University, Chengdu 610064 (China); Duan, Xingze; Yang, Zhengpeng; Xie, Yufen [School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000 (China); Liu, Haohuai [School of Chemistry and Chemical Engineering, Analytical and Testing Center, Guangzhou University, Guangzhou 510006 (China)

    2016-06-01

    The combination of nano-hydroxyapatite (n-HA) and polypropylene carbonate (PPC) was used to make a composite materials by a coprecipitation method. The physical and chemical properties of the composite were tested. Scanning electron microscope (SEM) observation indicated that the biomimetic n-HA crystals were uniformly distributed in the polymer matrix. As the n-HA content increased in the composite, the fracture mechanism of the composites changes from gliding fracture to gliding and brittle fracture. Furthermore, the chemical interaction between inorganic n-HA and polypropylene carbonate was also investigated and discussed in detail. The hydrogen bonds might be formed between –OH/CO{sub 3}{sup 2−} of n-HA crystal and the ester group (–COO–) of PPC. The tensile strength of n-HA/PPC (40/60) was similar to that of the cancellous bone, and reached ca 58 MPa. The osteoblasts were cultured for up to 7 days, and then the adhesion and proliferation of osteoblasts were measured by Methyl thiazolyl tetrazolium (MTT) colorimetry assay and SEM. The cells proliferated, grew normally in fusiform shape and well attached. The in vitro test confirmed that the n-HA/PPC composites were biocompatible and showed undetectable negative effect on osteoblasts. In vivo implantation of the composite in New Zealand white rabbits was performed. It can stimulate the growth of a new bone, and at the same time the material begins to degrade. These results suggested that the composite may be suitable for the reparation or replacement of bone defects and possessed the potential for clinical applications. - Graphical abstract: SEM micrographs of the induced osteoblasts cultured on the n-HA/PC (40/60) composite. After 2 day cell culture (a), after 4 days (b) hematoxylin/eosin-stained sections of n-HA/PPC (40/60) composite materials. In the photos, M denotes n-HA/PPC (40/60) composite materials, B denotes bone, while NB denotes newly formed bone tissue. - Highlights: • A novel method, co

  5. High performance hydrophobic solvent, carbon dioxide capture

    Science.gov (United States)

    Nulwala, Hunaid; Luebke, David

    2017-05-09

    Methods and compositions useful, for example, for physical solvent carbon capture. A method comprising: contacting at least one first composition comprising carbon dioxide with at least one second composition to at least partially dissolve the carbon dioxide of the first composition in the second composition, wherein the second composition comprises at least one siloxane compound which is covalently modified with at least one non-siloxane group comprising at least one heteroatom. Polydimethylsiloxane (PDMS) materials and ethylene-glycol based materials have high carbon dioxide solubility but suffer from various problems. PDMS is hydrophobic but suffers from low selectivity. Ethylene-glycol based systems have good solubility and selectivity, but suffer from high affinity to water. Solvents were developed which keep the desired combinations of properties, and result in a simplified, overall process for carbon dioxide removal from a mixed gas stream.

  6. Hydrophobic cotton textile surfaces using an amphiphilic graphene oxide (GO) coating

    International Nuclear Information System (INIS)

    Tissera, Nadeeka D.; Wijesena, Ruchira N.; Perera, J. Rangana; Nalin de Silva, K.M.; Amaratunge, Gehan A.J.

    2015-01-01

    Graphical abstract: - Highlights: • Different GO dispersions were prepared by sonicating different amounts of GO in water. Degree of exfoliation of these GO sheets in water was analyzed using Atomic Force Microscopy (AFM). • AFM results obtained showed higher the GO concentration on water more the size of GO sheets and lesser the degree of exfoliation. • GO with different amounts was deposited on cotton fabric using simple dyeing method. • High GO loading on cotton increase the surface area coverage of the textile fibers with GO sheets. This led to less edge to mid area ratio of grafted GO sheets. • As contribution of mid area of GO increase on fiber surface cotton fabric becomes more hydrophobic. • Amphiphilic property of GO sheets was used to lower the surface energy of the cotton fibers leading to hydrophobic property. - Abstract: We report for the first time hydrophobic properties on cotton fabric successfully achieved by grafting graphene oxide on the fabric surface, using a dyeing method. Graphite oxide synthesized by oxidizing natural flake graphite employing improved Hummer's method showed an inter layer spacing of ∼1 nm from XRD. Synthesized graphite oxide was exfoliated in water using ultrasound energy to obtain graphene oxide (GO). AFM data obtained for the graphene oxide dispersed in an aqueous medium revealed a non-uniform size distribution. FTIR characterization of the synthesized GO sheets showed both hydrophilic and hydrophobic functional groups present on the nano sheets giving them an amphiphilic property. GO flakes of different sizes were successfully grafted on to a cotton fabric surface using a dip dry method. Loading different amounts of graphene oxide on the cotton fiber surface allowed the fabric to demonstrate different degrees of hydrophobicity. The highest observed water contact angle was at 143° with the highest loading of graphene oxide. The fabric surfaces grafted with GO also exhibits adhesive type hydrophobicity

  7. Hydrophobicity and charge shape cellular metabolite concentrations.

    Directory of Open Access Journals (Sweden)

    Arren Bar-Even

    2011-10-01

    Full Text Available What governs the concentrations of metabolites within living cells? Beyond specific metabolic and enzymatic considerations, are there global trends that affect their values? We hypothesize that the physico-chemical properties of metabolites considerably affect their in-vivo concentrations. The recently achieved experimental capability to measure the concentrations of many metabolites simultaneously has made the testing of this hypothesis possible. Here, we analyze such recently available data sets of metabolite concentrations within E. coli, S. cerevisiae, B. subtilis and human. Overall, these data sets encompass more than twenty conditions, each containing dozens (28-108 of simultaneously measured metabolites. We test for correlations with various physico-chemical properties and find that the number of charged atoms, non-polar surface area, lipophilicity and solubility consistently correlate with concentration. In most data sets, a change in one of these properties elicits a ~100 fold increase in metabolite concentrations. We find that the non-polar surface area and number of charged atoms account for almost half of the variation in concentrations in the most reliable and comprehensive data set. Analyzing specific groups of metabolites, such as amino-acids or phosphorylated nucleotides, reveals even a higher dependence of concentration on hydrophobicity. We suggest that these findings can be explained by evolutionary constraints imposed on metabolite concentrations and discuss possible selective pressures that can account for them. These include the reduction of solute leakage through the lipid membrane, avoidance of deleterious aggregates and reduction of non-specific hydrophobic binding. By highlighting the global constraints imposed on metabolic pathways, future research could shed light onto aspects of biochemical evolution and the chemical constraints that bound metabolic engineering efforts.

  8. Inflammatory reaction and tensile strength of the abdominal wall after an implant of polypropylene mesh and polypropylene/poliglecaprone mesh for abdominal wall defect treatment in rats.

    Science.gov (United States)

    Biondo-Simões, Maria de Lourdes Pessole; Moura, Paula Almeida Pamponet; Colla, Kelly; Tocchio, Anna Flávia Zonato; Morais, Camila Gomes de; Miranda, Renata Augusta de; Robes, Rogério Ribeiro; Ioshii, Sérgio Ossamu

    2014-01-01

    To compare the inflammatory reaction and the growing resistance of the abdominal wall with the use of poliglecaprone meshes and polypropylene meshes associated with poliglecaprone in the correction of abdominal defects. Seventy-seven Wistar rats were divided into three groups: CG (non-operated animals: EG (polypropylene mesh) and UG (polypropylene and poliglecaprone mesh). A muscular and aponeurotic defect was formed and treated according to the group. Evaluations were made after 4, 7, 14, 28 and 56 days. The resistance and inflammatory pattern were studied. There was a gradual and significant gain in resistance, regularly in the EG and irregularly in the UG, which was lower on the 14th day (p=0.008). The inflammatory reaction was acute and more intense in the UG on the fourth day. At all other times, the inflammatory pattern was acute to chronic, similar in both groups, with minimum intensity on the 56th day. The greater resistance offered by the polypropylene mesh was regular and ascending, stabilizing on the 28th day, while that of the polypropylene/poliglecaprone was not even. In the end, the resistances were similar. The inflammatory response was greater in the UG on the fourth day and similar at all other times.

  9. Broad line NMR study of modified polypropylene fibres

    International Nuclear Information System (INIS)

    Olcak, D.; Sevcovic, L.; Mucha, L.

    1999-01-01

    Study of drawn fibres prepared from an isostatic polypropylene modified by an ethylene aminoalkylacrylate copolymer has been done using the broad line of 1 H NMR. NMR spectra were measured on the set of fibres prepared with a draw ratio λ from 1 to 5.5 at two temperatures, one of them corresponding to the onset of segmental motion and the other one is the minddle of the temperature interval as determined by decrease of the second moment M 2 . Decomposition of the spectra into elementary components related to the amorphous, intermediate and crystalline regions of partially crystalline polymers has been made. The drawing of the fibres was found to enhance the chain mobility in the amorphous region and to restrain the molecular motion in the intermediate region. Such behaviour well supports conclusions predicted in the earlier study based on the spin-lattice relaxation time T 1 and dynamic mechanical data treated using the WLF theory. (Authors)

  10. Surface treated polypropylene (PP) fibres for reinforced concrete

    Energy Technology Data Exchange (ETDEWEB)

    López-Buendía, Angel M., E-mail: buendia@uv.es [AIDICO Technological Institute of Construction, Benjamin Franklin 17, 46380 Paterna, Valencia (Spain); Romero-Sánchez, María Dolores [AIDICO Technological Institute of Construction, Marble Technical Unit, Camí de Castella 4, 03660 Novelda. Alicante (Spain); Climent, Verónica [Lafarge Cementos, Polígono Sepes, Isaac Newton s/n, 46500 Sagunto, Valencia (Spain); Guillem, Celia [AIDICO Technological Institute of Construction, Marble Technical Unit, Camí de Castella 4, 03660 Novelda. Alicante (Spain)

    2013-12-15

    Surface treatments on a polypropylene (PP) fibre have contributed to the improvement of fibre/concrete adhesion in fibre-reinforced concrete. The treatments to the PP fibre were characterized by contact angle measurements, ATR-IR and XPS to analyse chemical alterations. The surface topography and fibre/concrete interaction were analysed by several microscopic techniques, namely optical petrographic, and scanning electron microscopy. Treatment modified the surface chemistry and topography of the fibre by introducing sodium moieties and created additional fibre surface roughness. Modifications in the fibre surface led to an increase in the adhesion properties between the treated fibres and concrete and an improvement in the mechanical properties of the fibre-reinforced concrete composite as compared to the concrete containing untreated PP fibres. Compatibility with the concrete and increased roughness and mineral surface was also improved by nucleated portlandite and ettringite mineral association anchored on the alkaline PP fibre surface, which is induced during treatment.

  11. Polypropylene reinforced with organophilic clay and brazilian nut fibers

    International Nuclear Information System (INIS)

    Rocha-Gomes, L.V.; Mondelo-Garcia, F.J.; Vaccioli, K.; Valera, S.T.; Silva-Valenzuela, M.G.; Valenzuela-Diaz, F.R.

    2014-01-01

    Polymer nanocomposites have been shown to possess better properties when compared with traditional composites. This study aims to investigate the effects of the addition of organophilic clay and Brazilian nut fiber on the polypropylene (PP). First, 5%, 10% and 20% PP/compatibilizer maleic anhydride (PP-g-MA) by weight was added to Pure PP, respectively. From the results, 5% PP-g-MA was defined for preparing the nanocomposites. Samples were prepared containing 5% PP / PP-g-MA reinforced with 5% organophilic Brazilian smectite clay and 5%, 10% and 15% Brazilian nut fiber. Specimens were tested for tensile strength and impact. The materials were characterized by laser diffraction particle size and X-ray diffraction, and the nanocomposites, by mechanical strength and impact. The best result was obtained by inserting 15% fiber. (author)

  12. Study of gel formation by ionizing radiation in polypropylene

    Science.gov (United States)

    Oliani, W. L.; Parra, D. F.; Fermino, D. M.; Riella, H. G.; Lima, L. F. C. P.; Lugao, A. B.

    2013-03-01

    The objective of this work is to study the formation of microgel in pristine PP and modified PP. The modified PP in pellets was synthesized by gamma irradiation of pristine PP under a crosslinking atmosphere of acetylene in different doses of 5, 12.5 and 20 kGy, followed by thermal treatment for radical recombination and annihilation of the remaining radicals. The gel content of the modified polypropylenes was determined by extraction in boiling xylene for period of 12 h at 138 °C. The gel formed of pristine PP and modified (i.e., irradiated) was characterized using optical microscopy (OM), scanning electron microscopy (SEM), Fourier transformed infrared spectroscopy (FTIR) and X-ray diffraction (XDR). The PP morphological study indicated the microgel formation with increase of spherulitic concentration with dose.

  13. Effect of polybutenes on mechanical and physical properties of polypropylene

    International Nuclear Information System (INIS)

    Nascimento, Uedson A. do; Timoteo, Gustavo Arante V.; Rabello, Marcelo S.

    2009-01-01

    This study investigated the effect of polybutene (PIB) of molecular weights ranging from 480 the 1.600 g/mol in polypropylene homopolymer. Compositions with 0, 3, 5 and 7% of PIB were prepared in internal mixer and compression moulded. The properties evaluated were: tensile strength, scanning electron microscopy (SEM), FTIR, X-ray diffraction (XRD) and melt flow index (IF). The results of mechanical tests showed that the presence of the plasticizer reduced the tensile strength, elastic modulus and hardness. The analysis of XRD showed a drop in the degree of crystallinity of PP/PIB blends. The micrographs obtained by SEM did not reveal the occurrence of the phase separation. The IF analysis confirm the effect of PIB as internal lubricant's, by increasing the rate of flow. (author)

  14. Lightweight composites from long wheat straw and polypropylene web.

    Science.gov (United States)

    Zou, Yi; Huda, Shah; Yang, Yiqi

    2010-03-01

    Whole and split wheat straws (WS) with length up to 10 cm have been used with polypropylene (PP) webs to make lightweight composites with properties superior to jute-PP composites with the same density. The effect of WS concentration, WS length, and split configuration (half, quarter, and mechanically split) on flexural and tensile properties of the composites has been investigated. The sound absorption properties of composites from whole straw and split straw have been studied. Compared with whole WS-PP composites, mechanically split WS-PP composites have 69% higher flexural strength, 39% higher modulus of elasticity, 18% higher impact resistance properties, 69% higher tensile strength and 26% higher Young's modulus. Compared with jute-PP composites, mechanically split WS-PP composites have 114% higher flexural strength, 38% higher modulus of elasticity, 10% higher tensile strength, 140% higher Young's modulus, better sound absorption properties and 50% lower impact resistance. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  15. Biocomposites from co-polypropylene and distillers' grains

    Science.gov (United States)

    Zarrinbakhsh, Nima; Mohanty, Amar K.; Misra, Manjusri

    2015-05-01

    In the present work, we have explored the polymeric composites of distillers' grains with co-polypropylene (co-PP). The effect of maleated-PP compatibilizer on mechanical, thermomechanical and physical properties was evaluated. The composite materials were produced by melt extrusion in a micro-compounder followed by injection molding in a micro-injection machine. The composites were characterized for their tensile, flexural and impact properties. Also, melt flow index and heat deflection temperature were measured. The results showed more than 30 % improvement in modulus when comparing the compatibilized biocomposite with neat co-PP. Also, the strength of the compatibilized biocomposite measured in tensile and flexural tests was comparable to or even better than that of the neat matrix. On the other hand, the reduced flexibility and toughness as a result of compatibilization were in an acceptable range. The biocomposites showed more rigidity at elevated temperatures. The produced distillers' grain biocomposites showed promises for industrial applications.

  16. Strength of biodegradable polypropylene tapes filled with a modified starch

    Science.gov (United States)

    Vinidiktova, N. S.; Ermolovich, O. A.; Goldade, V. A.; Pinchuk, L. S.

    2006-05-01

    The possibility of creating composite materials with high deformation and strength characteristics based on polypropylene (PP) and a natural polysaccharide in the form of a modified starch (MS) has been studied. The modified starch is shown to interact chemically with functional groups of PP, thereby positively affecting the physicomechanical properties, structure, and water absorption properties of films and oriented flat fibers based on starch-filled PP. The strength characteristics of both oriented and unoriented composites are 1.5-2.0 times as high as those of the initial PP. The water absorption ability of the materials varies symbatically with content of MS, which points to the dominant contribution of interactions at the PP-MS interface. The introduction of MS into synthetic polymers offers a possibility of producing new ecologically safe materials with high strength characteristics.

  17. Design of growing points for silver nanoparticles on polypropylene membranes

    Science.gov (United States)

    Mendieta-Jiménez, Ana L.; Carpio-Martínez, Pablo; Cortés-Guzmán, Fernando; Gómez-Espinosa, Rosa María

    2018-02-01

    The nucleation process of a nanoparticle requires an environment that stabilizes the initial seed and favors the growth action. In this paper, we present a specific design of growing points for silver nanoparticles based on the well-known affinity of the silver to the chlorine atoms and to aromatic groups by cation-π interactions. [2-(vinylphenyl)ethyl]chloromethylphenylsilane was proposed as growing point of nanoparticles, which has been synthetized and grafted on a polypropylene membrane. Nanoparticles were synthesized by chemically reducing an AgNO3 solution with NaBH4 and the so synthesized nanoparticles were also fully characterized. Using DFT-QTAIM calculations a model of the initial seed and a growth mechanism were proposed.

  18. Investigation reactor D-2201 polypropylene production unit using nuclear technique

    International Nuclear Information System (INIS)

    Wibisono; Sugiharto; Jefri Simanjuntak

    2016-01-01

    D-2201 reactor is a unit in the polypropylene production process at Pertamina Refinery Unit III Plaju. Reactor with a capacity of 45 kilo liter is not operated in normal operation condition. The validity of liquid level indicator on the unit is doubtful when refers to the production quality. Gamma source of 150 mCi Cobalt-60 and a scintillation detector had been used to scan the outer wall of the reactor to detect the liquid level during operation with a capacity of 40 %. Measurements were made along the reactor walls with 25 mm scan resolution and 5 seconds time sampling. Experiment result shows that the liquid level at the position of 40 % and at normal level position are not observed. Investigation did not find the liquid level above normal. D-2201 is diagnose not normal operating condition diagnosed with liquid abundant passed the recommended limits. Investigation advised to repair or to calibrate the liquid level indicator which is currently installed. (author)

  19. Foaming Behaviour, Structure, and Properties of Polypropylene Nanocomposites Foams

    Directory of Open Access Journals (Sweden)

    M. Antunes

    2010-01-01

    Full Text Available This work presents the preparation and characterization of compression-moulded montmorillonite and carbon nanofibre-polypropylene foams. The influence of these nanofillers on the foaming behaviour was analyzed in terms of the foaming parameters and final cellular structure and morphology of the foams. Both nanofillers induced the formation of a more isometric-like cellular structure in the foams, mainly observed for the MMT-filled nanocomposite foams. Alongside their crystalline characteristics, the nanocomposite foams were also characterized and compared with the unfilled ones regarding their dynamic-mechanical thermal behaviour. The nanocomposite foams showed higher specific storage moduli due to the reinforcement effect of the nanofillers and higher cell density isometric cellular structure. Particularly, the carbon nanofibre foams showed an increasingly higher electrical conductivity with increasing the amount of nanofibres, thus showing promising results as to produce electrically improved lightweight materials for applications such as electrostatic painting.

  20. Thermal Degradation and Combustion Behavior of Polypropylene/MWCNT Composites

    Science.gov (United States)

    Zaikov, G. E.; Rakhimkulov, A. D.; Lomakin, S. M.; Dubnikova, I. L.; Shchegolikhin, A. N.; Davidov, E. Ya.

    2010-06-01

    Studies of thermal and fire-resistant properties of the polypropylene/multi-walled carbon nanotube composites (PP/MWCNT) prepared by means of melt intercalation are discussed. The sets of the data acquired with the aid of non-isothermal TG experiments have been treated by the model kinetic analysis. The thermal-oxidative degradation behavior of PP/MWCNT and stabilizing effect caused by addition of MWCNT has been investigated by means of TGA and EPR spectroscopy. The results of cone calorimetric tests lead to the conclusion that char formation plays a key role in the mechanism of flame retardation for nanocomposites. This could be explained by the specific antioxidant properties and high thermal conductivity of MWCNT which determine high-performance carbonization during thermal degradation process. Comparative analysis of the flammability characteristics for PP-clay/MWCNT nanocomposites was provided in order to emphasize the specific behavior of the nanocomposites under high-temperature tests.

  1. Identification of pressure-sensitive adhesive polypropylene tape.

    Science.gov (United States)

    Sakayanagi, Masataka; Konda, Yaeko; Watanabe, Kunio; Harigaya, Yoshihiro

    2003-01-01

    Identification of colorless, transparent, pressure-sensitive adhesive polypropylene tape (PP tape) was performed using infrared absorption spectrometry (IR) and pyrolysis gas chromatography mass spectrometry (Py-GC/MS) to determine the pressure-sensitive adhesive. Twenty different products of colorless, transparent PP tapes were examined in this study, and the results of analysis of IR spectra and Py-GC/MS were classified into twelve groups. In addition, the tapes were classified into 14 groups on the basis of IR measurement of release agent present in the backside. The results indicate that colorless, transparent PP tapes can be distinguished in terms of manufacturer, thereby demonstrating that this method of identifying colorless, transparent PP tape is effective. Moreover, the method was applied to the analysis of an actual forensic sample.

  2. Reinforcing effect of nanosilica on polypropylene-nylon fibre composite

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Sinto [Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi-22, Kerala (India); Suma, K.K. [Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi-22, Kerala (India); Department of Chemistry, Maharaja' s college, Ernakulam, Kerala (India); Mendez, Jude Martin [Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi-22, Kerala (India); Department of Chemistry, St. Alberts college, Ernakulam, Kerala (India); George, K.E., E-mail: kegeorge@cusat.ac.i [Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi-22, Kerala (India)

    2010-04-15

    Polymer composites reinforced by both the micro and nano fillers is the subject of this paper. Polypropylene (PP)-nylon micro-fibre composites modified with nanosilica and modified nanosilica (using silane coupling agent) were prepared by melt compounding. The nanosilica prepared in the laboratory was used as reinforcing filler in PP-nylon fibre composites. The compounding characteristics and mechanical properties of the composites were studied. The equilibrium torque during compounding increased with the addition of nanosilica and modified nanosilica. The use of two types of fillers leads to synergistic effect on the mechanical properties of the composite. Composites with 1 wt.% nanosilica and 30 wt.% nylon fibre show high tensile strength, tensile modulus, flexural strength and flexural modulus. Composites modified with 1 wt.% nanosilica and 10 wt.% nylon fibre-PP composite show higher impact strength.

  3. Use of Cellulose-Containing Fillers in Composites with Polypropylene

    Directory of Open Access Journals (Sweden)

    Marianna LAKA

    2011-07-01

    Full Text Available The composites, containing recycled polypropylene and fillers, obtained from different lignocellulosics by the thermocatalytic destruction method, were investigated. Birch sawdust, newsprint wastes, cotton residues and wood bleached sulphate pulp were used as raw materials for obtaining fillers. The indices of mechanical properties (tensile strength, modulus of elasticity, deformation at break, shear modulus, toughness, twisting moment of the composites' samples were determined. It has been found that the obtained composites have relatively good mechanical properties. Better results were obtained, using fillers from sawdust and wood pulp. After treating the fillers with rapeseed oil, their water vapour sorption and water retention value (WRV decreased. In this case, the strength of the composites was higher.http://dx.doi.org/10.5755/j01.ms.17.2.484

  4. 3DRISM-HI-D2MSA: an improved analytic theory to compute solvent structure around hydrophobic solutes with proper treatment of solute–solvent electrostatic interactions

    KAUST Repository

    Cao, Siqin

    2017-12-22

    The 3D reference interaction site model (3DRISM) is a powerful tool to study the thermodynamic and structural properties of liquids. However, for hydrophobic solutes, the inhomogeneity of the solvent density around them poses a great challenge to the 3DRISM theory. To address this issue, we have previously introduced the hydrophobic-induced density inhomogeneity theory (HI) for purely hydrophobic solutes. To further consider the complex hydrophobic solutes containing partial charges, here we propose the D2MSA closure to incorporate the short-range and long-range interactions with the D2 closure and the mean spherical approximation, respectively. We demonstrate that our new theory can compute the solvent distributions around real hydrophobic solutes in water and complex organic solvents that agree well with the explicit solvent molecular dynamics simulations.

  5. Polypropylene mesh for nasal septal perforation repair: an experimental study.

    Science.gov (United States)

    Yücebaş, Kadir; Taşkın, Ümit; Oktay, Mehmet Faruk; Tansuker, Hasan Deniz; Erdil, Mehmet; Altınay, Serdar; Kozanoğlu, Erol; Kuvat, Samet Vasfi

    2017-01-01

    The aim of this study is to determine the effectiveness and biocompatibility of polypropylene mesh for the repair of nasal septal perforations in an animal model on rabbits. A full-thickness nasal septal perforation with a diameter of nearly 10 × 10 mm was created on 12 rabbits, and then the perforation was reconstructed with two different methods. We used mucosal flaps and polypropylene mesh as an interpositional graft in group 1. Only mucosal flaps were used for reconstruction and are identified as group 2. After 4 weeks, we removed the nasal septum of the rabbits and performed histopathological examinations for acute rejection, infection, inflammatory response, fibrosis, and granuloma formation. We found perforation closure rates of 75 and 25 % in groups 1 and 2, respectively. Inflammatory response was seen in all specimens of group 1 (100 %). The inflammatory response was +1 in five of the specimens (62.5 %), +2 in one specimen (12.5 %), and +3 in two specimens (25 %). Mild fibrosis around the mesh was detected in four specimens (50 %), medium-level fibrosis was detected in one (12.5 %), and no fibrosis was detected in three (37.5 %). Severe fibrosis was not seen in any specimens. The foreign-body reaction was limited to a few giant cells, and granuloma formation was seen in two specimens (25 %). The propylene mesh showed excellent biocompatibility with the septal mucosa, and it can, therefore, be used for the repair of septal perforation as an interpositional graft safely.

  6. Fabrication of biomimetic hydrophobic films with corrosion resistance on magnesium alloy by immersion process

    International Nuclear Information System (INIS)

    Liu Yan; Lu Guolong; Liu Jindan; Han Zhiwu; Liu Zhenning

    2013-01-01

    Highlights: ► We have developed a facile and simple method of creating a hydrophobic surface on a magnesium alloy by an immersion process at room temperature. ► The distribution of the micro-structure and the roughness of the surface play critical roles in transforming from hydrophilic to hydrophobic. ► The hydrophobic coatings possess better corrosion resistance than magnesium alloy matrix. - Abstract: Biomimetic hydrophobic films of crystalline CeO 2 were prepared on magnesium alloy by an immersion process with cerium nitrate solution and then modified with DTS (CH 3 (CH 2 ) 11 Si(OCH 3 ) 3 ). The CeO 2 films fabricated with 20-min immersion yield a water contact angle of 137.5 ± 2°, while 20-min DTS treatment on top of CeO 2 can further enhance the water contact angle to 146.7 ± 2°. Then corrosion-resistant property of these prepared films against NaCl solution was investigated and elucidated using electrochemical measurements.

  7. Influence of the Hydrophobicity of Polyelectrolytes on Polyelectrolyte Complex Formation and Complex Particle Structure and Shape

    Directory of Open Access Journals (Sweden)

    Gudrun Petzold

    2011-08-01

    Full Text Available Polyelectrolyte complexes (PECs were prepared by structural uniform and strongly charged cationic and anionic modified alternating maleic anhydride copolymers. The hydrophobicity of the polyelectrolytes was changed by the comonomers (ethylene, isobutylene and styrene. Additionally, the n−/n+ ratio of the molar charges of the polyelectrolytes and the procedure of formation were varied. The colloidal stability of the systems and the size, shape, and structure of the PEC particles were investigated by turbidimetry, dynamic light scattering (DLS and atomic force microscopy (AFM. Dynamic light scattering indicates that beside large PEC particle aggregates distinct smaller particles were formed by the copolymers which have the highest hydrophobicity (styrene. These findings could be proved by AFM. Fractal dimension (D, root mean square (RMS roughness and the surface profiles of the PEC particles adsorbed on mica allow the following conclusions: the higher the hydrophobicity of the polyelectrolytes, the broader is the particle size distribution and the minor is the swelling of the PEC particles. Hence, the most compact particles are formed with the very hydrophobic copolymer.

  8. Synthesis and hydrophobic adsorption properties of microporous/mesoporous hybrid materials.

    Science.gov (United States)

    Hu, Qin; Li, Jinjun; Qiao, Shizhang; Hao, Zhengping; Tian, Hua; Ma, Chunyan; He, Chi

    2009-05-30

    Hybrid materials of silicalite-1 (Sil-1)-coated SBA-15 particles (MSs) have been successfully synthesized by crystallization process under hydrothermal conditions. These MSs materials were characterized by X-ray diffraction, nitrogen adsorption/desorption and TEM techniques, which illustrated that the silicalite-1-coated SBA-15 particles were successfully prepared and had large pore volume and hierarchical pore size distribution. Further experimental studies indicated that longer crystallization time under basic condition caused the mesostructure of SBA-15 materials to collapse destructively and higher calcination temperature tended to disrupt the long-range mesoscopic order while they had little influence on the phase of microcrystalline silicalite-1 zeolite. The resultant MSs materials were investigated by estimating dynamic adsorption capacity under dry and wet conditions to evaluate their adsorptive and hydrophobic properties. The hydrophobicity index (HI) value followed the sequence of silicalite-1>MSs>SBA-15, which revealed that the SBA-15 particles coated with the silicalite-1 seeds enhanced the surface hydrophobicity, and also were consistent with FTIR results. Our studies show that MSs materials combined the advantages of the ordered mesoporous material (high adsorptive capacity, large pore volume) and silicalite-1 zeolite (super-hydrophobic property, high hydrothermal stability), and the presence of micropores directly led to an increase in the dynamic adsorption capacity of benzene under dry and wet conditions.

  9. Growth of tin oxide thin films composed of nanoparticles on hydrophilic and hydrophobic glass substrates by spray pyrolysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Paloly, Abdul Rasheed; Satheesh, M. [Nano Functional Materials Lab, Department of Physics, Cochin University of Science and Technology, Kochi 682022, Kerala (India); Martínez-Tomás, M. Carmen; Muñoz-Sanjosé, Vicente [Departamento de Física Aplicada y Electromagnetismo, Universitat de Valencia, c/Dr Moliner 50, Burjassot, Valencia 46100 (Spain); Rajappan Achary, Sreekumar [Nano Functional Materials Lab, Department of Physics, Cochin University of Science and Technology, Kochi 682022, Kerala (India); Bushiri, M. Junaid, E-mail: junaidbushiri@gmail.com [Nano Functional Materials Lab, Department of Physics, Cochin University of Science and Technology, Kochi 682022, Kerala (India)

    2015-12-01

    Highlights: • SnO{sub 2} thin films were grown on hydrophilic and hydrophobic glass substrates. • Samples on hydrophobic substrates are having comparatively larger lattice volume. • Films on hydrophobic substrates have larger particles and low density distribution. • Substrate dependent photoluminescence emission is observed and studied. • SnO{sub 2} thin films grown over hydrophobic substrates may find potential applications. - Abstract: In this paper, we have demonstrated the growth of tin oxide (SnO{sub 2}) thin films composed of nanoparticles on hydrophobic (siliconized) and hydrophilic (non-siliconized) glass substrates by using the spray pyrolysis technique. X-ray diffraction (XRD) analysis confirmed the formation of SnO{sub 2} thin films with tetragonal rutile-phase structure. Average particle size of nanoparticles was determined to be in the range of 3–4 nm measured from the front view images obtained by a field emission gun scanning electron microscope (FESEM), while the size of nanoparticle clusters, when present, were in the range of 11–20 nm. Surface morphology of SnO{sub 2} films grown over hydrophobic substrates revealed larger isolated particles which are less crowded compared to the highly crowded and agglomerated smaller particles in films on hydrophilic substrates. Blue shift in the band gap is observed in samples in which the average particle size is slightly larger than the exciton Bohr radius. Photoluminescence (PL) analysis of samples grown over hydrophobic substrates exhibited an intense defect level emission and a weak near band edge emission. The enhanced visible emission from these SnO{sub 2} thin films is attributed to lattice defects formed during the film growth due to the mismatch between the film and the hydrophobic substrate surface.

  10. Electron transfer in pulse irradiated polypropylene film containing irganox type antioxidant

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, J.; Szreder, T

    2002-02-01

    Time resolved absorption spectra of trapped electrons generated in pulse irradiated polypropylene film containing irganox 1076 are investigated at {approx}100 K. Antioxidant influences the yield and decay of near-ir electrons in the matrix under consideration.

  11. Electron transfer in pulse irradiated polypropylene film containing irganox type antioxidant

    Science.gov (United States)

    Mayer, J.; Szreder, T.

    2002-02-01

    Time resolved absorption spectra of trapped electrons generated in pulse irradiated polypropylene film containing irganox 1076 are investigated at ˜100 K. Antioxidant influences the yield and decay of near-ir electrons in the matrix under consideration.

  12. A study of the controlled degradation of polypropylene containing pro-oxidant agents.

    Science.gov (United States)

    de Carvalho, Celso Luis; Silveira, Alexandre F; Rosa, Derval Dos Santos

    2013-01-01

    Intentional degradation by pro-oxidant agents, many of which are metal-based, can result in uncertainty as to the time of biodegradation. Polyacetal (POM) is a thermoplastic polymer commercially classified as an engineering polymer and contains carbon, hydrogen and oxygen. The depolymerization of POM during processing can enhance thermal decomposition. The aim of this study was to investigate the controlled degradation of polypropylene induced by the degradation of POM or d2w®. Mixtures of polypropylene containing different concentrations of POM or d2w® were prepared by extrusion. The properties of the mixtures (blends) were evaluated based on the melt index (MFI), tensile properties, Fourier transform infrared spectroscopy (FTIR), Time inductive oxidation (OIT) and Thermogravimetric analysis (TGA). The two additives (POM and d2w®) enhanced the oxidative thermal degradation of polypropylene and the degradation of the polypropylene/POM mixture could be controlled by altering the POM concentration.

  13. Fluid handling and fabric handle profiles of hydroentangled greige cotton and spunbond polypropylene nonwoven topsheets

    Science.gov (United States)

    Absorbent nonwoven topsheets are traditionally spunbond (or spunbond-meltblown (SM)) polypropylene nonwoven fabrics, and are used for a wide range of incontinence applications. Here we describe how nonwoven greige cotton demonstrates positive incontinence performance indices suitable for top sheet ...

  14. Enhancement of mechanical properties and interfacial adhesion by chemical odification of natural fibre reinforced polypropylene composites

    CSIR Research Space (South Africa)

    Erasmus, E

    2008-11-01

    Full Text Available , to improve their mechanical properties. Various chemical treatments with acrylic acid, 4-pentanoic acid, 2,4-pentadienoic acid and 2-methyl-4-pentanoic acid were investigated. The natural fibre reinforced polypropylene composites were processed by compression...

  15. Effect of processing conditions on the mechanical and thermal properties of high-impact polypropylene nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Furlan, L.G. [Federal Institute of Rio Grande do Sul, IFRS, Campus Restinga, Estrada Joao Antonio da Silveira, 351, Porto Alegre 91790-400 (Brazil); Ferreira, C.I.; Dal Castel, C.; Santos, K.S.; Mello, A.C.E. [Chemistry Institute, Federal University of Rio Grande do Sul, UFRGS, Av. Bento Goncalves, 9500, Porto Alegre 91501-970 (Brazil); Liberman, S.A.; Oviedo, M.A.S. [Braskem S.A., III Polo Petroquimico, Via Oeste, Lote 5, Triunfo 95853-000 (Brazil); Mauler, R.S., E-mail: mauler@iq.ufrgs.br [Chemistry Institute, Federal University of Rio Grande do Sul, UFRGS, Av. Bento Goncalves, 9500, Porto Alegre 91501-970 (Brazil)

    2011-08-25

    Highlights: {yields} Polypropylene montmorillonite (PP-MMT) produced at different processing conditions. {yields} Polypropylene Nanocomposites with higher increase on impact resistance. {yields} Higher enhancement on mechanical properties. - Abstract: Polypropylene montmorillonite (PP-MMT) nanocomposites have been prepared by using a co-rotating twin screw extruder. The effects of processing conditions at fixed clay content (5 wt%) on polymer properties were investigated by means of transmission electron microscopy (TEM), flexural modulus, izod impact, dynamic mechanical analysis (DMA), and differential scanning calorimetry (DSC). It was noticed that the morphology and the mechanical properties of polypropylene nanocomposites were affected by different screw shear configuration. The results showed that the higher enhancement on mechanical properties was obtained by medium shear intensity profile instead of high configuration. An exceptional increase (maximum of 282%) on impact resistance was observed.

  16. Effect of processing conditions on the mechanical and thermal properties of high-impact polypropylene nanocomposites

    International Nuclear Information System (INIS)

    Furlan, L.G.; Ferreira, C.I.; Dal Castel, C.; Santos, K.S.; Mello, A.C.E.; Liberman, S.A.; Oviedo, M.A.S.; Mauler, R.S.

    2011-01-01

    Highlights: → Polypropylene montmorillonite (PP-MMT) produced at different processing conditions. → Polypropylene Nanocomposites with higher increase on impact resistance. → Higher enhancement on mechanical properties. - Abstract: Polypropylene montmorillonite (PP-MMT) nanocomposites have been prepared by using a co-rotating twin screw extruder. The effects of processing conditions at fixed clay content (5 wt%) on polymer properties were investigated by means of transmission electron microscopy (TEM), flexural modulus, izod impact, dynamic mechanical analysis (DMA), and differential scanning calorimetry (DSC). It was noticed that the morphology and the mechanical properties of polypropylene nanocomposites were affected by different screw shear configuration. The results showed that the higher enhancement on mechanical properties was obtained by medium shear intensity profile instead of high configuration. An exceptional increase (maximum of 282%) on impact resistance was observed.

  17. Constitutive modeling of the viscoelastic and viscoplastic responses of metallocene catalyzed polypropylene

    DEFF Research Database (Denmark)

    Drozdov, Aleksey; Christiansen, Jesper de Claville; Sanporean, Catalina-Gabriela

    2012-01-01

    Purpose – The purpose of this paper is to perform experimental investigation and constitutive modeling of the viscoelastic and viscoplastic behavior of metallocene catalyzed polypropylene (mPP) with application to lifetime assessment under conditions of creep rupture. Design/methodology/approach ......Purpose – The purpose of this paper is to perform experimental investigation and constitutive modeling of the viscoelastic and viscoplastic behavior of metallocene catalyzed polypropylene (mPP) with application to lifetime assessment under conditions of creep rupture. Design...... an arbitrary three-dimensional deformation with small strains, and its parameters are found fitting the observations. Findings – Crystalline structure and molecular architecture of polypropylene strongly affect its time and rate-dependent behavior. In particular, time-to-failure of metallocene catalyzed...... in long-term creep tests. Keywords Metallocene catalyzed polypropylene, Viscoelasticity, Viscoplasticity, Creep rupture, Constitutive modeling, Elastoplastic analysis, Viscosity, Creep, Physical properties of materials Paper type Research paper...

  18. Finite element investigation of temperature dependence of elastic properties of carbon nanotube reinforced polypropylene

    Science.gov (United States)

    Ahmadi, Masoud; Ansari, Reza; Rouhi, Saeed

    2017-11-01

    This paper aims to investigate the elastic modulus of the polypropylene matrix reinforced by carbon nanotubes at different temperatures. To this end, the finite element approach is employed. The nanotubes with different volume fractions and aspect ratios (the ratio of length to diameter) are embedded in the polymer matrix. Besides, random and regular algorithms are utilized to disperse carbon nanotubes in the matrix. It is seen that as the pure polypropylene, the elastic modulus of carbon nanotube reinforced polypropylene decreases by increasing the temperature. It is also observed that when the carbon nanotubes are dispersed parallelly and the load is applied along the nanotube directions, the largest improvement in the elastic modulus of the nanotube/polypropylene nanocomposites is obtained.

  19. Manufacturing Flax Fibre-Reinforced Polypropylene Composites by Hot-Pressing

    Science.gov (United States)

    Jolly, Marc; Jayaraman, Krishnan

    The renewable characteristic of natural fibres, such as flax, and the recyclable nature of thermoplastic polymers, such as polypropylene, provide an attractive eco-friendly quality to the resulting composite materials. Common methods for manufacturing natural fibre-reinforced thermoplastic composites, injection moulding and extrusion, tend to degrade the fibres during processing. Development of a simple manufacturing technique for these composites, that minimises fibre degradation, is the main objective of this study. Flax fibres were conditioned, cut into lengths ranging from 1 mm to 30 mm with scissors and a pelletiser, and shaped into randomly oriented mats using a drop feed tower. Polypropylene in sheet form, was added to the fibres to furnish polypropylene/flax/polypropylene sandwiches with a fibre mass fraction of 25%, which were then consolidated by the hot pressing technique. Tensile, flexural and impact properties of these composite sheets were determined as functions of fibre length and processing temperature.

  20. Evaluation of Thermally Induced Degradation of Branched Polypropylene by Using Rheology and Different Constitutive Equations

    Directory of Open Access Journals (Sweden)

    Jiri Drabek

    2016-08-01

    Full Text Available In this work, virgin as well as thermally degraded branched polypropylenes were investigated by using rotational and Sentmanat extensional rheometers, gel permeation chromatography and different constitutive equations. Based on the obtained experimental data and theoretical analysis, it has been found that even if both chain scission and branching takes place during thermal degradation of the tested polypropylene, the melt strength (quantified via the level of extensional strain hardening can increase at short degradation times. It was found that constitutive equations such as Generalized Newtonian law, modified White-Metzner model, Yao and Extended Yao models have the capability to describe and interpret the measured steady-state rheological data of the virgin as well as thermally degraded branched polypropylenes. Specific attention has been paid to understanding molecular changes during thermal degradation of branched polypropylene by using physical parameters of utilized constitutive equations.

  1. Evaluation of endoscopic laser excision of polypropylene mesh/sutures following anti-incontinence procedures.

    LENUS (Irish Health Repository)

    Davis, N F

    2012-11-01

    We reviewed our experience with and outcome of the largest series to our knowledge of patients who underwent endoscopic laser excision of eroded polypropylene mesh or sutures as a complication of previous anti-incontinence procedures.

  2. LIGNIN-STIMULATED PROTECTION OF POLYPROPYLENE FILMS AND DNA IN CELLS OF MICE AGAINST OXIDATION DAMAGE

    OpenAIRE

    Božena Košíková; Juraj Lábaj

    2009-01-01

    The blending of polypropylene with lignin derived from chemical wood pulp manufacture makes it possible to prepare optically transparent films (thickness 50-60μm) with acceptable mechanical properties in the absence of a commercial stabilizer. The lignin preparation in the concentration 1-2 wt% possessed the ability to act as a processing stabilizer and as an antioxidant during thermal aging of polypropylene films. A DNA-protective effect of lignin in mice testicular cells and mice peripheral...

  3. Phenolic stabilisers extraction constants of polypropylene geotextiles determination in alkali medium

    OpenAIRE

    FARCAS, Fabienne; FAYOLLE, Bruno; AZZOUZ, Mériam; RICHAUD, Emmanuel

    2012-01-01

    The use of geotextiles made of polypropylene (PP) in civil engineering such as tunnel requieres adequates control over their durability, and this characteristic remains poorly known due to their inaccessibility. Considering concrete environment ageing conditions (alkali medium i.e. pH = 9 to 13), the aim of this study is to complete a non-empirical kinetic model for polypropylene ageing by the determination of the extraction parameters a frequently used phenolic process stabilisers: Irganox 1...

  4. Evaluation of Thermally Induced Degradation of Branched Polypropylene by Using Rheology and Different Constitutive Equations

    OpenAIRE

    Jiri Drabek; Martin Zatloukal

    2016-01-01

    In this work, virgin as well as thermally degraded branched polypropylenes were investigated by using rotational and Sentmanat extensional rheometers, gel permeation chromatography and different constitutive equations. Based on the obtained experimental data and theoretical analysis, it has been found that even if both chain scission and branching takes place during thermal degradation of the tested polypropylene, the melt strength (quantified via the level of extensional strain hardening) ca...

  5. Electron beam irradiations of polypropylene syringe barrels and the resulting physical and chemical property changes

    Science.gov (United States)

    Abraham, Ann C.; Czayka, M. A.; Fisch, M. R.

    2010-01-01

    Mechanical, thermal, chemical decomposition and electron spin resonance (ESR) methods were used to study electron beam irradiated polypropylene syringe barrels that were irradiated to a total fractionated dose of 0, 20, 40, 60, and 80 kGy (in steps of 20 kGy). Dose mapping was conducted to determine dose to and through the syringe barrel. Analysis of these data indicated that degradation of the polypropylene syringes increased with an increase in electron beam irradiation.

  6. The Effect of Multiple Extrusions on the Properties of Montmorillonite Filled Polypropylene

    OpenAIRE

    Delva, Laurens; Ragaert, Kim; Degrieck, Joris; Cardon, Ludwig

    2014-01-01

    Nanocomposites have attracted a great deal of interest during recent years. Much research has been conducted towards the incorporation of clay particles in a polypropylene matrix. However, the effect of extrusion reprocessing on the material properties has not been studied in depth. In this study, composites of polypropylene (PP) reinforced with organic modified montmorillonite (MMT) (4 wt%) and coupling agent were subjected to 15 extrusion cycles. The materials were characterized by melt flo...

  7. The Malaysian Polypropylene Industry Outlook In Facing ASEAN Free Trade Area (AFTA) Deregulation

    OpenAIRE

    Ahmad Zaki Bin Hj. Ismail; Sarun Bin Selamat; Elsadig Musa Ahmed

    2011-01-01

    The objective of this study is to focus specifically on the Malaysian polypropylene industrys performance in order to further understand the current situation. As the future of the plastics industry is becoming more competitive due to the uncertainties of the global economy, it is hoped that this study could help to assist the Malaysian polypropylene industry to understand the future potential challenges better. Another aspect of the future challenges for the industry is the lifting of the tr...

  8. The effect of specific nucleation on tensile mechanical behaviour of isotactic polypropylene

    Czech Academy of Sciences Publication Activity Database

    Raab, Miroslav; Ščudla, Jaroslav; Kolařík, Jan

    2004-01-01

    Roč. 40, č. 7 (2004), s. 1317-1323 ISSN 0014-3057 R&D Projects: GA AV ČR IAA4050105; GA ČR GA106/02/1249 Institutional research plan: CEZ:AV0Z4050913 Keywords : polypropylene * nucleating agents * .Beta.-phase in polypropylene Subject RIV: JJ - Other Materials Impact factor: 1.419, year: 2004

  9. Cigarette filter material and polypropylene fibres in concrete to control drying shrinkage

    OpenAIRE

    Richardson, Alan

    2012-01-01

    Due to a reduction in demand for cigarette filter material (North East UK), significant quantities have arisen that have little commercial value. The filter manufacturers have been looking for another outlet for their product and polypropylene fibre replacement in concrete was considered. The purpose of adding Type 1 polypropylene fibres (BS-EN14889) to concrete is to control plastic shrinkage and reduce bleeding. A paired comparison test was carried out to examine concrete cured under extrem...

  10. Processing, characterization and modeling of recycled polypropylene/glass fibre/wood flour composites

    OpenAIRE

    Al-Maadeed, M.A.; Shabana, Yasser M.; Khanam, P. Noorunnisa

    2014-01-01

    Polypropylene (PP) is one of the most common thermoplastic materials in the world. There is a need to recycle the large amount of this used material. To overcome the environmental problems, related to the polymer waste, PP was recycled and used as a matrix material in different composites that can be used in high value applications. In this paper, composites made of recycled polypropylene (RPP) reinforced by glass fibres and/or wood flour of the palm tree were prepared, characterized and mode...

  11. Tensile strength characteristics of polypropylene composites reinforced with stone groundwood fibers from softwood

    OpenAIRE

    López, Joan Pere; Méndez González, José Alberto; Espinach Orús, Xavier; Julián Pérez, Fernando; Mutjé Pujol, Pere; Vilaseca Morera, Fabiola

    2012-01-01

    The behavior of stone groundwood / polypropylene injection-molded composites was evaluated with and without coupling agent. Stone groundwood (SGW) is a fibrous material commonly prepared in a high yield process and mainly used for papermaking applications. In this work, the use of SGW fibers was explored as a reinforcing element of polypropylene (PP) composites. The surface charge density of the composite components was evaluated, as well as the fiber’s length and diameter inside the composit...

  12. Tensile properties of wood flour/kenaf fiber polypropylene hybrid composites

    Science.gov (United States)

    Jamal Mirbagheri; Mehdi Tajvidi; John C. Hermanson; Ismaeil Ghasemi

    2007-01-01

    Hybrid composites of wood flour/kenaf fiber and polypropylene were prepared at a fixed fiber to plastic ratio of 40 : 60 and variable ratios of the two reinforcements namely 40 : 0, 30 : 10, 20 : 20, 10 : 30, and 0 : 40 by weight. Polypropylene was used as the polymer matrix, and 40–80 mesh kenaf fiber and 60–100 mesh wood flour were used as the...

  13. Enhancement in Mechanical and Electrical Properties of Polypropylene Using Graphene Oxide Grafted with End-Functionalized Polypropylene

    Directory of Open Access Journals (Sweden)

    Patchanee Chammingkwan

    2016-03-01

    Full Text Available Terminally hydroxylated polypropylene (PP synthesized by a chain transfer method was grafted to graphene oxide (GO at the chain end. Thus obtained PP-modified GO (PP-GO was melt mixed with PP without the use of a compatibilizer to prepare PP/GO nanocomposites. Mechanical and electrical properties of the resultant nanocomposites and reference samples that contained graphite nanoplatelets, partially reduced GO, or fully reduced GO were examined. The best improvement in the tensile strength was obtained using PP-GO at 1.0 wt %. The inclusion of PP-GO also led to the highest electrical conductivity, in spite of the incomplete reduction. These observations pointed out that terminally hydroxylated PP covalently grafted to GO prevented GO layers from re-stacking and agglomeration during melt mixing, affording improved dispersion as well as stronger interfacial bonding between the matrix and GO.

  14. Corrosion protection of reinforcement by hydrophobic treatment of concrete

    NARCIS (Netherlands)

    Polder, R.B.; Vries, H. de

    1999-01-01

    Penetration of de-icing salts into concrete bridge decks may cause corrosion of reinforcement. Hydrophobic treatment of concrete was studied as additional protection. It was shown that hydrophobic treatment strongly reduces chloride ingress, during semi-permanent contact and in wetting/drying

  15. Hydrophobically modified polyelectrolytes : synthesis, properties and interactions with surfactants

    NARCIS (Netherlands)

    Nieuwkerk, A.C.

    1998-01-01

    Hydrophobically modified polyelectrolytes can form micelle-like aggregates, so-called microdomains, in aqueous solution. The hydrophobic side chains constitute the apolar inner part of these microdomains and the hydrophilic groups on the polyelectrolyte backbone are at the surface of the

  16. Prevention of reinforcement corrosion by hydrophobic treatment of concrete

    NARCIS (Netherlands)

    Polder, R.B.; Borsje, H.; Vries, H. de

    2001-01-01

    Corrosion of reinforcement in concrete bridge decks may occur due to penetration of de-icing salts, even in the presence of an asphalt overlay. This paper reports a laboratory study into additional protection of concrete by hydrophobic treatment. It was found that hydrophobic treatment strongly

  17. Hydrophobicity-induced drying transition in alkanethiol self ...

    Indian Academy of Sciences (India)

    For small hydrophobic units consisting of apolar solutes, the water molecules can reorganize around them without sacrificing their hydrogen bonds. Since for an extended hydrophobic unit, the existence of hydrogen bonded water structure close to it is geometrically unfavourable, there is a net depletion of water molecules ...

  18. Influence of hydrophobic characteristic of organo-modified precursor ...

    Indian Academy of Sciences (India)

    The aim of this contribution is to show the influence of different organic chains attached on silica nanoparticles which accomplish hydrophobic properties related to the sol- vents with different polarities (high hydrophilic-water, gly- cerol; high hydrophobic-α-bromonaphthalene; intermediate, dimethylsulfoxide (DMSO).

  19. Effect of compatibilization and reprocessing on the isothermal crystallization kinetics of polypropylene/wood flour composites

    Directory of Open Access Journals (Sweden)

    Arieny Rodrigues

    2013-01-01

    Full Text Available Numerous studies have focused on polymer mixtures aimed at the potential applications of these materials. This work analyzed the effect of polymer reprocessing and the type and concentration of compatibilizer on the isothermal crystallization kinetics of polypropylene/wood flour composites. The composites, which were polypropylene grafted with acrylic acid (PP-g-AA and maleic anhydride (PP-g-MA, were processed in a twin screw extruder with and without compatibilizer. Reprocessed polypropylene reached complete crystallization in less time than the composites with virgin polypropylene. The addition of wood flour to the composites did not change the kinetics significantly compared to that of the pure polymers, but the compatibilizers did, particularly PP-g-AA. The nucleation exponent (n and crystallization rate (K were calculated from Avrami plots. The values of n ranged from 2 to 3, indicating instantaneous to sporadic nucleation. The crystallization half-time of reprocessed polypropylene was shorter than that of virgin polypropylene and of the compositions containing PP-g-AA compatibilizer. The activation energy of crystallization and the equilibrium melting temperature were calculated, respectively, from Arrhenius and Hoffman-Weeks plots. Both of these parameters showed lower values in the composites, particularly in the ones containing compatibilizers.

  20. Effect of Quinacridone Pigments on Properties and Morphology of Injection Molded Isotactic Polypropylene

    Directory of Open Access Journals (Sweden)

    Mateusz Barczewski

    2017-01-01

    Full Text Available Two quinacridone pigments were added (0.01; 0.05; 0.1; 0.5; 1; 2 wt% to isotactic polypropylene (iPP, and their influence on mechanical and thermomechanical properties were investigated. Complex mechanical and thermomechanical iPP properties analyses, including static tensile test, Dynstat impact resistance measurement, and hardness test, as well as dynamic mechanic thermal analysis (DMTA, were realized in reference to morphological changes of polymeric materials. In order to understand the differences in modification efficiency and changes in polymorphism of polypropylene matrix caused by incorporation of pigments, differential scanning calorimetry (DSC and wide-angle X-ray scattering (WAXS experiments were done. Both pigments acted as highly effective nucleating agents that influence morphology and mechanical properties of isotactic polypropylene injection molded samples. Differences between polypropylene samples nucleated by two pigments may be attributed to different heterogeneous nucleation behavior dependent on pigment type. As it was proved by WAXS investigations, the addition of γ-quinacridone (E5B led to crystallization of polypropylene in hexagonal phase (β-iPP, while for β-quinacridone (ER 02 modified polypropylene no evidence of iPP β-phase was observed.

  1. Thermal and mechanical properties of polypropylene/titanium dioxide nanocomposite fibers

    International Nuclear Information System (INIS)

    Esthappan, Saisy Kudilil; Kuttappan, Suma Kumbamala; Joseph, Rani

    2012-01-01

    Highlights: ► Wet synthesis method was used for the synthesis of TiO 2 nano particles. ► Mechanical properties of polypropylene fibers were increased by the addition of TiO 2 nanoparticles. ► Thermal stability of polypropylene fiber was improved significantly by the addition of TiO 2 nano particles. ► TiO 2 nanoparticles dispersed well in polypropylene fibers. -- Abstract: Titanium dioxide nanoparticles were prepared by wet synthesis method and characterized by transmission electron microscopy and X-ray diffraction studies. The nanotitanium dioxide then used to prepare polypropylene/titanium dioxide composites by melt mixing method. It was then made into fibers by melt spinning and subsequent drawing. Mechanical properties of the fibers were studied using Favimat tensile testing machine with a load cell of 1200 cN capacity. Thermal behavior of the fibers was studied using differential scanning calorimetry and thermogravimetric analysis. Scanning electron microscope studies were used to investigate the titanium dioxide surface morphology and crosssection of the fiber. Mechanical properties of the polypropylene fiber was improved by the addition of titanium dioxide nanoparticles. Incorporation of nanoparticles improves the thermal stability of polypropylene. Differential scanning calorimetric studies revealed an improvement in crystallinity was observed by the addition of titanium dioxide nanoparticles.

  2. Application to refrigerator plastics by mechanical recycling from polypropylene in waste-appliances

    International Nuclear Information System (INIS)

    Ha, Kyung Ho; Kim, Moon Saeng

    2012-01-01

    Highlights: → Polypropylene is mechanically recycled from waste-appliances. → Recycled polypropylene (RPP) is impact enhanced polypropylene with ethylene-propylene rubber (EPR). → Performance evaluation shows that RPP is applicable to refrigerator plastics. -- Abstract: For the application to refrigerator plastics by mechanical recycling from polypropylene (PP) in waste-appliances, it needs to identify the degradation and heterogeneity of recycled polypropylene (RPP). It is applicable the thermal analysis such as differential scanning calorimetry (DSC), thermo-gravimetric analysis (TGA), spectroscopic analysis such as Fourier Transform Infrared (FTIR) and morphological analysis such as scanning electronic microscope (SEM). The analysis results show that RPP from waste-appliances is the polyethylene (PE) and polypropylene (PP) copolymer enhanced impact property (Impact-PP) and it is possible to apply refrigerator plastics with good impact property at low temperature. Finally, the performance evaluation of RPP is estimated by Gel Permeation Chromatography (GPC) analysis and is performed by the various mechanical and physical testing methods. It shows that RPP has relatively high molecular weight and balanced properties with strength and toughness. It is expected that RPP by the mechanical recycling from waste-appliances will have about 50% cost-merit.

  3. Photo-oxidative degradation of TiO{sub 2}/polypropylene films

    Energy Technology Data Exchange (ETDEWEB)

    García-Montelongo, X.L. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Ciudad Universitaria, C.P. 66451 San Nicolás de los Garza, N.L. (Mexico); Martínez-de la Cruz, A., E-mail: azael70@yahoo.com.mx [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Ciudad Universitaria, C.P. 66451 San Nicolás de los Garza, N.L. (Mexico); Vázquez-Rodríguez, S. [Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, Ciudad Universitaria, C.P. 66451 San Nicolás de los Garza, N.L. (Mexico); Torres-Martínez, Leticia M. [Facultad de Ingeniería Civil, Universidad Autónoma de Nuevo León, Ciudad Universitaria, C.P. 66451 San Nicolás de los Garza, N.L. (Mexico)

    2014-03-01

    Graphical abstract: - Highlights: • Photo-oxidative degradation of polypropylene is accelerated by TiO{sub 2} incorporation. • Weight loss, FTIR, SEM and GPC shown high degree of degradation of polypropylene. • A mechanism of the photo-degradation of polypropylene by TiO{sub 2} is proposed. - Abstract: Photo-oxidative degradation of polypropylene films with TiO{sub 2} nanoparticles incorporated was studied in a chamber of weathering with Xenon lamps as irradiation source. TiO{sub 2} powder with crystalline structure of anatase was synthesized by thermal treatments at 400 and 500 °C starting from a precursor material obtained by sol–gel method. Composites of TiO{sub 2}/polypropylene were prepared with 0.1, 0.5 and 1.0 wt% of TiO{sub 2}. The mixture of components was performed using a twin screw extruder, the resulting material was pelletized by mechanical fragmenting and then hot-pressed in order to form polypropylene films with TiO{sub 2} dispersed homogeneously. Photo-oxidative degradation process was followed by visual inspection, weight loss of films, scanning electron microscopy (SEM), infrared spectroscopy with Fourier transformed (FTIR), and gel permeation chromatography (GPC)

  4. Prediction of Hydrophobic Cores of Proteins Using Wavelet Analysis.

    Science.gov (United States)

    Hirakawa; Kuhara

    1997-01-01

    Information concerning the secondary structures, flexibility, epitope and hydrophobic regions of amino acid sequences can be extracted by assigning physicochemical indices to each amino acid residue, and information on structure can be derived using the sliding window averaging technique, which is in wide use for smoothing out raw functions. Wavelet analysis has shown great potential and applicability in many fields, such as astronomy, radar, earthquake prediction, and signal or image processing. This approach is efficient for removing noise from various functions. Here we employed wavelet analysis to smooth out a plot assigned to a hydrophobicity index for amino acid sequences. We then used the resulting function to predict hydrophobic cores in globular proteins. We calculated the prediction accuracy for the hydrophobic cores of 88 representative set of proteins. Use of wavelet analysis made feasible the prediction of hydrophobic cores at 6.13% greater accuracy than the sliding window averaging technique.

  5. Evaluation of the degradation effect on the processability of high molecular weight polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Shinzato, Rodrigo; Otaguro, Harumi; Lima, Luis F.C.P.; Parra, Duclerc F.; Lugao, Ademar B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente], E-mail: rodrigo.shinzato@gmail.com, E-mail: ablugao@ipen.br; Artel, Beatriz W.H. [Empresa Brasileira de Radiacao Ltda. (EMBRARAD), Cotia, SP (Brazil)

    2007-07-01

    One way to improve the processability of high molecular weight and melt strength of Polypropylene (PP) is reducing its molecular weight by chain scission with increase of flow index. Nevertheless, the more significant occurrence of chain scission in its structure, further improved its processability is at expense of physical properties. It is well known that the high energy radiation creates free radicals in the polymer chains that subsequently stabilize forming structures. These structures composed by low molecular weight chains and by grafted, branched and crosslinked chains modify the physical and chemical properties of the polymer, depending of their distribution. The low molecular weight chains become from the degradation process by high energy irradiation, which decreases the melt strength and improves its processability. So, this work has the objective to evaluate the degradation of the high molecular weight PP using different irradiation doses. Two kinds of PP samples were utilized. The first one, without additive, presented a flow index of 1.9 g/10 min, and the second, additivated with 0.2 wt % of antioxidant phenolic, Irganox 1010, with a flow index of 0.9 g/10 min. These samples were irradiated with doses of 12.5 and 20.0 kGy. The results of flow index and melt strength obtained with these two kinds of samples showed the antioxidant and the radiation action. (author)

  6. Production of a textile reinforced concrete protective layers with non-woven polypropylene fabric

    Science.gov (United States)

    Žák, J.; Štemberk, P.; Vodička, J.

    2017-09-01

    Textile concrete with nonwoven polypropylene fabric can be used for protective layers of reinforced concrete structures, reducing the thickness of the cover layer or reducing the water penetration rate into the structure. The material consists of cement matrix with finegrained aggregate and nonwoven textile reinforcement. The maximum grain size of the mixture suitable for the nonwoven textile infiltration is 0.25 mm. The interlayer contains larger aggregates and short fibers. Tensile loading causes a large amount of microcracks in the material. The material can withstand strain over 25% without collapsing. Increased quality and water-cement ratio reduction was achieved using the plasticizers and distribution of the mixture into a fabric using a vibrating trowel. It is possible to make flat plates and even curved structures from this material. Larger curvatures of structures should be solved by cutting and overlapping the fabric. Small curvatures can be solved within the deformability of the fabric. Proper infiltration of the cement mixture into the fabric is the most important task in producing this material.

  7. Comparison of the mechanical properties between carbon nanotube and nanocrystalline cellulose polypropylene based nano-composites

    International Nuclear Information System (INIS)

    Huang, Jun; Rodrigue, Denis

    2015-01-01

    Highlights: • SWCNT and NCC can effectively improve the mechanical properties of nano-composites. • SWCNT is more effective than NCC to increase modulus and strength. • Longer NCC is more effective to improve the mechanical properties of nano-composites. • It is more economic to use NCC than SWCNT to improve mechanical properties. - Abstract: Using beam and tetrahedron elements to simulate nanocrystalline cellulose (NCC), single wall carbon nanotube (SWCNT) and polypropylene (PP), finite element method (FEM) is used to predict the mechanical properties of nano-composites. The bending, shear and torsion behaviors of nano-composites are especially investigated due to the limited amount of information in the present literature. First, mixed method (MM) and FEM are used to compare the bending stiffness of NCC/PP and SWCNT/PP composites. Second, based on mechanics of materials, the shear moduli of both types of nano-composites are obtained. Finally, fixing the number of fibers and for different volume contents, four NCC lengths are used to determine the mechanical properties of the composites. The bending and shearing performances are also compared between NCC and SWCNT based composites. In all cases, the elastic–plastic analyses are carried out and the stress or strain distributions for specific regions are also investigated. From all the results obtained, an economic analysis shows that NCC is more interesting than SWCNT to reinforce PP

  8. Life cycle assessment of the production and use of polypropylene tree shelters.

    Science.gov (United States)

    Arnold, J C; Alston, S M

    2012-02-01

    A detailed Life Cycle Assessment (LCA) has been conducted for the manufacture, use and disposal of polypropylene tree shelters, which are used to protect young seedlings in the first few years of growth. The LCA was conducted using Simapro software, the Ecoinvent database and ReCiPe assessment methodology. Detailed information on materials, manufacturing, packaging and distribution of shelters was obtained from Tubex Ltd. in South Wales, UK. Various scenarios based on different forest establishment methods, with or without tree shelters were derived and analysed using data from published literature and independent sources. The scenarios included commercial forestry in northern temperate conditions, amenity forest establishment in temperate conditions, and forest establishment in semi-arid conditions. For commercial forestry, a reduction in required seedling production and planting as well as additional time-averaged wood production led to significant benefits with tree shelters, both compared to unprotected and fenced cases. For the amenity forest scenarios, tree shelter use had a net environmental impact, while for semi-arid forestry, the benefits of reduction in water use outweighed shelter production impacts. The current practice of in-situ degradation was compared to collection and disposal and it was found that in-situ degradation was slightly preferable in terms of overall environmental impact. Use of biopolymer-based shelters would improve the environmental performance slightly. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Methyl group rotation and segmental motion in atactic polypropylene. An incoherent quasi elastic neutron scattering investigation

    International Nuclear Information System (INIS)

    Arrighi, V.; Triolo, A.

    1999-01-01

    Complete text of publication follows. Results from the analysis of recent quasielastic neutron scattering (QENS) experiments on atactic polypropylene (aPP), are presented both in the sub-T g and above T g regimes. Experiments were carried out on the IRIS (ISIS, Rutherford Appleton Laboratory, UK) and IN10 (ILL FR) spectrometers in the temperature range from 140 to 400 K. Different instrumental resolutions were used in order to cover a wide energy window. The high resolution data collected on IN10 using the fixed energy scan technique, give clear evidence of two separate dynamic processes that we attribute to methyl group rotational hopping (below T g ) and to segmental motion (above T g ), respectively. Data were fitted using a model involving a distribution of relaxation rates. The IN10 results are used in interpreting and analyzing the QENS data from the IRIS spectrometer. In order to exploit the different energy resolutions of IRIS, Fourier inversion of the experimental data was carried out. This approach to data analysis allows us to widen the energy range available for data analysis. Due to the high activation energy of the methyl group hopping in aPP, this motion overlaps with the segmental relaxation, thus making analysis of high temperature data quite complex. The IN10 results are employed in order to perform data analysis in terms of two distinct processes. (author)

  10. Thermo-mechanical degradation and VOC emission of unstabilized and stabilized polypropylene copolymer during multiple Extrusions

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Cáceres

    2011-12-01

    Full Text Available The thermo-mechanical degradation during the multi-extrusion of unstabilized and stabilized polypropylene copolymer (cPP was analyzed using the Chain Scission Distribution Function (CSDF method. During the first extrusion of unstabilized cPP almost 60% of the initial polymeric chains were submitted to chain scission. The calculations using CSDF show a random chain scission process of chains with molecular weight below 100 kg.mol-1, and above that a preferential chain scission process. When stabilized the cPP molecular weight is kept constant, even after four extrusions, independently of the stabilizers concentration used. Its chain scission is greatly reduced, only being noteworthy at high values of molecular weight, presenting in this case a preferential chain scission process. During extrusion the unstabilized cPP evolves Volatile Organic Compounds (VOC due to the volatilization of low molecular weight oxidized chain segments. VOC's emissions are greatly reduced during the melt processing of stabilized cPP, even after multiple extrusions.

  11. Properties of residual marine fuel produced by thermolysis from polypropylene waste

    Directory of Open Access Journals (Sweden)

    Linas Miknius

    2015-06-01

    Full Text Available Thermal degradation of waste plastics with the aim of producing liquid fuel is one of the alternative solutions to landfill disposal or incineration. The paper describes thermal conversion of polypropylene waste and analysis of produced liquid fuel that would satisfy ISO 8217-2012 requirements for a residual marine fuel. Single pass batch thermolysis processes were conducted at different own vapour pressures (20-80 barg that determined process temperature, residence time of intermediates what resulted in different yields of the liquid product. Obtained products were stabilized by rectification to achieve required standard flash point. Gas chromatography and 1H NMR spectrometry show aliphatic nature of the liquid product where majority of the compounds are isoalkanes and isoalkenes. Only lightest fractions boiling up to a temperature of 72 oC have significant amount of n-pentane. Distribution of aromatic hydrocarbons is not even along the boiling range. The fractions boiling at a temperature of 128 oC and 160 oC have the highest content of monocyclic arenes – 3.16 % and 4.09 % respectively. The obtained final liquid residual product meets all but one requirements of ISO 8217-2012 for residual marine fuels.DOI: http://dx.doi.org/10.5755/j01.ms.21.2.6105

  12. Highly Conductive 3D Segregated Graphene Architecture in Polypropylene Composite with Efficient EMI Shielding

    Directory of Open Access Journals (Sweden)

    Fakhr E. Alam

    2017-12-01

    Full Text Available The extensive use of electronic equipment in modern life causes potential electromagnetic pollution harmful to human health. Therefore, it is of great significance to enhance the electrical conductivity of polymers, which are widely used in electronic components, to screen out electromagnetic waves. The fabrication of graphene/polymer composites has attracted much attention in recent years due to the excellent electrical properties of graphene. However, the uniform distribution of graphene nanoplatelets (GNPs in a non-polar polymer matrix like polypropylene (PP still remains a challenge, resulting in the limited improvement of electrical conductivity of PP-based composites achieved to date. Here, we propose a single-step approach to prepare GNPs/PP composites embedded with a segregated architecture of GNPs by coating PP particles with GNPs, followed by hot-pressing. As a result, the electrical conductivity of 10 wt % GNPs-loaded composites reaches 10.86 S·cm−1, which is ≈7 times higher than that of the composites made by the melt-blending process. Accordingly, a high electromagnetic interference shielding effectiveness (EMI SE of 19.3 dB can be achieved. Our method is green, low-cost, and scalable to develop 3D GNPs architecture in a polymer matrix, providing a versatile composite material suitable for use in electronics, aerospace, and automotive industries.

  13. Solubilization of Hydrophobic Dyes in Surfactant Solutions

    Directory of Open Access Journals (Sweden)

    Ali Reza Tehrani-Bagha

    2013-02-01

    Full Text Available In this paper, the use of surfactants for solubilization of hydrophobic organic dyes (mainly solvent and disperse dyes has been reviewed. The effect of parameters such as the chemical structures of the surfactant and the dye, addition of salt and of polyelectrolytes, pH, and temperature on dye solubilization has been discussed. Surfactant self-assemble into micelles in aqueous solution and below the concentration where this occurs—the critical micelle concentration (CMC—there is no solubilization. Above the CMC, the amount of solubilized dye increases linearly with the increase in surfactant concentration. It is demonstrated that different surfactants work best for different dyes. In general, nonionic surfactants have higher solubilization power than anionic and cationic surfactants. It is likely that the reason for the good performance of nonionic surfactants is that they allow dyes to be accommodated not only in the inner, hydrocarbon part of the micelle but also in the headgroup shell. It is demonstrated that the location of a dye in a surfactant micelle can be assessed from the absorption spectrum of the dye-containing micellar solution.

  14. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment.

    Science.gov (United States)

    Auta, H S; Emenike, C U; Jayanthi, B; Fauziah, S H

    2018-02-01

    Interest in the biodegradation of microplastics is due to their ubiquitous distribution, availability, high persistence in the environment and deleterious impact on marine biota. The present study evaluates the growth response and mechanism of polypropylene (PP) degradation by Bacillus sp. strain 27 and Rhodococcus sp. strain 36 isolated from mangrove sediments upon exposure to PP microplastics. Both bacteria strains were able to utilise PP microplastic for growth as confirmed by the reduction of the polymer mass. The weight loss was 6.4% by Rhodococcus sp. strain 36 and 4.0% by Bacillus sp. strain 27 after 40days of incubation. PP biodegradation was further confirmed using Fourier-transform infrared spectroscopy and scanning electron microscopy analyses, which revealed structural and morphological changes in the PP microplastics with microbial treatment. These analyses showed that the isolates can colonise, modify and utilise PP microplastics as carbon source. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effect of Particle Size of Additives on the Flammability and Mechanical Properties of Intumescent Flame Retarded Polypropylene Compounds

    Directory of Open Access Journals (Sweden)

    Katalin Bocz

    2015-01-01

    Full Text Available The effect of particle size reduction of the components of a common intumescent flame retardant system, consisting of pentaerythritol (PER and ammonium polyphosphate (APP in a weight ratio of 1 to 2, was investigated on the flammability and mechanical performance of flame retarded polypropylene (PP compounds. Additives of reduced particle size were obtained by ball milling. In the case of PER, the significant reduction of particle size resulted in inferior flame retardant and mechanical performance, while the systems containing milled APP noticeably outperformed the reference intumescent system containing as-received additives. The beneficial effect of the particle size reduction of APP is explained by the better distribution of the particles in the polymer matrix and by the modified degradation mechanism which results in the formation of an effectively protecting carbonaceous foam accompanied with improved mechanical resistance. Nevertheless, 10% higher tensile strength was measured for the flame retarded PP compound when as-received APP was substituted by milled APP.

  16. Surface Hydrophobicity Causes SO2 Tolerance in Lichens

    Science.gov (United States)

    Hauck, Markus; Jürgens, Sascha-René; Brinkmann, Martin; Herminghaus, Stephan

    2008-01-01

    Background and Aims The superhydrophobicity of the thallus surface in one of the most SO2-tolerant lichen species, Lecanora conizaeoides, suggests that surface hydrophobicity could be a general feature of lichen symbioses controlling their tolerance to SO2. The study described here tests this hypothesis. Methods Water droplets of the size of a raindrop were placed on the surface of air-dry thalli in 50 lichen species of known SO2 tolerance and contact angles were measured to quantify hydrophobicity. Key Results The wettability of lichen thalli ranges from strongly hydrophobic to strongly hydrophilic. SO2 tolerance of the studied lichen species increased with increasing hydrophobicity of the thallus surface. Extraction of extracellular lichen secondary metabolites with acetone reduced, but did not abolish the hydrophobicity of lichen thalli. Conclusions Surface hydrophobicity is the main factor controlling SO2 tolerance in lichens. It presumably originally evolved as an adaptation to wet habitats preventing the depression of net photosynthesis due to supersaturation of the thallus with water. Hydrophilicity of lichen thalli is an adaptation to dry or humid, but not directly rain-exposed habitats. The crucial role of surface hydrophobicity in SO2 also explains why many markedly SO2-tolerant species are additionally tolerant to other (chemically unrelated) toxic substances including heavy metals. PMID:18077467

  17. Evaluation of foaming polypropylene modified with ramified polymer

    Science.gov (United States)

    Demori, Renan; de Azeredo, Ana Paula; Liberman, Susana A.; Mauler, Raquel S.

    2015-05-01

    Polypropylene foams have great industrial interest because of balanced physical and mechanical properties, recyclability as well as low material cost. During the foaming process, the elongational forces applied to produce the expanded polymer are strong enough to rupture cell walls. As a result, final foam has a high amount of coalesced as well as opened cells which decreases mechanical and also physical properties. To increase melt strength and also avoid the coalescence effect, one of the current solution is blend PP with ramified polymers as well as branched polypropylene (LCBPP) or ethylene-octene copolymer (POE). In this research to provide extensional properties and achieve uniform cellular structures of expanded PP, 20 phr of LCBPP or POE was added into PP matrix. The blend of PP with ramified polymers was prepared by twin-screw extrusion. Injection molding process was used to produce PP foams using azodicarbonamide (ACA) as chemical blowing agent. The morphological results of the expanded PP displayed a non-uniform geometrical cell, apparent density of 0.48 g/cm3 and cell density of 13.9.104 cell/cm3. Otherwise, the expanded PP blended with LCBPP or POE displayed a homogeneous cell structure and increased the amount of smaller cells (50-100 μm of size). The apparent density slightly increased with addition of LCBPP or POE, 0.64 and 0.57 g/cm3, respectively. Thus, the cell density reduced to 65% in PP/LCBPP 100/20 and 75% in the sample PP/POE 100/20 compared to expanded PP. The thermo-mechanical properties (DMTA) of PP showed specific stiffness of 159 MPa.cm-3.g-1, while the sample PP/LCBPP 100/20 increased the stiffness values of 10%. Otherwise, the expanded PP/POE 100/20 decreased the specific stiffness values at -30%, in relation to expanded PP. In summary, blending PP with ramified polymers showed increasing of the homogenous cellular structure as well as the amount of smaller cells in the expanded material.

  18. Identification and characterization of hydrophobic gate residues in TRP channels.

    Science.gov (United States)

    Zheng, Wang; Hu, Ruikun; Cai, Ruiqi; Hofmann, Laura; Hu, Qiaolin; Fatehi, Mohammad; Long, Wentong; Kong, Tim; Tang, Jingfeng; Light, Peter; Flockerzi, Veit; Cao, Ying; Chen, Xing-Zhen

    2018-02-01

    Transient receptor potential (TRP) channels, subdivided into 6 subfamilies in mammals, have essential roles in sensory physiology. They respond to remarkably diverse stimuli, comprising thermal, chemical, and mechanical modalities, through opening or closing of channel gates. In this study, we systematically substituted the hydrophobic residues within the distal fragment of pore-lining helix S6 with hydrophilic residues and, based on Xenopus oocyte and mammalian cell electrophysiology and a hydrophobic gate theory, identified hydrophobic gates in TRPV6/V5/V4/C4/M8. We found that channel activity drastically increased when TRPV6 Ala616 or Met617 or TRPV5 Ala576 or Met577 , but not any of their adjacent residues, was substituted with hydrophilic residues. Channel activity strongly correlated with the hydrophilicity of the residues at those sites, suggesting that consecutive hydrophobic residues TRPV6 Ala616-Met617 and TRPV5 Ala576-Met577 form a double-residue gate in each channel. By the same strategy, we identified a hydrophobic single-residue gate in TRPV4 Iso715 , TRPC4 Iso617 , and TRPM8 Val976 . In support of the hydrophobic gate theory, hydrophilic substitution at the gate site, which removes the hydrophobic gate seal, substantially increased the activity of TRP channels in low-activity states but had little effect on the function of activated channels. The double-residue gate channels were more sensitive to small changes in the gate's hydrophobicity or size than single-residue gate channels. The unconventional double-reside gating mechanism in TRP channels may have been evolved to respond especially to physiologic stimuli that trigger relatively small gate conformational changes.-Zheng, W., Hu, R., Cai, R., Hofmann, L., Hu, Q., Fatehi, M., Long, W., Kong, T., Tang, J., Light, P., Flockerzi, V., Cao, Y., Chen, X.-Z. Identification and characterization of hydrophobic gate residues in TRP channels.

  19. Flexural strength of self compacting fiber reinforced concrete beams using polypropylene fiber: An experimental study

    Science.gov (United States)

    Lisantono, Ade; Praja, Baskoro Abdi; Hermawan, Billy Nouwen

    2017-11-01

    One of the methods to increase the tensile strength of concrete is adding a fiber material into the concrete. While to reduce a noise in a construction project, a self compacting concrete was a good choices in the project. This paper presents an experimental study of flexural behavior and strength of self compacting fiber reinforced concrete (RC) beams using polypropylene fiber. The micro monofilament polypropylene fibers with the proportion 0.9 kg/m3 of concrete weight were used in this study. Four beam specimens were cast and tested in this study. Two beams were cast of self compacting reinforced concrete without fiber, and two beams were cast of self compacting fiber reinforced concrete using polypropylene. The beams specimen had the section of (180×260) mm and the length was 2000 mm. The beams had simple supported with the span of 1800 mm. The longitudinal reinforcements were using diameter of 10 mm. Two reinforcements of Ø10 mm were put for compressive reinforcement and three reinforcements of Ø10 mm were put for tensile reinforcement. The shear reinforcement was using diameter of 8 mm. The shear reinforcements with spacing of 100 mm were put in the one fourth near to the support and the spacing of 150 mm were put in the middle span. Two points loading were used in the testing. The result shows that the load-carrying capacity of the self compacting reinforced concrete beam using polypropylene was a little bit higher than the self compacting reinforced concrete beam without polypropylene. The increment of load-carrying capacity of self compacting polypropylene fiber reinforced concrete was not so significant because the increment was only 2.80 % compare to self compacting non fiber reinforced concrete. And from the load-carrying capacity-deflection relationship curves show that both the self compacting polypropylene fiber reinforced concrete beam and the self compacting non fiber reinforced concrete beam were ductile beams.

  20. Performance evolution of hydrophobic treatments for stone conservation investigated by MRI.

    Science.gov (United States)

    Borgia, G C; Bortolotti, V; Camaiti, M; Cerri, F; Fantazzini, P; Piacenti, F

    2001-01-01

    1H-MRI has been applied to the evaluation of the performances of a hydrophobic polymer (Paraloid B72), widely used for the conservation of monumental buildings and other stone artifacts. By this technique it has been possible to visualize the water diffusion in a treated rock material (Pietra di Lecce, a highly porous Italian biocalcarenite) and then indirectly the spatial distribution of the polymer in the rock. The effects of wetting-drying cycles on the hydrophobic efficacy of the acrylic polymer in the inner layers of the rock were also studied. A notable decrease in the water-repellence inside the stone was detected and attributed to a loss of adhesion of the polymer to the substrate, promoted by the action of water.

  1. Efficient adsorption of phenanthrene by simply synthesized hydrophobic MCM-41 molecular sieves

    Science.gov (United States)

    Hu, Yun; He, Yinyun; Wang, Xiaowen; Wei, Chaohai

    2014-08-01

    Hydrophobic molecular sieve MCM-41 including surfactant template was synthesized by a simple method. The adsorption properties of this material toward phenanthrene were studied. The effects of adsorbent dose and pH value on the adsorption process as well as the adsorption mechanism and reuse performance were investigated. The template-containing MCM-41 showed a significant adsorption for phenanthrene, due to its hydrophobicity created by the surfactant template in MCM-41. The solution pH had little effect on the adsorption capacity. The adsorption kinetic could be fitted well with pseudo-second-order kinetic model. The adsorption equilibrium was fitted well by the linear model, and the adsorption process followed the liquid/solid phase distribution mechanism. The thermodynamic results indicated that the adsorption was a spontaneous and exothermic process.

  2. Characterization and toxicological behavior of synthetic amorphous hydrophobic silica.

    Science.gov (United States)

    Lewinson, J; Mayr, W; Wagner, H

    1994-08-01

    During almost three decades of experience with hydrophobic silicas, no adverse health effects have been observed in manufacturing and applications with appropriate handling of the materials. The oral LD50 for rodents is > 7.9 g/kg body wt. Fumed or precipitated hydrophobic silicas do not produce inflammation of the skin or mucous membranes. Likewise, acute and chronic oral tests yielded no adverse systemic effects. A limited carcinogenesis study in rats did not induce tumors and the Ames test of a toluene extract was negative. Reproductive or developmental toxicity was not observed. In general, hydrophobic silicas provide a toxicological profile essentially the same as common silicas.

  3. A novel method to fabricate water-soluble hydrophobic agent and super-hydrophobic film on pretreated metals

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Liqun [School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Xueyuan Road 37, Haidian District, Beijing 100083 (China)]. E-mail: zhulq@buaa.edu.cn; Jin Yan [School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Xueyuan Road 37, Haidian District, Beijing 100083 (China)]. E-mail: jinyan2080@hotmail.com

    2007-01-30

    This paper demonstrated a convenient method to prepare water-soluble hydrophobic agent and create super-hydrophobic film on the basic material of phosphating film and electroless Ni-P composite coating on carbon steels. Water contact angles and rolling angles of super-hydrophobic films were 155-168{sup o} and 2-3{sup o} on phosphating films, respectively, 145-155 deg. and 15-20 deg. on electroless Ni-P composite coatings, respectively. This water-soluble hydrophobic agent was white latex and had lots of micro-particles suspending in it. The thickness of the single-layer super-hydrophobic film with good corrosion resistance and stability was about 2-3 {mu}m. The microstructure of super-hydrophobic film was discussed using XRD, EDS, optical and electronic microscope as analytical methods. This kind of super-hydrophobic film had a great many micro-particles dispersing in the surface, which contained F and Si and greatly increased the roughness of the surface.

  4. Thermal Stability and Flammability of Polypropylene/Montmorillonite Composites

    Science.gov (United States)

    Yang, Ming-Shu; Qin, Huai-Li; Zhang, Shi-Min; Han, Charles C.

    2004-03-01

    Smectite clays, such as montmorillonite, are a valuable class of mineral for industrial applications because of their high aspect ratio, plate morphology, and intercalative capacity. After preparation, smectite clays may be used as a nano-scalled inorganic fillers to prepare polymer/layered silicate nanocomposites, which has unique properties such as improved strength, modulus, heat resistance, surface scratch resistance and good barrier properties, at very low filler. In the present work, polypropylene/montmorillonite (PP/MMT) composites were prepared and their thermal stability and flammability were investigated. Regardless of the micro-dispersed or submicro-dispersed structure, the composites exhibit higher thermal stability and considerably reduced peak heat release rate (PHRR). It is likely caused by the physical-chemical adsorption of the volatile degradation products on the silicates. On the other hand, the addition of MMT can catalyze the initial decomposition of PP matrix and accelerate the ignition of PP matrix in combustion. It has been observed that a ceramic-like char formed on the surface of the composites during burning test. The characterization of the char surface before ignition indicates that it is an inorganic-rich surface, which provided a better barrier property, leading to the improvement of the thermal stability and reduction of flammability of the composites.

  5. Tailoring the wettability of polypropylene surfaces with halloysite nanotubes.

    Science.gov (United States)

    Liu, Mingxian; Jia, Zhixin; Liu, Fang; Jia, Demin; Guo, Baochun

    2010-10-01

    In this contribution, halloysite nanotubes (HNTs), a kind of natural hydrophilic nanoclay, are incorporated into polypropylene (PP) for tailoring the surface microstructures of the composites prepared by solution casting. HNTs act as heterogeneous nuclei for PP, which leads to the change of phase separation process during drying of the composites and consequently the microstructures of composite surfaces. Micro-papilla like hybrid spherulites with nanostructures are formed on the PP/HNTs composite surfaces. The rough surfaces demonstrate superhydrophobicity with a maximum water contact angle as nearly 170 degrees and sliding angle of about 2 degrees. The spherulites size, surface roughness, and wetting property of PP can be tuned by HNTs. HNTs can significantly improve the thermal degradation behavior of the composites which is attributed to the well-dispersed HNTs and the improved interfacial interactions by the nucleation effect. The present work provides an alternative routine for preparing polymer superhydrophobic surfaces via tailoring the surface microstructures by adding nanoparticles in a solution process. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Materials characterization of explanted polypropylene hernia mesh: Patient factor correlation.

    Science.gov (United States)

    Smith, Sarah E; Cozad, Matthew J; Grant, David A; Ramshaw, Bruce J; Grant, Sheila A

    2016-02-01

    This study quantitatively assessed polypropylene (PP) hernia mesh degradation and its correlation with patient factors including body mass index, tobacco use, and diabetes status with the goal of improving hernia repair outcomes through patient-matched mesh. Thirty PP hernia mesh explants were subjected to a tissue removal process followed by assessment of their in vivo degradation using Fourier transform infrared, differential scanning calorimetry, and thermogravimetric analysis analyses. Results were then analyzed with respect to patient factors (body mass index, tobacco use, and diabetes status) to determine their influence on in vivo hernia mesh oxidation and degradation. Twenty of the explants show significant surface oxidation. Tobacco use exhibits a positive correlation with modulated differential scanning calorimetry melt temperature and exhibits significantly lower TGA decomposition temperatures than non-/past users. Chemical and thermal characterization of the explanted meshes indicate measurable degradation while in vivo regardless of the patient population; however, tobacco use is correlated with less oxidation and degradation of the polymeric mesh possibly due to a reduced inflammatory response. © The Author(s) 2015.

  7. Tissue Engineering Bionanocomposites Based on Poly(propylene fumarate

    Directory of Open Access Journals (Sweden)

    Ana M. Diez-Pascual

    2017-06-01

    Full Text Available Poly(propylene fumarate (PPF is a linear and unsaturated copolyester based on fumaric acid that has been widely investigated for tissue engineering applications in recent years due to its tailorable mechanical performance, adjustable biodegradability and exceptional biocompatibility. In order to improve its mechanical properties and spread its range of practical applications, novel approaches need to be developed such as the incorporation of fillers or polymer blending. Thus, PPF-based bionanocomposites reinforced with different amounts of single-walled carbon nanotubes (SWCNT, multi-walled carbon nanotubes (MWCNT, graphene oxide nanoribbons (GONR, graphite oxide nanoplatelets (GONP, polyethylene glycol-functionalized graphene oxide (PEG-GO, polyethylene glycol-grafted boron nitride nanotubes (PEG-g-BNNTs and hydroxyapatite (HA nanoparticles were synthesized via sonication and thermal curing, and their morphology, biodegradability, cytotoxicity, thermal, rheological, mechanical and antibacterial properties were investigated. An increase in the level of hydrophilicity, biodegradation rate, stiffness and strength was found upon increasing nanofiller loading. The nanocomposites retained enough rigidity and strength under physiological conditions to provide effective support for bone tissue formation, showed antibacterial activity against Gram-positive and Gram-negative bacteria, and did not induce toxicity on human dermal fibroblasts. These novel biomaterials demonstrate great potential to be used for bone tissue engineering applications.

  8. Radiation-induced grafting of styrene on polypropylene pellets

    International Nuclear Information System (INIS)

    Souza, Camila P.; Ferreira, Henrique P.; Parra, Duclerc F.; Lugao, Ademar B.

    2009-01-01

    The changes of radiation-induced in polypropylene (PP) pellets exposed to gamma irradiation in inert atmosphere were investigated in correlation with the applied doses (10 and 50 kGy). Also, results from the grafting of styrene onto PP pellets using simultaneous irradiation at the same doses are presented. The grafting reaction was carried out using toluene as solvent, under nitrogen atmosphere and at room temperature. The properties of the irradiated and grafted PP pellets were studied using Melt Flow Index, thermal analysis (TG and DSC), and ATR-IR. The degree of grafting (DOG) for the grafted pellets was gravimetrically determined. The results showed that radiation-induced graft polymerization on pellets were successfully obtained and the influence of dose irradiated did not change the thermal properties in spite of the increase in the MFI and consequently this increase in the viscosity results an decrease the molecular mass. The MFI for grafted pellets was not achievable because the high degree of viscosity of polymer, even arising the test temperature, the polymer was not flow enough. (author)

  9. Improvement of polypropylene (PP)-modified bitumen through lignin addition

    Science.gov (United States)

    Yuanita, E.; Hendrasetyawan, B. E.; Firdaus, D. F.; Chalid, M.

    2017-07-01

    Polypropylene (PP) is usually added to bitumen to improve its mechanical properties, however, both of them have different chemical properties. To achieve best mechanical properties of the mixture, coupling agent such as lignin is importantly required. Lignin is an amorphous biopolymer, has bipolar characteristic due to its distinct chemical function which has carbonyl, carboxyl, hydroxyl and phenol chemical function. Otherwise, bitumen and PP have polar and non-polar characteristic, respectively. In the previous research, it is found that lignin is potential to be used as coupling agent. In order to confirm the potential of lignin as a coupling agent, there are various compounds of lignin on PP-bitumen mixtures used in this research. This experiment consists of several stages, ranging from sample preparation, characterization of raw materials, mixing, and characterization of the PP-Modified Bitumen. This experiment used hot melt mixing to mix lignin, PP, and bitumen. The result of this experimental was analyzed by using FTIR and FESEM. The addition of lignin make Polymer Modified Bitumen (PMB) getting better mixing and increase mechanical properties. Furthermore, FESEM characterization indicated that the addition of lignin gave better mixing of PP-Bitumen. FTIR showed a new chemical structure due to the addition of lignin. From this experiment, the addition of lignin can improve mixing between PP and Bitumen. So, we can use lignin as coupling agent.

  10. Anticoagulant and antimicrobial finishing of non-woven polypropylene textiles.

    Science.gov (United States)

    Degoutin, S; Jimenez, M; Casetta, M; Bellayer, S; Chai, F; Blanchemain, N; Neut, C; Kacem, I; Traisnel, M; Martel, B

    2012-06-01

    The aim of this work is to prepare non-woven polypropylene (PP) textile functionalized with bioactive molecules in order to improve its anticoagulation and antibacterial properties. This paper describes the optimization of the grafting process of acrylic acid (AA) on low-pressure cold-plasma pre-activated PP, the characterization of the modified substrates and the effect of these modifications on the in vitro biological response towards cells. Then, the immobilization of gentamicin (aminoglycoside antibiotic) and heparin (anticoagulation agent) has been carried out on the grafted samples by either ionic interactions or covalent linkages. Their bioactivity has been investigated and related to the nature of their interactions with the substrate. For gentamicin-immobilized AA-grafted samples, an inhibition radius and a reduction of 99% of the adhesion of Escherichia coli have been observed when gentamicin was linked by ionic interactions, allowing the release of the antibiotic. By contrast, for heparin-immobilized AA-grafted PP samples, a strong increase of the anticoagulant effect up to 35 min has been highlighted when heparin was covalently bonded on the substrate, by contact with the blood drop.

  11. Improved Mechanical Properties of Compatibilized Polypropylene/Polyamide-12 Blends

    Directory of Open Access Journals (Sweden)

    Nora Aranburu

    2015-01-01

    Full Text Available Compatibilized blends of polypropylene (PP and polyamide-12 (PA12 as a second component were obtained by direct injection molding having first added 20% maleic anhydride-modified copolymer (PP-g-MA to the PP, which produced partially grafted PP (gPP. A nucleating effect of the PA12 took place on the cooling crystallization of the gPP, and a second crystallization peak of the gPP appeared in the PA12-rich blends, indicating changes in the crystalline morphology. There was a slight drop in the PA12 crystallinity of the compatible blends, whereas the crystallinity of the gPP increased significantly in the PA12-rich blends. The overall reduction in the dispersed phase particle size together with the clear increase in ductility when gPP was used instead of PP proved that compatibilization occurred. Young’s modulus of the blends showed synergistic behavior. This is proposed to be both due to a change in the crystalline morphology of the blends on the one hand and, on the other, in the PA12-rich blends, to the clear increase in the crystallinity of the gPP phase, which may, in turn, have been responsible for the increase in its continuity and its contribution to the modulus.

  12. Polypropylene Biocomposites with Boron Nitride and Nanohydroxyapatite Reinforcements

    Directory of Open Access Journals (Sweden)

    Kai Wang Chan

    2015-03-01

    Full Text Available In this study, we develop binary polypropylene (PP composites with hexagonal boron nitride (hBN nanoplatelets and ternary hybrids reinforced with hBN and nanohydroxyapatite (nHA. Filler hybridization is a sound approach to make novel nanocomposites with useful biological and mechanical properties. Tensile test, osteoblastic cell culture and dimethyl thiazolyl diphenyl tetrazolium (MTT assay were employed to investigate the mechanical performance, bioactivity and biocompatibility of binary PP/hBN and ternary PP/hBN-nHA composites. The purpose is to prepare biocomposite nanomaterials with good mechanical properties and biocompatibility for replacing conventional polymer composites reinforced with large hydroxyapatite microparticles at a high loading of 40 vol%. Tensile test reveals that the elastic modulus of PP composites increases, while tensile elongation decreases with increasing hBN content. Hybridization of hBN with nHA further enhances elastic modulus of PP. The cell culture and MTT assay show that osteoblastic cells attach and proliferate on binary PP/hBN and ternary PP/hBN-20%nHA nanocomposites.

  13. Energy harvesting from vibration with cross-linked polypropylene piezoelectrets

    Directory of Open Access Journals (Sweden)

    Xiaoqing Zhang

    2015-07-01

    Full Text Available Piezoelectret films are prepared by modification of the microstructure of polypropylene foam sheets cross-linked by electronic irradiation (IXPP, followed by proper corona charging. Young’s modulus, relative permittivity, and electromechanical coupling coefficient of the fabricated films, determined by dielectric resonance spectra, are about 0.7 MPa, 1.6, and 0.08, respectively. Dynamic piezoelectric d33 coefficients up to 650 pC/N at 200 Hz are achieved. The figure of merit (FOM, d33 ⋅ g33 for a more typical d33 value of 400 pC/N is about 11.2 GPa−1. Vibration-based energy harvesting with one-layer and two-layer stacks of these films is investigated at various frequencies and load resistances. At an optimum load resistance of 9 MΩ and a resonance frequency of 800 Hz, a maximum output power of 120 μW, referred to the acceleration g due to gravity, is obtained for an energy harvester consisting of a one-layer IXPP film with an area of 3.14 cm2 and a seismic mass of 33.7 g. The output power can be further improved by using two-layer stacks of IXPP films in electric series. IXPP energy harvesters could be used to energize low-power electronic devices, such as wireless sensors and LED lights.

  14. Energy harvesting from vibration with cross-linked polypropylene piezoelectrets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoqing [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology & School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Institute for Telecommunications Technology, Merckstrasse 25, 64283 Darmstadt (Germany); Wu, Liming [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology & School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Sessler, Gerhard M., E-mail: g.sessler@nt.tu-darmstadt.de [Institute for Telecommunications Technology, Merckstrasse 25, 64283 Darmstadt (Germany)

    2015-07-15

    Piezoelectret films are prepared by modification of the microstructure of polypropylene foam sheets cross-linked by electronic irradiation (IXPP), followed by proper corona charging. Young’s modulus, relative permittivity, and electromechanical coupling coefficient of the fabricated films, determined by dielectric resonance spectra, are about 0.7 MPa, 1.6, and 0.08, respectively. Dynamic piezoelectric d{sub 33} coefficients up to 650 pC/N at 200 Hz are achieved. The figure of merit (FOM, d{sub 33} ⋅ g{sub 33}) for a more typical d{sub 33} value of 400 pC/N is about 11.2 GPa{sup −1}. Vibration-based energy harvesting with one-layer and two-layer stacks of these films is investigated at various frequencies and load resistances. At an optimum load resistance of 9 MΩ and a resonance frequency of 800 Hz, a maximum output power of 120 μW, referred to the acceleration g due to gravity, is obtained for an energy harvester consisting of a one-layer IXPP film with an area of 3.14 cm{sup 2} and a seismic mass of 33.7 g. The output power can be further improved by using two-layer stacks of IXPP films in electric series. IXPP energy harvesters could be used to energize low-power electronic devices, such as wireless sensors and LED lights.

  15. Functional behaviour of polypropylene/ZnO-soluble starch nanocomposites

    International Nuclear Information System (INIS)

    Chandramouleeswaran, Subramani; Mhaske, S T; Kathe, A A; Varadarajan, P V; Prasad, Virendra; Vigneshwaran, Nadanathangam

    2007-01-01

    ZnO-polypropylene nanocomposites (nano-PP) were prepared using nanoparticles of ZnO stabilized by soluble starch (nano-ZnO) as filler in PP by the melt mixing process. X-ray diffraction (XRD) and other spectroscopic analysis-ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR) and photoluminescence-revealed the presence and characteristics of nano-ZnO in the composites. The presence of ZnO imparts whiteness, while starch increased the yellowing of polymers. The nanocomposites were analyzed for changes in optical, mechanical, electrical and rheological properties, as influenced by the increasing concentration of nano-ZnO. The mechanical properties were marginally increased and the dielectric strength of the nano-PP increased to a notable level. By monitoring the evolution of the carbonyl absorption bands from FTIR analysis, the efficacy of nano-ZnO in the reduction of photo-degradation due to UV irradiation was demonstrated. The excellent antibacterial activity exhibited by nano-ZnO impregnated PP against two human pathogenic bacteria, Staphylococcus aureus and Klebsiella pneumoniae, makes it a suitable candidate for food packaging applications

  16. Functional behaviour of polypropylene/ZnO soluble starch nanocomposites

    Science.gov (United States)

    Chandramouleeswaran, Subramani; Mhaske, S. T.; Kathe, A. A.; Varadarajan, P. V.; Prasad, Virendra; Vigneshwaran, Nadanathangam

    2007-09-01

    ZnO-polypropylene nanocomposites (nano-PP) were prepared using nanoparticles of ZnO stabilized by soluble starch (nano-ZnO) as filler in PP by the melt mixing process. X-ray diffraction (XRD) and other spectroscopic analysis—ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR) and photoluminescence—revealed the presence and characteristics of nano-ZnO in the composites. The presence of ZnO imparts whiteness, while starch increased the yellowing of polymers. The nanocomposites were analyzed for changes in optical, mechanical, electrical and rheological properties, as influenced by the increasing concentration of nano-ZnO. The mechanical properties were marginally increased and the dielectric strength of the nano-PP increased to a notable level. By monitoring the evolution of the carbonyl absorption bands from FTIR analysis, the efficacy of nano-ZnO in the reduction of photo-degradation due to UV irradiation was demonstrated. The excellent antibacterial activity exhibited by nano-ZnO impregnated PP against two human pathogenic bacteria, Staphylococcus aureus and Klebsiella pneumoniae, makes it a suitable candidate for food packaging applications.

  17. Synthesis and characterization of polypropylene/jigsaw wood ash composite

    International Nuclear Information System (INIS)

    Sudirman; Karo Karo, Aloma; Gunawan, Indra; Handayani, Ari; Hertinvyana, Evi

    2002-01-01

    The composite of polypropylene (PP) polymer with jigsaw wood ash as filler is the alternative composite material. The dispersion of the filler in the composite is random with the jigsaw wood ash composition of 10,30, and 50% by volume. The characterization of composite are done to measure its mechanical properties, physical properties and microstructure by using XRD and SEM. From this research, it is concluded that increasing filler content of the composite will decrease its mechanical and physical properties. The comparation of different composites are found that tensile strength of PP MF 10 is higher 4.24% compared with PP MF 2 as a matrix. It is also found that melting temperature of PP MF 10 is higher 4.09% compared with PP MF 2 as a matrices and the decomposition temperature different is 0.17%. The degree of crystallinity of composite with PP MF 10 as a matrices is 2.55% higher compared with PP MF 2. The higher degree of crystallinity is increasing the tensile strength

  18. SAXS Study of Reversibly Crosslinked Isotactic Polypropylene/clay Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Bouhelal, S.; Cagiao, M; Benachour, D; Djellouli, B; Rong, L; Hsiao, B; Baltá-Calleja, F

    2010-01-01

    A new route based on reversibly crosslinking reactive extrusion is applied for the development of iPP/clay nanocomposites. Analysis of small-angle X-ray scattering (SAXS) reflections of isotactic polypropylene (iPP)/clay nanocomposites, prepared by two different mixing and chemical crosslinking methods (i.e., conventional and in situ), is presented and results are compared with preceding wide-angle X-ray diffraction (WAXD) results. It is shown that the presence of clay significantly affects the value of long spacing in iPP, as well as the coherence length of lamellar stacks. Results show that the size of the coherently diffracting nanodomains decreases in two stages, first rapidly and then slowly as a function of increasing clay content. This can be attributed to the influence of confined iPP lamellae under the effect of rising number of clay particles. The appearance of the {gamma}-crystalline form in the crosslinked iPP/clay nanocomposites is related with the difficulty in chain folding of iPP chains introduced by the chemical crosslinking process, as well as by the presence of clay particles.

  19. Extensional Flow-Induced Dynamic Phase Transitions in Isotactic Polypropylene.

    Science.gov (United States)

    Ju, Jianzhu; Wang, Zhen; Su, Fengmei; Ji, Youxin; Yang, Haoran; Chang, Jiarui; Ali, Sarmad; Li, Xiangyang; Li, Liangbin

    2016-09-01

    With a combination of fast extension rheometer and in situ synchrotron radiation ultra-fast small- and wide-angle X-ray scattering, flow-induced crystallization (FIC) of isotactic polypropylene (iPP) is studied at temperatures below and above the melting point of α crystals (Tmα). A flow phase diagram of iPP is constructed in strain rate-temperature space, composing of melt, non-crystalline shish, α and α&β coexistence regions, based on which the kinetic and dynamic competitions among these four phases are discussed. Above Tmα , imposing strong flow reverses thermodynamic stabilities of the disordered melt and the ordered phases, leading to the occurrence of FIC of β and α crystals as a dynamic phase transition. Either increasing temperature or stain rate favors the competiveness of the metastable β over the stable α crystals, which is attributed to kinetic rate rather than thermodynamic stability. The violent competitions among four phases near the boundary of crystal-melt may frustrate crystallization and result in the non-crystalline shish winning out. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Analysis of antioxidants extracted from polypropylene by supercritical fluid extraction.

    Science.gov (United States)

    Garde, J A; Catalá, R; Gavara, R

    1998-01-01

    Maximal potential migration of six antioxidants (AO) from five polypropylene (PP) formulations was determined by two supercritical fluid extraction (SFE) procedures, both of which contained static and dynamic steps. All analytical conditions affecting the extraction were studied and optimized using Irgafos 168 as standard. SFE was more efficient as temperature and fluid density increased. During the static step in which the samples were exposed to the fluid without flux, the introduction of hexane and methanol as fluid modifiers significantly improved the extraction. Hexane appears to facilitate polymer swelling while methanol solvates the antioxidants. In the dynamic step (in which the extraction actually occurs) time is the key parameter. Extraction for 90 min results in an efficiency of around 75%. The introduction of modifiers during this step (by an HPLC-SFE procedure) did not produce any significant improvement. When SFE was carried out on all samples, extraction efficiency was around 75% except for Irganox 1010 and Hostanox O3. The large molecular volume of these antioxidants may be responsible for the considerable reduction of extraction efficiency. Particle size and shape of polymer sample were also important. The greater the surface to volume ratio the greater the extraction efficiency.

  1. Flexural properties untreated and treated kenaf fiber reinforced polypropylene composites

    Science.gov (United States)

    Husin, Muhammad Muslimin; Mustapa, Mohammad Sukri; Wahab, Md Saidin; Arifin, Ahmad Mubarak Tajul; Masirin, Mohd Idrus Mohd; Jais, Farhana Hazwanee

    2017-05-01

    Today natural fiber polymer composites are being extensively used as alternatives in producing furniture to fulfill society demand instead of saving cost and environmentally friendly. The objective of this search is to investigate the untreated fine and rough kenaf fiber (KF) as well as treated KF reinforced with polypropylene (PP) on the flexural strength. Flexural strengths of pure PP, 10%, and 20% of untreated fine and rough KF by weight to PP have been recorded. In addition, flexural strengths of treated KF soaked with 5% and 10% of Sodium Hydroxide (NaOH) have also been recorded. KF reinforced PP (PP/KF) untreated and treated composites were melt blended and then injection molded to observe their flexural strengths by measuring their threshold. Three point bending test was apply to determine the flexural stress of the composites. The result show treated fine KF produce better flexural performance at 20% PP/KF. Scanning Electron Microscopy (SEM) is used to observe the morphological surface PP/KF. Overall 5% NaOH with 20% PP/KF (Fine KF) show good interfacial bonding PP/KF and best result with flexural stress value 30.25MPa.

  2. Microstructure and Properties of Polypropylene/Carbon Nanotube Nanocomposites

    Directory of Open Access Journals (Sweden)

    Dimitrios Bikiaris

    2010-04-01

    Full Text Available In the last few years, great attention has been paid to the preparation of polypropylene (PP nanocomposites using carbon nanotubes (CNTs due to the tremendous enhancement of the mechanical, thermal, electrical, optical and structural properties of the pristine material. This is due to the unique combination of structural, mechanical, electrical, and thermal transport properties of CNTs. However, it is well-known that the properties of polymer-based nanocomposites strongly depend on the dispersion of nanofillers and almost all the discussed properties of PP/CNTs nanocomposites are strongly related to their microstructure. PP/CNTs nanocomposites were, mainly, prepared by melt mixing and in situ polymerization. Young’s modulus, tensile strength and storage modulus of the PP/CNTs nanocomposites can be increased with increasing CNTs content due to the reinforcement effect of CNTs inside the polymer matrix. However, above a certain CNTs content the mechanical properties are reduced due to the CNTs agglomeration. The microstructure of nanocomposites has been studied mainly by SEM and TEM techniques. Furthermore, it was found that CNTs can act as nucleating agents promoting the crystallization rates of PP and the addition of CNTs enhances all other physical properties of PP. The aim of this paper is to provide a comprehensive review of the existing literature related to PP/CNTs nanocomposite preparation methods and properties studies.

  3. Bacterial Growth on Chitosan-Coated Polypropylene Textile

    Science.gov (United States)

    Erben, D.; Hola, V.; Jaros, J.; Rahel, J.

    2012-01-01

    Biofouling is a problem common in all systems where microorganisms and aqueous environment meet. Prevention of biofouling is therefore important in many industrial processes. The aim of this study was to develop a method to evaluate the ability of material coating to inhibit biofilm formation. Chitosan-coated polypropylene nonwoven textile was prepared using dielectric barrier discharge plasma activation. Resistance of the textile to biofouling was then tested. First, the textile was submerged into a growth medium inoculated with green fluorescein protein labelled Pseudomonas aeruginosa. After overnight incubation at 33°C, the textile was observed using confocal laser scanning microscopy for bacterial enumeration and biofilm structure characterisation. In the second stage, the textile was used as a filter medium for prefiltered river water, and the pressure development on the in-flow side was measured to quantify the overall level of biofouling. In both cases, nontreated textile samples were used as a control. The results indicate that the chitosan coating exhibits antibacterial properties. The developed method is applicable for the evaluation of the ability to inhibit biofilm formation. PMID:23724330

  4. Anticoagulant and antimicrobial finishing of non-woven polypropylene textiles

    International Nuclear Information System (INIS)

    Degoutin, S; Jimenez, M; Casetta, M; Bellayer, S; Chai, F; Blanchemain, N; Neut, C; Kacem, I; Traisnel, M; Martel, B

    2012-01-01

    The aim of this work is to prepare non-woven polypropylene (PP) textile functionalized with bioactive molecules in order to improve its anticoagulation and antibacterial properties. This paper describes the optimization of the grafting process of acrylic acid (AA) on low-pressure cold-plasma pre-activated PP, the characterization of the modified substrates and the effect of these modifications on the in vitro biological response towards cells. Then, the immobilization of gentamicin (aminoglycoside antibiotic) and heparin (anticoagulation agent) has been carried out on the grafted samples by either ionic interactions or covalent linkages. Their bioactivity has been investigated and related to the nature of their interactions with the substrate. For gentamicin-immobilized AA-grafted samples, an inhibition radius and a reduction of 99% of the adhesion of Escherichia coli have been observed when gentamicin was linked by ionic interactions, allowing the release of the antibiotic. By contrast, for heparin-immobilized AA-grafted PP samples, a strong increase of the anticoagulant effect up to 35 min has been highlighted when heparin was covalently bonded on the substrate, by contact with the blood drop. (paper)

  5. Mapping physicochemical surface modifications of flame-treated polypropylene

    Directory of Open Access Journals (Sweden)

    S. Farris

    2014-04-01

    Full Text Available The aim of this work was to investigate how the surface morphology of polypropylene (PP is influenced by the surface activation mediated by a flame obtained using a mixture of air and propane under fuel-lean (equivalence ratio φ = 0.98 conditions. Morphological changes observed on flamed samples with smooth (S, medium (M, and high (H degree of surface roughness were attributed to the combined effect of a chemical mechanism (agglomeration and ordering of partially oxidized intermediate-molecular-weight material with a physical mechanism (flattening of the original roughness by the flame’s high temperature. After two treatments, the different behavior of the samples in terms of wettability was totally reset, which made an impressive surface energy of ~43 mJ•m–2 possible, which is typical of more hydrophilic polymers (e.g., polyethylene terephthalate – PET. In particular, the polar component was increased from 1.21, 0.08, and 0.32 mJ•m–2 (untreated samples to 10.95, 11.20, and 11.17 mJ•m–2 for the flamed samples S, M, and H, respectively, an increase attributed to the insertion of polar functional groups (hydroxyl and carbonyl on the C–C backbone, as demonstrated by the X-ray photoelectron spectroscopy results.

  6. Fluoroalkyl and Alkyl Chains Have Similar Hydrophobicities in Binding to the “Hydrophobic Wall” of Carbonic Anhydrase

    Energy Technology Data Exchange (ETDEWEB)

    J Mecinovic; P Snyder; K Mirica; S Bai; E Mack; R Kwant; D Moustakas; A Heroux; G Whitesides

    2011-12-31

    The hydrophobic effect, the free-energetically favorable association of nonpolar solutes in water, makes a dominant contribution to binding of many systems of ligands and proteins. The objective of this study was to examine the hydrophobic effect in biomolecular recognition using two chemically different but structurally similar hydrophobic groups, aliphatic hydrocarbons and aliphatic fluorocarbons, and to determine whether the hydrophobicity of the two groups could be distinguished by thermodynamic and biostructural analysis. This paper uses isothermal titration calorimetry (ITC) to examine the thermodynamics of binding of benzenesulfonamides substituted in the para position with alkyl and fluoroalkyl chains (H{sub 2}NSO{sub 2}C{sub 6}H{sub 4}-CONHCH{sub 2}(CX{sub 2}){sub n}CX{sub 3}, n = 0-4, X = H, F) to human carbonic anhydrase II (HCA II). Both alkyl and fluoroalkyl substituents contribute favorably to the enthalpy and the entropy of binding; these contributions increase as the length of chain of the hydrophobic substituent increases. Crystallography of the protein-ligand complexes indicates that the benzenesulfonamide groups of all ligands examined bind with similar geometry, that the tail groups associate with the hydrophobic wall of HCA II (which is made up of the side chains of residues Phe131, Val135, Pro202, and Leu204), and that the structure of the protein is indistinguishable for all but one of the complexes (the longest member of the fluoroalkyl series). Analysis of the thermodynamics of binding as a function of structure is compatible with the hypothesis that hydrophobic binding of both alkyl and fluoroalkyl chains to hydrophobic surface of carbonic anhydrase is due primarily to the release of nonoptimally hydrogen-bonded water molecules that hydrate the binding cavity (including the hydrophobic wall) of HCA II and to the release of water molecules that surround the hydrophobic chain of the ligands. This study defines the balance of enthalpic and

  7. Cholesterol and fat lowering with hydrophobic polysaccharide derivatives

    Czech Academy of Sciences Publication Activity Database

    Čopíková, J.; Taubner, T.; Tůma, J.; Synytsya, A.; Dušková, Dagmar; Marounek, Milan

    2015-01-01

    Roč. 116, č. 1 (2015), s. 207-214 ISSN 0144-8617 Institutional support: RVO:67985904 Keywords : hydrophobically modified polysaccharides * structure * thermal analysis Subject RIV: CE - Biochemistry Impact factor: 4.219, year: 2015

  8. Impact of Hydrophobic Pollutants' Behavior on Occupational and Environmental Health

    Directory of Open Access Journals (Sweden)

    Ijeoma Kanu

    2005-01-01

    Full Text Available This paper reviews the influence of hydrophobic pollutant behavior on environmental hazards and risks. The definition and examples of hydrophobic pollutants are given as a guide to better understand the sources of release and the media of dispersion in the environment. The properties and behavior of hydrophobic pollutants are described and their influence on environmental hazard and risk is reviewed and evaluated. The overall outcome of the assessment and evaluation showed that all hydrophobic pollutants are hazardous and risky to all organisms, including man. Their risk effects are due to their inherent persistence, bioaccumulation potential, environmental mobility, and reactivity. Their hazardous effects on organisms occur at varying spatial and temporal degrees of emissions, toxicities, exposures, and concentrations.

  9. Hydrophobicity – Shake Flasks, Protein Folding and Drug Discovery

    Science.gov (United States)

    Sarkar, Aurijit; Kellogg, Glen E.

    2009-01-01

    Hydrophobic interactions are some of the most important interactions in nature. They are the primary driving force in a number of phenomena. This is mostly an entropic effect and can account for a number of biophysical events such as protein-protein or protein-ligand binding that are of immense importance in drug design. The earliest studies on this phenomenon can be dated back to the end of the 19th century when Meyer and Overton independently correlated the hydrophobic nature of gases to their anesthetic potency. Since then, significant progress has been made in this realm of science. This review briefly traces the history of hydrophobicity research along with the theoretical estimation of partition coefficients. Finally, the application of hydrophobicity estimation methods in the field of drug design and protein folding is discussed. PMID:19929828

  10. Inverse colloidal crystal membranes for hydrophobic interaction membrane chromatography.

    Science.gov (United States)

    Vu, Anh T; Wang, Xinying; Wickramasinghe, S Ranil; Yu, Bing; Yuan, Hua; Cong, Hailin; Luo, Yongli; Tang, Jianguo

    2015-08-01

    Hydrophobic interaction membrane chromatography has gained interest due to its excellent performance in the purification of humanized monoclonal antibodies. The membrane material used in hydrophobic interaction membrane chromatography has typically been commercially available polyvinylidene fluoride. In this contribution, newly developed inverse colloidal crystal membranes that have uniform pores, high porosity and, therefore, high surface area for protein binding are used as hydrophobic interaction membrane chromatography membranes for humanized monoclonal antibody immunoglobulin G purification. The capacity of the inverse colloidal crystal membranes developed here is up to ten times greater than commercially available polyvinylidene fluoride membranes with a similar pore size. This work highlights the importance of developing uniform pore size high porosity membranes in order to maximize the capacity of hydrophobic interaction membrane chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. On the enrichment of hydrophobic organic compounds in fog droplets

    Science.gov (United States)

    Valsaraj, K. T.; Thoma, G. J.; Reible, D. D.; Thibodeaux, L. J.

    The unusual degree of enrichment of hydrophobic organics in fogwater droplets reported by several investigators can be interpreted as a result of (a) the effects of temperature correction on the reported enrichment factors, (b) the effects of colloidal organic matter (both filterable and non-filterable) in fog water and (c) the effects of the large air-water interfacial adsorption of neutral hydrophobic organics on the tiny fog droplets. The enrichment factor was directly correlated to the hydrophobicity (or the activity coefficient in water) of the compounds, as indicated by their octanol-water partition constants. Compounds with large octanol-water partition coefficients (high activity coefficients in water) showed the largest enrichment. Available experimental data on the adsorption of hydrophobic compounds at the air-water interface and on colloidal organic carbon were used to show that the large specific air-water interfacial areas of fog droplets contribute significantly to the enrichment factor.

  12. Role of carbon nanotubes (CNTs) in improving wear properties of polypropylene (PP) in dry sliding condition

    International Nuclear Information System (INIS)

    Ashok Gandhi, R.; Palanikumar, K.; Ragunath, B.K.; Paulo Davim, J.

    2013-01-01

    Highlights: ► Role of carbon nanotubes (CNTs) on wear behaviour of polypropylene (PP) is evaluated. ► Effect of applied pressure and composition against a steel counter face is investigated. ► Microstructure and worn surfaces of samples are observed by scanning electron microscope. ► The wear phenomenon has been discussed based on wear losses and worn surfaces. ► The coefficient of friction (μ) and sliding time for PP and PP/CNT blend is investigated. - Abstract: Polymers are widely used for sliding couples against metals and other materials. Polypropylene is a polymer used in variety of applications includes packaging, laboratory equipments, automotive components, etc. Polypropylene is often desirable automotive material due to its low cost, colorability, chemical resistance and UV stability. In addition the range of potential polypropylene uses is nearly unlimited through the use of modifiers, additives and fillers. In the present work, the sliding wear of polypropylene (PP) and carbon nanotube (CNT) blends are evaluated as a function of applied load and composition against a steel counter face in dry condition. The addition of CNT in PP in wear performance is investigated and presented in detail. Microstructure and worn surfaces of samples were observed by scanning electron microscope. The wear phenomenon has been discussed based on wear losses and worn surfaces

  13. Polypropylene Oil as a Fuel for Ni-YSZ | YSZ | LSCF Solid Oxide Fuel Cell

    Science.gov (United States)

    Pratiwi, Andini W.; Rahmawati, Fitria; Rochman, Refada A.; Syahputra, Rahmat J. E.; Prameswari, Arum P.

    2018-01-01

    This research aims to convert polypropylene plastic to polypropylene oil through pyrolysis method and use the polypropylene oil as fuel for Solid Oxide Fuel Cell, SOFC, to produce electricity. The material for SOFC single cell are Ni-YSZ, YSZ, and LSCF as anode, electrolyte and cathode, respectively. YSZ is yttria-stabilized-zirconia. Meanwhile, LSCF is a commercial La0.6Sr0.4Co0.2Fe0.8O3. The Ni-YSZ is a composite of YSZ with nickel powder. LSCF and Ni-YSZ slurry coated both side of YSZ electrolyte pellet through screen printing method. The result shows that, the produced polypropylene oil consist of C8 to C27 hydrocarbon chain. Meanwhile, a single cell performance test at 673 K, 773 K and 873 K with polypropylene oil as fuel, found that the maximum power density is 1.729 μW. cm-2 at 673 K with open circuit voltage value of 9.378 mV.

  14. Properties analysis of tensile strength, crystallinity degree and microstructure of polymer composite polypropylene-sand

    International Nuclear Information System (INIS)

    Sudirman; Karo-Karo, Aloma; Ari-Handayani; Bambang-Sugeng; Rukihati; Mashuri

    2004-01-01

    Materials modification base on polymer toward polymer composite is needed by addition of filler. Mechanical properties such as tensile strength, crystallinity degree and microstructure of polymer composite based on polypropylene with sand filler have been investigated. In this work, the polymer composite has been made by mixing the matrix of polypropylene melt flow 2 (PP MF2) or polypropylene melt flow 10 (PP MF 10) with sand filler in a labo plastomill. The composition of sand filler was varied to 10, 30, 40 and 50 % v/v, a then the composite were casted to the film sheets form. The sheets were characterized mechanically i.e tensile strength, crystallinity degree and microstructure. The result showed that the tensile strength decreased by increasing the volume fraction of sand filler, in accordance with microstructure investigation that the matrix area under zone plastic deformation (more cracks), while the filler experienced elastic deformation, so that the strength mechanism of filler did not achieved with expectation (Danusso and Tieghi theory). For filler more than 30 % of volume fraction, the tensile strength of polypropylene melt flow 10 (PP MF 10) was greater than that polypropylene melt flow 2 (PP MF2). It was caused by plasticities in PP MF 10. The tensile strength of PP MF2 was greater than that PP MF 10 for volume fraction of sand filler less than 30 %. It was caused by PP MF2 to be have more degree of crystallinity

  15. Polypropylene suture versus skin staples for securing mesh in lichtenstein inguinal hernioplasty.

    Science.gov (United States)

    Khan, Awais Ali; Majeed, Shahid; Shahzadi, Maria; Hussain, Syed Mukarram; Ali, Mujahid Zulfiqar; Siddique, Khalid

    2014-02-01

    To compare polypropylene suture and skin staples for securing mesh in Lichtenstein inguinal hernioplasty in terms of mean operating time and postoperative pain. Randomized clinical trial. Surgical Ward, Combined Military Hospital, Kharian, from August 2011 to February 2012. All individuals fulfilling inclusion criteria underwent elective Lichtenstein inguinal hernioplasty as admitted patients, under spinal anaesthesia and with aseptic measures. In group 1, during the operation, mesh fixation was done with 2/0 polypropylene suture and skin was closed with subcuticular 2/0 polypropylene suture whereas in group 2, the anchorage of mesh was done with skin staples and skin was closed with staples from the same stapler. Mean operative time and postoperative pain, assessed on a visual analog score, were compared between the groups. The overall postoperative pain was lower (p = 0.026) when staples were used to anchor mesh. Moreover, operative time was also lower (37.42 ± 2.69 minutes) in staple group versus (42.44 ± 2.55 minutes in polypropylene group). Mean operating time and postoperative pain is less in securing mesh with skin staples as compared to polypropylene suture in Lichtenstein inguinal hernioplasty.

  16. Highly purified collagen coating enhances tissue adherence and integration properties of monofilament polypropylene meshes.

    Science.gov (United States)

    Siniscalchi, Rodrigo Teixeira; Melo, Marli; Palma, Paulo César Rodrigues; Dal Fabbro, Inácio Maria; Vidal, Benedicto de Campos; Riccetto, Cassio Luiz Zanettini

    2013-10-01

    Complications related to tissue integration of polypropylene implants used in the treatment of pelvic organ prolapse are relatively prevalent. Collagen, a biocompatible, less immunogenic material with modulating properties on the inflammatory process, may improve polypropylene integration. The objective was to study biomechanical and histological effects of monofilament polypropylene mesh coated with purified collagen gel. Forty rats were implanted with two fragments of polypropylene mesh in their abdominal walls (one on each side of the linea alba). One of the fragments had a collagen gel coating (group I) while the other one did not (group II). The animals were euthanized at 7, 14, 90, and 180 days after implantation and their abdominal walls were excised for analysis. The biomechanical study showed that mesh adherence to neighboring tissue increased significantly in group II (p Polypropylene mesh coated with purified collagen gel increases adherence to tissue, promotes a less intense and lasting inflammatory response and triggers a greater organization and packing arrangement of collagen fibers in the late phase of implantation.

  17. Properties of Wood Fibre-Polypropylene Composites: Effect of Wood Fibre Source

    Science.gov (United States)

    Butylina, Svetlana; Martikka, Ossi; Kärki, Timo

    2011-04-01

    This study examined the effect of type of wood fibre source on the physical and mechanical properties of wood fibre-polypropylene composites. Wood flour, fibres of heat-treated wood and pellets were used as sources of wood fibres in the manufacturing process. All studied wood fibre-polypropylene composites were made from 75% wood, 22% recycled polypropylene (PP) and 3% maleated polypropylene (MAPP). Wood fibre-polypropylene composites were compounded in a conical twin-screw extruder. Water absorption and thickness swelling were studied. Mechanical properties of the composites were characterised by tensile, flexural, and impact testing. Micromechanical deformation processes were investigated using scanning electron microscopy done on the fractured surfaces of broken samples. The durability of composites exposed to three accelerated cycles of water immersion, freezing and thawing was examined. The results showed that the density of the composites was a key factor governing water absorption and thickness swelling. A significant improvement in tensile strength, flexural strength, and Charpy impact strength was observed for composites reinforced with heat-treated fibre compared to composites reinforced with pellets and especially to wood flour reinforced composites. The flexural strength and dimensional stability performance reduced after exposure to freeze-thaw cycling for all composites, but the degree of these changes was dependent on the wood fibre source.

  18. Radiation-modified blends of the basis of polyethylene terephthalate and polypropylene

    International Nuclear Information System (INIS)

    Mery-Meri, R.; Revyakin, O.; Zicans, J.

    2000-01-01

    The binary composite systems on the basis of post-consumer poly-(ethylene terephthalate) and polypropylene have been investigated. Mechanical properties of the compositions were studied in detail in order to expand the application possibilities of tested binary composites. Structural changes of the poly (ethylene terephthalate) / polypropylene blends depending on the concentration of the components were investigated also. Additionally, the optimum processing conditions were established. Particular attention was paid to study the influence of the ionizing γ-radiation on the structural and mechanical properties of the composition systems tested. The magnitude of the adsorbed dose od γ-radiation was established to affect differently the structure of poly(ethylene terephalate) and polypropylene. At small absorbed doses (50 kGy) crosslinking of the polymer was observed for both poly(ethylene terephthalate) and polypropylene resulting in the increase of some mechanical properties of pure materials as well of their compositions, whereas the absorbed dose of 300 kGy caused the destruction of the tested materials. It is important to mention that the rate of radiation-chemical destruction of polypropylene is higher than poly(ethylene terephthalate) destruction rate. (author)

  19. Bioavailability aspects of hydrophobic contaminant degradation in soils

    OpenAIRE

    Peltola, Rainer

    2008-01-01

    This thesis concentrates on bioavailability of organic soil contaminants in the context of bioremediation of soil contaminated with volatile or non-volatile hydrophobic pollutants. Bioavailability and biodegradation was studied from four viewpoints: (i) Improvement of bioavailability and biodegradation of volatile hydrocarbons in contained bioremediation systems at laboratory - and pilot-scale. (ii) Improvement of bioavailability of non-volatile, hydrophobic compounds in such systems. (iii) B...

  20. Interactions between nano-TiO{sub 2} and the oral cavity: Impact of nanomaterial surface hydrophilicity/hydrophobicity

    Energy Technology Data Exchange (ETDEWEB)

    Teubl, Birgit J.; Schimpel, Christa [Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, 8010 (Austria); Leitinger, Gerd [Institute of Cell Biology, Histology and Embryology, Research Unit Electron Microscopic Techniques, Medical University of Graz, 8010 (Austria); Center for Medical Research, Medical University of Graz, 8010 (Austria); BioTechMed, Graz 8010 (Austria); Bauer, Bettina [Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, 8010 (Austria); Fröhlich, Eleonore [Center for Medical Research, Medical University of Graz, 8010 (Austria); BioTechMed, Graz 8010 (Austria); Zimmer, Andreas [Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, 8010 (Austria); BioTechMed, Graz 8010 (Austria); Roblegg, Eva, E-mail: eva.roblegg@uni-graz.at [Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, 8010 (Austria); BioTechMed, Graz 8010 (Austria)

    2015-04-09

    Highlights: • Hydrophilic as well as hydrophobic TiO{sub 2} NPs agglomerated under oral physiological conditions. • Particles penetrated the upper and lower buccal epithelium, independent on the degree of hydrophilicity. • Most of the hydrophobic particles were found in vesicular structures, while hydrophilic particles were freely distributed in the cytoplasm. • Hydrophilic particles had a higher potential to trigger toxic effects (e.g., ROS) than hydrophobic particles. - Abstract: Titanium dioxide (TiO{sub 2}) nanoparticles are available in a variety of oral applications, such as food additives and cosmetic products. Thus, questions about their potential impact on the oro-gastrointestinal route rise. The oral cavity represents the first portal of entry and is known to rapidly interact with nanoparticles. Surface charge and size contribute actively to the particle–cell interactions, but the influence of surface hydrophilicity/hydrophobicity has never been shown before. This study addresses the biological impact of hydrophilic (NM 103, rutile, 20 nm) and hydrophobic (NM 104, rutile, 20 nm) TiO{sub 2} particles within the buccal mucosa. Particle characterization was addressed with dynamic light scattering and laser diffraction. Despite a high agglomeration tendency, 10% of the particles/agglomerates were present in the nanosized range and penetrated into the mucosa, independent of the surface properties. However, significant differences were observed in intracellular particle localization. NM 104 particles were found freely distributed in the cytoplasm, whereas their hydrophobic counterparts were engulfed in vesicular structures. Although cell viability/membrane integrity was not affected negatively, screening assays demonstrated that NM 104 particles showed a higher potential to decrease the physiological mitochondrial membrane potential than NM 103, resulting in a pronounced generation of reactive oxygen species.