WorldWideScience

Sample records for distinct monodisperse fractions

  1. Distinct magnetic signatures of fractional vortex configurations in multiband superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R. M. da [Programa de Pós-Graduação em Ciência dos Materiais, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire, s/n, 50670-901 Recife-PE (Brazil); Milošević, M. V.; Peeters, F. M. [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Domínguez, D. [Centro Atómico Bariloche, 8400 San Carlos de Bariloche, Río Negro (Argentina); Aguiar, J. Albino, E-mail: albino@df.ufpe.br [Departamento de Física, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire, s/n, 50670-901 Recife-PE (Brazil); Programa de Pós-Graduação em Ciência dos Materiais, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire, s/n, 50670-901 Recife-PE (Brazil)

    2014-12-08

    Vortices carrying fractions of a flux quantum are predicted to exist in multiband superconductors, where vortex core can split between multiple band-specific components of the superconducting condensate. Using the two-component Ginzburg-Landau model, we examine such vortex configurations in a two-band superconducting slab in parallel magnetic field. The fractional vortices appear due to the band-selective vortex penetration caused by different thresholds for vortex entry within each band-condensate, and stabilize near the edges of the sample. We show that the resulting fractional vortex configurations leave distinct fingerprints in the static measurements of the magnetization, as well as in ac dynamic measurements of the magnetic susceptibility, both of which can be readily used for the detection of these fascinating vortex states in several existing multiband superconductors.

  2. A procedure for partitioning bulk sediments into distinct grain-size fractions for geochemical analysis

    Science.gov (United States)

    Barbanti, A.; Bothner, Michael H.

    1993-01-01

    A method to separate sediments into discrete size fractions for geochemical analysis has been tested. The procedures were chosen to minimize the destruction or formation of aggregates and involved gentle sieving and settling of wet samples. Freeze-drying and sonication pretreatments, known to influence aggregates, were used for comparison. Freeze-drying was found to increase the silt/clay ratio by an average of 180 percent compared to analysis of a wet sample that had been wet sieved only. Sonication of a wet sample decreased the silt/clay ratio by 51 percent. The concentrations of metals and organic carbon in the separated fractions changed depending on the pretreatment procedures in a manner consistent with the hypothesis that aggregates consist of fine-grained organic- and metal-rich particles. The coarse silt fraction of a freeze-dried sample contained 20–44 percent higher concentrations of Zn, Cu, and organic carbon than the coarse silt fraction of the wet sample. Sonication resulted in concentrations of these analytes that were 18–33 percent lower in the coarse silt fraction than found in the wet sample. Sonication increased the concentration of lead in the clay fraction by an average of 40 percent compared to an unsonicated sample. Understanding the magnitude of change caused by different analysis protocols is an aid in designing future studies that seek to interpret the spatial distribution of contaminated sediments and their transport mechanisms.

  3. The Dual Edema-Preventing Molecular Mechanism of the Crataegus Extract WS 1442 Can Be Assigned to Distinct Phytochemical Fractions.

    Science.gov (United States)

    Fuchs, Simone; Bischoff, Iris; Willer, Elisabeth A; Bräutigam, Jacqueline; Bubik, Martin F; Erdelmeier, Clemens A J; Koch, Egon; Faleschini, Maria T; De Mieri, Maria; Bauhart, Milena; Zahler, Stefan; Hensel, Andreas; Hamburger, Matthias; Potterat, Olivier; Fürst, Robert

    2017-05-01

    The hawthorn ( Crataegus spp.) extract WS 1442 is used against mild forms of chronic heart failure. This disease is associated with endothelial barrier dysfunction and edema formation. We have recently shown that WS 1442 protects against this dysfunction by a dual mechanism: it both promotes endothelial barrier integrity by activation of a barrier-enhancing pathway (cortactin activation) and inhibits endothelial hyperpermeability by blocking a barrier disruptive pathway (calcium signaling). In this study, we aimed to identify the bioactive compounds responsible for these actions by using a bioactivity-guided fractionation approach. From the four fractions generated from WS 1442 by successive elution with water, 95 % ethanol, methanol, and 70 % acetone, only the water fraction was inactive, whereas the other three triggered a reduction of endothelial hyperpermeability. Analyses of intracellular calcium levels and cortactin phosphorylation were used as readouts to estimate the bioactivity of subfractions and isolated compounds. Interestingly, only the ethanolic fraction interfered with the calcium signaling, whereas only the methanolic fraction led to an activation of cortactin. Thus, the dual mode of action of WS 1442 could be clearly assigned to two distinct fractions. Although the identification of the calcium-active substance(s) was not successful, we could exclude an involvement of phenolic compounds. Cortactin activation, however, could be clearly attributed to oligomeric procyanidins with a distinct degree of polymerization. Taken together, our study provides the first approach to identify the active constituents of WS 1442 that address different cellular pathways leading to the inhibition of endothelial barrier dysfunction. Georg Thieme Verlag KG Stuttgart · New York.

  4. Preparation of large monodisperse vesicles.

    Directory of Open Access Journals (Sweden)

    Ting F Zhu

    Full Text Available Preparation of monodisperse vesicles is important both for research purposes and for practical applications. While the extrusion of vesicles through small pores (approximately 100 nm in diameter results in relatively uniform populations of vesicles, extrusion to larger sizes results in very heterogeneous populations of vesicles. Here we report a simple method for preparing large monodisperse multilamellar vesicles through a combination of extrusion and large-pore dialysis. For example, extrusion of polydisperse vesicles through 5-microm-diameter pores eliminates vesicles larger than 5 microm in diameter. Dialysis of extruded vesicles against 3-microm-pore-size polycarbonate membranes eliminates vesicles smaller than 3 microm in diameter, leaving behind a population of monodisperse vesicles with a mean diameter of approximately 4 microm. The simplicity of this method makes it an effective tool for laboratory vesicle preparation with potential applications in preparing large monodisperse liposomes for drug delivery.

  5. High speed cryogenic monodisperse targets

    Science.gov (United States)

    Boukharov, A.; Vishnevkii, E.

    2017-11-01

    The basic possibility of creation of high speed cryogenic monodisperse targets is shown. According to calculations at input of thin liquid cryogenic jets with a velocity of bigger 100 m/s in vacuum the jets don’t manage to freeze at distance to 1 mm and can be broken into monodisperse drops. Drops due to evaporation are cooled and become granules. High speed cryogenic monodisperse targets have the following advantages: direct input in vacuum (there is no need for a chamber of a triple point chamber and sluices), it is possible to use the equipment of a cluster target, it is possible to receive targets with a diameter of D 100m/s), exact synchronization of the target hitting moment in a beam with the moment of sensors turning on.

  6. Aerosol fabrication methods for monodisperse nanoparticles

    Science.gov (United States)

    Jiang, Xingmao; Brinker, C Jeffrey

    2014-10-21

    Exemplary embodiments provide materials and methods for forming monodisperse particles. In one embodiment, the monodisperse particles can be formed by first spraying a nanoparticle-containing dispersion into aerosol droplets and then heating the aerosol droplets in the presence of a shell precursor to form core-shell particles. By removing either the shell layer or the nanoparticle core of the core-shell particles, monodisperse nanoparticles can be formed.

  7. In situ Gelation of Monodisperse Alginate Hydrogel in Microfluidic Channel Based on Mass Transfer of Calcium Ions

    International Nuclear Information System (INIS)

    Song, YoungShin; Lee, Chang-Soo

    2014-01-01

    A microfluidic method for the in situ production of monodispersed alginate hydrogels using biocompatible polymer gelation by crosslinker mass transfer is described. Gelation of the hydrogel was achieved in situ by the dispersed calcium ion in the microfluidic device. The capillary number (Ca) and the flow rate of the disperse phase which are important operating parameters mainly influenced the formation of three distinctive flow regions, such as dripping, jetting, and unstable dripping. Under the formation of dripping region, monodispersed alginate hydrogels having a narrow size distribution (C.V=2.71%) were produced in the microfluidic device and the size of the hydrogels, ranging from 30 to 60 µm, could be easily controlled by varying the flow rate, viscosity, and interfacial tension. This simple microfluidic method for the production of monodisperse alginate hydrogels shows strong potential for use in delivery systems of foods, cosmetics, inks, and drugs, and spherical alginate hydrogels which have biocompatibility will be applied to cell transplantation

  8. In situ Gelation of Monodisperse Alginate Hydrogel in Microfluidic Channel Based on Mass Transfer of Calcium Ions

    Energy Technology Data Exchange (ETDEWEB)

    Song, YoungShin; Lee, Chang-Soo [Chungnam National University, Daejeon (Korea, Republic of)

    2014-10-15

    A microfluidic method for the in situ production of monodispersed alginate hydrogels using biocompatible polymer gelation by crosslinker mass transfer is described. Gelation of the hydrogel was achieved in situ by the dispersed calcium ion in the microfluidic device. The capillary number (Ca) and the flow rate of the disperse phase which are important operating parameters mainly influenced the formation of three distinctive flow regions, such as dripping, jetting, and unstable dripping. Under the formation of dripping region, monodispersed alginate hydrogels having a narrow size distribution (C.V=2.71%) were produced in the microfluidic device and the size of the hydrogels, ranging from 30 to 60 µm, could be easily controlled by varying the flow rate, viscosity, and interfacial tension. This simple microfluidic method for the production of monodisperse alginate hydrogels shows strong potential for use in delivery systems of foods, cosmetics, inks, and drugs, and spherical alginate hydrogels which have biocompatibility will be applied to cell transplantation.

  9. Progress in Preparation of Monodisperse Polymer Microspheres

    Science.gov (United States)

    Zhang, Hongyan

    2017-12-01

    The monodisperse crosslinked polymer microspheres have attracted much attention because of their superior thermal and solvent resistance, mechanical strength, surface activity and adsorption properties. They are of wide prospects for using in many fields such as biomedicine, electronic science, information technology, analytical chemistry, standard measurement and environment protection etc. Functional polymer microspheres prepared by different methods have the outstanding surface property, quantum size effect and good potential future in applications with its designable structure, controlled size and large ratio of surface to volume. Scholars of all over the world have focused on this hot topic. The preparation method and research progress in functional polymer microspheres are addressed in the paper.

  10. Self-diffusion in monodisperse three-dimensional magnetic fluids by molecular dynamics simulations

    International Nuclear Information System (INIS)

    Dobroserdova, A.B.; Kantorovich, S.S.

    2017-01-01

    In the present work we study the self-diffusion behaviour in the three-dimensional monodisperse magnetic fluids using the Molecular Dynamics Simulation and Density Functional Theory. The peculiarity of computer simulation is to study two different systems: dipolar and soft sphere ones. In the theoretical method, it is important to choose the approximation for the main structures, which are chains. We compare the theoretical results and the computer simulation data for the self-diffusion coefficient as a function of the particle volume fraction and magnetic dipole-dipole interaction parameter and find the qualitative and quantitative agreement to be good. - Highlights: • The paper deals with the study of the self-diffusion in monodisperse three-dimensional magnetic fluids. • The theoretical approach contains the free energy density functional minimization. • Computer simulations are performed by the molecular dynamics method. • We have a good qualitative and quantitative agreement between the theoretical results and computer simulation data.

  11. Self-diffusion in monodisperse three-dimensional magnetic fluids by molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Dobroserdova, A.B. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Kantorovich, S.S., E-mail: alla.dobroserdova@urfu.ru [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); University of Vienna, Sensengasse 8, Vienna (Austria)

    2017-06-01

    In the present work we study the self-diffusion behaviour in the three-dimensional monodisperse magnetic fluids using the Molecular Dynamics Simulation and Density Functional Theory. The peculiarity of computer simulation is to study two different systems: dipolar and soft sphere ones. In the theoretical method, it is important to choose the approximation for the main structures, which are chains. We compare the theoretical results and the computer simulation data for the self-diffusion coefficient as a function of the particle volume fraction and magnetic dipole-dipole interaction parameter and find the qualitative and quantitative agreement to be good. - Highlights: • The paper deals with the study of the self-diffusion in monodisperse three-dimensional magnetic fluids. • The theoretical approach contains the free energy density functional minimization. • Computer simulations are performed by the molecular dynamics method. • We have a good qualitative and quantitative agreement between the theoretical results and computer simulation data.

  12. The Generation And Properties Of Solid Monodisperse Aerosols Of ...

    African Journals Online (AJOL)

    A monodisperse aerosol generator (MAGE) was used to generate calibration or monodisperse aerosols containing stearic acid and carnauba wax. Some of the factors affecting the size of aerosol particles generated with the MAGE were determined. The factors include: temperature of operation of the MAGE, type and purity ...

  13. Monodisperse Attoliter Droplet Formation Using a Nano-Microchannel Interface

    NARCIS (Netherlands)

    Shui, Lingling; van den Berg, Albert; Eijkel, Jan C.T.; Kim, Tae Song; Lee, Yoon-Sik; Chung, Taek-Dong; Jeon, Noo Li; Suh, Kahp-Yang; Choo, Jaebum; Kim, Yong-Kweon

    2009-01-01

    We demonstrate the production of sub-micrometer diameter monodisperse droplets by using a nano-micro channel interface. A perfectly steady nanoscopic liquid filament can be formed by a geometric confinement which eventually gives rise to a stable production of nearly perfectly monodisperse droplets.

  14. Elongational viscosity of monodisperse and bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole

    2006-01-01

    The start-up and steady uniaxial elongational viscosity have been measured for two monodisperse polystyrene melts with molecular weights of 52 and 103 kg/mole, and for three bidisperse polystyrene melts. The monodisperse melts show a maximum in the steady elongational viscosity vs. the elongational...

  15. Monodisperse microdroplet generation and stopping without coalescence

    Science.gov (United States)

    Beer, Neil Reginald

    2015-04-21

    A system for monodispersed microdroplet generation and trapping including providing a flow channel in a microchip; producing microdroplets in the flow channel, the microdroplets movable in the flow channel; providing carrier fluid in the flow channel using a pump or pressure source; controlling movement of the microdroplets in the flow channel and trapping the microdroplets in a desired location in the flow channel. The system includes a microchip; a flow channel in the microchip; a droplet maker that generates microdroplets, the droplet maker connected to the flow channel; a carrier fluid in the flow channel, the carrier fluid introduced to the flow channel by a source of carrier fluid, the source of carrier fluid including a pump or pressure source; a valve connected to the carrier fluid that controls flow of the carrier fluid and enables trapping of the microdroplets.

  16. Logarithmic Exchange Kinetics in Monodisperse Copolymeric Micelles

    Science.gov (United States)

    García Daza, Fabián A.; Bonet Avalos, Josep; Mackie, Allan D.

    2017-06-01

    Experimental measurements of the relaxation kinetics of copolymeric surfactant exchange for micellar systems unexpectedly show a peculiar logarithmic decay. Several authors use polydispersity as an explanation for this behavior. However, in coarse-grained simulations that preserve microscopic details of the surfactants, we find evidence of the same logarithmic behavior. Since we use a strictly monodisperse distribution of chain lengths such a relaxation process cannot be attributed to polydispersity, but has to be caused by an inherent physical process characteristic of this type of system. This is supported by the fact that the decay is specifically logarithmic and not a power law with an exponent inherited from the particular polydispersity distribution of the sample. We suggest that the degeneracy of the energy states of the hydrophobic block in the core, which is broken on leaving the micelle, can qualitatively explain the broad distribution of energy barriers, which gives rise to the observed nonexponential relaxation.

  17. Monodisperse conjugated polymer particles by Suzuki-Miyaura dispersion polymerization.

    Science.gov (United States)

    Kuehne, Alexander J C; Gather, Malte C; Sprakel, Joris

    2012-01-01

    The self-assembly of colloidal building blocks into complex and hierarchical structures offers a versatile and powerful toolbox for the creation of new photonic and optoelectronic materials. However, well-defined and monodisperse colloids of semiconducting polymers, which would form excellent building blocks for such self-assembled materials, are not readily available. Here we report the first demonstration of a Suzuki-Miyaura dispersion polymerization; this method produces highly monodisperse submicrometer particles of a variety of semiconducting polymers. Moreover, we show that these monodisperse particles readily self-assemble into photonic crystals that exhibit a pronounced photonic stopgap.

  18. Meta-analysis of diffusion tensor imaging (DTI) studies shows altered fractional anisotropy occurring in distinct brain areas in association with depression

    LENUS (Irish Health Repository)

    Murphy, Melissa L

    2011-09-27

    Abstract Fractional anisotropy anomalies occurring in the white matter tracts in the brains of depressed patients may reflect microstructural changes underlying the pathophysiology of this disorder. We conducted a meta-analysis of fractional anisotropy abnormalities occurring in major depressive disorder using voxel-based diffusion tensor imaging studies. Using the Embase, PubMed and Google Scholar databases, 89 relevant data sets were identified, of which 7 (including 188 patients with major depressive disorder and 221 healthy controls) met our inclusion criteria. Authors were contacted to retrieve any additional data required. Coordinates were extracted from clusters of significant white matter fractional anisotropy differences between patients and controls. Relevant demographic, clinical and methodological variables were extracted from each study or obtained directly from authors. The meta-analysis was carried out using Signed Differential Mapping. Patients with depression showed decreased white matter fractional anisotropy values in the superior longitudinal fasciculus and increased fractional anisotropy values in the fronto-occipital fasciculus compared to controls. Using quartile and jackknife sensitivity analysis, we found that reduced fractional anisotropy in the left superior longitudinal fasciculus was very stable, with increases in the right fronto-occipital fasciculus driven by just one study. In conclusion, our meta-analysis revealed a significant reduction in fractional anisotropy values in the left superior longitudinal fasciculus, which may ultimately play an important role in the pathology of depression.

  19. Meta-analysis of diffusion tensor imaging studies shows altered fractional anisotropy occurring in distinct brain areas in association with depression.

    LENUS (Irish Health Repository)

    Murphy, Melissa L

    2011-09-01

    Fractional anisotropy anomalies occurring in the white matter tracts in the brains of depressed patients may reflect microstructural changes underlying the pathophysiology of this disorder. We conducted a meta-analysis of fractional anisotropy abnormalities occurring in major depressive disorder using voxel-based diffusion tensor imaging studies. Using the Embase, PubMed and Google Scholar databases, 89 relevant data sets were identified, of which 7 (including 188 patients with major depressive disorder and 221 healthy controls) met our inclusion criteria. Authors were contacted to retrieve any additional data required. Coordinates were extracted from clusters of significant white matter fractional anisotropy differences between patients and controls. Relevant demographic, clinical and methodological variables were extracted from each study or obtained directly from authors. The meta-analysis was carried out using Signed Differential Mapping. Patients with depression showed decreased white matter fractional anisotropy values in the superior longitudinal fasciculus and increased fractional anisotropy values in the fronto-occipital fasciculus compared to controls. Using quartile and jackknife sensitivity analysis, we found that reduced fractional anisotropy in the left superior longitudinal fasciculus was very stable, with increases in the right fronto-occipital fasciculus driven by just one study. In conclusion, our meta-analysis revealed a significant reduction in fractional anisotropy values in the left superior longitudinal fasciculus, which may ultimately play an important role in the pathology of depression.

  20. A general approach for monodisperse colloidal perovskites, Chemistry of Materials

    NARCIS (Netherlands)

    Demirors, A.F.|info:eu-repo/dai/nl/30483176X; Imhof, A.|info:eu-repo/dai/nl/145641600

    2009-01-01

    We describe a novel general method for synthesizing monodisperse colloidal perovskite particles at room temperature by postsynthesis addition of metal hydroxides to amorphous titania colloids. In previous work, we used titania particles to synthesize homogenously mixed silica-titania composite

  1. Rapid enumeration of phage in monodisperse emulsions.

    Science.gov (United States)

    Tjhung, Katrina F; Burnham, Sean; Anany, Hany; Griffiths, Mansel W; Derda, Ratmir

    2014-06-17

    Phage-based detection assays have been developed for the detection of viable bacteria for applications in clinical diagnosis, monitoring of water quality, and food safety. The majority of these assays deliver a positive readout in the form of newly generated progeny phages by the bacterial host of interest. Progeny phages are often visualized as plaques, or holes, in a lawn of bacteria on an agar-filled Petri dish; however, this rate-limiting step requires up to 12 h of incubation time. We have previously described an amplification of bacteriophages M13 inside droplets of media suspended in perfluorinated oil; a single phage M13 in a droplet yields 10(7) copies in 3-4 h. Here, we describe that encapsulation of reporter phages, both lytic T4-LacZ and nonlytic M13, in monodisperse droplets can also be used for rapid enumeration of phage. Compartmentalization in droplets accelerated the development of the signal from the reporter enzyme; counting of "positive" droplets yields accurate enumeration of phage particles ranging from 10(2) to 10(6) pfu/mL. For enumeration of T4-LacZ phage, the fluorescent signal appeared in as little as 90 min. Unlike bulk assays, quantification in emulsion is robust and insensitive to fluctuations in environmental conditions (e.g., temperature). Power-free emulsification using gravity-driven flow in the absence of syringe pumps and portable fluorescence imaging solutions makes this technology promising for use at the point of care in low-resource environments. This droplet-based phage enumeration method could accelerate and simplify point-of-care detection of the pathogens for which reporter bacteriophages have been developed.

  2. Distinct 238U/235U ratios and REE patterns in plutonic and volcanic angrites: Geochronologic implications and evidence for U isotope fractionation during magmatic processes

    Science.gov (United States)

    Tissot, François L. H.; Dauphas, Nicolas; Grove, Timothy L.

    2017-09-01

    Angrites are differentiated meteorites that formed between 4 and 11 Myr after Solar System formation, when several short-lived nuclides (e.g., 26Al-26Mg, 53Mn-53Cr, 182Hf-182W) were still alive. As such, angrites are prime anchors to tie the relative chronology inferred from these short-lived radionuclides to the absolute Pb-Pb clock. The discovery of variable U isotopic composition (at the sub-permil level) calls for a revision of Pb-Pb ages calculated using an ;assumed; constant 238U/235U ratio (i.e., Pb-Pb ages published before 2009-2010). In this paper, we report high-precision U isotope measurement for six angrite samples (NWA 4590, NWA 4801, NWA 6291, Angra dos Reis, D'Orbigny, and Sahara 99555) using multi-collector inductively coupled plasma mass-spectrometry and the IRMM-3636 U double-spike. The age corrections range from -0.17 to -1.20 Myr depending on the samples. After correction, concordance between the revised Pb-Pb and Hf-W and Mn-Cr ages of plutonic and quenched angrites is good, and the initial (53Mn/55Mn)0 ratio in the Early Solar System (ESS) is recalculated as being (7 ± 1) × 10-6 at the formation of the Solar System (the error bar incorporates uncertainty in the absolute age of Calcium, Aluminum-rich inclusions - CAIs). An uncertainty remains as to whether the Al-Mg and Pb-Pb systems agree in large part due to uncertainties in the Pb-Pb age of CAIs. A systematic difference is found in the U isotopic compositions of quenched and plutonic angrites of +0.17‰. A difference is also found between the rare earth element (REE) patterns of these two angrite subgroups. The δ238U values are consistent with fractionation during magmatic evolution of the angrite parent melt. Stable U isotope fractionation due to a change in the coordination environment of U during incorporation into pyroxene could be responsible for such a fractionation. In this context, Pb-Pb ages derived from pyroxenes fraction should be corrected using the U isotope composition

  3. Preparation of monodisperse silicon nanocrystals through density-gradient unltracentrifugation in organic solvents

    Science.gov (United States)

    Miller, Joseph B.; van Sickle, Austin; Iyer, Swathi; Anthony, Rebecca A.; Kortshagen, Uwe R.; Hobbie, Erik K.

    2011-03-01

    Monodisperse colloidal suspensions of ligand-coated silicon nanocrystals, synthesized through a nonthermal low-pressure plasma reaction, have been prepared through density-gradient ultracentrifugation in mixed organic solvents. Density-gradient profiles of mixed chloroform and m-xylene are used to tune and control the settling speed of the nanoparticles and hence optimize their transient separation by size along the depth of polyoxymethylene ultracentrifuge tubes. The mean size and polydispersity of the extracted fractions are characterized through photoluminescence spectroscopy and transmission electron microscopy, and the self-assembly of fractions into close-packed crystal lattices is achieved using an immiscible two-fluid evaporation scheme. The photophysical properties of the nanocrystal lattices are compared with those of the starting materials and suspensions, and the influence of atmospheric oxygen on the stability of the nanocrystal photoluminescence is measured. Supported by the DOE through DE-FG36-08GO88160.

  4. Stimulus-specific activation and actin dependency of distinct, spatially separated ERK1/2 fractions in A7r5 smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Susanne Vetterkind

    Full Text Available A proliferative response of smooth muscle cells to activation of extracellular signal regulated kinases 1 and 2 (ERK1/2 has been linked to cardiovascular disease. In fully differentiated smooth muscle, however, ERK1/2 activation can also regulate contraction. Here, we use A7r5 smooth muscle cells, stimulated with 12-deoxyphorbol 13-isobutylate 20-acetate (DPBA to induce cytoskeletal remodeling or fetal calf serum (FCS to induce proliferation, to identify factors that determine the outcomes of ERK1/2 activation in smooth muscle. Knock down experiments, immunoprecipitation and proximity ligation assays show that the ERK1/2 scaffold caveolin-1 mediates ERK1/2 activation in response to DPBA, but not FCS, and that ERK1/2 is released from caveolin-1 upon DPBA, but not FCS, stimulation. Conversely, ERK1/2 associated with the actin cytoskeleton is significantly reduced after FCS, but not DPBA stimulation, as determined by Triton X fractionation. Furthermore, cytochalasin treatment inhibits DPBA, but not FCS-induced ERK1/2 phosphorylation, indicating that the actin cytoskeleton is not only a target but also is required for ERK1/2 activation. Our results show that (1 at least two ERK1/2 fractions are regulated separately by specific stimuli, and that (2 the association of ERK1/2 with the actin cytoskeleton regulates the outcome of ERK1/2 signaling.

  5. What governs the oxygen and hydrogen isotopic composition of precipitation? - A case for varying proportions of isotopically-distinct, convective and stratiform rain fractions

    Science.gov (United States)

    Aggarwal, P. K.; araguas Araguas, L.; Belachew, D.; Schumacher, C.; Funk, A. B.; Longstaffe, F. J.; Terzer, S.

    2016-12-01

    Beginning with the pioneering work of Dansgaard in 1953, stable water isotope ratios have been observed to be different in precipitation from different clouds, such as convective showers and continuous frontal rain, hydrologically more or less organized systems, or those with or without `bright bands' in radar reflectivity. The variability in isotope ratios of precipitation has always been interpreted, however, using a Rayleigh distillation framework, with lower isotope ratios resulting from condensation at lower temperatures and/or greater air mass distillation, a lack of below-cloud evaporation or in-cloud re-cycling, etc. Rayleigh distillation based approaches do not account for the fact that tropical and midlatitude precipitation consists of varying proportions of two fundamental rain types - widespread but lower intensity, stratiform and spatially-limited but higher intensity, convective - which form under very different cloud dynamical and microphysical environments. Using rain type fraction and isotope data from a large set of monitoring stations, we will show that differences in cloud processes impart characteristic isotope signatures to the two rain types and that their changing proportions during storm events are primarily responsible for precipitation isotope variability. As a result, isotope ratios can be used to partition precipitation into convective or stratiform rain fractions, which is important for understanding cloud feedbacks and atmospheric circulation response to precipitation, as well as climate impacts on the water cycle. We will also discuss the changing character of tropical and midlatitude precipitation over the past several decades and its implications.

  6. A microfluidic approach to fabricate monodisperse hollow or porous poly(HEMA-MMA) microspheres using single emulsions as templates.

    Science.gov (United States)

    Zhang, Hao; Ju, Xiao-Jie; Xie, Rui; Cheng, Chang-Jing; Ren, Ping-Wei; Chu, Liang-Yin

    2009-08-01

    We have successfully developed a novel and simple method to controllably prepare monodisperse poly(hydroxyethyl methacrylate-methyl methacrylate) (poly(HEMA-MMA)) microspheres with two distinct structures using single emulsions as templates. By employing a microfluidic emulsification approach to fabricate monomer-contained oil-in-water (O/W) emulsions as templates, and introducing proper initiators and different types of porogens, poly(HEMA-MMA) microspheres with hollow or porous structure are prepared in a controllable way. The shell thickness of hollow microspheres or the porosity of porous microspheres is controllably achieved by simply adjusting the porogen concentration. The prepared poly(HEMA-MMA) microspheres with controllable hollow or porous structures are favored for various potential applications. Furthermore, by using the simple preparation methodology proposed in this study, fabrication of monodisperse porous microspheres or hollow microcapsules with other materials can also be easily achieved.

  7. Growth Kinetics of Monodisperse Polystyrene Microspheres Prepared by Dispersion Polymerization

    Directory of Open Access Journals (Sweden)

    Fan Li

    2013-01-01

    Full Text Available Dispersion polymerization has been widely applied to the synthesis of monodisperse micron-sized polymer colloidal spheres. Many efforts have been devoted to studying the influence of initial conditions on the size and uniformity of the resultant microspheres, aiming to synthesize micron-size monodisperse colloidal spheres. However, the inner contradiction between the size and the size distribution of colloidal spheres hinders the realization of this goal. In this work, we drew our attention from the initial conditions to the growth stage of dispersion polymerization. We tracked the size evolution of colloidal sphere during the dispersion polymerization, through which we established a kinetic model that described the relationship between the monomer concentration and the reaction time. The model may provide a guideline to prepare large polymer colloidal spheres with good monodispersity by continuous monomer feeding during the growth stage to maintain the concentration of monomer at a constant value in a dispersion polymerization process.

  8. Methods for producing monodispersed particles of barium titanate

    Science.gov (United States)

    Hu, Zhong-Cheng

    2001-01-01

    The present invention is a low-temperature controlled method for producing high-quality, ultrafine monodispersed nanocrystalline microsphere powders of barium titanate and other pure or composite oxide materials having particles ranging from nanosized to micronsized particles. The method of the subject invention comprises a two-stage process. The first stage produces high quality monodispersed hydrous titania microsphere particles prepared by homogeneous precipitation via dielectric tuning in alcohol-water mixed solutions of inorganic salts. Titanium tetrachloride is used as an inorganic salt precursor material. The second stage converts the pure hydrous titania microsphere particles into crystalline barium titanate microsphere powders via low-temperature, hydrothermal reactions.

  9. Segmented copolymers with monodisperse crystallizable hard segments: novel semi-crystalline materials

    NARCIS (Netherlands)

    Gaymans, R.J.

    2011-01-01

    Segmented block copolymers with short monodisperse crystallizable hard segments have interesting structures and properties. In the melt, such short monodisperse segments are miscible with the matrix segments. Moreover, upon cooling, they crystallize fast, demonstrating a very high crystallinity, and

  10. Controlled magnetosomes: Embedding of magnetic nanoparticles into membranes of monodisperse lipid vesicles.

    Science.gov (United States)

    Bixner, Oliver; Reimhult, Erik

    2016-03-15

    Magnetic nanoparticle-containing capsules have been proposed for many uses, including triggered drug delivery and imaging. Combining superparamagnetic iron oxide nanoparticles (SPIONs) with existing liposome drug delivery technology is an enticing near-future prospect, but it requires efficient methods of synthesis and formulation compatible with pharmaceutical applications. We report a facile way of producing large, unilamellar, and homogeneously sized magnetoliposomes with high content of monodisperse, hydrophobic SPIONs integrated in the lipid membrane by use of a solvent inversion technique. For low lipid concentrations, unilamellar and monodisperse vesicles were obtained that became increasingly multilamellar with higher lipid fraction. Both, the co-self-assembled structure and loading content were significantly influenced by the purity of the nanoparticle shell. SPIONs with homogeneous shells of nitrodopamine-anchored hydrophobic dispersants could be quantitatively loaded up to 20%w/w, while SPIONs also containing residual physisorbed oleic acid exhibited a loading cut-off around 10%w/w SPIONs accompanied by drastic changes in size distribution. Lipid acyl chain length crucially influenced the formation and resultant stability of the loaded assemblies. The formation of nanoparticle-loaded vesicles is exemplified in different biologically important media, yielding ready-to-use magnetoliposome formulations. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Performance of SMARTer at Very Low Scattering Vector q-Range Revealed by Monodisperse Nanoparticles

    International Nuclear Information System (INIS)

    Putra, E. Giri Rachman; Ikram, A.; Bharoto,; Santoso, E.; Sairun

    2008-01-01

    A monodisperse nanoparticle sample of polystyrene has been employed to determine performance of the 36 meter small-angle neutron scattering (SANS) BATAN spectrometer (SMARTer) at the Neutron Scattering Laboratory (NSL)--Serpong, Indonesia, in a very low scattering vector q-range. Detector position at 18 m from sample position, beam stopper of 50 mm in diameter, neutron wavelength of 5.66 A as well as 18 m-long collimator had been set up to achieve very low scattering vector q-range of SMARTer. A polydisperse smeared-spherical particle model was applied to fit the corrected small-angle scattering data of monodisperse polystyrene nanoparticle sample. The mean average of particle radius of 610 A, volume fraction of 0.0026, and polydispersity of 0.1 were obtained from the fitting results. The experiment results from SMARTer are comparable to SANS-J, JAEA - Japan and it is revealed that SMARTer is powerfully able to achieve the lowest scattering vector down to 0.002 A -1

  12. Tensile properties of segmented block copolymers with monodisperse hard segments

    NARCIS (Netherlands)

    Biemond, G.J.E.; Feijen, Jan; Gaymans, R.J.

    2008-01-01

    The tensile properties of segmented block copolymers with mono-disperse hard segments were studied with respect to the hard segment content (16–44 wt.%) and the temperature (20–110 °C). The copolymers were comprised of poly(tetramethylene oxide) segments with the molecular weights of 650–2,900 Da

  13. Facile synthesis of monodisperse thermally immiscible Ag–Ni alloy ...

    Indian Academy of Sciences (India)

    Administrator

    amorphous Ag–Ni alloy nanoparticles (ANPs) with mono-disperse distribution. Microscopic and spectroscopic studies confirmed dependence of the alloy composition on size of nanoparticles. In the presence of different ligands such as sodium citrate, polyvinyl alcohol and potassium carbonate a mixture of silver oxide and ...

  14. Major- and minor-metal composition of three distinct solid material fractions associated with Juan de Fuca hydrothermal fluids (northeast Pacific), and calculation of dilution fluid samples

    Science.gov (United States)

    Hinkley, T.K.; Seeley, J.L.; Tatsumoto, M.

    1988-01-01

    Three distinct types of solid material are associated with each sample of the hydrothermal fluid that was collected from the vents of the Southern Juan de Fuca Ridge. The solid materials appear to be representative of deposits on ocean floors near mid-ocean ridges, and interpretation of the chemistry of the hydrothermal solutions requires understanding of them. Sr isotopic evidence indicates that at least two and probably all three of these solid materials were removed from the solution with which they are associated, by precipitation or adsorption. This occurred after the "pure" hydrothermal fluid was diluted and thoroughly mixed with ambient seawater. The three types of solid materials, are, respectively, a coarse Zn- and Fe-rich material with small amounts of Na and Ca; a finer material also rich in Zn and Fe, but with alkali and alkaline-earth metals; and a scum composed of Ba or Zn, with either considerable Fe or Si, and Sr. Mineral identification is uncertain because of uncertain anion composition. Only in the cases of Ba and Zn were metal masses greater in solid materials than in the associated fluids. For all other metals measured, masses in fluids dwarf those in solids. The fluids themselves contain greater concentrations of all metals measured, except Mg, than seawater. We discuss in detail the relative merits of two methods of determining the mixing proportions of "pure" hydrothermal solution and seawater in the fluids, one based on Sr isotopes, and another previously used method based on Mg concentrations. Comparison of solute concentrations in the several samples shows that degree of dilution of "pure" hydrothermal solutions by seawater, and amounts of original solutes that were removed from it as solid materials, are not related. There is no clear evidence that appreciable amounts of solid materials were not conserved (lost) either during or prior to sample collection. ?? 1988.

  15. High Deformability and Particle Size Distribution of Monodisperse Phytoglycogen Nanoparticles Revealed By Atomic Force Microscopy Imaging

    Science.gov (United States)

    Baylis, Benjamin; Dutcher, John

    We have used atomic force microscopy (AFM) imaging in water to determine the volume of hydrated monodisperse phytoglycogen nanoparticles adsorbed onto mica surfaces. By significantly reducing the interaction between the AFM tip and the ``sticky'' nanoparticles, we were able to obtain high quality images. We found that the adsorbed particles are highly deformed, forming pancake-like objects on the hydrophilic mica surface. By measuring the distribution of particle volumes, we calculated the average effective spherical radius of the hydrated particles, and compared this value with that measured in solution using small angle neutron scattering. These measurements illustrate the distinct advantages of AFM imaging over other imaging techniques, namely the ability to measure the height of objects in a liquid environment.

  16. Monodisperse iron phosphate nanospheres: preparation and application in energy storage.

    Science.gov (United States)

    Zhao, Junmei; Jian, Zelang; Ma, Jie; Wang, Fuchun; Hu, Yong-Sheng; Chen, Wen; Chen, Liquan; Liu, Huizhou; Dai, Sheng

    2012-08-01

    An approach to synthesize monodisperse nanospheres with nanoporous structure through a solvent extraction route using an acid-base-coupled extractant has been developed. The nanospheres form through self-assembly and templating by reverse micelles in the organic solvent extraction systems. More importantly, the used extractant in this route can be recycled. The power of this approach is demonstrated by the synthesis of monodisperse iron phosphate nanospheres, exhibiting promising applications in energy storage. The synthetic parameters have been optimized. Based on this, a possible formation mechanism is also proposed. The synthetic procedure is relatively simple and could be extended to synthesize other water-insoluble inorganic metal salts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Synthesis of Monodisperse Iron Oxide Nanoparticles without Surfactants

    Directory of Open Access Journals (Sweden)

    Xiao-Chen Yang

    2014-01-01

    Full Text Available Monodisperse iron oxide nanoparticles could be successfully synthesized with two kinds of precipitants through a precipitation method. As-prepared nanoparticles in the size around 10 nm with regular spherical-like shape were achieved by adjusting pH values. NaOH and NH3·H2O were used as two precipitants for comparison. The average size of nanoparticles with NH3·H2O precipitant got smaller and represented better dispersibility, while nanoparticles with NaOH precipitant represented better magnetic property. This work provided a simple method without using any organic solvents, organic metal salts, or surfactants which could easily obtain monodisperse nanoparticles with tunable morphology.

  18. A co-flow-focusing monodisperse microbubble generator

    KAUST Repository

    Zhang, Jiaming

    2014-02-14

    We use a simple and inexpensive microfluidic device, which is based on microscope glass slides and two tapered glass capillaries, to produce monodisperse microbubbles. The innermost capillary used for transporting the gas is inserted into the second capillary, with its 2 μm sharp tip aligned with the center of the converging-diverging throat of the second capillary. This configuration provides a small and smooth gas flow rate, and a high velocity gradient at the tube outlet. Highly monodisperse microbubbles with diameters ranging from 3.5 to 60 microns have been successfully produced at a rate of up to 40 kHz. A simple scaling law, which is based on the capillary number and liquid-to-gas flow rate ratio, successfully predicts the bubble size. © 2014 IOP Publishing Ltd.

  19. Laboratory evaluation of a vibrating orifice monodisperse aerosol generator

    International Nuclear Information System (INIS)

    Everitt, N.M.; Snelling, K.W.

    1985-02-01

    The Berglund-Liu vibrating orifice aerosol generator is capable of producing monodisperse particles in the diameter range 5 to 50 μm. Experiments have been carried out to set up and evaluate such a generator for the preparation of standard liquid (olive oil) and solid (methylene blue) aerosols in the size range 8 to 13 μm. Modifications have been made to the apparatus to improve its performance and increase its particle output. (author)

  20. Pore shapes, volume distribution and orientations in monodisperse granular assemblies

    OpenAIRE

    Sufian, Adnan; Russell, Adrian R.; Saadatfar, Mohammad; Whittle, Andrew

    2015-01-01

    The complex mechanical behaviour of granular materials is commonly studied by considering the evolving particle contact network. An often overlooked feature is the influence of micro-scale geometric configuration of pores on the macroscopic response. This paper presents a series of tools to quantify the shape, volume distribution and orientation characteristics of the pore space. The proposed approach is compared against data extracted from physical and numerical experiments with monodisperse...

  1. Facile Synthesis of Monodisperse CdS Nanocrystals via Microreaction

    Directory of Open Access Journals (Sweden)

    Zhou Xinggui

    2009-01-01

    Full Text Available Abstract CdS-based nanocrystals (NCs have attracted extensive interest due to their potential application as key luminescent materials for blue and white LEDs. In this research, the continuous synthesis of monodisperse CdS NCs was demonstrated utilizing a capillary microreactor. The enhanced heat and mass transfer in the microreactor was useful to reduce the reaction temperature and residence time to synthesize monodisperse CdS NCs. The superior stability of the microreactor and its continuous operation allowed the investigation of synthesis parameters with high efficiency. Reaction temperature was found to be a key parameter for balancing the reactivity of CdS precursors, while residence time was shown to be an important factor that governs the size and size distribution of the CdS NCs. Furthermore, variation of OA concentration was demonstrated to be a facile tuning mechanism for controlling the size of the CdS NCs. The variation of the volume percentage of OA from 10.5 to 51.2% and the variation of the residence time from 17 to 136 s facilitated the synthesis of monodisperse CdS NCs in the size range of 3.0–5.4 nm, and the NCs produced photoluminescent emissions in the range of 391–463 nm.

  2. Morphologically and size uniform monodisperse particles and their shape-directed self-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Joshua E.; Bell, Howard Y.; Ye, Xingchen; Murray, Christopher Bruce

    2017-09-12

    Monodisperse particles having: a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology are disclosed. Due to their uniform size and shape, the monodisperse particles self assemble into superlattices. The particles may be luminescent particles such as down-converting phosphor particles and up-converting phosphors. The monodisperse particles of the invention have a rare earth-containing lattice which in one embodiment may be an yttrium-containing lattice or in another may be a lanthanide-containing lattice. The monodisperse particles may have different optical properties based on their composition, their size, and/or their morphology (or shape). Also disclosed is a combination of at least two types of monodisperse particles, where each type is a plurality of monodisperse particles having a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology; and where the types of monodisperse particles differ from one another by composition, by size, or by morphology. In a preferred embodiment, the types of monodisperse particles have the same composition but different morphologies. Methods of making and methods of using the monodisperse particles are disclosed.

  3. Highly Selective Synthesis of Catalytically Active Monodisperse Rhodium Nanocubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Grass, M.E.; Kuhn, J.N.; Tao, F.; Habas, S.E.; Huang, W.; Yang, P.; Somorjai, G.A.

    2009-02-21

    Synthesis of monodisperse and shape-controlled colloidal inorganic nanocrystals (NCs) is of increasing scientific interest and technological significance. Recently, shape control of Pt, Pd, Ag, Au, and Rh NCs has been obtained by tuning growth kinetics in various solution-phase approaches, including modified polyol methods, seeded growth by polyol reduction, thermolysis of organometallics, and micelle techniques. Control of reduction kinetics of the noble metal precursors and regulation of the relative growth rates of low-index planes (i.e. {l_brace}100{r_brace} and {l_brace}111{r_brace}) via selective adsorption of selected chemical species are two keys for achieving shape modification of noble metal NCs. One application for noble metal NCs of well-defined shape is in understanding how NC faceting (determines which crystallographic planes are exposed) affects catalytic performance. Rh NCs are used in many catalytic reactions, including hydrogenation, hydroformylation, hydrocarbonylation, and combustion reactions. Shape manipulation of Rh NCs may be important in understanding how faceting on the nanoscale affects catalytic properties, but such control is challenging and there are fewer reports on the shape control of Rh NCs compared to other noble metals. Xia and coworkers obtained Rh multipods exhibiting interesting surface plasmonic properties by a polyol approach. The Somorjai and Tilley groups synthesized crystalline Rh multipods, cubes, horns and cuboctahedra, via polyol seeded growth. Son and colleagues prepared catalytically active monodisperse oleylamine-capped tetrahedral Rh NCs for the hydrogenation of arenes via an organometallic route. More recently, the Somorjai group synthesized sizetunable monodisperse Rh NCs using a one-step polyol technique. In this Communication, we report the highly selective synthesis of catalytically active, monodisperse Rh nanocubes of < 10 nm by a seedless polyol method. In this approach, Br{sup -} ions from trimethyl

  4. Elongational viscosity of monodisperse and bidisperse polystyrene melts

    DEFF Research Database (Denmark)

    Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz; Hassager, Ole

    2005-01-01

    The startup and steady uniaxial elongational viscosity have been measured for two monodisperse polystyrene melts with molecular weights of 52 kg/mole (PS52K) and 103 kg/mole (PS103K), and for three bidisperse polystyrene melts. The bidisperse melts consist of PS103K or PS52K and a monodisperse...... (closed loop proportional regulator) using the laser in such a way that the stretch rate at the neck is kept constant. The rheometer has been described in more detail in (A. Bach, H.K. Rasmussen and O. Hassager, Journal of Rheology, 47 (2003) 429). PS390K show a decrease in the steady viscosity as a power......-law function of the elongational rate (A. Bach, K. Almdal, H.K. Rasmussen and O. Hassager, Macromolecules 36 (2003) 5174). PS52K and PS103K show that the steady viscosity has a maximum that is respectively 100% and 50% above 3 times the zero-shear-rate viscosity. The bidisperse melts show a significant...

  5. Laser ablation synthesis of monodispersed magnetic alloy nanoparticles

    International Nuclear Information System (INIS)

    Seto, Takafumi; Koga, Kenji; Akinaga, Hiroyuki; Takano, Fumiyoshi; Orii, Takaaki; Hirasawa, Makoto

    2006-01-01

    Monodispersed CoPt alloy nanoparticles were synthesized by a pulsed laser ablation (PLA) technique coupled with a low-pressure operating differential mobility analyzer (LP-DMA). The CoPt alloy nanoparticles were generated by laser ablating a solid Co-Pt target. In CoPt alloy nanoparticles synthesized from a target with a Co composition of 75 at%, the nanoparticle surfaces were covered by an oxide layer and exhibited a core-shell structure. In contrast, no shell was observed in particles generated from a target with a Co:Pt ratio of 50:50 at%. According to an EDX analysis, the compositions of the individual nanoparticles were almost the same as that of the target material. Finally, the magnetic hysteresis loops of the CoPt alloy nanoparticles exhibited ferromagnetism

  6. Structure and Hydration of Highly Branched, Monodisperse Phytoglycogen Nanoparticles

    Science.gov (United States)

    Atkinson, John; Nickels, Jonathan; Stanley, Christopher; Diallo, Souleymane; Katsaras, John; Dutcher, John

    Monodisperse phytoglycogen nanoparticles are a promising, new soft colloidal nanomaterial with many applications in the personal care, food, nutraceutical and pharmaceutical industries. These applications rely on exceptional properties that emerge from the highly branched structure of phytoglycogen and its interaction with water, such as extraordinarily high water retention, and low viscosity and exceptional stability in water. The structure and hydration of the nanoparticles was characterized using small angle neutron scattering (SANS) and quasielastic neutron scattering (QENS). SANS allowed us to determine the size of the nanoparticles, evaluate their radial density profile, quantify the particle-to-particle spacing, and determine their water content. The results show clearly that the nanoparticles are highly hydrated, with each nanoparticle containing 250% of its mass in water, and that aqueous dispersions approach a jamming transition at ~ 25% (w/w). QENS experiments provided an independent and consistent measure of the high level of hydration of the particles.

  7. A monodisperse transmembrane α-helical peptide barrel

    Science.gov (United States)

    Mahendran, Kozhinjampara R.; Niitsu, Ai; Kong, Lingbing; Thomson, Andrew R.; Sessions, Richard B.; Woolfson, Derek N.; Bayley, Hagan

    2017-05-01

    The fabrication of monodisperse transmembrane barrels formed from short synthetic peptides has not been demonstrated previously. This is in part because of the complexity of the interactions between peptides and lipids within the hydrophobic environment of a membrane. Here we report the formation of a transmembrane pore through the self-assembly of 35 amino acid α-helical peptides. The design of the peptides is based on the C-terminal D4 domain of the Escherichia coli polysaccharide transporter Wza. By using single-channel current recording, we define discrete assembly intermediates and show that the pore is most probably a helix barrel that contains eight D4 peptides arranged in parallel. We also show that the peptide pore is functional and capable of conducting ions and binding blockers. Such α-helix barrels engineered from peptides could find applications in nanopore technologies such as single-molecule sensing and nucleic-acid sequencing.

  8. Self-assembly of crystalline nanotubes from monodisperse amphiphilic diblock copolypeptoid tiles.

    Science.gov (United States)

    Sun, Jing; Jiang, Xi; Lund, Reidar; Downing, Kenneth H; Balsara, Nitash P; Zuckermann, Ronald N

    2016-04-12

    The folding and assembly of sequence-defined polymers into precisely ordered nanostructures promises a class of well-defined biomimetic architectures with specific function. Amphiphilic diblock copolymers are known to self-assemble in water to form a variety of nanostructured morphologies including spheres, disks, cylinders, and vesicles. In all of these cases, the predominant driving force for assembly is the formation of a hydrophobic core that excludes water, whereas the hydrophilic blocks are solvated and extend into the aqueous phase. However, such polymer systems typically have broad molar mass distributions and lack the purity and sequence-defined structure often associated with biologically derived polymers. Here, we demonstrate that purified, monodisperse amphiphilic diblock copolypeptoids, with chemically distinct domains that are congruent in size and shape, can behave like molecular tile units that spontaneously assemble into hollow, crystalline nanotubes in water. The nanotubes consist of stacked, porous crystalline rings, and are held together primarily by side-chain van der Waals interactions. The peptoid nanotubes form without a central hydrophobic core, chirality, a hydrogen bond network, and electrostatic or π-π interactions. These results demonstrate the remarkable structure-directing influence of n-alkane and ethyleneoxy side chains in polymer self-assembly. More broadly, this work suggests that flexible, low-molecular-weight sequence-defined polymers can serve as molecular tile units that can assemble into precision supramolecular architectures.

  9. Monodispersed bimetallic PdAg nanoparticles with twinned structures: Formation and enhancement for the methanol oxidation

    Science.gov (United States)

    Yin, Zhen; Zhang, Yining; Chen, Kai; Li, Jing; Li, Wenjing; Tang, Pei; Zhao, Huabo; Zhu, Qingjun; Bao, Xinhe; Ma, Ding

    2014-03-01

    Monodispersed bimetallic PdAg nanoparticles can be fabricated through the emulsion-assisted ethylene glycol (EG) ternary system. Different compositions of bimetallic PdAg nanoparticles, Pd80Ag20, Pd65Ag35 and Pd46Ag54 can be obtained via adjusting the reaction parameters. For the formation process of the bimetallic PdAg nanoparticles, there have two-stage growth processes: firstly, nucleation and growth of the primary nanoclusters; secondly, formation of the secondary nanoparticles with the size-selection and relax process via the coalescence or aggregation of the primary nanoclusters. The as-prepared PdAg can be supported on the carbon black without any post-treatment, which exhibited high electro-oxidation activity towards methanol oxidation under alkaline media. More importantly, carbon-supported Pd80Ag20 nanoparticles reveal distinctly superior activities for the methanol oxidation, even if compared with commercial Pt/C electro-catalyst. It is concluded that the enhanced activity is dependant on the unique twinning structure with heterogeneous phase due to the dominating coalescence growth in EG ternary system.

  10. Scalable fractionation of iron oxide nanoparticles using a CO2 gas-expanded liquid system

    International Nuclear Information System (INIS)

    Vengsarkar, Pranav S.; Xu, Rui; Roberts, Christopher B.

    2015-01-01

    Iron oxide nanoparticles exhibit highly size-dependent physicochemical properties that are important in applications such as catalysis and environmental remediation. In order for these size-dependent properties to be effectively harnessed for industrial applications scalable and cost-effective techniques for size-controlled synthesis or size separation must be developed. The synthesis of monodisperse iron oxide nanoparticles can be a prohibitively expensive process on a large scale. An alternative involves the use of inexpensive synthesis procedures followed by a size-selective processing technique. While there are many techniques available to fractionate nanoparticles, many of the techniques are unable to efficiently fractionate iron oxide nanoparticles in a scalable and inexpensive manner. A scalable apparatus capable of fractionating large quantities of iron oxide nanoparticles into distinct fractions of different sizes and size distributions has been developed. Polydisperse iron oxide nanoparticles (2–20 nm) coated with oleic acid used in this study were synthesized using a simple and inexpensive version of the popular coprecipitation technique. This apparatus uses hexane as a CO 2 gas-expanded liquid to controllably precipitate nanoparticles inside a 1L high-pressure reactor. This paper demonstrates the operation of this new apparatus and for the first time shows the successful fractionation results on a system of metal oxide nanoparticles, with initial nanoparticle concentrations in the gram-scale. The analysis of the obtained fractions was performed using transmission electron microscopy and dynamic light scattering. The use of this simple apparatus provides a pathway to separate large quantities of iron oxide nanoparticles based upon their size for use in various industrial applications.

  11. Solution-Based Processing of Monodisperse Two-Dimensional Nanomaterials.

    Science.gov (United States)

    Kang, Joohoon; Sangwan, Vinod K; Wood, Joshua D; Hersam, Mark C

    2017-04-18

    Exfoliation of single-layer graphene from bulk graphite and the subsequent discovery of exotic physics and emergent phenomena in the atomically thin limit has motivated the isolation of other two-dimensional (2D) layered nanomaterials. Early work on isolated 2D nanomaterial flakes has revealed a broad range of unique physical and chemical properties with potential utility in diverse applications. For example, the electronic and optical properties of 2D nanomaterials depend strongly on atomic-scale variations in thickness, enabling enhanced performance in optoelectronic technologies such as light emitters, photodetectors, and photovoltaics. Much of the initial research on 2D nanomaterials has relied on micromechanical exfoliation, which yields high-quality 2D nanomaterial flakes that are suitable for fundamental studies but possesses limited scalability for real-world applications. In an effort to overcome this limitation, solution-processing methods for isolating large quantities of 2D nanomaterials have emerged. Importantly, solution processing results in 2D nanomaterial dispersions that are amenable to roll-to-roll fabrication methods that underlie lost-cost manufacturing of thin-film transistors, transparent conductors, energy storage devices, and solar cells. Despite these advantages, solution-based exfoliation methods typically lack control over the lateral size and thickness of the resulting 2D nanomaterial flakes, resulting in polydisperse dispersions with heterogeneous properties. Therefore, post-exfoliation separation techniques are needed to achieve 2D nanomaterial dispersions with monodispersity in lateral size, thickness, and properties. In this Account, we survey the latest developments in solution-based separation methods that aim to produce monodisperse dispersions and thin films of emerging 2D nanomaterials such as graphene, boron nitride, transition metal dichalcogenides, and black phosphorus. First, we motivate the need for precise thickness

  12. Application of monodisperse fibers and discs to evaluation of the aerodynamic particle sizer

    International Nuclear Information System (INIS)

    Hoover, M.D.; Lipowicz, P.J.; Hanson, R.W.; Yeh, H.C.; Casalnuovo, S.A.

    1988-01-01

    Monodisperse fibers, μm in width and lengths of 5, 10, 20, and 40 μm, as well as monodisperse discs, 2 4 8, or 12 μm in diameter, were prepared using an integrated circuit microchip fabrication technique. Particles were silicon dioxide with thickness of 1 μm. Examination of the particles using a scanning electron microscope showed that they were uniform in shape, with well-defined edges. The particles were suspended in distilled water and aerosolized with a Lovelace nebullizer. The monodisperse particles were used to evaluate the TSI Aerodynamic Particle Sizer (APS). Carbon fibers that were monodisperse in diameter (count median diameter 3.42 μm, geometric standard deviation 1.06) and polydisperse in length (count median length = 28 μm, geometric standard deviation 2.2) were also used. The APS was found to be insensitive to fiber length and only weakly sensitive to disc diameter. (author)

  13. Cr/alpha-Cr2O3 monodispersed spherical core-shell particles based solar absorbers

    CSIR Research Space (South Africa)

    Khamlich, S

    2011-07-01

    Full Text Available Monodispersed spherical core-shell particles of Cr/alpha-Cr2O3 cermet ACG coatings investigated within this contribution could be successfully employed in thermal converters. Their selectivity depends on their chemical, physical and structural...

  14. Monodispersed Zinc Oxide Nanoparticle-Dye Dyads and Triads

    Energy Technology Data Exchange (ETDEWEB)

    Gladfelter, Wayne L. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemistry; Blank, David A. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemistry; Mann, Kent R. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemistry

    2017-06-22

    events at a fundamental level. This was combined with the synthesis of a broad range of sensitizers that provide systematic variation of the energetics, excited state dynamics, structure and interfacial bonding. The key is that the monodisperse nature and high dispersibility of the ZnO NCs made these experiments reproducible; in essence, the measurements were on discrete molecular species rather than on the complicated mixtures that resulted from the typical fabrication of functional photovoltaic cells. The monodispersed nature of the NCs also allowed the use of quantum confinement to investigate the role of donor/acceptor energetic alignment in chemically identical systems. The results added significantly to our basic understanding of energy and charge transfer events at molecule-semiconductor interfaces and will help the R&D community realize zinc oxide's full potential in solar cell applications.

  15. Facile and Scalable Synthesis of Monodispersed Spherical Capsules with a Mesoporous Shell

    KAUST Repository

    Qi, Genggeng

    2010-05-11

    Monodispersed HMSs with tunable particle size and shell thickness were successfully synthesized using relatively concentrated polystyrene latex templates and a silica precursor in a weakly basic ethanol/water mixture. The particle size of the capsules can vary from 100 nm to micrometers. These highly engineered monodispersed capsules synthesized by a facile and scalable process may find applications in drug delivery, catalysis, separationm or as biological and chemical microreactors. © 2010 American Chemical Society.

  16. Facile Synthesis of Monodisperse Gold Nanocrystals Using Virola oleifera

    Science.gov (United States)

    Milaneze, Bárbara A.; Oliveira, Jairo P.; Augusto, Ingrid; Keijok, Wanderson J.; Côrrea, Andressa S.; Ferreira, Débora M.; Nunes, Otalíbio C.; Gonçalves, Rita de Cássia R.; Kitagawa, Rodrigo R.; Celante, Vinícius G.; da Silva, André Romero; Pereira, Ana Claudia H.; Endringer, Denise C.; Schuenck, Ricardo P.; Guimarães, Marco C. C.

    2016-10-01

    The development of new routes and strategies for nanotechnology applications that only employ green synthesis has inspired investigators to devise natural systems. Among these systems, the synthesis of gold nanoparticles using plant extracts has been actively developed as an alternative, efficient, cost-effective, and environmentally safe method for producing nanoparticles, and this approach is also suitable for large-scale synthesis. This study reports reproducible and completely natural gold nanocrystals that were synthesized using Virola oleifera extract. V. oleifera resin is rich in epicatechin, ferulic acid, gallic acid, and flavonoids (i.e., quercetin and eriodictyol). These gold nanoparticles play three roles. First, these nanoparticles exhibit remarkable stability based on their zeta potential. Second, these nanoparticles are functionalized with flavonoids, and third, an efficient, economical, and environmentally friendly mechanism can be employed to produce green nanoparticles with organic compounds on the surface. Our model is capable of reducing the resin of V. oleifera, which creates stability and opens a new avenue for biological applications. This method does not require painstaking conditions or hazardous agents and is a rapid, efficient, and green approach for the fabrication of monodisperse gold nanoparticles.

  17. Ultrasonically Aided Electrospray source for monodisperse, charged nanoparticles

    Science.gov (United States)

    Song, Weidong

    This dissertation presents a new method of producing nearly monodisperse electrospray using charged capillary standing waves. This method, based on the Ultrasonically Aided Electrospraying (UAE) technology concept invented by the author, includes the steps of dispensing a liquid on the top surface of a diaphragm so as to form a liquid film on the surface of the diaphragm, setting the diaphragm into vibration using piezoelectric transducers so as to induce capillary standing waves in the liquid film, applying electric charge to the capillary standing waves so that electrospray is extracted from the crests of the capillary standing waves. Theoretical analysis on the formation of charged particles from charged capillary standing waves at critically stable condition is performed. An experimental UAE system is designed, built, and tested and the performance of this new technology concept is assessed. Experimental results validate the capabilities of the UAE concept. The method has several applications including electric space propulsion, nano particulate technologies, nanoparticle spray coating and painting techniques, semiconductor fabrication and biomedical processes. Two example applications in electric space propulsion and nanoparticle spray coating are introduced.

  18. Coupled Leidenfrost states as a monodisperse granular clock

    Science.gov (United States)

    Liu, Rui; Yang, Mingcheng; Chen, Ke; Hou, Meiying; To, Kiwing

    2016-08-01

    Using an event-driven molecular dynamics simulation, we show that simple monodisperse granular beads confined in coupled columns may oscillate as a different type of granular clock. To trigger this oscillation, the system needs to be driven against gravity into a density-inverted state, with a high-density clustering phase supported from below by a gaslike low-density phase (Leidenfrost effect) in each column. Our analysis reveals that the density-inverted structure and the relaxation dynamics between the phases can amplify any small asymmetry between the columns, and lead to a giant oscillation. The oscillation occurs only for an intermediate range of the coupling strength, and the corresponding phase diagram can be universally described with a characteristic height of the density-inverted structure. A minimal two-phase model is proposed and a linear stability analysis shows that the triggering mechanism of the oscillation can be explained as a switchable two-parameter Andronov-Hopf bifurcation. Numerical solutions of the model also reproduce similar oscillatory dynamics to the simulation results.

  19. Monodisperse ferrous phosphate colloids in an anoxic groundwater plume

    Science.gov (United States)

    Gschwend, Philip M.; Reynolds, Matthew D.

    1987-01-01

    Groundwater samples collected near a secondary-sewage infiltration site on Cape Cod, Massachusetts were examined for colloidal materials (10–1000 nm). In two wells the water contained a population of monodisperse 100-nm particles, detected using laser-light scattering and autocorrelation data processing. SEM and SEM-EDAX analysis of these colloidal materials collected on ultrafilters confirmed the laser light scattering result and revealed that these microparticles consisyed of primarily iron and phosphorus in a 1.86 Fe to 1.0 P stoichiometric ratio. Chemical analyses of the water samples, together with equilibrium solubility calculations, strongly suggest that the ion-activity product should exceed the solubility product of a 100-nm diameter predominantly vivianite-type (Fe3(PO4)2 · 8H2O) colloidal phase. In light of our results, we conclude that these microparticles were formed by sewage-derived phosphate combining with ferrous iron released from the aquifer solids, and that these colloids may be moving in the groundwater flow. Such a subsurface transport process could have major implications regarding the movement of particle-reactive pollutants traditionally viewed as non-mobile in groundwater.

  20. Monodisperse selenium-substituted hydroxyapatite: Controllable synthesis and biocompatibility.

    Science.gov (United States)

    Sun, Jianpeng; Zheng, Xiaoyan; Li, Hui; Fan, Daidi; Song, Zhanping; Ma, Haixia; Hua, Xiufu; Hui, Junfeng

    2017-04-01

    Hydroxyapatite (HA) is the major inorganic component of natural bone tissue. As an essential trace element, selenium involves in antioxidation and anticancer of human body. So far, ion-doped hydroxyapatites (HAs) are widely investigated owing to their great applications in field of biomaterial, biological labeling. In this paper, series of monodisperse HA doped with SeO 3 2- (SeHA) was successfully synthesized based on the liquid-solid-solution (LSS) strategy. The obtained samples were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and energy-dispersive spectrometer (EDS). The results indicated that the SeO 3 2- doping level of the Se/(P+Se) molar ratio of 0-0.4 can be requisitely controlled, and the morphology of SeHA nanoparticles varied from nanorods to nanoneedles with increasing Se/(P+Se) molar ratio. Significantly, the as-synthesized SeHA nanocrystals exhibit a low cytotoxicity for osteoblastic cells, showing exciting potentials for application in artificial scaffold materials inhibiting of tumor growth in bone. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Monodisperse Platinum and Rhodium Nanoparticles as Model Heterogeneous Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Grass, Michael Edward [Univ. of California, Berkeley, CA (United States)

    2008-09-01

    Model heterogeneous catalysts have been synthesized and studied to better understand how the surface structure of noble metal nanoparticles affects catalytic performance. In this project, monodisperse rhodium and platinum nanoparticles of controlled size and shape have been synthesized by solution phase polyol reduction, stabilized by polyvinylpyrrolidone (PVP). Model catalysts have been developed using these nanoparticles by two methods: synthesis of mesoporous silica (SBA-15) in the presence of nanoparticles (nanoparticle encapsulation, NE) to form a composite of metal nanoparticles supported on SBA-15 and by deposition of the particles onto a silicon wafer using Langmuir-Blodgett (LB) monolayer deposition. The particle shapes were analyzed by transmission electron microscopy (TEM) and high resolution TEM (HRTEM) and the sizes were determined by TEM, X-ray diffraction (XRD), and in the case of NE samples, room temperature H2 and CO adsorption isotherms. Catalytic studies were carried out in homebuilt gas-phase reactors. For the nanoparticles supported on SBA-15, the catalysts are in powder form and were studied using the homebuilt systems as plug-flow reactors. In the case of nanoparticles deposited on silicon wafers, the same systems were operated as batch reactors. This dissertation has focused on the synthesis, characterization, and reaction studies of model noble metal heterogeneous catalysts. Careful control of particle size and shape has been accomplished though solution phase synthesis of Pt and Rh nanoparticles in order to elucidate further structure-reactivity relationships in noble metal catalysis.

  2. FRACTIONAL BANKING

    OpenAIRE

    Maria Klimikova

    2010-01-01

    Understanding the reasons of the present financial problems lies In understanding the substance of fractional reserve banking. The substance of fractional banking is in lending more money than the bankers have. Banking of partial reserves is an alternative form which links deposit banking and credit banking. Fractional banking is causing many unfavorable economic impacts in the worldwide system, specifically an inflation.

  3. Simulation study of electric-guided delivery of 0.4µm monodisperse and polydisperse aerosols to the ostiomeatal complex.

    Science.gov (United States)

    Xi, Jinxiang; Yuan, Jiayao Eddie; Si, Xiuhua April

    2016-05-01

    Despite the high prevalence of rhinosinusitis, current inhalation therapy shows limited efficacy due to extremely low drug delivery efficiency to the paranasal sinuses. Novel intranasal delivery systems are needed to enhance targeted delivery to the sinus with therapeutic dosages. An optimization framework for intranasal drug delivery was developed to target polydisperse charged aerosols to the ostiomeatal complex (OMC) with electric guidance. The delivery efficiency of a group of charged aerosols recently reported in the literature was numerically assessed and optimized in an anatomically accurate nose-sinus model. Key design variables included particle charge number, particle size and distribution, electrode strength, and inhalation velocity. Both monodisperse and polydisperse aerosol profiles were considered. Results showed that the OMC delivery efficiency was highly sensitive to the applied electric field and electrostatic charges carried by the particles. Through the synthesis of electric-guidance and point drug release, focused deposition with significantly enhanced dosage in the OMC can be achieved. For 0.4 µm charged aerosols, an OMC delivery efficiency of 51.6% was predicted for monodisperse aerosols and 34.4% for polydisperse aerosols. This difference suggested that the aerosol profile exerted a notable effect on intranasal deliveries. Sensitivity analysis indicated that the OMC deposition fraction was highly sensitive to the charge and size of particles and was less sensitive to the inhalation velocity considered in this study. Experimental studies are needed to validate the numerically optimized designs. Further studies are warranted to investigate the targeted OMC delivery with both electric and acoustics controls, the latter of which has the potential to further deliver the drug particles into the sinus cavity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Controlled synthesis and magnetic properties of monodispersed ceria nanoparticles

    Directory of Open Access Journals (Sweden)

    Sumeet Kumar

    2015-02-01

    Full Text Available In the present study, monodispersed CeO2 nanoparticles (NPs of size 8.5 ± 1.0, 11.4 ± 1.0 and 15.4 ± 1.0 nm were synthesized using the sol-gel method. Size-dependent structural, optical and magnetic properties of as-prepared samples were investigated by X-ray diffraction (XRD, field emission scanning electron microscope (FE-SEM, high resolution transmission electron microscopy (HR-TEM, ultra-violet visible (UV-VIS spectroscopy, Raman spectroscopy and vibrating sample magnetometer (VSM measurements. The value of optical band gap is calculated for each particle size. The decrease in the value of optical band gap with increase of particle size may be attributed to the quantum confinement, which causes to produce localized states created by the oxygen vacancies due to the conversion of Ce4+ into Ce3+ at higher calcination temperature. The Raman spectra showed a peak at ∼461 cm-1 for the particle size 8.5 nm, which is attributed to the 1LO phonon mode. The shift in the Raman peak could be due to lattice strain developed due to variation in particle size. Weak ferromagnetism at room temperature is observed for each particle size. The values of saturation magnetization (Ms, coercivity (Hc and retentivity (Mr are increased with increase of particle size. The increase of Ms and Mr for larger particle size may be explained by increase of density of oxygen vacancies at higher calcination temperature. The latter causes high concentrations of Ce3+ ions activate more coupling between the individual magnetic moments of the Ce ions, leading to an increase of Ms value with the particle size. Moreover, the oxygen vacancies may also produce magnetic moment by polarizing spins of f electrons of cerium (Ce ions located around oxygen vacancies, which causes ferromagnetism in pure CeO2 samples.

  5. Fractional thermoelasticity

    CERN Document Server

    Povstenko, Yuriy

    2015-01-01

    This book is devoted to fractional thermoelasticity, i.e. thermoelasticity based on the heat conduction equation with differential operators of fractional order. Readers will discover how time-fractional differential operators describe memory effects and space-fractional differential operators deal with the long-range interaction. Fractional calculus, generalized Fourier law, axisymmetric and central symmetric problems and many relevant equations are featured in the book. The latest developments in the field are included and the reader is brought up to date with current research.  The book contains a large number of figures, to show the characteristic features of temperature and stress distributions and to represent the whole spectrum of order of fractional operators.  This work presents a picture of the state-of-the-art of fractional thermoelasticity and is suitable for specialists in applied mathematics, physics, geophysics, elasticity, thermoelasticity and engineering sciences. Corresponding sections of ...

  6. Interface-mediated synthesis of monodisperse ZnS nanoparticles with sulfate-reducing bacterium culture.

    Science.gov (United States)

    Liang, Zhanguo; Mu, Jun; Mu, Ying; Shi, Jiaming; Hao, Wenjing; Dong, Xuewei; Yu, Hongquan

    2013-12-01

    We have created a new method of ZnS nanospheres synthesis. By interface-mediated precipitation method (IMPM), monodisperse ZnS nanoparticles was synthesized on the particle surface of sulfate-reducing bacterium nutritious agar culture. Sulfate-reducing bacterium (SRB) was used as a sulfide producer because of its dissimilatory sulfate reduction capability, meanwhile produced a variety of amino acids acting as templates for nanomaterials synthesis. Then zinc acetate was dispersed into nutritious agar plate. Subsequently agar plate was broken into particles bearing much external surface, which successfully mediated the synthesis of monodisperse ZnS nanoparticles. The morphology of monodisperse ZnS nanospheres and SRB were examined by scanning electron microscopy (SEM), and the microstructure was investigated by X-ray diffraction (XRD). The thermostability of ZnS nanoparticles was determined by thermo gravimetric-differential thermo gravimetric (TG-DTG). The maximum absorption wavelengh was analysed with an ultraviolet-visible spectrophotometer within a range of 199-700 nm. As a result, monodisperse ZnS nanoparticles were successfully synthesized, with an average diameter of 80 nm. Maximum absorption wavelengh was 228 nm, and heat decomposed temperature of monodisperse ZnS nanoparticles was 596°C. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  7. Monodisperse magnetite nanoparticles coupled with nuclear localization signal peptide for cell-nucleus targeting.

    Science.gov (United States)

    Xu, Chenjie; Xie, Jin; Kohler, Nathan; Walsh, Edward G; Chin, Y Eugene; Sun, Shouheng

    2008-03-07

    Functionalization of monodisperse superparamagnetic magnetite (Fe(3)O(4)) nanoparticles for cell specific targeting is crucial for cancer diagnostics and therapeutics. Targeted magnetic nanoparticles can be used to enhance the tissue contrast in magnetic resonance imaging (MRI), to improve the efficiency in anticancer drug delivery, and to eliminate tumor cells by magnetic fluid hyperthermia. Herein we report the nucleus-targeting Fe(3)O(4) nanoparticles functionalized with protein and nuclear localization signal (NLS) peptide. These NLS-coated nanoparticles were introduced into the HeLa cell cytoplasm and nucleus, where the particles were monodispersed and non-aggregated. The success of labeling was examined and identified by fluorescence microscopy and MRI. The work demonstrates that monodisperse magnetic nanoparticles can be readily functionalized and stabilized for potential diagnostic and therapeutic applications.

  8. Syringe-vacuum microfluidics: A portable technique to create monodisperse emulsions.

    Science.gov (United States)

    Abate, Adam R; Weitz, David A

    2011-03-16

    We present a simple method for creating monodisperse emulsions with microfluidic devices. Unlike conventional approaches that require bulky pumps, control computers, and expertise with device physics to operate devices, our method requires only the microfluidic device and a hand-operated syringe. The fluids needed for the emulsion are loaded into the device inlets, while the syringe is used to create a vacuum at the device outlet; this sucks the fluids through the channels, generating the drops. By controlling the hydrodynamic resistances of the channels using hydrodynamic resistors and valves, we are able to control the properties of the drops. This provides a simple and highly portable method for creating monodisperse emulsions.

  9. Fractional charges

    International Nuclear Information System (INIS)

    Saminadayar, L.

    2001-01-01

    20 years ago fractional charges were imagined to explain values of conductivity in some materials. Recent experiments have proved the existence of charges whose value is the third of the electron charge. This article presents the experimental facts that have led theorists to predict the existence of fractional charges from the motion of quasi-particles in a linear chain of poly-acetylene to the quantum Hall effect. According to the latest theories, fractional charges are neither bosons nor fermions but anyons, they are submitted to an exclusive principle that is less stringent than that for fermions. (A.C.)

  10. Preparation of monodisperse solid ferric oxide particles using the May spinning-top aerosol generator

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, J.P.

    1981-07-01

    Extensive modifications have been made to the May spinning-top aerosol generator in order to produce satellite-free monodisperse ferric oxide particles in the size range 1 to 10 ..mu..m. The problems encountered during the development work and the factors which influence the reliability of this equipment are described.

  11. Synthesis, characterization, and growth mechanism of α-Cr2O3 monodispersed particles

    CSIR Research Space (South Africa)

    Khamlich, S

    2011-06-01

    Full Text Available Monodispersed spherical particles of chromium (III) oxide, α-Cr2O3, were successfully synthesized from a diluted solution of KCr(SO4)2·12H2O using the Aqueous Chemical Growth (ACG) technique. The spherical α-Cr2O3 particles obtained were...

  12. Assembly of Fe3O4 nanoparticles on SiO2 monodisperse spheres

    Indian Academy of Sciences (India)

    Assembly of Fe3O4 nanoparticles on SiO2 monodisperse spheres. K C BARICK and D BAHADUR*. Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay,. Mumbai 400 076, India. Abstract. The assembly of superparamagnetic Fe3O4 nanoparticles on submicroscopic SiO2 ...

  13. Novel one-pot route to monodisperse thermosensitive hollow microcapsules in a microfluidic system.

    Science.gov (United States)

    Choi, Chang-Hyung; Jung, Jae-Hoon; Kim, Dong-Wan; Chung, Young-Min; Lee, Chang-Soo

    2008-09-01

    We present a simple one-pot synthetic approach for the preparation of monodisperse thermo-sensitive poly(N-isopropylacrylamide) (PNIPAM) microcapsules in a microfluidic system. Based on the mechanism of shear force-driven break-off, aqueous droplets of monomer solution are continuously generated in an immiscible continuous phase containing photoinitiators. Under UV irradiation, activated initiators are diffused into the interface between the continuous phase and the aqueous droplets, which trigger polymerization of NIPAM monomers. The PNIPAM microcapsules produced are hollow microcapsules with a thin shell membrane, high monodispersity, and fast response to environmental temperature. In addition, the size of microcapsules produced can be manipulated by the flow rate of the continuous phase or aqueous phase and different concentrations of surfactant to control interfacial tension between continuous phase and aqueous phase. Furthermore, the versatility of this approach enables the preparation of monodisperse microcapsules having the capability to encapsulate various materials such as proteins and nanoparticles under mild conditions. The in situ microfluidic synthetic method provides a novel approach for the preparation of monodisperse hollow microcapsules via a one-pot route.

  14. Completely monodisperse, highly repetitive proteins for bioconjugate capillary electrophoresis: development and characterization.

    Science.gov (United States)

    Lin, Jennifer S; Albrecht, Jennifer Coyne; Meagher, Robert J; Wang, Xiaoxiao; Barron, Annelise E

    2011-06-13

    Protein-based polymers are increasingly being used in biomaterial applications because of their ease of customization and potential monodispersity. These advantages make protein polymers excellent candidates for bioanalytical applications. Here we describe improved methods for producing drag-tags for free-solution conjugate electrophoresis (FSCE). FSCE utilizes a pure, monodisperse recombinant protein, tethered end-on to a ssDNA molecule, to enable DNA size separation in aqueous buffer. FSCE also provides a highly sensitive method to evaluate the polydispersity of a protein drag-tag and thus its suitability for bioanalytical uses. This method is able to detect slight differences in drag-tag charge or mass. We have devised an improved cloning, expression, and purification strategy that enables us to generate, for the first time, a truly monodisperse 20 kDa protein polymer and a nearly monodisperse 38 kDa protein. These newly produced proteins can be used as drag-tags to enable longer read DNA sequencing by free-solution microchannel electrophoresis.

  15. Ultrasound-driven Megahertz Faraday Waves for Generation of Monodisperse Micro Droplets and Applications

    Science.gov (United States)

    Tsai, Chen S.; Mao, Rong W.; Lin, Shih K.; Tsai, Shirley C.; Boss, Gerry; Brenner, Matt; Smaldone, Gerry; Mahon, Sari; Shahverdi, Kaveh; Zhu, Yun

    Our theoretical findings on instability of Faraday waves at megahertz (MHz) drive frequency and realization of silicon-based MHz multiple-Fourier horn ultrasonic nozzles (MFHUNs) together have enabled generation of mono-disperse droplets of controllable diameter (2.5-6.0 μm) at very low electrical drive power (cyanide poisoning are presented.

  16. Intracellular Cadmium Isotope Fractionation

    Science.gov (United States)

    Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.

    2011-12-01

    Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.

  17. Surfactant-assisted synthesis of mono-dispersed cubic BaTiO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hai, Chunxi [National Institute of Advanced Industrial Science and Technology (AIST), Shimo-Shidami, Moriyama-ku, Nagoya 463-8560 (Japan); Inukai, Koji; Takahashi, Yosuke [Noritake Co., Limited, RD Center, Miyoshi 470-0293 (Japan); Izu, Noriya; Akamatsu, Takafumi; Itoh, Toshio [National Institute of Advanced Industrial Science and Technology (AIST), Shimo-Shidami, Moriyama-ku, Nagoya 463-8560 (Japan); Shin, Woosuck, E-mail: w.shin@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), Shimo-Shidami, Moriyama-ku, Nagoya 463-8560 (Japan)

    2014-09-15

    Mono-dispersed BaTiO{sub 3} nanoparticles have been prepared via the assistance of capping agent poly(vinylpyrrolidone) (PVP). - Highlights: • BaTiO{sub 3} nanoparticles with single cubic crystal structure. • Poor dispersibility of nanoparticles has been overcome by in situ modification way. • Growth competition between BaTiO3 core and polymer shell. - Abstract: In this study, poly(vinylpyrrolidone)-assisted synthesis of mono-dispersed BaTiO{sub 3} nanoparticles have been reported. The various processing parameters, namely, refluxing temperature, KOH concentration, and poly(vinylpyrrolidone) concentration, have been varied, and the effects on the growth of BaTiO{sub 3} particles have been analyzed systematically. X-ray diffraction studies indicated that poly(vinylpyrrolidone) did not affect the crystal structure, but rather influenced the crystal lattice structure. In addition, the use of surfactant poly(vinylpyrrolidone) hindered the agglomeration of the nanoparticles, and facilitated the formation of mono-dispersed core–shell organic/inorganic hybrid nanocomposite. Furthermore, the mineralizer KOH promoted the dissolution of reactants and promoted the crystallization of BaTiO{sub 3} particles. Accordingly, the dissolution-precipitation scheme was believed to be the mechanism underlying the formation of BaTiO{sub 3} particles. This was further substantiated by the experimental observations, which indicated that the nucleation and crystallization of the particles was affected by the KOH concentration in the reaction system. Finally, the formation of mono-dispersed core–shell nanocomposites proceeded via reaction limited cluster aggregation. We believe that the method proposed in this study could be extended for the synthesis of mono-dispersed nanoparticles for industrial applications.

  18. From Colloidal Monodisperse Nickel Nanoparticles to Well-Defined Ni/Al2O3Model Catalysts.

    Science.gov (United States)

    Zacharaki, Eirini; Beato, Pablo; Tiruvalam, Ramchandra R; Andersson, Klas J; Fjellvåg, Helmer; Sjåstad, Anja O

    2017-09-26

    In the past few decades, advances in colloidal nanoparticle synthesis have created new possibilities for the preparation of supported model catalysts. However, effective removal of surfactants is a prerequisite to evaluate the catalytic properties of these catalysts in any reaction of interest. Here we report on the colloidal preparation of surfactant-free Ni/Al 2 O 3 model catalysts. Monodisperse Ni nanoparticles (NPs) with mean particle size ranging from 4 to 9 nm were synthesized via thermal decomposition of a zerovalent precursor in the presence of oleic acid. Five weight percent Ni/Al 2 O 3 catalysts were produced by direct deposition of the presynthesized NPs on an alumina support, followed by thermal activation (oxidation-reduction cycle) for complete surfactant removal and surface cleaning. Structural and morphological characteristics of the nanoscale catalysts are described in detail following the propagation of the bulk and surface Ni species at the different treatment stages. Powder X-ray diffraction, electron microscopy, and temperature-programmed reduction experiments as well as infrared spectroscopy of CO adsorption and magnetic measurements were conducted. The applied thermal treatments are proven to be fully adequate for complete surfactant removal while preserving the metal particle size and the size distribution at the level attained by the colloidal synthesis. Compared with standard impregnated Ni/Al 2 O 3 catalysts, the current model materials display narrowed Ni particle size distributions and increased reducibility with a higher fraction of the metallic nickel atoms exposed at the catalyst surface.

  19. Numerical simulations of flows through fixed networks of monodispersed and bi-dispersed spheres, for moderate Reynolds numbers; Simulations numeriques d'ecoulements a travers des reseaux fixes de spheres monodisperses et bidisperses, pour des nombres de Reynolds moderes

    Energy Technology Data Exchange (ETDEWEB)

    Massol, A.

    2004-02-15

    The application of statistically averaged two-fluid models for the simulation of complex indus- trial two-phase flows requires the development of adequate models for the drag force exerted on the inclusions and the interfacial heat exchange. This task becomes problematic at high volume fractions of the dispersed phase. The quality of the simulation strongly depends upon the inter- facial exchange terms, starting with the steady drag force. For example, an accurate modelling of the drag force is therefore a crucial point to simulate the expansion of dense fluidized beds. Most models used to study the exchange terms between particles and fluids are based on the interaction between an isolated particle and a surrounding gas. Those models are clearly not adequate in cases where the volume fraction of particles increases and particle-particle interactions become important. Studying such cases is a complex task because of the multiple possible configurations. While the interaction between an isolated sphere and a gas depends only on the particle size and the slip velocity between gas and particles, the interaction between a cloud of particles and a gas depends on many more parameters: size and velocity distribution of particles, relative position of particles. Even if the particles keep relative fixed positions, there is an infinite number of combinations to construct such an array. The objective of the present work is to perform steady and unsteady simulations of the flow in regular arrays of fixed particles in order to analyze the influence of the size and distributions of spheres on drag force and heat transfer (the array of spheres can be either monodispersed, either bi-dispersed). Several authors have studied the drag exerted on the spheres, but only for low Reynolds numbers and/or solid volume fractions close to the packed limit. Moreover some discrepancies are observed between the different studies. On top of that, all existing studies are limited to steady flows

  20. Mystery Fractions

    Science.gov (United States)

    Bhattacharyya, Sonalee; Namakshi, Nama; Zunker, Christina; Warshauer, Hiroko K.; Warshauer, Max

    2016-01-01

    Making math more engaging for students is a challenge that every teacher faces on a daily basis. These authors write that they are constantly searching for rich problem-solving tasks that cover the necessary content, develop critical-thinking skills, and engage student interest. The Mystery Fraction activity provided here focuses on a key number…

  1. Fractionation statistics

    OpenAIRE

    Wang, Baoyong; Zheng, Chunfang; Sankoff, David

    2011-01-01

    Abstract Background Paralog reduction, the loss of duplicate genes after whole genome duplication (WGD) is a pervasive process. Whether this loss proceeds gene by gene or through deletion of multi-gene DNA segments is controversial, as is the question of fractionation bias, namely whether one homeologous chromosome is more vulnerable to gene deletion than the other. Results As a null hypothesis, we first assume deletion events, on one homeolog only, excise a geometrically distributed number o...

  2. Simple and inexpensive microfluidic devices for the generation of monodisperse multiple emulsions

    KAUST Repository

    Li, Erqiang

    2013-12-16

    Droplet-based microfluidic devices have become a preferred versatile platform for various fields in physics, chemistry and biology. Polydimethylsiloxane soft lithography, the mainstay for fabricating microfluidic devices, usually requires the usage of expensive apparatus and a complex manufacturing procedure. Here, we report the design and fabrication of simple and inexpensive microfluidic devices based on microscope glass slides and pulled glass capillaries, for generating monodisperse multiple emulsions. The advantages of our method lie in a simple manufacturing procedure, inexpensive processing equipment and flexibility in the surface modification of the designed microfluidic devices. Different types of devices have been designed and tested and the experimental results demonstrated their robustness for preparing monodisperse single, double, triple and multi-component emulsions. © 2014 IOP Publishing Ltd.

  3. A system for the production and delivery of monodisperse salbutamol aerosols to the lungs.

    Science.gov (United States)

    Biddiscombe, Martyn F; Usmani, Omar S; Barnes, Peter J

    2003-03-26

    An aerosol system is described for the generation and delivery of measured doses of monodisperse therapeutic drug particles to the human lungs. The system comprises a spinning top aerosol generator (STAG), aerosol chamber and inhalation control unit. Monodisperse aerosols allow drug particle size effects to be studied as the dose is within a narrow size distribution and when combined with controlled inhalation may lead to more precise targeting of therapeutic drug to the airways. Using the STAG, particles in the size range 1.5-12 microm were generated and their mass median aerodynamic diameter (MMAD) and concentration measured using an aerodynamic particle sizer (APS). The application and validation of the system with the bronchodilator drug salbutamol sulphate is described, and its potential use in the study of aerosol particle size effects is discussed. Copyright 2003 Elsevier Science B.V.

  4. Monodisperse Carbon Nanospheres with Hierarchical Porous Structure as Electrode Material for Supercapacitor

    Science.gov (United States)

    Yang, Xiutao; Xia, Hui; Liang, Zhongguan; Li, Haiyan; Yu, Hongwen

    2017-09-01

    Carbon nanospheres with distinguishable microstructure were prepared by carbonization and subsequent KOH activation of F108/resorcinol-formaldehyde composites. The dosage of triblock copolymer Pluronic F108 is crucial to the microstructure differences. With the adding of F108, the polydisperse carbon nanospheres (PCNS) with microporous structure, monodisperse carbon nanospheres (MCNS) with hierarchical porous structure, and agglomerated carbon nanospheres (ACNS) were obtained. Their microstructure and capacitance properties were carefully compared. As a result of the synergetic effect of mono-dispersion spheres and hierarchical porous structures, the MCNS sample shows improved electrochemical performance, i.e., the highest specific capacitance of 224 F g-1 (0.2 A g-1), the best rate capability (73% retention at 20 A g-1), and the most excellent capacitance retention of 93% over 10,000 cycles, making it to be the promising electrode material for high-performance supercapacitors.

  5. Colloidal dispersions of monodisperse magnetite nanoparticles modified with poly(ethylene glycol).

    Science.gov (United States)

    Barrera, Carola; Herrera, Adriana P; Rinaldi, Carlos

    2009-01-01

    Monodisperse magnetite nanoparticles modified with poly(ethylene glycol) (PEG) were synthesized using a silane functionalized PEG obtained by reacting 3-aminopropyl triethoxysilane with carboxylic acid-methoxy PEG (mPEG-COOH) using amide reactions. Transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potential measurements show the particles are monodisperse (sigma(gv) approximately 0.2) and stable in water for pH of 3-9 and ionic strengths, up to 0.3 M NaCl. Thermogravimetric analysis coupled with TEM and DLS indicates formation of a dense graft layer on the particle surface. An analysis of the interparticle interaction energy indicates that the particles are stabilized by strong steric repulsions between PEG chains on their surface.

  6. In-site synthesis of monodisperse, oleylamine-capped Ag nanoparticles through microemulsion approach

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shun; Ju, Yanyun [Wuhan University of Technology, School of Materials Science and Engineering (China); Guo, Yi [Wuhan University of Technology, Center for Materials Research and Analysis (China); Xiong, Chuanxi; Dong, Lijie, E-mail: dong@whut.edu.cn [Wuhan University of Technology, School of Materials Science and Engineering (China)

    2017-03-15

    Ag NPs were in-site synthesized through microemulsion method by reducing silver acetate with oleylamine-mediated at 70 °C with highly monodisperse and narrow size from 10 to 20 nm. The synthesis of Ag NPs was aided by oleylamine and the role of oleylamine was researched. This in-site synthesis approach to Ag NPs was reproducibility and high yield more than 80% with stable store about 6 months.

  7. One-pot polyol synthesis of highly monodisperse short green silver nanorods.

    Science.gov (United States)

    Patarroyo, Javier; Genç, Aziz; Arbiol, Jordi; Bastús, Neus G; Puntes, Victor

    2016-09-21

    Green silver nanorods (Ag NRs) of a low aspect ratio (2.8) have been produced in high yields via an optimized, simple, and robust one-pot polyol method in the presence of tannic acid, which favors the nucleation of decahedral seeds needed for the production of monodisperse Ag NRs. These Ag NRs were further used as sacrificial templates to produce Au hollow nanostructures via galvanic replacement reaction with HAuCl4 at room temperature.

  8. Monodisperse Magnetite Nanoparticles Coupled with Nuclear Localization Signal Peptide for Cell-Nucleus Targeting

    OpenAIRE

    Xu, Chenjie; Xie, Jin; Kohler, Nathan; Walsh, Edward G.; Chin, Y. Eugene; Sun, Shouheng

    2008-01-01

    Functionalization of monodisperse superparamagnetic magnetite (Fe3O4) nanoparticles for cell specific targeting is crucial for cancer diagnostics and therapeutics. Targeted magnetic nanoparticles can be used to enhance the tissue contrast in magnetic resonance imaging (MRI), to improve the efficiency in anticancer drug delivery, and to eliminate tumor cells by magnetic fluid hyperthermia. Herein we report the nucleus-targeting Fe3O4 nanoparticles functionalized with protein and nuclear locali...

  9. Interchain tube pressure effect in extensional flows of oligomer diluted nearly monodisperse polystyrene melts

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Huang, Qian

    2014-01-01

    times and entanglements have been established based on published extensional experiments on nearly monodisperse polystyrene melts. The constitutive equation has shown agreement with the experimental startup of and steady extension data from Huang et al. (Macromolecules 46:5026–5035, 2013a) based on 285...... and 545 kg/mol polystyrenes diluted in styrene oligomers containing 3.3 (1.92 kg/mol) and 7.3 (4.29 kg/mol) Kuhn steps....

  10. Environmentally friendly synthesis of highly monodisperse biocompatible gold nanoparticles with urchin-like shape.

    Science.gov (United States)

    Lu, Lehui; Ai, Kelong; Ozaki, Yukihiro

    2008-02-05

    We report a facile and environmentally friendly strategy for high-yield synthesis of highly monodisperse gold nanoparticles with urchin-like shape. A simple protein, gelatin, was first used for the control over shape and orientation of the gold nanoparticles. These nanoparticles, ready to use for biological systems, are promising in the optical imaging-based disease diagnostics and therapy because of their tunable surface plasmon resonance (SPR) and excellent surface-enhanced Raman scattering (SERS) activity.

  11. Facile synthesis of monodisperse porous Co3O4 microspheres with superior ethanol sensing properties.

    Science.gov (United States)

    Sun, Chunwen; Rajasekhara, Shreyas; Chen, Yujin; Goodenough, John B

    2011-12-28

    A solvothermal method was developed to prepare on a large scale monodisperse porous β-Co(OH)(2) microspheres consisting of nanoplatelets. Co(3)O(4) microspheres with porous platelets were obtained via subsequent thermal decomposition. These Co(3)O(4) microspheres show much higher ethanol sensitivity and selectivity at a relatively low temperature (135 °C) compared with those of commercial Co(3)O(4) nanoparticles. This journal is © The Royal Society of Chemistry 2011

  12. Gram-scale fractionation of nanodiamonds by density gradient ultracentrifugation

    KAUST Repository

    Peng, Wei

    2013-01-01

    Size is a defining characteristic of nanoparticles; it influences their optical and electronic properties as well as their interactions with molecules and macromolecules. Producing nanoparticles with narrow size distributions remains one of the main challenges to their utilization. At this time, the number of practical approaches to optimize the size distribution of nanoparticles in many interesting materials systems, including diamond nanocrystals, remains limited. Diamond nanocrystals synthesized by detonation protocols-so-called detonation nanodiamonds (DNDs)-are promising systems for drug delivery, photonics, and composites. DNDs are composed of primary particles with diameters mainly <10 nm and their aggregates (ca. 10-500 nm). Here, we introduce a large-scale approach to rate-zonal density gradient ultracentrifugation to obtain monodispersed fractions of nanoparticles in high yields. We use this method to fractionate a highly concentrated and stable aqueous solution of DNDs and to investigate the size distribution of various fractions by dynamic light scattering, analytical ultracentrifugation, transmission electron microscopy and powder X-ray diffraction. This fractionation method enabled us to separate gram-scale amounts of DNDs into several size ranges within a relatively short period of time. In addition, the high product yields obtained for each fraction allowed us to apply the fractionation method iteratively to a particular size range of particles and to collect various fractions of highly monodispersed primary particles. Our method paves the way for in-depth studies of the physical and optical properties, growth, and aggregation mechanism of DNDs. Applications requiring DNDs with specific particle or aggregate sizes are now within reach. © 2013 The Royal Society of Chemistry.

  13. Gram-scale fractionation of nanodiamonds by density gradient ultracentrifugation.

    Science.gov (United States)

    Peng, Wei; Mahfouz, Remi; Pan, Jun; Hou, Yuanfang; Beaujuge, Pierre M; Bakr, Osman M

    2013-06-07

    Size is a defining characteristic of nanoparticles; it influences their optical and electronic properties as well as their interactions with molecules and macromolecules. Producing nanoparticles with narrow size distributions remains one of the main challenges to their utilization. At this time, the number of practical approaches to optimize the size distribution of nanoparticles in many interesting materials systems, including diamond nanocrystals, remains limited. Diamond nanocrystals synthesized by detonation protocols - so-called detonation nanodiamonds (DNDs) - are promising systems for drug delivery, photonics, and composites. DNDs are composed of primary particles with diameters mainly <10 nm and their aggregates (ca. 10-500 nm). Here, we introduce a large-scale approach to rate-zonal density gradient ultracentrifugation to obtain monodispersed fractions of nanoparticles in high yields. We use this method to fractionate a highly concentrated and stable aqueous solution of DNDs and to investigate the size distribution of various fractions by dynamic light scattering, analytical ultracentrifugation, transmission electron microscopy and powder X-ray diffraction. This fractionation method enabled us to separate gram-scale amounts of DNDs into several size ranges within a relatively short period of time. In addition, the high product yields obtained for each fraction allowed us to apply the fractionation method iteratively to a particular size range of particles and to collect various fractions of highly monodispersed primary particles. Our method paves the way for in-depth studies of the physical and optical properties, growth, and aggregation mechanism of DNDs. Applications requiring DNDs with specific particle or aggregate sizes are now within reach.

  14. Optimization of a simple technique for preparation of monodisperse poly(lactide-co-glycolide) nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Fuminori, E-mail: fuminoito@spice.ocn.ne.jp [Tokyo Metropolitan University, Department of Applied Chemistry, Graduate School of Urban Environmental Sciences (Japan)

    2016-09-15

    In this study, we report the optimization of a solvent evaporation technique for preparing monodisperse poly-(lactide-co-glycolide) (PLGA) nanospheres, from a mixture of solvents composed of ethanol and PVA solution. Various experimental conditions were investigated in order to control the particle size and size distribution of the nanospheres. In addition, nanospheres containing rifampicin (RFP, an antituberculosis drug), were prepared using PLGA of various molecular weights, to study the effects of RFP as a model hydrophobic drug. The results showed that a higher micro-homogenizer stirring rate facilitated the preparation of monodisperse PLGA nanospheres with a low coefficient of variation (~20 %), with sizes below 200 nm. Increasing the PLGA concentration from 0.1 to 0.5 g resulted in an increase in the size of the obtained nanospheres from 130 to 174 nm. The molecular weight of PLGA had little effect on the particle sizes and particle size distributions of the nanospheres. However, the drug loading efficiencies of the obtained RFP/PLGA nanospheres decreased when the molecular weight of PLGA was increased. Based on these experiments, an optimized technique was established for the preparation of monodisperse PLGA nanospheres, using the method developed by the authors.Graphical Abstract.

  15. Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route

    International Nuclear Information System (INIS)

    Wen Li; Lin Zhonghua; Gu Pingying; Zhou Jianzhang; Yao Bingxing; Chen Guoliang; Fu Jinkun

    2009-01-01

    Monodispersed gold nanoparticles capped with a self-assembled monolayer of dodecanethiol were biosynthesized extracellularly by an efficient, simple, and environmental friendly procedure, which involved the use of Bacillus megatherium D01 as the reducing agent and the use of dodecanethiol as the capping ligand at 26 o C. The kinetics of gold nanoparticle formation was followed by transmission electron microscope (TEM) and UV-vis spectroscopy. It was shown that reaction time was an important parameter in controlling the morphology of gold nanoparticles. The effect of thiol on the shape, size, and dispersity of gold nanoparticles was also studied. The results showed that the presence of thiol during the biosynthesis could induce the formation of small size gold nanoparticles (<2.5 nm), hold the shape of spherical nanoparticles, and promote the monodispersity of nanoparticles. Through the modulation of reaction time and the use of thiol, monodispersed spherical gold nanoparticles capped with thiol of 1.9 ± 0.8 nm size were formed by using Bacillus megatherium D01.

  16. Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route

    Energy Technology Data Exchange (ETDEWEB)

    Wen Li [Xiamen University, Department of Chemistry, College of Chemistry and Chemical Engineering (China); Lin Zhonghua [Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces (China); Gu Pingying [Xiamen University, Department of Chemistry, College of Chemistry and Chemical Engineering (China); Zhou Jianzhang [Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces (China); Yao Bingxing [Xiamen University, School of Life Sciences (China); Chen Guoliang; Fu Jinkun, E-mail: wenli_1976@163.co [Xiamen University, Department of Chemistry, College of Chemistry and Chemical Engineering (China)

    2009-02-15

    Monodispersed gold nanoparticles capped with a self-assembled monolayer of dodecanethiol were biosynthesized extracellularly by an efficient, simple, and environmental friendly procedure, which involved the use of Bacillus megatherium D01 as the reducing agent and the use of dodecanethiol as the capping ligand at 26 {sup o}C. The kinetics of gold nanoparticle formation was followed by transmission electron microscope (TEM) and UV-vis spectroscopy. It was shown that reaction time was an important parameter in controlling the morphology of gold nanoparticles. The effect of thiol on the shape, size, and dispersity of gold nanoparticles was also studied. The results showed that the presence of thiol during the biosynthesis could induce the formation of small size gold nanoparticles (<2.5 nm), hold the shape of spherical nanoparticles, and promote the monodispersity of nanoparticles. Through the modulation of reaction time and the use of thiol, monodispersed spherical gold nanoparticles capped with thiol of 1.9 {+-} 0.8 nm size were formed by using Bacillus megatherium D01.

  17. Synthesis and size control of monodispersed BaTiO3–PVP nanoparticles

    Directory of Open Access Journals (Sweden)

    Jinhui Li

    2016-12-01

    Full Text Available Monodispersed, spherical nanoparticles of the BaTiO3–polyvinylpyrrolidone (BT–PVP composite were synthesized through the surface modification of the oxide BT by the polymer PVP, using TiCl4, BaCl2, PVP, and KOH (as the mineralizer in an aqueous solution. To reduce the size of the particles and ensure that they were monodispersed, the concentrations of the Ba and Ti sources were increased and the reaction parameters such as reaction temperature, reaction time, and KOH concentration were optimized. As a result, monodispersed BT–PVP particles with an average diameter of 114 nm (coefficient of variation, CV = 20.0% were obtained from a Ba-rich solution ([Ti]/[Ba] = 0.2 M:0.3 M; [KOH] = 1.4 M, and their dynamic light scattering in an aqueous suspension demonstrated that the average diameter was 162 nm (CV = 26.6%. A higher KOH concentration resulted in smaller particles, but the excess KOH promoted particle aggregation and PVP gelation. The mechanism of dispersion and aggregation of BT–PVP will be discussed in detail.

  18. Preparation of asymmetrically nanoparticle-supported, monodisperse composite dumbbells by protruding a smooth polymer bulge from rugged spheres.

    Science.gov (United States)

    Nagao, Daisuke; Goto, Kanako; Ishii, Haruyuki; Konno, Mikio

    2011-11-01

    A novel method is proposed to create asymmetrically nanoparticle-supported, monodisperse composite dumbbells. The method consists of the three steps of double soap-free emulsion polymerizations before and after a heterocoagulation. In the first step, soap-free emulsion polymerization was conducted to cover silica cores with cross-linked poly(methyl methacrylate) (PMMA) shells. Then, positively or negatively charged silica nanoparticles were heterocoagulated with the silica-PMMA core-shell particles. In the heterocoagulations, the nanoparticles surface-modified with a cationic silane coupling agent, 3-aminopropyltriethoxysilane, were used as the positively charged ones, and silica nanoparticles without any treatment were used as the negatively charged ones. In the third step, soap-free polymerizations at different pH values were performed to protrude a polystyrene (PSt) bulge from the core-shell particles supporting the charged silica nanoparticles. In the polymerization, the core-shell particles heterocoagulated with the positively charged silica nanoparticles were aggregated in an acidic condition whereas the silica nanoparticles supported on the core-shell particles were dissolved in a basic condition. For the negatively charged silica nanoparticle, a PSt bulge was successfully protruded from the core-shell particle in acidic and neutral conditions without aggregation of the core-shell particles. The protrusion of the PSt bulge became distinctive when the number of heterocoagulated silica nanoparticles per core-shell particle was increased. Additional heterocoagulation experiments, in which positively or negatively charged magnetite nanoparticles were mixed with the asymmetrically nanoparticle-supported composite dumbbells, confirmed direct exposure of silica nanoparticles to the outer solvent phase.

  19. The study of monodisperse water-in-oil macroemulsion dynamics in a microfluidic chip

    Science.gov (United States)

    Nozdriukhin, D. V.; Belousov, K. I.; Filatov, N. A.; Bukatin, A. S.

    2017-11-01

    Emulsion dynamics is little-studied, but important subject for biological, medical and physical applications. In this work microfluidic droplet generator was used to experimentally study two-dimensional flow of monodispersed macroemulsion with 25 – 50 μm droplet size. Quantity of droplets, their trajectories and velocity profiles were studied. Obtained results showed, that velocity profile of droplets flow does not coincide with the Poiseuille profile of laminar oil flow in the channel. Droplet velocity decrease with the increasing of droplets concentration, which can be explained by the hydrodynamic interactions between droplets. The law of motion can be well described by the Greenberg’s traffic flow model.

  20. Monodisperse N‐Doped Graphene Nanoribbons Reaching 7.7 Nanometers in Length

    Science.gov (United States)

    Cortizo‐Lacalle, Diego; Mora‐Fuentes, Juan P.; Strutyński, Karol; Saeki, Akinori

    2017-01-01

    Abstract The properties of graphene nanoribbons are highly dependent on structural variables such as width, length, edge structure, and heteroatom doping. Therefore, atomic precision over all these variables is necessary for establishing their fundamental properties and exploring their potential applications. An iterative approach is presented that assembles a small and carefully designed molecular building block into monodisperse N‐doped graphene nanoribbons with different lengths. To showcase this approach, the synthesis and characterisation of a series of nanoribbons constituted of 10, 20 and 30 conjugated linearly‐fused rings (2.9, 5.3, and 7.7 nm in length, respectively) is presented. PMID:29193535

  1. The Synthesis, Characterization and Catalytic Reaction Studies of Monodisperse Platinum Nanoparticles in Mesoporous Oxide Materials

    Energy Technology Data Exchange (ETDEWEB)

    Rioux, Robert M. [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    A catalyst design program was implemented in which Pt nanoparticles, either of monodisperse size and/or shape were synthesized, characterized and studied in a number of hydrocarbon conversion reactions. The novel preparation of these materials enables exquisite control over their physical and chemical properties that could be controlled (and therefore rationally tuned) during synthesis. The ability to synthesize rather than prepare catalysts followed by thorough characterization enable accurate structure-function relationships to be elucidated. This thesis emphasizes all three aspects of catalyst design: synthesis, characterization and reactivity studies. The precise control of metal nanoparticle size, surface structure and composition may enable the development of highly active and selective heterogeneous catalysts.

  2. Synthesis of Monodisperse CdSe QDs using Controlled Growth Temperatures

    International Nuclear Information System (INIS)

    Noor Razinah Rahmat; Akrajas Ali Umar; Muhammad Yahya; Muhamad Mat Salleh; Mohammad Hafizuddin Jumali

    2011-01-01

    The effect of growth temperatures on size of CdSe quantum dots (QDs) has been investigated. CdSe QDs were synthesized using thermolysis of organometallics precursor route using wet chemical method. The growth temperature was varied from 260-310 degree Celsius with growth period fixed at 60 s. As the growth temperature increased, the monodispersed CdSe QDs with diameter in the range 3-7 nm were obtained. Both absorption and PL spectra of the QDs revealed a strong red-shift supporting the increment size of QDs with the rise of growth temperature. (author)

  3. Optical properties of monodispersed silver nanoparticles produced via reverse micelle microemulsion

    Science.gov (United States)

    Zhang, Danhui; Liu, Xiaoheng; Wang, Xin; Yang, Xujie; Lu, Lude

    2011-04-01

    Silver nanoparticles produced by the sodium borohydride reduction of silver nitrate were stabilized by means of 1-dodecanethiol providing sulfur atom. (n-Dodecyl) trimethylammonium bromide (DTAB), which was used as a phase transfer agent in two-phase system involving water and toluene, played a significant role in the formation of monolayer-protected silver nanoparticles. These nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet-visible absorption spectroscopy (UV-vis), FT-IR spectra and fluorescence. The results indicate that the system is monodispersed and leads to the self-assembly of silver nanoparticles into 0-D quanta-dot arrays.

  4. Force chains in monodisperse spherical particle assemblies: Three-dimensional measurements using neutrons

    Science.gov (United States)

    Wensrich, C. M.; Kisi, E. H.; Luzin, V.; Garbe, U.; Kirstein, O.; Smith, A. L.; Zhang, J. F.

    2014-10-01

    The full triaxial stress state within individual particles in a monodisperse spherical granular assembly has been measured. This was made possible by neutron imaging and computed tomography combined with neutron diffraction strain measurement techniques and associated stress reconstruction. The assembly in question consists of 549 precision steel ball bearings under an applied axial load of 85 MPa in a cylindrical die. Clear evidence of force chains was observed in terms of both the shape of the probability distribution function for normal stresses and the network formed by highly loaded particles. An extensive analysis of the source and magnitude of uncertainty in these measurements is also presented.

  5. Tunable stability of monodisperse secondary O/W nano-emulsions

    Science.gov (United States)

    Vecchione, R.; Ciotola, U.; Sagliano, A.; Bianchini, P.; Diaspro, A.; Netti, P. A.

    2014-07-01

    Stable and biodegradable oil in water (O/W) nano-emulsions can have a huge impact on a wide range of bio-applications, from food to cosmetics and pharmaceuticals. Emulsions, however, are immiscible systems unstable over time; polymer coatings are known to be helpful, but an effective procedure to stabilize monodisperse and biodegradable O/W nano-emulsions is yet to be designed. Here, we coat biodegradable O/W nano-emulsions with a molecular layer of biodegradable polyelectrolytes such as polysaccharides - like chitosan - and polypeptides - like polylysine - and effectively re-disperse and densify the polymer coating at high pressure, thus obtaining monodisperse and stable systems. In particular, focusing on chitosan, our tests show that it is possible to obtain unprecedented ultra-stable O/W secondary nano-emulsions (diameter sizes tunable from ~80 to 160 nm and polydispersion indices below 0.1) by combining this process with high concentrations of polymers. Depending on the polymer concentration, it is possible to control the level of coating that results in a tunable stability ranging from a few weeks to several months. The above range of concentrations has been investigated using a fluorescence-based approach with new insights into the coating evolution.Stable and biodegradable oil in water (O/W) nano-emulsions can have a huge impact on a wide range of bio-applications, from food to cosmetics and pharmaceuticals. Emulsions, however, are immiscible systems unstable over time; polymer coatings are known to be helpful, but an effective procedure to stabilize monodisperse and biodegradable O/W nano-emulsions is yet to be designed. Here, we coat biodegradable O/W nano-emulsions with a molecular layer of biodegradable polyelectrolytes such as polysaccharides - like chitosan - and polypeptides - like polylysine - and effectively re-disperse and densify the polymer coating at high pressure, thus obtaining monodisperse and stable systems. In particular, focusing on

  6. Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping.

    Science.gov (United States)

    Chen, Daqin; Yu, Yunlong; Huang, Feng; Huang, Ping; Yang, Anping; Wang, Yuansheng

    2010-07-28

    In this communication, a simple route for modifying the uneven size and shape of alkaline-earth fluoride nanophases to monodisperse ultrasmall nanospheres through lanthanide doping is offered. These nanospheres are found to exhibit bifunctionality, i.e., tunable upconversion emissions as well as proper paramagnetism, making them potentially applicable in the biological field. The synthesis strategy, which involves doping of an impurity with a different valence than the cation in the nanophase, might be useful for controlling the solution growth of some technologically important nanomaterials.

  7. Computational visual distinctness metric

    NARCIS (Netherlands)

    Martínez-Baena, J.; Toet, A.; Fdez-Vidal, X.R.; Garrido, A.; Rodríguez-Sánchez, R.

    1998-01-01

    A new computational visual distinctness metric based on principles of the early human visual system is presented. The metric is applied to quantify (1) the visual distinctness of targets in complex natural scenes and (2) the perceptual differences between compressed and uncompressed images. The new

  8. Silicon-based megahertz ultrasonic nozzles for production of monodisperse micrometer-sized droplets.

    Science.gov (United States)

    Tsai, Shirley C; Cheng, Chih H; Wang, Ning; Song, Yu L; Lee, Ching T; Tsai, Chen S

    2009-09-01

    Monodisperse ethanol droplets 2.4 microm and water droplets 4.5 microm in diameter have been produced in ultrasonic atomization using 1.5- and 1.0-MHz microelectromechanical system (MEMS)-based silicon nozzles, respectively. The 1.5- and 1.0-MHz nozzles, each consisting of 3 Fourier horns in resonance, measured 1.20 cm x 0.15 cm x .11 cm and 1.79 cm x 0.21 cm x 0.11 cm, respectively, required electrical drive power as low as 0.25 W and could accommodate flow rates as high as 350 microl/min. As the liquid issues from the nozzle tip that vibrates longitudinally at the nozzle resonance frequency, a liquid film is maintained on the end face of the nozzle tip and standing capillary waves are formed on the free surface of the liquid film when the tip vibration amplitude exceeds a critical value due to Faraday instability. Temporal instability of the standing capillary waves, treated in terms of the unstable solutions (namely, time-dependant function with a positive Floquet exponent) to the corresponding Mathieu differential equation, is shown to be the underlying mechanism for atomization and production of such monodisperse droplets. The experimental results of nozzle resonance and atomization frequencies, droplet diameter, and critical vibration amplitude are all in excellent agreement with the predictions of the 3-D finite element simulation and the theory of Faraday instability responsible for atomization.

  9. Monodisperse sodium oleate coated magnetite high susceptibility nanoparticles for hyperthermia applications

    Energy Technology Data Exchange (ETDEWEB)

    Araújo-Neto, R.P.; Silva-Freitas, E.L.; Carvalho, J.F.; Pontes, T.R.F.; Silva, K.L.; Damasceno, I.H.M.; Egito, E.S.T. [Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Rua Gal. Gustavo Cordeiro de Farias s/n, Petrópolis, 59012-570 Natal-RN (Brazil); Dantas, Ana L. [Departamento de Física, Universidade do Estado do Rio Grande do Norte, 59610-210 Mossoró-RN (Brazil); Morales, Marco A. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Campus universitrio, CEP: 59078-970 Natal-RN (Brazil); Carriço, Artur S., E-mail: ascarrico@gmail.com [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Campus universitrio, CEP: 59078-970 Natal-RN (Brazil)

    2014-09-01

    We report a simple and low cost methodology to synthesize sodium oleate coated magnetite nanoparticles for hyperthermia applications. The system consists of oleate coated magnetite nanoparticles with large susceptibility (1065 emu/gT), induced by the dipolar inter-particle interaction, with a magnetic core diameter in the 6 nm–12 nm size range. In aqueous medium, the nanoparticles agglomerate to form a monodisperse system, exhibiting a mean hydrodynamic diameter of 60.6 nm±4.1 nm, with a low average polydispersity index of 0.128±0.003, as required for intravenous applications. The system exhibits promising efficiency for magnetic hyperthermia, with a specific absorption rate of 14 W/g at a low field amplitude of 15.9 kA/m and frequency of 62 kHz. In a 50 mg/mL density in 1 mL, the temperature rises to 42.5 °C in 1.9 min. - Highlights: • Facile method to synthesize high susceptibility superparamagnetic magnetite nanoparticles. • Synthesis of monodisperse oleate coated magnetite nanoparticles. • Rapid temperature increase after exposure to low intensity alternating magnetic field. • Promising magnetic system to be employed in magnetic hyperthermia.

  10. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Hufschmid, Ryan D.; Arami, Hamed; Ferguson, R. Matthew; Gonzales, Marcela; Teeman, Eric M.; Brush, Lucien N.; Browning, Nigel D.; Krishnan, Kannan M.

    2015-06-03

    We present a comprehensive template for the design and synthesis of iron oxide nanoparticles with control over size, size distribution, phase, and resulting properties. Monodisperse superparamagnetic iron oxide nanoparticles were synthesized by thermal decomposition of three different iron containing precursors (iron oleate, iron pentacarbonyl, and iron oxyhydroxide) in organic solvents under a variety of synthetic conditions. We compare the suitability of these three kinetically controlled synthesis protocols, which have in common the use of iron oleate as a starting precursor or reaction intermediate, for producing nanoparticles with specific size and magnetic properties. Monodisperse particles were produced over a tunable range of sizes from approximately 2-30 nm. Reaction parameters such as precursor concentration, addition of surfactant, temperature, ramp rate, and time were adjusted to kinetically control size and size-distribution. In particular, large quantities of excess surfactant (up to 25:1 molar ratio) alter reaction kinetics and result in larger particles with uniform size; however, there is often a trade-off between large particles and a narrow size distribution. Iron oxide phase is also critical for establishing magnetic properties. As an example, we show the importance of obtaining the required iron oxide phase for application to Magnetic Particle Imaging (MPI), and describe how phase purity can be controlled.

  11. Coalescence of functional gold and monodisperse silver nanoparticles mediated by black Panax ginseng Meyer root extract

    Science.gov (United States)

    Wang, Dandan; Markus, Josua; Kim, Yeon-Ju; Wang, Chao; Jiménez Pérez, Zuly Elizabeth; Ahn, Sungeun; Aceituno, Verónica Castro; Mathiyalagan, Ramya; Yang, Deok Chun

    2016-01-01

    A rapid biological synthesis of multifunctional gold nanoparticle (AuNp) and monodisperse silver nanoparticle (AgNp) was achieved by an aqueous extract of black Panax ginseng Meyer root. The physicochemical transformation into black ginseng (BG) greatly enhanced the pharmacological activities of white ginseng and its minor ginsenoside content. The optimal temperature conditions and kinetics of bioreduction were investigated. Formation of BG-AuNps and BG-AgNps was verified by ultraviolet–visible spectrophotometry at 548 and 412 nm, respectively. The biosynthesized BG-AgNps were spherical and monodisperse with narrow distribution, while BG-AuNps were icosahedral-shaped and moderately polydisperse. Synthesized nanoparticles exhibited long-term stability in buffers of pH 7.0–8.0 and biological media (5% bovine serum albumin) at an ambient temperature and at 37°C. BG-AgNps showed effective antibacterial activity against Escherichia coli and Staphylococcus aureus. BG-AuNps and BG-AgNps demonstrated increased scavenging activity against 2,2-diphenyl-1-picrylhydrazyl free radicals. In addition, BG-AuNps and BG-AgNps were nontoxic to HaCaT and MCF-7 cells; the latter showed no cytotoxicity at concentrations lower than 10 µg/mL. At higher concentrations, BG-AgNps exhibited apparent apoptotic activity in MCF-7 breast cancer cell line through reactive oxygen species generation and nuclear fragmentation. PMID:28008248

  12. DMSO as a solvent/ligand to monodisperse CdS spherical nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kaijun [China Pharmaceutical University, Physical Chemistry Lab, School of Science (China); Han, Qiaofeng, E-mail: hanqiaofeng@njust.edu.cn [Nanjing University of Science and Technology, Key Laboratory for Soft Chemistry and Functional Materials, Ministry of Education (China)

    2016-01-15

    Monodisperse CdS nanospheres assembled by small nanoparticles were prepared using dimethyl sulfoxide (DMSO) as a solvent through several routes including thermolysis of xanthate, the reaction of cadmium acetate (Cd(CH{sub 3}CO{sub 2}){sub 2}) with thiourea, and interfacial reaction of CS{sub 2} and Cd(CH{sub 3}CO{sub 2}){sub 2}/DMSO. The corresponding products possessed the particle sizes ranging from around 35 to 45 nm, 63 to 73 nm, and 240 to 280 nm, respectively. These products presented uniform spherical morphology, which provide insights into the effect of DMSO on CdS morphology. DMSO, as an aprotic and polar solvent, possesses unique properties. The oxygen and sulfur atoms in DMSO can coordinate to metal ions on nanoparticles surface, and the high polarity of DMSO is favorable to fast reaction, nucleation, growth, and Ostwald ripening, forming monodisperse nanospheres with narrow size distribution. The influence of CdS size on its photocatalytic activity was evaluated using Rhodamine B (RhB) as a model compound under visible light irradiation.

  13. Characterization of Monodispersed Iron Oxide Nanocrystals by XAS and MCD measurement

    International Nuclear Information System (INIS)

    Kim, J.-Y.; Noh, H.-J.; Park, B.-G.; Kim, T.-Y.; Park, J.-H.; Hyeon, T.; Park, J.; Kang, E.

    2004-01-01

    Full text: Nanoparticles have attracted so much attention because of their potential technological applications and abundance of scientifically interesting issues. In particular, magnetic nanoparticles are considered to be applicable to various magnetic devices such as terabit memory, ferrofluids, magnetocaloric refrigeration systems, blood cells, etc. With the development of nano-technology, variation of physical properties as a function of particle size is one of the most important issues, but has been rarely explored because of difficulty of the size control in synthesizing nanoparticles. Recently, some of us successfully synthesized high crystalline and monodisperse maghemite nanoparticles without a size selection process and research in this field seems to be promoted by one step. In this report, we present a systematic characterization of the monodispersed nanocrystalline γ - Fe 2 O 3 with the diameter of 13, 8 and 4 nm by measuring the x-ray absorption spectroscopy (XAS) and the x-ray magnetic circular dichroism(XMCD) spectra on Fe L edge. The spectra of the 4 nm nanoparticles are very similar to those of maghemite (γ - Fe 2 O 3 ). However, the spectra become close to those of magnetite (Fe 3 O 4 ) as the particle size becomes 8 and 13 nm. Considering that the maghemite and magnetite have the same spinel structure with different Fe vacancies, these results can be explained that the surface of nanoparticles has more vacancies than the core part, indicating that surface disorder increases as the particle size decreases

  14. Microwave Synthesized Monodisperse CdS Spheres of Different Size and Color for Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Carlos A. Rodríguez-Castañeda

    2015-01-01

    Full Text Available Monodisperse CdS spheres of size of 40 to 140 nm were obtained by microwave heating from basic solutions. It is observed that larger CdS spheres were formed at lower solution pH (8.4–8.8 and smaller ones at higher solution pH (10.8–11.3. The color of CdS products changed with solution pH and reaction temperature; those synthesized at lower pH and temperature were of green-yellow color, whereas those formed at higher pH and temperature were of orange-yellow color. A good photovoltage was observed in CdS:poly(3-hexylthiophene solar cells with spherical CdS particles. This is due to the good dispersion of CdS nanoparticles in P3HT solution that led to a large interface area between the organic and inorganic semiconductors. Higher photocurrent density was obtained in green-yellow CdS particles of lower defect density. The efficient microwave chemistry accelerated the hydrolysis of thiourea in pH lower than 9 and produced monodisperse spherical CdS nanoparticles suitable for solar cell applications.

  15. On-Chip Facile Preparation of Monodisperse Resorcinol Formaldehyde (RF Resin Microspheres

    Directory of Open Access Journals (Sweden)

    Jianmei Wang

    2018-01-01

    Full Text Available Monodisperse resorcinol formaldehyde resin (RF microspheres are an important polymeric material because of their rich surface functional group and uniform structural characteristics and have been increasingly applied as an electrode material, catalyst support, absorbent, and carbon microsphere precursor. The polymerization conditions, such as the gelation/solidification temperature and the residence time, can largely influence the physical properties and the formation of the 3D polymeric network of the RF microspheres as well as the carbon microspheres. However, few studies have reported on the complexity of the gelation and solidification processes of resol. In this work, we developed a new RF microsphere preparation device that contains three units: a droplet generation unit, a curing unit, and a collection unit. In this system, we controlled the gelation and solidification processes of the resol and observed its curing behavior, which helped us to uncover the curing mechanism of resol. Finally, we obtained the optimized polymerization parameters, obtaining uniform RF microspheres with a variation coefficient of 4.94%. The prepared porous RF microspheres presented a high absorption ability, reaching ~90% at 10 min. Thus, our method demonstrated the practicality of on-chip monodisperse microspheres synthesis. The product was useful in drug delivery and adsorbing large poisonous molecules.

  16. Compressible or incompressible blend of interacting monodisperse star and linear polymers near a surface.

    Science.gov (United States)

    Batman, Richard; Gujrati, P D

    2008-03-28

    We consider a lattice model of a mixture of repulsive, attractive, or neutral monodisperse star (species A) and linear (species B) polymers with a third monomeric species C, which may represent free volume. The mixture is next to a hard, infinite plate whose interactions with A and C can be attractive, repulsive, or neutral. These two interactions are the only parameters necessary to specify the effect of the surface on all three components. We numerically study monomer density profiles using the method of Gujrati and Chhajer that has already been previously applied to study polydisperse and monodisperse linear-linear blends next to surfaces. The resulting density profiles always show an enrichment of linear polymers in the immediate vicinity of the surface due to entropic repulsion of the star core. However, the integrated surface excess of star monomers is sometimes positive, indicating an overall enrichment of stars. This excess increases with the number of star arms only up to a certain critical number and decreases thereafter. The critical arm number increases with compressibility (bulk concentration of C). The method of Gujrati and Chhajer is computationally ultrafast and can be carried out on a personal computer (PC), even in the incompressible case, when simulations are unfeasible. Calculations of density profiles usually take less than 20 min on PCs.

  17. Receiving and use of streams of monodisperse ice granules for cleaning and deactivation of surfaces

    Science.gov (United States)

    Boukharov, A.; Balashov, A.; Timohin, A.; Ivanov, A.; Holin, B.

    2017-11-01

    The most generally useful methods for cleaning and processing of surfaces are the sand-jets and shot blasting jets. Installations of this kind are used for cleaning of corrosion surfaces, the oil-dirt deposits, paint coatings. However the use of these installations follows to high investment and operational expenditure, larger risk of operators disease, the negative affect for a environment. These problems can be solved with the use of new cleaning method through application of mono-disperse (identical by the size and the form) ice granules of 300 - 1000 microns, accelerated by air stream in the nozzle device to the speed of 10 - 100 m/s. In view of the extreme complexity of the receiving such particles by means of cooling and the subsequent freezing of water drops are necessary additional experimental researches. For study of thermal processes of receiving mono-disperse ice granules the experimental installation was created and experiments on deactivation and cleaning of surfaces with pollution of various types are made. Experiments showed that by means of a stream of the accelerated ice granules it is rather successfully possible to delete oil-dirt deposits, outdated paint coats and rust. Besides, efficient deactivation of radioactive surfaces is possible. The coefficient deactivation of γ activity is highest.

  18. Facile Synthesis of Mono-Dispersed Polystyrene (PS/Ag Composite Microspheres via Modified Chemical Reduction

    Directory of Open Access Journals (Sweden)

    Wen Zhu

    2013-12-01

    Full Text Available A modified method based on in situ chemical reduction was developed to prepare mono-dispersed polystyrene/silver (PS/Ag composite microspheres. In this approach; mono-dispersed PS microspheres were synthesized through dispersion polymerization using poly-vinylpyrrolidone (PVP as a dispersant at first. Then, poly-dopamine (PDA was fabricated to functionally modify the surfaces of PS microspheres. With the addition of [Ag(NH32]+ to the PS dispersion, [Ag(NH32]+ complex ions were absorbed and reduced to silver nanoparticles on the surfaces of PS-PDA microspheres to form PS/Ag composite microspheres. PVP acted both as a solvent of the metallic precursor and as a reducing agent. PDA also acted both as a chemical protocol to immobilize the silver nanoparticles at the PS surface and as a reducing agent. Therefore, no additional reducing agents were needed. The resulting composite microspheres were characterized by TEM, field emission scanning electron microscopy (FESEM, energy-dispersive X-ray spectroscopy (EDS, XRD, UV-Vis and surface-enhanced Raman spectroscopy (SERS. The results showed that Ag nanoparticles (NPs were homogeneously immobilized onto the PS microspheres’ surface in the presence of PDA and PVP. PS/Ag composite microspheres were well formed with a uniform and compact shell layer and were adjustable in terms of their optical property.

  19. Synthesis and characterization of fine and monodisperse silver particles of uniform shape

    Science.gov (United States)

    Ducamp-Sanguesa, C.; Herrera-Urbina, R.; Figlarz, M.

    1992-10-01

    Fine silver particles of uniform size and shape have been synthesized from silver nitrate in hot ethylene glycol. Quasi-spheric and monodisperse silver particles are produced only when particle sintering is prevented during the growth step. For this purpose, a protective agent, namely, polyvinylpirrolidone (PVP), was added to the system. Particle size increases with increasing temperature and PVP/silver nitrate weight ratio. Heterogeneous nucleation of metallic silver with a critical concentration of in-situ formed platinum nuclei produces monosize particles that have a rod-like shape. This drastic change in particle shape indicates that under these conditions PVP also acts as a crystal habit modifier. The thickness of rod-like particles changes when different PVP/silver nitrate weight ratios are used. Electron microscopy and X-ray diffraction techniques were used for particle characterization. The synthesis of metallic particles in liquid polyols, which act as both solvent and reducing agent, is a useful method for producing highly pure, fine, and monodisperse particles of uniform shape.

  20. Microfluidic Devices for Blood Fractionation

    OpenAIRE

    Hou, Han Wei; Bhagat, Ali Asgar S.; Lee, Wong Cheng J.; Huang, Sha; Han, Jongyoon; Lim, Chwee Teck

    2011-01-01

    Blood, a complex biological fluid, comprises 45% cellular components suspended in protein rich plasma. These different hematologic components perform distinct functions in vivo and thus the ability to efficiently fractionate blood into its individual components has innumerable applications in both clinical diagnosis and biological research. Yet, processing blood is not trivial. In the past decade, a flurry of new microfluidic based technologies has emerged to address this compelling problem. ...

  1. Fractional Vector Calculus and Fractional Special Function

    OpenAIRE

    Li, Ming-Fan; Ren, Ji-Rong; Zhu, Tao

    2010-01-01

    Fractional vector calculus is discussed in the spherical coordinate framework. A variation of the Legendre equation and fractional Bessel equation are solved by series expansion and numerically. Finally, we generalize the hypergeometric functions.

  2. Fermionic bound states in distinct kinklike backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, Paraiba (Brazil); Mohammadi, A. [Universidade Federal de Campina Grande, Departamento de Fisica, Caixa Postal 10071, Campina Grande, Paraiba (Brazil)

    2017-04-15

    This work deals with fermions in the background of distinct localized structures in the two-dimensional spacetime. Although the structures have a similar topological character, which is responsible for the appearance of fractionally charged excitations, we want to investigate how the geometric deformations that appear in the localized structures contribute to the change in the physical properties of the fermionic bound states. We investigate the two-kink and compact kinklike backgrounds, and we consider two distinct boson-fermion interactions, one motivated by supersymmetry and the other described by the standard Yukawa coupling. (orig.)

  3. Microfluidic preparation and self diffusion PFG-NMR analysis of monodisperse water-in-oil-in-water double emulsions

    NARCIS (Netherlands)

    Hughes, E.; Maan, A.A.; Acquistapace, S.; Burbidge, J.A.; Johns, M.L.; Gunes, D.Z.; Clausen, P.; Syrbe, A.; Hugo, J.; Schroën, C.G.P.H.

    2013-01-01

    Monodisperse water-in-oil-in-water (WOW) double emulsions have been prepared using microfluidic glass devices designed and built primarily from off the shelf components. The systems were easy to assemble and use. They were capable of producing double emulsions with an outer droplet size from 100 to

  4. Plasma-assisted synthesis of monodispersed and robust Ruthenium ultrafine nanocatalysts for organosilane oxidation and oxygen evolution reactions

    NARCIS (Netherlands)

    Gnanakumar, E.S.; Ng, W.; Filiz, B.C.; Rothenberg, G.; Wang, S.; Xu, H.; Pastor-Pérez, L.; Pastor-Blas, M.M.; Sepúlveda-Escribano, A.; Yan, N.; Shiju, N.R.

    2017-01-01

    We report a facile and general approach for preparing ultrafine ruthenium nanocatalysts by using a plasma-assisted synthesis at <100 °C. The resulting Ru nanoparticles are monodispersed (typical size 2 nm) and remain that way upon loading onto carbon and TiO2 supports. This gives robust catalysts

  5. Annealing effect on the structural and optical properties of Cr/ -Cr2O3 monodispersed particles based solar absorbers

    CSIR Research Space (South Africa)

    Khamlich, S

    2013-01-01

    Full Text Available A cost-effective and environmentally friendly green chemical method, the so-called aqueous chemical growth (ACG) method, was used to deposit chromium/alpha-chromium(III) oxide, Cr/a-Cr2O3, monodispersed particles, for solar absorbers applications...

  6. Facile Hydrothermal Synthesis of Monodispersed MoS2 Ultrathin Nanosheets Assisted by Ionic Liquid Brij56

    Directory of Open Access Journals (Sweden)

    Guan-Qun Han

    2015-01-01

    Full Text Available Monodispersed MoS2 ultrathin nanosheets have been successfully fabricated by a facile hydrothermal process assisted by ionic liquid Brij56. The effect of Brij56 on the morphology and structure of MoS2 has been obviously observed. XRD shows that the as-prepared MoS2 assisted by Brij56 has the weak and broad peak of (002 planes, which implies the small size and well dispersed structure of MoS2 nanosheets. TEM and SEM images reveal that MoS2 ultrathin nanosheets have small size and few stacking layers with the adding of Brij56. HRTEM images prove that MoS2 appears to have a highly monodispersed morphology and to be monolayer ultrathin nanosheets with the length about 5–8 nm, which can provide more exposed rims and edges as active sites for hydrogen evolution reaction. Brij56 has played a crucial role in preparing monodispersed MoS2 ultrathin nanosheets as excellent electrocatalysts. The growth mechanism of monodispersed MoS2 has been discussed in detail.

  7. Effect of Flow Rates on Generation of Monodisperse Clay-Poly(N-isopropylacrylamide) Embolic Microspheres Using Hydrodynamic Focusing Microfluidic Device

    Science.gov (United States)

    Han, Kyungsup; Lee, Sona; Duck Seo, Kyoung; Choi, Sung-Up; Lee, Jonghwi; Lee, Jaehwi; Kwak, Byung Kook; Choi, Hae-Jin; Kim, Dong Sung

    2011-06-01

    Vascular embolization is a minimally invasive nonsurgical technique obstructing a blood vessel by lodgment of embolic materials to treat cancers and vascular lesions. In this paper, we have carried out a parametric study of generation of monodisperse clay-poly(N-isopropylacrylamide) (clay-PNIPAAm) embolic microspheres of which size is comparable to a blood vessel (about 400 µm). To achieve monodisperse water-phase clay/NIPAAm microdroplets, we have designed and fabricated a poly(dimethylsiloxane) (PDMS) hydrodynamic focusing microfluidic device (HFMD) for the generation of microdroplets with the affinity of continuous oil-phase fluid to the hydrophobic PDMS taken into account. We have investigated the influence of process-related flow conditions on the microdroplet generation to determine a proper processing window for obtaining monodisperse microdroplets with the fabricated HFMD. A parametric study of generation of monodisperse microdroplets was carried out by changing volumetric flow rates of two immiscible fluids within the determined processing window. For the suggested condition, the fabricated clay-PNIPAAm microspheres of about 400 µm in diameter showed an extremely narrow size distribution with a coefficient of variation of 0.41%. We have also showed the floatability of the fabricated clay-PNIPAAm microspheres in saline and the smooth passage of the microspheres through a commercially available microcatheter as in vitro characterization for embolization.

  8. Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity

    Science.gov (United States)

    Bindhu, M. R.; Umadevi, M.

    2013-01-01

    Synthesis of silver nanoparticles using leaf extract of Hibiscus cannabinus has been investigated. The influences of different concentration of H. cannabinus leaf extract, different metal ion concentration and different reaction time on the above cases on the synthesis of nanoparticles were evaluated. The synthesized nanoparticles were characterized using UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM). The prepared silver nanoparticles were monodispersed, spherical in shape with the average particle size of 9 nm and shows surface plasmon peak at 446 nm. The study also reveals that the ascorbic acid present in H. cannabinus leaf extract has been used as reducing agent. The prepared silver nanoparticle shows good antimicrobial activity against Escherichia coli, Proteus mirabilis and Shigella flexneri.

  9. Preparation and size control of highly monodisperse vinyl functionalized silica spheres

    International Nuclear Information System (INIS)

    Yin Jianbo; Deng Tiansong; Zhang Gengmin

    2012-01-01

    Vinyl functionalized silica spheres (VFSSs) are prepared by one-step reaction using the aqueous solution of organosilane. The synthetic method is effective and reproducible with one process used. The VFSSs could self-assemble into three-dimensional (3D) fcc photonic crystals. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations revealed that the VFSSs were highly monodisperse and their surfaces were sufficiently smooth. The size of the VFSSs could be controlled by adjusting the reaction temperature. The sphere size reached its minimum, 394 nm, around 45 °C and became larger when the temperature was either elevated or lowered. The maximum sphere size, 515 nm, was obtained around 15 °C. This work is expected to extend to the preparation and size control of other kinds of hybrid silica spheres.

  10. Synthesis of Monodisperse Walnut-Like SnO2 Spheres and Their Photocatalytic Performances

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2015-01-01

    Full Text Available Novel walnut-like SnO2 spheres have been synthesized using a one-step hydrothermal reaction with SnCl2·2H2O and KOH as raw materials. The morphology, microstructure, and optical properties of the products were characterized by X-ray powder diffraction (XRD, Raman spectrum, scanning electron microscopy (SEM, transmission electron microscopy (TEM, selected area electron diffraction (SAED, and ultraviolet-visible (UV-Vis absorption spectroscopy. The detailed studies revealed that these synthesized spheres are highly monodisperse and have a uniform size of approximately 250 nm. Photocatalytic activity of the prepared SnO2 spheres was evaluated by the degradation of methylene orange. The synthesized SnO2 spheres exhibited excellent photocatalytic degradation. In addition, a possible formation mechanism of the walnut-like nanostructures was proposed based on reaction time-dependent experiments.

  11. Core-Cone Structured Monodispersed Mesoporous Silica Nanoparticles with Ultra-large Cavity for Protein Delivery.

    Science.gov (United States)

    Xu, Chun; Yu, Meihua; Noonan, Owen; Zhang, Jun; Song, Hao; Zhang, Hongwei; Lei, Chang; Niu, Yuting; Huang, Xiaodan; Yang, Yannan; Yu, Chengzhong

    2015-11-25

    A new type of monodispersed mesoporous silica nanoparticles with a core-cone structure (MSN-CC) has been synthesized. The large cone-shaped pores are formed by silica lamellae closely packed encircling a spherical core, showing a structure similar to the flower dahlia. MSN-CC has a large pore size of 45 nm and a high pore volume of 2.59 cm(3) g(-1). MSN-CC demonstrates a high loading capacity of large proteins and successfully delivers active β-galactosidase into cells, showing their potential as efficient nanocarriers for the cellular delivery of proteins with large molecular weights. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Monodisperse core-shell particles composed of magnetite and dye-functionalized mesoporous silica

    Science.gov (United States)

    Eurov, D. A.; Kurdyukov, D. A.; Medvedev, A. V.; Kirilenko, D. A.; Yakovlev, D. R.; Golubev, V. G.

    2017-08-01

    Hybrid particles with a core-shell structure have been obtained in the form of monodisperse spherical mesoporous silica particles filled with magnetite and covered with a mesoporous silica shell functionalized with a luminescent dye. The particles have a small root-mean-square size deviation (at most 10%), possess a specific surface area and specific pore volume of up to 250 m2/g and 0.15 cm3/g, respectively, and exhibit visible luminescence peaked at a wavelength of 530 nm. The particles can be used in diagnostics of cancerous diseases, serving simultaneously for therapeutic (magnetic hyperthermia and targeted drug delivery) and diagnostic (contrast agent for magnetic-resonance tomography and luminescent marker) purposes.

  13. Monodisperse N-Doped Graphene Nanoribbons Reaching 7.7 Nanometers in Length.

    Science.gov (United States)

    Cortizo-Lacalle, Diego; Mora-Fuentes, Juan P; Strutyński, Karol; Saeki, Akinori; Melle-Franco, Manuel; Mateo-Alonso, Aurelio

    2018-01-15

    The properties of graphene nanoribbons are highly dependent on structural variables such as width, length, edge structure, and heteroatom doping. Therefore, atomic precision over all these variables is necessary for establishing their fundamental properties and exploring their potential applications. An iterative approach is presented that assembles a small and carefully designed molecular building block into monodisperse N-doped graphene nanoribbons with different lengths. To showcase this approach, the synthesis and characterisation of a series of nanoribbons constituted of 10, 20 and 30 conjugated linearly-fused rings (2.9, 5.3, and 7.7 nm in length, respectively) is presented. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  14. A Convenient and Templated Method for the Fabrication of Monodisperse Micrometer Hollow Titania Spheres

    Directory of Open Access Journals (Sweden)

    Haibo Yao

    2013-01-01

    Full Text Available A simple and widely applicable methodology was presented to synthesize monodisperse micrometer hollow titania spheres (HTS based on the templating method. It was performed by using the preformed poly(styrene-acrylic acid (PSA as template spheres which was mixed with tetrabutyltitanate (TBOT in an ethanol solvent under steam treatment. The HTS which were obtained by the calcination of PSA/TiO2 composite core-shell spheres had a narrow particle size distribution and commendable surface topography characterized by SEM. The calcined HTS at 500°C displayed crystalline reflection peaks that were characteristic to the anatase phase by XRD. Moreover, some key influencing factors including TBOT concentration and reaction time were analyzed. As expected, the diameter of HTS could be readily controlled by altering the size of PSA template spheres. In addition, the approach was also applied to fabricate hollow zirconia spheres and other inorganic spheres.

  15. Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: optical properties.

    Science.gov (United States)

    Gunalan, Sangeetha; Sivaraj, Rajeshwari; Venckatesh, Rajendran

    2012-11-01

    In this paper, we report on the synthesis of nanostructured copper oxide particles by both chemical and biological method. A facile and efficient synthesis of copper oxide nanoparticles was carried out with controlled surface properties via green chemistry approach. The CuO nanoparticles synthesized are monodisperse and versatile and were characterized with the help of UV-Vis, PL, FT-IR, XRD, SEM, and TEM techniques. The particles are crystalline in nature and average sizes were between 15 and 30 nm. The morphology of the nanoparticles can be controlled by tuning the amount of Aloe vera extract. This new eco-friendly approach of synthesis is a novel, cheap, and convenient technique suitable for large scale commercial production and health related applications of CuO nanoparticles. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. DNA-imprinted polymer nanoparticles with monodispersity and prescribed DNA-strand patterns

    Science.gov (United States)

    Trinh, Tuan; Liao, Chenyi; Toader, Violeta; Barłóg, Maciej; Bazzi, Hassan S.; Li, Jianing; Sleiman, Hanadi F.

    2018-02-01

    As colloidal self-assembly increasingly approaches the complexity of natural systems, an ongoing challenge is to generate non-centrosymmetric structures. For example, patchy, Janus or living crystallization particles have significantly advanced the area of polymer assembly. It has remained difficult, however, to devise polymer particles that associate in a directional manner, with controlled valency and recognition motifs. Here, we present a method to transfer DNA patterns from a DNA cage to a polymeric nanoparticle encapsulated inside the cage in three dimensions. The resulting DNA-imprinted particles (DIPs), which are 'moulded' on the inside of the DNA cage, consist of a monodisperse crosslinked polymer core with a predetermined pattern of different DNA strands covalently 'printed' on their exterior, and further assemble with programmability and directionality. The number, orientation and sequence of DNA strands grafted onto the polymeric core can be controlled during the process, and the strands are addressable independently of each other.

  17. Straightforward and robust synthesis of monodisperse surface-functionalized gold nanoclusters

    Directory of Open Access Journals (Sweden)

    Silvia Varela-Aramburu

    2016-09-01

    Full Text Available Gold nanoclusters are small (1–3 nm nanoparticles with a high surface area that are useful for biomedical studies and drug delivery. The synthesis of small, surface-functionalized gold nanoclusters is greatly dependent on the reaction conditions. Here, we describe a straightforward, efficient and robust room temperature one-pot synthesis of 2 nm gold nanoclusters using thioglucose as a reducing and stabilizing agent, which was discovered by serendipity. The resultant monodisperse gold nanoclusters are more stable than those generated using some other common methods. The carboxylic acid contained in the stabilizing agent on the cluster surface serves as anchor for nanocluster functionalization. Alternatively, the addition of thiols serves to functionalize the nanoclusters. The resulting non-cytotoxic nanoclusters are taken up by cells and constitute a tuneable platform for biomedical applications including drug delivery.

  18. A novel approach for preparation of micrometer-sized, monodisperse dimple and hemispherical polystyrene particles.

    Science.gov (United States)

    Tanaka, Takuya; Komatsu, Yoshifumi; Fujibayashi, Teruhisa; Minami, Hideto; Okubo, Masayoshi

    2010-03-16

    Micrometer-sized, monodisperse dimple and hemispherical polystyrene (PS) particles were successfully prepared by heating (55-70 degrees C) of spherical PS particles dispersed in methanol/water media (40/60 to 80/20, w/w) in the presence of decane droplets, and subsequent cooling down to room temperature. Decane was absorbed by the PS particles during the heating process. Decane-absorbed PS particles phase-separated into PS and decane phases in the inside during the cooling process, and eventually dimple and/or hemispherical particles were formed by removal of the decane phase from phase-separated PS/decane particles by evaporation. The size of the dimple, which is determined by the volume of decane phase-separated from decane-absorbed PS particles during the cooling process, increased with increases in the heating temperature and the methanol content.

  19. Measurement and interpretation of growth and evaporation of monodispersed droplets in a shock tube

    Science.gov (United States)

    Peters, F.; Paikert, B.

    1994-01-01

    A special gasdynamic shock tube process in combination with a Mie light scattering method is used to study growth and subsequent evaporation of monodispersed droplets carried in argon or air. The droplets are generated by homogeneous nucleation and observed in the micrometer range (0.15-6 micrometer radius). Droplet concentrations range from 10-1000/cu mm. Four different substances, i.e. water, n-propanol, methanol and n-hexane are tested for a wide range of properties. A model covering the entire range between large (Kn much greater than 1) and small Knudsen numbers (K much less than 1) is applied to interpret the experimental data. Excellent agreement is found.

  20. Tunable upconversion luminescence of monodisperse Y2O3: Er3+/Yb3+/Tm3+ nanoparticles

    Science.gov (United States)

    Wu, Qibai; Lin, Shaoteng; Xie, Zhongxiang; Zhang, Liqing; Qian, Yannan; Wang, Yaodong; Zhang, Haiyan

    2017-12-01

    Monodisperse Y2O3: Er3+/Yb3+/Tm3+ nanoparticles with various dopant concentrations have been synthesized successfully by a homogeneous precipitation method. Their phase structures and surface morphologies have been characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The diversities of upconversion luminescence spectra and CIE coordinates of prepared samples are investigated in detail at room temperature under 980 nm excitation. Through adjusting the concentrations of Yb3+, Tm3+ and Er3+ ions, three upconversion emission bands in red, green and blue region could be tunable to achieve the color of interest and near white light emission can be obtained in the tri-doped Y2O3 nanoparticles for a variety of application.

  1. Synthesis and size control of monodisperse copper nanoparticles by polyol method.

    Science.gov (United States)

    Park, Bong Kyun; Jeong, Sunho; Kim, Dongjo; Moon, Jooho; Lim, Soonkwon; Kim, Jang Sub

    2007-07-15

    We describe herein the synthesis of metallic copper nanoparticles in the presence of poly(vinylpyrrolidone), employed as a protecting agent, via a polyol method in ambient atmosphere. The obtained copper particles were confirmed by XRD to be crystalline copper with a face-centered cubic (fcc) structure. We observed monodisperse spherical copper nanoparticles with a diameter range 45+/-8 nm. The particle size and its distribution are controlled by varying the synthesis parameters such as the reducing agent concentration, reaction temperature, and precursor injection rate. The precursor injection rate plays an important role in controlling the size of the copper nanoparticles. On the basis of XPS and HRTEM results, we demonstrate that the surface of the copper is surrounded by amorphous CuO and that poly(vinylpyrrolidone) is chemisorbed on the copper surface.

  2. Growth of monodisperse nanocrystals of cerium oxide during synthesis and annealing

    International Nuclear Information System (INIS)

    Ghosh, Swapankumar; Divya, Damodaran; Remani, Kottayilpadi C.; Sreeremya, Thadathil S.

    2010-01-01

    Monodisperse cerium oxide nanocrystals have been successfully synthesised using simple ammonia precipitation technique from cerium(III) nitrate solution at different temperatures in the range 35-80 o C. The activation energy for growth of CeO 2 nanocrystals during the precipitation is calculated as 11.54 kJ/mol using Arrhenius plot. Average crystal diameter was obtained from XRD analysis, HR-TEM and light scattering (PCS). The analysis of size data from HR-TEM images and PCS clearly indicated the formation of highly crystalline CeO 2 particles in narrow size range. CeO 2 nanocrystals precipitated at 35 o C were further annealed at temperatures in the range 300-700 o C. The activation energy for crystal growth during annealing is also calculated and is close to the reported values. An effort is made to predict the mechanism of crystal growth during the precipitation and annealing.

  3. Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: Optical properties

    Science.gov (United States)

    Gunalan, Sangeetha; Sivaraj, Rajeshwari; Venckatesh, Rajendran

    2012-11-01

    In this paper, we report on the synthesis of nanostructured copper oxide particles by both chemical and biological method. A facile and efficient synthesis of copper oxide nanoparticles was carried out with controlled surface properties via green chemistry approach. The CuO nanoparticles synthesized are monodisperse and versatile and were characterized with the help of UV-Vis, PL, FT-IR, XRD, SEM, and TEM techniques. The particles are crystalline in nature and average sizes were between 15 and 30 nm. The morphology of the nanoparticles can be controlled by tuning the amount of Aloe vera extract. This new eco-friendly approach of synthesis is a novel, cheap, and convenient technique suitable for large scale commercial production and health related applications of CuO nanoparticles.

  4. Nonthermal plasma synthesis of size-controlled, monodisperse, freestanding germanium nanocrystals

    International Nuclear Information System (INIS)

    Gresback, Ryan; Holman, Zachary; Kortshagen, Uwe

    2007-01-01

    Germanium nanocrystals may be of interest for a variety of electronic and optoelectronic applications including photovoltaics, primarily due to the tunability of their band gap from the infrared into the visible range of the spectrum. This letter discusses the synthesis of monodisperse germanium nanocrystals via a nonthermal plasma approach which allows for precise control of the nanocrystal size. Germanium crystals are synthesized from germanium tetrachloride and hydrogen entrained in an argon background gas. The crystal size can be varied between 4 and 50 nm by changing the residence times of crystals in the plasma between ∼30 and 440 ms. Adjusting the plasma power enables one to synthesize fully amorphous or fully crystalline particles with otherwise similar properties

  5. Experimental determination of the attachment coefficients of atoms and ions on monodisperse aerosols

    International Nuclear Information System (INIS)

    Porstendoerfer, J.; Roebig, G.; Ahmed, A.

    1979-01-01

    The attachment coefficients of 212 Pb atoms and ions were measured for aerosols in the diameter range 0.1 to 5 μm. The attachment of the Tn-decay products to the aerosol was carried out in laminar flow through a cylindrical tube. Under the same experimental conditions (but without aerosols) the diffusion coefficient of the atoms was determined. The generation of the monodisperse di-2-ethylhexyl sebacate (DEHS) aerosol was carried out by controlled condensation of vapour upon nuclei. The aerosols had standard deviations of 3 to 5%. The aerosol size distributions and concentrations were determined by means of an aerosol size spectrometer, which measured the intensity of the scattered light from single-particles or droplets. The experimental results agree well with the values of the diffusion attachment theory based on the kinetic theory of gases with the assumption of a sticking probability of the Pb atoms, S = 1. (author)

  6. Microwave Synthesis of Nearly Monodisperse Core/Multishell Quantum Dots with Cell Imaging Applications

    Directory of Open Access Journals (Sweden)

    Xu Hengyi

    2010-01-01

    Full Text Available Abstract We report in this article the microwave synthesis of relatively monodisperse, highly crystalline CdSe quantum dots (QDs overcoated with Cd0.5Zn0.5S/ZnS multishells. The as-prepared QDs exhibited narrow photoluminescence bandwidth as the consequence of homogeneous size distribution and uniform crystallinity, which was confirmed by transmission electron microscopy. A high photoluminescence quantum yield up to 80% was measured for the core/multishell nanocrystals. Finally, the resulting CdSe/Cd0.5Zn0.5S/ZnS core/multishell QDs have been successfully applied to the labeling and imaging of breast cancer cells (SK-BR3.

  7. Production of monodispersed Oil-in Water Emulsion Using Crossflow-Type Silicon Microchannel Plate

    Energy Technology Data Exchange (ETDEWEB)

    Kawakatsu, Takahiro.; Komori, Hideaki.; Yonemoto, Toshikuni. [Tohoku University, Miyagi (Japan). Chemical Engineering Department; Nakajima, Mitsutoshi.; Kikuchi, Yuji. [National Food Research Institute, Ibaraki (Japan)

    1999-04-01

    A novel method for continuous productin of monodispersed oil-in-water (O/W) emulsion is developed using acrossflow-type silicaon microchannel plate. On the single crystal silicon plate, a liquid flow path for continuous phase was made, and at each side of th wall of the path an array of regular-sized slits was precisely fabricated. A flat glass plate was tightly attached on the microchannel plate to cover the top of the slits to form the array of microchannels. Regular-sized oil (triolein) droplets were generated by squeezing the oil through the microchannels into the continuous-phase water (0.3 wt% sodium lauryl sulfate solutin) flowing in the liquid path. Oil droplet size is significantly dependent on the microchannel structure, which is identified with the microchannel width, height, and the length of the terrace (a flat area at the microchannel outlet). Three types of microchannel plates having different microchannel structures generate monodispersed emulsions of different average droplet sizes, 16,20, and 48 {mu}m at the watr flow rate of 1.4x10{sup -2}mL{center_dot}min{sup -1}. For the microchannel plate which generates large droplets of 48 {mu}m, increasing the flow rate causes decreasing droplet size. However, for the microchannel plate which generates small droplets of 16 or 20 {mu}m, the size is not affected by the flow rate within the range from 1.4x10{sup -2}to 2.4 mL{center_dot}min{sup -1}. In every case, the droplet size distribution is narrow, and the geometric standard deviation is 1.03 or less. (author)

  8. Generation and stabilization of whey-based monodisperse nanoemulsions using ultra-high-pressure homogenization and small amphipathic co-emulsifier combinations.

    Science.gov (United States)

    Zhang, Xue; Haque, Zahur Z

    2015-11-18

    Ultra-high-pressure homogenization (UHPH) was used to generate monodisperse stable peanut oil nanoemulsions within a desired nanosize range (WPC), sodium dodecyl sulfate, Triton X-100 (X100), and zwitterionic sulfobetaine-based surfactants differing in hydrophobicity. For WPC [2.0% (w/v)], the dispersed-phase fractions (φ) of 0.05 and 210 MPa significantly reduced the mean globule size (dvs) but the grouped frequency distribution was bimodal and larger than that of DNR. Addition of co-emulsifier sulfobetaine 3-10 (SB3-10) [7.5% (w/w) WPC] gave particles within DNR (dvs of 73 nm) though still in a bimodal distribution. Circular dichroism prior to UHPH showed little disruption of the secondary structure of proteins in WPC by SB3-10, whereas X100 obliterated it. A WPC/SB3-10 mixture retained some periodic structure even when mixed with X100 [10% (w/w) WPC] and remarkably gave a narrow monomodal distribution within DNR with the highest stability reflected by a lack of creaming after storage for 30 days (22 °C).

  9. Effects of aerosol polydispersity on theoretical calculations of unattached fractions of radon progeny

    International Nuclear Information System (INIS)

    Bandi, F.; Khan, A.; Phillips, C.R.

    1987-01-01

    Theoretical calculations of unattached fractions of radon progeny require prediction of an attachment coefficient. Average attachment coefficients for aerosols of various count median diameters, CMD, and geometric standard deviations, σ/sub g/, are calculated using four different theories. These theories are: (1) the kinetic theory, (2) the diffusion theory, (3) the hybrid theory and (4) the kinetic-diffusion theory. Comparisons of the various calculated attachment coefficients are made and the implications of using either the kinetic or the diffusion theory to calculate unattached fractions for aerosols of various CMD and σg are discussed. Significant errors may arise in use of either the kinetic theory or the diffusion theory. Large and unacceptable errors arise in calculating unattached fractions of a polydisperse aerosol by characterizing the aerosol as monodisperse. Unattached fractions of RaA are calculated for two mine aerosols and a room aerosol

  10. Initialized Fractional Calculus

    Science.gov (United States)

    Lorenzo, Carl F.; Hartley, Tom T.

    2000-01-01

    This paper demonstrates the need for a nonconstant initialization for the fractional calculus and establishes a basic definition set for the initialized fractional differintegral. This definition set allows the formalization of an initialized fractional calculus. Two basis calculi are considered; the Riemann-Liouville and the Grunwald fractional calculi. Two forms of initialization, terminal and side are developed.

  11. Tempered fractional calculus

    Science.gov (United States)

    Sabzikar, Farzad; Meerschaert, Mark M.; Chen, Jinghua

    2015-07-01

    Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.

  12. Tempered fractional calculus

    Energy Technology Data Exchange (ETDEWEB)

    Sabzikar, Farzad, E-mail: sabzika2@stt.msu.edu [Department of Statistics and Probability, Michigan State University, East Lansing, MI 48823 (United States); Meerschaert, Mark M., E-mail: mcubed@stt.msu.edu [Department of Statistics and Probability, Michigan State University, East Lansing, MI 48823 (United States); Chen, Jinghua, E-mail: cjhdzdz@163.com [School of Sciences, Jimei University, Xiamen, Fujian, 361021 (China)

    2015-07-15

    Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.

  13. Generation and stabilization of whey-based monodisperse naoemulsions using ultra-high pressure homogenization and small amphipathic co-emulsifier combinations

    Science.gov (United States)

    Ultra-high-pressure homogenization (UHPH) was used to generate monodisperse stable peanut oil nanoemulsions within a desired nanosize range (whey protein concentrate (WPC), sodium dodecyl sulfate, Triton X-100 (X100), and zwitterionic sulfobetaine-base...

  14. Synthesis and optoelectronic properties of a monodispersed macrocycle oligomer consisting of three triarylamine units

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Qinggang, E-mail: gangq0172@163.com [Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, College of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Pukou District, Nanjing 210044 (China); Qian, Haiyan, E-mail: qianhaiy@163.com [College of Material Science and Technology, Nanjing University of Technology, 5 Xinmofan Road, Nanjing 210009 (China); Zhou, Yonghui; Li, Jun; Xiao, Huining [Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, College of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Pukou District, Nanjing 210044 (China)

    2012-08-15

    A monodispersed macrocyclic oligomer constructed by three triarylmine units ((TPAT){sub 3}) was designed and readily synthesized from the monomer of 3-(4 Prime -(phenyl(4 Double-Prime -methylphenyl)amino)-phenyl)pentan-3-ol (TPAT) by means of a simple Friedel-Crafts alkylation reaction. The structure of the resultant macrocycle was examined using FT-IR, NMR and MALDI-TOF mass spectroscopy. Compared with 1,10-bis(di-4-tolylaminophenyl) cyclohexane (TAPC) and tri-p-tolylamine (TTA), (TPAT){sub 3} possesses the three-dimensional chair conformation and the higher T{sub g}. In the photoluminescence (PL) spectrum of (TPAT){sub 3} film, there are no excimer emission peaks in the range of 400-550 nm region as those of TAPC and TTA. Besides an EL peak at 386 nm, the single-layer device occured only the 438 nm excimer emission peak, whose intensity increased with the excitation voltage increase. Using 1,3,5-Tris(N-phenylbenzimidazol-2-yl)-benzene (TPBI) as the electron-transporting layer, the resulting double-layer device ITO/(TPAT){sub 3} (40 nm)/TPBI (40 nm)/Mg:Ag (10:1; 50 nm)/Ag (100 nm) only exhibited a 438 nm maximum symmetrical emission peak under an excitation voltage of 14 V. However, as the applied voltage was increased from 14 V to 19 V, the intensity of the symmetrical curve with a 468 nm peak from exciplex emission gets stronger and stronger. In fact, the resultant emission curve was asymmetrical, due to the overlap of two symmetrical curves with 438 nm and 468 nm peaks, respectively. The maximum luminance and luminous efficiency are 2240 cd m{sup -2} at 18.8 V and 1.73 cd A{sup -1} at 1878 cd m{sup -2} (13.9 V). Highlights: Black-Right-Pointing-Pointer The monodispersed macrocyclic oligomer constructed by three triarylamine units was synthesized and characterized. Black-Right-Pointing-Pointer The PL of (TPAT){sub 3} film does not emerge TAPC and TTA's emission peaks of over 400 nm region. Black-Right-Pointing-Pointer The 438 nm emission peak was found from

  15. Tribological characteristics of monodispersed cerium borate nanospheres in biodegradable rapeseed oil lubricant

    Energy Technology Data Exchange (ETDEWEB)

    Boshui, Chen, E-mail: boshuichen@163.com; Kecheng, Gu; Jianhua, Fang; Jiang, Wu; Jiu, Wang; Nan, Zhang

    2015-10-30

    Graphical abstract: - Highlights: • Monodispersed stearic acid-capped cerium borate composite nanoparticles were prepared by hydrothermal method. Their morphologies, element compositions, size distributions, crystal and chemical structures, hydrophobic characteristics were also characterized. • The surface-capped cerium borate nanoparticles exhibited excellent dispersing stability in rapeseed oil. As new lubricating additives, they were also outstanding in enhancing friction-reducing and anti-wear capacities of rapeseed oil in biodegradable rapeseed oil. The results presented in this paper would be of important significance for developing green lubricants and lubricant additives. • The prominent tribological performances of SA/CeBO{sub 3} in rapeseed oil were investigated and attributed to the formation of a composite boundary lubrication film mainly composed of lubricous tribochemical species on the tribo-surfaces. - Abstract: Stearic acid-capped cerium borate composite nanoparticles, abbreviated as SA/CeBO{sub 3}, were prepared by hydrothermal method. The morphologies, element compositions, size distributions, crystal and chemical structures, hydrophobic characteristics, of SA/CeBO{sub 3} were characterized by scanning electron microscope, energy dispersive X-ray spectrometer, dynamic laser particle size analyzer, X-ray diffraction, and Fourier transform infrared spectrometer, respectively. The friction and wear performances of SA/CeBO{sub 3} as a lubricating additive in a rapeseed oil were evaluated on a four-ball tribo-tester. The tribochemical characteristics of the worn surfaces were investigated by X-ray photoelectron spectroscopy. The results showed that the hydrophobic SA/CeBO{sub 3} were monodispersed nanospheres with an average diameter of 8 nm, and exhibited excellent dispersing stability in rapeseed oil. Meanwhile, SA/CeBO{sub 3} nanospheres were outstanding in enhancing friction-reducing and anti-wear capacities of rapeseed oil. The prominent

  16. TEMPERED FRACTIONAL CALCULUS

    Science.gov (United States)

    MEERSCHAERT, MARK M.; SABZIKAR, FARZAD; CHEN, JINGHUA

    2014-01-01

    Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series. PMID:26085690

  17. TEMPERED FRACTIONAL CALCULUS.

    Science.gov (United States)

    Meerschaert, Mark M; Sabzikar, Farzad; Chen, Jinghua

    2015-07-15

    Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.

  18. Influence of Monodisperse Fe3O4 Nanoparticle Size on Electrical Properties of Vegetable Oil-Based Nanofluids

    Directory of Open Access Journals (Sweden)

    Bin Du

    2015-01-01

    Full Text Available Insulating oil modified by nanoparticles (often called nanofluids has recently drawn considerable attention, especially concerning the improvement of electrical breakdown and thermal conductivity of the nanofluids. In this paper, three sized monodisperse Fe3O4 nanoparticles were prepared and subsequently dispersed into insulating vegetable oil to achieve nanofluids. The dispersion stability of nanoparticles in nanofluids was examined by natural sedimentation and zeta potential measurement. The electrical breakdown strength, space charge distribution, and several dielectric characteristics, for example, permittivity, dielectric loss, and volume resistivity of these nanofluids, were comparatively investigated. Experimental results show that the monodisperse Fe3O4 nanoparticles not only enhance the dielectric strength but also uniform the electric field of the nanofluids. The depth of electrical potential well of insulating vegetable oils and nanofluids were analyzed to clarify the influence of nanoparticles on electron trapping and on insulation improvement of the vegetable oil.

  19. Monodisperse and 1D Cross-Linked Multi-branched Cu @ Ni Core-Shell Particles Synthesized by Chemical Reduction

    Science.gov (United States)

    Hu, Hailong; Zhang, Dian; Yu, Weiming; Sugawara, Katsuyasu; Guo, Tailiang

    2014-07-01

    We report on a two-step wet chemical route for producing Cu@Ni core-shell particles with multiple needle-like branches on the surface. Using the usual synthesis process, urchin-like Ni shells were formed on the surface of spherical Cu cores and monodisperse particles were obtained. Under the direction of a static magnetic field, one-dimensional, well-aligned Cu@Ni particles were assembled through cross-linking the branched Ni shells. The monodisperse Cu@Ni particles show stable and uniform field electron emission, having a low turn-on field of 3.3 V/ μm and a large current density of 1 mA/cm2 under an applied field of about 5.33 V/ μm.

  20. Monodisperse gold-palladium alloy nanoparticles and their composition-controlled catalysis in formic acid dehydrogenation under mild conditions.

    Science.gov (United States)

    Metin, Önder; Sun, Xiaolian; Sun, Shouheng

    2013-02-07

    Monodisperse 4 nm AuPd alloy nanoparticles with controlled composition were synthesized by co-reduction of hydrogen tetrachloroaurate(III) hydrate and palladium(II) acetylacetonate with a borane-morpholine complex in oleylamine. These NPs showed high activity (TOF = 230 h(-1)) and stability in catalyzing formic acid dehydrogenation and hydrogen production in water at 50 °C without any additives.

  1. Facile Synthesis of Monodispersed Polysulfide Spheres for Building Structural Colors with High Color Visibility and Broad Viewing Angle.

    Science.gov (United States)

    Li, Feihu; Tang, Bingtao; Wu, Suli; Zhang, Shufen

    2017-01-01

    The synthesis and assembly of monodispersed colloidal spheres are currently the subject of extensive investigation to fabricate artificial structural color materials. However, artificial structural colors from general colloidal crystals still suffer from the low color visibility and strong viewing angle dependence which seriously hinder their practical application in paints, colorimetric sensors, and color displays. Herein, monodispersed polysulfide (PSF) spheres with intrinsic high refractive index (as high as 1.858) and light-absorbing characteristics are designed, synthesized through a facile polycondensation and crosslinking process between sodium disulfide and 1,2,3-trichloropropane. Owing to their high monodispersity, sufficient surface charge, and good dispersion stability, the PSF spheres can be assembled into large-scale and high-quality 3D photonic crystals. More importantly, high structural color visibility and broad viewing angle are easily achieved because the unique features of PSF can remarkably enhance the relative reflectivity and eliminate the disturbance of scattering and background light. The results of this study provide a simple and efficient strategy to create structural colors with high color visibility, which is very important for their practical application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Production of monodisperse respirable aerosols of 241AmO2 and evaluation of in vitro dissolution

    International Nuclear Information System (INIS)

    Boyd, H.A.; Raabe, O.G.; Peterson, P.K.

    1974-01-01

    A method is described for production of monodisperse (sigma//sub g/ less than 1.2) particles of 241 AmO 2 for use in inhalation experiments with dogs and rodents. The effects of physical and chemical factors on the production of polydisperse aerosols of 241 AmO 2 were studied and evaluated. The best aerosol was achieved when a suspension of americium hydroxide with 2.5 mg Am/ml at pH = 7.3 was aerosolized and passed through two heating columns in succession, the first at 300 0 C and the second at 1050 0 C. The particles were roughly spherical and had densities near 8 gm/cm 3 ; the aerosol AMAD and sigma/sub g/ were about 1.5 μm and 1.7, respectively. Monodisperse particles were separated and collected with the Lovelace Aerosol Particle Separator (LAPS) and subsequently suspended in deionized water with pH adjusted to 10.2 with NH 3 for nebulization to produce monodisperse aerosols for inhalation exposures. Particles collected on filters during inhalation experiments were used for evaluation of in vitro dissolution rates with two systems and various forms of a lung fluid simulant. The important role of phosphate ions in such dissolution systems was demonstrated, suggesting the potential for the equally important role of free phosphate in retarding dissolution of AmO 2 particles in the lung. (U.S.)

  3. A new method for preparing mono-dispersed nanoparticles using magnetized water

    Science.gov (United States)

    Nakhaei Pour, Ali; Gholizadeh, Mostafa; Housaindokht, Mohammadreza; Moosavi, Fatemeh; Monhemi, Hasan

    2017-04-01

    We studied the use of magnetized water on the size of the nanoparticles. Magnetized water found to reduce the diameter of the nanoparticles during a homogeneous precipitation process, which is a combination of nucleation and nuclei growth processes. We found that the modified water, which demonstrated different physical properties especially on the surface tension and viscosity, significantly influenced the both processes. Therefore, the nucleation process was initially prolonged in the homogeneous precipitation process due to the lower critical size of nucleus and higher rate of nucleation, and consequently formed smaller particles and a larger number of particles. Furthermore, the growth rate of nanoparticles was hindered owing to the higher viscosity of the water and restriction in the mass transport process. As a result, the precipitated particles with the magnetized water were eventually structured smaller particle diameter compared to the bulk. The presented method in here indicated a low cost, straightforward, and feasible technique for industrial application. In addition, this method could open a new promising perspective on nanomaterial synthesis in order to facilitate the production of monodispersed nanoparticles. Molecular dynamic confirmed that surface tension decreased as the external magnetic field was applied. Moreover, the density profile illustrated that the average number of hydrogen atoms is greater than oxygen atoms.

  4. Preparation of monodisperse microbubbles using an integrated embedded capillary T-junction with electrohydrodynamic focusing.

    Science.gov (United States)

    Parhizkar, Maryam; Stride, Eleanor; Edirisinghe, Mohan

    2014-07-21

    This work investigates the generation of monodisperse microbubbles using a microfluidic setup combined with electrohydrodynamic processing. A basic T-junction microfluidic device was modified by applying an electrical potential difference across the outlet channel. A model glycerol air system was selected for the experiments. In order to investigate the influence of the electric field strength on bubble formation, the applied voltage was increased systematically up to 21 kV. The effect of solution viscosity and electrical conductivity was also investigated. It was found that with increasing electrical potential difference, the size of the microbubbles reduced to ~25% of the capillary diameter whilst their size distribution remained narrow (polydispersity index ~1%). A critical value of 12 kV was found above which no further significant reduction in the size of the microbubbles was observed. The findings suggest that the size of the bubbles formed in the T-junction (i.e. in the absence of the electric field) is strongly influenced by the viscosity of the solution. The eventual size of bubbles produced by the composite device, however, was only weakly dependent upon viscosity. Further experiments, in which the solution electrical conductivity was varied by the addition of a salt indicated that this had a much stronger influence upon bubble size.

  5. Pulsatile protein release from monodisperse liquid-core microcapsules of controllable shell thickness

    Science.gov (United States)

    Xia, Yujie; Pack, Daniel W.

    2014-01-01

    Purpose Pulsatile delivery of proteins, in which release occurs over a short time after a period of little or no release, is desirable for many applications. This paper investigates the effect of biodegradable polymer shell thickness on pulsatile protein release from biodegradable polymer microcapsules. Methods Using precision particle fabrication (PPF) technology, monodisperse microcapsules were fabricated encapsulating bovine serum albumin (BSA) in a liquid core surrounded by a drug-free poly(lactide-co-glycolide) (PLG) shell of uniform, controlled thickness from 14 to 19 μm. Results When using high molecular weight PLG (Mw 88 kDa), microparticles exhibited the desired core-shell structure with high BSA loading and encapsulation efficiency (55-65%). These particles exhibited very slow release of BSA for several weeks followed by rapid release of 80-90% of the encapsulated BSA within seven days. Importantly, with increasing shell thickness the starting time of the pulsatile release could be controlled from 25 to 35 days. Conclusions Biodegradable polymer microcapsules with precisely controlled shell thickness provide pulsatile release with enhanced control of release profiles. PMID:24831313

  6. Oxides of Nitrogen Emissions from the Combustion of Monodisperse Liquid Fuel Sprays. Ph.D. Thesis

    Science.gov (United States)

    Sarv, H.

    1985-01-01

    A study of NO sub x formation in a one dimensional monodisperse spray combustion system, which allowed independent droplet size variation, was conducted. Temperature, NO and NO sub x concentrations were measured in the transition region, encompassing a 26 to 74 micron droplet size range. Emission measurements of hydrocarbons, carbon monoxide, carbon dioxide and oxygen were also made. The equivalence ratio was varied between 0.8 and 1.2 for the fuels used, including methanol, isopropanaol, n-heptane and n-octane. Pyridine and pyrrole were added to n-heptane as nitrogen-containing additives in order to simulate synthetic fuels. Results obtained from the postflame regions using the pure fuels indicate an optimum droplet size in the range of 43 to 58 microns for minimizing NO sub x production. For the fuels examined, the maximum NO sub x reductions relative to the small droplet size limit were about 10 to 20% for lean and 20 to 30% for stoichiometric and rich mixtures. This behavior is attributed to droplet interactions and the transition from diffusive to premixed type of burning. Preflame vaporization controls the gas phase stoichiometry which has a significant effect on the volume of the hot gases surrounding a fuel droplet, where NO sub x is formed.

  7. Formation of monodisperse hierarchical lipid particles utilizing microfluidic droplets in a nonequilibrium state.

    Science.gov (United States)

    Mizuno, Masahiro; Toyota, Taro; Konishi, Miki; Kageyama, Yoshiyuki; Yamada, Masumi; Seki, Minoru

    2015-03-03

    A new microfluidic process was used to generate unique micrometer-sized hierarchical lipid particles having spherical lipid-core and multilamellar-shell structures. The process includes three steps: (1) formation of monodisperse droplets in a nonequilibrium state at a microchannel confluence, using a phospholipid-containing water-soluble organic solvent as the dispersed phase and water as the continuous phase; (2) dissolution of the organic solvent of the droplet into the continuous phase and concentration of the lipid molecules; and (3) reconstitution of multilamellar lipid membranes and simultaneous formation of a lipid core. We demonstrated control of the lipid particle size by the process conditions and characterized the obtained particles by transmission electron microscopy and microbeam small-angle X-ray scattering analysis. In addition, we prepared various types of core-shell and core-core-shell particles incorporating hydrophobic/hydrophilic compounds, showing the applicability of the presented process to the production of drug-encapsulating lipid particles.

  8. Charge Retention by Monodisperse Gold Clusters on Surfaces Prepared Using Soft Landing of Mass Selected Ions

    Science.gov (United States)

    Johnson, Grant; Priest, Thomas; Laskin, Julia

    2012-02-01

    Monodisperse gold clusters have been prepared on surfaces in different charge states through soft landing of mass-selected ions. Gold clusters were synthesized in methanol solution by reduction of a gold precursor with a weak reducing agent in the presence of a diphosphine capping ligand. Electrospray ionization was used to introduce the clusters into the gas-phase and mass-selection was employed to isolate a single ionic cluster species which was delivered to surfaces at well controlled kinetic energies. Using in-situ time of flight secondary ion mass spectrometry (SIMS) it is demonstrated that the cluster retains its 3+ charge state when soft landed onto the surface of a fluorinated self assembled monolayer on gold. In contrast, when deposited onto carboxylic acid terminated and conventional alkyl thiol surfaces on gold the clusters exhibit larger relative abundances of the 2+ and 1+ charge states, respectively. The kinetics of charge reduction on the surface have been investigated using in-situ Fourier Transform Ion Cyclotron Resonance SIMS. It is shown that an extremely slow interfacial charge reduction occurs on the fluorinated monolayer surface while an almost instantaneous neutralization takes place on the surface of the alkyl thiol monolayer. Our results demonstrate that the size and charge state of small gold clusters on surfaces, both of which exert a dramatic influence on their chemical and physical properties, may be tuned through soft landing of mass-selected ions onto selected substrates.

  9. Production and characterization of monodisperse uranium particles for nuclear safeguards applications

    International Nuclear Information System (INIS)

    Knott, Alexander

    2016-01-01

    Environmental sampling is a very effective measure to detect undeclared nuclear activities. Generally, samples are taken as swipe samples on cotton. These swipes contain minute quantities of particulates which have an inherent signature of their production and release scenario. These inspection samples are assessed for their morphology, elemental composition and their isotopic vectors. Mass spectrometry plays a crucial role in determining the isotopic ratios of uranium. Method validation and instrument calibration with well-characterized quality control (QC)-materials, reference materials (RMs) and certified reference materials (CRMs) ensures reliable data output. Currently, the availability of suitable well defined microparticles containing uranium and plutonium reference materials is very limited. Primarily, metals, oxides and various uranium and plutonium containing solutions are commercially available. Therefore, the IAEA's Safeguards Analytical Services (SGAS) cooperates with the Institute of Nuclear Waste Management and Reactor Safety (IEK-6) at the Forschungszentrum Juelich GmbH in a joint task entitled ''Production of Particle Reference Materials''. The work presented in this thesis has been partially funded by the IAEA, Forschungszentrum Juelich GmbH and the Federal Ministry of Economic Affairs and Energy (BMWi) through the ''Joint Program on the Technical Development and Further Improvement of IAEA Safeguards between the Government of the Federal Republic of Germany and the IAEA''. The first step towards monodisperse microparticles was the development of pure uranium oxide particles made from certified reference materials. The focus of the dissertation is (1) the implementation of a working setup to produce monodisperse uranium oxide particles and (2) the characterization of these particles towards the application as QC-material. Monodisperse uranium oxide particles were produced by spray pyrolysis. It was

  10. Magnetically Triggered Monodispersed Nanocomposite Fabricated by Microfluidic Approach for Drug Delivery

    KAUST Repository

    Yassine, Omar

    2016-01-01

    Responsive microgel poly(N-isopropylacrylamide) or PNIPAM is a gel that can swell or shrink in response to external stimuli (temperature, pH, etc.). In this work, a nanocomposite gel is developed consisting of PNIPAM and magnetic iron oxide nanobeads for controlled release of liquids (like drugs) upon exposure to an alternating magnetic field. Microparticles of the nanocomposite are fabricated efficiently with a monodisperse size distribution and a diameter ranging from 20 to 500  µ m at a rate of up to 1 kHz using a simple and inexpensive microfluidic system. The nanocomposite is heated through magnetic losses, which is exploited for a remotely stimulated liquid release. The efficiency of the microparticles for controlled drug release applications is tested with a solution of Rhodamine B as a liquid drug model. In continuous and pulsatile mode, a release of 7% and 80% was achieved, respectively. Compared to external thermal actuation that heats the entire surrounding or embedded heaters that need complex fabrication steps, the magnetic actuation provides localized heating and is easy to implement with our microfluidic fabrication method.

  11. Magnetically Triggered Monodispersed Nanocomposite Fabricated by Microfluidic Approach for Drug Delivery

    Directory of Open Access Journals (Sweden)

    O. Yassine

    2016-01-01

    Full Text Available Responsive microgel poly(N-isopropylacrylamide or PNIPAM is a gel that can swell or shrink in response to external stimuli (temperature, pH, etc.. In this work, a nanocomposite gel is developed consisting of PNIPAM and magnetic iron oxide nanobeads for controlled release of liquids (like drugs upon exposure to an alternating magnetic field. Microparticles of the nanocomposite are fabricated efficiently with a monodisperse size distribution and a diameter ranging from 20 to 500 µm at a rate of up to 1 kHz using a simple and inexpensive microfluidic system. The nanocomposite is heated through magnetic losses, which is exploited for a remotely stimulated liquid release. The efficiency of the microparticles for controlled drug release applications is tested with a solution of Rhodamine B as a liquid drug model. In continuous and pulsatile mode, a release of 7% and 80% was achieved, respectively. Compared to external thermal actuation that heats the entire surrounding or embedded heaters that need complex fabrication steps, the magnetic actuation provides localized heating and is easy to implement with our microfluidic fabrication method.

  12. Electrical impedance spectroscopic investigations of monodispersed SiO2 nanospheres

    Science.gov (United States)

    Sakthisabarimoorthi, A.; Martin Britto Dhas, S. A.; Jose, M.

    2018-01-01

    Dielectric analysis of uniform and monodispersed SiO2 nanospheres at various temperatures in the frequency range 1 Hz-1 MHz is reported. The high optical transmittance and the presence of silica network in the synthesized product are evident from UV-vis and FTIR spectroscopic techniques respectively. The amorphous structure of SiO2 nanospheres is investigated by powder XRD pattern and uniform spherical morphology is visualized by FESEM analysis. The X-ray photoelectron spectroscopy elucidated the exact valence states of the SiO2 nanospheres. The temperature dependent dielectric parameters such as, dielectric constant (εr) and loss factor (tan δ) are decreased with increasing applied frequency and became static at higher frequencies. SiO2 nanospheres exhibited high dielectric constant (εr = 68) and low loss factor (tan δ = 0.0079) at 40 °C at 1 MHz. The activation energy (Ea) and relaxation time constant (τ) are calculated and the equivalent circuit model is developed to describe the electrical behaviour of the material.

  13. Ultraviolet multi-peak emissions of mono-dispersed polymer capped ZnNiO nanocomposites

    International Nuclear Information System (INIS)

    Shijina, K.; Megha, U.; Varghese, George

    2014-01-01

    Nanosized polymer capped ZnNiO composites were synthesized by complexation precipitation method. Crystalline phase and average particle size of the synthesized nanocomposites were investigated by X-ray diffractometer. Average particle size of the samples was also confirmed in scanning electron microscopy (SEM) as well as in reflectance spectra. X-ray diffraction results provide that Ni is incorporated into the ZnO lattice at Zn sites. The diffraction peaks correspond to a hexagonal wurtzite structured ZnNiO. Room temperature reflectance spectra of the nickel substituted ZnO show a bumb around 260 nm for the polymer capped and non-capped samples, which implies higher energy exciton absorption. The reflectance spectra as well as X-ray spectra confirms that the metaloxide nanoparticles are homogeneously distributed in the polymer matrix. Fluorescence properties of the PVP capped ZnNiO at room temperature show intensive multiple peak emissions in the ultra–violet range as well as in blue and green wavelengths, plausibly due to deep level emissions. Raman spectra show the modes, which arise from the vibration of oxygen sub-lattice. -- Highlights: • Multiple peak emission of mono-dispersed ZnNiO nano-particles in UV region. • Ni doping effects the multi-peak emissions. • Peak shifting observed in Raman lines due to metal doping

  14. Self-assembly of monodisperse starburst carbon spheres into hierarchically organized nanostructured supercapacitor electrodes.

    Science.gov (United States)

    Kim, Sung-Kon; Jung, Euiyeon; Goodman, Matthew D; Schweizer, Kenneth S; Tatsuda, Narihito; Yano, Kazuhisa; Braun, Paul V

    2015-05-06

    We report a three-dimensional (3D) porous carbon electrode containing both nanoscale and microscale porosity, which has been hierarchically organized to provide efficient ion and electron transport. The electrode organization is provided via the colloidal self-assembly of monodisperse starburst carbon spheres (MSCSs). The periodic close-packing of the MSCSs provides continuous pores inside the 3D structure that facilitate ion and electron transport (electrode electrical conductivity ∼0.35 S m(-1)), and the internal meso- and micropores of the MSCS provide a good specific capacitance. The capacitance of the 3D-ordered porous MSCS electrode is ∼58 F g(-1) at 0.58 A g(-1), 48% larger than that of disordered MSCS electrode at the same rate. At 1 A g(-1) the capacitance of the ordered electrode is 57 F g(-1) (95% of the 0.24 A g(-1) value), which is 64% greater than the capacitance of the disordered electrode at the same rate. The ordered electrode preserves 95% of its initial capacitance after 4000 charging/discharging cycles.

  15. Investigation of Monodisperse Dendrimeric Polysaccharide Nanoparticle Dispersions Using Small Angle Neutron Scattering

    Science.gov (United States)

    Atkinson, John; Nickels, Jonathan; Papp-Szabo, Erzsi; Katsaras, John; Dutcher, John

    2015-03-01

    Phytoglycogen is a highly branched polysaccharide that is very similar to the energy storage molecule glycogen. We have isolated monodisperse phytoglycogen nanoparticles from corn and these particles are attractive for applications in the cosmetic, food and beverage, and biomedical industries. Many of these promising applications are due to the special interaction between the nanoparticles and water, which results in: (1) high solubility; (2) low viscosity and high stability in aqueous dispersions; and (3) a remarkable capacity to sequester and retain water. Our rheology measurements indicate that the nanoparticles behave like hard spheres in water, with the viscosity diverging for concentrations >25% (w/w). Because of this, aqueous suspensions of phytoglycogen provide an ideal platform for detailed testing of theories of colloidal glasses and jamming. To further explore the interaction of the phytoglycogen particles and water, we have performed small angle neutron scattering (SANS) measurements on the Extended Q-Range SANS (EQ-SANS) diffractometer at the Spallation Neutron Source at Oak Ridge National Laboratory. Measurements performed on phytoglycogen dispersions in mixtures of hydrogenated and deuterated water have allowed us to determine the particle size and average particle spacing as a function of the phytoglycogen concentration in the limits of dilute and concentrated dispersions.

  16. Synthesis, characterization and magnetic properties of highly monodispersed PtNi nanoparticles

    International Nuclear Information System (INIS)

    Du, Juan-Juan; Yang, Yi; Zhang, Rong-Hua; Zhou, Xin-Wen

    2015-01-01

    In this paper, we report the controlled-synthesis of PtNi nanoparticles through galvanic displacement reaction and chemical reduction. The size, composition and morphology of the products are characterized by transmission electron microscopy (TEM), powder X-ray diffraction (XRD), energy dispersed X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) analyses. The structure and composition of the PtNi nanoparticles can be controlled by adjusting the synthetic conditions. The possible formation mechanism is obtained from the academic analysis and experimental studies. The results of the magnetic measurement illustrate that the PtNi nanoparticles show a superparamagnetic behavior with a blocking temperature (T B ) about 8.0 K. - Highlights: • Highly monodispersed PtNi nanoparticles were synthesized by galvanic displacement reaction. • The formation of Pt nanocrystals was the foremost step because of its self-catalysis effect. • The PtNi nanoparticles show a superparamagnetic behavior with a T B about 8.0 K

  17. Growth of monodisperse nanocrystals of cerium oxide during synthesis and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Swapankumar, E-mail: swapankumar.ghosh2@mail.dcu.ie; Divya, Damodaran [National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR) (India); Remani, Kottayilpadi C. [Sree Neelakanda Government Sanskrit College, Department of Chemistry (India); Sreeremya, Thadathil S. [National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific and Industrial Research (CSIR) (India)

    2010-06-15

    Monodisperse cerium oxide nanocrystals have been successfully synthesised using simple ammonia precipitation technique from cerium(III) nitrate solution at different temperatures in the range 35-80 {sup o}C. The activation energy for growth of CeO{sub 2} nanocrystals during the precipitation is calculated as 11.54 kJ/mol using Arrhenius plot. Average crystal diameter was obtained from XRD analysis, HR-TEM and light scattering (PCS). The analysis of size data from HR-TEM images and PCS clearly indicated the formation of highly crystalline CeO{sub 2} particles in narrow size range. CeO{sub 2} nanocrystals precipitated at 35 {sup o}C were further annealed at temperatures in the range 300-700 {sup o}C. The activation energy for crystal growth during annealing is also calculated and is close to the reported values. An effort is made to predict the mechanism of crystal growth during the precipitation and annealing.

  18. Preparation of monodisperse ferrite nanocrystals with tunable morphology and magnetic properties.

    Science.gov (United States)

    Liang, Ruizheng; Tian, Rui; Liu, Zhihui; Yan, Dongpeng; Wei, Min

    2014-04-01

    The synthesis of monodisperse magnetic ferrite nanomaterials plays an important role in several scientific and technological areas. In this work, dibasic spinel MFe2O4 (M=Mg, Ni, Co, Fe, Mn) and polybasic spinel ferrite MCoFeO4 (M=Mg, Ni, Mn, MgNi) nanocrystals were prepared by the calcination of layered double hydroxide (LDH) precursors at 900 °C, which was confirmed by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images demonstrate that the as-obtained spinel ferrites present a single-crystalline nature with uniform particle size and good dispersibility. The composition, morphology, and particle size can be effectively tuned by changing the metal ratio, basicity, reaction time, and temperature of the LDH precursors. In addition, these spinel ferrites show high magnetic saturation values in the range 21.7-84.3 emu g(-1), which maintain a higher level than the previously reported magnetic nanoparticles. Therefore, this work provides a facile approach for the design and fabrication of spinel ferrites with controllable nanostructure and improved magnetism, which could potentially be used in magnetic and biological fields, such as recording media, sensors, drug delivery, and intracellular imaging. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Size-Controlled and Optical Properties of Monodispersed Silver Nanoparticles Synthesized by the Radiolytic Reduction Method

    Science.gov (United States)

    Saion, Elias; Gharibshahi, Elham; Naghavi, Kazem

    2013-01-01

    Size-controlled and monodispersed silver nanoparticles were synthesized from an aqueous solution containing silver nitrate as a metal precursor, polyvinyl alcohol as a capping agent, isopropyl alcohol as hydrogen and hydroxyl radical scavengers, and deionized water as a solvent with a simple radiolytic method. The average particle size decreased with an increase in dose due to the domination of nucleation over ion association in the formation of the nanoparticles by gamma reduction. The silver nanoparticles exhibit a very sharp and strong absorption spectrum with the absorption maximum λmax blue shifting with an increased dose, owing to a decrease in particle size. The absorption spectra of silver nanoparticles of various particle sizes were also calculated using a quantum physics treatment and an agreement was obtained with the experimental absorption data. The results suggest that the absorption spectrum of silver nanoparticles possibly derived from the intra-band excitations of conduction electrons from the lowest energy state (n = 5, l = 0) to higher energy states (n ≥ 6; Δl = 0, ±1; Δs = 0, ±1), allowed by the quantum numbers principle. This demonstrates that the absorption phenomenon of metal nanoparticles based on a quantum physics description could be exploited to be added into the fundamentals of metal nanoparticles and the related fields of nanoscience and nanotechnology. PMID:23579953

  20. Dosimetry of 239Pu in dogs that inhaled monodisperse aerosols of 239PuO2

    International Nuclear Information System (INIS)

    Guilmette, R.A.; Muggenburg, B.A.; Hahn, F.F.; Mewhinney, J.A.; Seiler, F.A.; Boecker, B.B.; McClellan, R.O.

    1987-01-01

    Existing data from human exposure cases and experimental animal studies on the fate and dosimetry of inhaled insoluble Pu particles are inadequate to provide a comprehensive description and evaluation of the tissues at risk from the alpha radiations of Pu. To improve our knowledge of the dosimetry of inhaled insoluble 239 PuO 2 , this paper describes the uptake and retention of 239 Pu in the tissues of dogs that received single inhalation exposures to monodisperse aerosols of 239 PuO 2 . These data include times through 3 years after exposure. Using analytical functions fitted to each tissue data set, 1100-day radiation doses were calculated for lung, liver, skeleton, kidney, spleen, and tracheobronchial, mediastinal, sternal, hepatic, mandibular, and retropharyngeal lymph nodes. The dosimetry results suggest that the lung and lymph nodes associated with lymphatic drainage of the respiratory tract are the principal sites of alpha irradiation. However, the doses for the different respiratory tract lymph nodes vary by a factor of 2000, suggesting that assuming equivalent doses to respiratory tract lymph nodes is not appropriate. Other tissues receive radiation doses also but at levels one to three orders of magnitude less than the lung. Particle size dependence on uptake and retention was noted for the skeleton, mediastinal lymph nodes, hepatic lymph nodes, retropharyngeal lymph nodes, and mandibular lymph nodes

  1. Synthetic Polymers at Interfaces: Monodisperse Emulsions Multiple Emulsions and Liquid Marbles

    Science.gov (United States)

    Sun, Guanqing

    The adsorption of polymeric materials at interfaces is an energetically favorable process which is investigated in much diversified fields, such as emulsions, bubbles, foams, liquid marbles. Pickering emulsion, which is emulsion stabilized by solid particles has been investigated for over one century and preparation of Pickering emulsion with narrow size distribution is crucial for both the theoretical study of the stabilization mechanism and practical application, such as templated fabrication of colloidosomes. The precise control over the size and functionality of polymer latices allows the preparation of monodisperse Pickering emulsions with desired sizes through SPG membrane emulsification at rather rapid rate compared to microfludic production. Double or multiple emulsions have long been investigated but its rapid destabilization has always been a major obstacle in applying them into practical applications. The modern living polymerization techniques allow us to prepare polymers with designed structure of block copolymers which makes it possible to prepare ultra-stable multiple emulsions. The precise tuning of the ratio of hydrophobic part over the hydrophilic can unveil the stabilization mechanism. Liquid marble is a new type of materials of which liquid droplets are coated by dry particles. The coating of an outer layer of dry particles renders the liquid droplets non-sticky at solid surface which is useful in transportation of small amount of liquid without leakage at extreme low friction force. The property of liquid marbles relies largely on the stabilizers and the drying condition of polymeric latices is shown to have great influence on the property of liquid marbles. Firstly, an introduction to the interfacial and colloidal science with special attention to topics on emulsions, multiple emulsion and liquid marbles is given in Chapter 1. The unique features of an interface and a discussion on the definition of colloids are introduced prior to the

  2. Controlled Hydrothermal Synthesis, Optical and Magnetic Properties of Monodisperse Leaf-Like CeO₂ Nanosheets.

    Science.gov (United States)

    Niu, Xiaofei; Zhang, Xiuxiang; Liu, Yan

    2018-04-01

    The monodisperse leaf-like CeO2 nanosheets of about 40 nm in thickness have been successfully synthesized by a simple hydrothermal route. SEM, XRD, FT-IR, TG-DSC, XPS, Raman scattering, Photoluminescence (PL) spectra and M-H curves were employed to characterize the samples. The results showed that all the CeO2 samples had a cubic fluorite structure and there are Ce3+ ions and oxygen vacancies in the surface of samples. Based on the SEM patterns, a clear morphology transformation from leaf-like to heart-shaped, and then to triangular prism-like structure was observed. The magnetic and photoluminescence measurements displayed that all the samples have excellent ferromagnetism and optical properties at room temperature and the ferromagnetism and optical properties increase along with the rise of NH4HCO3 concentration, which can be reasonably explained for the affects of the morphology of samples, the concentration of oxygen vacancies and Ce3+ ions.

  3. Undecylprodigiosin conjugated monodisperse gold nanoparticles efficiently cause apoptosis in colon cancer cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Nikodinovic-Runic, Jasmina; Mojic, Marija; Kang, Yijin; Maksimovic-Ivanic, Danijela; Mijatovic, Sanja; Vasiljevic, Branka; Stamenkovic, Vojislav R.; Senerovic, Lidija

    2014-01-01

    Bacterial pigment undecylprodigiosin (UP) was produced using Streptomyces sp. JS520 and conjugated to monodisperse gold nanoparticles (UP-Au). Both UP and UP-Au showed cytocidal activity towards melanoma (A375), lung carcinoma (A549), breast cancer (MCF-7) and colon cancer (HCT-116) cells, inducing apoptosis with IC50 values ranging from 0.4 to 4 mu g ml(-1). Unconjugated UP had a tendency to lose its activity over time and to change biophysical characteristics over pH. The loss of the pigment potency was overcome by conjugation with gold nanoparticles. UP-Au exhibited high stability over pH 3.8 to 7.4 and its activity remained unaffected in time. Nano-packing changed the mechanism of UP toxicity by converting the intracellular signals from a mitochondrial dependent to a mitochondrial independent apoptotic process. The availability of nonpyrogenic UP in high amounts, together with specific anticancer activity and improved stability in the complex with gold nanoparticles, presents a novel platform for further development of UP-Au complexes as an anticancer drug suitable for clinical applications.

  4. Synthesis of Monodisperse Nanocrystals via Microreaction: Open-to-Air Synthesis with Oleylamine as a Coligand

    Directory of Open Access Journals (Sweden)

    Yang Hongwei

    2009-01-01

    Full Text Available Abstract Microreaction provides a controllable tool to synthesize CdSe nanocrystals (NCs in an accelerated fashion. However, the surface traps created during the fast growth usually result in low photoluminescence (PL efficiency for the formed products. Herein, the reproducible synthesis of highly luminescent CdSe NCs directly in open air was reported, with a microreactor as the controllable reaction tool. Spectra investigation elucidated that applying OLA both in Se and Cd stock solutions could advantageously promote the diffusion between the two precursors, resulting in narrow full-width-at-half maximum (FWHM of PL (26 nm. Meanwhile, the addition of OLA in the source solution was demonstrated helpful to improve the reactivity of Cd monomer. In this case, the focus of size distribution was accomplished during the early reaction stage. Furthermore, if the volume percentage (vol.% of OLA in the precursors exceeded a threshold of 37.5%, the resulted CdSe NCs demonstrated long-term fixing of size distribution up to 300 s. The observed phenomena facilitated the preparation of a size series of monodisperse CdSe NCs merely by the variation of residence time. With the volume percentage of OLA as 37.5% in the source solution, a 78 nm tuning of PL spectra (from 507 to 585 was obtained through the variation of residence time from 2 s to 160 s, while maintaining narrow FMWH of PL (26–31 nm and high QY of PL (35–55%.

  5. Production and characterization of monodisperse uranium particles for nuclear safeguards applications

    Energy Technology Data Exchange (ETDEWEB)

    Knott, Alexander

    2016-07-01

    Environmental sampling is a very effective measure to detect undeclared nuclear activities. Generally, samples are taken as swipe samples on cotton. These swipes contain minute quantities of particulates which have an inherent signature of their production and release scenario. These inspection samples are assessed for their morphology, elemental composition and their isotopic vectors. Mass spectrometry plays a crucial role in determining the isotopic ratios of uranium. Method validation and instrument calibration with well-characterized quality control (QC)-materials, reference materials (RMs) and certified reference materials (CRMs) ensures reliable data output. Currently, the availability of suitable well defined microparticles containing uranium and plutonium reference materials is very limited. Primarily, metals, oxides and various uranium and plutonium containing solutions are commercially available. Therefore, the IAEA's Safeguards Analytical Services (SGAS) cooperates with the Institute of Nuclear Waste Management and Reactor Safety (IEK-6) at the Forschungszentrum Juelich GmbH in a joint task entitled ''Production of Particle Reference Materials''. The work presented in this thesis has been partially funded by the IAEA, Forschungszentrum Juelich GmbH and the Federal Ministry of Economic Affairs and Energy (BMWi) through the ''Joint Program on the Technical Development and Further Improvement of IAEA Safeguards between the Government of the Federal Republic of Germany and the IAEA''. The first step towards monodisperse microparticles was the development of pure uranium oxide particles made from certified reference materials. The focus of the dissertation is (1) the implementation of a working setup to produce monodisperse uranium oxide particles and (2) the characterization of these particles towards the application as QC-material. Monodisperse uranium oxide particles were produced by spray pyrolysis. It was

  6. TEMPERED FRACTIONAL CALCULUS

    OpenAIRE

    MEERSCHAERT, MARK M.; SABZIKAR, FARZAD; CHEN, JINGHUA

    2015-01-01

    Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly obs...

  7. fractional differential equations

    Indian Academy of Sciences (India)

    We apply this method for solving space–time fractional Cahn--Allen equation and space--time fractional Klein–Gordon equation. The fractional derivatives are described in the sense of modified Riemann--Lioville. As a result of some exact solution in the form of hyperbolic, trigonometric and rational solutions are deduced.

  8. Unfolding Fraction Multiplication

    Science.gov (United States)

    Wyberg, Terry; Whitney, Stephanie R.; Cramer, Kathleen A.; Monson, Debra S.; Leavitt, Seth

    2011-01-01

    Students often have difficulty understanding fractions, in general, and understanding how to multiply fractions, in particular. To move past this potential problem area, students need to develop a deeper understanding of multiplication and connect the ideas to fractions. In this article, the authors share their insights into teaching fraction…

  9. Existence Results for a Family of Equations of Fractional Resolvent

    International Nuclear Information System (INIS)

    Ibrahim, R.W.; Qasem, S.A.; Zailan Siri

    2015-01-01

    This study deals with the presence and distinction of bounded m-solutions (type mild) for a family of generalized integral and differential equations of spot order with fractional resolvent and indefinite delay. (author)

  10. Fractional smith chart theory

    KAUST Repository

    Shamim, Atif

    2011-03-01

    For the first time, a generalized Smith chart is introduced here to represent fractional order circuit elements. It is shown that the standard Smith chart is a special case of the generalized fractional order Smith chart. With illustrations drawn for both the conventional integer based lumped elements and the fractional elements, a graphical technique supported by the analytical method is presented to plot impedances on the fractional Smith chart. The concept is then applied towards impedance matching networks, where the fractional approach proves to be much more versatile and results in a single element matching network for a complex load as compared to the two elements in the conventional approach. © 2010 IEEE.

  11. Fractional factorial plans

    CERN Document Server

    Dey, Aloke

    2009-01-01

    A one-stop reference to fractional factorials and related orthogonal arrays.Presenting one of the most dynamic areas of statistical research, this book offers a systematic, rigorous, and up-to-date treatment of fractional factorial designs and related combinatorial mathematics. Leading statisticians Aloke Dey and Rahul Mukerjee consolidate vast amounts of material from the professional literature--expertly weaving fractional replication, orthogonal arrays, and optimality aspects. They develop the basic theory of fractional factorials using the calculus of factorial arrangements, thereby providing a unified approach to the study of fractional factorial plans. An indispensable guide for statisticians in research and industry as well as for graduate students, Fractional Factorial Plans features: * Construction procedures of symmetric and asymmetric orthogonal arrays. * Many up-to-date research results on nonexistence. * A chapter on optimal fractional factorials not based on orthogonal arrays. * Trend-free plans...

  12. Fractional Dynamics and Control

    CERN Document Server

    Machado, José; Luo, Albert

    2012-01-01

    Fractional Dynamics and Control provides a comprehensive overview of recent advances in the areas of nonlinear dynamics, vibration and control with analytical, numerical, and experimental results. This book provides an overview of recent discoveries in fractional control, delves into fractional variational principles and differential equations, and applies advanced techniques in fractional calculus to solving complicated mathematical and physical problems.Finally, this book also discusses the role that fractional order modeling can play in complex systems for engineering and science. Discusses how fractional dynamics and control can be used to solve nonlinear science and complexity issues Shows how fractional differential equations and models can be used to solve turbulence and wave equations in mechanics and gravity theories and Schrodinger’s equation  Presents factional relaxation modeling of dielectric materials and wave equations for dielectrics  Develops new methods for control and synchronization of...

  13. Atomically Monodisperse Nickel Nanoclusters as Highly Active Electrocatalysts for Water Oxidation

    KAUST Repository

    Joya, Khurram

    2016-04-08

    Achieving water splitting at low overpotential with high oxygen evolution efficiency and stability is important for realizing solar to chemical energy conversion devices. Herein we report the synthesis, characterization and electrochemical evaluation of highly active nickel nanoclusters (Ni NCs) for water oxidation at low overpotential. These atomically precise and monodisperse Ni NCs are characterized by using UV-visible absorption spectroscopy, single crystal X-ray diffraction and mass spectrometry. The molecular formulae of these Ni NCs are found to be Ni4(PET)8 and Ni6(PET)12 and are highly active electrocatalysts for oxygen evolution without any pre-conditioning. Ni4(PET)8 are slightly better catalysts than Ni6(PET)12 and initiate the oxygen evolution at an amazingly low overpotential of ~1.51 V (vs RHE; η ≈ 280 mV). The peak oxygen evolution current density (J) of ~150 mA cm–2 at 2.0 V (vs. RHE) with a Tafel slope of 38 mV dec–1 is observed using Ni4(PET)8. These results are comparable to the state-of-the art RuO2 electrocatalyst, which is highly expensive and rare compared to Ni-based materials. Sustained oxygen generation for several hours with an applied current density of 20 mA cm–2 demonstrates the long-term stability and activity of these Ni NCs towards electrocatalytic water oxidation. This unique approach provides a facile method to prepare cost-effective, nanoscale and highly efficient electrocatalysts for water oxidation.

  14. Green synthesis and antimicrobial activity of monodisperse silver nanoparticles synthesized using Ginkgo Biloba leaf extract

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yan-yu [School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi' an 710021 (China); Yang, Hui, E-mail: 549456369@qq.com [School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi' an 710021 (China); Wang, Tao [School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi' an 710021 (China); Wang, Chuang [Department of Highway & Bridge, Shaanxi Railway Institute, Weinan 714000 (China)

    2016-11-25

    Various parts of plants can be used as a raw material for the synthesis of nanoparticles, which is eco-friendly way and does not involve any harmful chemicals. In this project, Ginkgo biloba leaf, an abundantly available medicinal plant in China, was for the first time adopted as a reducing and stabilizing agent to synthesize smaller sized and stable silver nanoparticles (AgNPs). To improve the quality of AgNPs, the reduction was accelerated by changing the concentrations of initial Ag{sup +} (0.02, 0.04, 0.06 and 0.08 mol/L) of the reaction mixture consisting of silver nitrate solution (AgNO{sub 3}) and Ginkgo biloba leaf extract. At pH = 8 and lower AgNO{sub 3} concentration (0.02 mol/L), a colloid consisting of well-dispersed spherical nanoparticles was obtained. The synthesized nanocrystals were successfully characterized by UV–vis and XRD. TEM images revealed the size of the spherical AgNPs ranged between 10–16 nm. FTIR analysis revealed that biological macromolecules with groups of −NH{sub 2}, −OH, and others were distributed on the surface of the nanoparticles. The biosynthesized AgNPs exhibited good antibacterial activities against gram-negative bacteria and gram-positive bacteria. Compared to traditional chemical methods, Ginkgo biloba leaf extract provides an easy green synthetical way. It is anticipated that the biosynthesized AgNPs can be used in areas such as cosmetics, foods and medical applications. - Highlights: • Monodisperse silver nanoparticles were first prepared by a green synthetical way through Ginkgo Biloba leaf extract. • The synthesized AgNPs is of high crystallinity, stable and good dispersion with smaller sizes between 10–16 nm. • The achieved AgNPs exhibits good antibacterial activities. • The biosynthesis method is advantageous for its cost effectiveness, availability, portability, nontoxic and environmentally benign.

  15. Monodispersed biocompatible silver sulfide nanoparticles: Facile extracellular biosynthesis using the gamma-proteobacterium, Shewanella oneidensis

    Energy Technology Data Exchange (ETDEWEB)

    Doktycz, Mitchel John [ORNL; Moon, Ji Won [ORNL; Meyer III, Harry M [ORNL; Hensley, Dale K [ORNL; Phelps, Tommy Joe [ORNL; Pelletier, Dale A [ORNL

    2011-01-01

    Interest in engineered metal and semiconductor nanocrystallites continues to grow due to their unique size- and shape-dependent optoelectronic, physicochemical and biological properties. Therefore identifying novel non-hazardous nanoparticle synthesis routes that address hydrophilicity, size and shape control and production costs has become a priority. In the present article we report for the first time on the efficient generation of extracellular silver sulfide (Ag{sub 2}S) nanoparticles by the metal-reducing bacterium Shewanella oneidensis. The particles are reasonably monodispersed and homogeneously shaped. They are produced under ambient temperatures and pressures at high yield, 85% theoretical maximum. UV-visible and Fourier transform infrared spectroscopy, dynamic light scattering, X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy measurements confirmed the formation, optical and surface properties, purity and crystallinity of the synthesized particles. Further characterization revealed that the particles consist of spheres with a mean diameter of 9 {+-} 3.5 nm, and are capped by a detachable protein/peptide surface coat. Toxicity assessments of these biogenic Ag{sub 2}S nanoparticles on Gram-negative (Escherichia coli and S. oneidensis) and Gram-positive (Bacillus subtilis) bacterial systems, as well as eukaryotic cell lines including mouse lung epithelial (C 10) and macrophage (RAW-264.7) cells, showed that the particles were non-inhibitory and non-cytotoxic to any of these systems. Our results provide a facile, eco-friendly and economical route for the fabrication of technologically important semiconducting Ag{sub 2}S nanoparticles. These particles are dispersible and biocompatible, thus providing excellent potential for use in optical imaging, electronic devices and solar cell applications.

  16. Gram-scale fractionation of nanodiamonds by density gradient ultracentrifugation

    Science.gov (United States)

    Peng, Wei; Mahfouz, Remi; Pan, Jun; Hou, Yuanfang; Beaujuge, Pierre M.; Bakr, Osman M.

    2013-05-01

    Size is a defining characteristic of nanoparticles; it influences their optical and electronic properties as well as their interactions with molecules and macromolecules. Producing nanoparticles with narrow size distributions remains one of the main challenges to their utilization. At this time, the number of practical approaches to optimize the size distribution of nanoparticles in many interesting materials systems, including diamond nanocrystals, remains limited. Diamond nanocrystals synthesized by detonation protocols - so-called detonation nanodiamonds (DNDs) - are promising systems for drug delivery, photonics, and composites. DNDs are composed of primary particles with diameters mainly size distribution of various fractions by dynamic light scattering, analytical ultracentrifugation, transmission electron microscopy and powder X-ray diffraction. This fractionation method enabled us to separate gram-scale amounts of DNDs into several size ranges within a relatively short period of time. In addition, the high product yields obtained for each fraction allowed us to apply the fractionation method iteratively to a particular size range of particles and to collect various fractions of highly monodispersed primary particles. Our method paves the way for in-depth studies of the physical and optical properties, growth, and aggregation mechanism of DNDs. Applications requiring DNDs with specific particle or aggregate sizes are now within reach.Size is a defining characteristic of nanoparticles; it influences their optical and electronic properties as well as their interactions with molecules and macromolecules. Producing nanoparticles with narrow size distributions remains one of the main challenges to their utilization. At this time, the number of practical approaches to optimize the size distribution of nanoparticles in many interesting materials systems, including diamond nanocrystals, remains limited. Diamond nanocrystals synthesized by detonation protocols - so

  17. Hypo fractionated radiotherapy in advanced lung cancer

    International Nuclear Information System (INIS)

    Andrade Carvalho, Heloisa de; Saito, Newton Heitetsu; Gomes, Herbeni Cardoso; Aguilar, Patricia Bailao; Nadalin, Wladimir

    1996-01-01

    Patients with advanced lung cancers have bad prognosis and, many times, are submitted to prolonged and not always efficient treatments. We present a study where 51 patients were treated with hypo fractionated radiotherapy, based on two distinct schemes, according to the performance status and social conditions of each patient: continuous treatment: 30 Gy, 10 fractions of 3 Gy, 5 days/week (37 cases); weekly treatment: 30 Gy, 6 fractions of 5 Gy, once a week (14 cases). Symptoms relief and impact in survival were evaluated. In both groups, we observed improvement of symptoms in about 70% of the occurrences with a medium survival of three months. We conclude that hypo fractionation is an effective palliative treatment for lung cancers, in patients with short life-expectancy and must be considered as a option in advanced cases, in patients with short life-expectancy that deserve some kind of treatment. (author). 37 refs., 2 tabs

  18. (N+1)-dimensional fractional reduced differential transform method for fractional order partial differential equations

    Science.gov (United States)

    Arshad, Muhammad; Lu, Dianchen; Wang, Jun

    2017-07-01

    In this paper, we pursue the general form of the fractional reduced differential transform method (DTM) to (N+1)-dimensional case, so that fractional order partial differential equations (PDEs) can be resolved effectively. The most distinct aspect of this method is that no prescribed assumptions are required, and the huge computational exertion is reduced and round-off errors are also evaded. We utilize the proposed scheme on some initial value problems and approximate numerical solutions of linear and nonlinear time fractional PDEs are obtained, which shows that the method is highly accurate and simple to apply. The proposed technique is thus an influential technique for solving the fractional PDEs and fractional order problems occurring in the field of engineering, physics etc. Numerical results are obtained for verification and demonstration purpose by using Mathematica software.

  19. Comparative DNA isolation behaviours of silica and polymer based sorbents in batch fashion: monodisperse silica microspheres with bimodal pore size distribution as a new sorbent for DNA isolation.

    Science.gov (United States)

    Günal, Gülçin; Kip, Çiğdem; Eda Öğüt, S; İlhan, Hasan; Kibar, Güneş; Tuncel, Ali

    2018-02-01

    Monodisperse silica microspheres with bimodal pore-size distribution were proposed as a high performance sorbent for DNA isolation in batch fashion under equilibrium conditions. The proposed sorbent including both macroporous and mesoporous compartments was synthesized 5.1 μm in-size, by a "staged shape templated hydrolysis and condensation method". Hydrophilic polymer based sorbents were also obtained in the form of monodisperse-macroporous microspheres ca 5.5 μm in size, with different functionalities, by a developed "multi-stage microsuspension copolymerization" technique. The batch DNA isolation performance of proposed material was comparatively investigated using polymer based sorbents with similar morphologies. Among all sorbents tried, the best DNA isolation performance was achieved with the monodisperse silica microspheres with bimodal pore size distribution. The collocation of interconnected mesoporous and macroporous compartments within the monodisperse silica microspheres provided a high surface area and reduced the intraparticular mass transfer resistance and made easier both the adsorption and desorption of DNA. Among the polymer based sorbents, higher DNA isolation yields were achieved with the monodisperse-macroporous polymer microspheres carrying trimethoxysilyl and quaternary ammonium functionalities. However, batch DNA isolation performances of polymer based sorbents were significantly lower with respect to the silica microspheres.

  20. High performance of visible-NIR broad spectral photocurrent application of monodisperse PbSe nanocubes decorated on rGO sheets

    Science.gov (United States)

    Ghorban Shiravizadeh, A.; Elahi, S. M.; Sebt, S. A.; Yousefi, Ramin

    2018-02-01

    In this work, the photoresponse performance of monodisperse PbSe nanocubes in the range of visible and near-infrared (NIR) (400-1500 nm) regions was enhanced by reduced graphene oxide (rGO). A simple cost-effective method is presented to synthesize monodisperse PbSe nanocubes (NCs) that are decorated on the rGO sheets. By the addition of PbSe/rGO nanocomposites with different rGO concentrations, pristine PbSe NCs were synthesized with the same method. Microscopy images showed that the size of NCs was smaller than the exciton Bohr radius (46 nm) of PbSe bulk. Therefore, the UV-Vis-IR spectroscopy result revealed that the PbSe/rGO samples had absorption peaks in the NIR region around 1650 nm and showed a blue shift compared to the absorption peak of the PbSe bulk. J-V measurements of the samples indicated that monodisperse PbSe/rGO nanocomposites had a higher resistance than the other samples under dark condition. On the other hand, the resistance of the monodisperse PbSe/rGO nanocomposites decreased under different light source illuminations while the resistance of the other samples was increased under illumination. Photodetector measurements indicated that the monodisperse morphology of the PbSe NCs enhanced the photoresponse speed and photocurrent intensity. In addition, responsivity (R) and detectivity (D*) of the samples were higher in the NIR region.

  1. Preparation of spherical monodisperse ferrimagnetic iron-oxide microparticles between 1 and 5 μm diameter

    International Nuclear Information System (INIS)

    Moeller, Winfried; Scheuch, Gerhard; Sommerer, Knut; Heyder, Joachim

    2001-01-01

    The production of spherical monodisperse iron-oxide microparticles in the size range between 0.8 and 5 μm is described. The particles can be ferrimagnetic (Fe 3 O 4 ) or non-magnetic (α-Fe 2 O 3 ). The particles were radiolabeled with 99m Tc or 111 In, and the leakage of the radiolabel within 24 h was 0.1% in the human lung. The particles can be used to study the motility and the integrity of living cells

  2. Near-Monodisperse Ni-Cu Bimetallic Nanocrystals of Variable Composition: Controlled Synthesis and Catalytic Activity for H2 Generation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yawen; Huang, Wenyu; Habas, Susan E.; Kuhn, John N.; Grass, Michael E.; Yamada, Yusuke; Yang, Peidong; Somorjai, Gabor A.

    2008-07-22

    Near-monodisperse Ni{sub 1-x}Cu{sub x} (x = 0.2-0.8) bimetallic nanocrystals were synthesized by a one-pot thermolysis approach in oleylamine/1-octadecene, using metal acetylacetonates as precursors. The nanocrystals form large-area 2D superlattices, and display a catalytic synergistic effect in the hydrolysis of NaBH{sub 4} to generate H{sub 2} at x = 0.5 in a strongly basic medium. The Ni{sub 0.5}Cu{sub 0.5} nanocrystals show the lowest activation energy, and also exhibit the highest H{sub 2} generation rate at 298 K.

  3. Synthesis of Monodispersed Gold Nanoparticles with Exceptional Colloidal Stability with Grafted Polyethylene Glycol-g-polyvinyl Alcohol

    Directory of Open Access Journals (Sweden)

    Alaaldin M. Alkilany

    2015-01-01

    Full Text Available Herein, we report the synthesis of spherical gold nanoparticles with tunable core size (23–79 nm in the presence of polyethylene glycol-g-polyvinyl alcohol (PEG-g-PVA grafted copolymer as a reducing, capping, and stabilizing agent in a one-step protocol. The resulted PEG-g-PVA-capped gold nanoparticles are monodispersed with an exceptional colloidal stability against salt addition, repeated centrifugation, and extensive dialysis. The effect of various synthesis parameters and the kinetic/mechanism of the nanoparticle formation are discussed.

  4. Boron Isotope Fractionation in Bell Pepper

    OpenAIRE

    Geilert, Sonja; Vogl, Jochen; Rosner, Martin; Voerkelius, Susanne; Eichert, Thomas

    2015-01-01

    Various plant compartments of a single bell pepper plant were studied to verify the variability of boron isotope composition in plants and to identify possible intra-plant isotope fractionation. Boron mass fractions varied from 9.8 mg/kg in the fruits to 70.0 mg/kg in the leaves. Boron (B) isotope ratios reported as δ11B ranged from -11.0‰ to +16.0‰ (U ≤ 1.9‰, k=2) and showed a distinct trend to heavier δ11B values the higher the plant compartments were located in the plant. A fractionatio...

  5. Fractional and noncommutative spacetimes

    NARCIS (Netherlands)

    Arzano, M.|info:eu-repo/dai/nl/32616443X; Calcagni, M.; Oriti, D.; Scalisi, M.

    2011-01-01

    We establish a mapping between fractional and noncommutative spacetimes in configuration space. Depending on the scale at which the relation is considered, there arise two possibilities. For a fractional spacetime with log-oscillatory measure, the effective measure near the fundamental scale

  6. Fractional location problems

    NARCIS (Netherlands)

    A.I. Barros (Ana); J.B.G. Frenk (Hans); J.A.S. Gromicho (Joaquim)

    1997-01-01

    textabstractIn this paper we analyze some variants of the classical uncapacitated facility location problem with a ratio as an objective function. Using basic concepts and results of fractional programming, we identify a class of one-level fractional location problems which can be solved in

  7. An Appetite for Fractions

    Science.gov (United States)

    Wilkerson, Trena L.; Bryan, Tommy; Curry, Jane

    2012-01-01

    This article describes how using candy bars as models gives sixth-grade students a taste for learning to represent fractions whose denominators are factors of twelve. Using paper models of the candy bars, students explored and compared fractions. They noticed fewer different representations for one-third than for one-half. The authors conclude…

  8. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.

    2009-09-14

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In

  9. Monodispersed fabrication and dielectric studies on ethylenediamine passivated α-manganese dioxide nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, A. Martin [Research and Development Centre, Bharathiar University, Coimbatore, Tamilnadu (India); Kumar, R. Thilak, E-mail: manojthilak@yahoo.com [Periyar Arts College, Cuddalore-607001, Tamilnadu (India)

    2016-09-15

    Highlights: • Monodispersed ethylenediamine (EDA) passivated α-MnO{sub 2} nanorods were fabricated by inexpensive wet chemical method. • FTIR analysis indicated that surface passivation is strongly influenced by the introduction of the organic ligand. • XRD and HR-SEM revealed the structure and morphology of the fabricated α-MnO{sub 2} nanorods with an average size of about 40 × 200 nm. • Dielectric studies pointed out that the fabricated α-MnO{sub 2} is semiconducting in nature with resistivity, ρ = 1.46 to 5.76 × 10{sup 3} Ωcm. • The optical energy gap for the fabricated α-MnO{sub 2} nanorods is found to be around 1.37 eV. - Abstract: In this present work, pure α-MnO{sub 2} nanorods were fabricated by the reduction of 0.2 m/L of KMnO{sub 4} with 0.2 m/L of Na{sub 2}S{sub 2}O{sub 3}·5H{sub 2}O and by passivating with the organic ligand Ethylenediamine (EDA). The structural, functional, morphological and chemical composition of the nanorods were investigated by X-Ray Diffractometer (XRD), Fourier Transform Infrared Spectrometer (FTIR), High Resolution Scanning Electron Microscope (HR-SEM) and Energy Dispersive X-Ray Spectrometry (EDX). The XRD analysis indicated high crystalline nature of the product and FTIR confirmed the contribution of the organic ligand in surface passivation. HR-SEM image revealed the morphology of the α-MnO{sub 2} nanorods with an average size of about 40 × 200 nm. EDX confirmed the presence of Mn and O in the material. UV–visible spectrophotometery was used to determine the absorption behavior of the nanorods and an indirect band gap of 1.37 eV was acquired by Taucplot. Dielectric studies were carried out using Broadband Dielectric Spectrometer(BDS) and the resistivity was found to be around the semiconductor range (ρ = 1.46 to 5.76 × 10{sup 3} Ωcm).

  10. Fractional bosonic strings

    Science.gov (United States)

    Diaz, Victor Alfonzo; Giusti, Andrea

    2018-03-01

    The aim of this paper is to present a simple generalization of bosonic string theory in the framework of the theory of fractional variational problems. Specifically, we present a fractional extension of the Polyakov action, for which we compute the general form of the equations of motion and discuss the connection between the new fractional action and a generalization the Nambu-Goto action. Consequently, we analyze the symmetries of the modified Polyakov action and try to fix the gauge, following the classical procedures. Then we solve the equations of motion in a simplified setting. Finally, we present a Hamiltonian description of the classical fractional bosonic string and introduce the fractional light-cone gauge. It is important to remark that, throughout the whole paper, we thoroughly discuss how to recover the known results as an "integer" limit of the presented model.

  11. Controllable synthesis and upconversion emission of ultrasmall near-monodisperse lanthanide-doped Sr2LaF7 nanocrystals

    International Nuclear Information System (INIS)

    Mao, Yifu; Ma, Mo; Gong, Lunjun; Xu, Changfu; Ren, Guozhong; Yang, Qibin

    2014-01-01

    Highlights: • Apropos NaOH content facilitates the growth of pure phase Sr 2 LaF 7 NCs. • Yb 3+ doping is favorable to the formation of Sr 2 LaF 7 NCs with uniform size. • Ultrasmall near-monodispersed Sr 2 LaF 7 NCs(sub-10 nm) were synthesized for the first time. • Intense multicolor upconversion can be obtained by properly lanthanide doping. - Abstract: Fluorite phase Sr 2 LaF 7 nanocrystals (NCs) were synthesized via solvothermal method using oleic acid as capping ligands. The effects of preparing conditions on the phase structure, crystal size, morphology, and upconversion (UC) emission properties of the products were studied. The results reveal that just apropos NaOH content facilitates the growth of near-monodispersed pure phase Sr 2 LaF 7 NCs, and Yb 3+ doping is favorable to the formation of pure Sr 2 LaF 7 phase with more uniform size distribution. The average crystalline size of the products can be controlled less than 10 nm. Following appropriate lanthanide ions doping, the NCs show intense blue, yellow, and white-color UC emission under the excitation of a 980 nm laser. The energy transfer UC mechanisms for the fluorescent intensity were also investigated

  12. A simple method for large scale synthesis of highly monodisperse gold nanoparticles at room temperature and their electron relaxation properties

    International Nuclear Information System (INIS)

    Polavarapu, Lakshminarayana; Xu Qinghua

    2009-01-01

    Here we demonstrate a simple method for large scale preparation of monodisperse gold nanoparticles by simple mixing of chloroauricacid (HAuCl 4 ) with oleylamine (OA) at room temperature. The as-prepared gold nanoparticles have high monodispersity with an average diameter of 13 nm and can self-organize into two-dimensional (2D) hexagonal close-packed arrays. The size of the gold nanoparticles can be experimentally controlled. The capping agent, oleylamine, can be easily replaced with other capping agents such as thiol groups for further functionalization. The electron relaxation dynamics of these gold nanoparticles in toluene was studied by femtosecond pump-probe measurements, in comparison with the citrate-stabilized gold nanoparticles in water. The phonon-phonon relaxation time of gold nanoparticles in toluene is slower than that of citrate-capped gold nanoparticles in water, due to the lower thermal conductivity of toluene than water. The electron-phonon relaxation of the gold nanoparticles in toluene was found to display weaker pump energy dependence, compared to that of citrate-capped gold nanoparticles in water. The different electron-phonon relaxation dynamics is ascribed to the extra vibrational states provided by gold- NH 2 , which serves as an extra nonradiative relaxation pathway for the e-ph relaxation in oleylamine-capped gold nanoparticles in toluene.

  13. Microfluidic preparation and self diffusion PFG-NMR analysis of monodisperse water-in-oil-in-water double emulsions.

    Science.gov (United States)

    Hughes, Eric; Maan, Abid Aslam; Acquistapace, Simone; Burbidge, Adam; Johns, Michael L; Gunes, Deniz Z; Clausen, Pascal; Syrbe, Axel; Hugo, Julien; Schroen, Karin; Miralles, Vincent; Atkins, Tim; Gray, Richard; Homewood, Philip; Zick, Klaus

    2013-01-01

    Monodisperse water-in-oil-in-water (WOW) double emulsions have been prepared using microfluidic glass devices designed and built primarily from off the shelf components. The systems were easy to assemble and use. They were capable of producing double emulsions with an outer droplet size from 100 to 40 μm. Depending on how the devices were operated, double emulsions containing either single or multiple water droplets could be produced. Pulsed-field gradient self-diffusion NMR experiments have been performed on the monodisperse water-in-oil-in-water double emulsions to obtain information on the inner water droplet diameter and the distribution of the water in the different phases of the double emulsion. This has been achieved by applying regularization methods to the self-diffusion data. Using these methods the stability of the double emulsions to osmotic pressure imbalance has been followed by observing the change in the size of the inner water droplets over time. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Response of three instruments devoted to surface-area for monodisperse and polydisperse aerosols in molecular and transition regimes

    Energy Technology Data Exchange (ETDEWEB)

    Bau, Sebastien; Witschger, Olivier [Institut National de Recherche et de Securite (INRS), Laboratoire de Metrologie des Aerosols, Rue du Morvan, CS 60027, 54519 Vandoeuvre Cedex (France); Gensdarmes, Francois [Institut de Radioprotection et de Surete Nucleaire (IRSN), Laboratoire de Physique et de Metrologie des Aerosols, BP 68, 91192 Gif-sur-Yvette (France); Thomas, Dominique, E-mail: sebastien.bau@inrs.fr [Laboratoire Reactions et Genie des Procedes (LRGP), groupe SAFE, 1 rue Grandville, BP 20041, 54001 Nancy Cedex (France)

    2011-07-06

    An increasing number of experimental and theoretical studies focus on airborne nanoparticles (NP) in relation with many aspects of risk assessment. Indeed, our understanding of the hazards, the actual exposures in the workplace and the limits of engineering controls and personal protective equipment with regard to NP are still under development. Several studies have already identified surface-area as an important determinant of low solubility nanoparticles toxicity. As a consequence, the concept that surface-area could be a relevant metric for characterizing exposure to low solubility airborne NP has been proposed [1]. To provide NP surface-area concentration, some direct-reading instruments have been designed, based on diffusion charging. The actual available instruments providing airborne NP surface-area concentration are studied in this work: LQ1-DC (Matter Engineering), AeroTrak{sup TM} 9000 (TSI) and NSAM (TSI model 3550). Their performances regarding monodisperse carbon NP have been investigated by Bau et al.. This work aims at completing the instruments characterization regarding monodisperse NP of other chemical composition (aluminium, copper, silver) and studying their performances against polydisperse aerosols of NP.

  15. Antisolvent Precipitation for the Synthesis of Monodisperse Mesoporous Niobium Oxide Spheres as Highly Effective Solid Acid Catalysts

    KAUST Repository

    Li, Cheng Chao

    2012-03-20

    We have developed a low-cost reaction protocol to synthesize mesoporous Nb 2O 5-based solid acid catalysts with external shape control. In the synthesis, monodisperse glycolated niobium oxide spheres (GNOS) were prepared by means of a simple antisolvent precipitation approach and subsequently converted to mesoporous niobium oxide spheres (MNOS) with a large surface area of 312m 2g -1 by means of the hydrothermal treatment. The antisolvent acetone used to obtain GNOS was recovered through distillation at high purity. The obtained mesoporous MNOS were functionalized further with sulfate anions at different temperatures or incorporated with tungstophosphoric acid to obtain recyclable solid acid catalysts. These MNOS-based catalysts showed excellent performance in a wide range of acid-catalyzed reactions, such as Friedel-Crafts alkylation, esterification, and hydrolysis of acetates. As they are monodisperse spheres with diameters in the submicrometer range, the catalysts can be easily separated and reused. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Ten-gram-scale preparation of PTMS-based monodisperse ORMOSIL nano- and microparticles and conversion to silica particles

    Science.gov (United States)

    Kim, Jung Soo; Jung, Gyu Il; Kim, Soo Jung; Koo, Sang Man

    2018-03-01

    Monodisperse organically modified silica (ORMOSIL) particles, with an average diameter ranging from 550 nm to 4.2 μm, were prepared at low temperature at a scale of about 10 g/batch by a simple one-step self-emulsion process. The reaction mixture was composed only of water, phenyltrimethoxysilane (PTMS), and a base catalyst, without any surfactants. The size control of the particles and the monodispersity of resultant particles were achieved through the controlled supply of hydrolyzed PTMS monomer molecules, which was enabled by manipulating the reaction parameters, such as monomer concentration, type and amount of base catalyst, stirring rate, and reaction temperature. PTMS-based ORMOSIL particles were converted into silica particles by employing either a wet chemical reaction with an oleum-sulfuric acid mixture or thermal treatment above 650 °C. Complete removal of organic groups from the ORMOSIL particles was achieved by the thermal treatment while 74% removal was done by the chemical process used. [Figure not available: see fulltext.

  17. High surface area monodispersed Fe3O4 nanoparticles alone and on physical exfoliated graphite for improved supercapacitors

    Science.gov (United States)

    Sarno, Maria; Ponticorvo, Eleonora; Cirillo, Claudia

    2016-12-01

    Highly conductive, unsophisticated and easy to be obtained physical exfoliated graphite (PHG) supporting well dispersed magnetite, Fe3O4/PHG nanocomposite, has been prepared by a one-step chemical strategy and physico-chemical characterized. The nanocomposite, favoured by the a-polar nanoparticles (NPs) capping, results in a self-assembled monolayer of monodispersed Fe3O4, covering perfectly the hydrophobic surfaces of PHG. The nanocomposite as an electrode material was fabricated into a supercapacitor and characterized by cyclic voltammetry (CV) and galvanostatic charge-discharge measurements. It shows, after a suitable annealing, significant electrochemical properties (capacitance value of 787 F/g at 0.5 A g-1 and a Fe3O4/PHG weight ratio of 0.31) and good cycling stability (retention 91% after 30,000 cycles). Highly monodispersed very fine Fe3O4 NPs, covered by organic chains, have been also synthesized. The high surface area Fe3O4 NPs, after washing to leave a low content of organic chains able to avoid aggregation without excessively affecting the electrical properties of the material, exhibit remarkable pseudocapacitive activities, including the highest specific capacitance over reported for Fe3O4 (300 F/g at 0.5 A g-1).

  18. Response of three instruments devoted to surface-area for monodisperse and polydisperse aerosols in molecular and transition regimes

    International Nuclear Information System (INIS)

    Bau, Sebastien; Witschger, Olivier; Gensdarmes, Francois; Thomas, Dominique

    2011-01-01

    An increasing number of experimental and theoretical studies focus on airborne nanoparticles (NP) in relation with many aspects of risk assessment. Indeed, our understanding of the hazards, the actual exposures in the workplace and the limits of engineering controls and personal protective equipment with regard to NP are still under development. Several studies have already identified surface-area as an important determinant of low solubility nanoparticles toxicity. As a consequence, the concept that surface-area could be a relevant metric for characterizing exposure to low solubility airborne NP has been proposed [1]. To provide NP surface-area concentration, some direct-reading instruments have been designed, based on diffusion charging. The actual available instruments providing airborne NP surface-area concentration are studied in this work: LQ1-DC (Matter Engineering), AeroTrak T M 9000 (TSI) and NSAM (TSI model 3550). Their performances regarding monodisperse carbon NP have been investigated by Bau et al.. This work aims at completing the instruments characterization regarding monodisperse NP of other chemical composition (aluminium, copper, silver) and studying their performances against polydisperse aerosols of NP.

  19. Microfluidic Devices for Blood Fractionation

    Directory of Open Access Journals (Sweden)

    Chwee Teck Lim

    2011-07-01

    Full Text Available Blood, a complex biological fluid, comprises 45% cellular components suspended in protein rich plasma. These different hematologic components perform distinct functions in vivo and thus the ability to efficiently fractionate blood into its individual components has innumerable applications in both clinical diagnosis and biological research. Yet, processing blood is not trivial. In the past decade, a flurry of new microfluidic based technologies has emerged to address this compelling problem. Microfluidics is an attractive solution for this application leveraging its numerous advantages to process clinical blood samples. This paper reviews the various microfluidic approaches realized to successfully fractionate one or more blood components. Techniques to separate plasma from hematologic cellular components as well as isolating blood cells of interest including certain rare cells are discussed. Comparisons based on common separation metrics including efficiency (sensitivity, purity (selectivity, and throughput will be presented. Finally, we will provide insights into the challenges associated with blood-based separation systems towards realizing true point-of-care (POC devices and provide future perspectives.

  20. Fractional Order Generalized Information

    Directory of Open Access Journals (Sweden)

    José Tenreiro Machado

    2014-04-01

    Full Text Available This paper formulates a novel expression for entropy inspired in the properties of Fractional Calculus. The characteristics of the generalized fractional entropy are tested both in standard probability distributions and real world data series. The results reveal that tuning the fractional order allow an high sensitivity to the signal evolution, which is useful in describing the dynamics of complex systems. The concepts are also extended to relative distances and tested with several sets of data, confirming the goodness of the generalization.

  1. Counselor Identity: Conformity or Distinction?

    Science.gov (United States)

    McLaughlin, Jerry E.; Boettcher, Kathryn

    2009-01-01

    The authors explore 3 debates in other disciplines similar to counseling's identity debate in order to learn about common themes and outcomes. Conformity, distinction, and cohesion emerged as common themes. They conclude that counselors should retain their distinctive, humanistic approach rather than conforming to the dominant, medical approach.

  2. FRACTIONS: CONCEPTUAL AND DIDACTIC ASPECTS

    Directory of Open Access Journals (Sweden)

    Sead Rešić

    2016-09-01

    Full Text Available Fractions represent the manner of writing parts of whole numbers (integers. Rules for operations with fractions differ from rules for operations with integers. Students face difficulties in understanding fractions, especially operations with fractions. These difficulties are well known in didactics of Mathematics throughout the world and there is a lot of research regarding problems in learning about fractions. Methods for facilitating understanding fractions have been discovered, which are essentially related to visualizing operations with fractions.

  3. Fractional Stochastic Field Theory

    Science.gov (United States)

    Honkonen, Juha

    2018-02-01

    Models describing evolution of physical, chemical, biological, social and financial processes are often formulated as differential equations with the understanding that they are large-scale equations for averages of quantities describing intrinsically random processes. Explicit account of randomness may lead to significant changes in the asymptotic behaviour (anomalous scaling) in such models especially in low spatial dimensions, which in many cases may be captured with the use of the renormalization group. Anomalous scaling and memory effects may also be introduced with the use of fractional derivatives and fractional noise. Construction of renormalized stochastic field theory with fractional derivatives and fractional noise in the underlying stochastic differential equations and master equations and the interplay between fluctuation-induced and built-in anomalous scaling behaviour is reviewed and discussed.

  4. Social Trust and Fractionalization:

    DEFF Research Database (Denmark)

    Bjørnskov, Christian

    2008-01-01

    a much larger country sample than in previous literature confirms that fractionalization in the form of income inequality and political diversity adversely affects social trust while ethnic diversity does not. However, these effects differ systematically across countries, questioning standard...

  5. Fractional excretion of sodium

    Science.gov (United States)

    FE sodium; FENa ... a lab. There, they are examined for salt (sodium) and creatinine levels. Creatinine is a chemical waste ... Chernecky CC, Berger BJ. Excretion fraction of filtered sodium-blood and urine. In: Chernecky CC, Berger BJ, ...

  6. Discrete fractional calculus

    CERN Document Server

    Goodrich, Christopher

    2015-01-01

    This text provides the first comprehensive treatment of the discrete fractional calculus. Experienced researchers will find the text useful as a reference for discrete fractional calculus and topics of current interest. Students who are interested in learning about discrete fractional calculus will find this text to provide a useful starting point. Several exercises are offered at the end of each chapter and select answers have been provided at the end of the book. The presentation of the content is designed to give ample flexibility for potential use in a myriad of courses and for independent study. The novel approach taken by the authors includes a simultaneous treatment of the fractional- and integer-order difference calculus (on a variety of time scales, including both the usual forward and backwards difference operators). The reader will acquire a solid foundation in the classical topics of the discrete calculus while being introduced to exciting recent developments, bringing them to the frontiers of the...

  7. Bidisperse and polydisperse suspension rheology at large solid fraction

    Science.gov (United States)

    Pednekar, Sidhant; Chun, Jaehun; Morris, Jeffrey F.

    2018-03-01

    At the same solid volume fraction, bidisperse and polydisperse suspensions display lower viscosities, and weaker normal stress response, compared to monodisperse suspensions. The reduction of viscosity associated with size distribution can be explained by an increase of the maximum flowable, or jamming, solid fraction ${\\phi}_m$. In this work, dense suspensions are simulated under strong shearing, where thermal motion and repulsive forces are negligible, but we allow for particle contact with a mild frictional interaction with interparticle friction coefficient of ${\\mu} = 0.2$. Aspects of bidisperse suspension rheology are first revisited to establish that the approach reproduces established trends; the study of bidisperse suspensions at size ratios of large to small particle radii of $\\delta = 2$ to 4 shows that a minimum in the viscosity occurs for ${\\zeta}$ slightly above 0.5, where $\\zeta = {\\phi}_l/{\\phi}$ is the fraction of the total solid volume occupied by the large particles. The simple shear flows of polydisperse suspensions with truncated normal and log normal size distributions, and bidisperse suspensions which are statistically equivalent with these polydisperse cases up to third moment of the size distribution, are simulated and the rheologies are extracted. Prior work shows that such distributions with equivalent low-order moments have similar ${\\phi}_m$, and the rheological behaviors of normal, log normal and bidisperse cases are shown to be in close agreement for a wide range of standard deviation in particle size, with standard correlations which are functionally dependent on ${\\phi}/{\\phi}_m$ providing excellent agreement with the rheology found in simulation. The close agreement of both viscosity and normal stress response between bi- and polydisperse suspensions demonstrates the controlling influence of the maximum packing fraction in noncolloidal suspensions

  8. Bidisperse and polydisperse suspension rheology at large solid fraction

    Energy Technology Data Exchange (ETDEWEB)

    Pednekar, Sidhant [Benjamin Levich Institute and Department of Chemical Engineering, The City College of New York, New York, New York 10031; Chun, Jaehun [Pacific Northwest National Laboratory, Richland, Washington 99352; Morris, Jeffrey F. [Benjamin Levich Institute and Department of Chemical Engineering, The City College of New York, New York, New York 10031

    2018-03-01

    At the same solid volume fraction, bidisperse and polydisperse suspensions display lower viscosities, and weaker normal stress response, compared to monodisperse suspensions. The reduction of viscosity associated with size distribution can be explained by an increase of the maximum flowable, or jamming, solid fraction. In this work, concentrated or "dense" suspensions are simulated under strong shearing, where thermal motion and repulsive forces are negligible, but we allow for particle contact with a mild frictional interaction with interparticle friction coefficient of 0.2. Aspects of bidisperse suspension rheology are first revisited to establish that the approach reproduces established trends; the study of bidisperse suspensions at size ratios of large to small particle radii (2 to 4) shows that a minimum in the viscosity occurs for zeta slightly above 0.5, where zeta=phi_{large}/phi is the fraction of the total solid volume occupied by the large particles. The simple shear flows of polydisperse suspensions with truncated normal and log normal size distributions, and bidisperse suspensions which are statistically equivalent with these polydisperse cases up to third moment of the size distribution, are simulated and the rheologies are extracted. Prior work shows that such distributions with equivalent low-order moments have similar phi_{m}, and the rheological behaviors of normal, log normal and bidisperse cases are shown to be in close agreement for a wide range of standard deviation in particle size, with standard correlations which are functionally dependent on phi/phi_{m} providing excellent agreement with the rheology found in simulation. The close agreement of both viscosity and normal stress response between bi- and polydisperse suspensions demonstrates the controlling in influence of the maximum packing fraction in noncolloidal suspensions. Microstructural investigations and the stress distribution according to particle size are also presented.

  9. The Local Fractional Bootstrap

    DEFF Research Database (Denmark)

    Bennedsen, Mikkel; Hounyo, Ulrich; Lunde, Asger

    new resampling method, the local fractional bootstrap, relies on simulating an auxiliary fractional Brownian motion that mimics the fine properties of high frequency differences of the Brownian semistationary process under the null hypothesis. We prove the first order validity of the bootstrap method...... to two empirical data sets: we assess the roughness of a time series of high-frequency asset prices and we test the validity of Kolmogorov's scaling law in atmospheric turbulence data....

  10. Universal signatures of fractionalized quantum critical points.

    Science.gov (United States)

    Isakov, Sergei V; Melko, Roger G; Hastings, Matthew B

    2012-01-13

    Ground states of certain materials can support exotic excitations with a charge equal to a fraction of the fundamental electron charge. The condensation of these fractionalized particles has been predicted to drive unusual quantum phase transitions. Through numerical and theoretical analysis of a physical model of interacting lattice bosons, we establish the existence of such an exotic critical point, called XY*. We measure a highly nonclassical critical exponent η = 1.493 and construct a universal scaling function of winding number distributions that directly demonstrates the distinct topological sectors of an emergent Z(2) gauge field. The universal quantities used to establish this exotic transition can be used to detect other fractionalized quantum critical points in future model and material systems.

  11. Crystallisation and structural studies of monodisperse nylon oligomers and related polymers

    International Nuclear Information System (INIS)

    Sikorski, P.T.

    2001-11-01

    Using electron and X-ray diffraction data, together with computerised molecular modeling, the structures of monodisperse nylon oligomers and related polymers have been investigated. Structural changes on heating were also studied. The molecules were crystallised from solution and their morphologies examined using optical and transmission electron microscopy. Lath-like lamellar crystals of the polyester poly-β-propiolactone were crystallised isothermally. The interpretation of the diffraction data with the use of molecular modeling led to the discovery of the new crystalline structure, the γ-structure. In the γ-structure, the polyester chain is in an all-trans conformation and the structure consists of a two-chain, basal-faced, orthorhombic unit cell. The setting angles, with respect to the a axis, are ± 51.5 deg for the corner and centre chains, respectively. The lamellae are 5 nm in thickness and the chains run orthogonal to the lamellar surface. The general fold direction is along the a-axis (long axis of the crystal) and the chain folds successively in the [110] and [11-bar0] directions. Three different nylon 4 6 oligomers were crystallised from solution using a range of crystallisation methods. The 4- and 8-amide molecules were found to form three-dimensional crystals, in which the crystal thickness was much greater than the molecular length. The structure was found to be different from the nylon 4 6 polymer reported previously. It was found that the type of hydrogen-bonded sheet formed by these molecules can influence the way in which these sheets stack to form crystals. In addition, a study of the 9-amide molecule showed that a particular type of hydrogen-bonded sheet, a-sheet, is preferred for nylon 4 6. This discovery suggests that an amide unit is found in the fold in the chain-folded nylon 4 6 polymer crystals, to allow the a-sheets to be formed. It is not a consequence of a need to form a stress-free fold. In the regular adjacent re-entry chain

  12. Series expansion in fractional calculus and fractional differential equations

    OpenAIRE

    Li, Ming-Fan; Ren, Ji-Rong; Zhu, Tao

    2009-01-01

    Fractional calculus is the calculus of differentiation and integration of non-integer orders. In a recently paper (Annals of Physics 323 (2008) 2756-2778), the Fundamental Theorem of Fractional Calculus is highlighted. Based on this theorem, in this paper we introduce fractional series expansion method to fractional calculus. We define a kind of fractional Taylor series of an infinitely fractionally-differentiable function. Further, based on our definition we generalize hypergeometric functio...

  13. Aerodynamic study of a jet of mono-dispersed droplets during evaporation and combustion using optical methods; Etude aerodynamique d'un jet de gouttes monodisperse en evaporation et en combustion a l'aide de methodes optiques

    Energy Technology Data Exchange (ETDEWEB)

    Castanet, G.

    2004-10-01

    The knowledge of aero-thermal phenomena occurring in the combustion chamber is a key point in order to improve propulsive systems. Non intrusive optical diagnostics are necessary to investigate the mechanisms governing the droplets evaporation. A technique based on two colours laser-induced fluorescence allows obtaining the space averaged temperature of streaming droplets and the temperature distribution inside a droplet for linear monodisperse droplet stream. Sizes of droplets are measured with the use of a Phase Doppler Particle Analyser. An energetic budget allows to determine experimentally Nusselt and Sherwood numbers in combustion. Within droplets motions are modelled by a Hill vortex with an intensity adjusted from space averaged temperature measurements or from experimental temperature maps. Vapour transport phenomena inside the gaseous phase are studied by using the Planar Laser Induced Fluorescence technique in order to determine the concentration field of vapour. (author)

  14. Toxicity of inhaled 238PuO2 in Beagle dogs: A. Monodisperse 1.5 μm AMAD particles. B. Monodisperse 3.0 μm particles. XV

    International Nuclear Information System (INIS)

    Mewhinney, J.A.; Gillett, N.A.; Muggenburg, B.A.; Hahn, F.F.; Diel, J.H.; Mauderly, J.L.; Boecker, B.B.; McClellan, R.O.

    1988-01-01

    Beagle dogs inhaled one of two sizes of monodisperse aerosols of 238 PuO 2 that resulted in graded levels of 238 Pu in the lung. All dogs are being studied for their life span. One hundred and thirty-seven dogs that had initial lung burdens ranging from 0.01 to 1.5 μCi 238 Pu/kg body weight (0.37 to 56 kBq/kg) have died, 8 with radiation pneumonitis and pulmonary fibrosis, 8 with lung tumors, 88 with bone tumors, 10 with liver tumors, and 25 of miscellaneous causes. Eighteen control dogs have died. Observations are being continued on 8 exposed and 6 control dogs alive at 4577-5274 days after exposure. (author)

  15. Monodisperse Water-in-Oil-in-Water (W/O/W Double Emulsion Droplets as Uniform Compartments for High-Throughput Analysis via Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Jing Yan

    2013-12-01

    Full Text Available Here we report the application of monodisperse double emulsion droplets, produced in a single step within partially hydrophilic/partially hydrophobic microfluidic devices, as defined containers for quantitative flow cytometric analysis. Samples with varying fluorophore concentrations were generated, and a clear correlation between dye concentration and fluorescence signals was observed.

  16. Annealing effect on the structural and optical properties of Cr/a-Cr2O3 monodispersed particles based solar absorbers

    CSIR Research Space (South Africa)

    Khamlich, S

    2013-01-01

    Full Text Available A cost-effective and environmentally friendly green chemical method, the so-called aqueous chemical growth (ACG) method, was used to deposit chromium/alpha-chromium(III) oxide, Cr/a-Cr2O3, monodispersed particles, for solar absorbers applications...

  17. Facile Droplet-based Microfluidic Synthesis of Monodisperse IV-VI Semiconductor Nanocrystals with Coupled In-Line NIR Fluorescence Detection

    NARCIS (Netherlands)

    Lignos, Ioannis; Protesescu, Loredana; Stavrakis, Stavros; Piveteau, Laura; Speirs, Mark J.; Loi, Maria A.; Kovalenko, Maksym V.; deMello, Andrew J.

    2014-01-01

    We describe the realization of a droplet-based microfluidic platform for the controlled and reproducible synthesis of lead chalcogenide (PbS, PbSe) nanocrystal quantum dots (QDs). Monodisperse nanocrystals were synthesized over a wide range of experimental conditions, with real-time assessment and

  18. Noncardiac Comorbidities in Heart Failure With Reduced Versus Preserved Ejection Fraction

    NARCIS (Netherlands)

    Mentz, Robert J.; Kelly, Jacob P.; von Lueder, Thomas G.; Voors, Adriaan A.; Lam, Carolyn S. P.; Cowie, Martin R.; Kjeldsen, Keld; Jankowska, Ewa A.; Atar, Dan; Butler, Javed; Fiuzat, Mona; Zannad, Faiez; Pitt, Bertram; O'Connor, Christopher M.

    2014-01-01

    Heart failure patients are classified by ejection fraction (EF) into distinct groups: heart failure with preserved ejection fraction (HFpEF) or heart failure with reduced ejection fraction (HFrEF). Although patients with heart failure commonly have multiple comorbidities that complicate management

  19. Fractional calculus in pharmacokinetics.

    Science.gov (United States)

    Sopasakis, Pantelis; Sarimveis, Haralambos; Macheras, Panos; Dokoumetzidis, Aristides

    2018-02-01

    We are witnessing the birth of a new variety of pharmacokinetics where non-integer-order differential equations are employed to study the time course of drugs in the body: this is dubbed "fractional pharmacokinetics". The presence of fractional kinetics has important clinical implications such as the lack of a half-life, observed, for example with the drug amiodarone and the associated irregular accumulation patterns following constant and multiple-dose administration. Building models that accurately reflect this behaviour is essential for the design of less toxic and more effective drug administration protocols and devices. This article introduces the readers to the theory of fractional pharmacokinetics and the research challenges that arise. After a short introduction to the concepts of fractional calculus, and the main applications that have appeared in literature up to date, we address two important aspects. First, numerical methods that allow us to simulate fractional order systems accurately and second, optimal control methodologies that can be used to design dosing regimens to individuals and populations.

  20. Distinction

    OpenAIRE

    2010-01-01

    Pr Serge Haroche La Médaille d’or 2009 du CNRS est décernée au Pr Serge Haroche, titulaire de la chaire de Physique quantique depuis 2001. Serge Haroche est spécialiste de physique atomique et d’optique quantique. Il est l’un des fondateurs de l’électrodynamique quantique en cavité, domaine qui permet, par des expériences conceptuellement simples, d’éclairer les fondements de la théorie quantique et de réaliser des prototypes de systèmes de traitement quantique de l’information. Serge Haroche...

  1. FRACTIONS: CONCEPTUAL AND DIDACTIC ASPECTS

    OpenAIRE

    Sead Rešić; Ismet Botonjić; Maid Omerović

    2016-01-01

    Fractions represent the manner of writing parts of whole numbers (integers). Rules for operations with fractions differ from rules for operations with integers. Students face difficulties in understanding fractions, especially operations with fractions. These difficulties are well known in didactics of Mathematics throughout the world and there is a lot of research regarding problems in learning about fractions. Methods for facilitating understanding fractions have been discovered...

  2. Fractional-order devices

    CERN Document Server

    Biswas, Karabi; Caponetto, Riccardo; Mendes Lopes, António; Tenreiro Machado, José António

    2017-01-01

    This book focuses on two specific areas related to fractional order systems – the realization of physical devices characterized by non-integer order impedance, usually called fractional-order elements (FOEs); and the characterization of vegetable tissues via electrical impedance spectroscopy (EIS) – and provides readers with new tools for designing new types of integrated circuits. The majority of the book addresses FOEs. The interest in these topics is related to the need to produce “analogue” electronic devices characterized by non-integer order impedance, and to the characterization of natural phenomena, which are systems with memory or aftereffects and for which the fractional-order calculus tool is the ideal choice for analysis. FOEs represent the building blocks for designing and realizing analogue integrated electronic circuits, which the authors believe hold the potential for a wealth of mass-market applications. The freedom to choose either an integer- or non-integer-order analogue integrator...

  3. Hybrid thin films derived from UV-curable acrylate-modified waterborne polyurethane and monodispersed colloidal silica

    Directory of Open Access Journals (Sweden)

    C. H. Yang

    2012-01-01

    Full Text Available Hybrid thin films containing nano-sized inorganic domains were synthesized from UV-curable acrylate-modified waterborne polyurethane (WPU-AC and monodispersed colloidal silica with coupling agent. The coupling agent, 3-(trimethoxysilylpropyl methacrylate (MSMA, was bonded onto colloidal silica first, and then mixed with WPU-AC to form a precursor solution. This precursor was spin coated, dried and UV-cured to generate the hybrid films. The silica content in the hybrid thin films was varied from 0 to 30 wt%. Experimental results showed the aggregation of silica particles in the hybrid films. Thus, the silica domain in the hybrid films was varied from 30 to 50 nm by the different ratios of MSMAsilica to WPU-AC. The prepared hybrid films from the crosslinked WPU-AC/MSMA-silica showed much better thermal stability and mechanical properties than pure WPU-AC.

  4. Synthesis and luminescent properties of uniform monodisperse LuPO4:Eu3+/Tb3+ hollow microspheres

    Science.gov (United States)

    Gao, Yu; Yu, He; Shi, Cheng; Zhao, Guiyan; Bi, Yanfeng; Xu, Baotong; Ding, Fu; Sun, Yaguang; Xu, Zhenhe

    2017-12-01

    Uniform monodisperse LuPO4:Eu3+/Tb3+ hollow microspheres with diameters of about 2.4 µm have been successfully synthesized by the combination of a facile homogeneous precipitation approach, an ion-exchange process and a calcination process. The possible formation mechanism for the hollow microspheres was presented. Furthermore, the luminescence properties revealed that the LuPO4:Eu3+ and LuPO4:Tb3+ phosphors show strong orange-red and green emissions under ultraviolet excitation, respectively, which endows this material with potential application in many fields, such as light display systems and optoelectronic devices. Since the synthetic process can be carried out at mild conditions, it should be straightforward to scale up the entire process for large-scale production of the LuPO4 hollow microspheres. Furthermore, this general and simple method may be of much significance in the synthesis of many other inorganic materials.

  5. Synthesis and Magnetic Properties of Nearly Monodisperse CoFe2O4Nanoparticles Through a Simple Hydrothermal Condition

    Directory of Open Access Journals (Sweden)

    Li Xing-Hua

    2010-01-01

    Full Text Available Abstract Nearly monodisperse cobalt ferrite (CoFe2O4 nanoparticles without any size-selection process have been prepared through an alluring method in an oleylamine/ethanol/water system. Well-defined nanospheres with an average size of 5.5 nm have been synthesized using metal chloride as the law materials and oleic amine as the capping agent, through a general liquid–solid-solution (LSS process. Magnetic measurement indicates that the particles exhibit a very high coercivity at 10 K and perform superparamagnetism at room temperature which is further illuminated by ZFC/FC curves. These superparamagnetic cobalt ferrite nanomaterials are considered to have potential application in the fields of biomedicine. The synthesis method is possible to be a general approach for the preparation of other pure binary and ternary compounds.

  6. H2/D2 exchange reaction on mono-disperse Pt clusters: enhanced activity from minute O2 concentrations

    DEFF Research Database (Denmark)

    Riedel, Jakob Nordheim; Rötzer, Marian David; Jørgensen, Mikkel

    2016-01-01

    significantly. XPS and ISS before and after reaction suggest little or no sintering during reaction. A reaction pathway is suggested based on DFT. H2 desorption is identified as the rate-limiting step and O2 is confirmed as the source of the increased activity. The binding energy of platinum atoms in a SiO2......The H2/D2 exchange reaction was studied on mono-disperse Pt8 clusters in a μ-reactor. The chemical activity was studied at temperatures varying from room temperature to 180 °C using mass spectrometry. It was found that minute amounts of O2 in the gas stream increased the chemical activity...

  7. Synthesis and luminescent properties of uniform monodisperse LuPO4:Eu3+/Tb3+hollow microspheres.

    Science.gov (United States)

    Gao, Yu; Yu, He; Shi, Cheng; Zhao, Guiyan; Bi, Yanfeng; Xu, Baotong; Ding, Fu; Sun, Yaguang; Xu, Zhenhe

    2017-12-01

    Uniform monodisperse LuPO 4 :Eu 3+ /Tb 3+ hollow microspheres with diameters of about 2.4 µm have been successfully synthesized by the combination of a facile homogeneous precipitation approach, an ion-exchange process and a calcination process. The possible formation mechanism for the hollow microspheres was presented. Furthermore, the luminescence properties revealed that the LuPO 4 :Eu 3+ and LuPO 4 :Tb 3+ phosphors show strong orange-red and green emissions under ultraviolet excitation, respectively, which endows this material with potential application in many fields, such as light display systems and optoelectronic devices. Since the synthetic process can be carried out at mild conditions, it should be straightforward to scale up the entire process for large-scale production of the LuPO 4 hollow microspheres. Furthermore, this general and simple method may be of much significance in the synthesis of many other inorganic materials.

  8. Facile preparation of monodisperse, impurity-free, and antioxidation copper nanoparticles on a large scale for application in conductive ink.

    Science.gov (United States)

    Zhang, Yu; Zhu, Pengli; Li, Gang; Zhao, Tao; Fu, Xianzhu; Sun, Rong; Zhou, Feng; Wong, Ching-ping

    2014-01-08

    Monodisperse copper nanoparticles with high purity and antioxidation properties are synthesized quickly (only 5 min) on a large scale (multigram amounts) by a modified polyol process using slightly soluble Cu(OH)2 as the precursor, L-ascorbic acid as the reductant, and PEG-2000 as the protectant. The resulting copper nanoparticles have a size distribution of 135 ± 30 nm and do not suffer significant oxidation even after being stored for 30 days under ambient conditions. The copper nanoparticles can be well-dispersed in an oil-based ink, which can be silk-screen printed onto flexible substrates and then converted into conductive patterns after heat treatment. An optimal electrical resistivity of 15.8 μΩ cm is achieved, which is only 10 times larger than that of bulk copper. The synthesized copper nanoparticles could be considered as a cheap and effective material for printed electronics.

  9. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods.

    Science.gov (United States)

    Ye, Xingchen; Zheng, Chen; Chen, Jun; Gao, Yuzhi; Murray, Christopher B

    2013-02-13

    We report a dramatically improved synthesis of colloidal gold nanorods (NRs) using a binary surfactant mixture composed of hexadecyltrimethylammonium bromide (CTAB) and sodium oleate (NaOL). Both thin (diameter 30 nm) gold NRs with exceptional monodispersity and broadly tunable longitudinal surface plasmon resonance can be synthesized using seeded growth at reduced CTAB concentrations (as low as 0.037 M). The CTAB-NaOL binary surfactant mixture overcomes the difficulty of growing uniform thick gold NRs often associated with the single-component CTAB system and greatly expands the dimensions of gold NRs that are accessible through a one-pot seeded growth process. Gold NRs with large overall dimensions and thus high scattering/absorption ratios are ideal for scattering-based applications such as biolabeling as well as the enhancement of optical processes.

  10. The Golgi apparatus: roles for distinct 'cis' and 'trans' compartments.

    Science.gov (United States)

    Rothman, J E

    1982-01-01

    The Golgi apparatus seems to consist of distinct cis and trans compartments that are proposed to act sequentially to refine the protein export of the endoplasmic reticulum by removing escaped endoplasmic reticulum proteins. Refinement may be a multi-stage process that employs a principle akin to fractional distillation; the stack of cisternae comprising the cis Golgi may be the plates in this distillation tower. The trans Golgi, consisting of the last one or two cisternae, may be the receiver that collects from the cis Golgi only its most refined fraction for later distribution to specific locations throughout the cell.

  11. FRACTIONAL CRYSTALLIZATION FEED ENVELOPE

    International Nuclear Information System (INIS)

    HERTING DL

    2008-01-01

    Laboratory work was completed on a set of evaporation tests designed to establish a feed envelope for the fractional crystallization process. The feed envelope defines chemical concentration limits within which the process can be operated successfully. All 38 runs in the half-factorial design matrix were completed successfully, based on the qualitative definition of success. There is no feed composition likely to be derived from saltcake dissolution that would cause the fractional crystallization process to not meet acceptable performance requirements. However, some compositions clearly would provide more successful operation than other compositions

  12. Rapid Synthesis of Highly Monodisperse Au x Ag 1− x Alloy Nanoparticles via a Half-Seeding Approach

    KAUST Repository

    Chng, Ting Ting

    2011-05-03

    Gold-silver alloy AuxAg1-x is an important class of functional materials promising new applications across a wide array of technological fields. In this paper, we report a fast and facile synthetic protocol for preparation of highly monodisperse AuxAg1-x alloy nanoparticles in the size range of 3-6 nm. The precursors employed in this work are M(I)-alkanethiolates (M = Au and Ag), which can be easily prepared by mixing common chemicals such as HAuCl4 or AgNO3 with alkanethiols at room temperature. In this half-seeding approach, one of the M(I)-alkanethiolates is first heated and reduced in oleylamine solvent, and freshly formed metal clusters will then act as premature seeds on which both the first and second metals (from M(I)-alkanethiolates, M = Au and Ag) can grow accordingly without additional nucleation and thus achieve high monodispersity for product alloy nanoparticles. Unlike in other prevailing methods, both Au and Ag elements present in these solid precursors are in the same monovalent state and have identical supramolecular structures, which may lead to a more homogeneous reduction and complete interdiffusion at elevated reaction temperatures. When the M(I)-alkanethiolates are reduced to metallic forms, the detached alkanethiolate ligands will serve as capping agent to control the growth. More importantly, composition, particle size, and optical properties of AuxAg1-x alloy nanoparticles can be conveniently tuned with this approach. The optical limiting properties of the prepared particles have also been investigated at 532 and 1064 nm using 7 ns laser pulses, which reveals that the as-prepared alloy nanoparticles exhibit outstanding broadband optical limiting properties with low thresholds. © 2011 American Chemical Society.

  13. Synthesis of monodispersed ZnAl{sub 2}O{sub 4} nanoparticles and their tribology properties as lubricant additives

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xiaoyun; Zheng, Shaohua; Zhang, Jun; Li, Wei; Chen, Qiang [Key Laboratory of Inorganic Functional Materials in Universities of Shandong, School of Material Science and Engineering, University of Jinan, Jinan 250022 (China); Cao, Bingqiang, E-mail: mse_caobq@ujn.edu.cn [Key Laboratory of Inorganic Functional Materials in Universities of Shandong, School of Material Science and Engineering, University of Jinan, Jinan 250022 (China)

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► The preparation of ZnAl{sub 2}O{sub 4} nanoparticles was realized by hydrothermal method. ► After surface modification, ZnAl{sub 2}O{sub 4} nanoparticles of narrow size distribution can disperse in lubricating oil stably. ► The modified ZnAl{sub 2}O{sub 4} nanoparticles as lubricating oil additives exhibit good tribology properties. -- Abstract: Monodispersed spherical zinc aluminate spinel (ZnAl{sub 2}O{sub 4}) nanoparticles were synthesized via a solvothermal method and modified by oleic acid in cyclohexanol solution. The nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and infrared spectrum (IR). The dispersion ability of nanoparticles in lubricant oil was measured with optical absorbance spectrum. The results show that the modified nanoparticles are nearly monodispersed and can stably disperse in lubricant oil. The tribological properties of the ZnAl{sub 2}O{sub 4} nanoparticles as an additive in lubricant oil were evaluated with four-ball test and thrust-ring test. For comparison, ZnO and Al{sub 2}O{sub 3} nanoparticles as additive in lubricant oil were also tested respectively. The results show that ZnAl{sub 2}O{sub 4} nanoparticles exhibit better tribology properties in terms of anti-wear and anti-friction than ZnO or Al{sub 2}O{sub 3} nanoparticles. The anti-friction and anti-wear mechanisms were discussed and the lubricating effect of ZnAl{sub 2}O{sub 4} nanoparticles can be attributed to nano-bearings effect and tribo-sintering mechanism.

  14. Synthesis and characterization of monodisperse, mesoporous, and magnetic sub-micron particles doped with a near-infrared fluorescent dye

    International Nuclear Information System (INIS)

    Le Guevel, Xavier; Nooney, Robert; McDonagh, Colette; MacCraith, Brian D.

    2011-01-01

    Recently, multifunctional silica nanoparticles have been investigated extensively for their potential use in biomedical applications. We have prepared sub-micron monodisperse and stable multifunctional mesoporous silica particles with a high level of magnetization and fluorescence in the near infrared region using an one-pot synthesis technique. Commercial magnetite nanocrystals and a conjugated-NIR-dye were incorporated inside the particles during the silica condensation reaction. The particles were then coated with polyethyleneglycol to stop aggregation. X-ray diffraction, N 2 adsorption analysis, TEM, fluorescence and absorbance measurements were used to structurally characterize the particles. These mesoporous silica spheres have a large surface area (1978 m 2 /g) with 3.40 nm pore diameter and a high fluorescence in the near infrared region at λ=700 nm. To explore the potential of these particles for drug delivery applications, the pore accessibility to hydrophobic drugs was simulated by successfully trapping a hydrophobic ruthenium dye complex inside the particle with an estimated concentration of 3 wt%. Fluorescence imaging confirmed the presence of both NIR dye and the post-grafted ruthenium dye complex inside the particles. These particles moved at approximately 150 μm/s under the influence of a magnetic field, hence demonstrating the multifunctionality and potential for biomedical applications in targeting and imaging. - Graphical Abstract: Hydrophobic fluorescent Ruthenium complex has been loaded into the mesopores as a surrogate drug to simulate drug delivery and to enhance the multifunctionality of the magnetic NIR emitting particles. Highlights: → Monodisperse magnetic mesoporous silica particles emitting in the near infrared region are obtained in one-pot synthesis. → We prove the capacity of such particles to uptake hydrophobic dye to mimic drug loading. → Loaded fluorescent particles can be moved under a magnetic field in a microfluidic

  15. Dual-Sided Adsorption: Devil's Staircase of Coverage Fractions

    Science.gov (United States)

    Tang, Youjian; Chia, Cheng-Ing; Crespi, Vincent H.

    2018-02-01

    By adsorbing the same species onto both sides of a suspended, atomically thin membrane, it is possible to couple two distinct surface adsorption systems. This new system, with reflection symmetry about the membrane, is described by a phase diagram with two axes, both representing the chemical potential of the same element, but in distinct half-spaces. For the case of potassium adsorption onto a graphene membrane, the result is a devil's staircase of fractions for the proportion of adsorbates adhered to one side. Fractions with simpler denominators are favored across wider regions of chemical potential, a pattern reminiscent of other fractional systems across a wide range of physics. Since the system can support multiple devil's staircases each at a distinct overall adsorbate areal density, points along the boundary between adjacent staircases can come arbitrarily close to violating the Gibbs phase rule. This dual-sided adsorbate geometry provides a means to explore surface science for pairs of weakly coupled surfaces.

  16. Sweet Work with Fractions

    Science.gov (United States)

    Vinogradova, Natalya; Blaine, Larry

    2013-01-01

    Almost everyone loves chocolate. However, the same cannot be said about fractions, which are loved by markedly fewer. Middle school students tend to view them with wary respect, but little affection. The authors attempt to sweeten the subject by describing a type of game involving division of chocolate bars. The activity they describe provides a…

  17. Fractional Differential Equation

    Directory of Open Access Journals (Sweden)

    Moustafa El-Shahed

    2007-01-01

    where 2<α<3 is a real number and D0+α is the standard Riemann-Liouville fractional derivative. Our analysis relies on Krasnoselskiis fixed point theorem of cone preserving operators. An example is also given to illustrate the main results.

  18. Nonlinear fractional relaxation

    Indian Academy of Sciences (India)

    Abstract. We define a nonlinear model for fractional relaxation phenomena. We use ε-expansion method to analyse this model. By studying the fundamental solutions of this model we find that when t → 0 the model exhibits a fast decay rate and when t → ∞ the model exhibits a power-law decay. By analysing the frequency ...

  19. Vapor liquid fraction determination

    International Nuclear Information System (INIS)

    1980-01-01

    This invention describes a method of measuring liquid and vapor fractions in a non-homogeneous fluid flowing through an elongate conduit, such as may be required with boiling water, non-boiling turbulent flows, fluidized bed experiments, water-gas mixing analysis, and nuclear plant cooling. (UK)

  20. Brewing with fractionated barley

    NARCIS (Netherlands)

    Donkelaar, van L.H.G.

    2016-01-01

    Brewing with fractionated barley

    Beer is a globally consumed beverage, which is produced from malted barley, water, hops and yeast. In recent years, the use of unmalted barley and exogenous enzymes have become more popular because they enable simpler processing and reduced environmental

  1. Fermion Number Fractionization

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 8. Fermion Number Fractionization. Kumar Rao Narendra Sahu Prasanta K ... Author Affiliations. Kumar Rao1 Narendra Sahu1 Prasanta K Panigrahi1. Theoretical Physics Division, Physical Research Laboratory, Ahmedabad 380 009, India ...

  2. Brewing with fractionated barley

    NARCIS (Netherlands)

    Donkelaar, van L.H.G.

    2016-01-01

    Brewing with fractionated barley Beer is a globally consumed beverage, which is produced from malted barley, water, hops and yeast. In recent years, the use of unmalted barley and exogenous enzymes have become more popular because they enable simpler processing and reduced environmental impact. Raw

  3. Zn Isotope Fractionation during Sorption onto Kaolinite.

    Science.gov (United States)

    Guinoiseau, Damien; Gélabert, Alexandre; Moureau, Julien; Louvat, Pascale; Benedetti, Marc F

    2016-02-16

    In this study, we quantify zinc isotope fractionation during its sorption onto kaolinite, by performing experiments under various pH, ionic strength, and total Zn concentrations. A systematic enrichment in heavy Zn isotopes on the surface of kaolinite was measured, with Δ(66)Znadsorbed-solution ranging from 0.11‰ at low pH and low ionic strength to 0.49‰ at high pH and high ionic strength. Both the measured Zn concentration and its isotopic ratio are correctly described using a thermodynamic sorption model that considers two binding sites: external basal surfaces and edge sites. Based on this modeling approach, two distinct Zn isotopic fractionation factors were calculated: Δ(66)Znadsorbed-solution = 0.18 ± 0.06‰ for ion exchange onto basal sites, and Δ(66)Znadsorbed-solution = 0.49 ± 0.06‰ for specific complexation onto edge sites. These two distinct factors indicate that Zn isotope fractionation is dominantly controlled by the chemical composition of the solution (pH, ionic strength).

  4. Fractional Poisson Fields and Martingales

    Science.gov (United States)

    Aletti, Giacomo; Leonenko, Nikolai; Merzbach, Ely

    2018-01-01

    We present new properties for the Fractional Poisson process (FPP) and the Fractional Poisson field on the plane. A martingale characterization for FPPs is given. We extend this result to Fractional Poisson fields, obtaining some other characterizations. The fractional differential equations are studied. We consider a more general Mixed-Fractional Poisson process and show that this process is the stochastic solution of a system of fractional differential-difference equations. Finally, we give some simulations of the Fractional Poisson field on the plane.

  5. Fractional Poisson Fields and Martingales

    Science.gov (United States)

    Aletti, Giacomo; Leonenko, Nikolai; Merzbach, Ely

    2018-02-01

    We present new properties for the Fractional Poisson process (FPP) and the Fractional Poisson field on the plane. A martingale characterization for FPPs is given. We extend this result to Fractional Poisson fields, obtaining some other characterizations. The fractional differential equations are studied. We consider a more general Mixed-Fractional Poisson process and show that this process is the stochastic solution of a system of fractional differential-difference equations. Finally, we give some simulations of the Fractional Poisson field on the plane.

  6. -Dimensional Fractional Lagrange's Inversion Theorem

    Directory of Open Access Journals (Sweden)

    F. A. Abd El-Salam

    2013-01-01

    Full Text Available Using Riemann-Liouville fractional differential operator, a fractional extension of the Lagrange inversion theorem and related formulas are developed. The required basic definitions, lemmas, and theorems in the fractional calculus are presented. A fractional form of Lagrange's expansion for one implicitly defined independent variable is obtained. Then, a fractional version of Lagrange's expansion in more than one unknown function is generalized. For extending the treatment in higher dimensions, some relevant vectors and tensors definitions and notations are presented. A fractional Taylor expansion of a function of -dimensional polyadics is derived. A fractional -dimensional Lagrange inversion theorem is proved.

  7. Defining poverty as distinctively human

    Directory of Open Access Journals (Sweden)

    H.P.P. Lötter

    2007-05-01

    Full Text Available While it is relatively easy for most people to identify human beings suffering from poverty, it is rather more difficult to come to a proper understanding of poverty. In this article the author wants to deepen our understanding of poverty by interpreting the conventional definitions of poverty in a new light. The article starts with a defence of a claim that poverty is a concept uniquely applicable to humans. It then present a critical discussion of the distinction between absolute and relative poverty and it is then argued that a revision of this distinction can provide general standards applicable to humans everywhere.

  8. Gauge invariant fractional electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Lazo, Matheus Jatkoske, E-mail: matheuslazo@furg.br [Instituto de Matematica, Estatistica e Fisica - FURG, Rio Grande, RS (Brazil)

    2011-09-26

    Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators. -- Highlights: → We propose a fractional Lagrangian formulation for fractional Maxwell's fields. → We obtain gauge invariant fractional electromagnetic fields. → Our generalized fractional Maxwell's field is spatially symmetrical. → We discuss the non-causality of the theory.

  9. Fractionalization and Entrepreneurial Activities

    OpenAIRE

    Awaworyi Churchill, Sefa

    2015-01-01

    The vast majority of the literature on ethnicity and entrepreneurship focuses on the construct of ethnic entrepreneurship. However, very little is known about how ethnic heterogeneity affects entrepreneurship. This study attempts to fill the gap, and thus examines the effect of ethnic heterogeneity on entrepreneurial activities in a cross-section of 90 countries. Using indices of ethnic and linguistic fractionalization, we show that ethnic heterogeneity negatively influences entrepreneurship....

  10. Estimation of SARA fraction properties with the SRK EOS

    Energy Technology Data Exchange (ETDEWEB)

    Akbarzadeh, K.; Moshfeghian, M.; Ayatollahi, S. [Shiraz Univ., Shiraz (Iran, Islamic Republic of); Alboudwarej, H.; Yarranton, H. [Calgary Univ., AB (Canada)

    2001-06-01

    A newly developed form of the Soave-Redlich-Kwong (SRK) equation of state (EOS) with Peneloux correction was presented. The new EOS was developed to extend the SRK approach to crude oils. Consequently the proposed EOS can estimate the molar volumes and solubility parameters of the four solubility classes of bitumens and heavy oils. These included saturates, aromatics, resins and asphaltenes (SARA). In this study, asphaltenes were considered as polymer-like compounds of aggregates of monodisperse asphaltene monomers. Correlations were developed for the critical properties and acentric factor of each solubility class. The EOS predicted properties were tested against density measurements of SARA fractions from several bitumens. The objective was to determine the onset of asphaltene precipitation from bitumen when heptane is added. The agreement between the predicted and measured onsets was very good. It was concluded that asphaltenes have a low degree of association in bitumen and that the asphaltene monomer molar mass is about 1800 g/mol for asphaltenes from Western Canada sources. Future work will focus on predicting asphaltene precipitation for varying conditions. 35 refs., 7 tabs., 4 figs.

  11. Educational Psychology: The Distinctive Contribution

    Science.gov (United States)

    Cameron, R. J.

    2006-01-01

    This paper, written in the twenty-first anniversary year of the journal "Educational Psychology in Practice", attempts to uncover those distinctive aspects of the discipline and the practice of applied psychology in general and educational psychology in particular. After considering some of the reasons for attempting this task at this point in…

  12. Fractional Number Operator and Associated Fractional Diffusion Equations

    Science.gov (United States)

    Rguigui, Hafedh

    2018-03-01

    In this paper, we study the fractional number operator as an analog of the finite-dimensional fractional Laplacian. An important relation with the Ornstein-Uhlenbeck process is given. Using a semigroup approach, the solution of the Cauchy problem associated to the fractional number operator is presented. By means of the Mittag-Leffler function and the Laplace transform, we give the solution of the Caputo time fractional diffusion equation and Riemann-Liouville time fractional diffusion equation in infinite dimensions associated to the fractional number operator.

  13. Chemical template-assisted synthesis of monodisperse rattle-type Fe3O4@C hollow microspheres as drug carrier.

    Science.gov (United States)

    Cheng, Lin; Ruan, Weimin; Zou, Bingfang; Liu, Yuanyuan; Wang, Yongqiang

    2017-08-01

    A chemical template strategy was put forward to synthesize monodisperse rattle-type magnetic carbon (Fe 3 O 4 @C) hollow microspheres. During the synthesis procedure, monodisperse Fe 2 O 3 microspheres were used as chemical template, which released Fe 3+ ions in acidic solution and initiated the in-situ polymerization of pyrrole into polypyrrole (PPy) shell. With the continual acidic etching of Fe 2 O 3 microspheres, rattle-type Fe 2 O 3 @PPy microspheres were generated with the cavity appearing between the PPy shell and left Fe 2 O 3 core, which were then transformed into Fe 3 O 4 @C hollow microspheres through calcination in nitrogen atmosphere. Compared with traditional physical template, the shell and cavity of rattle-type hollow microspheres were generated in one step using the chemical template method, which obviously saved the complex procedures including the coating and removal of middle shells. The experimental results exhibited that the rattle-type Fe 3 O 4 @C hollow microspheres with different parameters could be regulated through controlled synthesis of the intermediate Fe 2 O 3 @PPy product. Moreover, when the rattle-type Fe 3 O 4 @C hollow microspheres were investigated as drug carrier, they manifested sustained-release behaviour of doxorubicin, justifying their promising applications as carriers in drug delivery. The aim of the present study was first to synthesize rattle-type Fe 3 O 4 @C hollow microspheres through a simple synthesis method as a drug carrier. Here a chemical template synthesis of rattle-type hollow microspheres was developed, which saved the complex procedures including the coating and removal of middle shells in traditional physical template. Second, all the influence factors in the reaction processes were systematically investigated to obtain rattle-type Fe 3 O 4 @C hollow microspheres with controlled parameters. Third, the rattle-type Fe 3 O 4 @C hollow microspheres were studied as drug carriers and the influences of their

  14. Fractional Chern Insulator

    Directory of Open Access Journals (Sweden)

    N. Regnault

    2011-12-01

    Full Text Available Chern insulators are band insulators exhibiting a nonzero Hall conductance but preserving the lattice translational symmetry. We conclusively show that a partially filled Chern insulator at 1/3 filling exhibits a fractional quantum Hall effect and rule out charge-density-wave states that have not been ruled out by previous studies. By diagonalizing the Hubbard interaction in the flat-band limit of these insulators, we show the following: The system is incompressible and has a 3-fold degenerate ground state whose momenta can be computed by postulating an generalized Pauli principle with no more than 1 particle in 3 consecutive orbitals. The ground-state density is constant, and equal to 1/3 in momentum space. Excitations of the system are fractional-statistics particles whose total counting matches that of quasiholes in the Laughlin state based on the same generalized Pauli principle. The entanglement spectrum of the state has a clear entanglement gap which seems to remain finite in the thermodynamic limit. The levels below the gap exhibit counting identical to that of Laughlin 1/3 quasiholes. Both the 3 ground states and excited states exhibit spectral flow upon flux insertion. All the properties above disappear in the trivial state of the insulator—both the many-body energy gap and the entanglement gap close at the phase transition when the single-particle Hamiltonian goes from topologically nontrivial to topologically trivial. These facts clearly show that fractional many-body states are possible in topological insulators.

  15. Fractional channel multichannel analyzer

    Science.gov (United States)

    Brackenbush, L.W.; Anderson, G.A.

    1994-08-23

    A multichannel analyzer incorporating the features of the present invention obtains the effect of fractional channels thus greatly reducing the number of actual channels necessary to record complex line spectra. This is accomplished by using an analog-to-digital converter in the asynchronous mode, i.e., the gate pulse from the pulse height-to-pulse width converter is not synchronized with the signal from a clock oscillator. This saves power and reduces the number of components required on the board to achieve the effect of radically expanding the number of channels without changing the circuit board. 9 figs.

  16. Fractional Reserve Banking

    OpenAIRE

    Andreasen, Niels; Bjerregaard, Mads; Lund, Jonas; Olsen, Ove Bitsch; Rasmussen, Andreas Dalgas

    2012-01-01

    Projektet er bygget op omkring kritisk realisme, som er det gennemgående videnskabelige fundament til undersøgelsen af hvilke strukturelle grunde der er til finansiel ustabilitet i Danmark. Projektet går i dybden med Fractional Reserve Banking og incitamentsstrukturen i banksystemet. Vi bevæger os både på det makro- og mikroøkonomiske niveau i analysen. På makro niveau bruger vi den østrigske skole om konjunktur teori (The Positive Theory of the Cycle). På mikro niveau arbejder vi med princip...

  17. Generation and manipulation of monodispersed ferrofluid emulsions: the effect of a uniform magnetic field in flow-focusing and T-junction configurations.

    Science.gov (United States)

    Tan, Say Hwa; Nguyen, Nam-Trung

    2011-09-01

    This paper demonstrates the use of magnetically controlled microfluidic devices to produce monodispersed ferrofluid emulsions. By applying a uniform magnetic field on flow-focusing and T-junction configurations, the size of the ferrofluid emulsions can be actively controlled. The influences of the flow rates, the orientation, and the polarity of the magnetic field on the size of ferrofluid emulsions produced in both flow-focusing and T-junction configurations are compared and discussed.

  18. Fractional Integral Inequalities via Hadamard’s Fractional Integral

    OpenAIRE

    Sudsutad, Weerawat; Ntouyas, Sotiris K.; Tariboon, Jessada

    2014-01-01

    We establish new fractional integral inequalities, via Hadamard’s fractional integral. Several new integral inequalities are obtained, including a Grüss type Hadamard fractional integral inequality, by using Young and weighted AM-GM inequalities. Many special cases are also discussed.

  19. Fractional Integral Inequalities via Hadamard’s Fractional Integral

    Directory of Open Access Journals (Sweden)

    Weerawat Sudsutad

    2014-01-01

    Full Text Available We establish new fractional integral inequalities, via Hadamard’s fractional integral. Several new integral inequalities are obtained, including a Grüss type Hadamard fractional integral inequality, by using Young and weighted AM-GM inequalities. Many special cases are also discussed.

  20. Three strategies to stabilise nearly monodispersed silver nanoparticles in aqueous solution

    Science.gov (United States)

    Stevenson, Amadeus PZ; Blanco Bea, Duani; Civit, Sergi; Antoranz Contera, Sonia; Iglesias Cerveto, Alberto; Trigueros, Sonia

    2012-02-01

    Silver nanoparticles are extensively used due to their chemical and physical properties and promising applications in areas such as medicine and electronics. Controlled synthesis of silver nanoparticles remains a major challenge due to the difficulty in producing long-term stable particles of the same size and shape in aqueous solution. To address this problem, we examine three strategies to stabilise aqueous solutions of 15 nm citrate-reduced silver nanoparticles using organic polymeric capping, bimetallic core-shell and bimetallic alloying. Our results show that these strategies drastically improve nanoparticle stability by distinct mechanisms. Additionally, we report a new role of polymer functionalisation in preventing further uncontrolled nanoparticle growth. For bimetallic nanoparticles, we attribute the presence of a higher valence metal on the surface of the nanoparticle as one of the key factors for improving their long-term stability. Stable silver-based nanoparticles, free of organic solvents, will have great potential for accelerating further environmental and nanotoxicity studies. PACS: 81.07.-b; 81.16.Be; 82.70.Dd.

  1. Grima: A Distinct Emotion Concept?

    Science.gov (United States)

    Schweiger Gallo, Inge; Fernández-Dols, José-Miguel; Gollwitzer, Peter M; Keil, Andreas

    2017-01-01

    People experience an unpleasant sensation when hearing a scratch on a board or plate. The present research focuses on this aversive experience known in Spanish as 'grima' with no equivalent term in English and German. We hypothesized that this aversive experience constitutes a distinctive, separate emotional concept. In Study 1, we found that the affective meaning of 'grima' was closer to disgust than to other emotion concepts. Thus, in Study 2 we explored the features of grima and compared them with disgust . As grima was reported to be predominantly elicited by certain auditory stimuli and associated with a distinctive physiological pattern, Study 3 used direct measures of physiological arousal to test the assumption of a distinctive pattern of physiological responses elicited by auditory stimuli of grima and disgust, and found different effects on heart rate but not on skin conductance. In Study 4, we hypothesized that only participants with an implementation intention geared toward down-regulating grima would be able to successfully weaken the grima- but not disgust- experience. Importantly, this effect was specific as it held true for the grima-eliciting sounds only, but did not affect disgust-related sounds. Finally, Study 5 found that English and German speakers lack a single accessible linguistic label for the pattern of aversive reactions termed by Spanish speaking individuals as 'grima', whereas the elicitors of other emotions were accessible and accurately identified by German, English, as well as Spanish speakers.

  2. Fractional variational principles with delay

    International Nuclear Information System (INIS)

    Baleanu, Dumitru; Abdeljawad, Thabet Maaraba; Jarad, Fahd

    2008-01-01

    The fractional variational principles within Riemann-Liouville fractional derivatives in the presence of delay are analyzed. The corresponding Euler-Lagrange equations are obtained and one example is analyzed in detail

  3. Advances in robust fractional control

    CERN Document Server

    Padula, Fabrizio

    2015-01-01

    This monograph presents design methodologies for (robust) fractional control systems. It shows the reader how to take advantage of the superior flexibility of fractional control systems compared with integer-order systems in achieving more challenging control requirements. There is a high degree of current interest in fractional systems and fractional control arising from both academia and industry and readers from both milieux are catered to in the text. Different design approaches having in common a trade-off between robustness and performance of the control system are considered explicitly. The text generalizes methodologies, techniques and theoretical results that have been successfully applied in classical (integer) control to the fractional case. The first part of Advances in Robust Fractional Control is the more industrially-oriented. It focuses on the design of fractional controllers for integer processes. In particular, it considers fractional-order proportional-integral-derivative controllers, becau...

  4. Search for fractional charge

    International Nuclear Information System (INIS)

    Turner, R.E.

    1984-01-01

    A search was made for fractional charges of the form Z plus two-thirds e, where Z is an integer. It was assumed that the charges exist in natural form bound with other fractional charges in neutral molecules. It was further assumed that these neutral molecules are present in air. Two concentration schemes were employed. One sample was derived from the waste gases from a xenon distillation plant. This assumes that high mass, low vapor pressure components of air are concentrated along with the xenon. The second sample involved ionizing air, allowing a brief recombination period, and then collecting residual ions on the surface of titanium discs. Both samples were analyzed at the University of Rochester in a system using a tandem Van de Graff to accelerate particles through an essentially electrostatic beam handling system. The detector system employed both a Time of Flight and an energy-sensitive gas ionization detector. In the most sensitive mode of analysis, a gas absorber was inserted in the beam path to block the intense background. The presence of an absorber limited the search to highly penetrating particles. Effectively, this limited the search to particles with low Z and masses greater than roughly fifty GeV. The final sensitivities attained were on the order of 1 x 10 -20 for the ionized air sample and 1 x 10 -21 for the gas sample. A discussion of the caveats that could reduce the actual level of sensitivity is included

  5. Determination of reactivity rates of silicate particle-size fractions

    Directory of Open Access Journals (Sweden)

    Angélica Cristina Fernandes Deus

    2014-04-01

    Full Text Available The efficiency of sources used for soil acidity correction depends on reactivity rate (RR and neutralization power (NP, indicated by effective calcium carbonate (ECC. Few studies establish relative efficiency of reactivity (RER for silicate particle-size fractions, therefore, the RER applied for lime are used. This study aimed to evaluate the reactivity of silicate materials affected by particle size throughout incubation periods in comparison to lime, and to calculate the RER for silicate particle-size fractions. Six correction sources were evaluated: three slags from distinct origins, dolomitic and calcitic lime separated into four particle-size fractions (2, 0.84, 0.30 and <0.30-mm sieves, and wollastonite, as an additional treatment. The treatments were applied to three soils with different texture classes. The dose of neutralizing material (calcium and magnesium oxides was applied at equal quantities, and the only variation was the particle-size material. After a 90-day incubation period, the RER was calculated for each particle-size fraction, as well as the RR and ECC of each source. The neutralization of soil acidity of the same particle-size fraction for different sources showed distinct solubility and a distinct reaction between silicates and lime. The RER for slag were higher than the limits established by Brazilian legislation, indicating that the method used for limes should not be used for the slags studied here.

  6. Evaluation of {sup 211}At-labelled monodisperse polymer particles in vivo: comparison of different specific activities

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, R.H.; Hoff, Per; Alstad, Jorolf [Oslo Univ., Chemistry Dept., Oslo (Norway); Varaas, Tone; De Vos, L.N.; Nustad, Kjell [Norwegian Radium Hospital, Central Lab., Oslo (Norway); Vergote, I.B. [Norwegian Radium Hospital, Gynecologic Oncology Dept., Oslo (Norway)

    1996-09-01

    The {alpha}-particle emitter {sup 211}At was covalently coupled to 1.8 {mu}m aminated monodisperse polymer particles (MDPP) and used to irradiate the intraperitoneal cavity in mice with disseminated tumour cells. Specific activity has previously been shown to influence the therapeutic efficacy of {alpha}-particle emitting compounds and the therapeutic efficacy of {sup 211}At-MDPP with various specific activity was therefore investigated. Groups of mice (10 animals per group) were treated with intraperitoneal injections of 100 kBq of {sup 211}At-MDPP with specific activities of 0.19, 0.55, 1.7, 5.0, 15, and 45 MBq/mg. A significantly prolonged survival was observed in the treated groups compared to the control group (from 19 to 26 days vs. 12 days, median). The difference in survival between the {sup 211}At-MDPP treated groups was not significant, but some animals with short survival were observed in the groups that had received the 0.19, 15 and 45 MBq/mg preparations. K13 monoclonal antibody values, which are an indicator of tumour growth, were high in some animals in the 15 and 45 MBq/mg groups (day 7 values). (author).

  7. Self-Templated Stepwise Synthesis of Monodispersed Nanoscale Metalated Covalent Organic Polymers for In Vivo Bioimaging and Photothermal Therapy.

    Science.gov (United States)

    Shi, Yanshu; Deng, Xiaoran; Bao, Shouxin; Liu, Bei; Liu, Bin; Ma, Ping'an; Cheng, Ziyong; Pang, Maolin; Lin, Jun

    2017-09-05

    Size- and shape-controlled growth of nanoscale microporous organic polymers (MOPs) is a big challenge scientists are confronted with; meanwhile, rendering these materials for in vivo biomedical applications is still scarce. In this study, a monodispersed nanometalated covalent organic polymer (MCOP, M=Fe, Gd) with sizes around 120 nm was prepared by a self-templated two-step solution-phase synthesis method. The metal ions (Fe 3+ , Gd 3+ ) played important roles in generating a small particle size and in the functionalization of the products during the reaction with p-phenylenediamine (Pa). The resultant Fe-Pa complex was used as a template for the subsequent formation of MCOP following the Schiff base reaction with 1,3,5-triformylphloroglucinol (Tp). A high tumor suppression efficiency for this Pa-based COP is reported for the first time. This study demonstrates the potential use of MCOP as a photothermal agent for photothermal therapy (PTT) and also provides an alternative route to fabricate nano-sized MCOPs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Seedless Polyol Synthesis and CO Oxidation Activity of Monodisperse (111) and (100)-Oriented Rhodium Nanocrystals in Sub-10 nm Sizes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yawen; Grass, Michael E.; Huang, Wenyu; Somorjai, Gabor A.

    2010-03-15

    Monodisperse sub-10 nm (6.5 nm) sized Rh nanocrystals with (111) and (100) surface structures were synthesized by a seedless polyol reduction in ethylene glycol, with poly(vinylpyrrolidone) as a capping ligand. When using [Rh(Ac){sub 2}]{sub 2} as the metal precursor, (111)-oriented Rh nanopolyhedra containing 76% (111)-twined hexagons (in 2D projection) were obtained; whereas, when employing RhCl{sub 3} as the metal precursor in the presence of alkylammonium bromide, such as tetramethylammonium bromide and trimethyl(tetradecyl)ammonium bromide, (100)-oriented Rh nanocubes were obtained with 85% selectivity. The {l_brace}100{r_brace} faces of the Rh nanocrystals are stabilized by chemically adsorbed Br{sup -} ions from alkylammonium bromides, which led to (100)-oriented nanocubes. Monolayer films of the (111)-oriented Rh nanopolyhedra and (100)-oriented Rh nanocubes were deposited on silicon wafers in a Langmuir-Blodgett trough to make model 2D nanoarray catalysts. These nanocatalysts were active for CO oxidation by O{sub 2}, and the turnover frequency was independent of nanoparticle shape, consistent with that previously observed for Rh(111) and Rh(100) single crystals.

  9. Cluster synthesis of monodisperse rutile-TiO2 nanoparticles and dielectric TiO2-vinylidene fluoride oligomer nanocomposites

    International Nuclear Information System (INIS)

    Balasubramanian, Balamurugan; Kraemer, Kristin L; Valloppilly, Shah R; Ducharme, Stephen; Sellmyer, David J

    2011-01-01

    The embedding of oxide nanoparticles in polymer matrices produces a greatly enhanced dielectric response by combining the high dielectric strength and low loss of suitable host polymers with the high electric polarizability of nanoparticles. The fabrication of oxide-polymer nanocomposites with well-controlled distributions of nanoparticles is, however, challenging due to the thermodynamic and kinetic barriers between the polymer matrix and nanoparticle fillers. In the present study, monodisperse TiO 2 nanoparticles having an average particle size of 14.4 nm and predominant rutile phase were produced using a cluster-deposition technique without high-temperature thermal annealing and subsequently coated with uniform vinylidene fluoride oligomer (VDFO) molecules using a thermal evaporation source, prior to deposition as TiO 2 -VDFO nanocomposite films on suitable substrates. The molecular coatings on TiO 2 nanoparticles serve two purposes, namely to prevent the TiO 2 nanoparticles from contacting each other and to couple the nanoparticle polarization to the matrix. Parallel-plate capacitors made of TiO 2 -VDFO nanocomposite film as the dielectric exhibit minimum dielectric dispersion and low dielectric loss. Dielectric measurements also show an enhanced effective dielectric constant in TiO 2 -VDFO nanocomposites as compared to that of pure VDFO. This study demonstrates for the first time a unique electroactive particle coating in the form of a ferroelectric VDFO that has high-temperature stability as compared to conventionally used polymers for fabricating dielectric oxide-polymer nanocomposites.

  10. Fabrication and characterisation of ligand-functionalised ultrapure monodispersed metal nanoparticle nanoassemblies employing advanced gas deposition technique

    Science.gov (United States)

    Geremariam Welearegay, Tesfalem; Cindemir, Umut; Österlund, Lars; Ionescu, Radu

    2018-02-01

    Here, we report for the first time the fabrication of ligand-functionalised ultrapure monodispersed metal nanoparticles (Au, Cu, and Pt) from their pure metal precursors using the advanced gas deposition technique. The experimental conditions during nanoparticle formation were adjusted in order to obtain ultrafine isolated nanoparticles on different substrates. The morphology and surface analysis of the as-deposited metal nanoparticles were investigated using scanning electron microscopy, x-ray diffraction and Fourier transform infra-red spectroscopy, which demonstrated the formation of highly ordered pure crystalline nanoparticles with a relatively uniform size distribution of ∼10 nm (Au), ∼4 nm (Cu) and ∼3 nm (Pt), respectively. A broad range of organic ligands containing thiol or amine functional groups were attached to the nanoparticles to form continuous networks of nanoparticle-ligand nanoassemblies, which were characterised by scanning electron microscopy and x-ray photoelectron spectroscopy. The electrical resistance of the functional nanoassemblies deposited in the gap spacing of two microfabricated parallel Au electrodes patterned on silicon substrates ranged between tens of kΩ and tens of MΩ, which is suitable for use in many applications including (bio)chemical sensors, surface-enhanced Raman spectroscopy and molecular electronic rectifiers.

  11. Synthesis and characterization of monodispersed orthorhombic manganese oxide nanoparticles produced by Bacillus sp. cells simultaneous to its bioremediation.

    Science.gov (United States)

    Sinha, Arvind; Singh, Vidya Nand; Mehta, Bodh Raj; Khare, Sunil Kumar

    2011-08-30

    A heavy metal resistant strain of Bacillus sp. (MTCC10650) is reported. The strain exhibited the property of bioaccumulating manganese, simultaneous to its remediation. The nanoparticles thus formed were characterized and identified using energy dispersive X-ray analysis (EDAX), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (PXRD) and atomic force microscopy (AFM). When the cells were challenged with manganese, the cells effectively synthesized nanoparticles of average size 4.62±0.14nm. These were mostly spherical and monodispersed. The ex situ enzymatically synthesized nanoparticles exhibited an absorbance maximum at 329nm. These were more discrete, small and uniform, than the manganese oxide nanoparticles recovered after cell sonication. The use of Bacillus sp. cells seems promising and advantageous approach. Since, it serves dual purposes of (i) remediation and (ii) nanoparticle synthesis. Considering the increasing demand of developing environmental friendly and cost effective technologies for nanoparticle synthesis, these cells can be exploited for the remediation of manganese from the environment in conjunction with development of a greener process for the controlled synthesis of manganese oxide nanoparticles. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Preparing monodisperse macromolecular samples for successful biological small-angle X-ray and neutron-scattering experiments.

    Science.gov (United States)

    Jeffries, Cy M; Graewert, Melissa A; Blanchet, Clément E; Langley, David B; Whitten, Andrew E; Svergun, Dmitri I

    2016-11-01

    Small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) are techniques used to extract structural parameters and determine the overall structures and shapes of biological macromolecules, complexes and assemblies in solution. The scattering intensities measured from a sample contain contributions from all atoms within the illuminated sample volume, including the solvent and buffer components, as well as the macromolecules of interest. To obtain structural information, it is essential to prepare an exactly matched solvent blank so that background scattering contributions can be accurately subtracted from the sample scattering to obtain the net scattering from the macromolecules in the sample. In addition, sample heterogeneity caused by contaminants, aggregates, mismatched solvents, radiation damage or other factors can severely influence and complicate data analysis, so it is essential that the samples be pure and monodisperse for the duration of the experiment. This protocol outlines the basic physics of SAXS and SANS, and it reveals how the underlying conceptual principles of the techniques ultimately 'translate' into practical laboratory guidance for the production of samples of sufficiently high quality for scattering experiments. The procedure describes how to prepare and characterize protein and nucleic acid samples for both SAXS and SANS using gel electrophoresis, size-exclusion chromatography (SEC) and light scattering. Also included are procedures that are specific to X-rays (in-line SEC-SAXS) and neutrons, specifically preparing samples for contrast matching or variation experiments and deuterium labeling of proteins.

  13. A posteriori determination of the useful data range for small-angle scattering experiments on dilute monodisperse systems

    Directory of Open Access Journals (Sweden)

    Petr V. Konarev

    2015-05-01

    Full Text Available Small-angle X-ray and neutron scattering (SAXS and SANS experiments on solutions provide rapidly decaying scattering curves, often with a poor signal-to-noise ratio, especially at higher angles. On modern instruments, the noise is partially compensated for by oversampling, thanks to the fact that the angular increment in the data is small compared with that needed to describe adequately the local behaviour and features of the scattering curve. Given a (noisy experimental data set, an important question arises as to which part of the data still contains useful information and should be taken into account for the interpretation and model building. Here, it is demonstrated that, for monodisperse systems, the useful experimental data range is defined by the number of meaningful Shannon channels that can be determined from the data set. An algorithm to determine this number and thus the data range is developed, and it is tested on a number of simulated data sets with various noise levels and with different degrees of oversampling, corresponding to typical SAXS/SANS experiments. The method is implemented in a computer program and examples of its application to analyse the experimental data recorded under various conditions are presented. The program can be employed to discard experimental data containing no useful information in automated pipelines, in modelling procedures, and for data deposition or publication. The software is freely accessible to academic users.

  14. Post-treatment Method for the Synthesis of Monodisperse Binary FePt-Fe3O4 Nanoparticles

    Science.gov (United States)

    Liu, Zhilu; Wu, Chun; Niu, Liang; Yang, Ganting; Wang, Kai; Pei, Wenli; Wang, Qiang

    2017-09-01

    To obtain the optimal 1:1 composition of FePt alloy nanomaterials by polyol synthesis, the iron precursor (iron pentacarbonyl, Fe(CO)5) must be used in excess, because the Fe(CO)5 exists in the vapor phase at the typical temperatures used for FePt synthesis and cannot be consumed completely. Fabrication of Fe3O4 nanoparticles by consuming the excess iron precursor was an effective strategy to make full use of the iron precursor. In this paper, a facile post-treatment method was applied to consume the excess iron, which was oxidized to Fe3O4 after post-treatment at 150 and 200 °C, and a monodisperse binary FePt-Fe3O4 nanoparticle system was generated. The post-treatment method did not affect the crystal structure, grain size, or composition of the FePt nanoparticles. However, the content and grain size of the fcc-Fe3O4 nanoparticles can be increased simply by increasing the post-treatment temperature from 150 to 200 °C.

  15. A posteriori determination of the useful data range for small-angle scattering experiments on dilute monodisperse systems.

    Science.gov (United States)

    Konarev, Petr V; Svergun, Dmitri I

    2015-05-01

    Small-angle X-ray and neutron scattering (SAXS and SANS) experiments on solutions provide rapidly decaying scattering curves, often with a poor signal-to-noise ratio, especially at higher angles. On modern instruments, the noise is partially compensated for by oversampling, thanks to the fact that the angular increment in the data is small compared with that needed to describe adequately the local behaviour and features of the scattering curve. Given a (noisy) experimental data set, an important question arises as to which part of the data still contains useful information and should be taken into account for the interpretation and model building. Here, it is demonstrated that, for monodisperse systems, the useful experimental data range is defined by the number of meaningful Shannon channels that can be determined from the data set. An algorithm to determine this number and thus the data range is developed, and it is tested on a number of simulated data sets with various noise levels and with different degrees of oversampling, corresponding to typical SAXS/SANS experiments. The method is implemented in a computer program and examples of its application to analyse the experimental data recorded under various conditions are presented. The program can be employed to discard experimental data containing no useful information in automated pipelines, in modelling procedures, and for data deposition or publication. The software is freely accessible to academic users.

  16. Insights into magnetic interactions in a monodisperse Gd{sub 12}Fe{sub 14} metal cluster

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xiu-Ying; Zhang, Hui; Liu, Pengxin; Du, Ming-Hao; Han, Ying-Zi; Wei, Rong-Jia; Kong, Xiang-Jian; Long, La-Sheng; Zheng, Lan-Sun [Collaborative Innovation Center of Chemistry for Energy Materials, State Key Lab. of Physical Chemistry of Solid Surface and Dept. of Chemistry, College of Chemistry and Chemical Engineering, Xiamen Univ. (China); Wang, Zhenxing; Ouyang, Zhong-Wen [Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan (China); Zhuang, Gui-Lin [College of Chemcal Engineering, Zhejiang University of Technology, Hangzhou (China)

    2017-09-11

    The largest Ln-Fe metal cluster [Gd{sub 12}Fe{sub 14}(μ{sub 3}-OH){sub 12}(μ{sub 4}-OH){sub 6}(μ{sub 4}-O){sub 12}(TEOA){sub 6}(CH{sub 3}COO){sub 16}(H{sub 2} O){sub 8}].(CH{sub 3}COO){sub 2}(CH{sub 3}CN){sub 2}.(H{sub 2}O){sub 20} (1) and the core-shell monodisperse metal cluster of 1 a rate at SiO{sub 2} (1 a=[Gd{sub 12}Fe{sub 14}(μ{sub 3}-OH){sub 12}(μ{sub 4}-OH){sub 6}(μ{sub 4}-O){sub 12}(TEOA){sub 6}(CH{sub 3}COO){sub 16} (H{sub 2}O){sub 8}]{sup 2+}) were prepared. Experimental and theoretical studies on the magnetic properties of 1 and 1 a rate at SiO{sub 2} reveal that encapsulation of one cluster into one silica nanosphere not only effectively decreases intermolecular magnetic interactions but also significantly increases the zero-field splitting effect of the outer layer Fe{sup 3+} ions. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Investigation of the effect of pomegranate extract and monodisperse silver nanoparticle combination on MCF-7 cell line.

    Science.gov (United States)

    Şahin, Birgütay; Demir, Enes; Aygün, Ayşenur; Gündüz, Hülya; Şen, Fatih

    2017-10-20

    In this study, we aimed to investigate whether the combination therapy of pomegranate extract and silver nanoparticle is effective on MCF-7 cell culture. The pomegranate extract was mixed and incubated with silver nitrate for the microwave assisted green synthesized of silver nanoparticle. Obtained nanoparticles were investigated using X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), UV-vis, Field Emission Scanning Electron Microscopy (FESEM), and Transmission Electron Microscopy (TEM) methods The spectroscopic and morphological studies of the monodisperse Ag NPs which have particle size of 15.4nm indicate the highly crystalline form, well dispersity, and colloidally stable NPs. After fully characterization of prepared nanoparticles, the effectiveness of Ag NPs was determined by evaluating cell viability, nuclear degradation and cell cycle parameters. The results obtained demonstrate that biosynthesized Ag NPs can inhibit the proliferation of human breast cancer cell line MCF-7 in the IC50 at a dose of 12.85μg/mL and inhibit the proliferation of Ag NPs against anti-growth arresting MCF-7 cell line. This case demonstrates that it may exert its proliferative effect by reducing DNA synthesis and apoptosis-inducing cell cycle stages. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Controlled synthesis of monodispersed AgGaS 2 3D nanoflowers and the shape evolution from nanoflowers to colloids

    Science.gov (United States)

    Yuan, Yanping; Zai, Jiantao; Su, Yuezeng; Qian, Xuefeng

    2011-05-01

    Monodispersed AgGaS 2 three-dimensional (3D) nanoflowers have been successfully synthesized in a "soft-chemical" system with the mixture of 1-octyl alcohol and cyclohexane as reaction medium and oleylamine as surfactant. The crystal phase, morphology and chemical composition of the as-prepared products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and high-resolution TEM (HTEM), respectively. Results reveal that the as-synthesized AgGaS 2 nanoflowers are in tetragonal structure with 3D flower-like shape. Controlled experiments demonstrated that the shape transformation of AgGaS 2 nanocrystals from 3D nanoflowers (50 nm) to nanoparticles (10-20 nm) could be readily realized by tuning the reaction parameters, e.g., the ratio of octanol to cyclohexane, the length of carbon chain of fatty alcohol, the concentration of oleylamine, etc. The UV-vis and PL spectra of the obtained AgGaS 2 nanoflowers and colloids were researched. In addition, the photoelectron energy conversion (SPV) of AgGaS 2 nanoflowers was further researched by the surface photovoltage spectra.

  19. Influence of Particle Size on Reaction Selectivity in Cyclohexene Hydrogenation and Dehydrogenation over Silica-Supported Monodisperse Pt Particles

    Energy Technology Data Exchange (ETDEWEB)

    Rioux, R. M.; Hsu, B. B.; Grass, M. E.; Song, H.; Somorjai, Gabor A.

    2008-07-11

    The role of particle size during the hydrogenation/dehydrogenation of cyclohexene (10 Torr C{sub 6}H{sub 10}, 200-600 Torr H{sub 2}, and 273-650 K) was studied over a series of monodisperse Pt/SBA-15 catalysts. The conversion of cyclohexene in the presence of excess H{sub 2} (H{sub 2}:C{sub 6}H{sub 10} ratio = 20-60) is characterized by three regimes: hydrogenation of cyclohexene to cyclohexane at low temperature (< 423 K), an intermediate temperature range in which both hydrogenation and dehydrogenation occur; and a high temperature regime in which the dehydrogenation of cyclohexene dominates (> 573 K). The rate of both reactions demonstrated maxima with temperature, regardless of Pt particle size. For the hydrogenation of cyclohexene, a non-Arrhenius temperature dependence (apparent negative activation energy) was observed. Hydrogenation is structure insensitive at low temperatures, and apparently structure sensitive in the non-Arrhenius regime; the origin of the particle-size dependent reactivity with temperature is attributed to a change in the coverage of reactive hydrogen. Small particles were more active for dehydrogenation and had lower apparent activation energies than large particles. The selectivity can be controlled by changing the particle size, which is attributed to the structure sensitivity of both reactions in the temperature regime where hydrogenation and dehydrogenation are catalyzed simultaneously.

  20. One-pot template-free synthesis of monodisperse zinc sulfide hollow spheres and their photocatalytic properties.

    Science.gov (United States)

    Yu, Xiaoxiao; Yu, Jiaguo; Cheng, Bei; Huang, Baibiao

    2009-07-06

    Monodisperse wurtzite ZnS hollow spheres with diameters of about 200 nm and shells composed of nanoparticles have been successfully synthesized in high yield by a one-pot template-free hydrothermal route. The reaction duration, reactant species, and reaction temperature have been shown to play important roles in the formation of ZnS hollow spheres. X-ray diffraction, scanning and transmission electron microscopy, nitrogen adsorption/desorption, UV/Vis diffuse reflectance spectroscopy, and photoluminescence were used to characterize the products. The results show that all the prepared nanospheres have hexagonal wurtzite structures and exhibit good size uniformity and regularity. A mechanism for the formation of the ZnS hollow spherical structure by localized Ostwald ripening has been proposed based on experimental observations. In addition, studies of the photocatalytic properties of the ZnS hollow spheres by exposure to UV irradiation have demonstrated that they have potential photocatalytic applications. Hydroxyl radicals (*OH) were not detected on the surface of UV-illuminated ZnS by the photoluminescence technique, which suggests that *OH is not the dominant photo-oxidant and a photogenerated hole could instead directly participate in the photocatalytic reaction. The prepared ZnS hollow spheres are also of great interest for use in flat displays, sensors, lasers, catalysis, separation technology, biomedical engineering, and nanotechnology.

  1. Facile synthesis of monodisperse superparamagnetic Fe{sub 3}O{sub 4}/PMMA composite nanospheres with high magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Lan Fang; Liu Kexia; Jiang Wen; Zeng Xiaobo; Wu Yao; Gu Zhongwei, E-mail: Yaowu_amanda@126.com, E-mail: zwgu@scu.edu.cn [National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064 (China)

    2011-06-03

    Monodisperse superparamagnetic Fe{sub 3}O{sub 4}/polymethyl methacrylate (PMMA) composite nanospheres with high saturation magnetization were successfully prepared by a facile novel miniemulsion polymerization method. The ferrofluid, MMA monomer and surfactants were co-sonicated and emulsified to form stable miniemulsion for polymerization. The samples were characterized by DLS, TEM, FTIR, XRD, TGA and VSM. The diameter of the Fe{sub 3}O{sub 4}/PMMA composite nanospheres by DLS was close to 90 nm with corresponding polydispersity index (PDI) as small as 0.099, which indicated that the nanospheres have excellent homogeneity in aqueous medium. The TEM results implied that the Fe{sub 3}O{sub 4}/PMMA composite nanospheres had a perfect core-shell structure with about 3 nm thin PMMA shells, and the core was composed of many homogeneous and closely packed Fe{sub 3}O{sub 4} nanoparticles. VSM and TGA showed that the Fe{sub 3}O{sub 4}/PMMA composite nanospheres with at least 65% high magnetite content were superparamagnetic, and the saturation magnetization was as high as around 39 emu g{sup -1} (total mass), which was only decreased by 17% compared with the initial bare Fe{sub 3}O{sub 4} nanoparticles.

  2. Preparing Monodisperse Macromolecular Samples for Successful Biological Small-Angle X-ray and Neutron Scattering Experiments

    Science.gov (United States)

    Jeffries, Cy M.; Graewert, Melissa A.; Blanchet, Clément E.; Langley, David B.; Whitten, Andrew E.; Svergun, Dmitri I

    2017-01-01

    Small-angle X-ray and neutron scattering (SAXS and SANS) are techniques used to extract structural parameters and determine the overall structures and shapes of biological macromolecules, complexes and assemblies in solution. The scattering intensities measured from a sample contain contributions from all atoms within the illuminated sample volume including the solvent and buffer components as well as the macromolecules of interest. In order to obtain structural information, it is essential to prepare an exactly matched solvent blank so that background scattering contributions can be accurately subtracted from the sample scattering to obtain the net scattering from the macromolecules in the sample. In addition, sample heterogeneity caused by contaminants, aggregates, mismatched solvents, radiation damage or other factors can severely influence and complicate data analysis so it is essential that the samples are pure and monodisperse for the duration of the experiment. This Protocol outlines the basic physics of SAXS and SANS and reveals how the underlying conceptual principles of the techniques ultimately ‘translate’ into practical laboratory guidance for the production of samples of sufficiently high quality for scattering experiments. The procedure describes how to prepare and characterize protein and nucleic acid samples for both SAXS and SANS using gel electrophoresis, size exclusion chromatography and light scattering. Also included are procedures specific to X-rays (in-line size exclusion chromatography SAXS) and neutrons, specifically preparing samples for contrast matching/variation experiments and deuterium labeling of proteins. PMID:27711050

  3. Monodisperse Pt atoms anchored on N-doped graphene as efficient catalysts for CO oxidation: A first-principles investigation

    KAUST Repository

    Liu, Xin

    2015-01-01

    We performed first-principles based calculations to investigate the electronic structure and the potential catalytic performance of Pt atoms monodispersed on N-doped graphene in CO oxidation. We showed that N-doping can introduce localized defect states in the vicinity of the Fermi level of graphene which will effectively stabilize the deposited Pt atoms. The binding energy of a single Pt atom onto a stable cluster of 3 pyridinic N (PtN3) is up to -4.47 eV, making the diffusion and aggregation of anchored Pt atoms difficult. Both the reaction thermodynamics and kinetics suggest that CO oxidation over PtN3 would proceed through the Langmuir-Hinshelwood mechanism. The reaction barriers for the formation and dissociation of the peroxide-like intermediate are determined to be as low as 0.01 and 0.08 eV, respectively, while that for the regeneration is only 0.15 eV, proving the potential high catalytic performance of PtN3 in CO oxidation, especially at low temperatures. The Pt-d states that are up-shifted by the Pt-N interaction account for the enhanced activation of O2 and the efficient formation and dissociation of the peroxide-like intermediate.

  4. Preparation and characterization of monodisperse microcapsules with alginate and bentonite via external gelation technique encapsulating Pseudomonas putida Rs-198.

    Science.gov (United States)

    Li, Xuan; Wu, Zhansheng; He, Yanhui; Ye, Bang-Ce; Wang, Jun

    2017-10-01

    This paper evaluated the external gelation technique for preparing microcapsules. The microcapsules were consisted of Pseudomonas putida Rs-198 (Rs-198) core and sodium alginate (NaAlg)-bentonite (Bent) shell. Different emulsification rotation speeds and core/shell ratios were used to prepare the microcapsules of each formulation. The near-spherical microcapsules were monodisperse with a mean diameter of 25-100 μm and wrinkled surfaces. Fourier transform infrared spectrophotometry (FTIR) and thermogravimetric analysis (TGA) revealed the physical mixture of the wall material and the superior thermal stability of the microcapsules. Percentage yield, water content, and encapsulation efficiency were evaluated and correlated with the changes in emulsification rotation speed and core/shell ratio. In vitro release experiments demonstrated that 60% of the bacteria were released from the NaAlg-Bent microcapsules within three days. Considerably better survival was observed for encapsulated cells compared to free cells, especially in pH 4.0 and 10.0. In summary, the desired properties of microcapsules can be obtained by external gelation technique and the microcapsules on the bacteria had a good protective effect.

  5. Fractional Reserve in Banking System

    OpenAIRE

    Valkonen, Maria

    2016-01-01

    This thesis is aimed to provide understanding of the role of the fractional reserve in the mod-ern banking system worldwide and particularly in Finland. The fractional reserve banking is used worldwide, but the benefits of this system are very disputable. On the one hand, experts say that the fractional reserve is a necessary instrument for the normal business and profit making. On the other hand, sceptics openly criticize the fractional reserve system and blame it for fiat money (money n...

  6. Fractional Hopfield Neural Networks: Fractional Dynamic Associative Recurrent Neural Networks.

    Science.gov (United States)

    Pu, Yi-Fei; Yi, Zhang; Zhou, Ji-Liu

    2017-10-01

    This paper mainly discusses a novel conceptual framework: fractional Hopfield neural networks (FHNN). As is commonly known, fractional calculus has been incorporated into artificial neural networks, mainly because of its long-term memory and nonlocality. Some researchers have made interesting attempts at fractional neural networks and gained competitive advantages over integer-order neural networks. Therefore, it is naturally makes one ponder how to generalize the first-order Hopfield neural networks to the fractional-order ones, and how to implement FHNN by means of fractional calculus. We propose to introduce a novel mathematical method: fractional calculus to implement FHNN. First, we implement fractor in the form of an analog circuit. Second, we implement FHNN by utilizing fractor and the fractional steepest descent approach, construct its Lyapunov function, and further analyze its attractors. Third, we perform experiments to analyze the stability and convergence of FHNN, and further discuss its applications to the defense against chip cloning attacks for anticounterfeiting. The main contribution of our work is to propose FHNN in the form of an analog circuit by utilizing a fractor and the fractional steepest descent approach, construct its Lyapunov function, prove its Lyapunov stability, analyze its attractors, and apply FHNN to the defense against chip cloning attacks for anticounterfeiting. A significant advantage of FHNN is that its attractors essentially relate to the neuron's fractional order. FHNN possesses the fractional-order-stability and fractional-order-sensitivity characteristics.

  7. Do Children Understand Fraction Addition?

    Science.gov (United States)

    Braithwaite, David W.; Tian, Jing; Siegler, Robert S.

    2017-01-01

    Many children fail to master fraction arithmetic even after years of instruction. A recent theory of fraction arithmetic (Braithwaite, Pyke, & Siegler, in press) hypothesized that this poor learning of fraction arithmetic procedures reflects poor conceptual understanding of them. To test this hypothesis, we performed three experiments…

  8. Fractional dynamic calculus and fractional dynamic equations on time scales

    CERN Document Server

    Georgiev, Svetlin G

    2018-01-01

    Pedagogically organized, this monograph introduces fractional calculus and fractional dynamic equations on time scales in relation to mathematical physics applications and problems. Beginning with the definitions of forward and backward jump operators, the book builds from Stefan Hilger’s basic theories on time scales and examines recent developments within the field of fractional calculus and fractional equations. Useful tools are provided for solving differential and integral equations as well as various problems involving special functions of mathematical physics and their extensions and generalizations in one and more variables. Much discussion is devoted to Riemann-Liouville fractional dynamic equations and Caputo fractional dynamic equations.  Intended for use in the field and designed for students without an extensive mathematical background, this book is suitable for graduate courses and researchers looking for an introduction to fractional dynamic calculus and equations on time scales. .

  9. Production of monodisperse submicron drops of dielectric liquids by charge-injection from highly conducting liquids

    Science.gov (United States)

    Larriba, Carlos; Fernandez de la Mora, Juan

    2011-10-01

    When ions or electrons are injected into an insulating liquid, they migrate towards its free surface, destabilize it, and form a charged jet. The jet then breaks into uniform drops charged at an approximately constant fraction of the Rayleigh limit, which relates the drop diameter DD to the flow rate of dielectric liquid QD and the injected current I as DD ˜ (QD/I)2/3. We have previously studied the analogous problem where the ions are substituted by nanodrops produced by a Taylor cone of a highly conducting ionic liquid (EMI-BF4) immersed in heptane or decane. This yielded hydrocarbon droplets with diameters as small as 4 μm [C. Larriba and J. Fernández de la Mora, Phys. Fluids 22, 1 (2010)], with only incidental barriers to reaching smaller sizes. Here, we overcome these barriers via silica capillaries with smaller bores. These achieve substantially smaller QD and QD/I values, resulting in drops well below the ˜1-2 μm measurable with a phase Doppler anemometer. Extrapolating the DD ˜ (QD/I)2/3 scaling to the smallest QD/I obtained yields calculated drop diameters of 280 nm. The current is studied as a function of QD and the ionic liquid flow rate QIL. The usual law I ~QIL1/2 applies here only at small QD and high QIL. An unusual I ~QD-1/3 dependence appears at low QD, in contrast with the previously expected approximate independence of I on QD. This effect results from the acceleration of the dielectric jet at decreasing QD due to an increase in current given by the removal of the space charge and leading to an overall decrease in QD/I. An anomalous behavior is observed at low QD and high QIL in which the drop charge appears to exceed the Rayleigh limit. A plausible explanation is proposed based on the injection into the gas of anomalously small secondary drops and/or ions. We also investigate the injection of ionic liquid nanodrops into a quiescent liquid bath. The observed algebraic dependence of the current I ˜ V2ɛo/L on tip voltage V and tip to

  10. Membrane Assisted Enzyme Fractionation

    DEFF Research Database (Denmark)

    Yuan, Linfeng

    . In this thesis, separations using crossflow elecro-membrane filtration (EMF) of amino acids, bovine serum albumin (BSA) and industrial enzymes from Novozymes were performed. The main objective of this study was to investigate the technological feasibility of EMF in the application of industrial enzyme...... fractionation, such as removal of a side activity from the main enzyme activity. As a proof-of-concept, amino acids were used as model solution to test the feasibility of EMF in the application of amphoteric molecule separation. A single amino acid was used to illustrate the effect of an electric field...... on the separation performance were very small in the investigated range. The mass transport of each enzyme can be well explained by the Extended-Nernst-Planck equation. Better separation was observed at lower feed concentration, higher solution pH in the investigated range and with a polysulfone (PS) MF membrane...

  11. Toxicity of inhaled 239PuO2 in Beagle dogs. A. Monodisperse 0.75 μm AD particles. B. Monodisperse 1.5 μm AD particles. C. Monodisperse 3.0 μm AD particles. II

    International Nuclear Information System (INIS)

    Muggenburg, B.A.; Guilmette, R.A.; Hahn, F.F.; McClellan, R.O.; Mauderly, J.L.; Mewhinney, J.A.; Pickrell, J.A.; Boecker, B.B.

    1978-01-01

    Studies on the metabolism, dosimetry and biological effects of inhaled particles of 239 PuO 2 have been initiated in Beagle dogs. To obtain information on the relative importance of homogeneity of radiation doses to the lung, dogs have been exposed to particles of monodisperse aerosols (sigma/sub g/ 239 PuO 2 ; 40 dogs to the 0.75 μm AD particles, 72 dogs to the 1.5 μm AD particles and 60 dogs to the 3.0 μm AD particles. The exposures have resulted in graded ILB's, which range from 0.0002 to 2.6 μCi/kg body weight. Twenty-nine dogs were exposed to the aerosol diluent and serve as controls. Five dogs have died 336 to 561 days after exposure in the 1.5 μm AD study. Four dogs have died 116 to 589 days after exposure in the 3.0 μm AD study. These dogs had radiation pneumonitis and pulmonary fibrosis at death. The remaining dogs have survived up to 634 days after exposure. It is anticipated that the other dogs planned for these studies will be exposed over the next 12 months

  12. Toxicity of inhaled 239PuO2 in Beagle dogs: A. Monodisperse 0.75-μm AMAD particles. B. Monodisperse 1.5-μm AMAD particles. C. Monodisperse 3.0--μm AMAD particles. XI

    International Nuclear Information System (INIS)

    Muggenburg, B.A.; Guilmette, R.A.; Hahn, F.F.; Boecker, B.B.; McClellan, R.O.

    1988-01-01

    Beagle dogs were exposed to monodisperse aerosols of 239 PuO 2 of 0.75, 1.5, or 30 μm activity median aerodynamic diameter (AMAD) to obtain information on the relative importance of homogeneity of alpha irradiation doses to the lung in producing biological effects. The dogs' initial pulmonary burdens (IPB) ranged from 0.0002-2.0 μCi (0.0074 to 74 kBq) 239 Pu/kg of body mass. Thirty-six dogs were exposed to the aerosol diluent as controls. Forty-two of 48 dogs exposed to 0.75 μm AMAD particles have died; 67 of 96 have died in the study involving 1.5 μm AMAD particles; and 62 of 72 have died in the study involving the 3.0 μm AMAD particles. Seven of 36 control dogs have died. Most dogs exposed to 239 Pu that have failed to survive have died with radiation pneumonitis and fibrosis and/or lung cancer. Surviving dogs have lived up to 4300 days after exposure. The data obtained to date indicate that the degree of uniformity of dose to the lung does not significantly modify the risk of lung cancer. (author)

  13. Thermochemical transformations of anthracite fractions

    Energy Technology Data Exchange (ETDEWEB)

    Belkina, T.V.; Privalov, V.E.; Stepanenko, atM.A.

    1979-08-01

    Research on the nature of thermochemical transformations of anthracite fractions and the possibility of increasing their activity and identifying conditions for their use in the electrode pitch process is described. From research done on different anthracite fractions processed at varying temperatures it was concluded that accumulations of condensates from heating anthracite fractions occur significantly slower in comparison with pitch. As a result the electrode pitch process is prolonged. Thermal treatment of an anthracite fraction causes the formation and accumulation of condensates and promotes thermochemical transformations. Lastly, the use of thermally treated anthracite fractions apparently intensifies the electrode pitch process and improves its quality. (16 refs.) (In Russian)

  14. Toward lattice fractional vector calculus

    Science.gov (United States)

    Tarasov, Vasily E.

    2014-09-01

    An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity.

  15. TU-H-BRC-02: Biological Dose Escalation for Liver SBRT Through Spatiotemporal Fractionation

    Energy Technology Data Exchange (ETDEWEB)

    Unkelbach, J; Perko, Z; Wolfgang, J; Hong, T [Massachusetts General Hospital, Boston, MA (United States)

    2016-06-15

    Purpose: Stereotactic body radiotherapy (SBRT) has become an established treatment option for liver cancer. For patients with large tumors, the prescription dose is often limited by constraints on the mean liver dose, leading to tumor recurrence. In this work, we demonstrate that spatiotemporal fractionation schemes, ie delivering distinct dose distributions in different fractions, may allow for a 10% increase in biologically effective dose (BED) in the tumor compared to current practice where each fraction delivers the same dose distribution. Methods: We consider rotation therapy delivered with x-ray beams. Treatment plan optimization is performed using objective functions evaluated for the cumulative BED delivered at the end of treatment. This allows for simultaneously optimizing multiple distinct treatment plans for different fractions. Results: The treatment that optimally exploits fractionation effects is designed such that each fraction delivers a similar dose bath to the uninvolved liver while delivering high single fraction doses to complementary parts of the target volume. Thereby, partial hypofractionation in the tumor is achieved along with near uniform fractionation in the surrounding liver - leading to an improvement in the therapeutic ratio. The benefit of such spatiotemporal fractionation schemes depends on tumor geometry and location as well as the number of fractions. For 5-fraction treatments (allowing for 5 distinct dose distributions) an improvement in the order of 10% is observed. Conclusion: Delivering distinct dose distributions in different fractions, purely motivated by fractionation effects rather than geometric changes, may improve the therapeutic ratio. For treatment sites where the prescriptions dose is limited by mean dose constraints in the surrounding organ, such as liver cancer, this approach may facilitate biological dose escalation and improved cure rates.

  16. Misonidazole in fractionated radiotherapy: are many small fractions best

    International Nuclear Information System (INIS)

    Denekamp, J.; McNally, N.J.; Fowler, J.F.; Joiner, M.C.

    1980-01-01

    The largest sensitizing effect is always demonstrated with six fractions, each given with 2 g/m 2 of misonidazole. In the absence of reoxygenation a sensitizer enhancement ratio of 1.7 is predicted, but this falls to 1.1-1.2 if extensive reoxygenation occurs. Less sensitization is observed with 30 fractions, each with 0.4 g/m 2 of drug. However, for clinical use, the important question is which treatment kills the maximum number of tumour cells. Many of the simulations predict a marked disadvantage of reducing the fraction number for X rays alone. The circumstances in which this disadvantage is offset by the large Sensitizer enhancement ratio values with a six-fraction schedule are few. The model calculations suggest that many small fractions, each with a low drug dose, are safest unless the clinician has some prior knowledge that a change in fraction number is not disadvantageous. (author)

  17. Carbon isotope fractionation by anoxygenic phototrophic bacteria in euxinic Lake Cadagno

    DEFF Research Database (Denmark)

    Posth, Nicole Rita Elisabeth; Bristow, L. A.; Cox, R. P.

    2017-01-01

    in the chemocline. We sought to determine whether a distinct isotopic signature of GSB and PSB in the chemocline persists in the settling fraction and in the sediment. To answer these questions, we also sought investigated C-isotope fractionation in the water column, settling material, and sediment of Lake Cadagno......, compared these values to C-isotope fractionation of isolated anoxygenic phototroph cultures, and took a mass balance approach to investigate relative contributions to the bulk fractionation signature. We found a large C-isotope fractionation between dissolved inorganic carbon (DIC) and particulate organic...

  18. Fractional variational calculus in terms of Riesz fractional derivatives

    International Nuclear Information System (INIS)

    Agrawal, O P

    2007-01-01

    This paper presents extensions of traditional calculus of variations for systems containing Riesz fractional derivatives (RFDs). Specifically, we present generalized Euler-Lagrange equations and the transversality conditions for fractional variational problems (FVPs) defined in terms of RFDs. We consider two problems, a simple FVP and an FVP of Lagrange. Results of the first problem are extended to problems containing multiple fractional derivatives, functions and parameters, and to unspecified boundary conditions. For the second problem, we present Lagrange-type multiplier rules. For both problems, we develop the Euler-Lagrange-type necessary conditions which must be satisfied for the given functional to be extremum. Problems are considered to demonstrate applications of the formulations. Explicitly, we introduce fractional momenta, fractional Hamiltonian, fractional Hamilton equations of motion, fractional field theory and fractional optimal control. The formulations presented and the resulting equations are similar to the formulations for FVPs given in Agrawal (2002 J. Math. Anal. Appl. 272 368, 2006 J. Phys. A: Math. Gen. 39 10375) and to those that appear in the field of classical calculus of variations. These formulations are simple and can be extended to other problems in the field of fractional calculus of variations

  19. Monodisperse and core-shell-structured SiO2@YBO3:Eu3+ spherical particles: synthesis and characterization.

    Science.gov (United States)

    Lin, Cuikun; Kong, Deyan; Liu, Xiaoming; Wang, Huan; Yu, Min; Lin, Jun

    2007-04-02

    Y0.9Eu0.1BO3 phosphor layers were deposited on monodisperse SiO2 particles of different sizes (300, 570, 900, and 1200 nm) via a sol-gel process, resulting in the formation of core-shell-structured SiO2@Y0.9Eu0.1BO3 particles. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), photoluminescence (PL), and cathodoluminescence (CL) spectra as well as lifetimes were employed to characterize the resulting composite particles. The results of XRD, FE-SEM, and TEM indicate that the 800 degrees C annealed sample consists of crystalline YBO3 shells and amorphous SiO2 cores, in spherical shape with a narrow size distribution. Under UV (240 nm) and VUV (172 nm) light or electron beam (1-6 kV) excitation, these particles show the characteristic 5D0-7F1-4 orange-red emission lines of Eu3+ with a quantum yield ranging from 36% (one-layer Y0.9Eu0.1BO3 on SiO2) to 54% (four-layer Y0.9Eu0.1BO3 on SiO2). The luminescence properties (emission intensity and color coordinates) of Eu3+ ions in the core-shell particles can be tuned by the coating number of Y0.9Eu0.1BO3 layers and SiO2 core particle size to some extent, pointing out the great potential for these particles applied in displaying and lightening fields.

  20. Dynamical fractional chaotic inflation

    Science.gov (United States)

    Harigaya, Keisuke; Ibe, Masahiro; Schmitz, Kai; Yanagida, Tsutomu T.

    2014-12-01

    Chaotic inflation based on a simple monomial scalar potential, V (ϕ )∝ϕp, is an attractive large-field model of inflation capable of generating a sizable tensor-to-scalar ratio r . Therefore, assuming that future cosmic microwave background observations will confirm the large r value reported by BICEP2, it is important to determine what kind of dynamical mechanism could possibly endow the inflaton field with such a simple effective potential. In this paper, we answer this question in the context of field theory, i.e. in the framework of dynamical chaotic inflation, where strongly interacting supersymmetric gauge dynamics around the scale of grand unification dynamically generate a fractional power-law potential via the quantum effect of dimensional transmutation. In constructing explicit models, we significantly extend our previous work, as we now consider a large variety of possible underlying gauge dynamics and relax our conditions on the field content of the model. This allows us to realize almost arbitrary rational values for the power p in the inflaton potential. The present paper may hence be regarded as a first step toward a more complete theory of dynamical chaotic inflation.

  1. Accessible solitons of fractional dimension

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Wei-Ping, E-mail: zhongwp6@126.com [Department of Electronic and Information Engineering, Shunde Polytechnic, Guangdong Province, Shunde 528300 (China); Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar); Belić, Milivoj [Texas A& M University at Qatar, P.O. Box 23874, Doha (Qatar); Zhang, Yiqi [Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China)

    2016-05-15

    We demonstrate that accessible solitons described by an extended Schrödinger equation with the Laplacian of fractional dimension can exist in strongly nonlocal nonlinear media. The soliton solutions of the model are constructed by two special functions, the associated Legendre polynomials and the Laguerre polynomials in the fraction-dimensional space. Our results show that these fractional accessible solitons form a soliton family which includes crescent solitons, and asymmetric single-layer and multi-layer necklace solitons. -- Highlights: •Analytic solutions of a fractional Schrödinger equation are obtained. •The solutions are produced by means of self-similar method applied to the fractional Schrödinger equation with parabolic potential. •The fractional accessible solitons form crescent, asymmetric single-layer and multilayer necklace profiles. •The model applies to the propagation of optical pulses in strongly nonlocal nonlinear media.

  2. The bound fraction of young star clusters

    Science.gov (United States)

    Brinkmann, Nina; Banerjee, Sambaran; Motwani, Bhawna; Kroupa, Pavel

    2017-04-01

    Context. The residual gas within newly formed star clusters is expelled through stellar feedback on timescales ≲ 1 Myr. The subsequent expansion of the cluster results in an unbinding of a fraction of stars, before the remaining cluster members can re-virialize and form a surviving cluster. Aims: We investigate the bound fraction after gas expulsion as a function of initial cluster mass in stars Mecl and gauge the influence of primordial mass segregation, stellar evolution and the tidal field at solar distance. We also assess the impact of the star-formation efficiency ɛSFE and gas expulsion velocity vg. Methods: We perform N-body simulations using Sverre Aarseth's NBODY7 code, starting with compact clusters in their embedded phase and approximate the gas expulsion by means of an exponentially depleting external gravitational field. We follow the process of re-virialization through detailed monitoring of different Lagrange radii over several Myr, examining initial half-mass radii of 0.1 pc, 0.3 pc and 0.5 pc and Mecl usually ranging from 5 × 103M⊙ to 5 × 104M⊙. Results: The strong impact of the relation between the gas expulsion timescale and the crossing time means that clusters with the same initial core density can have very different bound fractions. The adopted ɛSFE = 0.33 in the cluster volume results in a distinct sensitivity to vg over a wide mass range, while a variation of ɛSFE can make the cluster robust to the rapidly decreasing external potential. We confirm that primordial mass segregation leads to a smaller bound fraction, its influence possibly decreasing with mass. Stellar evolution has a higher impact on lower mass clusters, but heating through dynamical friction could expand the cluster to a similar extent. The examined clusters expand well within their tidal radii and would survive gas expulsion even in a strong tidal field.

  3. Fractional Calculus and Shannon Wavelet

    Directory of Open Access Journals (Sweden)

    Carlo Cattani

    2012-01-01

    Full Text Available An explicit analytical formula for the any order fractional derivative of Shannon wavelet is given as wavelet series based on connection coefficients. So that for any 2(ℝ function, reconstructed by Shannon wavelets, we can easily define its fractional derivative. The approximation error is explicitly computed, and the wavelet series is compared with Grünwald fractional derivative by focusing on the many advantages of the wavelet method, in terms of rate of convergence.

  4. Fractional delayed damped Mathieu equation

    Science.gov (United States)

    Mesbahi, Afshin; Haeri, Mohammad; Nazari, Morad; Butcher, Eric A.

    2015-03-01

    This paper investigates the dynamical behaviour of the fractional delayed damped Mathieu equation. This system includes three different phenomena (fractional order, time delay, parametric resonance). The method of harmonic balance is employed to achieve approximate expressions for the transition curves in the parameter plane. The n = 0 and n = 1 transition curves (both lower and higher order approximations) are obtained. The dependencies of these curves on the system parameters and fractional orders are determined. Previous results for the transition curves reported for the damped Mathieu equation, delayed second-order oscillator, and fractional Mathieu equation are confirmed as special cases of the results for the current system.

  5. Can a sponge fractionate isotopes?

    Science.gov (United States)

    Patel, B; Patel, S; Balani, M C

    1985-03-22

    The study has unequivocally demonstrated that siliceous sponges Spirastrella cuspidifera and Prostylyssa foetida from the same microecological niche exhibit a high degree of species specificity, while accumulating a host of heavy metal ions (Ni, Cr, Cd, Sn, Ti, Mo, Zr). S. cuspidifera accumulated, in addition, 60Co and 63Ni, showing discrimination against other radionuclides, 137Cs and 131I, present in the ambient waters receiving controlled low level waste discharges from a B.W.R. nuclear power station. P. foetida, on the other hand, accumulated only 131I and showed discrimination against other radionuclides including 60Co, although the stable iodine concentrations in both the sponges were the same. The specific activity of 60Co (in becquerels per gram of 59Co) in S. cuspidifera and 131I (in becquerels per gram of 127I) in P. foetida were at least two orders of magnitude greater than in the ambient sea water. That of 63Ni (in becquerels per gram of 62Ni) in S. cuspidifera, on the other hand, was lower by two orders of magnitude than in either abiotic matrices from the same environment. Thus, not only did both the species show bioaccumulation of a specific element, but also preferential uptake of isotopes of the same element, though they were equally available for intake. Such differential uptake of isotopes can possibly be explained in terms of two quite different mechanisms operating, each applicable in a particular case. One is that the xenobiotic isotope enters the environment in a physicochemical form or as a complex different from that of its natural counterpart. If equilibration with the latter is slow, so that the organism acquires the xenobiotic in an unfamiliar chemical context, it may treat it as a chemically distinct entity so that its concentration factor differs from that of stable isotope, thus changing the specific activity. Alternatively, if the xenobiotic is present in the same chemical form as the stable isotope, the only way in which specific

  6. COMMERCIAL SNF ACCIDENT RELEASE FRACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    S.O. Bader

    1999-10-18

    The purpose of this design analysis is to specify and document the total and respirable fractions for radioactive materials that are released from an accident event at the Monitored Geologic Repository (MGR) involving commercial spent nuclear fuel (CSNF) in a dry environment. The total and respirable release fractions will be used to support the preclosure licensing basis for the MGR. The total release fraction is defined as the fraction of total CSNF assembly inventory, typically expressed as an activity inventory (e.g., curies), of a given radionuclide that is released to the environment from a waste form. The radionuclides are released from the inside of breached fuel rods (or pins) and from the detachment of radioactive material (crud) from the outside surfaces of fuel rods and other components of fuel assemblies. The total release fraction accounts for several mechanisms that tend to retain, retard, or diminish the amount of radionuclides that are available for transport to dose receptors or otherwise can be shown to reduce exposure of receptors to radiological releases. The total release fraction includes a fraction of airborne material that is respirable and could result in inhalation doses. This subset of the total release fraction is referred to as the respirable release fraction. Potential accidents may involve waste forms that are characterized as either bare (unconfined) fuel assemblies or confined fuel assemblies. The confined CSNF assemblies at the MGR are contained in shipping casks, canisters, or disposal containers (waste packages). In contrast to the bare fuel assemblies, the container that confines the fuel assemblies has the potential of providing an additional barrier for diminishing the total release fraction should the fuel rod cladding breach during an accident. However, this analysis will not take credit for this additional bamer and will establish only the total release fractions for bare unconfined CSNF assemblies, which may however be

  7. Controllable 5-sulfosalicylic acid assisted solvothermal synthesis of monodispersed superparamagnetic Fe{sub 3}O{sub 4} nanoclusters with tunable size

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wentao [State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Tang, Bingtao, E-mail: tangbt@dlut.edu.cn [State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Wu, Suli; Gao, Zhanming; Ju, Benzhi [State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Teng, Xiaoxu [School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100 (China); Zhang, Shufen [State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)

    2017-02-01

    Monodispersed Fe{sub 3}O{sub 4} nanoclusters were synthesized in a one-pot solvothermal route with 5-sulfosalicylic acid (SSA) as the functional ligand in a mixed-solvent system of diethylene glycol/ethylene glycol (DEG/EG). Nucleation and aggregation growth model was responsible for the formation of secondary structure of the clusters. In the process, the size of the clusters can be effectively controlled by varying the amounts of SSA and the volume ratio of DEG/EG. The nanoclusters exhibited superparamagnetic properties with high saturation magnetization value of about 68.7 emu g{sup −1} at room temperature. The water-soluble small-molecule SSA grafted on the surface of Fe{sub 3}O{sub 4} nanocrystals rendered the superparamagnetic clusters dispersible in water, which is crucial for potential applications in biomedical fields. - Graphical abstract: 5-sulfosalicylic acid assisted solvothermal synthesis of monodispersed superparamagnetic Fe{sub 3}O{sub 4} nanoclusters with tunable size by a mixed-solvent system of DEG/EG. - Highlights: • Monodispersed Fe{sub 3}O{sub 4} nanoclusters were synthesized in a one-pot 5-sulfosalicylic acid assisted solvothermal route. • The size of the clusters are tunable by varying the amounts of 5-sulfosalicylic acid and the volume ratio of DEG/EG. • The nanoclusters exhibited superparamagnetic properties with high saturation magnetization value. • The 5-sulfosalicylic acid grafted Fe{sub 3}O{sub 4} nanoclusters can be dispersed in water.

  8. Nearly Monodisperse Insulator Cs 4 PbX 6 (X = Cl, Br, I) Nanocrystals, Their Mixed Halide Compositions, and Their Transformation into CsPbX 3 Nanocrystals

    OpenAIRE

    Akkerman, Quinten A.; Park, Sungwook; Radicchi, Eros; Nunzi, Francesca; Mosconi, Edoardo; De Angelis, Filippo; Brescia, Rosaria; Rastogi, Prachi; Prato, Mirko; Manna, Liberato

    2017-01-01

    We have developed a colloidal synthesis of nearly monodisperse nanocrystals of pure Cs4PbX6 (X = Cl, Br, I) and their mixed halide compositions with sizes ranging from 9 to 37 nm. The optical absorption spectra of these nanocrystals display a sharp, high energy peak due to transitions between states localized in individual PbX6 4? octahedra. These spectral features are insensitive to the size of the particles and in agreement with the features of the corresponding bulk materials. Samples with...

  9. Financial Planning with Fractional Goals

    NARCIS (Netherlands)

    M.H. Goedhart; J. Spronk (Jaap)

    1995-01-01

    textabstractWhen solving financial planning problems with multiple goals by means of multiple objective programming, the presence of fractional goals leads to technical difficulties. In this paper we present a straightforward interactive approach for solving such linear fractional programs with

  10. Deterministic ratchets for suspension fractionation

    NARCIS (Netherlands)

    Kulrattanarak, T.

    2010-01-01

    Driven by the current insights in sustainability and technological development in biorefining natural renewable resources, the food industry has taken an interest in fractionation of agrofood materials, like milk and cereal crops. The purpose of fractionation is to split the raw material in

  11. Rational Exponentials and Continued Fractions

    Science.gov (United States)

    Denny, J. K.

    2012-01-01

    Using continued fraction expansions, we can approximate constants, such as pi and e, using an appropriate integer n raised to the power x[superscript 1/x], x a suitable rational. We review continued fractions and give an algorithm for producing these approximations.

  12. Distinctiveness of Ugandapithecus from Proconsul

    Directory of Open Access Journals (Sweden)

    Gommery, D.

    2009-12-01

    Full Text Available The decision to create the genus Ugandapithecus by Senut et al., 2000 has been criticised, either directly and in detail by MacLatchy & Rossie (2005b who argued that it is a junior synonym of Proconsul, or indirectly without providing reasons, firstly by Harrison (2001 who wrote that he did not retain it as a genus distinct from Proconsul, and then by Suwa et al., (2007 who employed the name “Ugandapithecus” with inverted commas, implying some degree of doubt about its validity as a genus, but without providing details. More recently Harrison & Andrews (2009 have recognised the Meswa sample as a separate species but they argue that it should be maintained within Proconsul, despite the morphological differences that it has from other species of the genus. We here re-examine the question by comparing, on the one hand, the holotype maxilla of Proconsul africanus, the type species of the genus, with the upper dentition of Ugandapithecus major, and, on the other hand, the holotype mandible of Ugandapithecus major with the lower dentition and mandibles previously attributed to Proconsul africanus. We conclude that the differences between the known upper and lower dentitions of P. africanus and U. major are of such a degree that the two taxa warrant generic separation, and that the differences are not related to sexual dimorphism. Where Proconsul africanus differs from Ugandapithecus major, it approaches Proconsul nyanzae and Proconsul heseloni from Rusinga.Furthermore, the range of morphometric variation within the fossil samples previously attributed to Ugandapithecus major is so great that it far surpasses variation in any other hominoid, fossil or extant. Previously this great amount of variation was interpreted to mean that U. major was extremely dimorphic, with huge males and small females, but if this is true, then U. major would be unique among hominoids in having females in which the cheek teeth fall completely outside the range of

  13. Fractional random walk lattice dynamics

    Science.gov (United States)

    Michelitsch, T. M.; Collet, B. A.; Riascos, A. P.; Nowakowski, A. F.; Nicolleau, F. C. G. A.

    2017-02-01

    We analyze time-discrete and time-continuous ‘fractional’ random walks on undirected regular networks with special focus on cubic periodic lattices in n  =  1, 2, 3,.. dimensions. The fractional random walk dynamics is governed by a master equation involving fractional powers of Laplacian matrices {{L}\\fracα{2}}} where α =2 recovers the normal walk. First we demonstrate that the interval 0expressions for the transition matrix of the fractional random walk and closely related the average return probabilities. We further obtain the fundamental matrix {{Z}(α )} , and the mean relaxation time (Kemeny constant) for the fractional random walk. The representation for the fundamental matrix {{Z}(α )} relates fractional random walks with normal random walks. We show that the matrix elements of the transition matrix of the fractional random walk exihibit for large cubic n-dimensional lattices a power law decay of an n-dimensional infinite space Riesz fractional derivative type indicating emergence of Lévy flights. As a further footprint of Lévy flights in the n-dimensional space, the transition matrix and return probabilities of the fractional random walk are dominated for large times t by slowly relaxing long-wave modes leading to a characteristic {{t}-\\frac{n{α}} -decay. It can be concluded that, due to long range moves of fractional random walk, a small world property is emerging increasing the efficiency to explore the lattice when instead of a normal random walk a fractional random walk is chosen.

  14. Mechanisms of Complete Turbulence Suppression in Turbidity Currents Driven by Mono-Disperse and Bi-Disperse Suspensions of Sediment

    Directory of Open Access Journals (Sweden)

    Mrugesh S. Shringarpure

    2014-09-01

    appears to have a logarithmic dependence on Reτ (Cantero et al. 2012. DNS of turbidity currents driven by bi-disperse suspension of sediments is also carried out and compared with the results of mono-disperse suspensions.

  15. Permutation entropy of fractional Brownian motion and fractional Gaussian noise

    International Nuclear Information System (INIS)

    Zunino, L.; Perez, D.G.; Martin, M.T.; Garavaglia, M.; Plastino, A.; Rosso, O.A.

    2008-01-01

    We have worked out theoretical curves for the permutation entropy of the fractional Brownian motion and fractional Gaussian noise by using the Bandt and Shiha [C. Bandt, F. Shiha, J. Time Ser. Anal. 28 (2007) 646] theoretical predictions for their corresponding relative frequencies. Comparisons with numerical simulations show an excellent agreement. Furthermore, the entropy-gap in the transition between these processes, observed previously via numerical results, has been here theoretically validated. Also, we have analyzed the behaviour of the permutation entropy of the fractional Gaussian noise for different time delays

  16. Toward lattice fractional vector calculus

    International Nuclear Information System (INIS)

    Tarasov, Vasily E

    2014-01-01

    An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity. (papers)

  17. Ferroelectric Fractional-Order Capacitors

    KAUST Repository

    Agambayev, Agamyrat

    2017-07-25

    Poly(vinylidene fluoride)-based polymers and their blends are used to fabricate electrostatic fractional-order capacitors. This simple but effective method allows us to precisely tune the constant phase angle of the resulting fractional-order capacitor by changing the blend composition. Additionally, we have derived an empirical relation between the ratio of the blend constituents and the constant phase angle to facilitate the design of a fractional order capacitor with a desired constant phase angle. The structural composition of the fabricated blends is investigated using Fourier transform infrared spectroscopy and X-ray diffraction techniques.

  18. On Generalized Fractional Differentiator Signals

    Directory of Open Access Journals (Sweden)

    Hamid A. Jalab

    2013-01-01

    Full Text Available By employing the generalized fractional differential operator, we introduce a system of fractional order derivative for a uniformly sampled polynomial signal. The calculation of the bring in signal depends on the additive combination of the weighted bring-in of N cascaded digital differentiators. The weights are imposed in a closed formula containing the Stirling numbers of the first kind. The approach taken in this work is to consider that signal function in terms of Newton series. The convergence of the system to a fractional time differentiator is discussed.

  19. Prabhakar-like fractional viscoelasticity

    Science.gov (United States)

    Giusti, Andrea; Colombaro, Ivano

    2018-03-01

    The aim of this paper is to present a linear viscoelastic model based on Prabhakar fractional operators. In particular, we propose a modification of the classical fractional Maxwell model, in which we replace the Caputo derivative with the Prabhakar one. Furthermore, we also discuss how to recover a formal equivalence between the new model and the known classical models of linear viscoelasticity by means of a suitable choice of the parameters in the Prabhakar derivative. Moreover, we also underline an interesting connection between the theory of Prabhakar fractional integrals and the recently introduced Caputo-Fabrizio differential operator.

  20. Nanostructural and magnetic studies of virtually monodispersed NiFe2O4 nanocrystals synthesized by a liquid–solid-solution assisted hydrothermal route

    International Nuclear Information System (INIS)

    Li Xinghua; Tan Guoguo; Chen Wei; Zhou Baofan; Xue Desheng; Peng Yong; Li, Fashen; Mellors, Nigel J.

    2012-01-01

    This study presents a comprehensively and systematically structural, chemical and magnetic characterization of ∼9.5 nm virtually monodispersed nickel ferrite (NiFe 2 O 4 ) nanoparticles prepared using a modified liquid–solid-solution (LSS) assisted hydrothermal method. Lattice-resolution scanning transmission electron microscope (STEM) and converged beam electron diffraction pattern (CBED) techniques are adapted to characterize the detailed spatial morphology and crystal structure of individual NiFe 2 O 4 particles at nano scale for the first time. It is found that each NiFe 2 O 4 nanoparticle is single crystal with an fcc structure. The morphology investigation reveals that the prepared NiFe 2 O 4 nanoparticles of which the surfaces are decorated by oleic acid are dispersed individually in hexane. The chemical composition of nickel ferrite nanoparticles is measured to be 1:2 atomic ratio of Ni:Fe, indicating a pure NiFe 2 O 4 composition. Magnetic measurements reveal that the as-synthesized nanocrystals displayed superparamagnetic behavior at room temperature and were ferromagnetic at 10 K. The nanoscale characterization and magnetic investigation of monodispersed NiFe 2 O 4 nanoparticles should be significant for its potential applications in the field of biomedicine and magnetic fluid using them as magnetic materials.

  1. High lithium storage capacity achieved by regulating monodisperse C/In{sub 2}O{sub 3} nanosheet composite with double phases

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Lu; Pan, Xueqian; Chen, Shangqian; Song, Jialing; Liu, Cheng [Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Jiangsu, 224051 (China); Luo, Gaixia [Department of Physics, Yancheng Institute of Technology, Jiangsu, 224051 (China); Guan, Rongfeng [Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Jiangsu, 224051 (China); Zhang, Wenhui, E-mail: zwhuizi000@sina.com [Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Jiangsu, 224051 (China)

    2017-06-01

    Monodisperse C/In{sub 2}O{sub 3} nanosheet composites are prepared by D-fructose-assisted solvothermal approach. The effects of carbon content on the morphological evolution and electrochemical performance of C/In{sub 2}O{sub 3} nanosheet composites are investigated. The SEM and TEM are used to study the morphological evolution. C/In{sub 2}O{sub 3} nanosheet composite electrode with 17.3% carbon content exhibits the highest reversible capacity of 1639 mAh g{sup -1} over 100 cycles at a current density of 100 mA g{sup -1} and maintains the best discharge capacity of 782 mAh g{sup -1} over 400 cycles at a current density of 400 mA g{sup -1} for reported In{sub 2}O{sub 3} based anode materials to date. - Highlights: • Monodisperse carbon/In{sub 2}O{sub 3} nanosheet composites have been synthesized via D-fructose-assisted solvothermal approach. • The prepared electrode exhibited high reversible discharge capacity of 1639 mAh g{sup -1} over 100 cycles. • The prepared electrode maintained the discharge capacity of 782 mAh g{sup -1} over 400 cycles at 400 mA g{sup -1}.

  2. Inter-laboratory comparison on the size and stability of monodisperse and bimodal synthetic reference particles for standardization of extracellular vesicle measurements

    Science.gov (United States)

    Nicolet, Anaïs; Meli, Felix; van der Pol, Edwin; Yuana, Yuana; Gollwitzer, Christian; Krumrey, Michael; Cizmar, Petr; Buhr, Egbert; Pétry, Jasmine; Sebaihi, Noham; de Boeck, Bert; Fokkema, Vincent; Bergmans, Rob; Nieuwland, Rienk

    2016-03-01

    In future, measurements of extracellular vesicles in body fluids could become a standard diagnostic tool in medicine. For this purpose, reliable and traceable methods, which can be easily applied in hospitals, have to be established. Within the European Metrological Research Project (EMRP) ‘Metrological characterization of micro-vesicles from body fluids as non-invasive diagnostic biomarkers’ (www.metves.eu), various nanoparticle reference materials were developed and characterized. We present results of an international comparison among four national metrology institutes and a university hospital. The size distributions of five monodisperse and two bimodal spherical particle samples with diameters ranging from 50 nm to 315 nm made out of silica and polystyrene were compared. Furthermore, the stability of the samples was verified over a period of 18 months. While monodisperse reference particle samples above a certain size level lead to good agreements of the size measurements among the different methods, small and bimodal samples show the limitations of current ‘clinical’ methods. All samples proved to be stable within the uncertainty of the applied methods.

  3. Inter-laboratory comparison on the size and stability of monodisperse and bimodal synthetic reference particles for standardization of extracellular vesicle measurements

    International Nuclear Information System (INIS)

    Nicolet, Anaïs; Meli, Felix; Van der Pol, Edwin; Yuana, Yuana; Nieuwland, Rienk; Gollwitzer, Christian; Krumrey, Michael; Cizmar, Petr; Buhr, Egbert; Pétry, Jasmine; Sebaihi, Noham; De Boeck, Bert; Fokkema, Vincent; Bergmans, Rob

    2016-01-01

    In future, measurements of extracellular vesicles in body fluids could become a standard diagnostic tool in medicine. For this purpose, reliable and traceable methods, which can be easily applied in hospitals, have to be established. Within the European Metrological Research Project (EMRP) ‘Metrological characterization of micro-vesicles from body fluids as non-invasive diagnostic biomarkers’ (www.metves.eu), various nanoparticle reference materials were developed and characterized. We present results of an international comparison among four national metrology institutes and a university hospital. The size distributions of five monodisperse and two bimodal spherical particle samples with diameters ranging from 50 nm to 315 nm made out of silica and polystyrene were compared. Furthermore, the stability of the samples was verified over a period of 18 months. While monodisperse reference particle samples above a certain size level lead to good agreements of the size measurements among the different methods, small and bimodal samples show the limitations of current ‘clinical’ methods. All samples proved to be stable within the uncertainty of the applied methods. (paper)

  4. Core-shell monodisperse spherical mSiO2/Gd2O3:Eu3+@mSiO2 particles as potential multifunctional theranostic agents

    Science.gov (United States)

    Eurov, Daniil A.; Kurdyukov, Dmitry A.; Kirilenko, Demid A.; Kukushkina, Julia A.; Nashchekin, Alexei V.; Smirnov, Alexander N.; Golubev, Valery G.

    2015-02-01

    Core-shell nanoparticles with diameters in the range 100-500 nm have been synthesized as monodisperse spherical mesoporous (pore diameter 3 nm) silica particles with size deviation of less than 4 %, filled with gadolinium and europium oxides and coated with a mesoporous silica shell. It is shown that the melt technique developed for filling with gadolinium and europium oxides provides a nearly maximum filling of mesopores in a single-run impregnation, with gadolinium and europium uniformly distributed within the particles and forming no bulk oxides on their surface. The coating with a shell does not impair the monodispersity and causes no coagulation. The coating technique enables controlled variation of the shell thickness within the range 5-100 % relative to the core diameter. The thus produced nanoparticles are easily dispersed in water, have large specific surface area (300 m2 g-1) and pore volume (0.3 cm3 g-1), and are bright solid phosphor with superior stability in aqueous media. The core-shell structured particles can be potentially used for cancer treatment as a therapeutic agent (gadolinium neutron-capture therapy and drug delivery system) and, simultaneously, as a multimodal diagnostic tool (fluorescence and magnetic resonance imaging), thereby serving as a multifunctional theranostic agent.

  5. Anomalous Symmetry Fractionalization and Surface Topological Order

    Directory of Open Access Journals (Sweden)

    Xie Chen

    2015-10-01

    Full Text Available In addition to possessing fractional statistics, anyon excitations of a 2D topologically ordered state can realize symmetry in distinct ways, leading to a variety of symmetry-enriched topological (SET phases. While the symmetry fractionalization must be consistent with the fusion and braiding rules of the anyons, not all ostensibly consistent symmetry fractionalizations can be realized in 2D systems. Instead, certain “anomalous” SETs can only occur on the surface of a 3D symmetry-protected topological (SPT phase. In this paper, we describe a procedure for determining whether a SET of a discrete, on-site, unitary symmetry group G is anomalous or not. The basic idea is to gauge the symmetry and expose the anomaly as an obstruction to a consistent topological theory combining both the original anyons and the gauge fluxes. Utilizing a result of Etingof, Nikshych, and Ostrik, we point out that a class of obstructions is captured by the fourth cohomology group H^{4}(G,U(1, which also precisely labels the set of 3D SPT phases, with symmetry group G. An explicit procedure for calculating the cohomology data from a SET is given, with the corresponding physical intuition explained. We thus establish a general bulk-boundary correspondence between the anomalous SET and the 3D bulk SPT whose surface termination realizes it. We illustrate this idea using the chiral spin liquid [U(1_{2}] topological order with a reduced symmetry Z_{2}×Z_{2}⊂SO(3, which can act on the semion quasiparticle in an anomalous way. We construct exactly solved 3D SPT models realizing the anomalous surface terminations and demonstrate that they are nontrivial by computing three-loop braiding statistics. Possible extensions to antiunitary symmetries are also discussed.

  6. Laboratory sol-gel preparation of fine fraction of sintered uranium dioxide spheres

    International Nuclear Information System (INIS)

    Landspersky, H.; Tympl, M.

    1984-01-01

    The results are summed up of the laboratory investigation of preparing the fine fraction of sintered uranium dioxide particles from uranyl gel using the method of the mixed reactor and the method of the dual-liquid nozzle, processed by leaching, drying, calcination and sintering. None of the two methods provides monodispersion particles under the given conditions but better control of the throughflow of the liquid media may improve results. Leaching of the fine fraction is very quick and the leaching of most components takes no longer than 5 minutes. In view of the fact that leaching of all components does not proceed at the same rate it is recommended that leaching time be doubled, or that leaching take place in two stages. Azeotropic distillation with chlorinated hydrocarbons is a favourable procedure for obtaining quality material; it is, however, necessary to prevent dried particles from comino. into contact with the water phase condensing on the walls of the distillation vessel and running down onto the surface of the distilling mixture. Calcination at a temperature of 500 degC in a thin layer and sintering at temperatures between 1350 and 1550 degC at an adequate rate of inflow of gaseous media and adequate rate of outflow of reaction wastes results in the production of high quality material whose density exceeds 97 to 98% theoretical density. (author)

  7. Australia's Next Top Fraction Model

    Science.gov (United States)

    Gould, Peter

    2013-01-01

    Peter Gould suggests Australia's next top fraction model should be a linear model rather than an area model. He provides a convincing argument and gives examples of ways to introduce a linear model in primary classrooms.

  8. Physcicists rewarded for 'fractional electrons'

    CERN Multimedia

    Ball, P

    1998-01-01

    The 1998 Nobel prize for physics has been awarded to Horst Stormer, Daniel Tsui and Robert Laughlin.Stormer and Tsui were the first to observe the fractional quantum Hall effect and Laughlin provided the theory shortly afterwards (1 page).

  9. Fractionated Spacecraft Architectures Seeding Study

    National Research Council Canada - National Science Library

    Mathieu, Charlotte; Weigel, Annalisa

    2006-01-01

    The report introduces the concept of spacecraft fractionation, which transforms a traditional monolithic spacecraft into a network of elements where a free-flying payload module is supported by nearby...

  10. Ultracentrifugation for ultrafine nanodiamond fractionation

    Science.gov (United States)

    Koniakhin, S. V.; Besedina, N. A.; Kirilenko, D. A.; Shvidchenko, A. V.; Eidelman, E. D.

    2018-01-01

    In this paper we propose a method for ultrafine fractionation of nanodiamonds using the differential centrifugation in the fields up to 215000g. The developed protocols yield 4-6 nm fraction giving main contribution to the light scattering intensity. The desired 4-6 nm fraction can be obtained from various types of initial nanodiamonds: three types of detonation nanodiamonds differing in purifying methods, laser synthesis nanodiamonds and nanodiamonds made by milling. The characterization of the obtained hydrosols was conducted with Dynamic Light Scattering, Zeta potential measurements, powder XRD and TEM. According to powder XRD and TEM data ultracentrifugation also leads to a further fractionation of the primary diamond nanocrystallites in the hydrosols from 4 to 2 nm.

  11. Commercial SNF Accident Release Fractions

    Energy Technology Data Exchange (ETDEWEB)

    J. Schulz

    2004-11-05

    The purpose of this analysis is to specify and document the total and respirable fractions for radioactive materials that could be potentially released from an accident at the repository involving commercial spent nuclear fuel (SNF) in a dry environment. The total and respirable release fractions are used to support the preclosure licensing basis for the repository. The total release fraction is defined as the fraction of total commercial SNF assembly inventory, typically expressed as an activity inventory (e.g., curies), of a given radionuclide that is released to the environment from a waste form. Radionuclides are released from the inside of breached fuel rods (or pins) and from the detachment of radioactive material (crud) from the outside surfaces of fuel rods and other components of fuel assemblies. The total release fraction accounts for several mechanisms that tend to retain, retard, or diminish the amount of radionuclides that are available for transport to dose receptors or otherwise can be shown to reduce exposure of receptors to radiological releases. The total release fraction includes a fraction of airborne material that is respirable and could result in inhalation doses; this subset of the total release fraction is referred to as the respirable release fraction. Accidents may involve waste forms characterized as: (1) bare unconfined intact fuel assemblies, (2) confined intact fuel assemblies, or (3) canistered failed commercial SNF. Confined intact commercial SNF assemblies at the repository are contained in shipping casks, canisters, or waste packages. Four categories of failed commercial SNF are identified: (1) mechanically and cladding-penetration damaged commercial SNF, (2) consolidated/reconstituted assemblies, (3) fuel rods, pieces, and debris, and (4) nonfuel components. It is assumed that failed commercial SNF is placed into waste packages with a mesh screen at each end (CRWMS M&O 1999). In contrast to bare unconfined fuel assemblies, the

  12. Commercial SNF Accident Release Fractions

    International Nuclear Information System (INIS)

    Schulz, J.

    2004-01-01

    The purpose of this analysis is to specify and document the total and respirable fractions for radioactive materials that could be potentially released from an accident at the repository involving commercial spent nuclear fuel (SNF) in a dry environment. The total and respirable release fractions are used to support the preclosure licensing basis for the repository. The total release fraction is defined as the fraction of total commercial SNF assembly inventory, typically expressed as an activity inventory (e.g., curies), of a given radionuclide that is released to the environment from a waste form. Radionuclides are released from the inside of breached fuel rods (or pins) and from the detachment of radioactive material (crud) from the outside surfaces of fuel rods and other components of fuel assemblies. The total release fraction accounts for several mechanisms that tend to retain, retard, or diminish the amount of radionuclides that are available for transport to dose receptors or otherwise can be shown to reduce exposure of receptors to radiological releases. The total release fraction includes a fraction of airborne material that is respirable and could result in inhalation doses; this subset of the total release fraction is referred to as the respirable release fraction. Accidents may involve waste forms characterized as: (1) bare unconfined intact fuel assemblies, (2) confined intact fuel assemblies, or (3) canistered failed commercial SNF. Confined intact commercial SNF assemblies at the repository are contained in shipping casks, canisters, or waste packages. Four categories of failed commercial SNF are identified: (1) mechanically and cladding-penetration damaged commercial SNF, (2) consolidated/reconstituted assemblies, (3) fuel rods, pieces, and debris, and (4) nonfuel components. It is assumed that failed commercial SNF is placed into waste packages with a mesh screen at each end (CRWMS M andO 1999). In contrast to bare unconfined fuel assemblies, the

  13. Fractional Reserve Banking: Some Quibbles

    OpenAIRE

    Bagus, Philipp; Howden, David

    2010-01-01

    We explore several unaddressed issues in George Selgin’s (1988) claim that the best monetary system to maintain monetary equilibrium is a fractional reserve free banking one. The claim that adverse clearing balances would limit credit expansion in a fractional reserve free banking system is more troublesome than previously reckoned. Both lengthened clearing periods and interbank agreements render credit expansion unrestrained. “The theory of free banking” confuses increases in money held with...

  14. Fractional diffusion in inhomogeneous media

    Energy Technology Data Exchange (ETDEWEB)

    Chechkin, A V [Institute for Theoretical Physics, National Science Center ' Kharkov Institute of Physics and Technology' , Akademicheskaya St. 1, Kharkov 61108 (Ukraine); Gorenflo, R [Department of Mathematics and Informatics, Free University of Berlin, Arnimallee 3, D-14195 Berlin, Dahlem (Germany); Sokolov, I M [Institute for Physics, Humboldt University of Berlin, Newtonstrasse 15, D-12489 Berlin (Germany)

    2005-10-21

    Starting from the continuous time random walk (CTRW) scheme with the space-dependent waiting-time probability density function (PDF) we obtain the time-fractional diffusion equation with varying in space fractional order of time derivative. As an example, we study the evolution of a composite system consisting of two separate regions with different subdiffusion exponents and demonstrate the effects of non-trivial drift and subdiffusion whose laws are changed in the course of time. (letter to the editor)

  15. Fractional Charge Definitions and Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Goldhaber, A.S.

    2004-06-04

    Fractional charge is known through theoretical and experimental discoveries of isolable objects carrying fractions of familiar charge units--electric charge Q, spin S, and the difference of baryon and lepton numbers B-L. With a few simple assumptions all these effects may be described using a generalized version of charge renormalization for locally conserved charges, in which medium correlations yield familiar adiabatic, continuous renormalization, or sometimes nonadiabatic, discrete renormalization. Fractional charges may be carried by fundamental particles or fundamental solitons. Either picture works for the simplest fractional-quantum-Hall-effect quasiholes, though the particle description is far more general. The only known fundamental solitons in three or fewer space dimensions d are the kink (d = 1), the vortex (d = 2), and the magnetic monopole (d = 3). Further, for a charge not intrinsically coupled to the topological charge of a soliton, only the kink and the monopole may carry fractional values. The same reasoning enforces fractional values of B-L for electrically charged elementary particles.

  16. Conformable Fractional Bessel Equation and Bessel Functions

    OpenAIRE

    Gökdoğan, Ahmet; Ünal, Emrah; Çelik, Ercan

    2015-01-01

    In this work, we study the fractional power series solutions around regular singular point x=0 of conformable fractional Bessel differential equation and fractional Bessel functions. Then, we compare fractional solutions with ordinary solutions. In addition, we present certain property of fractional Bessel functions.

  17. Discrete fractional solutions of a Legendre equation

    Science.gov (United States)

    Yılmazer, Resat

    2018-01-01

    One of the most popular research interests of science and engineering is the fractional calculus theory in recent times. Discrete fractional calculus has also an important position in fractional calculus. In this work, we acquire new discrete fractional solutions of the homogeneous and non homogeneous Legendre differential equation by using discrete fractional nabla operator.

  18. Delayed coker fractionator advanced control

    Energy Technology Data Exchange (ETDEWEB)

    Jaisinghani, R.; Minter, B. (ABB SIMCON Inc., Houston, TX (United States)); Tica, A.; Puglesi, A.; Ojeda, R. (Yacimentos Petroliferos Fiscales, Mendoza (Argentina))

    1993-08-01

    In a delayed coking process, as coke drum switches are made, rapid changes occur in both the fractionator feed rate and composition. With conventional control, it is not unusual to see long transient behavior of large swings in both quality and flowrates of coker gas oils. This can extract a heavy economic toll, not only in coker operation, but in the operation of downstream units as the upset is propagated. An advanced process control application (APC) was recently implemented on the coker fractionator at the Yacimentos Petroliferos Fiscales (YPF), Lujan de Cuyo Refinery, in Mendoza, Argentina. This coker fractionator control design was unique as it handled two different operating objectives: control of product qualities via tower temperature profile during normal operation and control of gas oil product flow ratio during drum switch. This combination of control objectives in one multivariable predictive control program was achieved by including special logic to decouple the individual tuning requirements. Also, additional logic was included to unambiguously detect and identify drum switch and drum steam out as discrete events within 30 seconds of their actual occurrence. These discrete events were then used as disturbance variables to minimize fractionator transient behavior. As a performance measure, the overhead temperature was controlled within 2 C to 2.5 C of its target, gas oil flows were stabilized during drum switches and steam generation via pump around was maximized. Overall, implementing advanced control for the delayed coker fractionator resulted in substantial benefits from product quality control, product flow control and minimized energy consumption.

  19. Social conformity despite individual preferences for distinctiveness.

    Science.gov (United States)

    Smaldino, Paul E; Epstein, Joshua M

    2015-03-01

    We demonstrate that individual behaviours directed at the attainment of distinctiveness can in fact produce complete social conformity. We thus offer an unexpected generative mechanism for this central social phenomenon. Specifically, we establish that agents who have fixed needs to be distinct and adapt their positions to achieve distinctiveness goals, can nevertheless self-organize to a limiting state of absolute conformity. This seemingly paradoxical result is deduced formally from a small number of natural assumptions and is then explored at length computationally. Interesting departures from this conformity equilibrium are also possible, including divergence in positions. The effect of extremist minorities on these dynamics is discussed. A simple extension is then introduced, which allows the model to generate and maintain social diversity, including multimodal distinctiveness distributions. The paper contributes formal definitions, analytical deductions and counterintuitive findings to the literature on individual distinctiveness and social conformity.

  20. Semi-infinite fractional programming

    CERN Document Server

    Verma, Ram U

    2017-01-01

    This book presents a smooth and unified transitional framework from generalised fractional programming, with a finite number of variables and a finite number of constraints, to semi-infinite fractional programming, where a number of variables are finite but with infinite constraints. It focuses on empowering graduate students, faculty and other research enthusiasts to pursue more accelerated research advances with significant interdisciplinary applications without borders. In terms of developing general frameworks for theoretical foundations and real-world applications, it discusses a number of new classes of generalised second-order invex functions and second-order univex functions, new sets of second-order necessary optimality conditions, second-order sufficient optimality conditions, and second-order duality models for establishing numerous duality theorems for discrete minmax (or maxmin) semi-infinite fractional programming problems.   In the current interdisciplinary supercomputer-oriented research envi...

  1. Fractionation method for soil microelements

    Energy Technology Data Exchange (ETDEWEB)

    Shuman, L.M.

    1985-07-01

    To evaluate a sequential extraction procedure to separate chemical forms of soil microelements, I fractionated 16 soils, both surface and subsoils. The purpose of the sequential extractions was to solubilize the Mn, Cu, Fe, and Zn in the exchangeable, organic matter, Mn oxide, amorphous Fe oxide, and crystalline Fe oxide fractions. The solid portion remaining was separated into sand, silt, and clay sizes, and each was dissolved and analyzed for the above elements. Soil properties were determined, and whole soils were analyzed for total microelement content.

  2. On a fractional difference operator

    Directory of Open Access Journals (Sweden)

    P. Baliarsingh

    2016-06-01

    Full Text Available In the present article, a set of new difference sequence spaces of fractional order has been introduced and subsequently, an application of these spaces, the notion of the derivatives and the integrals of a function to the case of non-integer order have been generalized. Certain results involving the unusual and non-uniform behavior of the corresponding difference operator have been investigated and also been verified by using some counter examples. We also verify these unusual and non-uniform behaviors by studying the geometry of fractional calculus.

  3. Solvent-Mediated Eco-Friendly Synthesis and Characterization of Monodispersed Bimetallic Ag/Pd Nano composites for Sensing and Raman Scattering Applications

    International Nuclear Information System (INIS)

    Sathiyadevi, G.; Loganathan, B.; Karthikeyan, B.; Karthikeyan, B.

    2014-01-01

    The solvent-mediated eco-friendly monodispersed Ag/Pd bimetallic nano composites (BNCs) having thick core and thin shell have been prepared through novel green chemical solvent reduction method. Reducing solvent, dimethyl formamide (DMF) is employed for the controlled green synthesis. Characterization of the synthesized Ag/Pd BNCs has been done by x-ray diffraction (XRD) studies, high-resolution scanning electron microscopy (HR-SEM), energy-dispersive X-ray analysis (EDX), and high-resolution transmission electron microscopy (HR-TEM) with selected area electron diffraction (SAED) pattern. The nature of the interaction of L-cysteine with Ag/Pd BNCs has been studied by using surface plasmon spectroscopy, Fourier transform-infrared spectroscopy (FT-IR), cyclic voltammetry (CV), and theoretical methods.

  4. Fabrication of monodispersed nickel flower-like architectures via a solvent-thermal process and analysis of their magnetic and electromagnetic properties

    International Nuclear Information System (INIS)

    Kong Jing; Liu Wei; Wang Fenglong; Wang Xinzhen; Luan Liqiang; Liu Jiurong; Wang Yuan; Zhang Zijun; Itoh, Masahiro; Machida, Ken-ichi

    2011-01-01

    Monodispersed Ni flower-like architectures with size of 1-2 μm were synthesized through a facile solvent-thermal process in 1,2-propanediol solution in the presence of polyethylene glycol (PEG) and sodium alkali for electromagnetic absorption application. The Ni architectures are composed of nanoflakes, which assemble to form three dimensional flower-like structure, and the thickness of nanoflakes is about 10-40 nm. A possible formation mechanism for Ni flower-like architectures was proposed and it was confirmed by the control experiments. The Ni architectures exhibited a saturation magnetization (M s ) of 47.7 emu/g and a large coercivity (H cj ) of 332.3 Oe. The epoxy resin composites with 20 vol% Ni sample provided good electromagnetic wave absorption performance (reflection loss cj ) of 332.3 Oe. → Efficient electromagnetic absorption (RL<-20 dB) was provided in 2.8-6.3 GHz.

  5. Preparation and thermodynamic stability of micron-sized, monodisperse composite polymer particles of disc-like shapes by seeded dispersion polymerization.

    Science.gov (United States)

    Fujibayashi, Teruhisa; Okubo, Masayoshi

    2007-07-17

    Micron-sized, monodisperse composite polymer particles having "disc-like" and "polyhedral" shapes were prepared by seeded dispersion polymerization of 2-ethylhexylmethacrylate (EHMA) with 2.67-mum-sized polystyrene (PS) seed particles in methanol/water media in the presence of droplets of various saturated hydrocarbons and evaporation of the hydrocarbon after the polymerization. Such nonspherical shapes were based on the volume reduction due to the evaporation. The primary factors influencing the particle shape seemed to be the absorption rate of the hydrocarbon into the resulting PS/poly(EHMA)/hydrocarbon composite particles during the polymerization, which affected the viscosities and the volumes of the PS and poly(EHMA) phases. It was found that the morphological development during the polymerization was retarded at "hamburger-like" morphology, which is a precursor of the disc-like particle, although this morphology is a thermodynamically metastable state.

  6. Water-resistant, monodispersed and stably luminescent CsPbBr3/CsPb2Br5 core-shell-like structure lead halide perovskite nanocrystals

    Science.gov (United States)

    Qiao, Bo; Song, Pengjie; Cao, Jingyue; Zhao, Suling; Shen, Zhaohui; Gao, Di; Liang, Zhiqin; Xu, Zheng; Song, Dandan; Xu, Xurong

    2017-11-01

    Lead halide perovskite materials are thriving in optoelectronic applications due to their excellent properties, while their instability due to the fact that they are easily hydrolyzed is still a bottleneck for their potential application. In this work, water-resistant, monodispersed and stably luminescent cesium lead bromine perovskite nanocrystals coated with CsPb2Br5 were obtained using a modified non-stoichiometric solution-phase method. CsPb2Br5 2D layers were coated on the surface of CsPbBr3 nanocrystals and formed a core-shell-like structure in the synthetic processes. The stability of the luminescence of the CsPbBr3 nanocrystals in water and ethanol atmosphere was greatly enhanced by the photoluminescence-inactive CsPb2Br5 coating with a wide bandgap. The water-stable enhanced nanocrystals are suitable for long-term stable optoelectronic applications in the atmosphere.

  7. Distinctiveness and the Attentional Boost Effect.

    Science.gov (United States)

    Smith, S Adam; Mulligan, Neil W

    2018-02-01

    The typical pattern of results in divided attention experiments is that subjects in a full attention (FA) condition perform markedly better on tests of memory than subjects in a divided attention (DA) condition which forces subjects to split their attention between studying to-be-remembered stimuli and completing some peripheral task. Nevertheless, recent research has revealed an exception wherein stimuli presented concurrently with targets in a detection task are better remembered than stimuli which co-occur with distractors. Research on this phenomenon-the Attentional Boost Effect (ABE)-has demonstrated that the ABE is reduced or eliminated for words made distinct by their word frequency or orthographic properties-forms of secondary distinctiveness. However, it is unclear how primary distinctiveness effects may interact with the ABE. The current study observed how perceptual and semantic manipulations of primary distinctiveness via the isolation paradigm interact with the ABE, and revealed these interactions to be fundamentally different than those of secondary distinctiveness. Specifically, whereas the effects of secondary distinctiveness in earlier studies were found to be redundant with the ABE, the current study demonstrated that items characterized by primary distinctiveness enhanced memory performance independently of the ABE. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  8. Ca isotopic fractionation patterns in forest ecosystems

    Science.gov (United States)

    Kurtz, A. C.; Takagi, K.

    2012-12-01

    Calcium stable isotope ratios are an emerging tracer of the biogeochemical cycle of Ca that are just beginning to see significant application to forest ecosystems. The primary source of isotopic fractionation in these systems is discrimination against light Ca during uptake by plant roots. Cycling of vegetation-fractionated Ca establishes isotopically distinct Ca pools within a forest ecosystem. In some systems, the shallow soil exchangeable Ca pool is isotopically heavy relative to Ca inputs. This has been explained by preferential removal of light Ca from the soil. In other systems, the soil exchange pool is isotopically light relative to inputs, which is explained by recycling of plant-fractionated light Ca back into soil. Thus vegetation uptake of light Ca has been called on to account for both isotopically heavy and light Ca in the shallow soil exchange pools. We interpret patterns in ecosystem δ44Ca with the aid of a simple box model of the forest Ca cycle. We suggest that the δ44Ca of exchangeable Ca in the shallow soil pool primarily reflects the relative magnitude of three key fluxes in a forest Ca cycle, 1) the flux of external Ca into the system via weathering or atmospheric deposition, 2) the uptake flux of Ca from soils into the vegetation pool, and 3) the return flux of Ca to shallow soils via remineralization of leaf litter. Two observations that emerge from our model may aid in the application of Ca isotopes to provide insight into the forest Ca cycle. First, regardless of the magnitude of both vegetation Ca uptake and isotopic fractionation, the δ44Ca of the soil exchange pool will equal the input δ44Ca unless the plant uptake and remineralization fluxes are out of balance. A second observation is that the degree to which the shallow soil exchange pool δ44Ca can differ from the input ratio is controlled by the relative rates of biological uptake and external Ca input. Significant differences between soil exchange and input δ44Ca are seen only

  9. Monodispersed LaF3 nanocrystals: shape-controllable synthesis, excitation-power-dependent multi-color tuning and intense near-infrared upconversion emission

    Science.gov (United States)

    Rao, Ling; Lu, Wei; Ren, Guozhong; Wang, Haibo; Yi, Zhigao; Liu, Hongrong; Zeng, Songjun

    2014-02-01

    In this study, monodispersed and high-quality hexagonal phase LaF3 nanocrystals with different shapes and sizes were synthesized by a solvothermal method using oleic acid as the stabilizing agent. The as-prepared LaF3 nanocrystals were characterized by transmission electron microscopy (TEM), x-ray diffraction (XRD), and analysis of the upconversion spectra. The TEM results reveal that the samples present high uniformity and monodispersity and are self-assembled into a two-dimensional ordered array. Moreover, the shape, size and structure of the nanocrystals can be readily tuned by adjusting the NaF content. With increasing content of NaF, the shape of the LaF3 nanocrystals changed from particle to rod and the size gradually increased. More importantly, high NaF content favors the formation of one-dimensional nanorods. High Y b3+ and Er3+ content is beneficial to synthesizing the hexagonal phase of NaLaF4 nanocrystals. Furthermore, the TEM results show that the shape and size of the LaF3 nanocrystals can also be tuned by doping lanthanide ions, which provides a new route for size and shape control of nanocrystals. In addition, LaF3 nanocrystals co-doped with Y b3+/Tm3+ present efficient near-infrared (NIR)-NIR upconversion luminescence. More importantly, the upconversion luminescent colors can be readily tuned from blue-white to blue by adjusting the excitation power. Therefore, it is expected that these LaF3 nanocrystals with well-controlled shape, size and NIR-NIR upconversion emission have potential applications in biomedical imaging fields.

  10. UV-visible light-activated Ag-decorated, monodisperse TiO2 aggregates for treatment of the pharmaceutical oxytetracycline.

    Science.gov (United States)

    Han, Changseok; Likodimos, Vlassis; Khan, Javed Ali; Nadagouda, Mallikarjuna N; Andersen, Joel; Falaras, Polycarpos; Rosales-Lombardi, Pablo; Dionysiou, Dionysios D

    2014-10-01

    Noble metal Ag-decorated, monodisperse TiO2 aggregates were successfully synthesized by an ionic strength-assisted, simple sol-gel method and were used for the photocatalytic degradation of the antibiotic oxytetracycline (OTC) under both UV and visible light (UV-visible light) irradiation. The synthesized samples were characterized by X-ray diffraction analysis (XRD); UV-vis diffuse reflectance spectroscopy; environmental scanning electron microscopy (ESEM); transmission electron microscopy (TEM); high-resolution TEM (HR-TEM); micro-Raman, energy-dispersive X-ray spectroscopy (EDS); and inductively coupled plasma optical emission spectrometry (ICP-OES). The results showed that the uniformity of TiO2 aggregates was finely tuned by the sol-gel method, and Ag was well decorated on the monodisperse TiO2 aggregates. The absorption of the samples in the visible light region increased with increasing Ag loading that was proportional to the amount of Ag precursor added in the solution over the tested concentration range. The Brunauer, Emmett, and Teller (The BET) surface area slightly decreased with increasing Ag loading on the TiO2 aggregates. Ag-decorated TiO2 samples demonstrated enhanced photocatalytic activity for the degradation of OTC under UV-visible light illumination compared to that of pure TiO2. The sample containing 1.9 wt% Ag showed the highest photocatalytic activity for the degradation of OTC under both UV-visible light and visible light illumination. During the experiments, the detected Ag leaching for the best TiO2-Ag photocatalyst was much lower than the National Secondary Drinking Water Regulation for Ag limit (0.1 mg L(-1)) issued by the US Environmental Protection Agency.

  11. Development of new ionic gelation strategy: Towards the preparation of new monodisperse and stable hyaluronic acid/β-cyclodextrin-grafted chitosan nanoparticles as drug delivery carriers for doxorubicin

    Science.gov (United States)

    Mihoub, Amina Ben; Saidat, Boubakeur; Bal, Youssef; Frochot, Céline; Vanderesse, Régis; Acherar, Samir

    2018-01-01

    In the present study, β-cyclodextrin-grafted chitosan nanoparticles (β-CD-g-CS NPs) were prepared using a new ionic gelation strategy involving a synergistic effect of NaCl (150 mmol/L), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES, 10 mmol/L), and water bath sonication. This new strategy afforded smaller and more monodisperse β-CD-g-CS NPs vs. the classical ionic gelation method. New HA/β-CD-g-CS NPs were also prepared using the above-mentioned strategy by adding hyaluronic acid (HA) to the β-CD-g-CS copolymer at different weight ratios until the ZP values conversion. The best result was obtained with the weight ratio of w(HA):w(β-CD-g-CS) = 2:1 and furnished new spherical and smooth HA/β-CD-g-CS NPs. Furthermore, the stability of β- CD-g-CS NPs and HA/β-CD-g-CS NPs at 4°C in physiological medium (pH 7.4) was compared for 3 weeks period and showed that HA/β-CD-g-CS NPs were more stable all maintaining their monodispersity and high negative ZP values compared to β-CD-g-CS NPs. Finally, preliminary study of HA/β-CD-g-CS NPs as carrier for the controlled release of the anticancer drug doxorubicin was investigated. These new HA/β-CD-g-CS NPs can potentially be used as drug delivery and targeting systems for cancer treatment.

  12. Crossflow type silicon microchannel substrate monodispersion oil-in-water emulsion manufacture; Kurosufuro gata shirikon maikuro chaneru kiban wo mochiita tanbunsan suchuyu emarushon no sakusei

    Energy Technology Data Exchange (ETDEWEB)

    Kawakatsu, Takahiro [Tohoku University, Miyagi (Japan). Graduate School; Komori, Hideai; Najima, Mitsutashi; Kikuchi, Yuji; Yonemoto, Toshikuni

    1999-05-05

    The new technique, which continuously produced the monodispersion oil-in-water (0/W) emulsion using the crossflow type silicon microchannel substrate, was developed. On the silicon monocrystal substrate, the watercourse as the liquid of the continuous phase flowed was produced, and the column of the equal slit of the size in both walls of the watercourse was precisely processed. By closing the upper part in the slit by the clamp of the flat glass board in the microchannel substrate, the microchannel column was formed. Through the microchannel, the oil droplet in which the size was even was formed by sending out the oil (triolein) in the water (0.3wt% sodium lauryl sulfate aqueous solution) of continuous phase which is flowing in respect of the watercourse. The size of the oil droplet is greatly dependent on the structure of the microchannel regulated by microchannel width, microchannel height and terrace length (the even part of which the microchannel exit was equipped). Monodispersion emulsion of 16,20 and 48 {mu}m at the average droplet diameter was formed by using microchannel substrate of the three types of which the structure differs. Droplet diameter decreased, when the substrate which formed large droplet of 48 {mu}m in which the water current quantity is 1.4x10{sup -2}mLmin{sup -1} was used, when the flow rate increased. However, there was no a flow rate at droplet diameter, even if it was made to change from 1.4x10{sup -2} to 2.4mLmin{sup -1}, 16 {mu}m 20 {mu}m small change. In all cases, the droplet size distribution was narrow, and the geometry standard deviation was under 1.03. (translated by NEDO)

  13. Development of new ionic gelation strategy: Towards the preparation of new monodisperse and stable hyaluronic acid/β-cyclodextrin-grafted chitosan nanoparticles as drug delivery carriers for doxorubicin

    Science.gov (United States)

    Mihoub, Amina Ben; Saidat, Boubakeur; Bal, Youssef; Frochot, Céline; Vanderesse, Régis; Acherar, Samir

    2018-03-01

    In the present study, β-cyclodextrin-grafted chitosan nanoparticles (β-CD- g-CS NPs) were prepared using a new ionic gelation strategy involving a synergistic effect of NaCl (150 mmol/L), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES, 10 mmol/L), and water bath sonication. This new strategy afforded smaller and more monodisperse β-CD- g-CS NPs vs. the classical ionic gelation method. New HA/β-CD- g-CS NPs were also prepared using the above-mentioned strategy by adding hyaluronic acid (HA) to the β-CD- g-CS copolymer at different weight ratios until the ZP values conversion. The best result was obtained with the weight ratio of w(HA): w(β-CD- g-CS) = 2:1 and furnished new spherical and smooth HA/β-CD- g-CS NPs. Furthermore, the stability of β- CD- g-CS NPs and HA/β-CD- g-CS NPs at 4°C in physiological medium (pH 7.4) was compared for 3 weeks period and showed that HA/β-CD- g-CS NPs were more stable all maintaining their monodispersity and high negative ZP values compared to β-CD- g-CS NPs. Finally, preliminary study of HA/β-CD- g-CS NPs as carrier for the controlled release of the anticancer drug doxorubicin was investigated. These new HA/β-CD- g-CS NPs can potentially be used as drug delivery and targeting systems for cancer treatment.

  14. Annealing effect on the structural and optical properties of Cr/α-Cr2O3 monodispersed particles based solar absorbers

    International Nuclear Information System (INIS)

    Khamlich, S.; McCrindle, R.; Nuru, Z.Y.; Cingo, N.; Maaza, M.

    2013-01-01

    Graphical abstract: A cost-effective and environmentally friendly green chemical method, the so-called aqueous chemical growth (ACG) method, was used to deposit chromium/alpha-chromium(III) oxide, Cr/α-Cr 2 O 3 , monodispersed particles, for solar absorbers applications. Highlights: ► Cr/α-Cr 2 O 3 have been deposited by the aqueous chemical growth (ACG) method. ► High temperature annealing affects the optical selectivity of the deposited particles. ► Oxygen diffusion to the interface at high temperature results in the oxidization of the substrate. - Abstract: A cost-effective and environmentally friendly green chemical method, the so-called aqueous chemical growth (ACG) method, was used to deposit chromium/alpha-chromium(III) oxide, Cr/α-Cr 2 O 3 , monodispersed particles, for solar absorbers applications. The deposited particles were annealed at various temperatures in a hydrogen atmosphere for 2 h to study the annealing temperature dependence of the structural, chemical and optical properties of the particles grown on tantalum substrates. The deposited Cr/α-Cr 2 O 3 was characterized by X-ray diffraction (XRD), attenuated total reflection (ATR), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and diffuse reflectance UV–vis–NIR spectroscopy. The XRD and ATR analysis indicated that by increasing annealing temperature, the particles crystallinity was improved and Ta 2 O 5 was formed around 600 °C, due to the fast oxygen diffusion from the deposited α-Cr 2 O 3 toward the tantalum substrate. The optical measurements show that samples annealed at 400 and 500 °C exhibit the targeted high absorbing optical characteristics of “Black chrome”, while those annealed below 400 °C and above 500 °C show a significant low absorptivity and high emissivity.

  15. On a Fractional Binomial Process

    Science.gov (United States)

    Cahoy, Dexter O.; Polito, Federico

    2012-02-01

    The classical binomial process has been studied by Jakeman (J. Phys. A 23:2815-2825, 1990) (and the references therein) and has been used to characterize a series of radiation states in quantum optics. In particular, he studied a classical birth-death process where the chance of birth is proportional to the difference between a larger fixed number and the number of individuals present. It is shown that at large times, an equilibrium is reached which follows a binomial process. In this paper, the classical binomial process is generalized using the techniques of fractional calculus and is called the fractional binomial process. The fractional binomial process is shown to preserve the binomial limit at large times while expanding the class of models that include non-binomial fluctuations (non-Markovian) at regular and small times. As a direct consequence, the generality of the fractional binomial model makes the proposed model more desirable than its classical counterpart in describing real physical processes. More statistical properties are also derived.

  16. Fractional Trajectories: Decorrelation Versus Friction

    Science.gov (United States)

    2013-07-27

    numerical solutions of fractional-order predator–prey and rabies models, J. Math. Anal. Appl. 325 (2007) 542–553. [6] D. West, B.J. West, On allometry...E 70 (2004) 051103. [17] E.W. Montroll, G.H. Weiss, Random walks on lattices . II, J. Math. Phys. 6 (1965) 167–181. [18] R. Metzler, J. Klafter, The

  17. Complexity and the Fractional Calculus

    Science.gov (United States)

    2013-01-01

    and H. A. A. El-Saka, “Equi- librium points, stability and numerical solutions of fractional- order predator-prey and rabies models,” Journal of...Montroll and G. H. Weiss, “Random walks on lattices . II,” Journal of Mathematical Physics, vol. 6, pp. 167–181, 1965. [35] J.-P. Bouchaud and A. Georges

  18. Math Fair: Focus on Fractions

    Science.gov (United States)

    Mokashi, Neelima A.

    2009-01-01

    This article depicts the rewarding experience of creating mathematical environments for kindergarten and elementary students by focusing on one of the most important and often difficult-to-grasp concepts (fractions) through play methods incorporated into a math fair. The basic concept of a math fair is threefold: (1) to create preplanned,…

  19. Riesz potential versus fractional Laplacian

    KAUST Repository

    Ortigueira, Manuel Duarte

    2014-09-01

    This paper starts by introducing the Grünwald-Letnikov derivative, the Riesz potential and the problem of generalizing the Laplacian. Based on these ideas, the generalizations of the Laplacian for 1D and 2D cases are studied. It is presented as a fractional version of the Cauchy-Riemann conditions and, finally, it is discussed with the n-dimensional Laplacian.

  20. Geodesic continued fractions and LLL

    NARCIS (Netherlands)

    Beukers, F

    2014-01-01

    We discuss a proposal for a continued fraction-like algorithm to determine simultaneous rational approximations to dd real numbers α1,…,αdα1,…,αd. It combines an algorithm of Hermite and Lagarias with ideas from LLL-reduction. We dynamically LLL-reduce a quadratic form with parameter tt as t↓0t↓0.

  1. Fractional Processes and Fractional-Order Signal Processing Techniques and Applications

    CERN Document Server

    Sheng, Hu; Qiu, TianShuang

    2012-01-01

    Fractional processes are widely found in science, technology and engineering systems. In Fractional Processes and Fractional-order Signal Processing, some complex random signals, characterized by the presence of a heavy-tailed distribution or non-negligible dependence between distant observations (local and long memory), are introduced and examined from the ‘fractional’ perspective using simulation, fractional-order modeling and filtering and realization of fractional-order systems. These fractional-order signal processing (FOSP) techniques are based on fractional calculus, the fractional Fourier transform and fractional lower-order moments. Fractional Processes and Fractional-order Signal Processing: • presents fractional processes of fixed, variable and distributed order studied as the output of fractional-order differential systems; • introduces FOSP techniques and the fractional signals and fractional systems point of view; • details real-world-application examples of FOSP techniques to demonstr...

  2. Fractional governing equations of transient groundwater flow in confined aquifers with multi-fractional dimensions in fractional time

    Science.gov (United States)

    Kavvas, M. Levent; Tu, Tongbi; Ercan, Ali; Polsinelli, James

    2017-10-01

    Using fractional calculus, a dimensionally consistent governing equation of transient, saturated groundwater flow in fractional time in a multi-fractional confined aquifer is developed. First, a dimensionally consistent continuity equation for transient saturated groundwater flow in fractional time and in a multi-fractional, multidimensional confined aquifer is developed. For the equation of water flux within a multi-fractional multidimensional confined aquifer, a dimensionally consistent equation is also developed. The governing equation of transient saturated groundwater flow in a multi-fractional, multidimensional confined aquifer in fractional time is then obtained by combining the fractional continuity and water flux equations. To illustrate the capability of the proposed governing equation of groundwater flow in a confined aquifer, a numerical application of the fractional governing equation to a confined aquifer groundwater flow problem was also performed.

  3. Nanocomposites of Highly Monodisperse Encapsulated Superparamagnetic Iron Oxide Nanocrystals Homogeneously Dispersed in a Poly(ethylene Oxide) Melt.

    Science.gov (United States)

    Feld, Artur; Koll, Rieke; Fruhner, Lisa Sarah; Krutyeva, Margarita; Pyckhout-Hintzen, Wim; Weiß, Christine; Heller, Hauke; Weimer, Agnes; Schmidtke, Christian; Appavou, Marie-Sousai; Kentzinger, Emmanuel; Allgaier, Jürgen; Weller, Horst

    2017-04-25

    Nanocomposite materials based on highly stable encapsulated superparamagnetic iron oxide nanocrystals (SPIONs) were synthesized and characterized by scattering methods and transmission electron microscopy (TEM). The combination of advanced synthesis and encapsulation techniques using different diblock copolymers and the thiol-ene click reaction for cross-linking the polymeric shell results in uniform hybrid SPIONs homogeneously dispersed in a poly(ethylene oxide) matrix. Small-angle X-ray scattering and TEM investigations demonstrate the presence of mostly single particles and a negligible amount of dyads. Consequently, an efficient control over the encapsulation and synthetic conditions is of paramount importance to minimize the fraction of agglomerates and to obtain uniform hybrid nanomaterials.

  4. Soil tension mediates isotope fractionation during soil water evaporation

    Science.gov (United States)

    Gaj, Marcel; McDonnell, Jeffrey

    2017-04-01

    Isotope tracing of the water cycle is increasing in its use and usefulness. Many new studies are extracting soil waters and relating these to streamflow, groundwater recharge and plant transpiration. Nevertheless, unlike isotope fractionation factors from open water bodies, soil water fractionation factors are poorly understood and until now, only empirically derived. In contrast to open water evaporation where temperature, humidity and vapor pressure gradient define fractionation (as codified in the well-known Craig and Gordon model), soil water evaporation includes additionally, fractionation by matrix effects. There is yet no physical explanation of kinetic and equilibrium fraction from soil water within the soil profile. Here we present a simple laboratory experiment with four admixtures of soil grain size (from sand to silt to clay). Oven-dried samples were spiked with water of known isotopic composition at different soil water contents. Soils were then stored in sealed bags and the headspace filled with dry air and allowed to equilibrate for 24hours. Isotopic analysis of the headspace vapor was done with a Los Gatos Inc. water vapor isotope analyzer. Soil water potential of subsamples were measured with a water potential meter. We show for the first time that soil tension controls isotope fractionation in the resident soil water. Below a Pf 3.5 the δ-values of 18O and 2H of the headspace vapor is more positive and increases with increasing soil water potential. Surprisingly, we find that the relationship between soil tension and equilibrium fractionation is independent of soil type. However, δ-values of each soil type plot along a distinct evaporation line. These results indicate that equilibrium fractionation is affected by soil tension in addition to temperature. Therefore, at high soil water tension (under dry conditions) equilibrium fractionation is not consistent with current empirical formulations that ignore these effects. These findings may have

  5. Lithium isotope fractionation by diffusion in minerals Part 2: Olivine

    Science.gov (United States)

    Richter, Frank; Chaussidon, Marc; Bruce Watson, E.; Mendybaev, Ruslan; Homolova, Veronika

    2017-12-01

    Recent experiments have shown that lithium isotopes can be significantly fractionated by diffusion in silicate liquids and in augite. Here we report new laboratory experiments that document similarly large lithium isotopic fractionation by diffusion in olivine. Two types of experiments were used. A powder-source method where lithium from finely ground spodumene (LiAlSi2O6) diffused into oriented San Carlos olivine, and piston cylinder annealing experiments where Kunlun clinopyroxene (∼30 ppm lithium) and oriented San Carlos olivine (∼2 ppm lithium) were juxtaposed. The lithium concentration along traverses across the run products was measured using both laser ablation as a source for a Varian 820-MS quadrupole mass spectrometer and a CAMECA 1270 secondary ion mass spectrometer. The CAMECA 1270 was also used to measure the lithium isotopic fractionation across olivine grains recovered from the experiments. The lithium isotopes were found to be fractionationed by many tens of permil in the diffusion boundary layer at the grain edges as a result of 6Li diffusing significantly faster than 7Li. The lithium concentration and isotopic fractionation data across the olivine recovered from the different experiments were modeled using calculations in which lithium was assumed to be of two distinct types - one being fast diffusing interstitial lithium, the other much less mobile lithium on a metal site. The two-site diffusion model involves a large number of independent parameters and we found that different choices of the parameters can produce very comparable fits to the lithium concentration profiles and associated isotopic fractionation. Because of this nonuniqueness we are able to determine only a range for the relative diffusivity of 6Li compared to 7Li. When the mass dependence of lithium diffusion is parameterized as D6Li /D7Li =(7 / 6) β , the isotope fractionation for diffusion along the a and c crystallographic direction of olivine can be fit by β = 0.4 ± 0

  6. Neuroimaging distinction between neurological and psychiatric disorders.

    Science.gov (United States)

    Crossley, Nicolas A; Scott, Jessica; Ellison-Wright, Ian; Mechelli, Andrea

    2015-11-01

    It is unclear to what extent the traditional distinction between neurological and psychiatric disorders reflects biological differences. To examine neuroimaging evidence for the distinction between neurological and psychiatric disorders. We performed an activation likelihood estimation meta-analysis on voxel-based morphometry studies reporting decreased grey matter in 14 neurological and 10 psychiatric disorders, and compared the regional and network-level alterations for these two classes of disease. In addition, we estimated neuroanatomical heterogeneity within and between the two classes. Basal ganglia, insula, sensorimotor and temporal cortex showed greater impairment in neurological disorders; whereas cingulate, medial frontal, superior frontal and occipital cortex showed greater impairment in psychiatric disorders. The two classes of disorders affected distinct functional networks. Similarity within classes was higher than between classes; furthermore, similarity within class was higher for neurological than psychiatric disorders. From a neuroimaging perspective, neurological and psychiatric disorders represent two distinct classes of disorders. © The Royal College of Psychiatrists 2015.

  7. Note on fractional Mellin transform and applications.

    Science.gov (United States)

    Kılıçman, Adem; Omran, Maryam

    2016-01-01

    In this article, we define the fractional Mellin transform by using Riemann-Liouville fractional integral operator and Caputo fractional derivative of order [Formula: see text] and study some of their properties. Further, some properties are extended to fractional way for Mellin transform.

  8. On the fractional calculus of Besicovitch function

    International Nuclear Information System (INIS)

    Liang Yongshun

    2009-01-01

    Relationship between fractional calculus and fractal functions has been explored. Based on prior investigations dealing with certain fractal functions, fractal dimensions including Hausdorff dimension, Box dimension, K-dimension and Packing dimension is shown to be a linear function of order of fractional calculus. Both Riemann-Liouville fractional calculus and Weyl-Marchaud fractional derivative of Besicovitch function have been discussed.

  9. Generalized Arcsine Laws for Fractional Brownian Motion.

    Science.gov (United States)

    Sadhu, Tridib; Delorme, Mathieu; Wiese, Kay Jörg

    2018-01-26

    The three arcsine laws for Brownian motion are a cornerstone of extreme-value statistics. For a Brownian B_{t} starting from the origin, and evolving during time T, one considers the following three observables: (i) the duration t_{+} the process is positive, (ii) the time t_{last} the process last visits the origin, and (iii) the time t_{max} when it achieves its maximum (or minimum). All three observables have the same cumulative probability distribution expressed as an arcsine function, thus the name arcsine laws. We show how these laws change for fractional Brownian motion X_{t}, a non-Markovian Gaussian process indexed by the Hurst exponent H. It generalizes standard Brownian motion (i.e., H=1/2). We obtain the three probabilities using a perturbative expansion in ϵ=H-1/2. While all three probabilities are different, this distinction can only be made at second order in ϵ. Our results are confirmed to high precision by extensive numerical simulations.

  10. Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus

    International Nuclear Information System (INIS)

    He, Ji-Huan; Elagan, S.K.; Li, Z.B.

    2012-01-01

    The fractional complex transform is suggested to convert a fractional differential equation with Jumarie's modification of Riemann–Liouville derivative into its classical differential partner. Understanding the fractional complex transform and the chain rule for fractional calculus are elucidated geometrically. -- Highlights: ► The chain rule for fractional calculus is invalid, a counter example is given. ► The fractional complex transform is explained geometrically. ► Fractional equations can be converted into differential equations.

  11. Complexity and the Fractional Calculus

    Directory of Open Access Journals (Sweden)

    Pensri Pramukkul

    2013-01-01

    Full Text Available We study complex processes whose evolution in time rests on the occurrence of a large and random number of events. The mean time interval between two consecutive critical events is infinite, thereby violating the ergodic condition and activating at the same time a stochastic central limit theorem that supports the hypothesis that the Mittag-Leffler function is a universal property of nature. The time evolution of these complex systems is properly generated by means of fractional differential equations, thus leading to the interpretation of fractional trajectories as the average over many random trajectories each of which satisfies the stochastic central limit theorem and the condition for the Mittag-Leffler universality.

  12. Intelligent fractions learning system: implementation

    CSIR Research Space (South Africa)

    Smith, Andrew C

    2011-05-01

    Full Text Available to capture and analyse the children?s interactions), the scalability of the system makes it attractive in applications where automatic data capture is required. This paper is structured as follows. First, we describe the objectives of the system. Next we... to fractions. Our aim with the current research project is to extend the existing UFractions learning system to incorporate automatic data capturing. ?Intelligent UFractions? allows a teacher to remotely monitor the children?s progress during...

  13. Fractional viscoelastic beam under torsion

    Science.gov (United States)

    Colinas-Armijo, N.; Cutrona, S.; Di Paola, M.; Pirrotta, A.

    2017-07-01

    This paper introduces a study on twisted viscoelastic beams, having considered fractional calculus to capture the viscoelastic behaviour. Further another novelty of this paper is extending a recent numerical approach, labelled line elementless method (LEM), to viscoelastic beams. The latter does not require any discretization neither in the domain nor in the boundary. Some numerical applications have been reported to demonstrate the efficiency and accuracy of the method.

  14. FRACTIONAL DYNAMICS AT MULTIPLE TIMES

    OpenAIRE

    Meerschaert, Mark M.; Straka, Peter

    2012-01-01

    A continuous time random walk (CTRW) imposes a random waiting time between random particle jumps. CTRW limit densities solve a fractional Fokker-Planck equation, but since the CTRW limit is not Markovian, this is not sufficient to characterize the process. This paper applies continuum renewal theory to restore the Markov property on an expanded state space, and compute the joint CTRW limit density at multiple times.

  15. FRACTIONAL DYNAMICS AT MULTIPLE TIMES.

    Science.gov (United States)

    Meerschaert, Mark M; Straka, Peter

    2012-11-01

    A continuous time random walk (CTRW) imposes a random waiting time between random particle jumps. CTRW limit densities solve a fractional Fokker-Planck equation, but since the CTRW limit is not Markovian, this is not sufficient to characterize the process. This paper applies continuum renewal theory to restore the Markov property on an expanded state space, and compute the joint CTRW limit density at multiple times.

  16. Topological transformation of fractional optical vortex beams using computer generated holograms

    Science.gov (United States)

    Maji, Satyajit; Brundavanam, Maruthi M.

    2018-04-01

    Optical vortex beams with fractional topological charges (TCs) are generated by the diffraction of a Gaussian beam using computer generated holograms embedded with mixed screw-edge dislocations. When the input Gaussian beam has a finite wave-front curvature, the generated fractional vortex beams show distinct topological transformations in comparison to the integer charge optical vortices. The topological transformations at different fractional TCs are investigated through the birth and evolution of the points of phase singularity, the azimuthal momentum transformation, occurrence of critical points in the transverse momentum and the vorticity around the singular points. This study is helpful to achieve better control in optical micro-manipulation applications.

  17. Distinctiveness of Saudi Arabian EFL Learners

    Directory of Open Access Journals (Sweden)

    Manssour Habbash

    2016-04-01

    Full Text Available In view of the increasing concern among English language teachers dealing with students from Saudi Arabia, as it manifests in TESOL community discussions, about the uniqueness of Saudi Arabian EFL learners, this paper attempts to document the outcome of a study of their distinctiveness from the perspective of expatriate teachers working for PYPs (Preparatory Year Programs in Saudi Arabia. This study examines the distinctiveness with regard to the learning attitudes of Saudi students that are often cultivated by the culture and academic environment in their homeland. Employing an emic approach for collecting the required data an analysis was carried out in light of the other studies on ‘education’ in Saudi Arabia that have particular reference to the factors that can positively influence student motivation, student success and the academic environment. The findings were used in constructing the rationale behind such distinctiveness. Assuming that the outcome of the discussion on the findings of this exploration can be helpful for teachers in adapting their teaching methodology and improving their teacher efficacy in dealing with students both from the kingdom and in the kingdom, some recommendations are made. Keywords: China Distinctiveness, Saudi Arabian University context, Expatriate teachers’ perspective, Distinctiveness Theory

  18. Fractional Sums and Differences with Binomial Coefficients

    Directory of Open Access Journals (Sweden)

    Thabet Abdeljawad

    2013-01-01

    Full Text Available In fractional calculus, there are two approaches to obtain fractional derivatives. The first approach is by iterating the integral and then defining a fractional order by using Cauchy formula to obtain Riemann fractional integrals and derivatives. The second approach is by iterating the derivative and then defining a fractional order by making use of the binomial theorem to obtain Grünwald-Letnikov fractional derivatives. In this paper we formulate the delta and nabla discrete versions for left and right fractional integrals and derivatives representing the second approach. Then, we use the discrete version of the Q-operator and some discrete fractional dual identities to prove that the presented fractional differences and sums coincide with the discrete Riemann ones describing the first approach.

  19. Availability and bio-accessibility of metals in the clay fraction of urban soils of Sevilla.

    Science.gov (United States)

    Madrid, F; Díaz-Barrientos, E; Madrid, L

    2008-12-01

    The availability of Cd, Cr, Cu, Ni, Mn, Pb and Zn present in the finest size particles of urban soils is studied by comparing the concentrations in the clay fraction with those extracted from the whole soil by either single-extraction or sequential extraction method. Many metals are preferentially present in the finest particles as compared to coarser fractions. This is true for most metals studied, except Mn and, perhaps, Cd. Those metals present in the clay fraction are often in easily bio-accessible forms, especially Cu, Pb and Zn. The results suggest that bio-accessible forms of these three metals are distributed among the three sequential fractions, and even the fraction considered as 'residual' is also bio-accessible to a significant extent. The statistical analysis shows some distinctions among metals that are compared to the 'urban', 'natural', or intermediate behaviour of the various metals as proposed earlier in the literature.

  20. Distinctive Dynamic Capabilities for New Business Creation

    DEFF Research Database (Denmark)

    Rosenø, Axel; Enkel, Ellen; Mezger, Florian

    2013-01-01

    This study examines the distinctive dynamic capabilities for new business creation in established companies. We argue that these are very different from those for managing incremental innovation within a company's core business. We also propose that such capabilities are needed in both slow...... and fast-paced industries, and that similarities exist across industries. Hence, the study contributes to dynamic capabilities literature by: 1) identifying the distinctive dynamic capabilities for new business creation; 2) shifting focus away from dynamic capabilities in environments characterised by high...... clock-speed and uncertainty towards considering dynamic capabilities for the purpose of developing new businesses, which also implies a high degree of uncertainty. Based on interviews with 33 companies, we identify distinctive dynamic capabilities for new business creation, find that dynamic...

  1. On Hobbes’s distinction of accidents

    Directory of Open Access Journals (Sweden)

    Lupoli Agostino

    2012-06-01

    Full Text Available An interpolation introduced by K. Schuhmann in his critical edition of "De corpore" (chap. VI, § 13 diametrically overturns the meaning of Hobbes’s doctrine of distinction of accidents in comparison with all previous editions. The article focuses on the complexity of this crucial juncture in "De corpore" argument on which depends the interpretation of Hobbes’s whole conception of science. It discusses the reasons pro and contra Schuhmann’s interpolation and concludes against it, because it is not compatible with the rationale underlying the complex architecture of "De corpore", which involves a symmetry between the ‘logical’ distinction of accidents and the ‘metaphysical’ distinction of phantasms.

  2. Common and distinct components in data fusion

    DEFF Research Database (Denmark)

    Smilde, Age Klaas; Mage, Ingrid; Næs, Tormod

    2016-01-01

    measurements are obtained. Data fusion is concerned with analyzing such sets of data simultaneously to arrive at a global view of the system under study. One of the upcoming areas of data fusion is exploring whether the data sets have something in common or not. This gives insight into common and distinct...... and understanding their relative merits. This paper provides a unifying framework for this subfield of data fusion by using rigorous arguments from linear algebra. The most frequently used methods for distinguishing common and distinct components are explained in this framework and some practical examples are given...

  3. Facile synthesis of ultrasmall monodisperse ``raisin-bun''-type MoO3/SiO2 nanocomposites with enhanced catalytic properties

    Science.gov (United States)

    Wang, Jiasheng; Li, Xin; Zhang, Shufen; Lu, Rongwen

    2013-05-01

    We report the preparation of ultrasmall monodisperse MoO3/SiO2 nanocomposites in reverse microemulsions formed by Brij-58/cyclohexane/water. The nanocomposites are of ``raisin-bun''-type with 1.0 +/- 0.2 nm MoO3 homogeneously dispersed in 23 +/- 2 nm silica spheres. Characterization is carried out based on transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectrometry (EDS), X-ray powder diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), inductively coupled plasma-optical emission spectrometry (ICP-OES), N2 sorption measurement, and NH3 temperature-programmed desorption (NH3-TPD). The as-prepared MoO3/SiO2 nanocomposites are microporous and exhibit enhanced catalytic activities for acetalization of benzaldehyde with ethylene glycol and can be repeatedly used 5 times without obvious deactivation. The catalytic performance improvement is attributed to the unique structure and ultrasmall size of the nanocomposites.We report the preparation of ultrasmall monodisperse MoO3/SiO2 nanocomposites in reverse microemulsions formed by Brij-58/cyclohexane/water. The nanocomposites are of ``raisin-bun''-type with 1.0 +/- 0.2 nm MoO3 homogeneously dispersed in 23 +/- 2 nm silica spheres. Characterization is carried out based on transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectrometry (EDS), X-ray powder diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), inductively coupled plasma-optical emission spectrometry (ICP-OES), N2 sorption measurement, and NH3 temperature-programmed desorption (NH3-TPD). The as-prepared MoO3/SiO2 nanocomposites are microporous and exhibit enhanced catalytic activities for acetalization of benzaldehyde with ethylene glycol and can be repeatedly used 5 times without obvious deactivation. The catalytic performance improvement is attributed to the unique

  4. Monodispersed Carbon-Coated Cubic NiP2 Nanoparticles Anchored on Carbon Nanotubes as Ultra-Long-Life Anodes for Reversible Lithium Storage.

    Science.gov (United States)

    Lou, Peili; Cui, Zhonghui; Jia, Zhiqing; Sun, Jiyang; Tan, Yingbin; Guo, Xiangxin

    2017-04-25

    In search of new electrode materials for lithium-ion batteries, metal phosphides that exhibit desirable properties such as high theoretical capacity, moderate discharge plateau, and relatively low polarization recently have attracted a great deal of attention as anode materials. However, the large volume changes and thus resulting collapse of electrode structure during long-term cycling are still challenges for metal-phosphide-based anodes. Here we report an electrode design strategy to solve these problems. The key to this strategy is to confine the electroactive nanoparticles into flexible conductive hosts (like carbon materials) and meanwhile maintain a monodispersed nature of the electroactive particles within the hosts. Monodispersed carbon-coated cubic NiP 2 nanoparticles anchored on carbon nanotubes (NiP 2 @C-CNTs) as a proof-of-concept were designed and synthesized. Excellent cyclability (more than 1000 cycles) and capacity retention (high capacities of 816 mAh g -1 after 1200 cycles at 1300 mA g -1 and 654.5 mAh g -1 after 1500 cycles at 5000 mA g -1 ) are characterized, which is among the best performance of the NiP 2 anodes and even most of the phosphide-based anodes reported so far. The impressive performance is attributed to the superior structure stability and the enhanced reaction kinetics incurred by our design. Furthermore, a full cell consisting of a NiP 2 @C-CNTs anode and a LiFePO 4 cathode is investigated. It delivers an average discharge capacity of 827 mAh g -1 based on the mass of the NiP 2 anode and exhibits a capacity retention of 80.7% over 200 cycles, with an average output of ∼2.32 V. As a proof-of-concept, these results demonstrate the effectiveness of our strategy on improving the electrode performance. We believe that this strategy for construction of high-performance anodes can be extended to other phase-transformation-type materials, which suffer a large volume change upon lithium insertion/extraction.

  5. Low power constant fraction discriminator

    International Nuclear Information System (INIS)

    Krishnan, Shanti; Raut, S.M.; Mukhopadhyay, P.K.

    2001-01-01

    This paper describes the design of a low power ultrafast constant fraction discriminator, which significantly reduces the power consumption. A conventional fast discriminator consumes about 1250 MW of power whereas this low power version consumes about 440 MW. In a multi detector system, where the number of discriminators is very large, reduction of power is of utmost importance. This low power discriminator is being designed for GRACE (Gamma Ray Atmospheric Cerenkov Experiments) telescope where 1000 channels of discriminators are required. A novel method of decreasing power consumption has been described. (author)

  6. Natural fractionation of uranium isotopes

    International Nuclear Information System (INIS)

    Noordmann, Janine

    2015-01-01

    The topic of this thesis was the investigation of U (n( 238 U) / n( 235 U)) isotope variations in nature with a focus on samples (1) that represent the continental crust and its weathering products (i.e. granites, shales and river water) (2) that represent products of hydrothermal alteration on mid-ocean ridges (i.e. altered basalts, carbonate veins and hydrothermal water) and (3) from restricted euxinic basins (i.e. from the water column and respective sediments). The overall goal was to explore the environmental conditions and unravel the mechanisms that fractionate the two most abundant U isotopes, n( 238 U) and n( 235 U), on Earth.

  7. Fractional ablative erbium YAG laser

    DEFF Research Database (Denmark)

    Taudorf, Elisabeth H; Haak, Christina S; Erlendsson, Andrés M

    2014-01-01

    BACKGROUND AND OBJECTIVES: Treatment of a variety of skin disorders with ablative fractional lasers (AFXL) is driving the development of portable AFXLs. This study measures micropore dimensions produced by a small 2,940 nm AFXL using a variety of stacked pulses, and determines a model correlating...... energies of 2.3-12.8 mJ/microbeam and total energy levels of 4.6-640 mJ/microchannel. Histological endpoints were ablation depth (AD), coagulation zone (CZ) and ablation width (AW). Data were logarithmically transformed if required prior to linear regression analyses. Results for histological endpoints...

  8. A Local Fractional Variational Iteration Method for Laplace Equation within Local Fractional Operators

    Directory of Open Access Journals (Sweden)

    Yong-Ju Yang

    2013-01-01

    Full Text Available The local fractional variational iteration method for local fractional Laplace equation is investigated in this paper. The operators are described in the sense of local fractional operators. The obtained results reveal that the method is very effective.

  9. Ultra small angle neutron scattering : a tool to study packing of relatively monodisperse small polymer spheres and their binary mixtures

    International Nuclear Information System (INIS)

    Reynolds, Philip A.; McGillivray, Duncan J.; White, John W.; Jackson, Andrew J.; University of Maryland, College Paerk, Maryland, USA

    2009-01-01

    Full text: We measured ultra small angle neutron scattering (USANS) from polymethylmethacrylate spheres tamped down in air. Two slightly polydisperse pure sphere sizes (1.5/-lm and 7.5/-lm diameter) and five mixtures of these were used. All were loose packed (packing fractions 0.3 to 0.6) with nongravitational forces (e.g., friction) important, preventing close packing. The USANS data is rich in information on powder packing. A modified Percus-Yevick fluid model was used to parametrise the data - adequately but not well. The modifications required introduction of small voids, less than the sphere size, and a parameter reflecting substantial deviation from the Percus-Yevick prediction of the sphere-sphere correlation function. The mixed samples fitted less well, and two further modifying factors were necessary. These were local inhomogeneities, where the concentration of same-size spheres, both large and small, deviated from the mean packing, and a factor accounting for the presence within these 'clusters' of self avoidance of the large spheres (that is large spheres coated with more small spheres than Percus-Yevick would predict). The overall deviations from the hardsphere Percus-Yevick model that we find here suggests fluid models of loose packed powders are unlikely to be successful, but lay the groundwork for future theoretical and computational work.

  10. Developmental Growth Trajectories in Understanding of Fraction Magnitude from Fourth through Sixth Grade

    Science.gov (United States)

    Resnick, Ilyse; Jordan, Nancy C.; Hansen, Nicole; Rajan, Vinaya; Rodrigues, Jessica; Siegler, Robert S.; Fuchs, Lynn S.

    2016-01-01

    Development of fraction number line estimation was assessed longitudinally over 5 time points between 4th and 6th grades. Although students showed positive linear growth overall, latent class growth analyses revealed 3 distinct growth trajectory classes: Students who were highly accurate from the start and became even more accurate (n = 154);…

  11. Why Learning Common Fractions Is Uncommonly Difficult: Unique Challenges Faced by Students with Mathematical Disabilities

    Science.gov (United States)

    Berch, Daniel B.

    2017-01-01

    In this commentary, I examine some of the distinctive, foundational difficulties in learning fractions and other types of rational numbers encountered by students with a mathematical learning disability and how these differ from the struggles experienced by students classified as low achieving in math. I discuss evidence indicating that students…

  12. The Distinctive Difficulties of Disagreeable Youth

    Science.gov (United States)

    Laursen, Brett; Hafen, Christopher A.; Rubin, Kenneth H.; Booth-LaForce, Cathryn; Rose-Krasnor, Linda

    2010-01-01

    This study examines whether disagreeable youth are distinct from aggressive youth, victimized youth, and withdrawn youth. Young adolescents (120 girls and 104 boys, M = 13.59 years old) completed personality and adjustment inventories. Aggression, withdrawal, and victimization scores were derived from peer nominations (N = 807). Cluster analyses…

  13. Hydraulic fracturing with distinct element method

    NARCIS (Netherlands)

    Pruiksma, J.P.; Bezuijen, A.

    2002-01-01

    In this report, hydraulic fracturing is investigated using the distinct element code PFC2D from Itasca. Special routines were written to be able to model hydraulic fracturing. These include adding fluid flow to PFC2D and updating the fluid flow domains when fractures appear. A brief description of

  14. Child Prodigies: A Distinctive Form of Giftedness.

    Science.gov (United States)

    Feldman, David Henry

    1993-01-01

    This discussion sees child prodigy as a distinct form of giftedness characterized by a more focused, specialized, and domain-specific form of giftedness than seen in other gifted children. The child prodigy phenomenon demonstrates the complex relationships between psychometric intelligence in the traditional sense and expression of talent within…

  15. Simultaneous occurrence of distinct symmetries in nuclei

    International Nuclear Information System (INIS)

    Leviatan, A.

    2016-01-01

    We show that distinct emergent symmetries, such as partial dynamical symmetry and quasi dynamical symmetry, can occur simultaneously in the same or different eigenstates of the Hamiltonian. Implications for nuclear spectroscopy in the rare-earth region and for first-order quantum phase transitions between spherical and deformed shapes, are considered. (paper)

  16. THE NEW SOLUTION OF TIME FRACTIONAL WAVE EQUATION WITH CONFORMABLE FRACTIONAL DERIVATIVE DEFINITION

    OpenAIRE

    Çenesiz, Yücel; Kurt, Ali

    2015-01-01

    – In this paper, we used new fractional derivative definition, the conformable fractional derivative, for solving two and three dimensional time fractional wave equation. This definition is simple and very effective in the solution procedures of the fractional differential equations that have complicated solutions with classical fractional derivative definitions like Caputo, Riemann-Liouville and etc. The results show that conformable fractional derivative definition is usable and convenient ...

  17. Fractional Transforms in Optical Information Processing

    Directory of Open Access Journals (Sweden)

    Maria Luisa Calvo

    2005-06-01

    Full Text Available We review the progress achieved in optical information processing during the last decade by applying fractional linear integral transforms. The fractional Fourier transform and its applications for phase retrieval, beam characterization, space-variant pattern recognition, adaptive filter design, encryption, watermarking, and so forth is discussed in detail. A general algorithm for the fractionalization of linear cyclic integral transforms is introduced and it is shown that they can be fractionalized in an infinite number of ways. Basic properties of fractional cyclic transforms are considered. The implementation of some fractional transforms in optics, such as fractional Hankel, sine, cosine, Hartley, and Hilbert transforms, is discussed. New horizons of the application of fractional transforms for optical information processing are underlined.

  18. Boundary Controllability of Nonlinear Fractional Integrodifferential Systems

    Directory of Open Access Journals (Sweden)

    Ahmed HamdyM

    2010-01-01

    Full Text Available Sufficient conditions for boundary controllability of nonlinear fractional integrodifferential systems in Banach space are established. The results are obtained by using fixed point theorems. We also give an application for integropartial differential equations of fractional order.

  19. Fractional Order Element Based Impedance Matching

    KAUST Repository

    Radwan, Ahmed Gomaa

    2014-06-24

    Disclosed are various embodiments of methods and systems related to fractional order element based impedance matching. In one embodiment, a method includes aligning a traditional Smith chart (|.alpha.|=1) with a fractional order Smith chart (|.alpha.|.noteq.1). A load impedance is located on the traditional Smith chart and projected onto the fractional order Smith chart. A fractional order matching element is determined by transitioning along a matching circle of the fractional order Smith chart based at least in part upon characteristic line impedance. In another embodiment, a system includes a fractional order impedance matching application executed in a computing device. The fractional order impedance matching application includes logic that obtains a first set of Smith chart coordinates at a first order, determines a second set of Smith chart coordinates at a second order, and determines a fractional order matching element from the second set of Smith chart coordinates.

  20. Multiple Interactive Representations for Fractions Learning

    NARCIS (Netherlands)

    Feenstra, Laurens; Aleven, Vincent; Rummel, Nikol; Taatgen, Niels; Aleven,; Kay, J; Mostow, J

    2010-01-01

    Multiple External Representations (MERs) have been used successfully in instructional activities, including fractions However, students often have difficulties making the connections between the MERs spontaneously We argue that interactive fraction representations may help students in discovering

  1. Fractional baud-length coding

    Directory of Open Access Journals (Sweden)

    J. Vierinen

    2011-06-01

    Full Text Available We present a novel approach for modulating radar transmissions in order to improve target range and Doppler estimation accuracy. This is achieved by using non-uniform baud lengths. With this method it is possible to increase sub-baud range-resolution of phase coded radar measurements while maintaining a narrow transmission bandwidth. We first derive target backscatter amplitude estimation error covariance matrix for arbitrary targets when estimating backscatter in amplitude domain. We define target optimality and discuss different search strategies that can be used to find well performing transmission envelopes. We give several simulated examples of the method showing that fractional baud-length coding results in smaller estimation errors than conventional uniform baud length transmission codes when estimating the target backscatter amplitude at sub-baud range resolution. We also demonstrate the method in practice by analyzing the range resolved power of a low-altitude meteor trail echo that was measured using a fractional baud-length experiment with the EISCAT UHF system.

  2. Process scheme simulation of gases and liquid fraction fractionation

    International Nuclear Information System (INIS)

    Rikalovska, Tatjana; Markovska, Liljana; Meshko, Vera

    1999-01-01

    Computer programs based on the models of process equipment are used in process development, equipment design and technology operation. Flowsheet programs has become the major tools which are used in process design and modernization of the existing processes of chemical technology. The flowsheet programs are used to examine the process, and different alternatives of each process. The simulations have been made for the process of gas recovery of gas. and liquid fractions in OKTA-Skopje by using the process simulator UNIOPT. Simulation of existing scheme has been made progressively by including the model of equipment. In this way the required database is formed for the simulation and study of different alternatives of this process. The complete design of the distillation column for separation of propane and butane has been made by DISTIL. The results obtained by simulation agree very well with the data of the real process in OKTA Crude Oil Refinery in Skopje. (Author)

  3. The synchronization of three fractional differential systems

    International Nuclear Information System (INIS)

    Li Changpin; Yan Jianping

    2007-01-01

    In this paper, a new method is proposed and applied to the synchronization of fractional differential systems (or 'differential systems with fractional orders'), where both drive and response systems have the same dimensionality and are coupled by the driving signal. The present technique is based on the stability criterion of linear fractional systems. This method is implemented in (chaos) synchronization of the fractional Lorenz system, Chen system and Chua circuit. Numerical simulations show the present synchronization method works well

  4. Statistical Inference for Fractional Diffusion Processes

    CERN Document Server

    Rao, B L S Prakasa

    2010-01-01

    Statistical Inference for Fractional Diffusion Processes looks at statistical inference for stochastic processes modeled by stochastic differential equations driven by fractional Brownian motion. Other related processes, such as sequential inference, nonparametric and non parametric inference and parametric estimation are also discussed. The book will deal with Fractional Diffusion Processes (FDP) in relation to statistical influence for stochastic processes. The books main focus is on parametric and non parametric inference problems for fractional diffusion processes when a complete path of t

  5. On varitional iteration method for fractional calculus

    Directory of Open Access Journals (Sweden)

    Wu Hai-Gen

    2017-01-01

    Full Text Available Modification of the Das’ variational iteration method for fractional differential equations is discussed, and its main shortcoming involved in the solution process is pointed out and overcome by using fractional power series. The suggested computational procedure is simple and reliable for fractional calculus.

  6. Fractionation and identification of bioactive constituents from ...

    African Journals Online (AJOL)

    In view of antidiabetic and antioxidant properties observed in a previous study, crude ethanol leaf extract of Sapium ellipticum (SE) was fractionated using Silica gel F254 column chromatography to yield 164 fractions. Pooling together of fractions with similar thin layer chromatographic (TLC) mobility profile afforded five ...

  7. dimensional generalised time-fractional Hirota equation

    Indian Academy of Sciences (India)

    Youwei Zhang

    2018-02-09

    Feb 9, 2018 ... tanh-expansion and complete discrimination system by means of fractional complex transform, travelling wave solutions are derived. ... Time-fractional Hirota equation; fractional complex transform; complete discrimination system; tanh- expansion ... Other applications in finance, physics and engineering ...

  8. Early Predictors of Middle School Fraction Knowledge

    Science.gov (United States)

    Bailey, Drew H.; Siegler, Robert S.; Geary, David C.

    2014-01-01

    Recent findings that earlier fraction knowledge predicts later mathematics achievement raise the question of what predicts later fraction knowledge. Analyses of longitudinal data indicated that whole number magnitude knowledge in first grade predicted knowledge of fraction magnitudes in middle school, controlling for whole number arithmetic…

  9. The Fractional Ornstein-Uhlenbeck Process

    DEFF Research Database (Denmark)

    Høg, Esben; Frederiksen, Per H.

    of the standard Brownian motion. This is a new direction in pricing non defaultable bonds with offspring in the arbitrage free pricing of weather derivatives based on fractional Brownian motions. By applying fractional It^o calculus and a fractional version of the Girsanov transform, a no arbitrage price...

  10. The Area Model of Multiplication of Fractions

    Science.gov (United States)

    Tsankova, Jenny K.; Pjanic, Karmen

    2009-01-01

    Teaching students how to multiply fractions is challenging, not so much from a computational point of view but from a conceptual one. The algorithm for multiplying fractions is much easier to learn than many other algorithms, such as subtraction with regrouping, long division, and certainly addition of fractions with unlike denominators. However,…

  11. Few Fractional Order Derivatives and Their Computations

    Science.gov (United States)

    Bhatta, D. D.

    2007-01-01

    This work presents an introductory development of fractional order derivatives and their computations. Historical development of fractional calculus is discussed. This paper presents how to obtain computational results of fractional order derivatives for some elementary functions. Computational results are illustrated in tabular and graphical…

  12. An Alternative Starting Point for Fraction Instruction

    Science.gov (United States)

    Cortina, José Luis; Višnovská, Jana; Zúñiga, Claudia

    2015-01-01

    We analyze the results of a study conducted for the purpose of assessing the viability of an alternative starting point for teaching fractions. The alternative is based on Freudenthal's insights about fraction as comparison. It involves portraying the entities that unit fractions quantify as always being apart from the reference unit, instead of…

  13. Preparing for Algebra by Building Fraction Sense

    Science.gov (United States)

    Rodrigues, Jessica; Dyson, Nancy I.; Hansen, Nicole; Jordan, Nancy C.

    2016-01-01

    Fractions are troublesome for many children, especially students with learning difficulties and disabilities in mathematics. To address this serious educational concern, this article recommends the use of number lines to build fraction sense. Math activities that center on the number line build fraction concepts as early as third grade. A number…

  14. Teaching Fractions. Educational Practices Series-22

    Science.gov (United States)

    Fazio, Lisa; Siegler, Robert

    2011-01-01

    Students around the world have difficulties in learning about fractions. In many countries, the average student never gains a conceptual knowledge of fractions. This research guide provides suggestions for teachers and administrators looking to improve fraction instruction in their classrooms or schools. The recommendations are based on a…

  15. Time-fractional particle deposition in porous media

    International Nuclear Information System (INIS)

    Xu, Jianping

    2017-01-01

    In the percolation process where fluids carry small solid particles, particle deposition causes a real-time permeability change of the medium as the swarm of particles propagates along the medium. Then the permeability change influences percolation and deposition behaviors as a feedback. This fact triggers memory effect in the deposition dynamics, which means the particulate transport and deposition behaviors become history-dependent. In this paper, we conduct the time-fractional generalization of the classical phenomenological model of particle deposition in porous media to incorporate the memory effect. We tested and compared the effects of employing different types of fractional operators, i.e. the Riemann–Liouville type, the Hadamard type and the Prabhakar type. Numerical simulation results show that the system behaviors vary according to the change of distinct memory kernels in an expected way. We then discuss the physical meaning of the time-fractional generalization. It is shown that different types of fractional operators unanimously ground themselves on the local-Newtonian time transformation in a complex system, which is equivalent to a class of history integrals. By the introduction of various memory kernels, it enables the model to more powerfully fit and approximate observed data. Further, the fundamental meaning of this work is not to show which fractional operator is ‘better’, but to argue collectively the legitimacy and practicality of a non-Markovian particle deposition dynamics in porous media, and in fact it is admissible to a bunch of memory kernels which differ greatly from each other in functional forms. Hopefully the presented generalized mass conservation formalism offers a broader framework to investigate transport problems in porous media. (paper)

  16. Time-fractional particle deposition in porous media

    Science.gov (United States)

    Xu, Jianping

    2017-05-01

    In the percolation process where fluids carry small solid particles, particle deposition causes a real-time permeability change of the medium as the swarm of particles propagates along the medium. Then the permeability change influences percolation and deposition behaviors as a feedback. This fact triggers memory effect in the deposition dynamics, which means the particulate transport and deposition behaviors become history-dependent. In this paper, we conduct the time-fractional generalization of the classical phenomenological model of particle deposition in porous media to incorporate the memory effect. We tested and compared the effects of employing different types of fractional operators, i.e. the Riemann-Liouville type, the Hadamard type and the Prabhakar type. Numerical simulation results show that the system behaviors vary according to the change of distinct memory kernels in an expected way. We then discuss the physical meaning of the time-fractional generalization. It is shown that different types of fractional operators unanimously ground themselves on the local-Newtonian time transformation in a complex system, which is equivalent to a class of history integrals. By the introduction of various memory kernels, it enables the model to more powerfully fit and approximate observed data. Further, the fundamental meaning of this work is not to show which fractional operator is ‘better’, but to argue collectively the legitimacy and practicality of a non-Markovian particle deposition dynamics in porous media, and in fact it is admissible to a bunch of memory kernels which differ greatly from each other in functional forms. Hopefully the presented generalized mass conservation formalism offers a broader framework to investigate transport problems in porous media.

  17. Regulating Mid-infrared to Visible Fluorescence in Monodispersed Er3+-doped La2O2S (La2O2SO4) Nanocrystals by Phase Modulation

    Science.gov (United States)

    Pan, Qiwen; Yang, Dandan; Kang, Shiliang; Qiu, Jianrong; Dong, Guoping

    2016-11-01

    Rare earth doped mid-infrared (MIR) fluorescent sources have been widely investigated due to their various potential applications in the fields of communication, chemical detecting, medical surgery and so forth. However, with emission wavelength extended to MIR, multiphonon relaxation process that strongly quenched the MIR emission is one of the greatest challenges for such practical applications. In our design, we have described a controllable gas-aided annealing strategy to modulate the phase, crystal size, morphology and fluorescent performance of a material simultaneously. Uniform and monodispersed Er3+-doped La2O2S and La2O2SO4 nanocrystals with a similar lattice structure, crystallinity, diameter and morphology have been introduced to investigate the impact of multiphonon relaxation on luminescence performance. Detailed spectroscopic evolutions in the region of MIR, near-infrared (NIR), visible upconversion (UC) and their corresponding decay times provide insight investigation into the fluorescent mechanism caused by multiphonon relaxation. A possible energy transfer model has also been established. Our results present direct observation and mechanistic investigation of fluorescent evolution in multiphonon relaxation process, which is conductive to design MIR fluorescent materials in the future. To the best of our knowledge, it is the first investigation on MIR fluorescent performance of La2O2S nanocrystals, which may find various applications in many photoelectronic fields.

  18. Monodisperse REPO4 (RE = Yb, Gd, Y) hollow microspheres covered with nanothorns as affinity probes for selectively capturing and labeling phosphopeptides.

    Science.gov (United States)

    Cheng, Gong; Zhang, Ji-Lin; Liu, Yan-Lin; Sun, De-Hui; Ni, Jia-Zuan

    2012-02-13

    Rare-earth phosphate microspheres with unique structures were developed as affinity probes for the selective capture and tagging of phosphopeptides. Prickly REPO(4) (RE = Yb, Gd, Y) monodisperse microspheres, that have hollow structures, low densities, high specific surface areas, and large adsorptive capacities were prepared by an ion-exchange method. The elemental compositions and crystal structures of these affinity probes were confirmed by energy-dispersive spectroscopy (EDS), powder X-ray diffraction (XRD), and Fourier-transform infrared (FTIR) spectroscopy. The morphologies of these compounds were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen-adsorption isotherms. The potential ability of these microspheres for selectively capturing and labeling target biological molecules was evaluated by using protein-digestion analysis and a real sample as well as by comparison with the widely used TiO(2) affinity microspheres. These results show that these porous rare-earth phosphate microspheres are highly promising probes for the rapid purification and recognition of phosphopeptides. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Do transition metal carbonates have greater lithium storage capability than oxides? A case study of monodisperse CoCO3 and CoO microspindles.

    Science.gov (United States)

    Wang, Lianbang; Tang, Weijie; Jing, Yu; Su, Liwei; Zhou, Zhen

    2014-08-13

    As substitutions for transition metal oxides (MOs), transition metal carbonates (MCO3) have been attracting more and more attention because of their lithium storage ability in recent years. Is MCO3 better than MOs for lithium storage? To answer this question, monodisperse CoCO3 and CoO microspindles with comparable structures were synthesized and investigated as a case study. Excluding its structural effect, we found CoCO3 still exhibited reversible capacities and rate capabilities much higher than those of CoO. The reversible capacity of CoCO3 after 10 cycles was 1065 mAh g(-1), 48.2% higher than that (∼720 mAh g(-1)) of CoO. Furthermore, the greatly different electrochemical behaviors were investigated by analyzing the discharge-charge profiles, cyclic voltammetry curves, and Nyquist plots in depth. This work can improve our understanding of the lithium storage advantages of MCO3 against MOs and enlighten us in terms of developing high-performance MCO3 with favorable structures.

  20. One-Pot Synthesis of Monodisperse Noble Metal @ Resorcinol-Formaldehyde (M@RF) and M@Carbon Core-Shell Nanostructure and Their Catalytic Applications.

    Science.gov (United States)

    Yang, Peipei; Xu, Yong; Chen, Lei; Wang, Xuchun; Zhang, Qiao

    2015-10-27

    We demonstrate that noble metal @ RF core-shell nanostructures can be obtained through a facile one-pot synthesis approach in the absence of any additional surfactants. Monodisperse metal@RF core-shell nanostructures can be produced within 1 h on a large scale. Both the core size and shell thickness can be readily tuned by altering the reaction parameters. Systematic studies reveal that resorcinol could have several functions: it could act as a reactant to form RF resin, and it also could passivate the surface of metallic nanoparticles to prevent them from aggregating. Additionally, for the first time, our results suggest that resorcinol may act as a reducing agent that can reduce metal salts to form metal nanoparticles. The core-shell nanoparticles can be carbonized into M@carbon nanostructures, which have shown great performance in the catalytic hydrogenation of chlorobenzene. This work not only will help to achieve the controllable synthesis of noble metal@RF resin and M@carbon core-shell nanostructures but also will promote research into other RF-based nanostructures and their catalytic applications.

  1. Monodispersed FeCO3 nanorods anchored on reduced graphene oxide as mesoporous composite anode for high-performance lithium-ion batteries

    Science.gov (United States)

    Xu, Donghui; Liu, Weijian; Zhang, Congcong; Cai, Xin; Chen, Wenyan; Fang, Yueping; Yu, Xiaoyuan

    2017-10-01

    The development of advanced 1D/2D hierarchical nanocomposites for high-performance lithium-ion batteries is important and promising. Herein, monodispersed FeCO3 nanorods anchored on reduced graphene oxide (RGO) are prepared via a facile and efficient one-pot hydrothermal synthesis. The influence of RGO content on the morphology and electrochemical performances of the mesoporous FeCO3/reduced graphene oxide (FeCO3/RGO) composites are systematically studied. Optimized FeCO3/RGO composite shows good cycling stability. It delivers an initial discharge capacity of 1449 mAh·g-1 at the current density of 200 mA g-1 and maintained a capacity of 789 mAh·g-1 after 80 cycles. A moderate amount of RGO sheets can not only provide more conductive channels to improve the electrode conductivity, but also effectively buffer the large volume variation of FeCO3 during continuous charge/discharge process. The combination of FeCO3 nanorods with RGOs synergistically contribute to enhanced capacity and durability of the composite anode. It demonstrates that RGO anchored-FeCO3 nanorods should be an attractive candidate as anode material for high-performance lithium-ion batteries.

  2. Preparation of monodispersed macroporous core-shell molecularly imprinted particles and their application in the determination of 2,4-dichlorophenoxyacetic acid.

    Science.gov (United States)

    Liu, Yongliang; He, Yonghuan; Jin, Yulong; Huang, Yanyan; Liu, Guoquan; Zhao, Rui

    2014-01-03

    Porous polymers have aroused extensive attention due to their controllable porous structure in favor of mass transfer and binding capacity. In this work, the novel macroporous core-shell molecularly imprinted polymers (MIP) for selective recognition of 2,4-dichlorophenoxyacetic acid (2,4-D) were prepared by surface initiated atom transfer radical polymerization (si-ATRP). By using one-step swelling and polymerization method, the monodispersed macroporous poly(glycidyl methacrylate) (PGMA) particles were synthesized and used as supporting matrix for preparing surface MIP particles (PGMA@MIP). Thanks to the inner and outer surface-located binding cavities and the macroporous structure, the PGMA@MIPs revealed desirable efficiency for template removal and mass transfer, and thus excellent accessibility and affinity toward template 2,4-D. Moreover, PGMA@MIPs exhibited much higher selectivity toward 2,4-D than PGMA@NIPs. PGMA@MIP particles were directly used to selectively enrich 2,4-D from tap water and the recoveries of 2,4-D were obtained as 90.0-93.4% with relative standard division of 3.1-3.4% (n=3). The macroporous PGMA@MIPs also possessed steady and excellent reusable performance for 2,4-D in four extraction/stripping cycles. This novel macroporous core-shell imprinted material may become a powerful tool for rapid and efficient enrichment and separation of target compounds from the complicated samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Hamiltonian Chaos and Fractional Dynamics

    International Nuclear Information System (INIS)

    Combescure, M

    2005-01-01

    This book provides an introduction and discussion of the main issues in the current understanding of classical Hamiltonian chaos, and of its fractional space-time structure. It also develops the most complex and open problems in this context, and provides a set of possible applications of these notions to some fundamental questions of dynamics: complexity and entropy of systems, foundation of classical statistical physics on the basis of chaos theory, and so on. Starting with an introduction of the basic principles of the Hamiltonian theory of chaos, the book covers many topics that can be found elsewhere in the literature, but which are collected here for the readers' convenience. In the last three parts, the author develops topics which are not typically included in the standard textbooks; among them are: - the failure of the traditional description of chaotic dynamics in terms of diffusion equations; - he fractional kinematics, its foundation and renormalization group analysis; - 'pseudo-chaos', i.e. kinetics of systems with weak mixing and zero Lyapunov exponents; - directional complexity and entropy. The purpose of this book is to provide researchers and students in physics, mathematics and engineering with an overview of many aspects of chaos and fractality in Hamiltonian dynamical systems. In my opinion it achieves this aim, at least provided researchers and students (mainly those involved in mathematical physics) can complement this reading with comprehensive material from more specialized sources which are provided as references and 'further reading'. Each section contains introductory pedagogical material, often illustrated by figures coming from several numerical simulations which give the feeling of what's going on, and thus is very useful to the reader who is not very familiar with the topics presented. Some problems are included at the end of most sections to help the reader to go deeper into the subject. My one regret is that the book does not

  4. Second Study of Hyper-Fractionated Radiotherapy

    Directory of Open Access Journals (Sweden)

    R. Jacob

    1999-01-01

    Full Text Available Purpose and Method. Hyper-fractionated radiotherapy for treatment of soft tissue sarcomas is designed to deliver a higher total dose of radiation without an increase in late normal tissue damage. In a previous study at the Royal Marsden Hospital, a total dose of 75 Gy using twice daily 1.25 Gy fractions resulted in a higher incidence of late damage than conventional radiotherapy using 2 Gy daily fractions treating to a total of 60 Gy. The current trial therefore used a lower dose per fraction of 1.2 Gy and lower total dose of 72 Gy, with 60 fractions given over a period of 6 weeks.

  5. Caenorhabditis elegans contains two distinct acid sphingomyelinases.

    OpenAIRE

    Lin, X; Hengartner, M O; Kolesnick, R N

    1998-01-01

    Mounting evidence supports a role for acid sphingomyelinase (ASM) in cellular stress signaling. Only murine and human sphingomyelinases have been defined at the molecular level. These enzymes are the products of a conserved gene and at the amino acid level share 82% identity. In this study, we show that the nematode Caenorhabditis elegans possesses two ASMs, termed ASM-1 and ASM-2 encoded by two distinct genes, but lacks detectable neutral sphingomyelinase activity. The C. elegans ASMs are ab...

  6. Distinctive skeletal dysplasia in Cockayne syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Silengo, M.C.; Franceschini, P.; Bianco, R.; Biagioli, M.; Pastorin, L.; Vista, N.; Baldassar, A.; Benso, L.

    1986-03-01

    Cockayne syndrome is a well-known autosomal recessive form of dwarfism with senile-like appearance. Skeletal changes such as flattening of vertebral bodies, ivory epiphyses and thickening of cranial vault, have been observed in some patients with this condition. We describe here a 5.5-year-old girl with the typical clinical signs of Cockayne syndrome and a distinctive form of bone dysplasia with major involvement of the spine.

  7. Visual Distinctness Determined by Partially Invariant Features

    Science.gov (United States)

    2000-03-01

    DISTINCTNESS DETERMINED BY PARTIALLY INVARIANT FEATURES. J.A. Garcia, J. Fdez-Valdivia Departamento de Ciencias de la Computacion e I.A. Univ. de Granada...constant, independently of the viewing distance.The perceptual organization capabilities of human in a complex rural background. vision seem to exhibit...designed and 5.1.2. Clarity of separation at stage j organized by NVESD (Night Vision & Electro-optic Sensors Here we introduce the criterion by which we

  8. Stabilization of C and N from Decomposing Fine Roots and Needles in Soil Organic Matter Fractions

    Science.gov (United States)

    Bird, J. A.; Kleber, M.; Torn, M.

    2005-12-01

    We investigated the contributions of Pinus ponderosa needles and fine roots to forest soil organic matter C and N storage. The fates of dual-labeled (13C/15N) ponderosa pine fine roots (soil organic matter (SOM) fractions (light, fulvic, humic, and humin). The C turnover times (defined by natural abundance 14C) of these SOM fractions were distinct and ranged from 5 years (light fraction) to 260 years (insoluble humin). Overall, input of C as roots resulted in much more C retained in soil (70.5 ± 2.2 % of applied was retained) compared with needle C (42.9 ± 1.3 % of applied was retained) after 1.5 years. Greater complex C compounds in fine roots likely contributed to the longer initial C residence time and lower degree of transformation in the soil. In contrast, litter N recovery in soil was similar between above- and belowground substrates. During the first 1.5 years in situ, more of the needle 13C retained in soil was in humic and humin fractions and less as light fraction than for 13C from fine roots. The 13C:15N ratios of the SOM fractions suggest that the types of organic molecules stabilized differed fundamentally between needle and fine root sources. Predominately nitrogen-rich biomolecules from fine roots were stabilized in humic, fulvic and humin fractions. In contrast, carbon-rich biomolecules from needles were preferentially stabilized, especially initially, in the humin fraction.

  9. Colloidally Synthesized Monodisperse Rh Nanoparticles Supported on SBA-15 for Size- and Pretreatment-Dependent Studies of CO Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Grass, Michael E.; Joo, Sang Hoon; Somorjai, Gabor A.

    2009-02-12

    A particle size dependence for CO oxidation over rhodium nanoparticles of 1.9-11.3 nm has been investigated and determined to be modified by the existence of the capping agent poly(vinylpyrrolidone) (PVP). The particles were prepared using a polyol reduction procedure with PVP as the capping agent. The Rh nanoparticles were subsequently supported on SBA-15 during hydrothermal synthesis to produce Rh/SBA-15 supported catalysts for size-dependent catalytic studies. CO oxidation by O{sub 2} at 40 Torr CO and 100 Torr O{sub 2} was investigated over two series of Rh/SBA-15 catalysts: as-synthesized Rh/SBA-15 covering the full range of Rh sizes and the same set of catalysts after high temperature calcination and reduction. The turnover frequency at 443 K increases from 0.4 to 1.7 s{sup -1} as the particle size decreases from 11.3 to 1.9 nm for the as-synthesized catalysts. After calcination and reduction, the turnover frequency is between 0.1 and 0.4 s{sup -1} with no particle size dependence. The apparent activation energy for all catalysts is {approx}30 kcal mol{sup -1} and is independent of particle size and thermal treatment. Infrared spectroscopy of CO on the Rh nanoparticles indicates that the heat treatments used influence the mode of CO adsorption. As a result, the particle size dependence for CO oxidation is altered after calcination and reduction of the catalysts. CO adsorbs at two distinct bridge sites on as-synthesized Rh/SBA-15, attributable to metallic Rh(0) and oxidized Rh(I) bridge sites. After calcination and reduction, however, CO adsorbs only at Rh(0) atop sites. The change in adsorption geometry and oxidation activity may be attributable to the interaction between PVP and the Rh surface. This capping agent affect may open new possibilities for the tailoring of metal catalysts using solution nanoparticle synthesis methods.

  10. Modeling nuclear field shift isotope fractionation in crystals

    Science.gov (United States)

    Schauble, E. A.

    2013-12-01

    will be presented for calculations of liquid-vapor fractionation of cadmium and mercury, which indicate an affinity for heavy isotopes in the liquid phase. In the case of mercury the results match well with recent experiments. Mössbauer-calibrated fractionation factors will also be presented for tin and platinum species. Platinum isotope behaviour in metals appears to particularly interesting, with very distinct isotope partitioning behaviour for iron-rich alloys, relative to pure platinum metal. References: 1) Bigeleisen, J. (1996) J. Am. Chem. Soc. 118, 3676-3680. 2) Nomura, M., Higuchi, N., Fujii, Y. (1996) J. Am. Chem. Soc. 118, 9127-9130.

  11. Local Fractional Laplace Variational Iteration Method for Solving Linear Partial Differential Equations with Local Fractional Derivative

    Directory of Open Access Journals (Sweden)

    Ai-Min Yang

    2014-01-01

    Full Text Available The local fractional Laplace variational iteration method was applied to solve the linear local fractional partial differential equations. The local fractional Laplace variational iteration method is coupled by the local fractional variational iteration method and Laplace transform. The nondifferentiable approximate solutions are obtained and their graphs are also shown.

  12. Crude subcellular fractionation of cultured mammalian cell lines

    Directory of Open Access Journals (Sweden)

    Holden Paul

    2009-12-01

    Full Text Available Abstract Background The expression and study of recombinant proteins in mammalian culture systems can be complicated during the cell lysis procedure by contaminating proteins from cellular compartments distinct from those within which the protein of interest resides and also by solubility issues that may arise from the use of a single lysis buffer. Partial subcellular fractionation using buffers of increasing stringency, rather than whole cell lysis is one way in which to avoid or reduce this contamination and ensure complete recovery of the target protein. Currently published protocols involve time consuming centrifugation steps which may require expensive equipment and commercially available kits can be prohibitively expensive when handling large or multiple samples. Findings We have established a protocol to sequentially extract proteins from cultured mammalian cells in fractions enriched for cytosolic, membrane bound organellar, nuclear and insoluble proteins. All of the buffers used can be made inexpensively and easily and the protocol requires no costly equipment. While the method was optimized for a specific cell type, we demonstrate that the protocol can be applied to a variety of commonly used cell lines and anticipate that it can be applied to any cell line via simple optimization of the primary extraction step. Conclusion We describe a protocol for the crude subcellular fractionation of cultured mammalian cells that is both straightforward and cost effective and may facilitate the more accurate study of recombinant proteins and the generation of purer preparations of said proteins from cell extracts.

  13. Fractions Learning in Children With Mathematics Difficulties.

    Science.gov (United States)

    Tian, Jing; Siegler, Robert S

    Learning fractions is difficult for children in general and especially difficult for children with mathematics difficulties (MD). Recent research on developmental and individual differences in fraction knowledge of children with MD and typically achieving (TA) children has demonstrated that U.S. children with MD start middle school behind their TA peers in fraction understanding and fall further behind during middle school. In contrast, Chinese children, who like the MD children in the United States score in the bottom one third of the distribution in their country, possess reasonably good fraction understanding. We interpret these findings within the framework of the integrated theory of numerical development. By emphasizing the importance of fraction magnitude knowledge for numerical understanding in general, the theory proved useful for understanding differences in fraction knowledge between MD and TA children and for understanding how knowledge can be improved. Several interventions demonstrated the possibility of improving fraction magnitude knowledge and producing benefits that generalize to fraction arithmetic learning among children with MD. The reasonably good fraction understanding of Chinese children with MD and several successful interventions with U.S. students provide hope for the improvement of fraction knowledge among American children with MD.

  14. The Initial Conditions of Fractional Calculus

    International Nuclear Information System (INIS)

    Trigeassou, J. C.; Maamri, N.

    2011-01-01

    During the past fifty years , Fractional Calculus has become an original and renowned mathematical tool for the modelling of diffusion Partial Differential Equations and the design of robust control algorithms. However, in spite of these celebrated results, some theoretical problems have not yet received a satisfying solution. The mastery of initial conditions, either for Fractional Differential Equations (FDEs) or for the Caputo and Riemann-Liouville fractional derivatives, remains an open research domain. The solution of this fundamental problem, also related to the long range memory property, is certainly the necessary prerequisite for a satisfying approach to modelling and control applications. The fractional integrator and its continuously frequency distributed differential model is a valuable tool for the simulation of fractional systems and the solution of initial condition problems. Indeed, the infinite dimensional state vector of fractional integrators allows the direct generalization to fractional calculus of the theoretical results of integer order systems. After a reminder of definitions and properties related to fractional derivatives and systems, this presentation is intended to show, based on the results of two recent publications [1,2], how the fractional integrator provides the solution of the initial condition problem of FDEs and of Caputo and Riemann-Liouville fractional derivatives. Numerical simulation examples illustrate and validate these new theoretical concepts.

  15. Hydrogen production via catalytic steam reforming of fast pyrolysis oil fractions

    International Nuclear Information System (INIS)

    Wang, D.; Czernik, S.; Montane, D.; Mann, M.; Chornet, E.

    1997-01-01

    Hydrogen is the prototype of the environmentally cleanest fuel of interest for power generation using fuel cells, and as a co-adjuvant or autonomous transportation fuel in internal combustion engines. The conversion of biomass to hydrogen can be carried out through two distinct thermochemical strategies: (a) gasification followed by shift conversion; (b) catalytic steam reforming and shift conversion of specific fractions derived from fast pyrolysis and aqueous/steam processes of biomass. This paper shows that fast pyrolysis of biomass results in a bio-oil that can be adequately fractionated into valuable co-products leaving as by-product an aqueous fraction containing soluble organics (a mixture of alcohols, aldehydes and acids). This fraction can be converted to hydrogen by catalytic steam reforming followed by a shift conversion step. The methods used, the yields obtained and their economic significance will be discussed. (author)

  16. Fractional ablative erbium YAG laser

    DEFF Research Database (Denmark)

    Taudorf, Elisabeth H; Haak, Christina S; Erlendsson, Andrés M

    2014-01-01

    BACKGROUND AND OBJECTIVES: Treatment of a variety of skin disorders with ablative fractional lasers (AFXL) is driving the development of portable AFXLs. This study measures micropore dimensions produced by a small 2,940 nm AFXL using a variety of stacked pulses, and determines a model correlating...... laser parameters with tissue effects. MATERIALS AND METHODS: Ex vivo pig skin was exposed to a miniaturized 2,940 nm AFXL, spot size 225 µm, density 5%, power levels 1.15-2.22 W, pulse durations 50-225 microseconds, pulse repetition rates 100-500 Hz, and 2, 20, or 50 stacked pulses, resulting in pulse...... 190 to 347 µm. CONCLUSIONS: Pulse stacking with a small, low power 2,940 nm AFXL created reproducible shallow to deep micropores, and influenced micropore configuration. Mathematical modeling established relations between laser settings and micropore dimensions, which assists in choosing laser...

  17. Approaching the Distinction between Intuition and Insight.

    Science.gov (United States)

    Zhang, Zhonglu; Lei, Yi; Li, Hong

    2016-01-01

    Intuition and insight share similar cognitive and neural basis. Though, there are still some essential differences between the two. Here in this short review, we discriminated between intuition, and insight in two aspects. First, intuition, and insight are toward different aspects of information processing. Whereas intuition involves judgment about "yes or no," insight is related to "what" is the solution. Second, tacit knowledge play different roles in between intuition and insight. On the one hand, tacit knowledge is conducive to intuitive judgment. On the other hand, tacit knowledge may first impede but later facilitate insight occurrence. Furthermore, we share theoretical, and methodological views on how to access the distinction between intuition and insight.

  18. A distinction of two discourses concerning wellbeing

    DEFF Research Database (Denmark)

    Wistoft, Karen; Qvortrup, Lars

    2017-01-01

    The article concerns the current discourses concerning well-being with the point that it is important to make a distinction between a healthcare oriented discourse and a learning oriented discourse. The former defines wellbeing in negative terms and looks at causally oriented aspects of wellbeing...... and behavioral mental health interventions, while the latter defines wellbeing in positive terms with a focus on wellbeing as the result of learning and with pedagogical interventions that only indirectly can support the individual’s learning activity. The former sees wellbeing as the result of a “wellbeing cure...

  19. Inhibition of Neuroblastoma cancer cells viability by ferromagnetic Mn doped CeO{sub 2} monodisperse nanoparticles mediated through reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Fazal; Jan, Tariq [Laboratory of Nanoscience and Technology (LNT), Department of Physics, International Islamic University Islamabad (Pakistan); Iqbal, Javed, E-mail: javed.saggu@iiu.edu.pk [Laboratory of Nanoscience and Technology (LNT), Department of Physics, International Islamic University Islamabad (Pakistan); Haider Naqvi, M. Sajjad [Department of Biochemistry, University of Karachi, Karachi (Pakistan); Ahmad, Ishaq [Experimental Physics Labs, National Center for Physics, Islamabad (Pakistan)

    2016-04-15

    Here we report the Mn doping induced effects on structural, Raman, optical, magnetic and anticancer properties of CeO{sub 2} nanoparticles prepared via soft chemical route. Structural and microstructural results infer that the synthesized nanoparticles have single phase cubic fluorite structure of CeO{sub 2} and that Mn doping results in enhancement of the structural defects. Scanning electron microscopy results reveal the formation of monodisperse nanoparticles having average particle size ranging from 30 to 41 nm. The optical absorbance spectroscopy analysis discloses the band gap energy tailoring of CeO{sub 2} nanoparticles via Mn doping. Room temperature ferromagnetism (RTFM) has been found in both as-prepared and Mn doped CeO{sub 2} nanoparticles. This RTFM of the synthesized nanoparticles have been attributed to the Mn ions and surface defects such as oxygen vacancies. Finally, the influence of Mn dopant on the cell viability and reactive oxygen species (ROS) generation levels of CeO{sub 2} nanoparticles in the presence of healthy and cancerous cells have been studied. It has been observed that the differential cytotoxicity of the synthesized nanoparticles is strongly correlated with level of ROS generation. - Highlights: • Mn doped CeO{sub 2} nanoparticles with cubic fluorite structure were synthesized. • Mn dopant significantly tailored the band gap of CeO{sub 2} nanoparticles. • The synthesized nanoparticles exhibited room temperature ferromagnetic behavior. • The cytotoxicity of these nanoparticles was reported for the first time. • The synthesized nanoparticles exhibited differential cytotoxicity.

  20. A single-step synthesis and the kinetic mechanism for monodisperse and hexagonal-phase NaYF4:Yb, Er upconversion nanophosphors.

    Science.gov (United States)

    Shan, Jingning; Ju, Yiguang

    2009-07-08

    A single-step synthesis for monodisperse and hexagonal-phase (beta) NaYF(4):Yb, Er upconversion nanophosphors (UCNPs) with a consistent hexagonal prism shape in the size range from 18 to 200 nm was achieved. The kinetic mechanisms for the particle phase transition and growth were examined. The beta-UCNPs were obtained via co-thermolysis of trifluoroacetate precursors in octadecene (ODE) with combined ligands of oleic acid (OA) and trioctylphosphine (TOP). The experimental results showed that the combined OA-TOP ligand was crucial for changing the surface energy and controlling the particle shape over a broad size range. It was found that the particle sizes could be controlled by varying the molar ratios of Na(CF(3)COO)/Re(CF(3)COO)(3) (Re = Y, Yb, and Er). A high Na/Re ratio accelerated the cubic-phase (alpha)-->beta transition and promoted the growth of smaller beta-UCNPs. The formation of beta-UCNPs was classified into kinetic and diffusion controlled stages, depending on the reaction temperature and the dominant crystalline phases formed in each stage. In stage I, 250-310 degrees C, NaF generation was the limiting step and alpha-UCNPs were formed via a 'burst of nucleation'. In stage II, above 310 degrees C, the alpha-UCNPs formed were re-dissolved and the growth of beta-UCNPs was a diffusion controlled process governed by the Gibbs-Thompson effect. A quasi-steady-state species assumption for NaF and a chemical potential equilibrium in the solution were introduced to explain the particle size dependence on Na/Re ratios. The study of UC luminescence showed that the UC intensity was proportional to the sizes of the beta-UCNPs.

  1. The fractional oscillator process with two indices

    International Nuclear Information System (INIS)

    Lim, S C; Teo, L P

    2009-01-01

    We introduce a new fractional oscillator process which can be obtained as a solution of a stochastic differential equation with two fractional orders. Basic properties such as fractal dimension and short-range dependence of the process are studied by considering the asymptotic properties of its covariance function. By considering the fractional oscillator process as the velocity of a diffusion process, we derive the corresponding diffusion constant, fluctuation-dissipation relation and mean-square displacement. The fractional oscillator process can also be regarded as a one-dimensional fractional Euclidean Klein-Gordon field, which can be obtained by applying the Parisi-Wu stochastic quantization method to a nonlocal Euclidean action. The Casimir energy associated with the fractional field at positive temperature is calculated by using the zeta function regularization technique

  2. Distinct Litter Stabilization Dynamics Pathways for Decomposition of Pine Needle and Fine Root Within Soil

    Science.gov (United States)

    Mambelli, S.; Filley, T. R.; Bird, J.; Dawson, T.; Torn, M. S.

    2008-12-01

    content than SFA. This indicates that molecular fragments of plant biopolymers can readily associate with both labile and stabilized SOM fractions. At the same time, these results suggest that distinct decomposition and stabilization pathways exist for litters, such as needles vs. roots, of different chemical quality.

  3. Operator Fractional Brownian Motion and Martingale Differences

    Directory of Open Access Journals (Sweden)

    Hongshuai Dai

    2014-01-01

    Full Text Available It is well known that martingale difference sequences are very useful in applications and theory. On the other hand, the operator fractional Brownian motion as an extension of the well-known fractional Brownian motion also plays an important role in both applications and theory. In this paper, we study the relation between them. We construct an approximation sequence of operator fractional Brownian motion based on a martingale difference sequence.

  4. On some fractional order hardy inequalities

    Directory of Open Access Journals (Sweden)

    Lars-Erik Persson

    1997-01-01

    Full Text Available Weighted inequalities for fractional derivatives (= fractional order Hardy-type inequalities have recently been proved in [4] and [1]. In this paper, new inequalities of this type are proved and applied. In particular, the general mixed norm case and a general twodimensional weight are considered. Moreover, an Orlicz norm version and a multidimensional fractional order Hardy inequality are proved. The connections to related results are pointed out.

  5. On some fractional order hardy inequalities

    Directory of Open Access Journals (Sweden)

    Kufner Alois

    1997-01-01

    Full Text Available Weighted inequalities for fractional derivatives ( fractional order Hardy-type inequalities have recently been proved in [4] and [1]. In this paper, new inequalities of this type are proved and applied. In particular, the general mixed norm case and a general twodimensional weight are considered. Moreover, an Orlicz norm version and a multidimensional fractional order Hardy inequality are proved. The connections to related results are pointed out.

  6. Early Predictors of Middle School Fraction Knowledge

    OpenAIRE

    Bailey, Drew H.; Siegler, Robert S.; Geary, David C.

    2014-01-01

    Recent findings that earlier fraction knowledge predicts later mathematics achievement raise the question of what predicts later fraction knowledge. Analyses of longitudinal data indicated that whole number magnitude knowledge in first grade predicted knowledge of fraction magnitudes in middle school, controlling for whole number arithmetic proficiency, domain general cognitive abilities, parental income and education, race, and gender. Similarly, knowledge of whole number arithmetic in first...

  7. Fractional Differential and Integral Inequalities with Applications

    Science.gov (United States)

    2016-02-14

    boundary conditions. References [1] D. Baleanu, Z. B. Guvencs̈ , J.A. T. Machado, New Trends in Nanotechnology and Fractional Calculus Applications ...Rivero, J. Trujillo and M. Pilar Velasco, “On Deterministic Fractional Models,” New Trends in Nanotechnology and Fractional Calculus Applications , edited...coupled minimal and maximal solutions for such an equation and a numerical example is provided as an application of the theoretical results. The

  8. Field-flow fractionation of chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Giddings, J.C.

    1990-09-01

    Research continued on field flow fractionation of chromosomes. Progress in the past year can be organized into three main categories: (1) chromosome sample preparation; (2) preliminary chromosome fractionation; (3) fractionation of a polystyrene aggregate model which approximates the chromosome shape. We have been successful in isolating metaphase chromosomes from the Chinese hamster. We also received a human chromosome sample from Dr. Carolyn Bell-Prince of Los Alamos National Laboratory. Results are discussed. 2 figs.

  9. Fractional Calculus in Wave Propagation Problems

    OpenAIRE

    Mainardi, Francesco

    2012-01-01

    Fractional calculus, in allowing integrals and derivatives of any positive order (the term "fractional" kept only for historical reasons), can be considered a branch of mathematical physics which mainly deals with integro-differential equations, where integrals are of convolution form with weakly singular kernels of power law type. In recent decades fractional calculus has won more and more interest in applications in several fields of applied sciences. In this lecture we devote our attention...

  10. Unpacking the Division Interpretation of a Fraction

    Science.gov (United States)

    Poon, Rebecca C.; Lewis, Priscilla Eide

    2015-01-01

    One of the challenges in learning fractions is understanding how and why a fraction can have multiple interpretations. As presented in one textbook, a fraction is "a symbol, such as 2/3, 5/1, or 8/5, used to name a part of a whole, a part of a set, a location on a number line, or a division of whole numbers" (Charles et al. 2012, p.…

  11. Circannual basis of geographically distinct bird schedules.

    Science.gov (United States)

    Helm, Barbara; Schwabl, Ingrid; Gwinner, Eberhard

    2009-05-01

    To anticipate seasonal change, organisms schedule their annual activities by using calendrical cues like photoperiod. The use of cues must be fitted to local conditions because schedules differ between species and habitats. In complete absence of temporal information, many species show persistent circannual cycles that are synchronised, but not driven, by photoperiod. The contribution of circannual rhythms to timing under natural photoperiodic conditions is still unclear. In a suite of experiments, we examined timing in two closely related songbirds (Siberian and European stonechats) that inhabit similar latitudes but differ in seasonal behaviour. Under a more continental climate, Siberian stonechats breed later, moult faster and migrate further than European stonechats. We tested hypotheses for seasonal timing mechanisms by comparing the birds under constant and naturally changing daylengths. The taxa retained characteristic reproductive and moult schedules and hybrids behaved roughly intermediately. Based on their distinct circannual cycles, we expected European and Siberian stonechats to differ in photoperiodic responses at a given time of year. We found that the taxa responded, as predicted, in opposite ways to photoperiodic simulations as experienced on different migration routes. The findings indicate that circannual rhythms reflect geographically distinct periodic changes in seasonal disposition and cue-response mechanisms. Under natural daylengths, the phase relationship of the underlying circannual rhythm to the external year determines the action of photoperiod. Circannual rhythms are widespread among long-lived species. Accordingly, responses to environmental change, range expansion and novel migration patterns may depend on the particulars of a species' underlying circannual programming.

  12. Distinct types of eigenvector localization in networks

    Science.gov (United States)

    Pastor-Satorras, Romualdo; Castellano, Claudio

    2016-01-01

    The spectral properties of the adjacency matrix provide a trove of information about the structure and function of complex networks. In particular, the largest eigenvalue and its associated principal eigenvector are crucial in the understanding of nodes’ centrality and the unfolding of dynamical processes. Here we show that two distinct types of localization of the principal eigenvector may occur in heterogeneous networks. For synthetic networks with degree distribution P(q) ~ q-γ, localization occurs on the largest hub if γ > 5/2 for γ < 5/2 a new type of localization arises on a mesoscopic subgraph associated with the shell with the largest index in the K-core decomposition. Similar evidence for the existence of distinct localization modes is found in the analysis of real-world networks. Our results open a new perspective on dynamical processes on networks and on a recently proposed alternative measure of node centrality based on the non-backtracking matrix.

  13. Control of Initialized Fractional-Order Systems

    Science.gov (United States)

    Hartly, Tom T.; Lorenzo, Carl F.

    2002-01-01

    Due to the importance of historical effects in fractional-order systems, this paper presents a general fractional-order control theory that includes the time-varying initialization response. Previous studies have not properly accounted for these historical effects. The initialization response, along with the forced response, for fractional-order systems is determined. Stability properties of fractional-order systems are presented in the complex Airplane, which is a transformation of the s-plane. Time responses are discussed with respect to pole positions in the complex Airplane and frequency response behavior is included. A fractional-order vector space representation, which is a generalization of the state space concept, is presented including the initialization response. Control methods for vector representations of initialized fractional-order systems are shown. Nyquist, root-locus, and other input-output control methods are adapted to the control of fractional-order systems. Finally, the fractional-order differintegral is generalized to continuous order-distributions that have the possibility of including a continuum of fractional orders in a system element.

  14. Vector continued fractions using a generalized inverse

    International Nuclear Information System (INIS)

    Haydock, Roger; Nex, C M M; Wexler, Geoffrey

    2004-01-01

    A real vector space combined with an inverse (involution) for vectors is sufficient to define a vector continued fraction whose parameters consist of vector shifts and changes of scale. The choice of sign for different components of the vector inverse permits construction of vector analogues of the Jacobi continued fraction. These vector Jacobi fractions are related to vector and scalar-valued polynomial functions of the vectors, which satisfy recurrence relations similar to those of orthogonal polynomials. The vector Jacobi fraction has strong convergence properties which are demonstrated analytically, and illustrated numerically

  15. Oxygen isotope fractionation in double carbonates.

    Science.gov (United States)

    Zheng, Yong-Fei; Böttcher, Michael E

    2016-01-01

    Oxygen isotope fractionations in double carbonates of different crystal structures were calculated by the increment method. Synthesis experiments were performed at 60 °C and 100 °C to determine oxygen and carbon isotope fractionations involving PbMg[CO3]2. The calculations suggest that the double carbonates of calcite structure are systematically enriched in (18)O relative to those of aragonite and mixture structures. Internally consistent oxygen isotope fractionation factors are obtained for these minerals with respect to quartz, calcite and water at a temperature range of 0-1200 °C. The calculated fractionation factors for double carbonate-water systems are generally consistent with the data available from laboratory experiments. The experimentally determined fractionation factors for PbMg[CO3]2, BaMg[CO3]2 and CaMg[CO3]2 against H2O not only fall between fractionation factors involving pure carbonate end-members but are also close to the calculated fractionation factors. In contrast, experimentally determined carbon isotope fractionation factors between PbMg[CO3]2 and CO2 are much closer to theoretical predictions for the cerussite-CO2 system than for the magnesite-CO2 system, similar to the fractionation behavior for BaMg[CO3]2. Therefore, the combined theoretical and experimental results provide insights into the effects of crystal structure and exchange kinetics on oxygen isotope partitioning in double carbonates.

  16. Easy characterization of petroleum fractions: Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Miquel, J. (Univ. Politecnica de Catalunya (Spain)); Castells, F. (Univ. Rovira i Virgili, Catalunya (Spain))

    1993-12-01

    A new method for characterizing petroleum fractions, based on pseudocomponent breakdown using the integral method has been developed. It requires only that one has an atmospheric true boiling point (tbp) distillation curve and known the entire fraction density. The proposed characterization procedure is valid for representing any oil fraction (light or heavy) with a boiling point range smaller than 300 K. It is based on the hypothesis of constant Watson's characterization factor, K[sub w], for all the pseudocomponents. Outside this range, it is less accurate (greater errors in material and molar balances). Therefore, a method considering the variable K[sub w] is best to treat these fractions.

  17. Improving Children's Knowledge of Fraction Magnitudes.

    Directory of Open Access Journals (Sweden)

    Lisa K Fazio

    Full Text Available We examined whether playing a computerized fraction game, based on the integrated theory of numerical development and on the Common Core State Standards' suggestions for teaching fractions, would improve children's fraction magnitude understanding. Fourth and fifth-graders were given brief instruction about unit fractions and played Catch the Monster with Fractions, a game in which they estimated fraction locations on a number line and received feedback on the accuracy of their estimates. The intervention lasted less than 15 minutes. In our initial study, children showed large gains from pretest to posttest in their fraction number line estimates, magnitude comparisons, and recall accuracy. In a more rigorous second study, the experimental group showed similarly large improvements, whereas a control group showed no improvement from practicing fraction number line estimates without feedback. The results provide evidence for the effectiveness of interventions emphasizing fraction magnitudes and indicate how psychological theories and research can be used to evaluate specific recommendations of the Common Core State Standards.

  18. Theory and applications of fractional differential equations

    CERN Document Server

    Kilbas, Anatoly A; Trujillo, Juan J; Van Mill, Jan

    2006-01-01

    This monograph provides the most recent and up-to-date developments on fractional differential and fractional integro-differential equations involving many different potentially useful operators of fractional calculus. The subject of fractional calculus and its applications (that is, calculus of integrals and derivatives of any arbitrary real or complex order) has gained considerable popularity and importance during the past three decades or so, due mainly to its demonstrated applications in numerous seemingly diverse and widespread fields of science and engineering. Some of the areas of prese

  19. DYNAMICS OF FRACTIONAL ORDER CHAOTIC SYSTEM

    Directory of Open Access Journals (Sweden)

    M. Jana

    2017-02-01

    Full Text Available This paper deals with the dynamics of chaos and synchronization for fractional order chaotic system. For fractional order derivative Captuo definition is used here and numerical simulations are done using Predictor-Correctors scheme by Diethlm based on the Adams-Baseforth-Moulton algorithm. Stability analysis is discussed here for non linear fractional order chaotic system and synchronization is achieved between two non identical fractional order chaotic systems: Finance chaotic system(driving systemand Lorenz system(response systemvia active control.Numerical simulations are performed to show the effectiveness of these approaches.

  20. Model selection for univariable fractional polynomials.

    Science.gov (United States)

    Royston, Patrick

    2017-07-01

    Since Royston and Altman's 1994 publication ( Journal of the Royal Statistical Society, Series C 43: 429-467), fractional polynomials have steadily gained popularity as a tool for flexible parametric modeling of regression relationships. In this article, I present fp_select, a postestimation tool for fp that allows the user to select a parsimonious fractional polynomial model according to a closed test procedure called the fractional polynomial selection procedure or function selection procedure. I also give a brief introduction to fractional polynomial models and provide examples of using fp and fp_select to select such models with real data.

  1. Maximum likelihood estimation of fractionally cointegrated systems

    DEFF Research Database (Denmark)

    Lasak, Katarzyna

    In this paper we consider a fractionally cointegrated error correction model and investigate asymptotic properties of the maximum likelihood (ML) estimators of the matrix of the cointe- gration relations, the degree of fractional cointegration, the matrix of the speed of adjustment to the equilib......In this paper we consider a fractionally cointegrated error correction model and investigate asymptotic properties of the maximum likelihood (ML) estimators of the matrix of the cointe- gration relations, the degree of fractional cointegration, the matrix of the speed of adjustment...

  2. Fractional Partial Differential Equation: Fractional Total Variation and Fractional Steepest Descent Approach-Based Multiscale Denoising Model for Texture Image

    Directory of Open Access Journals (Sweden)

    Yi-Fei Pu

    2013-01-01

    Full Text Available The traditional integer-order partial differential equation-based image denoising approaches often blur the edge and complex texture detail; thus, their denoising effects for texture image are not very good. To solve the problem, a fractional partial differential equation-based denoising model for texture image is proposed, which applies a novel mathematical method—fractional calculus to image processing from the view of system evolution. We know from previous studies that fractional-order calculus has some unique properties comparing to integer-order differential calculus that it can nonlinearly enhance complex texture detail during the digital image processing. The goal of the proposed model is to overcome the problems mentioned above by using the properties of fractional differential calculus. It extended traditional integer-order equation to a fractional order and proposed the fractional Green’s formula and the fractional Euler-Lagrange formula for two-dimensional image processing, and then a fractional partial differential equation based denoising model was proposed. The experimental results prove that the abilities of the proposed denoising model to preserve the high-frequency edge and complex texture information are obviously superior to those of traditional integral based algorithms, especially for texture detail rich images.

  3. Effects-driven chemical fractionation of heavy fuel oil to isolate compounds toxic to trout embryos.

    Science.gov (United States)

    Bornstein, Jason M; Adams, Julie; Hollebone, Bruce; King, Thomas; Hodson, Peter V; Brown, R Stephen

    2014-04-01

    Heavy fuel oil (HFO) spills account for approximately 60% of ship-source oil spills and are up to 50 times more toxic than medium and light crude oils. Heavy fuel oils contain elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) and alkyl-PAHs, known to be toxic to fish; however, little direct characterization of HFO toxicity has been reported. An effects-driven chemical fractionation was conducted on HFO 7102 to separate compounds with similar chemical and physical properties, including toxicity, to isolate the groups of compounds most toxic to trout embryos. After each separation, toxicity tests directed the next phase of fractionation, and gas chromatography-mass spectrometry analysis correlated composition with toxicity, with a focus on PAHs. Low-temperature vacuum distillation permitted the separation of HFO into 3 fractions based on boiling point ranges. The most toxic of these fractions underwent wax precipitation to remove long-chain n-alkanes. The remaining PAH-rich extract was further separated using open column chromatography, which provided distinct fractions that were grouped according to increasing aromatic ring count. The most toxic of these fractions was richest in PAHs and alkyl-PAHs. The results of the present study were consistent with previous crude oil studies that identified PAH-rich fractions as the most toxic. © 2013 SETAC.

  4. Fractional-order adaptive fault estimation for a class of nonlinear fractional-order systems

    KAUST Repository

    N'Doye, Ibrahima

    2015-07-01

    This paper studies the problem of fractional-order adaptive fault estimation for a class of fractional-order Lipschitz nonlinear systems using fractional-order adaptive fault observer. Sufficient conditions for the asymptotical convergence of the fractional-order state estimation error, the conventional integer-order and the fractional-order faults estimation error are derived in terms of linear matrix inequalities (LMIs) formulation by introducing a continuous frequency distributed equivalent model and using an indirect Lyapunov approach where the fractional-order α belongs to 0 < α < 1. A numerical example is given to demonstrate the validity of the proposed approach.

  5. Mineralization of organic phosphorus in soil size fractions under different vegetation covers in the north of Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Joice Cleide de Oliveira Rita

    2013-10-01

    Full Text Available In unfertilized, highly weathered tropical soils, phosphorus (P availability to plants is dependent on the mineralization of organic P (Po compounds. The objective of this study was to estimate the mineralization of total and labile Po in soil size fractions of > 2.0, 2.0-0.25 and 2.0 and 2.0-0.25 mm fractions, respectively. In contrast, there was an average increase of 90 % of total Po in microaggregates of 2.0 (-50 % and < 0.25 mm (-76 % fractions, but labile Po increased by 35 % in the 2.0-0.25 mm fraction. The Po fraction relative to total extracted P and total labile P within the soil size fractions varied with the vegetation cover and incubation time. Therefore, the distribution of P fractions (Pi and Po in the soil size fraction revealed the distinctive ability of the cover species to recycle soil P. Consequently, the potential of Po mineralization varied with the size fraction and vegetation cover. Because Po accounted for most of the total labile P, the P availability to plants was closely related to the mineralization of this P fraction.

  6. Gated cardiac imaging: manual calculations and observations of left ventricular ejection fraction

    International Nuclear Information System (INIS)

    Hawkins, T.; Keavey, P.M.

    1984-01-01

    Using gamma camera imaging, the fixed region and moving region methods of calculating left ventricular ejection fraction were studied. Data were obtained from gated blood pool studies on 125 cardiac patients with myocardial infarcts of varying extent and location. Ejection fractions ranged from 10 to 76%. The left anterior oblique angulation for optimal visualisation of the ventricles showed considerable patient variation. The authors conclude that a fixed angulation cannot be recommended and that there is little to justify it. Where the septum is not seen distinctly during setting up, a larger rather than smaller angle is generally advised. (U.K.)

  7. 10 distinct stellar populations in omega Centauri.

    Science.gov (United States)

    Bellini, Andrea; Anderson, Jay; Bedin, Luigi R.; Cool, Adrienne; King, Ivan R.; van der marel, roeland p.

    2015-08-01

    We are constructing the most comprehensive catalog of photometry and proper motions ever assembled for a globular cluster. The core of omega Centauri has been imaged over 600 times through WFC3’s UVIS and IR channels for the purposes of detector calibration. There exist ~30 exposures each for 26 filters, stretching uniformly from F225W in the UV to F160W in the infrared. Furthermore, the 12-year baseline between this data and a 2002 ACS survey will more than triple both the accuracy and the number of well-measured stars compared to previous studies.This totally unprecedented complete spectral coverage for over 400,000 stars, from the red-giant branch down to the white dwarfs, provides the best chance yet to understand the multiple-population phenomenon in any globular cluster. A preliminary analysis of the color-magnitude diagrams in different bands already allows us to identify 10 distinct sequences.

  8. Entrepreneurship research in Spain: developments and distinctiveness.

    Science.gov (United States)

    Sánchez, José C; Gutiérrez, Andrea

    2011-08-01

    This article presents a review of research on entrepreneurship in Spain, paying particular attention to its beginnings, nature and main focus of interest. We have developed a database based on the review of 471 works produced between 1977 and 2009, including articles published in national and international journals and dissertations (read in Spain) that allowed us to extract the following results. There is a preference for qualitative methods, conceptual contributions and the entrepreneurial process as the privileged research theme. There is also a strong focus of interest on micro and small enterprises. These characteristics of Spanish research in areas of entrepreneurship can make a distinctive contribution to international research. However, the dissemination of knowledge and inadequate strategies for international publication limit the diffusion of Spanish research in entrepreneurship. Lastly, we discuss the implications for future research.

  9. Poikiloderma vasculare atrophicans: A distinct clinical entity?

    Directory of Open Access Journals (Sweden)

    Vikram K Mahajan

    2015-01-01

    Full Text Available This paper describes a typical case of poikiloderma vasculare atrophicans (PVA in a 48-year-old female. Histologically, the features were suggestive of PVA with the absence of Pautrier′s microabscess or atypical lymphoid cells. The biopsy specimen was positive for cluster of differentiation (CD 8 on immunohistochemical staining. Its exact pathogenesis remains obscure, and it remains unclear whether PVA actually is mycosis fungoides (MF, a forme fruste of MF, or a distinct and benign dermatosis with CD8+ phenotype that can perhaps be labeled as PVA. However, it has a long benign clinical course without progression to tumor stage of MF in most cases, and its status within the spectrum of cutaneous T-cell lymphoma remains poorly understood. Yet it is imperative to distinguish PVA from poikilodermic MF.

  10. Lipedema: a clinical entity distinct from lymphedema.

    Science.gov (United States)

    Rudkin, G H; Miller, T A

    1994-11-01

    In a review of 250 cases of lymphedema of the lower extremity, 9 patients were noted to share unique similarities in their history and physical findings. Although these patients had mild swelling in their pretibial areas and were all referred with a diagnosis of lymphedema of the legs, their findings differed significantly from the usual patient with either congenital or acquired lymphedema. Notably, the lower extremity swelling was always bilateral and symmetrical in nature and never involved the feet. Skin changes characteristic of lymphedema were not found, and consistent fat pads were present anterior to the lateral malleoli in each patient. These findings are representative of a clinical entity known as lipedema, which is distinct from lymphedema and for which treatment may be different.

  11. Mushrooms—Biologically Distinct and Nutritionally Unique

    Science.gov (United States)

    Feeney, Mary Jo; Miller, Amy Myrdal; Roupas, Peter

    2014-01-01

    Mushrooms are fungi, biologically distinct from plant- and animal-derived foods (fruits, vegetables, grains, dairy, protein [meat, fish, poultry, legumes, nuts, and seeds]) that comprise the US Department of Agriculture food patterns operationalized by consumer-focused MyPlate messages. Although mushrooms provide nutrients found in these food groups, they also have a unique nutrient profile. Classified into food grouping systems by their use as a vegetable, mushrooms’ increasing use in main entrées in plant-based diets is growing, supporting consumers’ efforts to follow dietary guidance recommendations. Mushrooms’ nutrient and culinary characteristics suggest it may be time to reevaluate food groupings and health benefits in the context of 3 separate food kingdoms: plants/botany, animals/zoology, and fungi/mycology. PMID:25435595

  12. Neurophysiological distinction between schizophrenia and schizoaffective disorder

    Directory of Open Access Journals (Sweden)

    Daniel H Mathalon

    2010-01-01

    Full Text Available Schizoaffective disorder (SA is distinguished from schizophrenia (SZ based on the presence of prominent mood symptoms over the illness course. Despite this clinical distinction, SA and SZ patients are often combined in research studies, in part because data supporting a distinct pathophysiological boundary between the disorders are lacking. Indeed, few studies have addressed whether neurobiological abnormalities associated with SZ, such as the widely replicated reduction and delay of the P300 event-related potential (ERP, are also present in SA. Scalp EEG was acquired from patients with DSM-IV SA (n=15 or SZ (n=22, as well as healthy controls (HC; n=22 to assess the P300 elicited by infrequent target (15% and task-irrelevant distractor (15% stimuli in separate auditory and visual “oddball” tasks. P300 amplitude was reduced and delayed in SZ, relative to HC, consistent with prior studies. These SZ abnormalities did not interact with stimulus type (target vs. task-irrelevant distractor or modality (auditory vs. visual. Across sensory modality and stimulus type, SA patients exhibited normal P300 amplitudes (significantly larger than SZ patients and indistinguishable from HC. However, P300 latency and reaction time were both equivalently delayed in SZ and SA patients, relative to HC. P300 differences between SA and SZ patients could not be accounted for by variation in symptom severity, socio-economic status, education, or illness duration. Although both groups show similar deficits in processing speed, SA patients do not exhibit the P300 amplitude deficits evident in SZ, consistent with an underlying pathophysiological boundary between these disorders.

  13. Oxytocin and vasopressin: distinct receptors in myometrium

    Energy Technology Data Exchange (ETDEWEB)

    Guillon, G.; Balestre, M.N.; Roberts, J.M.; Bottari, S.P.

    1987-06-01

    The binding characteristics of (/sup 3/H)oxytocin (( /sup 3/H)OT) and (/sup 3/H)lysine vasopressin (( /sup 3/H)LVP) to nonpregnant human myometrium were investigated. Binding of both radioligands was saturable, time dependent, and reversible. Whereas (/sup 3/H)OT was found to bind to a single class of sites with high affinity (Kd, 1.5 +/- 0.4 (+/- SEM) nM) and low capacity (maximum binding (Bmax), 34 +/- 6 fmol/mg protein), (/sup 3/H)LVP bound to two classes of sites, one with high affinity (Kd, 2.2 +/- 0.1 nM) and low capacity (Bmax, 198 +/- 7 fmol/mg protein) and another with low affinity (Kd, 655 +/- 209 nM) and high capacity (Bmax, 5794 +/- 1616 fmol/mg protein). The binding of the labeled peptides also displayed a marked difference in sensitivity to Mg2+ and guanine nucleotides. These differences in binding characteristics as well as the differences in potency of analogs in competing for (/sup 3/H)OT and (/sup 3/H)LVP binding indicate the presence of distinct receptors for OT and vasopressin in human myometrium. Pharmacological characterization of the high affinity binding sites for (/sup 3/H)LVP indicated that these are of the V1 subtype. Although, as suggested by others, vasopressin and OT can bind to the same sites, the presence of distinct receptors for both peptides provides an explanation for the previously reported difference in myometrial responsiveness to OT and vasopressin.

  14. On Fractional Order Hybrid Differential Equations

    Directory of Open Access Journals (Sweden)

    Mohamed A. E. Herzallah

    2014-01-01

    Full Text Available We develop the theory of fractional hybrid differential equations with linear and nonlinear perturbations involving the Caputo fractional derivative of order 0<α<1. Using some fixed point theorems we prove the existence of mild solutions for two types of hybrid equations. Examples are given to illustrate the obtained results.

  15. Making Sense of Fractions and Percentages

    Science.gov (United States)

    Whitin, David J.; Whitin, Phyllis

    2012-01-01

    Because fractions and percentages can be difficult for children to grasp, connecting them whenever possible is beneficial. Linking them can foster representational fluency as children simultaneously see the part-whole relationship expressed numerically (as a fraction and as a percentage) and visually (as a pie chart). NCTM advocates these…

  16. Antidiarrhoeal Activity of Chromatographic Fractions of ...

    African Journals Online (AJOL)

    Erah

    Purpose: The present study was undertaken in order to evaluate the antidiarrhoeal activity of three chromatographic fractions (L, S and Y) of Stereospermum kunthianum stem bark in mice. Methods: Vacuum liquid/column chromatography (VLC/ CC) were used to obtain three fractions (L,S and Y) of Stereospermum ...

  17. Phytotoxic characterization of various fractions of Launaea ...

    African Journals Online (AJOL)

    Allelopathic screening of various fractions of Launaea procumbens, collected from Wah Cantt (Punjab) Pakistan, was conceded to identify potent allelopathic fraction for future phytochemical analyses. For this purpose, radish root inhibition method was used to test allelopathic potential. Two different concentrations of 100 ...

  18. Gauge invariance and fractional quantized Hall effect

    International Nuclear Information System (INIS)

    Tao, R.; Wu, Y.S.

    1984-01-01

    It is shown that gauge invariance arguments imply the possibility of fractional quantized Hall effect; the Hall conductance is accurately quantized to a rational value. The ground state of a system showing the fractional quantized Hall effect must be degenerate; the non-degenerate ground state can only produce the integral quantized Hall effect. 12 references

  19. Fractional supersymmetry through generalized anyonic algebra

    International Nuclear Information System (INIS)

    Douari, Jamila; Abdus Salam International Centre for Theoretical Physics, Trieste; Hassouni, Yassine

    2001-01-01

    The construction of anyonic operators and algebra is generalized by using quons operators. Therefore, the particular version of fractional supersymmetry is constructed on the two-dimensional lattice by associating two generalized anyons of different kinds. The fractional supersymmetry Hamiltonian operator is obtained on the two-dimensional lattice and the quantum algebra U q (sl 2 ) is realized. (author)

  20. Stieltjes' continued fraction for the gamma function

    International Nuclear Information System (INIS)

    Cha, B.W.

    1980-01-01

    The first forty-one coefficients of a continued fraction for 1n GAMMA(z)+z-(z-1/2) 1n z-1n√2π, are given. The computation, based on Wall's algorithm for converting a function's power series representation to a continued fraction representation, was run on the algebraic manipulation system MACSYMA