WorldWideScience

Sample records for distinct membrane acceptors

  1. Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. I. Ultrastructural autoradiographic localization and quantitation of distinct membrane acceptors for types A and B on motor nerves

    International Nuclear Information System (INIS)

    Black, J.D.; Dolly, J.O.

    1986-01-01

    The labeling patterns produced by radioiodinated botulinum neurotoxin ( 125 I-BoNT) types A and B at the vertebrate neuromuscular junction were investigated using electron microscopic autoradiography. The data obtained allow the following conclusions to be made. (a) 125 I-BoNT type A, applied in vivo or in vitro to mouse diaphragm or frog cutaneous pectoris muscle, interacts saturably with the motor nerve terminal only; silver grains occur on the plasma membrane, within the synaptic bouton, and in the axoplasm of the nerve trunk, suggesting internalization and retrograde intra-axonal transport of toxin or fragments thereof. (b) 125 I-BoNT type B, applied in vitro to the murine neuromuscular junction, interacts likewise with the motor nerve terminal except that a lower proportion of internalized radioactivity is seen. This result is reconcilable with the similar, but not identical, pharmacological action of these toxin types. (c) The saturability of labeling in each case suggested the involvement of acceptors; on preventing the internalization step with metabolic inhibitors, their precise location became apparent. They were found on all unmyelinated areas of the nerve terminal membrane, including the preterminal axon and the synaptic bouton. (d) It is not proposed that these membrane acceptors target BoNT to the nerve terminal and mediate its delivery to an intracellular site, thus contributing to the toxin's selective inhibitory action on neurotransmitter release

  2. Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens.

    Science.gov (United States)

    Zacharoff, Lori; Chan, Chi Ho; Bond, Daniel R

    2016-02-01

    The respiration of metals by the bacterium Geobacter sulfurreducens requires electrons generated by metabolism to pass from the interior of the cell to electron acceptors beyond the cell membranes. The G. sulfurreducens inner membrane multiheme c-type cytochrome ImcH is required for respiration to extracellular electron acceptors with redox potentials greater than -0.1 V vs. SHE, but ImcH is not essential for electron transfer to lower potential acceptors. In contrast, deletion of cbcL, encoding an inner membrane protein consisting of b-type and multiheme c-type cytochrome domains, severely affected reduction of low potential electron acceptors such as Fe(III)-oxides and electrodes poised at -0.1 V vs. SHE. Catalytic cyclic voltammetry of a ΔcbcL strain growing on poised electrodes revealed a 50 mV positive shift in driving force required for electron transfer out of the cell. In non-catalytic conditions, low-potential peaks present in wild type biofilms were absent in ∆cbcL mutants. Expression of cbcL in trans increased growth at low redox potential and restored features to cyclic voltammetry. This evidence supports a model where CbcL is a component of a second electron transfer pathway out of the G. sulfurreducens inner membrane that dominates when redox potential is at or below -0.1 V vs. SHE. Copyright © 2015. Published by Elsevier B.V.

  3. Fluorescent mannosides serve as acceptor substrates for glycosyltransferase and sugar-1-phosphate transferase activities in Euglena gracilis membranes.

    Science.gov (United States)

    Ivanova, Irina M; Nepogodiev, Sergey A; Saalbach, Gerhard; O'Neill, Ellis C; Urbaniak, Michael D; Ferguson, Michael A J; Gurcha, Sudagar S; Besra, Gurdyal S; Field, Robert A

    2017-01-13

    Synthetic hexynyl α-D-mannopyranoside and its α-1,6-linked disaccharide counterpart were fluorescently labelled through CuAAC click chemistry with 3-azido-7-hydroxycoumarin. The resulting triazolyl-coumarin adducts, which were amenable to analysis by TLC, HPLC and mass spectrometry, proved to be acceptor substrates for α-1,6-ManT activities in mycobacterial membranes, as well as α- and β-GalT activities in trypanosomal membranes, benchmarking the potential of the fluorescent acceptor approach against earlier radiochemical assays. Following on to explore the glycobiology of the benign protozoan alga Euglena gracilis, α-1,3- and α-1,2-ManT activities were detected in membrane preparations, along with GlcT, Glc-P-T and GlcNAc-P-T activities. These studies serve to demonstrate the potential of readily accessible fluorescent glycans as substrates for exploring carbohydrate active enzymes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Steady-state acceptor fluorescence anisotropy imaging under evanescent excitation for visualisation of FRET at the plasma membrane.

    Directory of Open Access Journals (Sweden)

    Viviane Devauges

    Full Text Available We present a novel imaging system combining total internal reflection fluorescence (TIRF microscopy with measurement of steady-state acceptor fluorescence anisotropy in order to perform live cell Förster Resonance Energy Transfer (FRET imaging at the plasma membrane. We compare directly the imaging performance of fluorescence anisotropy resolved TIRF with epifluorescence illumination. The use of high numerical aperture objective for TIRF required correction for induced depolarization factors. This arrangement enabled visualisation of conformational changes of a Raichu-Cdc42 FRET biosensor by measurement of intramolecular FRET between eGFP and mRFP1. Higher activity of the probe was found at the cell plasma membrane compared to intracellularly. Imaging fluorescence anisotropy in TIRF allowed clear differentiation of the Raichu-Cdc42 biosensor from negative control mutants. Finally, inhibition of Cdc42 was imaged dynamically in live cells, where we show temporal changes of the activity of the Raichu-Cdc42 biosensor.

  5. New polymeric electrolyte membranes based on proton donor proton acceptor properties for direct methanol fuel cells

    NARCIS (Netherlands)

    Manea, G.C.; Mulder, M.H.V.

    2002-01-01

    In order to reduce the high methanol permeability of membranes in a direct methanol fuel cell application new and better materials are still required. In this paper membranes made from polybenzimidazole/sulfonated polysulfone are given and compared with homopolymer membranes made from sulfonated

  6. Intramolecular energy transfer at donor-acceptor interactions in model and biological membranes

    International Nuclear Information System (INIS)

    Umarova, Fatima T.

    2011-01-01

    Intramolecular triplet-triplet energy transfer between molecules of sensibilisator and photochrome for registration of protein interactions in the membrane preparation of Na,K-ATPase was investigated. Erythrosinithiocyanate (ERITC) was used as the triplet label of sensibilisator, and 4-acetoamido-4 -isothiocyanatostilbene-2,2 disullfonic acid (SITS) was used as the photochrome label. Na,K-ATPase preparations were covalently bound with ERITC in active centre of enzyme, and SITS molecules were covalently bound by NH2-groups. In model system, in chymotrypsinogene molecule, SITS and ERITC labels were used also. The cis-trans-isomerization of SITS was initiated by triplet-triplet energy transfer from light excited ERITC molecule to photochrome. The kinetics of isomerization was recorded by the SITS fluorescence measurements. The constant of rate of triplet-triplet energy transfer from ERITC to cis-isomers of SITS in Na,K-ATPase was determined as (3-7)x10 3 M -1 s -1 , and in model system it equals 1x 10 7 M 1 s -1 . The value of energy transfer between loos molecules of erythrosine and SITS in buffer solution equaled to 7x10 7 M -1 s -1 . This drop of R m y in the membrane preparation of Na,K-ATPase at 10 4 reflected the decrease in the frequency of label collisions caused by the increase in the media viscosity and steric hindrances. (author)

  7. Micro-electromembrane extraction using multiple free liquid membranes and acceptor solutions - Towards selective extractions of analytes based on their acid-base strength.

    Science.gov (United States)

    Kubáň, Pavel; Seip, Knut Fredrik; Gjelstad, Astrid; Pedersen-Bjergaard, Stig

    2016-11-02

    This work investigated selective micro-electromembrane extractions (μ-EMEs) of the colored indicators metanil yellow and congo red (visual proof-of-principle) and the small drug substances nortriptyline, papaverine, mianserin, and citalopram (model analytes) based on their acid-base strength. With two free liquid membranes (FLMs), the target analytes were extracted from aqueous donor solution, across FLM 1 (1-pentanol, 1-ethyl-2-nitrobenzene (ENB) or 4-nitrocumene (4-NC)), into aqueous acceptor solution 1, further across FLM 2 (1-pentanol, ENB or 4-NC), and finally into aqueous acceptor solution 2. All phases had volumes between 1.0 and 1.5 μL and extractions were promoted by 200-300 V d.c. applied across the five-phase μ-EME system formed in a perfluoroalkoxy capillary tubing. The anode was located in acceptor solution 2 and the cathode was located in donor solution for μ-EMEs of acidic analytes, and locations of the electrodes were vice versa for μ-EMEs of basic analytes. After μ-EME, donor solution and acceptor solution 1 and 2 were analyzed by capillary electrophoresis or liquid chromatography-mass spectrometry. The model analytes migrated efficiently in the proposed μ-EME system, their migration behavior was controlled by pH in aqueous solutions and their selective fractionation into acceptor solution 1 and 2 was demonstrated based on their acid-base strength. Under optimal conditions, acceptor solution 2 contained 60% nortriptyline (pK a  = 10.5) and less than 1% papaverine (pK a  = 6.0) and acceptor solution 1 contained 17% nortriptyline and 27% papaverine after 15 min of μ-EME. The five-phase μ-EME system was also compatible with human plasma samples. Work is in progress to further increase the fractionation capability, and to implement the concept into microfluidic platforms. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. α-Synuclein oligomers distinctively permeabilize complex model membranes

    NARCIS (Netherlands)

    Stefanovic, Anja N D; Stöckl, Martin T; Claessens, Mireille M A E; Subramaniam, Vinod

    α-Synuclein oligomers are increasingly considered to be responsible for the death of dopaminergic neurons in Parkinson's disease. The toxicity mechanism of α-synuclein oligomers likely involves membrane permeabilization. Even though it is well established that α-synuclein oligomers bind and

  9. Heat stress causes spatially-distinct membrane re-modelling in K562 leukemia cells.

    Directory of Open Access Journals (Sweden)

    Gábor Balogh

    Full Text Available Cellular membranes respond rapidly to various environmental perturbations. Previously we showed that modulations in membrane fluidity achieved by heat stress (HS resulted in pronounced membrane organization alterations which could be intimately linked to the expression and cellular distribution of heat shock proteins. Here we examine heat-induced membrane changes using several visualisation methods. With Laurdan two-photon microscopy we demonstrate that, in contrast to the enhanced formation of ordered domains in surface membranes, the molecular disorder is significantly elevated within the internal membranes of cells preexposed to mild HS. These results were compared with those obtained by anisotropy, fluorescence lifetime and electron paramagnetic resonance measurements. All probes detected membrane changes upon HS. However, the structurally different probes revealed substantially distinct alterations in membrane heterogeneity. These data call attention to the careful interpretation of results obtained with only a single label. Subtle changes in membrane microstructure in the decision-making of thermal cell killing could have potential application in cancer therapy.

  10. Simultaneous micro-electromembrane extractions of anions and cations using multiple free liquid membranes and acceptor solutions

    Czech Academy of Sciences Publication Activity Database

    Kubáň, Pavel; Boček, Petr

    2016-01-01

    Roč. 908, FEB (2016), s. 113-120 ISSN 0003-2670 R&D Projects: GA ČR(CZ) GA13-05762S Institutional support: RVO:68081715 Keywords : free liquid membranes * micro-electromembrane extraction * simultaneous extractions Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 4.950, year: 2016

  11. Distinct constrictive processes, separated in time and space,divide Caulobacter inner and outer membranes

    Energy Technology Data Exchange (ETDEWEB)

    Judd, Ellen M.; Comolli, Luis R.; Chen, Joseph C.; Downing,Kenneth H.; Moerner, W.E.; McAdams, Harley H.

    2005-05-01

    Cryo-electron microscope tomography (cryoEM) and a fluorescence loss in photobleaching (FLIP) assay were used to characterize progression of the terminal stages of Caulobacter crescentus cell division. Tomographic cryoEM images of the cell division site show separate constrictive processes closing first the inner, and then the outer, membrane in a manner distinctly different from septum-forming bacteria. The smallest observed pre-fission constrictions were 60 nm for both the inner and outer membrane. FLIP experiments had previously shown cytoplasmic compartmentalization, when cytoplasmic proteins can no longer diffuse between the two nascent progeny cell compartments, occurring 18 min before daughter cell separation in a 135 min cell cycle. Here, we used FLIP experiments with membrane-bound and periplasmic fluorescent proteins to show that (1) periplasmic compartmentalization occurs after cytoplasmic compartmentalization, consistent with the cryoEM observations, and (2) inner membrane and periplasmic proteins can diffuse past the FtsZ constriction site, indicating that the cell division machinery does not block membrane diffusion.

  12. Triggering actin comets versus membrane ruffles: distinctive effects of phosphoinositides on actin reorganization.

    Science.gov (United States)

    Ueno, Tasuku; Falkenburger, Björn H; Pohlmeyer, Christopher; Inoue, Takanari

    2011-12-13

    A limited set of phosphoinositide membrane lipids regulate diverse cellular functions including proliferation, differentiation, and migration. We developed two techniques based on rapamycin-induced protein dimerization to rapidly change the concentration of plasma membrane phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)]. First, using a membrane-recruitable form of PI(4)P 5-kinase, we increased PI(4,5)P(2) synthesis from phosphatidylinositol 4-phosphate [PI(4)P] and found that COS-7, HeLa, and human embryonic kidney 293 cells formed bundles of motile actin filaments known as actin comets. In contrast, a second technique that increased the concentration of PI(4,5)P(2) without consuming PI(4)P induced membrane ruffles. These distinct phenotypes were mediated by dynamin-mediated vesicular trafficking and mutually inhibitory crosstalk between the small guanosine triphosphatases Rac and RhoA. Our results indicate that the effect of PI(4,5)P(2) on actin reorganization depends on the abundance of other phosphoinositides, such as PI(4)P. Thus, combinatorial regulation of phosphoinositide concentrations may contribute to the diversity of phosphoinositide functions.

  13. Daptomycin resistance in enterococci is associated with distinct alterations of cell membrane phospholipid content.

    Directory of Open Access Journals (Sweden)

    Nagendra N Mishra

    Full Text Available The lipopeptide antibiotic, daptomycin (DAP interacts with the bacterial cell membrane (CM. Development of DAP resistance during therapy in a clinical strain of Enterococcus faecalis was associated with mutations in genes encoding enzymes involved in cell envelope homeostasis and phospholipid metabolism. Here we characterized changes in CM phospholipid profiles associated with development of DAP resistance in clinical enterococcal strains.Using two clinical strain-pairs of DAP-susceptible and DAP-resistant E. faecalis (S613 vs. R712 and E. faecium (S447 vs. R446 recovered before and after DAP therapy, we compared four distinct CM profiles: phospholipid content, fatty acid composition, membrane fluidity and capacity to be permeabilized and/or depolarized by DAP. Additionally, we characterized the cell envelope of the E. faecium strain-pair by transmission electron microscopy and determined the relative cell surface charge of both strain-pairs.Both E. faecalis and E. faecium mainly contained four major CM PLs: phosphatidylglycerol (PG, cardiolipin, lysyl-phosphatidylglycerol (L-PG and glycerolphospho-diglycodiacylglycerol (GP-DGDAG. In addition, E. faecalis CMs (but not E. faecium also contained: i phosphatidic acid; and ii two other unknown species of amino-containing PLs. Development of DAP resistance in both enterococcal species was associated with a significant decrease in CM fluidity and PG content, with a concomitant increase in GP-DGDAG. The strain-pairs did not differ in their outer CM translocation (flipping of amino-containing PLs. Fatty acid content did not change in the E. faecalis strain-pair, whereas a significant decrease in unsaturated fatty acids was observed in the DAP-resistant E. faecium isolate R446 (vs S447. Resistance to DAP in E. faecium was associated with distinct structural alterations of the cell envelope and cell wall thickening, as well as a decreased ability of DAP to depolarize and permeabilize the CM.Distinct

  14. Distinct fluorescent pattern of KAT1::GFP in the plasma membrane of Vicia faba guard cells.

    Science.gov (United States)

    Homann, Ulrike; Meckel, Tobias; Hewing, Jennifer; Hütt, Marc-Thorsten; Hurst, Annette C

    2007-08-01

    The organisation of membrane proteins into certain domains of the plasma membrane (PM) has been proposed to be important for signalling in yeast and animal cells. Here we describe the formation of a very distinct pattern of the K(+) channel KAT1 fused to the green fluorescent protein (KAT1::GFP) when transiently expressed in guard cells of Vicia faba. Using confocal laser scanning microscopy we observed a radially striped pattern of KAT1::GFP fluorescence in the PM in about 70% of all transfected guard cells. This characteristic pattern was found to be cell type and protein specific and independent of the stomatal aperture and the cytoskeleton. Staining of the cell wall of guard cells with Calcofluor White revealed a great similarity between the arrangement of cellulose microfibrils and the KAT1::GFP pattern. Furthermore, the radial pattern of KAT1::GFP immediately disappeared when turgor pressure was strongly decreased by changing from hypotonic to hypertonic conditions. The pattern reappeared within 15 min upon reestablishment of high turgor pressure in hypotonic solution. Evaluation of the staining pattern by a mathematical algorithm further confirmed this reversible abolishment of the radial pattern during hypertonic treatment. We therefore conclude that the radial organisation of KAT1::GFP depends on the close contact between the PM and cell wall in turgid guard cells. These results offer the first indication for a role of the cell wall in the localisation of ion channels. We propose a model in which KAT1 is located in the cellulose fibrils intermediate areas of the PM and discuss the physiological role of this phenomenon.

  15. Associative Memory Acceptors.

    Science.gov (United States)

    Card, Roger

    The properties of an associative memory are examined in this paper from the viewpoint of automata theory. A device called an associative memory acceptor is studied under real-time operation. The family "L" of languages accepted by real-time associative memory acceptors is shown to properly contain the family of languages accepted by one-tape,…

  16. The endoplasmic reticulum membrane J protein C18 executes a distinct role in promoting simian virus 40 membrane penetration.

    Science.gov (United States)

    Bagchi, Parikshit; Walczak, Christopher Paul; Tsai, Billy

    2015-04-01

    The nonenveloped simian virus 40 (SV40) hijacks the three endoplasmic reticulum (ER) membrane-bound J proteins B12, B14, and C18 to escape from the ER into the cytosol en route to successful infection. How C18 controls SV40 ER-to-cytosol membrane penetration is the least understood of these processes. We previously found that SV40 triggers B12 and B14 to reorganize into discrete puncta in the ER membrane called foci, structures postulated to represent the cytosol entry site (C. P. Walczak, M. S. Ravindran, T. Inoue, and B. Tsai, PLoS Pathog 10: e1004007, 2014). We now find that SV40 also recruits C18 to the virus-induced B12/B14 foci. Importantly, the C18 foci harbor membrane penetration-competent SV40, further implicating this structure as the membrane penetration site. Consistent with this, a mutant SV40 that cannot penetrate the ER membrane and promote infection fails to induce C18 foci. C18 also regulates the recruitment of B12/B14 into the foci. In contrast to B14, C18's cytosolic Hsc70-binding J domain, but not the lumenal domain, is essential for its targeting to the foci; this J domain likewise is necessary to support SV40 infection. Knockdown-rescue experiments reveal that C18 executes a role that is not redundant with those of B12/B14 during SV40 infection. Collectively, our data illuminate C18's contribution to SV40 ER membrane penetration, strengthening the idea that SV40-triggered foci are critical for cytosol entry. Polyomaviruses (PyVs) cause devastating human diseases, particularly in immunocompromised patients. As this virus family continues to be a significant human pathogen, clarifying the molecular basis of their cellular entry pathway remains a high priority. To infect cells, PyV traffics from the cell surface to the ER, where it penetrates the ER membrane to reach the cytosol. In the cytosol, the virus moves to the nucleus to cause infection. ER-to-cytosol membrane penetration is a critical yet mysterious infection step. In this study, we

  17. ABCA1, ABCG1, and ABCG4 are distributed to distinct membrane meso-domains and disturb detergent-resistant domains on the plasma membrane.

    Directory of Open Access Journals (Sweden)

    Osamu Sano

    Full Text Available ATP-binding cassette A1 (ABCA1, ABCG1, and ABCG4 are lipid transporters that mediate the efflux of cholesterol from cells. To analyze the characteristics of these lipid transporters, we examined and compared their distributions and lipid efflux activity on the plasma membrane. The efflux of cholesterol mediated by ABCA1 and ABCG1, but not ABCG4, was affected by a reduction of cellular sphingomyelin levels. Detergent solubility and gradient density ultracentrifugation assays indicated that ABCA1, ABCG1, and ABCG4 were distributed to domains that were solubilized by Triton X-100 and Brij 96, resistant to Triton X-100 and Brij 96, and solubilized by Triton X-100 but resistant to Brij 96, respectively. Furthermore, ABCG1, but not ABCG4, was colocalized with flotillin-1 on the plasma membrane. The amounts of cholesterol extracted by methyl-β-cyclodextrin were increased by ABCA1, ABCG1, or ABCG4, suggesting that cholesterol in non-raft domains was increased. Furthermore, ABCG1 and ABCG4 disturbed the localization of caveolin-1 to the detergent-resistant domains and the binding of cholera toxin subunit B to the plasma membrane. These results suggest that ABCA1, ABCG1, and ABCG4 are localized to distinct membrane meso-domains and disturb the meso-domain structures by reorganizing lipids on the plasma membrane; collectively, these observations may explain the different substrate profiles and lipid efflux roles of these transporters.

  18. Quantitative Proteomics Reveals Distinct Differences in the Protein Content of Outer Membrane Vesicle Vaccines

    NARCIS (Netherlands)

    Waterbeemd, van de B.; Mommen, G.P.M.; Pennings, J.L.A.; Eppink, M.H.M.; Wijffels, R.H.; Pol, van der L.A.; Jong, de A.P.J.M.

    2013-01-01

    At present, only vaccines containing outer membrane vesicles (OMV) have successfully stopped Neisseria meningitidis serogroup B epidemics. These vaccines however require detergent-extraction to remove endotoxin, which changes immunogenicity and causes production difficulties. To investigate this in

  19. The SC3 hydrophobin self-assembles into a membrane with distinct mass transfer properties

    NARCIS (Netherlands)

    Wang, [No Value; Shi, FX; Wosten, HAB; Hektor, H; Poolman, B; Robillard, GT; Wang, X.; Shi, Fuxin

    Hydrophobins are a class of small proteins that fulfill a wide spectrum of functions in fungal growth and development. They do so by self-assembling into an amphipathic membrane at hydrophilic-hydrophobic interfaces. The SC3 hydrophobin of Schizophyllum commune is the best-studied hydrophobin. It

  20. Membrane fusion is induced by a distinct peptide sequence of the sea urchin fertilization protein bindin

    NARCIS (Netherlands)

    Ulrich, AS; Glabe, CG; Hoekstra, D

    1998-01-01

    Fertilization in the sea urchin is mediated by the membrane-associated acrosomal protein bindin, which plays a key role in the adhesion and fusion between sperm and egg. We have investigated the structure/function relationship of an 18-amino acid peptide fragment "B18," which represents the minimal

  1. Analysis of exocyst subunit EXO70 family reveals distinct membrane polar domains in Tobacco pollen tubes

    Czech Academy of Sciences Publication Activity Database

    Sekereš, Juraj; Pejchar, Přemysl; Šantrůček, J.; Vukašinović, Nemanja; Žárský, Viktor; Potocký, Martin

    2017-01-01

    Roč. 173, č. 3 (2017), s. 1659-1675 ISSN 0032-0889 R&D Projects: GA ČR GA13-19073S; GA ČR GA15-24711S Grant - others:OPPK(XE) CZ.2.16/3.1.00/21519 Institutional support: RVO:61389030 Keywords : PLASMA-MEMBRANE * ARABIDOPSIS-THALIANA * CELL-MIGRATION Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 6.456, year: 2016

  2. Different sets of ER-resident J-proteins regulate distinct polar nuclear-membrane fusion events in Arabidopsis thaliana.

    Science.gov (United States)

    Maruyama, Daisuke; Yamamoto, Masaya; Endo, Toshiya; Nishikawa, Shuh-ichi

    2014-11-01

    Angiosperm female gametophytes contain a central cell with two polar nuclei. In many species, including Arabidopsis thaliana, the polar nuclei fuse during female gametogenesis. We previously showed that BiP, an Hsp70 in the endoplasmic reticulum (ER), was essential for membrane fusion during female gametogenesis. Hsp70 function requires partner proteins for full activity. J-domain containing proteins (J-proteins) are the major Hsp70 functional partners. A. thaliana ER contains three soluble J-proteins, AtERdj3A, AtERdj3B, and AtP58(IPK). Here, we analyzed mutants of these proteins and determined that double-mutant ovules lacking AtP58(IPK) and AtERdj3A or AtERdj3B were defective in polar nuclear fusion. Electron microscopy analysis identified that polar nuclei were in close contact, but no membrane fusion occurred in mutant ovules lacking AtP58(IPK) and AtERdj3A. The polar nuclear outer membrane appeared to be connected via the ER remaining at the inner unfused membrane in mutant ovules lacking AtP58(IPK) and AtERdj3B. These results indicate that ER-resident J-proteins, AtP58(IPK)/AtERdj3A and AtP58(IPK)/AtERdj3B, function at distinct steps of polar nuclear-membrane fusion. Similar to the bip1 bip2 double mutant female gametophytes, the aterdj3a atp58(ipk) double mutant female gametophytes defective in fusion of the outer polar nuclear membrane displayed aberrant endosperm proliferation after fertilization with wild-type pollen. However, endosperm proliferated normally after fertilization of the aterdj3b atp58(ipk) double mutant female gametophytes defective in fusion of the inner membrane. Our results indicate that the polar nuclear fusion defect itself does not cause an endosperm proliferation defect. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Polarized Human Retinal Pigment Epithelium Exhibits Distinct Surface Proteome on Apical and Basal Plasma Membranes.

    Science.gov (United States)

    Khristov, Vladimir; Wan, Qin; Sharma, Ruchi; Lotfi, Mostafa; Maminishkis, Arvydas; Bharti, Kapil

    2018-01-01

    Surface proteins localized on the apical and basal plasma membranes are required for a cell to sense its environment and relay changes in ionic, cytokine, chemokine, and hormone levels to the inside of the cell. In a polarized cell, surface proteins are differentially localized on the apical or the basolateral sides of the cell. The retinal pigment epithelium (RPE) is an example of a polarized cell that performs a variety of functions that are dependent on its polarized state including trafficking of ions, fluid, and metabolites across the RPE monolayer. These functions are absolutely crucial for maintaining the health and integrity of adjacent photoreceptors, the photosensitive cells of the retina. Here we present a series of approaches to identify and validate the polarization state of cultured primary human RPE cells using immunostaining for RPE apical/basolateral markers, polarized cytokine secretion, electrophysiology, fluid transport, phagocytosis, and identification of plasma membrane proteins through cell surface capturing technology. These approaches are currently being used to validate the polarized state and the epithelial phenotype of human induced pluripotent stem (iPS) cell derived RPE cells. This work provides the basis for developing an autologous cell therapy for age-related macular degeneration using patient specific iPS cell derived RPE.

  4. Densely quaternized poly(arylene ether)s with distinct phase separation for highly anion-conductive membranes

    Science.gov (United States)

    Hu, Yuanfang; Wang, Bingxi; Li, Xiao; Chen, Dongyang; Zhang, Weiying

    2018-05-01

    To develop high performance anion exchange membranes (AEMs), a novel bisphenol monomer bearing eight benzylmethyl groups at the outer edge of the molecule was synthesized, which after condensation polymerization with various amounts of 4,4‧-dihydroxydiphenylsulfone and 4,4‧-difluorobenzophenone yielded novel poly(arylene ether)s with densely located benzylmethyl groups. These benzylmethyl groups were then converted to quaternary ammonium groups by radical-initiated bromination and quaternization in tandem, leading to the emergence of densely quaternized poly(arylene ether sulfone)s (QA-PAEs) with controlled ion exchange capacities (IECs) ranging from 1.61 to 2.32 mmol g-1. Both small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) studies revealed distinct phase separation in the QA-PAEs. The QA-PAE-40 with an IEC of 2.32 mmol g-1 exhibited a Br- conductivity of 9.2 mS cm-1 and a SO42- conductivity of 14.0 mS cm-1 at room temperature, much higher than those of a control membrane with a similar IEC but without obvious phase separation. Therefore, phase separation of AEMs was validated to be advantageous for the efficient conducting of anions. The experimental results also showed that the QA-PAEs were promising AEM materials, especially for non-alkaline applications.

  5. Golgi localisation of GMAP210 requires two distinct cis-membrane binding mechanisms

    Directory of Open Access Journals (Sweden)

    Goud Bruno

    2009-08-01

    Full Text Available Abstract Background The Golgi apparatus in mammals appears as a ribbon made up of interconnected stacks of flattened cisternae that is positioned close to the centrosome in a microtubule-dependent manner. How this organisation is achieved and retained is not well understood. GMAP210 is a long coiled-coil cis-Golgi associated protein that plays a role in maintaining Golgi ribbon integrity and position and contributes to the formation of the primary cilium. An amphipathic alpha-helix able to bind liposomes in vitro has been recently identified at the first 38 amino acids of the protein (amphipathic lipid-packing sensor motif, and an ARF1-binding domain (Grip-related Arf-binding domain was found at the C-terminus. To which type of membranes these two GMAP210 regions bind in vivo and how this contributes to GMAP210 localisation and function remains to be investigated. Results By using truncated as well as chimeric mutants and videomicroscopy we found that both the N-terminus and the C-terminus of GMAP210 are targeted to the cis-Golgi in vivo. The ALPS motif was identified as the N-terminal binding motif and appeared concentrated in the periphery of Golgi elements and between Golgi stacks. On the contrary, the C-terminal domain appeared uniformly distributed in the cis-cisternae of the Golgi apparatus. Strikingly, the two ends of the protein also behave differently in response to the drug Brefeldin A. The N-terminal domain redistributed to the endoplasmic reticulum (ER exit sites, as does the full-length protein, whereas the C-terminal domain rapidly dissociated from the Golgi apparatus to the cytosol. Mutants comprising the full-length protein but lacking one of the terminal motifs also associated with the cis-Golgi with distribution patterns similar to those of the corresponding terminal end whereas a mutant consisting in fused N- and C-terminal ends exhibits identical localisation as the endogenous protein. Conclusion We conclude that the Golgi

  6. Parallel artificial liquid membrane extraction

    DEFF Research Database (Denmark)

    Gjelstad, Astrid; Rasmussen, Knut Einar; Parmer, Marthe Petrine

    2013-01-01

    This paper reports development of a new approach towards analytical liquid-liquid-liquid membrane extraction termed parallel artificial liquid membrane extraction. A donor plate and acceptor plate create a sandwich, in which each sample (human plasma) and acceptor solution is separated by an arti...... by an artificial liquid membrane. Parallel artificial liquid membrane extraction is a modification of hollow-fiber liquid-phase microextraction, where the hollow fibers are replaced by flat membranes in a 96-well plate format....

  7. Distinct human and mouse membrane trafficking systems for sweet taste receptors T1r2 and T1r3.

    Science.gov (United States)

    Shimizu, Madoka; Goto, Masao; Kawai, Takayuki; Yamashita, Atsuko; Kusakabe, Yuko

    2014-01-01

    The sweet taste receptors T1r2 and T1r3 are included in the T1r taste receptor family that belongs to class C of the G protein-coupled receptors. Heterodimerization of T1r2 and T1r3 is required for the perception of sweet substances, but little is known about the mechanisms underlying this heterodimerization, including membrane trafficking. We developed tagged mouse T1r2 and T1r3, and human T1R2 and T1R3 and evaluated membrane trafficking in human embryonic kidney 293 (HEK293) cells. We found that human T1R3 surface expression was only observed when human T1R3 was coexpressed with human T1R2, whereas mouse T1r3 was expressed without mouse T1r2 expression. A domain-swapped chimera and truncated human T1R3 mutant showed that the Venus flytrap module and cysteine-rich domain (CRD) of human T1R3 contain a region related to the inhibition of human T1R3 membrane trafficking and coordinated regulation of human T1R3 membrane trafficking. We also found that the Venus flytrap module of both human T1R2 and T1R3 are needed for membrane trafficking, suggesting that the coexpression of human T1R2 and T1R3 is required for this event. These results suggest that the Venus flytrap module and CRD receive taste substances and play roles in membrane trafficking of human T1R2 and T1R3. These features are different from those of mouse receptors, indicating that human T1R2 and T1R3 are likely to have a novel membrane trafficking system.

  8. Human skin basement membrane-associated heparan sulphate proteoglycan: distinctive differences in ultrastructural localization as a function of developmental age

    DEFF Research Database (Denmark)

    Horiguchi, Y; Fine, J D; Couchman, J R

    1991-01-01

    Recent studies have demonstrated that skin basement membrane components are expressed within the dermo-epidermal junction in an orderly sequence during human foetal development. We have investigated the ultrastructural localization of basement membrane-related antigens in human foetal skin...... at different developmental ages using two monoclonal antibodies to a well-characterized basement membrane-associated heparan sulphate proteoglycan. A series of foetal skin specimens (range, 54-142 gestational days) were examined using an immunoperoxidase immunoelectron microscopic technique. In specimens...... representing very early developmental ages, very diffuse immunoreaction products were detected. However, by approximately 76 gestational days, some accentuation of heparan sulphate proteoglycan was noted along the lamina densa, and by 142 gestational days, the distribution of heparan sulphate proteoglycan...

  9. The intrinsically disordered tails of PTEN and PTEN-L have distinct roles in regulating substrate specificity and membrane activity

    Science.gov (United States)

    Masson, Glenn R.; Perisic, Olga; Burke, John E.; Williams, Roger L.

    2015-01-01

    Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a lipid and protein phosphatase, and both activities are necessary for its role as a tumour suppressor. PTEN activity is controlled by phosphorylation of its intrinsically disordered C-terminal tail. A recently discovered variant of PTEN, PTEN-long (PTEN-L), has a 173-residue N-terminal extension that causes PTEN-L to exhibit unique behaviour, such as movement from one cell to another. Using hydrogen/deuterium exchange mass spectrometry (HDX–MS) and biophysical assays, we show that both the N-terminal extension of PTEN-L and C-terminal tail of PTEN affect the phosphatase activity using unique mechanisms. Phosphorylation of six residues in the C-terminal tail of PTEN results in auto-inhibitory interactions with the phosphatase and C2 domains, effectively blocking both the active site and the membrane-binding interface of PTEN. Partially dephosphorylating PTEN on pThr366/pSer370 results in sufficient exposure of the active site to allow a selective activation for soluble substrates. Using HDX–MS, we identified a membrane-binding element in the N-terminal extension of PTEN-L, termed the membrane-binding helix (MBH). The MBH radically alters the membrane binding mechanism of PTEN-L compared with PTEN, switching PTEN-L to a ‘scooting’ mode of catalysis from the ‘hopping’ mode that is characteristic of PTEN. PMID:26527737

  10. Human skin basement membrane-associated heparan sulphate proteoglycan: distinctive differences in ultrastructural localization as a function of developmental age

    DEFF Research Database (Denmark)

    Horiguchi, Y; Fine, J D; Couchman, J R

    1991-01-01

    at different developmental ages using two monoclonal antibodies to a well-characterized basement membrane-associated heparan sulphate proteoglycan. A series of foetal skin specimens (range, 54-142 gestational days) were examined using an immunoperoxidase immunoelectron microscopic technique. In specimens...... representing very early developmental ages, very diffuse immunoreaction products were detected. However, by approximately 76 gestational days, some accentuation of heparan sulphate proteoglycan was noted along the lamina densa, and by 142 gestational days, the distribution of heparan sulphate proteoglycan...... was identical to that observed in neonatal and adult human skin. These findings demonstrate that active remodelling of the dermo-epidermal junction occurs during at least the first two trimesters, and affects not only basement membrane-associated structures but also specific antigens....

  11. Auxin-activated NADH oxidase activity of soybean plasma membranes is distinct from the constitutive plasma membrane NADH oxidase and exhibits prion-like properties

    Science.gov (United States)

    Morre, D. James; Morre, Dorothy M.; Ternes, Philipp

    2003-01-01

    The hormone-stimulated and growth-related cell surface hydroquinone (NADH) oxidase activity of etiolated hypocotyls of soybeans oscillates with a period of about 24 min or 60 times per 24-h day. Plasma membranes of soybean hypocotyls contain two such NADH oxidase activities that have been resolved by purification on concanavalin A columns. One in the apparent molecular weight range of 14-17 kDa is stimulated by the auxin herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The other is larger and unaffected by 2,4-D. The 2,4-D-stimulated activity absolutely requires 2,4-D for activity and exhibits a period length of about 24 min. Also exhibiting 24-min oscillations is the rate of cell enlargement induced by the addition of 2,4-D or the natural auxin indole-3-acetic acid (IAA). Immediately following 2,4-D or IAA addition, a very complex pattern of oscillations is frequently observed. However, after several hours a dominant 24-min period emerges at the expense of the constitutive activity. A recruitment process analogous to that exhibited by prions is postulated to explain this behavior.

  12. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor

    Science.gov (United States)

    Myers, Charles R.; Nealson, Kenneth H.

    1988-01-01

    Microbes that couple growth to the reduction of manganese could play an important role in the biogeochemistry of certain anaerobic environments. Such a bacterium, Alteromonas putrefaciens MR-1, couples its growth to the reduction of manganese oxides only under anaerobic conditions. The characteristics of this reduction are consistent with a biological, and not an indirect chemical, reduction of manganese, which suggest that this bacterium uses manganic oxide as a terminal electron acceptor. It can also utilize a large number of other compounds as terminal electron acceptors; this versatility could provide a distinct advantage in environments where electron-acceptor concentrations may vary.

  13. Subthreshold membrane currents confer distinct tuning properties that enable neurons to encode the integral or derivative of their input

    Directory of Open Access Journals (Sweden)

    Stephanie eRatté

    2015-01-01

    Full Text Available Neurons rely on action potentials, or spikes, to encode information. But spikes can encode different stimulus features in different neurons. We show here through simulations and experiments how neurons encode the integral or derivative of their input based on the distinct tuning properties conferred upon them by subthreshold currents. Slow-activating subthreshold inward (depolarizing current mediates positive feedback control of subthreshold voltage, sustaining depolarization and allowing the neuron to spike on the basis of its integrated stimulus waveform. Slow-activating subthreshold outward (hyperpolarizing current mediates negative feedback control of subthreshold voltage, truncating depolarization and forcing the neuron to spike on the basis of its differentiated stimulus waveform. Depending on its direction, slow-activating subthreshold current cooperates or competes with fast-activating inward current during spike initiation. This explanation predicts that sensitivity to the rate of change of stimulus intensity differs qualitatively between integrators and differentiators. This was confirmed experimentally in spinal sensory neurons that naturally behave as specialized integrators or differentiators. Predicted sensitivity to different stimulus features was confirmed by covariance analysis. Integration and differentiation, which are themselves inverse operations, are thus shown to be implemented by the slow feedback mediated by oppositely directed subthreshold currents expressed in different neurons.

  14. Acceptor ability of cations in reactions of donor-acceptor interaction

    International Nuclear Information System (INIS)

    Buchikhin, E.P.; Kuznetsov, A.Yu.; Chekmarev, A.M.; Bobyrenko, N.A.

    2007-01-01

    Analysis of literature data devoted to the problem of quantitative characteristics of cations in reactions of donor-acceptor interaction is represented. Relative acceptor numbers of Co 2+ , Mn 2+ , Ni 2+ , Al 3+ , Ga 3+ are determined by the method of polarography. Known relative acceptor numbers for 21 cations are systematized and linear dependence between ionization potentials and relative acceptor numbers of the rigid cations is determined [ru

  15. Contrasting performance of donor-acceptor copolymer pairs in ternary blend solar cells and two-acceptor copolymers in binary blend solar cells.

    Science.gov (United States)

    Khlyabich, Petr P; Rudenko, Andrey E; Burkhart, Beate; Thompson, Barry C

    2015-02-04

    Here two contrasting approaches to polymer-fullerene solar cells are compared. In the first approach, two distinct semi-random donor-acceptor copolymers are blended with phenyl-C61-butyric acid methyl ester (PC61BM) to form ternary blend solar cells. The two poly(3-hexylthiophene)-based polymers contain either the acceptor thienopyrroledione (TPD) or diketopyrrolopyrrole (DPP). In the second approach, semi-random donor-acceptor copolymers containing both TPD and DPP acceptors in the same polymer backbone, termed two-acceptor polymers, are blended with PC61BM to give binary blend solar cells. The two approaches result in bulk heterojunction solar cells that have the same molecular active-layer components but differ in the manner in which these molecular components are mixed, either by physical mixing (ternary blend) or chemical "mixing" in the two-acceptor (binary blend) case. Optical properties and photon-to-electron conversion efficiencies of the binary and ternary blends were found to have similar features and were described as a linear combination of the individual components. At the same time, significant differences were observed in the open-circuit voltage (Voc) behaviors of binary and ternary blend solar cells. While in case of two-acceptor polymers, the Voc was found to be in the range of 0.495-0.552 V, ternary blend solar cells showed behavior inherent to organic alloy formation, displaying an intermediate, composition-dependent and tunable Voc in the range from 0.582 to 0.684 V, significantly exceeding the values achieved in the two-acceptor containing binary blend solar cells. Despite the differences between the physical and chemical mixing approaches, both pathways provided solar cells with similar power conversion efficiencies, highlighting the advantages of both pathways toward highly efficient organic solar cells.

  16. Comparative analysis of the Hom family of outer membrane proteins in isolates from two geographically distinct regions: The United States and South Korea.

    Science.gov (United States)

    Servetas, Stephanie L; Kim, Aeryun; Su, Hanfu; Cha, Jeong-Heon; Merrell, D Scott

    2018-01-05

    Helicobacter pylori encodes numerous outer membrane proteins (OMPs), but only a few have been characterized in depth. Deletion, duplication, and allelic variation of many of the H. pylori OMPs have been reported, which suggests that these proteins may play key roles in host adaptation. Herein, we characterize the variation observed within the Hom family of OMPs in H. pylori obtained from two geographically distinct populations. PCR genotyping of the hom genes was carried out using clinical isolates from South Korea and the United States. A combination of statistical, phylogenetic, and protein modeling analyses was conducted to further characterize the hom variants. Variations in the closely related hom genes, homA and homB, occur in regions that are predicted to encode environmentally exposed loops. A similar phenomenon is true for homC S as compared to homC L . Conversely, little variation was observed in homD. Certain variants of the Hom family of proteins were more prominent in isolates from the Korean population as compared to isolates from the United States. En masse, our data show that the homA, homB, and homC profiles vary based upon the geographic origin of the strain; however, the fourth member of the hom family, homD, is more highly conserved. Additionally, protein topology modeling showed that many of the less well-conserved regions between homA and homB and between homC S and homC L corresponded to predicted environmentally exposed loops, suggesting that the divergence of the Hom family may be due to host adaptation/pressure. © 2018 John Wiley & Sons Ltd.

  17. Molecular mechanisms of protein-cholesterol interactions in plasma membranes: Functional distinction between topological (tilted) and consensus (CARC/CRAC) domains.

    Science.gov (United States)

    Fantini, Jacques; Di Scala, Coralie; Baier, Carlos J; Barrantes, Francisco J

    2016-09-01

    The molecular mechanisms that control the multiple possible modes of protein association with membrane cholesterol are remarkably convergent. These mechanisms, which include hydrogen bonding, CH-π stacking and dispersion forces, are used by a wide variety of extracellular proteins (e.g. microbial or amyloid) and membrane receptors. Virus fusion peptides penetrate the membrane of host cells with a tilted orientation that is compatible with a transient interaction with cholesterol; this tilted orientation is also characteristic of the process of insertion of amyloid proteins that subsequently form oligomeric pores in the plasma membrane of brain cells. Membrane receptors that are associated with cholesterol generally display linear consensus binding motifs (CARC and CRAC) characterized by a triad of basic (Lys/Arg), aromatic (Tyr/phe) and aliphatic (Leu/Val) amino acid residues. In some cases, the presence of both CARC and CRAC within the same membrane-spanning domain allows the simultaneous binding of two cholesterol molecules, one in each membrane leaflet. In this review the molecular basis and the functional significance of the different modes of protein-cholesterol interactions in plasma membranes are discussed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Syntheses of donor-acceptor-functionalized dihydroazulenes

    DEFF Research Database (Denmark)

    Broman, Søren Lindbæk; Jevric, Martyn; Bond, Andrew

    2014-01-01

    The dihydroazulene (DHA)/vinylheptafulvene (VHF) photo/thermoswitch has been of interest for use in molecular electronics and advanced materials. The switching between the two isomers has previously been found to depend strongly on the presence of donor and acceptor groups. The fine-tuning of opt...

  19. Electron Donor Acceptor Interactions. Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Ana L. [Arizona State Univ., Tempe, AZ (United States)

    2002-08-16

    The Gordon Research Conference (GRC) on Electron Donor Acceptor Interactions was held at Salve Regina University, Newport, Rhode Island, 8/11-16/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  20. Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors

    Directory of Open Access Journals (Sweden)

    Kenny F. Chou

    2015-06-01

    Full Text Available Förster (or fluorescence resonance energy transfer amongst semiconductor quantum dots (QDs is reviewed, with particular interest in biosensing applications. The unique optical properties of QDs provide certain advantages and also specific challenges with regards to sensor design, compared to other FRET systems. The brightness and photostability of QDs make them attractive for highly sensitive sensing and long-term, repetitive imaging applications, respectively, but the overlapping donor and acceptor excitation signals that arise when QDs serve as both the donor and acceptor lead to high background signals from direct excitation of the acceptor. The fundamentals of FRET within a nominally homogeneous QD population as well as energy transfer between two distinct colors of QDs are discussed. Examples of successful sensors are highlighted, as is cascading FRET, which can be used for solar harvesting.

  1. Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors

    Science.gov (United States)

    Chou, Kenny F.; Dennis, Allison M.

    2015-01-01

    Förster (or fluorescence) resonance energy transfer amongst semiconductor quantum dots (QDs) is reviewed, with particular interest in biosensing applications. The unique optical properties of QDs provide certain advantages and also specific challenges with regards to sensor design, compared to other FRET systems. The brightness and photostability of QDs make them attractive for highly sensitive sensing and long-term, repetitive imaging applications, respectively, but the overlapping donor and acceptor excitation signals that arise when QDs serve as both the donor and acceptor lead to high background signals from direct excitation of the acceptor. The fundamentals of FRET within a nominally homogeneous QD population as well as energy transfer between two distinct colors of QDs are discussed. Examples of successful sensors are highlighted, as is cascading FRET, which can be used for solar harvesting. PMID:26057041

  2. Non-fullerene electron acceptors for organic photovoltaic devices

    Science.gov (United States)

    Jenekhe, Samson A.; Li, Haiyan; Earmme, Taeshik; Ren, Guoqiang

    2017-11-07

    Non-fullerene electron acceptors for highly efficient organic photovoltaic devices are described. The non-fullerene electron acceptors have an extended, rigid, .pi.-conjugated electron-deficient framework that can facilitate exciton and charge derealization. The non-fullerene electron acceptors can physically mix with a donor polymer and facilitate improved electron transport. The non-fullerene electron acceptors can be incorporated into organic electronic devices, such as photovoltaic cells.

  3. Comparison of acceptor properties for interaction of TCNE and DDQ ...

    African Journals Online (AJOL)

    ... with tetracyanoethylene and 2,3-dichloro-5,6-dicyanobezoquinone as acceptors result in charge-transfer adducts of composition 2:1 of acceptor to donor, [(acceptor)2(donor)]. Formation constants, K, as well as the thermodynamic parameters, ΔH°, ΔS°, and ΔG° were determined by UV-Vis titration method for the adducts.

  4. Intranasal Immunization with Influenza Virus-Like Particles Containing Membrane-Anchored Cholera Toxin B or Ricin Toxin B Enhances Adaptive Immune Responses and Protection against an Antigenically Distinct Virus.

    Science.gov (United States)

    Ji, Xianliang; Ren, Zhiguang; Xu, Na; Meng, Lingnan; Yu, Zhijun; Feng, Na; Sang, Xiaoyu; Li, Shengnan; Li, Yuanguo; Wang, Tiecheng; Zhao, Yongkun; Wang, Hualei; Zheng, Xuexing; Jin, Hongli; Li, Nan; Yang, Songtao; Cao, Jinshan; Liu, Wensen; Gao, Yuwei; Xia, Xianzhu

    2016-04-21

    Vaccination is the most effective means to prevent influenza virus infection, although current approaches are associated with suboptimal efficacy. Here, we generated virus-like particles (VLPs) composed of the hemagglutinin (HA), neuraminidase (NA) and matrix protein (M1) of A/Changchun/01/2009 (H1N1) with or without either membrane-anchored cholera toxin B (CTB) or ricin toxin B (RTB) as molecular adjuvants. The intranasal immunization of mice with VLPs containing membrane-anchored CTB or RTB elicited stronger humoral and cellular immune responses when compared to mice immunized with VLPs alone. Administration of VLPs containing CTB or RTB significantly enhanced virus-specific systemic and mucosal antibody responses, hemagglutination inhibiting antibody titers, virus neutralizing antibody titers, and the frequency of virus-specific IFN-γ and IL-4 secreting splenocytes. VLPs with and without CTB or RTB conferred complete protection against lethal challenge with a mouse-adapted homologous virus. When challenged with an antigenically distinct H1N1 virus, all mice immunized with VLPs containing CTB or RTB survived whereas mice immunized with VLPs alone showed only partial protection (80% survival). Our results suggest that membrane-anchored CTB and RTB possess strong adjuvant properties when incorporated into an intranasally-delivered influenza VLP vaccine. Chimeric influenza VLPs containing CTB or RTB may represent promising vaccine candidates for improved immunological protection against homologous and antigenically distinct influenza viruses.

  5. Intranasal Immunization with Influenza Virus-Like Particles Containing Membrane-Anchored Cholera Toxin B or Ricin Toxin B Enhances Adaptive Immune Responses and Protection against an Antigenically Distinct Virus

    Directory of Open Access Journals (Sweden)

    Xianliang Ji

    2016-04-01

    Full Text Available Vaccination is the most effective means to prevent influenza virus infection, although current approaches are associated with suboptimal efficacy. Here, we generated virus-like particles (VLPs composed of the hemagglutinin (HA, neuraminidase (NA and matrix protein (M1 of A/Changchun/01/2009 (H1N1 with or without either membrane-anchored cholera toxin B (CTB or ricin toxin B (RTB as molecular adjuvants. The intranasal immunization of mice with VLPs containing membrane-anchored CTB or RTB elicited stronger humoral and cellular immune responses when compared to mice immunized with VLPs alone. Administration of VLPs containing CTB or RTB significantly enhanced virus-specific systemic and mucosal antibody responses, hemagglutination inhibiting antibody titers, virus neutralizing antibody titers, and the frequency of virus-specific IFN-γ and IL-4 secreting splenocytes. VLPs with and without CTB or RTB conferred complete protection against lethal challenge with a mouse-adapted homologous virus. When challenged with an antigenically distinct H1N1 virus, all mice immunized with VLPs containing CTB or RTB survived whereas mice immunized with VLPs alone showed only partial protection (80% survival. Our results suggest that membrane-anchored CTB and RTB possess strong adjuvant properties when incorporated into an intranasally-delivered influenza VLP vaccine. Chimeric influenza VLPs containing CTB or RTB may represent promising vaccine candidates for improved immunological protection against homologous and antigenically distinct influenza viruses.

  6. Conjugated donor-acceptor-acceptor (D-A-A) molecule for organic nonvolatile resistor memory.

    Science.gov (United States)

    Dong, Lei; Li, Guangwu; Yu, An-Dih; Bo, Zhishan; Liu, Cheng-Liang; Chen, Wen-Chang

    2014-12-01

    A new donor-acceptor-acceptor (D-A-A) type of conjugated molecule, N-(4-(N',N'-diphenyl)phenylamine)-4-(4'-(2,2-dicyanovinyl)phenyl) naphthalene-1,8-dicarboxylic monoimide (TPA-NI-DCN), consisting of triphenylamine (TPA) donors and naphthalimide (NI)/dicyanovinylene (DCN) acceptors was synthesized and characterized. In conjunction with previously reported D-A based materials, the additional DCN moiety attached as end group in the D-A-A configuration can result in a stable charge transfer (CT) and charge-separated state to maintain the ON state current. The vacuum-deposited TPA-NI-DCN device fabricated as an active memory layer was demonstrated to exhibit write-once-read-many (WORM) switching characteristics of organic nonvolatile memory due to the strong polarity of the TPA-NI-DCN moiety. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Water deficit affects primary metabolism differently in two Lolium multiflorum/Festuca arundinacea introgression forms with a distinct capacity for photosynthesis and membrane regeneration.

    Directory of Open Access Journals (Sweden)

    Dawid Perlikowski

    2016-07-01

    Full Text Available Understanding how plants respond to drought at different levels of cell metabolism is an important aspect of research on the mechanisms involved in stress tolerance. Furthermore, a dissection of drought tolerance into its crucial components by the use of plant introgression forms facilitates to analyze this trait more deeply. The important components of plant drought tolerance are the capacity for photosynthesis under drought conditions, and the ability of cellular membrane regeneration after stress cessation. Two closely related introgression forms of Lolium multiflorum/Festuca arundinacea, differing in the level of photosynthetic capacity during stress, and in the ability to regenerate their cellular membranes after stress cessation, were used as forage grass models in a primary metabolome profiling and in an evaluation of chloroplast 1,6-bisphosphate aldolase accumulation level and activity, during 11 days of water deficit, followed by 10 days of rehydration. It was revealed here that the introgression form, characterized by the ability to regenerate membranes after rehydration, contained higher amounts of proline, melibiose, galactaric acid, myo-inositol and myo-inositol-1-phosphate involved in osmoprotection and stress signaling under drought. Moreover, during the rehydration period, this form also maintained elevated accumulation levels of most the primary metabolites, analyzed here. The other introgression form, characterized by the higher capacity for photosynthesis, revealed a higher accumulation level and activity of chloroplast aldolase under drought conditions, and higher accumulation levels of most photosynthetic products during control and drought periods. The potential impact of the observed metabolic alterations on cellular membrane recovery after stress cessation, and on a photosynthetic capacity under drought conditions in grasses, are discussed.

  8. Acceptor and Excitation Density Dependence of the Ultrafast Polaron Absorption Signal in Donor-Acceptor Organic Solar Cell Blends.

    Science.gov (United States)

    Zarrabi, Nasim; Burn, Paul L; Meredith, Paul; Shaw, Paul E

    2016-07-21

    Transient absorption spectroscopy on organic semiconductor blends for solar cells typically shows efficient charge generation within ∼100 fs, accounting for the majority of the charge carriers. In this Letter, we show using transient absorption spectroscopy on blends containing a broad range of acceptor content (0.01-50% by weight) that the rise of the polaron signal is dependent on the acceptor concentration. For low acceptor content (10%) most polarons are generated within 200 fs. The rise time in blends with low acceptor content was also found to be sensitive to the pump fluence, decreasing with increasing excitation density. These results indicate that the sub-100 fs rise of the polaron signal is a natural consequence of both the high acceptor concentrations in many donor-acceptor blends and the high excitation densities needed for transient absorption spectroscopy, which results in a short average distance between the exciton and the donor-acceptor interface.

  9. Highly solvatochromic emission of electron donor-acceptor compounds containing propanedioato boron electron acceptors

    NARCIS (Netherlands)

    Brouwer, A.M.; Bakker, N.A.C.; Wiering, P.G.; Verhoeven, J.W.

    1991-01-01

    Light-induced electron transfer occurs in bifunctional compounds consisting of 1,3-diphenylpropanedioato boron oxalate or fluoride electron acceptors and simple aromatic electron-donor groups, linked by a methylene bridge; fluorescence from the highly polar charge-transfer excited state is

  10. Morphogenesis of respiratory syncytial virus in human primary nasal ciliated epithelial cells occurs at surface membrane microdomains that are distinct from cilia

    International Nuclear Information System (INIS)

    Jumat, Muhammad Raihan; Yan, Yan; Ravi, Laxmi Iyer; Wong, Puisan; Huong, Tra Nguyen; Li, Chunwei; Tan, Boon Huan; Wang, De Yun; Sugrue, Richard J.

    2015-01-01

    The distribution of cilia and the respiratory syncytial virus (RSV) nucleocapsid (N) protein, fusion (F) protein, attachment (G) protein, and M2-1 protein in human ciliated nasal epithelial cells was examined at between 1 and 5 days post-infection (dpi). All virus structural proteins were localized at cell surface projections that were distinct from cilia. The F protein was also trafficked into the cilia, and while its presence increased as the infection proceeded, the N protein was not detected in the cilia at any time of infection. The presence of the F protein in the cilia correlated with cellular changes in the cilia and reduced cilia function. At 5 dpi extensive cilia loss and further reduced cilia function was noted. These data suggested that although RSV morphogenesis occurs at non-cilia locations on ciliated nasal epithelial cells, RSV infection induces changes in the cilia body that leads to extensive cilia loss. - Highlights: • Respiratory syncytial virus (RSV) infects nasal ciliated epithelial cells. • Virus morphogenesis occurs within filamentous projections distinct from cilia. • The RSV N protein was not detected in the cilia at any time during infection. • Trafficking of the F protein into the cilia occurred early in infection. • Presence of the F protein in cilia correlated with impaired cilia function

  11. Morphogenesis of respiratory syncytial virus in human primary nasal ciliated epithelial cells occurs at surface membrane microdomains that are distinct from cilia

    Energy Technology Data Exchange (ETDEWEB)

    Jumat, Muhammad Raihan [School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Yan, Yan [Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 119228 (Singapore); Ravi, Laxmi Iyer [School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Wong, Puisan [Detection and Diagnostics Laboratory, DSO National Laboratories, 27 Medical Drive, Singapore 117510 (Singapore); Huong, Tra Nguyen [School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Li, Chunwei [Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 119228 (Singapore); Tan, Boon Huan [Detection and Diagnostics Laboratory, DSO National Laboratories, 27 Medical Drive, Singapore 117510 (Singapore); Wang, De Yun [Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 119228 (Singapore); Sugrue, Richard J., E-mail: rjsugrue@ntu.edu.sg [School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore)

    2015-10-15

    The distribution of cilia and the respiratory syncytial virus (RSV) nucleocapsid (N) protein, fusion (F) protein, attachment (G) protein, and M2-1 protein in human ciliated nasal epithelial cells was examined at between 1 and 5 days post-infection (dpi). All virus structural proteins were localized at cell surface projections that were distinct from cilia. The F protein was also trafficked into the cilia, and while its presence increased as the infection proceeded, the N protein was not detected in the cilia at any time of infection. The presence of the F protein in the cilia correlated with cellular changes in the cilia and reduced cilia function. At 5 dpi extensive cilia loss and further reduced cilia function was noted. These data suggested that although RSV morphogenesis occurs at non-cilia locations on ciliated nasal epithelial cells, RSV infection induces changes in the cilia body that leads to extensive cilia loss. - Highlights: • Respiratory syncytial virus (RSV) infects nasal ciliated epithelial cells. • Virus morphogenesis occurs within filamentous projections distinct from cilia. • The RSV N protein was not detected in the cilia at any time during infection. • Trafficking of the F protein into the cilia occurred early in infection. • Presence of the F protein in cilia correlated with impaired cilia function.

  12. Influence of petroleum deposit geometry on local gradient of electron acceptors and microbial catabolic potential.

    Science.gov (United States)

    Singh, Gargi; Pruden, Amy; Widdowson, Mark A

    2012-06-05

    A field survey was conducted following the Deepwater Horizon blowout and it was noted that resulting coastal petroleum deposits possessed distinct geometries, ranging from small tar balls to expansive horizontal oil sheets. A subsequent laboratory study evaluated the effect of oil deposit geometry on localized gradients of electron acceptors and microbial community composition, factors that are critical to accurately estimating biodegradation rates. One-dimensional top-flow sand columns with 12-h simulated tidal cycles compared two contrasting geometries (isolated tar "balls" versus horizontal "sheets") relative to an oil-free control. Significant differences in the effluent dissolved oxygen and sulfate concentrations were noted among the columns, indicating presence of anaerobic zones in the oiled columns, particularly in the sheet condition. Furthermore, quantification of genetic markers of terminal electron acceptor and catabolic processes via quantitative polymerase chain reaction of dsrA (sulfate-reduction), mcrA (methanogenesis), and cat23 (oxygenation of aromatics) genes in column cores suggested more extensive anaerobic conditions induced by the sheet relative to the ball geometry. Denaturing gradient gel electrophoresis similarly revealed that distinct gradients of bacterial communities established in response to the different geometries. Thus, petroleum deposit geometry impacts local dominant electron acceptor conditions and may be a key factor for advancing attenuation models and prioritizing cleanup.

  13. Distinctions in beta-adrenergic receptor interactions with the magnesium-guanine nucleotide coupling proteins in turkey erythrocyte and S49 lymphoma membranes.

    Science.gov (United States)

    Vauquelin, G; Cech, S Y; André, C; Strosberg, A D; Maguire, M E

    1982-01-01

    Several homogeneous cell systems contain distinct subpopulations of beta-adrenergic receptors, distinguished by their relative sensitivity to N-ethylmaleimide (NEM) in the presence of agonist but not antagonist (G. Vauquelin and M.E. Maguire (1980) Mol. Pharmacol. 18, 363-369). The sensitivity to agonist/NEM inactivation requires receptor interaction with the magnesium-guanine nucleotide coupling proteins (G/F). We have investigated the effects of agonist/NEM treatment on Mg2+ and GTP modulation of receptor affinity in two such systems, turkey erythrocytes and murine S49 lymphoma cells. In each systems, the agonist/NEM-sensitive beta-receptor subpopulation exhibits both Mg2+ and GTP modulation of beta-receptor affinity for agonist. Further, Mg2+ and GTP are not competitive with regard to alteration of receptor affinity; that is, GTP can block the effect of Mg2+, but not vice versa. In contrast, the agonist/NEM-resistant beta-receptor subpopulation shows distinct differences in Mg2+ and GTP effects when the turkey and S49 systems are compared. The agonist/NEM-resistant population in S49 shows no effect of Mg2+ or GTP on beta-receptor affinity for agonist whereas the resistant beta-receptors of turkey erythrocytes still exhibit modulation by both GTP and Mg2+. Moreover, in this receptor population the actions of GTP and Mg2+ are apparently competitive, with increasing Mg2+ concentrations able to overcome the decrease in affinity induced by GTP. Thus, beta-receptor interaction with the metal/nucleotide coupling proteins may differ significantly in the two systems examined. An additional result of these experiments is the demonstration for S49 beta-receptors that free, unchelated GTP or GDP rather than MgGTP or MgGDP modulates receptor affinity for agonist.

  14. Quantum computing with acceptor spins in silicon.

    Science.gov (United States)

    Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie

    2016-06-17

    The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin-orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin-orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin-orbit induced dipole-dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin-orbit terms are responsible for sweet spots in the dephasing time [Formula: see text] as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin-orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.

  15. The Membrane-Anchored BOTRYTIS-INDUCED KINASE1 Plays Distinct Roles in Arabidopsis Resistance to Necrotrophic and Biotrophic PathogensW⃞

    Science.gov (United States)

    Veronese, Paola; Nakagami, Hirofumi; Bluhm, Burton; AbuQamar, Synan; Chen, Xi; Salmeron, John; Dietrich, Robert A.; Hirt, Heribert; Mengiste, Tesfaye

    2006-01-01

    Plant resistance to disease is controlled by the combination of defense response pathways that are activated depending on the nature of the pathogen. We identified the Arabidopsis thaliana BOTRYTIS-INDUCED KINASE1 (BIK1) gene that is transcriptionally regulated by Botrytis cinerea infection. Inactivation of BIK1 causes severe susceptibility to necrotrophic fungal pathogens but enhances resistance to a virulent strain of the bacterial pathogen Pseudomonas syringae pv tomato. The response to an avirulent bacterial strain is unchanged, limiting the role of BIK1 to basal defense rather than race-specific resistance. The jasmonate- and ethylene-regulated defense response, generally associated with resistance to necrotrophic fungi, is attenuated in the bik1 mutant based on the expression of the plant defensin PDF1.2 gene. bik1 mutants show altered root growth, producing more and longer root hairs, demonstrating that BIK1 is also required for normal plant growth and development. Whereas the pathogen responses of bik1 are mostly dependent on salicylic acid (SA) levels, the nondefense responses are independent of SA. BIK1 is membrane-localized, suggesting possible involvement in early stages of the recognition or transduction of pathogen response. Our data suggest that BIK1 modulates the signaling of cellular factors required for defense responses to pathogen infection and normal root hair growth, linking defense response regulation with that of growth and development. PMID:16339855

  16. Alkyl Radicals as Hydrogen Bond Acceptors: Computational Evidence

    DEFF Research Database (Denmark)

    Hammerum, Steen

    2009-01-01

    , and gives rise to pronounced shifts of IR stretching frequencies and to increased absorption intensities. The hydrogen bond acceptor properties of alkyl radicals equal those of many conventional acceptors, e.g., the bond length changes and IR red-shifts suggest that tert-butyl radicals are slightly better...

  17. Spectroscopic Studies of the Electron Donor-Acceptor Interaction of ...

    African Journals Online (AJOL)

    Purpose: The electron donor-acceptor interaction between drugs which act as electron donors and some electron-deficient compounds (π acceptors) has severally been utilized as an analytical tool for the quantitation and qualitative assessment of such drugs. The objective of this study, therefore, was to develop an assay ...

  18. Modeling charge transfer at organic donor-acceptor semiconductor interfaces

    NARCIS (Netherlands)

    Cakir, Deniz; Bokdam, Menno; de Jong, Machiel Pieter; Fahlman, M.; Brocks, G.

    2012-01-01

    We develop an integer charge transfer model for the potential steps observed at interfaces between donor and acceptor molecular semiconductors. The potential step can be expressed as the difference between the Fermi energy pinning levels of electrons on the acceptor material and holes on the donor

  19. Abooming area:non-fullerene acceptors for organic solar cells

    Directory of Open Access Journals (Sweden)

    QU Yangkun

    2016-12-01

    Full Text Available Organic solar cells have been extensively investigated in the last decade because they are one of the very important solutions to the global energy crisis.While predominant electron acceptor materials for organic solar cell are focused on fullerene and its derivatives,scientists are now more desperately looking for new alternative acceptor materials because fullerene acceptors face the challenges of narrow absorption spectrum,low solubility,high cost and non-environmental friendly synthesis processes.Non-fullerene electron acceptors have drawn great attention recently and have been widely used in organic solar cells because they have the great advantages of wide absorption spectrum,high solubility,precise structural controllability,and good processability.In this review paper,we summarize the most significant progresses in the area of non-fullerene organic solar cell acceptors during the last 6 years and we look forward to a bright future of non-fullerene organic solar cells.

  20. Barbiturate end-capped non-fullerene acceptors for organic solar cells: tuning acceptor energetics to suppress geminate recombination losses.

    Science.gov (United States)

    Tan, Ching-Hong; Gorman, Jeffrey; Wadsworth, Andrew; Holliday, Sarah; Subramaniyan, Selvam; Jenekhe, Samson A; Baran, Derya; McCulloch, Iain; Durrant, James R

    2018-01-26

    We report the synthesis of two barbiturate end-capped non-fullerene acceptors and demonstrate their efficient function in high voltage output organic solar cells. The acceptor with the lower LUMO level is shown to exhibit suppressed geminate recombination losses, resulting in enhanced photocurrent generation and higher overall device efficiency.

  1. Barbiturate End-Capped Non-Fullerene Acceptors for Organic Solar Cells: Tuning Acceptor Energetics to Suppress Geminate Recombination Losses

    KAUST Repository

    Tan, Ching-Hong

    2018-01-10

    We report the synthesis of two barbiturate end-capped non-fullerene acceptors and demonstrate their efficient function in high voltage output organic solar cells. The acceptor with the lower LUMO level is shown to exhibit suppressed geminate recombination losses, resulting in enhanced photocurrent generation and higher overall device efficiency.

  2. tRNA acceptor-stem and anticodon bases embed separate features of amino acid chemistry

    Science.gov (United States)

    Carter, Charles W.; Wolfenden, Richard

    2016-01-01

    abstract The universal genetic code is a translation table by which nucleic acid sequences can be interpreted as polypeptides with a wide range of biological functions. That information is used by aminoacyl-tRNA synthetases to translate the code. Moreover, amino acid properties dictate protein folding. We recently reported that digital correlation techniques could identify patterns in tRNA identity elements that govern recognition by synthetases. Our analysis, and the functionality of truncated synthetases that cannot recognize the tRNA anticodon, support the conclusion that the tRNA acceptor stem houses an independent code for the same 20 amino acids that likely functioned earlier in the emergence of genetics. The acceptor-stem code, related to amino acid size, is distinct from a code in the anticodon that is related to amino acid polarity. Details of the acceptor-stem code suggest that it was useful in preserving key properties of stereochemically-encoded peptides that had developed the capacity to interact catalytically with RNA. The quantitative embedding of the chemical properties of amino acids into tRNA bases has implications for the origins of molecular biology. PMID:26595350

  3. Donor–Acceptor Oligorotaxanes Made to Order

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Subhadeep [Northwestern Univ., Evanston, IL (United States); Coskun, Ali [Northwestern Univ., Evanston, IL (United States); Friedman, Douglas C. [Northwestern Univ., Evanston, IL (United States); Olson, Mark A. [Northwestern Univ., Evanston, IL (United States); Benitez, Diego [California Institute of Technology (Caltech), Pasadena, CA (United States); Tkatchouk, Ekaterina [California Institute of Technology (Caltech), Pasadena, CA (United States); Barin, Gokhan [Northwestern Univ., Evanston, IL (United States); Yang, Jeffrey [Northwestern Univ., Evanston, IL (United States); Fahrenbach, Albert C. [Northwestern Univ., Evanston, IL (United States); Goddard, William A. [California Institute of Technology (Caltech), Pasadena, CA (United States); Stoddart, J. Fraser [Northwestern Univ., Evanston, IL (United States)

    2011-01-01

    Five donor–acceptor oligorotaxanes made up of dumbbells composed of tetraethylene glycol chains, interspersed with three and five 1,5-dioxynaphthalene units, and terminated by 2,6-diisopropylphenoxy stoppers, have been prepared by the threading of discrete numbers of cyclobis(paraquat-p-phenylene) rings, followed by a kinetically controlled stoppering protocol that relies on click chemistry. The well-known copper(I)-catalyzed alkyne–azide cycloaddition between azide functions placed at the ends of the polyether chains and alkyne-bearing stopper precursors was employed during the final kinetically controlled template-directed synthesis of the five oligorotaxanes, which were characterized subsequently by ¹H NMR spectroscopy at low temperature (233 K) in deuterated acetonitrile. The secondary structures, as well as the conformations, of the five oligorotaxanes were unraveled by spectroscopic comparison with the dumbbell and ring components. By focusing attention on the changes in chemical shifts of some key probe protons, obtained from a wide range of low-temperature spectra, a picture emerges of a high degree of folding within the thread protons of the dumbbells of four of the five oligorotaxanes—the fifth oligorotaxane represents a control compound in effect—brought about by a combination of C[BOND]H···O and π–π stacking interactions between the π-electron-deficient bipyridinium units in the rings and the π-electron-rich 1,5-dioxynaphthalene units and polyether chains in the dumbbells. The secondary structures of a foldamer-like nature have received further support from a solid-state superstructure of a related [3]pseudorotaxane and density functional calculations performed thereon.

  4. Purification and properties of NAD(P)H: (quinone-acceptor) oxidoreductase of sugarbeet cells.

    Science.gov (United States)

    Trost, P; Bonora, P; Scagliarini, S; Pupillo, P

    1995-12-01

    NAD(P)H:(quinone-acceptor) oxidoreductase [NAD(P)H-QR], a plant cytosolic protein, was purified from cultured sugarbeet cells by a combination of ammonium sulfate fractionation, FPLC Superdex 200 gel filtration, Q-Sepharose anion-exchange chromatography, and a final Blue Sepharose CL-6B affinity chromatography with an NADPH gradient. The subunit molecular mass is 24 kDa and the active protein (94 kDa) is a tetramer. The isoelectric point is 4.9. The enzyme was characterized by ping-pong kinetics and extremely elevated catalytic capacity. It prefers NADPH over NADH as electron donor (kcat/Km ratios of 1.7 x 10(8) M-1 S-1 and 8.3 x 10(7) M-1 S-1 for NADPH and NADH, respectively, with benzoquinone as electron acceptor). The acridone derivative 7-iodo-acridone-4-carboxylic acid is an efficient inhibitor (I0.5 = 5 x 10(-5) M), dicumarol is weakly inhibitory. The best acceptor substances are hydrophilic, short-chain quinones such as ubiquinone-0 (Q-0), benzoquinone and menadione, followed by duroquinone and ferricyanide, whereas hydrophobic quinones, cytochrome c and oxygen are reduced at negligible rates at best. Quinone acceptors are reduced by a two-electron reaction with no apparent release of free semiquinonic intermediates. This and the above properties suggest some relationship of NAD(P)H-QR to DT-diaphorase, an animal flavoprotein which, however, has distinct structural properties and is strongly inhibited by dicumarol. It is proposed that NAD(P)H-QR by scavenging unreduced quinones and making them prone to conjugation may act in plant tissues as a functional equivalent of DT-diaphorase.

  5. Theory of Primary Photoexcitations in Donor-Acceptor Copolymers

    OpenAIRE

    Aryanpour, Karan; Dutta, Tirthankar; Huynh, Uyen N. V.; Vardeny, Zeev Valy; Mazumdar, Sumit

    2015-01-01

    We present a generic theory of primary photoexcitations in low band gap donor-acceptor conjugated copolymers. Because of the combined effects of strong electron correlations and broken symmetry, there is considerable mixing between a charge-transfer exciton and an energetically proximate triplet-triplet state with an overall spin singlet. The triplet-triplet state, optically forbidden in homopolymers, is allowed in donor-acceptor copolymers. For an intermediate difference in electron affiniti...

  6. Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. II. Autoradiographic evidence for its uptake into motor nerves by acceptor-mediated endocytosis

    International Nuclear Information System (INIS)

    Black, J.D.; Dolly, J.O.

    1986-01-01

    Using pharmacological and autoradiographic techniques it has been shown that botulinum neurotoxin (BoNT) is translocated across the motor nerve terminal membrane to reach a postulated intraterminal target. In the present study, the nature of this uptake process was investigated using electron microscopic autoradiography. It was found that internalization is acceptor-mediated and that binding to specific cell surface acceptors involves the heavier chain of the toxin. In addition, uptake was shown to be energy and temperature-dependent and to be accelerated by nerve stimulation, a treatment which also shortens the time course of the toxin-induced neuroparalysis. These results, together with the observation that silver grains were often associated with endocytic structures within the nerve terminal, suggested that acceptor-mediated endocytosis is responsible for toxin uptake. Possible recycling of BoNT acceptors (an important aspect of acceptor-mediated endocytosis of toxins) at motor nerve terminals was indicated by comparing the extent of labeling in the presence and absence of metabolic inhibitors. On the basis of these collective results, it is concluded that BoNT is internalized by acceptor-mediated endocytosis and, hence, the data support the proposal that this toxin inhibits release of acetylcholine by interaction with an intracellular target

  7. Development of Polymer Acceptors for Organic Photovoltaic Cells

    Directory of Open Access Journals (Sweden)

    Yujeong Kim

    2014-02-01

    Full Text Available This review provides a current status report of the various n-type polymer acceptors for use as active materials in organic photovoltaic cells (OPVs. The polymer acceptors are divided into four categories. The first section of this review focuses on rylene diimide-based polymers, including perylene diimide, naphthalene diimide, and dithienocoronene diimide-based polymers. The high electron mobility and good stability of rylene diimides make them suitable for use as polymer acceptors in OPVs. The second section deals with fluorene and benzothiadiazole-based polymers such as poly(9,9’-dioctylfluorene-co-benzothiadiazole, and the ensuing section focuses on the cyano-substituted polymer acceptors. Cyano-poly(phenylenevinylene and poly(3-cyano-4-hexylthiophene have been used as acceptors in OPVs and exhibit high electron affinity arising from the electron-withdrawing cyano groups in the vinylene group of poly(phenylenevinylene or the thiophene ring of polythiophene. Lastly, a number of other electron-deficient groups such as thiazole, diketopyrrolopyrrole, and oxadiazole have also been introduced onto polymer backbones to induce n-type characteristics in the polymer. Since the first report on all-polymer solar cells in 1995, the best power conversion efficiency obtained with these devices to date has been 3.45%. The overall trend in the development of n-type polymer acceptors is presented in this review.

  8. Near infrared organic light-emitting diodes based on acceptor-donor-acceptor (ADA) using novel conjugated isatin Schiff bases

    International Nuclear Information System (INIS)

    Taghi Sharbati, Mohammad; Soltani Rad, Mohammad Navid; Behrouz, Somayeh; Gharavi, Alireza; Emami, Farzin

    2011-01-01

    Fabrications of a single layer organic light emitting diodes (OLEDs) based on two conjugated acceptor-donor-acceptor (ADA) isatin Schiff bases are described. The electroluminescent spectra of these materials range from 630 to 700 nm and their band gaps were measured between 1.97 and 1.77 eV. The measured maximum external quantum efficiencies (EQE) for fabricated OLEDs are 0.0515% and 0.054% for two acceptor-donor-acceptor chromophores. The Commission International De L'Eclairage (CIE) (1931) coordinates of these two compounds were attained and found to be (0.4077, 0.4128) and (0.4411, 0.4126) for two used acceptor-donor-acceptor chromophores. The measured I-V curves demonstrated the apparent diode behavior of two ADA chromophores. The turn-on voltages in these OLEDs are directly dependent on the thickness. These results have demonstrated that ADA isatin Schiff bases could be considered as promising electroluminescence-emitting materials for fabrication of OLEDs.

  9. Fluorescence energy transfer on erythrocyte membranes

    International Nuclear Information System (INIS)

    Fuchs, H.M.; Hof, M.; Lawaczeck, R.

    1995-08-01

    Stationary and time-dependent fluorescence have been measured for a donor/acceptor (DA) pair bound to membrane proteins of bovine erythrocyte ghosts. The donor N-(p-(2-benzoxazolyl)phenyl)-maleimid (BMI) and the acceptor fluram bind to SH- and NH 2 -residues, respectively. The fluorescence spectra and the time-dependent emission are consistent with a radiationless fluorescence energy transfer (RET). The density of RET-effective acceptor binding sites c=0.072 nm -2 was calculated on the basis of the two-dimensional Foerster-kinetic. Band3 protein is the only membrane spanning protein with accessible SH-groups, and therefore only effective binding sites on the band3 protein are counted for the RET measurements performed. (author). 23 refs, 4 figs, 2 tabs

  10. An overview of molecular acceptors for organic solar cells

    Science.gov (United States)

    Hudhomme, Piétrick

    2013-07-01

    Organic solar cells (OSCs) have gained serious attention during the last decade and are now considered as one of the future photovoltaic technologies for low-cost power production. The first dream of attaining 10% of power coefficient efficiency has now become a reality thanks to the development of new materials and an impressive work achieved to understand, control and optimize structure and morphology of the device. But most of the effort devoted to the development of new materials concerned the optimization of the donor material, with less attention for acceptors which to date remain dominated by fullerenes and their derivatives. This short review presents the progress in the use of non-fullerene small molecules and fullerene-based acceptors with the aim of evaluating the challenge for the next generation of acceptors in organic photovoltaics.

  11. An overview of electron acceptors in microbial fuel cells

    DEFF Research Database (Denmark)

    Ucar, Deniz; Zhang, Yifeng; Angelidaki, Irini

    2017-01-01

    Microbial fuel cells (MFC) have recently received increasing attention due to their promising potential in sustainable wastewater treatment and contaminant removal. In general, contaminants can be removed either as an electron donor via microbial catalyzed oxidization at the anode or removed...... as an electron acceptor due to its high oxidation potential and ready availability. Recent studies, however, have begun to assess the use of different electron acceptors because of the (1) diversity of redox potential, (2) needs of alternative and more efficient cathode reaction, and (3) expanding of MFC based...... technologies in different areas. The aim of this review was to evaluate the performance and applicability of various electron acceptors and mediators used in MFCs. This review also evaluated the corresponding performance, advantages and disadvantages, and future potential applications of select electron...

  12. An overview of molecular acceptors for organic solar cells

    Directory of Open Access Journals (Sweden)

    Hudhomme Piétrick

    2013-07-01

    Full Text Available Organic solar cells (OSCs have gained serious attention during the last decade and are now considered as one of the future photovoltaic technologies for low-cost power production. The first dream of attaining 10% of power coefficient efficiency has now become a reality thanks to the development of new materials and an impressive work achieved to understand, control and optimize structure and morphology of the device. But most of the effort devoted to the development of new materials concerned the optimization of the donor material, with less attention for acceptors which to date remain dominated by fullerenes and their derivatives. This short review presents the progress in the use of non-fullerene small molecules and fullerene-based acceptors with the aim of evaluating the challenge for the next generation of acceptors in organic photovoltaics.

  13. Theory of Primary Photoexcitations in Donor-Acceptor Copolymers.

    Science.gov (United States)

    Aryanpour, Karan; Dutta, Tirthankar; Huynh, Uyen N V; Vardeny, Zeev Valy; Mazumdar, Sumit

    2015-12-31

    We present a generic theory of primary photoexcitations in low band gap donor-acceptor conjugated copolymers. Because of the combined effects of strong electron correlations and broken symmetry, there is considerable mixing between a charge-transfer exciton and an energetically proximate triplet-triplet state with an overall spin singlet. The triplet-triplet state, optically forbidden in homopolymers, is allowed in donor-acceptor copolymers. For an intermediate difference in electron affinities of the donor and the acceptor, the triplet-triplet state can have a stronger oscillator strength than the charge-transfer exciton. We discuss the possibility of intramolecular singlet fission from the triplet-triplet state, and how such fission can be detected experimentally.

  14. Acceptors in cadmium telluride. Identification and electronic structure

    International Nuclear Information System (INIS)

    Molva, E.

    1983-11-01

    It is shown that electronic properties of CdTe are determined by impurities more than by intrinsic defects like vacancies or interstitials in Cd or Te contrary to classical theories. These results are based on annealing, diffusion, implantation and electron irradiation at 4 K. Centers appearing in treated samples are accurately identified by photoluminescence, cathodoluminescence infra-red absorption, electrical measurements and magneto-optic properties. Acceptors identified are Li, Na, Cu, Ag and Au impurities in Cd and N, P and As in Te. Energy levels of all acceptors and fine structure of excitons are determined [fr

  15. HIGH PERFORMANCE CERIA BASED OXYGEN MEMBRANE

    DEFF Research Database (Denmark)

    2014-01-01

    The invention describes a new class of highly stable mixed conducting materials based on acceptor doped cerium oxide (CeO2-8 ) in which the limiting electronic conductivity is significantly enhanced by co-doping with a second element or co- dopant, such as Nb, W and Zn, so that cerium and the co-...... thin film membrane devices using these materials....

  16. Bioaccesibility Extraction of Hydrophobic Pollutants: Benefits of Separating Leaching Agent and Acceptor Medium

    DEFF Research Database (Denmark)

    Cocovi-Solberg, D. J.; Miro, M.; Loibner, A. P.

    2015-01-01

    separation and (3) facilitating the measurement of the bioaccessible fraction. Cyclodextrin was used as leaching agent, ethanol as acceptor medium and a semipermeable membrane for separating these two phases. Various physical formats of this configuration were developed and tested, and the simplest...... are a step forward, they also lead to challenges related to the separation of sink and matrix and/or the subsequent quantification of the bioaccessible fraction. The present study aimed at developing a new approach for (1) enhancing the sink capacity of bioaccessibility extractions, (2) improving phase...... and highly performing format was further optimized and validated. This new configuration was characterized in terms of mass transfer kinetics, analytical performance criteria and suitability for direct analysis by high performance liquid chromatography (HPLC) and gas chromatography (GC). Finally...

  17. Electrochemical and optical properties of a new donor–acceptor ...

    Indian Academy of Sciences (India)

    Abstract. In this communication, we report the synthesis and characterization of a new donor–acceptor type conjugated polymer carrying alternate 3 ..... Figure 3. TGA trace of the polymer P1. Table 1. Electrochemical potentials, energy levels and energy barriers for electron/hole injection for the polymer P1. Polymer. Eons.

  18. Acceptors in II-IV Semiconductors - Incorporation and Complex Formation

    CERN Multimedia

    2002-01-01

    A strong effort is currently devoted to the investigation of defects and the electrical activation of dopant atoms in II-VI semiconductors. In particular, the knowledge about the behaviour of acceptors, prerequisite for the fabrication of p-type semiconductors, is rather limited. The perturbed $\\,{\\gamma\\gamma}$ -angular correlation technique (PAC) and the photoluminescence spectroscopy (PL) using the radioactive isotopes $^{77}\\!$Br and $^{111}\\!$Ag will be applied for investigating the behaviour of acceptor dopant atoms and their interactions with defects in II-VI semiconductors. The main topic will be the identification of the technical conditions for the incorporation of electrically active acceptors in the II-VI semiconductors ~ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe with particular emphasis on the compounds~ CdTe, ZnSe, and ZnTe. The investigations will be supplemented by first exploratory PL experiments with the group V acceptors $^{71}\\!$As and $^{121}\\!$Sb. With help of the probe $^{111}\\!$Ag, the pos...

  19. Donor–Acceptor Copolymers of Relevance for Organic Photovoltaics: A Theoretical Investigation of the Impact of Chemical Structure Modifications on the Electronic and Optical Properties

    KAUST Repository

    Pandey, Laxman

    2012-08-28

    We systematically investigate at the density functional theory level how changes to the chemical structure of donor-acceptor copolymers used in a number of organic electronics applications influences the intrinsic geometric, electronic, and optical properties. We consider the combination of two distinct donors, where a central five-membered ring is fused on both sides by either a thiophene or a benzene ring, with 12 different acceptors linked to the donor either directly or through thienyl linkages. The interplay between the electron richness/deficiency of the subunits as well as the evolution of the frontier electronic levels of the isolated donors/acceptors plays a significant role in determining the electronic and optical properties of the copolymers. © 2012 American Chemical Society.

  20. Electron acceptors for anaerobic oxidation of methane drive microbial community structure and diversity in mud volcanoes.

    Science.gov (United States)

    Ren, Ge; Ma, Anzhou; Zhang, Yanfen; Deng, Ye; Zheng, Guodong; Zhuang, Xuliang; Zhuang, Guoqiang; Fortin, Danielle

    2018-04-06

    Mud volcanoes (MVs) emit globally significant quantities of methane into the atmosphere, however, methane cycling in such environments is not yet fully understood, as the roles of microbes and their associated biogeochemical processes have been largely overlooked. Here, we used data from high-throughput sequencing of microbial 16S rRNA gene amplicons from six MVs in the Junggar Basin in northwest China to quantify patterns of diversity and characterize the community structure of archaea and bacteria. We found anaerobic methanotrophs and diverse sulfate- and iron-reducing microbes in all of the samples, and the diversity of both archaeal and bacterial communities was strongly linked to the concentrations of sulfate, iron, and nitrate, which could act as electron acceptors in anaerobic oxidation of methane (AOM). The impacts of sulfate/iron/nitrate on AOM in the MVs were verified by microcosm experiments. Further, two representative MVs were selected to explore the microbial interactions based on phylogenetic molecular ecological networks. The sites showed distinct network structures, key species and microbial interactions, with more complex and numerous linkages between methane-cycling microbes and their partners being observed in the iron/sulfate-rich MV. These findings suggest that electron acceptors are important factors driving the structure of microbial communities in these methane-rich environments. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Thiazole Imide-Based All-Acceptor Homopolymer: Achieving High-Performance Unipolar Electron Transport in Organic Thin-Film Transistors.

    Science.gov (United States)

    Shi, Yongqiang; Guo, Han; Qin, Minchao; Zhao, Jiuyang; Wang, Yuxi; Wang, Hang; Wang, Yulun; Facchetti, Antonio; Lu, Xinhui; Guo, Xugang

    2018-03-01

    High-performance unipolar n-type polymer semiconductors are critical for advancing the field of organic electronics, which relies on the design and synthesis of new electron-deficient building blocks with good solubilizing capability, favorable geometry, and optimized electrical properties. Herein, two novel imide-functionalized thiazoles, 5,5'-bithiazole-4,4'-dicarboxyimide (BTzI) and 2,2'-bithiazolothienyl-4,4',10,10'-tetracarboxydiimide (DTzTI), are successfully synthesized. Single crystal analysis and physicochemical study reveal that DTzTI is an excellent building block for constructing all-acceptor homopolymers, and the resulting polymer poly(2,2'-bithiazolothienyl-4,4',10,10'-tetracarboxydiimide) (PDTzTI) exhibits unipolar n-type transport with a remarkable electron mobility (μ e ) of 1.61 cm 2 V -1 s -1 , low off-currents (I off ) of 10 -10 -10 -11 A, and substantial current on/off ratios (I on /I off ) of 10 7 -10 8 in organic thin-film transistors. The all-acceptor homopolymer shows distinctive advantages over prevailing n-type donor-acceptor copolymers, which suffer from ambipolar transport with high I off s > 10 -8 A and small I on /I off s < 10 5 . The results demonstrate that the all-acceptor approach is superior to the donor-acceptor one, which results in unipolar electron transport with more ideal transistor performance characteristics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Synthesis and X-ray crystal structure of the first tetrathiafulvalene-based acceptor-donor-acceptor sandwich

    DEFF Research Database (Denmark)

    Simonsen, Klaus B.; Thorup, Niels; Cava, Michael P.

    1998-01-01

    The synthesis and characterization of a bis-macrocyclic A-D-A sandwich produced in a simple one-pot reaction is reported. Only one acceptor unit participates in charge-transfer interactions with the TTF unit in the solid state....

  3. Cascade energy transfer and tunable emission from nanosheet hybrids: locating acceptor molecules through chiral doping.

    Science.gov (United States)

    Goudappagouda; Wakchaure, Vivek Chandrakant; Ranjeesh, Kayaramkodath Chandran; Abhai, Chalona Antony Ralph; Babu, Sukumaran Santhosh

    2017-06-27

    Light harvesting donor-acceptor assemblies are indispensable to efficiently tap photons. In an attempt to improve the light harvesting efficiency of an acceptor doped assembly, we design and synthesize a donor-acceptor-donor triad which exhibits an exceptional intramolecular energy transfer with excellent efficiency. Moreover, a facile cascade energy transfer (energy funnelling) is observed in the presence of a series of second acceptors (63-91% efficiency) with tunable emission colours. Self-assembled nanosheets formed by the triad in the presence of acceptors exhibit cascade energy transfer assisted tunable emission. In addition, use of chiral acceptors induces chirality to the triad and results in the formation of chiral nanosheets along with cascade energy transfer. Here chiral induction, nanosheet formation and cascade energy transfer in the presence of chiral acceptors are used as tools to probe the intercalation of acceptor molecules in the donor scaffold.

  4. 2012 Gordon Research Conference, Electron donor-acceptor interactions, August 5-10 2012

    Energy Technology Data Exchange (ETDEWEB)

    McCusker, James [Michigan State Univ., East Lansing, MI (United States)

    2012-08-10

    The upcoming incarnation of the Gordon Research Conference on Electron Donor Acceptor Interactions will feature sessions on classic topics including proton-coupled electron transfer, dye-sensitized solar cells, and biological electron transfer, as well as emerging areas such as quantum coherence effects in donor-acceptor interactions, spintronics, and the application of donor-acceptor interactions in chemical synthesis.

  5. Lipase-catalyzed biodiesel synthesis with different acyl acceptors

    Directory of Open Access Journals (Sweden)

    Ognjanović Nevena D.

    2008-01-01

    Full Text Available Biodiesel is an alternative fuel for diesel engine that is environmentally acceptable. Conventionally, biodiesel is produced by transesterification of triglycerides and short alcohols in the presence of an acid or an alkaline catalyst. There are several problems associated with this kind of production that can be resolved by using lipase as the biocatalyst. The aim of the present work was to investigate novel acyl acceptors for biodiesel production. 2-Propanol and n-butanol have a less negative effect on lipase stability, and they also improve low temperature properties of the fuel. However, excess alcohol leads to inactivation of the enzyme, and glycerol, a major byproduct, can block the immobilized enzyme, resulting in low enzymatic activity. This problem was solved by using methyl acetate as acyl acceptor. Triacetylglycerol is produced instead of glycerol, and it has no negative effect on the activity of the lipase.

  6. Electron Acceptor Materials Engineering in Colloidal Quantum Dot Solar Cells

    KAUST Repository

    Liu, Huan

    2011-07-15

    Lead sulfide colloidal quantum dot (CQD) solar cells with a solar power conversion efficiency of 5.6% are reported. The result is achieved through careful optimization of the titanium dioxide electrode that serves as the electron acceptor. Metal-ion-doped sol-gel-derived titanium dioxide electrodes produce a tunable-bandedge, well-passivated materials platform for CQD solar cell optimization. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Novel rhodanine based molecular acceptor for organic solar cells

    Directory of Open Access Journals (Sweden)

    Subianto Surya

    2017-01-01

    Full Text Available A dirhodanine-substituted benzothiadiazole compound has been synthesised using Knoevenagel condensation of a dialdehyde-substituted benzothiadiazole and rhodanine. The resulting compound was deep orange red in colour and shows a HOMO and LUMO levels of −5.61 and −3.85 eV respectively, which makes it suitable for applications such as acceptor for organic solar cells.

  8. Methods for the synthesis of donor-acceptor cyclopropanes

    Science.gov (United States)

    Tomilov, Yu V.; Menchikov, L. G.; Novikov, R. A.; Ivanova, O. A.; Trushkov, I. V.

    2018-03-01

    The interest in cyclopropane derivatives is caused by the facts that, first, the three-carbon ring is present in quite a few natural and biologically active compounds and, second, compounds with this ring are convenient building blocks for the synthesis of diverse molecules (acyclic, alicyclic and heterocyclic). The carbon–carbon bonds in cyclopropane are kinetically rather inert; hence, they need to be activated to be involved in reactions. An efficient way of activation is to introduce vicinal electron-donating and electron-withdrawing substituents into the ring; these substrates are usually referred to as donor-acceptor cyclopropanes. This review gives a systematic account of the key methods for the synthesis of donor-acceptor cyclopropanes. The most important among them are reactions of nucleophilic alkenes with diazo compounds and iodonium ylides and approaches based on reactions of electrophilic alkenes with sulfur ylides (the Corey–Chaykovsky reaction). Among other methods used for this purpose, noteworthy are cycloalkylation of CH-acids, addition of α-halocarbonyl compounds to alkenes, cyclization via 1,3-elimination, reactions of alkenes with halocarbenes followed by reduction, the Simmons–Smith reaction and some other. The scope of applicability and prospects of various methods for the synthesis of donor-acceptor cyclopropanes are discussed. The bibliography includes 530 references.

  9. Donor-Acceptor Block Copolymers: Synthesis and Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Kazuhiro Nakabayashi

    2014-04-01

    Full Text Available Fullerene derivatives have been widely used for conventional acceptor materials in organic photovoltaics (OPVs because of their high electron mobility. However, there are also considerable drawbacks for use in OPVs, such as negligible light absorption in the visible-near-IR regions, less compatibility with donor polymeric materials and high cost for synthesis and purification. Therefore, the investigation of non-fullerene acceptor materials that can potentially replace fullerene derivatives in OPVs is increasingly necessary, which gives rise to the possibility of fabricating all-polymer (polymer/polymer solar cells that can deliver higher performance and that are potentially cheaper than fullerene-based OPVs. Recently, considerable attention has been paid to donor-acceptor (D-A block copolymers, because of their promising applications as fullerene alternative materials in all-polymer solar cells. However, the synthesis of D-A block copolymers is still a challenge, and therefore, the establishment of an efficient synthetic method is now essential. This review highlights the recent advances in D-A block copolymers synthesis and their applications in all-polymer solar cells.

  10. Income-generating activities for family planning acceptors.

    Science.gov (United States)

    1989-07-01

    The Income Generating Activities program for Family Planning Acceptors was introduced in Indonesia in 1979. Capital input by the Indonesian National Family Planning Coordination Board and the UN Fund for Population Activities was used to set up small businesses by family planning acceptors. In 2 years, when the businesses become self-sufficient, the loans are repaid, and the money is used to set up new family planning acceptors in business. The program strengthens family planning acceptance, improves the status of women, and enhances community self-reliance. The increase in household income generated by the program raises the standards of child nutrition, encourages reliance on the survival of children, and decreases the value of large families. Approximately 18,000 Family Planning-Income Generating Activities groups are now functioning all over Indonesia, with financial assistance from the central and local governments, the World Bank, the US Agency for International Development, the UN Population Fund, the Government of the Netherlands, and the Government of Australia through the Association of South East Asian Nations.

  11. Fullerene derivatives as electron acceptors for organic photovoltaic cells.

    Science.gov (United States)

    Mi, Dongbo; Kim, Ji-Hoon; Kim, Hee Un; Xu, Fei; Hwang, Do-Hoon

    2014-02-01

    Energy is currently one of the most important problems humankind faces. Depletion of traditional energy sources such as coal and oil results in the need to develop new ways to create, transport, and store electricity. In this regard, the sun, which can be considered as a giant nuclear fusion reactor, represents the most powerful source of energy available in our solar system. For photovoltaic cells to gain widespread acceptance as a source of clean and renewable energy, the cost per watt of solar energy must be decreased. Organic photovoltaic cells, developed in the past two decades, have potential as alternatives to traditional inorganic semiconductor photovoltaic cells, which suffer from high environmental pollution and energy consumption during production. Organic photovoltaic cells are composed of a blended film of a conjugated-polymer donor and a soluble fullerene-derivative acceptor sandwiched between a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-coated indium tin oxide positive electrode and a low-work-function metal negative electrode. Considerable research efforts aim at designing and synthesizing novel fullerene derivatives as electron acceptors with up-raised lowest unoccupied molecular orbital energy, better light-harvesting properties, higher electron mobility, and better miscibility with the polymer donor for improving the power conversion efficiency of the organic photovoltaic cells. In this paper, we systematically review novel fullerene acceptors synthesized through chemical modification for enhancing the photovoltaic performance by increasing open-circuit voltage, short-circuit current, and fill factor, which determine the performance of organic photovoltaic cells.

  12. Non-fullerene acceptors for organic solar cells

    Science.gov (United States)

    Yan, Cenqi; Barlow, Stephen; Wang, Zhaohui; Yan, He; Jen, Alex K.-Y.; Marder, Seth R.; Zhan, Xiaowei

    2018-03-01

    Non-fullerene acceptors (NFAs) are currently a major focus of research in the development of bulk-heterojunction organic solar cells (OSCs). In contrast to the widely used fullerene acceptors (FAs), the optical properties and electronic energy levels of NFAs can be readily tuned. NFA-based OSCs can also achieve greater thermal stability and photochemical stability, as well as longer device lifetimes, than their FA-based counterparts. Historically, the performance of NFA OSCs has lagged behind that of fullerene devices. However, recent developments have led to a rapid increase in power conversion efficiencies for NFA OSCs, with values now exceeding 13%, demonstrating the viability of using NFAs to replace FAs in next-generation high-performance OSCs. This Review discusses the important work that has led to this remarkable progress, focusing on the two most promising NFA classes to date: rylene diimide-based materials and materials based on fused aromatic cores with strong electron-accepting end groups. The key structure-property relationships, donor-acceptor matching criteria and aspects of device physics are discussed. Finally, we consider the remaining challenges and promising future directions for the NFA OSCs field.

  13. Spectral, thermal and kinetic studies of charge-transfer complexes formed between the highly effective antibiotic drug metronidazole and two types of acceptors: σ- and π-acceptors

    Science.gov (United States)

    Refat, Moamen S.; Saad, Hosam A.; Adam, Abdel Majid A.

    2015-04-01

    Understanding the interaction between drugs and small inorganic or organic molecules is critical in being able to interpret the drug-receptor interactions and acting mechanism of these drugs. A combined solution and solid state study was performed to describe the complexation chemistry of drug metronidazole (MZ) which has a broad-spectrum antibacterial activity with two types of acceptors. The acceptors include, σ-acceptor (i.e., iodine) and π-acceptors (i.e., dichlorodicyanobenzoquinone (DDQ), chloranil (CHL) and picric acid (PA)). The molecular structure, spectroscopic characteristics, the binding modes as well as the thermal stability were deduced from IR, UV-vis, 1H NMR and thermal studies. The binding ratio of complexation (MZ: acceptor) was determined to be 1:2 for the iodine acceptor and 1:1 for the DDQ, CHL or PA acceptor, according to the CHN elemental analyses and spectrophotometric titrations. It has been found that the complexation with CHL and PA acceptors increases the values of enthalpy and entropy, while the complexation with DDQ and iodine acceptors decreases the values of these parameters compared with the free MZ donor.

  14. Modulation of Intracellular Quantum Dot to Fluorescent Protein Förster Resonance Energy Transfer via Customized Ligands and Spatial Control of Donor–Acceptor Assembly

    Directory of Open Access Journals (Sweden)

    Lauren D. Field

    2015-12-01

    Full Text Available Understanding how to controllably modulate the efficiency of energy transfer in Förster resonance energy transfer (FRET-based assemblies is critical to their implementation as sensing modalities. This is particularly true for sensing assemblies that are to be used as the basis for real time intracellular sensing of intracellular processes and events. We use a quantum dot (QD donor -mCherry acceptor platform that is engineered to self-assemble in situ wherein the protein acceptor is expressed via transient transfection and the QD donor is microinjected into the cell. QD-protein assembly is driven by metal-affinity interactions where a terminal polyhistidine tag on the protein binds to the QD surface. Using this system, we show the ability to modulate the efficiency of the donor–acceptor energy transfer process by controllably altering either the ligand coating on the QD surface or the precise location where the QD-protein assembly process occurs. Intracellularly, a short, zwitterionic ligand mediates more efficient FRET relative to longer ligand species that are based on the solubilizing polymer, poly(ethylene glycol. We further show that a greater FRET efficiency is achieved when the QD-protein assembly occurs free in the cytosol compared to when the mCherry acceptor is expressed tethered to the inner leaflet of the plasma membrane. In the latter case, the lower FRET efficiency is likely attributable to a lower expression level of the mCherry acceptor at the membrane combined with steric hindrance. Our work points to some of the design considerations that one must be mindful of when developing FRET-based sensing schemes for use in intracellular sensing.

  15. Charge Carrier Dynamics at Silver Nanocluster-Molecular Acceptor Interfaces

    KAUST Repository

    Almansaf, Abdulkhaleq

    2017-07-01

    A fundamental understanding of interfacial charge transfer at donor-acceptor interfaces is very crucial as it is considered among the most important dynamical processes for optimizing performance in many light harvesting systems, including photovoltaics and photo-catalysis. In general, the photo-generated singlet excitons in photoactive materials exhibit very short lifetimes because of their dipole-allowed spin radiative decay and short diffusion lengths. In contrast, the radiative decay of triplet excitons is dipole forbidden; therefore, their lifetimes are considerably longer. The discussion in this thesis primarily focuses on the relevant parameters that are involved in charge separation (CS), charge transfer (CT), intersystem crossing (ISC) rate, triplet state lifetime, and carrier recombination (CR) at silver nanocluster (NCs) molecular-acceptors interfaces. A combination of steady-state and femto- and nanosecond broadband transient absorption spectroscopies were used to investigate the charge carrier dynamics in various donor-acceptor systems. Additionally, this thesis was prolonged to investigate some important factors that influence the charge carrier dynamics in Ag29 silver NCs donor-acceptor systems, such as the metal doping and chemical structure of the nanocluster and molecular acceptors. Interestingly, clear correlations between the steady-state measurements and timeresolved spectroscopy results are found. In the first study, we have investigated the interfacial charge transfer dynamics in positively charged meso units of 5, 10, 15, 20-tetra (1- methyl-4-pyridino)-porphyrin tetra (p-toluene sulfonate) (TMPyP) and neutral charged 5, 10, 15, 20-tetra (4-pyridyl)-porphyrin (TPyP), with negatively charged undoped and gold (Au)- doped silver Ag29 NCs. Moreover, this study showed the impact of Au doping on the charge carrier dynamics of the system. In the second study, we have investigated the interfacial charge transfer dynamics in [Pt2 Ag23 Cl7 (PPh3

  16. Ultrafast Photoinduced Electron Transfer in Bimolecular Donor-Acceptor Systems

    KAUST Repository

    Alsulami, Qana A.

    2016-11-30

    The efficiency of photoconversion systems, such as organic photovoltaic (OPV) cells, is largely controlled by a series of fundamental photophysical processes occurring at the interface before carrier collection. A profound understanding of ultrafast interfacial charge transfer (CT), charge separation (CS), and charge recombination (CR) is the key determinant to improving the overall performances of photovoltaic devices. The discussion in this dissertation primarily focuses on the relevant parameters that are involved in photon absorption, exciton separation, carrier transport, carrier recombination and carrier collection in organic photovoltaic devices. A combination of steady-state and femtosecond broadband transient spectroscopies was used to investigate the photoinduced charge carrier dynamics in various donor-acceptor systems. Furthermore, this study was extended to investigate some important factors that influence charge transfer in donor-acceptor systems, such as the morphology, energy band alignment, electronic properties and chemical structure. Interestingly, clear correlations among the steady-state measurements, time-resolved spectroscopy results, grain alignment of the electron transporting layer (ETL), carrier mobility, and device performance are found. In this thesis, we explored the significant impacts of ultrafast charge separation and charge recombination at donor/acceptor (D/A) interfaces on the performance of a conjugated polymer PTB7-Th device with three fullerene acceptors: PC71BM, PC61BM and IC60BA. Time-resolved laser spectroscopy and high-resolution electron microscopy can illustrate the basis for fabricating solar cell devices with improved performances. In addition, we studied the effects of the incorporation of heavy metals into π-conjugated chromophores on electron transfer by monitoring the triplet state lifetime of the oligomer using transient absorption spectroscopy, as understanding the mechanisms controlling intersystem crossing and

  17. The effect of intramolecular donor–acceptor moieties with donor–π-bridge–acceptor structure on the solar photovoltaic performance

    Directory of Open Access Journals (Sweden)

    T. L. Wang

    2015-10-01

    Full Text Available A series of intramolecular donor–acceptor polymers containing different contents of (E-1-(2-ethylhexyl-6,9-dioctyl-2-(2-(thiophen-3-ylvinyl-1H-phenanthro[9,10-d]imidazole (thiophene-DOPI moiety and 4,4-diethylhexylcyclopenta[ 2,1-b:3,4-b']dithiophene (CPDT unit was synthesized via Grignard metathesis (GRIM polymerization. The synthesized random copolymers and homopolymer of thiophene-DOPI contain the donor–π-bridge–acceptor conjugated structure to tune the absorption spectra and energy levels of the resultant polymers. UV-vis spectra of the three polymer films exhibit panchromatic absorptions ranging from 300 to 1100 nm and low band gaps from 1.38 to 1.51 eV. It is found that more thiophene-DOPI moieties result in the decrease of band gap and lower the highest occupied molecular orbital (HOMO and lowest unoccupied molecular orbital (LUMO values of polymers. Photovoltaic performance results indicate that if the content of the intramolecular donor–acceptor moiety is high enough, the copolymer structure may be better than homopolymer due to more light-harvesting afforded by both monomer units.

  18. Ligand-bound Structures and Site-directed Mutagenesis Identify the Acceptor and Secondary Binding Sites of Streptomyces coelicolor Maltosyltransferase GlgE*

    Science.gov (United States)

    Syson, Karl; Stevenson, Clare E. M.; Miah, Farzana; Barclay, J. Elaine; Tang, Minhong; Gorelik, Andrii; Rashid, Abdul M.; Lawson, David M.; Bornemann, Stephen

    2016-01-01

    GlgE is a maltosyltransferase involved in α-glucan biosynthesis in bacteria that has been genetically validated as a target for tuberculosis therapies. Crystals of the Mycobacterium tuberculosis enzyme diffract at low resolution so most structural studies have been with the very similar Streptomyces coelicolor GlgE isoform 1. Although the donor binding site for α-maltose 1-phosphate had been previously structurally defined, the acceptor site had not. Using mutagenesis, kinetics, and protein crystallography of the S. coelicolor enzyme, we have now identified the +1 to +6 subsites of the acceptor/product, which overlap with the known cyclodextrin binding site. The sugar residues in the acceptor subsites +1 to +5 are oriented such that they disfavor the binding of malto-oligosaccharides that bear branches at their 6-positions, consistent with the known acceptor chain specificity of GlgE. A secondary binding site remote from the catalytic center was identified that is distinct from one reported for the M. tuberculosis enzyme. This new site is capable of binding a branched α-glucan and is most likely involved in guiding acceptors toward the donor site because its disruption kinetically compromises the ability of GlgE to extend polymeric substrates. However, disruption of this site, which is conserved in the Streptomyces venezuelae GlgE enzyme, did not affect the growth of S. venezuelae or the structure of the polymeric product. The acceptor subsites +1 to +4 in the S. coelicolor enzyme are well conserved in the M. tuberculosis enzyme so their identification could help inform the design of inhibitors with therapeutic potential. PMID:27531751

  19. The role of deep acceptor centers in the oxidation of acceptor-doped wide-band-gap perovskites ABO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Putilov, L.P., E-mail: lev.putilov@gmail.com; Tsidilkovski, V.I.

    2017-03-15

    The impact of deep acceptor centers on defect thermodynamics and oxidation of wide-band-gap acceptor-doped perovskites without mixed-valence cations is studied. These deep centers are formed by the acceptor-bound small hole polarons whose stabilization energy can be high enough (significantly higher than the hole-acceptor Coulomb interaction energy). It is shown that the oxidation enthalpy ΔH{sub ox} of oxide is determined by the energy ε{sub A} of acceptor-bound states along with the formation energy E{sub V} of oxygen vacancies. The oxidation reaction is demonstrated to be either endothermic or exothermic, and the regions of ε{sub A} and E{sub V} values corresponding to the positive or negative ΔH{sub ox} are determined. The contribution of acceptor-bound holes to the defect thermodynamics strongly depends on the acceptor states depth ε{sub A}: it becomes negligible at ε{sub A} less than a certain value (at which the acceptor levels are still deep). With increasing ε{sub A}, the concentration of acceptor-bound small hole polarons can reach the values comparable to the dopant content. The results are illustrated with the acceptor-doped BaZrO{sub 3} as an example. It is shown that the experimental data on the bulk hole conductivity of barium zirconate can be described both in the band transport model and in the model of hopping small polarons localized on oxygen ions away from the acceptor centers. Depending on the ε{sub A} magnitude, the oxidation reaction can be either endothermic or exothermic for both mobility mechanisms.

  20. Organic Donor-Acceptor Complexes as Novel Organic Semiconductors.

    Science.gov (United States)

    Zhang, Jing; Xu, Wei; Sheng, Peng; Zhao, Guangyao; Zhu, Daoben

    2017-07-18

    Organic donor-acceptor (DA) complexes have attracted wide attention in recent decades, resulting in the rapid development of organic binary system electronics. The design and synthesis of organic DA complexes with a variety of component structures have mainly focused on metallicity (or even superconductivity), emission, or ferroelectricity studies. Further efforts have been made in high-performance electronic investigations. The chemical versatility of organic semiconductors provides DA complexes with a great number of possibilities for semiconducting applications. Organic DA complexes extend the semiconductor family and promote charge separation and transport in organic field-effect transistors (OFETs) and organic photovoltaics (OPVs). In OFETs, the organic complex serves as an active layer across extraordinary charge pathways, ensuring the efficient transport of induced charges. Although an increasing number of organic semiconductors have been reported to exhibit good p- or n-type properties (mobilities higher than 1 or even 10 cm 2 V -1 s -1 ), critical scientific challenges remain in utilizing the advantages of existing semiconductor materials for more and wider applications while maintaining less complicated synthetic or device fabrication processes. DA complex materials have revealed new insight: their unique molecular packing and structure-property relationships. The combination of donors and acceptors could offer practical advantages compared with their unimolecular materials. First, growing crystals of DA complexes with densely packed structures will reduce impurities and traps from the self-assembly process. Second, complexes based on the original structural components could form superior mixture stacking, which can facilitate charge transport depending on the driving force in the coassembly process. Third, the effective use of organic semiconductors can lead to tunable band structures, allowing the operation mode (p- or n-type) of the transistor to be

  1. The cation diffusion facilitator proteins MamB and MamM of Magnetospirillum gryphiswaldense have distinct and complex functions, and are involved in magnetite biomineralization and magnetosome membrane assembly

    DEFF Research Database (Denmark)

    Uebe, René; Junge, Katja; Henn, Verena

    2011-01-01

    with the magnetosome membrane of Magnetospirillum gryphiswaldense are MamB and MamM, which were implicated in magnetosomal iron transport because of their similarity to the cation diffusion facilitator family. Here we demonstrate that MamB and MamM are multifunctional proteins involved in several steps of magnetosome...... formation. Whereas both proteins were essential for magnetite biomineralization, only deletion of mamB resulted in loss of magnetosome membrane vesicles. MamB stability depended on the presence of MamM by formation of a heterodimer complex. In addition, MamB was found to interact with several other proteins...... including the PDZ1 domain of MamE. Whereas any genetic modification of MamB resulted in loss of function, site‐specific mutagenesis within MamM lead to increased formation of polycrystalline magnetite particles. A single amino acid substitution within MamM resulted in crystals consisting of haematite, which...

  2. Perylene-Diimide Based Donor-Acceptor-Donor Type Small-Molecule Acceptors for Solution-Processable Organic Solar Cells

    Science.gov (United States)

    Ganesamoorthy, Ramasamy; Vijayaraghavan, Rajagopalan; Sakthivel, Pachagounder

    2017-12-01

    Development of nonfullerene acceptors plays an important role in the commercial availability of plastic solar cells. We report herein synthesis of bay-substituted donor-acceptor-donor (D-A-D)-type perylene diimide (PDI)-based small molecules (SM-1 to SM-4) by Suzuki coupling method and their use as acceptors in bulk heterojunction organic solar cells (BHJ-OSCs) with poly(3-hexylthiophene) (P3HT) polymer donor. We varied the number of electron-rich thiophene units and the solubilizing side chains and also evaluated the optical and electrochemical properties of the small molecules. The synthesized small molecules were confirmed by Fourier-transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and high-resolution mass spectroscopy (HR-MS). The small molecules showed extensive and strong absorption in the ultraviolet-visible (UV-Vis) region up to 750 nm, with bandgap (E_{{g}}^{{opt}} ) reduced below P3HT polymer donor showed maximum power conversion efficiency (PCE) of 0.19% with V oc of 0.30 V, J sc of 1.72 mA cm-2, and fill factor (FF) of 37%. The PCE decreased with the number of thiophene units. The PCE of SM-2 was lower than that of SM-1. This difference in PCE can be explained by the higher aggregation tendency of the bithiophene compared with the thiophene unit. Introduction of the solubilizing group in the bay position increased the aggregation property, leading to much lower PCE than for the small molecules without solubilizing group.

  3. Donor-Acceptor Chromophores based on Acetylenic Scaffolds and Indenofluorenes

    DEFF Research Database (Denmark)

    Christensen, Mikkel Andreas

    The work described in this thesis has been focused on synthesizing donor-acceptor chromophores with conjugated π-bridges. It has also led to the development of an alternative synthetic tool for acetylenic scaffolding. The first chapter focuses on the nitrophenol D-π-A system – A phenol in conjuga......The work described in this thesis has been focused on synthesizing donor-acceptor chromophores with conjugated π-bridges. It has also led to the development of an alternative synthetic tool for acetylenic scaffolding. The first chapter focuses on the nitrophenol D-π-A system – A phenol...... in conjugation with a nitrobenzene unit. Five nitrophenols were synthesized with different π-bridges covering the features of cross-conjugation, linear conjugation, planarity, and non-planarity. I was hoping to elucidate the intrinsic properties of the π-bridges via comparison of the charge-transfer absorptions...... of the compounds. The measurements in solution led to the conclusion that some of the transitions observed may not be charge-transfer transitions, as they were not red-shifted upon deprotonation of the phenol. The results can hopefully be used in combination with future measurements in the gas phase by our...

  4. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...

  5. Influence of acceptor on charge mobility in stacked π-conjugated polymers

    Science.gov (United States)

    Sun, Shih-Jye; Menšík, Miroslav; Toman, Petr; Gagliardi, Alessio; Král, Karel

    2018-02-01

    We present a quantum molecular model to calculate mobility of π-stacked P3HT polymer layers with electron acceptor dopants coupled next to side groups in random position with respect to the linear chain. The hole density, the acceptor LUMO energy and the hybridization transfer integral between the acceptor and polymer were found to be very critical factors to the final hole mobility. For a dopant LUMO energy close and high above the top of the polymer valence band we have found a significant mobility increase with the hole concentration and with the dopant LUMO energy approaching the top of the polymer valence band. Higher mobility was achieved for small values of hybridization transfer integral between polymer and the acceptor, corresponding to the case of weakly bound acceptor. Strong couplings between the polymer and the acceptor with Coulomb repulsion interactions induced from the electron localizations was found to suppress the hole mobility.

  6. Progress in ZnO Acceptor Doping: What Is the Best Strategy?

    Directory of Open Access Journals (Sweden)

    Judith G. Reynolds

    2014-01-01

    Full Text Available This paper reviews the recent progress in acceptor doping of ZnO that has been achieved with a focus toward the optimum strategy. There are three main approaches for generating p-type ZnO: substitutional group IA elements on a zinc site, codoping of donors and acceptors, and substitution of group VA elements on an oxygen site. The relevant issues are whether there is sufficient incorporation of the appropriate dopant impurity species, does it reside on the appropriate lattice site, and lastly whether the acceptor ionization energy is sufficiently small to enable significant p-type conduction at room temperature. The potential of nitrogen doping and formation of the appropriate acceptor complexes is highlighted although theoretical calculations predict that nitrogen on an oxygen site is a deep acceptor. We show that an understanding of the growth and annealing steps to achieve the relevant acceptor defect complexes is crucial to meet requirements.

  7. Binding characteristics of homogeneous molecularly imprinted polymers for acyclovir using an (acceptor-donor-donor)-(donor-acceptor-acceptor) hydrogen-bond strategy, and analytical applications for serum samples.

    Science.gov (United States)

    Wu, Suqin; Tan, Lei; Wang, Ganquan; Peng, Guiming; Kang, Chengcheng; Tang, Youwen

    2013-04-12

    This paper demonstrates a novel approach to assembling homogeneous molecularly imprinted polymers (MIPs) based on mimicking multiple hydrogen bonds between nucleotide bases by preparing acyclovir (ACV) as a template and using coatings grafted on silica supports. (1)H NMR studies confirmed the AAD-DDA (A for acceptor, D for donor) hydrogen-bond array between template and functional monomer, while the resultant monodisperse molecularly imprinted microspheres (MIMs) were evaluated using a binding experiment, high performance liquid chromatography (HPLC), and solid phase extraction. The Langmuir isothermal model and the Langmuir-Freundlich isothermal model suggest that ACV-MIMs have more homogeneous binding sites than MIPs prepared through normal imprinting. In contrast to previous MIP-HPLC columns, there were no apparent tailings for the ACV peaks, and ACV-MIMs had excellent specific binding properties with a Ka peak of 3.44 × 10(5)M(-1). A complete baseline separation is obtained for ACV and structurally similar compounds. This work also successfully used MIMs as a specific sorbent for capturing ACV from serum samples. The detection limit and mean recovery of ACV was 1.8 ng/mL(-1) and 95.6%, respectively, for molecularly imprinted solid phase extraction coupled with HPLC. To our knowledge, this was the first example of MIPs using AAD-DDA hydrogen bonds. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Fouling in Membrane Distillation, Osmotic Distillation and Osmotic Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Mourad Laqbaqbi

    2017-03-01

    Full Text Available Various membrane separation processes are being used for seawater desalination and treatment of wastewaters in order to deal with the worldwide water shortage problem. Different types of membranes of distinct morphologies, structures and physico-chemical characteristics are employed. Among the considered membrane technologies, membrane distillation (MD, osmotic distillation (OD and osmotic membrane distillation (OMD use porous and hydrophobic membranes for production of distilled water and/or concentration of wastewaters for recovery and recycling of valuable compounds. However, the efficiency of these technologies is hampered by fouling phenomena. This refers to the accumulation of organic/inorganic deposits including biological matter on the membrane surface and/or in the membrane pores. Fouling in MD, OD and OMD differs from that observed in electric and pressure-driven membrane processes such electrodialysis (ED, membrane capacitive deionization (MCD, reverse osmosis (RO, nanofiltration (NF, ultrafiltration (UF, microfiltration (MF, etc. Other than pore blockage, fouling in MD, OD and OMD increases the risk of membrane pores wetting and reduces therefore the quantity and quality of the produced water or the concentration efficiency of the process. This review deals with the observed fouling phenomena in MD, OD and OMD. It highlights different detected fouling types (organic fouling, inorganic fouling and biofouling, fouling characterization techniques as well as various methods of fouling reduction including pretreatment, membrane modification, membrane cleaning and antiscalants application.

  9. The nitrogen acceptor in 2H-Polytype synthetic MoS2. Frequency and temperature dependent ESR analysis

    International Nuclear Information System (INIS)

    Schoenaers, Ben; Stesmans, Andre; Afanas'ev, Valery V.

    2017-01-01

    In extending on recent electron spin resonance (ESR) work which has revealed the N acceptor (N substituting for S site) in 2H-polytype bulk synthetic MoS 2 , the dopant is extensively analyzed in terms of its frequency, temperature (T), and magnetic field B angular dependent ESR spectral characteristics. For B parallel c-axis, the multi-frequency analysis confirms the ESR spectrum as being composed of a 14 N hyperfine (hf) triplet with hf splitting constant A parallel = 14.7 ± 0.2 G (B parallel c-axis) and making up ∼74% of the total spectrum intensity, superimposed on a central line centered at about equal g-value [g parallel = 2.032(2)]. The presence of the latter signal, points to some non-uniformity in dopant distribution, that is, clustering, with about ∼26% of the total N response not originating from N incorporated in the preferred ''isolated'' dopant configuration. Angular dependent measurements reveal distinct anisotropy of the hf matrix, whereas ESR probing over a wide T-range exposes drastic signal broadening with increasing T above ∼150 K. Detailed study of the N acceptor signal intensity versus T at Q-band reveals an activation energy E a = 50 ± 10 meV, herewith consolidating the value reported initially. Besides unveiling the S-site substitutional N impurity as an appropriate p-type dopant for MoS 2 , the total of the ESR work establishes a basic frame of the N acceptor ESR characteristics, giving way for further in-depth theoretical perusal. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Dependence of the Mg-related acceptor ionization energy with the acceptor concentration in p-type GaN layers grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Brochen, Stéphane; Brault, Julien; Chenot, Sébastien; Dussaigne, Amélie; Leroux, Mathieu; Damilano, Benjamin

    2013-01-01

    Hall effect and capacitance-voltage C(V) measurements were performed on p-type GaN:Mg layers grown on GaN templates by molecular beam epitaxy with a high range of Mg-doping concentrations. The free hole density and the effective dopant concentration N A −N D as a function of magnesium incorporation measured by secondary ion mass spectroscopy clearly reveal both a magnesium doping efficiency up to 90% and a strong dependence of the acceptor ionization energy Ea with the acceptor concentration N A . These experimental observations highlight an isolated acceptor binding energy of 245±25 meV compatible, at high acceptor concentration, with the achievement of p-type GaN:Mg layers with a hole concentration at room temperature close to 10 19 cm −3

  11. Regulation of Gene Expression in Shewanella oneidensis MR-1 during Electron Acceptor Limitation and Bacterial Nanowire Formation

    Science.gov (United States)

    Barchinger, Sarah E.; Pirbadian, Sahand; Baker, Carol S.; Leung, Kar Man; Burroughs, Nigel J.; El-Naggar, Mohamed Y.

    2016-01-01

    ABSTRACT In limiting oxygen as an electron acceptor, the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 rapidly forms nanowires, extensions of its outer membrane containing the cytochromes MtrC and OmcA needed for extracellular electron transfer. RNA sequencing (RNA-Seq) analysis was employed to determine differential gene expression over time from triplicate chemostat cultures that were limited for oxygen. We identified 465 genes with decreased expression and 677 genes with increased expression. The coordinated increased expression of heme biosynthesis, cytochrome maturation, and transport pathways indicates that S. oneidensis MR-1 increases cytochrome production, including the transcription of genes encoding MtrA, MtrC, and OmcA, and transports these decaheme cytochromes across the cytoplasmic membrane during electron acceptor limitation and nanowire formation. In contrast, the expression of the mtrA and mtrC homologs mtrF and mtrD either remains unaffected or decreases under these conditions. The ompW gene, encoding a small outer membrane porin, has 40-fold higher expression during oxygen limitation, and it is proposed that OmpW plays a role in cation transport to maintain electrical neutrality during electron transfer. The genes encoding the anaerobic respiration regulator cyclic AMP receptor protein (CRP) and the extracytoplasmic function sigma factor RpoE are among the transcription factor genes with increased expression. RpoE might function by signaling the initial response to oxygen limitation. Our results show that RpoE activates transcription from promoters upstream of mtrC and omcA. The transcriptome and mutant analyses of S. oneidensis MR-1 nanowire production are consistent with independent regulatory mechanisms for extending the outer membrane into tubular structures and for ensuring the electron transfer function of the nanowires. IMPORTANCE Shewanella oneidensis MR-1 has the capacity to transfer electrons to its external surface

  12. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  13. Biobased Membrane

    NARCIS (Netherlands)

    Koenders, E.A.B.; Zlopasa, J.; Picken, S.J.

    2015-01-01

    The present invention is in the field of a composition for forming a bio-compatible membrane applicable to building material, such as concrete, cement, etc., to a meth od of applying said composition for forming a bio-compatible membrane, a biocompatible membrane, use of said membrane for various

  14. The effects of electrolysis on operational solutions in electromembrane extraction: The role of acceptor solution.

    Science.gov (United States)

    Kubáň, Pavel; Boček, Petr

    2015-06-12

    Fundamental operational principle and instrumental set-up of electromembrane extraction (EME) suggest that electrolysis may play an important role in this recently developed micro-extraction technique. In the present study, the effect of electrolysis in EME is described comprehensively for the first time and it is demonstrated that electrolysis considerably influences EME performance. Micro-electromembrane extraction (μ-EME) across free liquid membrane formed by 1-pentanol was utilized for real-time monitoring of the electrolytically induced changes in composition of μ-EME solutions. These changes were visualized with a set of acid-base indicators. Changes in colours of their aqueous solutions revealed serious variations in their pH values, which occurred within seconds to minutes of the μ-EME process. Variations of up to eight pH units were observed for indicator solutions initially prepared in 1, 5 and 10mM hydrochloric acid. No or only negligible pH changes (less than 0.15 pH unit) were observed for indicator solutions prepared in 50 and 100mM acetic acid demonstrating that initial composition of the aqueous solutions was the crucial parameter. These results were also confirmed by theoretical calculations of maximum pH variations in the solutions, which were based on total electric charge transfers measured in the μ-EME systems, and by exact measurements of their pH values after μ-EMEs. Acceptor solutions that, in the current practice, consist predominantly of low concentrations of strong mineral acids or alkali hydroxides may thus not always ensure adequate EME performance, which was manifested by decrease in extraction recoveries of a basic drug papaverine. A suitable remedy to the observed effects is the application of acceptor solutions containing high concentrations of weak acids or bases. These solutions not only eliminate the decrease in recoveries but also serve well as matrices of extracted samples for subsequent analysis by capillary

  15. Exploring the Role of Persulfate in the Activation Process: Radical Precursor Versus Electron Acceptor.

    Science.gov (United States)

    Yun, Eun-Tae; Yoo, Ha-Young; Bae, Hyokwan; Kim, Hyoung-Il; Lee, Jaesang

    2017-09-05

    This study elucidates the mechanism behind persulfate activation by exploring the role of various oxyanions (e.g., peroxymonosulfate, periodate, and peracetate) in two activation systems utilizing iron nanoparticle (nFe 0 ) as the reducing agent and single-wall carbon nanotubes (CNTs) as electron transfer mediators. Since the tested oxyanions serve as both electron acceptors and radical precursors in most cases, oxidative degradation of organics was achievable through one-electron reduction of oxyanions on nFe 0 (leading to radical-induced oxidation) and electron transfer mediation from organics to oxyanions on CNTs (leading to oxidative decomposition involving no radical formation). A distinction between degradative reaction mechanisms of the nFe 0 /oxyanion and CNT/oxyanion systems was made in terms of the oxyanion consumption efficacy, radical scavenging effect, and EPR spectral analysis. Statistical study of substrate-specificity and product distribution implied that the reaction route induced on nFe 0 varies depending on the oxyanion (i.e., oxyanion-derived radical), whereas the similar reaction pathway initiates organic oxidation in the CNT/oxyanion system irrespective of the oxyanion type. Chronoamperometric measurements further confirmed electron transfer from organics to oxyanions in the presence of CNTs, which was not observed when applying nFe 0 instead.

  16. A combined study of mesomorphism, optical, and electronic properties of donor-acceptor columnar liquid crystals

    NARCIS (Netherlands)

    Eichhorn, S.H.; Shuai, C.; Ahmida, M.; Demenev, A.; Kayal, H.; Raad, F.S.; Kaafarani, B.R.; Patwardhan, S.; Grozema, F.C.; Siebbeles, L.D.A.; Taerum, T.; Perepichka, D.F.; Klenkler, R.

    2011-01-01

    Donor-acceptor structures have recently gained great popularity for the design of low band gap polymeric organic semiconductors. Presented here is a first systematic study of organic semiconductors based on columnar liquid crystals that consist of discotic and board-shaped donor-acceptor structures.

  17. The effect of molecular geometry on the photovoltaic property of diketopyrrolopyrrole based non-fullerene acceptors

    DEFF Research Database (Denmark)

    Zhang, Fei; Brandt, Rasmus Guldbæk; Gu, Zhuowei

    2015-01-01

    The non-fullerene acceptors with different geometric structures have great impact on light absorption, exciton dissociation, and charge transportation in the active layer of organic solar cells (OSCs). In this paper, we designed and synthesized two diketopyrrolopyrrole based non-fullerene acceptors...

  18. Plasmon-enhanced triplet-triplet annihilation upconversion of post-modified polymeric acceptors.

    Science.gov (United States)

    Westbrook, Emily G; Zhang, Peng

    2018-03-15

    We report the localized surface plasmon resonance (LSPR)-enhanced triplet-triplet annihilation upconversion (TTA-UC) of polymeric acceptors containing high percentages of acceptor units. A poly[(methyl methacrylate)-co-(glycidyl methacrylate)] copolymer series with increasing glycidyl methacrylate ratio was prepared using reversible addition-fragmentation chain transfer (RAFT) polymerization. After post-modification of the glycidyl group with anthracene, the acceptor unit, a series of poly[(methyl methacrylate)-co-(2-hydroxypropyl-9-anthroate methacrylate)] (polyACA) was produced with different numbers of acceptor units. These polymeric acceptors were grafted to silver nanoparticles in order to enhance the TTA-UC intensity in the polymers with higher percentages of acceptor units, where concentration quenching usually dominates. With the assistance of the silver nanoparticle LSPR, TTA-UC intensity was enhanced from the polymeric acceptor nanocomposites using platinum octaethylporphyrin as the sensitizer to form the TTA-UC systems. This method is anticipated to improve TTA-UC in the solid-state, where higher percentages of acceptor units are required, but usually cause chromophore concentration quenching, reducing TTA-UC efficiency.

  19. Membrane protein damage and repair: selective loss of a quinone-protein function in chloroplast membranes

    International Nuclear Information System (INIS)

    Kyle, D.J.; Ohad, I.; Arntzen, C.J.

    1984-01-01

    A loss of electron transport capacity in chloroplast membranes was induced by high-light intensities (photoinhibition). The primary site of inhibition was at the reducing side of photosystem II (PSII) with little damage to the oxidizing side or to the reaction center core of PSII. Addition of herbicides (atrazine or diuron) partially protected the membrane from photoinhibition; these compounds displace the bound plastoquinone (designated as Q/sub B/), which functions as the secondary electron acceptor on the reducing side of PSII. Loss of function of the 32-kilodalton Q/sub B/ apoprotein was demonstrated by a loss of binding sites for [ 14 C]atraazine. We suggest that quinone anions, which may interact with molecular oxygen to produce an oxygen radical, selectively damage the apoprotein of the secondary acceptor of PSII, thus rendering it inactive and thereby blocking photosynthetic electron flow under conditions of high photon flux densities. 21 references, 4 figures, 2 tables

  20. Computational visual distinctness metric

    NARCIS (Netherlands)

    Martínez-Baena, J.; Toet, A.; Fdez-Vidal, X.R.; Garrido, A.; Rodríguez-Sánchez, R.

    1998-01-01

    A new computational visual distinctness metric based on principles of the early human visual system is presented. The metric is applied to quantify (1) the visual distinctness of targets in complex natural scenes and (2) the perceptual differences between compressed and uncompressed images. The new

  1. Bax-mediated mitochondrial outer membrane permeabilization (MOMP), distinct from the mitochondrial permeability transition, is a key mechanism in diclofenac-induced hepatocyte injury: Multiple protective roles of cyclosporin A

    International Nuclear Information System (INIS)

    Siu, W.P.; Pun, Pamela Boon Li; Latchoumycandane, Calivarathan; Boelsterli, Urs A.

    2008-01-01

    Diclofenac, a widely used nonsteroidal anti-inflammatory drug, has been associated with rare but severe cases of clinical hepatotoxicity. Diclofenac causes concentration-dependent cell death in human hepatocytes (after 24-48 h) by mitochondrial permeabilization via poorly defined mechanisms. To explore whether the cyclophilin D (CyD)-dependent mitochondrial permeability transition (mPT) and/or the mitochondrial outer membrane permeabilization (MOMP) was primarily involved in mediating cell death, we exposed immortalized human hepatocytes (HC-04) to apoptogenic concentrations of diclofenac (> 500 μM) in the presence or absence of inhibitors of upstream mediators. The CyD inhibitor, cyclosporin A (CsA, 2 μM) fully inhibited diclofenac-induced cell injury, suggesting that mPT was involved. However, CyD gene silencing using siRNA left the cells susceptible to diclofenac toxicity, and CsA still protected the CyD-negative cells from lethal injury. Diclofenac induced early (9 h) activation of Bax and Bak and caused mitochondrial translocation of Bax, indicating that MOMP was involved in cell death. Inhibition of Bax protein expression by using siRNA significantly protected HC-04 from diclofenac-induced cell injury. Diclofenac also induced early Bid activation (tBid formation, 6 h), which is an upstream mechanism that initiates Bax activation and mitochondrial translocation. Bid activation was sensitive to the Ca 2+ chelator, BAPTA. In conclusion, we found that Bax/Bak-mediated MOMP is a key mechanism of diclofenac-induced lethal cell injury in human hepatocytes, and that CsA can prevent MOMP through inhibition of Bax activation. These data support our concept that the Ca 2+ -Bid-Bax-MOMP axis is a critical pathway in diclofenac (metabolite)-induced hepatocyte injury

  2. Bax-mediated mitochondrial outer membrane permeabilization (MOMP), distinct from the mitochondrial permeability transition, is a key mechanism in diclofenac-induced hepatocyte injury: Multiple protective roles of cyclosporin A.

    Science.gov (United States)

    Siu, Woen Ping; Pun, Pamela Boon Li; Latchoumycandane, Calivarathan; Boelsterli, Urs A

    2008-03-15

    Diclofenac, a widely used nonsteroidal anti-inflammatory drug, has been associated with rare but severe cases of clinical hepatotoxicity. Diclofenac causes concentration-dependent cell death in human hepatocytes (after 24-48 h) by mitochondrial permeabilization via poorly defined mechanisms. To explore whether the cyclophilin D (CyD)-dependent mitochondrial permeability transition (mPT) and/or the mitochondrial outer membrane permeabilization (MOMP) was primarily involved in mediating cell death, we exposed immortalized human hepatocytes (HC-04) to apoptogenic concentrations of diclofenac (>500 microM) in the presence or absence of inhibitors of upstream mediators. The CyD inhibitor, cyclosporin A (CsA, 2 microM) fully inhibited diclofenac-induced cell injury, suggesting that mPT was involved. However, CyD gene silencing using siRNA left the cells susceptible to diclofenac toxicity, and CsA still protected the CyD-negative cells from lethal injury. Diclofenac induced early (9 h) activation of Bax and Bak and caused mitochondrial translocation of Bax, indicating that MOMP was involved in cell death. Inhibition of Bax protein expression by using siRNA significantly protected HC-04 from diclofenac-induced cell injury. Diclofenac also induced early Bid activation (tBid formation, 6 h), which is an upstream mechanism that initiates Bax activation and mitochondrial translocation. Bid activation was sensitive to the Ca2+ chelator, BAPTA. In conclusion, we found that Bax/Bak-mediated MOMP is a key mechanism of diclofenac-induced lethal cell injury in human hepatocytes, and that CsA can prevent MOMP through inhibition of Bax activation. These data support our concept that the Ca2+-Bid-Bax-MOMP axis is a critical pathway in diclofenac (metabolite)-induced hepatocyte injury.

  3. Electrodes as Terminal Electron Acceptors in Anaerobic Ammonium Oxidation

    Science.gov (United States)

    Ruiz-Urigüen, M.; Jaffe, P. R.

    2017-12-01

    Anaerobic ammonium (NH4+) oxidation under iron (Fe) reducing conditions is a microbial- mediated process known as Feammox. This is a novel pathway in the nitrogen cycle, and a key process for alleviating NH4+ accumulation in anoxic soils, wetlands, and wastewater. Acidimicrobiaceae-bacterium A6, phylum Actinobacteria, are one type of autotrophic bacteria linked to this process. The Feammox-bacteria obtain their energy by oxidizing NH4+ and transferring the electrons to a terminal electron acceptor (TEA). Under environmental conditions, iron oxides are the TEAs. However, in this study we show that electrodes in Microbial Electrolysis Cells (MECs) or electrodes set in the field can be used as TEAs by Feammox-bacteria. The potential difference between electrodes is the driving force for electron transfer, making the reaction energetically feasible. Our results show that MECs containing Feammox cultures can remove NH4+ up to 3.5 mg/L in less than 4 hours, compared to an average of 9 mg/L in 2 weeks when cultured under traditional conditions. Concomitantly, MECs produce an average current of 30.5 A/m3 whilst dead bacteria produced low (application of Feammox-bacteria.

  4. Photoactive Donor-Acceptor Composite Nanoparticles Dispersed in Water.

    Science.gov (United States)

    Parrenin, Laurie; Laurans, Gildas; Pavlopoulou, Eleni; Fleury, Guillaume; Pecastaings, Gilles; Brochon, Cyril; Vignau, Laurence; Hadziioannou, Georges; Cloutet, Eric

    2017-02-14

    A major issue that inhibits the large-scale fabrication of organic solar modules is the use of chlorinated solvents considered to be toxic and hazardous. In this work, composite particles of poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4,7-di-2-thienyl-2',1',3'-benzothiadiazole] (PCDTBT) and [6,6]-phenyl C71 butyric acid methyl ester (PC 71 BM) were obtained in water from a versatile and a ready-to-market methodology based on postpolymerization miniemulsification. Depending on the experimental conditions, size-controlled particles comprising both the electron donor and the electron acceptor were obtained and characterized using transmission electron microscopy (TEM), atomic force microscopy (AFM), small-angle neutron scattering (SANS), UV-visible absorption, and fluorescence spectroscopy. Intimate mixing of the two components was definitely asserted through PCDTBT fluorescence quenching in the composite nanoparticles. The water-based inks were used for the preparation of photovoltaic active layers that were subsequently integrated into organic solar cells.

  5. Analysis of nonlinear optical properties in donor–acceptor materials

    International Nuclear Information System (INIS)

    Day, Paul N.; Pachter, Ruth; Nguyen, Kiet A.

    2014-01-01

    Time-dependent density functional theory has been used to calculate nonlinear optical (NLO) properties, including the first and second hyperpolarizabilities as well as the two-photon absorption cross-section, for the donor-acceptor molecules p-nitroaniline and dimethylamino nitrostilbene, and for respective materials attached to a gold dimer. The CAMB3LYP, B3LYP, PBE0, and PBE exchange-correlation functionals all had fair but variable performance when compared to higher-level theory and to experiment. The CAMB3LYP functional had the best performance on these compounds of the functionals tested. However, our comprehensive analysis has shown that quantitative prediction of hyperpolarizabilities is still a challenge, hampered by inadequate functionals, basis sets, and solvation models, requiring further experimental characterization. Attachment of the Au 2 S group to molecules already known for their relatively large NLO properties was found to further enhance the response. While our calculations show a modest enhancement for the first hyperpolarizability, the enhancement of the second hyperpolarizability is predicted to be more than an order of magnitude

  6. Impact of Nonfullerene Acceptor Core Structure on the Photophysics and Efficiency of Polymer Solar Cells

    KAUST Repository

    Alamoudi, Maha

    2018-03-02

    Small-molecule “nonfullerene” acceptors are promising alternatives to fullerene (PC61/71BM) derivatives often used in bulk heterojunction (BHJ) organic solar cells; yet, the efficiency-limiting processes and their dependence on the acceptor structure are not clearly understood. Here, we investigate the impact of the acceptor core structure (cyclopenta-[2,1-b:3,4-b′]dithiophene (CDT) versus indacenodithiophene (IDTT)) of malononitrile (BM)-terminated acceptors, namely CDTBM and IDTTBM, on the photophysical characteristics of BHJ solar cells. Using PCE10 as donor polymer, the IDTT-based acceptor achieves power conversion efficiencies (8.4%) that are higher than those of the CDT-based acceptor (5.6%) because of a concurrent increase in short-circuit current and open-circuit voltage. Using (ultra)fast transient spectroscopy we demonstrate that reduced geminate recombination in PCE10:IDTTBM blends is the reason for the difference in short-circuit currents. External quantum efficiency measurements indicate that the higher energy of interfacial charge-transfer states observed for the IDTT-based acceptor blends is the origin of the higher open-circuit voltage.

  7. Investigating charge generation in polymer:non-fullerene acceptor bulk heterojunction films

    Energy Technology Data Exchange (ETDEWEB)

    Stoltzfus, Dani M.; Larson, Bryon W.; Zarrabi, Nasim; Shaw, Paul E.; Clulow, Andrew J.; Jin, Hui; Burn, Paul L.; Gentle, Ian R.; Kopidakis, Nikos

    2018-04-01

    Non-fullerene acceptors are now capable of being used in high efficiency bulk heterojunction (BHJ) donor-acceptor organic solar cells. Acceptors comprising single or multiple linked chromophores have been used. We have developed a new non-fullerene molecular acceptor as well as two non-polymeric macromolecular materials that contain four equivalents of a similar chromophore, but can adopt different spatial arrangements of the chromophores. We compare the effect of having single and multiple chromophores within a macromolecule on the charge generation processes in P3HT:non-fullerene acceptor BHJ films using Transient Absorption Spectroscopy (TAS) and Time Resolved Microwave Conductivity (TRMC) measurements. It was found from the TAS measurements that at low weight percent (5 wt%) the single chromophore formed more polarons than the acceptors in which chromophores were linked, due to it having a more even distribution within the film. At higher concentrations (50 wt%) the trend was reversed due to the single chromophore forming crystalline domains, which reduced the interface area with the P3HT donor. The TRMC measurements showed that more mobile carriers were formed in the macromolecular acceptors when used at low concentrations in the blend and, independent of concentration, mobile carriers had a longer lifetime when compared to films containing the molecular material, which we ascribe to the charges being able to sample more than one chromophore and thus reduce recombination events.

  8. Membranous nephropathy

    Science.gov (United States)

    ... check for hepatitis B, hepatitis C, and syphilis Complement levels Cryoglobulin test Treatment The goal of treatment ... not as helpful for people with membranous nephropathy. Medicines used treat membranous nephropathy include: Angiotensin-converting enzyme ( ...

  9. New Type of Donor-Acceptor Through-Space Conjugated Polymer

    Directory of Open Access Journals (Sweden)

    Lin Lin

    2010-01-01

    Full Text Available We report the synthesis and properties of a novel through-space conjugated polymer with a [2.2]paracyclophane skeleton. The obtained polymer possessed donor (fluorene and acceptor (2,1,3-benzothiadiazole segments that were alternately π-stacked in proximity via the [2.2]paracyclophane moieties. The good overlap between the emission peak of the donor unit (fluorene and the CT band of the acceptor unit (2,1,3-benzothiadiazole caused fluorescence resonance energy transfer, and the visible green light emission from the acceptor unit was observed.

  10. Diffusion of acceptors in n-type and semi-insulating InP

    Science.gov (United States)

    Tuck, Brian

    2000-01-01

    When acceptors diffuse into an n-type semiconductor, both the surface concentration and the diffusion depth of the diffusant are influenced by the initial donor concentration. Similar interaction is observed between shallow acceptors and deep acceptors. Previous work describing the diffusion of zinc during MOCVD growth of InP is reviewed and compared to the diffusion of both zinc and cadmium into InP from the vapour phase. Interdiffusion between iron- and zinc-doped MOCVD layers is also considered. It is shown that these experiments can all be explained by a simple model involving Fermi level effects.

  11. Parallel artificial liquid membrane extraction as an efficient tool for removal of phospholipids from human plasma

    DEFF Research Database (Denmark)

    Ask, Kristine Skoglund; Bardakci, Turgay; Parmer, Marthe Petrine

    2016-01-01

    Generic Parallel Artificial Liquid Membrane Extraction (PALME) methods for non-polar basic and non-polar acidic drugs from human plasma were investigated with respect to phospholipid removal. In both cases, extractions in 96-well format were performed from plasma (125μL), through 4μL organic...... solvent used as supported liquid membranes (SLMs), and into 50μL aqueous acceptor solutions. The acceptor solutions were subsequently analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using in-source fragmentation and monitoring the m/z 184→184 transition for investigation...

  12. High performance weak donor-acceptor polymers in thin film transistors: effect of the acceptor on electronic properties, ambipolar conductivity, mobility, and thermal stability.

    Science.gov (United States)

    Yuen, Jonathan D; Fan, Jian; Seifter, Jason; Lim, Bogyu; Hufschmid, Ryan; Heeger, Alan J; Wudl, Fred

    2011-12-28

    We have studied the electronic, physical, and transistor properties of a family of donor-acceptor polymers consisting of diketopyrrolopyrrole (DPP) coupled with different accepting companion units in order to determine the effects of donor-acceptor interaction. Using the electronically neutral benzene (B), the weakly accepting benzothiadiazole (BT), and the strongly accepting benzobisthiadiazole (BBT), the accepting strength of the companion unit was systematically modulated. All polymers exhibited excellent transistor performance, with mobilities above 0.1 cm(2)V(-1)s(-1), even exceeding 1 cm(2)V(-1)s(-1) for one of the BBT-containing polymers. We find that the BBT is the strongest acceptor, enabling the BBT-containing polymers to be strongly ambipolar. The BBT moiety also strengthens interchain interactions, which provides higher thermal stability and performance for transistors with BBT-containing polymers as the active layer. © 2011 American Chemical Society

  13. Highly Efficient Inverted D:A1:A2Ternary Blend Organic Photovoltaics Combining a Ladder-type Non-Fullerene Acceptor and a Fullerene Acceptor.

    Science.gov (United States)

    Chang, Shao-Ling; Cao, Fong-Yi; Huang, Wen-Chia; Huang, Po-Kai; Hsu, Chain-Shu; Cheng, Yen-Ju

    2017-07-26

    A formylated benzodi(cyclopentadithiophene) (BDCPDT) ladder-type structure with forced coplanarity is coupled with two 1,1-dicyanomethylene-3-indanone (IC) moieties via olefination to form a non-fullerene acceptor, BDCPDT-IC. The BDCPDT-IC, as an acceptor (A 1 ) with broad light-absorbing ability and excellent solution processability, is combined with a second PC 71 BM acceptor (A 2 ) and a medium band gap polymer, PBDB-T, as the donor (D) to form a ternary blend with gradient HOMO/LUMO energy alignments and panchromatic absorption. The device with the inverted architecture using the D:A 1 :A 2 ternary blend has achieved a highest efficiency of 9.79% with a superior J sc of 16.84 mA cm -2 .

  14. Membrane Biophysics

    CERN Document Server

    Ashrafuzzaman, Mohammad

    2013-01-01

    Physics, mathematics and chemistry all play a vital role in understanding the true nature and functioning of biological membranes, key elements of living processes. Besides simple spectroscopic observations and electrical measurements of membranes we address in this book the phenomena of coexistence and independent existence of different membrane components using various theoretical approaches. This treatment will be helpful for readers who want to understand biological processes by applying both simple observations and fundamental scientific analysis. It provides a deep understanding of the causes and effects of processes inside membranes, and will thus eventually open new doors for high-level pharmaceutical approaches towards fighting membrane- and cell-related diseases.

  15. Preparation of Citric Acid Crosslinked Chitosan/Poly(Vinyl Alcohol Blend Membranes for Creatinine Transport

    Directory of Open Access Journals (Sweden)

    Retno Ariadi Lusiana

    2016-08-01

    Full Text Available Preparation of membrane using crosslinking reaction between chitosan and citric acid showed that functional group modification increased the number of active carrier groups which lead to better transport capacity of the membrane. In addition, the substitution of the carboxyl group increased creatinine permeation of chitosan membrane. The transport capacity of citric acid crosslinked chitosan membrane for creatinine was found to be 6.3 mg/L. The presence of cyanocobalamin slightly hindered the transport of creatinine although compounds did not able to pass through citric acid crosslinked chitosan/poly(vinyl alcohol blend membrane, as compounds no found in the acceptor phase.

  16. Alternansucrase acceptor reactions with D-tagatose and L-glucose.

    Science.gov (United States)

    Côté, Gregory L; Dunlap, Christopher A; Appell, Michael; Momany, Frank A

    2005-02-07

    Alternansucrase (EC 2.4.1.140) is a d-glucansucrase that synthesizes an alternating alpha-(1-->3), (1-->6)-linked d-glucan from sucrose. It also synthesizes oligosaccharides via d-glucopyranosyl transfer to various acceptor sugars. Two of the more efficient monosaccharide acceptors are D-tagatose and L-glucose. In the presence of d-tagatose, alternansucrase produced the disaccharide alpha-d-glucopyranosyl-(1-->1)-beta-D-tagatopyranose via glucosyl transfer. This disaccharide is analogous to trehalulose. We were unable to isolate a disaccharide product from L-glucose, but the trisaccharide alpha-D-glucopyranosyl-(1-->6)-alpha-d-glucopyranosyl-(1-->4)-l-glucose was isolated and identified. This is analogous to panose, one of the structural units of pullulan, in which the reducing-end D-glucose residue has been replaced by its L-enantiomer. The putative L-glucose disaccharide product, produced by glucoamylase hydrolysis of the trisaccharide, was found to be an acceptor for alternansucrase. The disaccharide, alpha-D-glucopyranosyl-(1-->4)-L-glucose, was a better acceptor than maltose, previously the best known acceptor for alternansucrase. A structure comparison of alpha-D-glucopyranosyl-(1-->4)-L-glucose and maltose was performed through computer modeling to identify common features, which may be important in acceptor affinity by alternansucrase.

  17. Endogenous acceptors for polyuronide biosynthesis in Mucor rouxii

    International Nuclear Information System (INIS)

    Carreon, A.F.; Balcazar, R.

    1984-01-01

    Cell walls of Mucor rouxii contain relatively high amounts of acidic polymers of D-glucuronic acid. Two types of polyuronides have been isolated from cell walls of M. rouxii: mucoric acid and mucoran. Mucoran isolated from yeast cell walls is a heteropolysaccharide containing D-mannose, D-fructose, D-galactose, and D-glucose, besides D-glucuronic acid. On the other hand, mucoric acid, from sporangiophore walls is a homopolymer of D-glucuronic acid. Glucuronosyl transferase, the enzyme which catalyzes the transfer of glucuronic acid from UDP-glucuronic acid to acidic polymers, has been demonstrated using crude membrane fractions from M. rouxii

  18. Membrane curvature enables N-Ras lipid anchor sorting to liquid-ordered membrane phases

    DEFF Research Database (Denmark)

    Larsen, Jannik Bruun; Jensen, Martin Borch; Bhatia, Vikram Kjøller

    2015-01-01

    Trafficking and sorting of membrane-anchored Ras GTPases are regulated by partitioning between distinct membrane domains. Here, in vitro experiments and microscopic molecular theory reveal membrane curvature as a new modulator of N-Ras lipid anchor and palmitoyl chain partitioning. Membrane curva...... curvature was essential for enrichment in raft-like liquid-ordered phases; enrichment was driven by relief of lateral pressure upon anchor insertion and most likely affects the localization of lipidated proteins in general....

  19. Conduction electrons in acceptor-doped GaAs/GaAlAs heterostructures: a review

    International Nuclear Information System (INIS)

    Zawadzki, Wlodek; Raymond, Andre; Kubisa, Maciej

    2016-01-01

    We review magneto-optical and magneto-transport effects in GaAs/GaAlAs heterostructures doped in GaAlAs barriers with donors, providing two-dimensional (2D) electron gas (2DEG) in GaAs quantum wells (QWS), and additionally doped with smaller amounts of acceptors (mostly Be atoms) in the vicinity of 2DEG. One may also deal with residual acceptors (mostly C atoms). The behavior of such systems in the presence of a magnetic field differs appreciably from those doped in the vicinity of 2DEG with donors. Three subjects related to the acceptor-doped heterostructures are considered. First is the problem of bound states of conduction electrons confined to the vicinity of negatively charged acceptors by the joint effect of a QW and an external magnetic field parallel to the growth direction. A variational theory of such states is presented, demonstrating that an electron turning around a repulsive center has discrete energies above the corresponding Landau levels. Experimental evidence for the discrete electron energies comes from the work on interband photo-magneto-luminescence, intraband cyclotron resonance and quantum magneto-transport (the Quantum Hall and Shubnikov–de Haas effects). An electron rain-down effect at weak electric fields and a boil-off effect at strong electric fields are introduced. It is demonstrated, both theoretically and experimentally, that a negatively charged acceptor can localize more than one electron. The second subject describes experiment and theory of asymmetric quantized Hall and Shubnikov–de Haas plateaus in acceptor-doped GaAs/GaAlAs heterostructures. It is shown that the main features of the plateau asymmetry can be attributed to asymmetric density of Landau states in the presence of acceptors. However, at high magnetic fields, the rain-down effect is also at work. The third subject deals with the so-called disorder modes (DMs) in the cyclotron resonance of conduction electrons. The DMs originate from random distributions of

  20. Natural alkaloid Luotonin A and its affixed acceptor molecules: Serum albumin binding studies.

    Science.gov (United States)

    Kesavan, Mookkandi Palsamy; Kumar, Gujuluva Gangatharan Vinoth; Anitha, Kandasamy; Ravi, Lokesh; Raja, Jeyaraj Dhaveethu; Rajagopal, Gurusamy; Rajesh, Jegathalaprathaban

    2017-08-01

    Effective interaction of natural alkaloid Luotonin A (L) and its affixed acceptor molecules 1 and 2 with donor molecule as Bovine serum albumin (BSA) at various pH (4.0, 7.4 and 10.0) medium have been demonstrated using various conventional spectroscopic techniques. These analyses provide some valuable features on the interaction between BSA and acceptor molecules (L, 1 and 2). From the absorption and fluorescence spectral titration studies, the formation of ground-state complexes between the acceptor molecules (L, 1 and 2) and the BSA have been confirmed. The results of the afore titrations analysis reveal that, the strong binding of receptor 1 with BSA (K app 5.68×10 4 M -1 ; K SV 1.86×10 6 Lmol -1 ; K a 6.42×10 5 Lmol -1 ; K ass 8.09×10 6 M -1 ; ΔG -33.35kJ/mol) at physiological pH medium (7.4) than other receptor molecules 2 and L. The Förster resonance energy transfer (FRET) efficiency between the tryptophan (Trp) residues of BSA and acceptor molecules L, 1 and 2 during the interaction, are 28.85, 85.24 and 53.25 % respectively. The superior binding efficacy of acceptor 1 at physiological pH condition has been further confirmed by FT-IR and Raman spectral analysis methods. Moreover, theoretical docking studies of acceptors L, 1 and 2 towards HSA have been demonstrated to differentiate their binding behaviours. It reveals that, acceptor 1 has the strongest binding ability with HSA through two hydrogen bonding and the Atomic contact energy (ACE) value of -483.96kcal/mol. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Membrane paradigm

    International Nuclear Information System (INIS)

    Price, R.H.; Thorne, K.S.

    1986-01-01

    The membrane paradigm is a modified frozen star approach to modeling black holes, with particles and fields assuming a complex, static, boundary-layer type structure (membrane) near the event horizon. The membrane has no effects on the present or future evolution of particles and fields above itself. The mathematical representation is a combination of a formalism containing terms for the shear and bulk viscosity, surface pressure, momentum, temperature, entropy, etc., of the horizon and the 3+1 formalism. The latter model considers a family of three-dimensional spacelike hypersurfaces in one-dimensional time. The membrane model considers a magnetic field threading the hole and undergoing torque from the hole rotation. The field is cleaned by the horizon and distributed over the horizon so that ohmic dissipation is minimized. The membrane paradigm is invalid inside the horizon, but is useful for theoretically probing the properties of slowly evolving black holes

  2. Membrane processes

    Science.gov (United States)

    Staszak, Katarzyna

    2017-11-01

    The membrane processes have played important role in the industrial separation process. These technologies can be found in all industrial areas such as food, beverages, metallurgy, pulp and paper, textile, pharmaceutical, automotive, biotechnology and chemical industry, as well as in water treatment for domestic and industrial application. Although these processes are known since twentieth century, there are still many studies that focus on the testing of new membranes' materials and determining of conditions for optimal selectivity, i. e. the optimum transmembrane pressure (TMP) or permeate flux to minimize fouling. Moreover the researchers proposed some calculation methods to predict the membrane processes properties. In this article, the laboratory scale experiments of membrane separation techniques, as well their validation by calculation methods are presented. Because membrane is the "heart" of the process, experimental and computational methods for its characterization are also described.

  3. On the structure and function of the phytoene desaturase CRTI from Pantoea ananatis, a membrane-peripheral and FAD-dependent oxidase/isomerase.

    Directory of Open Access Journals (Sweden)

    Patrick Schaub

    Full Text Available CRTI-type phytoene desaturases prevailing in bacteria and fungi can form lycopene directly from phytoene while plants employ two distinct desaturases and two cis-tans isomerases for the same purpose. This property renders CRTI a valuable gene to engineer provitamin A-formation to help combat vitamin A malnutrition, such as with Golden Rice. To understand the biochemical processes involved, recombinant CRTI was produced and obtained in homogeneous form that shows high enzymatic activity with the lipophilic substrate phytoene contained in phosphatidyl-choline (PC liposome membranes. The first crystal structure of apo-CRTI reveals that CRTI belongs to the flavoprotein superfamily comprising protoporphyrinogen IX oxidoreductase and monoamine oxidase. CRTI is a membrane-peripheral oxidoreductase which utilizes FAD as the sole redox-active cofactor. Oxygen, replaceable by quinones in its absence, is needed as the terminal electron acceptor. FAD, besides its catalytic role also displays a structural function by enabling the formation of enzymatically active CRTI membrane associates. Under anaerobic conditions the enzyme can act as a carotene cis-trans isomerase. In silico-docking experiments yielded information on substrate binding sites, potential catalytic residues and is in favor of single half-site recognition of the symmetrical C(40 hydrocarbon substrate.

  4. Non-Fullerene Electron Acceptors for Use in Organic Solar Cells

    KAUST Repository

    Nielsen, Christian B.

    2015-10-27

    The active layer in a solution processed organic photovoltaic device comprises a light absorbing electron donor semiconductor, typically a polymer, and an electron accepting fullerene acceptor. Although there has been huge effort targeted to optimize the absorbing, energetic, and transport properties of the donor material, fullerenes remain as the exclusive electron acceptor in all high performance devices. Very recently, some new non-fullerene acceptors have been demonstrated to outperform fullerenes in comparative devices. This Account describes this progress, discussing molecular design considerations and the structure–property relationships that are emerging. The motivation to replace fullerene acceptors stems from their synthetic inflexibility, leading to constraints in manipulating frontier energy levels, as well as poor absorption in the solar spectrum range, and an inherent tendency to undergo postfabrication crystallization, resulting in device instability. New acceptors have to address these limitations, providing tunable absorption with high extinction coefficients, thus contributing to device photocurrent. The ability to vary and optimize the lowest unoccupied molecular orbital (LUMO) energy level for a specific donor polymer is also an important requirement, ensuring minimal energy loss on electron transfer and as high an internal voltage as possible. Initially perylene diimide acceptors were evaluated as promising acceptor materials. These electron deficient aromatic molecules can exhibit good electron transport, facilitated by close packed herringbone crystal motifs, and their energy levels can be synthetically tuned. The principal drawback of this class of materials, their tendency to crystallize on too large a length scale for an optimal heterojunction nanostructure, has been shown to be overcome through introduction of conformation twisting through steric effects. This has been primarily achieved by coupling two units together, forming dimers

  5. Oxygen Transport Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the

  6. A rhodanine flanked nonfullerene acceptor for solution-processed organic photovoltaics

    KAUST Repository

    Holliday, Sarah

    2015-01-21

    A novel small molecule, FBR, bearing 3-ethylrhodanine flanking groups was synthesized as a nonfullerene electron acceptor for solution-processed bulk heterojunction organic photovoltaics (OPV). A straightforward synthesis route was employed, offering the potential for large scale preparation of this material. Inverted OPV devices employing poly(3-hexylthiophene) (P3HT) as the donor polymer and FBR as the acceptor gave power conversion efficiencies (PCE) up to 4.1%. Transient and steady state optical spectroscopies indicated efficient, ultrafast charge generation and efficient photocurrent generation from both donor and acceptor. Ultrafast transient absorption spectroscopy was used to investigate polaron generation efficiency as well as recombination dynamics. It was determined that the P3HT:FBR blend is highly intermixed, leading to increased charge generation relative to comparative devices with P3HT:PC60BM, but also faster recombination due to a nonideal morphology in which, in contrast to P3HT:PC60BM devices, the acceptor does not aggregate enough to create appropriate percolation pathways that prevent fast nongeminate recombination. Despite this nonoptimal morphology the P3HT:FBR devices exhibit better performance than P3HT:PC60BM devices, used as control, demonstrating that this acceptor shows great promise for further optimization.

  7. A New Polymer Electron Acceptor Based on Thiophene-S,S-dioxide Unit for Organic Photovoltaics.

    Science.gov (United States)

    Meng, Bin; Miao, Junhui; Liu, Jun; Wang, Lixiang

    2018-01-01

    For polymer solar cells (PSCs), efficient polymer electron acceptors are always based on strong electron-withdrawing imide unit or boron-nitrogen coordinative bond (B←N). In this paper, a new polymer electron acceptor based on thiophene-S,S-dioxide (TDO) unit is reported. The polymer electron acceptor, PBDT-TDO, consists of alternating TDO unit and 4,8-bis(alkylthienyl)-2-yl]benzo[1,2-b:4,5-b']dithiophene (BDT) unit. For comparison, a control polymer with alternating BDT unit and thiophene unit has also been synthesized. Replacing thiophene unit with TDO unit in the polymer backbone leads to large downshift of lowest unoccupied molecular orbital/highest occupied molecular orbital energy levels by 0.9 eV/0.4 eV, which is attributed to the dearomatization and electron deficiency of TDO unit. The replacement also leads to redshift of absorption spectra by ≈110 nm. PSC device with PBDT-TDO as the electron acceptor shows photovoltaic response with the preliminary power conversion efficiency of 0.64%. This work suggests a new approach to design polymer electron acceptors using the TDO unit. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Kinetic aspects of Donnan membrane technique for measuring free trace cation concentration

    NARCIS (Netherlands)

    Weng, L.P.; Riemsdijk, van W.H.; Temminghoff, E.J.M.

    2005-01-01

    Addition of ion complexation ligands in the acceptor solution in the Donnan membrane technique (DMT) can lower its detection limit for free metal ion concentration in natural samples. In this paper, the influence of added ligands on the transport behavior of trace ions in DMT was studied using

  9. Biosynthesis of archaeal membrane ether lipids

    NARCIS (Netherlands)

    Jain, Samta; Caforio, Antonella; Driessen, Arnold J. M.

    2014-01-01

    A vital function of the cell membrane in all living organism is to maintain the membrane permeability barrier and fluidity. The composition of the phospholipid bilayer is distinct in archaea when compared to bacteria and eukarya. In archaea, isoprenoid hydrocarbon side chains are linked via an ether

  10. Primordial membranes

    DEFF Research Database (Denmark)

    Hanczyc, Martin M; Monnard, Pierre-Alain

    2017-01-01

    Cellular membranes, which are self-assembled bilayer structures mainly composed of lipids, proteins and conjugated polysaccharides, are the defining feature of cell physiology. It is likely that the complexity of contemporary cells was preceded by simpler chemical systems or protocells during...... the various evolutionary stages that led from inanimate to living matter. It is also likely that primitive membranes played a similar role in protocell 'physiology'. The composition of such ancestral membranes has been proposed as mixtures of single hydrocarbon chain amphiphiles, which are simpler versions...

  11. The Physics of Small Molecule Acceptors for Efficient and Stable Bulk Heterojunction Solar Cells

    KAUST Repository

    Gasparini, Nicola

    2018-01-29

    Organic bulk heterojunction solar cells based on small molecule acceptors have recently seen a rapid rise in the power conversion efficiency with values exceeding 13%. This impressive achievement has been obtained by simultaneous reduction of voltage and charge recombination losses within this class of materials as compared to fullerene-based solar cells. In this contribution, the authors review the current understanding of the relevant photophysical processes in highly efficient nonfullerene acceptor (NFA) small molecules. Charge generation, recombination, and charge transport is discussed in comparison to fullerene-based composites. Finally, the authors review the superior light and thermal stability of nonfullerene small molecule acceptor based solar cells, and highlight the importance of NFA-based composites that enable devices without early performance loss, thus resembling so-called burn-in free devices.

  12. Rapid Energy Transfer Enabling Control of Emission Polarization in Perylene Bisimide Donor-Acceptor Triads.

    Science.gov (United States)

    Menelaou, Christopher; ter Schiphorst, Jeroen; Kendhale, Amol M; Parkinson, Patrick; Debije, Michael G; Schenning, Albertus P H J; Herz, Laura M

    2015-04-02

    Materials showing rapid intramolecular energy transfer and polarization switching are of interest for both their fundamental photophysics and potential for use in real-world applications. Here, we report two donor-acceptor-donor triad dyes based on perylene-bisimide subunits, with the long axis of the donors arranged either parallel or perpendicular to that of the central acceptor. We observe rapid energy transfer (energy transfer rate for the linearly arranged triad but severely underestimates it for the orthogonal case. We show that the rapid energy transfer arises from a combination of through-bond coupling and through-space transfer between donor and acceptor units. As they allow energy cascading to an excited state with controllable polarization, these triad dyes show high potential for use in luminescent solar concentrator devices.

  13. Differences in gene expression of human xylosyltransferases and determination of acceptor specificities for various proteoglycans

    Energy Technology Data Exchange (ETDEWEB)

    Roch, Christina; Kuhn, Joachim; Kleesiek, Knut [Institut fuer Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitaetsklinik der Ruhr-Universitaet Bochum, 32545 Bad Oeynhausen (Germany); Goetting, Christian, E-mail: cgoetting@hdz-nrw.de [Institut fuer Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum NRW, Universitaetsklinik der Ruhr-Universitaet Bochum, 32545 Bad Oeynhausen (Germany)

    2010-01-01

    The xylosyltransferase (XT) isoforms XT-I and XT-II initiate the posttranslational glycosaminoglycan (GAG) synthesis. Here, we determined the relative expression of both isoforms in 33 human cell lines. The majority of tested cell lines showed dominant XYLT2 gene expression, while only in 23132/87, JAR, NCI-H510A and THP-1 was the XT-I mRNA expression higher. Nearly equal expression levels were detected in six cell lines. Additionally, to shed light on putative differences in acceptor specificities the acceptor properties of potential acceptor sequences were determined. Peptides were expressed as glutathione-S-transferase fusion proteins containing putative or known GAG attachment sites of in vivo proteoglycans. Kinetic analysis showed that K{sub m} and V{sub max} values for XT-I mediated xylosylation were slightly higher than those for XT-II, and that XT-I showed a lesser stringency concerning the acceptor sequence. Mutagenesis of the bikunin peptide sequence in the G-S-G attachment site and flanking regions generated potential acceptor molecules. Here, mutations on the N-terminal side and the attachment site were found to be more susceptible to a loss of acceptor function than mutations in the C-terminus. Altogether the known consensus sequence a-a-a-a-G-S-G-a-a/G-a ('a' representing Asp or Glu) for XT-I mediated xylosylation could be approved and additionally extended to apply to XT-II as well.

  14. Local Intermolecular Order Controls Photoinduced Charge Separation at Donor/Acceptor Interfaces in Organic Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Feier, Hilary M.; Reid, Obadiah G.; Pace, Natalie A.; Park, Jaehong; Bergkamp, Jesse J.; Sellinger, Alan; Gust, Devens; Rumbles, Garry

    2016-03-23

    How free charge is generated at organic donor-acceptor interfaces is an important question, as the binding energy of the lowest energy (localized) charge transfer states should be too high for the electron and hole to escape each other. Recently, it has been proposed that delocalization of the electronic states participating in charge transfer is crucial, and aggregated or otherwise locally ordered structures of the donor or the acceptor are the precondition for this electronic characteristic. The effect of intermolecular aggregation of both the polymer donor and fullerene acceptor on charge separation is studied. In the first case, the dilute electron acceptor triethylsilylhydroxy-1,4,8,11,15,18,22,25-octabutoxyphthalocyaninatosilicon(IV) (SiPc) is used to eliminate the influence of acceptor aggregation, and control polymer order through side-chain regioregularity, comparing charge generation in 96% regioregular (RR-) poly(3-hexylthiophene) (P3HT) with its regiorandom (RRa-) counterpart. In the second case, ordered phases in the polymer are eliminated by using RRa-P3HT, and phenyl-C61-butyric acid methyl ester (PC61BM) is used as the acceptor, varying its concentration to control aggregation. Time-resolved microwave conductivity, time-resolved photoluminescence, and transient absorption spectroscopy measurements show that while ultrafast charge transfer occurs in all samples, long-lived charge carriers are only produced in films with intermolecular aggregates of either RR-P3HT or PC61BM, and that polymer aggregates are just as effective in this regard as those of fullerenes.

  15. All-Polymer Solar Cells Based on Fully Conjugated Donor-Acceptor Block Copolymers with Poly(naphthalene bisimide Acceptor Blocks: Device Performance and Thin Film Morphology

    Directory of Open Access Journals (Sweden)

    Kazuhiro Nakabayashi

    2015-01-01

    Full Text Available All-polymer solar cells are fabricated by using poly(3-hexylthiophene (P3HT and fully conjugated donor-acceptor (D-A block copolymer (P3HT-PNBI-P3HT as donor and acceptor materials, respectively. Atomic force microscopy (AFM and grazing incidence wide angle X-ray scattering (GIWAXS analyses reveal that device performance strongly depends on the P3HT:P3HT-PNBI-P3HT thin film morphology. Indeed, the π-π stacking nanomorphology rich in the edge-on orientation is formed in the P3HT:P3HT-PNBI-P3HT thin film by optimizing the fabrication conditions, for example, thermal annealing temperature and cast solvent. Consequently, the power conversion efficiency (PCE of 1.60% is achieved with an open-circuit voltage (Voc of 0.59 V, short-current (Jsc of 4.43 mA/cm2, and fill factor (FF of 0.61. These results suggest that P3HT-PNBI-P3HT has the huge potential for the usage as a nonfullerene acceptor material.

  16. New Type of Donor-Acceptor Through-Space Conjugated Polymer

    OpenAIRE

    Lin Lin; Yasuhiro Morisaki; Yoshiki Chujo

    2010-01-01

    We report the synthesis and properties of a novel through-space conjugated polymer with a [2.2]paracyclophane skeleton. The obtained polymer possessed donor (fluorene) and acceptor (2,1,3-benzothiadiazole) segments that were alternately π-stacked in proximity via the [2.2]paracyclophane moieties. The good overlap between the emission peak of the donor unit (fluorene) and the CT band of the acceptor unit (2,1,3-benzothiadiazole) caused fluorescence resonance energy transfer, and the visible gr...

  17. Mechanism of electron transfer from e-sub(aq) to acceptors in micelles

    International Nuclear Information System (INIS)

    Graetzel, M.; Henglein, A.; Janata, E.

    1975-01-01

    Pulse radiolysis experiments were carried out to investigate reactions A + e - sub(aq) → A - of hydrated electrons with acceptors A incorporated in the lipoidic part of micellar 10 -3 M sodium-lauryl-sulfate (SLS) and cetyl-trimethyl-ammonium-bromide (CTAB). The acceptors were 9-nitro-anthracene and pyrene, the latter in both the singlet and triplet state (the triplet was produced by UV-light irradiation shortly before the high energy electron pulse was applied). The triplet state of pyrene reacts in CTAB-micelles with a rate constant smaller by at least a factor of two than the singlet ground state. (orig./HK) [de

  18. Synthesis, Characterization, Absorbance, Fluorescence and Non Linear Optical Properties of Some Donor Acceptor Chromophores

    International Nuclear Information System (INIS)

    Asiri, Abdullah M.; Khan, Salman A.; Alamry, Kalid A.; Al-Amoudi, Muhammed S.

    2012-01-01

    Three carbazole chromophores featuring dicyano, cyano, ethyl acetate and dimethyl acetate groups as an acceptor moiety with a π-conjugated spacer and N-methyl dibenzo[b]pyrole as donor were synthesized by Knovenagel condensation and characterized by IR, 1 HNMR, 13 CNMR, UV-vis, fluorescence spectroscopy, electrochemistry and theoretical B3LYP/6-311G* level whilst NLO properties and spectroscopic quantities were calculated. Calculations showed remarkable trend with HOMO located on the donor moiety and LUMO on the acceptors dicyano methylene, cyano, ethyl acetate methylene and dimethyl acetate methylene. In agreement with the calculations, solvatochromic, behavior intramolecular charge transfer band was observed in the visible region

  19. Electrical characterization of acceptor levels in Be-implanted GaN

    OpenAIRE

    Yoshitaka, Nakano; Takashi, Jimbo

    2002-01-01

    We have investigated electrically the acceptor levels that are present in Be-implanted GaN. Slight p-type conductivity was attained in undoped GaN films by Be implantation and subsequent annealing at 1050°C with a SiO2 encapsulation layer. Capacitance-frequency measurements showed a typical dispersion effect characteristic of deep acceptors in fabricated Schottky diodes. Thermal admittance spectroscopy measurements revealed a discrete deep level located at ? 231meV above the valence band. Thi...

  20. An Electron Acceptor with Porphyrin and Perylene Bisimides for Efficient Non-Fullerene Solar Cells.

    Science.gov (United States)

    Zhang, Andong; Li, Cheng; Yang, Fan; Zhang, Jianqi; Wang, Zhaohui; Wei, Zhixiang; Li, Weiwei

    2017-03-01

    A star-shaped electron acceptor based on porphyrin as a core and perylene bisimide as end groups was constructed for application in non-fullerene organic solar cells. The new conjugated molecule exhibits aligned energy levels, good electron mobility, and complementary absorption with a donor polymer. These advantages facilitate a high power conversion efficiency of 7.4 % in non-fullerene solar cells, which represents the highest photovoltaic performance based on porphyrin derivatives as the acceptor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Copper-catalyzed asymmetric conjugate addition of organometallic reagents to extended Michael acceptors

    Directory of Open Access Journals (Sweden)

    Thibault E. Schmid

    2015-12-01

    Full Text Available The copper-catalyzed asymmetric conjugate addition (ACA of nucleophiles onto polyenic Michael acceptors represents an attractive and powerful methodology for the synthesis of relevant chiral molecules, as it enables in a straightforward manner the sequential generation of two or more stereogenic centers. In the last decade, various chiral copper-based catalysts were evaluated in combination with different nucleophiles and Michael acceptors, and have unambiguously demonstrated their usefulness in the control of the regio- and enantioselectivity of the addition. The aim of this review is to report recent breakthroughs achieved in this challenging field.

  2. Reactive Black 5 as electron donor and/or electron acceptor in dual chamber of solar photocatalytic fuel cell.

    Science.gov (United States)

    Khalik, Wan Fadhilah; Ho, Li-Ngee; Ong, Soon-An; Voon, Chun-Hong; Wong, Yee-Shian; Yusuf, Sara Yasina; Yusoff, NikAthirah; Lee, Sin-Li

    2018-03-19

    The role of azo dye Reactive Black 5 (RB5) as an electron donor and/or electron acceptor could be distinguished in dual chamber of photocatalytic fuel cell (PFC). The introduction of RB5 in anode chamber increased the voltage generation in the system since degradation of RB5 might produce electrons which also would transfer through external circuit to the cathode chamber. The removal efficiency of RB5 with open and closed circuit was 8.5% and 13.6%, respectively and removal efficiency for open circuit was low due to the fact that recombination of electron-hole pairs might happen in anode chamber since without connection to the cathode, electron cannot be transferred. The degradation of RB5 in cathode chamber with absence of oxygen showed that electrons from anode chamber was accepted by dye molecules to break its azo bond. The presence of oxygen in cathode chamber would improve the oxygen reduction rate which occurred at Platinum-loaded carbon (Pt/C) cathode electrode. The V oc , J sc and P max for different condition of ultrapure water at cathode chamber also affected their fill factor. The transportation of protons to cathode chamber through Nafion membrane could decrease the pH of ultrapure water in cathode chamber and undergo hydrogen evolution reaction in the absence of oxygen which then increased degradation rate of RB5 as well as its electricity generation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Mechanism and Dynamics of Charge Transfer in Donor-Bridge-Acceptor Systems

    NARCIS (Netherlands)

    Gorczak-Vos, N.

    2016-01-01

    Photoinduced charge transfer in organic materials is a fundamental process in various biological and technological areas. Donor-bridge-acceptor (DBA) molecules are used as model systems in numerous theoretical and experimental work to systematically study and unravel the underlying mechanisms of

  4. Acetylenic dithiafulvene derived donor-pi-acceptor dyads: synthesis, electrochemistry and non-linear optical properties

    DEFF Research Database (Denmark)

    Nielsen, Mogens Brønsted; Petersen, Jan Conrad; Thorup, Niels

    2005-01-01

    A selection of donor-acceptor chromophores containing the redox-active dithiafulvene unit about acetylenic and aryl scaffolds has been synthesized. The molecules were studied for their optical, redox and structural properties. Moreover, third-order non-linear optical properties were investigated ...

  5. Donor-acceptor properties of a single-molecule altered by on-surface complex formation

    Czech Academy of Sciences Publication Activity Database

    Meier, T.; Pawlak, R.; Kawai, S.; Geng, Y.; Liu, X.; Decurtins, S.; Hapala, Prokop; Baratoff, A.; Liu, S.X.; Jelínek, Pavel; Meyer, E.; Glatzel, T.

    2017-01-01

    Roč. 11, č. 8 (2017), s. 8413-8420 ISSN 1936-0851 R&D Projects: GA ČR GB14-37427G Institutional support: RVO:68378271 Keywords : nc AFM * DFT * acceptor donor Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 13.942, year: 2016

  6. Measuring drug saturation solubility in thin polymer films: use of a thin acceptor layer.

    Science.gov (United States)

    Kunst, Anders; Lee, Geoffrey

    2015-03-15

    The saturation solubility of scopolamine base in two pressure sensitive adhesive DURO-TAKs has been determined using the 5-layer laminate technique. The acceptor layer had a thickness of less than 25 μm to promote a rapid partitioning equilibrium. With DURO-TAK 87-2510 the saturation solubility is 5.2 ± 0.6% w/w when measured after 7 days. With DURO-TAK 87-4098 the saturation solubility is slightly higher, 7.9 ± 0.7% w/w after 7 days. These values remained constant up to approximately 30 days' experimental time. In both cases the acceptor was free of crystalline material at the end of the experiment. This strongly suggests that that equilibrium had been reached between the saturated solution in the acceptor layer and the crystalline drug still present in the donor layer. The addition of light liquid paraffin to the acceptor produced a solubilizing effect with 87-4098 but not 87-2510. We recommend some experimental conditions that we consider to be necessary to achieve a reliable and accurate result with this technique. If performed correctly, it can give a feasible result. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. On the Molecular Origin of Charge Separation at the Donor-Acceptor Interface

    KAUST Repository

    Sini, Gjergji

    2018-01-22

    Fullerene-based acceptors have dominated organic solar cells for almost two decades. It is only within the last few years that alternative acceptors rival their dominance, introducing much more flexibility in the optoelectronic properties of these material blends. However, a fundamental physical understanding of the processes that drive charge separation at organic heterojunctions is still missing, but urgently needed to direct further material improvements. Here a combined experimental and theoretical approach is used to understand the intimate mechanisms by which molecular structure contributes to exciton dissociation, charge separation, and charge recombination at the donor–acceptor (D–A) interface. Model systems comprised of polythiophene-based donor and rylene diimide-based acceptor polymers are used and a detailed density functional theory (DFT) investigation is performed. The results point to the roles that geometric deformations and direct-contact intermolecular polarization play in establishing a driving force (energy gradient) for the optoelectronic processes taking place at the interface. A substantial impact for this driving force is found to stem from polymer deformations at the interface, a finding that can clearly lead to new design approaches in the development of the next generation of conjugated polymers and small molecules.

  8. Discriminating a deep defect from shallow acceptors in supercell calculations: gallium antisite in GaAs

    Science.gov (United States)

    Schultz, Peter

    To make reliable first principles predictions of defect energies in semiconductors, it is crucial to discriminate between effective-mass-like defects--for which existing supercell methods fail--and deep defects--for which density functional theory calculations can yield reliable predictions of defect energy levels. The gallium antisite GaAs is often associated with the 78/203 meV shallow double acceptor in Ga-rich gallium arsenide. Within a framework of level occupation patterns, analyses of structure and spin stabilization can be used within a supercell approach to distinguish localized deep defect states from shallow acceptors such as BAs. This systematic analysis determines that the gallium antisite is inconsistent with a shallow state, and cannot be the 78/203 shallow double acceptor. The properties of the Ga antisite in GaAs are described, predicting that the Ga antisite is a deep double acceptor and has two donor states, one of which might be accidentally shallow. -- Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  9. Activated Carbon as an Electron Acceptor and Redox Mediator during the Anaerobic Biotransformation of Azo Dyes

    NARCIS (Netherlands)

    Zee, van der F.P.; Bisschops, I.A.E.; Lettinga, G.; Field, J.A.

    2003-01-01

    The role of AC as redox mediator in accelerating the reductive transformation of pollutants as well as a terminal electron acceptor in the biological oxidation of an organic substrate is described. This study explores the use of AC as an immobilized redox mediator for the reduction of a recalcitrant

  10. Diphenylmethanofullerenes: New and efficient acceptors in bulk-heterojunction solar cells

    NARCIS (Netherlands)

    Riedel, I; von Hauff, E; Parisi, H; Martin, N.; Giacalone, F; Dyakonov, Vladimir

    2005-01-01

    A novel fullerene derivative, 1,1-bis(4,4′-dodecyloxyphenyl)-(5,6) C61, diphenylmethanofullerene (DPM-12), has been investigated as a possible electron acceptor in photovoltaic devices, in combination with two different conjugated polymers poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-para-phenylene

  11. Electroluminescence from charge transfer states in Donor/Acceptor solar cells

    DEFF Research Database (Denmark)

    Sherafatipour, Golenaz; Madsen, Morten

    which the maximum open-circuit voltage can be estimated, and further can be used in the modeling and optimization of the OPV devices. [1] C. Deibe, T. Strobe, and V. Dyakonov, “Role of the charge transfer state in organic donor-acceptor solar cells,” Adv. Mater., vol. 22, pp. 4097–4111, 2010. [2] K...

  12. Donor-acceptor properties of a single-molecule altered by on-surface complex formation

    Czech Academy of Sciences Publication Activity Database

    Meier, T.; Pawlak, R.; Kawai, S.; Geng, Y.; Liu, X.; Decurtins, S.; Hapala, Prokop; Baratoff, A.; Liu, S.X.; Jelínek, Pavel; Meyer, E.; Glatzel, T.

    2017-01-01

    Roč. 11, č. 8 (2017), s. 8413-8420 ISSN 1936-0851 R&D Projects: GA ČR GB14-37427G Institutional support: RVO:68378271 Keywords : nc AFM * DFT * acceptor donor Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 13.942, year: 2016

  13. A new family of donor–acceptor systems comprising tin (IV ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 114; Issue 6. A new family of donor-acceptor systems comprising tin(IV) porphyrin and anthracene subunits: Synthesis, spectroscopy and energy transfer studies. A Ashok Kumar L Giribabu Bhaskar G Maiya. Volume 114 Issue 6 December 2002 pp 565-578 ...

  14. Organic Materials in the Undergraduate Laboratory: Microscale Synthesis and Investigation of a Donor-Acceptor Molecule

    Science.gov (United States)

    Pappenfus, Ted M.; Schliep, Karl B.; Dissanayake, Anudaththa; Ludden, Trevor; Nieto-Ortega, Belen; Lopez Navarrete, Juan T.; Ruiz Delgado, M. Carmen; Casado, Juan

    2012-01-01

    A series of experiments for undergraduate courses (e.g., organic, physical) have been developed in the area of small molecule organic materials. These experiments focus on understanding the electronic and redox properties of a donor-acceptor molecule that is prepared in a convenient one-step microscale reaction. The resulting intensely colored…

  15. Solution-grown organic single-crystalline donor-acceptor heterojunctions for photovoltaics.

    Science.gov (United States)

    Li, Hanying; Fan, Congcheng; Fu, Weifei; Xin, Huolin L; Chen, Hongzheng

    2015-01-12

    Organic single crystals are ideal candidates for high-performance photovoltaics due to their high charge mobility and long exciton diffusion length; however, they have not been largely considered for photovoltaics due to the practical difficulty in making a heterojunction between donor and acceptor single crystals. Here, we demonstrate that extended single-crystalline heterojunctions with a consistent donor-top and acceptor-bottom structure throughout the substrate can be simply obtained from a mixed solution of C60 (acceptor) and 3,6-bis(5-(4-n-butylphenyl)thiophene-2-yl)-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4-dione (donor). 46 photovoltaic devices were studied with the power conversion efficiency of (0.255±0.095)% under 1 sun, which is significantly higher than the previously reported value for a vapor-grown organic single-crystalline donor-acceptor heterojunction (0.007%). As such, this work opens a practical avenue for the study of organic photovoltaics based on single crystals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Synthesis of OMS Materials and Investigation of Their Acceptor-Donor Characteristics.

    Science.gov (United States)

    Grajek, H; Paciura-Zadrożna, J; Choma, J; Michalski, E; Witkiewicz, Z

    2012-10-01

    Three ordered mesoporous siliceous (OMS) materials known as MCM41s-unmodified MCM-41C16 ("C16"), and two MCM41s with different surface functionalities: MCM-41C16-SH ("C16-SH") and MCM-41C16-NH 2 ("C16-NH 2 ")-were synthesized and studied by inverse gas chromatography in order to determine their acceptor-donor properties. The specific retention volumes of nonpolar and polar probes that were chromatographed on these ordered mesoporous silica adsorbents were evaluated under infinite dilution conditions. Two methods were employed to calculate the standard free energy of adsorption, Δ G ads , of each chromatographed probe on the basis its specific retention volume. These Δ G ads values were then employed to estimate the van der Waals contribution and the specific contribution of the free surface energy for each MCM41. DN values (donor numbers, based on the Gutmann scale) and AN* values (acceptor numbers, based on the Riddle-Fowkes scale) were employed to determine the values of parameters that characterize the ability of the MCM41s to act as electron acceptors (parameter: K A ) and donors (parameter: K D ). Considering the different compositions of the probes, each of which has different acceptor-donor properties, a new chromatographic test to supplement the Grob test is suggested.

  17. In vitro fermentation of alternansucrase raffinose acceptor products by human gut bacteria

    Science.gov (United States)

    In this work, in vitro fermentation of alternansucrase raffinose acceptor products, previously fractionated according to their degree of polymerization (DP; from DP4 to DP10) was carried out using pH-controlled small scale batch cultures at 37ºC under anaerobic conditions with human faeces. Bifidog...

  18. Limited Cash Flow on Slot Machines: Effects of Prohibition of Note Acceptors on Adolescent Gambling Behaviour

    Science.gov (United States)

    Hansen, Marianne; Rossow, Ingeborg

    2010-01-01

    This study addresses the impact of prohibition of note acceptors on gambling behaviour and gambling problems among Norwegian adolescents. Data comprised school surveys at three time points; 2004 and 2005 (before intervention) and 2006 (after intervention). Net samples comprised 20.000 students aged 13-19 years at each data collection. Identical…

  19. Tailored Band Gaps in Sulfur- and Nitrogen-Containing Porous Donor-Acceptor Polymers

    Czech Academy of Sciences Publication Activity Database

    Schwarz, D.; Kochergin, Y. S.; Acharjya, A.; Ichangi, Arun; Opanasenko, Maksym; Čejka, Jiří; Lappan, U.; Arki, P.; He, J.; Schmidt, J.; Nachtigall, P.; Thomas, A.; Tarábek, Ján; Bojdys, Michael J.

    2017-01-01

    Roč. 23, č. 53 (2017), s. 13023-13027 ISSN 0947-6539 Institutional support: RVO:61388963 ; RVO:61388955 Keywords : conjugated microporous polymers * donor-acceptor dyads * photocatalysis * sulfur * triazine Subject RIV: CC - Organic Chemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) OBOR OECD: Organic chemistry; Physical chemistry (UFCH-W) Impact factor: 5.317, year: 2016

  20. Charge transfer from first principles: self-consistent GW applied to donor-acceptor systems

    Science.gov (United States)

    Atalla, Viktor; Caruso, Fabio; Rubio, Angel; Scheffler, Matthias; Rinke, Patrick

    2015-03-01

    Charge transfer in donor-acceptor systems (DAS) is determined by the relative alignment between the frontier orbitals of the donor and the acceptor. Semi-local approximations to density functional theory (DFT) may give a qualitatively wrong level alignment in DAS, leading to unphysical fractional electron transfer in weakly bound donor-acceptor pairs. GW calculations based on first-order perturbation theory (G0W0) correct the level alignment, but leave unaffected the electron density. We demonstrate that self-consistent GW (sc GW) provides an ideal framework for the description of charge transfer in DAS. Moreover, sc GW seamlessly accounts for many-body correlations and van der Waals interactions. As in G0W0 , the sc GW level alignment is in agreement with experimental reference data. However in sc GW , also the electron density is treated at the GW level and, therefore, it is consistent with the level alignment between donor and acceptor leading to a qualitatively correct description of charge-transfer properties.

  1. Nano-scale control of energy transfer in the system 'donor-acceptor'

    International Nuclear Information System (INIS)

    Malyukin, Yu.V.; Yefimova, S.L.; Lebedenko, A.N.; Sorokin, A.V.; Borovoy, I.A.

    2005-01-01

    Fluorescence resonance energy transfer (FRET) in a cascade scheme between three amphiphilic dyes 3,3'-dioctadecyloxacarbocyanine perchlorate (DiOC 18 (3), donor), 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiIC 18 (3), acceptor/donor) and 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine perchlorate (DiIC 18 (5), acceptor) has been investigated at low dye concentration (10 -5 mol/l) in water-micellar solutions due to a forced assembling of dyes in nanoscale volume. The experimental data have revealed that sodium dodecyl sulfate (SDS) micelles solubilize dye molecules such that their hydrophilic heads are in contact with water, while hydrophobic tails are embedded into the hydrocarbon core of the micelle. FRET efficiency has been found to depend on the concentration of dyes in micelles and the most effective when each SDS micelle contains 1 donor (DiOC 18 (3)), 2 acceptor/donor (DiIC 18 (3)) and 4 acceptor (DiIC 18 (5)) molecules

  2. Effects of Fluoro Substitution on the Electrochromic Performance of Alternating Benzotriazole and Benzothiadiazole-Based Donor–Acceptor Type Copolymers

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2017-12-01

    Full Text Available Two new donor–acceptor type electrochromic copolymers containing non-fluorinated and di-fluorinated benzothiadiazole analogues, namely P(TBT-TBTh and P(TBT-F-TBTh, were synthesized successfully through chemical polymerization. Both polymers were measured by cyclic voltammetry, UV-vis spectroscopy, colorimetry and thermogravimetric analysis to study the influence of fluoro substitution on the electrochromic performance. The results demonstrated that the two polymer films displayed well-defined redox peaks in pairs during the p-type doping, and showed distinct color change from dark gray blue to light green for P(TBT-TBTh with the band gap of 1.51 eV, and from gray blue to celandine green for P(TBT-F-TBTh with the band gap of 1.58 eV. P(TBT-F-TBTh presented lower highest occupied molecular orbital (HOMO and lowest unoccupied molecular orbital (LUMO energy levels, and better stability than P(TBT-TBTh. It was found that the two fluorine atoms participated in not only inductive effects but also mesomeric effects in the P(TBT-F-TBTh backbone. In addition, the polymers exhibited high optical contrasts, short response time, and favorable coloration efficiency, especially in the near infrared region. The characterization results indicated that the two reported polymers can be the potential choice as electrochromic materials.

  3. The use of intermediate electron acceptors to enhance MTT bioreduction in a microculture tetrazolium assay for human growth hormone.

    Science.gov (United States)

    Goodwin, C J; Holt, S J; Downes, S; Marshall, N J

    1996-01-01

    We contrast the effects of three intermediate electron acceptors (IEAs) on the highly quantitative ESTA bioassay for human growth hormone. This is a microculture tetrazolium assay based upon the in vitro reduction of the tetrazolium salt MTT, by Nb2 cells which have been activated with hGH. Each of the IEAs influenced MTT-formazan production in a distinctive manner. The two quinonoids, namely menadione and co-enzyme Q0 markedly increased the MTT-formazan produced by hormone activated Nb2 cells and thereby amplified the response of our bioassay for human growth hormone (hGH). The exceptionally low bioassay baseline which is characteristic of the unstimulated Nb2 cells when only MTT is added was retained in the presence of CoQ0, but was greatly increased by menadione. Phenazine methosulphate, which is the most widely used redox intermediary in microculture tetrazolium assays, also increased the baseline, but had only a minimal additional effect on MTT reduction by activated Nb2 cells. We conclude that CoQ0 is the preferred IEA for this ESTA bioassay for hGH.

  4. Low and High Molecular Mass Dithienopyrrole-Naphthalene Bisimide Donor-Acceptor Compounds: Synthesis, Electrochemical and Spectroelectrochemical Behaviour.

    Science.gov (United States)

    Rybakiewicz, Renata; Glowacki, Eric D; Skorka, Lukasz; Pluczyk, Sandra; Zassowski, Pawel; Apaydin, Dogukan Hazar; Lapkowski, Mieczyslaw; Zagorska, Malgorzata; Pron, Adam

    2017-02-24

    Two low molecular weight electroactive donor-acceptor-donor (DAD)-type molecules are reported, namely naphthalene bisimide (NBI) symmetrically core-functionalized with dithienopyrrole (NBI-(DTP) 2 ) and an asymmetric core-functionalized naphthalene bisimide with dithienopyrrole (DTP) substituent on one side and 2-ethylhexylamine on the other side (NBI-DTP-NHEtHex). Both compounds are characterized by low optical bandgaps (1.52 and 1.65 eV, respectively). NBI-(DTP) 2 undergoes oxidative electropolymerization giving the electroactive polymer of ambipolar character. Its two-step reversible reduction and oxidation is corroborated by complementary EPR and UV/Vis-NIR spectroelectrochemical investigations. The polymer turned out to be electrochemically active not only in aprotic solvents but also in aqueous electrolytes, showing a distinct photocathodic current attributed to proton reduction. Additionally, poly(NBI-(DTP) 2 ) was successfully tested as a photodiode material. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Unusual low-energy near-infrared bands for ferrocenyl-naphthalimide donor-acceptor dyads with aromatic spacer groups

    DEFF Research Database (Denmark)

    Tagg, Tei; Kjærgaard, Henrik Grum; Lane, Joseph R.

    2015-01-01

    Time-dependent density functional theory (TDDFT) calculations for a series of donor-spacer-acceptor (D-S-A) molecules with phenyl (1), biphenyl (2), and anthryl (3) spacers interpolated between the ferrocenylalkene donor and -C≡C-4-naphthalimido acceptor components predicted the presence of weak,...

  6. Blinking fluorescence of single donor-acceptor pairs: important role of "dark'' states in resonance energy transfer via singlet levels.

    Science.gov (United States)

    Osad'ko, I S; Shchukina, A L

    2012-06-01

    The influence of triplet levels on Förster resonance energy transfer via singlet levels in donor-acceptor (D-A) pairs is studied. Four types of D-A pair are considered: (i) two-level donor and two-level acceptor, (ii) three-level donor and two-level acceptor, (iii) two-level donor and three-level acceptor, and (iv) three-level donor and three-level acceptor. If singlet-triplet transitions in a three-level acceptor molecule are ineffective, the energy transfer efficiency E=I_{A}/(I_{A}+I_{D}), where I_{D} and I_{A} are the average intensities of donor and acceptor fluorescence, can be described by the simple theoretical equation E(F)=FT_{D}/(1+FT_{D}). Here F is the rate of energy transfer, and T_{D} is the donor fluorescence lifetime. In accordance with the last equation, 100% of the donor electronic energy can be transferred to an acceptor molecule at FT_{D}≫1. However, if singlet-triplet transitions in a three-level acceptor molecule are effective, the energy transfer efficiency is described by another theoretical equation, E(F)=F[over ¯](F)T_{D}/[1+F[over ¯](F)T_{D}]. Here F[over ¯](F) is a function of F depending on singlet-triplet transitions in both donor and acceptor molecules. Expressions for the functions F[over ¯](F) are derived. In this case the energy transfer efficiency will be far from 100% even at FT_{D}≫1. The character of the intensity fluctuations of donor and acceptor fluorescence indicates which of the two equations for E(F) should be used to find the value of the rate F. Therefore, random time instants of photon emission in both donor and acceptor fluorescence are calculated by the Monte Carlo method for all four types of D-A pair. Theoretical expressions for start-stop correlators (waiting time distributions) in donor and acceptor fluorescence are derived. The probabilities w_{N}^{D}(t) and w_{N}^{A}(t) of finding N photons of donor and acceptor fluorescence in the time interval t are calculated for various values of the energy

  7. Modulation of Donor-Acceptor Distance in a Series of Carbazole Push-Pull Dyes; A Spectroscopic and Computational Study

    Directory of Open Access Journals (Sweden)

    Joshua J. Sutton

    2018-02-01

    Full Text Available A series of eight carbazole-cyanoacrylate based donor-acceptor dyes were studied. Within the series the influence of modifying the thiophene bridge, linking donor and acceptor and a change in the nature of the acceptor, from acid to ester, was explored. In this joint experimental and computational study we have used electronic absorbance and emission spectroscopies, Raman spectroscopy and computational modeling (density functional theory. From these studies it was found that extending the bridge length allowed the lowest energy transition to be systematically red shifted by 0.12 eV, allowing for limited tuning of the absorption of dyes using this structural motif. Using the aforementioned techniques we demonstrate that this transition is charge transfer in nature. Furthermore, the extent of charge transfer between donor and acceptor decreases with increasing bridge length and the bridge plays a smaller role in electronically mixing with the acceptor as it is extended.

  8. Interplay of alternative conjugated pathways and steric interactions on the electronic and optical properties of donor-acceptor conjugated polymers

    KAUST Repository

    Lima, Igo T.

    2014-01-01

    Donor-acceptor π-conjugated copolymers are of interest for a wide range of electronic applications, including field-effect transistors and solar cells. Here, we present a density functional theory (DFT) study of the impact of varying the conjugation pathway on the geometric, electronic, and optical properties of donor-acceptor systems. We consider both linear ("in series"), traditional conjugation among the donor-acceptor moieties versus structures where the acceptor units are appended orthogonally to the linear, donor-only conjugated backbone. Long-range-corrected hybrid functionals are used in the investigation with the values of the tuned long-range separation parameters providing an estimate of the extent of conjugation as a function of the oligomer architecture. Considerable differences in the electronic and optical properties are determined as a function of the nature of the conjugation pathway, features that should be taken into account in the design of donor-acceptor copolymers.

  9. Multi-layered nanoparticles for penetrating the endosome and nuclear membrane via a step-wise membrane fusion process.

    Science.gov (United States)

    Akita, Hidetaka; Kudo, Asako; Minoura, Arisa; Yamaguti, Masaya; Khalil, Ikramy A; Moriguchi, Rumiko; Masuda, Tomoya; Danev, Radostin; Nagayama, Kuniaki; Kogure, Kentaro; Harashima, Hideyoshi

    2009-05-01

    Efficient targeting of DNA to the nucleus is a prerequisite for effective gene therapy. The gene-delivery vehicle must penetrate through the plasma membrane, and the DNA-impermeable double-membraned nuclear envelope, and deposit its DNA cargo in a form ready for transcription. Here we introduce a concept for overcoming intracellular membrane barriers that involves step-wise membrane fusion. To achieve this, a nanotechnology was developed that creates a multi-layered nanoparticle, which we refer to as a Tetra-lamellar Multi-functional Envelope-type Nano Device (T-MEND). The critical structural elements of the T-MEND are a DNA-polycation condensed core coated with two nuclear membrane-fusogenic inner envelopes and two endosome-fusogenic outer envelopes, which are shed in stepwise fashion. A double-lamellar membrane structure is required for nuclear delivery via the stepwise fusion of double layered nuclear membrane structure. Intracellular membrane fusions to endosomes and nuclear membranes were verified by spectral imaging of fluorescence resonance energy transfer (FRET) between donor and acceptor fluorophores that had been dually labeled on the liposome surface. Coating the core with the minimum number of nucleus-fusogenic lipid envelopes (i.e., 2) is essential to facilitate transcription. As a result, the T-MEND achieves dramatic levels of transgene expression in non-dividing cells.

  10. Robotic membranes

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette

    2008-01-01

    , Vivisection and Strange Metabolisms, were developed at the Centre for Information Technology and Architecture (CITA) at the Royal Danish Academy of Fine Arts in Copenhagen as a means of engaging intangible digital data with tactile physical material. As robotic membranes, they are a dual examination...

  11. Membrane fluidity in the presence of membrane-binding peptides

    Science.gov (United States)

    Burrola Gabilondo, Beatriz; Losert, Wolfgang; Randazzo, Paul

    2009-03-01

    Arf proteins are GTP-ases that participate in vesicle trafficking inside cells. They are able to interact with membranes through their N-terminus when they are bound to GTP, and they detach from the membrane when GTP is hydrolyzed. The N-terminus of Arf1 (amino acids 2-17) folds into an amphipathic helix that can insert into lipid bilayers. Arf1 is also myristoylated; it has myristic acid, a 14-carbon fatty acid `tail', attached to it. We set out to test the hypothesis that the binding of the myristoylated N-terminus of Arf1 to lipid membranes changes the mechanical properties of the membrane, in ways that myristic acid alone or amphipathic peptides alone do not. We use three reporter molecules embedded in vesicles, whose fluorescence emission spectrum depends on the properties of the environment in which they are found, to measure three distinct aspects of membrane fluidity: Bispyrene is sensitive to lateral motion along the membrane, Prodan's emission gives a measure of the packing of the head groups, and DPH polarization reflects the packing of the hydrophobic tails. We will present effects found for four molecules (myristic acid, myristoylated and non-myristoylated N-terminus of Arf1, and the ALPS domain of KES) in a concentration-dependent manner, and discuss the importance of these results in the vesicle-trafficking picture.

  12. Oxygen Transport Ceramic Membranes

    Energy Technology Data Exchange (ETDEWEB)

    S. Bandopadhyay; T. Nithyanantham

    2006-12-31

    Ti doping on La{sub 1-x}Sr{sub x}FeO{sub 3-{delta}} (LSF) tends to increase the oxygen equilibration kinetics of LSF in lower oxygen activity environment because of the high valence state of Ti. However, the addition of Ti decreases the total conductivity because the acceptor ([Sr{prime}{sub La}]) is compensated by the donor ([Ti{sub Fe}{sup {sm_bullet}}]) which decreases the carrier concentration. The properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 1-x}Ti{sub x}O{sub 3-{delta}} (LSFT, x = 0.45) have been experimentally and theoretically investigated to elucidate (1) the dependence of oxygen occupancy and electrochemical properties on temperature and oxygen activity by thermogravimetric analysis (TGA) and (2) the electrical conductivity and carrier concentration by Seebeck coefficient and electrical measurements. In the present study, dual phase (La{sub 0.2}Sr{sub 0.8}Fe{sub 0.6}Ti{sub 0.4}O{sub 3-{delta}}/Ce{sub 0.9}Gd{sub 0.1}O{sub 2-{delta}}) membranes have been evaluated for structural properties such as hardness, fracture toughness and flexural strength. The effect of high temperature and slightly reducing atmosphere on the structural properties of the membranes was studied. The flexural strength of the membrane decreases upon exposure to slightly reducing conditions at 1000 C. The as-received and post-fractured membranes were characterized using XRD, SEM and TG-DTA to understand the fracture mechanisms. Changes in structural properties of the composite were sought to be correlated with the physiochemical features of the two-phases. We have reviewed the electrical conductivity data and stoichiometry data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} some of which was reported previously. Electrical conductivity data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCrF) were obtained in the temperature range, 752 {approx} 1055 C and in the pO{sub 2} range, 10{sup -18} {approx} 0.5 atm. The slope of the plot of log {sigma} vs

  13. A green approach to ethyl acetate: Quantitative conversion of ethanol through direct dehydrogenation in a Pd-Ag membrane reactor

    KAUST Repository

    Zeng, Gaofeng

    2012-11-07

    Pincers do the trick: The conversion of ethanol to ethyl acetate and hydrogen was achieved using a pincer-Ru catalyst in a Pd-Ag membrane reactor. Near quantitative conversions and yields could be achieved without the need for acid or base promoters or hydrogen acceptors (see scheme). © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Atomic scale images of acceptors in III-V semiconductors. Band bending, tunneling paths and wave functions

    Energy Technology Data Exchange (ETDEWEB)

    Loth, S.

    2007-10-26

    This thesis reports measurements of single dopant atoms in III-V semiconductors with low temperature Scanning Tunneling Microscopy (STM) and Scanning Tunneling Spectroscopy (STS). It investigates the anisotropic spatial distribution of acceptor induced tunneling processes at the {l_brace}110{r_brace} cleavage planes. Two different tunneling processes are identified: conventional imaging of the squared acceptor wave function and resonant tunneling at the charged acceptor. A thorough analysis of the tip induced space charge layers identifies characteristic bias windows for each tunnel process. The symmetry of the host crystal's band structure determines the spatial distribution of the tunneling paths for both processes. Symmetry reducing effects at the surface are responsible for a pronounced asymmetry of the acceptor contrasts along the principal [001] axis. Uniaxial strain fields due to surface relaxation and spin orbit interaction of the tip induced electric field are discussed on the basis of band structure calculations. High-resolution STS studies of acceptor atoms in an operating p-i-n diode confirm that an electric field indeed changes the acceptor contrasts. In conclusion, the anisotropic contrasts of acceptors are created by the host crystal's band structure and concomitant symmetry reduction effects at the surface. (orig.)

  15. Study of the Contributions of Donor and Acceptor Photoexcitations to Open Circuit Voltage in Bulk Heterojunction Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Douglas Yeboah

    2017-10-01

    Full Text Available One of the key parameters in determining the power conversion efficiency (PCE of bulk heterojunction (BHJ organic solar cells (OSCs is the open circuit voltage . The processes of exciting the donor and acceptor materials individually in a BHJ OSC are investigated and are found to produce two different expressions for . Using the contributions of electron and hole quasi-Fermi levels and charge carrier concentrations, the two different expressions are derived as functions of the energetics of the donor and acceptor materials and the photo-generated charge carrier concentrations, and calculated for a set of donor-acceptor blends. The simultaneous excitation of both the donor and acceptor materials is also considered and the corresponding , which is different from the above two, is derived. The calculated from the photoexcitation of the donor is found to be somewhat comparable with that obtained from the photoexcitation of the acceptor in most combinations of the donor and acceptor materials considered here. It is also found that the calculated from the simultaneous excitations of donor and acceptor in BHJ OSCs is also comparable with the other two . All three thus derived produce similar results and agree reasonably well with the measured values. All three depend linearly on the concentration of the photoexcited charge carriers and hence incident light intensity, which agrees with experimental results. The outcomes of this study are expected to help in finding materials that may produce higher and hence enhanced PCE in BHJ OSCs.

  16. Preconcentration in micro-electromembrane extraction across free liquid membranes.

    Science.gov (United States)

    Kubáň, Pavel; Boček, Petr

    2014-10-27

    Preconcentration potential of micro-electromembrane extraction (μ-EME) across free liquid membrane (FLM) was examined with an anionic and a cationic dye, 4,5-dihydroxy-3-(p-sulfophenylazo)-2,7-naphthalene disulfonic acid, trisodium salt (SPADNS) and phenosafranine, respectively. For the first time, it was shown that the spatial flexibility of FLMs enabled application of tailored extraction units with mutually different shapes and migration cross-sections for FLMs, donor and acceptor solutions. Thus, e.g. conical units enabled easy and reproducible formation of a three-phase extraction system (donor/FLM/acceptor) with sub-μL volumes of acceptor solutions as well as rapid and highly efficient preconcentration of the two dyes. Quantitative measurements of resulting solutions were carried out by UV-vis spectrophotometry and enrichment factors of up to 98 were achieved for μ-EMEs of 20 μM SPADNS (50 μL) preconcentrated into 0.5 μL of pure water across 1-pentanol at -150 V for 18 min. Visual monitoring of the entire extraction process (with USB microscope camera) was possible across transparent extraction units, moreover, important extraction parameters, such as FLM dimensions and donor-to-acceptor solution volume ratio, which determine the mechanical stability of the membrane and maximum enrichment factor, respectively, were readily adjusted. Combination of μ-EME across FLMs with capillary electrophoresis (CE) was further shown suitable for preconcentration and determination of perchlorate in drinking water samples. Good repeatability of the μ-EME-CE method (RSD values better than 9.5%), linear relationship for the analytical signal vs. concentration (r(2) better than 0.997) and enrichment factors of up to 30 were achieved for μ-EMEs of perchlorate across 1-pentanol and 1-hexanol based FLMs. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Acceptor and donor levels of 3d impurities at interstitial sites in GaAs

    International Nuclear Information System (INIS)

    Scolfaro, L.M.R.; Fazzio, A.

    1988-01-01

    Results are presented for the electronic structure of 3d transition-metal intersititial impurities in GaAs. Both anion and cation intersititial defect sites of high-symmetry are considered. The existence of acceptor nd donor states in the gap for impurities at the anion interstitial site is investigated, including many-electron corrections to the one-electron energy levels. These results show that the trend for the 3d-induced t 2 states is very similar in both tetrahedral interstitial sites. It is found that Co, Fe, Mn and Cr could present donor levels in the gap. Acceptor levels are predicted to occur in the gap only for interstitial Co and Mn. (author) [pt

  18. The Effect of Uniaxial Static Pressure on the Behaviour of the Aluminum Acceptor Impurity in Silicon

    CERN Document Server

    Mamedov, T N; Andrianov, D G; Herlach, D; Gorelkin, V N; Gritsaj, K I; Zhukov, V A; Stoikov, A V; Zimmermann, U

    2004-01-01

    The results on the effect of uniaxial static pressure on the behaviour of aluminum shallow acceptors in silicon are presented. Impurity atoms of _{\\mu}A1 in silicon crystals with phosphorus impurity (1.6\\cdot 10^{13} cm^{-3} for the first sample and 1.9\\cdot 10^{13} cm^{-3} for the second sample) were created by implantation of negative muons. The polarization of muons was studied in a magnetic field of 2.5 kGs transverse to the direction of the muon spin in the temperature range 10-300 K. Orientations of the chosen crystal axis ([111] for the first sample, [100] for the second one), magnetic field, and the muon polarization were reciprocally perpendicular. It was found that uniaxial pressure applied along the chosen crystal axes changes both the absolute value and the temperature dependence of the acceptor center magnetic moment relaxation rate.

  19. Comparative evaluation of the acceptor properties of quinone derivatized polypyridinic ligands

    Energy Technology Data Exchange (ETDEWEB)

    Norambuena, Ester [Departamento de Quimica, Facultad de Ciencias Basicas, Universidad Metropolitana de Ciencias de la Educacion, Santiago (Chile); Olea-Azar, Claudio [Facultad de Ciencias Quimicas y Farmaceuticas, Universidad de Chile, Santiago (Chile); Delgadillo, Alvaro [Departamento de Quimica, Facultad de Ciencias, Universidad de La Serena, Casilla 599, La Serena (Chile); Barrera, Mauricio [Facultad de Quimica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago (Chile); Loeb, Barbara, E-mail: bloeb@puc.cl [Facultad de Quimica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago (Chile)

    2009-05-18

    The reduction properties of four acceptor polipyridyl ligands modified with quinones were studied by different experimental methods, as cyclic voltammetry and ESR spectroscopy, and by theoretical calculations. ESR spectra for the reduced ligands show different patterns among them, suggesting that the quinone moiety plays an important role in the delocalization of the received electron. The hyperfine coupling constants calculated for the magnetic nucleus were in good agreement with experimental data. The results were additionally interpreted with the help of two theoretical predictors: the electrophilicity index and the Fukui function obtained through the spin density. The results suggest that 12,17-dihydronaphtho-[2,3-h]dipyrido[3,2-a:2',3'-c]-phenazine-12,17-dione, Aqphen, shows the most promising behavior to be employed as an acceptor ligand in complexes with potential application in NLO devices.

  20. Organic solar cells based on anthracene-containing PPE–PPVs and non-fullerene acceptors

    KAUST Repository

    Alam, Shahidul

    2018-04-13

    Lately, non-fullerene acceptors (NFAs) have received increasing attention for use in polymer-based bulk-heterojunction (BHJ) organic solar cells (OSCs), as improved photovoltaic performance compared to classical polymer–fullerene blends could be demonstrated. In this study, polymer solar cells based on a statistically substituted anthracene-containing poly(p-phenylene ethynylene)-alt-poly(p-phenylene vinylene)s (PPE–PPVs) copolymer (AnE-PVstat) as donor in combination with a number of different electron accepting materials were investigated. Strong photoluminescence quenching of the polymer donor indicates intimate intermixing of both materials. However, the photovoltaic performances were found to be poor compared to blends that use fullerene as acceptor. Time-delayed collection field (TDCF) measurements demonstrate: charge generation is field-independent, but bimolecular recombination processes limit the fill factor and thus the efficiency of devices.

  1. Seeded on-surface supramolecular growth for large area conductive donor-acceptor assembly.

    Science.gov (United States)

    Goudappagouda; Chithiravel, Sundaresan; Krishnamoorthy, Kothandam; Gosavi, Suresh W; Babu, Sukumaran Santhosh

    2015-07-04

    Charge transport features of organic semiconductor assemblies are of paramount importance. However, large-area extended supramolecular structures of donor-acceptor combinations with controlled self-assembly pathways are hardly accessible. In this context, as a representative example, seeded on-surface supramolecular growth of tetrathiafulvalene and tetracyano-p-quinodimethane (TTF-TCNQ) using active termini of solution-formed sheaves has been introduced to form an extended assembly. We demonstrate for the first time, the creation of a large-area donor-acceptor assembly on the surface, which is practically very tedious, using a seeded, evaporation-assisted growth process. The excellent molecular ordering in this assembly is substantiated by its good electrical conductivity (~10⁻² S cm⁻¹). The on-surface assembly via both internally formed and externally added sheaf-like seeds open new pathways in supramolecular chemistry and device applications.

  2. On the acceptor-related photoluminescence spectra of GaAs quantum-wire microcrystals: A model calculation

    International Nuclear Information System (INIS)

    Oliveira, L.E.; Porras Montenegro, N.; Latge, A.

    1992-07-01

    The acceptor-related photoluminescence spectrum of a GaAs quantum-wire microcrystal is theoretically investigated via a model calculation within the effective-mass approximation, with the acceptor envelope wave functions and binding energies calculated through a variational procedure. Typical theoretical photoluminescence spectra show two peaks associated to transitions from the n = 1 conduction subband electron gas to acceptors at the on-center and on-edge positions in the wire in good agreement with the recent experimental results by Hirum et al. (Appl. Phys. Lett. 59, 431 (1991)). (author). 14 refs, 3 figs

  3. Acceptor number-dependent ultrafast photo-physical properties of push-pull chromophores using time-resolved methods

    Science.gov (United States)

    Chi, Xiao-Chun; Wang, Ying-Hui; Gao, Yu; Sui, Ning; Zhang, Li-Quan; Wang, Wen-Yan; Lu, Ran; Ji, Wen-Yu; Yang, Yan-Qiang; Zhang, Han-Zhuang

    2018-04-01

    Three push-pull chromophores comprising a triphenylamine (TPA) as electron-donating moiety and functionalized β-diketones as electron acceptor units are studied by various spectroscopic techniques. The time-correlated single-photon counting data shows that increasing the number of electron acceptor units accelerates photoluminescence relaxation rate of compounds. Transient spectra data shows that intramolecular charge transfer (ICT) takes place from TPA units to β-diketones units after photo-excitation. Increasing the number of electron acceptor units would prolong the generation process of ICT state, and accelerate the excited molecule reorganization process and the relaxation process of ICT state.

  4. Positronium Inhibition and Quenching by Organic Electron Acceptors and Charge Transfer Complexes

    DEFF Research Database (Denmark)

    Jansen, P.; Eldrup, Morten Mostgaard; Jensen, Bror Skytte

    1975-01-01

    the inhibition intensifies and the quenching almost vanishes. The reaction constants between ortho-Ps and the acceptors were determinded to be: 1.5 × 1010 M−1 s−1 for SO2 in dioxane 3.7 × 1010 M−1 s−1 for SO2 in n-heptane, 3.4 × 1010 M−1 s−1 for tetracyanoquinodimethane in tetrahydrofurane and 1.6 × 1010 M−1 s−1...

  5. Recent research progress of polymer donor/polymer acceptor blend solar cells

    OpenAIRE

    Benten, Hiroaki; Mori, Daisuke; Ohkita, Hideo; Ito, Shinzaburo

    2016-01-01

    Polymer/polymer blend solar cells based on a blend of two types of conjugated polymers acting as an electron donor (hole transport) and acceptor (electron transport) have recently attracted considerable attention, because they have numerous potential advantages over conventional polymer/fullerene blend solar cells. The highest power conversion efficiency (PCE) was slightly above 2% five years ago, whereas PCEs of beyond 8% are the state-of-the-art today, and the efficiency gap between polymer...

  6. Molecular designing of novel ternary copolymers of donor-acceptor polymers using genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Vinita [Department of Chemistry, University of Delhi, Delhi 110 007 (India); Bakhshi, A.K., E-mail: akbakhshi2000@yahoo.com [Department of Chemistry, University of Delhi, Delhi 110 007 (India)

    2010-08-03

    Graphical abstract: Alternate arrangement of donor acceptor moieties in the carbon backbone chain of an organic conjugated polymer is capable of inducing charge transfer and affects the electronic properties of the copolymer. Genetic algorithm along with simple NFC (negative factor counting) and IIM (inverse iteration method) has been used to optimize the properties of novel ternary copolymers based on polypyrrole PPy, polythiophene PTh and polyfuran PFu (as donor moieties) and containing >C=O and >C=CF{sub 2} bridging units as acceptor moieties. - Abstract: An efficient designing route to novel ternary copolymers consisting of polypyrrole (PPy), polythiophene (PTh) and polyfuran (PFu) is developed with the help of genetic algorithm. Using the band structure results obtained from ab initio crystal orbital (CO) calculations, the electronic structures and conduction properties of real ternary copolymers based on donor acceptor type polymers are investigated. The electron rich heterocyclic rings in the backbone chain of the copolymer are joined together by electron withdrawing groups Y, carbonyl group (>C=O) and difluoromethylene group (>C=CF{sub 2}) in an attempt to design the conducting polymer with lowest band gap. A comparative study of various electronic properties is presented. The effects of substitution on the behaviour and properties of the copolymers as well as on the density of states (DOS) are discussed. Band gap decreases as a result of substitution on the polymer backbone chain due to decrease in ionization potential and increase in electron affinity values. This is expected to enhance the intrinsic conductivity of the resulting copolymer. Use of alternate donor acceptor moieties within the repeat units should maximize the extended {pi} conjugation.

  7. Proton-coupled electron transfer from tryptophan: a concerted mechanism with water as proton acceptor.

    Science.gov (United States)

    Zhang, Ming-Tian; Hammarström, Leif

    2011-06-15

    The mechanism of proton-coupled electron transfer (PCET) from tyrosine in enzymes and synthetic model complexes is under intense discussion, in particular the pH dependence of the PCET rate with water as proton acceptor. Here we report on the intramolecular oxidation kinetics of tryptophan derivatives linked to [Ru(bpy)(3)](2+) units with water as proton acceptor, using laser flash-quench methods. It is shown that tryptophan oxidation can proceed not only via a stepwise electron-proton transfer (ETPT) mechanism that naturally shows a pH-independent rate, but also via another mechanism with a pH-dependent rate and higher kinetic isotope effect that is assigned to concerted electron-proton transfer (CEP). This is in contrast to current theoretical models, which predict that CEP from tryptophan with water as proton acceptor can never compete with ETPT because of the energetically unfavorable PT part (pK(a)(Trp(•)H(+)) = 4.7 ≫ pK(a)(H(3)O(+)) ≈ -1.5). The moderate pH dependence we observe for CEP cannot be explained by first-order reactions with OH(-) or the buffers and is similar to what has been demonstrated for intramolecular PCET in [Ru(bpy)(3)](3+)-tyrosine complexes (Sjödin, M.; et al. J. Am. Chem. Soc.2000, 122, 3932. Irebo, T.; et al. J. Am. Chem. Soc.2007, 129, 15462). Our results suggest that CEP with water as the proton acceptor proves a general feature of amino acid oxidation, and provide further experimental support for understanding of the PCET process in detail. © 2011 American Chemical Society

  8. Donor-Acceptor Conjugated Macrocycles: Synthesis and Host-Guest Coassembly with Fullerene toward Photovoltaic Application.

    Science.gov (United States)

    Zhang, Si-Qi; Liu, Zhen-Yu; Fu, Wei-Fei; Liu, Feng; Wang, Chuan-Ming; Sheng, Chun-Qi; Wang, Yi-Fei; Deng, Ke; Zeng, Qing-Dao; Shu, Li-Jin; Wan, Jun-Hua; Chen, Hong-Zheng; Russell, Thomas P

    2017-11-28

    Electron-rich (donor) and electron-deficient (acceptor) units to construct donor-acceptor (D-A) conjugated macrocycles were investigated to elucidate their interactions with electron-deficient fullerene. Triphenylamine and 4,7-bisthienyl-2,1,3-benzothiadiazole were alternately linked through acetylene, as the donor and acceptor units, respectively, for pentagonal 3B2A and hexagonal 4B2A macrocycles. As detected by scanning tunneling microscopy, both D-A macrocycles were found to form an interesting concentration-controlled nanoporous monolayer on highly oriented pyrolytic graphite, which could effectively capture fullerene. Significantly, the fullerene filling was cavity-size-dependent with only one C 70 or PC 71 BM molecule accommodated by 3B2A, while two were accommodated by 4B2A. Density functional theory calculations were also utilized to gain insight into the host-guest systems and indicted that the S···π contact is responsible for stabilizing these host-guest systems. Owing to the ellipsoidal shape of C 70 , C 70 molecules are standing or lying in molecular cavities depending on the energy optimization. For the 3B2A/PC 71 BM blended film, PC 71 BM was intercalated into the cavity formed by the macrocycle 3B2A and provided excellent power conversion efficiency despite the broad band gap (2.1 eV) of 3B2A. This study of D-A macrocycles incorporating fullerene provides insights into the interaction mechanism and electronic structure in the host-guest complexes. More importantly, this is a representative example using D-A macrocycles as a donor to match with the spherical fullerene acceptor for photovoltaic applications, which offer a good approach to achieve molecular scale p-n junctions for substantially enhanced efficiencies of organic solar cells through replacing linear polymer donors by cyclic conjugated oligomers.

  9. A Tetraperylene Diimides Based 3D Nonfullerene Acceptor for Efficient Organic Photovoltaics.

    Science.gov (United States)

    Liu, Shi-Yong; Wu, Chen-Hao; Li, Chang-Zhi; Liu, Sheng-Qiang; Wei, Kung-Hwa; Chen, Hong-Zheng; Jen, Alex K-Y

    2015-04-01

    A nonfullerene acceptor based on a 3D tetraperylene diimide is developed for bulk heterojunction organic photovoltaics. The disruption of perylene diimide planarity with a 3D framework suppresses the self-aggregation of perylene diimide and inhibits excimer formation. From planar monoperylene diimide to 3D tetraperylene diimide, a significant improvement of power conversion efficiency from 0.63% to 3.54% can be achieved.

  10. Dominant effects of first monolayer energetics at donor/acceptor interfaces on organic photovoltaics.

    Science.gov (United States)

    Izawa, Seiichiro; Nakano, Kyohei; Suzuki, Kaori; Hashimoto, Kazuhito; Tajima, Keisuke

    2015-05-20

    Energy levels of the first monolayer are manipulated at donor/acceptor interfaces in planar heterojunction organic photovoltaics by using molecular self-organization. A "cascade" energy landscape allows thermal-activation-free charge generation by photoirradiation, destabilizes the energy of the interfacial charge-transfer state, and suppresses bimolecular charge recombination, resulting in a higher open-circuit voltage and fill factor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Alternative initial proton acceptors for the D pathway of Rhodobacter sphaeroides cytochrome c oxidase

    Science.gov (United States)

    Varanasi, Lakshman; Hosler, Jonathan

    2011-01-01

    In order to characterize protein structures that control proton uptake, forms of cytochrome c oxidase (CcO) containing a carboxyl or a thiol group in line with the initial, internal waters of the D pathway for proton transfer have been assayed in the presence and absence of subunit III. Subunit III provides approximately half of the protein surrounding the entry region of the D pathway. The mutant N139D-D132N contains a carboxyl group 6Å within the D pathway and lacks the normal, surface-exposed proton acceptor, Asp-132. With subunit III, the steady-state activity of this mutant is slow but once subunit III is removed its activity is the same as wild-type CcO lacking subunit III (∼1800 H+ s-1). Thus, a carboxyl group ∼25% within the pathway enhances proton uptake even though the carboxyl has no direct contact with bulk solvent. Protons from solvent apparently move to internal Asp-139 through a short file of waters, normally blocked by subunit III. Cysteine-139 also supports rapid steady-state proton uptake, demonstrating that an anion other than a carboxyl can attract and transfer protons into the D pathway. When both Asp-132 and Asp/Cys-139 are present, the removal of subunit III increases CcO activity to rates greater than that of normal CcO due to simultaneous proton uptake by two initial acceptors. The results show how the environment of the initial proton acceptor for the D pathway in these CcO forms dictates the pH range of CcO activity, with implications for the function of Asp-132, the normal proton acceptor. PMID:21344856

  12. The Influence of Solvent Additive on Polymer Solar Cells Employing Fullerene and Non-Fullerene Acceptors

    KAUST Repository

    Song, Xin

    2017-11-27

    Small-molecule-based non-fullerene acceptors (NFAs) are emerging as a new field in organic photovoltaics, due to their structural versatility, the tunability of their energy levels, and their ease of synthesis. High-efficiency polymer donors have been tested with these non-fullerene acceptors in order to further boost the efficiency of organic solar cells. Most of the polymer:fullerene systems are optimized with solvent additives for high efficiency, while little attention has been paid to NFA-based solar cells so far. In this report, the effect of the most common additive, 1,8-diiodooctane (DIO), on PTB7-Th:PC71BM solar cells is investigated and it is compared with non-fullerene acceptor 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno-[1,2-b:5,6b′]di-thiophene (ITIC) devices. It is interesting that the high boiling solvent additive does have a negative impact on the power conversion efficiency when PTB7-Th is blended with ITIC acceptor. The solar cell devices are studied in terms of their optical, photophysical, and morphological properties and find out that PTB7-Th:ITIC devices with DIO results in coarser domains, reduced absorption strength, and slightly lower mobility, while DIO improves the absorption strength of the PTB7-Th:PC71BM blend film and increase the aggregation of PC71BM in the blend, resulting in higher fill factor and Jsc.

  13. Phenyl vs Alkyl Polythiophene: A Solar Cell Comparison Using a Vinazene Derivative as Acceptor

    KAUST Repository

    Woo, Claire H.

    2010-03-09

    The solar cell performance of poly[3-(4-n-octyl)-phenylthiophene] (POPT) and poly(3hexylthiophene) (P3HT) are compared in devices using 4,7-bis(2-(l-(2-ethylhexyl)-4,5-dicyanoimidazol-2-yl)vinyi)benzo[c][l,2,5] -thiadiazole (EV-BT) as the electron acceptor. Despite their reduced light absorption, POPT:EV-BT devices generate higher photocurrents in both bilayer and bulk heterojunction (BHJ) architectures than analogous P3HT:EV-BT devices. Optimized POPT:EV-BT BHJ devices achieve 1.4% average efficiency, whereas the analogous P3HT devices only reach 1.1%. Morphology does not account for the large difference in performance as AFM studies of the active layer suggest, comparable levels of phase separation in the two systems. Reverse bias analysis demonstrates that P3HT devices have a higher maximum potential than POPT devices, but P3HT devices appear to be more severely limited by recombination losses under standard operating conditions. A possible explanation for the superior performance in POPT devices is that the pendant phenyl ring in POPT can twist out-of-plane and increase the separation distance with the acceptor molecule. A larger donor/acceptor separation distance can destabilize the geminate pair and lead to more efficient charge separation in POPT:EV-BT devices. Our results emphasize the importance of donor/acceptor pair interactions and its effect on charge separation, processes in polymer solar cells. © 2010 American Chemical Society.

  14. Experimental approaches to membrane thermodynamics

    DEFF Research Database (Denmark)

    Westh, Peter

    2009-01-01

    Thermodynamics describes a system on the macroscopic scale, yet it is becoming an important tool for the elucidation of many specific molecular aspects of membrane properties. In this note we discuss this application of thermodynamics, and give a number of examples on how thermodynamic measuremen...... have contributed to the understanding of specific membrane phenomena. We mainly focus on non-specific interactions of bilayers and small molecules (water and solutes) in the surrounding solvent, and the changes in membrane properties they bring about. Differences between thermodynamic...... and stoichiometric (structural) definitions of non-specific binding or partitioning are emphasized, and it is concluded that this distinction is important for weak, but not for strong, interactions....

  15. Medium-Bandgap Small-Molecule Donors Compatible with Both Fullerene and Nonfullerene Acceptors.

    Science.gov (United States)

    Huo, Yong; Yan, Cenqi; Kan, Bin; Liu, Xiao-Fei; Chen, Li-Chuan; Hu, Chen-Xia; Lau, Tsz-Ki; Lu, Xinhui; Sun, Chun-Lin; Shao, Xiangfeng; Chen, Yongsheng; Zhan, Xiaowei; Zhang, Hao-Li

    2018-03-21

    Much effort has been devoted to the development of new donor materials for small-molecule organic solar cells due to their inherent advantages of well-defined molecular weight, easy purification, and good reproducibility in photovoltaic performance. Herein, we report two small-molecule donors that are compatible with both fullerene and nonfullerene acceptors. Both molecules consist of an (E)-1,2-di(thiophen-2-yl)ethane-substituted (TVT-substituted) benzo[1,2-b:4,5-b']dithiophene (BDT) as the central unit, and two rhodanine units as the terminal electron-withdrawing groups. The central units are modified with either alkyl side chains (DRBDT-TVT) or alkylthio side chains (DRBDT-STVT). Both molecules exhibit a medium bandgap with complementary absorption and proper energy level offset with typical acceptors like PC 71 BM and IDIC. The optimized devices show a decent power conversion efficiency (PCE) of 6.87% for small-molecule organic solar cells and 6.63% for nonfullerene all small-molecule organic solar cells. Our results reveal that rationally designed medium-bandgap small-molecule donors can be applied in high-performance small-molecule organic solar cells with different types of acceptors.

  16. Partial purification of xylosyltransferase (XylT) from rat liver and characterization of endogenous acceptors

    International Nuclear Information System (INIS)

    Klinger, M.; Roden, L.

    1986-01-01

    The biosynthesis of the carbohydrate-protein linkage region of most proteoglycan species is initiated by transfer of xylose from UDP-xylose to serine hydroxyl groups in the core protein. The XylT catalyzing this reaction has been previously purified from embryonic chick cartilage and from a rat chondrosarcoma but not from a normal mammalian tissue. In this study, XylT was extracted from rat liver by homogenization in buffer containing 1 M KCl and was partially purified by chromatography on heparin-Sepharose, AH-Sepharose, and on Sepharose-linked tryptic fragments of silk fibroin. The eluate from the latter contained more than 40% of the applied activity and less than 5% of the protein. Gel chromatography of XylT eluted from heparin-Sepharose indicated a mol. wt. of 95,000 to 100,000. Incorporation of ( 3 H)xylose into endogenous acceptors in the crude extract amounted to more than 50% of the total observed with added substrate (silk fibroin). Of the total endogenous acceptor activity in the crude extract, 98% was not adsorbed to heparin-Sepharose and yielded a labeled product which was stable to treatment with 0.5 M NaOH at 20 0 C for 16 h; this material may have been glycogen. In contrast, most of the radioactivity incorporated into the endogenous acceptor in the heparin-Sepharose eluate was alkali-labile, as would be expected for the xylosylated core protein of a proteoglycan

  17. Charge transfer in the electron donor-acceptor complex BH3NH3.

    Science.gov (United States)

    Mo, Yirong; Song, Lingchun; Wu, Wei; Zhang, Qianer

    2004-03-31

    As a simple yet strongly binding electron donor-acceptor (EDA) complex, BH(3)NH(3) serves as a good example to study the electron pair donor-acceptor complexes. We employed both the ab initio valence bond (VB) and block-localized wave function (BLW) methods to explore the electron transfer from NH(3) to BH(3). Conventionally, EDA complexes have been described by two diabatic states: one neutral state and one ionic charge-transferred state. Ab initio VB self-consistent field (VBSCF) computations generate the energy profiles of the two diabatic states together with the adiabatic (ground) state. Our calculations evidently demonstrated that the electron transfer between NH(3) and BH(3) falls in the abnormal regime where the reorganization energy is less than the exoergicity of the reaction. The nature of the NH(3)-BH(3) interaction is probed by an energy decomposition scheme based on the BLW method. We found that the variation of the charge-transfer energy with the donor-acceptor distance is insensitive to the computation levels and basis sets, but the estimation of the amount of electron transferred heavily depends on the population analysis procedures. The recent resurgence of interest in the nature of the rotation barrier in ethane prompted us to analyze the conformational change of BH(3)NH(3), which is an isoelectronic system with ethane. We found that the preference of the staggered structure over the eclipsed structure of BH(3)NH(3) is dominated by the Pauli exchange repulsion.

  18. Transferase Activity of Lactobacillal and Bifidobacterial β-Galactosidases with Various Sugars as Galactosyl Acceptors.

    Science.gov (United States)

    Arreola, Sheryl Lozel; Intanon, Montira; Wongputtisin, Pairote; Kosma, Paul; Haltrich, Dietmar; Nguyen, Thu-Ha

    2016-03-30

    The β-galactosidases from Lactobacillus reuteri L103 (Lreuβgal), Lactobacillus delbrueckii subsp. bulgaricus DSM 20081 (Lbulβgal), and Bifidobacterium breve DSM 20281 (Bbreβgal-I and Bbreβgal-II) were investigated in detail with respect to their propensity to transfer galactosyl moieties onto lactose, its hydrolysis products D-glucose and D-galactose, and certain sugar acceptors such as N-acetyl-D-glucosamine (GlcNAc), N-acetyl-D-galactosamine (GalNAc), and L-fucose (Fuc) under defined, initial velocity conditions. The rate constants or partitioning ratios (kNu/kwater) determined for these different acceptors (termed nucleophiles, Nu) were used as a measure for the ability of a certain substance to act as a galactosyl acceptor of these β-galactosidases. When using Lbulβgal or Bbreβgal-II, the galactosyl transfer to GlcNAc was 6 and 10 times higher than that to lactose, respectively. With lactose and GlcNAc used in equimolar substrate concentrations, Lbulβgal and Bbreβgal-II catalyzed the formation of N-acetyl-allolactosamine with the highest yields of 41 and 24%, respectively, as calculated from the initial GlcNAc concentration.

  19. His166 is the Schiff base proton acceptor in attractant phototaxis receptor sensory rhodopsin I.

    Science.gov (United States)

    Sasaki, Jun; Takahashi, Hazuki; Furutani, Yuji; Sineshchekov, Oleg A; Spudich, John L; Kandori, Hideki

    2014-09-23

    Photoactivation of attractant phototaxis receptor sensory rhodopsin I (SRI) in Halobacterium salinarum entails transfer of a proton from the retinylidene chromophore's Schiff base (SB) to an unidentified acceptor residue on the cytoplasmic half-channel, in sharp contrast to other microbial rhodopsins, including the closely related repellent phototaxis receptor SRII and the outward proton pump bacteriorhodopsin, in which the SB proton acceptor is an aspartate residue salt-bridged to the SB in the extracellular (EC) half-channel. His166 on the cytoplasmic side of the SB in SRI has been implicated in the SB proton transfer reaction by mutation studies, and mutants of His166 result in an inverted SB proton release to the EC as well as inversion of the protein's normally attractant phototaxis signal to repellent. Here we found by difference Fourier transform infrared spectroscopy the appearance of Fermi-resonant X-H stretch modes in light-minus-dark difference spectra; their assignment with (15)N labeling and site-directed mutagenesis demonstrates that His166 is the SB proton acceptor during the photochemical reaction cycle of the wild-type SRI-HtrI complex.

  20. Electron Acceptors Based on α-Substituted Perylene Diimide (PDI) for Organic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Donglin [Department; Wu, Qinghe [Department; Cai, Zhengxu [Department; Zheng, Tianyue [Department; Chen, Wei [Materials; Institute; Lu, Jessica [Department; Yu, Luping [Department

    2016-02-02

    Perylene diimide (PDI) derivatives functionalized at the ortho-position (αPPID, αPBDT) were synthesized and used as electron acceptors in non-fullerene organic photovoltaic cells. Because of the good planarity and strong π-stacking of ortho-functionalized PDI, the αPPID and αPBDT exhibit a strong tendency to form aggregates, which endow the materials with high electron mobility. The inverted OPVs employing αPDI-based compounds as the acceptors and PBT7-Th as the donor give the highest power conversion efficiency (PCE) values: 4.92% for αPBDT-based devices and 3.61% for αPPID-based devices, which are, respectively, 39% and 4% higher than that of their β-substituted counterparts βPBDT and βPPID. Charge separation studies show more efficient exciton dissociation at interfaces between αPDI-based compounds and PTB7-Th. The results suggest that α-substituted PDI derivatives are more promising electron acceptors for organic photovoltaic (OPV) components than β-isomers.

  1. Counselor Identity: Conformity or Distinction?

    Science.gov (United States)

    McLaughlin, Jerry E.; Boettcher, Kathryn

    2009-01-01

    The authors explore 3 debates in other disciplines similar to counseling's identity debate in order to learn about common themes and outcomes. Conformity, distinction, and cohesion emerged as common themes. They conclude that counselors should retain their distinctive, humanistic approach rather than conforming to the dominant, medical approach.

  2. 3D pressure field in lipid membranes and membrane-protein complexes

    DEFF Research Database (Denmark)

    Ollila, O H Samuli; Risselada, H Jelger; Louhivuori, Martti

    2009-01-01

    We calculate full 3D pressure fields for inhomogeneous nanoscale systems using molecular dynamics simulation data. The fields represent systems with increasing level of complexity, ranging from semivesicles and vesicles to membranes characterized by coexistence of two phases, including also...... a protein-membrane complex. We show that the 3D pressure field is distinctly different for curved and planar bilayers, the pressure field depends strongly on the phase of the membrane, and that an integral protein modulates the tension and elastic properties of the membrane....

  3. Localization of xanthine oxidoreductase activity using the tissue protectant polyvinyl alcohol and final electron acceptor Tetranitro BT

    NARCIS (Netherlands)

    Kooij, A.; Frederiks, W. M.; Gossrau, R.; van Noorden, C. J.

    1991-01-01

    We have detected xanthine oxidoreductase activity in unfixed cryostat sections of rat and chicken liver, rat duodenum, and bovine mammary gland using the tissue protectant polyvinyl alcohol, the electron carrier 1-methoxyphenazine methosulfate, the final electron acceptor Tetranitro BT, and

  4. Extracting fluorescence signal due to direct excitation of the energy acceptor from quantum dot-based FRET

    International Nuclear Information System (INIS)

    Huang Chaobiao; Wu Chuanliu; Zhao Yibing

    2010-01-01

    An 'in situ' strategy for extracting the fluorescence signal of dye acceptors due to direct excitation from Qdot-based FRET systems has been reported. The relevant theory model was developed to describe the present strategy. This strategy involves selective control of the quantum yield of Qdot donors 'in situ', not only providing a straightforward approach to qualitatively confirm the FRET-based fluorescence enhancement but also allowing us to quantitatively separate the fluorescence signal of dye acceptors due to direct excitation and FRET enhancement from each other with high precision and convenient procedures. Different from existing method which was commonly used in literatures, our 'in situ' strategy does not involve complicated quantification of the dye acceptors conjugated on the surface of Qdots. Results indicated that the fraction of the emission from the dye acceptors due to FRET process decreases with the increase in the amount of dye acceptors on the Qdot surface. In addition, the relation between the quantum yield of Qdot donors and the FRET enhancement factor of the dye acceptors have also been explored for the first time by the present 'in situ' strategy.

  5. Long-Lived Charge Separation at Heterojunctions between Semiconducting Single-Walled Carbon Nanotubes and Perylene Diimide Electron Acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun Suk [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Arias, Dylan H [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Blackburn, Jeffrey L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sisto, Thomas J. [Columbia University; Peurifoy, Samuel [Columbia University; Zhang, Boyuan [Columbia University; Nuckolls, Colin [Columbia University

    2018-04-13

    Nonfullerene electron acceptors have facilitated a recent surge in the efficiencies of organic solar cells, although fundamental studies of the nature of exciton dissociation at interfaces with nonfullerene electron acceptors are still relatively sparse. Semiconducting single-walled carbon nanotubes (s-SWCNTs), unique one-dimensional electron donors with molecule-like absorption and highly mobile charges, provide a model system for studying interfacial exciton dissociation. Here, we investigate excited-state photodynamics at the heterojunction between (6,5) s-SWCNTs and two perylene diimide (PDI)-based electron acceptors. Each of the PDI-based acceptors, hPDI2-pyr-hPDI2 and Trip-hPDI2, is deposited onto (6,5) s-SWCNT films to form a heterojunction bilayer. Transient absorption measurements demonstrate that photoinduced hole/electron transfer occurs at the photoexcited bilayer interfaces, producing long-lived separated charges with lifetimes exceeding 1.0 us. Both exciton dissociation and charge recombination occur more slowly for the hPDI2-pyr-hPDI2 bilayer than for the Trip-hPDI2 bilayer. To explain such differences, we discuss the potential roles of the thermodynamic charge transfer driving force available at each interface and the different molecular structure and intermolecular interactions of PDI-based acceptors. Detailed photophysical analysis of these model systems can develop the fundamental understanding of exciton dissociation between organic electron donors and nonfullerene acceptors, which has not been systematically studied.

  6. Transcriptional regulation of the outer membrane porin gene ompW reveals its physiological role during the transition from the aerobic to the anaerobic lifestyle of Escherichia coli

    Directory of Open Access Journals (Sweden)

    Minfeng eXiao

    2016-05-01

    Full Text Available Understanding bacterial physiology relies on elucidating the regulatory mechanisms and cellular functions of those differentially expressed genes in response to environmental changes. A widespread Gram-negative bacterial outer membrane protein OmpW has been implicated in the adaptation to stresses in various species. It is recently found to be present in the regulon of the global anaerobic transcription factor FNR and ArcA in E. coli. However, little is known about the physiological implications of this regulatory disposition. In this study, we demonstrate that transcription of ompW is indeed mediated by a series of global regulators involved in the anaerobiosis of E. coli. We show that FNR can both activate and repress the expression of ompW through its direct binding to two distinctive sites, -81.5 and -126.5 bp respectively, on ompW promoter. ArcA also participates in repression of ompW under anaerobic condition, but in an FNR dependent manner. Additionally, ompW is also subject to the regulation by CRP and NarL which senses the availability and types of carbon sources and respiration electron acceptors in the environment respectively, implying a role of OmpW in the carbon and energy metabolism of E. coli during its anaerobic adaptation. Molecular docking reveals that OmpW can bind fumarate, an alternative electron acceptor in anaerobic respiration, with sufficient affinity. Moreover, supplement of fumarate or succinate which belongs to the C4-dicarboxylates family of metabolite, to E. coli culture rescues OmpW-mediated colicin S4 killing. Taken together, we propose that OmpW is involved in anaerobic carbon and energy metabolism to mediate the transition from aerobic to anaerobic lifestyle in E. coli.

  7. New Polymeric Membranes for Organic Solvent Nanofiltration

    KAUST Repository

    Aburabie, Jamaliah

    2017-05-01

    The focus of this dissertation was the development, synthesis and modification of polymers for the preparation of membranes for organic solvent nanofiltration. High chemical stability in a wide range of solvents was a key requirement. Membranes prepared from synthesized polymers as well as from commercial polymers were designed and chemically modified to reach OSN requirements. A solvent stable thin-film composite (TFC) membrane is reported, which is fabricated on crosslinked polythiosemicarbazide (PTSC) as substrate. The membranes exhibited high fluxes towards solvents like THF, DMF and DMSO ranging around 20 L/m2 h at 5 bar with a MWCO of around 1000 g/mol. Ultrafiltration PTSC membranes were prepared by non-solvent induced phase separation and crosslinked with GPTMS. The crosslinking reaction was responsible for the formation of an inorganic-type-network that tuned the membrane pore size. The crosslinked membranes acquired high solvent stability in DMSO, DMF and THF with a MWCO above 1300 g/mol. Reaction Induced Phase Separation (RIPS) was introduced as a new method for the preparation of skinned asymmetric membranes. These membranes have two distinctive layers with different morphologies both from the same polymer. The top dense layer is composed of chemically crosslinked polymer chains while the bottom layer is a porous structure formed by non-crosslinked polymer chains. Such membranes were tested for vitamin B12 in solvents after either crosslinking the support or dissolving the support and fixing the freestanding membrane on alumina. Pebax® 1657 was utilized for the preparation of composite membranes by simple coating. Porous PAN membranes were coated with Pebax® 1657 which was then crosslinked using TDI. Crosslinked Pebax® membranes show high stability towards ethanol, propanol and acetone. The membranes were also stable in DMF once crosslinked PAN supports were used. Sodium alginate polymer was investigated for the preparation of thin film composite

  8. Distinction

    OpenAIRE

    2010-01-01

    Pr Serge Haroche La Médaille d’or 2009 du CNRS est décernée au Pr Serge Haroche, titulaire de la chaire de Physique quantique depuis 2001. Serge Haroche est spécialiste de physique atomique et d’optique quantique. Il est l’un des fondateurs de l’électrodynamique quantique en cavité, domaine qui permet, par des expériences conceptuellement simples, d’éclairer les fondements de la théorie quantique et de réaliser des prototypes de systèmes de traitement quantique de l’information. Serge Haroche...

  9. OmcF, a Putative c-Type Monoheme Outer Membrane Cytochrome Required for the Expression of Other Outer Membrane Cytochromes in Geobacter sulfurreducens

    OpenAIRE

    Kim, Byoung-Chan; Leang, Ching; Ding, Yan-Huai R.; Glaven, Richard H.; Coppi, Maddalena V.; Lovley, Derek R.

    2005-01-01

    Outer membrane cytochromes are often proposed as likely agents for electron transfer to extracellular electron acceptors, such as Fe(III). The omcF gene in the dissimilatory Fe(III)-reducing microorganism Geobacter sulfurreducens is predicted to code for a small outer membrane monoheme c-type cytochrome. An OmcF-deficient strain was constructed, and its ability to reduce and grow on Fe(III) citrate was found to be impaired. Following a prolonged lag phase (150 h), the OmcF-deficient strain de...

  10. Versatile membrane deformation potential of activated pacsin.

    Directory of Open Access Journals (Sweden)

    Shih Lin Goh

    Full Text Available Endocytosis is a fundamental process in signaling and membrane trafficking. The formation of vesicles at the plasma membrane is mediated by the G protein dynamin that catalyzes the final fission step, the actin cytoskeleton, and proteins that sense or induce membrane curvature. One such protein, the F-BAR domain-containing protein pacsin, contributes to this process and has been shown to induce a spectrum of membrane morphologies, including tubules and tube constrictions in vitro. Full-length pacsin isoform 1 (pacsin-1 has reduced activity compared to its isolated F-BAR domain, implicating an inhibitory role for its C-terminal Src homology 3 (SH3 domain. Here we show that the autoinhibitory, intramolecular interactions in pacsin-1 can be released upon binding to the entire proline-rich domain (PRD of dynamin-1, resulting in potent membrane deformation activity that is distinct from the isolated F-BAR domain. Most strikingly, we observe the generation of small, homogenous vesicles with the activated protein complex under certain experimental conditions. In addition, liposomes prepared with different methods yield distinct membrane deformation morphologies of BAR domain proteins and apparent activation barriers to pacsin-1's activity. Theoretical free energy calculations suggest bimodality of the protein-membrane system as a possible source for the different outcomes, which could account for the coexistence of energetically equivalent membrane structures induced by BAR domain-containing proteins in vitro. Taken together, our results suggest a versatile role for pacsin-1 in sculpting cellular membranes that is likely dependent both on protein structure and membrane properties.

  11. Donor–acceptor graphene-based hybrid materials facilitating photo-induced electron-transfer reactions

    Directory of Open Access Journals (Sweden)

    Anastasios Stergiou

    2014-09-01

    Full Text Available Graphene research and in particular the topic of chemical functionalization of graphene has exploded in the last decade. The main aim is to increase the solubility and thereby enhance the processability of the material, which is otherwise insoluble and inapplicable for technological applications when stacked in the form of graphite. To this end, initially, graphite was oxidized under harsh conditions to yield exfoliated graphene oxide sheets that are soluble in aqueous media and amenable to chemical modifications due to the presence of carboxylic acid groups at the edges of the lattice. However, it was obvious that the high-defect framework of graphene oxide cannot be readily utilized in applications that are governed by charge-transfer processes, for example, in solar cells. Alternatively, exfoliated graphene has been applied toward the realization of some donor–acceptor hybrid materials with photo- and/or electro-active components. The main body of research regarding obtaining donor–acceptor hybrid materials based on graphene to facilitate charge-transfer phenomena, which is reviewed here, concerns the incorporation of porphyrins and phthalocyanines onto graphene sheets. Through illustrative schemes, the preparation and most importantly the photophysical properties of such graphene-based ensembles will be described. Important parameters, such as the generation of the charge-separated state upon photoexcitation of the organic electron donor, the lifetimes of the charge-separation and charge-recombination as well as the incident-photon-to-current efficiency value for some donor–acceptor graphene-based hybrids, will be discussed.

  12. Flexible biological arsenite oxidation utilizing NOxand O2as alternative electron acceptors.

    Science.gov (United States)

    Wang, Jie; Wan, Junfeng; Wu, Zihao; Li, Hongli; Li, Haisong; Dagot, Christophe; Wang, Yan

    2017-07-01

    The feasibility of flexible microbial arsenite (As III ) oxidation coupled with the reduction of different electron acceptors was investigated. The results indicated the acclimated microorganisms could oxidize As III with oxygen, nitrate and nitrite as the alternative electron acceptors. A series of batch tests were conducted to measure the kinetic parameters of As III oxidation and to evaluate the effects of environmental conditions including pH and temperature on the activity of biological As III oxidation dependent on different electron acceptors. Kinetic results showed that oxygen-dependent As III oxidation had the highest oxidation rate (0.59 mg As g -1  VSS min -1 ), followed by nitrate- (0.40 mg As g -1  VSS min -1 ) and nitrite-dependent As III oxidation (0.32 mg As g -1  VSS min -1 ). The kinetic data of aerobic As III oxidation were fitted well with the Monod kinetic model, while the Haldane substrate inhibition model was better applicable to describe the inhibition of anoxic As III oxidation. Both aerobic and anoxic As III oxidation performed the optimal activity at the near neutral pH. Besides, the optimal temperature for oxygen-, nitrate- and nitrite-dependent As III oxidation was 30 ± 1 °C, 40 ± 1 °C and 20 ± 1 °C, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effect of potential electron acceptors on anoxic ammonia oxidation in the presence of organic carbon

    Energy Technology Data Exchange (ETDEWEB)

    Sabumon, P.C., E-mail: pcsabumon@yahoo.co.in [Environmental Engineering Division, School of Mechanical and Building Sciences, VIT University, Vellore 632 014 (India)

    2009-12-15

    A novel route of anoxic ammonia removal in the presence of organic carbon was identified recently from ecosystems contaminated with ammonia. Sequencing batch reactor (SBR) studies were carried out in anoxic condition at oxidation-reduction potential varied from -185 to -275 mV for anoxic ammonia oxidation with adapted biomass (mixed culture). SBR studies were carried out in absence and in the presence of externally added organic carbon and/or in the presence of inorganic electron acceptors like NO{sub 2}{sup -}, NO{sub 3}{sup -} and SO{sub 4}{sup 2-}. The results showed anoxic ammonia oxidation to nitrate (in contrast to reported anammox process) in the presence of organic carbon available through endogenous respiration whereas anoxic ammonia oxidation was effective in the presence of externally added organic compound for nitrogen removal. The presence of externally added inorganic electron acceptors like NO{sub 2}{sup -}, NO{sub 3}{sup -} and SO{sub 4}{sup 2-} was effective in anoxic ammonia oxidation, but failed to follow the reported anammox reaction's stoichiometry in nitrogen removal in the presence of organic carbon. However, the presence of NO{sub 2}{sup -} affected best in total nitrogen removal compared to other electron acceptors and maximum ammonia removal rate was 100 mg NH{sub 4}{sup +}/g MLVSS/d. Based on the results, it is possible to suggest that rate of anoxic ammonia oxidation depends up on the respiration activities of mixed culture involving organic carbon, NO{sub 2}{sup -}, NO{sub 3}{sup -} and SO{sub 4}{sup 2-}. The process shows possibilities of new pathways of ammonia oxidation in organic contaminated sediments and/or wastewater in anoxic conditions.

  14. Merocyanines: polyene-polymethine transition in donor-acceptor-substituted stilbenes and polyenes

    International Nuclear Information System (INIS)

    Rettig, Wolfgang; Dekhtyar, Marina

    2003-01-01

    Three series of donor-acceptor-substituted conjugated compounds, namely, stilbenes, the open-chain polyenes of equivalent length, and the species of intermediate structure (polyenes terminated with only one phenyl ring) have been studied by the AM1 and HMO methods to elucidate and compare the structural prerequisites of the ideal polymethinic state ('cyanine limit'). The transition from polyenic to polymethinic properties has been traced in terms of bond-length (bond-order) alternation using the variation of terminal donor and acceptor substituents. Stilbenes manifest themselves as notably 'retarded' polyenes since a larger electronic asymmetry is necessary for them to reach the same degree of polymethinic character. The ground and the excited state have been shown to differ much more strongly for stilbenes than for polyenes with respect to the position of the bond equalization point on the scale of donor-acceptor difference. For the compounds containing one phenyl ring, the features revealed are intermediate between stilbenes and polyenes. The large S 0 -S 1 discrepancy in terms of bond alternation is a general property of aromatic ring-terminated chains (stilbenes) and is related to the influence of the aromatic character which can be quantified in this way. In this context, the most relevant definition for the cyanine limit (based on the bond invariance upon excitation) was selected from the existing definitions. The major trends revealed in the polyenic/polymethinic behaviour of the molecules can be interpreted on a topological basis within HMO or even simpler models with some additional influence due to the interelectronic repulsion which is taken into account in the AM1 treatment

  15. Catechol glucosides act as donor/acceptor substrates of glucansucrase enzymes of Lactobacillus reuteri.

    Science.gov (United States)

    Te Poele, Evelien M; Valk, Vincent; Devlamynck, Tim; van Leeuwen, Sander S; Dijkhuizen, Lubbert

    2017-06-01

    Previously, we have shown that the glucansucrase GtfA-ΔN enzyme of Lactobacillus reuteri 121, incubated with sucrose, efficiently glucosylated catechol and we structurally characterized catechol glucosides with up to five glucosyl units attached (te Poele et al. in Bioconjug Chem 27:937-946, 2016). In the present study, we observed that upon prolonged incubation of GtfA-ΔN with 50 mM catechol and 1000 mM sucrose, all catechol had become completely glucosylated and then started to reappear. Following depletion of sucrose, this glucansucrase GtfA-ΔN used both α-D-Glcp-catechol and α-D-Glcp-(1→4)-α-D-Glcp-catechol as donor substrates and transferred a glucose unit to other catechol glycoside molecules or to sugar oligomers. In the absence of sucrose, GtfA-ΔN used α-D-Glcp-catechol both as donor and acceptor substrate to synthesize catechol glucosides with 2 to 10 glucose units attached and formed gluco-oligosaccharides up to a degree of polymerization of 4. Also two other glucansucrases tested, Gtf180-ΔN from L. reuteri 180 and GtfML1-ΔN from L. reuteri ML1, used α-D-Glcp-catechol and di-glucosyl-catechol as donor/acceptor substrate to synthesize both catechol glucosides and gluco-oligosaccharides. With sucrose as donor substrate, the three glucansucrase enzymes also efficiently glucosylated the phenolic compounds pyrogallol, resorcinol, and ethyl gallate; also these mono-glucosides were used as donor/acceptor substrates.

  16. Use of γ-hexachlorocyclohexane as a terminal electron acceptor by an anaerobic enrichment culture

    International Nuclear Information System (INIS)

    Elango, Vijai; Kurtz, Harry D.; Anderson, Christina; Freedman, David L.

    2011-01-01

    Highlights: ► Use of γ-hexachlorocyclohexane as a terminal electron acceptor was demonstrated. ► H 2 served as the electron donor for an enrichment culture that dechlorinated γ-HCH. ► H 2 consumption for acetogenesis and methanogenesis stopped in HEPES media. ► Addition of vancomycin significantly slowed the rate of γ-HCH dechlorination. ► Previously identified chlororespiring microbes were not detected in the enrichment. - Abstract: The use of γ-hexachlorocyclohexane (HCH) as a terminal electron acceptor via organohalide respiration was demonstrated for the first time with an enrichment culture grown in a sulfate-free HEPES-buffered anaerobic mineral salts medium. The enrichment culture was initially developed with soil and groundwater from an industrial site contaminated with HCH isomers, chlorinated benzenes, and chlorinated ethenes. When hydrogen served as the electron donor, 79–90% of the electron equivalents from hydrogen were used by the enrichment culture for reductive dechlorination of the γ-HCH, which was provided at a saturation concentration of approximately 10 mg/L. Benzene and chlorobenzene were the only volatile transformation products detected, accounting for 25% and 75% of the γ-HCH consumed (on a molar basis), respectively. The enrichment culture remained active with only hydrogen as the electron donor and γ-HCH as the electron acceptor through several transfers to fresh mineral salts medium for more than one year. Addition of vancomycin to the culture significantly slowed the rate of γ-HCH dechlorination, suggesting that a Gram-positive organism is responsible for the reduction of γ-HCH. Analysis of the γ-HCH dechlorinating enrichment culture did not detect any known chlororespiring genera, including Dehalobacter. In bicarbonate-buffered medium, reductive dechlorination of γ-HCH was accompanied by significant levels of acetogenesis as well as methanogenesis.

  17. Donor-Acceptor Copolymers Based on Thermally Cleavable Indigo, Isoindigo, and DPP Units: Synthesis, Field Effect Transistors, and Polymer Solar Cells.

    Science.gov (United States)

    Liu, Chunchen; Dong, Sheng; Cai, Ping; Liu, Peng; Liu, Shengjian; Chen, Junwu; Liu, Feng; Ying, Lei; Russell, Thomas P; Huang, Fei; Cao, Yong

    2015-05-06

    A series of donor-acceptor type of π-conjugated copolymers based on tert-butoxycarbonyl (t-Boc) substituted indigo, isoindigo or diketopyrrolopyrrole as the acceptor unit and a benzodithiophene derivative as the donor unit was designed and synthesized. These copolymers can be readily dissolved in organic solvents and can produce uniform films by solution deposition. Thermal treatment of copolymer films at 200 °C for 10 min resulted in elimination of t-Boc side groups in nearly quantitative yield as suggested by thermogravimetric analysis and Fourier transform infrared spectroscopy. The elimination of the bulky t-Boc side groups resulted in the emergence of N-H···O═C hydrogen bonding interactions by virtue of the lactam structures of the indigo, isoindigo and diketopyrrolopyrrole units. Of particular interests is the distinctly increased field-effect mobility of these copolymers after thermal treatment, which may arise from the enhanced coplanarity and intermolecular ordering of the indigo, isoindigo or diketopyrrolopyrrole units after elimination of the bulky t-Boc side groups. These results demonstrate that the incorporation of latent side groups provides a viable strategy to construct conjugated polymers that can attain more ordered intermolecular stacking by simple thermal treatments. On the other hand, despite the thermal cleavage of t-Boc groups can also lead to increased ordering of polymer chains when blending with [6,6]-phenyl C71 butyric acid methyl ester, the photovoltaic performances of the resulting bulk heterojunction solar cells did not obviously increase due to the serious phase separation and coarsening of the film morphology.

  18. On the coexistence of localized and extended acceptor states in high gap semiconductors

    International Nuclear Information System (INIS)

    Schirmer, O F

    2015-01-01

    Holes introduced into high gap materials by acceptor doping are often self-localized at anion sites as small polarons bound to the doping elements. The related lattice distortion lowers the hole energy; the hole levels thus tend to be deep. Electronic structure calculations of small polarons have identified, for some dopings, that such localized states can coexist with extended ones that result from the same doping. Using a scaling formalism, proposed by Emin and Holstein, it is shown that this appears to be a general phenomenon if the polaron-forming short-range hole–lattice coupling is taken into account. (invited article)

  19. Oligothiophene-S,S-dioxides as a class of electron-acceptor materials for organic photovoltaics

    International Nuclear Information System (INIS)

    Camaioni, N.; Ridolfi, G.; Fattori, V.; Favaretto, L.; Barbarella, G.

    2004-01-01

    Oligothiophene-S,S-dioxides are proposed as electron acceptors materials in organic blended photovoltaic devices. Photoinduced charge transfer is demonstrated in blends between a regioregular poly(3-hexylthiophene) and the oligomers, via photoluminescence spectroscopy. The enhanced photovoltaic performance exhibited by the blended cells, with respect to that of pristine devices in which the polymer is the active layer, represents further evidence for exciton dissociation. An increase of the power conversion efficiency up to sixty-fold is achieved by blending the polymer with the oligothiophene-S,S-dioxides

  20. Protein-protein interactions in the plant Golgi apparatus, studied with FRET acceptor photobleaching technique

    DEFF Research Database (Denmark)

    Poulsen, Christian Peter

    The focus of this Ph.D. study has primarily been to utilize and adapt the acceptor photobleaching technique for measuring of Förster resonance energy transfer (FRET) to tudy proteinprotein interactions (PPIs) among glycosyltranseferases (GTs) and nucleotide ugar transporters (NSTs) localized...... in rhamnogalacturonan-I biosynthesis was proved and further supported by BiFC and non-reducing gel. Finally, association among four different NSTs (AtUTr5, AtUTr5B, At5g41760 and At4g35335) was shown as both homo- and heterodimeric complexes. In conclusion, our findings point to the notion that enzymes and transporters...

  1. A Selenophene-Based Low-Bandgap Donor-Acceptor Polymer Leading to Fast Ambipolar Logic

    KAUST Repository

    Kronemeijer, Auke J.

    2012-02-20

    Fast ambipolar CMOS-like logic is demonstrated using a new selenophene-based donor-acceptor polymer semiconductor. The polymer exhibits saturation hole and electron mobilities of 0.46 cm 2/Vs and 0.84 cm 2/Vs. Inverters are fabricated with high gains while three-stage ring oscillators show stable oscillation with an unprecedented maximum frequency of 182 kHz at a relatively low supply voltage of 50 V. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Donor and Acceptor Polymers for Bulk Hetero Junction Solar Cell and Photodetector Applications

    KAUST Repository

    Cruciani, Federico

    2018-04-01

    Bulk heterojunction (BHJ) devices represent a very versatile family of organic cells for both the fields of solar energy conversion and photodetection. Organic photovoltaics (OPV) are an attractive alternative to their silicon-based counterparts because of their potential for low-cost roll-to-roll printing, and their intended application in light-weight mechanically conformable devices and in window-type semi-transparent PV modules. Of all proposed OPV candidates, polymer donor with different absorption range are especially promising when used in conjunction with complementary absorbing acceptor materials, like fullerene derivatives (PCBM), conjugated molecules or polymers, achieving nowadays power conversion efficiencies (PCEs) in the range of 10-13% and being a step closer to practical applications. Among the photodetectors (PD), low band gap polymer blended with PCBM decked out the attention, given their extraordinary range of detection from UV to IR and high detectivity values reached so far, compared to the inorganic devices. Since the research has been focused on the enhancement of those numbers for an effective commercialization of organic cells, the topic of the following thesis has been centered on the synthesis of different polymer structures with diverse absorption ranges, used as donor or acceptor, with emphasis on performance in various BHJ devices either for solar cells and photodetectors. In the first part, two new wide band gap polymers, used as donor material in BHJ devices blended with fullerene and small molecule acceptors, are presented. The PBDT_2FT and PBDTT_2FT have shown nice efficiencies from 7% to 9.8%. The device results are implemented with a morphology study and a specific application in a semi-transparent tandem device, reaching a record PCE of 5.4% for average level of transparency of 48%. In another section two new low band gap polymers (Eopt~ 1.26 eV) named DTP_2FBT and (Eopt~ 1.1 eV) named BDTT_BTQ are presented. While the DTP

  3. Synthesis of Donor-Acceptor Conjugated Polymers by "CLICK" Polymerization for OPV applications

    DEFF Research Database (Denmark)

    Brandt, Rasmus Guldbæk; Yu, Donghong

    The intent of this study was to utilize the Copper(I)-catalyzed Azide Alkyne Cycloaddition (CuAAC) as a polymerization technique (“Click” Polymerization) for synthesizing novel π-conjugated low band gap polymers for organic photovoltaic applications (OPV). The chosen approach was to synthesize...... an alternating electron donating (donor, D) and electron withdrawing (acceptor, A) co-polymer. The chosen monomers were well known units, and the novelty lies in using the monomer units with the click methodology. An insoluble alternating copolymer consisting of 2,7-diazido-9,9-dioctyl-9Hflourene and 1...

  4. Donor-acceptor-pair emission characterization in N-B doped fluorescent SiC

    DEFF Research Database (Denmark)

    Ou, Yiyu; Jokubavicius, Valdas; Kamiyama, Satoshi

    2011-01-01

    In the present work, we investigated donor-acceptor-pair emission in N-B doped fluorescent 6H-SiC, by means of photoluminescence, Raman spectroscopy, and angle-resolved photoluminescence. The photoluminescence results were interpreted by using a band diagram with Fermi-Dirac statistics. It is shown...... intensity in a large emission angle range was achieved from angle-resolved photoluminescence. The results indicate N-B doped fluorescent SiC as a good wavelength converter in white LEDs applications....

  5. From biological membranes to biomimetic model membranes

    Directory of Open Access Journals (Sweden)

    Eeman, M.

    2010-01-01

    Full Text Available Biological membranes play an essential role in the cellular protection as well as in the control and the transport of nutrients. Many mechanisms such as molecular recognition, enzymatic catalysis, cellular adhesion and membrane fusion take place into the biological membranes. In 1972, Singer et al. provided a membrane model, called fluid mosaic model, in which each leaflet of the bilayer is formed by a homogeneous environment of lipids in a fluid state including globular assembling of proteins and glycoproteins. Since its conception in 1972, many developments were brought to this model in terms of composition and molecular organization. The main development of the fluid mosaic model was made by Simons et al. (1997 and Brown et al. (1997 who suggested that membrane lipids are organized into lateral microdomains (or lipid rafts with a specific composition and a molecular dynamic that are different to the composition and the dynamic of the surrounding liquid crystalline phase. The discovery of a phase separation in the plane of the membrane has induced an explosion in the research efforts related to the biology of cell membranes but also in the development of new technologies for the study of these biological systems. Due to the high complexity of biological membranes and in order to investigate the biological processes that occur on the membrane surface or within the membrane lipid bilayer, a large number of studies are performed using biomimicking model membranes. This paper aims at revisiting the fundamental properties of biological membranes in terms of membrane composition, membrane dynamic and molecular organization, as well as at describing the most common biomimicking models that are frequently used for investigating biological processes such as membrane fusion, membrane trafficking, pore formation as well as membrane interactions at a molecular level.

  6. The cristal membrane of mitochondria is the principal site of oxidative phosphorylation.

    Science.gov (United States)

    Gilkerson, Robert W; Selker, Jeanne M L; Capaldi, Roderick A

    2003-07-10

    The inner membrane system of mitochondria us known to consist of two contiguous but distinct membranes: the inner boundary membrane, which apposes the outer membrane, and the cristal membrane, which forms tubules or lamellae in the interior. Using immunolabeling and transmission electron microscopy of bovine heart tissue, we have calculated that around 94% of both Complex III of the respiratory chain and the ATP synthase are located in the cristal membrane, and only around 6% of either is in the inner boundary membrane. When accounting for the topographical ratio of cristal membrane versus inner boundary membrane, we find that both complexes exist at a 2.2-2.6-fold higher concentration in the cristal membrane. The residual protein in the inner boundary membrane may be newly assembled complexes destined for cristal membranes. Our results argue for restricted diffusion of complexes through the cristal junctions and indicate that the mitochondrial cristae comprise a regulated submitochondrial compartment specialized for ATP production.

  7. FRET structure with non-radiative acceptor provided by dye-linker-glass surface complex and single-molecule photodynamics by TIRFM-polarized imaging

    International Nuclear Information System (INIS)

    Tani, Toshiro; Mashimo, Kei; Suzuki, Tetsu; Horiuchi, Hiromi; Oda, Masaru

    2008-01-01

    We present our recent study of microscopic single-molecule imaging on the artificial complex of tetramethylrhodamine linked with a propyl chain onto silica glass surface, i.e. an asymmetric fluorescence resonance energy transfer (FRET) structure with non-radiative acceptor. In the synthesis of the complex, we used a mixture of two kinds of isomers to introduce rather small photodynamic difference among them. This isomeric structure change will provide more or less a distinctive photophysical change in e.g. non-radiative relaxation rate. Our recent observation at room temperatures, so far, shows that such contributions can be discriminated in the histograms of the fluorescent spot intensities; broad but distinctive multi-components appear. To identify the isomeric difference as a cause of structures, some configurational assumptions are necessary. One such basic prerequisite is that the transition dipoles of the chromophores should be oriented almost parallel to the glass surface. In order to make clear the modeling, we also provide preliminary experiments on the polarization dependence of the imaging under rotating polarization in epi-illumination

  8. Importance of the hexagonal lipid phase in biological membrane organisation

    Directory of Open Access Journals (Sweden)

    Juliette eJouhet

    2013-12-01

    Full Text Available Abstract:Domains are present in every natural membrane. They are characterised by a distinctive protein and/or lipid composition. Their size is highly variable from the nano- to the micrometer scale. The domains confer specific properties to the membrane leading to original structure and function. The determinants leading to domain organisation are therefore important but remain obscure. This review presents how the ability of lipids to organize into hexagonal II or lamellar phases can promote particular local structures within membranes. Since biological membranes are composed of a mixture of lipids, each with distinctive biophysical properties, lateral and transversal sorting of lipids can promote creation of domains inside the membrane through local modulation of the lipid phase. Lipid biophysical properties have been characterized for long based on in vitro analyses using non-natural lipid molecules; their re-examinations using natural lipids might open interesting perspectives on membrane architecture occurring in vivo in various cellular and physiological contexts.

  9. Synthesis and properties of a decacyclene monoimide and a naphthalimide derivative as a three-dimensional acceptor-donor-acceptor system.

    Science.gov (United States)

    Kawase, Takeshi; Yamamoto, Yuma; Yoshida, Miu; Morii, Takuya; Nishida, Jun-Ichi; Kitamura, Chitoshi

    2018-02-06

    A method, which employs Diels-Alder (DA) cycloadditions of diacenaphtheno[1,2-b;1',2'-d]thiophenes (DAT) with N-alkylacenaphthylene-5,6-dicarboximides (AI), was developed to synthesize decacyclene monoimides (DCMI). The reactions generate the corresponding 1:2 adducts (BAIAs) as major products together with 1:1 adducts (DCMIs). The molecular structure of BAIAb (N-octyl derivative) was unambiguously assigned as the bis-adduct having an endo,endo spatial disposition of the two acenaphthylene-5,6-dicarboximide moieties by using X-ray crystallographic analysis. Relative to that of decacyclene triimide (DCTIa, N-2-ethylhexyl derivative), the analogous N-2-ethylhexyl-substituted mono-adduct DCMIa exhibits a bathochromic shift in its absorption spectrum despite possessing a less delocalized π-electron system. DCMIa does not fluoresce in various organic solvents, while DCTIa emits yellow fluorescence in CH2Cl2 with a low quantum yield (SN). Moreover, DCMIa in CDCl3 displays concentration-dependent 1H-NMR behavior, suggesting that it self-aggregates with an (association constant (Ka) of 193 ± 50 M-1 at 20 °C. Despite the presence of four bulky t-butyl groups in DCMIa, its Ka value for aggregate formation is comparable to that of DCTIa (495 ± 42 M-1), which does not contain t-butyl substituents. Spectroscopic studies with the bis-adduct BAIAa (N-2-ethylhexyl derivative) show that it displays remarkable solvatofluorochromism corresponding to an emission maximum shift (ΔλEM) of 100 nm. The results of density functional theory (DFT) calculations on BAIAc (N-methyl derivative) demonstrate that a considerable spatial separation exists between the HOMO and LUMO coefficient distributions, indicating that the ground-to-excited state transition of the novel three-dimensional acceptor-donor-acceptor system BAIAa should have intramolecular charge transfer (ICT) character. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Hydro-osmotic Instabilities in Active Membrane Tubes

    Science.gov (United States)

    Al-Izzi, Sami C.; Rowlands, George; Sens, Pierre; Turner, Matthew S.

    2018-03-01

    We study a membrane tube with unidirectional ion pumps driving an osmotic pressure difference. A pressure-driven peristaltic instability is identified, qualitatively distinct from similar tension-driven Rayleigh-type instabilities on membrane tubes. We discuss how this instability could be related to the function and biogenesis of membrane bound organelles, in particular, the contractile vacuole complex. The unusually long natural wavelength of this instability is in agreement with that observed in cells.

  11. Defining poverty as distinctively human

    Directory of Open Access Journals (Sweden)

    H.P.P. Lötter

    2007-05-01

    Full Text Available While it is relatively easy for most people to identify human beings suffering from poverty, it is rather more difficult to come to a proper understanding of poverty. In this article the author wants to deepen our understanding of poverty by interpreting the conventional definitions of poverty in a new light. The article starts with a defence of a claim that poverty is a concept uniquely applicable to humans. It then present a critical discussion of the distinction between absolute and relative poverty and it is then argued that a revision of this distinction can provide general standards applicable to humans everywhere.

  12. Modulation Doping of Silicon using Aluminium-induced Acceptor States in Silicon Dioxide

    Science.gov (United States)

    König, Dirk; Hiller, Daniel; Gutsch, Sebastian; Zacharias, Margit; Smith, Sean

    2017-01-01

    All electronic, optoelectronic or photovoltaic applications of silicon depend on controlling majority charge carriers via doping with impurity atoms. Nanoscale silicon is omnipresent in fundamental research (quantum dots, nanowires) but also approached in future technology nodes of the microelectronics industry. In general, silicon nanovolumes, irrespective of their intended purpose, suffer from effects that impede conventional doping due to fundamental physical principles such as out-diffusion, statistics of small numbers, quantum- or dielectric confinement. In analogy to the concept of modulation doping, originally invented for III-V semiconductors, we demonstrate a heterostructure modulation doping method for silicon. Our approach utilizes a specific acceptor state of aluminium atoms in silicon dioxide to generate holes as majority carriers in adjacent silicon. By relocating the dopants from silicon to silicon dioxide, Si nanoscale doping problems are circumvented. In addition, the concept of aluminium-induced acceptor states for passivating hole selective tunnelling contacts as required for high-efficiency photovoltaics is presented and corroborated by first carrier lifetime and tunnelling current measurements. PMID:28425460

  13. Partial least squares prediction of the first hyperpolarizabilities of donor-acceptor polyenic derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Machado, A.E. de A, E-mail: aeam@rpd.ufmg.br [Laboratorio de Quimica Computacional e Modelagem Molecular (LQC-MM), Departamento de Quimica, ICEx, Universidade Federal de Minas Gerais (UFMG), Campus Universitario, Pampulha, Belo Horizonte, MG 31270-90 (Brazil); Departamento de Quimica Fundamental, Universidade Federal de Pernambuco, Recife, PE 50740-540 (Brazil); Gama, A.A. de S da; Barros Neto, B. de [Departamento de Quimica Fundamental, Universidade Federal de Pernambuco, Recife, PE 50740-540 (Brazil)

    2011-09-22

    Graphical abstract: PLS regression equations predicts quite well static {beta} values for a large set of donor-acceptor organic molecules, in close agreement with the available experimental data. Display Omitted Highlights: {yields} PLS regression predicts static {beta} values of 35 push-pull organic molecules. {yields} PLS equations show correlation of {beta} with structural-electronic parameters. {yields} PLS regression selects best components of push-bridge-pull nonlinear compounds. {yields} PLS analyses can be routinely used to select novel second-order materials. - Abstract: A partial least squares regression analysis of a large set of donor-acceptor organic molecules was performed to predict the magnitude of their static first hyperpolarizabilities ({beta}'s). Polyenes, phenylpolyenes and biphenylpolyenes with augmented chain lengths displayed large {beta} values, in agreement with the available experimental data. The regressors used were the HOMO-LUMO energy gap, the ground-state dipole moment, the HOMO energy AM1 values and the number of {pi}-electrons. The regression equation predicts quite well the static {beta} values for the molecules investigated and can be used to model new organic-based materials with enhanced nonlinear responses.

  14. Partial least squares prediction of the first hyperpolarizabilities of donor-acceptor polyenic derivatives

    International Nuclear Information System (INIS)

    Machado, A.E. de A; Gama, A.A. de S da; Barros Neto, B. de

    2011-01-01

    Graphical abstract: PLS regression equations predicts quite well static β values for a large set of donor-acceptor organic molecules, in close agreement with the available experimental data. Display Omitted Highlights: → PLS regression predicts static β values of 35 push-pull organic molecules. → PLS equations show correlation of β with structural-electronic parameters. → PLS regression selects best components of push-bridge-pull nonlinear compounds. → PLS analyses can be routinely used to select novel second-order materials. - Abstract: A partial least squares regression analysis of a large set of donor-acceptor organic molecules was performed to predict the magnitude of their static first hyperpolarizabilities (β's). Polyenes, phenylpolyenes and biphenylpolyenes with augmented chain lengths displayed large β values, in agreement with the available experimental data. The regressors used were the HOMO-LUMO energy gap, the ground-state dipole moment, the HOMO energy AM1 values and the number of π-electrons. The regression equation predicts quite well the static β values for the molecules investigated and can be used to model new organic-based materials with enhanced nonlinear responses.

  15. Lipase-catalyzed biodiesel production with methyl acetate as acyl acceptor

    Energy Technology Data Exchange (ETDEWEB)

    Huang Ying; Yan Yunjun [School of Life Science and Technology, Huazhong Univ. of Science and Technology, Wuhan (China)

    2008-03-15

    Biodiesel is an alternative diesel fuel made from renewable biological resources. During the process of biodiesel production, lipase-catalyzed transesterification is a crucial step. However, current techniques using methanol as acyl acceptor have lower enzymatic activity; this limits the application of such techniques in large-scale biodiesel production. Furthermore, the lipid feedstock of currently available techniques is limited. In this paper, the technique of lipase-catalyzed transesterification of five different oils for biodiesel production with methyl acetate as acyl acceptor was investigated, and the transesterification reaction conditions were optimized. The operation stability of lipase under the obtained optimal conditions was further examined. The results showed that under optimal transesterification conditions, both plant oils and animal fats led to high yields of methyl ester: cotton-seed oil, 98%; rape-seed oil, 95%; soybean oil, 91%; tea-seed oil, 92%; and lard, 95%. Crude and refined cotton-seed oil or lard made no significant difference in yields of methyl ester. No loss of enzymatic activity was detected for lipase after being repeatedly used for 40 cycles (ca. 800 h), which indicates that the operational stability of lipase was fairly good under these conditions. Our results suggest that cotton-seed oil, rape-seed oil and lard might substitute soybean oil as suitable lipid feedstock for biodiesel production. Our results also show that our technique is fit for various lipid feedstocks both from plants and animals, and presents a very promising way for the large-scale biodiesel production. (orig.)

  16. Dithiafulvene-based organic sensitizers using pyridine as the acceptor for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jun; Cao, Yaxiong; Liang, Xiaozhong; Zheng, Jingxia; Zhang, Fang [Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Wei, Shuxian; Lu, Xiaoqing [College of Science, China University of Petroleum, Qingdao, Shandong 266555 (China); Guo, Kunpeng, E-mail: guokunpeng@tyut.edu.cn [Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Yang, Shihe, E-mail: chsyang@ust.hk [Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China)

    2017-05-01

    Three dithiafulvene-based metal-free organic sensitizers all using pyridine as the acceptor but with different π-bridges of phenyl (DTF-Py1), thienyl (DTF-Py2) and phenyl-thienyl (DTF-Py3) have been designed, synthesized and used as photosensitizers for dye-sensitized solar cells (DSCs). Introducing thienyl unit into the π-bridge, as well as extension of the π-bridge can dramatically improve their light harvesting ability and suppress the electron recombination, thus uplifting the performance of DSCs. The overall power conversion efficiency of DSC based on DTF-Py3 shows the highest efficiency of 2.61% with a short-circuit photocurrent density of 7.99 mA cm{sup -2}, an open-circuit photovoltage of 630 mV, and a fill factor of 0.52, under standard global AM 1.5 solar light condition. More importantly, the long-term stability of the DTF-Py3 based DSCs under 500 h light-soaking has been demonstrated. - Highlights: • Dithiafulvene sensitizers using pyridine ring as the acceptor were synthesized for the first time. • The power conversion efficiency of 2.61% was obtained for DTF-Py3 sensitized cell. • DTF-Py3 loaded TiO{sub 2} film shows improved light harvesting ability and suppressed electron recombination.

  17. Construction of Light-Harvesting Polymeric Vesicles in Aqueous Solution with Spatially Separated Donors and Acceptors.

    Science.gov (United States)

    Li, Huimei; Liu, Yannan; Huang, Tong; Qi, Meiwei; Ni, Yunzhou; Wang, Jie; Zheng, Yongli; Zhou, Yongfeng; Yan, Deyue

    2017-07-01

    This communication describes polymer vesicles self-assembled from hyperbranched polymers (branched polymersomes (BPs)) as scaffolds, conceptually mimicking the natural light-harvesting system in aqueous solution. The system is constructed with hydrophobic 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl) as donors encapsulated in the hydrophobic hyperbranched cores of the vesicles and the hydrophilic Rhodamine B (RB) as acceptors incorporated on the surface of the vesicles through the cyclodextrin (CD)/RB host-guest interactions, through which the donors and acceptors are spatially separated to effectively avoid the self-quenching between donors. This vesicular light harvesting system has presented good energy transfer efficiency of about 80% in water, and can be used as the ink to write multiclolor letters. In addition, due to the giant dimension of BPs, the real-time fluorescent images of the vesicles under an optical microscope can be observed to prove the light-harvesting process. It is supposed that such a vesicular light-harvesting antenna can be used to construct artificial photosynthesis systems in the future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Free Carrier Generation in Fullerene Acceptors and Its Effect on Polymer Photovoltaics

    KAUST Repository

    Burkhard, George F.

    2012-12-20

    Early research on C60 led to the discovery that the absorption of photons with energy greater than 2.35 eV by bulk C60 produces free charge carriers at room temperature. We find that not only is this also true for many of the soluble fullerene derivatives commonly used in organic photovoltaics, but also that the presence of these free carriers has significant implications for the modeling, characterization, and performance of devices made with these materials. We demonstrate that the discrepancy between absorption and quantum efficiency spectra in P3HT:PCBM is due to recombination of such free carriers in large PCBM domains before they can be separated at a donor/acceptor interface. Since most theories assume that all free charges result from the separation of excitons at a donor/acceptor interface, the presence of free carrier generation in fullerenes can have a significant impact on the interpretation of data generated by numerous field-dependent techniques. © 2012 American Chemical Society.

  19. 48-spot single-molecule FRET setup with periodic acceptor excitation

    Science.gov (United States)

    Ingargiola, Antonino; Segal, Maya; Gulinatti, Angelo; Rech, Ivan; Labanca, Ivan; Maccagnani, Piera; Ghioni, Massimo; Weiss, Shimon; Michalet, Xavier

    2018-03-01

    Single-molecule Förster resonance energy transfer (smFRET) allows measuring distances between donor and acceptor fluorophores on the 3-10 nm range. Solution-based smFRET allows measurement of binding-unbinding events or conformational changes of dye-labeled biomolecules without ensemble averaging and free from surface perturbations. When employing dual (or multi) laser excitation, smFRET allows resolving the number of fluorescent labels on each molecule, greatly enhancing the ability to study heterogeneous samples. A major drawback to solution-based smFRET is the low throughput, which renders repetitive measurements expensive and hinders the ability to study kinetic phenomena in real-time. Here we demonstrate a high-throughput smFRET system that multiplexes acquisition by using 48 excitation spots and two 48-pixel single-photon avalanche diode array detectors. The system employs two excitation lasers allowing separation of species with one or two active fluorophores. The performance of the system is demonstrated on a set of doubly labeled double-stranded DNA oligonucleotides with different distances between donor and acceptor dyes along the DNA duplex. We show that the acquisition time for accurate subpopulation identification is reduced from several minutes to seconds, opening the way to high-throughput screening applications and real-time kinetics studies of enzymatic reactions such as DNA transcription by bacterial RNA polymerase.

  20. Modulation Doping of Silicon using Aluminium-induced Acceptor States in Silicon Dioxide

    Science.gov (United States)

    König, Dirk; Hiller, Daniel; Gutsch, Sebastian; Zacharias, Margit; Smith, Sean

    2017-04-01

    All electronic, optoelectronic or photovoltaic applications of silicon depend on controlling majority charge carriers via doping with impurity atoms. Nanoscale silicon is omnipresent in fundamental research (quantum dots, nanowires) but also approached in future technology nodes of the microelectronics industry. In general, silicon nanovolumes, irrespective of their intended purpose, suffer from effects that impede conventional doping due to fundamental physical principles such as out-diffusion, statistics of small numbers, quantum- or dielectric confinement. In analogy to the concept of modulation doping, originally invented for III-V semiconductors, we demonstrate a heterostructure modulation doping method for silicon. Our approach utilizes a specific acceptor state of aluminium atoms in silicon dioxide to generate holes as majority carriers in adjacent silicon. By relocating the dopants from silicon to silicon dioxide, Si nanoscale doping problems are circumvented. In addition, the concept of aluminium-induced acceptor states for passivating hole selective tunnelling contacts as required for high-efficiency photovoltaics is presented and corroborated by first carrier lifetime and tunnelling current measurements.

  1. General theory of excitation energy transfer in donor-mediator-acceptor systems.

    Science.gov (United States)

    Kimura, Akihiro

    2009-04-21

    General theory of the excitation energy transfer (EET) in the case of donor-mediator-acceptor system was constructed by using generalized master equation (GME). In this theory, we consider the direct and indirect transitions in the EET consistently. Hence, our theory includes the quantum mechanical interference between the direct and indirect transitions automatically. Memory functions in the GME were expressed by the overlap integrals among the time-dependent emission spectrum of the donor, the absorption spectrum of the mediator, the time-dependent emission spectrum of the mediator, and the absorption spectrum of the acceptor. In the Markov limit of the memory functions, we obtained the rate of EET which consists of three terms due to the direct transition, the indirect transition, and the interference between them. We found that the interference works effectively in the limit of slow thermalization at the intermediate state. The formula of EET rate in this limit was expressed by the convolution of the EET interaction and optical spectra. The interference effect strongly depends on the width of the absorption spectrum of mediator molecule and the energy gap between the donor and the mediator molecules.

  2. Triptycene based organometallic complexes: a new class of acceptor synthons for supramolecular ensembles.

    Science.gov (United States)

    Chakraborty, Sourav; Mondal, Snehasish; Bhowmick, Sourav; Ma, Jianqiu; Tan, Hongwei; Neogi, Subhadip; Das, Neeladri

    2014-09-21

    Preparation and characterization of two new triptycene based polytopic Pt(II) organometallic complexes are being reported. These complexes have three trans-bromobis(trialkylphosphine)platinum(II) units directly attached to the central triptycene unit. These organoplatinum complexes were converted to the corresponding nitrate salts for subsequent use in self-assembly reactions. Characterization of these organometallic triptycene complexes by multinuclear NMR, FTIR, mass spectrometry and elemental analyses is described. The molecular structure of one of the organoplatinum triptycene tripods was determined by single-crystal X-ray crystallography. The potential utility of these organometallic tritopic acceptors as building blocks in the construction of metallasupramolecular cages containing the triptycene motif is explored. Additionally, for the first time, 3,3'-bipyridine has been used as a flexible donor tecton for self-assembly of discrete and finite metallacages using triptycene based tritopic organometallic acceptor units. Triptycene motif containing supramolecules were characterized by multinuclear NMR (including (1)H DOSY), mass spectrometry and elemental analyses. Geometry of each supramolecular framework was optimized by employing the PM6 semiempirical molecular orbital method to predict its shape and size.

  3. Distinct physiological roles for the two L-asparaginase isozymes of Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Srikhanta, Yogitha N. [Department of Microbiology and Immunology, The University of Melbourne, Victoria 3010 (Australia); Atack, John M.; Beacham, Ifor R. [Institute for Glycomics, Griffith University, Gold Coast, QLD 4222 (Australia); Jennings, Michael P., E-mail: m.jennings@griffith.edu.au [Institute for Glycomics, Griffith University, Gold Coast, QLD 4222 (Australia)

    2013-07-05

    Highlights: •Escherichia coli contains two L-asparaginase isozymes with distinct localization, kinetics and regulation. •Mutant strains were used to examine the roles of these enzymes in L-asparagine utilization. •We report that L-asparaginase II permits growth on asparagine and glycerol under anaerobic conditions. •We propose that this enzyme is the first step in a co-regulated pathway leading to fumarate. •The pathway is regulated by anaerobiosis and cAMP and provides a terminal elector acceptor. -- Abstract: Escherichia coli expresses two L-asparaginase (EC 3.5.1.1) isozymes: L-asparaginse I, which is a low affinity, cytoplasmic enzyme that is expressed constitutively, and L-asparaginase II, a high affinity periplasmic enzyme that is under complex co-transcriptional regulation by both Fnr and Crp. The distinct localisation and regulation of these enzymes suggest different roles. To define these roles, a set of isogenic mutants was constructed that lacked either or both enzymes. Evidence is provided that L-asparaginase II, in contrast to L-asparaginase I, can be used in the provision of an anaerobic electron acceptor when using a non-fermentable carbon source in the presence of excess nitrogen.

  4. Thiophene-rich fused-aromatic thienopyrazine acceptor for donor–acceptor low band-gap polymers for OTFT and polymer solar cell applications

    KAUST Repository

    Mondal, Rajib

    2010-01-01

    Thiophene enriched fused-aromatic thieno[3,4-b]pyrazine systems were designed and employed to produce low band gap polymers (Eg = 1.0-1.4 eV) when copolymerized with fluorene and cyclopentadithiophene. The copolymers are mainly investigated for organic thin film transistor and organic photovoltaic applications. Molecular packing in the thin films of these polymers was investigated using Grazing incidence X-ray Scattering. Although both fluorene and cyclopentadithiophene polymers follow similar face to face π-π stacking, the latter polymers show much smaller lamellar d-spacings due to side-chain interdigitation between the lamellae. This lead to the higher charge carrier mobilities in cyclopentadithiophene polymers (up to 0.044 cm2/V.s) compared to fluorene polymers (up to 8.1 × 10-3 cm2/V.s). Power conversion efficiency of 1.4% was achieved using fluorene copolymer in solar cells with a fullerene derivative as an acceptor. Although the cyclopentadithiophene polymers show lower band gaps with higher absorption coefficients compared to fluorene copolymers, but the power conversion efficiencies in solar cells of these polymers are low due to their low ionization potentials. © The Royal Society of Chemistry 2010.

  5. Dye-incorporated Polynaphthalenediimide Acceptor for Additive-free High-performance All-polymer Solar Cells.

    Science.gov (United States)

    Chen, Dong; Yao, Jia; Yin, Jingping; Lv, Ruizhi; Huang, Bin; Liu, Siqi; Yang, Chunhe; Zhang, Zhiguo; Chen, Lie; Chen, Yiwang; Li, Yongfang

    2018-02-22

    All-polymer solar cells (all-PSCs) can offer unique advantages for applications in flexible devices, and naphthalene diimide (NDI)-based polymer acceptors are the widely used polymer acceptors. However, their power conversion efficiency (PCE) still lags behind that of state-of-the-art polymer solar cells, due to low light absorption, suboptimal energy levels and the strong aggregation of the NDI-based polymer acceptor. In this work, by means of simple random copolymerization, a rhodanine-based dye molecule was introduced into the NDI-based polymer acceptor and showed an improved light absorption coefficient, an up-shifted lowest unoccupied molecular orbital level and reduced crystallization. Consequently, additive-free all-PSCs demonstrated a high PCE of 8.13%, which is one of the highest performance characteristics reported for all-PSCs to date. These results indicate that incorporating dye into the n-type polymer yields insights into the precise design of high-performance polymer acceptors for all-PSCs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Molecular Interactions at Membranes

    DEFF Research Database (Denmark)

    Jagalski, Vivien

    Biological membranes are essential and complex structures in every living cell consisting of a fluid lipid bilayer sheet and membrane proteins. Its significance makes biological membranes not only interesting for medical research, but also has made it a target for toxins in the course of evolution....... Today, we know more than ever before about the properties of biological membranes. Advanced biophysical techniques and sophisticated membrane models allow us to answer specific questions about the structure of the components within membranes and their interactions. However, many detailed structural...... mechanisms of membrane compounds, including compounds associated with membranes, are still unknown due to the challenges that arise when probing the hydrophobic nature of the membrane's interior. For integral membrane proteins that span through the entire membrane, the amphiphilic environment is essential...

  7. Educational Psychology: The Distinctive Contribution

    Science.gov (United States)

    Cameron, R. J.

    2006-01-01

    This paper, written in the twenty-first anniversary year of the journal "Educational Psychology in Practice", attempts to uncover those distinctive aspects of the discipline and the practice of applied psychology in general and educational psychology in particular. After considering some of the reasons for attempting this task at this point in…

  8. A FRET-Based Approach for Quantitative Evaluation of Forskolin-Induced Pendrin Trafficking at the Plasma Membrane in Bronchial NCI H292 Cells

    Directory of Open Access Journals (Sweden)

    Grazia Tamma

    2013-12-01

    Full Text Available Background: Human pendrin (SLC26A4, PDS is an integral membrane protein acting as an electroneutral anion exchanger. Loss of function mutations in pendrin protein cause Pendred syndrome, a disorder characterized by sensorineural deafness and a partial iodide organification defect that may lead to thyroid goiter. Additionally, pendrin up-regulation could play a role in the pathogenesis of several diseases including bronchial asthma and chronic obstructive pulmonary disease (COPD. Therefore, monitoring the plasma membrane abundance and trafficking of pendrin in the context of a living cell is crucially important. Methods: Trafficking of pendrin to the plasma membrane was monitored by fluorescence resonance energy transfer (FRET, a physical phenomenon occurring between two fluorophores (the FRET donor and acceptor located in close spatial proximity. Because the efficiency of the energy transfer is inversely proportional to the sixth power of the distance between donor and acceptor, FRET is extremely sensitive to small changes in distance between the donor and acceptor and is therefore a powerful tool to determine protein-protein interactions. Results: FRET studies revealed that forskolin-induced cAMP production is associated with a significant increase of pendrin expression at plasma membrane, which is paralleled by a decrease in intracellular pH. Pendrin transposition to the membrane is accompanied with a partial depolymerization of actin cytoskeleton via Rho-GTPase inhibition. Conclusion: Trafficking to the plasma membrane is critical in the regulation of pendrin activity. Therefore, reliable tools for monitoring and quantifying this phenomenon are highly desirable.

  9. A FRET-based approach for quantitative evaluation of forskolin-induced pendrin trafficking at the plasma membrane in bronchial NCI H292 cells.

    Science.gov (United States)

    Tamma, Grazia; Ranieri, Marianna; Dossena, Silvia; Di Mise, Annarita; Nofziger, Charity; Svelto, Maria; Paulmichl, Markus; Valenti, Giovanna

    2013-01-01

    Human pendrin (SLC26A4, PDS) is an integral membrane protein acting as an electroneutral anion exchanger. Loss of function mutations in pendrin protein cause Pendred syndrome, a disorder characterized by sensorineural deafness and a partial iodide organification defect that may lead to thyroid goiter. Additionally, pendrin up-regulation could play a role in the pathogenesis of several diseases including bronchial asthma and chronic obstructive pulmonary disease (COPD). Therefore, monitoring the plasma membrane abundance and trafficking of pendrin in the context of a living cell is crucially important. Trafficking of pendrin to the plasma membrane was monitored by fluorescence resonance energy transfer (FRET), a physical phenomenon occurring between two fluorophores (the FRET donor and acceptor) located in close spatial proximity. Because the efficiency of the energy transfer is inversely proportional to the sixth power of the distance between donor and acceptor, FRET is extremely sensitive to small changes in distance between the donor and acceptor and is therefore a powerful tool to determine protein-protein interactions. FRET studies revealed that forskolin-induced cAMP production is associated with a significant increase of pendrin expression at plasma membrane, which is paralleled by a decrease in intracellular pH. Pendrin transposition to the membrane is accompanied with a partial depolymerization of actin cytoskeleton via Rho-GTPase inhibition. Trafficking to the plasma membrane is critical in the regulation of pendrin activity. Therefore, reliable tools for monitoring and quantifying this phenomenon are highly desirable. © 2014 S. Karger AG, Basel.

  10. Intramolecular charge separation in spirobifluorene-based donor–acceptor compounds adsorbed on Au and indium tin oxide electrodes

    International Nuclear Information System (INIS)

    Heredia, Daniel; Otero, Luis; Gervaldo, Miguel; Fungo, Fernando; Dittrich, Thomas; Lin, Chih-Yen; Chi, Liang-Chen; Fang, Fu-Chuan; Wong, Ken-Tsung

    2013-01-01

    Surface photovoltage (SPV) measurements were performed with a Kelvin-probe in spirobifluorene-based donor (diphenylamine)–acceptor (dicyano or cyanoacrylic acid moieties) compounds adsorbed from highly diluted solutions onto Au and indium tin oxide electrode surfaces. Strong intramolecular charge separation (negative SPV signals up to more than 0.1 V) due to directed molecule adsorption was observed only for spirobifluorene donor–acceptor compounds with carboxylic acid moiety. SPV signals and onset energies of electronic transitions depended on ambience conditions. - Highlights: ► Fluorene donor–acceptor derivatives were adsorbed at Au and indium tin oxide. ► Surface photovoltage measurements were performed with a Kelvin-probe. ► Strong intra-molecular charge separation was observed. ► SPV signals depended on ambience conditions

  11. The role of acceptor-rich domain in optoelectronic properties of photovoltaic diodes based on polymer blends

    Science.gov (United States)

    Dou, Fei; Silva, Carlos; Zhang, Xinping

    2013-09-01

    We investigate how the acceptor-rich domain influences the microstructure and photoluminescence properties, and consequently the external quantum efficiency of photovoltaic diodes based on blend films of poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(N,N'-diphenyl)-N,N'di(p-butyl-oxy-pheyl)-1,4-diaminobenzene)] (PFB) and poly[9,9-dioctylfluorenyl-2,7-diyl)-co-1,4-benzo-{2,1'-3}-thiadiazole)] (F8BT). We find that the interfacial area depends strongly on the size and density of acceptor- or F8BT-rich domains in the phase-separation scheme. There exists an optimized density and size distribution of the F8BT-rich domains, which favors spatial charge dissociation. Meanwhile, the balance of charge percolation between the donor(PFB)- and acceptor(F8BT)-rich domains also plays important roles in charge extraction and collection.

  12. An effective Hamiltonian approach for Donor-Bridge-Acceptor electronic transitions: Exploring the role of bath memory

    Directory of Open Access Journals (Sweden)

    E.R. Bittner

    2016-03-01

    Full Text Available We present here a formally exact model for electronic transitions between an initial (donor and final (acceptor states linked by an intermediate (bridge state. Our model incorporates a common set of vibrational modes that are coupled to the donor, bridge, and acceptor states and serves as a dissipative bath that destroys quantum coherence between the donor and acceptor. Taking the memory time of the bath as a free parameter, we calculate transition rates for a heuristic 3-state/2 mode Hamiltonian system parameterized to represent the energetics and couplings in a typical organic photovoltaic system. Our results indicate that if the memory time of the bath is of the order of 10-100 fs, a two-state kinetic (i.e., incoherent hopping model will grossly underestimate overall transition rate.

  13. Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells

    KAUST Repository

    Wadsworth, Andrew

    2018-04-26

    Fullerenes have formed an integral part of high performance organic solar cells over the last 20 years, however their inherent limitations in terms of synthetic flexibility, cost and stability have acted as a motivation to develop replacements; the so-called non-fullerene electron acceptors. A rapid evolution of such materials has taken place over the last few years, yielding a number of promising candidates that can exceed the device performance of fullerenes and provide opportunities to improve upon the stability and processability of organic solar cells. In this review we explore the structure-property relationships of a library of non-fullerene acceptors, highlighting the important chemical modifications that have led to progress in the field and provide an outlook for future innovations in electron acceptors for use in organic photovoltaics.

  14. Anaerobic α-Amylase Production and Secretion with Fumarate as the Final Electron Acceptor in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Liu, Zihe; Österlund, Tobias; Hou, Jin

    2013-01-01

    In this study, we focus on production of heterologous α-amylase in the yeast Saccharomyces cerevisiae under anaerobic conditions. We compare the metabolic fluxes and transcriptional regulation under aerobic and anaerobic conditions, with the objective of identifying the final electron acceptor...... reticulum are transferred to fumarate as the final electron acceptor. This model is supported by findings that the addition of fumarate under anaerobic (but not aerobic) conditions improves cell growth, specifically in the α-amylase-producing strain, in which it is not used as a carbon source. Our results...... provide a model for the molecular mechanism of anaerobic protein secretion using fumarate as the final electron acceptor, which may allow for further engineering of yeast for improved protein secretion under anaerobic growth conditions....

  15. Effect of annealing on metastable shallow acceptors in Mg-doped GaN layers grown on GaN substrates

    OpenAIRE

    Pozina, Galia; Hemmingsson, Carl; Paskov, Plamen P.; Bergman, Peder; Monemar, Bo; Kawashima, T.; Amano, H.; Akasaki, I.; Usui, A.

    2008-01-01

    Mg-doped GaN layers grown by metal-organic vapor phase epitaxy on GaN substrates produced by the halide vapor phase technique demonstrate metastability of the near-band-gap photoluminescence (PL). The acceptor bound exciton (ABE) line possibly related to the C acceptor vanishes in as-grown samples within a few minutes under UV laser illumination. Annealing activates the more stable Mg acceptors and passivates C acceptors. Consequently, only the ABE line related to Mg is dominant in PL spectra...

  16. Magnetically controlled permeability membranes

    KAUST Repository

    Kosel, Jurgen

    2013-10-31

    A bioactive material delivery system can include a thermoresponsive polymer membrane and nanowires distributed within the thermoresponsive polymer membrane. Magnetic activation of a thermoresponsive polymer membrane can take place via altering the magnetization or dimensions of nanowires dispersed or ordered within the membrane matrix.

  17. Transglycosylation reactions of Bacillus stearothermophilus maltogenic amylase with acarbose and various acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Hwa Park, K.; Jeong Kim, M.; Seob Lee, H.; Kim, D. [Department of Food Science and Technology and Research Center for New Bio-Materials in Agriculture, Seoul National University, Suwon (Korea, Republic of); Soo Han, N.; Robyt, J.F. [Laboratory for Carbohydrate Chemistry and Enzymology, Department of Biochemistry and Biophysics, Iowa State University, Ames, IA (United States)

    1998-12-15

    It was observed that Bacillus stearothermophilus maltogenic amylase cleaved the first glycosidic bond of acarbose to produce glucose and a pseudotrisaccharide (PTS) that was transferred to C-6 of the glucose to give an {alpha}-(1-6) glycosidic linkage and the formation of isoacarbose. The addition of a number of different carbohydrates to the digest gave transfer products in which PTS was primarily attached {alpha}-(1-6) to d-glucose, d-mannose, d-galactose, and methyl {alpha}-d-glucopyranoside. With d-fructopyranose and d-xylopyranose, PTS was linked {alpha}-(1-5) and {alpha}-(1-4), respectively. PTS was primarily transferred to C-6 of the nonreducing residue of maltose, cellobiose, lactose, and gentiobiose. Lesser amounts of {alpha}-(1-3) and/or {alpha}-(1-4) transfer products were also observed for these carbohydrate acceptors. The major transfer product to sucrose gave PTS linked {alpha}-(1-4) to the glucose residue. {alpha},{alpha}-Trehalose gave two major products with PTS linked {alpha}-(1-6) and {alpha}-(1-4). Maltitol gave two major products with PTS linked {alpha}-(1-6) and {alpha}-(1-4) to the glucopyranose residue. Raffinose gave two major products with PTS linked {alpha}-(1-6) and {alpha}-(1-4) to the d-galactopyranose residue. Maltotriose gave two major products with PTS linked {alpha}-(1-6) and {alpha}-(1-4) to the nonreducing end glucopyranose residue. Xylitol gave PTS linked {alpha}-(1-5) as the major product and d-glucitol gave PTS linked {alpha}-(1-6) as the only product. The structures of the transfer products were determined using thin layer-chromatography, high-performance ion chromatography, enzyme hydrolysis, methylation analysis and {sup 13}C NMR spectroscopy. The best acceptor was gentiobiose, followed closely by maltose and cellobiose, and the weakest acceptor was d-glucitol. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  18. Transglycosylation reactions of Bacillus stearothermophilus maltogenic amylase with acarbose and various acceptors

    International Nuclear Information System (INIS)

    Hwa Park, K.; Jeong Kim, M.; Seob Lee, H.; Kim, D.; Soo Han, N.; Robyt, J.F.

    1998-01-01

    It was observed that Bacillus stearothermophilus maltogenic amylase cleaved the first glycosidic bond of acarbose to produce glucose and a pseudotrisaccharide (PTS) that was transferred to C-6 of the glucose to give an α-(1-6) glycosidic linkage and the formation of isoacarbose. The addition of a number of different carbohydrates to the digest gave transfer products in which PTS was primarily attached α-(1-6) to d-glucose, d-mannose, d-galactose, and methyl α-d-glucopyranoside. With d-fructopyranose and d-xylopyranose, PTS was linked α-(1-5) and α-(1-4), respectively. PTS was primarily transferred to C-6 of the nonreducing residue of maltose, cellobiose, lactose, and gentiobiose. Lesser amounts of α-(1-3) and/or α-(1-4) transfer products were also observed for these carbohydrate acceptors. The major transfer product to sucrose gave PTS linked α-(1-4) to the glucose residue. α,α-Trehalose gave two major products with PTS linked α-(1-6) and α-(1-4). Maltitol gave two major products with PTS linked α-(1-6) and α-(1-4) to the glucopyranose residue. Raffinose gave two major products with PTS linked α-(1-6) and α-(1-4) to the d-galactopyranose residue. Maltotriose gave two major products with PTS linked α-(1-6) and α-(1-4) to the nonreducing end glucopyranose residue. Xylitol gave PTS linked α-(1-5) as the major product and d-glucitol gave PTS linked α-(1-6) as the only product. The structures of the transfer products were determined using thin layer-chromatography, high-performance ion chromatography, enzyme hydrolysis, methylation analysis and 13 C NMR spectroscopy. The best acceptor was gentiobiose, followed closely by maltose and cellobiose, and the weakest acceptor was d-glucitol. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  19. Symmetry- and solvent-dependent photophysics of fluorenes containing donor and acceptor groups.

    Science.gov (United States)

    Stewart, David J; Dalton, Matthew J; Swiger, Rachel N; Fore, Jennifer L; Walker, Mark A; Cooper, Thomas M; Haley, Joy E; Tan, Loon-Seng

    2014-07-17

    Three two-photon absorption (2PA) dyes (donor-π-donor (DPA2F), donor-π-acceptor (AF240), and acceptor-π-acceptor (BT2F); specifically, D is Ph2N-, A is 2-benzothiazoyl, and the π-linker is 9,9-diethylfluorene) are examined in a variety of aprotic solvents. Because the 2PA cross section is sensitive to the polarity of the local environment, this report examines the solvent-dependent linear photophysics of the dyes, which are important to understand before probing more complex solid-state systems. The symmetrical dyes show little solvent dependence; however, AF240 has significant solvatochromism observed in the fluorescence spectra and lifetimes and also the transient absorption spectra. A 114 nm bathochromic shift is observed in the fluorescence maximum when going from n-hexane to acetonitrile, whereas the lifetimes increase from 1.25 to 3.12 ns. The excited-state dipole moment for AF240 is found to be 20.1 D using the Lippert equation, with smaller values observed for the symmetrical dyes. Additionally, the femtosecond transient absorption (TA) spectra at time zero show little solvent dependence for DPA2F or BT2F, but AF240 shows a 52 nm hypsochromic shift from n-hexane to acetonitrile. Coupled with the solvatochromism in the fluorescence and large excited-state dipole moment, this is attributed to formation of an intramolecular charge-transfer (ICT) state in polar solvents. By 10 ps in AF240, the maximum TA in acetonitrile has shifted 30 nm, providing direct evidence of a solvent-stabilized ICT state, whose formation occurs in 0.85-2.71 ps, depending on solvent. However, AF240 in nonpolar solvents and the symmetrical dyes in all solvents show essentially no shifts due to a predominantly locally excited (LE) state. Preliminary temperature-dependent fluorescence using frozen glass media supports significant solvent reorganization around the AF240 excited state in polar solvents, and may also support a twisted intramolecular charge-transfer (TICT

  20. Global Proteomic Analysis Reveals an Exclusive Role of Thylakoid Membranes in Bioenergetics of a Model Cyanobacterium

    Energy Technology Data Exchange (ETDEWEB)

    Liberton, Michelle; Saha, Rajib; Jacobs, Jon M.; Nguyen, Amelia Y.; Gritsenko, Marina A.; Smith, Richard D.; Koppenaal, David W.; Pakrasi, Himadri B.

    2016-04-07

    Cyanobacteria are photosynthetic microbes with highlydifferentiated membrane systems. These organisms contain an outer membrane, plasma membrane, and an internal system of thylakoid membranes where the photosynthetic and respiratory machinery are found. This existence of compartmentalization and differentiation of membrane systems poses a number of challenges for cyanobacterial cells in terms of organization and distribution of proteins to the correct membrane system. Proteomics studies have long sought to identify the components of the different membrane systems in cyanobacteria, and to date about 450 different proteins have been attributed to either the plasma membrane or thylakoid membrane. Given the complexity of these membranes, many more proteins remain to be identified, and a comprehensive catalogue of plasma membrane and thylakoid membrane proteins is needed. Here we describe the identification of 635 differentially localized proteins in Synechocystis sp. PCC 6803 by quantitative iTRAQ isobaric labeling; of these, 459 proteins were localized to the plasma membrane and 176 were localized to the thylakoid membrane. Surprisingly, we found over 2.5 times the number of unique proteins identified in the plasma membrane compared with the thylakoid membrane. This suggests that the protein composition of the thylakoid membrane is more homogeneous than the plasma membrane, consistent with the role of the plasma membrane in diverse cellular processes including protein trafficking and nutrient import, compared with a more specialized role for the thylakoid membrane in cellular energetics. Thus, our data clearly define the two membrane systems with distinct functions. Overall, the protein compositions of the Synechocystis 6803 plasma membrane and thylakoid membrane are quite similar to that of the plasma membrane of Escherichia coli and thylakoid membrane of Arabidopsis chloroplasts, respectively. Synechocystis 6803 can therefore be described as a Gram

  1. Comparing the Device Physics and Morphology of Polymer Solar Cells Employing Fullerenes and Non-Fullerene Acceptors

    KAUST Repository

    Bloking, Jason T.

    2014-04-23

    There is a need to find electron acceptors for organic photovoltaics that are not based on fullerene derivatives since fullerenes have a small band gap that limits the open-circuit voltage (VOC), do not absorb strongly and are expensive. Here, a phenylimide-based acceptor molecule, 4,7-bis(4-(N-hexyl-phthalimide)vinyl)benzo[c]1,2,5-thiadiazole (HPI-BT), that can be used to make solar cells with VOC values up to 1.11 V and power conversion efficiencies up to 3.7% with two thiophene polymers is demonstrated. An internal quantum efficiency of 56%, compared to 75-90% for polymer-fullerene devices, results from less efficient separation of geminate charge pairs. While favorable energetic offsets in the polymer-fullerene devices due to the formation of a disordered mixed phase are thought to improve charge separation, the low miscibility (<5 wt%) of HPI-BT in polymers is hypothesized to prevent the mixed phase and energetic offsets from forming, thus reducing the driving force for charges to separate into the pure donor and acceptor phases where they can be collected. A small molecule electron acceptor, 4,7-bis(4-(N-hexyl-phthalimide)vinyl)benzo[c]1,2,5-thiadiazole (HPI-BT), achieves efficiencies of 3.7% and open-circuit voltage values of 1.11 V in bulk heterojunction (BHJ) devices with polythiophene donor materials. The lower internal quantum efficiency (56%) in these non-fullerene acceptor devices is attributed to an absence of the favorable energetic offsets resulting from nanoscale mixing of donor and acceptor found in comparable fullerene-based devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Hole-transfer induced energy transfer in perylene diimide dyads with a donor-spacer-acceptor motif.

    Science.gov (United States)

    Kölle, Patrick; Pugliesi, Igor; Langhals, Heinz; Wilcken, Roland; Esterbauer, Andreas J; de Vivie-Riedle, Regina; Riedle, Eberhard

    2015-10-14

    We investigate the photoinduced dynamics of perylene diimide dyads based on a donor-spacer-acceptor motif with polyyne spacers of varying length by pump-probe spectroscopy, time resolved fluorescence, chemical variation and quantum chemistry. While the dyads with pyridine based polyyne spacers undergo energy transfer with near-unity quantum efficiency, in the dyads with phenyl based polyyne spacers the energy transfer efficiency drops below 50%. This suggests the presence of a competing electron transfer process from the spacer to the energy donor as the excitation sink. Transient absorption spectra, however, reveal that the spacer actually mediates the energy transfer dynamics. The ground state bleach features of the polyyne spacers appear due to the electron transfer decay with the same time constant present in the rise of the ground state bleach and stimulated emission of the perylene energy acceptor. Although the electron transfer process initially quenches the fluorescence of the donor it does not inhibit energy transfer to the perylene energy acceptor. The transient signatures reveal that electron and energy transfer processes are sequential and indicate that the donor-spacer electron transfer state itself is responsible for the energy transfer. Through the introduction of a Dexter blocker unit into the spacer we can clearly exclude any through bond Dexter-type energy transfer. Ab initio calculations on the donor-spacer and the donor-spacer-acceptor systems reveal the existence of a bright charge transfer state that is close in energy to the locally excited state of the acceptor. Multipole-multipole interactions between the bright charge transfer state and the acceptor state enable the energy transfer. We term this mechanism coupled hole-transfer FRET. These dyads represent a first example that shows how electron transfer can be connected to energy transfer for use in novel photovoltaic and optoelectronic devices.

  3. Enzymatic oxidation of cholesterol: properties and functional effects of cholestenone in cell membranes.

    Directory of Open Access Journals (Sweden)

    Maarit Neuvonen

    Full Text Available Bacterial cholesterol oxidase is commonly used as an experimental tool to reduce cellular cholesterol content. That the treatment also generates the poorly degradable metabolite 4-cholesten-3-one (cholestenone has received less attention. Here, we investigated the membrane partitioning of cholestenone using simulations and cell biological experiments and assessed the functional effects of cholestenone in human cells. Atomistic simulations predicted that cholestenone reduces membrane order, undergoes faster flip-flop and desorbs more readily from membranes than cholesterol. In primary human fibroblasts, cholestenone was released from membranes to physiological extracellular acceptors more avidly than cholesterol, but without acceptors it remained in cells over a day. To address the functional effects of cholestenone, we studied fibroblast migration during wound healing. When cells were either cholesterol oxidase treated or part of cellular cholesterol was exchanged for cholestenone with cyclodextrin, cell migration during 22 h was markedly inhibited. Instead, when a similar fraction of cholesterol was removed using cyclodextrin, cells replenished their cholesterol content in 3 h and migrated similarly to control cells. Thus, cholesterol oxidation produces long-term functional effects in cells and these are in part due to the generated membrane active cholestenone.

  4. Enzymatic Oxidation of Cholesterol: Properties and Functional Effects of Cholestenone in Cell Membranes

    Science.gov (United States)

    Neuvonen, Maarit; Manna, Moutusi; Mokkila, Sini; Javanainen, Matti; Rog, Tomasz; Liu, Zheng; Bittman, Robert; Vattulainen, Ilpo; Ikonen, Elina

    2014-01-01

    Bacterial cholesterol oxidase is commonly used as an experimental tool to reduce cellular cholesterol content. That the treatment also generates the poorly degradable metabolite 4-cholesten-3-one (cholestenone) has received less attention. Here, we investigated the membrane partitioning of cholestenone using simulations and cell biological experiments and assessed the functional effects of cholestenone in human cells. Atomistic simulations predicted that cholestenone reduces membrane order, undergoes faster flip-flop and desorbs more readily from membranes than cholesterol. In primary human fibroblasts, cholestenone was released from membranes to physiological extracellular acceptors more avidly than cholesterol, but without acceptors it remained in cells over a day. To address the functional effects of cholestenone, we studied fibroblast migration during wound healing. When cells were either cholesterol oxidase treated or part of cellular cholesterol was exchanged for cholestenone with cyclodextrin, cell migration during 22 h was markedly inhibited. Instead, when a similar fraction of cholesterol was removed using cyclodextrin, cells replenished their cholesterol content in 3 h and migrated similarly to control cells. Thus, cholesterol oxidation produces long-term functional effects in cells and these are in part due to the generated membrane active cholestenone. PMID:25157633

  5. Electrokinetic migration across artificial liquid membranes. New concept for rapid sample preparation of biological fluids.

    Science.gov (United States)

    Pedersen-Bjergaard, Stig; Rasmussen, Knut Einar

    2006-03-24

    Basic drug substances were transported across a thin artificial organic liquid membrane by the application of 300 V d.c. From a 300 microl aqueous donor compartment (containing 10 mM HCl), the drugs migrated through a 200 microm artificial liquid membrane of 2-nitrophenyl octyl ether immobilized in the pores of a polypropylene hollow fiber, and into a 30 microl aqueous acceptor solution of 10 mM HCl inside the lumen of the hollow fiber. The transport was forced by an electrical potential difference sustained over the liquid membrane, resulting in electrokinetic migration of drug substances from the donor compartment to the acceptor solution. Within 5 min of operation at 300 V, pethidine, nortriptyline, methadone, haloperidol, and loperamide were extracted with recoveries in the range 70-79%, which corresponded to enrichments in the range 7.0-7.9. The chemical composition of the organic liquid membrane strongly affected the permeability, and may serve as an efficient tool for controlling the transport selectivity. Water samples, human plasma, and human urine were successfully processed, and in light of the present report, electrokinetic migration across thin artificial liquid membranes may be an interesting tool for future isolation within chemical analysis.

  6. Probing protein-lipid interactions by FRET between membrane fluorophores

    Science.gov (United States)

    Trusova, Valeriya M.; Gorbenko, Galyna P.; Deligeorgiev, Todor; Gadjev, Nikolai

    2016-09-01

    Förster resonance energy transfer (FRET) is a powerful fluorescence technique that has found numerous applications in medicine and biology. One area where FRET proved to be especially informative involves the intermolecular interactions in biological membranes. The present study was focused on developing and verifying a Monte-Carlo approach to analyzing the results of FRET between the membrane-bound fluorophores. This approach was employed to quantify FRET from benzanthrone dye ABM to squaraine dye SQ-1 in the model protein-lipid system containing a polycationic globular protein lysozyme and negatively charged lipid vesicles composed of phosphatidylcholine and phosphatidylglycerol. It was found that acceptor redistribution between the lipid bilayer and protein binding sites resulted in the decrease of FRET efficiency. Quantification of this effect in terms of the proposed methodology yielded both structural and binding parameters of lysozyme-lipid complexes.

  7. Polymeric Membrane Reactors

    OpenAIRE

    José M. Sousa; Luís M. Madeira; João C. Santos; Adélio Mendes

    2008-01-01

    The aim of this chapter is the study of membrane reactors with polymeric membranes, particularly catalytic polymeric membranes. After an introduction where the main advantages and disadvantages of the use of polymeric membranes are summarised, a review of the main areas where they have been applied, integrated in chemical reactors, is presented. This excludes the field of bio-membranes processes, which is analysed in a specific chapter of this book. Particular attention is then given to model...

  8. Grima: A Distinct Emotion Concept?

    Science.gov (United States)

    Schweiger Gallo, Inge; Fernández-Dols, José-Miguel; Gollwitzer, Peter M; Keil, Andreas

    2017-01-01

    People experience an unpleasant sensation when hearing a scratch on a board or plate. The present research focuses on this aversive experience known in Spanish as 'grima' with no equivalent term in English and German. We hypothesized that this aversive experience constitutes a distinctive, separate emotional concept. In Study 1, we found that the affective meaning of 'grima' was closer to disgust than to other emotion concepts. Thus, in Study 2 we explored the features of grima and compared them with disgust . As grima was reported to be predominantly elicited by certain auditory stimuli and associated with a distinctive physiological pattern, Study 3 used direct measures of physiological arousal to test the assumption of a distinctive pattern of physiological responses elicited by auditory stimuli of grima and disgust, and found different effects on heart rate but not on skin conductance. In Study 4, we hypothesized that only participants with an implementation intention geared toward down-regulating grima would be able to successfully weaken the grima- but not disgust- experience. Importantly, this effect was specific as it held true for the grima-eliciting sounds only, but did not affect disgust-related sounds. Finally, Study 5 found that English and German speakers lack a single accessible linguistic label for the pattern of aversive reactions termed by Spanish speaking individuals as 'grima', whereas the elicitors of other emotions were accessible and accurately identified by German, English, as well as Spanish speakers.

  9. Predescemetocele: A distinct clinical entity

    Directory of Open Access Journals (Sweden)

    Priya Narang

    2017-01-01

    Full Text Available The case report incorporates a Fourier-domain optical coherence tomography (OCT examination for demonstration of the existence of pre-Descemet's layer (PDL; Dua's layer overlying a descemetocele and demonstrates predescemetocele as a separate clinical entity. The prospective analysis was done in two cases that had descemetocele, and OCT demonstrated the presence of PDL over an unruptured descemetocele that offers resilience and can be treated with an elective deep anterior lamellar keratoplasty or a penetrating keratoplasty. A descemetocele, when covered with PDL, should be correctly designated as a predescemetocele. Loss of PDL leads to baring of Descemet's membrane that eventually ruptures.

  10. The elimination of contraceptive acceptor targets and the evolution of population policy in India.

    Science.gov (United States)

    Donaldson, Peter J

    2002-03-01

    In 1966 the government of India announced a new national population policy that eliminated numerical targets for new contraceptive acceptors. This paper examines the history of target setting in India and factors that led to the elimination of targets. The analysis is based on published and unpublished reports on India's population policy and the family planning programme and interviews with senior Indian and foreign officials and population specialists. Five factors are identified as playing a role in the evolution from target setting to a target-free policy:(1) the research of India's academics; (2) the work of women's health advocates; (3) the support of officials in the state bureaucracy who approved the target-free approach; (4) the influence of the donors to India's family planning programme, especially the World Bank; and (5) the International Conference on Population and Development.

  11. Graphene oxide-Li(+)@C60 donor-acceptor composites for photoenergy conversion.

    Science.gov (United States)

    Supur, Mustafa; Kawashima, Yuki; Ohkubo, Kei; Sakai, Hayato; Hasobe, Taku; Fukuzumi, Shunichi

    2015-06-28

    An ionic endohedral metallofullerene (Li(+)@C60) with mild hydrophilic nature was combined with graphene oxide (GO) to construct a donor-acceptor composite in neat water. The resulting composite was characterised by UV-Vis and Raman spectroscopy, powder X-ray diffraction, dynamic light scattering measurements and transmission electron microscopy. Theoretical calculations (DFT at the B3LYP/6-31(d) level) were also utilized to gain further insight into the composite formation. As detected by electron paramagnetic resonance spectroscopy, photoexcitation of the GO-Li(+)@C60 composite results in electron transfer from GO to the triplet excited state of Li(+)@C60, leading to photocurrent generation at the OTE/SnO2 electrode.

  12. Thermal activation of nitrogen acceptors in ZnO thin films grown by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Dangbegnon, J.K.; Talla, K.; Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth (South Africa)

    2010-06-15

    Nitrogen doping in ZnO is inhibited by spontaneous formation of compensating defects. Perfect control of the nitrogen doping concentration is required, since a high concentration of nitrogen could induce the formation of donor defects involving nitrogen. In this work, the effect of post-growth annealing in oxygen ambient on ZnO thin films grown by Metalorganic Chemical Vapor Deposition, using NO as both oxidant and nitrogen dopant, is studied. After annealing at 700 C and above, low-temperature photoluminescence shows the appearance of a transition at {proportional_to}3.23 eV which is interpreted as pair emission involving a nitrogen acceptor. A second transition at {proportional_to}3.15 eV is also discussed. This work suggests annealing as a potential means for p-type doping using nitrogen (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Superposition of two tRNASer acceptor stem crystal structures: Comparison of structure, ligands and hydration

    International Nuclear Information System (INIS)

    Eichert, Andre; Fuerste, Jens P.; Ulrich, Alexander; Betzel, Christian; Erdmann, Volker A.; Foerster, Charlotte

    2010-01-01

    We solved the X-ray structures of two Escherichia coli tRNA Ser acceptor stem microhelices. As both tRNAs are aminoacylated by the same seryl-tRNA-synthetase, we performed a comparative structure analysis of both duplexes to investigate the helical conformation, the hydration patterns and magnesium binding sites. It is well accepted, that the hydration of RNA plays an important role in RNA-protein interactions and that the extensive solvent content of the minor groove has a special function in RNA. The detailed comparison of both tRNA Ser microhelices provides insights into the structural arrangement of the isoacceptor tRNA aminoacyl stems with respect to the surrounding water molecules and may eventually help us to understand their biological function at atomic resolution.

  14. Isolation by crystallization of translational isomers of a bistable donor-acceptor [2]catenane

    Science.gov (United States)

    Wang, Cheng; Olson, Mark A.; Fang, Lei; Benítez, Diego; Tkatchouk, Ekaterina; Basu, Subhadeep; Basuray, Ashish N.; Zhang, Deqing; Zhu, Daoben; Goddard, William A.; Stoddart, J. Fraser

    2010-01-01

    The template-directed synthesis of a bistable donor-acceptor [2]catenane wherein both translational isomers—one in which a tetrathiafulvalene unit in a mechanically interlocked crown ether occupies the cavity of a cyclobis(paraquat-p-phenylene) ring and the other in which a 1,5-dioxynaphthalene unit in the crown ether resides inside the cavity of the tetracationic cyclophane—exist in equilibrium in solution, has led to the isolation and separation by hand picking of single crystals colored red and green, respectively. These two crystalline co-conformations have been characterized separately at both the molecular and supramolecular levels, and also by dynamic NMR spectroscopy in solution where there is compelling evidence that the mechanically interlocked molecules are present as a complex mixture of translational, configurational, and conformational isomers wherein the isomerization is best described as being a highly dynamic and adaptable phenomenon. PMID:20663950

  15. Exoemission and the donor-acceptor properties of zirconium dioxide modified by yttrium oxide

    International Nuclear Information System (INIS)

    Krylova, I.V.; Kharlanov, A.N.; Lunin, V.V.

    2002-01-01

    Influence of alloying component Y 2 O 3 on adsorption properties of ZrO 2 was studied by the methods of exoemission and IR spectroscopy. Radiation resistance of the ZrO 2 -Y 2 O 3 system samples under β-radiation ( 90 Sr/ 90 Y) at a dose of 20 rad was determined. Correlation between concentration of the Lewis acid centers and emissivity of alloyed samples in the range of low concentrations of Y 2 O 3 was found. The nature of exoemission and adsorption centers due to donor-acceptor character of active centers on the surface of samples of the system studied was discussed. It is shown that initially high radiation resistance of ZrO 2 decreases, when it is modified by yttrium oxide, meanwhile pure yttrium oxide features moderate enough radiation resistance of the surface [ru

  16. Shape-Tunable Charge Carrier Dynamics at the Interfaces between Perovskite Nanocrystals and Molecular Acceptors

    KAUST Repository

    Ahmed, Ghada H.

    2016-09-19

    Hybrid organic/inorganic perovskites have recently emerged as an important class of materials and have exhibited remarkable performance in photovoltaics. To further improve their device efficiency, an insightful understanding of the interfacial charge transfer (CT) process is required. Here, we report the first direct experimental observation of the tremendous effect that the shape of perovskite nanocrystals (NCs) has on interfacial CT in the presence of a molecular acceptor. A dramatic change in CT dynamics at the interfaces of three different NC shapes, spheres, platelets, and cubes, is recorded. Our results clearly demonstrate that the mechanism of CT is significantly affected by the NC shape. More importantly, the results demonstrate that complexation on the NC surface acts as an additional driving force not only to tune the CT dynamics but also to control the reaction mechanism at the interface. This observation opens a new venue for further developing perovskite NCs-based applications.

  17. Chemistry of stannylene-based Lewis pairs: dynamic tin coordination switching between donor and acceptor character.

    Science.gov (United States)

    Krebs, Kilian M; Freitag, Sarah; Schubert, Hartmut; Gerke, Birgit; Pöttgen, Rainer; Wesemann, Lars

    2015-03-16

    The coordination chemistry of cyclic stannylene-based intramolecular Lewis pairs is presented. The P→Sn adducts were treated with [Ni(COD)2] and [Pd(PCy3)2] (COD = 1,5-cyclooctadiene, PCy3 = tricyclohexylphosphine). In the isolated coordination compounds the stannylene moiety acts either as an acceptor or a donor ligand. Examples of a dynamic switch between these two coordination modes of the P-Sn ligand are illustrated and the structures in the solid state together with heteronuclear NMR spectroscopic findings are discussed. In the case of a Ni(0) complex, (119)Sn Mössbauer spectroscopy of the uncoordinated and coordinated phosphastannirane ligand is presented. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Fine-tuning of electronic properties in donor–acceptor conjugated polymers based on oligothiophenes

    Science.gov (United States)

    Imae, Ichiro; Sagawa, Hitoshi; Harima, Yutaka

    2018-03-01

    A novel series of donor–acceptor conjugated polymers having oligothiophenes with well-defined structures were synthesized and their optical, electrochemical, and photovoltaic properties were investigated. It was found that the absorption bands of polymers were red-shifted with increasing number of ethylenedioxy groups added to each oligothiophene unit and that their band edges reached over 1000 nm. The systematical fine-tuning of the electronic properties was achieved using the chemical structures of oligothiophene units. Photovoltaic cells based on polymer/(6,6)-phenyl C61 butyric acid methyl ester (PC61BM) exhibited power conversion efficiencies in the range from 0.004 to 1.10%, reflecting the electronic properties of the polymers.

  19. High Performing Ternary Solar Cells through Förster Resonance Energy Transfer between Nonfullerene Acceptors.

    Science.gov (United States)

    Yang, Lei; Gu, Wenxing; Hong, Ling; Mi, Yang; Liu, Feng; Liu, Ming; Yang, Yufei; Sharma, Bigyan; Liu, Xinfeng; Huang, Hui

    2017-08-16

    Nonradiative Förster resonance energy transfer (FRET) is an important mechanism of organic solar cells, which can improve the exciton migration over a long distance, resulting in improvement of efficiency of solar cells. However, the current observations of FRET are very limited, and the efficiencies are less than 9%. In this study, FRET effect was first observed between two nonfullerene acceptors in ternary solar cells, which improved both the absorption range and exciton harvesting, leading to the dramatic enhancement in the short circuit current and power conversion efficiency. Moreover, this strategy is proved to be a versatile platform for conjugated polymers with different bandgaps, resulting in a remarkable efficiency of 10.4%. These results demonstrated a novel method to enhance the efficiency of organic soar cells.

  20. Impact of the Crystallite Orientation Distribution on Exciton Transport in Donor–Acceptor Conjugated Polymers

    KAUST Repository

    Ayzner, Alexander L.

    2015-12-30

    © 2015 American Chemical Society. Conjugated polymers are widely used materials in organic photovoltaic devices. Owing to their extended electronic wave functions, they often form semicrystalline thin films. In this work, we aim to understand whether distribution of crystallographic orientations affects exciton diffusion using a low-band-gap polymer backbone motif that is representative of the donor/acceptor copolymer class. Using the fact that the polymer side chain can tune the dominant crystallographic orientation in the thin film, we have measured the quenching of polymer photoluminescence, and thus the extent of exciton dissociation, as a function of crystal orientation with respect to a quenching substrate. We find that the crystallite orientation distribution has little effect on the average exciton diffusion length. We suggest several possibilities for the lack of correlation between crystallographic texture and exciton transport in semicrystalline conjugated polymer films.

  1. Tin-vacancy acceptor levels in electron-irradiated n-type silicon

    DEFF Research Database (Denmark)

    Larsen, A. Nylandsted; Goubet, J. J.; Mejlholm, P.

    2000-01-01

    annihilation. Two tin-vacancy (Sn-V) levels at E-c - 0.214 eV and E-c - 0.501 eV have been identified (E-c denotes the conduction band edge). Based on investigations of the temperature dependence of the electron-capture cross sections, the electric-field dependence of the electron emissivity, the anneal...... temperature, and the defect-introduction rate, it is concluded that these levels are the double and single acceptor levels, respectively, of the Sn-V pair. These conclusions are in agreement with electronic structure calculations carried out using a local spin-density functional theory, incorporating...... pseudopotentials to eliminate the core electrons, and applied to large H-terminated clusters. Thus, the Sn-V pair in Si has five different charge states corresponding to four levels in the band gap....

  2. Acceptor extraction of uranyl salts with mixtures of organophosphoric acids with neutral additives

    International Nuclear Information System (INIS)

    Torgov, V.G.; Us, T.V.; Mikhajlov, V.A.; Stoyanov, Ye.S.; Drozdova, M.K.; Bogdanova, D.D.

    1988-01-01

    Uranium solvent extraction by mixtures of organophosphoric acids (HX) with neutral additives (L) (phosphine oxides, sulfoxides, tbp) excibits, along with the widely known synergic effect at low HX saturation with uranium, a new synergic effect occurring after complete HX saturation. Three types of isotherms of uranyl salt extraction by benzene solutions of HX and mixtures of HX with L were revealed. Their forms depend on superposition of cation-exchange and noncation-exchange synergic effects. Similarity of synergic effect of acid and neutral mixture components during solvent extraction from diluted and concentrated solutions of uranyl salts testified to the same nature of these two effects; both of them are determined by acceptor properties of uranium atom in monomeric UO 2 (HX 2 ) 2 and polymeric (UO 2 X 2 ) p complexes. The established reqularities were confirmed, when studying uranyl sulfate extraction by UO 2 X 2 mixture with L

  3. The role of amino acid electron-donor/acceptor atoms in host-cell binding peptides is associated with their 3D structure and HLA-binding capacity in sterile malarial immunity induction

    Energy Technology Data Exchange (ETDEWEB)

    Patarroyo, Manuel E., E-mail: mepatarr@mail.com [Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota (Colombia); Universidad Nacional de Colombia, Bogota (Colombia); Almonacid, Hannia; Moreno-Vranich, Armando [Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota (Colombia)

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer Fundamental residues located in some HABPs are associated with their 3D structure. Black-Right-Pointing-Pointer Electron-donor atoms present in {beta}-turn, random, distorted {alpha}-helix structures. Black-Right-Pointing-Pointer Electron-donor atoms bound to HLA-DR53. Black-Right-Pointing-Pointer Electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. -- Abstract: Plasmodium falciparum malaria continues being one of the parasitic diseases causing the highest worldwide mortality due to the parasite's multiple evasion mechanisms, such as immunological silence. Membrane and organelle proteins are used during invasion for interactions mediated by high binding ability peptides (HABPs); these have amino acids which establish hydrogen bonds between them in some of their critical binding residues. Immunisation assays in the Aotus model using HABPs whose critical residues had been modified have revealed a conformational change thereby enabling a protection-inducing response. This has improved fitting within HLA-DR{beta}1{sup Asterisk-Operator} molecules where amino acid electron-donor atoms present in {beta}-turn, random or distorted {alpha}-helix structures preferentially bound to HLA-DR53 molecules, whilst HABPs having amino acid electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. This data has great implications for vaccine development.

  4. A Novel SLC27A4 Splice Acceptor Site Mutation in Great Danes with Ichthyosis.

    Science.gov (United States)

    Metzger, Julia; Wöhlke, Anne; Mischke, Reinhard; Hoffmann, Annalena; Hewicker-Trautwein, Marion; Küch, Eva-Maria; Naim, Hassan Y; Distl, Ottmar

    2015-01-01

    Ichthyoses are a group of various different types of hereditary disorders affecting skin cornification. They are characterized by hyperkeratoses of different severity levels and are associated with a dry and scaling skin. Genome-wide association analysis of nine affected and 13 unaffected Great Danes revealed a genome-wide significant peak on chromosome 9 at 57-58 Mb in the region of SLC27A4. Sequence analysis of genomic DNA of SLC27A4 revealed the non-synonymous SNV SLC27A4:g.8684G>A in perfect association with ichthyosis-affection in Great Danes. The mutant transcript of SLC27A4 showed an in-frame loss of 54 base pairs in exon 8 probably induced by a new splice acceptor site motif created by the mutated A- allele of the SNV. Genotyping 413 controls from 35 different breeds of dogs and seven wolves revealed that this mutation could not be found in other populations except in Great Danes. Affected dogs revealed high amounts of mutant transcript but only low levels of the wild type transcript. Targeted analyses of SLC27A4 protein from skin tissues of three affected and two unaffected Great Danes indicated a markedly reduced or not detectable wild type and truncated protein levels in affected dogs but a high expression of wild type SLC27A4 protein in unaffected controls. Our data provide evidence of a new splice acceptor site creating SNV that results in a reduction or loss of intact SLC27A4 protein and probably explains the severe skin phenotype in Great Danes. Genetic testing will allow selective breeding to prevent ichthyosis-affected puppies in the future.

  5. Synthesis and characterization of fluorinated azadipyrromethene complexes as acceptors for organic photovoltaics

    Directory of Open Access Journals (Sweden)

    Forrest S. Etheridge

    2016-08-01

    Full Text Available Homoleptic zinc(II complexes of di(phenylacetyleneazadipyrromethene (e.g., Zn(WS32 are potential non-fullerene electron acceptors for organic photovoltaics. To tune their properties, fluorination of Zn(WS32 at various positions was investigated. Three fluorinated azadipyrromethene-based ligands were synthesized with fluorine at the para-position of the proximal and distal phenyl groups, and at the pyrrolic phenylacetylene moieties. Additionally, a CF3 moiety was added to the pyrrolic phenyl positions to study the effects of a stronger electron withdrawing unit at that position. The four ligands were chelated with zinc(II and BF2+ and the optical and electrochemical properties were studied. Fluorination had little effect on the optical properties of both the zinc(II and BF2+ complexes, with λmax in solution around 755 nm and 785 nm, and high molar absorptivities of 100 × 103 M−1cm−1 and 50 × 103 M−1cm−1, respectively. Fluorination of Zn(WS32 raised the oxidation potentials by 0.04 V to 0.10 V, and the reduction potentials by 0.01 V to 0.10 V, depending on the position and type of substitution. The largest change was observed for fluorine substitution at the proximal phenyl groups and CF3 substitution at the pyrrolic phenylacetylene moieties. The later complexes are expected to be stronger electron acceptors than Zn(WS32, and may enable charge transfer from other conjugated polymer donors that have lower energy levels than poly(3-hexylthiophene (P3HT.

  6. An Efficient, “Burn in” Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor

    KAUST Repository

    Cha, Hyojung

    2017-06-28

    A comparison of the efficiency, stability, and photophysics of organic solar cells employing poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3\\'″-di(2-octyldodecyl)-2,2\\';5\\',2″;5″,2\\'″-quaterthiophen-5,5\\'″-diyl)] (PffBT4T-2OD) as a donor polymer blended with either the nonfullerene acceptor EH-IDTBR or the fullerene derivative, [6,6]-phenyl C71 butyric acid methyl ester (PC71 BM) as electron acceptors is reported. Inverted PffBT4T-2OD:EH-IDTBR blend solar cell fabricated without any processing additive achieves power conversion efficiencies (PCEs) of 9.5 ± 0.2%. The devices exhibit a high open circuit voltage of 1.08 ± 0.01 V, attributed to the high lowest unoccupied molecular orbital (LUMO) level of EH-IDTBR. Photoluminescence quenching and transient absorption data are employed to elucidate the ultrafast kinetics and efficiencies of charge separation in both blends, with PffBT4T-2OD exciton diffusion kinetics within polymer domains, and geminate recombination losses following exciton separation being identified as key factors determining the efficiency of photocurrent generation. Remarkably, while encapsulated PffBT4T-2OD:PC71 BM solar cells show significant efficiency loss under simulated solar irradiation (“burn in” degradation) due to the trap-assisted recombination through increased photoinduced trap states, PffBT4T-2OD:EH-IDTBR solar cell shows negligible burn in efficiency loss. Furthermore, PffBT4T-2OD:EH-IDTBR solar cells are found to be substantially more stable under 85 °C thermal stress than PffBT4T-2OD:PC71BM devices.

  7. A Novel SLC27A4 Splice Acceptor Site Mutation in Great Danes with Ichthyosis.

    Directory of Open Access Journals (Sweden)

    Julia Metzger

    Full Text Available Ichthyoses are a group of various different types of hereditary disorders affecting skin cornification. They are characterized by hyperkeratoses of different severity levels and are associated with a dry and scaling skin. Genome-wide association analysis of nine affected and 13 unaffected Great Danes revealed a genome-wide significant peak on chromosome 9 at 57-58 Mb in the region of SLC27A4. Sequence analysis of genomic DNA of SLC27A4 revealed the non-synonymous SNV SLC27A4:g.8684G>A in perfect association with ichthyosis-affection in Great Danes. The mutant transcript of SLC27A4 showed an in-frame loss of 54 base pairs in exon 8 probably induced by a new splice acceptor site motif created by the mutated A- allele of the SNV. Genotyping 413 controls from 35 different breeds of dogs and seven wolves revealed that this mutation could not be found in other populations except in Great Danes. Affected dogs revealed high amounts of mutant transcript but only low levels of the wild type transcript. Targeted analyses of SLC27A4 protein from skin tissues of three affected and two unaffected Great Danes indicated a markedly reduced or not detectable wild type and truncated protein levels in affected dogs but a high expression of wild type SLC27A4 protein in unaffected controls. Our data provide evidence of a new splice acceptor site creating SNV that results in a reduction or loss of intact SLC27A4 protein and probably explains the severe skin phenotype in Great Danes. Genetic testing will allow selective breeding to prevent ichthyosis-affected puppies in the future.

  8. An Efficient, "Burn in" Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor.

    Science.gov (United States)

    Cha, Hyojung; Wu, Jiaying; Wadsworth, Andrew; Nagitta, Jade; Limbu, Saurav; Pont, Sebastian; Li, Zhe; Searle, Justin; Wyatt, Mark F; Baran, Derya; Kim, Ji-Seon; McCulloch, Iain; Durrant, James R

    2017-09-01

    A comparison of the efficiency, stability, and photophysics of organic solar cells employing poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3'″-di(2-octyldodecyl)-2,2';5',2″;5″,2'″-quaterthiophen-5,5'″-diyl)] (PffBT4T-2OD) as a donor polymer blended with either the nonfullerene acceptor EH-IDTBR or the fullerene derivative, [6,6]-phenyl C 71 butyric acid methyl ester (PC 71 BM) as electron acceptors is reported. Inverted PffBT4T-2OD:EH-IDTBR blend solar cell fabricated without any processing additive achieves power conversion efficiencies (PCEs) of 9.5 ± 0.2%. The devices exhibit a high open circuit voltage of 1.08 ± 0.01 V, attributed to the high lowest unoccupied molecular orbital (LUMO) level of EH-IDTBR. Photoluminescence quenching and transient absorption data are employed to elucidate the ultrafast kinetics and efficiencies of charge separation in both blends, with PffBT4T-2OD exciton diffusion kinetics within polymer domains, and geminate recombination losses following exciton separation being identified as key factors determining the efficiency of photocurrent generation. Remarkably, while encapsulated PffBT4T-2OD:PC 71 BM solar cells show significant efficiency loss under simulated solar irradiation ("burn in" degradation) due to the trap-assisted recombination through increased photoinduced trap states, PffBT4T-2OD:EH-IDTBR solar cell shows negligible burn in efficiency loss. Furthermore, PffBT4T-2OD:EH-IDTBR solar cells are found to be substantially more stable under 85 °C thermal stress than PffBT4T-2OD:PC 71 BM devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Donor and Acceptor Unit Sequences Influence Material Performance in Benzo[1,2-b:4,5-b′]dithiophene-6,7-Difluoroquinoxaline Small Molecule Donors for BHJ Solar Cells

    KAUST Repository

    Wang, Kai

    2016-08-22

    Well-defined small molecule (SM) donors can be used as alternatives to π-conjugated polymers in bulk-heterojunction (BHJ) solar cells with fullerene acceptors (e.g., PC61/71BM). Taking advantage of their synthetic tunability, combinations of various donor and acceptor motifs can lead to a wide range of optical, electronic, and self-assembling properties that, in turn, may impact material performance in BHJ solar cells. In this report, it is shown that changing the sequence of donor and acceptor units along the π-extended backbone of benzo[1,2-b:4,5-b\\']dithiophene-6,7-difluoroquinoxaline SM donors critically impacts (i) molecular packing, (ii) propensity to order and preferential aggregate orientations in thin-films, and (iii) charge transport in BHJ solar cells. In these systems (SM1-3), it is found that 6,7-difluoroquinoxaline ([2F]Q) motifs directly appended to the central benzo[1,2-b:4,5-b\\']dithiophene (BDT) unit yield a lower-bandgap analogue (SM1) with favorable molecular packing and aggregation patterns in thin films, and optimized BHJ solar cell efficiencies of ≈6.6%. 1H-1H DQ-SQ NMR analyses indicate that SM1 and its counterpart with [2F]Q motifs substituted as end-group SM3 possess distinct self-assembly patterns, correlating with the significant charge transport and BHJ device efficiency differences observed for the two analogous SM donors (avg. 6.3% vs 2.0%, respectively). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Plasma membrane changes during programmed cell deaths.

    Science.gov (United States)

    Zhang, Yingying; Chen, Xin; Gueydan, Cyril; Han, Jiahuai

    2018-01-01

    Ruptured and intact plasma membranes are classically considered as hallmarks of necrotic and apoptotic cell death, respectively. As such, apoptosis is usually considered a non-inflammatory process while necrosis triggers inflammation. Recent studies on necroptosis and pyroptosis, two types of programmed necrosis, revealed that plasma membrane rupture is mediated by MLKL channels during necroptosis but depends on non-selective gasdermin D (GSDMD) pores during pyroptosis. Importantly, the morphology of dying cells executed by MLKL channels can be distinguished from that executed by GSDMD pores. Interestingly, it was found recently that secondary necrosis of apoptotic cells, a previously believed non-regulated form of cell lysis that occurs after apoptosis, can be programmed and executed by plasma membrane pore formation like that of pyroptosis. In addition, pyroptosis is associated with pyroptotic bodies, which have some similarities to apoptotic bodies. Therefore, different cell death programs induce distinctive reshuffling processes of the plasma membrane. Given the fact that the nature of released intracellular contents plays a crucial role in dying/dead cell-induced immunogenicity, not only membrane rupture or integrity but also the nature of plasma membrane breakdown would determine the fate of a cell as well as its ability to elicit an immune response. In this review, we will discuss recent advances in the field of apoptosis, necroptosis and pyroptosis, with an emphasis on the mechanisms underlying plasma membrane changes observed on dying cells and their implication in cell death-elicited immunogenicity.

  11. Sheet Membrane Spacesuit Water Membrane Evaporator

    Science.gov (United States)

    Bue, Grant; Trevino, Luis; Zapata, Felipe; Dillion, Paul; Castillo, Juan; Vonau, Walter; Wilkes, Robert; Vogel, Matthew; Frodge, Curtis

    2013-01-01

    A document describes a sheet membrane spacesuit water membrane evaporator (SWME), which allows for the use of one common water tank that can supply cooling water to the astronaut and to the evaporator. Test data showed that heat rejection performance dropped only 6 percent after being subjected to highly contaminated water. It also exhibited robustness with respect to freezing and Martian atmospheric simulation testing. Water was allowed to freeze in the water channels during testing that simulated a water loop failure and vapor backpressure valve failure. Upon closing the backpressure valve and energizing the pump, the ice eventually thawed and water began to flow with no apparent damage to the sheet membrane. The membrane evaporator also serves to de-gas the water loop from entrained gases, thereby eliminating the need for special degassing equipment such as is needed by the current spacesuit system. As water flows through the three annular water channels, water evaporates with the vapor flowing across the hydrophobic, porous sheet membrane to the vacuum side of the membrane. The rate at which water evaporates, and therefore, the rate at which the flowing water is cooled, is a function of the difference between the water saturation pressure on the water side of the membrane, and the pressure on the vacuum side of the membrane. The primary theory is that the hydrophobic sheet membrane retains water, but permits vapor pass-through when the vapor side pressure is less than the water saturation pressure. This results in evaporative cooling of the remaining water.

  12. Leucine-based receptor sorting motifs are dependent on the spacing relative to the plasma membrane

    DEFF Research Database (Denmark)

    Geisler, C; Dietrich, J; Nielsen, B L

    1998-01-01

    Many integral membrane proteins contain leucine-based motifs within their cytoplasmic domains that mediate internalization and intracellular sorting. Two types of leucine-based motifs have been identified. One type is dependent on phosphorylation, whereas the other type, which includes an acidic...... amino acid, is constitutively active. In this study, we have investigated how the spacing relative to the plasma membrane affects the function of both types of leucine-based motifs. For phosphorylation-dependent leucine-based motifs, a minimal spacing of 7 residues between the plasma membrane...... and the phospho-acceptor was required for phosphorylation and thereby activation of the motifs. For constitutively active leucine-based motifs, a minimal spacing of 6 residues between the plasma membrane and the acidic residue was required for optimal activity of the motifs. In addition, we found that the acidic...

  13. GLTP Mediated Non-Vesicular GM1 Transport between Native Membranes

    Science.gov (United States)

    Mjumjunov-Crncevic, Esmina; Walrafen, David; Spitta, Luis; Thiele, Christoph; Lang, Thorsten

    2013-01-01

    Lipid transfer proteins (LTPs) are emerging as key players in lipid homeostasis by mediating non-vesicular transport steps between two membrane surfaces. Little is known about the driving force that governs the direction of transport in cells. Using the soluble LTP glycolipid transfer protein (GLTP), we examined GM1 (monosialotetrahexosyl-ganglioside) transfer to native membrane surfaces. With artificial GM1 donor liposomes, GLTP can be used to increase glycolipid levels over natural levels in either side of the membrane leaflet, i.e., external or cytosolic. In a system with native donor- and acceptor-membranes, we find that GLTP balances highly variable GM1 concentrations in a population of membranes from one cell type, and in addition, transfers lipids between membranes from different cell types. Glycolipid transport is highly efficient, independent of cofactors, solely driven by the chemical potential of GM1 and not discriminating between the extra- and intracellular membrane leaflet. We conclude that GLTP mediated non-vesicular lipid trafficking between native membranes is driven by simple thermodynamic principles and that for intracellular transport less than 1 µM GLTP would be required in the cytosol. Furthermore, the data demonstrates the suitability of GLTP as a tool for artificially increasing glycolipid levels in cellular membranes. PMID:23555818

  14. GLTP mediated non-vesicular GM1 transport between native membranes.

    Directory of Open Access Journals (Sweden)

    Ines Lauria

    Full Text Available Lipid transfer proteins (LTPs are emerging as key players in lipid homeostasis by mediating non-vesicular transport steps between two membrane surfaces. Little is known about the driving force that governs the direction of transport in cells. Using the soluble LTP glycolipid transfer protein (GLTP, we examined GM1 (monosialotetrahexosyl-ganglioside transfer to native membrane surfaces. With artificial GM1 donor liposomes, GLTP can be used to increase glycolipid levels over natural levels in either side of the membrane leaflet, i.e., external or cytosolic. In a system with native donor- and acceptor-membranes, we find that GLTP balances highly variable GM1 concentrations in a population of membranes from one cell type, and in addition, transfers lipids between membranes from different cell types. Glycolipid transport is highly efficient, independent of cofactors, solely driven by the chemical potential of GM1 and not discriminating between the extra- and intracellular membrane leaflet. We conclude that GLTP mediated non-vesicular lipid trafficking between native membranes is driven by simple thermodynamic principles and that for intracellular transport less than 1 µM GLTP would be required in the cytosol. Furthermore, the data demonstrates the suitability of GLTP as a tool for artificially increasing glycolipid levels in cellular membranes.

  15. Ultrastructure of Reichert's membrane, a multilayered basement membrane in the parietal wall of the rat yolk sac

    OpenAIRE

    1983-01-01

    The ultrastructure of Reichert's membrane, a thick basement membrane in the parietal wall of the yolk sac, has been examined in 13-14-d pregnant rats. This membrane is composed of more or less distinct parallel layers, each one of which resembles a common basement membrane. After routine fixation in glutaraldehyde followed by osmium tetroxide, the layers appear to be mainly composed of 3-8-nm thick cords arranged in a three-dimensional network. Loosely scattered among the cords are unbranched...

  16. Binding energy and dynamics of Be acceptor levels in AlAs/GaAs multiple quantum wells

    NARCIS (Netherlands)

    Halsall, M. P.; Zheng, W. M.; Harrison, P.; Wells, J. P. R.; Steer, M. J.; Orlova, E. E.

    2004-01-01

    We report an infrared study of the effect of quantum well confinement on the binding energy and dynamics of shallow Be acceptors in both bulk GaAs and a series of delta-doped AlAs/GaAs multiquantum well samples with well thicknesses of 20,15 and 10 nm. Low temperature far-infrared absorption

  17. Structural and optical properties of langmuir-blodgett films of the electron acceptor 2-octadecylthio-1,4-benzoquinone

    DEFF Research Database (Denmark)

    Bjørnholm, T.; Larsen, N. B.; Christensen, Finn Erland

    1993-01-01

    The electron acceptor 2-octadecylthio-1,4-benzoquinone forms stable monolayers at air/water interfaces. Transfer to hydrophobic substrates yields Y-type Langmuir-Blodgett films. By studies of multilayers using X-ray diffraction and spectroscopy with polarized light a structure model is obtained...

  18. D-π-A Compounds with Tunable Intramolecular Charge Transfer Achieved by Incorporation of Butenolide Nitriles as Acceptor Moieties

    DEFF Research Database (Denmark)

    Moreno-Yruela, Carlos; Garín, Javier; Orduna, Jesús

    2015-01-01

    Chromophores where a polyenic spacer separates a 4H-pyranylidene or benzothiazolylidene donor and three different butenolide nitriles have been synthesized and characterized. The role of 2(5H)-furanones as acceptor units on the polarization and the second-order nonlinear (NLO) properties has been...

  19. Resonant and non-resonant components of the rate of a population transfer in hybrid donor-acceptor systems

    Czech Academy of Sciences Publication Activity Database

    Menšík, Miroslav; Král, Karel

    2013-01-01

    Roč. 5, č. 6 (2013), s. 565-568 ISSN 2164-6627 R&D Projects: GA MŠk(CZ) OC10007; GA MŠk LH12186; GA ČR(CZ) GAP205/10/2280 Institutional support: RVO:61389013 ; RVO:68378271 Keywords : energy transfer * hybrid donor-acceptor system Subject RIV: BM - Solid Matter Physics ; Magnetism

  20. The interaction of quinones, herbicides and bicarbonate with their binding environment at the acceptor side of photosystem II in photosynthesis

    NARCIS (Netherlands)

    Vermaas, W.F.J.

    1984-01-01

    In this thesis experiments are described which are directed towards a further characterization of the interaction of the native bound plastoquinone Q B , artificial quinones, herbicides and bicarbonate with their binding environment at the acceptor side of Photosystem II in

  1. Spectrophotometric study of the charge-transfer and ion-pair complexation of methamphetamine with some acceptors

    Science.gov (United States)

    Shahdousti, Parvin; Aghamohammadi, Mohammad; Alizadeh, Naader

    2008-04-01

    The charge-transfer (CT) complexes of methamphetamine (MPA) as a n-donor with several acceptors including bromocresolgreen (BCG), bromocresolpurple (BCP), chlorophenolred (CPR), picric acid (PIC), and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) have been studied spectrophotometrically in chloroform solutions in order to obtain some information about their stoichiometry and stability of complexation. The oscillator strengths, transition dipole moments and resonance energy of the complex in the ground state for all complexes have been calculated. Vertical ionization potential of MPA and electron affinity of acceptors were determined by ab initio calculation. The acceptors were also used to utilize a simple and sensitive extraction-spectrophotometric method for the determination of MPA. The method is based on the formation of 1:1 ion-pair association complexes of MPA with BCG, BCP and PIC in chloroform medium. Beer's plots were obeyed in a general concentration range of 0.24-22 μg ml -1 for the investigated drug with different acceptors. The proposed methods were applied successfully for the determination of MAP in pure and abuse drug with good accuracy and precision.

  2. High-resolution noncontact AFM and Kelvin probe force microscopy investigations of self-assembled photovoltaic donor-acceptor dyads.

    Science.gov (United States)

    Grévin, Benjamin; Schwartz, Pierre-Olivier; Biniek, Laure; Brinkmann, Martin; Leclerc, Nicolas; Zaborova, Elena; Méry, Stéphane

    2016-01-01

    Self-assembled donor-acceptor dyads are used as model nanostructured heterojunctions for local investigations by noncontact atomic force microscopy (nc-AFM) and Kelvin probe force microscopy (KPFM). With the aim to probe the photo-induced charge carrier generation, thin films deposited on transparent indium tin oxide substrates are investigated in dark conditions and upon illumination. The topographic and contact potential difference (CPD) images taken under dark conditions are analysed in view of the results of complementary transmission electron microscopy (TEM) experiments. After in situ annealing, it is shown that the dyads with longer donor blocks essentially lead to standing acceptor-donor lamellae, where the acceptor and donor groups are π-stacked in an edge-on configuration. The existence of strong CPD and surface photo-voltage (SPV) contrasts shows that structural variations occur within the bulk of the edge-on stacks. SPV images with a very high lateral resolution are achieved, which allows for the resolution of local photo-charging contrasts at the scale of single edge-on lamella. This work paves the way for local investigations of the optoelectronic properties of donor-acceptor supramolecular architectures down to the elementary building block level.

  3. Annulation Reactions of Donor-Acceptor Cyclopropanes with (1-Azidovinyl)benzene and 3-Phenyl-2H-azirine.

    Science.gov (United States)

    Curiel Tejeda, Joanne E; Irwin, Lauren C; Kerr, Michael A

    2016-09-16

    Under the influence of heat and Lewis acid, donor/acceptor cyclopropanes underwent annulation reactions with (1-azidovinyl)benzene and 3-phenyl-2H-azirine to form an unusual azabicyclic scaffold with an imbedded aziridine. The mechanism of reaction is believed to proceed via a vinyl nitrene intermediate.

  4. Bane of Hydrogen-Bond Formation on the Photoinduced Charge-Transfer Process in Donor–Acceptor Systems

    KAUST Repository

    Alsam, Amani Abdu

    2017-03-14

    Controlling the ultrafast dynamical process of photoinduced charge transfer at donor acceptor interfaces remains a major challenge for physical chemistry and solar cell communities. The process is complicated by the involvement of other complex dynamical processes, including hydrogen bond formation, energy transfer, and solvation dynamics occurring on similar time scales. In this study, we explore the remarkable impact of hydrogen-bond formation on the interfacial charge transfer between a negatively charged electron donating anionic porphyrin and a positively charged electron accepting pi-conjugated polymer, as a model system in solvents with different polarities and capabilities for hydiogen bonding using femtosecond transient absorption spectroscopy. Unlike the conventional understanding of the key role of hydrogen bonding in promoting the charge-transfer process, our steadystate and time-resolved results reveal that the intervening hydrogen-bonding environment and, consequently, the probable longer spacing between the donor and acceptor molecules significantly hinders the charge-transfer process between them. These results show that site-specific hydrogen bonding and geometric considerations between donor and acceptor can be exploited to control both the charge-transfer dynamics and its efficiency not only at donor acceptor interfaces but also in complex biological systems.

  5. Influence of Blend Morphology and Energetics on Charge Separation and Recombination Dynamics in Organic Solar Cells Incorporating a Nonfullerene Acceptor

    KAUST Repository

    Cha, Hyojung

    2017-11-27

    Nonfullerene acceptors (NFAs) in blends with highly crystalline donor polymers have been shown to yield particularly high device voltage outputs, but typically more modest quantum yields for photocurrent generation as well as often lower fill factors (FF). In this study, we employ transient optical and optoelectronic analysis to elucidate the factors determining device photocurrent and FF in blends of the highly crystalline donor polymer PffBT4T-2OD with the promising NFA FBR or the more widely studied fullerene acceptor PC71BM. Geminate recombination losses, as measured by ultrafast transient absorption spectroscopy, are observed to be significantly higher for PffBT4T-2OD:FBR blends. This is assigned to the smaller LUMO-LUMO offset of the PffBT4T-2OD:FBR blends relative to PffBT4T-2OD:PC71BM, resulting in the lower photocurrent generation efficiency obtained with FBR. Employing time delayed charge extraction measurements, these geminate recombination losses are observed to be field dependent, resulting in the lower FF observed with PffBT4T-2OD:FBR devices. These data therefore provide a detailed understanding of the impact of acceptor design, and particularly acceptor energetics, on organic solar cell performance. Our study concludes with a discussion of the implications of these results for the design of NFAs in organic solar cells.

  6. Characterization by time-resolved UV/Vis and infrared absorption spectroscopy of an intramolecular charge-transfer state in an organic electron-donor-bridge-acceptor system

    NARCIS (Netherlands)

    Hviid, L.; Verhoeven, J.W.; Brouwer, A.M.; Paddon-Row, M.N.; Yang, J.

    2004-01-01

    A long-lived intramolecular charge-separated state in an electron-donor-acceptor molecule is characterized by time-resolved visible and infrared absorption spectroscopy. Bands that can be assigned to the negatively charged acceptor chromophore can be clearly observed in the time-resolved IR

  7. Parallel artificial liquid membrane extraction as an efficient tool for removal of phospholipids from human plasma.

    Science.gov (United States)

    Ask, Kristine Skoglund; Bardakci, Turgay; Parmer, Marthe Petrine; Halvorsen, Trine Grønhaug; Øiestad, Elisabeth Leere; Pedersen-Bjergaard, Stig; Gjelstad, Astrid

    2016-09-10

    Generic Parallel Artificial Liquid Membrane Extraction (PALME) methods for non-polar basic and non-polar acidic drugs from human plasma were investigated with respect to phospholipid removal. In both cases, extractions in 96-well format were performed from plasma (125μL), through 4μL organic solvent used as supported liquid membranes (SLMs), and into 50μL aqueous acceptor solutions. The acceptor solutions were subsequently analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using in-source fragmentation and monitoring the m/z 184→184 transition for investigation of phosphatidylcholines (PC), sphingomyelins (SM), and lysophosphatidylcholines (Lyso-PC). In both generic methods, no phospholipids were detected in the acceptor solutions. Thus, PALME appeared to be highly efficient for phospholipid removal. To further support this, qualitative (post-column infusion) and quantitative matrix effects were investigated with fluoxetine, fluvoxamine, and quetiapine as model analytes. No signs of matrix effects were observed. Finally, PALME was evaluated for the aforementioned drug substances, and data were in accordance with European Medicines Agency (EMA) guidelines. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Symmetry-Breaking Charge Transfer in a Zinc Chlorodipyrrin Acceptor for High Open Circuit Voltage Organic Photovoltaics

    KAUST Repository

    Bartynski, Andrew N.

    2015-04-29

    © 2015 American Chemical Society. Low open-circuit voltages significantly limit the power conversion efficiency of organic photovoltaic devices. Typical strategies to enhance the open-circuit voltage involve tuning the HOMO and LUMO positions of the donor (D) and acceptor (A), respectively, to increase the interfacial energy gap or to tailor the donor or acceptor structure at the D/A interface. Here, we present an alternative approach to improve the open-circuit voltage through the use of a zinc chlorodipyrrin, ZCl [bis(dodecachloro-5-mesityldipyrrinato)zinc], as an acceptor, which undergoes symmetry-breaking charge transfer (CT) at the donor/acceptor interface. DBP/ZCl cells exhibit open-circuit voltages of 1.33 V compared to 0.88 V for analogous tetraphenyldibenzoperyflanthrene (DBP)/C60-based devices. Charge transfer state energies measured by Fourier-transform photocurrent spectroscopy and electroluminescence show that C60 forms a CT state of 1.45 ± 0.05 eV in a DBP/C60-based organic photovoltaic device, while ZCl as acceptor gives a CT state energy of 1.70 ± 0.05 eV in the corresponding device structure. In the ZCl device this results in an energetic loss between ECT and qVOC of 0.37 eV, substantially less than the 0.6 eV typically observed for organic systems and equal to the recombination losses seen in high-efficiency Si and GaAs devices. The substantial increase in open-circuit voltage and reduction in recombination losses for devices utilizing ZCl demonstrate the great promise of symmetry-breaking charge transfer in organic photovoltaic devices.

  9. Synthetic Biological Membrane (SBM)

    Data.gov (United States)

    National Aeronautics and Space Administration — The ultimate goal of the Synthetic Biological Membrane project is to develop a new type of membrane that will enable the wastewater treatment system required on...

  10. Oxygen transport membrane

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof.......The present invention relates to a novel composite oxygen transport membrane as well as its preparation and uses thereof....

  11. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  12. Premature rupture of membranes

    Science.gov (United States)

    ... gov/ency/patientinstructions/000512.htm Premature rupture of membranes To use the sharing features on this page, ... water that surrounds your baby in the womb. Membranes or layers of tissue hold in this fluid. ...

  13. Transmembrane Signalling: Membrane messengers

    Science.gov (United States)

    Cockroft, Scott L.

    2017-05-01

    Life has evolved elaborate means of communicating essential chemical information across cell membranes. Inspired by biology, two new artificial mechanisms have now been developed that use synthetic messenger molecules to relay chemical signals into or across lipid membranes.

  14. Tuning the Optoelectronic Properties of Vinylene-Linked Donor−Acceptor Copolymers for Organic Photovoltaics

    KAUST Repository

    Ko, Sangwon

    2010-08-24

    Five new donor-acceptor copolymers containing the electron acceptor benzothiadiazole (BTZ) linked to the electron donors fluorene (FL) or cyclopentadithiophene (CPDT) via vinylene units were synthesized to study polymer structure-property relationships in organic photovoltaic devices. Both alternating (P) and random copolymers (P1-P4) were prepared via Suzuki and Stille polycondensations, respectively. The cyclopentadithiophene copolymers (P2 and P4) have smaller electrochemical band gaps (1.79 and 1.64 eV) compared to the fluorene-containing copolymers (2.08 and 1.95 eV for P1 and P3). However, the presence of CPDT raises the electrochemical HOMO energy levels (-4.83 and-4.91 eV for P2 and P4) compared to the FL copolymers (-5.06 and-5.15 eV for P1 and P3) leading to small open circuit voltages (Voc) in solar cells. The primary solution and thin-film UV-vis absorption peaks of P3 and P4, which do not contain alkylated thiophenes appended to the BTZ unit, are at lower energy and have larger absorption coefficients than their P1 and P2 counterparts. Detailed theoretical analyses of the geometric structure, electronic structure, and excited-state vertical transitions using density functional theory provide direct insight into the interplay between the structural modifications and resulting electronic and optical changes. A high molecular weight (Mn = 25 kg/mol) polymer with a large degree of polymerization (DPn = 21) was easily achieved for the random copolymer P1, leading to thin films with both a larger absorption coefficient and a larger hole mobility compared to the analogous alternating polymer P (Mn = 22 kg/mol, DPn = 18). An improved short circuit current and a power conversion efficiency up to 1.42% (Jsc = 5.82 mA/cm2, Voc = 0.765 V, and FF = 0.32) were achieved in bulk heterojunction solar cells based on P1. © 2010 American Chemical Society.

  15. Ground-state kinetics of bistable redox-active donor-acceptor mechanically interlocked molecules.

    Science.gov (United States)

    Fahrenbach, Albert C; Bruns, Carson J; Li, Hao; Trabolsi, Ali; Coskun, Ali; Stoddart, J Fraser

    2014-02-18

    The ability to design and confer control over the kinetics of theprocesses involved in the mechanisms of artificial molecular machines is at the heart of the challenge to create ones that can carry out useful work on their environment, just as Nature is wont to do. As one of the more promising forerunners of prototypical artificial molecular machines, chemists have developed bistable redox-active donor-acceptor mechanically interlocked molecules (MIMs) over the past couple of decades. These bistable MIMs generally come in the form of [2]rotaxanes, molecular compounds that constitute a ring mechanically interlocked around a dumbbell-shaped component, or [2]catenanes, which are composed of two mechanically interlocked rings. As a result of their interlocked nature, bistable MIMs possess the inherent propensity to express controllable intramolecular, large-amplitude, and reversible motions in response to redox stimuli. In this Account, we rationalize the kinetic behavior in the ground state for a large assortment of these types of bistable MIMs, including both rotaxanes and catenanes. These structures have proven useful in a variety of applications ranging from drug delivery to molecular electronic devices. These bistable donor-acceptor MIMs can switch between two different isomeric states. The favored isomer, known as the ground-state co-conformation (GSCC) is in equilibrium with the less favored metastable state co-conformation (MSCC). The forward (kf) and backward (kb) rate constants associated with this ground-state equilibrium are intimately connected to each other through the ground-state distribution constant, KGS. Knowing the rate constants that govern the kinetics and bring about the equilibration between the MSCC and GSCC, allows researchers to understand the operation of these bistable MIMs in a device setting and apply them toward the construction of artificial molecular machines. The three biggest influences on the ground-state rate constants arise from

  16. Ground-state thermodynamics of bistable redox-active donor-acceptor mechanically interlocked molecules.

    Science.gov (United States)

    Fahrenbach, Albert C; Bruns, Carson J; Cao, Dennis; Stoddart, J Fraser

    2012-09-18

    Fashioned through billions of years of evolution, biological molecular machines, such as ATP synthase, myosin, and kinesin, use the intricate relative motions of their components to drive some of life's most essential processes. Having control over the motions in molecules is imperative for life to function, and many chemists have designed, synthesized, and investigated artificial molecular systems that also express controllable motions within molecules. Using bistable mechanically interlocked molecules (MIMs), based on donor-acceptor recognition motifs, we have sought to imitate the sophisticated nanoscale machines present in living systems. In this Account, we analyze the thermodynamic characteristics of a series of redox-switchable [2]rotaxanes and [2]catenanes. Control and understanding of the relative intramolecular movements of components in MIMs have been vital in the development of a variety of applications of these compounds ranging from molecular electronic devices to drug delivery systems. These bistable donor-acceptor MIMs undergo redox-activated switching between two isomeric states. Under ambient conditions, the dominant translational isomer, the ground-state coconformation (GSCC), is in equilibrium with the less favored translational isomer, the metastable-state coconformation (MSCC). By manipulating the redox state of the recognition site associated with the GSCC, we can stimulate the relative movements of the components in these bistable MIMs. The thermodynamic parameters of model host-guest complexes provide a good starting point to rationalize the ratio of GSCC to MSCC at equilibrium. The bistable [2]rotaxanes show a strong correlation between the relative free energies of model complexes and the ground-state distribution constants (K(GS)). This relationship does not always hold for bistable [2]catenanes, most likely because of the additional steric and electronic constraints present when the two rings are mechanically interlocked with each other

  17. Idiopathic epiretinal membrane

    NARCIS (Netherlands)

    Bu, Shao-Chong; Kuijer, Roelof; Li, Xiao-Rong; Hooymans, Johanna M M; Los, Leonoor I

    2014-01-01

    Background: Idiopathic epiretinal membrane (iERM) is a fibrocellular membrane that proliferates on the inner surface of the retina at the macular area. Membrane contraction is an important sight-threatening event and is due to fibrotic remodeling. Methods: Analysis of the current literature

  18. Model cell membranes

    DEFF Research Database (Denmark)

    Günther-Pomorski, Thomas; Nylander, Tommy; Cardenas Gomez, Marite

    2014-01-01

    The high complexity of biological membranes has motivated the development and application of a wide range of model membrane systems to study biochemical and biophysical aspects of membranes in situ under well defined conditions. The aim is to provide fundamental understanding of processes control...

  19. Membrane contactor applications

    NARCIS (Netherlands)

    Klaassen, R.; Feron, P.H.M.; Jansen, A.

    2008-01-01

    In a membrane contactor the membrane separation is completely integrated with an extraction or absorption operation in order to exploit the benefits of both technologies fully. Membrane contactor applications that have been developed can be found in both water and gas treatment. Several recently

  20. On "spinning" membrane models

    NARCIS (Netherlands)

    Bergshoeff, E.; Sezgin, E.; Townsend, P.K.

    1988-01-01

    Several alternative actions for a bosonic membrane have recently been proposed. We show that a linearly realized locally world-volume-supersymmetric (spinning membrane) extension of any of these actions implies an analogous extension of the standard Dirac membrane action. We further show that a

  1. Meniscus Membranes For Separation

    Science.gov (United States)

    Dye, Robert C.; Jorgensen, Betty; Pesiri, David R.

    2005-09-20

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  2. Meniscus membranes for separations

    Science.gov (United States)

    Dye, Robert C [Irvine, CA; Jorgensen, Betty [Jemez Springs, NM; Pesiri, David R [Aliso Viejo, CA

    2004-01-27

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  3. Plasma membrane ATPases

    DEFF Research Database (Denmark)

    Palmgren, Michael Broberg; Bækgaard, Lone; Lopez Marques, Rosa Laura

    2011-01-01

    membrane include ABC transporters, vacuolar (V-type) H+ pumps, and P-type pumps. These pumps all utilize ATP as a fuel for energizing pumping. This review focuses on the physiological roles of plasma membrane P-type pumps, as they represent the major ATP hydrolytic activity in this membrane....

  4. A general model for membrane-based separation processes

    DEFF Research Database (Denmark)

    Soni, Vipasha; Abildskov, Jens; Jonsson, Gunnar Eigil

    2009-01-01

    behaviour will play an important role. In this paper, modelling of membrane-based processes for separation of gas and liquid mixtures are considered. Two general models, one for membrane-based liquid separation processes (with phase change) and another for membrane-based gas separation are presented....... The separation processes covered are: membrane-based gas separation processes, pervaporation and various types of membrane distillation processes. The specific model for each type of membrane-based process is generated from the two general models by applying the specific system descriptions and the corresponding......A separation process could be defined as a process that transforms a given mixture of chemicals into two or more compositionally distinct end-use products. One way to design these separation processes is to employ a model-based approach, where mathematical models that reliably predict the process...

  5. Golgi GRASPs: moonlighting membrane tethers

    Directory of Open Access Journals (Sweden)

    Jarvela T

    2012-05-01

    Full Text Available Timothy Jarvela, Adam D LinstedtDepartment of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USAAbstract: The identification of mammalian Golgi reassembly stacking proteins (GRASPs 15 years ago was followed by experiments implicating them in diverse functions, including two differing structural roles in Golgi biogenesis and at least two distinct roles in the secretion of proteins. GRASP55 and GRASP65 are localized to cis and medial/trans Golgi cisternae, respectively. They are both required for stacking of Golgi membranes in a Golgi reassembly assay. Depletion of either GRASP from cultured cells prevents the linking of Golgi membranes into their normal ribbon-like network. While GRASPs are not required for transport of secretory cargo per se, they are required for ER-to-Golgi transport of certain specific cargo, such as those containing a C-terminal valine motif. Surprisingly, GRASPs also promote secretion of cargo by the so-called unconventional secretory pathway, which bypasses the Golgi apparatus where the GRASPs reside. Furthermore, regulation of GRASP activity is now recognized for its connections to cell cycle control, development, and disease. Underlying these diverse activities is the structurally conserved N-terminal GRASP domain whose crystal structure was recently determined. It consists of a tandem array of atypical PSD95–DlgA–Zo–1 (PDZ domains, which are well-known protein–protein interaction motifs. The GRASP PDZ domains are used to localize the proteins to the Golgi as well as GRASP-mediated membrane tethering and cargo interactions. These activities are regulated, in part, by phosphorylation of the large unstructured C-terminal domain.Keywords: GRASP, review, membrane, tether, PDZ domain, secretory chaperone, unconventional secretion

  6. Conformations and membrane-driven self-organization of rodlike fd virus particles on freestanding lipid membranes.

    Science.gov (United States)

    Petrova, Anastasiia B; Herold, Christoph; Petrov, Eugene P

    2017-10-11

    Membrane-mediated interactions and aggregation of colloidal particles adsorbed to responsive elastic membranes are challenging problems relevant for understanding the microscopic organization and dynamics of biological membranes. We experimentally study the behavior of rodlike semiflexible fd virus particles electrostatically adsorbed to freestanding cationic lipid membranes and find that their behavior can be controlled by tuning the membrane charge and ionic strength of the surrounding medium. Three distinct interaction regimes of rodlike virus particles with responsive elastic membranes can be observed. (i) A weakly charged freestanding cationic lipid bilayer in a low ionic strength medium represents a gentle quasi-2D substrate preserving the integrity, structure, and mechanical properties of the membrane-bound semiflexible fd virus, which under these conditions is characterized by a monomer length of 884 ± 4 nm and a persistence length of 2.5 ± 0.2 μm, in perfect agreement with its properties in bulk media. (ii) An increase in the membrane charge leads to the membrane-driven collapse of fd virus particles on freestanding lipid bilayers and lipid nanotubes into compact globules. (iii) When the membrane charge is low, and the mutual electrostatic repulsion of membrane-bound virus particles is screened to a considerable degree, membrane-driven self-organization of membrane-bound fd virus particles into long linear tip-to-tip aggregates showing dynamic self-assembly/disassembly and quasi-semiflexible behavior takes place. These observations are in perfect agreement with the results of recent theoretical and simulation studies predicting that membrane-mediated interactions can control the behavior of colloidal particles adsorbed on responsive elastic membranes.

  7. Acceptor levels in ZnMgO:N probed by deep level optical spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, A.; Hierro, A., E-mail: adrian.hierro@upm.es; Muñoz, E. [ISOM and Dpto. Ingeniería Electrónica, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Mohanta, S. K.; Nakamura, A.; Temmyo, J. [Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8011 (Japan)

    2014-02-24

    A combination of deep level optical spectroscopy and lighted capacitance voltage profiling has been used to analyze the effect of N into the energy levels close to the valence band of Zn{sub 0.9}Mg{sub 0.1}O. Three energy levels at E{sub V} + 0.47 eV, E{sub V} + 0.35 eV, and E{sub V} + 0.16 eV are observed in all films with concentrations in the range of 10{sup 15}–10{sup 18} cm{sup −3}. The two shallowest traps at E{sub V} + 0.35 eV and E{sub V} + 0.16 eV have very large concentrations that scale with the N exposure and are thus potential acceptor levels. In order to correctly quantify the deep level concentrations, a metal-insulator-semiconductor model has been invoked, explaining well the resulting capacitance-voltage curves.

  8. Fluorine as a hydrogen-bond acceptor: experimental evidence and computational calculations.

    Science.gov (United States)

    Dalvit, Claudio; Invernizzi, Christian; Vulpetti, Anna

    2014-08-25

    Hydrogen-bonding interactions play an important role in many chemical and biological systems. Fluorine acting as a hydrogen-bond acceptor in intermolecular and intramolecular interactions has been the subject of many controversial discussions and there are different opinions about it. Recently, we have proposed a correlation between the propensity of fluorine to be involved in hydrogen bonds and its (19)F NMR chemical shift. We now provide additional experimental and computational evidence for this correlation. The strength of hydrogen-bond complexes involving the fluorine moieties CH2F, CHF2, and CF3 was measured and characterized in simple systems by using established and novel NMR methods and compared to the known hydrogen-bond complex formed between acetophenone and p-fluorophenol. Implications of these results for (19)F NMR screening are analyzed in detail. Computed values of the molecular electrostatic potential at the different fluorine atoms and the analysis of the electron density topology at bond critical points correlate well with the NMR results. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Variations in Unrealistic Optimism Between Acceptors and Decliners of Early Phase Cancer Trials.

    Science.gov (United States)

    Jansen, Lynn A; Mahadevan, Daruka; Appelbaum, Paul S; Klein, William M P; Weinstein, Neil D; Mori, Motomi; Degnin, Catherine; Sulmasy, Daniel P

    2017-10-01

    Research has found that patient-subjects in early phase cancer trials exhibit unrealistic optimism regarding the risks and possible benefits of trial participation. Unrealistic optimism is associated with therapeutic misconception and failures to appreciate research-related information. This is the first study to assess whether those who decline to participate in these trials also exhibit unrealistic optimism. It is also the first study to assess whether there are significant differences in appreciation of research-related risks/benefits and therapeutic misconception between these two groups. We approached 261 patients at two academic medical centers who were offered enrollment in a Phase I, II, or I/II cancer trial (between 2012 and 2016). Two hundred thirty-three patients agreed to enroll in an early phase cancer trial, 171 of whom agreed to be interviewed for the study. Twenty-eight patients declined the offer to enroll, 15 of whom agreed to be interviewed for the study. Subjects participated in a structured face-to-face interview with a research associate trained to administer the study questionnaires. Acceptors demonstrated a significantly higher level of unrealistic optimism than decliners ( p optimism is consequential for the decision to participate in these trials. The different levels of unrealistic optimism exhibited by these groups suggest that it may be a factor that affects the decision to participate.

  10. Phenothiazine-Anthraquinone Donor-Acceptor Molecules: Synthesis, Electronic Properties and DFT-TDDFT Computational Study

    Science.gov (United States)

    Zhang, Wen-Wei; Mao, Wei-Li; Hu, Yun-Xia; Tian, Zi-Qi; Wang, Zhi-Lin; Meng, Qing-Jin

    2009-08-01

    Two donor-acceptor molecules with different π-electron conjugative units, 1-((10-methyl-10H-phenothiazin-3-yl)ethynyl)anthracene-9,10-dione (AqMp) and 1,1'-(10-methyl-10H-phenothiazine-3,7-diyl)bis(ethyne-2,1-diyl)dianthracene-9,10-dione (Aq2Mp), have been synthesized and investigated for their photochemical and electrochemical properties. Density functional theory (DFT) calculations provide insights into their molecular geometry, electronic structures, and properties. These studies satisfactorily explain the electrochemistry of the two compounds and indicate that larger conjugative effect leads to smaller HOMO-LUMO gap (Eg) in Aq2Mp. Both compounds show ICT and π → π* transitions in the UV-visible range in solution, and Aq2Mp has a bathochromic shift and shows higher oscillator strength of the absorption, which has been verified by time-dependent DFT (TDDFT) calculations. The differences between AqMp and Aq2Mp indicate that the structural and conjugative effects have great influence on the electronic properties of the molecules.

  11. Phasic availability of terminal electron acceptor on oxygen reduction reaction in microbial fuel cell.

    Science.gov (United States)

    Shanthi Sravan, J; Butti, Sai Kishore; Verma, Anil; Venkata Mohan, S

    2017-10-01

    Oxygen-reduction reactions (ORR) plays a pivotal role in determining microbial fuel cells (MFC) performance. In this study, an attempt to determine the influence of the phasic availability of terminal electron acceptor (TEA) on ORR was made. Two MFCs operated with dissolved oxygen (MFC-DC) and air (MFC-SC) as TEA were constructed and analyzed in continuous mode under open and closed circuit conditions. The bio-electrochemical analysis showed a marked influence of dissolved oxygen resulting in a maximum power density with MFC-DC (769mW/m 2 ) compared to MFC-SC (684mW/m 2 ). The availability of O 2 in dissolved phase has lowered the activation losses during the MFC operation as a result of effective ORR. The cyclic voltammetry analysis revealed the TEA dependent biocatalyst activity of NADH and cytochrome complex which enabled electron transfer kinetics and improved substrate utilization. Finally, the study evidenced the critical role of TEA phasic availability to regulate the bio-electrogenic and substrate degradation potential in MFC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Enzymatic production of biodiesel from microalgal oil using ethyl acetate as an acyl acceptor.

    Science.gov (United States)

    Alavijeh, Razieh Shafiee; Tabandeh, Fatemeh; Tavakoli, Omid; Karkhane, Aliasghar; Shariati, Parvin

    2015-01-01

    Microalgae have become an important source of biomass for biodiesel production. In enzymatic transesterification reaction, the enzyme activity is decreased in presence of alcohols. The use of different acyl acceptors such as methyl/ethyl acetate is suggested as an alternative and effective way to overcome this problem. In this study, ethyl acetate was used for the first time in the enzymatic production of biodiesel by using microalga, Chlorella vulgaris, as a triglyceride source. Enzymatic conversion of such fatty acids to biodiesel was catalyzed by Novozym 435 as an efficient immobilized lipase which is extensively used in biodiesel production. The best conversion yield of 66.71% was obtained at the ethyl acetate to oil molar ratio of 13:1 and Novozym 435 concentration of 40%, based on the amount of oil, and a time period of 72 h at 40℃. The results showed that ethyl acetate have no adverse effect on lipase activity and the biodiesel amount was not decreased even after seven transesterification cycles, so ethyl acetate has a great potential to be substituted for short-chain alcohols in transesterification reaction.

  13. Nitrate as electron acceptor in in situ abandoned refinery site bioremediation

    International Nuclear Information System (INIS)

    Battermann, G.; Meier-Loehr, M.

    1995-01-01

    The aquifer beneath an abandoned refinery site is highly polluted with benzene, toluene, ethylbenzene, and xylenes (BTEX). After removal of the free phase by hydraulic measures until 1986, the immobile residual concentration located 6 to 10 m beneath the surface is still present and causes hydrocarbon concentrations from 10 to 100 mg/L in the groundwater. Laboratory tests proved the biodegradability of the hydrocarbon compounds under denitrifying conditions. Based on the results of the pilot study, large-scale bioremediation covering an area of about 20 ha was initiated. About 500 m 3 /h of groundwater were extracted, and 400 m 3 /h were recharged. The large-scale plant has been operating since 1991. Nitrate as an electron acceptor has been used since 1992. About 300 metric tons (MT) of hydrocarbons have been removed to date. The area of groundwater pollution is diminished by a factor of about two. More than 60% of all groundwater observation wells are now free of dissolved hydrocarbons. In addition, the decrease of biological nitrate consumption gives evidence of advanced bioremediation of the soil

  14. Optical Excitation in Donor-Pt-Acceptor Complexes: Role of the Structure.

    Science.gov (United States)

    Gong, Zu-Yong; Duan, Sai; Tian, Guangjun; Zhang, Guozhen; Jiang, Jun; Luo, Yi

    2016-05-26

    The optical properties of the Pt complexes in the form of donor-metal-acceptor (D-M-A) were studied at the first-principles level. Calculated results show that for the frontier molecular orbitals (MOs) of a D-M-A structure the energies of unoccupied frontier MO can be mainly determined by the interaction between M and A, whereas the M-A and M-D interactions both determine the energies of occupied frontier MO. By developing a straightforward transition dipole decomposition method, we found that not only the local excitations in D but also those in A can significantly contribute to the charge-transfer (CT) excitation. Furthermore, the calculations also demonstrate that by tuning the dihedral angle between D and A the transition probability can be precisely controlled so as to broaden the spectrum region of photoabsorption. For the D-M-A molecule with a delocalized π system in A, the CT excitation barely affects the electronic structures of metal, suggesting that the oxidation state of the metal can be kept during the excitation. These understandings for the optical properties of the D-M-A molecule would be useful for the design of dye-sensitized solar cells, photocatalysis, and luminescence systems.

  15. Revealing the Chemistry and Morphology of Buried Donor/Acceptor Interfaces in Organic Photovoltaics.

    Science.gov (United States)

    Griffin, Monroe P; Gearba, Raluca; Stevenson, Keith J; Vanden Bout, David A; Dolocan, Andrei

    2017-07-06

    With power conversion efficiencies (PCEs) of photovoltaics (OPVs) still lack wide adoption, despite significant recent advances. Currently, the most progress in OPV device performance is achieved by "trial-and-error" preparation procedures that lead to complex and largely unknown-despite tremendous analytical efforts-morphologies. Here, we demonstrate a proof-of-principle, chemical imaging methodology that combines experimental high spatial sensitivity and chemical selectivity with theoretical modeling, capable of analyzing the three-dimensional composition and morphology of virtually any device. Allowing the precise measurement of composition and direct visualization of film morphology with depth, our approach reveals the intricate buried donor/acceptor (D/A) interface of a model polymer/fullerene system, poly(3-hexylthiphene-2,5-diyl)/[6,6]-phenyl-C 61 -butyric acid methyl ester (P3HT/PCBM). In particular, our technique is able to identify and quantify the D/A interface length, that is, the extent of molecular mixing at the D/A interface, a parameter crucial for device performance, yet never measured. Extracting this parameter allows demonstrating that, contrary to the general understanding, when starting with a fully mixed D/A phase in our model system, thermal annealing, which is known to substantially (however limited) increase the device performance by phase segregation, does not create but small amounts of pure phases, leaving the device mostly mixed, which limits the performance improvement.

  16. Design of Bicontinuous Donor/Acceptor Morphologies for Use as Organic Solar Cell Active Layers

    Science.gov (United States)

    Kipp, Dylan; Mok, Jorge; Verduzco, Rafael; Ganesan, Venkat

    Two of the primary challenges limiting the marketability of organic solar cells are i) the smaller device efficiency of the organic solar cell relative to the conventional silicon-based solar cell and ii) the long term thermal instability of the device active layer. The achievement of equilibrium donor/acceptor morphologies with the characteristics believed to yield high device performance characteristics could address each of these two challenges. In this work, we present the results of a combined simulations and experiments-based approach to investigate if a conjugated BCP additive can be used to control the self-assembled morphologies taken on by conjugated polymer/PCBM mixtures. First, we use single chain in mean field Monte Carlo simulations to identify regions within the conjugated polymer/PCBM composition space in which addition of copolymers can lead to bicontinuous equilibrium morphologies with high interfacial areas and nanoscale dimensions. Second, we conduct experiments as directed by the simulations to achieve such morphologies in the PTB7 + PTB7- b-PNDI + PCBM model blend. We characterize the results of our experiments via a combination of transmission electron microscopy and X-ray scattering techniques and demonstrate that the morphologies from experiments agree with those predicted in simulations. Accordingly, these results indicate that the approach utilized represents a promising approach to intelligently design the morphologies taken on by organic solar cell active layers.

  17. Efficient Naphthalenediimide-Based Hole Semiconducting Polymer with Vinylene Linkers between Donor and Acceptor Units

    KAUST Repository

    Zhang, Lei

    2016-11-04

    We demonstrate a new method to reverse the polarity and charge transport behavior of naphthalenediimide (NDI)-based copolymers by inserting a vinylene linker between the donor and acceptor units. The vinylene linkers minimize the intrinsic steric congestion between the NDI and thiophene moieties to prompt backbone planarity. The polymers with vinylene linkers exhibit electron n-channel transport characteristics under vacuum, similar to the benchmark polymer, P(NDI2OD-T2). To our surprise, when the polymers are measured in air, the dominant carrier type switches from n- to p-type and yield hole mobilities up to 0.45 cm(2) s(-1) with hole to electron mobility ratio of three (mu(h)/mu(e), similar to 3), which indicates that the hole density in the active layer can be significantly increased by exposure to air. This increase is consistent with the intrinsic more delocalized nature of the highest occupied molecular orbital of the charged vinylene polymer, as estimated by density functional theory (DFT) calculations, which facilitates hole transport within the polymer chains. This is the first demonstration of an efficient NDI-based hole semiconducting polymer, which will enable new developments in all-polymer solar cells, complementary circuits, and dopable polymers for use in thermoelectrics.

  18. Intercalating dye as an acceptor in quantum-dot-mediated FRET

    International Nuclear Information System (INIS)

    Lim, Teck Chuan; Bailey, Vasudev J; Wang, T-H; Ho, Y-P

    2008-01-01

    Fluorescence resonance energy transfer (FRET) is a popular tool to study intermolecular distances and characterize structural or conformational changes of biological macromolecules. We investigate a novel inorganic/organic FRET pair with quantum dots (QDs) as donors and DNA intercalating dyes, BOBO-3, as acceptors by using DNA as a linker. Typically, FRET efficiency increases with the number of stained DNA linked to a QD. However, with the use of intercalating dyes, we demonstrate that FRET efficiency at a fixed DNA:QD ratio can be further enhanced by increasing the number of dyes stained to a DNA strand through the use of an increased staining dye/bp ratio. We exploit this flexibility in the staining ratio to maintain a high FRET efficiency of >0.90 despite a sixfold decrease in DNA concentration. Having characterized this new QD-mediated FRET system, we test this system in a cellular environment using nanocomplexes generated by encapsulating DNA with commercial non-viral gene carriers. Using this novel FRET pair, we are able to monitor the configuration changes and fate of the DNA nanocomplexes during intracellular delivery, thereby providing an insight into the mechanistic study of gene delivery

  19. Ultrasmall magnetic field-effect and sign reversal in transistors based on donor/acceptor systems

    Directory of Open Access Journals (Sweden)

    Thomas Reichert

    2017-05-01

    Full Text Available We present magnetoresistive organic field-effect transistors featuring ultrasmall magnetic field-effects as well as a sign reversal. The employed material systems are coevaporated thin films with different compositions consisting of the electron donor 2,2',7,7'-tetrakis-(N,N-di-p-methylphenylamino-9,9'-spirobifluorene (Spiro-TTB and the electron acceptor 1,4,5,8,9,12-hexaazatriphenylene hexacarbonitrile (HAT-CN. Intermolecular charge transfer between Spiro-TTB and HAT-CN results in a high intrinsic charge carrier density in the coevaporated films. This enhances the probability of bipolaron formation, which is the process responsible for magnetoresistance effects in our system. Thereby even ultrasmall magnetic fields as low as 0.7 mT can influence the resistance of the charge transport channel. Moreover, the magnetoresistance is drastically influenced by the drain voltage, resulting in a sign reversal. An average B0 value of ≈2.1 mT is obtained for all mixing compositions, indicating that only one specific quasiparticle is responsible for the magnetoresistance effects. All magnetoresistance effects can be thoroughly clarified within the framework of the bipolaron model.

  20. Land cover controls the export of terminal electron acceptors from boreal catchments

    Science.gov (United States)

    Palviainen, Marjo; Lehtoranta, Jouni; Ekholm, Petri; Ruoho-Airola, Tuija; Kortelainen, Pirkko

    2015-04-01

    NO3, Mn, Fe and SO4 act as terminal electron acceptors (TEAs) modifying mineralization pathways and coupling biogeochemical cycles. Although single TEA concentrations and fluxes have been intensively studied, the factors regulating the simultaneous fluxes and molar ratios of TEAs are poorly elucidated. We studied the mean concentrations, exports and molar ratios of TEAs from 27 boreal catchments differing in land cover (percentage of agricultural land, peatland, forest and built-up area) in the years 2000-2011. TEA exports and molar ratios were strongly controlled by land cover and only little by atmospheric deposition. There were a great variability of the export of TEAs from different land cover classes. Fields produced the highest export of TEAs, particularly NO3. Peatland was linked to low NO3 and SO4 but high Fe exports. NO3, Mn and Fe exports from forests were low, SO4 having proportionally the highest export. Together, the percentages of field and peatland predicted 93%, 80%, 75% and 67% of the variation in the export of NO3, Mn, Fe and SO4, respectively. Our results showed that the export and molar ratios of TEAs in northern European boreal catchments are predominantly a function of land cover and catchment processes rather than atmospheric deposition. The variable export of TEAs having different availability and physical behavior may create different premises for anaerobic mineralization in downstream systems, which adds a new dimension to the link between terrestrial system, land use and environmental problems such as eutrophication and climate change.

  1. High Hole-Mobility Molecular Layer Made from Strong Electron Acceptor Molecules with Metal Adatoms.

    Science.gov (United States)

    Yamane, Hiroyuki; Kosugi, Nobuhiro

    2017-11-02

    The electronic structure of 7,7,8,8-tetracyanoquinodimethane (TCNQ) and 2,3,5,6-tetrafluoro-TCNQ (F 4 TCNQ) monolayers on Au(111) has been investigated by means of angle-resolved photoemission spectroscopy (ARPES) with synchrotron radiation. In contrast to the physisorbed TCNQ/Au(111) interface, the high-resolution core-level photoemission spectra and the low-energy electron diffraction at the F 4 TCNQ/Au(111) interface show evidence for the strong charge transfer (CT) from Au to F 4 TCNQ and for the Au atom segregation from the underlying Au(111) surface, suggesting a possible origin of the spontaneous formation of the two-dimensional F 4 TCNQ-Au network. The ARPES experiment reveals a low hole-injection barrier and large band dispersion in the CT-induced topmost valence level of the F 4 TCNQ-Au network with 260 meV bandwidth due to the adatom-mediated intermolecular interaction. These results indicate that strong electron acceptor molecules with metal adatoms can form high hole-mobility molecular layers by controlling the molecule-metal ordered structure and their CT interaction.

  2. Utilization of toxic and vapors as alternate electron acceptors in biofilters

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B.D.; Apel, W.A.; Walton, M.R.

    1997-08-01

    Conceptually, biofilters are vapor phase bioreactors that rely on microorganisms in the bed medium to oxidize contaminants in off-gases flowing through the bed to less hazardous compounds. In the most studied and utilized systems reduced compounds such as fuel hydrocarbons are enzymatically oxidized to compounds such as carbon dioxide and water. In these types of reactions the microorganisms in the bed oxidize the contaminant and transfer the electrons to oxygen which is the terminal electron acceptor in the process. In essence the contaminant is the carbon and energy source for the microorganisms in the bed medium and through this catabolic process oxygen is reduced to water. An example of this oxidation process can be seen during the degradation of benzene and similar aromatic compounds. Aromatics are initially attacked by a dioxygenase enzyme which oxidizes the compounds to a labile dihydrodiole which is spontaneously converted to a catechol. The dihydroxylated aromatic rings is then opened by oxidative {open_quotes}ortho{close_quotes} or {open_quotes}meta{close_quotes} cleavage yielding cis, cis-muconic acid or 2-hydroxy-cis, cis-muconic semialdehyde, respectively. These organic compounds are further oxidized to carbon dioxide or are assimilated for cellular material. This paper describes the conversion of carbon tetrachloride using methanol as the primary carbon and energy source.

  3. Positron Spur Reactions with Excess Electrons and Anions in Liquid Organic Mixtures of Electron Acceptors

    DEFF Research Database (Denmark)

    Lévay, B.; Mogensen, O. E.

    1980-01-01

    cyclohexane, but did not appear in the aromatic benzene. This might be explained by the weak electron acceptor property of aromatics. In the Ps yield versus SF6 concentration curve in hexane a similar minimum appeared as in the CS2 case, probably by the same reason. By adding 0.8 M CS2 to the system...... the minimum was shifted towards the lower concentrations, which might be explained by some overlap of the energy levels on CS2 and SF6. Antiinhibition effect of C6F6 and CS2 was studied in 0.05 M CCl4/hexane solutions. In the CS2 case first a small minimum appeared in the Ps yield versus CS2 concentration...... curve. Alcohol clusters did not show antiinhibition in 0.05 M CCl4/neopentane system. Weak electron scavengers (C6F6, naphthalene, biphenyl, benzene) which generally act as antiinhibitors were added to pure non-polar solvents (hexane, isooctane, cyclohexane) and caused Ps enhancement. This can...

  4. Screening of recombinant glycosyltransferases reveals the broad acceptor specificity of stevia UGT-76G1.

    Science.gov (United States)

    Dewitte, Griet; Walmagh, Maarten; Diricks, Margo; Lepak, Alexander; Gutmann, Alexander; Nidetzky, Bernd; Desmet, Tom

    2016-09-10

    UDP-glycosyltransferases (UGTs) are a promising class of biocatalysts that offer a sustainable alternative for chemical glycosylation of natural products. In this study, we aimed to characterize plant-derived UGTs from the GT-1 family with an emphasis on their acceptor promiscuity and their potential application in glycosylation processes. Recombinant expression in E. coli provided sufficient amounts of enzyme for the in-depth characterization of the salicylic acid UGT from Capsella rubella (UGT-SACr) and the stevia UGT from Stevia rebaudiana (UGT-76G1Sr). The latter was found to have a remarkably broad specificity with activities on a wide diversity of structures, from aliphatic and branched alcohols, over small phenolics to larger flavonoids, terpenoids and even higher glycoside compounds. As an example for its industrial potential, the glycosylation of curcumin was thoroughly evaluated. Under optimized conditions, 96% of curcumin was converted within 24h into the corresponding curcumin β-glycosides. In addition, the reaction was performed in a coupled system with sucrose synthase from Glycine max, to enable the cost-efficient (re)generation of UDP-Glc from sucrose as abundant and renewable resource. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Microporous silica membranes

    DEFF Research Database (Denmark)

    Boffa, Vittorio; Yue, Yuanzheng

    2012-01-01

    Hydrothermal stability is a crucial factor for the application of microporous silica-based membranes in industrial processes. Indeed, it is well established that steam exposure may cause densification and defect formation in microporous silica membranes, which are detrimental to both membrane...... permeability and selectivity. Numerous previous studies show that microporous transition metal doped-silica membranes are hydrothermally more stable than pure silica membranes, but less permeable. Here we present a quantitative study on the impact of type and concentration of transition metal ions...... on the microporous structure, stability and permeability of amorphous silica-based membranes, providing information on how to design chemical compositions and synthetic paths for the fabrication of silica-based membranes with a well accessible and highly stabile microporous structure....

  6. Clustering on Membranes

    DEFF Research Database (Denmark)

    Johannes, Ludger; Pezeshkian, Weria; Ipsen, John H

    2018-01-01

    Clustering of extracellular ligands and proteins on the plasma membrane is required to perform specific cellular functions, such as signaling and endocytosis. Attractive forces that originate in perturbations of the membrane's physical properties contribute to this clustering, in addition to direct...... protein-protein interactions. However, these membrane-mediated forces have not all been equally considered, despite their importance. In this review, we describe how line tension, lipid depletion, and membrane curvature contribute to membrane-mediated clustering. Additional attractive forces that arise...... from protein-induced perturbation of a membrane's fluctuations are also described. This review aims to provide a survey of the current understanding of membrane-mediated clustering and how this supports precise biological functions....

  7. Application of dynamic membranes in anaerobic membranes in anaerobic membrane bioreactor systems

    NARCIS (Netherlands)

    Erşahin, M.E.

    2015-01-01

    Anaerobic membrane bioreactors (AnMBRs) physically ensure biomass retention by the application of a membrane filtration process. With growing application experiences from aerobic membrane bioreactors (MBRs), the combination of membrane and anaerobic processes has received much attention and become

  8. The effects of electrolysis on operational solutions in electromembrane extraction: The role of acceptor solution

    Czech Academy of Sciences Publication Activity Database

    Kubáň, Pavel; Boček, Petr

    2015-01-01

    Roč. 1398, JUN (2015), s. 11-19 ISSN 0021-9673 R&D Projects: GA ČR(CZ) GA13-05762S Institutional support: RVO:68081715 Keywords : electrolysis * micro-electromembrane extraction * free liquid membranes Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.926, year: 2015

  9. APPL proteins FRET at the BAR: direct observation of APPL1 and APPL2 BAR domain-mediated interactions on cell membranes using FRET microscopy.

    Directory of Open Access Journals (Sweden)

    Heidi J Chial

    2010-08-01

    Full Text Available Human APPL1 and APPL2 are homologous RAB5 effectors whose binding partners include a diverse set of transmembrane receptors, signaling proteins, and phosphoinositides. APPL proteins associate dynamically with endosomal membranes and are proposed to function in endosome-mediated signaling pathways linking the cell surface to the cell nucleus. APPL proteins contain an N-terminal Bin/Amphiphysin/Rvs (BAR domain, a central pleckstrin homology (PH domain, and a C-terminal phosphotyrosine binding (PTB domain. Previous structural and biochemical studies have shown that the APPL BAR domains mediate homotypic and heterotypic APPL-APPL interactions and that the APPL1 BAR domain forms crescent-shaped dimers. Although previous studies have shown that APPL minimal BAR domains associate with curved cell membranes, direct interaction between APPL BAR domains on cell membranes in vivo has not been reported.Herein, we used a laser-scanning confocal microscope equipped with a spectral detector to carry out fluorescence resonance energy transfer (FRET experiments with cyan fluorescent protein/yellow fluorescent protein (CFP/YFP FRET donor/acceptor pairs to examine interactions between APPL minimal BAR domains at the subcellular level. This comprehensive approach enabled us to evaluate FRET levels in a single cell using three methods: sensitized emission, standard acceptor photobleaching, and sequential acceptor photobleaching. We also analyzed emission spectra to address an outstanding controversy regarding the use of CFP donor/YFP acceptor pairs in FRET acceptor photobleaching experiments, based on reports that photobleaching of YFP converts it into a CFP-like species.All three methods consistently showed significant FRET between APPL minimal BAR domain FRET pairs, indicating that they interact directly in a homotypic (i.e., APPL1-APPL1 and APPL2-APPL2 and heterotypic (i.e., APPL1-APPL2 manner on curved cell membranes. Furthermore, the results of our experiments

  10. Probing cellular behaviors through nanopatterned chitosan membranes

    International Nuclear Information System (INIS)

    Yang, Chung-Yao; Sung, Chun-Yen; Shuai, Hung-Hsun; Cheng, Chao-Min; Yeh, J Andrew

    2013-01-01

    This paper describes a high-throughput method for developing physically modified chitosan membranes to probe the cellular behavior of MDCK epithelial cells and HIG-82 fibroblasts adhered onto these modified membranes. To prepare chitosan membranes with micro/nanoscaled features, we have demonstrated an easy-to-handle, facile approach that could be easily integrated with IC-based manufacturing processes with mass production potential. These physically modified chitosan membranes were observed by scanning electron microscopy to gain a better understanding of chitosan membrane surface morphology. After MDCK cells and HIG-82 fibroblasts were cultured on these modified chitosan membranes for various culture durations (i.e. 1, 2, 4, 12 and 24 h), they were investigated to decipher cellular behavior. We found that both cells preferred to adhere onto a flat surface rather than on a nanopatterned surface. However, most (> 80%) of the MDCK cells showed rounded morphology and would suspend in the cultured medium instead of adhering onto the planar surface of negatively nanopatterned chitosan membranes. This means different cell types (e.g. fibroblasts versus epithelia) showed distinct capabilities/preferences of adherence for materials of varying surface roughness. We also showed that chitosan membranes could be re-used at least nine times without significant contamination and would provide us consistency for probing cell–material interactions by permitting reuse of the same substrate. We believe these results would provide us better insight into cellular behavior, specifically, microscopic properties and characteristics of cells grown under unique, nanopatterned cell-interface conditions. (paper)

  11. Supported ionic liquid membrane in membrane reactor

    Science.gov (United States)

    Makertihartha, I. G. B. N.; Zunita, M.; Dharmawijaya, P. T.; Wenten, I. G.

    2017-01-01

    Membrane reactor is a device that integrates membrane based separation and (catalytic) chemical reaction vessel in a single device. Ionic liquids, considered to be a relatively recent magical chemical due to their unique properties, have a large variety of applications in all areas of chemical industries. Moreover, the ionic liquid can be used as membrane separation layer and/or catalytically active site. This paper will review utilization of ionic liquid in membrane reactor related applications especially Fischer-Tropsch, hydrogenation, and dehydrogenation reaction. This paper also reviews about the capability of ionic liquid in equilibrium reaction that produces CO2 product so that the reaction will move towards the product. Water gas shift reaction in ammonia production also direct Dimethyl Ether (DME) synthesis that produces CO2 product will be discussed. Based on a review of numerous articles on supported ionic liquid membrane (SILM) indicate that ionic liquids have the potential to support the process of chemical reaction and separation in a membrane reactor.

  12. Septins as modulators of endo-lysosomal membrane traffic

    Directory of Open Access Journals (Sweden)

    Kyungyeun Song

    2016-11-01

    Full Text Available Septins constitute a family of GTP-binding proteins, which assemble into non-polar filaments in a nucleotide-dependent manner. These filaments can be recruited to negatively charged membrane surfaces. When associated with membranes septin filaments can act as diffusion barriers, which confine subdomains of distinct biological functions. In addition, they serve scaffolding roles by recruiting cytosolic proteins and other cytoskeletal elements. Septins have been implicated in a large variety of membrane-dependent processes, including cytokinesis, signaling, cell migration, and membrane traffic, and several family members have been implicated in disease. However, surprisingly little is known about the molecular mechanisms underlying their biological functions. This review summarizes evidence in support of regulatory roles of septins during endo-lysosomal sorting, with a particular focus on phosphoinositides, which serve as spatial landmarks guiding septin recruitment to distinct subcellular localizations.

  13. Virus Infection Triggers MAVS Polymers of Distinct Molecular Weight

    Directory of Open Access Journals (Sweden)

    Natalia Zamorano Cuervo

    2018-01-01

    Full Text Available The mitochondrial antiviral signaling (MAVS adaptor protein is a central signaling hub required for cells to mount an antiviral response following virus sensing by retinoic acid-inducible gene I (RIG-I-like receptors. MAVS localizes in the membrane of mitochondria and peroxisomes and in mitochondrial-associated endoplasmic reticulum membranes. Structural and functional studies have revealed that MAVS activity relies on the formation of functional high molecular weight prion-like aggregates. The formation of protein aggregates typically relies on a dynamic transition between oligomerization and aggregation states. The existence of intermediate state(s of MAVS polymers, other than aggregates, has not yet been documented. Here, we used a combination of non-reducing SDS-PAGE and semi-denaturing detergent agarose gel electrophoresis (SDD-AGE to resolve whole cell extract preparations to distinguish MAVS polymerization states. While SDD-AGE analysis of whole cell extracts revealed the formation of previously described high molecular weight prion-like aggregates upon constitutively active RIG-I ectopic expression and virus infection, non-reducing SDS-PAGE allowed us to demonstrate the induction of lower molecular weight oligomers. Cleavage of MAVS using the NS3/4A protease revealed that anchoring to intracellular membranes is required for the appropriate polymerization into active high molecular weight aggregates. Altogether, our data suggest that RIG-I-dependent MAVS activation involves the coexistence of MAVS polymers with distinct molecular weights.

  14. Organic charge transfer phase formation in thin films of the BEDT-TTF/TCNQ donor-acceptor system

    DEFF Research Database (Denmark)

    Solovyeva, Vita; Keller, K.; Huth, M.

    2009-01-01

    We have performed charge transfer phase formation studies on the donor/acceptor system bis-(ethylendithio)tetrathiafulvalene (BEDT-TTF)/tetracyanoquinodimethane,(TCNQ) by means of physical vapor deposition. We prepared donor/acceptor bilayer structures on glass and Si(100)/SiO substrates held......-evaporation experiments of (BEDT-TTF)-TCNQ and TCNQ. In the course of these experiments we found that (0ℓℓ)-oriented BEDT-TTF layers can be prepared on α-Al O (112̄0) substrates at about 100 °C using (BEDT-TTF)-TCNQ as source material. We speculate that due to its high vapor pressure the TCNQ component serves...... as a carrier gas for BEDT-TTF vapor phase transport....

  15. Direct correlation of charge transfer absorption with molecular donor:acceptor interfacial area via photothermal deflection spectroscopy

    KAUST Repository

    Domingo, Ester

    2015-04-09

    We show that the Charge Transfer (CT) absorption signal in bulk-heterojunction (BHJ) solar cell blends, measured by photothermal deflection spectroscopy (PDS), is directly proportional to the density of molecular donor/acceptor interfaces. Since the optical transitions from ground state to the interfacial CT state are weakly allowed at photon energies below the optical gap of both donor and acceptor, we can exploit the use of this sensitive linear absorption spectroscopy for such quantification. Moreover, we determine the absolute molar extinction coefficient of the CT transition for an archetypical polymer-fullerene interface. The latter is ~100 times lower than the extinction coefficient of the donor chromophore involved, allowing us to experimentally estimate the transition dipole moment (0.3 D) and the electronic coupling between ground state and CT state to be on the order of 30 meV.

  16. Enantiopure versus Racemic Naphthalimide End-Capped Helicenic Non-fullerene Electron Acceptors: Impact on Organic Photovoltaics Performance.

    Science.gov (United States)

    Josse, Pierre; Favereau, Ludovic; Shen, Chengshuo; Dabos-Seignon, Sylvie; Blanchard, Philippe; Cabanetos, Clément; Crassous, Jeanne

    2017-05-05

    Impact of the enantiopurity on organic photovoltaics (OPV) performance was investigated through the synthesis of racemic and enantiomerically pure naphthalimide end-capped helicenes and their application as non-fullerene molecular electron acceptors in OPV devices. A very strong increase of the device performance was observed by simply switching from the racemic to the enantiopure forms of these π-helical non-fullerene acceptors with power conversion efficiencies jumping from 0.4 to about 2.0 % in air-processed poly(3-hexylthiophene)-based devices, thus highlighting the key role of enantiopurity in the photovoltaic properties. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Evidence of magnesium impact on arsenic acceptor state: Study of ZnMgO:As molecular beam epitaxy layers

    Science.gov (United States)

    Przezdziecka, E.; Lisowski, W.; Reszka, A.; Kozanecki, A.

    2018-03-01

    A series of ZnMgO oxide films single doped with arsenic was grown by plasma assisted molecular beam epitaxy method. The concentration of Mg in Zn1-xMgxO alloys was evaluated on the basis of X-Ray photoelectron spectroscopy (XPS). Changes of the band gap energy in Zn1-xMgxO were evidenced by cathodoluminescence measurements. Analysis of high resolution As 3d XPS spectra revealed three arsenic states with binding energies of ∼41 eV, 44.2 eV and 45.6 eV assigned to: deep acceptor of AsO, acceptor AsZn-2VZn and donor AsZn, respectively. Small concentrations of AsO species were detected in all samples. The As contribution due to AsZn-2VZn centers was found to be intensive, and increased with the concentration of Mg.

  18. Direct view at colossal permittivity in donor-acceptor (Nb, In) co-doped rutile TiO2

    International Nuclear Information System (INIS)

    Mandal, Suman; Pal, Somnath; Hazarika, Abhijit; Kundu, Asish K.; Menon, Krishnakumar S. R.; Rioult, Maxime; Belkhou, Rachid

    2016-01-01

    Topical observations of colossal permittivity (CP) with low dielectric loss in donor-acceptor cations co-doped rutile TiO 2 have opened up several possibilities in microelectronics and energy-storage devices. Yet, the precise origin of the CP behavior, knowledge of which is essential to empower the device integration suitably, is highly disputed in the literature. From spectromicroscopic approach besides dielectric measurements, we explore that microscopic electronic inhomogeneities along with the nano-scale phase boundaries and the low temperature polaronic relaxation are mostly responsible for such a dielectric behavior, rather than electron-pinned defect-dipoles/grain-boundary effects as usually proposed. Donor-acceptor co-doping results in a controlled carrier-hopping inevitably influencing the dielectric loss while invariably upholding the CP value.

  19. Direct view at colossal permittivity in donor-acceptor (Nb, In) co-doped rutile TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Suman, E-mail: suman.mandal@sscu.iisc.ernet.in; Pal, Somnath; Hazarika, Abhijit [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012 (India); Kundu, Asish K.; Menon, Krishnakumar S. R. [Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Rioult, Maxime; Belkhou, Rachid [Synchrotron SOLEIL, L' Orme des Merisiers Saint-Aubin, 91192 Gif-sur-Yvette (France)

    2016-08-29

    Topical observations of colossal permittivity (CP) with low dielectric loss in donor-acceptor cations co-doped rutile TiO{sub 2} have opened up several possibilities in microelectronics and energy-storage devices. Yet, the precise origin of the CP behavior, knowledge of which is essential to empower the device integration suitably, is highly disputed in the literature. From spectromicroscopic approach besides dielectric measurements, we explore that microscopic electronic inhomogeneities along with the nano-scale phase boundaries and the low temperature polaronic relaxation are mostly responsible for such a dielectric behavior, rather than electron-pinned defect-dipoles/grain-boundary effects as usually proposed. Donor-acceptor co-doping results in a controlled carrier-hopping inevitably influencing the dielectric loss while invariably upholding the CP value.

  20. Peptide-Driven Charge-Transfer Organogels Built from Synergetic Hydrogen Bonding and Pyrene-Naphthalenediimide Donor-Acceptor Interactions.

    Science.gov (United States)

    Bartocci, Silvia; Berrocal, José Augusto; Guarracino, Paola; Grillaud, Maxime; Franco, Lorenzo; Mba, Miriam

    2018-02-26

    The peptide-driven formation of charge transfer (CT) supramolecular gels featuring both directional hydrogen-bonding and donor-acceptor (D-A) complexation is reported. Our design consists of the coassembly of two dipeptide-chromophore conjugates, namely diphenylalanine (FF) dipeptide conveniently functionalized at the N-terminus with either a pyrene (Py-1, donor) or naphthalene diimide (NDI-1, acceptor). UV/Vis spectroscopy confirmed the formation of CT complexes. FTIR and 1 H NMR spectroscopy studies underlined the pivotal role of hydrogen bonding in the gelation process, and electronic paramagnetic resonance (EPR) measurements unraveled the advantage of preorganized CT supramolecular architectures for charge transport over solutions containing non-coassembled D and A molecular systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Roll-coating fabrication of ITO-free flexible solar cells based on a non-fullerene small molecule acceptor

    DEFF Research Database (Denmark)

    Liu, Wenqing; Shi, Hangqi; Andersen, Thomas Rieks

    2015-01-01

    We report organic solar cells (OSCs) with non-fullerene small molecule acceptors (SMAs) prepared in large area via a roll coating process. We employ all solution-processed indium tin oxide (ITO)-free flexible substrates for inverted solar cells with a new SMA of F(DPP)(2)B-2. By utilizing poly(3......-hexylthiophene) as donor blended with F(DPP)(2)B-2 as acceptor, ITO-free large-area flexible SMA based OSCs were produced under ambient conditions with the use of slot-die coating and flexographic printing methods on a lab-scale compact roll-coater that is readily transferrable to roll-to-roll processing...

  2. Modelling Defects Acceptors And Determination Of Electric Model From The Nyquist Plot And Bode In Thin Film CIGS

    Directory of Open Access Journals (Sweden)

    Demba Diallo

    2015-08-01

    Full Text Available Abstract The performance of the chalcopyrite material CuInGaSe2 CIGS used as an absorber layer in thin-film photovoltaic devices is significantly affected by the presence of native defects. Multivalent defects e.g. double acceptors or simple acceptor are important immaterial used in solar cell production in general and in chalcopyrite materials in particular. We used the thin film solar cell simulation software SCAPS to enable the simulation of multivalent defects with up to five different charge states.Algorithms enabled us to simulate an arbitrary number of possible states of load. The presented solution method avoids numerical inaccuracies caused by the subtraction of two almost equal numbers. This new modelling facility is afterwards used to investigate the consequences of the multivalent character of defects for the simulation of chalcopyrite based CIGS. The capacitance increase with the evolution of the number of defects C- f curves have found to have defect dependence.

  3. Emulsification using microporous membranes

    Directory of Open Access Journals (Sweden)

    Goran T. Vladisavljević

    2011-10-01

    Full Text Available Membrane emulsification is a process of injecting a pure dispersed phase or pre-emulsion through a microporous membrane into the continuous phase. As a result of the immiscibility of the two phases, droplets of the dispersed phase are formed at the outlets of membrane pores. The droplets formed in the process are removed from the membrane surface by applying cross-flow or stirring of the continuous phase or using a dynamic (rotating or vibrating membrane. The most commonly used membrane for emulsification is the Shirasu Porous Glass (SPG membrane, fabricated through spinodal decomposition in a melt consisting of Japanese volcanic ash (Shirasu, boric acid and calcium carbonate. Microsieve membranes are increasingly popular as an alternative to highly tortuous glass and ceramic membranes. Microsieves are usually fabricated from nickel by photolithography and electroplating or they can be manufactured from silicon nitride via Reactive Ion Etching (RIE. An advantage of microsieves compared to the SPG membrane is in much higher transmembrane fluxes and higher tolerance to fouling by the emulsion ingredients due to the existence of short, straight through pores. Unlike conventional emulsification devices such as high-pressure valve homogenisers and rotor-stator devices, membrane emulsification devices permit a precise control over the mean pore size over a wide range and during the process insignificant amount of energy is dissipated as heat. The drop size is primarily determined by the pore size, but it depends also on other parameters, such as membrane wettability, emulsion formulation, shear stress on the membrane surface, transmembrane pressure, etc.

  4. Simultaneous measurement of quantum yield ratio and absorption ratio between acceptor and donor by linearly unmixing excitation-emission spectra.

    Science.gov (United States)

    Zhang, C; Lin, F; DU, M; Qu, W; Mai, Z; Qu, J; Chen, T

    2018-02-13

    Quantum yield ratio (Q A /Q D ) and absorption ratio (K A /K D ) in all excitation wavelengths used between acceptor and donor are indispensable to quantitative fluorescence resonance energy transfer (FRET) measurement based on linearly unmixing excitation-emission spectra (ExEm-spFRET). We here describe an approach to simultaneously measure Q A /Q D and K A /K D values by linearly unmixing the excitation-emission spectra of at least two different donor-acceptor tandem constructs with unknown FRET efficiency. To measure the Q A /Q D and K A /K D values of Venus (V) to Cerulean (C), we used a wide-field fluorescence microscope to image living HepG2 cells separately expressing each of four different C-V tandem constructs at different emission wavelengths with 435 nm and 470 nm excitation respectively to obtain the corresponding excitation-emission spectrum (S DA ). Every S DA was linearly unmixed into the contributions (weights) of three excitation-emission spectra of donor (W D ) and acceptor (W A ) as well as donor-acceptor sensitisation (W S ). Plot of W S /W D versus W A /W D for the four C-V plasmids from at least 40 cells indicated a linear relationship with 1.865 of absolute intercept (Q A /Q D ) and 0.273 of the reciprocal of slope (K A /K D ), which was validated by quantitative FRET measurements adopting 1.865 of Q A /Q D and 0.273 of K A /K D for C32V, C5V, CVC and VCV constructs respectively in living HepG2 cells. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  5. Kinetic modeling of electron transfer reactions in photosystem I complexes of various structures with substituted quinone acceptors.

    Science.gov (United States)

    Milanovsky, Georgy E; Petrova, Anastasia A; Cherepanov, Dmitry A; Semenov, Alexey Yu

    2017-09-01

    The reduction kinetics of the photo-oxidized primary electron donor P 700 in photosystem I (PS I) complexes from cyanobacteria Synechocystis sp. PCC 6803 were analyzed within the kinetic model, which considers electron transfer (ET) reactions between P 700 , secondary quinone acceptor A 1 , iron-sulfur clusters and external electron donor and acceptors - methylviologen (MV), 2,3-dichloro-naphthoquinone (Cl 2 NQ) and oxygen. PS I complexes containing various quinones in the A 1 -binding site (phylloquinone PhQ, plastoquinone-9 PQ and Cl 2 NQ) as well as F X -core complexes, depleted of terminal iron-sulfur F A /F B clusters, were studied. The acceleration of charge recombination in F X -core complexes by PhQ/PQ substitution indicates that backward ET from the iron-sulfur clusters involves quinone in the A 1 -binding site. The kinetic parameters of ET reactions were obtained by global fitting of the P 700 + reduction with the kinetic model. The free energy gap ΔG 0 between F X and F A /F B clusters was estimated as -130 meV. The driving force of ET from A 1 to F X was determined as -50 and -220 meV for PhQ in the A and B cofactor branches, respectively. For PQ in A 1A -site, this reaction was found to be endergonic (ΔG 0  = +75 meV). The interaction of PS I with external acceptors was quantitatively described in terms of Michaelis-Menten kinetics. The second-order rate constants of ET from F A /F B , F X and Cl 2 NQ in the A 1 -site of PS I to external acceptors were estimated. The side production of superoxide radical in the A 1 -site by oxygen reduction via the Mehler reaction might comprise ≥0.3% of the total electron flow in PS I.

  6. Possibility to Use Hydrothermally Synthesized CuFeS2 Nanocomposite as an Acceptor in Hybrid Solar Cell

    Science.gov (United States)

    Sil, Sayantan; Dey, Arka; Halder, Soumi; Datta, Joydeep; Ray, Partha Pratim

    2018-01-01

    Here we have approached the plausible use of CuFeS2 nanocomposite as an acceptor in organic-inorganic hybrid solar cell. To produce CuFeS2 nanocomposite, hydrothermal strategy was employed. The room-temperature XRD pattern approves the synthesized material as CuFeS2 with no phase impurity (JCPDS Card no: 37-0471). The elemental composition of the material was analyzed from the TEM-EDX data. The obtained selected area electron diffraction (SAED) planes harmonized with the XRD pattern of the synthesized product. Optical band gap (4.14 eV) of the composite from UV-Vis analysis depicts that the synthesized material is belonging to wide band gap semiconductor family. The HOMO (- 6.97 eV) and LUMO (- 2.93 eV) positions from electrochemical study reveal that there is a possibility of electron transfer from MEH-PPV to CuFeS2. The optical absorption and photoluminescence spectra of MEH-PPV:CuFeS2 (donor:acceptor) composite were recorded sequentially by varying weight ratios. The monotonic blue shifting of the absorption peak position indicated the interaction between donor and acceptor materials. The possibility of electron transfer from donor (MEH-PPV) to acceptor (CuFeS2) was approved with photoluminescence analysis. Subsequently, we have fabricated a hybrid solar cell by incorporating CuFeS2 nanocomposite with MEH-PPV in open atmosphere and obtained 0.3% power conversion efficiency.

  7. Effect of donor to acceptor ratio on electrochemical and spectroscopic properties of oligoalkylthiophene 1,3,4-oxadiazole derivatives.

    Science.gov (United States)

    Kurowska, Aleksandra; Zassowski, Pawel; Kostyuchenko, Anastasia S; Zheleznova, Tatyana Yu; Andryukhova, Kseniya V; Fisyuk, Alexander S; Pron, Adam; Domagala, Wojciech

    2017-11-15

    A structure-property study across a series of donor-acceptor-donor structures composed of mono- and bi-(1,3,4-oxadiazole) units symmetrically substituted with alkyl functionalized bi-, ter- and quaterthiophene segments is presented. Synthetically tailoring the ratio of electron-withdrawing 1,3,4-oxadiazole to electron-releasing thiophene units and their alkyl grafting pattern permitted us to scrutinize the impact of these structural factors on the redox, absorptive and emissive properties of these push-pull molecules. Contrasting trends of redox potentials were observed, with the oxidation potential closely following the donor-to-acceptor ratio, whereas the reduction potential being tuned independently by either the number of acceptor units or the conjugation length of the donor-acceptor system. Increasing the thiophene unit contribution delivered a shift from blue to green luminescence, while the structural rigidity afforded by intramolecular non-covalent interactions between 1,3,4-oxadiazole and the thiophene moieties has been identified as the prime factor determining the emission efficiency of these molecules. All six structures investigated electro-polymerize easily, yielding electroactive and electrochromic polymers. The polymer doping process is largely influenced by the length of the oligothiophene repeating unit and the alkyl chain grafting density. Polymers with relatively short oligothiophene segments are able to support polarons and polaron-pairs, whereas those with segments longer than six thiophene units could also stabilize diamagnetic charge carries - bipolarons. Increasing the alkyl chain grafting density improved the reversibility and broadened the working potential window of the p-doping process. Stable radical anions have also been investigated, bringing detailed information about the conjugation pattern of these electron-surplus species. This study delivers interesting clues towards the conscious structural design of bespoke frontier energy

  8. Isolation of Protein Storage Vacuoles and Their Membranes.

    Science.gov (United States)

    Shimada, Tomoo; Hara-Nishimura, Ikuko

    2017-01-01

    Protein-storage vacuoles (PSVs) are specialized vacuoles that sequester large amounts of storage proteins. During seed development, PSVs are formed de novo and/or from preexisting lytic vacuoles. Seed PSVs can be subdivided into four distinct compartments: membrane, globoid, matrix, and crystalloid. In this chapter, we introduce easy methods for isolation of PSVs and their membranes from pumpkin seeds. These methods facilitate the identification and characterization of PSV components.

  9. Distinctiveness of Ugandapithecus from Proconsul

    Directory of Open Access Journals (Sweden)

    Gommery, D.

    2009-12-01

    Full Text Available The decision to create the genus Ugandapithecus by Senut et al., 2000 has been criticised, either directly and in detail by MacLatchy & Rossie (2005b who argued that it is a junior synonym of Proconsul, or indirectly without providing reasons, firstly by Harrison (2001 who wrote that he did not retain it as a genus distinct from Proconsul, and then by Suwa et al., (2007 who employed the name “Ugandapithecus” with inverted commas, implying some degree of doubt about its validity as a genus, but without providing details. More recently Harrison & Andrews (2009 have recognised the Meswa sample as a separate species but they argue that it should be maintained within Proconsul, despite the morphological differences that it has from other species of the genus. We here re-examine the question by comparing, on the one hand, the holotype maxilla of Proconsul africanus, the type species of the genus, with the upper dentition of Ugandapithecus major, and, on the other hand, the holotype mandible of Ugandapithecus major with the lower dentition and mandibles previously attributed to Proconsul africanus. We conclude that the differences between the known upper and lower dentitions of P. africanus and U. major are of such a degree that the two taxa warrant generic separation, and that the differences are not related to sexual dimorphism. Where Proconsul africanus differs from Ugandapithecus major, it approaches Proconsul nyanzae and Proconsul heseloni from Rusinga.Furthermore, the range of morphometric variation within the fossil samples previously attributed to Ugandapithecus major is so great that it far surpasses variation in any other hominoid, fossil or extant. Previously this great amount of variation was interpreted to mean that U. major was extremely dimorphic, with huge males and small females, but if this is true, then U. major would be unique among hominoids in having females in which the cheek teeth fall completely outside the range of

  10. ESR identification of the nitrogen acceptor in 2H-polytype synthetic MoS2: Dopant level and activation

    Directory of Open Access Journals (Sweden)

    B. Schoenaers

    2017-10-01

    Full Text Available Multi-frequency electron spin resonance (ESR study of p-type synthetic 2H MoS2 reveals a previously unreported signal of axial-symmetry [g// = 2.032(2; g⊥ = 2.270(2] characteristic for a hole-type center in MoS2. It is identified as originating from N acceptor dopants, the N atoms substituting for S sites, with a density of ∼2.3 x 1017 cm-3, thus predominantly accounting for the p-type sample doping. For the applied magnetic field along the c-axis, the signal is mainly comprised of a 14N hyperfine 1:1:1 triplet of splitting A// = 14.7 ± 0.2 G with, on top, a center line accounting for ∼26% of the total signal intensity. The additional observation of a weak half-field signal (g = 3.92 correlating with the main full-field Zeeman response points to the presence of spin S ≥ 1 N agglomerates. The overall signal properties indicate that only ∼74% of the N acceptors occur as isolated decoupled dopants. Monitoring of the ESR signal intensity over a broad temperature range unveils the N dopant as a shallow acceptor of activation energy Ea = 45 ± 7 meV, thus well fit for stable substitutional p-type doping in MoS2-based novel nanoelectronic devices.

  11. Approximate graphical method of solving Fermi level and majority carrier density of semiconductors with multiple donors and multiple acceptors

    International Nuclear Information System (INIS)

    Chin, Ken K.

    2011-01-01

    We present a generic approximate graphical method for determining the equilibrium Fermi level and majority carrier density of a semiconductor with multiple donors and multiple acceptors compensating each other. Simple and easy-to-follow procedures of the graphical method are described. By graphically plotting two wrapping step functions facing each other, one for the positive hole-ionized donor and one for the negative electron-ionized acceptor, we have the crossing point that renders the Fermi level and majority carrier density. Using the graphical method, new equations are derived, such as the carrier compensation proportional to N A /N D , not the widely quoted N A - N D . Visual insight is offered to view not only the result of graphic determination of Fermi level and majority carrier density but also the dominant and critical pair of donors and acceptors in compensation. The graphical method presented in this work will help to guide the design, adjustment, and improvement of the multiply doped semiconductors. Comparison of this approximate graphical method with previous work on compensation, and with some experimental results, is made. Future work in the field is proposed. (semiconductor physics)

  12. Thieno[3,2-b]pyrrolo-Fused Pentacyclic Benzotriazole-Based Acceptor for Efficient Organic Photovoltaics.

    Science.gov (United States)

    Feng, Liuliu; Yuan, Jun; Zhang, Zhenzhen; Peng, Hongjian; Zhang, Zhi-Guo; Xu, Shutao; Liu, Ye; Li, Yongfang; Zou, Yingping

    2017-09-20

    A novel nonfullerene small molecular acceptor (BZIC) based on a ladder-type thieno[3,2-b]pyrrolo-fused pentacyclic benzotriazole core (dithieno[3,2-b]pyrrolobenzotriazole, BZTP) and end-capped with 1,1-dicyanomethylene-3-indanone (INCN) has been first reported in this work. Through introducing multifused benzotriazole and INCN, BZIC could maintain a high-lying lowest unoccupied molecular orbital (LUMO) energy level of -3.88 eV. Moreover, BZIC shows a low optical bandgap of 1.45 eV with broad and efficient absorption band from 600 to 850 nm due to increased π-π interactions by the covalently locking thiophene and benzotriazole units. A power conversion efficiency of 6.30% is delivered using BZIC as nonfullerene acceptor and our recently synthesized hexafluoroquinoxaline-based polymer HFQx-T as donor. This is the first time to synthesize mutifused benzotriazole-based molecules as nonfullerene electron acceptor up to date. The preliminary results demonstrate that the mutifused benzotriazole derivatives hold great potential for efficient photovoltaics.

  13. Molecular design of novel fullerene-based acceptors for enhancing the open circuit voltage in polymer solar cells

    Science.gov (United States)

    Tajbakhsh, Mahmood; Kariminasab, Mohaddeseh; Ganji, Masoud Darvish; Alinezhad, Heshmatollah

    2017-12-01

    Organic solar cells, especially bulk hetero-junction polymer solar cells (PSCs), are the most successful structures for applications in renewable energy. The dramatic improvement in the performance of PSCs has increased demand for new conjugated polymer donors and fullerene derivative acceptors. In the present study, quantum chemical calculations were performed for several representative fullerene derivatives in order to determine their frontier orbital energy levels and electronic structures, thereby helping to enhance their performance in PSC devices. We found correlations between the theoretical lowest unoccupied molecular orbital levels and electrophilicity index of various fullerenes with the experimental open circuit voltage of photovoltaic devices according to the poly(3-hexylthiophene) (P3HT):fullerene blend. The correlations between the structure and descriptors may facilitate screening of the best fullerene acceptor for the P3HT donor. Thus, we considered fullerenes with new functional groups and we predicted the output factors for the corresponding P3HT:fullerene blend devices. The results showed that fullerene derivatives based on thieno-o-quinodimethane-C60 with a methoxy group will have enhanced photovoltaic properties. Our results may facilitate the design of new fullerenes and the development of favorable acceptors for use in photovoltaic applications.

  14. Acceptor-compensated charge transport and surface chemical reactions in Au-implanted SnO₂ nanowires.

    Science.gov (United States)

    Katoch, Akash; Sun, Gun-Joo; Choi, Sun-Woo; Hishita, Shunichi; Kulish, Vadym V; Wu, Ping; Kim, Sang Sub

    2014-04-09

    A new deep acceptor state is identified by density functional theory calculations, and physically activated by an Au ion implantation technique to overcome the high energy barriers. And an acceptor-compensated charge transport mechanism that controls the chemical sensing performance of Au-implanted SnO2 nanowires is established. Subsequently, an equation of electrical resistance is set up as a function of the thermal vibrations, structural defects (Au implantation), surface chemistry (1 ppm NO2), and solute concentration. We show that the electrical resistivity is affected predominantly not by the thermal vibrations, structural defects, or solid solution, but the surface chemistry, which is the source of the improved chemical sensing. The response and recovery time of chemical sensing is respectively interpreted from the transport behaviors of major and minor semiconductor carriers. This acceptor-compensated charge transport mechanism provides novel insights not only for sensor development but also for research in charge and chemical dynamics of nano-semiconductors.

  15. The Impact of Donor-Acceptor Phase Separation on the Charge Carrier Dynamics in pBTTT:PCBM Photovoltaic Blends

    KAUST Repository

    Gehrig, Dominik W.

    2015-04-07

    The effect of donor–acceptor phase separation, controlled by the donor–acceptor mixing ratio, on the charge generation and recombination dynamics in pBTTT-C14:PC70BM bulk heterojunction photovoltaic blends is presented. Transient absorption (TA) spectroscopy spanning the dynamic range from pico- to microseconds in the visible and near-infrared spectral regions reveals that in a 1:1 blend exciton dissociation is ultrafast; however, charges cannot entirely escape their mutual Coulomb attraction and thus predominantly recombine geminately on a sub-ns timescale. In contrast, a polymer:fullerene mixing ratio of 1:4 facilitates the formation of spatially separated, that is free, charges and reduces substantially the fraction of geminate charge recombination, in turn leading to much more efficient photovoltaic devices. This illustrates that spatially extended donor or acceptor domains are required for the separation of charges on an ultrafast timescale (<100 fs), indicating that they are not only important for efficient charge transport and extraction, but also critically influence the initial stages of free charge carrier formation.

  16. Enhanced biological phosphorus removal. Carbon sources, nitrate as electron acceptor, and characterization of the sludge community

    Energy Technology Data Exchange (ETDEWEB)

    Christensson, M.

    1997-10-01

    Enhanced biological phosphorus removal (EBPR) was studied in laboratory scale experiments as well as in a full scale EBPR process. The studies were focused on carbon source transformations, the use of nitrate as an electron acceptor and characterisation of the microflora. A continuous anaerobic/aerobic laboratory system was operated on synthetic wastewater with acetate as sole carbon source. An efficient EBPR was obtained and mass balances over the anaerobic reactor showed a production of 1.45 g poly-{beta}-hydroxyalcanoic acids (PHA), measured as chemical oxygen demand (COD), per g of acetic acid (as COD) taken up. Furthermore, phosphate was released in the anaerobic reactor in a ratio of 0.33 g phosphorus (P) per g PHA (COD) formed and 0.64 g of glycogen (COD) was consumed per g of acetic acid (COD) taken up. Microscopic investigations revealed a high amount of polyphosphate accumulating organisms (PAO) in the sludge. Isolation and characterisation of bacteria indicated Acinetobacter spp. to be abundant in the sludge, while sequencing of clones obtained in a 16S rDNA clone library showed a large part of the bacteria to be related to the high mole % G+C Gram-positive bacteria and only a minor fraction to be related to the gamma-subclass of proteobacteria to which Acinetobacter belongs. Operation of a similar anaerobic/aerobic laboratory system with ethanol as sole carbon source showed that a high EBPR can be achieved with this compound as carbon source. However, a prolonged detention time in the anaerobic reactor was required. PHA were produced in the anaerobic reactor in an amount of 1.24 g COD per g of soluble DOC taken up, phosphate was released in an amount of 0.4-0.6 g P per g PHA (COD) produced and 0.46 g glycogen (COD) was consumed per g of soluble COD taken up. Studies of the EBPR in the UCT process at the sewage treatment plant in Helsingborg, Sweden, showed the amount of volatile fatty acids (VFA) available to the PAO in the anaerobic stage to be

  17. Endoplasmic reticulum membrane reorganization is regulated by ionic homeostasis.

    Science.gov (United States)

    Varadarajan, Shankar; Tanaka, Kayoko; Smalley, Joshua L; Bampton, Edward T W; Pellecchia, Maurizio; Dinsdale, David; Willars, Gary B; Cohen, Gerald M

    2013-01-01

    Recently we described a new, evolutionarily conserved cellular stress response characterized by a reversible reorganization of endoplasmic reticulum (ER) membranes that is distinct from canonical ER stress and the unfolded protein response (UPR). Apogossypol, a putative broad spectrum BCL-2 family antagonist, was the prototype compound used to induce this ER membrane reorganization. Following microarray analysis of cells treated with apogossypol, we used connectivity mapping to identify a wide range of structurally diverse chemicals from different pharmacological classes and established their ability to induce ER membrane reorganization. Such structural diversity suggests that the mechanisms initiating ER membrane reorganization are also diverse and a major objective of the present study was to identify potentially common features of these mechanisms. In order to explore this, we used hierarchical clustering of transcription profiles for a number of chemicals that induce membrane reorganization and discovered two distinct clusters. One cluster contained chemicals with known effects on Ca(2+) homeostasis. Support for this was provided by the findings that ER membrane reorganization was induced by agents that either deplete ER Ca(2+) (thapsigargin) or cause an alteration in cellular Ca(2+) handling (calmodulin antagonists). Furthermore, overexpression of the ER luminal Ca(2+) sensor, STIM1, also evoked ER membrane reorganization. Although perturbation of Ca(2+) homeostasis was clearly one mechanism by which some agents induced ER membrane reorganization, influx of extracellular Na(+) but not Ca(2+) was required for ER membrane reorganization induced by apogossypol and the related BCL-2 family antagonist, TW37, in both human and yeast cells. Not only is this novel, non-canonical ER stress response evolutionary conserved but so also are aspects of the mechanism of formation of ER membrane aggregates. Thus perturbation of ionic homeostasis is important in the regulation

  18. 2010 Electron Donor-Acceptor Interactions Gordon Research Conference, August 8 - 13, 2010.

    Energy Technology Data Exchange (ETDEWEB)

    Gerald Meyer

    2010-08-18

    The Gordon Research Conference on Electron Donor Acceptor Interactions (GRC EDAI) presents and advances the current frontiers in experimental and theoretical studies of Electron Transfer Processes and Energy Conversion. The fundamental concepts underpinning the field of electron transfer and charge transport phenomena are understood, but fascinating experimental discoveries and novel applications based on charge transfer processes are expanding the discipline. Simultaneously, global challenges for development of viable and economical alternative energy resources, on which many researchers in the field focus their efforts, are now the subject of daily news headlines. Enduring themes of this conference relate to photosynthesis, both natural and artificial, and solar energy conversion. More recent developments include molecular electronics, optical switches, and nanoscale charge transport structures of both natural (biological) and man-made origin. The GRC EDAI is one of the major international meetings advancing this field, and is one of the few scientific meetings where fundamental research in solar energy conversion has a leading voice. The program includes sessions on coupled electron transfers, molecular solar energy conversion, biological and biomimetic systems, spin effects, ultrafast reactions and technical frontiers as well as electron transport in single molecules and devices. In addition to disseminating the latest advances in the field of electron transfer processes, the conference is an excellent forum for scientists from different disciplines to meet and initiate new directions; for scientists from different countries to make contacts; for young scientists to network and establish personal contacts with other young scientists and with established scientists who, otherwise, might not have the time to meet young people. The EDAI GRC also features an interactive atmosphere with lively poster sessions, a few of which are selected for oral presentations.

  19. Evidence that bank vole PrP is a universal acceptor for prions.

    Directory of Open Access Journals (Sweden)

    Joel C Watts

    2014-04-01

    Full Text Available Bank voles are uniquely susceptible to a wide range of prion strains isolated from many different species. To determine if this enhanced susceptibility to interspecies prion transmission is encoded within the sequence of the bank vole prion protein (BVPrP, we inoculated Tg(M109 and Tg(I109 mice, which express BVPrP containing either methionine or isoleucine at polymorphic codon 109, with 16 prion isolates from 8 different species: humans, cattle, elk, sheep, guinea pigs, hamsters, mice, and meadow voles. Efficient disease transmission was observed in both Tg(M109 and Tg(I109 mice. For instance, inoculation of the most common human prion strain, sporadic Creutzfeldt-Jakob disease (sCJD subtype MM1, into Tg(M109 mice gave incubation periods of ∼200 days that were shortened slightly on second passage. Chronic wasting disease prions exhibited an incubation time of ∼250 days, which shortened to ∼150 days upon second passage in Tg(M109 mice. Unexpectedly, bovine spongiform encephalopathy and variant CJD prions caused rapid neurological dysfunction in Tg(M109 mice upon second passage, with incubation periods of 64 and 40 days, respectively. Despite the rapid incubation periods, other strain-specified properties of many prion isolates--including the size of proteinase K-resistant PrPSc, the pattern of cerebral PrPSc deposition, and the conformational stability--were remarkably conserved upon serial passage in Tg(M109 mice. Our results demonstrate that expression of BVPrP is sufficient to engender enhanced susceptibility to a diverse range of prion isolates, suggesting that BVPrP may be a universal acceptor for prions.

  20. Anaerobic degradation of benzene by enriched consortia with humic acids as terminal electron acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, Francisco J., E-mail: fjcervantes@ipicyt.edu.mx [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico); Mancilla, Ana Rosa; Toro, E. Emilia Rios-del [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico); Alpuche-Solis, Angel G.; Montoya-Lorenzana, Lilia [Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico)

    2011-11-15

    Highlights: {yields} Enriched consortia were able to couple the anaerobic degradation of benzene to the reduction of humic acids. {yields} Electron-equivalents derived from anaerobic benzene oxidation were highly recovered as reduced humic acids. {yields} Several species from classes {beta}-, {delta}- and {gamma}-Proteobacteria were enriched during the anaerobic degradation of benzene. - Abstract: The anaerobic degradation of benzene coupled to the reduction of humic acids (HA) was demonstrated in two enriched consortia. Both inocula were able to oxidize benzene under strict anaerobic conditions when the humic model compound, anthraquinone-2,6-disulfonate (AQDS), was supplied as terminal electron acceptor. An enrichment culture originated from a contaminated soil was also able to oxidize benzene linked to the reduction of highly purified soil humic acids (HPSHA). In HPSHA-amended cultures, 9.3 {mu}M of benzene were degraded, which corresponds to 279 {+-} 27 micro-electron equivalents ({mu}Eq) L{sup -1}, linked to the reduction of 619 {+-} 81 {mu}Eq L{sup -1} of HPSHA. Neither anaerobic benzene oxidation nor reduction of HPSHA occurred in sterilized controls. Anaerobic benzene oxidation did not occur in soil incubations lacking HPSHA. Furthermore, negligible reduction of HPSHA occurred in the absence of benzene. The enrichment culture derived from this soil was dominated by two {gamma}-Proteobacteria phylotypes. A benzene-degrading AQDS-reducing enrichment originated from a sediment sample showed the prevalence of different species from classes {beta}-, {delta}- and {gamma}-Proteobacteria. The present study provides clear quantitative demonstration of anaerobic degradation of benzene coupled to the reduction of HA.

  1. Anaerobic degradation of benzene by enriched consortia with humic acids as terminal electron acceptors

    International Nuclear Information System (INIS)

    Cervantes, Francisco J.; Mancilla, Ana Rosa; Toro, E. Emilia Rios-del; Alpuche-Solis, Angel G.; Montoya-Lorenzana, Lilia

    2011-01-01

    Highlights: → Enriched consortia were able to couple the anaerobic degradation of benzene to the reduction of humic acids. → Electron-equivalents derived from anaerobic benzene oxidation were highly recovered as reduced humic acids. → Several species from classes β-, δ- and γ-Proteobacteria were enriched during the anaerobic degradation of benzene. - Abstract: The anaerobic degradation of benzene coupled to the reduction of humic acids (HA) was demonstrated in two enriched consortia. Both inocula were able to oxidize benzene under strict anaerobic conditions when the humic model compound, anthraquinone-2,6-disulfonate (AQDS), was supplied as terminal electron acceptor. An enrichment culture originated from a contaminated soil was also able to oxidize benzene linked to the reduction of highly purified soil humic acids (HPSHA). In HPSHA-amended cultures, 9.3 μM of benzene were degraded, which corresponds to 279 ± 27 micro-electron equivalents (μEq) L -1 , linked to the reduction of 619 ± 81 μEq L -1 of HPSHA. Neither anaerobic benzene oxidation nor reduction of HPSHA occurred in sterilized controls. Anaerobic benzene oxidation did not occur in soil incubations lacking HPSHA. Furthermore, negligible reduction of HPSHA occurred in the absence of benzene. The enrichment culture derived from this soil was dominated by two γ-Proteobacteria phylotypes. A benzene-degrading AQDS-reducing enrichment originated from a sediment sample showed the prevalence of different species from classes β-, δ- and γ-Proteobacteria. The present study provides clear quantitative demonstration of anaerobic degradation of benzene coupled to the reduction of HA.

  2. Donor-Acceptor Interface Stabilizer Based on Fullerene Derivatives toward Efficient and Thermal Stable Organic Photovoltaics.

    Science.gov (United States)

    Li, Junli; Zhu, Xiaoguang; Yuan, Tao; Shen, Jiulin; Liu, Jikang; Zhang, Jian; Tu, Guoli

    2017-02-22

    An interface stabilizer based on alkylation-functionalized fullerene derivatives, [6, 6]-Phenyl-C61-butyric acid (3,5-bis(octyloxy)phenyl)methyl ester (PCB-C8oc), was successfully synthesized and applied for the active layer of Organic Photovoltaics (OPVs). The PCB-C8oc can replace part of the phenyl-C61-buty-ric acid methyl ester (PCBM) and be distributed on the interface of poly(3-hexylthiophene) (P3HT) and PCBM to form P3HT/PCBM/PCB-C8oc ternary blends, leading to thermally stable and efficient organic photovoltaics. The octyl groups of PCB-C8oc exhibit intermolecular interaction with the hexyl groups of P3HT, and the fullerene unit of PCB-C8oc are in tight contact with PCBM. The dual functions of PCB-C8oc will inhibit the phase separation between electron donor and acceptor, thereby improving the stability of devices under long-time thermal annealing at high temperature. When doped with 10 wt % PCB-C8oc, the power conversion efficiency (PCE) of the P3HT system decreased from 3.54% to 2.88% after 48 h of thermal treatment at 150 °C, whereas the PCE of the reference device without PCB-C8oc dramatically dropped from 3.53% to 0.73%. When doping 10 or 20 wt % PCB-C8oc, the unannealed P3HT/PCBM/PCB-C8oc device achieved a higher PCE than the P3HT/PCBM device without any annealing following the same fabricating condition. For the PTB7/PCBM-based devices, after adding only 5 wt % PCB-C8oc, the OPVs also exhibited thermally stable morphology and better device performances. All these results demonstrate that the utilization of alkyl interchain interactions is an effective and practical strategy to control morphological evolution.

  3. Ultrafast responses of dipolar and octupolar compounds with dipicolinate as an electron acceptor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yaochuan, E-mail: ycwang@dlmu.edu.cn [Department of Physics, Dalian Maritime University, Dalian 116026 (China); State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Liu, Siyuan; Liu, Dajun; Wang, Guiqiu [Department of Physics, Dalian Maritime University, Dalian 116026 (China); Xiao, Haibo [Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China)

    2016-11-01

    Two dipolar compounds with dipicolinate as electron acceptor group named trans-dimethyl-4-[4’-(N,N-dimethylamino)-styry1]-pyridin-2,6-dicarboxylate (M-1), trans-dimethyl-4-[4'-(N,N-diphenylamino)-styry1]-pyridin-2,6-dicarboxylate (P-1) as well as a P-1 based multi-branched octupolar compound {4-[(E)-2-(2,6-dimethoxycarbonylpyridin-4-yl) vinyl]}-N,N-bis{4-[(E)-2-(2,6-dimethoxycarbonylpyridin-4-yl)vinylphenyl]} aniline (P-3) with intense two-photon fluorescence emission properties are systematically investigated by using steady-state absorption and fluorescence spectroscopy, Z-scan, and two-photon excited fluorescence (TPF) method. The two-photon absorption cross section of octupolar compound P-3 in THF solution is determined to be 376 GM, which is approximately 12 times greater than that of dipolar counterpart P-1 (32 GM). Transient absorption spectroscopy is employed to investigate the excited state dynamics of the dipolar and octupolar compounds. The formation and relaxation lifetimes of the intra-molecular charge transfer (ICT) state are determined to be in the ranges of several picoseconds and several-hundreds of picoseconds, respectively, for all the three compounds in THF solutions. An extended π-conjugated system and increased intra-molecular cooperative effect are responsible for the observed large two-photon absorption character. - Highlights: • Octupolar compound gain 12-fold enhancement of two photon absorption. • Dynamic properties of intra-molecular charge transfer state are determined. • Cooperative effect is responsible for great increase of two photon character.

  4. Organic donor-acceptor thin film systems. Towards optimized growth conditions

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Kerstin Andrea

    2009-06-30

    In this work the preparation of organic donor-acceptor thin films was studied. A chamber for organic molecular beam deposition was designed and integrated into an existing deposition system for metallic thin films. Furthermore, the deposition system was extended by a load-lock with integrated bake-out function, a chamber for the deposition of metallic contacts via stencil mask technique and a sputtering chamber. For the sublimation of the organic compounds several effusion cells were designed. The evaporation characteristic and the temperature profile within the cells was studied. Additionally, a simulation program was developed, which calculates the evaporation characteristics of different cell types. The following processes were integrated: evaporation of particles, migration on the cell walls and collisions in the gas phase. It is also possible to consider a temperature gradient within the cell. All processes can be studied separately and their relative strength can be varied. To verify the simulation results several evaporation experiments with different cell types were employed. The thickness profile of the prepared thin films was measured position-dependently. The results are in good agreement with the simulation. Furthermore, the simulation program was extended to the field of electron beam induced deposition (EBID). The second part of this work deals with the preparation and characterization of organic thin films. The focus hereby lies on the charge transfer salt (BEDT-TTF)(TCNQ), which has three known structure variants. Thin films were prepared by different methods of co-evaporation and were studied with optical microscopy, X-ray diffraction and energy dispersive X-ray spectroscopy (EDX).The formation of the monoclinic phase of (BEDT-TTF)(TCNQ) could be shown. As a last part tunnel structures were prepared as first thin film devices and measured in a He{sub 4} cryostat. (orig.)

  5. Carbon gas production under different electron acceptors in a freshwater marsh soil.

    Science.gov (United States)

    Dodla, Syam K; Wang, Jim J; Delaune, Ronald D; Breitenbeck, Gary

    2009-07-01

    Dynamics of carbon (C) gas emission from wetlands influence global C cycling. In many freshwater systems such as Louisiana freshwater marsh, soil contents of NO3(-) and SO4(2-) have increased due to nutrient loading and saltwater intrusion. This could affect C mineralization and the emission of the major greenhouse gases carbon dioxide (CO2) and methane (CH4). In this investigation, a laboratory microcosm study was carried out to elucidate the effects of NO(3)(-) and SO4(2-) on CO2 and CH4 production from a freshwater marsh soil located in the Barataria Basin of Louisiana coast, which has been subjected to the Mississippi River diversion and seawater intrusion. Composite soil samples were collected from top 50 cm marsh profile, treated with different levels of NO3(-) (0, 3.2 and 5mM) or SO4(2-) (0, 2, and 5mM) concentrations, and incubated for 214d under anaerobic conditions. The results showed that the presence of NO3(-) (especially at 3.2mM) significantly decreased CO2 productions whereas SO4(2-) did not. On the other hand, both NO(3)(-) and SO4(2-) treatments decreased CH4 production but the NO3(-) almost completely inhibited CH4 production (>99%) whereas the SO4(2-) treatments reduced CH4 production by 78-90%. The overall C mineralization rate constant under the NO3(-) presence was also low. In addition, the results revealed that a large proportion (95%) of anaerobic carbon mineralization in the untreated freshwater soil was unexplained by the reduction of any of the measured major electron acceptors.

  6. Thermodynamic properties of donor-acceptor complexes of tertiary amine with aryl ketones in hexane medium

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R. [Department of Physics, The New College, Chennai 600 014 (India); Jayakumar, S. [Department of Physics, R.K.M. Vivekananda College, Chennai 600 004 (India); Kannappan, V., E-mail: vkannappan@hotmail.com [Department of Chemistry, Presidency College, Chennai 600 005 (India)

    2012-05-20

    Highlights: Black-Right-Pointing-Pointer Ultrasonic scan is carried out on ternary systems of aromatic tertiary amine and three aryl ketones. Black-Right-Pointing-Pointer Formation of CT complexes is found between tertiary amine with aryl ketones. Black-Right-Pointing-Pointer Stability constant values are computed by ultrasonic and spectral methods are compared. Black-Right-Pointing-Pointer The trend in the 'K' suggests that substituents in ketones influence the stabilities of these complexes. Black-Right-Pointing-Pointer The thermodynamic parameters suggest CT interaction is exothermic and the complexes are thermodynamically stable. - The thermodynamic stability of complexes formed between N,N-dimethylaniline (DMANI) and three ketones, namely, acetophenone (ACP), 4-chloroactophenone (ClACP) and 4-methylacetophenone (MACP) in n-hexane is extensively investigated by spectral and ultrasonic methods. The ultrasound scan was carried out in the temperature range 208.15-313.15 K and at atmospheric pressure on solutions containing equimolar concentrations of components ranging from 0.025 to 0.2 M. The existence of solute-solute interactions has also been confirmed through electronic absorption spectra analyzed with Benesi-Hildebrand theory at 303.15 K. The stability constants of the donor-acceptor complexes determined both by spectroscopic and ultrasonic methods are comparable and follow similar trends. The trend in the formation constants is discussed with structures of the components. The thermodynamic behavior of the systems was explained through the computed values of the free energy ({Delta}G), enthalpy ({Delta}H) and entropy ({Delta}S) changes for complex formation are computed and discussed.

  7. Thermodynamic properties of donor–acceptor complexes of tertiary amine with aryl ketones in hexane medium

    International Nuclear Information System (INIS)

    Kumar, R.; Jayakumar, S.; Kannappan, V.

    2012-01-01

    Highlights: ► Ultrasonic scan is carried out on ternary systems of aromatic tertiary amine and three aryl ketones. ► Formation of CT complexes is found between tertiary amine with aryl ketones. ► Stability constant values are computed by ultrasonic and spectral methods are compared. ► The trend in the ‘K’ suggests that substituents in ketones influence the stabilities of these complexes. ► The thermodynamic parameters suggest CT interaction is exothermic and the complexes are thermodynamically stable. - The thermodynamic stability of complexes formed between N,N-dimethylaniline (DMANI) and three ketones, namely, acetophenone (ACP), 4-chloroactophenone (ClACP) and 4-methylacetophenone (MACP) in n-hexane is extensively investigated by spectral and ultrasonic methods. The ultrasound scan was carried out in the temperature range 208.15–313.15 K and at atmospheric pressure on solutions containing equimolar concentrations of components ranging from 0.025 to 0.2 M. The existence of solute–solute interactions has also been confirmed through electronic absorption spectra analyzed with Benesi-Hildebrand theory at 303.15 K. The stability constants of the donor–acceptor complexes determined both by spectroscopic and ultrasonic methods are comparable and follow similar trends. The trend in the formation constants is discussed with structures of the components. The thermodynamic behavior of the systems was explained through the computed values of the free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) changes for complex formation are computed and discussed.

  8. Ion-conducting membranes

    Energy Technology Data Exchange (ETDEWEB)

    Masel, Richard I.; Sajjad, Syed Dawar; Gao, Yan; Liu, Zengcai; Chen, Qingmei

    2017-12-26

    An anion-conducting polymeric membrane comprises a terpolymer of styrene, vinylbenzyl-R.sub.s and vinylbenzyl-R.sub.x. R.sub.s is a positively charged cyclic amine group. R.sub.x is at least one constituent selected from the group consisting Cl, OH and a reaction product between an OH or Cl and a species other than a simple amine or a cyclic amine. The total weight of the vinylbenzyl-R.sub.x groups is greater than 0.3% of the total weight of the membrane. In a preferred embodiment, the membrane is a Helper Membrane that increases the faradaic efficiency of an electrochemical cell into which the membrane is incorporated, and also allows product formation at lower voltages than in cells without the Helper Membrane.

  9. Gas separation with membranes

    International Nuclear Information System (INIS)

    Schulz, G.; Michele, H.; Werner, U.

    1982-01-01

    Gas separation with membranes has already been tested in numerous fields of application, e.g. uranium enrichment of H 2 separation. In many of these processes the mass transfer units, so-called permeators, have to be connected in tandem in order to achieve high concentrations. A most economical operating method provides for each case an optimization of the cascades with regard to the membrane materials, construction and design of module. By utilization of the concentration gradient along the membrane a new process development has been accomplished - the continuously operating membrane rectification unit. Investment and operating costs can be reduced considerably for a number of separating processes by combining a membrane rectification unit with a conventional recycling cascade. However, the new procedure requires that the specifications for the module construction, flow design, and membrane properties be reconsidered. (orig.) [de

  10. J-V and C-V investigation of the effect of small molecular fullerene and non-fullerene acceptors for CH3NH3PbI3 perovskite solar cell

    Science.gov (United States)

    Zheng, Yanqiong; Wang, Chao; Yu, Junle; Yang, Fang; Zhang, Jing; Wei, Bin; Li, Weishi

    2017-11-01

    To find the ideal acceptors for perovskite solar cells (PSCs) and get insight into the dielectric property at the interface between perovskite and acceptor, series of small molecular fullerene and non-fullerene acceptors were comparatively investigated. Fullerene acceptors based PSCs show higher performance than non-fullerene acceptors based PSCs. However, the perylene tetracarboxylic diimide based PSC has achieved a η PCE of 4.70%, implying that it is a promising acceptor candidate for PSCs because of its suitable energy level, high electron mobility, and smooth surface. By employing double acceptors of (6,6)-phenyl-C61-butyric acid methyl ester (PCBM)/C60 or PCBM/3,4,9,10-perylenetetracarboxylic bisbenzimidazole, the PSC stability is greatly improved even without performance enhancement. The perovskite (Pero)/PCBM film shows smooth surface, suggesting that PCBM penetrates into the Pero layer. The hydrophobicity trend of Pero/acceptor composite films is same as the device performance by judging from the water contact angle, and Pero/PCBM as well as Pero/C60 show higher hydrophobicity than other Pero/small-molecular-acceptor composite films. Capacitance-voltage characteristics of the series of single and double acceptor based PSCs were measured. The double acceptor based PSCs show larger depletion layer width (W d) than single acceptor based PSCs. Meanwhile, the defect density (N A) in Pero layer for single acceptor based PSCs is larger than that for double acceptor based PSCs, implying better n-doping of Pero layer by using a single acceptor.

  11. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-01-22

    The present application offers a solution to the current problems associated with recovery and recycling of precious metals from scrap material, discard articles, and other items comprising one or more precious metals. The solution is premised on a microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  12. Polyarylether composition and membrane

    Science.gov (United States)

    Hung, Joyce; Brunelle, Daniel Joseph; Harmon, Marianne Elisabeth; Moore, David Roger; Stone, Joshua James; Zhou, Hongyi; Suriano, Joseph Anthony

    2010-11-09

    A composition including a polyarylether copolymer is provided. The copolymer includes a polyarylether backbone; and a sulfonated oligomeric group bonded to the polyarylether suitable for use as a cation conducting membrane. Method of bonding a sulfonated oligomeric group to the polyarylether backbone to form a polyarylether copolymer. The membrane may be formed from the polyarylether copolymer composition. The chain length of the sulfonated oligomeric group may be controlled to affect or control the ion conductivity of the membrane.

  13. Photoresponsive nanostructured membranes

    KAUST Repository

    Madhavan, Poornima

    2016-07-26

    The perspective of adding stimuli-response to isoporous membranes stimulates the development of separation devices with pores, which would open or close under control of environment chemical composition, temperature or exposure to light. Changes in pH and temperature have been previously investigated. In this work, we demonstrate for the first time the preparation of photoresponsive isoporous membranes, applying self-assembly non-solvent induced phase separation to a new light responsive block copolymer. First, we optimized the membrane formation by using poly(styrene-b-anthracene methyl methacrylate-b-methylmethacrylate) (PS-b-PAnMMA-b-PMMA) copolymer, identifying the most suitable solvent, copolymer block length, and other parameters. The obtained final triblock copolymer membrane morphologies were characterized using atomic force and electron microscopy. The microscopic analysis reveals that the PS-b-PAnMMA-b-PMMA copolymer can form both lamellar and ordered hexagonal nanoporous structures on the membrane top layer in appropriate solvent compositions. The nanostructured membrane emits fluorescence due to the presence of the anthracene mid-block. On irradiation of light the PS-b-PAnMMA-b-PMMA copolymer membranes has an additional stimuli response. The anthracene group undergoes conformational changes by forming [4 + 4] cycloadducts and this alters the membrane\\'s water flux and solute retention. © 2016 The Royal Society of Chemistry.

  14. Gas separation membranes

    Science.gov (United States)

    Schell, William J.

    1979-01-01

    A dry, fabric supported, polymeric gas separation membrane, such as cellulose acetate, is prepared by casting a solution of the polymer onto a shrinkable fabric preferably formed of synthetic polymers such as polyester or polyamide filaments before washing, stretching or calendering (so called griege goods). The supported membrane is then subjected to gelling, annealing, and drying by solvent exchange. During the processing steps, both the fabric support and the membrane shrink a preselected, controlled amount which prevents curling, wrinkling or cracking of the membrane in flat form or when spirally wound into a gas separation element.

  15. Metabolism of Fructophilic Lactic Acid Bacteria Isolated from the Apis mellifera L. Bee Gut: Phenolic Acids as External Electron Acceptors

    Science.gov (United States)

    Filannino, Pasquale; Addante, Rocco; Pontonio, Erica; Gobbetti, Marco

    2016-01-01

    ABSTRACT Fructophilic lactic acid bacteria (FLAB) are strongly associated with the gastrointestinal tracts (GITs) of Apis mellifera L. worker bees due to the consumption of fructose as a major carbohydrate. Seventy-seven presumptive lactic acid bacteria (LAB) were isolated from GITs of healthy A. mellifera L. adults, which were collected from 5 different geographical locations of the Apulia region of Italy. Almost all of the isolates showed fructophilic tendencies: these isolates were identified as Lactobacillus kunkeei (69%) or Fructobacillus fructosus (31%). A high-throughput phenotypic microarray targeting 190 carbon sources was used to determine that 83 compounds were differentially consumed. Phenotyping grouped the strains into two clusters, reflecting growth performance. The utilization of phenolic acids, such as p-coumaric, caffeic, syringic, or gallic acids, as electron acceptors was investigated in fructose-based medium. Almost all FLAB strains showed tolerance to high phenolic acid concentrations. p-Coumaric acid and caffeic acid were consumed by all FLAB strains through reductases or decarboxylases. Syringic and gallic acids were partially metabolized. The data collected suggest that FLAB require external electron acceptors to regenerate NADH. The use of phenolic acids as external electron acceptors by the 4 FLAB showing the highest phenolic acid reductase activity was investigated in glucose-based medium supplemented with p-coumaric acid. Metabolic responses observed through a phenotypic microarray suggested that FLAB may use p-coumaric acid as an external electron acceptor, enhancing glucose dissimilation but less efficiently than other external acceptors such as fructose or pyruvic acid. IMPORTANCE Fructophilic lactic acid bacteria (FLAB) remain to be fully explored. This study intends to link unique biochemical features of FLAB with their habitat. The quite unique FLAB phenome within the group lactic acid bacteria (LAB) may have practical relevance

  16. NMR studies of cation transport across membranes

    Energy Technology Data Exchange (ETDEWEB)

    Shochet, N.R.

    1985-01-01

    /sup 23/Na NMR Studies of cation transport across membranes were conducted both on model and biological membranes. Two ionophores, the carrier monensin and the channel-former gramicidin, were chosen to induce cation transport in large unilamellar phosphatidylcholine vesicles. The distinction between the NMR signals arising from the two sides of the membrane was achieved by the addition of an anionic paramagnetic shift reagent to the outer solution. The kinetics of the cation transport across the membrane was observed simultaneously monitoring the changes in the /sup 23/Na NMR signals of both compartments. Two mathematical models were developed for the estimation of the transport parameters of the monensin- and gramicidin-induced cation transport. The models were able to fit the experimental data very well. A new method for the estimation of the volume trapped inside the vesicles was developed. The method uses the relative areas of the intra- and extravesicular NMR signals arising from a suspension of vesicles bathed in the same medium they contain, as a measure for the relative volumes of these compartments. Sodium transport across biological membranes was studied by /sup 23/ NMR, using suspensions of cultured nerve cells. The sodium influx through voltage-gated channels was studied using the channel modifier batrachotoxin in combination with scorpion toxin.

  17. Correction: An unsymmetrical non-fullerene acceptor: synthesis via direct heteroarylation, self-assembly, and utility as a low energy absorber in organic photovoltaic cells.

    Science.gov (United States)

    Payne, Abby-Jo; Li, Shi; Dayneko, Sergey V; Risko, Chad; Welch, Gregory C

    2017-09-21

    Correction for 'An unsymmetrical non-fullerene acceptor: synthesis via direct heteroarylation, self-assembly, and utility as a low energy absorber in organic photovoltaic cells' by Abby-Jo Payne et al., Chem. Commun., 2017, 53, 10168-10171.

  18. Fluorinated arene, imide and unsaturated pyrrolidinone based donor acceptor conjugated polymers: Synthesis, structure-property and device studies

    Science.gov (United States)

    Liyanage, Arawwawala Don Thilanga

    After the discovery of doped polyacetylene, organic semiconductor materials are widely studied as high impending active components in consumer electronics. They have received substantial consideration due to their potential for structural tailoring, low cost, large area and mechanically flexible alternatives to common inorganic semiconductors. To acquire maximum use of these materials, it is essential to get a strong idea about their chemical and physical nature. Material chemist has an enormous role to play in this novel area, including development of efficient synthetic methodologies and control the molecular self-assembly and (opto)-electronic properties. The body of this thesis mainly focuses on the substituent effects: how different substituents affect the (opto)-electronic properties of the donor-acceptor (D-A) conjugated polymers. The main priority goes to understand, how different alkyl substituent effect to the polymer solubility, crystallinity, thermal properties (e.g.: glass transition temperature) and morphological order. Three classes of D-A systems were extensively studied in this work. The second chapter mainly focuses on the synthesis and structure-property study of fluorinated arene (TFB) base polymers. Here we used commercially available 1,4-dibromo-2,3,5,6-tetrafluorobenzene (TFB) as the acceptor material and prepare several polymers using 3,3'-dialkyl(3,3'-R2T2) or 3,3'-dialkoxy bithiophene (3,3'-RO2T2) units as electron donors. A detail study was done using 3,3'-bithiophene donor units incorporating branched alkoxy-functionalities by systematic variation of branching position and chain length. The study allowed disentangling the branching effects on (i) aggregation tendency, intermolecular arrangement, (iii) solid state optical energy gaps, and (iv) electronic properties in an overall consistent picture, which might guide future polymer synthesis towards optimized materials for opto-electronic applications. The third chapter mainly focused on

  19. The outer membrane protein Omp35 affects the reduction of Fe(III, nitrate, and fumarate by Shewanella oneidensis MR-1

    Directory of Open Access Journals (Sweden)

    Myers Charles R

    2004-06-01

    Full Text Available Abstract Background Shewanella oneidensis MR-1 uses several electron acceptors to support anaerobic respiration including insoluble species such as iron(III and manganese(IV oxides, and soluble species such as nitrate, fumarate, dimethylsulfoxide and many others. MR-1 has complex branched electron transport chains that include components in the cytoplasmic membrane, periplasm, and outer membrane (OM. Previous studies have implicated a role for anaerobically upregulated OM electron transport components in the use of insoluble electron acceptors, and have suggested that other OM components may also contribute to insoluble electron acceptor use. In this study, the role for an anaerobically upregulated 35-kDa OM protein (Omp35 in the use of anaerobic electron acceptors was explored. Results Omp35 was purified from the OM of anaerobically grown cells, the gene encoding Omp35 was identified, and an omp35 null mutant (OMP35-1 was isolated and characterized. Although OMP35-1 grew on all electron acceptors tested, a significant lag was seen when grown on fumarate, nitrate, and Fe(III. Complementation studies confirmed that the phenotype of OMP35-1 was due to the loss of Omp35. Despite its requirement for wild-type rates of electron acceptor use, analysis of Omp35 protein and predicted sequence did not identify any electron transport moieties or predicted motifs. OMP35-1 had normal levels and distribution of known electron transport components including quinones, cytochromes, and fumarate reductase. Omp35 is related to putative porins from MR-1 and S. frigidimarina as well as to the PorA porin from Neisseria meningitidis. Subcellular fraction analysis confirmed that Omp35 is an OM protein. The seven-fold anaerobic upregulation of Omp35 is mediated post-transcriptionally. Conclusion Omp35 is a putative porin in the OM of MR-1 that is markedly upregulated anaerobically by a post-transcriptional mechanism. Omp35 is required for normal rates of growth on Fe

  20. Membrane Transition Temperature Determines Cisplatin Response

    Science.gov (United States)

    Raghunathan, Krishnan; Ahsan, Aarif; Ray, Dipankar; Nyati, Mukesh K.; Veatch, Sarah L.

    2015-01-01

    Cisplatin is a classical chemotherapeutic agent used in treating several forms of cancer including head and neck. However, cells develop resistance to the drug in some patients through a range of mechanisms, some of which are poorly understood. Using isolated plasma membrane vesicles as a model system, we present evidence suggesting that cisplatin induced resistance may be due to certain changes in the bio-physical properties of plasma membranes. Giant plasma membrane vesicles (GPMVs) isolated from cortical cytoskeleton exhibit a miscibility transition between a single liquid phase at high temperature and two distinct coexisting liquid phases at low temperature. The temperature at which this transition occurs is hypothesized to reflect the magnitude of membrane heterogeneity at physiological temperature. We find that addition of cisplatin to vesicles isolated from cisplatin-sensitive cells result in a lowering of this miscibility transition temperature, whereas in cisplatin-resistant cells such treatment does not affect the transition temperature. To explore if this is a cause or consequence of cisplatin resistance, we tested if addition of cisplatin in combination with agents that modulate GPMV transition temperatures can affect cisplatin sensitivity. We found that cells become more sensitive to cisplatin when isopropanol, an agent that lowers GPMV transition temperature, was combined with cisplatin. Conversely, cells became resistant to cisplatin when added in combination with menthol that raises GPMV transition temperatures. These data suggest that changes in plasma membrane heterogeneity augments or suppresses signaling events initiated in the plasma membranes that can determine response to cisplatin. We postulate that desired perturbations of membrane heterogeneity could provide an effective therapeutic strategy to overcome cisplatin resistance for certain patients. PMID:26484687

  1. Treatment of textile wastewater with membrane bioreactor: A critical review.

    Science.gov (United States)

    Jegatheesan, Veeriah; Pramanik, Biplob Kumar; Chen, Jingyu; Navaratna, Dimuth; Chang, Chia-Yuan; Shu, Li

    2016-03-01

    Membrane bioreactor (MBR) technology has been used widely for various industrial wastewater treatments due to its distinct advantages over conventional bioreactors. Treatment of textile wastewater using MBR has been investigated as a simple, reliable and cost-effective process with a significant removal of contaminants. However, a major drawback in the operation of MBR is membrane fouling, which leads to the decline in permeate flux and therefore requires membrane cleaning. This eventually decreases the lifespan of the membrane. In this paper, the application of aerobic and anaerobic MBR for textile wastewater treatment as well as fouling and control of fouling in MBR processes have been reviewed. It has been found that long sludge retention time increases the degradation of pollutants by allowing slow growing microorganisms to establish but also contributes to membrane fouling. Further research aspects of MBR for textile wastewater treatment are also considered for sustainable operations of the process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Optical properties of metastable shallow acceptors in Mg-doped GaN layers grown by metal-organic vapor phase epitaxy

    OpenAIRE

    Pozina, Galia; Hemmingsson, Carl; Bergman, Peder; Kawashima, T.; Amano, H.; Akasaki, I.; Usui, A.; Monemar, Bo

    2010-01-01

    GaN layers doped by Mg show a metastable behavior of the near-band-gap luminescence caused by electron irradiation or UV excitation. At low temperatures < 30 K the changes in luminescence are permanent. Heating to room temperature recovers the initial low temperature spectrum shape completely. Two acceptors are involved in the recombination process as confirmed by transient PL. In as-grown samples a possible candidate for the metastable acceptor is C-N, while after annealing a second m...

  3. Sieving of Hot Gases by Hyper-Cross-Linked Nanoscale-Hybrid Membranes

    NARCIS (Netherlands)

    Raaijmakers, Michiel; Hempenius, Mark A.; Schön, Peter Manfred; Vancso, Gyula J.; Nijmeijer, Arian; Wessling, Matthias; Benes, Nieck Edwin

    2014-01-01

    Macromolecular networks consisting of homogeneously distributed covalently bonded inorganic and organic precursors are anticipated to show remarkable characteristics, distinct from those of the individual constituents. A novel hypercross-linked ultrathin membrane is presented, consisting of a giant

  4. π-Bridge-Independent 2-(Benzo[c][1,2,5]thiadiazol-4-ylmethylene)malononitrile-Substituted Nonfullerene Acceptors for Efficient Solar Cells

    KAUST Repository

    Wang, Kai

    2016-02-25

    Molecular acceptors are promising alternatives to fullerenes (e.g. PC61/71BM) in the fabrication of high-efficiency bulk-heterojunction (BHJ) solar cells. While solution-processed polymer-fullerene BHJ devices have recently met the 10% efficiency threshold, molecular acceptors have yet to prove comparably efficient with polymer donors. At this point in time, it is important to forge a better understanding of the design parameters that directly impact small-molecule (SM) acceptor performance in BHJ solar cells. In this report, we show that 2-(benzo[c][1,2,5]thiadiazol-4-ylmethylene)malononitrile (BM)-terminated SM acceptors can achieve efficiencies as high as 5.3% in BHJ solar cells with the polymer donor PCE10. Through systematic device optimization and characterization studies, we find that the nonfull-erene analogues (FBM, CBM and CDTBM) all perform comparably well, independent of the molecular structure and electronics of the π-bridge that links the two electron-deficient BM end groups. With estimated electron affinities within range of those of common fullerenes (4.0-4.3 eV), and a wider range of ionization potentials (6.2-5.6 eV), the SM acceptors absorb in the visible spectrum and effectively contribute to the BHJ device photocurrent. BM-substituted SM acceptors are promising alterna-tives to fullerenes in solution-processed BHJ solar cells.

  5. Abundant Acceptor Emission from Nitrogen-Doped ZnO Films Prepared by Atomic Layer Deposition under Oxygen-Rich Conditions.

    Science.gov (United States)

    Guziewicz, E; Przezdziecka, E; Snigurenko, D; Jarosz, D; Witkowski, B S; Dluzewski, P; Paszkowicz, W

    2017-08-09

    Nitrogen-doped and undoped ZnO films were grown by thermal atomic layer deposition (ALD) under oxygen-rich conditions. Low-temperature photoluminescence spectra reveal a dominant donor-related emission at 3.36 eV and characteristic acceptor-related emissions at 3.302 and 3.318 eV. Annealing at 800 °C in oxygen atmosphere leads to conversion of conductivity from n- to p-type, which is reflected in photoluminescence spectra. Annealing does not increase any acceptor-related emission in the undoped sample, while in the ZnO:N it leads to a considerable enhancement of the photoluminescence at 3.302 eV. The high resolution cathodoluminescence cross-section images show different spatial distribution of the donor-related and the acceptor-related emissions, which complementarily contribute to the overall luminescence of the annealed ZnO:N material. Similar area of both emissions indicates that the acceptor luminescence comes neither from the grain boundaries nor from stacking faults. Moreover, in ZnO:N the acceptor-emission regions are located along the columns of growth, which shows a perspective to achieve a ZnO:N material with homogeneous acceptor conductivity at least at the micrometer scale.

  6. Interfacial electronic structure of Cl6SubPc non-fullerene acceptors in organic photovoltaics using soft X-ray spectroscopies.

    Science.gov (United States)

    Lee, Hyunbok; Ahn, Sun Woo; Ryu, Sim Hee; Ryu, Bo Kyung; Lee, Myeung Hee; Cho, Sang Wan; Smith, Kevin E; Jones, Tim S

    2017-12-06

    In organic photovoltaics (OPVs), determining the energy-level alignment of a donor and an acceptor is particularly important since the interfacial energy gap between the highest occupied molecular orbital (HOMO) level of a donor and the lowest unoccupied molecular orbital (LUMO) level of an acceptor (E-E) gives the theoretical maximum value of the open-circuit voltage (V OC ). To increase the E-E, non-fullerene acceptors, which have a lower electron affinity (EA) than C 60 , are receiving increasing attention. In this study, we investigated the energy-level alignment at the interface of a boron chloride subphthalocyanine (SubPc) donor and a halogenated SubPc (Cl 6 SubPc) acceptor using soft X-ray spectroscopy techniques. The estimated E-E of Cl 6 SubPc/SubPc was 1.95 eV, which was significantly higher than that of 1.51 eV found at the interface of C 60 /SubPc. This increased E-E was the origin of the enhanced V OC in OPVs. Additionally, we studied the molecular orientation of Cl 6 SubPc using angle-dependent X-ray absorption spectroscopy. The highly disordered Cl 6 SubPc molecules result in low carrier mobility, which contributes to the lower short-circuit current density of the Cl 6 SubPc acceptor OPVs than the C 60 acceptor OPVs.

  7. Enantioseparation with liquid membranes

    NARCIS (Netherlands)

    Gössi, Angelo; Riedl, Wolfgang; Schuur, Boelo

    Chiral resolution of racemic products is a challenging and important task in the pharmaceutical, agrochemical, flavor, polymer and fragrances industries. One of the options for these challenging separations is to use liquid membranes. Although liquid membranes have been known for almost four decades

  8. Porous ceramic membranes

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Biesheuvel, Pieter Maarten

    2000-01-01

    Synthetic membranes are increasingly used for energy-efficient separation of liquid and gaseous mixtures in household applications, environmental technology and the chemical and energy industry. Besides, membranes are used in component-specific sensors in gas and liquid streams, preferably combined

  9. Polymide gas separation membranes

    Science.gov (United States)

    Ding, Yong; Bikson, Benjamin; Nelson, Joyce Katz

    2004-09-14

    Soluble polyamic acid salt (PAAS) precursors comprised of tertiary and quaternary amines, ammonium cations, sulfonium cations, or phosphonium cations, are prepared and fabricated into membranes that are subsequently imidized and converted into rigid-rod polyimide articles, such as membranes with desirable gas separation properties. A method of enhancing solubility of PAAS polymers in alcohols is also disclosed.

  10. Membrane module assembly

    Science.gov (United States)

    Kaschemekat, Jurgen

    1994-01-01

    A membrane module assembly adapted to provide a flow path for the incoming feed stream that forces it into prolonged heat-exchanging contact with a heating or cooling mechanism. Membrane separation processes employing the module assembly are also disclosed. The assembly is particularly useful for gas separation or pervaporation.

  11. Investigation of Donor and Acceptor Ion Implantation in AlN

    Energy Technology Data Exchange (ETDEWEB)

    Osinsky, Andrei [Agnitron Technology Inc., Eden Prairie, MN (United States)

    2015-09-16

    AlGaN alloys with high Al composition and AlN based electronic devices are attractive for high voltage, high temperature applications, including microwave power sources, power switches and communication systems. AlN is of particular interest because of its wide bandgap of ~6.1eV which is ideal for power electronic device applications in extreme environments which requires high dose ion implantation. One of the major challenges that need to be addressed to achieve full utilization of AlN for opto and microelectronic applications is the development of a doping strategy for both donors and acceptors. Ion implantation is a particularly attractive approach since it allows for selected-area doping of semiconductors due to its high spatial and dose control and its high throughput capability. Active layers in the semiconductor are created by implanting a dopant species followed by very high temperature annealing to reduce defects and thereby activate the dopants. Recovery of implant damage in AlN requires excessively high temperature. In this SBIR program we began the investigation by simulation of ion beam implantation profiles for Mg, Ge and Si in AlN over wide dose and energy ranges. Si and Ge are implanted to achieve the n-type doping, Mg is investigated as a p-type doping. The simulation of implantation profiles were performed in collaboration between NRL and Agnitron using a commercial software known as Stopping and Range of Ions in Matter (SRIM). The simulation results were then used as the basis for ion implantation of AlN samples. The implanted samples were annealed by an innovative technique under different conditions and evaluated along the way. Raman spectroscopy and XRD were used to determine the crystal quality of the implanted samples, demonstrating the effectiveness of annealing in removing implant induced damage. Additionally, SIMS was used to verify that a nearly uniform doping profile was achieved near the sample surface. The electrical characteristics

  12. Application of time release electron donors and electron acceptors for accelerated bioremediation

    International Nuclear Information System (INIS)

    Joksimovich, V.; Koenigsberg, S.

    2002-01-01

    Currently, there are limited options for cost effective approaches to soil and groundwater contamination. One technology that has proven its potential involves the use of time release electron acceptors to accelerate the natural bioattenuation of aerobically degradable compounds and time release electron donors to accelerate the natural bioattenuation of anaerobic compounds. This technology enjoys its reputations as a sensible strategy for engineering accelerated bioattenuation, because it delivers results while 1) limiting or eliminating design, capital and management costs and 2) allowing for the engineering of a low-impact application and a subsequently invisible remediation process. Oxygen Release Compound (ORC ) is proprietary formulation of intercalated magnesium peroxide that releases oxygen slowly, for about a year, and facilitates the aerobic degradation of a range of environmental contaminants including petroleum hydrocarbons, certain chlorinated hydrocarbons, ether oxygenates and nitroaromatics. The history of ORC's introduction and acceptance represents a model for the evolution of an innovative technology. This statement comes by virtue of the fact that since 1994 ORC has been used on over 7000 sites worldwide and has been the subject of an extensive body of literature. Hydrogen Release Compound (HRC) is also a proprietary polylactate ester that is food grade and, upon being deposited into the aquifer, is slowly hydrolyzed to release lactic acid and other organic acid derivatives for about one to two years. The organic acids are fermented to hydrogen, which in turn donates electrons that drive reductive bioattenuation processes. This is primarily directed at a wide range of chlorinated hydrocarbons, but can be applied to the remediation of metals by redox induced precipitation. HRC has now been used on over 220 sites, which we believe make it the most widely used electron donor for accelerating bioattenuation. ORC and HRC can be configured as a

  13. Spatiotemporal Organization of Spin-Coated Supported Model Membranes

    Science.gov (United States)

    Simonsen, Adam Cohen

    biomembranes is randomly organized to facilitate membrane function. However, during the last 10-20 years it has become increasingly clear that the components of biomembranes are not randomly organized but that the lateral distribution is heterogeneous and time dependent. A picture is emerging where the interactions among membrane components and between membranes and external structures give rise to dynamically maintained domains with distinct sizes and compositions. Such domains are coupled to membrane function through their regulation of membrane-bound proteins. Experimentally, the investigation of domain structures in artificial and natural membranes have been enhanced by the proposition of the so-called raft hypothesis [5-7]. According to this hypothesis, rafts are nanoscale regions of biological membranes that are linked to important cellular processes and signaling pathways [8,9]. Rafts originated as insoluble membrane fragments upon treatment of cellular membranes with cold detergent [10].

  14. Elastic membranes in confinement.

    Science.gov (United States)

    Bostwick, J B; Miksis, M J; Davis, S H

    2016-07-01

    An elastic membrane stretched between two walls takes a shape defined by its length and the volume of fluid it encloses. Many biological structures, such as cells, mitochondria and coiled DNA, have fine internal structure in which a membrane (or elastic member) is geometrically 'confined' by another object. Here, the two-dimensional shape of an elastic membrane in a 'confining' box is studied by introducing a repulsive confinement pressure that prevents the membrane from intersecting the wall. The stage is set by contrasting confined and unconfined solutions. Continuation methods are then used to compute response diagrams, from which we identify the particular membrane mechanics that generate mitochondria-like shapes. Large confinement pressures yield complex response diagrams with secondary bifurcations and multiple turning points where modal identities may change. Regions in parameter space where such behaviour occurs are then mapped. © 2016 The Author(s).

  15. Membrane projection lithography

    Energy Technology Data Exchange (ETDEWEB)

    Burckel, David Bruce; Davids, Paul S; Resnick, Paul J; Draper, Bruce L

    2015-03-17

    The various technologies presented herein relate to a three dimensional manufacturing technique for application with semiconductor technologies. A membrane layer can be formed over a cavity. An opening can be formed in the membrane such that the membrane can act as a mask layer to the underlying wall surfaces and bottom surface of the cavity. A beam to facilitate an operation comprising any of implantation, etching or deposition can be directed through the opening onto the underlying surface, with the opening acting as a mask to control the area of the underlying surfaces on which any of implantation occurs, material is removed, and/or material is deposited. The membrane can be removed, a new membrane placed over the cavity and a new opening formed to facilitate another implantation, etching, or deposition operation. By changing the direction of the beam different wall/bottom surfaces can be utilized to form a plurality of structures.

  16. Membrane technology and applications

    International Nuclear Information System (INIS)

    Khalil, F.H.

    1997-01-01

    The main purpose of this dissertation is to prepare and characterize some synthetic membranes obtained by radiation-induced graft copolymerization of and A Am unitary and binary system onto nylon-6 films. The optimum conditions at which the grafting process proceeded homogeneously were determined. Some selected properties of the prepared membranes were studied. Differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), x-ray diffraction (XRD), mechanical properties and U.V./vis, instruments and techniques were used to characterize the prepared membranes. The use of such membranes for the decontamination of radioactive waste and some heavy metal ions as water pollutants were investigated. These grafted membranes showed good cation exchange properties and may be of practical interest in waste water treatment whether this water was radioactive or not. 4 tabs., 68 figs., 146 refs

  17. Unsymmetrical donor–acceptor–donor–acceptor type indoline based organic semiconductors with benzothiadiazole cores for solution-processed bulk heterojunction solar cells

    Directory of Open Access Journals (Sweden)

    Wenqin Li

    2017-10-01

    Full Text Available Bulk heterojunction (BHJ solar cells based on small molecules have attracted potential attention due to their promise of conveniently defined structures, high absorption coefficients, solution process-ability and easy fabrication. Three D–A–D–A type organic semiconductors (WS-31, WS-32 and WS-52 are synthesized, based on the indoline donor and benzotriazole auxiliary acceptor core, along with either bare thiophene or rigid cyclopentadithiophene as π bridge, rhodanine or carbonocyanidate as end-group. Their HOMO orbitals are delocalized throughout the whole molecules. Whereas the LUMOs are mainly localized on the acceptor part of structure, which reach up to benzothiadiazole, but no distribution on indoline donor. The first excitations for WS-31 and WS-32 are mainly originated by electron transition from HOMO to LUMO level, while for WS-52, partly related to transition between HOMO and LUMO+1 level. The small organic molecules are applied as donor components in bulk heterojunction (BHJ organic solar cells, using PC61BM as acceptor material to check their photovoltaic performances. The BHJ solar cells based on blended layer of WS-31:PC61BM and WS-32:PC61BM processed with chloroform show overall photoelectric conversion efficiency (PCE of 0.56% and 1.02%, respectively. WS-32 based BHJ solar cells show a higher current density originated by its relatively larger driving force of photo-induced carrier in photo-active layer to LUMO of PC61BM. Keywords: Indoline donor, Unsymmetrical organic semiconductors, BHJ solar cells, Photovoltaic performances

  18. A facile method for simulating randomly rough membrane surface associated with interface behaviors

    Science.gov (United States)

    Qu, Xiaolu; Cai, Xiang; Zhang, Meijia; Lin, Hongjun; Leihong, Zhao; Liao, Bao-Qiang

    2018-01-01

    Modeling rough surfaces has emerged as a distinct discipline of considerable research interest in interface behaviors including membrane fouling. In this paper, a facile method was proposed to simulate rough membrane surface morphology. Natural membrane surface was found to be randomly rough, and its height distribution obeys Gaussian distribution. A new method which combines spectrum method, Gaussian distribution and Fourier transform technique was deduced. Simulation of the rough membrane surface showed high similarity in terms of statistical roughness and height distribution between the simulated surface and the real membrane surface, indicating feasibility of the new method. It was found that, correlation length (l) and the number of superposed ridges (N) are key parameters affecting the simulated membrane surface morphology. This new method has evident advantages over conventional modeling methods The proposed method for randomly rough membrane surface modeling could be potentially used to quantify the interfacial interactions between two rough surfaces, giving implications for membrane fouling mitigation.

  19. Selective Transport of Silver(I) Cation Across a Bulk Liquid Membrane Containing Bis-β-enamino Ester as Ion Carrier

    OpenAIRE

    Tarahomi,Somayeh; Rounaghi,Gholam Hossein; Eshghi,Hossein; Daneshvar,Leili; Chamsaz,Mahmoud

    2017-01-01

    Facilitated transport of silver(I) cation across a bulk liquid membrane by two synthesized ligands, bis-β-enamino ester (BBEE) and bis(benzoic acid) trioxaheptane (BBAT), as carriers dissolved in dichloromethane has been investigated. BBEE was used as a specific ion carrier for the transport of silver(I) ion. The influence of experimental parameters affecting the transport efficiency of silver(I) ion have been studied. In the presence of thiosulfate as a suitable metal ion acceptor in th...

  20. Lipid-protein interactions in plasma membranes of fiber cells isolated from the human eye lens.

    Science.gov (United States)

    Raguz, Marija; Mainali, Laxman; O'Brien, William J; Subczynski, Witold K

    2014-03-01

    The protein content in human lens membranes is extremely high, increases with age, and is higher in the nucleus as compared with the cortex, which should strongly affect the organization and properties of the lipid bilayer portion of intact membranes. To assess these effects, the intact cortical and nuclear fiber cell plasma membranes isolated from human lenses from 41- to 60-year-old donors were studied using electron paramagnetic resonance spin-labeling methods. Results were compared with those obtained for lens lipid membranes prepared from total lipid extracts from human eyes of the same age group [Mainali, L., Raguz, M., O'Brien, W. J., and Subczynski, W. K. (2013) Biochim. Biophys. Acta]. Differences were considered to be mainly due to the effect of membrane proteins. The lipid-bilayer portions of intact membranes were significantly less fluid than lipid bilayers of lens lipid membranes, prepared without proteins. The intact membranes were found to contain three distinct lipid environments termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain. However, the cholesterol bilayer domain, which was detected in cortical and nuclear lens lipid membranes, was not detected in intact membranes. The relative amounts of bulk and trapped lipids were evaluated. The amount of lipids in domains uniquely formed due to the presence of membrane proteins was greater in nuclear membranes than in cortical membranes. Thus, it is evident that the rigidity of nuclear membranes is greater than that of cortical membranes. Also the permeability coefficients for oxygen measured in domains of nuclear membranes were significantly lower than appropriate coefficients measured in cortical membranes. Relationships between the organization of lipids into lipid domains in fiber cells plasma membranes and the organization of membrane proteins are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling

    DEFF Research Database (Denmark)

    Zech, Tobias; Ejsing, Christer S.; Gaus, Katharina

    2009-01-01

    and saturated phosphatidylcholine species as compared with control plasma membrane fragments. This provides, for the first time, direct evidence that TCR activation domains comprise a distinct molecular lipid composition reminiscent of liquid-ordered raft phases in model membranes. Interestingly, TCR activation...

  2. Sieving of Hot Gases by Hyper-Cross-Linked Nanoscale-Hybrid Membranes

    OpenAIRE

    Raaijmakers, Michiel; Hempenius, Mark A.; Schön, Peter Manfred; Vancso, Gyula J.; Nijmeijer, Arian; Wessling, Matthias; Benes, Nieck Edwin

    2014-01-01

    Macromolecular networks consisting of homogeneously distributed covalently bonded inorganic and organic precursors are anticipated to show remarkable characteristics, distinct from those of the individual constituents. A novel hypercross-linked ultrathin membrane is presented, consisting of a giant molecular network of alternating polyhedral oligomeric silsesquioxanes and aromatic imide bridges. The hybrid characteristics of the membrane are manifested in excellent gas separation performance ...

  3. Effect of Conjugation Length on Photoinduced Charge-Transfer in π-Conjugated Oligomer-Acceptor Dyads

    KAUST Repository

    Jiang, Junlin

    2017-05-25

    A series of -conjugated oligomer-acceptor dyads were synthesized that feature oligo(phenylene ethynylene) (OPE) conjugated backbones end-capped with a naphthalene diimide (NDI) acceptor. The OPE segments vary in length from 4 to 8 phenylene ethynene units (PEn-NDI, where n = 4, 6 and 8). Fluorescence and transient absorption spectroscopy reveals that intramolecular OPE NDI charge transfer dominates the deactivation of excited states of the PEn-NDI oligomers. Both charge separation (CS) and charge recombination (CR) are strongly exothermic (G0CS ~ -1.1 and G0CR ~ -2.0 eV), and the driving forces do not vary much across the series because the oxidation and reduction potentials and singlet energies of the OPEs do not vary much with their length. Bimolecular photoinduced charge transfer between model OPEs that do not contain the NDI acceptors with methyl viologen was studied, and the results reveal that the absorption of the cation radical state (OPE+•) remains approximately constant ( ~ 575 nm) regardless of oligomer length. This finding suggests that the cation radical (polaron) of the OPE is relatively localized, effectively occupying a confined segment of n 4 repeat units in the longer oligomers. Photoinduced intramolecular electron transfer dynamics in the PEn-NDI series was investigated by UV-visible femtosecond transient absorption spectroscopy with visible and mid-infrared probes. Charge separation occurs on the 1 – 10 ps timescale, with the rates decreasing slightly with increased oligomer length (βCS ~ 0.15 Å-1). The rate for charge-recombination decreases in the sequence PE4-NDI > PE6-NDI ~ PE8-NDI. The discontinuous distance dependence in the rate for charge recombination may be related to the spatial localization of the positive polaron state in the longer oligomers.

  4. Dual acceptor doping and aging effect of p-ZnO:(Na, N) nanorod thin films by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Swapna, R., E-mail: swapna.ramella@yahoo.com, E-mail: santhoshmc@nitt.edu; Amiruddin, R., E-mail: swapna.ramella@yahoo.com, E-mail: santhoshmc@nitt.edu; Santhosh Kumar, M. C., E-mail: swapna.ramella@yahoo.com, E-mail: santhoshmc@nitt.edu [Advanced Materials Laboratory, Department of Physics, National Institute of Technology, Tiruchirappalli-620 015 (India)

    2014-01-28

    An attempt has been made to realize p-type ZnO by dual acceptor doping (Na-N) into ZnO thin films. Na and N doped ZnO thin films of different concentrations (0 to 8 at.%) have been grown by spray pyrolysis at 623 K. The grown films on glass substrate have been characterized by X-ray diffraction (XRD), Hall measurement, UV-Vis spectrophotometer, Photoluminescence (PL) and Energy dispersive spectroscopy (EDS) to validate the p-type conduction. The surface morphology and roughness of the ZnO:(Na, N) films are studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. Hall measurement shows that all the films exhibit p-type conductivity except for 0 at.% Na-N doped ZnO film. The obtained resistivity (5.60×10{sup −2} Ω cm) and hole concentration (3.15×10{sup 18} cm{sup −3}) for the best dual acceptor doped film is 6 at.%. It has been predicted that (Na{sub Zn}−N{sub O}) acceptor complex is responsible for the p-type conduction. The p-type conductivity of the ZnO:(Na, N) films is stable even after 6 months. The crystallinity of the films has been studied by XRD. Energy dispersive spectroscopy (EDS) confirms the presence of Na and N in 6 at.% ZnO:(Na, N) film. Photoluminescence (PL) spectra of ZnO:(Na, N) films show NBE and deep level emissions in the UV and visible regions, respectively. The ZnO:(Na, N) films exhibit a high transmittance about 90% in the visible region.

  5. Controlling Blend Morphology for Ultra-High Current Density in Non-Fullerene Acceptor Based Organic Solar Cells

    KAUST Repository

    Song, Xin

    2018-01-23

    Due to the high absorption coefficient and modulated band gap of non-fullerene small molecule acceptors (NFAs), photons can be utilized more efficiently in near-infrared (NIR) range. In this report, we highlight a system with a well-known polymer donor (PTB7-Th) blended with a narrow bandgap non-fullerene acceptor (IEICO-4F) as active layer and 1-chloronaphthalene (CN) as the solvent additive. The optimization of the photoactive layer nanomorphology yields short-circuit current density value (Jsc) of 27.3 mA/cm2, one of the highest value in OSCs reported to date, which competes with other types of solution processed solar cells such as perovskite or quantum dot devices. Along with decent open-circuit voltage (0.71V) and fill factor values (66%), a power conversion efficiency of 12.8% is achieved for the champion devices. Grazing incidence wide-angle X-ray scattering (GIWAXS) patterns and resonant soft X-ray scattering (R-SoXS) elucidate that the origin of this high photocurrent is mainly due to increased π-π coherence length of the acceptor, the domain spacing as well as the mean-square composition variation of the blend. Optoelectronic measurements confirm a balanced hole and electron mobility and reduced trap-assisted recombination for the best devices. These findings unveil the relevant solvent processing-nanostructure-electronic properties correlation in low band gap non-fullerene based solar cells, which provide a helpful guide for maximizing photocurrent that can pave the way for high efficiency organic solar cells.

  6. Microbial fuel cell operation using monoazo and diazo dyes as terminal electron acceptor for simultaneous decolourisation and bioelectricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Oon, Yoong-Sin [Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis (Malaysia); Ong, Soon-An, E-mail: ongsoonan@yahoo.com [Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis (Malaysia); Ho, Li-Ngee [School of Materials Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis (Malaysia); Wong, Yee-Shian; Oon, Yoong-Ling; Lehl, Harvinder Kaur; Thung, Wei-Eng [Water Research Group (WAREG), School of Environmental Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis (Malaysia); Nordin, Noradiba [School of Materials Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis (Malaysia)

    2017-03-05

    Highlights: • Monoazo and diazo dyes were used as electron acceptor in the abiotic cathode of MFC. • Simultaneous decolourisation and bioelectricity generation were achieved. • Azo dye structures influenced the decolourisation performance. • Positive relation between decolourisation rate and power performance. - Abstract: Monoazo and diazo dyes [New coccine (NC), Acid orange 7 (AO7), Reactive red 120 (RR120) and Reactive green 19 (RG19)] were employed as electron acceptors in the abiotic cathode of microbial fuel cell. The electrons and protons generated from microbial organic oxidation at the anode which were utilized for electrochemical azo dye reduction at the cathodic chamber was successfully demonstrated. When NC was employed as the electron acceptor, the chemical oxygen demand (COD) removal and dye decolourisation efficiencies obtained at the anodic and cathodic chamber were 73 ± 3% and 95.1 ± 1.1%, respectively. This study demonstrated that the decolourisation rates of monoazo dyes were ∼50% higher than diazo dyes. The maximum power density in relation to NC decolourisation was 20.64 mW/m{sup 2}, corresponding to current density of 120.24 mA/m{sup 2}. The decolourisation rate and power output of different azo dyes were in the order of NC > AO7 > RR120 > RG19. The findings revealed that the structure of dye influenced the decolourisation and power performance of MFC. Azo dye with electron-withdrawing group at para substituent to azo bond would draw electrons from azo bond; hence the azo dye became more electrophilic and more favourable for dye reduction.

  7. Synthesis and electrochemical properties of novel, donor–acceptor pyrrole derivatives with 1,8-naphthalimide units and their polymers

    International Nuclear Information System (INIS)

    Ledwon, Przemyslaw; Brzeczek, Alina; Pluczyk, Sandra; Jarosz, Tomasz; Kuznik, Wojciech; Walczak, Krzysztof; Lapkowski, Mieczyslaw

    2014-01-01

    A new class of bipolar monomers with pyrrole or thiophene–pyrrole–thiophene as electron donor and 1,8-naphthalimide as electron acceptor unit is reported. Donor–acceptor conjugated polymers were generated electrochemically. The synthesis of monomers, optical, electrochemical and spectroelectrochemical properties supported by theoretical calculations are presented. 1,8-naphthalimide units were attached directly to pyrrole in compounds 1a and 2a or by different bridges in the case of 1b and 2b. Intra-molecular donor–acceptor interactions of the monomers and its polymers were investigated using cyclic voltammetry, in-situ UV–Vis-NIR, electron spin resonance (ESR) spectroelectrochemistry and fluorescence spectroscopy. Studied compounds present large discrepancy (up to 1.31 eV for 2a) between energy gap values determined through electrochemical and optical measurements. The Time-dependent density functional theory (TDDFT) calculations help to explain this discrepancy. This is caused by weak HOMO to LUMO transition, 2000 times weaker than HOMO −2 to LUMO or HOMO to LUMO +1 transition. Altering the structure of monomers yields different stability and properties of obtained polymers. The p- and n-doping processes are separated. Anions are localized mainly on 1,8-naphthalimide units. Cations are localized mainly on pyrrole or thiophene–pyrrole–thiophene moiety and their polymer chains. Attachment of the additional thiophene units decreases the oxidation potential of the monomer and reduces the influence of the steric hindrance between 1,8-naphthalimide moiety and polymer/oligomers chain. This new class of model compounds is promising for use as a material with enhanced charge separation for wide range of optoelectronic, electrochromic and photovoltaic applications

  8. NAD(P)H:(Quinone-Acceptor) Oxidoreductase of Tobacco Leaves Is a Flavin Mononucleotide-Containing Flavoenzyme.

    Science.gov (United States)

    Sparla, F.; Tedeschi, G.; Trost, P.

    1996-09-01

    The soluble NAD(P)H:(quinone-acceptor) oxidoreductase [NAD(P)H-QR, EC 1.6.99.2] of Nicotiana tabacum L. leaves and roots has been purified. NAD(P)H-QR contains noncovalently bound flavin mononucleotide. Pairs of subunits of 21.4 kD are linked together by disulfide bridges, but the active enzyme is a homotetramer of 94 to 100 kD showing an isoelectric point of 5.1. NAD(P)H-QR is a B-stereospecific dehydrogenase. NADH and NADPH are electron donors of similar efficiency with Kcat:Km ratios (with duroquinone) of 6.2 x 107 and 8.0 x 107 m-1 s-1, respectively. Hydrophilic quinones are good electron acceptors, although ferricyanide and dichlorophenolindophenol are also reduced. The quinones are converted to hydroquinones by an obligatory two-electron transfer. No spectral evidence for a flavin semiquinone was detected following anaerobic photoreduction. Cibacron blue and 7-iodo-acridone-4-carboxylic acid are inhibitory. Tobacco NAD(P)H-QR resembles animal DT-diaphorase in some respects (identical reaction mechanism with a two-electron transfer to quinones, unusually high catalytic capability, and donor and acceptor substrate specificity), but it differs from DT-diaphorase in molecular structure, flavin cofactor, stereospecificity, and sensitivity to inhibitors. As in the case with DT-diaphorase in animals, the main NAD(P)H-QR function in plant cells may be the reduction of quinones to quinols, which prevents the production of semiquinones and oxygen radicals. The enzyme appears to belong to a widespread group of plant and fungal flavoproteins found in different cell compartments that are able to reduce quinones.

  9. Creating Graphitic Carbon Nitride Based Donor-π-Acceptor-π-Donor Structured Catalysts for Highly Photocatalytic Hydrogen Evolution.

    Science.gov (United States)

    Li, Kui; Zhang, Wei-De

    2018-03-01

    Conjugated polymers with tailored donor-acceptor units have recently attracted considerable attention in organic photovoltaic devices due to the controlled optical bandgap and retained favorable separation of charge carriers. Inspired by these advantages, an effective strategy is presented to solve the main obstructions of graphitic carbon nitride (g-C 3 N 4 ) photocatalyst for solar energy conversion, that is, inefficient visible light response and insufficient separation of photogenerated electrons and holes. Donor-π-acceptor-π-donor polymers are prepared by incorporating 4,4'-(benzoc 1,2,5 thiadiazole-4,7-diyl) dianiline (BD) into the g-C 3 N 4 framework (UCN-BD). Benefiting from the visible light band tail caused by the extended π conjugation, UCN-BD possesses expanded visible light absorption range. More importantly, the BD monomer also acts as an electron acceptor, which endows UCN-BD with a high degree of intramolecular charge transfer. With this unique molecular structure, the optimized UCN-BD sample exhibits a superior performance for photocatalytic hydrogen evolution upon visible light illumination (3428 µmol h -1 g -1 ), which is nearly six times of that of the pristine g-C 3 N 4 . In addition, the photocatalytic property remains stable for six cycles in 3 d. This work provides an insight into the synthesis of g-C 3 N 4 -based D-π-A-π-D systems with highly visible light response and long lifetime of intramolecular charge carriers for solar fuel production. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The synthesis of new donor–acceptor polymers containing the 2,3-di(2-furyl) quinoxaline moiety: Fast-switching, low-band-gap, p- and n-dopable, neutral green-colored materials

    International Nuclear Information System (INIS)

    Xu, Zhen; Wang, Min; Fan, Weiyu; Zhao, Jinsheng; Wang, Huaisheng

    2015-01-01

    Highlights: • Three D-A type polymers based on 2,3-di(2-furyl) quinoxaline were synthesized and characterized. • The structure of substitution influences electrochromic properties of the polymers • All three polymers are both p- and n-type dopable and show excellent electrochromic properties. - Abstract: Three donor–acceptor type π-conjugated polymers were synthesized electrochemically:poly[2,3-di(2-furyl)-5,8-bis (2-(3,4-ethylenedioxythiophene)) quinoxaline] (PFETQ), poly[2,3-di(2-furyl)-5,8-bis(2-thienyl) quinoxaline] (PFTQ) and poly[2,3-di(2-furyl)-5,8-bis(2-(3-methoxythiophene)) quinoxaline] (PFMTQ). All of the synthesized polymers, contained the 2,3-di(2-furyl) quinoxaline moiety in the backbone as the acceptor unit and different thiophene derivatives as the donor units. The electroactivity of the monomers and the electrochemical properties of their polymers were investigated by cyclic voltammetry. The presence of the strong electron-donating ethylenedioxy and methoxy groups on the aromatic structure increased the electron density. Thus, the oxidation potential of FETQ and FMTQ shifted to a lower value than that of FTQ. The optical properties of the polymers were investigated by UV–vis–NIR spectroscopy. Both PFETQ and PFMTQ reveal two distinct absorption bands in the red and blue regions of the visible spectrum, while PFTQ has only one dominant wavelength at 596 nm in the visible region. The colorimetry analysis revealed that while PFTQ has a light blue color, PFETQ and PFMTQ are green in the neutral state. The optical band gaps, defined as the onset of the π–π* transition, were found to be 1.15 eV for PFETQ, 1.2 eV for PFMTQ and 1.34 eV for PFTQ. Moreover, all three polymers showed both n-doping and fast switching times

  11. Flow methodology for methanol determination in biodiesel exploiting membrane-based extraction

    International Nuclear Information System (INIS)

    Araujo, Andre R.T.S.; Saraiva, M. Lucia M.F.S.; Lima, Jose L.F.C.; Korn, M. Gracas A.

    2008-01-01

    A methodology based in flow analysis and membrane-based extraction has been applied to the determination of methanol in biodiesel samples. A hydrophilic membrane was used to perform the liquid-liquid extraction in the system with the organic sample fed to the donor side of the membrane and the methanol transfer to an aqueous acceptor buffer solution. The quantification of the methanol was then achieved in aqueous solution by the combined use of immobilised alcohol oxidase (AOD), soluble peroxidase and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). The optimization of parameters such as the type of membrane, the groove volume and configuration of the membrane unit, the appropriate organic solvent, sample injection volume, as well as immobilised packed AOD reactor was performed. Two dynamic analytical working ranges were achieved, up to 0.015% and up to 0.200% (m/m) methanol concentrations, just by changing the volume of acceptor aqueous solution. Detection limits of 0.0002% (m/m) and 0.007% (m/m) methanol were estimated, respectively. The decision limit (CCα) and the detection capacity (CCβ) were 0.206 and 0.211% (m/m), respectively. The developed methodology showed good precision, with a relative standard deviation (R.S.D.) <5.0% (n = 10). Biodiesel samples from different sources were then directly analyzed without any sample pre-treatment. Statistical evaluation showed good compliance, for a 95% confidence level, between the results obtained with the flow system and those furnished by the gas chromatography reference method. The proposed methodology turns out to be more environmental friendly and cost-effective than the reference method

  12. Materials dependence of mixed gas plasticization behavior in asymmetric membranes

    NARCIS (Netherlands)

    Visser, Tymen; Masetto, N.; Wessling, Matthias

    2007-01-01

    The mass transport of asymmetric membranes for the separation of carbon dioxide/methane mixtures is determined by competitive sorption and plasticization. With increasing feed pressure in mixed gas experiments, the selectivity decreases due to both effects. Distinction whether one or the other

  13. Social conformity despite individual preferences for distinctiveness.

    Science.gov (United States)

    Smaldino, Paul E; Epstein, Joshua M

    2015-03-01

    We demonstrate that individual behaviours directed at the attainment of distinctiveness can in fact produce complete social conformity. We thus offer an unexpected generative mechanism for this central social phenomenon. Specifically, we establish that agents who have fixed needs to be distinct and adapt their positions to achieve distinctiveness goals, can nevertheless self-organize to a limiting state of absolute conformity. This seemingly paradoxical result is deduced formally from a small number of natural assumptions and is then explored at length computationally. Interesting departures from this conformity equilibrium are also possible, including divergence in positions. The effect of extremist minorities on these dynamics is discussed. A simple extension is then introduced, which allows the model to generate and maintain social diversity, including multimodal distinctiveness distributions. The paper contributes formal definitions, analytical deductions and counterintuitive findings to the literature on individual distinctiveness and social conformity.

  14. Novel Terthiophene-Substituted Fullerene Derivatives as Easily Accessible Acceptor Molecules for Bulk-Heterojunction Polymer Solar Cells

    Directory of Open Access Journals (Sweden)

    Filippo Nisic

    2014-01-01

    Full Text Available Five fulleropyrrolidines and methanofullerenes, bearing one or two terthiophene moieties, have been prepared in a convenient way and well characterized. These novel fullerene derivatives are characterized by good solubility and by better harvesting of the solar radiation with respect to traditional PCBM. In addition, they have a relatively high LUMO level and a low band gap that can be easily tuned by an adequate design of the link between the fullerene and the terthiophene. Preliminary results show that they are potential acceptors for the creation of efficient bulk-heterojunction solar cells based on donor polymers containing thiophene units.

  15. A stability study of polymer solar cells using conjugated polymers with different donor or acceptor side chain patterns

    DEFF Research Database (Denmark)

    Heckler, Ilona Maria; Kesters, Jurgen; Defour, Maxime

    2016-01-01

    )benzo[c][1,2,5]thiadiazole (DTBT), specifically selected because of its suitability for roll-coating in the ambient environment, is investigated in terms of operational stability via partial exchange (5 or 10%) of the alkyl side chain on either the donor or the acceptor monomer with a 2-hydroxyethyl or 2......-phenylethyl group. It is shown that the exchange of the hexyl chain on the DTBT moiety has a negative impact on the stability of the polymer as well as on the performance of the resulting PSCs. On the other hand, partial exchange of the 2-hexyldecyl side chain of the BDT unit by a 2-hydroxyethyl group results...

  16. All-Polymer Solar Cell Performance Optimized via Systematic Molecular Weight Tuning of Both Donor and Acceptor Polymers.

    Science.gov (United States)

    Zhou, Nanjia; Dudnik, Alexander S; Li, Ting I N G; Manley, Eric F; Aldrich, Thomas J; Guo, Peijun; Liao, Hsueh-Chung; Chen, Zhihua; Chen, Lin X; Chang, Robert P H; Facchetti, Antonio; Olvera de la Cruz, Monica; Marks, Tobin J

    2016-02-03

    The influence of the number-average molecular weight (Mn) on the blend film morphology and photovoltaic performance of all-polymer solar cells (APSCs) fabricated with the donor polymer poly[5-(2-hexyldodecyl)-1,3-thieno[3,4-c]pyrrole-4,6-dione-alt-5,5-(2,5-bis(3-dodecylthiophen-2-yl)thiophene)] (PTPD3T) and acceptor polymer poly{[N,N'-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (P(NDI2OD-T2); N2200) is systematically investigated. The Mn effect analysis of both PTPD3T and N2200 is enabled by implementing a polymerization strategy which produces conjugated polymers with tunable Mns. Experimental and coarse-grain modeling results reveal that systematic Mn variation greatly influences both intrachain and interchain interactions and ultimately the degree of phase separation and morphology evolution. Specifically, increasing Mn for both polymers shrinks blend film domain sizes and enhances donor-acceptor polymer-polymer interfacial areas, affording increased short-circuit current densities (Jsc). However, the greater disorder and intermixed feature proliferation accompanying increasing Mn promotes charge carrier recombination, reducing cell fill factors (FF). The optimized photoactive layers exhibit well-balanced exciton dissociation and charge transport characteristics, ultimately providing solar cells with a 2-fold PCE enhancement versus devices with nonoptimal Mns. Overall, it is shown that proper and precise tuning of both donor and acceptor polymer Mns is critical for optimizing APSC performance. In contrast to reports where maximum power conversion efficiencies (PCEs) are achieved for the highest Mns, the present two-dimensional Mn optimization matrix strategy locates a PCE "sweet spot" at intermediate Mns of both donor and acceptor polymers. This study provides synthetic methodologies to predictably access conjugated polymers with desired Mn and highlights the importance of optimizing Mn for both polymer

  17. Ternary-Blend Polymer Solar Cells Combining Fullerene and Nonfullerene Acceptors to Synergistically Boost the Photovoltaic Performance.

    Science.gov (United States)

    Lu, Heng; Zhang, Jicheng; Chen, Jianya; Liu, Qian; Gong, Xue; Feng, Shiyu; Xu, Xinjun; Ma, Wei; Bo, Zhishan

    2016-11-01

    A ternary-blend strategy is presented to surmount the shortcomings of both fullerene derivatives and nonfullerene small molecules as acceptors for the first time. The optimal ternary device shows a high power conversion efficiency (PCE) of 10.4%. Moreover, a significant enhancement in PCE (≈35%) relative to both of the binary reference devices, which has never been achieved before in high-efficiency ternary devices, is demonstrated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Properties of the main Mg-related acceptors in GaN from optical and structural studies

    OpenAIRE

    Monemar, Bo; Paskov, Plamen; Pozina, Galia; Hemmingsson, Carl; Bergman, Peder; Khromov, Sergey; Izyumskaya, V. N.; Avrutin, V.; Li, X.; Morkoc, H.; Amano, H.; Iwaya, M.; Akasaki, I.

    2014-01-01

    The luminescent properties of Mg-doped GaN have recently received particular attention, e. g., in the light of new theoretical calculations, where the deep 2.9 eV luminescence band was suggested to be the main optical signature of the substitutional Mg-Ga acceptor, thus, having a rather large binding energy and a strong phonon coupling in optical transitions. We present new experimental data on homoepitaxial Mg-doped layers, which together with the previous collection of data give an improved...

  19. Photo-switchable Donor-Acceptor (D-A) Dyad Interfacial Self-Assembled Monolayers for Organic Photovoltaic Cells

    Science.gov (United States)

    2015-11-05

    Dye-Sensitized Solar Cells," Dyes and Pigments , 107, 9-14, 2014 (DOI: 10.1016/j.dyepig.2014.03.010). Here we report the synthesis and...electron acceptor and anchoring unit for Dye-Sensitized Solar Cells,\\" Dyes and Pigments , 107, 9-14, 2014 (DOI: 10.1016/j.dyepig.2014.03.010). 4. Danny...linked by vinyl-fluorene or vinyl-thiophene spacers for dye-sensitized solar cells,” Dyes and Pigments , 112, 127-137, 2014 (DOI: 10.1016/j.dyepig

  20. Correlation between LUMO offset of donor/acceptor molecules to an open circuit voltage in bulk heterojunction solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Mola, Genene Tessema, E-mail: mola@ukzn.ac.za [School of. Chemistry and Physics, University of Kwazulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville 3209 (South Africa); Abera, Newayemedhin [Addis Ababa University, Department of Physics, P.O. BOX 1176, Addis Ababa (Ethiopia)

    2014-07-15

    The correlation between the open circuit voltage and the LUMO offset of the donor and acceptor polymers in the bulkheterojunction solar cell was studied for three different thiophene derivatives. The HOMO levels of all the polymers in this investigation were chosen to be similar which results in close values of ΔE{sub DA}=E{sub HOMO}{sup D}−E{sub LUMO}{sup A}. However, the measured V{sub oc} was found to be increasing with decreasing value of the LUMO offset that exists between the donor polymer and fullerene.

  1. Proteome-Wide Identification of In Vivo ADP-Ribose Acceptor Sites by Liquid Chromatography-Tandem Mass Spectrometry

    DEFF Research Database (Denmark)

    Larsen, Sara C; Leutert, Mario; Bilan, Vera

    2017-01-01

    remained a difficult challenge. Here, we describe a detailed protocol for unbiased analysis of ADP-ribosylated proteins and their ADP-ribose acceptor sites under physiological conditions. The method relies on the enrichment of mono-ADP-ribosylated peptides using the macrodomain Af1521 in combination...... with liquid chromatography-high-resolution tandem MS (LC-MS/MS). The 5-day protocol explains the step-by-step enrichment and identification of ADP-ribosylated peptides from cell culture stage all the way through to data processing using the MaxQuant software suite....

  2. A universal empirical expression for the isotope surface exchange coefficients (k*) of acceptor-doped perovskite and fluorite oxides.

    Science.gov (United States)

    De Souza, R A

    2006-02-21

    The isotope surface exchange coefficient k* determined in an 18O/16O exchange experiment characterises the exchange flux of the dynamic equilibrium between oxygen in the gas phase and oxygen in a solid oxide. At present there is no atomistic expression that relates measured exchange coefficients to materials' parameters. In this study an empirical, atomistic expression is developed that describes the exchange kinetics of gaseous oxygen with diverse acceptor-doped perovskite and fluorite oxides at temperatures above T approximately 900 K. The expression is used to explain the observed correlations between surface exchange coefficients k* and oxygen tracer diffusion coefficients D* and to identify compounds that exhibit high surface exchange coefficients.

  3. New insights into the regulation of cholesterol efflux from the sperm membrane

    Directory of Open Access Journals (Sweden)

    Tamara Leahy

    2015-01-01

    Full Text Available Cholesterol is an essential component of the mammalian plasma membrane because it promotes membrane stability without comprising membrane fluidity. Given this important cellular role, cholesterol levels are tightly controlled at multiple levels. It has been clearly shown that cholesterol redistribution and depletion from the sperm membrane is a key part of the spermatozoon′s preparation for fertilization. Some factors that regulate these events are described (e.g., bicarbonate, calcium but the mechanisms underlying cholesterol export are poorly understood. How does a hydrophobic cholesterol molecule inserted in the sperm plasma membrane enter the energetically unfavorable aqueous surroundings? This review will provide an overview of knowledge in this area and highlight our gaps in understanding. The overall aim is to better understand cholesterol redistribution in the sperm plasma membrane, its relation to the possible activation of a cholesterol transporter and the role of cholesterol acceptors. Armed with such knowledge, sperm handling techniques can be adapted to better prepare spermatozoa for in vitro and in vivo fertilization.

  4. Decacyclene Trianhydride at Functional Interfaces: An Ideal Electron Acceptor Material for Organic Electronics

    DEFF Research Database (Denmark)

    de Oteyza, Dimas G.; García Lastra, Juan Maria; Toma, Francesca M.

    2016-01-01

    We report the interface energetics of decacyclene trianhydride (DTA) monolayers on top of two distinct model surfaces, namely, Au(111) and Ag(111). On the latter, combined valence band photoemission and X-ray absorption measurements that access the occupied and unoccupied molecular orbitals......, respectively, reveal that electron transfer from substrate to surface sets in. Density functional theory calculations confirm our experimental findings and provide an understanding not only of the photoemission and X-ray absorption spectral features of this promising organic semiconductor but also...

  5. Micro-electromembrane extraction using multiple free liquid membranes and acceptor solutions - Towards selective extractions of analytes based on their acid-base strength

    Czech Academy of Sciences Publication Activity Database

    Kubáň, Pavel; Seip, K. F.; Gjelstad, A.; Pedersen-Bjergaard, S.

    2016-01-01

    Roč. 943, NOV (2016), s. 64-73 ISSN 0003-2670 R&D Projects: GA ČR(CZ) GA16-09135S Institutional support: RVO:68081715 Keywords : multiple phase extraction * electromembrane extraction * plasma Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 4.950, year: 2016

  6. Micro-electromembrane extraction using multiple free liquid membranes and acceptor solutions - Towards selective extractions of analytes based on their acid-base strength

    Czech Academy of Sciences Publication Activity Database

    Kubáň, Pavel; Seip, K. F.; Gjelstad, A.; Pedersen-Bjergaard, S.

    2016-01-01

    Roč. 943, NOV (2016), s. 64-73 ISSN 0003-2670 R&D Projects: GA ČR(CZ) GA16-09135S Institutional support: RVO:68081715 Keywords : multiple phase extraction * electromembrane extraction * plasma Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.950, year: 2016

  7. Distinct domains within the NITROGEN LIMITATION ADAPTATION protein mediate its subcellular localization and function in the nitrate-dependent phosphate homeostasis pathway

    Science.gov (United States)

    The NITROGEN LIMITATION ADAPTATION (NLA) protein is a RING-type E3 ubiquitin ligase that plays an essential role in the regulation of nitrogen and phosphate homeostasis. NLA is localized to two distinct subcellular sites, the plasma membrane and nucleus, and contains four distinct domains: i) a RING...

  8. PERSISTENT PUPILLARY MEMBRANE OR ACCESSORY IRIS MEMBRANE?.

    Science.gov (United States)

    Gavriş, Monica; Horge, Ioan; Avram, Elena; Belicioiu, Roxana; Olteanu, Ioana Alexandra; Kedves, Hanga

    2015-01-01

    Frequently, in literature and curent practice, accessory iris membrane (AIM) and persistant pupillary membrane (PPM) are confused. Both AIM and PPM are congenital iris anomalies in which fine or thick iris strands arrise form the collarette and obscure the pupil. AIM, which is also called iris duplication, closely resembles the normal iris tissue in color and thickness and presents a virtual second pseudopupil aperture in the centre while PPM even in its extreme forms presents as a translucent or opaque membranous structure that extends across the pupil and has no pseudopupil. Mydriatiscs, laser treatment or surgery is used to clear the visual axis and optimize visual development. Surgical intervention is reserved for large, dense AIMs and PPMs. Our patient, a 29 year old male, has come with bilateral dense AIM, bilateral compound hyperopic astigmatism, BCVA OD = 0.6, BCVA OS = 0.4, IOP OU = 17 mmHg. To improve the visual acuity of the patient we decided to do a bilateral membranectomy, restoring in this way transparency of the visual axis. After surgery, the visual acuity improved to BCVA OD= 0.8, BCVA OS=0.8.

  9. Fuel cell membrane humidification

    Science.gov (United States)

    Wilson, Mahlon S.

    1999-01-01

    A polymer electrolyte membrane fuel cell assembly has an anode side and a cathode side separated by the membrane and generating electrical current by electrochemical reactions between a fuel gas and an oxidant. The anode side comprises a hydrophobic gas diffusion backing contacting one side of the membrane and having hydrophilic areas therein for providing liquid water directly to the one side of the membrane through the hydrophilic areas of the gas diffusion backing. In a preferred embodiment, the hydrophilic areas of the gas diffusion backing are formed by sewing a hydrophilic thread through the backing. Liquid water is distributed over the gas diffusion backing in distribution channels that are separate from the fuel distribution channels.

  10. Extracorporeal membrane oxygenation

    Science.gov (United States)

    Extracorporeal membrane oxygenation (ECMO) is a treatment that uses a pump to circulate blood through an artificial lung back into the bloodstream of a very ill baby. This system provides heart-lung bypass support ...

  11. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-02-01

    This factsheet describes a research project that will focus on the development and application of nonporous high gas flux perfluoro membranes with high temperature rating and excellent chemical resistance.

  12. Distinctiveness and the Attentional Boost Effect.

    Science.gov (United States)

    Smith, S Adam; Mulligan, Neil W

    2018-02-01

    The typical pattern of results in divided attention experiments is that subjects in a full attention (FA) condition perform markedly better on tests of memory than subjects in a divided attention (DA) condition which forces subjects to split their attention between studying to-be-remembered stimuli and completing some peripheral task. Nevertheless, recent research has revealed an exception wherein stimuli presented concurrently with targets in a detection task are better remembered than stimuli which co-occur with distractors. Research on this phenomenon-the Attentional Boost Effect (ABE)-has demonstrated that the ABE is reduced or eliminated for words made distinct by their word frequency or orthographic properties-forms of secondary distinctiveness. However, it is unclear how primary distinctiveness effects may interact with the ABE. The current study observed how perceptual and semantic manipulations of primary distinctiveness via the isolation paradigm interact with the ABE, and revealed these interactions to be fundamentally different than those of secondary distinctiveness. Specifically, whereas the effects of secondary distinctiveness in earlier studies were found to be redundant with the ABE, the current study demonstrated that items characterized by primary distinctiveness enhanced memory performance independently of the ABE. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  13. Distinct Roles of Mic12 and Mic27 in the Mitochondrial Contact Site and Cristae Organizing System.

    Science.gov (United States)

    Zerbes, Ralf M; Höß, Philipp; Pfanner, Nikolaus; van der Laan, Martin; Bohnert, Maria

    2016-04-24

    The mitochondrial inner membrane consists of two morphologically distinct domains, the inner boundary membrane and large invaginations termed cristae. Narrow membrane structures, the crista junctions, link these two domains. Maintenance of this elaborate architecture depends on the evolutionarily conserved mitochondrial contact site and cristae organizing system (MICOS), a multisubunit inner membrane protein complex. MICOS consists of two functional modules, a Mic60-Mic19 subcomplex that forms Mic60-mediated contact sites with the outer mitochondrial membrane and a Mic10-Mic12-Mic26-Mic27 membrane-sculpting subcomplex that contains large Mic10 oligomers. Deletion of MIC10 or MIC60 results in the loss of most crista junctions. Distinct views have been discussed about how the MICOS modules cooperate with each other. We searched for components required for the structural organization of MICOS and identified Mic12 and Mic27 as crucial factors with specific roles in MICOS complex formation. Mic27 promotes the stability of the Mic10 oligomers in the membrane-sculpting subcomplex, whereas Mic12 is required for the coupling of the two MICOS subcomplexes. We conclude that in addition to the MICOS core components Mic10 and Mic60, Mic12 and Mic27 play specific roles in the organization of the MICOS complex. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Inverse colloidal crystal membranes for hydrophobic interaction membrane chromatography.

    Science.gov (United States)

    Vu, Anh T; Wang, Xinying; Wickramasinghe, S Ranil; Yu, Bing; Yuan, Hua; Cong, Hailin; Luo, Yongli; Tang, Jianguo

    2015-08-01

    Hydrophobic interaction membrane chromatography has gained interest due to its excellent performance in the purification of humanized monoclonal antibodies. The membrane material used in hydrophobic interaction membrane chromatography has typically been commercially available polyvinylidene fluoride. In this contribution, newly developed inverse colloidal crystal membranes that have uniform pores, high porosity and, therefore, high surface area for protein binding are used as hydrophobic interaction membrane chromatography membranes for humanized monoclonal antibody immunoglobulin G purification. The capacity of the inverse colloidal crystal membranes developed here is up to ten times greater than commercially available polyvinylidene fluoride membranes with a similar pore size. This work highlights the importance of developing uniform pore size high porosity membranes in order to maximize the capacity of hydrophobic interaction membrane chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fabrication of electrospun nanofibrous membranes for membrane distillation application

    KAUST Repository

    Francis, Lijo

    2013-02-01

    Nanofibrous membranes of Matrimid have been successfully fabricated using an electrospinning technique under optimized conditions. Nanofibrous membranes are found to be highly hydrophobic with a high water contact angle of 130°. Field emission scanning electron microscopy and pore size distribution analysis revealed the big pore size structure of electrospun membranes to be greater than 2 μm and the pore size distribution is found to be narrow. Flat sheet Matrimid membranes were fabricated via casting followed by phase inversion. The morphology, pore size distribution, and water contact angle were measured and compared with the electrospun membranes. Both membranes fabricated by electrospinning and phase inversion techniques were tested in a direct contact membrane distillation process. Electrospun membranes showed high water vapor flux of 56 kg/m2-h, which is very high compared to the casted membrane as well as most of the fabricated and commercially available highly hydrophobic membranes. ©2013 Desalination Publications.

  16. Bacterial membrane proteomics.

    Science.gov (United States)

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.

  17. OXYGEN TRANSPORT CERAMIC MEMBRANES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  18. Abrogation of Immunogenic Properties of Gliadin Peptides through Transamidation by Microbial Transglutaminase Is Acyl-Acceptor Dependent.

    Science.gov (United States)

    Zhou, Lin; Kooy-Winkelaar, Yvonne M C; Cordfunke, Robert A; Dragan, Irina; Thompson, Allan; Drijfhout, Jan Wouter; van Veelen, Peter A; Chen, Hongbing; Koning, Frits

    2017-08-30

    Wheat gluten confers superior baking quality to wheat based products but elicits a pro-inflammatory immune response in patients with celiac disease. Transamidation of gluten by microbial transglutaminase (mTG) and tissue transglutaminase (tTG) reduces the immunogenicity of gluten; however, little information is available on the minimal modification sufficient to eliminate gliadin immunogenicity nor has the effectiveness of transamidation been studied with T-cell clones from patients. Here we demonstrate that mTG can efficiently couple three different acyl-acceptor molecules, l-lysine, glycine ethyl ester, and hydroxylamine, to gliadin peptides and protein. While all three acyl-acceptor molecules were cross-linked to the same Q-residues, not all modifications were equally effective in silencing T-cell reactivity. Finally, we observed that tTG can partially reverse the mTG-catalyzed transamidation by its isopeptidase activity. These results set the stage to determine the impact of these modifications on the baking quality of gluten proteins and in vivo immunogenicity of such food products.

  19. Encapsulation of ropivacaine in a combined (donor-acceptor, ionic-gradient liposomal system promotes extended anesthesia time.

    Directory of Open Access Journals (Sweden)

    Camila Morais Gonçalves da Silva

    Full Text Available Ropivacaine is a local anesthetic with similar potency but lower systemic toxicity than bupivacaine, the most commonly used spinal anesthetic. The present study concerns the development of a combined drug delivery system for ropivacaine, comprised of two types of liposomes: donor multivesicular vesicles containing 250 mM (NH42SO4 plus the anesthetic, and acceptor large unilamellar vesicles with internal pH of 5.5. Both kinds of liposomes were composed of hydrogenated soy-phosphatidylcholine:cholesterol (2:1 mol% and were prepared at pH 7.4. Dynamic light scattering, transmission electron microscopy and electron paramagnetic resonance techniques were used to characterize the average particle size, polydispersity, zeta potential, morphology and fluidity of the liposomes. In vitro dialysis experiments showed that the combined liposomal system provided significantly longer (72 h release of ropivacaine, compared to conventional liposomes (~45 h, or plain ropivacaine (~4 h (p <0.05. The pre-formulations tested were significantly less toxic to 3T3 cells, with toxicity increasing in the order: combined system < ropivacaine in donor or acceptor liposomes < ropivacaine in conventional liposomes < plain ropivacaine. The combined formulation, containing 2% ropivacaine, increased the anesthesia duration up to 9 h after subcutaneous infiltration in mice. In conclusion, a promising drug delivery system for ropivacaine was described, which can be loaded with large amounts of the anesthetic (2%, with reduced in vitro cytotoxicity and extended anesthesia time.

  20. Escherichia coli tRNAArg acceptor-stem isoacceptors: comparative crystallization and preliminary X-ray diffraction analysis

    International Nuclear Information System (INIS)

    Eichert, André; Schreiber, Angela; Fürste, Jens P.; Perbandt, Markus; Betzel, Christian; Erdmann, Volker A.; Förster, Charlotte

    2009-01-01

    Various E. coli tRNA Arg acceptor-stem microhelix isoacceptors have been crystallized and investigated by high-resolution X-ray diffraction analysis. The aminoacylation of tRNA is a crucial step in cellular protein biosynthesis. Recognition of the cognate tRNA by the correct aminoacyl-tRNA synthetase is ensured by tRNA identity elements. In tRNA Arg , the identity elements consist of the anticodon, parts of the D-loop and the discriminator base. The minor groove of the aminoacyl stem interacts with the arginyl-tRNA synthetase. As a consequence of the redundancy of the genetic code, six tRNA Arg isoacceptors exist. In the present work, three different Escherichia coli tRNA Arg acceptor-stem helices were crystallized. Two of them, the tRNA Arg microhelices RR-1660 and RR-1662, were examined by X-ray diffraction analysis and diffracted to 1.7 and 1.8 Å resolution, respectively. The tRNA Arg RR-1660 helix crystallized in space group P1, with unit-cell parameters a = 26.28, b = 28.92, c = 29.00 Å, α = 105.74, β = 99.01, γ = 97.44°, whereas the tRNA Arg RR-1662 helix crystallized in space group C2, with unit-cell parameters a = 33.18, b = 46.16, c = 26.04 Å, β = 101.50°

  1. Crystallization and preliminary X-ray diffraction analysis of an Escherichia coli tRNAGly acceptor-stem microhelix

    International Nuclear Information System (INIS)

    Förster, Charlotte; Perbandt, Markus; Brauer, Arnd B. E.; Brode, Svenja; Fürste, Jens P.; Betzel, Christian; Erdmann, Volker A.

    2006-01-01

    In order to investigate the identity elements of the E. coli tRNA Gly /GlyRS class II system, a tRNA Gly acceptor-stem microhelix was crystallized and a data set was collected to 2.0 Å resolution using synchrotron radiation. The tRNA Gly and glycyl-tRNA synthetase (GlyRS) system is an evolutionary special case within the class II aminoacyl-tRNA synthetases because two divergent types of GlyRS exist: an archaebacterial/human type and an eubacterial type. The tRNA identity elements which determine the correct aminoacylation process are located in the aminoacyl domain of tRNA Gly . To obtain further insight concerning structural investigation of the identity elements, the Escherichia coli seven-base-pair tRNA Gly acceptor-stem helix was crystallized. Data were collected to 2.0 Å resolution using synchrotron radiation. Crystals belong to space group P3 1 21 or P3 2 21, with unit-cell parameters a = b = 35.35, c = 130.82 Å, α = β = 90, γ = 120° and two molecules in the asymmetric unit

  2. Fluorescent carbon quantum dots synthesized by chemical vapor deposition: An alternative candidate for electron acceptor in polymer solar cells

    Science.gov (United States)

    Cui, Bo; Yan, Lingpeng; Gu, Huimin; Yang, Yongzhen; Liu, Xuguang; Ma, Chang-Qi; Chen, Yongkang; Jia, Husheng

    2018-01-01

    Excitation-wavelength-dependent blue-greenish fluorescent carbon quantum dots (CQDs) with graphite structure were synthesized by chemical vapor deposition (CVD) method. In comparison with those synthesized by hydrothermal method (named H-CQDs), C-CQDs have less hydrophilic terminal groups, showing good solubility in common organic solvents. Furthermore, these synthesized C-CQDs show a low LUMO energy level (LUMO = -3.84 eV), which is close to that of phenyl-C61-butyric acid methyl ester (PC61BM, LUMO = -4.01 eV), the most widely used electron acceptor in polymer solar cells. Photoluminescence quenching of the poly(3-hexylthiophene-2,5-diyl):C-CQDs blended film (P3HT:C-CQDs) indicated that a photo-induced charge transfer between P3HT and C-CQDs occurs in such a composite film. Bulk heterojunction solar cells using C-CQDs as electron acceptors or doping materials were fabricated and tested. High fill factors were achieved for these C-CQDs based polymer solar cells, demonstrating that CQDs synthesized by CVD could be alternative to the fullerene derivatives for applying in polymer solar cells.

  3. NuMA is a major acceptor of poly(ADP-ribosyl)ation by tankyrase 1 in mitosis.

    Science.gov (United States)

    Chang, William; Dynek, Jasmin N; Smith, Susan

    2005-10-15

    Tankyrase 1 is a PARP [poly(ADP-ribose) polymerase] that localizes to multiple subcellular sites, including telomeres and mitotic centrosomes. Previous studies demonstrated that cells deficient in tankyrase 1 suffered a block in resolution of sister telomeres and arrested in early anaphase [Dynek and Smith (2004) Science 304, 97-100]. This phenotype was dependent on the catalytic PARP activity of tankyrase 1. To identify critical acceptors of PARsylation [poly(ADP-ribosyl)ation] by tankyrase 1 in mitosis, tankyrase 1 immunoprecipitates were analysed for associated PARsylated proteins. We identified NuMA (nuclear mitotic apparatus protein) as a major acceptor of poly(ADP-ribose) from tankyrase 1 in mitosis. We showed by immunofluorescence and immunoprecipitation that association between tankyrase 1 and NuMA increases dramatically at the onset of mitosis, concomitant with PARsylation of NuMA. Knockdown of tankyrase 1 by siRNA (small interfering RNA) eliminates PARsylation of NuMA in mitosis, confirming tankyrase 1 as the PARP responsible for this modification. However, even in the absence of tankyrase 1 and PARsylation, NuMA localizes to spindle poles. By contrast, siRNA knockdown of NuMA results in complete loss of tankyrase 1 from spindle poles. We discuss our result in terms of a model where PARsylation of NuMA by tankyrase 1 in mitosis could play a role in sister telomere separation and/or mitotic progression.

  4. A dark green fluorescent protein as an acceptor for measurement of Förster resonance energy transfer.

    Science.gov (United States)

    Murakoshi, Hideji; Shibata, Akihiro C E; Nakahata, Yoshihisa; Nabekura, Junichi

    2015-10-15

    Measurement of Förster resonance energy transfer by fluorescence lifetime imaging microscopy (FLIM-FRET) is a powerful method for visualization of intracellular signaling activities such as protein-protein interactions and conformational changes of proteins. Here, we developed a dark green fluorescent protein (ShadowG) that can serve as an acceptor for FLIM-FRET. ShadowG is spectrally similar to monomeric enhanced green fluorescent protein (mEGFP) and has a 120-fold smaller quantum yield. When FRET from mEGFP to ShadowG was measured using an mEGFP-ShadowG tandem construct with 2-photon FLIM-FRET, we observed a strong FRET signal with low cell-to-cell variability. Furthermore, ShadowG was applied to a single-molecule FRET sensor to monitor a conformational change of CaMKII and of the light oxygen voltage (LOV) domain in HeLa cells. These sensors showed reduced cell-to-cell variability of both the basal fluorescence lifetime and response signal. In contrast to mCherry- or dark-YFP-based sensors, our sensor allowed for precise measurement of individual cell responses. When ShadowG was applied to a separate-type Ras FRET sensor, it showed a greater response signal than did the mCherry-based sensor. Furthermore, Ras activation and translocation of its effector ERK2 into the nucleus could be observed simultaneously. Thus, ShadowG is a promising FLIM-FRET acceptor.

  5. On the right track. The integrated IEC campaign succeeds in recruiting many acceptors in a fishing commune.

    Science.gov (United States)

    Hata, K

    1995-01-01

    The Population and Family Planning Committee of Quangnam Danang Province's integrated information, education, and communication (IEC) campaign promotes late marriage, having two children, and spacing births from 3 to 5 years. The total fertility rate (TFR) in the province is 3.4. One urgent priority of the committee is to tackle poverty by reducing the rapid rate of natural population increase in rural areas. Xa Cam Ha is a poor, rice-producing commune of population 11,114 in which family planning used to be widely unaccepted among families. TFR in the commune is now slightly less than 3. The steady promotion of the Population and Family Planning Program has encouraged couples to accept and practice family planning such that the rate of natural increase fell from 2.0% in 1985 to 1.8% in 1994. Financial incentives are also offered to family planning acceptors; poor acceptors are eligible for loans from the People's Committee to start income-generating activities. More and more couples are accepting family planning.

  6. Diphenylphenoxy-Thiophene-PDI Dimers as Acceptors for OPV Applications with Open Circuit Voltage Approaching 1 Volt

    Directory of Open Access Journals (Sweden)

    Caterina Stenta

    2018-03-01

    Full Text Available Two new perylenediimides (PDIs have been developed for use as electron acceptors in solution-processed bulk heterojunction solar cells. The compounds were designed to exhibit maximal solubility in organic solvents, and reduced aggregation in the solid state. In order to achieve this, diphenylphenoxy groups were used to functionalize a monomeric PDI core, and two PDI dimers were bridged with either one or two thiophene units. In photovoltaic devices prepared using PDI dimers and a monomer in conjunction with PTB7, it was found that the formation of crystalline domains in either the acceptor or donor was completely suppressed. Atomic force microscopy, X-ray diffraction, charge carrier mobility measurements and recombination kinetics studies all suggest that the lack of crystallinity in the active layer induces a significant drop in electron mobility. Significant surface recombination losses associated with a lack of segregation in the material were also identified as a significant loss mechanism. Finally, the monomeric PDI was found to have sub-optimum LUMO energy matching the cathode contact, thus limiting charge carrier extraction. Despite these setbacks, all PDIs produced high open circuit voltages, reaching almost 1 V in one particular case.

  7. A novel donor-acceptor polymeric electrochromic material containing carbazole and 1,8-naphtalimide as subunit

    International Nuclear Information System (INIS)

    Koyuncu, Fatma Baycan; Koyuncu, Sermet; Ozdemir, Eyup

    2010-01-01

    We report here the synthesis of a novel polymeric electrochromic material containing carbazole (Cbz)-donor and 1,8-napthalimide-acceptor as subunit. The band gap E g was measured using UV-vis spectroscopy and compared with that obtained by cyclic voltammetry (CV). Due to intramolecular electron transfer from Cbz-donor to 1,8-napthalimide-acceptor, the fluorescence quenching was observed. When the spectro-electrochemical and electrochromic properties of polymer film were investigated, various tones of green color were obtained on the polymeric film. In the positive regime, the polymer film obtained thereby is dark green resulting from the association of carbazolylium cation radicals at oxidized state and then it can be bleached by electrochemical reduction. Besides, in the negative regime, yellowish green color of film converted to blue attributed to reduction of the 1,8-napthalimide moiety. Finally, the polymeric electrochromic exhibits multi-electrochromic behavior, high redox stability, high coloration efficiency and reasonable response time.

  8. Aggregation-Induced Emission Enhancement from Disilane-Bridged Donor-Acceptor-Donor Luminogens Based on the Triarylamine Functionality.

    Science.gov (United States)

    Usuki, Tsukasa; Shimada, Masaki; Yamanoi, Yoshinori; Ohto, Tatsuhiko; Tada, Hirokazu; Kasai, Hidetaka; Nishibori, Eiji; Nishihara, Hiroshi

    2018-04-18

    Six novel donor-acceptor-donor organic dyes containing a Si-Si moiety based on triarylamine functionalities as donor units were prepared by Pd-catalyzed arylation of hydrosilanes. Their photophysical, electrochemical, and structural properties were studied in detail. Most of the compounds showed attractive photoluminescence (PL) and electrochemical properties both in solution and in the solid state because of intramolecular charge transfer (ICT), suggesting these compounds could be useful for electroluminescence (EL) applications. The aggregation-induced emission enhancement (AIEE) characteristics of 1 and 3 were examined in mixed water/THF solutions. The fluorescence intensity in THF/water was stronger in the solution with the highest ratio of water because of the suppression of molecular vibration and rotation in the aggregated state. Single-crystal X-ray diffraction of 4 showed that the reduction of intermolecular π-π interaction led to intense emission in the solid state and restricted intramolecular rotation of the donor and acceptor moieties, thereby indicating that the intense emission in the solid state is due to AIEE. An electroluminescence device employing 1 as an emitter exhibited an external quantum efficiency of up to 0.65% with green light emission. The emission comes solely from 1 because the EL spectrum is identical to that of the PL of 1. The observed luminescence was sufficiently bright for application in practical devices. Theoretical calculations and electrochemical measurements were carried out to aid in understanding the optical and electrochemical properties of these molecules.

  9. Taming hot CF3 radicals: incrementally tuned families of polyarene acceptors for air-stable molecular optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Kuvychko, Igor V.; Castro, Karlee P.; Deng, Shihu; Wang, Xue B.; Strauss, Steven H.; Boltalina, Olga V.

    2013-04-26

    Breakthroughs in molecular optoelectronics await the availability of new families of air-stable polyaromatic hydrocarbon (PAH) acceptors with incrementally- and predictably-tunable electron affinities and structures capable of inducing desirable solid-state morphologies in hybrid materials. Although the addition of electron withdrawing groups to PAHs has been studied for decades, producing new compounds from time to time, a generic one-step synthetic methodology applicable to potentially all PAH substrates has been, until now, an impossible dream. We herein report that at least seventeen common PAHs and polyheterocyclics can be trifluoromethylated by a new procedure to yield families of PAH(CF3)n acceptors with (i) n = 4-8, (ii) multiple isomers for particular n values, (iii) gas-phase experimental electron affinities as high as 3.32 eV and shifted from the respective PAH precursor as a linear function of n, and (iv) various solid-state morphologies, including the ability to form alternating π stacked hybrid crystals with aromatic donors.

  10. Vibrational properties of organic donor-acceptor molecular crystals: Anthracene-pyromellitic-dianhydride (PMDA) as a case study

    KAUST Repository

    Fonari, A.

    2015-12-10

    We establish a reliable quantum-mechanical approach to evaluate the vibrational properties of donor-acceptor molecular crystals. The anthracene-PMDA (PMDA = pyromellitic dianhydride) crystal, where anthracene acts as the electron donor and PMDA as the electron acceptor, is taken as a representative system for which experimental non-resonance Raman spectra are also reported. We first investigate the impact that the amount of nonlocal Hartree-Fock exchange (HFE) included in a hybrid density functional has on the geometry, normal vibrational modes, electronic coupling, and electron-vibrational (phonon) couplings. The comparison between experimental and theoreticalRaman spectra indicates that the results based on the αPBE functional with 25%-35% HFE are in better agreement with the experimental results compared to those obtained with the pure PBE functional. Then, taking αPBE with 25% HFE, we assign the vibrational modes and examine their contributions to the relaxation energy related to the nonlocal electron-vibration interactions. The results show that the largest contribution (about 90%) is due to electron interactions with low-frequency vibrational modes. The relaxation energy in anthracene-PMDA is found to be about five times smaller than the electronic coupling.

  11. Loss mechanisms in organic solar cells based on perylene diimide acceptors studied by time-resolved photoluminescence

    KAUST Repository

    Gerhard, Marina

    2016-04-27

    In organic photovoltaics (OPV), perylene diimide (PDI) acceptor materials are promising candidates to replace the commonly used, but more expensive fullerene derivatives. The use of alternative acceptor materials however implies new design guidelines for OPV devices. It is therefore important to understand the underlying photophysical processes, which either lead to charge generation or geminate recombination. In this contribution, we investigate radiative losses in a series of OPV materials based on two polymers, P3HT and PTB7, respectively, which were blended with different PDI derivatives. Our time-resolved photoluminescence measurements (TRPL) allow us to identify different loss mechanisms by the decay characteristics of several excitonic species. In particular, we find evidence for unfavorable morphologies in terms of large-scale pure domains, inhibited exciton transport and incomplete charge transfer. Furthermore, in one of the P3HT-blends, an interfacial emissive charge transfer (CT) state with strong trapping character is identified. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  12. An A-D-A'-D-A type small molecule acceptor with a broad absorption spectrum for organic solar cells.

    Science.gov (United States)

    Miao, Junhui; Meng, Bin; Liu, Jun; Wang, Lixiang

    2018-01-02

    Organic molecules with wide absorption spectra exhibit great sunlight harvesting capability and are critically important for solar cell applications. In this manuscript, we develop an A-D-A'-D-A type small molecule acceptor (IID-IC) using isoindigo (IID) as the electron-deficient core unit (A'), thiophene as the electron-rich bridging units (D) and 2-(3-oxo-2,3-dihydroinden-1-ylidene)malononitrile (IC) as the electron-deficient endcapping groups (A). IID-IC shows a wide absorption spectrum with the full width at half maximum (FWHM) of 190 nm, which is almost twice that of a typical A-D-A type molecule acceptor. The wide absorption spectrum of IID-IC is possibly due to the partially suppressed intramolecular charge transfer effect with the additional electron-deficient core unit. An organic solar cell (OSC) device based on IID-IC exhibits the power conversion efficiency of 2.82% with broad photoresponse from 320 nm to 780 nm.

  13. Highly efficient exciplex organic light-emitting diodes using thermally activated delayed fluorescent emitters as donor and acceptor materials

    Science.gov (United States)

    Jeon, Sang Kyu; Yook, Kyoung Soo; Lee, Jun Yeob

    2016-06-01

    Highly efficient exciplex type organic light-emitting diodes were developed using thermally activated delayed fluorescent emitters as donors and acceptors of an exciplex. Blue emitting bis[4-(9,9-dimethyl-9,10-dihydroacridine)phenyl]sulfone (DMAC-DPS) was a donor and 9,9‧-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)-1,3-phenylene)bis(9H-carbazole) (DDCzTrz) and 9,9‧,9″-(5-(4,6-diphenyl-1,3,5-triazin-2-yl)benzene-1,2,3-triyl)tris(9H-carbazole) (TCzTrz) were acceptor materials. The exciplexes of DMAC-DPS:TCzTrz and DMAC-DPS:DDCzTrz resulted in high photoluminescence quantum yield and high quantum efficiency in the green exciplex organic light-emitting diodes. High quantum efficiencies of 13.4% and 15.3% were obtained in the DMAC-DPS:DDCzTrz and DMAC-DPS:TCzTrz exciplex devices.

  14. Role of Passive Diffusion, Transporters, and Membrane Trafficking-Mediated Processes in Cellular Drug Transport.

    Science.gov (United States)

    Cocucci, E; Kim, J Y; Bai, Y; Pabla, N

    2017-01-01

    Intracellular drug accumulation is thought to be dictated by two major processes, passive diffusion through the lipid membrane or membrane transporters. The relative role played by these distinct processes remains actively debated. Moreover, the role of membrane-trafficking in drug transport remains underappreciated and unexplored. Here we discuss the distinct processes involved in cellular drug distribution and propose that better experimental models are required to elucidate the differential contributions of various processes in intracellular drug accumulation. © 2016 American Society for Clinical Pharmacology and Therapeutics.

  15. Biomimetic membranes and methods of making biomimetic membranes

    Science.gov (United States)

    Rempe, Susan; Brinker, Jeffrey C.; Rogers, David Michael; Jiang, Ying-Bing; Yang, Shaorong

    2016-11-08

    The present disclosure is directed to biomimetic membranes and methods of manufacturing such membranes that include structural features that mimic the structures of cellular membrane channels and produce membrane designs capable of high selectivity and high permeability or adsorptivity. The membrane structure, material and chemistry can be selected to perform liquid separations, gas separation and capture, ion transport and adsorption for a variety of applications.

  16. Multiplexed interfacial transduction of nucleic acid hybridization using a single color of immobilized quantum dot donor and two acceptors in fluorescence resonance energy transfer.

    Science.gov (United States)

    Algar, W Russ; Krull, Ulrich J

    2010-01-01

    A multiplexed solid-phase assay for the detection of nucleic acid hybridization was developed on the basis of a single color of immobilized CdSe/ZnS quantum dot (QD) as a donor in fluorescence resonance energy transfer (FRET). This work demonstrated that two channels of detection did not necessitate two different QD donors. Two probe oligonucleotides were coimmobilized on optical fibers modified with QDs, and a sandwich assay was used to associate the acceptor dyes with interfacial hybridization events without target labeling. FRET-sensitized acceptor emission provided an analytical signal that was concentration dependent down to 10 nM. Changes in the ratio of coimmobilized probe oligonucleotides were found to yield linear changes in the relative amounts of acceptor emission. These changes were compared to previous studies that used mixed films of two QD donors for two detection channels. The analysis indicated that probe dilution effects were primarily driven by changes in acceptor number density and that QD dilution effects or changes in mean donor-acceptor distance were secondary. Hybridization kinetics were found to be consistent between different ratios of coimmobilized probes, suggesting that hybridization in this type of system occurred via the accepted model for solid-phase hybridization, where adsorption and then diffusion at the solid interface drove hybridization.

  17. Synthesis of an A-D-A type of molecule used as electron acceptor for improving charge transfer in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao-Zhi, E-mail: chzhzhang@sohu.com [Department of Chemistry, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Gu, Shu-Duo; Shen, Dan; Yuan, Yang [Department of Chemistry, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Zhang, Mingdao, E-mail: matchlessjimmy@163.com [Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044 (China)

    2016-08-22

    Electron-accepting molecules play an important role in developing organic solar cells. A new type of A-D-A molecule, 3,6-di([7-(5-bromothiophen-2-yl)-1,5,2,4,6,8-dithiotetrazocin-3-yl]thiophen -2-yl)-9-(2-ethylhexyl)carbazole, was synthesized. The lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels are −3.55 and −5.85 eV, respectively. Therefore, the A-D-A type of compound could be used as electron acceptor for fabricating organic solar cell with a high open circuit voltage. Gibbs free energy (−49.2 kJ/mol) reveals that the process of A-D-A acceptor accepting an electron from poly(3-hexylthiophene) at excited state is spontaneous. The value of entropy (118 J/mol) in the process of an electron transferring from P3HT to the A-D-A acceptor at organic interface suggests that electrons generated from separation of electron-hole pairs at donor/acceptor interface would be delocalized efficiently. Therefore, the A-D-A molecule would be a potential acceptor for efficient organic BHJ solar cells.

  18. An Unfused-Core-Based Nonfullerene Acceptor Enables High-Efficiency Organic Solar Cells with Excellent Morphological Stability at High Temperatures.

    Science.gov (United States)

    Li, Shuixing; Zhan, Lingling; Liu, Feng; Ren, Jie; Shi, Minmin; Li, Chang-Zhi; Russell, Thomas P; Chen, Hongzheng

    2018-02-01

    Most nonfullerene acceptors developed so far for high-performance organic solar cells (OSCs) are designed in planar molecular geometry containing a fused-ring core. In this work, a new nonfullerene acceptor of DF-PCIC is synthesized with an unfused-ring core containing two cyclopentadithiophene (CPDT) moieties and one 2,5-difluorobenzene (DFB) group. A nearly planar geometry is realized through the F···H noncovalent interaction between CPDT and DFB for DF-PCIC. After proper optimizations, the OSCs with DF-PCIC as the acceptor and the polymer PBDB-T as the donor yield the best power conversion efficiency (PCE) of 10.14% with a high fill factor of 0.72. To the best of our knowledge, this efficiency is among the highest values for the OSCs with nonfullerene acceptors owning unfused-ring cores. Furthermore, no obvious morphological changes are observed for the thermally treated PBDB-T:DF-PCIC blended films, and the relevant devices can keep ≈70% of the original PCEs upon thermal treatment at 180 °C for 12 h. This tolerance of such a high temperature for so long time is rarely reported for fullerene-free OSCs, which might be due to the unique unfused-ring core of DF-PCIC. Therefore, the work provides new idea for the design of new nonfullerene acceptors applicable in commercial OSCs in the future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Equivalence of donor and acceptor fits of temperature dependent Hall carrier density and Hall mobility data: Case of ZnO

    International Nuclear Information System (INIS)

    Brochen, Stéphane; Feuillet, Guy; Pernot, Julien

    2014-01-01

    In this work, statistical formulations of the temperature dependence of ionized and neutral impurity concentrations in a semiconductor, needed in the charge balance equation and for carrier scattering calculations, have been developed. These formulations have been used in order to elucidate a confusing situation, appearing when compensating acceptor (donor) levels are located sufficiently close to the conduction (valence) band to be thermally ionized and thereby to emit (capture) an electron to (from) the conduction (valence) band. In this work, the temperature dependent Hall carrier density and Hall mobility data adjustments are performed in an attempt to distinguish the presence of a deep acceptor or a deep donor level, coexisting with a shallower donor level and located near the conduction band. Unfortunately, the present statistical developments, applied to an n-type hydrothermal ZnO sample, lead in both cases to consistent descriptions of experimental Hall carrier density and mobility data and thus do not allow to determine the nature, donor or acceptor, of the deep level. This demonstration shows that the emission of an electron in the conduction band, generally assigned to a (0/+1) donor transition from a donor level cannot be applied systematically and could also be attributed to a (−1/0) donor transition from an acceptor level. More generally, this result can be extended for any semiconductor and also for deep donor levels located close to the valence band (acceptor transition)

  20. A spiro-bifluorene based 3D electron acceptor with dicyanovinylene substitution for solution-processed non-fullerene organic solar cells

    KAUST Repository

    Xia, Debin

    2015-04-20

    A novel electron acceptor, namely 2,2′-(12H,12′H-10,10′-spirobi[indeno[2,1-b]fluorene]-12,12′-diylidene)dimalononitrile (4CN-spiro), exhibiting a three-dimensional molecular structure was synthesized and its thermal, photophysical, electrochemical, crystal, and photovoltaic properties were investigated. The novel acceptor exhibits excellent thermal stability with a decomposition temperature of 460 °C, an absorption extending to 600 nm, and a LUMO level of −3.63 eV. Solution processed bulk-heterojunction (BHJ) organic solar cells were fabricated using 4CN-spiro as an acceptor and polythieno[3,4-b]-thiophene-co-benzodithiophene (PTB7) as a donor polymer. The effect of the donor-to-acceptor ratio and processing conditions on the device performance was investigated. A device processed from tetrachloroethane with a donor to acceptor weight ratio of 1 : 1 yielded a power conversion efficiency (PCE) of 0.80%.