WorldWideScience

Sample records for distinct human neuroblastoma

  1. Epigenetic alterations differ in phenotypically distinct human neuroblastoma cell lines

    International Nuclear Information System (INIS)

    Yang, Qiwei; Tian, Yufeng; Ostler, Kelly R; Chlenski, Alexandre; Guerrero, Lisa J; Salwen, Helen R; Godley, Lucy A; Cohn, Susan L

    2010-01-01

    Epigenetic aberrations and a CpG island methylator phenotype have been shown to be associated with poor outcomes in children with neuroblastoma (NB). Seven cancer related genes (THBS-1, CASP8, HIN-1, TIG-1, BLU, SPARC, and HIC-1) that have been shown to have epigenetic changes in adult cancers and play important roles in the regulation of angiogenesis, tumor growth, and apoptosis were analyzed to investigate the role epigenetic alterations play in determining NB phenotype. Two NB cell lines (tumorigenic LA1-55n and non-tumorigenic LA1-5s) that differ in their ability to form colonies in soft agar and tumors in nude mice were used. Quantitative RNA expression analyses were performed on seven genes in LA1-5s, LA1-55n and 5-Aza-dC treated LA1-55n NB cell lines. The methylation status around THBS-1, HIN-1, TIG-1 and CASP8 promoters was examined using methylation specific PCR. Chromatin immunoprecipitation assay was used to examine histone modifications along the THBS-1 promoter. Luciferase assay was used to determine THBS-1 promoter activity. Cell proliferation assay was used to examine the effect of 5-Aza-dC on NB cell growth. The soft agar assay was used to determine the tumorigenicity. Promoter methylation values for THBS-1, HIN-1, TIG-1, and CASP8 were higher in LA1-55n cells compared to LA1-5s cells. Consistent with the promoter methylation status, lower levels of gene expression were detected in the LA1-55n cells. Histone marks associated with repressive chromatin states (H3K9Me3, H3K27Me3, and H3K4Me3) were identified in the THBS-1 promoter region in the LA1-55n cells, but not the LA1-5s cells. In contrast, the three histone codes associated with an active chromatin state (acetyl H3, acetyl H4, and H3K4Me3) were present in the THBS-1 promoter region in LA1-5s cells, but not the LA1-55n cells, suggesting that an accessible chromatin structure is important for THBS-1 expression. We also show that 5-Aza-dC treatment of LA1-55n cells alters the DNA methylation

  2. MicroRNAs define distinct human neuroblastoma cell phenotypes and regulate their differentiation and tumorigenicity

    International Nuclear Information System (INIS)

    Samaraweera, Leleesha; Grandinetti, Kathryn B; Huang, Ruojun; Spengler, Barbara A; Ross, Robert A

    2014-01-01

    Neuroblastoma (NB) is the most common extracranial solid tumor in children. NB tumors and derived cell lines are phenotypically heterogeneous. Cell lines are classified by phenotype, each having distinct differentiation and tumorigenic properties. The neuroblastic phenotype is tumorigenic, has neuronal features and includes stem cells (I-cells) and neuronal cells (N-cells). The non-neuronal phenotype (S-cell) comprises cells that are non-tumorigenic with features of glial/smooth muscle precursor cells. This study identified miRNAs associated with each distinct cell phenotypes and investigated their role in regulating associated differentiation and tumorigenic properties. A miRNA microarray was performed on the three cell phenotypes and expression verified by qRT-PCR. miRNAs specific for certain cell phenotypes were modulated using miRNA inhibitors or stable transfection. Neuronal differentiation was induced by RA; non-neuronal differentiation by BrdU. Changes in tumorigenicity were assayed by soft agar colony forming ability. N-myc binding to miR-375 promoter was assayed by chromatin-immunoprecipitation. Unsupervised hierarchical clustering of miRNA microarray data segregated neuroblastic and non-neuronal cell lines and showed that specific miRNAs define each phenotype. qRT-PCR validation confirmed that increased levels of miR-21, miR-221 and miR-335 are associated with the non-neuronal phenotype, whereas increased levels of miR-124 and miR-375 are exclusive to neuroblastic cells. Downregulation of miR-335 in non-neuronal cells modulates expression levels of HAND1 and JAG1, known modulators of neuronal differentiation. Overexpression of miR-124 in stem cells induces terminal neuronal differentiation with reduced malignancy. Expression of miR-375 is exclusive for N-myc-expressing neuroblastic cells and is regulated by N-myc. Moreover, miR-375 downregulates expression of the neuronal-specific RNA binding protein HuD. Thus, miRNAs define distinct NB cell phenotypes

  3. Opioid receptors in human neuroblastoma SH-SY5Y cells: evidence for distinct morphine (. mu. ) and enkephalin (delta) binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Kazmi, S.M.I.; Mishra, R.K.

    1986-06-13

    Human neuroblastoma SH-SY5Y cells exhibited a heterogeneous population of ..mu.. and delta types of opioid binding sites. These specific binding sites displayed the characteristic saturability, stereospecificity and reversibility, expected of a receptor. Scatchard analysis of (/sup 3/H)-D-Ala/sup 2/-D-Leu/sup 5/-enkephalin (DADLE) in the presence of 10/sup -5/M D-Pro/sup 4/-morphiceptin (to block the ..mu.. receptors) and the competitive displacement by various highly selective ligands yielded the binding parameters of delta sites which closely resemble those of the delta receptors in brain and mouse neuroblastoma clones. Similarly, the high affinity binding of (/sup 3/H)-dihydromorphine, together with the higher potency of morphine analogues to displace (/sup 3/H)-naloxone binding established the presence of ..mu.. sites. Guanine nucleotides and NaCl significantly inhibited the association and increased the dissociation of (/sup 3/H)-DADLE binding.

  4. Symmetry breaking in human neuroblastoma cells

    Science.gov (United States)

    Izumi, Hideki; Kaneko, Yasuhiko

    2014-01-01

    Asymmetric cell division (ACD) is a characteristic of cancer stem cells, which exhibit high malignant potential. However, the cellular mechanisms that regulate symmetric (self-renewal) and asymmetric cell divisions are mostly unknown. Using human neuroblastoma cells, we found that the oncosuppressor protein tripartite motif containing 32 (TRIM32) positively regulates ACD. PMID:27308367

  5. Neuroblastoma

    International Nuclear Information System (INIS)

    Hall-Craggs, M.A.; Finn, J.P.; Dicks-Mireaux, C.; Kiely, E.M.; Pritchard, J.

    1989-01-01

    Twenty-one children with neuroblastoma (mean age, 36.7 months) were examined with high-field strength (1.5 T) MR imaging to define how accurately disease could be documented and to establish optimum sequences. Twenty-eight studies were obtained with T1- and T2-weighted spin-echo and short inversion-recovery (STIR) sequences. Thirteen children underwent surgery, 16 CT. MR imaging exactly predicted tumor extent and involvement of adjacent organs, vessels, and the spine in all patients undergoing surgery. STIR images defined tumor margins and node involvement most clearly. Following chemotherapy, MR imaging could not differentiate active tumor from maturing ganglioneuroma or residual hyperplasia. MR imaging was superior to CT in assessing intraabdominal, marrow, and spinal disease

  6. Ras-MAPK signaling in differentiating SH-SY5Y human neuroblastoma cells

    OpenAIRE

    Olsson, Anna-Karin

    2000-01-01

    Neuroblastoma is a malignant childhood cancer, originating from sympathetic neuroblasts of the peripheral nervous system. Neuroblastoma is a heterogenous group of tumours, while some are highly malignant others can spontaneosly mature into a more benign form or regress. Less than half of the patients survive and this statistics has improved only modestly over the past 20 years. SH-SY5Y is a human neuroblastoma cell line established from a highly malignant tumour. The cells have retained a ca...

  7. Cholinergic regulation of VIP gene expression in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Kristensen, Bo; Georg, Birgitte; Fahrenkrug, Jan

    1997-01-01

    Vasoactive intestinal polypeptide, muscarinic receptor, neuroblastoma cell, mRNA, gene expression, peptide processing......Vasoactive intestinal polypeptide, muscarinic receptor, neuroblastoma cell, mRNA, gene expression, peptide processing...

  8. Identification of nuclear τ isoforms in human neuroblastoma cells

    International Nuclear Information System (INIS)

    Loomis, P.A.; Howard, T.H.; Castleberry, R.P.; Binder, L.I.

    1990-01-01

    The τ proteins have been reported only in association with microtubules and with ribosomes in situ, in the normal central nervous system. In addition, τ has been shown to be an integral component of paired helical filaments, the principal constituent of the neurofibrillary tangles found in brains of patients with Alzheimer's disease and of most aged individuals with Down syndrome (trisomy 21). The authors report here the localization of the well-characterized Tau-1 monoclonal antibody to the nucleolar organizer regions of the acrocentric chromosomes and to their interphase counterpart, the fibrillar component of the nucleolus, in human neuroblastoma cells. Similar localization to the nucleolar organizer regions was also observed in other human cell lines and in one monkey kidney cell line but was not seen in non-primate species. Immunochemically, they further demonstrated the existence of the entire τ molecule in the isolated nuclei of neuroblastoma cells. Nuclear τ proteins, like the τ proteins of the paired helical filaments, cannot be extracted in standard SDS-containing electrophoresis sample buffer but require pretreatment with formic acid prior to immunoblot analysis. This work indicates that τ may function in processes not directly associated with microtubules and that highly insoluble complexes of τ may also play a role in normal cellular physiology

  9. Defining poverty as distinctively human

    Directory of Open Access Journals (Sweden)

    H.P.P. Lötter

    2007-05-01

    Full Text Available While it is relatively easy for most people to identify human beings suffering from poverty, it is rather more difficult to come to a proper understanding of poverty. In this article the author wants to deepen our understanding of poverty by interpreting the conventional definitions of poverty in a new light. The article starts with a defence of a claim that poverty is a concept uniquely applicable to humans. It then present a critical discussion of the distinction between absolute and relative poverty and it is then argued that a revision of this distinction can provide general standards applicable to humans everywhere.

  10. Distinct evolutionary mechanisms for genomic imbalances in high-risk and low-risk neuroblastomas

    Directory of Open Access Journals (Sweden)

    Gisselsson David

    2007-09-01

    Full Text Available Abstract Background Neuroblastoma (NB is the most common extracranial solid tumour of childhood. Several genomic imbalances correlate to prognosis in NB, with structural rearrangements, including gene amplification, in a near-diploid setting typically signifying high-risk tumours and numerical changes in a near-triploid setting signifying low-risk tumours. Little is known about the temporal sequence in which these imbalances occur during the carcinogenic process. Methods We have reconstructed the appearance of cytogenetic imbalances in 270 NBs by first grouping tumours and imbalances through principal component analysis and then using the number of imbalances in each tumour as an indicator of evolutionary progression. Results Tumours clustered in four sub-groups, dominated respectively by (1 gene amplification in double minute chromosomes and few other aberrations, (2 gene amplification and loss of 1p sequences, (3 loss of 1p and other structural aberrations including gain of 17q, and (4 whole-chromosome gains and losses. Temporal analysis showed that the structural changes in groups 1–3 were acquired in a step-wise fashion, with loss of 1p sequences and the emergence of double minute chromosomes as the earliest cytogenetic events. In contrast, the gains and losses of whole chromosomes in group 4 occurred through multiple simultaneous events leading to a near-triploid chromosome number. Conclusion The finding of different temporal patterns for the acquisition of genomic imbalances in high-risk and low-risk NBs lends strong support to the hypothesis that these tumours are biologically diverse entities, evolving through distinct genetic mechanisms.

  11. Signaling pathways in PACAP regulation of VIP gene expression in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Falktoft, B.; Georg, B.; Fahrenkrug, J.

    2009-01-01

    Ganglia expressing the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) innervate vasoactive intestinal peptide (VIP) containing neurons suggesting a role of PACAP in regulating VIP expression. Human NB-1 neuroblastoma cells were applied to study PACAP regulated VIP gene...... in PACAP regulation of the FOS and VIP gene expressions suggest for the first time a role of FOS in PACAP-induced VIP gene expression in human NB-1 neuroblastoma cells. (C) 2009 Elsevier Ltd. All rights reserved Udgivelsesdato: 2009/10...

  12. Identification of two distinct chromosome 12-derived amplification units in neuroblastoma cell line NGP

    NARCIS (Netherlands)

    van Roy, N.; Forus, A.; Myklebost, O.; Cheng, N. C.; Versteeg, R.; Speleman, F.

    1995-01-01

    The neuroblastoma cell line NGP contains two homogeneously staining regions (hsr). One of these hsrs contains MYCN sequences. Reverse painting experiments demonstrated that the second HSR consisted of two chromosome 12-derived amplification units, located at 12q14-15 and 12q24. Southern blot and

  13. Molecular mechanism of action of opioids in human neuroblastoma cells

    International Nuclear Information System (INIS)

    Yu, V.C.K.

    1987-01-01

    A series of human neuroblastoma cell lines was screened for the presence of opioid receptor sites. Of these cell lines, SK-N-SH was found to express approximately 50,000 μ and 10,000 δ opioid receptor sites/cell. In vitro characterization revealed that the binding properties of these receptor sites closely resembled those of human and rodent brain. Phosphatidylinositol turnover as a potential second messenger system for the μ receptor was examined in SK-N-SH cells. Neurotransmitter receptor systems were determined in the three sub-clones of SK-N-SH cells. Cells of the SH-SY5Y line, a phenotypically stable subclone of SK-N-SH cells, were induced to differentiate by treatment with various inducing agents, and changes of several neurotransmitter receptor systems were determined. Nerve growth factor (NGF) and retinoic acid (RA) up-regulated, while dBcAMP down-regulated opioid receptor sites. [ 3 H]Dopamine uptake was slightly enhanced only in RA-treated cells. Strikingly, the efficacy of PGE 1 -stimulated accumulation of cAMP was enhanced by 15- to 30-fold upon RA treatment

  14. Biokinetic and therapeutic use of 131I-MIBG in nude mice hosting human neuroblastoma xenografts

    International Nuclear Information System (INIS)

    Laubenbacher, C.; Kriegel, H.; Moellenstaedt, S.; Senekowitsch, R.; Technische Univ. Muenchen

    1988-01-01

    The biological halflife of 131 I-MIBG in nude mice with xenotransplanted human neuroblastoma derived from the SK-N-SH cell line comes to 6 h. The adrenal gland and the neuroblastoma show the highest uptake of MIBG. Based on these datas it could be calculated that 185 MBq would be necessary to get 60 Gy radiation absorbed dose in the tumor. 15-20 days after injection of this activity the tumors could no longer be palpated and they remained missing over the whole observation period. 92.5 MBq weren't enough getting a stable remission. Eleven days p.i. neuroblastoma started growing again. For the first time it could be shown that only high activity of 131 I-MIBG is able to restrain neuroblastoma totally. (orig.)

  15. Regulation of MYCN expression in human neuroblastoma cells

    International Nuclear Information System (INIS)

    Jacobs, Joannes FM; Bokhoven, Hans van; Leeuwen, Frank N van; Hulsbergen-van de Kaa, Christina A; Vries, I Jolanda M de; Adema, Gosse J; Hoogerbrugge, Peter M; Brouwer, Arjan PM de

    2009-01-01

    Amplification of the MYCN gene in neuroblastoma (NB) is associated with a poor prognosis. However, MYCN-amplification does not automatically result in higher expression of MYCN in children with NB. We hypothesized that the discrepancy between MYCN gene expression and prognosis in these children might be explained by the expression of either MYCN-opposite strand (MYCNOS) or the shortened MYCN-isoform (ΔMYCN) that was recently identified in fetal tissues. Both MYCNOS and ΔMYCN are potential inhibitors of MYCN either at the mRNA or at the protein level. Expression of MYCN, MYCNOS and ΔMYCN was measured in human NB tissues of different stages. Transcript levels were quantified using a real-time reverse transcriptase polymerase chain reaction assay (QPCR). In addition, relative expression of these three transcripts was compared to the number of MYCN copies, which was determined by genomic real-time PCR (gQPCR). Both ΔMYCN and MYCNOS are expressed in all NBs examined. In NBs with MYCN-amplification, these transcripts are significantly higher expressed. The ratio of MYCN:ΔMYCN expression was identical in all tested NBs. This indicates that ΔMYCN and MYCN are co-regulated, which suggests that ΔMYCN is not a regulator of MYCN in NB. However, the ratio of MYCNOS:MYCN expression is directly correlated with NB disease stage (p = 0.007). In the more advanced NB stages and NBs with MYCN-amplification, relatively more MYCNOS is present as compared to MYCN. Expression of the antisense gene MYCNOS might be relevant to the progression of NB, potentially by directly inhibiting MYCN transcription by transcriptional interference at the DNA level. The MYCNOS:MYCN-ratio in NBs is significantly correlated with both MYCN-amplification and NB-stage. Our data indicate that in NB, MYCN expression levels might be influenced by MYCNOS but not by ΔMYCN

  16. Iodine 131 labeled GD2 monoclonal antibody in the diagnosis and therapy of human neuroblastoma

    International Nuclear Information System (INIS)

    Cheung, N.K.V.; Miraldi, F.D.

    1988-01-01

    High dose marrow ablative therapy followed by autologous bone marrow transplantation (ABMT) has prolonged survival in patients with neuroblastoma. Total body and focal irradiation play an integral role in the overall treatment of this disease. The biological basis for radiation is the radiosensitivity and the lack of sublethal repair in neuroblastoma cells. However, radiation therapy has not by itself been adequate because of the usual widespread nature of neuroblastoma and the inability to achieve selective tumor versus normal tissue delivery, especially at multiple tumor sites. Monoclonal antibodies are agents selected for their specificity for human tumors. In vivo they have the ability of targeting selectively to occult metastases. This paper discusses how the availability of radioisotopes and the development of conjugation chemistries have greatly expanded the potentials of these antibodies

  17. NCYM promotes calpain-mediated Myc-nick production in human MYCN-amplified neuroblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, Wataru [Division of Biochemistry and Innovative Cancer Therapeutics and Children' s Cancer Research Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba 260-8717 (Japan); Department of Pediatric Surgery, Graduate School of Medicine, Tohoku University, Sendai 980-8574 (Japan); Suenaga, Yusuke, E-mail: ysuenaga@chiba-cc.jp [Division of Biochemistry and Innovative Cancer Therapeutics and Children' s Cancer Research Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba 260-8717 (Japan); Cancer Genome Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba 260-8717 (Japan); Kaneko, Yoshiki; Islam, S.M. Rafiqul; Alagu, Jennifer [Division of Biochemistry and Innovative Cancer Therapeutics and Children' s Cancer Research Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba 260-8717 (Japan); Yokoi, Sana [Cancer Genome Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba 260-8717 (Japan); Nio, Masaki [Department of Pediatric Surgery, Graduate School of Medicine, Tohoku University, Sendai 980-8574 (Japan); Nakagawara, Akira, E-mail: nakagawara-a@koseikan.jp [Division of Biochemistry and Innovative Cancer Therapeutics and Children' s Cancer Research Center, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba 260-8717 (Japan)

    2015-06-05

    NCYM is a cis-antisense gene of MYCN and is amplified in human neuroblastomas. High NCYM expression is associated with poor prognoses, and the NCYM protein stabilizes MYCN to promote proliferation of neuroblastoma cells. However, the molecular mechanisms of NCYM in the regulation of cell survival have remained poorly characterized. Here we show that NCYM promotes cleavage of MYCN to produce the anti-apoptotic protein, Myc-nick, both in vitro and in vivo. NCYM and Myc-nick were induced at G2/M phase, and NCYM knockdown induced apoptotic cell death accompanied by Myc-nick downregulation. These results reveal a novel function of NCYM as a regulator of Myc-nick production in human neuroblastomas. - Highlights: • NCYM promotes cleavages of MYC and MYCN to produce Myc-nick in vitro. • NCYM increases Myc-nick production in MYCN-amplified neuroblastoma cells. • NCYM knockdown decreases Myc-nick production and induces apoptosis at G2/M phase.

  18. NCYM promotes calpain-mediated Myc-nick production in human MYCN-amplified neuroblastoma cells

    International Nuclear Information System (INIS)

    Shoji, Wataru; Suenaga, Yusuke; Kaneko, Yoshiki; Islam, S.M. Rafiqul; Alagu, Jennifer; Yokoi, Sana; Nio, Masaki; Nakagawara, Akira

    2015-01-01

    NCYM is a cis-antisense gene of MYCN and is amplified in human neuroblastomas. High NCYM expression is associated with poor prognoses, and the NCYM protein stabilizes MYCN to promote proliferation of neuroblastoma cells. However, the molecular mechanisms of NCYM in the regulation of cell survival have remained poorly characterized. Here we show that NCYM promotes cleavage of MYCN to produce the anti-apoptotic protein, Myc-nick, both in vitro and in vivo. NCYM and Myc-nick were induced at G2/M phase, and NCYM knockdown induced apoptotic cell death accompanied by Myc-nick downregulation. These results reveal a novel function of NCYM as a regulator of Myc-nick production in human neuroblastomas. - Highlights: • NCYM promotes cleavages of MYC and MYCN to produce Myc-nick in vitro. • NCYM increases Myc-nick production in MYCN-amplified neuroblastoma cells. • NCYM knockdown decreases Myc-nick production and induces apoptosis at G2/M phase

  19. Cystatins - Extra- and intracellular cysteine protease inhibitors: High-level secretion and uptake of cystatin C in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Wallin, Hanna; Bjarnadottir, Maria; Vogel, Lotte

    2010-01-01

    signal peptides) for cellular export following translation. Results indicating existence of systems for significant internalisation of type 2 cystatins from the extracellular to intracellular compartments are reviewed. Data showing that human neuroblastoma cell lines generally secrete high levels...

  20. The distribution of alternative agents for targeted radiotherapy within human neuroblastoma spheroids

    International Nuclear Information System (INIS)

    Mairs, R.J.; Gaze, M.N.; Murray, T.; Reid, R.; McSharry, C.; Babich, J.W.

    1991-01-01

    This study aims to select the radiopharmaceutical vehicle for targeted radiotherapy of neuroblastoma which is most likely to penetrate readily the centre of micrometastases in vivo. The human neuroblastoma cell line NB1-G, grown as multicellular spheroids provided an in vitro model for micrometastases. The radiopharmaceuticals studied were the catecholamine analogue metaiodobenzyl guanidine (mIBG), a specific neuroectodermal monoclonal antibody (UJ13A) and β nerve growth factor (βNGF). Following incubation of each drug with neuroblastoma spheroids, autoradiographs of frozen sections were prepared to demonstrate their relative distributions. mIBG and βNGF were found to penetrate the centre of spheroids readily although the concentration of mIBG greatly exceeded that of βNGF. In contrast, UJ13A was only bound peripherally. We conclude that mIBG is the best available vehicle for targeted radiotherapy of neuroblastoma cells with active uptake mechanisms for catecholimines. It is suggested that radionuclides with a shorter range of emissions than 131 I may be conjugated to benzyl guanidine to constitute more effective targeting agents with potentially less toxicity to adjacent normal tissues. (author)

  1. Impact of persistent cytomegalovirus infection on human neuroblastoma cell gene expression

    International Nuclear Information System (INIS)

    Hoever, Gerold; Vogel, Jens-Uwe; Lukashenko, Polina; Hofmann, Wolf-Karsten; Komor, Martina; Doerr, Hans Wilhelm; Cinatl, Jindrich

    2005-01-01

    In a model of human neuroblastoma (NB) cell lines persistently infected with human cytomegalovirus (HCMV) we previously showed that persistent HCMV infection is associated with an increased malignant phenotype, enhanced drug resistance, and invasive properties. To gain insights into the mechanisms of increased malignancy we analyzed the global changes in cellular gene expression induced by persistent HCMV infection of human neuroblastoma cells by use of high-density oligonucleotide microarrays (HG-U133A, Affymetrix) and RT-PCR. Comparing the gene expression of different NB cell lines with persistently infected cell sub-lines revealed 11 host cell genes regulated in a similar manner throughout all infected samples. Nine of these 11 genes may contribute to the previously observed changes in malignant phenotype of persistently HCMV infected NB cells by influencing invasive growth, apoptosis, angiogenesis, and proliferation. Thus, this work provides the basis for further functional studies

  2. CDDO and ATRA Instigate Differentiation of IMR32 Human Neuroblastoma Cells

    Directory of Open Access Journals (Sweden)

    Namrata Chaudhari

    2017-09-01

    Full Text Available Neuroblastoma is the most common solid extra cranial tumor in infants. Improving the clinical outcome of children with aggressive tumors undergoing one of the multiple treatment options has been a major concern. Differentiating neuroblastoma cells holds promise in inducing tumor growth arrest and treating minimal residual disease. In this study, we investigated the effect of partial PPARγ agonist 2-cyano-3,12-dioxooleana-1,9(11-dien-28-oic acid (CDDO on human neuroblastoma IMR32 cells. Our results demonstrate that treatment with low concentration of CDDO and particularly in combination with all trans retinoic acid (ATRA induced neurite outgrowth, increased the percentage of more than two neurites bearing cells, and decreased viability in IMR32 cells. These morphological changes were associated with an increase in expression of bonafide differentiation markers like β3-tubulin and Neuron Specific Enolase (NSE. The differentiation was accompanied by a decrease in the expression of MYCN whose amplification is known to contribute to the pathogenesis of neuroblastoma. MYCN is known to negatively regulate NMYC downstream-regulated gene 1 (NDRG1 in neuroblastomas. MYCN down-regulation induced by CDDO correlated with increased expression of NDRG1. CDDO decreased Anaplastic Lymphoma Kinase (ALK mRNA expression without affecting its protein level, while ATRA significantly down-regulated ALK. Antagonism of PPARγ receptor by T0070907 meddled with differentiation inducing effects of CDDO as observed by stunted neurite growth, increased viability and decreased expression of differentiation markers. Our findings indicate that IMR32 differentiation induced by CDDO in combination with ATRA enhances, differentiation followed by cell death via cAMP-response-element binding protein (CREB independent and PPARγ dependent signaling mechanisms.

  3. Cytoarchitecture of Zika virus infection in human neuroblastoma and Aedes albopictus cell lines

    International Nuclear Information System (INIS)

    Offerdahl, Danielle K.; Dorward, David W.; Hansen, Bryan T.; Bloom, Marshall E.

    2017-01-01

    The Zika virus (ZIKV) pandemic is a global concern due to its role in the development of congenital anomalies of the central nervous system. This mosquito-borne flavivirus alternates between mammalian and mosquito hosts, but information about the biogenesis of ZIKV is limited. Using a human neuroblastoma cell line (SK-N-SH) and an Aedes albopictus mosquito cell line (C6/36), we characterized ZIKV infection by immunofluorescence, transmission electron microscopy (TEM), and electron tomography (ET) to better understand infection in these disparate host cells. ZIKV replicated well in both cell lines, but infected SK-N-SH cells suffered a lytic crisis. Flaviviruses scavenge host cell membranes to serve as replication platforms and ZIKV showed the hallmarks of this process. Via TEM, we identified virus particles and 60–100 nm spherular vesicles. ET revealed these vesicular replication compartments contain smaller 20–30 nm spherular structures. Our studies indicate that SK-N-SH and C6/36 cells are relevant models for viral cytoarchitecture study. - Highlights: •First electron tomography of Zika virus cytoarchitecture. •Comparison of Zika virus infection in human neuroblastoma and mosquito cells. •Ultrastructure of Zika virus infection in human neuroblastoma and mosquito cells.

  4. Cytoarchitecture of Zika virus infection in human neuroblastoma and Aedes albopictus cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Offerdahl, Danielle K. [Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT (United States); Dorward, David W.; Hansen, Bryan T. [Microscopy Unit, Research Technology Branch, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT (United States); Bloom, Marshall E., E-mail: mbloom@nih.gov [Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT (United States)

    2017-01-15

    The Zika virus (ZIKV) pandemic is a global concern due to its role in the development of congenital anomalies of the central nervous system. This mosquito-borne flavivirus alternates between mammalian and mosquito hosts, but information about the biogenesis of ZIKV is limited. Using a human neuroblastoma cell line (SK-N-SH) and an Aedes albopictus mosquito cell line (C6/36), we characterized ZIKV infection by immunofluorescence, transmission electron microscopy (TEM), and electron tomography (ET) to better understand infection in these disparate host cells. ZIKV replicated well in both cell lines, but infected SK-N-SH cells suffered a lytic crisis. Flaviviruses scavenge host cell membranes to serve as replication platforms and ZIKV showed the hallmarks of this process. Via TEM, we identified virus particles and 60–100 nm spherular vesicles. ET revealed these vesicular replication compartments contain smaller 20–30 nm spherular structures. Our studies indicate that SK-N-SH and C6/36 cells are relevant models for viral cytoarchitecture study. - Highlights: •First electron tomography of Zika virus cytoarchitecture. •Comparison of Zika virus infection in human neuroblastoma and mosquito cells. •Ultrastructure of Zika virus infection in human neuroblastoma and mosquito cells.

  5. HIF2A and IGF2 Expression Correlates in Human Neuroblastoma Cells and Normal Immature Sympathetic Neuroblasts

    Directory of Open Access Journals (Sweden)

    Sofie Mohlin

    2013-03-01

    Full Text Available During normal sympathetic nervous system (SNS development, cells of the ganglionic lineage can malignantly transform and develop into the childhood tumor neuroblastoma. Hypoxia-inducible transcription factors (HIFs mediate cellular responses during normal development and are central in the adaptation to oxygen shortage. HIFs are also implicated in the progression of several cancer forms, and high HIF-2α expression correlates with disseminated disease and poor outcome in neuroblastoma. During normal SNS development, HIF2A is transiently expressed in neuroblasts and chromaffin cells. SNS cells can, during development, be distinguished by distinct gene expression patterns, and insulin-like growth factor 2 (IGF2 is a marker of sympathetic chromaffin cells, whereas sympathetic neuroblasts lack IGF2 expression. Despite the neuronal derivation of neuroblastomas, we show that neuroblastoma cell lines and specimens express IGF2 and that expression of HIF2A and IGF2 correlates, with the strongest correlation in high-stage tumors. In neuroblastoma, both IGF2 and HIF2A are hypoxia-driven and knocking down IGF2 at hypoxia resulted in downregulated HIF2A levels. HIF-2α and IGF2 were strongly expressed in subsets of immature neuroblastoma cells, suggesting that these two genes could be co-expressed also at early stages of SNS development. We show that IGF2 is indeed expressed in sympathetic chain ganglia at embryonic week 6.5, a developmental stage when HIF-2α is present. These findings provide a rationale for the unexpected IGF2 expression in neuroblastomas and might suggest that IGF2 and HIF2A positive neuroblastoma cells are arrested at an embryonic differentiation stage corresponding to the stage when sympathetic chain ganglia begins to coalesce.

  6. Differentiation of the SH-SY5Y Human Neuroblastoma Cell Line.

    Science.gov (United States)

    Shipley, Mackenzie M; Mangold, Colleen A; Szpara, Moriah L

    2016-02-17

    Having appropriate in vivo and in vitro systems that provide translational models for human disease is an integral aspect of research in neurobiology and the neurosciences. Traditional in vitro experimental models used in neurobiology include primary neuronal cultures from rats and mice, neuroblastoma cell lines including rat B35 and mouse Neuro-2A cells, rat PC12 cells, and short-term slice cultures. While many researchers rely on these models, they lack a human component and observed experimental effects could be exclusive to the respective species and may not occur identically in humans. Additionally, although these cells are neurons, they may have unstable karyotypes, making their use problematic for studies of gene expression and reproducible studies of cell signaling. It is therefore important to develop more consistent models of human neurological disease. The following procedure describes an easy-to-follow, reproducible method to obtain homogenous and viable human neuronal cultures, by differentiating the chromosomally stable human neuroblastoma cell line, SH-SY5Y. This method integrates several previously described methods(1-4) and is based on sequential removal of serum from media. The timeline includes gradual serum-starvation, with introduction of extracellular matrix proteins and neurotrophic factors. This allows neurons to differentiate, while epithelial cells are selected against, resulting in a homogeneous neuronal culture. Representative results demonstrate the successful differentiation of SH-SY5Y neuroblastoma cells from an initial epithelial-like cell phenotype into a more expansive and branched neuronal phenotype. This protocol offers a reliable way to generate homogeneous populations of neuronal cultures that can be used for subsequent biochemical and molecular analyses, which provides researchers with a more accurate translational model of human infection and disease.

  7. Retinoic acid reduces human neuroblastoma cell migration and invasiveness: effects on DCX, LIS1, neurofilaments-68 and vimentin expression

    International Nuclear Information System (INIS)

    Messi, Elio; Florian, Maria C; Caccia, Claudio; Zanisi, Mariarosa; Maggi, Roberto

    2008-01-01

    Neuroblastoma is a severe pediatric tumor, histologically characterised by a variety of cellular phenotypes. One of the pharmacological approaches to neuroblastoma is the treatment with retinoic acid. The mechanism of action of retinoic acid is still unclear, and the development of resistance to this differentiating agent is a great therapy problem. Doublecortin, a microtubule-associated protein involved in neuronal migration, has recently been proposed as a molecular marker for the detection of minimal residual disease in human neuroblastoma. Nevertheless, no information is available on the expression of doublecortin in the different cell-types composing human neuroblastoma, its correlation with neuroblastoma cell motility and invasiveness, and the possible modulations exerted by retinoic acid treatment. We analysed by immunofluorescence and by Western blot analysis the presence of doublecortin, lissencephaly-1 (another protein involved in neuronal migration) and of two intermediate filaments proteins, vimentin and neurofilament-68, in SK-N-SH human neuroblastoma cell line both in control conditions and under retinoic acid treatment. Migration and cell invasiveness studies were performed by wound scratch test and a modified microchemotaxis assay, respectively. Doublecortin is expressed in two cell subtypes considered to be the more aggressive and that show high migration capability and invasiveness. Vimentin expression is excluded by these cells, while lissencephaly-1 and neurofilaments-68 are immunodetected in all the cell subtypes of the SK-N-SH cell line. Treatment with retinoic acid reduces cell migration and invasiveness, down regulates doublecortin and lissencephaly-1 expression and up regulates neurofilament-68 expression. However, some cells that escape from retinoic acid action maintain migration capability and invasiveness and express doublecortin. a) Doublecortin is expressed in human neuroblastoma cells that show high motility and invasiveness; b

  8. Presence of fucosyl residues on the oligosaccharide antennae of membrane glycopeptides of human neuroblastoma cells

    International Nuclear Information System (INIS)

    Santer, U.V.; Glick, M.C.

    1983-01-01

    Fucosyl residues linked alpha 1 leads to 3 or 4 to N-acetylglucosamine were found in large amounts on glycopeptides from the membranes of human tumor cells of neurectodermal origin but not on membrane glycopeptides from human fibroblasts. The fucosyl residues were detected by release of radioactive fucose from the glycopeptides with an almond alpha-L-fucosidase specific for fucosyl alpha 1 leads to 3(4)-N-acetylglucosamine. In other studies, the linkage was shown to be alpha 1 leads to 3 by nuclear magnetic resonance analysis. Glycopeptides containing these fucosyl residues from four human neuroblastoma cell lines were defined by binding to immobilized lectins. In addition, the glycopeptides from one human neuroblastoma cell line, CHP-134, were further characterized by enzyme degradation and columns calibrated for size and charge. The antennary position of fucosyl alpha 1 leads to 3-N-acetylglucosamine on the glycopeptides was demonstrated by the use of exoglycosidases and endoglycosidase D, since complete degradation to yield fucosyl-N-acetylglucosaminylasparagine was obtained only after treatment with almond alpha-L-fucosidase prior to the sequential degradation. Fucosyl alpha 1 leads to 3-N-acetylglucosamine was present on most size and charge classes of membrane glycopeptides and therefore was not limited to a few glycoproteins. Since the almond alpha-L-fucosidase cleaves fucosyl residues from glycoproteins, the physiological effects of the increased specific fucosylation on human tumors of neurectodermal origin can be examined

  9. Role of trace metals in cell proliferation in the human neuroblastoma: relations with the oncogene N-myc

    International Nuclear Information System (INIS)

    Moretto, Ph.; Michelet, C.; Gouget, B.; Ortega, R.; Sergiant, C.; Llabador, Y.; Simonoff, M.; Benard, J.

    1997-01-01

    Neuroblastoma is one of the most common tumors in young children. Iron is known to be necessary for cellular proliferation. Several studies have suggested that neuroblastoma cells appear to be relatively sensitive to growth inhibition by specific Fe chelators, in vitro. In addition, it appeared that an increased serum ferritin level at diagnosis was associated with a poorer outcome than a normal level. On the other hand it was reported that untreated primary neuroblastoma had multiple copies of the N-myc oncogene. A significant association between genomic amplification and rapid tumor progression after diagnosis has been demonstrated. In order to study the relationship between iron N-myc amplification, we propose to determine the trace metal content of neuroblastoma cells. Preliminary results obtained with two distinct cell lines: SK-N-SH, a neuroblastoma cell line with a single copy of N-myc and IGR-N-91, a metastatic cell line exhibiting 60 copies of N-myc are presented. (authors)

  10. The Arctic Alzheimer mutation enhances sensitivity to toxic stress in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Sennvik, Kristina; Nilsberth, Camilla; Stenh, Charlotte

    2002-01-01

    The E693G (Arctic) mutation of the amyloid precursor protein was recently found to lead to early-onset Alzheimer's disease in a Swedish family. In the present study, we report that the Arctic mutation decreases cell viability in human neuroblastoma cells. The cell viability, as measured by the MTT...... their secretion of beta-secretase cleaved amyloid precursor protein. The enhanced sensitivity to toxic stress in cells with the Arctic mutation most likely contributes to the pathogenic pathway leading to Alzheimer's disease....

  11. Differentiation-associated decrease in muscarinic receptor sensitivity in human neuroblastoma cells

    International Nuclear Information System (INIS)

    Heikkilae, J.E.; Scott, J.G.; Suominen, L.A.; Akerman, K.E.O.

    1987-01-01

    Muscarinic receptor-linked increases in intracellular free Ca 2+ as measured with quin-2 and Ca 2+ release from monolayers of cells have been measured in the human neuroblastoma cell line SH-SY5Y. Induction of differentiation with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) leads to a decrease in the sensitivity of the cells to low concentrations of agonists with respect to the induced increase in cytosolic free Ca 2+ and stimulation of Ca 2+ efflux. No decrease in agonist binding affinity was observed when the displacement of a labelled antagonist, 3 H-NMS, by a non-labelled agonist was studied

  12. MIBG causes oxidative stress and up-regulation of anti-oxidant enzymes in the human neuroblastoma cell line SK-N-BE(2c)

    NARCIS (Netherlands)

    Cornelissen, J.; van Kuilenburg, A. B.; Voûte, P. A.; van Gennip, A. H.

    1997-01-01

    We report the effects of meta-iodobenzylguanidine (MIBG), a neuroblastoma-seeking agent, on cell proliferation and several oxidative stress-related parameters in the human neuroblastoma cell line SK-N-BE(2c). MIBG inhibited the proliferation of this cell line in micromolar concentrations.

  13. Calmodulin interacts with PAC1 and VPAC2 receptors and regulates PACAP-induced FOS expression in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Falktoft, B.; Georg, B.; Fahrenkrug, J.

    2009-01-01

    is a well-known marker of neuronal activation, so we used a human neuroblastoma cell line NB-1 to explore the role of calmodulin in PACAP-induced FOS gene expression. We observed both short-term and prolonged altered PACAP-mediated activation of the FOS gene in the presence of the calmodulin-antagonist W-7...

  14. Presenilin-1 mutations alter K+ currents in the human neuroblastoma cell line, SH-SY5Y

    DEFF Research Database (Denmark)

    Plant, Leigh D; Boyle, John P; Thomas, Natasha M

    2002-01-01

    Mutations in presenilin 1 (PS1) are the major cause of autosomal dominant Alzheimer's disease. We have measured the voltage-gated K+ current in the human neuroblastoma cell line SH-SY5Y using whole-cell patch-clamp. When cells were stably transfected to over-express PS1, no change in K+ current...

  15. Rosiglitazone protects human neuroblastoma SH-SY5Y cells against acetaldehyde-induced cytotoxicity

    International Nuclear Information System (INIS)

    Jung, Tae Woo; Lee, Ji Young; Shim, Wan Sub; Kang, Eun Seok; Kim, Soo Kyung; Ahn, Chul Woo; Lee, Hyun Chul; Cha, Bong Soo

    2006-01-01

    Acetaldehyde, an inhibitor of mitochondrial function, has been widely used as a neurotoxin because it elicits a severe Parkinson's disease-like syndrome with elevation of the intracellular reactive oxygen species level and apoptosis. Rosiglitazone, a peroxisome proliferator-activated receptor-γ agonist, has been known to show various non-hypoglycemic effects, including anti-inflammatory, anti-atherogenic, and anti-apoptotic. In this study, we investigated the protective effects of rosiglitazone on acetaldehyde-induced apoptosis in human neuroblastoma SH-SY5Y cells and attempted to examine its mechanism. Acetaldehyde-induced apoptosis was moderately reversed by rosiglitazone treatment. Our results suggest that the protective effects of rosiglitazone on acetaldehyde-induced apoptosis may be ascribed to ability to induce the expression of anti-oxidant enzymes and to regulate Bcl-2 and Bax expression. These data indicate that rosiglitazone may provide a useful therapeutic strategy for the prevention of progressive neurodegenerative disease such as Parkinson's disease

  16. Distinctively human motivation and another view on human evolution

    OpenAIRE

    Prudkov, Pavel N.

    2006-01-01

    Human evolution is a multidisciplinary problem, one of its aspects is the origin and development of distinctively human psychological features. Cognitive properties (language, symbolic thinking) are considered as such features and numerous authors hypothesize its evolution. We suggest that the most important human characteristic is connected with motivation rather than cognition; this is the ability to construct and maintain long-term goal-directed processes having no biological basis. Once...

  17. C282Y-HFE gene variant affects cholesterol metabolism in human neuroblastoma cells.

    Science.gov (United States)

    Ali-Rahmani, Fatima; Huang, Michael A; Schengrund, C-L; Connor, James R; Lee, Sang Y

    2014-01-01

    Although disruptions in the maintenance of iron and cholesterol metabolism have been implicated in several cancers, the association between variants in the HFE gene that is associated with cellular iron uptake and cholesterol metabolism has not been studied. The C282Y-HFE variant is a risk factor for different cancers, is known to affect sphingolipid metabolism, and to result in increased cellular iron uptake. The effect of this variant on cholesterol metabolism and its possible relevance to cancer phenotype was investigated using wild type (WT) and C282Y-HFE transfected human neuroblastoma SH-SY5Y cells. Expression of C282Y-HFE in SH-SY5Y cells resulted in a significant increase in total cholesterol as well as increased transcription of a number of genes involved in its metabolism compared to cells expressing WT-HFE. The marked increase in expression of NPC1L1 relative to that of most other genes, was accompanied by a significant increase in expression of NPC1, a protein that functions in cholesterol uptake by cells. Because inhibitors of cholesterol metabolism have been proposed to be beneficial for treating certain cancers, their effect on the viability of C282Y-HFE neuroblastoma cells was ascertained. C282Y-HFE cells were significantly more sensitive than WT-HFE cells to U18666A, an inhibitor of desmosterol Δ24-reductase the enzyme catalyzing the last step in cholesterol biosynthesis. This was not seen for simvastatin, ezetimibe, or a sphingosine kinase inhibitor. These studies indicate that cancers presenting in carriers of the C282Y-HFE allele might be responsive to treatment designed to selectively reduce cholesterol content in their tumor cells.

  18. Human erythrocytes and neuroblastoma cells are affected in vitro by Au(III) ions

    International Nuclear Information System (INIS)

    Suwalsky, Mario; Gonzalez, Raquel; Villena, Fernando; Aguilar, Luis F.; Sotomayor, Carlos P.; Bolognin, Silvia; Zatta, Paolo

    2010-01-01

    Gold compounds are well known for their neurological and nephrotoxic implications. However, haematological toxicity is one of the most serious toxic and less studied effects. The lack of information on these aspects of Au(III) prompted us to study the structural effects induced on cell membranes, particularly that of human erythrocytes. AuCl 3 was incubated with intact erythrocytes, isolated unsealed human erythrocyte membranes (IUM) and molecular models of the erythrocyte membrane. The latter consisted of multibilayers of dimyristoylphosphatidylcholine and dimyristoylphosphatidylethanolamine, phospholipids classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. This report presents evidence that Au(III) interacts with red cell membranes as follows: (a) in scanning electron microscopy studies on human erythrocytes it was observed that Au(III) induced shape changes at a concentration as low as 0.01 μM; (b) in isolated unsealed human erythrocyte membranes Au(III) induced a decrease in the molecular dynamics and/or water content at the glycerol backbone level of the lipid bilayer polar groups in a 5-50 μM concentration range, and (c) X-ray diffraction studies showed that Au(III) in the 10 μm-1 mM range induced increasing structural perturbation only to dimyristoylphosphatidylcholine bilayers. Additional experiments were performed in human neuroblastoma cells SH-SY5Y. A statistically significant decrease of cell viability was observed with Au(III) ranging from 0.1 μM to 100 μM.

  19. Polyploidization on SK-N-MC human neuroblastoma cells infected with herpes simplex virus 1.

    Science.gov (United States)

    Karalyan, Zaven; Izmailyan, Roza; Karalova, Elena; Abroyan, Liana; Hakobyan, Lina; Avetisyan, Aida; Semerjyan, Zara

    2016-01-01

    Polyploidization is one of the most dramatic changes occurring within cell genome owing to various reasons including under many viral infections. We examined the impact of herpes simplex virus-1 (HSV-1) on SK-N-MC human neuroblastoma cell line. The infected cells were followed from 6 hours up to 96 hours post infection (hpi). A large number of polyploid cells with giant nuclei was observed under the influence of HSV-1 at 24 hpi with the DNA content of 32c to 64c or more, in comparison with control SK-N-MC cells that were characterized by relatively moderate values of ploidy, i.e. 8с to 16с (where 1c is the haploid amount of nuclear DNA found in normal diploid populations in G0/G1). After 48-96 hpi, the population of polyploid cells with giant nuclei decreased to the benchmark level. The SK-NMC cells infected with HSV-1 for 24 hours were stained with gallocyanine and monitored for cytological features. The infected cells underwent virus induced cellcell and nuclei fusion with the formation of dense nuclei syncytium. The metabolic activity of HSV-1 infected cells was higher in both nuclei and nucleoli when compared to control cells.

  20. Cytoarchitecture of Zika virus infection in human neuroblastoma and Aedes albopictus cell lines.

    Science.gov (United States)

    Offerdahl, Danielle K; Dorward, David W; Hansen, Bryan T; Bloom, Marshall E

    2017-01-15

    The Zika virus (ZIKV) pandemic is a global concern due to its role in the development of congenital anomalies of the central nervous system. This mosquito-borne flavivirus alternates between mammalian and mosquito hosts, but information about the biogenesis of ZIKV is limited. Using a human neuroblastoma cell line (SK-N-SH) and an Aedes albopictus mosquito cell line (C6/36), we characterized ZIKV infection by immunofluorescence, transmission electron microscopy (TEM), and electron tomography (ET) to better understand infection in these disparate host cells. ZIKV replicated well in both cell lines, but infected SK-N-SH cells suffered a lytic crisis. Flaviviruses scavenge host cell membranes to serve as replication platforms and ZIKV showed the hallmarks of this process. Via TEM, we identified virus particles and 60-100nm spherular vesicles. ET revealed these vesicular replication compartments contain smaller 20-30nm spherular structures. Our studies indicate that SK-N-SH and C6/36 cells are relevant models for viral cytoarchitecture study. Published by Elsevier Inc.

  1. Dioxin induces expression of hsa-miR-146b-5p in human neuroblastoma cells.

    Science.gov (United States)

    Xu, Tuan; Xie, Heidi Q; Li, Yunping; Xia, Yingjie; Sha, Rui; Wang, Lingyun; Chen, Yangsheng; Xu, Li; Zhao, Bin

    2018-01-01

    Dioxin can cause a series of neural toxicological effects. MicroRNAs (miRs) play important roles in regulating nervous system function and mediating cellular responses to environmental pollutants, such as dioxin. Hsa-miR-146b-5p appears to be involved in neurodegenerative diseases and brain tumors. However, little is known about effects of dioxin on the expression of hsa-miR-146b-5p. We found that the hsa-miR-146b-5p expression and its promoter activity were significantly increased in dioxin treated SK-N-SH cells, a human-derived neuroblastoma cell line. Potential roles of hsa-miR-146b-5p in mediating neural toxicological effects of dioxin may be due to the regulation of certain target genes. We further confirmed that hsa-miR-146b-5p significantly suppressed acetylcholinesterase (AChE) activity and targeted the 3'-untranslated region of the AChE T subunit, which has been down-regulated in dioxin treated SK-N-SH cells. Functional bioinformatic analysis showed that the known and predicted target genes of hsa-miR-146b-5p were involved in some brain functions or cyto-toxicities related to known dioxin effects, including synapse transmission, in which AChE may serve as a responsive gene for mediating the effect. Copyright © 2017. Published by Elsevier B.V.

  2. Characterization and uptake of radiolabelled meta-iodobenzylguanidine (MIBG) in a human neuroblastoma heterotransplant model in athymic rats

    International Nuclear Information System (INIS)

    Nilsson, S.; Paahlman, S.; Arnberg, H.; Letocha, H.; Westlin, J.E.

    1993-01-01

    Cells from an established human neuroblastoma cell line, SH-SY5Y, were demonstrated to grow and form solid tumours in nude rats. This cell line, which is an adrenergic subclone of the SK-N-SH cell line, has previously been used in differentiation model studies. The tumours retained the neuronal phenotype of the cultured cells, as evidenced by the expression of neuron-specific enolase (NSE) and chromogranin A + B. The transcription factor Isl-1, a protein expressed in subsets of neurons and endocrine cells as well as in neuroblastoma cells, was also expressed in the transplanted tumours, thus further verifying the retained phenotype of the cells under in vivo conditions. At scintigraphy utilizing 123 I-MIBG the optimal tumour/background ratio was obtained 20 h after injection. The assessment of tissue/serum ratios showed the highest uptake in the spleen (0.067% per gram of inj. activity), neuroblastoma tumours (0.067% per gram of inj. activity) and in the adrenals (0.065% per gram of inj. activity). (orig.)

  3. Characterization and uptake of radiolabelled meta-iodobenzylguanidine (MIBG) in a human neuroblastoma heterotransplant model in athymic rats

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, S. (Dept. of Oncology, Univ. Hospital, Uppsala (Sweden)); Paahlman, S. (Dept. of Pathology, Univ. Hospital, Uppsala (Sweden)); Arnberg, H. (Dept. of Oncology, Univ. Hospital, Uppsala (Sweden)); Letocha, H. (Dept. of Oncology, Univ. Hospital, Uppsala (Sweden)); Westlin, J.E. (Dept. of Oncology, Univ. Hospital, Uppsala (Sweden))

    1993-01-01

    Cells from an established human neuroblastoma cell line, SH-SY5Y, were demonstrated to grow and form solid tumours in nude rats. This cell line, which is an adrenergic subclone of the SK-N-SH cell line, has previously been used in differentiation model studies. The tumours retained the neuronal phenotype of the cultured cells, as evidenced by the expression of neuron-specific enolase (NSE) and chromogranin A + B. The transcription factor Isl-1, a protein expressed in subsets of neurons and endocrine cells as well as in neuroblastoma cells, was also expressed in the transplanted tumours, thus further verifying the retained phenotype of the cells under in vivo conditions. At scintigraphy utilizing [sup 123]I-MIBG the optimal tumour/background ratio was obtained 20 h after injection. The assessment of tissue/serum ratios showed the highest uptake in the spleen (0.067% per gram of inj. activity), neuroblastoma tumours (0.067% per gram of inj. activity) and in the adrenals (0.065% per gram of inj. activity). (orig.).

  4. Presenilin expression during induced differentiation of the human neuroblastoma SH-SY5Y cell line.

    Science.gov (United States)

    Flood, Fiona; Sundström, Erik; Samuelsson, Eva-Britt; Wiehager, Birgitta; Seiger, Ake; Johnston, Janet A; Cowburn, Richard F

    2004-06-01

    Human neuroblastoma SH-SY5Y cells stably transfected with both wild-type and exon-9 deleted (deltaE9) presenilin constructs were used to study the role of the presenilin proteins during differentiation. Cells transfected with either wild-type or deltaE9 PS1, of which the latter abolishes normal endoproteolytic cleavage of the protein, showed no obvious differences in their ability to differentiate to a neuronal-like phenotype upon treatment with retinoic acid (RA). A defined pattern of PS1 expression was observed during differentiation with both RA and the phorbol ester TPA. Full-length PS1 was shown to increase dramatically within 5-24 h of RA treatment. TPA gave an earlier and longer lasting increase in full-length PS1 levels. The intracellular distribution pattern of PS1 was markedly altered following RA treatment. Within 24h PS1 was highly up-regulated throughout the cell body around the nucleus. Between 2 and 4 weeks PS1 staining appeared punctate and also localised to the nucleus. Increases in PS1 expression upon treatment with RA and TPA were blocked by treatment with cycloheximide, indicating a role of de-novo protein synthesis in this effect. PS2 expression remained unchanged during differentiation. Levels of full-length PS1 were also seen to increase during neurogenesis and neuronal differentiation in the forebrain of first trimester human foetuses between 6.5 and 11 weeks. These combined observations support the idea that PS1 is involved in neuronal differentiation by a mechanism likely independent of endoproteolysis of the protein.

  5. PPARbeta agonists trigger neuronal differentiation in the human neuroblastoma cell line SH-SY5Y.

    Science.gov (United States)

    Di Loreto, S; D'Angelo, B; D'Amico, M A; Benedetti, E; Cristiano, L; Cinque, B; Cifone, M G; Cerù, M P; Festuccia, C; Cimini, A

    2007-06-01

    Neuroblastomas are pediatric tumors originating from immature neuroblasts in the developing peripheral nervous system. Differentiation therapies could help lowering the high mortality due to rapid tumor progression to advanced stages. Oleic acid has been demonstrated to promote neuronal differentiation in neuronal cultures. Herein we report on the effects of oleic acid and of a specific synthetic PPARbeta agonist on cell growth, expression of differentiation markers and on parameters responsible for the malignancy such as adhesion, migration, invasiveness, BDNF, and TrkB expression of SH-SY5Y neuroblastoma cells. The results obtained demonstrate that many, but not all, oleic acid effects are mediated by PPARbeta and support a role for PPARbeta in neuronal differentiation strongly pointing towards PPAR ligands as new therapeutic strategies against progression and recurrences of neuroblastoma.

  6. The Checkpoint Kinase 1 Inhibitor Prexasertib Induces Regression of Preclinical Models of Human Neuroblastoma.

    Science.gov (United States)

    Lowery, Caitlin D; VanWye, Alle B; Dowless, Michele; Blosser, Wayne; Falcon, Beverly L; Stewart, Julie; Stephens, Jennifer; Beckmann, Richard P; Bence Lin, Aimee; Stancato, Louis F

    2017-08-01

    Purpose: Checkpoint kinase 1 (CHK1) is a key regulator of the DNA damage response and a mediator of replication stress through modulation of replication fork licensing and activation of S and G 2 -M cell-cycle checkpoints. We evaluated prexasertib (LY2606368), a small-molecule CHK1 inhibitor currently in clinical testing, in multiple preclinical models of pediatric cancer. Following an initial assessment of prexasertib activity, this study focused on the preclinical models of neuroblastoma. Experimental Design: We evaluated the antiproliferative activity of prexasertib in a panel of cancer cell lines; neuroblastoma cell lines were among the most sensitive. Subsequent Western blot and immunofluorescence analyses measured DNA damage and DNA repair protein activation. Prexasertib was investigated in several cell line-derived xenograft mouse models of neuroblastoma. Results: Within 24 hours, single-agent prexasertib promoted γH2AX-positive double-strand DNA breaks and phosphorylation of DNA damage sensors ATM and DNA-PKcs, leading to neuroblastoma cell death. Knockdown of CHK1 and/or CHK2 by siRNA verified that the double-strand DNA breaks and cell death elicited by prexasertib were due to specific CHK1 inhibition. Neuroblastoma xenografts rapidly regressed following prexasertib administration, independent of starting tumor volume. Decreased Ki67 and increased immunostaining of endothelial and pericyte markers were observed in xenografts after only 6 days of exposure to prexasertib, potentially indicating a swift reduction in tumor volume and/or a direct effect on tumor vasculature. Conclusions: Overall, these data demonstrate that prexasertib is a specific inhibitor of CHK1 in neuroblastoma and leads to DNA damage and cell death in preclinical models of this devastating pediatric malignancy. Clin Cancer Res; 23(15); 4354-63. ©2017 AACR . ©2017 American Association for Cancer Research.

  7. Advances In Neuroblastoma Diagnostics And Treatment

    International Nuclear Information System (INIS)

    Mazanek, P.; Bajciova, V.; Sterba, J.; Kuglik, P.; Veselsky, R.

    2008-01-01

    Neuroblastoma is the most common extracranial solid tumor of a childhood. Neuroblastoma is well known for its variability in clinical behavioral and distinct biological features. In a history of pediatric oncology it is a first disease, where the biological marker (NMYC amplification) was used for a prospective therapeutical randomisation. Current research is focused on detection of a new biological prognostic markers in neuroblastoma and implementation of a new therapeutical approaches into a clinical practise (eg. antiangiogenic therapies, metronomic chemotherapy, biotherapy, immunotherapy. (author)

  8. Survivin knockdown increased anti-cancer effects of (-)-epigallocatechin-3-gallate in human malignant neuroblastoma SK-N-BE2 and SH-SY5Y cells

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Md. Motarab [Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC (United States); Banik, Naren L. [Department of Neurosciences, Medical University of South Carolina, Charleston, SC (United States); Ray, Swapan K., E-mail: swapan.ray@uscmed.sc.edu [Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC (United States)

    2012-08-01

    network formation ability of cells was significantly inhibited by survivin silencing and completely by combination of survivin silencing and EGCG treatment. Collectively, survivin silencing potentiated anti-cancer effects of EGCG in human malignant neuroblastoma cells having survivin overexpression. -- Highlights: Black-Right-Pointing-Pointer Survivin shRNA + EGCG controlled growth of human malignant neuroblastoma cells. Black-Right-Pointing-Pointer Survivin knockdown induced neuronal differentiation in neuroblastoma cells. Black-Right-Pointing-Pointer Survivin shRNA + EGCG induced morphological and biochemical features of apoptosis. Black-Right-Pointing-Pointer Combination therapy inhibited invasion, proliferation, and angiogenesis as well. Black-Right-Pointing-Pointer So, combination therapy showed multiple anti-cancer mechanisms in neuroblastoma.

  9. Fenofibrate suppressed proliferation and migration of human neuroblastoma cells via oxidative stress dependent of TXNIP upregulation

    Energy Technology Data Exchange (ETDEWEB)

    Su, Cunjin; Shi, Aiming; Cao, Guowen [Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 (China); Tao, Tao [Department of Urology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009 (China); Chen, Ruidong [Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 (China); Hu, Zhanhong; Shen, Zhu; Tao, Hong; Cao, Bin [Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 (China); Hu, Duanmin, E-mail: hudmsdfey@sina.com [Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 (China); Bao, Junjie, E-mail: baojjsdfey@sina.com [Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, 215004 (China)

    2015-05-15

    There are no appropriate drugs for metastatic neuroblastoma (NB), which is the most common extra-cranial solid tumor for childhood. Thioredoxin binding protein (TXNIP), the endogenous inhibitor of ROS elimination, has been identified as a tumor suppressor in various solid tumors. It reported that fenofibrate exerts anti-tumor effects in several human cancer cell lines. However, its detail mechanisms remain unclear. The present study assessed the effects of fenofibrate on NB cells and investigated TXNIP role in its anti-tumor mechanisms. We used MTT assay to detect cells proliferation, starch wound test to investigate cells migration, H{sub 2}DCF-DA to detect intracellular ROS, siRNA to interfere TXNIP and peroxisome proliferator-androgen receptor-alpha (PPAR-α) expression, western blot to determine protein levels, flow cytometry to analyze apoptosis. Fenofibrate suppressed proliferation and migration of NB cells, remarkably increased intracellular ROS, upregulated TXNIP expression, promoted cell apoptosis. Furthermore, inhibition of TXNIP expression attenuated anti-tumor effects of fenofibrate, while inhibition of PPAR-α had no influences. Our results indicated the anti-tumor role of fenofibrate on NB cells by exacerbating oxidative stress and inducing apoptosis was dependent on the upregulation of TXNIP. - Highlights: • We found that fenofibrate suppressed proliferation and migration of NB cells. • We found that fenofibrate remarkably increased intracellular ROS, upregulated TXNIP expression, and promoted cell apoptosis. • Inhibition of TXNIP expression attenuated anti-tumor effects of fenofibrate, while inhibition of PPAR-α had no influences. • Our results indicated the anti-tumor role of fenofibrate on NB cells was dependent on the upregulation of TXNIP.

  10. Effect of sulfasalazine on human neuroblastoma: Analysis of sepiapterin reductase (SPR) as a new therapeutic target

    NARCIS (Netherlands)

    L.P. Yco (Lisette P.); D. Geerts (Dirk); G. Mocz (Gabor); J. Koster (Jan); A.S. Bachmann (André)

    2015-01-01

    textabstractBackground: Neuroblastoma (NB) is an aggressive childhood malignancy in children up to 5 years of age. High-stage tumors frequently relapse even after aggressive multimodal treatment, and then show therapy resistance, typically resulting in patient death. New molecular-targeted compounds

  11. Effect of sulfasalazine on human neuroblastoma: analysis of sepiapterin reductase (SPR) as a new therapeutic target

    NARCIS (Netherlands)

    Yco, Lisette P.; Geerts, Dirk; Mocz, Gabor; Koster, Jan; Bachmann, André S.

    2015-01-01

    Neuroblastoma (NB) is an aggressive childhood malignancy in children up to 5 years of age. High-stage tumors frequently relapse even after aggressive multimodal treatment, and then show therapy resistance, typically resulting in patient death. New molecular-targeted compounds that effectively

  12. Sensitive and reliable detection of genomic imbalances in human neuroblastomas using comparative genomic hybridisation analysis

    NARCIS (Netherlands)

    van Gele, M.; van Roy, N.; Jauch, A.; Laureys, G.; Benoit, Y.; Schelfhout, V.; de Potter, C. R.; Brock, P.; Uyttebroeck, A.; Sciot, R.; Schuuring, E.; Versteeg, R.; Speleman, F.

    1997-01-01

    Deletions of the short arm of chromosome 1, extra copies of chromosome 17q and MYCN amplification are the most frequently encountered genetic changes in neuroblastomas. Standard techniques for detection of one or more of these genetic changes are karyotyping, FISH analysis and LOH analysis by

  13. Ligands for the peroxisome proliferator-activated receptor-γ have inhibitory effects on growth of human neuroblastoma cells in vitro

    International Nuclear Information System (INIS)

    Valentiner, Ursula; Carlsson, Margarita; Erttmann, Rudolf; Hildebrandt, Herbert; Schumacher, Udo

    2005-01-01

    The thiazolidinedione (TZD) or glitazone class of peroxisome proliferator-activated-γ (PPAR-γ) ligands not only induce adipocyte differentiation and increase insulin sensitivity, but also exert growth inhibitory effects on several carcinoma cell lines in vitro as well as in vivo. In the current study the in vitro effect of four PPAR-γ agonists (ciglitazone, pioglitazone, troglitazone, rosiglitazone) on the cell growth of seven human neuroblastoma cell lines (Kelly, LAN-1, LAN-5, LS, IMR-32, SK-N-SH, SH-SY5Y) was investigated. Growth rates were assessed by a colorimetric XTT-based assay kit. Expression of PPAR-γ protein was examined by immunohistochemistry and Western blot analysis. All glitazones inhibited in vitro growth and viability of the human neuroblastoma cell lines in a dose-dependent manner showing considerable effects only at high concentrations (10 μM and 100 μM). Effectiveness of the glitazones on neuroblastoma cell growth differed depending on the cell line and the agent. The presence of PPAR-γ protein was demonstrated in all cell lines. Our findings indicate that ligands for PPAR-γ may be useful therapeutic agents for the treatment of neuroblastoma. Thus the effect of glitazones on the growth of neuroblastoma should now be investigated in an in vivo animal model

  14. Effect of sulfasalazine on human neuroblastoma: analysis of sepiapterin reductase (SPR) as a new therapeutic target

    International Nuclear Information System (INIS)

    Yco, Lisette P.; Geerts, Dirk; Mocz, Gabor; Koster, Jan; Bachmann, André S.

    2015-01-01

    Neuroblastoma (NB) is an aggressive childhood malignancy in children up to 5 years of age. High-stage tumors frequently relapse even after aggressive multimodal treatment, and then show therapy resistance, typically resulting in patient death. New molecular-targeted compounds that effectively suppress tumor growth and prevent relapse with more efficacy are urgently needed. We and others previously showed that polyamines (PA) like spermidine and spermine are essential for NB tumorigenesis and that DFMO, an inhibitor of the key PA synthesis gene product ODC, is effective both in vitro and in vivo, securing its evaluation in NB clinical trials. To find additional compounds interfering with PA biosynthesis, we tested sulfasalazine (SSZ), an FDA-approved salicylate-based anti-inflammatory and immune-modulatory drug, recently identified to inhibit sepiapterin reductase (SPR). We earlier presented evidence for a physical interaction between ODC and SPR and we showed that RNAi-mediated knockdown of SPR expression significantly reduced native ODC enzyme activity and impeded NB cell proliferation. Human NB mRNA expression datasets in the public domain were analyzed using the R2 platform. Cell viability, isobologram, and combination index analyses as a result of SSZ treatment with our without DFMO were carried out in NB cell cultures. Molecular protein-ligand docking was achieved using the GRAMM algorithm. Statistical analyses were performed with the Kruskal-Wallis test, 2log Pearson test, and Student’s t test. In this study, we show the clinical relevance of SPR in human NB tumors. We found that high SPR expression is significantly correlated to unfavorable NB characteristics like high age at diagnosis, MYCN amplification, and high INSS stage. SSZ inhibits the growth of NB cells in vitro, presumably due to the inhibition of SPR as predicted by computational docking of SSZ into SPR. Importantly, the combination of SSZ with DFMO produces synergistic antiproliferative effects

  15. Effect of sulfasalazine on human neuroblastoma: analysis of sepiapterin reductase (SPR) as a new therapeutic target.

    Science.gov (United States)

    Yco, Lisette P; Geerts, Dirk; Mocz, Gabor; Koster, Jan; Bachmann, André S

    2015-06-21

    Neuroblastoma (NB) is an aggressive childhood malignancy in children up to 5 years of age. High-stage tumors frequently relapse even after aggressive multimodal treatment, and then show therapy resistance, typically resulting in patient death. New molecular-targeted compounds that effectively suppress tumor growth and prevent relapse with more efficacy are urgently needed. We and others previously showed that polyamines (PA) like spermidine and spermine are essential for NB tumorigenesis and that DFMO, an inhibitor of the key PA synthesis gene product ODC, is effective both in vitro and in vivo, securing its evaluation in NB clinical trials. To find additional compounds interfering with PA biosynthesis, we tested sulfasalazine (SSZ), an FDA-approved salicylate-based anti-inflammatory and immune-modulatory drug, recently identified to inhibit sepiapterin reductase (SPR). We earlier presented evidence for a physical interaction between ODC and SPR and we showed that RNAi-mediated knockdown of SPR expression significantly reduced native ODC enzyme activity and impeded NB cell proliferation. Human NB mRNA expression datasets in the public domain were analyzed using the R2 platform. Cell viability, isobologram, and combination index analyses as a result of SSZ treatment with our without DFMO were carried out in NB cell cultures. Molecular protein-ligand docking was achieved using the GRAMM algorithm. Statistical analyses were performed with the Kruskal-Wallis test, 2log Pearson test, and Student's t test. In this study, we show the clinical relevance of SPR in human NB tumors. We found that high SPR expression is significantly correlated to unfavorable NB characteristics like high age at diagnosis, MYCN amplification, and high INSS stage. SSZ inhibits the growth of NB cells in vitro, presumably due to the inhibition of SPR as predicted by computational docking of SSZ into SPR. Importantly, the combination of SSZ with DFMO produces synergistic antiproliferative effects

  16. Radiofrequency radiation-induced calcium-ion-efflux enhancement from human and other neuroblastoma cells in culture: [Final technical report

    International Nuclear Information System (INIS)

    Dutta, S.K.; Ghosh, B.; Blackman, C.F.

    1988-01-01

    In order to test the generality of radiofrequency-radiation-induced change in alternation of 45 Ca/sup 2/plus// efflux from avian and feline brain tissues, human neuroblastoma cells were exposed to electromagnetic radiation at 147 MHz, amplitude modulated (AM) at 16 Hz, at specific absorption rates (SAR) of 0.1, 0.05, 0.01, 0.005, 0.001, and 0.0005 Wkg. Significant 45 Ca/sup 2/plus// efflux was obtained at SAR values of 0.05 and 0.005 Wkg. Enchanced efflux at 0.05 Wkg peaked at the 13-to-16 Hz and at the 57.5-to-60 Hz modulation ranges. A Chinese hamster-mouse hybrid neuroblastoma was also shown to exhibit enchanced radiation-induced 45 Ca/sup 2/plus// efflux at an SAR of 0.05 Wkg, using 147 MHz, AM at 16 hz. These results confirm that amplitude-modulated radiofrequency radiation can induce response in cells of nervous tissue origin from widely different animal species including humans. The results are also consistent with reports of similar findings in avian and feline brain tissue reported by others and indicate the general nature of the phenomenon. 9 refs., 3 tabs

  17. Characterization of endothelin receptors on a human neuroblastoma cell line: evidence for the ETA subtype.

    Science.gov (United States)

    Wilkes, L C; Boarder, M R

    1991-11-01

    1. Specific binding sites for synthetic endothelin (ET) isoforms were studied on intact cells of the SK-N-MC cell line, derived from a human neuroblastoma. 2. [125I]-ET-1 (2.5 x 10(-11) M) specifically bound to a single class of binding sites on these cells (Hill coefficient of 1.06 +/- 0.04, n = 3) with an apparent Kd of 1.4 +/- 0.3 x 10(-9) M and a Bmax of 3.1 +/- 1.0 pmol mg-1 protein. [125I]-ET-3 (2.5 x 10(-11) M), did not specifically bind to SK-N-MC cells. 3. The binding of [125I]-ET-1 was competitively inhibited by other ET isoforms, the order of potency being ET-1 greater than sarafotoxin S6b greater than ET-3. 4. Association of 1 nM [125I]-ET-1 at 37 degrees C reached apparent equilibrium at 60-80 min, with half-maximal binding being achieved at 12 min. 5. Dissociation was measured after both 10 min and 60 min of association with 64% and 30% respectively of specifically bound [125I]-ET-1 dissociating. The actual amounts of [125I]-ET-1 dissociated were similar in both cases. 6. Incubation of [125I]-ET-3 with SK-N-MC cells at 37 degrees C for 60 min did not result in significant degradation of this peptide. However, [125I]-ET-1 was broken down by incubation with SK-N-MC cells, the pattern of degradation of dissociable [125I]-ET-1 (and that found in the supernatant) being different from that of non-dissociable [125I]-ET-1. 7. ET-1 concentration-dependently induced an increase in total inositol phosphate accumulation in subconfluent (but not in confluent) cultures of SK-N-MC cells (EC50 = 6.43 +/- 1.9 x 1010M). ET-3 was without effect. 8. These results show that ET-1 specifically binds to SK-N-MC cells with the characteristics of an ETA receptor. Our earlier finding that adrenal chromaffin cells express an ETB receptor indicates the existence of multiple ET receptor types on neuronal cells.

  18. Superoxide produced in the matrix of mitochondria enhances methylmercury toxicity in human neuroblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Mailloux, Ryan J.; Yumvihoze, Emmanuel; Chan, Hing Man, E-mail: laurie.chan@uottawa.ca

    2015-12-15

    The mechanism of intracellular metabolism of methylmercury (MeHg) is not fully known. It has been shown that superoxide (O{sub 2}·{sup −}), the proximal reactive oxygen species (ROS) generated by mitochondria, is responsible for MeHg demethylation. Here, we investigated the impact of different mitochondrial respiratory inhibitors, namely rotenone and antimycin A, on the O{sub 2}·{sup −} mediated degradation of MeHg in human neuroblastoma cells SH-K-SN. We also utilized paraquat (PQ) which generates O{sub 2}·{sup −} in the mitochondrial matrix. We found that the cleavage of the carbon-metal bond in MeHg was highly dependent on the topology of O{sub 2}·{sup −} production by mitochondria. Both rotenone and PQ, which increase O{sub 2}·{sup −} in the mitochondrial matrix at a dose-dependent manner, enhanced the conversion of MeHg to inorganic mercury (iHg). Surprisingly, antimycin A, which prompts emission of O{sub 2}·{sup −} into the intermembrane space, did not have the same effect even though antimycin A induced a dose dependent increase in O{sub 2}·{sup −} emission. Rotenone and PQ also enhanced the toxicity of sub-toxic doses (0.1 μM) MeHg which correlated with the accumulation of iHg in mitochondria and depletion of mitochondrial protein thiols. Taken together, our results demonstrate that MeHg degradation is mediated by mitochondrial O{sub 2}·{sup −}, specifically within the matrix of mitochondria when O{sub 2}·{sup −} is in adequate supply. Our results also show that O{sub 2}·{sup −} amplifies MeHg toxicity specifically through its conversion to iHg and subsequent interaction with protein cysteine thiols (R-SH). The implications of our findings in mercury neurotoxicity are discussed herein. - Highlights: • Superoxide produced in the matrix of mitochondria degrades MeHg. • Superoxide produced in intermembrane space does not degrade MeHg. • Matrix-generated superoxide enhances Hg toxicity by converting MeHg to iHg.

  19. Coptis chinensis Franch. exhibits neuroprotective properties against oxidative stress in human neuroblastoma cells.

    Science.gov (United States)

    Friedemann, Thomas; Otto, Benjamin; Klätschke, Kristin; Schumacher, Udo; Tao, Yi; Leung, Alexander Kai-Man; Efferth, Thomas; Schröder, Sven

    2014-08-08

    The dried rhizome of Coptis chinensis Franch. (family Ranunculaceae) is traditionally used in Chinese medicine for the treatment of inflammatory diseases and diabetes. Recent studies showed a variety of activities of Coptis chinensis Franch. alkaloids, including neuroprotective, neuroregenerative, anti-diabetic, anti-oxidative and anti-inflammatory effects. However, there is no report on the neuroprotective effect of Coptis chinensis Franch. watery extract against tert-butylhydroperoxide (t-BOOH) induced oxidative damage. The aim of the study is to investigate neuroprotective properties of Coptis chinensis Franch. rhizome watery extract (CRE) and to evaluate its potential mechanism of action. Neuroprotective properties on t-BOOH induced oxidative stress were investigated in SH-SY5Y human neuroblastoma cells. Cells were pretreated with CRE for 2 h or 24 h followed by 2 h of treatment with t-BOOH. To evaluate the neuroprotective effect of CRE, cell viability, cellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and the apoptotic rate were determined and microarray analyses, as well as qRT-PCR analyses were conducted. Two hours of exposure to 100 µM t-BOOH resulted in a significant reduction of cell viability, increased apoptotic rate, declined mitochondrial membrane potential (MMP) and increased ROS production. Reduction of cell viability, increased apoptotic rate and declined mitochondrial membrane potential (MMP) could be significantly reduced in cells pretreated with CRE (100 µg/ml) for 2h or 24h ahead of t-BOOH exposure with the greatest effect after 24h of pretreatment; however ROS production was not changed significantly. Furthermore, microarray analyses revealed that the expressions of 2 genes; thioredoxin-interacting protein (TXNIP) and mitochondrially encoded NADH dehydrogenase 1, were significantly regulated. Down regulation of TXNIP was confirmed by qRT-PCR. Due to its neuroprotective properties CRE might be a potential

  20. An Alu-like RNA promotes cell differentiation and reduces malignancy of human neuroblastoma cells

    OpenAIRE

    Castelnuovo Manuele; Massone Sara; Tasso Roberta; Fiorino Gloria; Gatti Monica; Robello Mauro; Gatta Elena; Berger Audrey; Strub Katharina; Florio Tullio; Dieci Giorgio; Cancedda Ranieri; Pagano Aldo

    2010-01-01

    Neuroblastoma (NB) is a pediatric cancer characterized by remarkable cell heterogeneity within the tumor nodules. Here, we demonstrate that the synthesis of a pol III-transcribed noncoding (nc) RNA (NDM29) strongly restricts NB development by promoting cell differentiation, a drop of malignancy processes, and a dramatic reduction of the tumor initiating cell (TIC) fraction in the NB cell population. Notably, the overexpression of NDM29 also confers to malignant NB cells an unpredicted suscept...

  1. PKA, novel PKC isoforms, and ERK is mediating PACAP auto-regulation via PAC1R in human neuroblastoma NB-1 cells

    DEFF Research Database (Denmark)

    Georg, Birgitte; Falktoft, Birgitte; Fahrenkrug, Jan

    2016-01-01

    The neuropeptide PACAP is expressed throughout the central and peripheral nervous system where it modulates diverse physiological functions including neuropeptide gene expression. We here report that in human neuroblastoma NB-1 cells PACAP transiently induces its own expression. Maximal PACAP m...... induction. Experiments using siRNA against EGR1 to lower the expression did however not affect the PACAP auto-regulation indicating that this immediate early gene product is not part of PACAP auto-regulation in NB-1 cells. We here reveal that in NB-1 neuroblastoma cells, PACAP induces its own expression...

  2. Homozygous deletion and expression of PTEN and DMBT1 in human primary neuroblastoma and cell lines.

    Science.gov (United States)

    Muñoz, Jorge; Lázcoz, Paula; Inda, María Mar; Nistal, Manuel; Pestaña, Angel; Encío, Ignacio J; Castresana, Javier S

    2004-05-01

    Neuroblastoma is the most common pediatric solid tumor. Although many allelic imbalances have been described, a bona fide tumor suppressor gene for this disease has not been found yet. In our study, we analyzed 2 genes, PTEN and DMBT1, mapping 10q23.31 and 10q25.3-26.1, respectively, which have been found frequently altered in other kinds of neoplasms. We screened both genes for homozygous deletions in 45 primary neuroblastic tumors and 12 neuroblastoma cell lines. Expression of these genes in cell lines was assessed by RT-PCR analysis. We could detect 2 of 41 (5%) primary tumors harboring PTEN homozygous deletions. Three of 41 (7%) primary tumors and 2 of 12 cell lines presented homozygous losses at the g14 STS on the DMBT1 locus. All cell lines analyzed expressed PTEN, but lack of DMBT1 mRNA expression was detected in 2 of them. We tried to see whether epigenetic mechanisms, such as aberrant promoter hypermethylation, had any role in DMBT1 silencing. The 2 cell lines lacking DMBT1 expression were treated with 5-aza-2'-deoxycytidine; DMBT1 expression was restored in only one of them (MC-IXC). From our work, we can conclude that PTEN and DMBT1 seem to contribute to the development of a small fraction of neuroblastomas, and that promoter hypermethylation might have a role in DMBT1 gene silencing. Copyright 2004 Wiley-Liss, Inc.

  3. Tagging like Humans: Diverse and Distinct Image Annotation

    KAUST Repository

    Wu, Baoyuan; Chen, Weidong; Sun, Peng; Liu, Wei; Ghanem, Bernard; Lyu, Siwei

    2018-01-01

    including quantitative and qualitative comparisons, as well as human subject studies, on two benchmark datasets demonstrate that the proposed model can produce more diverse and distinct tags than the state-of-the-arts.

  4. NCYM, a Cis-antisense gene of MYCN, encodes a de novo evolved protein that inhibits GSK3β resulting in the stabilization of MYCN in human neuroblastomas.

    Directory of Open Access Journals (Sweden)

    Yusuke Suenaga

    2014-01-01

    Full Text Available The rearrangement of pre-existing genes has long been thought of as the major mode of new gene generation. Recently, de novo gene birth from non-genic DNA was found to be an alternative mechanism to generate novel protein-coding genes. However, its functional role in human disease remains largely unknown. Here we show that NCYM, a cis-antisense gene of the MYCN oncogene, initially thought to be a large non-coding RNA, encodes a de novo evolved protein regulating the pathogenesis of human cancers, particularly neuroblastoma. The NCYM gene is evolutionally conserved only in the taxonomic group containing humans and chimpanzees. In primary human neuroblastomas, NCYM is 100% co-amplified and co-expressed with MYCN, and NCYM mRNA expression is associated with poor clinical outcome. MYCN directly transactivates both NCYM and MYCN mRNA, whereas NCYM stabilizes MYCN protein by inhibiting the activity of GSK3β, a kinase that promotes MYCN degradation. In contrast to MYCN transgenic mice, neuroblastomas in MYCN/NCYM double transgenic mice were frequently accompanied by distant metastases, behavior reminiscent of human neuroblastomas with MYCN amplification. The NCYM protein also interacts with GSK3β, thereby stabilizing the MYCN protein in the tumors of the MYCN/NCYM double transgenic mice. Thus, these results suggest that GSK3β inhibition by NCYM stabilizes the MYCN protein both in vitro and in vivo. Furthermore, the survival of MYCN transgenic mice bearing neuroblastoma was improved by treatment with NVP-BEZ235, a dual PI3K/mTOR inhibitor shown to destabilize MYCN via GSK3β activation. In contrast, tumors caused in MYCN/NCYM double transgenic mice showed chemo-resistance to the drug. Collectively, our results show that NCYM is the first de novo evolved protein known to act as an oncopromoting factor in human cancer, and suggest that de novo evolved proteins may functionally characterize human disease.

  5. Salicin from Willow Bark can Modulate Neurite Outgrowth in Human Neuroblastoma SH-SY5Y Cells.

    Science.gov (United States)

    Wölfle, Ute; Haarhaus, Birgit; Kersten, Astrid; Fiebich, Bernd; Hug, Martin J; Schempp, Christoph M

    2015-10-01

    Salicin from willow bark has been used throughout centuries in China and Europe for the treatment of pain, headache, and inflammatory conditions. Recently, it could be demonstrated that salicin binds and activates the bitter taste receptor TAS2R16. Studies on rodent tissues showed the general expression of bitter taste receptors (TAS2Rs) in rodent brain. Here, we demonstrate the expression of hTAS2R16 in human neuronal tissues and the neuroblastoma cell line SH-SY5Y. The functionality was analyzed in the neuroblastoma cell line SH-SY5Y after stimulation with salicin, a known TAS2R16 agonist. In this setting salicin induced in SH-SY5Y cells phosphorylation of ERK and CREB, the key transcription factor of neuronal differentiation. PD98059, an inhibitor of the ERK pathway, as well as probenecid, a TAS2R16 antagonist, inhibited receptor phosphorylation as well as neurite outgrowth. These data show that salicin might modulate neurite outgrowth by bitter taste receptor activation. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Tagging like Humans: Diverse and Distinct Image Annotation

    KAUST Repository

    Wu, Baoyuan

    2018-03-31

    In this work we propose a new automatic image annotation model, dubbed {\\\\bf diverse and distinct image annotation} (D2IA). The generative model D2IA is inspired by the ensemble of human annotations, which create semantically relevant, yet distinct and diverse tags. In D2IA, we generate a relevant and distinct tag subset, in which the tags are relevant to the image contents and semantically distinct to each other, using sequential sampling from a determinantal point process (DPP) model. Multiple such tag subsets that cover diverse semantic aspects or diverse semantic levels of the image contents are generated by randomly perturbing the DPP sampling process. We leverage a generative adversarial network (GAN) model to train D2IA. Extensive experiments including quantitative and qualitative comparisons, as well as human subject studies, on two benchmark datasets demonstrate that the proposed model can produce more diverse and distinct tags than the state-of-the-arts.

  7. A constitutional translocation t(1;17(p36.2;q11.2 in a neuroblastoma patient disrupts the human NBPF1 and ACCN1 genes.

    Directory of Open Access Journals (Sweden)

    Karl Vandepoele

    Full Text Available The human 1p36 region is deleted in many different types of tumors, and so it probably harbors one or more tumor suppressor genes. In a Belgian neuroblastoma patient, a constitutional balanced translocation t(1;17(p36.2;q11.2 may have led to the development of the tumor by disrupting or activating a gene. Here, we report the cloning of both translocation breakpoints and the identification of a novel gene that is disrupted by this translocation. This gene, named NBPF1 for Neuroblastoma BreakPoint Family member 1, belongs to a recently described gene family encoding highly similar proteins, the functions of which are unknown. The translocation truncates NBPF1 and gives rise to two chimeric transcripts of NBPF1 sequences fused to sequences derived from chromosome 17. On chromosome 17, the translocation disrupts one of the isoforms of ACCN1, a potential glioma tumor suppressor gene. Expression of the NBPF family in neuroblastoma cell lines is highly variable, but it is decreased in cell lines that have a deletion of chromosome 1p. More importantly, expression profiling of the NBPF1 gene showed that its expression is significantly lower in cell lines with heterozygous NBPF1 loss than in cell lines with a normal 1p chromosome. Meta-analysis of the expression of NBPF and ACCN1 in neuroblastoma tumors indicates a role for the NBPF genes and for ACCN1 in tumor aggressiveness. Additionally, DLD1 cells with inducible NBPF1 expression showed a marked decrease of clonal growth in a soft agar assay. The disruption of both NBPF1 and ACCN1 genes in this neuroblastoma patient indicates that these genes might suppress development of neuroblastoma and possibly other tumor types.

  8. Upregulation of CRABP1 in human neuroblastoma cells overproducing the Alzheimer-typical Aβ42 reduces their differentiation potential

    Directory of Open Access Journals (Sweden)

    Weninger Annette

    2008-12-01

    Full Text Available Abstract Background Alzheimer's disease (AD is characterized by neurodegeneration and changes in cellular processes, including neurogenesis. Proteolytic processing of the amyloid precursor protein (APP plays a central role in AD. Owing to varying APP processing, several β-amyloid peptides (Aβ are generated. In contrast to the form with 40 amino acids (Aβ40, the variant with 42 amino acids (Aβ42 is thought to be the pathogenic form triggering the pathological cascade in AD. While total-Aβ effects have been studied extensively, little is known about specific genome-wide effects triggered by Aβ42 or Aβ40 derived from their direct precursor C99. Methods A combined transcriptomics/proteomics analysis was performed to measure the effects of intracellularly generated Aβ peptides in human neuroblastoma cells. Data was validated by real-time polymerase chain reaction (real-time PCR and a functional validation was carried out using RNA interference. Results Here we studied the transcriptomic and proteomic responses to increased or decreased Aβ42 and Aβ40 levels generated in human neuroblastoma cells. Genome-wide expression profiles (Affymetrix and proteomic approaches were combined to analyze the cellular response to the changed Aβ42- and Aβ40-levels. The cells responded to this challenge with significant changes in their expression pattern. We identified several dysregulated genes and proteins, but only the cellular retinoic acid binding protein 1 (CRABP1 was up-regulated exclusively in cells expressing an increased Aβ42/Aβ40 ratio. This consequently reduced all-trans retinoic acid (RA-induced differentiation, validated by CRABP1 knock down, which led to recovery of the cellular response to RA treatment and cellular sprouting under physiological RA concentrations. Importantly, this effect was specific to the AD typical increase in the Aβ42/Aβ40 ratio, whereas a decreased ratio did not result in up-regulation of CRABP1. Conclusion We

  9. Inhibition of WNT signaling reduces differentiation and induces sensitivity to doxorubicin in human malignant neuroblastoma SH-SY5Y cells.

    Science.gov (United States)

    Suebsoonthron, Junjira; Jaroonwitchawan, Thiranut; Yamabhai, Montarop; Noisa, Parinya

    2017-06-01

    Neuroblastoma is one of the most common cancers in infancy, arising from the neuroblasts during embryonic development. This cancer is difficult to treat and resistance to chemotherapy is often found; therefore, clinical trials of novel therapeutic approaches, such as targeted-cancer signaling, could be an alternative for a better treatment. WNT signaling plays significant roles in the survival, proliferation, and differentiation of human neuroblastoma. In this report, WNT signaling of a malignant human neuroblastoma cell line, SH-SY5Y cells, was inhibited by XAV939, a specific inhibitor of the Tankyrase enzyme. XAV939 treatment led to the reduction of β-catenin within the cells, confirming its inhibitory effect of WNT. The inhibition of WNT signaling by XAV939 did not affect cell morphology, survival, and proliferation; however, the differentiation and sensitivity to anticancer drugs of human neuroblastoma cells were altered. The treatment of XAV939 resulted in the downregulation of mature neuronal markers, including β-tubulin III, PHOX2A, and PHOX2B, whereas neural progenitor markers (PAX6, TFAP2α, and SLUG) were upregulated. In addition, the combination of XAV939 significantly enhanced the sensitivity of SH-SY5Y and IMR-32 cells to doxorubicin in both 2D and 3D culture systems. Microarray gene expression profiling suggested numbers of candidate target genes of WNT inhibition by XAV939, in particular, p21, p53, ubiquitin C, ZBED8, MDM2, CASP3, and FZD1, and this explained the enhanced sensitivity of SH-SY5Y cells to doxorubicin. Altogether, these results proposed that the altered differentiation of human malignant neuroblastoma cells by inhibiting WNT signaling sensitized the cells to anticancer drugs. This approach could thus serve as an effective treatment option for aggressive brain malignancy.

  10. Neuronal differentiation and long-term culture of the human neuroblastoma line SH-SY5Y.

    Science.gov (United States)

    Constantinescu, R; Constantinescu, A T; Reichmann, H; Janetzky, B

    2007-01-01

    Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder in industrialized countries. Present cell culture models for PD rely on either primary cells or immortal cell lines, neither of which allow for long-term experiments on a constant population, a crucial requisite for a realistic model of slowly progressing neurodegenerative diseases. We differentiated SH-SY5Y human dopaminergic neuroblastoma cells to a neuronal-like state in a perfusion culture system using a combination of retinoic acid and mitotic inhibitors. The cells could be cultivated for two months without the need for passage. We show, by various means, that the differentiated cells exhibit, at the molecular level, many neuronal properties not characteristic to the starting line. This approach opens the possibility to develop chronic models, in which the effect of perturbations and putative counteracting strategies can be monitored over long periods of time in a quasi-stable cell population.

  11. Effect of ellagic acid on proliferation, cell adhesion and apoptosis in SH-SY5Y human neuroblastoma cells.

    Science.gov (United States)

    Fjaeraa, Christina; Nånberg, Eewa

    2009-05-01

    Ellagic acid, a polyphenolic compound found in berries, fruits and nuts, has been shown to possess growth-inhibiting and apoptosis promoting activities in cancer cell lines in vitro. The objective of this study was to investigate the effect of ellagic acid in human neuroblastoma SH-SY5Y cells. In cultures of SH-SY5Y cells incubated with ellagic acid, time- and concentration-dependent inhibitory effects on cell number were demonstrated. Ellagic acid induced cell detachment, decreased cell viability and induced apoptosis as measured by DNA strand breaks. Ellagic acid-induced alterations in cell cycle were also observed. Simultaneous treatment with all-trans retinoic acid did not rescue the cells from ellagic acid effects. Furthermore, the results suggested that pre-treatment with all-trans retinoic acid to induce differentiation and cell cycle arrest did not rescue the cells from ellagic acid-induced cell death.

  12. Exendin-4 induces cell adhesion and differentiation and counteracts the invasive potential of human neuroblastoma cells.

    Science.gov (United States)

    Luciani, Paola; Deledda, Cristiana; Benvenuti, Susanna; Squecco, Roberta; Cellai, Ilaria; Fibbi, Benedetta; Marone, Ilaria Maddalena; Giuliani, Corinna; Modi, Giulia; Francini, Fabio; Vannelli, Gabriella Barbara; Peri, Alessandro

    2013-01-01

    Exendin-4 is a molecule currently used, in its synthetic form exenatide, for the treatment of type 2 diabetes mellitus. Exendin-4 binds and activates the Glucagon-Like Peptide-1 Receptor (GLP-1R), thus inducing insulin release. More recently, additional biological properties have been associated to molecules that belong to the GLP-1 family. For instance, Peptide YY and Vasoactive Intestinal Peptide have been found to affect cell adhesion and migration and our previous data have shown a considerable actin cytoskeleton rearrangement after exendin-4 treatment. However, no data are currently available on the effects of exendin-4 on tumor cell motility. The aim of this study was to investigate the effects of this molecule on cell adhesion, differentiation and migration in two neuroblastoma cell lines, SH-SY5Y and SK-N-AS. We first demonstrated, by Extra Cellular Matrix cell adhesion arrays, that exendin-4 increased cell adhesion, in particular on a vitronectin substrate. Subsequently, we found that this molecule induced a more differentiated phenotype, as assessed by i) the evaluation of neurite-like protrusions in 3D cell cultures, ii) the analysis of the expression of neuronal markers and iii) electrophysiological studies. Furthermore, we demonstrated that exendin-4 reduced cell migration and counteracted anchorage-independent growth in neuroblastoma cells. Overall, these data indicate for the first time that exendin-4 may have anti-tumoral properties.

  13. Protection by polyphenol extract from olive stones against apoptosis produced by oxidative stress in human neuroblastoma cells

    Science.gov (United States)

    Cortés-Castell, Ernesto; Veciana-Galindo, Carmen; Torró-Montell, Luis; Palazón-Bru, Antonio; Sirvent-Segura, Elia; Gil-Guillén, Vicente; Rizo-Baeza, Mercedes

    2016-02-16

    We evaluated the protective activity of an extract from a by-product such as olive stones, through its ability to inhibit H202 induced apoptosis in the SH-SY5Y human neuroblastoma cell line. To such end, 20,000 cells/well were cultivated and differentiation with retinoic acid was initiated. Once the cells were differentiated, apoptosis was induced with and without H2O2 extract. Finally, cDNA extraction was performed, and pro-apoptotic genes Bax and anti-apoptotic genes Bcl-2 were analyzed. Quantification of the gene expression was performed using the GAPDH gene marker. Cell viability with the extract is 97.6% (SD 5.7) with 10 mg/l and 62.8% (SD 1.2) to 50 mg/l, using 10 mg/l for the biomarker assay. The retinoic acid differentiated SH-S cell line (10 μM) shows a clear apoptosis when treated with H2O2 150 μM, with a Bax/Bcl-2 ratio of 3.75 (SD 0.80) in contrast to the differentiated control cells subjected to H2O2 and with extract, which have the same ratio of 1.02 (SD 0.01-0.03). The olive stone extract shows anti-apoptotic activity in the provoked cell death of SH-SY5Y human neuroblastoma cells in their normal state, defending them from oxidative stress which produces a significant increase in the apoptotic gene ratio in contrast to anti-apoptotic genes (Bax/Bcl-2).

  14. Effect of polyunsaturated fatty acids and their metabolites on bleomycin-induced cytotoxic action on human neuroblastoma cells in vitro.

    Directory of Open Access Journals (Sweden)

    Sailaja Polavarapu

    Full Text Available In the present study, we noted that bleomycin induced growth inhibitory action was augmented by all the polyunsaturated fatty acids (PUFAs tested on human neuroblastoma IMR-32 (0.5 × 10(4 cells/100 µl of IMR cells (EPA > DHA > ALA = GLA = AA > DGLA = LA: ∼ 60, 40, 30, 10-20% respectively at the maximum doses used. Of all the prostaglandins (PGE1, PGE2, PGF2α, and PGI2 and leukotrienes (LTD4 and LTE4 tested; PGE1, PGE2 and LTD4 inhibited the growth of IMR-32 cells to a significant degree at the highest doses used. Lipoxin A4 (LXA4, 19,20-dihydroxydocosapentaenoate (19, 20 DiHDPA and 10(S,17(S-dihydroxy-4Z,7Z,11E,13Z,15E,19Z-docosahexaenoic acid (protectin: 10(S,17(SDiHDoHE, metabolites of DHA, significantly inhibited the growth of IMR-32 cells. Pre-treatment with AA, GLA, DGLA and EPA and simultaneous treatment with all PUFAs used in the study augmented growth inhibitory action of bleomycin. Surprisingly, both indomethacin and nordihydroguaiaretic acid (NDGA at 60 and 20 µg/ml respectively enhanced the growth of IMR-32 cells even in the presence of bleomycin. AA enhanced oxidant stress in IMR-32 cells as evidenced by an increase in lipid peroxides, superoxide dismutase levels and glutathione peroxidase activity. These results suggest that PUFAs suppress growth of human neuroblastoma cells, augment growth inhibitory action of bleomycin by enhancing formation of lipid peroxides and altering the status of anti-oxidants and, in all probability, increase the formation of lipoxins, resolvins and protectins from their respective precursors that possess growth inhibitory actions.

  15. Estimation of transition doses for human glioblastoma, neuroblastoma and prostate cell lines using the linear-quadratic formalism

    Directory of Open Access Journals (Sweden)

    John Akudugu

    2015-09-01

    Full Text Available Purpose: The introduction of stereotactic radiotherapy has raised concerns regarding the use of the linear-quadratic (LQ model for predicting radiation response for large fractional doses. To partly address this issue, a transition dose D* below which the LQ model retains its predictive strength has been proposed. Estimates of D* which depends on the a, β, and D0 parameters are much lower than fractional doses typically encountered in stereotactic radiotherapy. D0, often referred to as the final slope of the cell survival curve, is thought to be constant. In vitro cell survival curves generally extend over the first few logs of cell killing, where D0-values derived from the multi-target formalism may be overestimated and can lead to low transition doses. Methods:  D0-values were calculated from first principles for each decade of cell killing, using experimentally-determined a and β parameters for 17 human glioblastoma, neuroblastoma, and prostate cell lines, and corresponding transition doses were derived.Results: D0 was found to decrease exponentially with cell killing. Using D0-values at cell surviving fractions of the order of 10-10 yielded transition doses ~3-fold higher than those obtained from D0-values obtained from conventional approaches. D* was found to increase from 7.84 ± 0.56, 8.91 ± 1.20, and 6.55 ± 0.91 Gy to 26.84 ± 2.83, 23.95 ± 2.03, and 22.49 ± 2.31 Gy for the glioblastoma, neuroblastoma, and prostate cell lines, respectively. Conclusion: These findings suggest that the linear-quadratic formalism might be valid for estimating the effect of stereotactic radiotherapy with fractional doses in excess of 20 Gy.

  16. Hydrogen Peroxide Toxicity Induces Ras Signaling in Human Neuroblastoma SH-SY5Y Cultured Cells

    Directory of Open Access Journals (Sweden)

    Jirapa Chetsawang

    2010-01-01

    Full Text Available It has been reported that overproduction of reactive oxygen species occurs after brain injury and mediates neuronal cells degeneration. In the present study, we examined the role of Ras signaling on hydrogen peroxide-induced neuronal cells degeneration in dopaminergic neuroblastoma SH-SY5Y cells. Hydrogen peroxide significantly reduced cell viability in SH-SY5Y cultured cells. An inhibitor of the enzyme that catalyzes the farnesylation of Ras proteins, FTI-277, and a competitive inhibitor of GTP-binding proteins, GDP-beta-S significantly decreased hydrogen peroxide-induced reduction in cell viability in SH-SY5Y cultured cells. The results of this study might indicate that a Ras-dependent signaling pathway plays a role in hydrogen peroxide-induced toxicity in neuronal cells.

  17. An Alu-like RNA promotes cell differentiation and reduces malignancy of human neuroblastoma cells.

    Science.gov (United States)

    Castelnuovo, Manuele; Massone, Sara; Tasso, Roberta; Fiorino, Gloria; Gatti, Monica; Robello, Mauro; Gatta, Elena; Berger, Audrey; Strub, Katharina; Florio, Tullio; Dieci, Giorgio; Cancedda, Ranieri; Pagano, Aldo

    2010-10-01

    Neuroblastoma (NB) is a pediatric cancer characterized by remarkable cell heterogeneity within the tumor nodules. Here, we demonstrate that the synthesis of a pol III-transcribed noncoding (nc) RNA (NDM29) strongly restricts NB development by promoting cell differentiation, a drop of malignancy processes, and a dramatic reduction of the tumor initiating cell (TIC) fraction in the NB cell population. Notably, the overexpression of NDM29 also confers to malignant NB cells an unpredicted susceptibility to the effects of antiblastic drugs used in NB therapy. Altogether, these results suggest the induction of NDM29 expression as possible treatment to increase cancer cells vulnerability to therapeutics and the measure of its synthesis in NB explants as prognostic factor of this cancer type.

  18. Survivin knockdown increased anti-cancer effects of (-)-epigallocatechin-3-gallate in human malignant neuroblastoma SK-N-BE2 and SH-SY5Y cells.

    Science.gov (United States)

    Hossain, Md Motarab; Banik, Naren L; Ray, Swapan K

    2012-08-01

    network formation ability of cells was significantly inhibited by survivin silencing and completely by combination of survivin silencing and EGCG treatment. Collectively, survivin silencing potentiated anti-cancer effects of EGCG in human malignant neuroblastoma cells having survivin overexpression. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. The second-generation ALK inhibitor alectinib effectively induces apoptosis in human neuroblastoma cells and inhibits tumor growth in a TH-MYCN transgenic neuroblastoma mouse model.

    Science.gov (United States)

    Lu, Jiaxiong; Guan, Shan; Zhao, Yanling; Yu, Yang; Woodfield, Sarah E; Zhang, Huiyuan; Yang, Kristine L; Bieerkehazhi, Shayahati; Qi, Lin; Li, Xiaonan; Gu, Jerry; Xu, Xin; Jin, Jingling; Muscal, Jodi A; Yang, Tianshu; Xu, Guo-Tong; Yang, Jianhua

    2017-08-01

    Activating germline mutations of anaplastic lymphoma kinase (ALK) occur in most cases of hereditary neuroblastoma (NB) and the constitutively active kinase activity of ALK promotes cell proliferation and survival in NB. Therefore, ALK kinase is a potential therapeutic target for NB. In this study, we show that the novel ALK inhibitor alectinib effectively suppressed cell proliferation and induces apoptosis in NB cell lines with either wild-type ALK or mutated ALK (F1174L and D1091N) by blocking ALK-mediated PI3K/Akt/mTOR signaling. In addition, alectinib enhanced doxorubicin-induced cytotoxicity and apoptosis in NB cells. Furthermore, alectinib induced apoptosis in an orthotopic xenograft NB mouse model. Also, in the TH-MYCN transgenic mouse model, alectinib resulted in decreased tumor growth and prolonged survival time. These results indicate that alectinib may be a promising therapeutic agent for the treatment of NB. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The biologic role of ganglioside in neuronal differentiation--effects of GM1 ganglioside on human neuroblastoma SH-SY5Y cells.

    OpenAIRE

    Lee, M. C.; Lee, W. S.; Park, C. S.; Juhng, S. W.

    1994-01-01

    Human neuroblastoma SH-SY5Y cell is a cloned cell line which has many attractive features for the study of neuronal proliferation and neurite outgrowth, because it has receptors for insulin, IGF-I and PDGF. Gangliosides are sialic acid containing glycosphingolipids which form an integral part of the plasma membrane of many mammalian cells. They inhibit cell growth mediated by tyrosine kinase receptors and ligand-stimulated tyrosine kinase activity, and autophosphorylation of EGF(epidermal gro...

  1. Inhibition of Neuroblastoma Tumor Growth by Ketogenic Diet and/or Calorie Restriction in a CD1-Nu Mouse Model.

    Directory of Open Access Journals (Sweden)

    Raphael Johannes Morscher

    Full Text Available Neuroblastoma is a malignant pediatric cancer derived from neural crest cells. It is characterized by a generalized reduction of mitochondrial oxidative phosphorylation. The goal of the present study was to investigate the effects of calorie restriction and ketogenic diet on neuroblastoma tumor growth and monitor potential adaptive mechanisms of the cancer's oxidative phosphorylation system.Xenografts were established in CD-1 nude mice by subcutaneous injection of two neuroblastoma cell lines having distinct genetic characteristics and therapeutic sensitivity [SH-SY5Y and SK-N-BE(2]. Mice were randomized to four treatment groups receiving standard diet, calorie-restricted standard diet, long chain fatty acid based ketogenic diet or calorie-restricted ketogenic diet. Tumor growth, survival, metabolic parameters and weight of the mice were monitored. Cancer tissue was evaluated for diet-induced changes of proliferation indices and multiple oxidative phosphorylation system parameters (respiratory chain enzyme activities, western blot analysis, immunohistochemistry and mitochondrial DNA content.Ketogenic diet and/or calorie restriction significantly reduced tumor growth and prolonged survival in the xenograft model. Neuroblastoma growth reduction correlated with decreased blood glucose concentrations and was characterized by a significant decrease in Ki-67 and phospho-histone H3 levels in the diet groups with low tumor growth. As in human tumor tissue, neuroblastoma xenografts showed distinctly low mitochondrial complex II activity in combination with a generalized low level of mitochondrial oxidative phosphorylation, validating the tumor model. Neuroblastoma showed no ability to adapt its mitochondrial oxidative phosphorylation activity to the change in nutrient supply induced by dietary intervention.Our data suggest that targeting the metabolic characteristics of neuroblastoma could open a new front in supporting standard therapy regimens

  2. Inhibition of Neuroblastoma Tumor Growth by Ketogenic Diet and/or Calorie Restriction in a CD1-Nu Mouse Model.

    Science.gov (United States)

    Morscher, Raphael Johannes; Aminzadeh-Gohari, Sepideh; Feichtinger, René Gunther; Mayr, Johannes Adalbert; Lang, Roland; Neureiter, Daniel; Sperl, Wolfgang; Kofler, Barbara

    2015-01-01

    Neuroblastoma is a malignant pediatric cancer derived from neural crest cells. It is characterized by a generalized reduction of mitochondrial oxidative phosphorylation. The goal of the present study was to investigate the effects of calorie restriction and ketogenic diet on neuroblastoma tumor growth and monitor potential adaptive mechanisms of the cancer's oxidative phosphorylation system. Xenografts were established in CD-1 nude mice by subcutaneous injection of two neuroblastoma cell lines having distinct genetic characteristics and therapeutic sensitivity [SH-SY5Y and SK-N-BE(2)]. Mice were randomized to four treatment groups receiving standard diet, calorie-restricted standard diet, long chain fatty acid based ketogenic diet or calorie-restricted ketogenic diet. Tumor growth, survival, metabolic parameters and weight of the mice were monitored. Cancer tissue was evaluated for diet-induced changes of proliferation indices and multiple oxidative phosphorylation system parameters (respiratory chain enzyme activities, western blot analysis, immunohistochemistry and mitochondrial DNA content). Ketogenic diet and/or calorie restriction significantly reduced tumor growth and prolonged survival in the xenograft model. Neuroblastoma growth reduction correlated with decreased blood glucose concentrations and was characterized by a significant decrease in Ki-67 and phospho-histone H3 levels in the diet groups with low tumor growth. As in human tumor tissue, neuroblastoma xenografts showed distinctly low mitochondrial complex II activity in combination with a generalized low level of mitochondrial oxidative phosphorylation, validating the tumor model. Neuroblastoma showed no ability to adapt its mitochondrial oxidative phosphorylation activity to the change in nutrient supply induced by dietary intervention. Our data suggest that targeting the metabolic characteristics of neuroblastoma could open a new front in supporting standard therapy regimens. Therefore, we propose

  3. Comparative non-cholinergic neurotoxic effects of paraoxon and diisopropyl fluorophosphate (DFP) on human neuroblastoma and astrocytoma cell lines

    International Nuclear Information System (INIS)

    Qian Yongchang; Venkatraj, Jijayanagaram; Barhoumi, Rola; Pal, Ranadip; Datta, Aniruddha; Wild, James R.; Tiffany-Castiglioni, Evelyn

    2007-01-01

    The objective of this study was to evaluate the comparative non-cholinergic neurotoxic effects of paraoxon, which is acutely neurotoxic, and diisopropyl fluorophosphate (DFP), which induces OPIDN, in the human neuroblastoma SY5Y and the human astrocytoma cell line CCF-STTG1. SY5Y cells have been studied extensively as a model for OP-induced neurotoxicity, but CCF cells have not previously been studied. We conducted a preliminary human gene array assay of OP-treated SY5Y cells in order to assess at the gene level whether these cells can distinguish between OP compounds that do and do not cause OPIDN. Paraoxon and DFP induced dramatically different profiles of gene expression. Two genes were upregulated and 13 downregulated by at least 2-fold in paraoxon-treated cells. In contrast, one gene was upregulated by DFP and none was downregulated at the 2-fold threshold. This finding is consistent with current and previous observations that SY5Y cells can distinguish between OPs that do or do not induce OPIDN. We also examined gene array results for possible novel target proteins or metabolic pathways for OP neurotoxicity. Protein levels of glucose regulated protein 78 (GRP78) revealed that paraoxon exposure at 3 μM for 24 h significantly reduced GRP78 levels by 30% in neuroblastoma cells, whereas DFP treatment had no effect. In comparison with SY5Y neuroblastoma cells, paraoxon and DFP (3 μM for 24 h) each significantly increased GRP78 levels by 23-24% in CCF astrocytoma cells. As we have previously evaluated intracellular changes in Ca 2+ levels in SY5Y cells, we investigated the effects of paraoxon and DFP on cellular Ca 2+ homeostasis in CCF by studying cytosolic and mitochondrial basal calcium levels. A significant decrease in the ratio of mitochondrial to cytosolic Ca 2+ fluorescence was detected in CCF cultures treated for either 1 or 3 days with 1, 3, 10, or 30 μM paraoxon. In contrast, treatment with DFP for 1 day had no significant effect on the ratio of

  4. Evidence of vanillin binding to CAMKIV explains the anti-cancer mechanism in human hepatic carcinoma and neuroblastoma cells.

    Science.gov (United States)

    Naz, Huma; Tarique, Mohd; Khan, Parvez; Luqman, Suaib; Ahamad, Shahzaib; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2018-01-01

    Human calcium/calmodulin-dependent protein kinase IV (CAMKIV) is a member of Ser/Thr kinase family, and is associated with different types of cancer and neurodegenerative diseases. Vanillin is a natural compound, a primary component of the extract of the vanilla bean which possesses varieties of pharmacological features including anti-oxidant, anti-inflammatory, anti-bacterial and anti-tumor. Here, we have investigated the binding mechanism and affinity of vanillin to the CAMKIV which is being considered as a potential drug target for cancer and neurodegenerative diseases. We found that vanillin binds strongly to the active site cavity of CAMKIV and stabilized by a large number of non-covalent interactions. We explored the utility of vanillin as anti-cancer agent and found that it inhibits the proliferation of human hepatocyte carcinoma (HepG2) and neuroblastoma (SH-SY5Y) cells in a dose-dependent manner. Furthermore, vanillin treatment resulted into the significant reduction in the mitochondrial membrane depolarization and ROS production that eventually leads to apoptosis in HepG2 and SH-SY5Y cancer cells. These findings may offer a novel therapeutic approach by targeting the CAMKIV using natural product and its derivative with a minimal side effect.

  5. Global MYCN transcription factor binding analysis in neuroblastoma reveals association with distinct E-box motifs and regions of DNA hypermethylation.

    LENUS (Irish Health Repository)

    Murphy, Derek M

    2009-01-01

    BACKGROUND: Neuroblastoma, a cancer derived from precursor cells of the sympathetic nervous system, is a major cause of childhood cancer related deaths. The single most important prognostic indicator of poor clinical outcome in this disease is genomic amplification of MYCN, a member of a family of oncogenic transcription factors. METHODOLOGY: We applied MYCN chromatin immunoprecipitation to microarrays (ChIP-chip) using MYCN amplified\\/non-amplified cell lines as well as a conditional knockdown cell line to determine the distribution of MYCN binding sites within all annotated promoter regions. CONCLUSION: Assessment of E-box usage within consistently positive MYCN binding sites revealed a predominance for the CATGTG motif (p<0.0016), with significant enrichment of additional motifs CATTTG, CATCTG, CAACTG in the MYCN amplified state. For cell lines over-expressing MYCN, gene ontology analysis revealed enrichment for the binding of MYCN at promoter regions of numerous molecular functional groups including DNA helicases and mRNA transcriptional regulation. In order to evaluate MYCN binding with respect to other genomic features, we determined the methylation status of all annotated CpG islands and promoter sequences using methylated DNA immunoprecipitation (MeDIP). The integration of MYCN ChIP-chip and MeDIP data revealed a highly significant positive correlation between MYCN binding and DNA hypermethylation. This association was also detected in regions of hemizygous loss, indicating that the observed association occurs on the same homologue. In summary, these findings suggest that MYCN binding occurs more commonly at CATGTG as opposed to the classic CACGTG E-box motif, and that disease associated over expression of MYCN leads to aberrant binding to additional weaker affinity E-box motifs in neuroblastoma. The co-localization of MYCN binding and DNA hypermethylation further supports the dual role of MYCN, namely that of a classical transcription factor affecting the

  6. Olfactory neuroblastoma

    International Nuclear Information System (INIS)

    Rashid, D.; Ahmed, B.; Malik, S.M.; Khan, M.

    2000-01-01

    Olfactory neuroblastoma/esthesioneuroblastoma in a rare malignant tumour of the olfactory neuroepithelium. This is a report of 5 cases managed over the last 10 years at Combined Military Hospital, Rawalpindi. Age of the patients at presentation ranged from 27 to 70 years. The main symptoms were unilateral nasal obstruction and intermittent epistaxis. The mean duration of symptoms at presentation was 11 months. Two patients were staged as B and 3 as C at presentation. The stage of the disease correlated with the duration of symptoms. All the cases were diagnosed on histopathology. Three were offered combination of surgery and radiotherapy. One patient received only surgical treatment and one patient received radiotherapy and chemotherapy. Combination of surgery and radiotherapy showed best results. (author)

  7. Amperometric Microsensors Monitoring Glutamate-Evoked In Situ Responses of Nitric Oxide and Carbon Monoxide from Live Human Neuroblastoma Cells

    Directory of Open Access Journals (Sweden)

    Yejin Ha

    2017-07-01

    Full Text Available In the brain, nitric oxide (NO and carbon monoxide (CO are important signaling gases which have multifaceted roles, such as neurotransmitters, neuromodulators, and vasodilators. Even though it is difficult to measure NO and CO in a living system due to their high diffusibility and extremely low release levels, electrochemical sensors are promising tools to measure in vivo and in vitro NO and CO gases. In this paper, using amperometric dual and septuple NO/CO microsensors, real-time NO and CO changes evoked by glutamate were monitored simultaneously for human neuroblastoma (SH-SY5Y cells. In cultures, the cells were differentiated and matured into functional neurons by retinoic acid and brain-derived neurotrophic factor. When glutamate was administrated to the cells, both NO and CO increases and subsequent decreases returning to the basal levels were observed with a dual NO/CO microsensor. In order to facilitate sensor’s measurement, a flower-type septuple NO/CO microsensor was newly developed and confirmed in terms of the sensitivity and selectivity. The septuple microsensor was employed for the measurements of NO and CO changes as a function of distances from the position of glutamate injection. Our sensor measurements revealed that only functionally differentiated cells responded to glutamate and released NO and CO.

  8. Enhanced oxidative stress and aberrant mitochondrial biogenesis in human neuroblastoma SH-SY5Y cells during methamphetamine induced apoptosis

    International Nuclear Information System (INIS)

    Wu, C.-W.; Ping, Y.-H.; Yen, J.-C.; Chang, C.-Y.; Wang, S.-F.; Yeh, C.-L.; Chi, C.-W.; Lee, H.-C.

    2007-01-01

    Methamphetamine (METH) is an abused drug that may cause psychiatric and neurotoxic damage, including degeneration of monoaminergic terminals and apoptosis of non-monoaminergic cells in Brain. The cellular and molecular mechanisms underlying these METH-induced neurotoxic effects remain to be clarified. In this study, we performed a time course assessment to investigate the effects of METH on intracellular oxidative stress and mitochondrial alterations in a human dopaminergic neuroblastoma SH-SY5Y cell line. We characterized that METH induces a temporal sequence of several cellular events including, firstly, a decrease in mitochondrial membrane potential within 1 h of the METH treatment, secondly, an extensive decline in mitochondrial membrane potential and increase in the level of reactive oxygen species (ROS) after 8 h of the treatment, thirdly, an increase in mitochondrial mass after the drug treatment for 24 h, and finally, a decrease in mtDNA copy number and mitochondrial proteins per mitochondrion as well as the occurrence of apoptosis after 48 h of the treatment. Importantly, vitamin E attenuated the METH-induced increases in intracellular ROS level and mitochondrial mass, and prevented METH-induced cell death. Our observations suggest that enhanced oxidative stress and aberrant mitochondrial biogenesis may play critical roles in METH-induced neurotoxic effects

  9. Cyclophilin B protects SH-SY5Y human neuroblastoma cells against MPP(+)-induced neurotoxicity via JNK pathway.

    Science.gov (United States)

    Oh, Yoojung; Jeong, Kwon; Kim, Kiyoon; Lee, Young-Seok; Jeong, Suyun; Kim, Sung Soo; Yoon, Kyung-Sik; Ha, Joohun; Kang, Insug; Choe, Wonchae

    2016-09-23

    Parkinson's disease (PD) is the second most common neurodegenerative disorder of aging. PD involves a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyidine (MPTP) and its toxic metabolite 1-methyl-4-phenylpyridinium ion (MPP+) inhibit the complex I of the mitochondrial electron transport chain, and have been widely used to construct PD models. Cyclophilin B (CypB) is an endoplasmic reticulum protein that binds to cyclosporine A as a cyclophilin family member. CypB has peptidyl-prolyl cis-trans isomerase (PPIase) activity. We investigated the protective effects of overexpressed CypB on MPP+-induced neurocytotoxicity in SH-SY5Y human neuroblastoma cells. Overexpressed CypB decreased MPP(+)-induced oxidative stress through the modulation of antioxidant enzymes including manganese superoxide dismutase and catalase, and prevented neurocytotoxicity via mitogen-activated protein kinase, especially the c-Jun N-terminal kinase pathway. In addition, CypB inhibited the activation of MPP(+)-induced the pro-apoptotic molecules poly (ADP-ribose) polymerase, Bax, and Bcl-2, and attenuated MPP(+)-induced mitochondrial dysfunction. The data suggest that overexpressed CypB protects neuronal cells from MPP+-induced dopaminergic neuronal cell death. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. The M1 muscarinic receptor and its second messenger coupling in human neuroblastoma cells and transfected murine fibroblast cells

    International Nuclear Information System (INIS)

    Mei, Lin.

    1989-01-01

    The data of this study indicate that pirenzepine (PZ)-high affinity muscarinic receptors (mAChRs) are coupled to the hydrolysis of inositol lipids and not to the adenylate cyclase system in human neuroblastoma SH-SY5Y cells. The maximal carbachol(CCh)-stimulated [ 3 H]IP 1 accumulation in the SH-SY5Y cells was decreased in the presence of 1μg/ml pertussis toxin, suggesting that a pertussis toxin sensitive G-protein may be involved in the coupling. Several cell clones which express only M 1 mAChR were generated by transfecting the murine fibroblast B82 cells with the cloned rat genomic m 1 gene. The transfected B82 cells (cTB10) showed specific [ 3 H](-)QNB binding activity. The mAChRs in these cells are of the M 1 type defined by their high affinity for PZ and low affinity for AF-DX 116 and coupled to hydrolysis of inositol lipids, possibly via a pertussis toxin sensitive G protein. The relationship between the M 1 mAChR density and the receptor-mediated hydrolysis of inositol lipids was studied in 7 clones. The M 1 mAChR densities in these cells characterized by [ 3 H](-)MQNB binding ranged from 12 fmol/10 6 cells in LK3-1 cells to 260 fmol/10 6 cells in the LK3-8 cells

  11. Distinction of Fly Artifacts from Human Blood using Immunodetection.

    Science.gov (United States)

    Rivers, David B; Acca, Gillian; Fink, Marc; Brogan, Rebecca; Chen, Dorothy; Schoeffield, Andrew

    2018-02-21

    Insect stains produced by necrophagous flies are indistinguishable morphologically from human bloodstains. At present, no diagnostic tests exist to overcome this deficiency. As the first step toward developing a chemical test to recognize fly artifacts, polyclonal antisera were generated in rats against three distinct antigenic sequences of fly cathepsin D-like proteinase, an enzyme that is structurally distinct in cyclorrhaphous Diptera from other animals. The resulting rat antisera bound to artifacts produced by Protophormia terraenovae and synthetic peptides used to generate the polyclonal antisera, but not with any type of mammalian blood tested in immunoassays. Among the three antisera, anti-md3 serum displayed the highest reactivity for fly stains, demonstrated cross-reactivity for all synthetic peptides representing antigenic sequences of the mature fly enzyme, and bound artifacts originating from the fly digestive tract. Further work is needed to determine whether the antisera are suitable for non-laboratory conditions. © 2018 American Academy of Forensic Sciences.

  12. Two distinct forms of functional lateralization in the human brain

    Science.gov (United States)

    Gotts, Stephen J.; Jo, Hang Joon; Wallace, Gregory L.; Saad, Ziad S.; Cox, Robert W.; Martin, Alex

    2013-01-01

    The hemispheric lateralization of certain faculties in the human brain has long been held to be beneficial for functioning. However, quantitative relationships between the degree of lateralization in particular brain regions and the level of functioning have yet to be established. Here we demonstrate that two distinct forms of functional lateralization are present in the left vs. the right cerebral hemisphere, with the left hemisphere showing a preference to interact more exclusively with itself, particularly for cortical regions involved in language and fine motor coordination. In contrast, right-hemisphere cortical regions involved in visuospatial and attentional processing interact in a more integrative fashion with both hemispheres. The degree of lateralization present in these distinct systems selectively predicted behavioral measures of verbal and visuospatial ability, providing direct evidence that lateralization is associated with enhanced cognitive ability. PMID:23959883

  13. Graphene Oxide–Silver Nanoparticles Nanocomposite Stimulates Differentiation in Human Neuroblastoma Cancer Cells (SH-SY5Y

    Directory of Open Access Journals (Sweden)

    Sangiliyandi Gurunathan

    2017-11-01

    Full Text Available Recently, graphene and graphene related nanocomposite receive much attention due to high surface-to-volume ratio, and unique physiochemical and biological properties. The combination of metallic nanoparticles with graphene-based materials offers a promising method to fabricate novel graphene–silver hybrid nanomaterials with unique functions in biomedical nanotechnology, and nanomedicine. Therefore, this study was designed to prepare graphene oxide (GO silver nanoparticles (AgNPs nanocomposite (GO-AgNPs containing two different nanomaterials in single platform with distinctive properties using luciferin as reducing agents. In addition, we investigated the effect of GO-AgNPs on differentiation in SH-SY5Y cells. The synthesized GO-AgNPs were characterized by ultraviolet-visible absorption spectroscopy (UV-vis, X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM and Raman spectroscopy. The differentiation was confirmed by series of cellular and biochemical assays. The AgNPs were distributed uniformly on the surface of graphene oxide with an average size of 25 nm. As prepared GO-AgNPOs induces differentiation by increasing the expression of neuronal differentiation markers and decreasing the expression of stem cell markers. The results indicated that the redox biology involved the expression of various signaling molecules, which play an important role in differentiation. This study suggests that GO-AgNP nanocomposite could stimulate differentiation of SH-SY5Y cells. Furthermore, understanding the mechanisms of differentiation of neuroblastoma cells could provide new strategies for cancer and stem cell therapies. Therefore, these studies suggest that GO-AgNPs could target specific chemotherapy-resistant cells within a tumor.

  14. Cell Proliferation in Neuroblastoma

    Science.gov (United States)

    Stafman, Laura L.; Beierle, Elizabeth A.

    2016-01-01

    Neuroblastoma, the most common extracranial solid tumor of childhood, continues to carry a dismal prognosis for children diagnosed with advanced stage or relapsed disease. This review focuses upon factors responsible for cell proliferation in neuroblastoma including transcription factors, kinases, and regulators of the cell cycle. Novel therapeutic strategies directed toward these targets in neuroblastoma are discussed. PMID:26771642

  15. Intra-adrenal murine TH-MYCN neuroblastoma tumors grow more aggressive and exhibit a distinct tumor microenvironment relative to their subcutaneous equivalents.

    Science.gov (United States)

    Kroesen, Michiel; Brok, Ingrid C; Reijnen, Daphne; van Hout-Kuijer, Maaike A; Zeelenberg, Ingrid S; Den Brok, Martijn H; Hoogerbrugge, Peter M; Adema, Gosse J

    2015-05-01

    In around half of the patients with neuroblastoma (NBL), the primary tumor is located in one of the adrenal glands. We have previously reported on a transplantable TH-MYCN model of subcutaneous (SC) growing NBL in C57Bl/6 mice for immunological studies. In this report, we describe an orthotopic TH-MYCN transplantable model where the tumor cells were injected intra-adrenally (IA) by microsurgery. Strikingly, 9464D cells grew out much faster in IA tumors compared to the subcutis. Tumors were infiltrated by equal numbers of lymphocytes and myeloid cells. Within the myeloid cell population, however, tumor-infiltrating macrophages were more abundant in IA tumors compared to SC tumors and expressed lower levels of MHC class II, indicative of a more immunosuppressive phenotype. Using 9464D cells stably expressing firefly luciferase, enhanced IA tumor growth could be confirmed using bioluminescence. Collectively, these data show that the orthotopic IA localization of TH-MYCN cells impacts the NBL tumor microenvironment, resulting in a more stringent NBL model to study novel immunotherapeutic approaches for NBL.

  16. Tumor-homing effect of human mesenchymal stem cells in a TH-MYCN mouse model of neuroblastoma.

    Science.gov (United States)

    Kimura, Koseki; Kishida, Tsunao; Wakao, Junko; Tanaka, Tomoko; Higashi, Mayumi; Fumino, Shigehisa; Aoi, Shigeyoshi; Furukawa, Taizo; Mazda, Osam; Tajiri, Tatsuro

    2016-12-01

    Human mesenchymal stem cells (hMSCs) are multipotent stem-like cells that are reported to have tumor-suppression effects and migration ability toward damaged tissues or tumors. The aim of this study was to analyze the tumor-homing ability of hMSCs and antitumor potency in a transgenic TH-MYCN mouse model of neuroblastoma (NB). hMSCs (3×10 6 ) labeled with DiR, a lipophilic near-infrared dye, were intraperitoneally (i.p.) or intravenously (i.v.) administered to the TH-MYCN mice. hMSC in vivo kinetics were assayed using the IVIS® imaging system for 24h after injection. Immunohistochemistry using human CD90 antibody was also performed to confirm the location of hMSCs in various organs and tumors. Furthermore, the survival curve of TH-MYCN mice treated with hMSCs was compared to a control group administered PBS. i.p. hMSCs were recognized in the tumors of TH-MYCN mice by IVIS. hMSCs were also located inside the tumor tissue. Conversely, most of the i.v. hMSCs were captured by the lungs, and migration into the tumors was not noted. There was no significant difference in the survival between the hMSC and control groups. The present study suggested that hMSCs may be potential tumor-specific therapeutic delivery vehicles in NB according to their homing potential to tumors. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Rhinovirus infection induces distinct transcriptome profiles in polarized human macrophages.

    Science.gov (United States)

    Rajput, Charu; Walsh, Megan P; Eder, Breanna N; Metitiri, Ediri E; Popova, Antonia P; Hershenson, Marc B

    2018-05-01

    Infections with rhinovirus (RV) cause asthma exacerbations. Recent studies suggest that macrophages play a role in asthmatic airway inflammation and the innate immune response to RV infection. Macrophages exhibit phenotypes based on surface markers and gene expression. We hypothesized that macrophage polarization state alters gene expression in response to RV infection. Cells were derived from human peripheral blood derived monocytes. M1 and M2 polarization was carried out by using IFN-γ and IL-4, respectively, and RNA was extracted for Affymetrix Human Gene ST2.1 exon arrays. Selected genes were validated by quantitative (q)PCR. Treatment of nonactivated (M0) macrophages with IFN-γ and IL-4 induced the expression of 252 and 153 distinct genes, respectively, including previously-identified M1 and M2 markers. RV infection of M0 macrophages induced upregulation of 232 genes; pathway analysis showed significant overrepresentation of genes involved in IFN-α/β signaling and cytokine signaling in the immune system. RV infection induced differential expression of 195 distinct genes in M1-like macrophages but only seven distinct genes in M2-like-polarized cells. In a secondary analysis, comparison between M0-, RV-infected, and M1-like-polarized, RV-infected macrophages revealed differential expression of 227 genes including those associated with asthma and its exacerbation. qPCR demonstrated increased expression of CCL8, CXCL10, TNFSF10, TNFSF18, IL6, NOD2, and GSDMD and reduced expression of VNN1, AGO1, and AGO2. Together, these data show that, in contrast to M2-like-polarized macrophages, gene expression of M1-like macrophages is highly regulated by RV.

  18. Distinct functional programming of human fetal and adult monocytes.

    Science.gov (United States)

    Krow-Lucal, Elisabeth R; Kim, Charles C; Burt, Trevor D; McCune, Joseph M

    2014-03-20

    Preterm birth affects 1 out of 9 infants in the United States and is the leading cause of long-term neurologic handicap and infant mortality, accounting for 35% of all infant deaths in 2008. Although cytokines including interferon-γ (IFN-γ), interleukin-10 (IL-10), IL-6, and IL-1 are produced in response to in utero infection and are strongly associated with preterm labor, little is known about how human fetal immune cells respond to these cytokines. We demonstrate that fetal and adult CD14(+)CD16(-) classical monocytes are distinct in terms of basal transcriptional profiles and in phosphorylation of signal transducers and activators of transcription (STATs) in response to cytokines. Fetal monocytes phosphorylate canonical and noncanonical STATs and respond more strongly to IFN-γ, IL-6, and IL-4 than adult monocytes. We demonstrate a higher ratio of SOCS3 to IL-6 receptor in adult monocytes than in fetal monocytes, potentially explaining differences in STAT phosphorylation. Additionally, IFN-γ signaling results in upregulation of antigen presentation and costimulatory machinery in adult, but not fetal, monocytes. These findings represent the first evidence that primary human fetal and adult monocytes are functionally distinct, potentially explaining how these cells respond differentially to cytokines implicated in development, in utero infections, and the pathogenesis of preterm labor.

  19. Survivin knockdown increased anti-cancer effects of (−)-epigallocatechin-3-gallate in human malignant neuroblastoma SK-N-BE2 and SH-SY5Y cells

    International Nuclear Information System (INIS)

    Hossain, Md. Motarab; Banik, Naren L.; Ray, Swapan K.

    2012-01-01

    network formation ability of cells was significantly inhibited by survivin silencing and completely by combination of survivin silencing and EGCG treatment. Collectively, survivin silencing potentiated anti-cancer effects of EGCG in human malignant neuroblastoma cells having survivin overexpression. -- Highlights: ► Survivin shRNA + EGCG controlled growth of human malignant neuroblastoma cells. ► Survivin knockdown induced neuronal differentiation in neuroblastoma cells. ► Survivin shRNA + EGCG induced morphological and biochemical features of apoptosis. ► Combination therapy inhibited invasion, proliferation, and angiogenesis as well. ► So, combination therapy showed multiple anti-cancer mechanisms in neuroblastoma.

  20. Effects of 1950 MHz radiofrequency electromagnetic fields on Aβ processing in human neuroblastoma and mouse hippocampal neuronal cells

    International Nuclear Information System (INIS)

    Park, Jeongyeon; Kwon, Jong Hwa; Kim, Nam; Song, Kiwon

    2018-01-01

    Alzheimer’s disease (AD) is a neurodegenerative disease leading to progressive loss of memory and other cognitive functions. One of the well-known pathological markers of AD is the accumulation of amyloid-beta protein (Aβ), and its plaques, in the brain. Recent studies using Tg-5XFAD mice as a model of AD have reported that exposure to radiofrequency electromagnetic fields (RF-EMF) from cellular phones reduced Aβ plaques in the brain and showed beneficial effects on AD. In this study, we examined whether exposure to 1950 MHz RF-EMF affects Aβ processing in neural cells. We exposed HT22 mouse hippocampal neuronal cells and SH-SY5Y human neuroblastoma cells to RF-EMF (SAR 6 W/kg) for 2 h per day for 3 days, and analyzed the mRNA and protein expression of the key genes related to Aβ processing. When exposed to RF-EMF, mRNA levels of APP, BACE1, ADAM10 and PSEN1 were decreased in HT22, but the mRNA level of APP was not changed in SH-SY5Y cells. The protein expression of APP and BACE1, as well as the secreted Aβ peptide, was not significantly different between RF-EMF–exposed 7w-PSML, HT22 and SH-SY5Y cells and the unexposed controls. These observations suggest that RF-EMF exposure may not have a significant physiological effect on Aβ processing of neural cells in the short term. However, considering that we only exposed HT22 and SH-SY5Y cells to RF-EMF for 2 h per day for 3 days, we cannot exclude the possibility that 1950 MHz RF-EMF induces physiological change in Aβ processing with long-term and continuous exposure.

  1. Effect of toluene diisocyanate on homeostasis of intracellular-free calcium in human neuroblastoma SH-SY5Y Cells

    International Nuclear Information System (INIS)

    Liu, P.-S.; Chiung, Y.-M.; Kao, Y.-Y.

    2006-01-01

    The mechanisms of TDI (2,4-toluene diisocyanate)-induced occupational asthma are not fully established. Previous studies have indicated that TDI induces non-specific bronchial hyperreactivity to methacholine and induces contraction of smooth muscle tissue by activating 'capsaicin-sensitive' nerves resulting asthma. Cytosolic-free calcium ion concentrations ([Ca 2+ ] c ) are elevated when either capsaicin acts at vanilloid receptors, or methacholine at muscarinic receptors. This study therefore investigated the effects of TDI on Ca 2+ mobilization in human neuroblastoma SH-SY5Y cells. TDI was found to elevate [Ca 2+ ] c by releasing Ca 2+ from the intracellular stores and extracellular Ca 2+ influx. 500 μM TDI induced a net [Ca 2+ ] c increase of 112 ± 8 and 78 ± 6 nM in the presence and absence of extracellular Ca 2+ , respectively. In Ca 2+ -free buffer, TDI induced Ca 2+ release from internal stores to reduce their Ca 2+ content and this reduction was evidenced by a suppression occurring on the [Ca 2+ ] c rise induced by thapsigargin, ionomycin, and methacholine after TDI incubation. In the presence of extracellular Ca 2+ , simultaneous exposure to TDI and methacholine led a higher level of [Ca 2+ ] c compared to single methacholine stimulation, that might explain that TDI induces bronchial hyperreactivity to methacholine. We conclude that TDI is capable of interfering the [Ca 2+ ] c homeostasis including releasing Ca 2+ from internal stores and inducing extracellular Ca 2+ influx. The interaction of this novel character and bronchial hyperreactivity need further investigation

  2. Ceramide binding to anandamide increases its half-life and potentiates its cytotoxicity in human neuroblastoma cells.

    Science.gov (United States)

    Di Scala, Coralie; Mazzarino, Morgane; Yahi, Nouara; Varini, Karine; Garmy, Nicolas; Fantini, Jacques; Chahinian, Henri

    2017-06-01

    Anandamide (AEA) is a ubiquitous lipid that exerts neurotransmitter functions but also controls important biological functions such as proliferation, survival, or programmed cell death. The latter effects are also regulated by ceramide, a lipid enzymatically generated from sphingomyelin hydrolysis by sphingomyelinase. Ceramide has been shown to increase the cellular toxicity of AEA, but the mechanisms controlling this potentiating effect remained unclear. Here we have used a panel of in silico, physicochemical, biochemical and cellular approaches to study the crosstalk between AEA and ceramide apoptotic pathways. Molecular dynamics simulations indicated that AEA and ceramide could form a stable complex in phosphatidylcholine membranes. Consistent with these data, we showed that AEA can specifically insert into ceramide monolayers whereas it did not penetrate into sphingomyelin membranes. Then we have studied the effects of ceramide on AEA-induced toxicity of human neuroblastoma cells. In these experiments, the cells have been either naturally enriched in ceramide by neutral sphingomyelinase pre-incubation or treated with C2-ceramide, a biologically active ceramide analog. Both treatments significantly increased the cytotoxicity of AEA as assessed by the MTS mitochondrial toxicity assay. This effect was correlated with the concomitant accumulation of natural ceramide (or its synthetic analog) and AEA in the cells. A kinetic study of AEA hydrolysis showed that ceramide inhibited the fatty acid amino hydrolase (FAAH) activity in cell extracts. Taken together, these data suggested that ceramide binds to AEA, increases its half-life and potentiates its cytotoxicity. Overall, these mechanisms account for a functional cross-talk between AEA and ceramide apoptotic pathways. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Hydrogen peroxide modifies both activity and isoforms of acetylcholinesterase in human neuroblastoma SH-SY5Y cells

    Directory of Open Access Journals (Sweden)

    Alba Garcimartín

    2017-08-01

    Full Text Available The involvement of cholinergic system and the reactive oxygen species (ROS in the pathogenesis of some degenerative diseases has been widely reported; however, the specific impact of hydrogen peroxide (H2O2 on the acetylcholinesterase (AChE activity as well as AChE isoform levels has not been clearly established. Hence, the purpose of present study is to clarify whether H2O2 alters these parameters.Human neuroblastoma SH-SY5Y cells were treated with H2O2 (1–1000 µM for 24 h and AChE activity and AChE and cytochrome c levels were evaluated. AChE activity was strongly increased from 1 µM to 1000 µM of H2O2. The results of the kinetic study showed that H2O2 affected Vmax but not Km; and also that H2O2 changed the sigmoid kinetic observed in control samples to hyperbolic kinetic. Thus, results suggest that H2O2 acts as an allosteric activators. In addition, H2O2, (100–1000 µM reduced the total AChE content and modified its isoform profile (mainly 50-, 70-, and 132-kDa·H2O2 from 100 µM to 1000 µM induced cytochrome c release confirming cell death by apoptosis. All these results together suggest: a the involvement of oxidative stress in the imbalance of AChE; and b treatment with antioxidant agents may be a suitable strategy to protect cholinergic system alterations promoted by oxidative stress. Keywords: Acetylcholinesterase, Hydrogen peroxide, Alternative splicing, Cell culture, Cell death

  4. SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson's disease.

    Science.gov (United States)

    Xie, Hong-rong; Hu, Lin-sen; Li, Guo-yi

    2010-04-20

    To evaluate the human neuroblastoma SH-SY5Y cell line as an in vitro model of dopaminergic (DAergic) neurons for Parkinson's disease (PD) research and to determine the effect of differentiation on this cell model. The data of this review were selected from the original reports and reviews related to SH-SY5Y cells published in Chinese and foreign journals (Pubmed 1973 to 2009). After searching the literature, 60 articles were selected to address this review. The SH-SY5Y cell line has become a popular cell model for PD research because this cell line posses many characteristics of DAergic neurons. For example, these cells express tyrosine hydroxylase and dopamine-beta-hydroxylase, as well as the dopamine transporter. Moreover, this cell line can be differentiated into a functionally mature neuronal phenotype in the presence of various agents. Upon differentiation, SH-SY5Y cells stop proliferating and a constant cell number is subsequently maintained. However, different differentiating agents induce different neuronal phenotypes and biochemical changes. For example, retinoic acid induces differentiation toward a cholinergic neuronal phenotype and increases the susceptibility of SH-SY5Y cells to neurotoxins and neuroprotective agents, whereas treatment with retinoic acid followed by phorbol ester 12-O-tetradecanoylphorbol-13-acetate results in a DAergic neuronal phenotype and decreases the susceptibility of cells to neurotoxins and neuroprotective agents. Some differentiating agents also alter kinetics of 1-methyl-4-phenyl-pyridinium (MPP(+)) uptake, making SH-SY5Y cells more similar to primary mesencephalic neurons. Differentiated and undifferentiated SH-SY5Y cells have been widely used as a cell model of DAergic neurons for PD research. Some differentiating agents afford SH-SY5Y cells with more potential for studying neurotoxicity and neuroprotection and are thus more relevant to experimental PD research.

  5. Dibutyryl cyclic AMP induces differentiation of human neuroblastoma SH-SY5Y cells into a noradrenergic phenotype.

    Science.gov (United States)

    Kume, Toshiaki; Kawato, Yuka; Osakada, Fumitaka; Izumi, Yasuhiko; Katsuki, Hiroshi; Nakagawa, Takayuki; Kaneko, Shuji; Niidome, Tetsuhiro; Takada-Takatori, Yuki; Akaike, Akinori

    2008-10-10

    Dibutyryl cyclic AMP (dbcAMP) and retinoic acid (RA) have been demonstrated to be the inducers of morphological differentiation in SH-SY5Y cells, a human catecholaminergic neuroblastoma cell line. However, it remains unclear whether morphologically differentiated SH-SY5Y cells by these compounds acquire catecholaminergic properties. We focused on the alteration of tyrosine hydroxylase (TH) expression and intracellular content of noradrenaline (NA) as the indicators of functional differentiation. Three days treatment with dbcAMP (1mM) and RA (10microM) induced morphological changes and an increase of TH-positive cells using immunocytochemical analysis in SH-SY5Y cells. The percentage of TH-expressing cells in dbcAMP (1mM) treatment was larger than that in RA (10microM) treatment. In addition, dbcAMP increased intracellular NA content, whereas RA did not. The dbcAMP-induced increase in TH-expressing cells is partially inhibited by KT5720, a protein kinase A (PKA) inhibitor. We also investigated the effect of butyrate on SH-SY5Y cells, because dbcAMP is enzymatically degraded by intracellular esterase, thereby resulting in the formation of butyrate. Butyrate induced the increase of NA content at lower concentrations than dbcAMP, although the increase in TH-expressing cells by butyrate was smaller than that by dbcAMP. The dbcAMP (1mM)- and butyrate (0.3mM)-induced increase in NA content was completely suppressed by alpha-methyl-p-tyrosine (1mM), an inhibitor of TH. These results suggest that dbcAMP induces differentiation into the noradrenergic phenotype through both PKA activation and butyrate.

  6. Anti-cancer stemness and anti-invasive activity of bitter taste receptors, TAS2R8 and TAS2R10, in human neuroblastoma cells.

    Directory of Open Access Journals (Sweden)

    Yoona Seo

    Full Text Available Neuroblastoma (NB originates from immature neuronal cells and currently has a poor clinical outcome. NB cells possess cancer stem cells (CSCs characteristics that facilitate the initiation of a tumor, as well as its metastasis. Human bitter taste receptors, referred to as TAS2Rs, are one of five types of basic taste receptors and they belong to a family of G-protein coupled receptors. The recent finding that taste receptors are expressed in non-gustatory tissues suggest that they mediate additional functions distinct from taste perception. While it is generally admitted that the recognition of bitter tastes may be associated with a self-defense system to prevent the ingestion of poisonous food compounds, this recognition may also serve as a disease-related function in the human body. In particular, the anti-cancer stemness and invasion effects of TAS2Rs on NB cells remain poorly understood. In the present study, endogenous expression of TAS2R8 and TAS2R10 in SK-N-BE(2C and SH-SY5Y cells was examined. In addition, higher levels of TAS2R8 and TAS2R10 expression were investigated in more differentiated SY5Y cells. Both TAS2Rs were up-regulated following the induction of neuronal cell differentiation by retinoic acid. In addition, ectopic transfection of the two TAS2Rs induced neurite elongation in the BE(2C cells, and down-regulated CSCs markers (including DLK1, CD133, Notch1, and Sox2, and suppressed self-renewal characteristics. In particular, TAS2RS inhibited tumorigenicity. Furthermore, when TAS2Rs was over-expressed, cell migration, cell invasion, and matrix metalloproteinases activity were inhibited. Expression levels of hypoxia-inducible factor-1α, a well-known regulator of tumor metastasis, as well as its downstream targets, vascular endothelial growth factor and glucose transporter-1, were also suppressed by TAS2Rs. Taken together, these novel findings suggest that TAS2Rs targets CSCs by suppressing cancer stemness characteristics and NB

  7. Functional dissection of HOXD cluster genes in regulation of neuroblastoma cell proliferation and differentiation.

    Directory of Open Access Journals (Sweden)

    Yunhong Zha

    Full Text Available Retinoic acid (RA can induce growth arrest and neuronal differentiation of neuroblastoma cells and has been used in clinic for treatment of neuroblastoma. It has been reported that RA induces the expression of several HOXD genes in human neuroblastoma cell lines, but their roles in RA action are largely unknown. The HOXD cluster contains nine genes (HOXD1, HOXD3, HOXD4, and HOXD8-13 that are positioned sequentially from 3' to 5', with HOXD1 at the 3' end and HOXD13 the 5' end. Here we show that all HOXD genes are induced by RA in the human neuroblastoma BE(2-C cells, with the genes located at the 3' end being activated generally earlier than those positioned more 5' within the cluster. Individual induction of HOXD8, HOXD9, HOXD10 or HOXD12 is sufficient to induce both growth arrest and neuronal differentiation, which is associated with downregulation of cell cycle-promoting genes and upregulation of neuronal differentiation genes. However, induction of other HOXD genes either has no effect (HOXD1 or has partial effects (HOXD3, HOXD4, HOXD11 and HOXD13 on BE(2-C cell proliferation or differentiation. We further show that knockdown of HOXD8 expression, but not that of HOXD9 expression, significantly inhibits the differentiation-inducing activity of RA. HOXD8 directly activates the transcription of HOXC9, a key effector of RA action in neuroblastoma cells. These findings highlight the distinct functions of HOXD genes in RA induction of neuroblastoma cell differentiation.

  8. Kinome expression profiling of human neuroblastoma tumors identifies potential drug targets for ultra high-risk patients

    NARCIS (Netherlands)

    Russo, Roberta; Cimmino, Flora; Pezone, Lucia; Manna, Francesco; Avitabile, Marianna; Langella, Concetta; Koster, Jan; Casale, Fiorina; Raia, Maddalena; Viola, Giampietro; Fischer, Matthias; Iolascon, Achille; Capasso, Mario

    2017-01-01

    Neuroblastoma (NBL) accounts for >7% of malignancies in patients younger than 15 years. Low- and intermediate-risk patients exhibit excellent or good prognosis after treatment, whereas for high-risk (HR) patients, the estimated 5-year survival rates is still <40%. The ability to stratify HR patients

  9. Dichloroacetate stimulates changes in the mitochondrial network morphology via partial mitophagy in human SH-SY5Y neuroblastoma cells

    Czech Academy of Sciences Publication Activity Database

    Pajuelo-Reguera, David; Alán, Lukáš; Olejár, Tomáš; Ježek, Petr

    2015-01-01

    Roč. 46, č. 6 (2015), s. 2409-2418 ISSN 1019-6439 R&D Projects: GA MŠk(CZ) EE2.3.30.0025 Institutional support: RVO:67985823 Keywords : dichloroacetate * mitochondria * mitophagy * neuroblastoma SH-SY5Y cells * mitochondrial network Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.018, year: 2015

  10. Changes in MYCN expression in human neuroblastoma cell lines following cisplatin treatment may not be related to MYCN copy numbers

    Czech Academy of Sciences Publication Activity Database

    Procházka, Pavel; Hraběta, J.; Vícha, A.; Cipro, S.; Stejskalová, E.; Musil, Z.; Vodička, Pavel; Eckschlager, T.

    2013-01-01

    Roč. 29, č. 6 (2013), s. 2415-2421 ISSN 1021-335X Grant - others:GA ČR(CZ) GAP301/10/0356 Institutional support: RVO:68378041 Keywords : high-risk neuroblastoma cell line * multiplex ligation-dependent probe amplification * fluorescent in situ hybridization Subject RIV: CE - Biochemistry Impact factor: 2.191, year: 2013

  11. Involvement of the CXCR7/CXCR4/CXCL12 axis in the malignant progression of human neuroblastoma.

    Directory of Open Access Journals (Sweden)

    Julie Liberman

    Full Text Available Neuroblastoma (NB is a typical childhood and heterogeneous neoplasm for which efficient targeted therapies for high-risk tumors are not yet identified. The chemokine CXCL12, and its receptors CXCR4 and CXCR7 have been involved in tumor progression and dissemination. While CXCR4 expression is associated to undifferentiated tumors and poor prognosis, the role of CXCR7, the recently identified second CXCL12 receptor, has not yet been elucidated in NB. In this report, CXCR7 and CXCL12 expressions were evaluated using a tissue micro-array including 156 primary and 56 metastatic NB tissues. CXCL12 was found to be highly associated to NB vascular and stromal structures. In contrast to CXCR4, CXCR7 expression was low in undifferentiated tumors, while its expression was stronger in matured tissues and specifically associated to differentiated neural tumor cells. As determined by RT-PCR, CXCR7 expression was mainly detected in N-and S-type NB cell lines, and was slightly induced upon NB cell differentiation in vitro. The relative roles of the two CXCL12 receptors were further assessed by overexpressing CXCR7 or CXCR4 receptor alone, or in combination, in the IGR-NB8 and the SH-SY5Y NB cell lines. In vitro functional analyses indicated that, in response to their common ligand, both receptors induced activation of ERK1/2 cascade, but not Akt pathway. CXCR7 strongly reduced in vitro growth, in contrast to CXCR4, and impaired CXCR4/CXCL12-mediated chemotaxis. Subcutaneous implantation of CXCR7-expressing NB cells showed that CXCR7 also significantly reduced in vivo growth. Moreover, CXCR7 affected CXCR4-mediated orthotopic growth in a CXCL12-producing environment. In such model, CXCR7, in association with CXCR4, did not induce NB cell metastatic dissemination. In conclusion, the CXCR7 and CXCR4 receptors revealed specific expression patterns and distinct functional roles in NB. Our data suggest that CXCR7 elicits anti-tumorigenic functions, and may act as a

  12. β-N-Methylamino-L-alanine (BMAA) perturbs alanine, aspartate and glutamate metabolism pathways in human neuroblastoma cells as determined by metabolic profiling.

    Science.gov (United States)

    Engskog, Mikael K R; Ersson, Lisa; Haglöf, Jakob; Arvidsson, Torbjörn; Pettersson, Curt; Brittebo, Eva

    2017-05-01

    β-Methylamino-L-alanine (BMAA) is a non-proteinogenic amino acid that induces long-term cognitive deficits, as well as an increased neurodegeneration and intracellular fibril formation in the hippocampus of adult rodents following short-time neonatal exposure and in vervet monkey brain following long-term exposure. It has also been proposed to be involved in the etiology of neurodegenerative disease in humans. The aim of this study was to identify metabolic effects not related to excitotoxicity or oxidative stress in human neuroblastoma SH-SY5Y cells. The effects of BMAA (50, 250, 1000 µM) for 24 h on cells differentiated with retinoic acid were studied. Samples were analyzed using LC-MS and NMR spectroscopy to detect altered intracellular polar metabolites. The analysis performed, followed by multivariate pattern recognition techniques, revealed significant perturbations in protein biosynthesis, amino acid metabolism pathways and citrate cycle. Of specific interest were the BMAA-induced alterations in alanine, aspartate and glutamate metabolism and as well as alterations in various neurotransmitters/neuromodulators such as GABA and taurine. The results indicate that BMAA can interfere with metabolic pathways involved in neurotransmission in human neuroblastoma cells.

  13. Human Monoclonal Antibodies Targeting Glypican-2 in Neuroblastoma | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Researchers at the National Cancer Institute’s Laboratory of Molecular Biology (NCI LMB) have developed and isolated several single domain monoclonal human antibodies against GPC2. NCI seeks parties interested in licensing or co-developing GPC2 antibodies and/or conjugates.

  14. Antitumor Effect of Burchellin Derivatives Against Neuroblastoma.

    Science.gov (United States)

    Kurita, Masahiro; Takada, Tomomi; Wakabayashi, Noriko; Asami, Satoru; Ono, Shinichi; Uchiyama, Taketo; Suzuki, Takashi

    2018-02-01

    Neuroblastoma is one of the most commonly encountered malignant solid tumors in the pediatric age group. We examined the antitumor effects of five burchellin derivatives against human neuroblastoma cell lines. We evaluated cytotoxicity by the MTT assay for four human neuroblastoma and two normal cell lines. We also performed analysis of the apoptotic induction effect by flow cytometry, and examined the expression levels of apoptosis- and cell growth-related proteins by western blot analysis. We found that one of the burchellin derivatives (compound 4 ) exerted cytotoxicity against the neuroblastoma cell lines. Compound 4 induced caspase-dependent apoptosis via a mitochondrial pathway. The apoptosis mechanisms induced by compound 4 involved caspase-3, -7 and -9 activation and poly (ADP-ribose) polymerase cleavage. In addition, compound 4 induced cell death through inhibition of the cell growth pathway (via extracellular signal-regulated kinase 1 and 2, AKT8 virus oncogene cellular homolog, and signal transducer and activator of transcription 3). Compound 4 exerted cellular cytotoxicity against neuroblastoma cells via induction of caspase-dependent apoptosis, and may offer promise for further development as a useful drug for the treatment of advanced neuroblastoma. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  15. MMSET is highly expressed and associated with aggressiveness in neuroblastoma

    DEFF Research Database (Denmark)

    Hudlebusch, Heidi Rye; Skotte, Julie; Santoni-Rugiu, Eric

    2011-01-01

    tumor types as well. We have performed immunohistochemical staining of tissue microarrays and found that MMSET protein is frequently and highly expressed in neuroblastoma (MMSET positive in 75% of neuroblastomas, n=164). The expression level of MMSET in neuroblastomas was significantly associated...... with poor survival, negative prognostic factors, and metastatic disease. Moreover, a subset of neuroblastomas for which pre- and post-chemotherapy biopsies were available displayed a strong decrease in MMSET protein levels after chemotherapy. In agreement with neuroblastomas becoming more differentiated...... after treatment, we show that retinoic acid-induced differentiation of human neuroblastoma cells in vitro also leads to a strong decrease in MMSET levels. Furthermore, we demonstrate that the high levels of MMSET in normal neural progenitor cells are strongly downregulated during differentiation...

  16. Olfactory Neuroblastoma: Diagnostic Difficulty

    Directory of Open Access Journals (Sweden)

    Vidya MN,

    2011-01-01

    Full Text Available Olfactory neuroblastoma is an uncommon malignant tumor of sinonasal tract arising from the olfactory neuro epithelium. The olfactory neuroblastomas presenting with divergent histomorphologies like, epithelial appearance of cells, lacking a neuro fibrillary background and absence of rosettes are difficult to diagnose. Such cases require immunohistochemistry to establish the diagnosis. We describe the clinical features, pathological and immunohistochemical findings of grade IV Olfactory neuroblastoma in a 57 year old man

  17. Identification of proteins sensitive to thermal stress in human neuroblastoma and glioma cell lines.

    Directory of Open Access Journals (Sweden)

    Guilian Xu

    Full Text Available Heat-shock is an acute insult to the mammalian proteome. The sudden elevation in temperature has far-reaching effects on protein metabolism, leads to a rapid inhibition of most protein synthesis, and the induction of protein chaperones. Using heat-shock in cells of neuronal (SH-SY5Y and glial (CCF-STTG1 lineage, in conjunction with detergent extraction and sedimentation followed by LC-MS/MS proteomic approaches, we sought to identify human proteins that lose solubility upon heat-shock. The two cell lines showed largely overlapping profiles of proteins detected by LC-MS/MS. We identified 58 proteins in detergent insoluble fractions as losing solubility in after heat shock; 10 were common between the 2 cell lines. A subset of the proteins identified by LC-MS/MS was validated by immunoblotting of similarly prepared fractions. Ultimately, we were able to definitively identify 3 proteins as putatively metastable neural proteins; FEN1, CDK1, and TDP-43. We also determined that after heat-shock these cells accumulate insoluble polyubiquitin chains largely linked via lysine 48 (K-48 residues. Collectively, this study identifies human neural proteins that lose solubility upon heat-shock. These proteins may represent components of the human proteome that are vulnerable to misfolding in settings of proteostasis stress.

  18. Met-enkephalyl-Arg6-Phe7 immunoreactivity in a human neuroblastoma cell line: effect of dibutyryl 3':5'-cyclic AMP and reserpine.

    Science.gov (United States)

    Boarder, M R; Marriott, D; Adams, M

    1986-12-30

    The carboxy terminal part of the proenkephalin A sequence is the 31 amino acid peptide B, which has as its final seven amino acids the sequence of the opioid peptide Met-enkephalyl-Arg6-Phe7. Using a radioimmunoassay which recognises both these peptides we have investigated the relative amounts of peptide B and Met-enkephalyl-Arg6-Phe7 in a human neuroblastoma cell line. We show that these cells contain peptide B-like immunoreactivity but not its heptapeptide fragment. This may be due to lack of proteolytic activity cleaving Met-enkephalyl-Arg6-Phe7 from its precursor, peptide B. On treatment with dibutyryl cyclic AMP the level of immunoreactivity approximately doubles, due to increased amounts of peptide B-like immunoreactivity. Treatment with reserpine, which increases conversion of peptide B to the heptapeptide in bovine chromaffin cells in culture does not stimulate the accumulation of Met-enkephalyl-Arg6-Phe7 in the human neuroblastoma cells. The results are discussed with respect to peptide processing.

  19. Neuroblastoma: computed tomographic findings

    International Nuclear Information System (INIS)

    Yoon, Choon Sik; Ahn, Chang Su; Kim, Myung Jun; Oh, Ki Keun

    1994-01-01

    To evaluate the characteristic CT findings of neuroblastoma, we studied neuroblastomas. We analysed CT findings of available 25 cases among pathologically proved 51 neuroblastomas from Jan. 1983 to Sept. 1990. The most frequent site of origin is adrenal gland (40%) and the second is retroperitoneum (32%) and the third ismediastinum (16%). Characteristic CT findings are as follows: Calcifications within the tumor is detected in 86% of abdominal neuroblastomas and 50% of mediastinal origin. Hemorrhagic and necrotic changes within the tumor is noted at 86% in the tumor of abdominal origin and 25% in mediastinal neuroblastomas. Contrast enhanced study showed frequently seperated enhanced appearance with/without solid contrast enhancement. Encasements of major great vessels such as aorta and IVC with/without displacement by metastatic lymph nodes or tumor are frequently seen in 90% of abdominal neuroblastomas. Multiple lymphadenopathy are detected in 95% of abdominal neuroblastomas and 25% of mediastinal neuroblastomas. The most common organ or contiguous direct invasion is kidney in 6 cases and the next one is liver but intraspinal canal invasion is also noted in 2 cases. We concluded that diagnosis of neuroblastoma would be easily obtained in masses of pediatric group from recognition of above characteristic findings

  20. Modulation of intracellular calcium homeostasis by trimethyltin chloride in human tumour cells: Neuroblastoma SY5Y and cervix adenocarcinoma HeLa S3

    International Nuclear Information System (INIS)

    Florea, Ana-Maria; Splettstoesser, Frank; Dopp, Elke; Rettenmeier, Albert W.; Buesselberg, Dietrich

    2005-01-01

    Physiological modifications of intracellular Ca 2+ ([Ca 2+ ] i ) levels trigger and/or regulate a diversity of cellular activities (e.g. neurotransmitter release, synaptic plasticity, muscular contraction, cell proliferation), while calcium overloads could result in cytotoxicity. Previously, we have shown that trimethyltin chloride (Me 3 SnCl; TMT) modulates calcium homeostasis in cervix adenocarcinoma (HeLa S3) cells [Florea, A.-M., Dopp, E., Buesselberg, D., 2005. TMT induces elevated calcium transients in HeLa cells: types and levels of response. Cell Calcium 37, 252-258]. Here we compare [Ca 2+ ] i -changes induced by trimethyltin chloride in neuroblastoma SY5Y and HeLa S3 cells using calcium-sensitive dyes (fluo-4/AM (fluo-4) and rhod-2/AM (rhod-2)) and laser scanning microscopy (LSM). TMT-induced calcium elevations in neuroblastoma SY5Y as well as in HeLa S3 cells. [Ca 2+ ] i rose to a sustained plateau or to transient spikes. Overall, the detected averaged increase of the maximum calcium elevation were: 0.5 μM ∼125.6%; 5 μM ∼130.1%; 500 μM ∼145% in HeLa S3 cells and 0.5 μM ∼133.3%; 5 μM ∼136.1%; 500 μM ∼147.1% in neuroblastoma SY5Y cells. The calcium rise derived from internal stores did not significantly depend on the presence of calcium in the external solution: ∼109% (no calcium added) versus ∼117% (2 mM calcium; 5 μM TMT) in HeLa cells. This difference was similar in neuroblastoma SY5Y cells, were ∼127% versus ∼136% increase (5 μM TMT) were measured. Staining of calcium stores with rhod-2 showed a TMT-induced [Ca 2+ ] i -decrease in the stores followed by an increase of the calcium concentration in the nuclei of the two cell lines tested. Our results suggest that toxic effects in human tumour cells after exposure to trimethyltin compounds might be due to an elevation of [Ca 2+ ] i

  1. Noscapine induced apoptosis via downregulation of survivin in human neuroblastoma cells having wild type or null p53.

    Directory of Open Access Journals (Sweden)

    Shiwang Li

    Full Text Available Neuroblastoma is the most common extracranial solid tumor of childhood. It accounts for 15% of pediatric cancer deaths. Chemotherapy is the mainstay of treatment in children with advanced neuroblastoma. Noscapine, a nontoxic natural compound, can trigger apoptosis in many cancer types. We now show that p53 is dispensable for Noscapine-induced cell death in neuroblastoma cell lines, proapoptotic response to this promising chemopreventive agent is mediated by suppression of survivin protein expression. The Noscapine treatment increased levels of total and Ser(15-phosphorylated p53 protein in SK-SY5Y cells, but the proapoptotic response to this agent was maintained even after knockdown of the p53 protein level. Exposure of SK-SY5Y and LA1-5S cells to Noscapine resulted in a marked decrease in protein and mRNA level of survivin as early as 12 hours after treatment. Ectopic expression of survivin conferred statistically significant protection against Noscapine-mediated cytoplasmic histone-associated apoptotic DNA fragmentation. Also, the Noscapine-induced apoptosis was modestly but statistically significantly augmented by RNA interference of survivin in both cell lines. Furthermore, Noscapine-induced apoptotic cell death was associated with activation of caspase-3 and cleavage of PARP. In conclusion, the present study provides novel insight into the molecular circuitry of Noscapine-induced apoptosis to indicate suppression of survivin expression as a critical mediator of this process.

  2. Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research.

    Science.gov (United States)

    Cheung, Yuen-Ting; Lau, Way Kwok-Wai; Yu, Man-Shan; Lai, Cora Sau-Wan; Yeung, Sze-Chun; So, Kwok-Fai; Chang, Raymond Chuen-Chung

    2009-01-01

    Human neuroblastoma SH-SY5Y is a dopaminergic neuronal cell line which has been used as an in vitro model for neurotoxicity experiments. Although the neuroblastoma is usually differentiated by all-trans-retinoic acid (RA), both RA-differentiated and undifferentiated SH-SY5Y cells have been used in neuroscience research. However, the changes in neuronal properties triggered by RA as well as the subsequent responsiveness to neurotoxins have not been comprehensively studied. Therefore, we aim to re-evaluate the differentiation property of RA on this cell line. We hypothesize that modulation of signaling pathways and neuronal properties during RA-mediated differentiation in SH-SY5Y cells can affect their susceptibility to neurotoxins. The differentiation property of RA was confirmed by showing an extensive outgrowth of neurites, increased expressions of neuronal nuclei, neuron specific enolase, synaptophysin and synaptic associated protein-97, and decreased expression of inhibitor of differentiation-1. While undifferentiated SH-SY5Y cells were susceptible to 6-OHDA and MPP+, RA-differentiation conferred SH-SY5Y cells higher tolerance, potentially by up-regulating survival signaling, including Akt pathway as inhibition of Akt removed RA-induced neuroprotection against 6-OHDA. As a result, the real toxicity cannot be revealed in RA-differentiated cells. Therefore, undifferentiated SH-SY5Y is more appropriate for studying neurotoxicity or neuroprotection in experimental Parkinson's disease research.

  3. Phylogenetic evidence that two distinct Trichuris genotypes infect both humans and non-human primates.

    Directory of Open Access Journals (Sweden)

    Damiana F Ravasi

    Full Text Available Although there has been extensive debate about whether Trichuris suis and Trichuris trichiura are separate species, only one species of the whipworm T. trichiura has been considered to infect humans and non-human primates. In order to investigate potential cross infection of Trichuris sp. between baboons and humans in the Cape Peninsula, South Africa, we sequenced the ITS1-5.8S-ITS2 region of adult Trichuris sp. worms isolated from five baboons from three different troops, namely the Cape Peninsula troop, Groot Olifantsbos troop and Da Gama Park troop. This region was also sequenced from T. trichiura isolated from a human patient from central Africa (Cameroon for comparison. By combining this dataset with Genbank records for Trichuris isolated from other humans, non-human primates and pigs from several different countries in Europe, Asia, and Africa, we confirmed the identification of two distinct Trichuris genotypes that infect primates. Trichuris sp. isolated from the Peninsula baboons fell into two distinct clades that were found to also infect human patients from Cameroon, Uganda and Jamaica (named the CP-GOB clade and China, Thailand, the Czech Republic, and Uganda (named the DG clade, respectively. The divergence of these Trichuris clades is ancient and precedes the diversification of T. suis which clustered closely to the CP-GOB clade. The identification of two distinct Trichuris genotypes infecting both humans and non-human primates is important for the ongoing treatment of Trichuris which is estimated to infect 600 million people worldwide. Currently baboons in the Cape Peninsula, which visit urban areas, provide a constant risk of infection to local communities. A reduction in spatial overlap between humans and baboons is thus an important measure to reduce both cross-transmission and zoonoses of helminthes in Southern Africa.

  4. Evaluation of the neurotoxic/neuroprotective role of organoselenides using differentiated human neuroblastoma SH-SY5Y cell line challenged with 6-hydroxydopamine.

    Science.gov (United States)

    Lopes, Fernanda Martins; Londero, Giovana Ferreira; de Medeiros, Liana Marengo; da Motta, Leonardo Lisbôa; Behr, Guilherme Antônio; de Oliveira, Valeska Aguiar; Ibrahim, Mohammad; Moreira, José Cláudio Fonseca; Porciúncula, Lisiane de Oliveira; da Rocha, João Batista Teixeira; Klamt, Fábio

    2012-08-01

    It is well established that oxidative stress plays a major role in several neurodegenerative conditions, like Parkinson disease (PD). Hence, there is an enormous effort for the development of new antioxidants compounds with therapeutic potential for the management of PD, such as synthetic organoselenides molecules. In this study, we selected between nine different synthetic organoselenides the most eligible ones for further neuroprotection assays, using the differentiated human neuroblastoma SH-SY5Y cell line as in vitro model. Neuronal differentiation of exponentially growing human neuroblastoma SH-SY5Y cells was triggered by cultivating cells with DMEM/F12 medium with 1% of fetal bovine serum (FBS) with the combination of 10 μM retinoic acid for 7 days. Differentiated cells were further incubated with different concentrations of nine organoselenides (0.1, 0.3, 3, 10, and 30 μM) for 24 h and cell viability, neurites densities and the immunocontent of neuronal markers were evaluated. Peroxyl radical scavenging potential of each compound was determined with TRAP assay. Three organoselenides tested presented low cytotoxicity and high antioxidant properties. Pre-treatment of cells with those compounds for 24 h lead to a significantly neuroprotection against 6-hydroxydopamine (6-OHDA) toxicity, which were directly related to their antioxidant properties. Neuroprotective activity of all three organoselenides was compared to diphenyl diselenide (PhSe)₂, the simplest of the diaryl diselenides tested. Our results demonstrate that differentiated human SH-SY5Y cells are suitable cellular model to evaluate neuroprotective/neurotoxic role of compounds, and support further evaluation of selected organoselenium molecules as potential pharmacological and therapeutic drugs in the treatment of PD.

  5. Curcumin Regulates Low-Linear Energy Transfer γ-Radiation-Induced NFκB-Dependent Telomerase Activity in Human Neuroblastoma Cells

    International Nuclear Information System (INIS)

    Aravindan, Natarajan; Veeraraghavan, Jamunarani; Madhusoodhanan, Rakhesh; Herman, Terence S.; Natarajan, Mohan

    2011-01-01

    Purpose: We recently reported that curcumin attenuates ionizing radiation (IR)-induced survival signaling and proliferation in human neuroblastoma cells. Also, in the endothelial system, we have demonstrated that NFκB regulates IR-induced telomerase activity (TA). Accordingly, we investigated the effect of curcumin in inhibiting IR-induced NFκB-dependent hTERT transcription, TA, and cell survival in neuroblastoma cells. Methods and Materials: SK-N-MC or SH-SY5Y cells exposed to IR and treated with curcumin (10-100 nM) with or without IR were harvested after 1 h through 24 h. NFκB-dependent regulation was investigated either by luciferase reporter assays using pNFκB-, pGL3-354-, pGL3-347-, or pUSE-IκBα-Luc, p50/p65, or RelA siRNA-transfected cells. NFκB activity was analyzed using an electrophoretic mobility shift assay and hTERT expression using the quantitative polymerase chain reaction. TA was determined using the telomerase repeat amplification protocol assay and cell survival using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltertrazolium bromide and clonogenic assay. Results: Curcumin profoundly inhibited IR-induced NFκB. Consequently, curcumin significantly inhibited IR-induced TA and hTERT mRNA at all points investigated. Furthermore, IR-induced TA is regulated at the transcriptional level by triggering telomerase reverse transcriptase (TERT) promoter activation. Moreover, NFκB becomes functionally activated after IR and mediates TA upregulation by binding to the κB-binding region in the promoter region of the TERT gene. Consistently, elimination of the NFκB-recognition site on the telomerase promoter or inhibition of NFκB by the IκBα mutant compromises IR-induced telomerase promoter activation. Significantly, curcumin inhibited IR-induced TERT transcription. Consequently, curcumin inhibited hTERT mRNA and TA in NFκB overexpressed cells. Furthermore, curcumin enhanced the IR-induced inhibition of cell survival. Conclusions: These results

  6. Am80 induces neuronal differentiation via increased tropomyosin-related kinase B expression in a human neuroblastoma SH-SY5Y cell line.

    Science.gov (United States)

    Shiohira, Hideo; Kitaoka, Akira; Enjoji, Munechika; Uno, Tsukasa; Nakashima, Manabu

    2012-01-01

    Am80, a synthetic retinoid, has been used in differentiation therapy for acute promyelocytic leukemia (APL). All-trans retinoic acid (ATRA) as one of natural retinoid has been also used to treat APL. ATRA treatment causes neuronal differentiation by inducing tropomyosin-related kinase B (TrkB) expression and increasing the sensitivity to brain-derived neurotrophic factor (BDNF), a TrkB ligand. In the present study, we investigated the effects of Am80 on neuronal differentiation, BDNF sensitivity and TrkB expression in human neuroblastoma SH-SY5Y cells. Treatment with Am80 induced morphological differentiation of neurite outgrowth and increased the expression of GAP43 mRNA, a neuronal differentiation marker. Additionally, TrkB protein was also increased, and exogenous BDNF stimulation after treatment with Am80 induced greater neurite outgrowth than without BDNF treatment. These results suggest that Am80 induced neuronal differentiation by increasing TrkB expression and BDNF sensitivity.

  7. Neuroblastoma and MYCN

    Science.gov (United States)

    Huang, Miller; Weiss, William A.

    2013-01-01

    Neuroblastoma, the most common extracranial solid tumor of childhood, is thought to originate from undifferentiated neural crest cells. Amplification of the MYC family member, MYCN, is found in ∼25% of cases and correlates with high-risk disease and poor prognosis. Currently, amplification of MYCN remains the best-characterized genetic marker of risk in neuroblastoma. This article reviews roles for MYCN in neuroblastoma and highlights recent identification of other driver mutations. Strategies to target MYCN at the level of protein stability and transcription are also reviewed. PMID:24086065

  8. Pre-exposure to 50 Hz magnetic fields modifies menadione-induced genotoxic effects in human SH-SY5Y neuroblastoma cells.

    Directory of Open Access Journals (Sweden)

    Jukka Luukkonen

    Full Text Available BACKGROUND: Extremely low frequency (ELF magnetic fields (MF are generated by power lines and various electric appliances. They have been classified as possibly carcinogenic by the International Agency for Research on Cancer, but a mechanistic explanation for carcinogenic effects is lacking. A previous study in our laboratory showed that pre-exposure to ELF MF altered cancer-relevant cellular responses (cell cycle arrest, apoptosis to menadione-induced DNA damage, but it did not include endpoints measuring actual genetic damage. In the present study, we examined whether pre-exposure to ELF MF affects chemically induced DNA damage level, DNA repair rate, or micronucleus frequency in human SH-SY5Y neuroblastoma cells. METHODOLOGY/PRINCIPAL FINDINGS: Exposure to 50 Hz MF was conducted at 100 µT for 24 hours, followed by chemical exposure for 3 hours. The chemicals used for inducing DNA damage and subsequent micronucleus formation were menadione and methyl methanesulphonate (MMS. Pre-treatment with MF enhanced menadione-induced DNA damage, DNA repair rate, and micronucleus formation in human SH-SY5Y neuroblastoma cells. Although the results with MMS indicated similar effects, the differences were not statistically significant. No effects were observed after MF exposure alone. CONCLUSIONS: The results confirm our previous findings showing that pre-exposure to MFs as low as 100 µT alters cellular responses to menadione, and show that increased genotoxicity results from such interaction. The present findings also indicate that complementary data at several chronological points may be critical for understanding the MF effects on DNA damage, repair, and post-repair integrity of the genome.

  9. Pre-exposure to 50 Hz magnetic fields modifies menadione-induced genotoxic effects in human SH-SY5Y neuroblastoma cells.

    Science.gov (United States)

    Luukkonen, Jukka; Liimatainen, Anu; Höytö, Anne; Juutilainen, Jukka; Naarala, Jonne

    2011-03-23

    Extremely low frequency (ELF) magnetic fields (MF) are generated by power lines and various electric appliances. They have been classified as possibly carcinogenic by the International Agency for Research on Cancer, but a mechanistic explanation for carcinogenic effects is lacking. A previous study in our laboratory showed that pre-exposure to ELF MF altered cancer-relevant cellular responses (cell cycle arrest, apoptosis) to menadione-induced DNA damage, but it did not include endpoints measuring actual genetic damage. In the present study, we examined whether pre-exposure to ELF MF affects chemically induced DNA damage level, DNA repair rate, or micronucleus frequency in human SH-SY5Y neuroblastoma cells. Exposure to 50 Hz MF was conducted at 100 µT for 24 hours, followed by chemical exposure for 3 hours. The chemicals used for inducing DNA damage and subsequent micronucleus formation were menadione and methyl methanesulphonate (MMS). Pre-treatment with MF enhanced menadione-induced DNA damage, DNA repair rate, and micronucleus formation in human SH-SY5Y neuroblastoma cells. Although the results with MMS indicated similar effects, the differences were not statistically significant. No effects were observed after MF exposure alone. The results confirm our previous findings showing that pre-exposure to MFs as low as 100 µT alters cellular responses to menadione, and show that increased genotoxicity results from such interaction. The present findings also indicate that complementary data at several chronological points may be critical for understanding the MF effects on DNA damage, repair, and post-repair integrity of the genome.

  10. Kidins220/ARMS depletion is associated with the neural-to Schwann-like transition in a human neuroblastoma cell line model.

    Science.gov (United States)

    Rogers, Danny A; Schor, Nina F

    2013-03-10

    Peripheral neuroblastic tumors exist as a heterogeneous mixture of neuroblastic (N-type) cells and Schwannian stromal (S-type) cells. These stromal cells not only represent a differentiated and less aggressive fraction of the tumor, but also have properties that can influence the further differentiation of nearby malignant cells. In vitro neuroblastoma cultures exhibit similar heterogeneity with N-type and S-type cells representing the neuroblastic and stromal portions of the tumor, respectively, in behavior, morphology, and molecular expression patterns. In this study, we deplete kinase D-interacting substrate of 220kD (Kidins220) with an shRNA construct and thereby cause morphologic transition of the human SH-SY5Y neuroblastoma cell line from N-type to S-type. The resulting cells have similar morphology and expression profile to SH-EP1 cells, a native S-type cell line from the same parent cell line, and to SH-SY5Y cells treated with BrdU, a treatment that induces S-type morphology. Specifically, both Kidins220-deficient SH-SY5Y cells and native SH-EP1 cells demonstrate down-regulation of the genes DCX and STMN2, markers for the neuronal lineage. We further show that Kidins220, DCX and STMN2 are co-down-regulated in cells of S-type morphology generated by methods other than Kidins220 depletion. Finally, we report that the association of low Kidins220 expression with S-type morphology and low DCX and STMN2 expression is demonstrated in spontaneously occurring human peripheral neuroblastic tumors. We propose that Kidins220 is critical in N- to S-type transition of neural crest tumor cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Heat shock protein 70 modulates neural progenitor cells dynamics in human neuroblastoma SH-SY5Y cells exposed to high glucose content.

    Science.gov (United States)

    Salimi, Leila; Rahbarghazi, Reza; Jafarian, Vahab; Biray Avci, Çıgır; Goker Bagca, Bakiye; Pinar Ozates, Neslihan; Khaksar, Majid; Nourazarian, Alireza

    2018-01-18

    In the current experiment, detrimental effects of high glucose condition were investigated on human neuroblastoma cells. Human neuroblastoma cell line SH-SY5Y were exposed to 5, 40, and 70 mM glucose over a period of 72 h. Survival rate and the proliferation of cells were analyzed by MTT and BrdU incorporation assays. Apoptosis was studied by the assays of flow cytometry and PCR array. In order to investigate the trans-differentiation capacity of the cell into mature neurons, we used immunofluorescence imaging to follow NeuN protein level. The transcription level of HSP70 was shown by real-time PCR analysis. MMP-2 and -9 activities were shown by gelatin Zymography. According to data from MTT and BrdU incorporation assay, 70 mM glucose reduced cell viability and proliferation rate as compared to control (5 mM glucose) and cells treated with 40 mM glucose (P Cell exposure to 70 mM glucose had potential to induced apoptosis after 72 h (P SH-SY5Y cells to detrimental effects of high glucose condition during trans-differentiation into mature neuron-like cells. Real-time PCR analysis confirmed the expression of HSP70 in cells under high content glucose levels, demonstrating the possible cell compensatory response to an insulting condition (p control vs 70 mM group  cells being exposed to 70 mM glucose. High glucose condition could abrogate the dynamics of neural progenitor cells. The intracellular level of HSP70 was proportional to cell damage in high glucose condition. © 2018 Wiley Periodicals, Inc.

  12. Specific pesticide-dependent increases in α-synuclein levels in human neuroblastoma (SH-SY5Y) and melanoma (SK-MEL-2) cell lines.

    Science.gov (United States)

    Chorfa, Areski; Bétemps, Dominique; Morignat, Eric; Lazizzera, Corinne; Hogeveen, Kevin; Andrieu, Thibault; Baron, Thierry

    2013-06-01

    Epidemiological studies indicate a role of genetic and environmental factors in Parkinson's disease involving alterations of the neuronal α-synuclein (α-syn) protein. In particular, a relationship between Parkinson's disease and occupational exposure to pesticides has been repeatedly suggested. Our objective was to precisely assess changes in α-syn levels in human neuroblastoma (SH-SY5Y) and melanoma (SK-MEL-2) cell lines following acute exposure to pesticides (rotenone, paraquat, maneb, and glyphosate) using Western blot and flow cytometry. These human cell lines express α-syn endogenously, and overexpression of α-syn (wild type or mutated A53T) can be obtained following recombinant adenoviral transduction. We found that endogenous α-syn levels in the SH-SY5Y neuroblastoma cell line were markedly increased by paraquat, and to a lesser extent by rotenone and maneb, but not by glyphosate. Rotenone also clearly increased endogenous α-syn levels in the SK-MEL-2 melanoma cell line. In the SH-SY5Y cell line, similar differences were observed in the α-syn adenovirus-transduced cells, with a higher increase of the A53T mutated protein. Paraquat markedly increased α-syn in the SK-MEL-2 adenovirus-transduced cell line, similarly for the wild-type or A53T proteins. The observed differences in the propensities of pesticides to increase α-syn levels are in agreement with numerous reports that indicate a potential role of exposure to certain pesticides in the development of Parkinson's disease. Our data support the hypothesis that pesticides can trigger some molecular events involved in this disease and also in malignant melanoma that consistently shows a significant but still unexplained association with Parkinson's disease.

  13. Drugs Approved for Neuroblastoma

    Science.gov (United States)

    This page lists cancer drugs approved by the Food and Drug Administration (FDA) for neuroblastoma. The list includes generic names and brand names. The drug names link to NCI's Cancer Drug Information summaries.

  14. Diphenyl diselenide protects against methylmercury-induced inhibition of thioredoxin reductase and glutathione peroxidase in human neuroblastoma cells: a comparison with ebselen.

    Science.gov (United States)

    Meinerz, Daiane F; Branco, Vasco; Aschner, Michael; Carvalho, Cristina; Rocha, João Batista T

    2017-09-01

    Exposure to methylmercury (MeHg), an important environmental toxicant, may lead to serious health risks, damaging various organs and predominantly affecting the brain function. The toxicity of MeHg can be related to the inhibition of important selenoenzymes, such as glutathione peroxidase (GPx) and thioredoxin reductase (TrxR). Experimental studies have shown that selenocompounds play an important role as cellular detoxifiers and protective agents against the harmful effects of mercury. The present study investigated the mechanisms by which diphenyl diselenide [(PhSe) 2 ] and ebselen interfered with the interaction of mercury (MeHg) and selenoenzymes (TrxR and GPx) in an in vitro experimental model of cultured human neuroblastoma cells (SH-SY5Y). Our results established that (PhSe) 2 and ebselen increased the activity and expression of TrxR. In contrast, MeHg inhibited TrxR activity even at low doses (0.5 μm). Coexposure to selenocompounds and MeHg showed a protective effect of (PhSe) 2 on both the activity and expression of TrxR. When selenoenzyme GPx was evaluated, selenocompounds did not alter its activity or expression significantly, whereas MeHg inhibited the activity of GPx (from 1 μm). Among the selenocompounds only (PhSe) 2 significantly protected against the effects of MeHg on GPx activity. Taken together, these results indicate a potential use for ebselen and (PhSe) 2 against MeHg toxicity. Furthermore, for the first time, we have demonstrated that (PhSe) 2 caused a more pronounced upregulation of TrxR than ebselen in neuroblastoma cells, likely reflecting an important molecular mechanism involved in the antioxidant properties of this compound. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Two distinct promoters drive transcription of the human D1A dopamine receptor gene.

    Science.gov (United States)

    Lee, S H; Minowa, M T; Mouradian, M M

    1996-10-11

    The human D1A dopamine receptor gene has a GC-rich, TATA-less promoter located upstream of a small, noncoding exon 1, which is separated from the coding exon 2 by a 116-base pair (bp)-long intron. Serial 3'-deletions of the 5'-noncoding region of this gene, including the intron and 5'-end of exon 2, resulted in 80 and 40% decrease in transcriptional activity of the upstream promoter in two D1A-expressing neuroblastoma cell lines, SK-N-MC and NS20Y, respectively. To investigate the function of this region, the intron and 245 bp at the 5'-end of exon 2 were investigated. Transient expression analyses using various chloramphenicol acetyltransferase constructs showed that the transcriptional activity of the intron is higher than that of the upstream promoter by 12-fold in SK-N-MC cells and by 5.5-fold in NS20Y cells in an orientation-dependent manner, indicating that the D1A intron is a strong promoter. Primer extension and ribonuclease protection assays revealed that transcription driven by the intron promoter is initiated at the junction of intron and exon 2 and at a cluster of nucleotides located 50 bp downstream from this junction. The same transcription start sites are utilized by the chloramphenicol acetyltransferase constructs employed in transfections as well as by the D1A gene expressed within the human caudate. The relative abundance of D1A transcripts originating from the upstream promoter compared with those transcribed from the intron promoter is 1.5-2.9 times in SK-N-MC cells and 2 times in the human caudate. Transcript stability studies in SK-N-MC cells revealed that longer D1A mRNA molecules containing exon 1 are degraded 1.8 times faster than shorter transcripts lacking exon 1. Although gel mobility shift assay could not detect DNA-protein interaction at the D1A intron, competitive co-transfection using the intron as competitor confirmed the presence of trans-acting factors at the intron. These data taken together indicate that the human D1A gene has

  16. Survivin knockdown increased anti-cancer effects of (−)-epigallocatechin-3-gallate in human malignant neuroblastoma SK-N- BE2 and SH-SY5Y cells

    Science.gov (United States)

    Hossain, Md. Motarab; Banik, Naren L.; Ray, Swapan K.

    2012-01-01

    formation ability of cells was significantly inhibited by survivin silencing and completely by combination of survivin silencing and EGCG treatment. Collectively, survivin silencing potentiated anti-cancer effects of EGCG in human malignant neuroblastoma cells having survivin overexpression. PMID:22507272

  17. Neuroprotective Effect of Arctigenin via Upregulation of P-CREB in Mouse Primary Neurons and Human SH-SY5Y Neuroblastoma Cells

    Science.gov (United States)

    Zhang, Nan; Wen, Qingping; Ren, Lu; Liang, Wenbo; Xia, Yang; Zhang, Xiaodan; Zhao, Dan; Sun, Dong; Hu, Yv; Hao, Haiguang; Yan, Yaping; Zhang, Guangxian; Yang, Jingxian; Kang, Tingguo

    2013-01-01

    Arctigenin (Arc) has been shown to act on scopolamine-induced memory deficit mice and to provide a neuroprotective effect on cultured cortical neurons from glutamate-induced neurodegeneration through mechanisms not completely defined. Here, we investigated the neuroprotective effect of Arc on H89-induced cell damage and its potential mechanisms in mouse cortical neurons and human SH-SY5Y neuroblastoma cells. We found that Arc prevented cell viability loss induced by H89 in human SH-SY5Y cells. Moreover, Arc reduced intracellular beta amyloid (Aβ) production induced by H89 in neurons and human SH-SY5Y cells, and Arc also inhibited the presenilin 1(PS1) protein level in neurons. In addition, neural apoptosis in both types of cells, inhibition of neurite outgrowth in human SH-SY5Y cells and reduction of synaptic marker synaptophysin (SYN) expression in neurons were also observed after H89 exposure. All these effects induced by H89 were markedly reversed by Arc treatment. Arc also significantly attenuated downregulation of the phosphorylation of CREB (p-CREB) induced by H89, which may contribute to the neuroprotective effects of Arc. These results demonstrated that Arc exerted the ability to protect neurons and SH-SY5Y cells against H89-induced cell injury via upregulation of p-CREB. PMID:24025424

  18. Neuroprotective Effect of Arctigenin via Upregulation of P-CREB in Mouse Primary Neurons and Human SH-SY5Y Neuroblastoma Cells

    Directory of Open Access Journals (Sweden)

    Tingguo Kang

    2013-09-01

    Full Text Available Arctigenin (Arc has been shown to act on scopolamine-induced memory deficit mice and to provide a neuroprotective effect on cultured cortical neurons from glutamate-induced neurodegeneration through mechanisms not completely defined. Here, we investigated the neuroprotective effect of Arc on H89-induced cell damage and its potential mechanisms in mouse cortical neurons and human SH-SY5Y neuroblastoma cells. We found that Arc prevented cell viability loss induced by H89 in human SH-SY5Y cells. Moreover, Arc reduced intracellular beta amyloid (Aβ production induced by H89 in neurons and human SH-SY5Y cells, and Arc also inhibited the presenilin 1(PS1 protein level in neurons. In addition, neural apoptosis in both types of cells, inhibition of neurite outgrowth in human SH-SY5Y cells and reduction of synaptic marker synaptophysin (SYN expression in neurons were also observed after H89 exposure. All these effects induced by H89 were markedly reversed by Arc treatment. Arc also significantly attenuated downregulation of the phosphorylation of CREB (p-CREB induced by H89, which may contribute to the neuroprotective effects of Arc. These results demonstrated that Arc exerted the ability to protect neurons and SH-SY5Y cells against H89-induced cell injury via upregulation of p-CREB.

  19. Multiple distinct stimuli increase measured nucleosome occupancy around human promoters.

    Directory of Open Access Journals (Sweden)

    Chuong D Pham

    Full Text Available Nucleosomes can block access to transcription factors. Thus the precise localization of nucleosomes relative to transcription start sites and other factor binding sites is expected to be a critical component of transcriptional regulation. Recently developed microarray approaches have allowed the rapid mapping of nucleosome positions over hundreds of kilobases (kb of human genomic DNA, although these approaches have not yet been widely used to measure chromatin changes associated with changes in transcription. Here, we use custom tiling microarrays to reveal changes in nucleosome positions and abundance that occur when hormone-bound glucocorticoid receptor (GR binds to sites near target gene promoters in human osteosarcoma cells. The most striking change is an increase in measured nucleosome occupancy at sites spanning ∼1 kb upstream and downstream of transcription start sites, which occurs one hour after addition of hormone, but is lost at 4 hours. Unexpectedly, this increase was seen both on GR-regulated and GR-non-regulated genes. In addition, the human SWI/SNF chromatin remodeling factor (a GR co-activator was found to be important for increased occupancy upon hormone treatment and also for low nucleosome occupancy without hormone. Most surprisingly, similar increases in nucleosome occupancy were also seen on both regulated and non-regulated promoters during differentiation of human myeloid leukemia cells and upon activation of human CD4+ T-cells. These results indicate that dramatic changes in chromatin structure over ∼2 kb of human promoters may occur genomewide and in response to a variety of stimuli, and suggest novel models for transcriptional regulation.

  20. Dinutuximab in the Treatment of High-Risk Neuroblastoma in Children

    Directory of Open Access Journals (Sweden)

    Hazal Gur

    2017-06-01

    Full Text Available Neuroblastoma is the most common extracranial tumor derived from neural crest cells in childhood, and treatment of high-risk neuroblastoma is a difficulty in oncology field. The discovery of new treatment strategies to treat pediatric patients with high-risk neuroblastoma is important. Dinutuximab (ch14.18; Unituxin, a chimeric human-mouse monoclonal antibody, is approved by Food and Drug Administration in 2015 to be used specifically in the treatment of high-risk neuroblastoma. It binds the disialoganglioside (GD2 antigen on the surface of neuroblastoma cells and induces lysis of GD2-expressed neuroblastoma cells via antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. To enhance its activity, it is used with a combination of granulocyte-macrophage colony-stimulating factor, interleukin 2, and 13- cis -retinoic acid. In this review, we discuss the use of dinutuximab in the treatment of high-risk neuroblastoma.

  1. Two distinct forms of functional lateralization in the human brain

    OpenAIRE

    Gotts, Stephen J.; Jo, Hang Joon; Wallace, Gregory L.; Saad, Ziad S.; Cox, Robert W.; Martin, Alex

    2013-01-01

    This study alters our fundamental understanding of the functional interactions between the cerebral hemispheres of the human brain by establishing that the left and right hemispheres have qualitatively different biases in how they dynamically interact with one another. Left-hemisphere regions are biased to interact more strongly within the same hemisphere, whereas right-hemisphere regions interact more strongly with both hemispheres. These two different patterns of interaction are associated ...

  2. Hepatic imaging in stage IV-S neuroblastoma

    International Nuclear Information System (INIS)

    Franken, E.A. Jr.; Smith, W.L.; Iowa Univ., Iowa City; Cohen, M.D.; Kisker, C.T.; Platz, C.E.

    1986-01-01

    Stage IV-S neuroblastoma describes a group of infants with tumor spread limited to liver, skin, or bone marrow. Such patients, who constitute about 25% of affected infants with neuroblastoma, may expect spontaneous tumor remission. We report 18 infants with Stage IV-S neuroblastoma, 83% of whom had liver involvement. Imaging investigations included Technetium 99m sulfur colloid scan, ultrasound, and CT. Two patterns of liver metastasis were noted: ill-defined nodules or diffuse tumor throughout the liver. Distinction of normal and abnormal liver with diffuse type metastasis could be quite difficult, particularly with liver scans. We conclude that patients with Stage IV-S neuroblastoma have ultrasound or CT examination as an initial workup, with nuclear medicine scans reserved for followup studies. (orig.)

  3. Kinome expression profiling of human neuroblastoma tumors identifies potential drug targets for ultra high-risk patients.

    Science.gov (United States)

    Russo, Roberta; Cimmino, Flora; Pezone, Lucia; Manna, Francesco; Avitabile, Marianna; Langella, Concetta; Koster, Jan; Casale, Fiorina; Raia, Maddalena; Viola, Giampietro; Fischer, Matthias; Iolascon, Achille; Capasso, Mario

    2017-10-01

    Neuroblastoma (NBL) accounts for >7% of malignancies in patients younger than 15 years. Low- and intermediate-risk patients exhibit excellent or good prognosis after treatment, whereas for high-risk (HR) patients, the estimated 5-year survival rates is still <40%. The ability to stratify HR patients that will not respond to standard treatment strategies is critical for informed treatment decisions. In this study, we have generated a specific kinome gene signature, named Kinome-27, which is able to identify a subset of HR-NBL tumors, named ultra-HR NBL, with highly aggressive clinical behavior that not adequately respond to standard treatments. We have demonstrated that NBL cell lines expressing the same kinome signature of ultra-HR tumors (ultra-HR-like cell lines) may be selectively targeted by the use of two drugs [suberoylanilide hydroxamic acid (SAHA) and Radicicol], and that the synergic combination of these drugs is able to block the ultra-HR-like cells in G2/M phase of cell cycle. The use of our signature in clinical practice will allow identifying patients with negative outcome, which would benefit from new and more personalized treatments. Preclinical in vivo studies are needed to consolidate the SAHA and Radicicol treatment in ultra-HR NBL patients. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Protective effect of Pycnogenol in human neuroblastoma SH-SY5Y cells following acrolein-induced cytotoxicity.

    Science.gov (United States)

    Ansari, Mubeen A; Keller, Jeffrey N; Scheff, Stephen W

    2008-12-01

    Oxidative stress is one of the hypotheses involved in the etiology of Alzheimer's disease (AD). Considerable attention has been focused on increasing the intracellular glutathione (GSH) levels in many neurodegenerative diseases, including AD. Pycnogenol (PYC) has antioxidant properties and stabilizes intracellular antioxidant defense systems including glutathione levels. The present study investigated the protective effects of PYC on acrolein-induced oxidative cell toxicity in cultured SH-SY5Y neuroblastoma cells. Decreased cell survival in SH-SY5Y cultures treated with acrolein correlated with oxidative stress, increased NADPH oxidase activity, free radical production, protein oxidation/nitration (protein carbonyl, 3-nitrotyrosine), and lipid peroxidation (4-hydroxy-2-nonenal). Pretreatment with PYC significantly attenuated acrolein-induced cytotoxicity, protein damage, lipid peroxidation, and cell death. A dose-response study suggested that PYC showed protective effects against acrolein toxicity by modulating oxidative stress and increasing GSH. These findings provide support that PYC may provide a promising approach for the treatment of oxidative stress-related neurodegenerative diseases such as AD.

  5. Co-ordinate transcriptional regulation of dopamine synthesis genes by alpha-synuclein in human neuroblastoma cell lines.

    Science.gov (United States)

    Baptista, Melisa J; O'Farrell, Casey; Daya, Sneha; Ahmad, Rili; Miller, David W; Hardy, John; Farrer, Matthew J; Cookson, Mark R

    2003-05-01

    Abnormal accumulation of alpha-synuclein in Lewy bodies is a neuropathological hallmark of both sporadic and familial Parkinson's disease (PD). Although mutations in alpha-synuclein have been identified in autosomal dominant PD, the mechanism by which dopaminergic cell death occurs remains unknown. We investigated transcriptional changes in neuroblastoma cell lines transfected with either normal or mutant (A30P or A53T) alpha-synuclein using microarrays, with confirmation of selected genes by quantitative RT-PCR. Gene products whose expression was found to be significantly altered included members of diverse functional groups such as stress response, transcription regulators, apoptosis-inducing molecules, transcription factors and membrane-bound proteins. We also found evidence of altered expression of dihydropteridine reductase, which indirectly regulates the synthesis of dopamine. Because of the importance of dopamine in PD, we investigated the expression of all the known genes in dopamine synthesis. We found co-ordinated downregulation of mRNA for GTP cyclohydrolase, sepiapterin reductase (SR), tyrosine hydroxylase (TH) and aromatic acid decarboxylase by wild-type but not mutant alpha-synuclein. These were confirmed at the protein level for SR and TH. Reduced expression of the orphan nuclear receptor Nurr1 was also noted, suggesting that the co-ordinate regulation of dopamine synthesis is regulated through this transcription factor.

  6. Distinctiveness enhances long-term event memory in non-human primates, irrespective of reinforcement.

    Science.gov (United States)

    Lewis, Amy; Call, Josep; Berntsen, Dorthe

    2017-08-01

    Non-human primates are capable of recalling events that occurred as long as 3 years ago, and are able to distinguish between similar events; akin to human memory. In humans, distinctiveness enhances memory for events, however, it is unknown whether the same occurs in non-human primates. As such, we tested three great ape species on their ability to remember an event that varied in distinctiveness. Across three experiments, apes witnessed a baiting event in which one of three identical containers was baited with food. After a delay of 2 weeks, we tested their memory for the location of the baited container. Apes failed to recall the baited container when the event was undistinctive (Experiment 1), but were successful when it was distinctive (Experiment 2), although performance was equally good in a less-distinctive condition. A third experiment (Experiment 3) confirmed that distinctiveness, independent of reinforcement, was a consistent predictor of performance. These findings suggest that distinctiveness may enhance memory for events in non-human primates in the same way as in humans, and provides further evidence of basic similarities between the ways apes and humans remember past events. © 2017 Wiley Periodicals, Inc.

  7. Palmitic acid induces neurotoxicity and gliatoxicity in SH-SY5Y human neuroblastoma and T98G human glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Yee-Wen Ng

    2018-04-01

    Full Text Available Background Obesity-related central nervous system (CNS pathologies like neuroinflammation and reactive gliosis are associated with high-fat diet (HFD related elevation of saturated fatty acids like palmitic acid (PA in neurons and astrocytes of the brain. Methods Human neuroblastoma cells SH-SY5Y (as a neuronal model and human glioblastoma cells T98G (as an astrocytic model, were treated with 100–500 µM PA, oleic acid (OA or lauric acid (LA for 24 h or 48 h, and their cell viability was assessed by 3-(4,5-dimetylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. The effects of stable overexpression of γ-synuclein (γ-syn, a neuronal protein recently recognized as a novel regulator of lipid handling in adipocytes, and transient overexpression of Parkinson’s disease (PD α-synuclein [α-syn; wild-type (wt and its pathogenic mutants A53T, A30P and E46K] in SH-SY5Y and T98G cells, were also evaluated. The effects of co-treatment of PA with paraquat (PQ, a Parkinsonian pesticide, and leptin, a hormone involved in the brain-adipose axis, were also assessed. Cell death mode and cell cycle were analyzed by Annexin V/PI flow cytometry. Reactive oxygen species (ROS level was determined using 2′,7′-dichlorofluorescien diacetate (DCFH-DA assay and lipid peroxidation level was determined using thiobarbituric acid reactive substances (TBARS assay. Results MTT assay revealed dose- and time-dependent PA cytotoxicity on SH-SY5Y and T98G cells, but not OA and LA. The cytotoxicity was significantly lower in SH-SY5Y-γ-syn cells, while transient overexpression of wt α-syn or its PD mutants (A30P and E46K, but not A53T modestly (but still significantly rescued the cytotoxicity of PA in SH-SY5Y and T98G cells. Co-treatment of increasing concentrations of PQ exacerbated PA’s neurotoxicity. Pre-treatment of leptin, an anti-apoptotic adipokine, did not successfully rescue SH-SY5Y cells from PA-induced cytotoxicity—suggesting a mechanism of PA

  8. Spatial and Single-Cell Transcriptional Profiling Identifies Functionally Distinct Human Dermal Fibroblast Subpopulations.

    Science.gov (United States)

    Philippeos, Christina; Telerman, Stephanie B; Oulès, Bénédicte; Pisco, Angela O; Shaw, Tanya J; Elgueta, Raul; Lombardi, Giovanna; Driskell, Ryan R; Soldin, Mark; Lynch, Magnus D; Watt, Fiona M

    2018-04-01

    Previous studies have shown that mouse dermis is composed of functionally distinct fibroblast lineages. To explore the extent of fibroblast heterogeneity in human skin, we used a combination of comparative spatial transcriptional profiling of human and mouse dermis and single-cell transcriptional profiling of human dermal fibroblasts. We show that there are at least four distinct fibroblast populations in adult human skin, not all of which are spatially segregated. We define markers permitting their isolation and show that although marker expression is lost in culture, different fibroblast subpopulations retain distinct functionality in terms of Wnt signaling, responsiveness to IFN-γ, and ability to support human epidermal reconstitution when introduced into decellularized dermis. These findings suggest that ex vivo expansion or in vivo ablation of specific fibroblast subpopulations may have therapeutic applications in wound healing and diseases characterized by excessive fibrosis. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Enhancement of chemically induced reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells by 872 MHz radiofrequency radiation

    Energy Technology Data Exchange (ETDEWEB)

    Luukkonen, Jukka [Department of Environmental Science, University of Kuopio, Bioteknia 2, P.O. Box 1627, FI-70211 Kuopio (Finland)], E-mail: Jukka.Luukkonen@uku.fi; Hakulinen, Pasi; Maeki-Paakkanen, Jorma [Department of Environmental Health, National Public Health Institute, P.O. Box 95, FI-70701 Kuopio (Finland); Juutilainen, Jukka; Naarala, Jonne [Department of Environmental Science, University of Kuopio, Bioteknia 2, P.O. Box 1627, FI-70211 Kuopio (Finland)

    2009-03-09

    The objective of the study was to investigate effects of 872 MHz radiofrequency (RF) radiation on intracellular reactive oxygen species (ROS) production and DNA damage at a relatively high SAR value (5 W/kg). The experiments also involved combined exposure to RF radiation and menadione, a chemical inducing intracellular ROS production and DNA damage. The production of ROS was measured using the fluorescent probe dichlorofluorescein and DNA damage was evaluated by the Comet assay. Human SH-SY5Y neuroblastoma cells were exposed to RF radiation for 1 h with or without menadione. Control cultures were sham exposed. Both continuous waves (CW) and a pulsed signal similar to that used in global system for mobile communications (GSM) mobile phones were used. Exposure to the CW RF radiation increased DNA breakage (p < 0.01) in comparison to the cells exposed only to menadione. Comparison of the same groups also showed that ROS level was higher in cells exposed to CW RF radiation at 30 and 60 min after the end of exposure (p < 0.05 and p < 0.01, respectively). No effects of the GSM signal were seen on either ROS production or DNA damage. The results of the present study suggest that 872 MHz CW RF radiation at 5 W/kg might enhance chemically induced ROS production and thus cause secondary DNA damage. However, there is no known mechanism that would explain such effects from CW RF radiation but not from GSM modulated RF radiation at identical SAR.

  10. Enhancement of chemically induced reactive oxygen species production and DNA damage in human SH-SY5Y neuroblastoma cells by 872 MHz radiofrequency radiation

    International Nuclear Information System (INIS)

    Luukkonen, Jukka; Hakulinen, Pasi; Maeki-Paakkanen, Jorma; Juutilainen, Jukka; Naarala, Jonne

    2009-01-01

    The objective of the study was to investigate effects of 872 MHz radiofrequency (RF) radiation on intracellular reactive oxygen species (ROS) production and DNA damage at a relatively high SAR value (5 W/kg). The experiments also involved combined exposure to RF radiation and menadione, a chemical inducing intracellular ROS production and DNA damage. The production of ROS was measured using the fluorescent probe dichlorofluorescein and DNA damage was evaluated by the Comet assay. Human SH-SY5Y neuroblastoma cells were exposed to RF radiation for 1 h with or without menadione. Control cultures were sham exposed. Both continuous waves (CW) and a pulsed signal similar to that used in global system for mobile communications (GSM) mobile phones were used. Exposure to the CW RF radiation increased DNA breakage (p < 0.01) in comparison to the cells exposed only to menadione. Comparison of the same groups also showed that ROS level was higher in cells exposed to CW RF radiation at 30 and 60 min after the end of exposure (p < 0.05 and p < 0.01, respectively). No effects of the GSM signal were seen on either ROS production or DNA damage. The results of the present study suggest that 872 MHz CW RF radiation at 5 W/kg might enhance chemically induced ROS production and thus cause secondary DNA damage. However, there is no known mechanism that would explain such effects from CW RF radiation but not from GSM modulated RF radiation at identical SAR

  11. Bee venom protects SH-SY5Y human neuroblastoma cells from 1-methyl-4-phenylpyridinium-induced apoptotic cell death.

    Science.gov (United States)

    Doo, Ah-Reum; Kim, Seung-Nam; Kim, Seung-Tae; Park, Ji-Yeun; Chung, Sung-Hyun; Choe, Bo-Young; Chae, Younbyoung; Lee, Hyejung; Yin, Chang-Shik; Park, Hi-Joon

    2012-01-06

    Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by progressive selective loss of dopaminergic neurons in the substantia nigra. Recently, bee venom was reported to protect dopaminergic neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced mice PD model, however, the underlying mechanism is not fully understood. The objective of the present study is to investigate the neuroprotective mechanism of bee venom against Parkinsonian toxin, 1-methyl-4-phenylpyridine (MPP(+)), in SH-SY5Y human neuroblastoma cells. Our results revealed that bee venom pretreatment (1-100 ng/ml) increased the cell viability and decreased apoptosis assessed by DNA fragmentation and caspase-3 activity assays in MPP(+)-induced cytotoxicity in SH-SY5Y cells. Bee venom increased the anti-apoptotic Bcl-2 expression and decreased the pro-apoptotic Bax, cleaved PARP expressions. In addition, bee venom prevented the MPP(+)-induced suppression of Akt phosphorylation, and the neuroprotective effect of bee venom against MPP(+)-induced cytotoxicity was inhibited by a phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002. These results suggest that the anti-apoptotic effect of bee venom is mediated by the cell survival signaling, the PI3K/Akt pathway. These results provide new evidence for elucidating the mechanism of neuroprotection of bee venom against PD. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Impact of haloperidol and quetiapine on the expression of genes encoding antioxidant enzymes in human neuroblastoma SH-SY5Y cells.

    Science.gov (United States)

    Schmidt, Andreas Johannes; Hemmeter, Ulrich Michael; Krieg, Jürgen-Christian; Vedder, Helmut; Heiser, Philip

    2009-05-01

    Antipsychotics are known to alter antioxidant activities in vivo. Therefore, the aim of the present study was to examine in the human neuroblastoma SH-SY5Y cell line the impact of a typical (haloperidol) and an atypical (quetiapine) antipsychotic on the expression of genes encoding the key enzymes of the antioxidant metabolism (Cu, Zn superoxide dismutase; Mn superoxide dismutase; glutathione peroxidase; catalase) and enzymes of the glutathione metabolism (gamma-glutamyl cysteine synthetase, glutathione-S-transferase, gamma-glutamyltranspeptidase, glutathione reductase). The cells were incubated for 24h with 0.3, 3, 30 and 300microM haloperidol and quetiapine, respectively; mRNA levels were measured by polymerase chain reaction. In the present study, we observed mostly significant decreases of mRNA contents. With respect to the key pathways, we detected mainly effects on the mRNA levels of the hydrogen peroxide detoxifying enzymes. Among the enzymes of the glutathione metabolism, glutathione-S-transferase- and gamma-glutamyltranspeptidase-mRNA levels showed the most prominent effects. Taken together, our results demonstrate a significantly reduced expression of genes encoding for antioxidant enzymes after treatment with the antipsychotics, haloperidol and quetiapine.

  13. Impact of plant extracts tested in attention-deficit/hyperactivity disorder treatment on cell survival and energy metabolism in human neuroblastoma SH-SY5Y cells.

    Science.gov (United States)

    Schmidt, Andreas Johannes; Krieg, Jürgen-Christian; Hemmeter, Ulrich Michael; Kircher, Tilo; Schulz, Eberhard; Clement, Hans-Willi; Heiser, Philip

    2010-10-01

    Plant extracts such as Hypericum perforatum and Pycnogenol have been tested as alternatives to the classical ADHD drugs. It has been possible to describe neuroprotective effects of such plant extracts. A reduction of ADHD symptoms could be shown in clinical studies after the application of Pycnogenol, which is a pine bark extract. The impacts of the standardized herbal extracts Hypericum perforatum, Pycnogenol and Enzogenol up to a concentration of 5000 ng/mL on cell survival and energy metabolism in human SH-SY5Y neuroblastoma cells has been investigated in the present examination. Hypericum perforatum significantly decreased the survival of cells after treatment with a concentration of 5000 ng/mL, whereas lower concentrations exerted no significant effects. Pycnogenol( induced a significant increase of cell survival after incubation with a concentration of 32.25 ng/mL and a concentration of 250 ng/mL. Other applied concentrations of Pycnogenol failed to exert significant effects. Treatment with Enzogenol did not lead to significant changes in cell survival.Concerning energy metabolism, the treatment of cells with a concentration of 5000 ng/mL Hypericum perforatum led to a significant increase of ATP levels, whereas treatment with a concentration of 500 ng/mL had no significant effect. Incubation of cells with Pycnogenol and Enzogenol exerted no significant effects.None of the tested substances caused any cytotoxic effect when used in therapeutically relevant concentrations. Copyright © 2010 John Wiley & Sons, Ltd.

  14. Cold Shock Induced Protein RBM3 but Not Mild Hypothermia Protects Human SH-SY5Y Neuroblastoma Cells From MPP+-Induced Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Hai-Jie Yang

    2018-05-01

    Full Text Available The cold shock protein RBM3 can mediate mild hypothermia-related protection in neurodegeneration such as Alzheimer's disease. However, it remains unclear whether RBM3 and mild hypothermia provide same protection in model of Parkinson's disease (PD, the second most common neurodegenerative disorder. In this study, human SH-SY5Y neuroblastoma cells subjected to insult by 1-methyl-4-phenylpyridinium (MPP+ served as an in-vitro model of PD. Mild hypothermia (32°C aggravated MPP+-induced apoptosis, which was boosted when RBM3 was silenced by siRNA. In contrast, overexpression of RBM3 significantly reduced this apoptosis. MPP+ treatment downregulated the expression of RBM3 both endogenously and exogenously and suppressed its induction by mild hypothermia (32°C. In conclusion, our data suggest that cold shock protein RBM3 provides neuroprotection in a cell model of PD, suggesting that RBM3 induction may be a suitable strategy for PD therapy. However, mild hypothermia exacerbates MPP+-induced apoptosis even that RBM3 could be synthesized during mild hypothermia.

  15. Preparation of Ginsenoside Rg3 and Protection against H2O2-Induced Oxidative Stress in Human Neuroblastoma SK-N-SH Cells

    Directory of Open Access Journals (Sweden)

    Gang Li

    2014-01-01

    Full Text Available The aim of this study is to evaluate the protection of ginsenoside Rg3 against oxidative stress in human neuroblastoma SK-N-SH cells. 20(R-ginsenoside Rg3 (20(R-Rg3 and 20(S-ginsenoside Rg3 (20(S-Rg3 were prepared by the method of chemical degradation and column chromatography, and the structure of the two compounds was characterized by 1H-NMR and 13C-NMR spectroscopy. MTT assay and LDH leakage assay were used to determine the cell viability and the oxidative stress cellular model was established by means of H2O2 (600 μM for 4 h. We also investigated the changes of intracellular MDA content, SOD activity, and ROS formation after the treatment of ginsenoside Rg3 for 20 h. The results indicated that both 20 (R-Rg3 and 20 (S-Rg3 had obvious protection against H2O2-induced oxidative stress in SK-N-SH cells. Moreover, 20(R-Rg3 exhibited better antioxidant activity than 20(S-Rg3 in vitro. These findings are expected to provide some implication for further research and application of ginsenoside Rg3 in neuroprotection.

  16. Overexpression of tissue-nonspecific alkaline phosphatase increases the expression of neurogenic differentiation markers in the human SH-SY5Y neuroblastoma cell line.

    Science.gov (United States)

    Graser, Stephanie; Mentrup, Birgit; Schneider, Doris; Klein-Hitpass, Ludger; Jakob, Franz; Hofmann, Christine

    2015-10-01

    Patients suffering from the rare hereditary disease hypophosphatasia (HPP), which is based on mutations in the ALPL gene, tend to develop central nervous system (CNS) related issues like epileptic seizures and neuropsychiatric illnesses such as anxiety and depression, in addition to well-known problems with the mineralization of bones and teeth. Analyses of the molecular role of tissue-nonspecific alkaline phosphatase (TNAP) in transgenic SH-SY5Y(TNAPhigh) neuroblastoma cells compared to SH-SY5Y(TNAPlow) cells indicate that the enzyme influences the expression levels of neuronal marker genes like RNA-binding protein, fox-1 homolog 3 (NEUN) and enolase 2, gamma neuronal (NSE) as well as microtubule-binding proteins like microtubule-associated protein 2 (MAP2) and microtubule-associated protein tau (TAU) during neurogenic differentiation. Fluorescence staining of SH-SY5Y(TNAPhigh) cells reveals TNAP localization throughout the whole length of the developed projection network and even synapsin Ι co-localization with strong TNAP signals at some spots at least at the early time points of differentiation. Additional immunocytochemical staining shows higher MAP2 expression in SH-SY5Y(TNAPhigh) cells and further a distinct up-regulation of tau and MAP2 in the course of neurogenic differentiation. Interestingly, transgenic SH-SY5Y(TNAPhigh) cells are able to develop longer cellular processes compared to control cells after stimulation with all-trans retinoic acid (RA). Current therapies for HPP prioritize improvement of the bone phenotype. Unraveling the molecular role of TNAP in extraosseous tissues, like in the CNS, will help to improve treatment strategies for HPP patients. Taking this rare disease as a model may also help to dissect TNAP's role in neurodegenerative diseases and even improve future treatment of common pathologies. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Analysis of the Catecholaminergic Phenotype in Human SH-SY5Y and BE(2-M17 Neuroblastoma Cell Lines upon Differentiation.

    Directory of Open Access Journals (Sweden)

    Roberta Filograna

    Full Text Available Human cell lines are often used to investigate cellular pathways relevant for physiological or pathological processes or to evaluate cell toxicity or protection induced by different compounds, including potential drugs. In this study, we analyzed and compared the differentiating activities of three agents (retinoic acid, staurosporine and 12-O-tetradecanoylphorbol-13-acetate on the human neuroblastoma SH-SY5Y and BE(2-M17 cell lines; the first cell line is largely used in the field of neuroscience, while the second is still poorly characterized. After evaluating their effects in terms of cell proliferation and morphology, we investigated their catecholaminergic properties by assessing the expression profiles of the major genes involved in catecholamine synthesis and storage and the cellular concentrations of the neurotransmitters dopamine and noradrenaline. Our results demonstrate that the two cell lines possess similar abilities to differentiate and acquire a neuron-like morphology. The most evident effects in SH-SY5Y cells were observed in the presence of staurosporine, while in BE(2-M17 cells, retinoic acid induced the strongest effects. Undifferentiated SH-SY5Y and BE(2-M17 cells are characterized by the production of both NA and DA, but their levels are considerably higher in BE(2-M17 cells. Moreover, the NAergic phenotype appears to be more pronounced in SH-SY5Y cells, while BE(2-M17 cells have a more prominent DAergic phenotype. Finally, the catecholamine concentration strongly increases upon differentiation induced by staurosporine in both cell lines. In conclusion, in this work the catecholaminergic phenotype of the human BE(2-M17 cell line upon differentiation was characterized for the first time. Our data suggest that SH-SY5Y and BE(2-M17 represent two alternative cell models for the neuroscience field.

  18. Analysis of the Catecholaminergic Phenotype in Human SH-SY5Y and BE(2)-M17 Neuroblastoma Cell Lines upon Differentiation.

    Science.gov (United States)

    Filograna, Roberta; Civiero, Laura; Ferrari, Vanni; Codolo, Gaia; Greggio, Elisa; Bubacco, Luigi; Beltramini, Mariano; Bisaglia, Marco

    2015-01-01

    Human cell lines are often used to investigate cellular pathways relevant for physiological or pathological processes or to evaluate cell toxicity or protection induced by different compounds, including potential drugs. In this study, we analyzed and compared the differentiating activities of three agents (retinoic acid, staurosporine and 12-O-tetradecanoylphorbol-13-acetate) on the human neuroblastoma SH-SY5Y and BE(2)-M17 cell lines; the first cell line is largely used in the field of neuroscience, while the second is still poorly characterized. After evaluating their effects in terms of cell proliferation and morphology, we investigated their catecholaminergic properties by assessing the expression profiles of the major genes involved in catecholamine synthesis and storage and the cellular concentrations of the neurotransmitters dopamine and noradrenaline. Our results demonstrate that the two cell lines possess similar abilities to differentiate and acquire a neuron-like morphology. The most evident effects in SH-SY5Y cells were observed in the presence of staurosporine, while in BE(2)-M17 cells, retinoic acid induced the strongest effects. Undifferentiated SH-SY5Y and BE(2)-M17 cells are characterized by the production of both NA and DA, but their levels are considerably higher in BE(2)-M17 cells. Moreover, the NAergic phenotype appears to be more pronounced in SH-SY5Y cells, while BE(2)-M17 cells have a more prominent DAergic phenotype. Finally, the catecholamine concentration strongly increases upon differentiation induced by staurosporine in both cell lines. In conclusion, in this work the catecholaminergic phenotype of the human BE(2)-M17 cell line upon differentiation was characterized for the first time. Our data suggest that SH-SY5Y and BE(2)-M17 represent two alternative cell models for the neuroscience field.

  19. Protective Effects of Fisetin Against 6-OHDA-Induced Apoptosis by Activation of PI3K-Akt Signaling in Human Neuroblastoma SH-SY5Y Cells.

    Science.gov (United States)

    Watanabe, Ryoko; Kurose, Takumi; Morishige, Yuta; Fujimori, Ko

    2018-02-01

    6-Hydroxydopamine (6-OHDA) induces the production of reactive oxygen species (ROS) that are associated with various neurodegenerative diseases such as Parkinson's disease. 3,3',4',7-Tetrahydroxyflavone (fisetin), a plant flavonoid has a variety of physiological effects such as antioxidant activity. In this study, we investigated the molecular mechanism of the neuroprotective effects of fisetin against 6-OHDA-induced cell death in human neuroblastoma SH-SY5Y cells. 6-OHDA-mediated cell toxicity was reduced in a fisetin concentration-dependent manner. 6-OHDA-mediated elevation of the expression of the oxidative stress-related genes such as hemeoxygenase-1, NAD(P)H dehydrogenase quinone 1, NF-E2-related factor 2, and γ-glutamate-cysteine ligase modifier was suppressed by fisetin. Fisetin also lowered the ratio of the proapoptotic Bax protein and the antiapoptotic Bcl-2 protein in SH-SY5Y cells. Moreover, fisetin effectively suppressed 6-OHDA-mediated activation of caspase-3 and caspase-9, which leads to the cell death, while, 6-OHDA-induced caspase-3/7 activity was lowered. Furthermore, fisetin activated the PI3K-Akt signaling, which inhibits the caspase cascade, and fisetin-mediated inhibition of 6-OHDA-induced cell death was negated by the co-treatment with an Akt inhibitor. These results indicate that fisetin protects 6-OHDA-induced cell death by activating PI3K-Akt signaling in human neuronal SH-SY5Y cells. This is the first report that the PI3K-Akt signaling is involved in the fisetin-protected ROS-mediated neuronal cell death.

  20. Mutations in PIK3CA are infrequent in neuroblastoma

    International Nuclear Information System (INIS)

    Dam, Vincent; Morgan, Brian T; Mazanek, Pavel; Hogarty, Michael D

    2006-01-01

    Neuroblastoma is a frequently lethal pediatric cancer in which MYCN genomic amplification is highly correlated with aggressive disease. Deregulated MYC genes require co-operative lesions to foster tumourigenesis and both direct and indirect evidence support activated Ras signaling for this purpose in many cancers. Yet Ras genes and Braf, while often activated in cancer cells, are infrequent targets for activation in neuroblastoma. Recently, the Ras effector PIK3CA was shown to be activated in diverse human cancers. We therefore assessed PIK3CA for mutation in human neuroblastomas, as well as in neuroblastomas arising in transgenic mice with MYCN overexpressed in neural-crest tissues. In this murine model we additionally surveyed for Ras family and Braf mutations as these have not been previously reported. Sixty-nine human neuroblastomas (42 primary tumors and 27 cell lines) were sequenced for PIK3CA activating mutations within the C2, helical and kinase domain 'hot spots' where 80% of mutations cluster. Constitutional DNA was sequenced in cases with confirmed alterations to assess for germline or somatic acquisition. Additionally, Ras family members (Hras1, Kras2 and Nras) and the downstream effectors Pik3ca and Braf, were sequenced from twenty-five neuroblastomas arising in neuroblastoma-prone transgenic mice. We identified mutations in the PIK3CA gene in 2 of 69 human neuroblastomas (2.9%). Neither mutation (R524M and E982D) has been studied to date for effects on lipid kinase activity. Though both occurred in tumors with MYCN amplification the overall rate of PIK3CA mutations in MYCN amplified and single-copy tumors did not differ appreciably (2 of 31 versus 0 of 38, respectively). Further, no activating mutations were identified in a survey of Ras signal transduction genes (including Hras1, Kras2, Nras, Pik3ca, or Braf genes) in twenty-five neuroblastic tumors arising in the MYCN-initiated transgenic mouse model. These data suggest that activating

  1. Radiosensitivity of neuroblastoma

    International Nuclear Information System (INIS)

    Deacon, J.M.; Wilson, P.; Steel, G.G.

    1985-01-01

    Neuroblastoma is known to be clinically radioresponsive: it is possible to obtain local tumour control with relatively small doses of radiation. The main therapeutic problem, however, is one of metastatic disease, where in spite of modern combination chemotherapy, the prognosis remains poor. Systemic therapy with either drugs or radiation is dose-limited by toxicity to bone marrow stem cells. However, the advent of new technology which enables tumour cells to be removed from infiltrated marrow prior to autologous bone marrow ''rescue'' allows dose escalation, and makes the use of systemic irradiation in the treatment of stage IV disease feasible. The objective of this study was to investigate the radiobiology of neuroblastoma in detail, including intrinsic cellular radiosensitivity, repair capacity, and extrinsic dose-modifying factors which may affect tumour response in vivo. Cells at three levels of organisation were used: single cell suspensions multicellular tumour spheroids; and xenografts grown in immune-suppressed mice

  2. Regulation of apoptosis in human melanoma and neuroblastoma cells by statins, sodium arsenite and TRAIL: a role of combined treatment versus monotherapy

    Science.gov (United States)

    Ivanov, Vladimir N.; Hei, Tom K.

    2015-01-01

    Treatment of melanoma cells by sodium arsenite or statins (simvastatin and lovastatin) dramatically modified activities of the main cell signaling pathways resulting in the induction of heme oxygenase-1 (HO-1) and in a downregulation of cyclooxygenase-2 (COX-2) protein levels. Through heme degradation and the production of carbon monoxide and biliverdin, HO-1 plays a protective role in different scenario of oxidative stress followed by mitochondrial apoptosis. Both sodium arsenite and statins could be efficient inducers of apoptosis in some melanoma cell lines, but often exhibited only modest proapoptotic activity in others, due to numerous protective mechanisms. We demonstrated in the present study that treatment by sodium arsenite or statins with an additional inhibition of HO-1 expression (or activation) caused a substantial upregulation of apoptosis in melanoma cells. Sodium arsenite- or statin-induced apoptosis was independent of BRAF status (wild type versus V600E) in melanoma lines. Monotreatment required high doses of statins (20–40 μM) for effective induction of apoptosis. As an alternative approach, pretreatment of melanoma cells with statin at decreased doses (5–20 μM) dramatically enhanced TRAIL-induced apoptosis, due to suppression of the NF-κB and STAT3-transcriptional targets (including COX-2) and downregulation of cFLIP-L (a caspase-8 inhibitor) protein levels. Furthermore, combined treatment with sodium arsenite and TRAIL or simvastatin and TRAIL efficiently induced apoptotic commitment in human neuroblastoma cells. In summary, our findings on enhancing effects of combined treatment of cancer cells using statin and TRAIL provide the rationale for further preclinical evaluation. PMID:21910007

  3. A fluorescence assay for measuring acetylcholinesterase activity in rat blood and a human neuroblastoma cell line (SH-SY5Y).

    Science.gov (United States)

    Santillo, Michael F; Liu, Yitong

    2015-01-01

    Acetylcholinesterase (AChE) is an enzyme responsible for metabolism of the neurotransmitter acetylcholine, and inhibition of AChE can have therapeutic applications (e.g., drugs for Alzheimer's disease) or neurotoxic consequences (e.g., pesticides). A common absorbance-based AChE activity assay that uses 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) can have limited sensitivity and be prone to interference. Therefore, an alternative assay was developed, in which AChE activity was determined by measuring fluorescence of resorufin produced from coupled enzyme reactions involving acetylcholine and Amplex Red (10-acetyl-3,7-dihydroxyphenoxazine). The Amplex Red assay was used for two separate applications. First, AChE activity was measured in rat whole blood, which is a biomarker for exposure to AChE inhibitor pesticides. Activity was quantified from a 10(5)-fold dilution of whole blood, and there was a linear correlation between Amplex Red and DTNB assays. For the second application, Amplex Red assay was used to measure AChE inhibition potency in a human neuroblastoma cell line (SH-SY5Y), which is important for assessing pharmacological and toxicological potential of AChE inhibitors including drugs, phytochemicals, and pesticides. Five known reversible inhibitors were evaluated (IC50, 7-225 nM), along with irreversible inhibitors chlorpyrifos-oxon (ki=1.01 nM(-1)h(-1)) and paraoxon (ki=0.16 nM(-1)h(-1)). Lastly, in addition to inhibition, AChE reactivation was measured in SH-SY5Y cells incubated with pralidoxime chloride (2-PAM). The Amplex Red assay is a sensitive, specific, and reliable fluorescence method for measuring AChE activity in both rat whole blood and cultured SH-SY5Y cells. Published by Elsevier Inc.

  4. Arsenic trioxide (As2O3) induced calcium signals and cytotoxicity in two human cell lines: SY-5Y neuroblastoma and 293 embryonic kidney (HEK)

    International Nuclear Information System (INIS)

    Florea, Ana-Maria; Splettstoesser, Frank; Buesselberg, Dietrich

    2007-01-01

    Arsenic trioxide (As 2 O 3 ) has anticancer properties; however, its use also leads to neuro-, hepato- or nephro-toxicity, and therefore, it is important to understand the mechanism of As 2 O 3 toxicity. We studied As 2 O 3 influence on intracellular calcium ([Ca 2+ ] i ) homeostasis of human neuroblastoma SY-5Y and embryonic kidney cells (HEK 293).We also relate the As 2 O 3 induced [Ca 2+ ] i modifications with cytotoxicity. We used Ca 2+ sensitive dyes (fluo-4 and rhod-2) combined with laser scanning microscopy or fluorescence activated cell sorting to measure Ca 2+ changes during the application of As 2 O 3 and we approach evaluation of cytotoxicity. As 2 O 3 (1 μM) increased [Ca 2+ ] i in SY-5Y and HEK 293 cells. Three forms of [Ca 2+ ] i -elevations were found: (1) steady-state increases (2) transient [Ca 2+ ] i -elevations and (3) Ca 2+ -spikes. [Ca 2+ ] i modifications were independent from extracellular Ca 2+ but dependent on internal calcium stores. The effect was not reversible. Inositol triphosphate (IP 3 ) and ryanodine (Ry) receptors are involved in regulation of signals induced by As 2 O 3 . 2-APB and dantrolene significantly reduced the [Ca 2+ ] i -rise (p 2+ ] i -elevation or spiking. This indicates that other Ca 2+ regulating mechanisms are involved. In cytotoxicity tests As 2 O 3 significantly reduced cell viability in both cell types. Staining with Hoechst 33342 showed occurrence of apoptosis and DNA damage. Our data suggest that [Ca 2+ ] i is an important messenger in As 2 O 3 induced cell death

  5. Human neuroblastoma SH-SY5Y cells show increased resistance to hyperthermic stress after differentiation, associated with elevated levels of Hsp72.

    Science.gov (United States)

    Cheng, Lesley; Smith, Danielle J; Anderson, Robin L; Nagley, Phillip

    2011-01-01

    Terminally differentiated neurones in the central nervous system need to be protected from stress. We ask here whether differentiation of progenitor cells to neurones is accompanied by up-regulation of Hsp72, with acquisition of enhanced thermotolerance. Human neuroblastoma SH-SY5Y cells were propagated in an undifferentiated form and subsequently differentiated into neurone-like cells. Thermotolerance tests were carried out by exposure of cells to various temperatures, monitoring nuclear morphology as index of cell death. Abundance of Hsp72 was measured in cell lysates by western immunoblotting. The differentiation of SH-SY5Y cells was accompanied by increased expression of Hsp72. Further, in both cell states, exposure to mild hyperthermic stress (43°C for 30 min) increased Hsp72 expression. After differentiation, SH-SY5Y cells were more resistant to hyperthermic stress compared to their undifferentiated state, correlating with levels of Hsp72. Stable exogenous expression of Hsp72 in SH-SY5Y cells (transfected line 5YHSP72.1, containing mildly elevated levels of Hsp72), led to enhanced resistance to hyperthermic stress. Hsp72 was found to be inducible in undifferentiated 5YHSP72.1 cells; such heat-treated cells displayed enhanced thermotolerance. Treatment of cells with KNK437, a suppressor of Hsp72 induction, resulted in acute thermosensitisation of all cell types tested here. Hsp72 has a major role in the enhanced hyperthermic resistance acquired during neuronal differentiation of SH-SY5Y cells. These findings model the requirement in intact organisms for highly differentiated neurones to be specially protected against thermal stress.

  6. Comparison of the neurotoxicities between volatile organic compounds and fragrant organic compounds on human neuroblastoma SK-N-SH cells and primary cultured rat neurons

    Directory of Open Access Journals (Sweden)

    Yasue Yamada

    2015-01-01

    Full Text Available These are many volatile organic compounds (VOCs that are synthesized, produced from petroleum or derived from natural compounds, mostly plants. Fragrant and volatile organic compounds from plants have been used as food additives, medicines and aromatherapy. Several clinical and pathological studies have shown that chronic abuse of VOCs, mainly toluene, causes several neuropsychiatric disorders. Little is known about the mechanisms of neurotoxicity of the solvents. n-Octanal, nonanal, and 2-ethyl-1-hexanol, which are used catalyzers or intermediates of chemical reactions, are released into the environment. Essential oils have the functions of self-defense, sterilization, and antibiosis in plants. When volatile organic compounds enter the body, there is the possibility that they will pass through the blood–brain barrier (BBB and affect the central nervous system (CNS. However, the direct effects of volatile organic compounds on neural function and their toxicities are still unclear. We compared the toxicities of n-octanal, nonanal and 2-ethyl-1-hexanol with those of five naturally derived fragrant organic compounds (FOCs, linalool, cis-3-hexen-1-ol, isoamyl alcohol, n-propyl alcohol and n-phenethyl alcohol. MTT assay of human neuroblastoma SK-N-SH cells showed that the IC50 values of linalool, cis-3-hexen-1-ol, isoamyl alcohol, n-propyl alcohol and phenethyl alcohol were 1.33, 2.3, >5, >5, and 2.39 mM, respectively, and the IC50 values of toluene, n-octanal, nonanal and 2-ethyl-1-hexanol were 850, 37.2, 8.31 and 15.1 μM, respectively. FOCs showed lower toxicities than those of VOCs. These results indicate that FOCs are safer than other compounds.

  7. Mechanisms of neuroblastoma regression

    Science.gov (United States)

    Brodeur, Garrett M.; Bagatell, Rochelle

    2014-01-01

    Recent genomic and biological studies of neuroblastoma have shed light on the dramatic heterogeneity in the clinical behaviour of this disease, which spans from spontaneous regression or differentiation in some patients, to relentless disease progression in others, despite intensive multimodality therapy. This evidence also suggests several possible mechanisms to explain the phenomena of spontaneous regression in neuroblastomas, including neurotrophin deprivation, humoral or cellular immunity, loss of telomerase activity and alterations in epigenetic regulation. A better understanding of the mechanisms of spontaneous regression might help to identify optimal therapeutic approaches for patients with these tumours. Currently, the most druggable mechanism is the delayed activation of developmentally programmed cell death regulated by the tropomyosin receptor kinase A pathway. Indeed, targeted therapy aimed at inhibiting neurotrophin receptors might be used in lieu of conventional chemotherapy or radiation in infants with biologically favourable tumours that require treatment. Alternative approaches consist of breaking immune tolerance to tumour antigens or activating neurotrophin receptor pathways to induce neuronal differentiation. These approaches are likely to be most effective against biologically favourable tumours, but they might also provide insights into treatment of biologically unfavourable tumours. We describe the different mechanisms of spontaneous neuroblastoma regression and the consequent therapeutic approaches. PMID:25331179

  8. Treatment and outcome of adult-onset neuroblastoma.

    Science.gov (United States)

    Suzuki, Maya; Kushner, Brian H; Kramer, Kim; Basu, Ellen M; Roberts, Stephen S; Hammond, William J; LaQuaglia, Michael P; Wolden, Suzanne L; Cheung, Nai-Kong V; Modak, Shakeel

    2018-03-25

    Adult-onset neuroblastoma is rare and little is known about its biology and clinical course. There is no established therapy for adult-onset neuroblastoma. Anti-GD2 immunotherapy is now standard therapy in children with high-risk neuroblastoma; however, its use has not been reported in adults. Forty-four adults (18-71 years old) diagnosed with neuroblastoma between 1979 and 2015 were treated at Memorial Sloan Kettering Cancer Center. Five, 1, 5 and 33 patients had INSS stage 1, 2, 3 and 4 diseases, respectively. Genetic abnormalities included somatic ATRX (58%) and ALK mutations (42%) but not MYCN-amplification. In the 11 patients with locoregional disease, 10-year progression-free (PFS) and overall survival (OS) was 35.4 ± 16.1% and 61.4 ± 15.3%, respectively. Among 33 adults with stage 4 neuroblastoma, 7 (21%) achieved complete response (CR) after induction chemotherapy and/or surgery. Seven patients with primary refractory neuroblastoma (all with osteomedullary but no soft tissue disease) received anti-GD2 antibodies, mouse or humanized 3F8. Antibody-related adverse events were similar to those in children, response rate being 71.4%. In patients with stage 4 disease at diagnosis, 5-year PFS was 9.7± 5.3% and most patients who were alive with disease at 5 years died of neuroblastoma over the next 5 years, 10-year OS being only 19.0 ± 8.2%. Patients who achieved CR after induction had superior PFS and OS (p = 0.006, p = 0.031, respectively). Adult-onset neuroblastoma appeared to have different biology from pediatric or adolescent NB, and poorer outcome. Complete disease control appeared to improve long-term survival. Anti-GD2 immunotherapy was well tolerated and might be beneficial. © 2018 UICC.

  9. Upregulation of LYAR induces neuroblastoma cell proliferation and survival.

    Science.gov (United States)

    Sun, Yuting; Atmadibrata, Bernard; Yu, Denise; Wong, Matthew; Liu, Bing; Ho, Nicholas; Ling, Dora; Tee, Andrew E; Wang, Jenny; Mungrue, Imran N; Liu, Pei Y; Liu, Tao

    2017-09-01

    The N-Myc oncoprotein induces neuroblastoma by regulating gene transcription and consequently causing cell proliferation. Paradoxically, N-Myc is well known to induce apoptosis by upregulating pro-apoptosis genes, and it is not clear how N-Myc overexpressing neuroblastoma cells escape N-Myc-mediated apoptosis. The nuclear zinc finger protein LYAR has recently been shown to modulate gene expression by forming a protein complex with the protein arginine methyltransferase PRMT5. Here we showed that N-Myc upregulated LYAR gene expression by binding to its gene promoter. Genome-wide differential gene expression studies revealed that knocking down LYAR considerably upregulated the expression of oxidative stress genes including CHAC1, which depletes intracellular glutathione and induces oxidative stress. Although knocking down LYAR expression with siRNAs induced oxidative stress, neuroblastoma cell growth inhibition and apoptosis, co-treatment with the glutathione supplement N-acetyl-l-cysteine or co-transfection with CHAC1 siRNAs blocked the effect of LYAR siRNAs. Importantly, high levels of LYAR gene expression in human neuroblastoma tissues predicted poor event-free and overall survival in neuroblastoma patients, independent of the best current markers for poor prognosis. Taken together, our data suggest that LYAR induces proliferation and promotes survival of neuroblastoma cells by repressing the expression of oxidative stress genes such as CHAC1 and suppressing oxidative stress, and identify LYAR as a novel co-factor in N-Myc oncogenesis.

  10. PI3K/AKT and ERK regulate retinoic acid-induced neuroblastoma cellular differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Jingbo [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Paul, Pritha; Lee, Sora [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Qiao, Lan; Josifi, Erlena; Tiao, Joshua R. [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Chung, Dai H., E-mail: dai.chung@vanderbilt.edu [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Retinoic acid (RA) induces neuroblastoma cells differentiation, which is accompanied by G0/G1 cell cycle arrest. Black-Right-Pointing-Pointer RA resulted in neuroblastoma cell survival and inhibition of DNA fragmentation; this is regulated by PI3K pathway. Black-Right-Pointing-Pointer RA activates PI3K and ERK1/2 pathway; PI3K pathway mediates RA-induced neuroblastoma cell differentiation. Black-Right-Pointing-Pointer Upregulation of p21 is necessary for RA-induced neuroblastoma cell differentiation. -- Abstract: Neuroblastoma, the most common extra-cranial solid tumor in infants and children, is characterized by a high rate of spontaneous remissions in infancy. Retinoic acid (RA) has been known to induce neuroblastoma differentiation; however, the molecular mechanisms and signaling pathways that are responsible for RA-mediated neuroblastoma cell differentiation remain unclear. Here, we sought to determine the cell signaling processes involved in RA-induced cellular differentiation. Upon RA administration, human neuroblastoma cell lines, SK-N-SH and BE(2)-C, demonstrated neurite extensions, which is an indicator of neuronal cell differentiation. Moreover, cell cycle arrest occurred in G1/G0 phase. The protein levels of cyclin-dependent kinase inhibitors, p21 and p27{sup Kip}, which inhibit cell proliferation by blocking cell cycle progression at G1/S phase, increased after RA treatment. Interestingly, RA promoted cell survival during the differentiation process, hence suggesting a potential mechanism for neuroblastoma resistance to RA therapy. Importantly, we found that the PI3K/AKT pathway is required for RA-induced neuroblastoma cell differentiation. Our results elucidated the molecular mechanism of RA-induced neuroblastoma cellular differentiation, which may be important for developing novel therapeutic strategy against poorly differentiated neuroblastoma.

  11. Neuroblastoma: biology, prognosis, and treatment

    NARCIS (Netherlands)

    Park, Julie R.; Eggert, Angelika; Caron, Huib

    2010-01-01

    Neuroblastoma, a neoplasm of the sympathetic nervous system, is the second most common extracranial malignant tumor of childhood and the most common solid tumor of infancy. Neuroblastoma is a heterogeneous malignancy with prognosis ranging from near uniform survival to high risk for fatal demise.

  12. Neuroblastoma: biology, prognosis, and treatment

    NARCIS (Netherlands)

    Park, Julie R.; Eggert, Angelika; Caron, Huib

    2008-01-01

    Neuroblastoma, a neoplasm of the sympathetic nervous system, is the second most common extracranial malignant tumor of childhood and the most common solid tumor of infancy. Neuroblastoma is a heterogeneous malignancy with prognosis ranging from near uniform survival to high risk for fatal demise.

  13. Neuroblastoma | Office of Cancer Genomics

    Science.gov (United States)

    The TARGET Neuroblastoma projects elucidate comprehensive molecular characterization to determine the genetic changes that drive the initiation and progression of high-risk or hard-to-treat childhood cancers. Neuroblastoma (NBL) is a cancer that arises in immature nerve cells of the sympathetic nervous system, primarily affecting infants and children.

  14. MEIS homeobox genes in neuroblastoma

    NARCIS (Netherlands)

    Geerts, Dirk; Revet, Ingrid; Jorritsma, Gerda; Schilderink, Nathalie; Versteeg, Rogier

    2005-01-01

    The common pediatric tumor neuroblastoma originates from primitive neural crest-derived precursor cells of the peripheral nervous system. Neuroblastoma especially affects very young children, and can already be present at birth. Its early onset and cellular origin predict the involvement of

  15. Omega-3 fatty acid supplementation delays the progression of neuroblastoma in vivo.

    Science.gov (United States)

    Gleissman, Helena; Segerström, Lova; Hamberg, Mats; Ponthan, Frida; Lindskog, Magnus; Johnsen, John Inge; Kogner, Per

    2011-04-01

    Epidemiological and preclinical studies have revealed that omega-3 fatty acids have anticancer properties. We have previously shown that the omega-3 fatty acid docosahexaenoic acid (DHA) induces apoptosis of neuroblastoma cells in vitro by mechanisms involving intracellular peroxidation of DHA by means of 15-lipoxygenase or autoxidation. In our study, the effects of DHA supplementation on neuroblastoma tumor growth in vivo were investigated using two complementary approaches. For the purpose of prevention, DHA as a dietary supplement was fed to athymic rats before the rats were xenografted with human neuroblastoma cells. For therapeutic purposes, athymic rats with established neuroblastoma xenografts were given DHA daily by gavage and tumor growth was monitored. DHA levels in plasma and tumor tissue were analyzed by gas liquid chromatography. DHA delayed neuroblastoma xenograft development and inhibited the growth of established neuroblastoma xenografts in athymic rats. A revised version of the Pediatric Preclinical Testing Program evaluation scheme used as a measurement of treatment response showed that untreated control animals developed progressive disease, whereas treatment with DHA resulted in stable disease or partial response, depending on the DHA concentration. In conclusion, prophylactic treatment with DHA delayed neuroblastoma development, suggesting that DHA could be a potential agent in the treatment of minimal residual disease and should be considered for prevention in selected cases. Treatment results on established aggressive neuroblastoma tumors suggest further studies aiming at a clinical application in children with high-risk neuroblastoma. Copyright © 2010 UICC.

  16. Protective effects of TRH and its analogues against various cytotoxic agents in retinoic acid (RA)-differentiated human neuroblastoma SH-SY5Y cells.

    Science.gov (United States)

    Jaworska-Feil, L; Jantas, D; Leskiewicz, M; Budziszewska, B; Kubera, M; Basta-Kaim, A; Lipkowski, A W; Lason, W

    2010-12-01

    TRH (thyroliberin) and its analogues were reported to possess neuroprotective effects in cellular and animal experimental models of acute and chronic neurodegenerative diseases. In the present study we evaluated effects of TRH and its three stable analogues, montirelin (CG-3703), RGH-2202 and Z-TRH (N-(carbobenzyloxy)-pGlutamyl-Histydyl-Proline) on the neuronally differentiated human neuroblastoma SH-SY5Y cell line, which is widely accepted for studying potential neuroprotectants. We found that TRH and all the tested analogues at concentrations 0.1-50 μM attenuated cell damage induced by MPP(+) (2 mM), 3-nitropropionate (10 mM), hydrogen peroxide (0.5 mM), homocysteine (250 μM) and beta-amyloid (20μM) in retinoic acid differentiated SH-SY5Y cells. Furthermore, we demonstrated that TRH and its analogues decreased the staurosporine (0.5 μM)-induced LDH release, caspase-3 activity and DNA fragmentation, which indicate the anti-apoptotic proprieties of these peptides. The neuroprotective effects of TRH (10 μM) and RGH-2202 (10 μM) on St-induced cell death was attenuated by inhibitors of PI3-K pathway (wortmannin and LY294002), but not MAPK/ERK1/2 (PD98059 and U0126). Moreover, TRH and its analogues at neuroprotective concentrations (1 and 10 μM) increased expression of Bcl-2 protein, as confirmed by Western blot analysis. All in all, these results extend data on neuroprotective properties of TRH and its analogues and provide evidence that mechanism of anti-apoptotic effects of these peptides in SH-SY5Y cell line involves induction of PI3K/Akt pathway and Bcl-2. Furthermore, the data obtained on human cell line with a dopaminergic phenotype suggest potential utility of TRH and its analogues in the treatment of some neurodegenerative diseases including Parkinson's disease. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation.

    Science.gov (United States)

    Gaviglio, Angela L; Knelson, Erik H; Blobe, Gerard C

    2017-05-01

    High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor-like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.-Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation. © FASEB.

  18. Identification of ALK as the Major Familial Neuroblastoma Predisposition Gene

    Science.gov (United States)

    Mossë, Yalë P; Laudenslager, Marci; Longo, Luca; Cole, Kristina A; Wood, Andrew; Attiyeh, Edward F; Laquaglia, Michael J; Sennett, Rachel; Lynch, Jill E; Perri, Patrizia; Laureys, Geneviève; Speleman, Frank; Hakonarson, Hakon; Torkamani, Ali; Schork, Nicholas J; Brodeur, Garrett M; Tonini, Gian Paolo; Rappaport, Eric; Devoto, Marcella; Maris, John M

    2009-01-01

    SUMMARY Survival rates for the childhood cancer neuroblastoma have not substantively improved despite dramatic escalation in chemotherapy intensity. Like most human cancers, this embryonal malignancy can be inherited, but the genetic etiology of familial and sporadically occurring neuroblastoma was largely unknown. Here we show that germline mutations in the anaplastic lymphoma kinase gene (ALK) explain the majority of hereditary neuroblastomas, and that activating mutations can also be somatically acquired. We first identified a significant linkage signal at the short arm of chromosome 2 (maximum nonparametric LOD=4.23 at rs1344063) using a whole-genome scan in neuroblastoma pedigrees. Resequencing of regional candidate genes identified three separate missense mutations in the tyrosine kinase domain of ALK (G1128A, R1192P and R1275Q) that segregated with the disease in eight separate families. Examination of 491 sporadically occurring human neuroblastoma samples showed that the ALK locus was gained in 22.8%, and highly amplified in an additional 3.3%, and that these aberrations were highly associated with death from disease (P=0.0003). Resequencing of 194 high-risk neuroblastoma samples showed somatically acquired mutations within the tyrosine kinase domain in 12.4%. Nine of the ten mutations map to critical regions of the kinase domain and were predicted to be oncogenic drivers with high probability. Mutations resulted in constitutive phosphorylation consistent with activation, and targeted knockdown of ALK mRNA resulted in profound growth inhibition of 4 of 4 cell lines harboring mutant or amplified ALK, as well as 2 of 6 wild type for ALK. Our results demonstrate that heritable mutations of ALK are the major cause of familial neuroblastoma, and that germline or acquired activation of this cell surface kinase is a tractable therapeutic target for this lethal pediatric malignancy. PMID:18724359

  19. Molecular cloning and pharmacology of functionally distinct isoforms of the human histamine H(3) receptor

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Goodman, M W; Burstein, E S

    2002-01-01

    The pharmacology of histamine H(3) receptors suggests the presence of distinct receptor isoforms or subtypes. We herein describe multiple, functionally distinct, alternatively spliced isoforms of the human H(3) receptor. Combinatorial splicing at three different sites creates at least six distinct...... receptor isoforms, of which isoforms 1, 2, and 4, encode functional proteins. Detailed pharmacology on isoforms 1 (unspliced receptor), and 2 (which has an 80 amino acid deletion within the third intracellular loop of the protein) revealed that both isoforms displayed robust responses to a series of known...... revealed a rank order of potency at both isoforms of clobenpropit>iodophenpropit>thioperamide, and these drugs are fivefold less potent at isoform 2 than isoform 1. To further explore the pharmacology of H(3) receptor function, we screened 150 clinically relevant neuropsychiatric drugs for H(3) receptor...

  20. Neuroprotective effects of glyceryl nonivamide against microglia-like cells and 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y human dopaminergic neuroblastoma cells.

    Science.gov (United States)

    Lin, Yi-Chin; Uang, Hao-Wei; Lin, Rong-Jyh; Chen, Ing-Jun; Lo, Yi-Ching

    2007-12-01

    Glyceryl nonivamide (GLNVA), a vanilloid receptor (VR) agonist, has been reported to have calcitonin gene-related peptide-associated vasodilatation and to prevent subarachnoid hemorrhage-induced cerebral vasospasm. In this study, we investigated the neuroprotective effects of GLNVA on activated microglia-like cell mediated- and proparkinsonian neurotoxin 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in human dopaminergic neuroblastoma SH-SY5Y cells. In coculture conditions, we used lipopolysaccharide (LPS)-stimulated BV-2 cells as a model of activated microglia. LPS-induced neuronal death was significantly inhibited by diphenylene iodonium (DPI), an inhibitor of NADPH oxidase. However, capsazepine, the selective VR1 antagonist, did not block the neuroprotective effects of GLNVA. GLNVA reduced LPS-activated microglia-mediated neuronal death, but it lacked protection in DPI-pretreated cultures. GLNVA also decreased LPS activated microglia induced overexpression of neuronal nitric-oxide synthase (nNOS) and glycoprotein 91 phagocyte oxidase (gp91(phox)) on SH-SY5Y cells. Pretreatment of BV-2 cells with GLNVA diminished LPS-induced nitric oxide production, overexpression of inducible nitric-oxide synthase (iNOS), and gp91(phox) and intracellular reactive oxygen species (iROS). GLNVA also reduced cyclooxygenase (COX)-2 expression, inhibitor of nuclear factor (NF)-kappaB (IkappaB)alpha/IkappaBbeta degradation, NF-kappaB activation, and the overproduction of tumor necrosis factor-alpha, interleukin (IL)-1beta, and prostaglandin E2 in BV-2 cells. However, GLNVA augmented anti-inflammatory cytokine IL-10 production on LPS-stimulated BV-2 cells. Furthermore, in 6-OHDA-treated SH-SY5Y cells, GLNVA rescued the changes in condensed nuclear and apoptotic bodies, prevented the decrease in mitochondrial membrane potential, and reduced cells death. GLNVA also suppressed accumulation of iROS and up-regulated heme oxygenase-1 expression. 6-OHDA-induced overexpression of nNOS, i

  1. Testing of SNS-032 in a Panel of Human Neuroblastoma Cell Lines with Acquired Resistance to a Broad Range of Drugs12

    Science.gov (United States)

    Löschmann, Nadine; Michaelis, Martin; Rothweiler, Florian; Zehner, Richard; Cinatl, Jaroslav; Voges, Yvonne; Sharifi, Mohsen; Riecken, Kristoffer; Meyer, Jochen; von Deimling, Andreas; Fichtner, Iduna; Ghafourian, Taravat; Westermann, Frank; Cinatl, Jindrich

    2013-01-01

    Novel treatment options are needed for the successful therapy of patients with high-risk neuroblastoma. Here, we investigated the cyclin-dependent kinase (CDK) inhibitor SNS-032 in a panel of 109 neuroblastoma cell lines consisting of 19 parental cell lines and 90 sublines with acquired resistance to 14 different anticancer drugs. Seventy-three percent of the investigated neuroblastoma cell lines and all four investigated primary tumor samples displayed concentrations that reduce cell viability by 50% in the range of the therapeutic plasma levels reported for SNS-032 (<754 nM). Sixty-two percent of the cell lines and two of the primary samples displayed concentrations that reduce cell viability by 90% in this concentration range. SNS-032 also impaired the growth of the multidrug-resistant cisplatin-adapted UKF-NB-3 subline UKF-NB-3rCDDP1000 in mice. ABCB1 expression (but not ABCG2 expression) conferred resistance to SNS-032. The antineuroblastoma effects of SNS-032 did not depend on functional p53. The antineuroblastoma mechanism of SNS-032 included CDK7 and CDK9 inhibition-mediated suppression of RNA synthesis and subsequent depletion of antiapoptotic proteins with a fast turnover rate including X-linked inhibitor of apoptosis (XIAP), myeloid cell leukemia sequence 1 (Mcl-1), baculoviral IAP repeat containing 2 (BIRC2; cIAP-1), and survivin. In conclusion, CDK7 and CDK9 represent promising drug targets and SNS-032 represents a potential treatment option for neuroblastoma including therapy-refractory cases. PMID:24466371

  2. Cystic neuroblastoma: a case report

    International Nuclear Information System (INIS)

    Duran, A.; Lorente, M.L.; Fernandez, C.

    1997-01-01

    Neuroblastoma is the most common neonatal malignant tumor. Hemorrhage and necrosis are usual features of this lesion, but it rarely presents a totally cyst form. We report a case of cystic neuroblastoma detected on prenatal ultrasound and stress the need to include it in the differential diagnosis of cystic abdominal masses in the newborn. Ultrasound is the method of choice for assessing abdominal masses in children. However, magnetic resonance has been shown to be more advantageous for the study and follow-up of neuroblastomas. (Author) 16 refs

  3. A Hybrid Robotic Control System Using Neuroblastoma Cultures

    Science.gov (United States)

    Ferrández, J. M.; Lorente, V.; Cuadra, J. M.; Delapaz, F.; Álvarez-Sánchez, José Ramón; Fernández, E.

    The main objective of this work is to analyze the computing capabilities of human neuroblastoma cultured cells and to define connection schemes for controlling a robot behavior. Multielectrode Array (MEA) setups have been designed for direct culturing neural cells over silicon or glass substrates, providing the capability to stimulate and record simultaneously populations of neural cells. This paper describes the process of growing human neuroblastoma cells over MEA substrates and tries to modulate the natural physiologic responses of these cells by tetanic stimulation of the culture. We show that the large neuroblastoma networks developed in cultured MEAs are capable of learning: establishing numerous and dynamic connections, with modifiability induced by external stimuli and we propose an hybrid system for controlling a robot to avoid obstacles.

  4. Distinct p53 genomic binding patterns in normal and cancer-derived human cells

    Energy Technology Data Exchange (ETDEWEB)

    Botcheva K.; McCorkle S. R.; McCombie W. R.; Dunn J. J.; Anderson C. W.

    2011-12-15

    We report here genome-wide analysis of the tumor suppressor p53 binding sites in normal human cells. 743 high-confidence ChIP-seq peaks representing putative genomic binding sites were identified in normal IMR90 fibroblasts using a reference chromatin sample. More than 40% were located within 2 kb of a transcription start site (TSS), a distribution similar to that documented for individually studied, functional p53 binding sites and, to date, not observed by previous p53 genome-wide studies. Nearly half of the high-confidence binding sites in the IMR90 cells reside in CpG islands, in marked contrast to sites reported in cancer-derived cells. The distinct genomic features of the IMR90 binding sites do not reflect a distinct preference for specific sequences, since the de novo developed p53 motif based on our study is similar to those reported by genome-wide studies of cancer cells. More likely, the different chromatin landscape in normal, compared with cancer-derived cells, influences p53 binding via modulating availability of the sites. We compared the IMR90 ChIPseq peaks to the recently published IMR90 methylome1 and demonstrated that they are enriched at hypomethylated DNA. Our study represents the first genome-wide, de novo mapping of p53 binding sites in normal human cells and reveals that p53 binding sites reside in distinct genomic landscapes in normal and cancer-derived human cells.

  5. Regulation of proteolytic cleavage of brain-derived neurotrophic factor precursor by antidepressants in human neuroblastoma cells

    Directory of Open Access Journals (Sweden)

    Lin PY

    2015-10-01

    Full Text Available Pao-Yen Lin1,2 1Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 2Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan Abstract: Evidence has supported the role of brain-derived neurotrophic factor (BDNF in antidepressant effect. The precursor of BDNF (proBDNF often exerts opposing biological effects on mature BDNF (mBDNF. Hence, the balance between proBDNF and mBDNF might be critical in total neurotrophic effects, leading to susceptibility to or recovery from depression. In the current study, we measured the protein expression levels of proBDNF, and its proteolytic products, truncated BDNF, and mBDNF, in human SH-SY5Y cells treated with different antidepressants. We found that the treatment significantly increased the production of mBDNF, but decreased the production of truncated BDNF and proBDNF. These results support that antidepressants can promote proBDNF cleavage. Further studies are needed to clarify whether proBDNF cleavage plays a role in antidepressant mechanisms. Keywords: antidepressant, mature BDNF, neurotrophic effect, proBDNF cleavage 

  6. Mitochondrial Effects of PGC-1alpha Silencing in MPP+ Treated Human SH-SY5Y Neuroblastoma Cells

    Directory of Open Access Journals (Sweden)

    Qinyong Ye

    2017-05-01

    Full Text Available The dopaminergic neuron degeneration and loss that occurs in Parkinson’s disease (PD has been tightly linked to mitochondrial dysfunction. Although the aged-related cause of the mitochondrial defect observed in PD patients remains unclear, nuclear genes are of potential importance to mitochondrial function. Human peroxisome proliferator-activated receptor γ coactivator-1alpha (PGC-1α is a multi-functional transcription factor that tightly regulates mitochondrial biogenesis and oxidative capacity. The goal of the present study was to explore the potential pathogenic effects of interference by the PGC-1α gene on N-methyl-4-phenylpyridinium ion (MPP+-induced SH-SY5Y cells. We utilized RNA interference (RNAi technology to probe the pathogenic consequences of inhibiting PGC-1α in the SH-SY5Y cell line. Remarkably, a reduction in PGC-1α resulted in the reduction of mitochondrial membrane potential, intracellular ATP content and intracellular H2O2 generation, leading to the translocation of cytochrome c (cyt c to the cytoplasm in the MPP+-induced PD cell model. The expression of related proteins in the signaling pathway (e.g., estrogen-related receptor α (ERRα, nuclear respiratory factor 1 (NRF-1, NRF-2 and Peroxisome proliferator-activated receptor γ (PPARγ also decreased. Our finding indicates that small interfering RNA (siRNA interference targeting the PGC-1α gene could inhibit the function of mitochondria in several capacities and that the PGC-1α gene may modulate mitochondrial function by regulating the expression of ERRα, NRF-1, NRF-2 and PPARγ. Thus, PGC-1α can be considered a potential therapeutic target for PD.

  7. Human activities cause distinct dissolved organic matter composition across freshwater ecosystems

    Science.gov (United States)

    Williams, Clayton J.; Frost, Paul C.; Morales-Williams, Ana M.; Larson, James H.; Richardson, William B.; Chiandet, Aisha S.; Xenopoulos, Marguerite A.

    2016-01-01

    Dissolved organic matter (DOM) composition in freshwater ecosystems is influenced by interactions between physical, chemical, and biological processes that are controlled, at one level, by watershed landscape, hydrology, and their connections. Against this environmental template, humans may strongly influence DOM composition. Yet, we lack a comprehensive understanding of DOM composition variation across freshwater ecosystems differentially affected by human activity. Using optical properties, we described DOM variation across five ecosystem groups of the Laurentian Great Lakes Region: large lakes, Kawartha Lakes, Experimental Lakes Area, urban stormwater ponds, and rivers (n = 184 sites). We determined how between ecosystem variation in DOM composition related to watershed size, land use and cover, water quality measures (conductivity, dissolved organic carbon (DOC), nutrient concentration, chlorophyll a), and human population density. The five freshwater ecosystem groups had distinctive DOM composition from each other. These significant differences were not explained completely through differences in watershed size nor spatial autocorrelation. Instead, multivariate partial least squares regression showed that DOM composition was related to differences in human impact across freshwater ecosystems. In particular, urban/developed watersheds with higher human population densities had a unique DOM composition with a clear anthropogenic influence that was distinct from DOM composition in natural land cover and/or agricultural watersheds. This nonagricultural, human developed impact on aquatic DOM was most evident through increased levels of a microbial, humic-like parallel factor analysis component (C6). Lotic and lentic ecosystems with low human population densities had DOM compositions more typical of clear water to humic-rich freshwater ecosystems but C6 was only present at trace to background levels. Consequently, humans are strongly altering the quality of DOM in

  8. Vasoactive intestinal peptide-induced neurite remodeling in human neuroblastoma SH-SY5Y cells implicates the Cdc42 GTPase and is independent of Ras-ERK pathway

    International Nuclear Information System (INIS)

    Alleaume, Celine; Eychene, Alain; Harnois, Thomas; Bourmeyster, Nicolas; Constantin, Bruno; Caigneaux, Evelyne; Muller, Jean-Marc; Philippe, Michel

    2004-01-01

    Vasoactive intestinal peptide (VIP) is known to regulate proliferation or differentiation in normal and tumoral cells. SH-SY5Y is a differentiated cell subclone derived from the SK-N-SH human neuroblastoma cell line and possess all the components for an autocrine action of VIP. In the present study, we investigated the morphological changes and intracellular signaling pathways occurring upon VIP treatment of SH-SY5Y cells. VIP induced an early remodeling of cell projections: a branched neurite network spread out and prominent varicosities developed along neurites. Although activated by VIP, the Ras/ERK pathway was not required for the remodeling process. In contrast, pull-down experiments revealed a strong Cdc42 activation by VIP while expression of a dominant-negative Cdc42 prevented the VIP-induced neurite changes, suggesting an important role for this small GTPase in the process. These data provide the first evidence for a regulation of the activity of Rho family GTPases by VIP and bring new insights in the signaling pathways implicated in neurite remodeling process induced by VIP in neuroblastoma cells

  9. Cell Survival Signaling in Neuroblastoma

    Science.gov (United States)

    Megison, Michael L.; Gillory, Lauren A.; Beierle, Elizabeth A.

    2013-01-01

    Neuroblastoma is the most common extracranial solid tumor of childhood and is responsible for over 15% of pediatric cancer deaths. Neuroblastoma tumorigenesis and malignant transformation is driven by overexpression and dominance of cell survival pathways and a lack of normal cellular senescence or apoptosis. Therefore, manipulation of cell survival pathways may decrease the malignant potential of these tumors and provide avenues for the development of novel therapeutics. This review focuses on several facets of cell survival pathways including protein kinases (PI3K, AKT, ALK, and FAK), transcription factors (NF-κB, MYCN and p53), and growth factors (IGF, EGF, PDGF, and VEGF). Modulation of each of these factors decreases the growth or otherwise hinders the malignant potential of neuroblastoma, and many therapeutics targeting these pathways are already in the clinical trial phase of development. Continued research and discovery of effective modulators of these pathways will revolutionize the treatment of neuroblastoma. PMID:22934706

  10. Neuropeptidomics Mass Spectrometry Reveals Signaling Networks Generated by Distinct Protease Pathways in Human Systems

    Science.gov (United States)

    Hook, Vivian; Bandeira, Nuno

    2015-12-01

    Neuropeptides regulate intercellular signaling as neurotransmitters of the central and peripheral nervous systems, and as peptide hormones in the endocrine system. Diverse neuropeptides of distinct primary sequences of various lengths, often with post-translational modifications, coordinate and integrate regulation of physiological functions. Mass spectrometry-based analysis of the diverse neuropeptide structures in neuropeptidomics research is necessary to define the full complement of neuropeptide signaling molecules. Human neuropeptidomics has notable importance in defining normal and dysfunctional neuropeptide signaling in human health and disease. Neuropeptidomics has great potential for expansion in translational research opportunities for defining neuropeptide mechanisms of human diseases, providing novel neuropeptide drug targets for drug discovery, and monitoring neuropeptides as biomarkers of drug responses. In consideration of the high impact of human neuropeptidomics for health, an observed gap in this discipline is the few published articles in human neuropeptidomics compared with, for example, human proteomics and related mass spectrometry disciplines. Focus on human neuropeptidomics will advance new knowledge of the complex neuropeptide signaling networks participating in the fine control of neuroendocrine systems. This commentary review article discusses several human neuropeptidomics accomplishments that illustrate the rapidly expanding diversity of neuropeptides generated by protease processing of pro-neuropeptide precursors occurring within the secretory vesicle proteome. Of particular interest is the finding that human-specific cathepsin V participates in producing enkephalin and likely other neuropeptides, indicating unique proteolytic mechanisms for generating human neuropeptides. The field of human neuropeptidomics has great promise to solve new mechanisms in disease conditions, leading to new drug targets and therapeutic agents for human

  11. Translational analysis of mouse and human placental protein and mRNA reveals distinct molecular pathologies in human preeclampsia.

    Science.gov (United States)

    Cox, Brian; Sharma, Parveen; Evangelou, Andreas I; Whiteley, Kathie; Ignatchenko, Vladimir; Ignatchenko, Alex; Baczyk, Dora; Czikk, Marie; Kingdom, John; Rossant, Janet; Gramolini, Anthony O; Adamson, S Lee; Kislinger, Thomas

    2011-12-01

    Preeclampsia (PE) adversely impacts ~5% of pregnancies. Despite extensive research, no consistent biomarkers or cures have emerged, suggesting that different molecular mechanisms may cause clinically similar disease. To address this, we undertook a proteomics study with three main goals: (1) to identify a panel of cell surface markers that distinguish the trophoblast and endothelial cells of the placenta in the mouse; (2) to translate this marker set to human via the Human Protein Atlas database; and (3) to utilize the validated human trophoblast markers to identify subgroups of human preeclampsia. To achieve these goals, plasma membrane proteins at the blood tissue interfaces were extracted from placentas using intravascular silica-bead perfusion, and then identified using shotgun proteomics. We identified 1181 plasma membrane proteins, of which 171 were enriched at the maternal blood-trophoblast interface and 192 at the fetal endothelial interface with a 70% conservation of expression in humans. Three distinct molecular subgroups of human preeclampsia were identified in existing human microarray data by using expression patterns of trophoblast-enriched proteins. Analysis of all misexpressed genes revealed divergent dysfunctions including angiogenesis (subgroup 1), MAPK signaling (subgroup 2), and hormone biosynthesis and metabolism (subgroup 3). Subgroup 2 lacked expected changes in known preeclampsia markers (sFLT1, sENG) and uniquely overexpressed GNA12. In an independent set of 40 banked placental specimens, GNA12 was overexpressed during preeclampsia when co-incident with chronic hypertension. In the current study we used a novel translational analysis to integrate mouse and human trophoblast protein expression with human microarray data. This strategy identified distinct molecular pathologies in human preeclampsia. We conclude that clinically similar preeclampsia patients exhibit divergent placental gene expression profiles thus implicating divergent

  12. Ataxia-telangiectasia mutated (ATM) silencing promotes neuroblastoma progression through a MYCN independent mechanism

    Science.gov (United States)

    Mandriota, Stefano J.; Valentijn, Linda J.; Lesne, Laurence; Betts, David R.; Marino, Denis; Boudal-Khoshbeen, Mary; London, Wendy B.; Rougemont, Anne-Laure; Attiyeh, Edward F.; Maris, John M.; Hogarty, Michael D.; Koster, Jan; Molenaar, Jan J.; Versteeg, Rogier

    2015-01-01

    Neuroblastoma, a childhood cancer with highly heterogeneous biology and clinical behavior, is characterized by genomic aberrations including amplification of MYCN. Hemizygous deletion of chromosome 11q is a well-established, independent marker of poor prognosis. While 11q22-q23 is the most frequently deleted region, the neuroblastoma tumor suppressor in this region remains to be identified. Chromosome bands 11q22-q23 contain ATM, a cell cycle checkpoint kinase and tumor suppressor playing a pivotal role in the DNA damage response. Here, we report that haploinsufficiency of ATM in neuroblastoma correlates with lower ATM expression, event-free survival, and overall survival. ATM loss occurs in high stage neuroblastoma without MYCN amplification. In SK-N-SH, CLB-Ga and GI-ME-N human neuroblastoma cells, stable ATM silencing promotes neuroblastoma progression in soft agar assays, and in subcutaneous xenografts in nude mice. This effect is dependent on the extent of ATM silencing and does not appear to involve MYCN. Our findings identify ATM as a potential haploinsufficient neuroblastoma tumor suppressor, whose inactivation mirrors the increased aggressiveness associated with 11q deletion in neuroblastoma. PMID:26053094

  13. Extracellular Monomeric and Aggregated Tau Efficiently Enter Human Neurons through Overlapping but Distinct Pathways

    Directory of Open Access Journals (Sweden)

    Lewis D. Evans

    2018-03-01

    Full Text Available Summary: In Alzheimer’s disease, neurofibrillary tangle pathology appears to spread along neuronal connections, proposed to be mediated by the release and uptake of abnormal, disease-specific forms of microtubule-binding protein tau MAPT. It is currently unclear whether transfer of tau between neurons is a toxic gain-of-function process in dementia or reflects a constitutive biological process. We report two entry mechanisms for monomeric tau to human neurons: a rapid dynamin-dependent phase typical of endocytosis and a second, slower actin-dependent phase of macropinocytosis. Aggregated tau entry is independent of actin polymerization and largely dynamin dependent, consistent with endocytosis and distinct from macropinocytosis, the major route for aggregated tau entry reported for non-neuronal cells. Anti-tau antibodies abrogate monomeric tau entry into neurons, but less efficiently in the case of aggregated tau, where internalized tau carries antibody with it into neurons. These data suggest that tau entry to human neurons is a physiological process and not a disease-specific phenomenon. : In contrast with predictions that transfer of the microtubule-associated protein tau between neurons is a toxic gain-of-function process in dementia, Evans et al. show that healthy human neurons efficiently take up both normal and aggregated tau, by distinct but overlapping uptake mechanisms. Keywords: Alzheimer’s disease, frontotemporal dementia, Tau, MAPT, iPSC, endocytosis, human neurons, intracellular transport

  14. Identification of distinct layers within the stratified squamous epithelium of the adult human true vocal fold.

    Science.gov (United States)

    Dowdall, Jayme R; Sadow, Peter M; Hartnick, Christopher; Vinarsky, Vladimir; Mou, Hongmei; Zhao, Rui; Song, Phillip C; Franco, Ramon A; Rajagopal, Jayaraj

    2015-09-01

    A precise molecular schema for classifying the different cell types of the normal human vocal fold epithelium is lacking. We hypothesize that the true vocal fold epithelium has a cellular architecture and organization similar to that of other stratified squamous epithelia including the skin, cornea, oral mucosa, and esophagus. In analogy to disorders of the skin and gastrointestinal tract, a molecular definition of the normal cell types within the human vocal fold epithelium and a description of their geometric relationships should serve as a foundation for characterizing cellular changes associated with metaplasia, dysplasia, and cancer. Qualitative study with adult human larynges. Histologic sections of normal human laryngeal tissue were analyzed for morphology (hematoxylin and eosin) and immunohistochemical protein expression profile, including cytokeratins (CK13 and CK14), cornified envelope proteins (involucrin), basal cells (NGFR/p75), and proliferation markers (Ki67). We demonstrated that three distinct cell strata with unique marker profiles are present within the stratified squamous epithelium of the true vocal fold. We used these definitions to establish that cell proliferation is restricted to certain cell types and layers within the epithelium. These distinct cell types are reproducible across five normal adult larynges. We have established that three layers of cells are present within the normal adult stratified squamous epithelium of the true vocal fold. Furthermore, replicating cell populations are largely restricted to the parabasal strata within the epithelium. This delineation of distinct cell populations will facilitate future studies of vocal fold regeneration and cancer. N/A. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  15. Adolescent Neuroblastoma of Lower Limb

    Directory of Open Access Journals (Sweden)

    Rajeshwari K

    2013-04-01

    Full Text Available Neuroblastoma is an embryonic tumour of neural crest origin, commonly seen in children with upper abdomen involvement. Rarely neuroblastomas present in adolescents and adults involving lower limb. Histopathologically neuroblastoma of lower limb can be confused with other small round cell tumour especially with Ewing's sarcoma and rhabdomyosarcoma. A 16 year old male presented with 15x11cm swelling, pain and multiple discharging sinuses of right leg since 4 months. Routine haematological and biochemical analysis were within normal limits. Radiology of right leg showed large soft tissue swelling encompassing the pathological fracture of tibia and bowing of fibula. Fine needle aspiration of the swelling revealed malignant small round cell tumour. Histopathology revealed poorly differentiated neuroblastoma of lower limb. The immunohistochemistry of Synaptophysin and Chromogranin were positive and CD 99 was negative. Neuroblastoma diagnosed at unusual site with uncommon age has poor prognosis. Hence, one must keep in mind the differential diagnosis of neuroblastoma as one of the differential diagnosis in evaluating the soft tissue tumours of lower limb.

  16. A case of neonatal neuroblastoma

    International Nuclear Information System (INIS)

    Nounaka, Osamu; Gotoh, Toshiaki; Takahashi, Kazuaki; Koyanagi, Tomohiko; Kakizaki, Hidehiro; Nakanishi, Shoichiro.

    1987-01-01

    A two-day-old male infant was referred to us for probable neuroblastoma, because of upper abdominal mass and positive urinary vanillylmandelic acid (VMA). Primary site of neuroblastoma was not found, but clinically IV-S stage neuroblastoma was strongly suspected, so 131 I-metaiodobenzylguanidine (MIBG) scan was performed. RI accumulation was found near the left adrenal region. Thus laparotomy was performed and left adrenal was resected. Liver biopsy was also performed. Microscopically multiple in situ foci of neuroblastoma cells were found in the left adrenal and tumor involvement was also seen in the liver. Skin and bone marrow metastasis were ruled out. Minimal chemotherapy was intended but abandoned soon because of possible spontaneous regression of stage IV-S neuroblastoma. Thereafter liver has been getting smaller and the patient has been doing well. Urinary VMA and homovanillic acid (HVA) per creatinine, which were used for follow-up, have also normalized after 3 months. Treatment of stage IV-S neuroblastoma and early diagnosis by 131 I-MIBG scan were reviewed. (author)

  17. Scaling-laws of human broadcast communication enable distinction between human, corporate and robot Twitter users.

    Science.gov (United States)

    Tavares, Gabriela; Faisal, Aldo

    2013-01-01

    Human behaviour is highly individual by nature, yet statistical structures are emerging which seem to govern the actions of human beings collectively. Here we search for universal statistical laws dictating the timing of human actions in communication decisions. We focus on the distribution of the time interval between messages in human broadcast communication, as documented in Twitter, and study a collection of over 160,000 tweets for three user categories: personal (controlled by one person), managed (typically PR agency controlled) and bot-controlled (automated system). To test our hypothesis, we investigate whether it is possible to differentiate between user types based on tweet timing behaviour, independently of the content in messages. For this purpose, we developed a system to process a large amount of tweets for reality mining and implemented two simple probabilistic inference algorithms: 1. a naive Bayes classifier, which distinguishes between two and three account categories with classification performance of 84.6% and 75.8%, respectively and 2. a prediction algorithm to estimate the time of a user's next tweet with an R(2) ≈ 0.7. Our results show that we can reliably distinguish between the three user categories as well as predict the distribution of a user's inter-message time with reasonable accuracy. More importantly, we identify a characteristic power-law decrease in the tail of inter-message time distribution by human users which is different from that obtained for managed and automated accounts. This result is evidence of a universal law that permeates the timing of human decisions in broadcast communication and extends the findings of several previous studies of peer-to-peer communication.

  18. Scaling-laws of human broadcast communication enable distinction between human, corporate and robot Twitter users.

    Directory of Open Access Journals (Sweden)

    Gabriela Tavares

    Full Text Available Human behaviour is highly individual by nature, yet statistical structures are emerging which seem to govern the actions of human beings collectively. Here we search for universal statistical laws dictating the timing of human actions in communication decisions. We focus on the distribution of the time interval between messages in human broadcast communication, as documented in Twitter, and study a collection of over 160,000 tweets for three user categories: personal (controlled by one person, managed (typically PR agency controlled and bot-controlled (automated system. To test our hypothesis, we investigate whether it is possible to differentiate between user types based on tweet timing behaviour, independently of the content in messages. For this purpose, we developed a system to process a large amount of tweets for reality mining and implemented two simple probabilistic inference algorithms: 1. a naive Bayes classifier, which distinguishes between two and three account categories with classification performance of 84.6% and 75.8%, respectively and 2. a prediction algorithm to estimate the time of a user's next tweet with an R(2 ≈ 0.7. Our results show that we can reliably distinguish between the three user categories as well as predict the distribution of a user's inter-message time with reasonable accuracy. More importantly, we identify a characteristic power-law decrease in the tail of inter-message time distribution by human users which is different from that obtained for managed and automated accounts. This result is evidence of a universal law that permeates the timing of human decisions in broadcast communication and extends the findings of several previous studies of peer-to-peer communication.

  19. Neuroblastoma in Children: Just Diagnosed Information

    Science.gov (United States)

    ... Financial Reports Watchdog Ratings Feedback Contact Select Page Neuroblastoma in Children – Just Diagnosed Home > Cancer Resources > Types ... Diagnosed Just Diagnosed In Treatment After Treatment Diagnosing Neuroblastoma Depending on the location of the tumor and ...

  20. Retinoic Acid for High-risk Neuroblastoma Patients after Autologous Stem Cell Transplantation - Cochrane Review Retinsäure nach erfolgter autologer Stammzelltransplantation bei Hochrisiko-Patienten mit Neuroblastom - Cochrane Review

    NARCIS (Netherlands)

    Peinemann, F.; van Dalen, E. C.; Berthold, F.

    2016-01-01

    Neuroblastoma is a rare malignant disease and patients with high-risk neuroblastoma have a poor prognosis. Retinoic acid has been shown to inhibit growth of human neuroblastoma cells and has been considered as a potential candidate for improving the outcome. The objective was to evaluate effects of

  1. Distinct fermentation and antibiotic sensitivity profiles exist in salmonellae of canine and human origin.

    Science.gov (United States)

    Wallis, Corrin V; Lowden, Preena; Marshall-Jones, Zoe V; Hilton, Anthony C

    2018-02-26

    Salmonella enterica is a recognised cause of diarrhoea in dogs and humans, yet the potential for transfer of salmonellosis between dogs and their owners is unclear, with reported evidence both for and against Salmonella as a zoonotic pathogen. A collection of 174 S. enterica isolates from clinical infections in humans and dogs were analysed for serotype distribution, carbon source utilisation, chemical and antimicrobial sensitivity profiles. The aim of the study was to understand the degree of conservation in phenotypic characteristics of isolates across host species. Serovar distribution across human and canine isolates demonstrated nine serovars common to both host species, 24 serovars present in only the canine collection and 39 solely represented within the human collection. Significant differences in carbon source utilisation profiles and ampicillin, amoxicillin and chloramphenicol sensitivity profiles were detected in isolates of human and canine origin. Differences between the human and canine Salmonella collections were suggestive of evolutionary separation, with canine isolates better able to utilise several simple sugars than their human counterparts. Generally higher minimum inhibitory concentrations of three broad-spectrum antimicrobials, commonly used in veterinary medicine, were also observed in canine S. enterica isolates. Differential carbon source utilisation and antimicrobial sensitivity profiles in pathogenic Salmonella isolated from humans and dogs are suggestive of distinct reservoirs of infection for these hosts. Although these findings do not preclude zoonotic or anthroponotic potential in salmonellae, the separation of carbon utilisation and antibiotic profiles with isolate source is indicative that infectious isolates are not part of a common reservoir shared frequently between these host species.

  2. Two Distinct Yersinia pestis Populations Causing Plague among Humans in the West Nile Region of Uganda.

    Science.gov (United States)

    Respicio-Kingry, Laurel B; Yockey, Brook M; Acayo, Sarah; Kaggwa, John; Apangu, Titus; Kugeler, Kiersten J; Eisen, Rebecca J; Griffith, Kevin S; Mead, Paul S; Schriefer, Martin E; Petersen, Jeannine M

    2016-02-01

    Plague is a life-threatening disease caused by the bacterium, Yersinia pestis. Since the 1990s, Africa has accounted for the majority of reported human cases. In Uganda, plague cases occur in the West Nile region, near the border with Democratic Republic of Congo. Despite the ongoing risk of contracting plague in this region, little is known about Y. pestis genotypes causing human disease. During January 2004-December 2012, 1,092 suspect human plague cases were recorded in the West Nile region of Uganda. Sixty-one cases were culture-confirmed. Recovered Y. pestis isolates were analyzed using three typing methods, single nucleotide polymorphisms (SNPs), pulsed field gel electrophoresis (PFGE), and multiple variable number of tandem repeat analysis (MLVA) and subpopulations analyzed in the context of associated geographic, temporal, and clinical data for source patients. All three methods separated the 61 isolates into two distinct 1.ANT lineages, which persisted throughout the 9 year period and were associated with differences in elevation and geographic distribution. We demonstrate that human cases of plague in the West Nile region of Uganda are caused by two distinct 1.ANT genetic subpopulations. Notably, all three typing methods used, SNPs, PFGE, and MLVA, identified the two genetic subpopulations, despite recognizing different mutation types in the Y. pestis genome. The geographic and elevation differences between the two subpopulations is suggestive of their maintenance in highly localized enzootic cycles, potentially with differing vector-host community composition. This improved understanding of Y. pestis subpopulations in the West Nile region will be useful for identifying ecologic and environmental factors associated with elevated plague risk.

  3. Human Nav1.8: enhanced persistent and ramp currents contribute to distinct firing properties of human DRG neurons

    Science.gov (United States)

    Han, Chongyang; Estacion, Mark; Huang, Jianying; Vasylyev, Dymtro; Zhao, Peng; Dib-Hajj, Sulayman D.

    2015-01-01

    Although species-specific differences in ion channel properties are well-documented, little has been known about the properties of the human Nav1.8 channel, an important contributor to pain signaling. Here we show, using techniques that include voltage clamp, current clamp, and dynamic clamp in dorsal root ganglion (DRG) neurons, that human Nav1.8 channels display slower inactivation kinetics and produce larger persistent current and ramp current than previously reported in other species. DRG neurons expressing human Nav1.8 channels unexpectedly produce significantly longer-lasting action potentials, including action potentials with half-widths in some cells >10 ms, and increased firing frequency compared with the narrower and usually single action potentials generated by DRG neurons expressing rat Nav1.8 channels. We also show that native human DRG neurons recapitulate these properties of Nav1.8 current and the long-lasting action potentials. Together, our results demonstrate strikingly distinct properties of human Nav1.8, which contribute to the firing properties of human DRG neurons. PMID:25787950

  4. A Pilot Trial of Humanized Anti-GD2 Monoclonal Antibody (hu14.18K322A) with Chemotherapy and Natural Killer Cells in Children with Recurrent/Refractory Neuroblastoma.

    Science.gov (United States)

    Federico, Sara M; McCarville, M Beth; Shulkin, Barry L; Sondel, Paul M; Hank, Jacquelyn A; Hutson, Paul; Meagher, Michael; Shafer, Aaron; Ng, Catherine Y; Leung, Wing; Janssen, William E; Wu, Jianrong; Mao, Shenghua; Brennan, Rachel C; Santana, Victor M; Pappo, Alberto S; Furman, Wayne L

    2017-11-01

    Purpose: Anti-GD2 mAbs, acting via antibody-dependent cell-mediated cytotoxicity, may enhance the effects of chemotherapy. This pilot trial investigated a fixed dose of a unique anti-GD2 mAb, hu14.18K322A, combined with chemotherapy, cytokines, and haploidentical natural killer (NK) cells. Experimental Design: Children with recurrent/refractory neuroblastoma received up to six courses of hu14.18K322A (40 mg/m 2 /dose, days 2-5), GM-CSF, and IL2 with chemotherapy: cyclophosphamide/topotecan (courses 1,2), irinotecan/temozolomide (courses 3,4), and ifosfamide/carboplatin/etoposide (courses 5,6). Parentally derived NK cells were administered with courses 2, 4, and 6. Serum for pharmacokinetic studies of hu14.18K322A, soluble IL2 receptor alpha (sIL2Rα) levels, and human antihuman antibodies (HAHA) were obtained. Results: Thirteen heavily pretreated patients (9 with prior anti-GD2 therapy) completed 65 courses. One patient developed an unacceptable toxicity (grade 4 thrombocytopenia >35 days). Four patients discontinued treatment for adverse events (hu14.18K322A allergic reaction, viral infection, surgical death, second malignancy). Common toxicities included grade 3/4 myelosuppression (13/13 patients) and grade 1/2 pain (13/13 patients). Eleven patients received 29 NK-cell infusions. The response rate was 61.5% (4 complete responses, 1 very good partial response, 3 partial responses) and five had stable disease. The median time to progression was 274 days (range, 239-568 days); 10 of 13 patients (77%) survived 1 year. Hu14.18K322A pharmacokinetics was not affected by chemotherapy or HAHA. All patients had increased sIL2Rα levels, indicating immune activation. Conclusions: Chemotherapy plus hu14.18K322A, cytokines, and NK cells is feasible and resulted in clinically meaningful responses in patients with refractory/recurrent neuroblastoma. Further studies of this approach are warranted in patients with relapsed and newly diagnosed neuroblastoma. Clin Cancer Res; 23

  5. Mapping the distinctive populations of lymphatic endothelial cells in different zones of human lymph nodes.

    Directory of Open Access Journals (Sweden)

    Saem Mul Park

    Full Text Available The lymphatic sinuses in human lymph nodes (LNs are crucial to LN function yet their structure remains poorly defined. Much of our current knowledge of lymphatic sinuses derives from rodent models, however human LNs differ substantially in their sinus structure, most notably due to the presence of trabeculae and trabecular lymphatic sinuses that rodent LNs lack. Lymphatic sinuses are bounded and traversed by lymphatic endothelial cells (LECs. A better understanding of LECs in human LNs is likely to improve our understanding of the regulation of cell trafficking within LNs, now an important therapeutic target, as well as disease processes that involve lymphatic sinuses. We therefore sought to map all the LECs within human LNs using multicolor immunofluorescence microscopy to visualize the distribution of a range of putative markers. PROX1 was the only marker that uniquely identified the LECs lining and traversing all the sinuses in human LNs. In contrast, LYVE1 and STAB2 were only expressed by LECs in the paracortical and medullary sinuses in the vast majority of LNs studied, whilst the subcapsular and trabecular sinuses lacked these molecules. These data highlight the existence of at least two distinctive populations of LECs within human LNs. Of the other LEC markers, we confirmed VEGFR3 was not specific for LECs, and CD144 and CD31 stained both LECs and blood vascular endothelial cells (BECs; in contrast, CD59 and CD105 stained BECs but not LECs. We also showed that antigen-presenting cells (APCs in the sinuses could be clearly distinguished from LECs by their expression of CD169, and their lack of expression of PROX1 and STAB2, or endothelial markers such as CD144. However, both LECs and sinus APCs were stained with DCN46, an antibody commonly used to detect CD209.

  6. Distinct parietal sites mediate the influences of mood, arousal, and their interaction on human recognition memory.

    Science.gov (United States)

    Greene, Ciara M; Flannery, Oliver; Soto, David

    2014-12-01

    The two dimensions of emotion, mood valence and arousal, have independent effects on recognition memory. At present, however, it is not clear how those effects are reflected in the human brain. Previous research in this area has generally dealt with memory for emotionally valenced or arousing stimuli, but the manner in which interacting mood and arousal states modulate responses in memory substrates remains poorly understood. We investigated memory for emotionally neutral items while independently manipulating mood valence and arousal state by means of music exposure. Four emotional conditions were created: positive mood/high arousal, positive mood/low arousal, negative mood/high arousal, and negative mood/low arousal. We observed distinct effects of mood valence and arousal in parietal substrates of recognition memory. Positive mood increased activity in ventral posterior parietal cortex (PPC) and orbitofrontal cortex, whereas arousal condition modulated activity in dorsal PPC and the posterior cingulate. An interaction between valence and arousal was observed in left ventral PPC, notably in a parietal area distinct from the those identified for the main effects, with a stronger effect of mood on recognition memory responses here under conditions of relative high versus low arousal. We interpreted the PPC activations in terms of the attention-to-memory hypothesis: Increased arousal may lead to increased top-down control of memory, and hence dorsal PPC activation, whereas positive mood valence may result in increased activity in ventral PPC regions associated with bottom-up attention to memory. These findings indicate that distinct parietal sites mediate the influences of mood, arousal, and their interplay during recognition memory.

  7. Allelic recombination between distinct genomic locations generates copy number diversity in human β-defensins

    Science.gov (United States)

    Bakar, Suhaili Abu; Hollox, Edward J.; Armour, John A. L.

    2009-01-01

    β-Defensins are small secreted antimicrobial and signaling peptides involved in the innate immune response of vertebrates. In humans, a cluster of at least 7 of these genes shows extensive copy number variation, with a diploid copy number commonly ranging between 2 and 7. Using a genetic mapping approach, we show that this cluster is at not 1 but 2 distinct genomic loci ≈5 Mb apart on chromosome band 8p23.1, contradicting the most recent genome assembly. We also demonstrate that the predominant mechanism of change in β-defensin copy number is simple allelic recombination occurring in the interval between the 2 distinct genomic loci for these genes. In 416 meiotic transmissions, we observe 3 events creating a haplotype copy number not found in the parent, equivalent to a germ-line rate of copy number change of ≈0.7% per gamete. This places it among the fastest-changing copy number variants currently known. PMID:19131514

  8. Seroprevalence and risk factor analysis of human leptospirosis in distinct climatic regions of Pakistan.

    Science.gov (United States)

    Sohail, Muhammad Luqman; Khan, Muhammad Sarwar; Ijaz, Muhammad; Naseer, Omer; Fatima, Zahida; Ahmad, Abdullah Saghir; Ahmad, Waqas

    2018-05-01

    Leptospirosis is a worldwide emerging infectious disease of zoonotic importance and large epidemics and epizootics have been reported all over the globe. A cross survey study was conducted to estimate seroprevalence of human leptospirosis in climatically distinct regions of Pakistan and to identify the risk factors associated with the disease. Blood samples from 360 humans were collected through convenient sampling, 120 from each of three study areas. Serological testing was performed using ELISA kit as per manufacturer's recommendations. The results showed an overall prevalence of 40.83% (95% CI; 35.71-46.11). Statistical analysis showed significant (P climatic region (50.83%; 95% CI; 41.55-60.07), followed by semi-arid region (44.16%; 95% CI; 35.11-53.52) and lowest in hot and dry region (27.50%; 95% CI; 19.75-36.40). After multivariate analysis age, gender, exposure to flooding water, source of water usage, disinfection schedule of surroundings and history of cut and wound were found significantly associated with the seropositivity of Leptospira. The present study, first to uncover seroprevalence of human Leptospira in different climatic regions of Pakistan, alarms about effect of climate on prevalence of Leptospira in the region. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Generation of biologically active endostatin fragments from human collagen XVIII by distinct matrix metalloproteases

    International Nuclear Information System (INIS)

    Heljasvaara, Ritva; Nyberg, Pia; Luostarinen, Jani; Parikka, Mataleena; Heikkilae, Pia; Rehn, Marko; Sorsa, Timo; Salo, Tuula; Pihlajaniemi, Taina

    2005-01-01

    Endostatin, a potent inhibitor of endothelial cell proliferation, migration, angiogenesis and tumor growth, is proteolytically cleaved from the C-terminal noncollagenous NC1 domain of type XVIII collagen. We investigated the endostatin formation from human collagen XVIII by several MMPs in vitro. The generation of endostatin fragments differing in molecular size (24-30 kDa) and in N-terminal sequences was identified in the cases of MMP-3, -7, -9, -13 and -20. The cleavage sites were located in the protease-sensitive hinge region between the trimerization and endostatin domains of NC1. MMP-1, -2, -8 and -12 did not show any significant activity against the C-terminus of collagen XVIII. The anti-proliferative effect of the 20-kDa endostatin, three longer endostatin-containing fragments generated in vitro by distinct MMPs and the entire NC1 domain, on bFGF-stimulated human umbilical vein endothelial cells was established. The anti-migratory potential of some of these fragments was also studied. In addition, production of endostatin fragments between 24-30 kDa by human hepatoblastoma cells was shown to be due to MMP action on type XVIII collagen. Our results indicate that certain, especially cancer-related, MMP family members can generate biologically active endostatin-containing polypeptides from collagen XVIII and thus, by releasing endostatin fragments, may participate in the inhibition of endothelial cell proliferation, migration and angiogenesis

  10. Bisphenol A and Bisphenol S Induce Distinct Transcriptional Profiles in Differentiating Human Primary Preadipocytes.

    Directory of Open Access Journals (Sweden)

    Jonathan G Boucher

    Full Text Available Bisphenol S (BPS is increasingly used as a replacement plasticizer for bisphenol A (BPA but its effects on human health have not been thoroughly examined. Recent evidence indicates that both BPA and BPS induce adipogenesis, although the mechanisms leading to this effect are unclear. In an effort to identify common and distinct mechanisms of action in inducing adipogenesis, transcriptional profiles of differentiating human preadipocytes exposed to BPA or BPS were compared. Human subcutaneous primary preadipocytes were differentiated in the presence of either 25 μM BPA or BPS for 2 and 4 days. Poly-A RNA-sequencing was used to identify differentially expressed genes (DEGs. Functional analysis of DEGs was undertaken in Ingenuity Pathway Analysis. BPA-treatment resulted in 472 and 176 DEGs on days 2 and 4, respectively, affecting pathways such as liver X receptor (LXR/retinoid X receptor (RXR activation, hepatic fibrosis and cholestasis. BPS-treatment resulted in 195 and 51 DEGs on days 2 and 4, respectively, revealing enrichment of genes associated with adipogenesis and lipid metabolism including the adipogenesis pathway and cholesterol biosynthesis. Interestingly, the transcription repressor N-CoR was identified as a negative upstream regulator in both BPA- and BPS-treated cells. This study presents the first comparison of BPA- and BPS-induced transcriptional profiles in human differentiating preadipocytes. While we previously showed that BPA and BPS both induce adipogenesis, the results from this study show that BPS affects adipose specific transcriptional changes earlier than BPA, and alters the expression of genes specifically related to adipogenesis and lipid metabolism. The findings provide insight into potential BPS and BPA-mediated mechanisms of action in inducing adipogenesis in human primary preadipocytes.

  11. Neuroblastoma arginase activity creates an immunosuppressive microenvironment that impairs autologous and engineered immunity

    Science.gov (United States)

    Mussai, Francis; Egan, Sharon; Hunter, Stuart; Webber, Hannah; Fisher, Jonathan; Wheat, Rachel; McConville, Carmel; Sbirkov, Yordan; Wheeler, Kate; Bendle, Gavin; Petrie, Kevin; Anderson, John; Chesler, Louis; De Santo, Carmela

    2015-01-01

    Neuroblastoma is the most common extra cranial solid tumour of childhood, and survival remains poor for patients with advanced disease. Novel immune therapies are currently in development, but clinical outcomes have not matched preclinical results. Here, we describe key mechanisms in which neuroblastoma inhibits the immune response. We show that murine and human neuroblastoma tumour cells suppress T cell proliferation, through increased arginase activity. Arginase II is the predominant isoform expressed and creates an arginine deplete local and systemic microenvironment. Neuroblastoma arginase activity results in inhibition of myeloid cell activation and suppression of bone marrow CD34+ progenitor proliferation. Finally we demonstrate that the arginase activity of neuroblastoma impairs NY-ESO-1 specific TCR and GD2-specific CAR engineered T cell proliferation and cytotoxicity. High arginase II expression correlates with poor survival for neuroblastoma patients. The results support the hypothesis that neuroblastoma creates an arginase-dependent immunosuppressive microenvironment in both the tumour and blood that leads to impaired immune surveillance and sub-optimal efficacy of immunotherapeutic approaches. PMID:26054597

  12. Growth and gene expression are predominantly controlled by distinct regions of the human IL-4 receptor.

    Science.gov (United States)

    Ryan, J J; McReynolds, L J; Keegan, A; Wang, L H; Garfein, E; Rothman, P; Nelms, K; Paul, W E

    1996-02-01

    IL-4 causes hematopoietic cells to proliferate and express a series of genes, including CD23. We examined whether IL-4-mediated growth, as measured by 4PS phosphorylation, and gene induction were similarly controlled. Studies of M12.4.1 cells expressing human IL-4R truncation mutants indicated that the region between amino acids 557-657 is necessary for full gene expression, which correlated with Stat6 DNA binding activity. This region was not required for 4PS phosphorylation. Tyrosine-to-phenylalanine mutations in the interval between amino acids 557-657 revealed that as long as one tyrosine remained unmutated, CD23 was fully induced. When all three tyrosines were mutated, the receptor was unable to induce CD23. The results indicate that growth regulation and gene expression are principally controlled by distinct regions of IL-4R.

  13. Mesenchymal change and drug resistance in neuroblastoma.

    Science.gov (United States)

    Naiditch, Jessica A; Jie, Chunfa; Lautz, Timothy B; Yu, Songtao; Clark, Sandra; Voronov, Dimitry; Chu, Fei; Madonna, Mary Beth

    2015-01-01

    Metastatic initiation has many phenotypic similarities to epithelial-to-mesenchymal transition, including loss of cell-cell adhesion, increased invasiveness, and increased cell mobility. We have previously demonstrated that drug resistance is associated with a metastatic phenotype in neuroblastoma (NB). The purpose of this project was to determine if the development of doxorubicin resistance is associated with characteristics of mesenchymal change in human NB cells. Total RNA was isolated from wild type (WT) and doxorubicin-resistant (DoxR) human NB cell lines (SK-N-SH and SK-N-BE(2)C) and analyzed using the Illumina Human HT-12 version 4 Expression BeadChip. Differentially expressed genes (DEGs) were identified. Volcano plots and heat maps were generated. Genes of interest with a fold change in expression >1.5 and an adjusted P change via multiple pathways in the transition to a drug-resistant state. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Galectin-3 impairment of MYCN-dependent apoptosis-sensitive phenotype is antagonized by nutlin-3 in neuroblastoma cells.

    Directory of Open Access Journals (Sweden)

    Veronica Veschi

    Full Text Available MYCN amplification occurs in about 20-25% of human neuroblastomas and characterizes the majority of the high-risk cases, which display less than 50% prolonged survival rate despite intense multimodal treatment. Somehow paradoxically, MYCN also sensitizes neuroblastoma cells to apoptosis, understanding the molecular mechanisms of which might be relevant for the therapy of MYCN amplified neuroblastoma. We recently reported that the apoptosis-sensitive phenotype induced by MYCN is linked to stabilization of p53 and its proapoptotic kinase HIPK2. In MYCN primed neuroblastoma cells, further activation of both HIPK2 and p53 by Nutlin-3 leads to massive apoptosis in vitro and to tumor shrinkage and impairment of metastasis in xenograft models. Here we report that Galectin-3 impairs MYCN-primed and HIPK2-p53-dependent apoptosis in neuroblastoma cells. Galectin-3 is broadly expressed in human neuroblastoma cell lines and tumors and is repressed by MYCN to induce the apoptosis-sensitive phenotype. Despite its reduced levels, Galectin-3 can still exert residual antiapoptotic effects in MYCN amplified neuroblastoma cells, possibly due to its specific subcellular localization. Importantly, Nutlin-3 represses Galectin-3 expression, and this is required for its potent cell killing effect on MYCN amplified cell lines. Our data further characterize the apoptosis-sensitive phenotype induced by MYCN, expand our understanding of the activity of MDM2-p53 antagonists and highlight Galectin-3 as a potential biomarker for the tailored p53 reactivation therapy in patients with high-risk neuroblastomas.

  15. 'Faceness' and affectivity: evidence for genetic contributions to distinct components of electrocortical response to human faces.

    Science.gov (United States)

    Shannon, Robert W; Patrick, Christopher J; Venables, Noah C; He, Sheng

    2013-12-01

    The ability to recognize a variety of different human faces is undoubtedly one of the most important and impressive functions of the human perceptual system. Neuroimaging studies have revealed multiple brain regions (including the FFA, STS, OFA) and electrophysiological studies have identified differing brain event-related potential (ERP) components (e.g., N170, P200) possibly related to distinct types of face information processing. To evaluate the heritability of ERP components associated with face processing, including N170, P200, and LPP, we examined ERP responses to fearful and neutral face stimuli in monozygotic (MZ) and dizygotic (DZ) twins. Concordance levels for early brain response indices of face processing (N170, P200) were found to be stronger for MZ than DZ twins, providing evidence of a heritable basis to each. These findings support the idea that certain key neural mechanisms for face processing are genetically coded. Implications for understanding individual differences in recognition of facial identity and the emotional content of faces are discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Graphene Oxide Nanoribbons Induce Autophagic Vacuoles in Neuroblastoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Emanuela Mari

    2016-11-01

    Full Text Available Since graphene nanoparticles are attracting increasing interest in relation to medical applications, it is important to understand their potential effects on humans. In the present study, we prepared graphene oxide (GO nanoribbons by oxidative unzipping of single-wall carbon nanotubes (SWCNTs and analyzed their toxicity in two human neuroblastoma cell lines. Neuroblastoma is the most common solid neoplasia in children. The hallmark of these tumors is the high number of different clinical variables, ranging from highly metastatic, rapid progression and resistance to therapy to spontaneous regression or change into benign ganglioneuromas. Patients with neuroblastoma are grouped into different risk groups that are characterized by different prognosis and different clinical behavior. Relapse and mortality in high risk patients is very high in spite of new advances in chemotherapy. Cell lines, obtained from neuroblastomas have different genotypic and phenotypic features. The cell lines SK-N-BE(2 and SH-SY5Y have different genetic mutations and tumorigenicity. Cells were exposed to low doses of GO for different times in order to investigate whether GO was a good vehicle for biological molecules delivering individualized therapy. Cytotoxicity in both cell lines was studied by measuring cellular oxidative stress (ROS, mitochondria membrane potential, expression of lysosomial proteins and cell growth. GO uptake and cytoplasmic distribution of particles were studied by Transmission Electron Microscopy (TEM for up to 72 h. The results show that GO at low concentrations increased ROS production and induced autophagy in both neuroblastoma cell lines within a few hours of exposure, events that, however, are not followed by growth arrest or death. For this reason, we suggest that the GO nanoparticle can be used for therapeutic delivery to the brain tissue with minimal effects on healthy cells.

  17. Accumulation of distinct prelamin A variants in human diploid fibroblasts differentially affects cell homeostasis

    International Nuclear Information System (INIS)

    Candelario, Jose; Borrego, Stacey; Reddy, Sita; Comai, Lucio

    2011-01-01

    Lamin A is a component of the nuclear lamina that plays a major role in the structural organization and function of the nucleus. Lamin A is synthesized as a prelamin A precursor which undergoes four sequential post-translational modifications to generate mature lamin A. Significantly, a large number of point mutations in the LMNA gene cause a range of distinct human disorders collectively known as laminopathies. The mechanisms by which mutations in lamin A affect cell function and cause disease are unclear. Interestingly, recent studies have suggested that alterations in the normal lamin A pathway can contribute to cellular dysfunction. Specifically, we and others have shown, at the cellular level, that in the absence of mutations or altered splicing events, increased expression of wild-type prelamin A results in a growth defective phenotype that resembles that of cells expressing the mutant form of lamin A, termed progerin, associated with Hutchinson-Gilford Progeria syndrome (HGPS). Remarkably, the phenotypes of cells expressing elevated levels of wild-type prelamin A can be reversed by either treatment with farnesyltransferase inhibitors or overexpression of ZMPSTE24, a critical prelamin A processing enzyme, suggesting that minor increases in the steady-state levels of one or more prelamin A intermediates is sufficient to induce cellular toxicity. Here, to investigate the molecular basis of the lamin A pathway toxicity, we characterized the phenotypic changes occurring in cells expressing distinct prelamin A variants mimicking specific prelamin A processing intermediates. This analysis demonstrates that distinct prelamin A variants differentially affect cell growth, nuclear membrane morphology, nuclear distribution of lamin A and the fundamental process of transcription. Expression of prelamin A variants that are constitutively farnesylated induced the formation of lamin A aggregates and dramatic changes in nuclear membrane morphology, which led to reduced

  18. Nuclear medicine therapy of neuroblastoma

    International Nuclear Information System (INIS)

    Hoefnagel, C.A.

    1999-01-01

    Specific targeting of radionuclides to neuroblastoma, a neural crest tumor occurring predominantly in young children and associated with a relatively poor prognosis, may be achieved via the metabolic route (Mibg), receptor binding (peptides) or immunological approach (antibodies). The clinical role of 1 31 I -Mibg therapy and radioimmunotherapy in neuroblastoma is discussed. In recurrent or progressive metastatic disease after conventional treatment modalities have failed, 1 31 I -Mibg therapy, with an overall objective response rate of 35%, is probably the best palliative treatment, as the invasiveness and toxicity of this therapy compare favourably with that of chemotherapy, immunotherapy and external beam radiotherapy. In patients presenting with inoperable stage III and IV neuroblastoma, 1 31 I -Mibg therapy at diagnosis is at least as effective as combination chemotherapy but is associated with much less toxicity. In patients with recurrent disease 1 31 I -Mibg therapy in combination with hyperbaric oxygen therapy proved feasible and encouraging effects on survival have ben observed. Attempts to intensify the treatment in relapsed patients by combination of 1 31 I -Mibg therapy with high dose chemotherapy and/or total body irradiation have met with considerable toxicity. Developments in Mibg therapy aiming at improving the therapeutic index are mentioned. Early results of radioimmunotherapy using 1 31 I -UJ13A or 1 31 I -3F8 monoclonal antibodies have shown moderate objective response and considerable side effects in patients with stage IV neuroblastoma, who had relapsed or failed conventional therapy. New developments in radioimmunotherapy of neuroblastoma include the use of chimeric antibodies, the enhancement of tumor uptake by modulation of antigen expression or by increasing the tumor perfusion/vascularity/permeability, the use of other labels and multistep targeting techniques, e.g. using bispecific monoclonal antibodies

  19. PKH26 staining defines distinct subsets of normal human colon epithelial cells at different maturation stages.

    Directory of Open Access Journals (Sweden)

    Anna Pastò

    Full Text Available BACKGROUND AND AIM: Colon crypts are characterized by a hierarchy of cells distributed along the crypt axis. Aim of this paper was to develop an in vitro system for separation of epithelial cell subsets in different maturation stages from normal human colon. METHODOLOGY AND MAJOR FINDINGS: Dissociated colonic epithelial cells were stained with PKH26, which allows identification of distinct populations based on their proliferation rate, and cultured in vitro in the absence of serum. The cytofluorimetric expression of CK20, Msi-1 and Lgr5 was studied. The mRNA levels of several stemness-associated genes were also compared in cultured cell populations and in three colon crypt populations isolated by microdissection. A PKH(pos population survived in culture and formed spheroids; this population included subsets with slow (PKH(high and rapid (PKH(low replicative rates. Molecular analysis revealed higher mRNA levels of both Msi-1 and Lgr-5 in PKH(high cells; by cytofluorimetric analysis, Msi-1(+/Lgr5(+ cells were only found within PKH(high cells, whereas Msi-1(+/Lgr5(- cells were also observed in the PKH(low population. As judged by qRT-PCR analysis, the expression of several stemness-associated markers (Bmi-1, EphB2, EpCAM, ALDH1 was highly enriched in Msi-1(+/Lgr5(+ cells. While CK20 expression was mainly found in PKH(low and PKH(neg cells, a small PKH(high subset co-expressed both CK20 and Msi-1, but not Lgr5; cells with these properties also expressed Mucin, and could be identified in vivo in colon crypts. These results mirrored those found in cells isolated from different crypt portions by microdissection, and based on proliferation rates and marker expression they allowed to define several subsets at different maturation stages: PKH(high/Lgr5(+/Msi-1(+/CK20(-, PKH(high/Lgr5(-/Msi-1(+/CK20(+, PKH(low/Lgr5(-/Msi-1(+/Ck20(-, and PKH(low/Lgr5(-/Msi-1(-/CK20(+ cells. CONCLUSIONS: Our data show the possibility of deriving in vitro, without any

  20. Distinct Oscillatory Frequencies Underlie Excitability of Human Occipital and Parietal Cortex.

    Science.gov (United States)

    Samaha, Jason; Gosseries, Olivia; Postle, Bradley R

    2017-03-15

    Transcranial magnetic stimulation (TMS) of human occipital and posterior parietal cortex can give rise to visual sensations called phosphenes. We used near-threshold TMS with concurrent EEG recordings to measure how oscillatory brain dynamics covary, on single trials, with the perception of phosphenes after occipital and parietal TMS. Prestimulus power and phase, predominantly in the alpha band (8-13 Hz), predicted occipital TMS phosphenes, whereas higher-frequency beta-band (13-20 Hz) power (but not phase) predicted parietal TMS phosphenes. TMS-evoked responses related to phosphene perception were similar across stimulation sites and were characterized by an early (200 ms) posterior negativity and a later (>300 ms) parietal positivity in the time domain and an increase in low-frequency (∼5-7 Hz) power followed by a broadband decrease in alpha/beta power in the time-frequency domain. These correlates of phosphene perception closely resemble known electrophysiological correlates of conscious perception of near-threshold visual stimuli. The regionally differential pattern of prestimulus predictors of phosphene perception suggests that distinct frequencies may reflect cortical excitability in occipital versus posterior parietal cortex, calling into question the broader assumption that the alpha rhythm may serve as a general index of cortical excitability. SIGNIFICANCE STATEMENT Alpha-band oscillations are thought to reflect cortical excitability and are therefore ascribed an important role in gating information transmission across cortex. We probed cortical excitability directly in human occipital and parietal cortex and observed that, whereas alpha-band dynamics indeed reflect excitability of occipital areas, beta-band activity was most predictive of parietal cortex excitability. Differences in the state of cortical excitability predicted perceptual outcomes (phosphenes), which were manifest in both early and late patterns of evoked activity, revealing the time

  1. Neuroblastoma cell lines contain pluripotent tumor initiating cells that are susceptible to a targeted oncolytic virus.

    Directory of Open Access Journals (Sweden)

    Yonatan Y Mahller

    Full Text Available Although disease remission can frequently be achieved for patients with neuroblastoma, relapse is common. The cancer stem cell theory suggests that rare tumorigenic cells, resistant to conventional therapy, are responsible for relapse. If true for neuroblastoma, improved cure rates may only be achieved via identification and therapeutic targeting of the neuroblastoma tumor initiating cell. Based on cues from normal stem cells, evidence for tumor populating progenitor cells has been found in a variety of cancers.Four of eight human neuroblastoma cell lines formed tumorspheres in neural stem cell media, and all contained some cells that expressed neurogenic stem cell markers including CD133, ABCG2, and nestin. Three lines tested could be induced into multi-lineage differentiation. LA-N-5 spheres were further studied and showed a verapamil-sensitive side population, relative resistance to doxorubicin, and CD133+ cells showed increased sphere formation and tumorigenicity. Oncolytic viruses, engineered to be clinically safe by genetic mutation, are emerging as next generation anticancer therapeutics. Because oncolytic viruses circumvent typical drug-resistance mechanisms, they may represent an effective therapy for chemotherapy-resistant tumor initiating cells. A Nestin-targeted oncolytic herpes simplex virus efficiently replicated within and killed neuroblastoma tumor initiating cells preventing their ability to form tumors in athymic nude mice.These results suggest that human neuroblastoma contains tumor initiating cells that may be effectively targeted by an oncolytic virus.

  2. The signaling cascades of Ganoderma lucidum extracts in stimulating non-amyloidogenic protein secretion in human neuroblastoma SH-SY5Y cell lines.

    Science.gov (United States)

    Pinweha, Sirinthorn; Wanikiat, Payong; Sanvarinda, Yupin; Supavilai, Porntip

    2008-12-19

    Ganoderma lucidum (GL) is a medicinal mushroom that possesses various pharmacological properties which are also documented in the ancient reports where GL is praised for its effects on the promotion of health and longevity. In this study, we have investigated the effect of GL mycelia extracts on the non-amyloidogenic protein secretion (sAPPalpha) and the amyloid precursor protein (APP) expression in SH-SY5Y neuroblastoma cells. In order to characterize the signaling pathway which mediates GL-enhanced sAPPalpha secretion, we used inhibitors of nerve growth factor (NGF) signaling pathways, phosphatidylinositol 3 kinase (PI3K), phospholipase Cgamma1 (PLCgamma1), protein kinase C (PKC) and extracellular signal-regulated kinase (ERK1/2), to block GL-mediated sAPPalpha secretion as well as ERK1/2 and PKC activation by using Western blot analysis. Our results provided for the first time evidence that GL mycelia extracts increased APP expression and promoted sAPPalpha secretion. In addition, GL extracts activated ERK1/2 and PKC phosphorylation. The complex signaling cascades of PI3K and ERK may be responsible for GL-mediated sAPPalpha secretion.

  3. Lycopene protects human SH-SY5Y neuroblastoma cells against hydrogen peroxide-induced death via inhibition of oxidative stress and mitochondria-associated apoptotic pathways

    Science.gov (United States)

    FENG, CHUNSHENG; LUO, TIANFEI; ZHANG, SHUYAN; LIU, KAI; ZHANG, YANHONG; LUO, YINAN; GE, PENGFEI

    2016-01-01

    Oxidative stress, which is characterized by excessive production of reactive oxygen species (ROS), is a common pathway that results in neuronal injury or death due to various types of pathological stress. Although lycopene has been identified as a potent antioxidant, its effect on hydrogen peroxide (H2O2)-induced neuronal damage remains unclear. In the present study, pretreatment with lycopene was observed to protect SH-SY5Y neuroblastoma cells against H2O2-induced death via inhibition of apoptosis resulting from activation of caspase-3 and translocation of apoptosis inducing factor (AIF) to the nucleus. Furthermore, the over-produced ROS, as well as the reduced activities of anti-oxidative enzymes, superoxide dismutase and catalase, were demonstrated to be alleviated by lycopene. Additionally, lycopene counteracted H2O2-induced mitochondrial dysfunction, which was evidenced by suppression of mitochondrial permeability transition pore opening, attenuation of the decline of the mitochondrial membrane potential, and inhibition of the increase of Bax and decrease of Bcl-2 levels within the mitochondria. The release of cytochrome c and AIF from the mitochondria was also reduced. These results indicate that lycopene is a potent neuroprotectant against apoptosis, oxidative stress and mitochondrial dysfunction, and could be administered to prevent neuronal injury or death. PMID:27035331

  4. KIR2DL4 differentially signals downstream functions in human NK cells through distinct structural modules.

    Science.gov (United States)

    Miah, S M Shahjahan; Hughes, Tracey L; Campbell, Kerry S

    2008-03-01

    KIR2DL4 (2DL4) is a member of the killer cell Ig-like receptor (KIR) family in human NK cells. It can stimulate potent cytokine production and weak cytolytic activity in resting NK cells, but the mechanism for 2DL4-mediated signaling remains unclear. In this study we characterized the signaling pathways stimulated by 2DL4 engagement. In a human NK-like cell line, KHYG-1, cross-linking of 2DL4 activated MAPKs including JNK, ERK, and p38. Furthermore, 2DL4 cross-linking resulted in phosphorylation of IkappaB kinase beta (IKKbeta) and the phosphorylation and degradation of IkappaBalpha, which indicate activation of the classical NF-kappaB pathway. Engagement of 2DL4 was also shown to activate the transcription and translation of a variety of cytokine genes, including TNF-alpha, IFN-gamma, MIP1alpha, MIP1beta, and IL-8. Pharmacological inhibitors of JNK, MEK1/2 and p38, blocked IFN-gamma, IL-8, and MIP1alpha production, suggesting that MAPKs are regulating 2DL4-mediated cytokine production in a nonredundant manner. Activation of both p38 and ERK appear to be upstream of the stimulation of NF-kappaB. Mutation of a transmembrane arginine in 2DL4 to glycine (R/G mutant) abrogated FcepsilonRI-gamma association, as well as receptor-mediated cytolytic activity and calcium responses. Surprisingly, the R/G mutant still activated MAPKs and the NF-kappaB pathway and selectively stimulated the production of MIP1alpha, but not that of IFN-gamma or IL-8. In conclusion, we provide evidence that the activating functions of 2DL4 can be compartmentalized into two distinct structural modules: 1) through transmembrane association with FcepsilonRI-gamma; and 2) through another receptor domain independent of the transmembrane arginine.

  5. Comparative transcriptional analysis of three human ligaments with distinct biomechanical properties

    Science.gov (United States)

    Lorda-Diez, Carlos I; Canga-Villegas, Ana; Cerezal, Luis; Plaza, Santiago; Hurlé, Juan M; García-Porrero, Juan A; Montero, Juan A

    2013-01-01

    One major aim of regenerative medicine targeting the musculoskeletal system is to provide complementary and/or alternative therapeutic approaches to current surgical therapies, often involving the removal and prosthetic substitution of damaged tissues such as ligaments. For these approaches to be successful, detailed information regarding the cellular and molecular composition of different musculoskeletal tissues is required. Ligaments have often been considered homogeneous tissues with common biomechanical properties. However, advances in tissue engineering research have highlighted the functional relevance of the organisational and compositional differences between ligament types, especially in those with higher risks of injury. The aim of this study was to provide information concerning the relative expression levels of a subset of key genes (including extracellular matrix components, transcription factors and growth factors) that confer functional identity to ligaments. We compared the transcriptomes of three representative human ligaments subjected to different biomechanical demands: the anterior cruciate ligament (ACL); the ligamentum teres of the hip (LT); and the iliofemoral ligament (IL). We revealed significant differences in the expression of type I collagen, elastin, fibromodulin, biglycan, transforming growth factor β1, transforming growth interacting factor 1, hypoxia-inducible factor 1-alpha and transforming growth factor β-induced gene between the IL and the other two ligaments. Thus, considerable molecular heterogeneity can exist between anatomically distinct ligaments with differing biomechanical demands. However, the LT and ACL were found to show remarkable molecular homology, suggesting common functional properties. This finding provides experimental support for the proposed role of the LT as a hip joint stabiliser in humans. PMID:24128114

  6. Alcohol, Methamphetamine, and Marijuana Exposure Have Distinct Effects on the Human Placenta.

    Science.gov (United States)

    Carter, R Colin; Wainwright, Helen; Molteno, Christopher D; Georgieff, Michael K; Dodge, Neil C; Warton, Fleur; Meintjes, Ernesta M; Jacobson, Joseph L; Jacobson, Sandra W

    2016-04-01

    Animal studies have demonstrated adverse effects of prenatal alcohol exposure on placental development, but few studies have examined these effects in humans. Little is known about effects of prenatal exposure to methamphetamine, marijuana, and cigarette smoking on placental development. Placentas were collected from 103 Cape Coloured (mixed ancestry) pregnant women recruited at their first antenatal clinic visit in Cape Town, South Africa. Sixty-six heavy drinkers and 37 nondrinkers were interviewed about their alcohol, cigarette smoking, and drug use at 3 antenatal visits. A senior pathologist, blinded to exposure status, performed comprehensive pathology examinations on each placenta using a standardized protocol. In multivariable regression models, effects of prenatal exposure were examined on placental size, structure, and presence of infections and meconium. Drinkers reported a binge pattern of heavy drinking, averaging 8.0 drinks/occasion across pregnancy on 1.4 d/wk. 79.6% smoked cigarettes; 22.3% used marijuana; and 17.5% used methamphetamine. Alcohol exposure was related to decreased placental weight and a smaller placenta-to-birthweight ratio. By contrast, methamphetamine was associated with larger placental weight and a larger placenta-to-birthweight ratio. Marijuana was also associated with larger placental weight. Alcohol exposure was associated with increased risk of placental hemorrhage. Prenatal alcohol, drug, and cigarette use were not associated with chorioamnionitis, villitis, deciduitis, or maternal vascular underperfusion. Alcohol and cigarette smoking were associated with a decreased risk of intrauterine passing of meconium, a sign of acute fetal stress and/or hypoxia; methamphetamine, with an increased risk. This is the first human study to show that alcohol, methamphetamine, and marijuana were associated with distinct patterns of pathology, suggesting different mechanisms mediating their effects on placental development. Given the growing

  7. Distinct Internalization Pathways of Human Amylin Monomers and Its Cytotoxic Oligomers in Pancreatic Cells

    Science.gov (United States)

    Trikha, Saurabh; Jeremic, Aleksandar M.

    2013-01-01

    Toxic human amylin oligomers and aggregates are implicated in the pathogenesis of type 2 diabetes mellitus (TTDM). Although recent studies have shown that pancreatic cells can recycle amylin monomers and toxic oligomers, the exact uptake mechanism and trafficking routes of these molecular forms and their significance for amylin toxicity are yet to be determined. Using pancreatic rat insulinoma (RIN-m5F) beta (β)-cells and human islets as model systems we show that monomers and oligomers cross the plasma membrane (PM) through both endocytotic and non-endocytotic (translocation) mechanisms, the predominance of which is dependent on amylin concentrations and incubation times. At low (≤100 nM) concentrations, internalization of amylin monomers in pancreatic cells is completely blocked by the selective amylin-receptor (AM-R) antagonist, AC-187, indicating an AM-R dependent mechanism. In contrast at cytotoxic (µM) concentrations monomers initially (1 hour) enter pancreatic cells by two distinct mechanisms: translocation and macropinocytosis. However, during the late stage (24 hours) monomers internalize by a clathrin-dependent but AM-R and macropinocytotic independent pathway. Like monomers a small fraction of the oligomers initially enter cells by a non-endocytotic mechanism. In contrast a majority of the oligomers at both early (1 hour) and late times (24 hours) traffic with a fluid-phase marker, dextran, to the same endocytotic compartments, the uptake of which is blocked by potent macropinocytotic inhibitors. This led to a significant increase in extra-cellular PM accumulation, in turn potentiating amylin toxicity in pancreatic cells. Our studies suggest that macropinocytosis is a major but not the only clearance mechanism for both amylin’s molecular forms, thereby serving a cyto-protective role in these cells. PMID:24019897

  8. Distinct epigenomic landscapes of pluripotent and lineage-committed human cells.

    Science.gov (United States)

    Hawkins, R David; Hon, Gary C; Lee, Leonard K; Ngo, Queminh; Lister, Ryan; Pelizzola, Mattia; Edsall, Lee E; Kuan, Samantha; Luu, Ying; Klugman, Sarit; Antosiewicz-Bourget, Jessica; Ye, Zhen; Espinoza, Celso; Agarwahl, Saurabh; Shen, Li; Ruotti, Victor; Wang, Wei; Stewart, Ron; Thomson, James A; Ecker, Joseph R; Ren, Bing

    2010-05-07

    Human embryonic stem cells (hESCs) share an identical genome with lineage-committed cells, yet possess the remarkable properties of self-renewal and pluripotency. The diverse cellular properties in different cells have been attributed to their distinct epigenomes, but how much epigenomes differ remains unclear. Here, we report that epigenomic landscapes in hESCs and lineage-committed cells are drastically different. By comparing the chromatin-modification profiles and DNA methylomes in hESCs and primary fibroblasts, we find that nearly one-third of the genome differs in chromatin structure. Most changes arise from dramatic redistributions of repressive H3K9me3 and H3K27me3 marks, which form blocks that significantly expand in fibroblasts. A large number of potential regulatory sequences also exhibit a high degree of dynamics in chromatin modifications and DNA methylation. Additionally, we observe novel, context-dependent relationships between DNA methylation and chromatin modifications. Our results provide new insights into epigenetic mechanisms underlying properties of pluripotency and cell fate commitment.

  9. Two Distinct Myeloid Subsets at the Term Human Fetal–Maternal Interface

    Directory of Open Access Journals (Sweden)

    Maria Laura Costa

    2017-10-01

    Full Text Available During pregnancy, immune cells infiltrate the placenta at different stages of fetal development. NK cells and macrophages are the most predominant cell types. These immune cells play pleiotropic roles, as they control spiral artery remodeling to ensure appropriate blood supply and maintain long-term tolerance to a true allograft; yet, they must be able to mount appropriate immune defenses to pathogens that may threaten the fetus. Whether the same cell type accomplishes all these tasks or if there are dedicated subsets remains controversial. Here, we identify and characterize two distinct subsets of myeloid cells that differ in their pro-inflammatory/regulatory capacity. While one subset predominantly produces the immune-modulating cytokine IL-10, the second subset has superior capacity to secrete pro-inflammatory mediators, such as IL-1β and IL-6. The putative regulatory myeloid cells also express high levels of inhibitory receptors and their ligands, including programmed cell death 1 (PD1 ligands. Importantly, a large fraction of CD8 and CD4 cells in normal term human placenta are PD1 positive, suggesting that the PD1/PD1 ligands axis might be critical to maintain tolerance during pregnancy.

  10. Two distinct affinity binding sites for IL-1 on human cell lines

    International Nuclear Information System (INIS)

    Bensimon, C.; Wakasugi, N.; Tagaya, Y.; Takakura, K.; Yodoi, J.; Tursz, T.; Wakasugi, H.

    1989-01-01

    We used two human cell lines, NK-like YT-C3 and an EBV-containing B cell line, 3B6, as models to study the receptor(s) for IL-1. Two distinct types of saturable binding sites were found on both cell lines at 37 degrees C. Between 1 pM and 100 pM of 125I-IL-1-alpha concentration, saturable binding sites were detected on the YT-C3 cells with a K of 4 x 10(-11) M. The K found for the IL-1-alpha binding sites on 3B6 cells was 7.5 x 10(-11) M. An additional binding curve was detected above 100 pM on YT-C3 cells with a K of 7 x 10(-9) M and on 3B6 cells with a K of 5 x 10(-9) M. Scatchard plot analysis revealed 600 sites/cell with high affinity binding and 7000 sites/cell with low affinity for YT-C3 cells and 300 sites/cell with high affinity binding and 6000 sites/cell with low affinity for 3B6 cells. At 37 degrees C, the internalization of 125I-labeled IL-1 occurred via both high and low affinity IL-1R on both YT-C3 and 3B6 cells, whereas the rates of internalization for high affinity binding sites on YT-C3 cells were predominant in comparison to that of low affinity binding sites. In chemical cross-linking studies of 125 I-IL-1-alpha to 3B6 and YT-C3 cells, two protein bands were immunoprecipitated with Mr around 85 to 90 kDa leading to an estimation of the Mr of the IL-1R around 68 to 72 kDa. In similar experiments, the Mr found for the IL-1R expressed on the murine T cell line EL4 was slightly higher (around 80 kDa). Whether these distinct affinity binding sites are shared by a single molecule or by various chains remains to be elucidated

  11. Vitamin D activation of functionally distinct regulatory miRNAs in primary human osteoblasts.

    Science.gov (United States)

    Lisse, Thomas S; Chun, Rene F; Rieger, Sandra; Adams, John S; Hewison, Martin

    2013-06-01

    When bound to the vitamin D receptor (VDR), the active form of vitamin D, 1,25-dihydroxyvitamin D (1,25D) is a potent regulator of osteoblast transcription. Less clear is the impact of 1,25D on posttranscriptional events in osteoblasts, such as the generation and action of microRNAs (miRNAs). Microarray analysis using replicate (n = 3) primary cultures of human osteoblasts (HOBs) identified human miRNAs that were differentially regulated by >1.5-fold following treatment with 1,25D (10 nM, 6 hours), which included miRNAs 637 and 1228. Quantitative reverse transcription PCR analyses showed that the host gene for miR-1228, low-density lipoprotein receptor-related protein 1 (LRP1), was coinduced with miR-1228 in a dose-dependent fashion following treatment with 1,25D (0.1-10 nM, 6 hours). By contrast, the endogenous host gene for miR-637, death-associated protein kinase 3 (DAPK3), was transcriptionally repressed by following treatment with 1,25D. Analysis of two potential targets for miR-637 and miR-1228 in HOB, type IV collagen (COL4A1) and bone morphogenic protein 2 kinase (BMP2K), respectively, showed that 1,25D-mediates suppression of these targets via distinct mechanisms. In the case of miR-637, suppression of COL4A1 appears to occur via decreased levels of COL4A1 mRNA. By contrast, suppression of BMP2K by miR-1228 appears to occur by inhibition of protein translation. In mature HOBs, small interfering RNA (siRNA) inactivation of miR-1228 alone was sufficient to abrogate 1,25D-mediated downregulation of BMP2K protein expression. This was associated with suppression of prodifferentiation responses to 1,25D in HOB, as represented by parallel decrease in osteocalcin and alkaline phosphatase expression. These data show for the first time that the effects of 1,25D on human bone cells are not restricted to classical VDR-mediated transcriptional responses but also involve miRNA-directed posttranscriptional mechanisms. Copyright © 2013 American Society for Bone and

  12. Effect of fraxetin on antioxidant defense and stress proteins in human neuroblastoma cell model of rotenone neurotoxicity. Comparative study with myricetin and N-acetylcysteine

    International Nuclear Information System (INIS)

    Molina-Jimenez, Maria Francisca; Sanchez-Reus, Maria Isabel; Cascales, Maria; Andres, David; Benedi, Juana

    2005-01-01

    Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. Recently, it has been shown that fraxetin (coumarin) and myricetin (flavonoid) have significant neuroprotective effects against apoptosis induced by rotenone, increase the total glutathione levels in vitro, and inhibit lipid peroxidation. Thus, these considerations prompted us to investigate the way in which fraxetin and myricetin affect the endogenous antioxidant defense system, such as Mn and CuZn superoxide dismutase (MnSOD, CuZnSOD), catalase, glutathione reductase (GR), and glutathione peroxidase (GPx) on rotenone neurotoxicity in neuroblastoma cells. N-acetylcysteine (NAC), a potent antioxidant, was employed as a comparative agent. Also, the expression and protein levels of HSP70 by Northern and Western blot analysis were assayed in SH-SY5Y cells. After incubation for 16 h, rotenone significantly increased the expression and activity of MnSOD, GPx, and catalase. When cells were preincubated with fraxetin, there was a decrease in the protein levels and activity of both MnSOD and catalase, in comparison with the rotenone treatment. The myricetin effect was less pronounced. Activity and expression of GPx were increased by rotenone and pre-treatment with fraxetin did not modify significantly these levels. The significant enhancement in HSP70 expression at mRNA and protein levels induced by fraxetin was observed by pre-treatment of cells 0.5 h before rotenone insult. These data suggest that major features of rotenone-induced neurotoxicity are partially mediated by free radical formation and oxidative stress, and that fraxetin partially protects against rotenone toxicity affecting the main protection system of the cells against oxidative injury

  13. Ibuprofen and Diclofenac Restrict Migration and Proliferation of Human Glioma Cells by Distinct Molecular Mechanisms

    Science.gov (United States)

    Leidgens, Verena; Seliger, Corinna; Jachnik, Birgit; Welz, Tobias; Leukel, Petra; Vollmann-Zwerenz, Arabel; Bogdahn, Ulrich; Kreutz, Marina; Grauer, Oliver M.; Hau, Peter

    2015-01-01

    Background Non-steroidal anti-inflammatory drugs (NSAIDs) have been associated with anti-tumorigenic effects in different tumor entities. For glioma, research has generally focused on diclofenac; however data on other NSAIDs, such as ibuprofen, is limited. Therefore, we performed a comprehensive investigation of the cellular, molecular, and metabolic effects of ibuprofen and diclofenac on human glioblastoma cells. Methods Glioma cell lines were treated with ibuprofen or diclofenac to investigate functional effects on proliferation and cell motility. Cell cycle, extracellular lactate levels, lactate dehydrogenase-A (LDH-A) expression and activity, as well as inhibition of the Signal Transducer and Activator of Transcription 3 (STAT-3) signaling pathway, were determined. Specific effects of diclofenac and ibuprofen on STAT-3 were investigated by comparing their effects with those of the specific STAT-3 inhibitor STATTIC. Results Ibuprofen treatment led to a stronger inhibition of cell growth and migration than treatment with diclofenac. Proliferation was affected by cell cycle arrest at different checkpoints by both agents. In addition, diclofenac, but not ibuprofen, decreased lactate levels in all concentrations used. Both decreased STAT-3 phosphorylation; however, diclofenac led to decreased c-myc expression and subsequent reduction in LDH-A activity, whereas treatment with ibuprofen in higher doses induced c-myc expression and less LDH-A alteration. Conclusions This study indicates that both ibuprofen and diclofenac strongly inhibit glioma cells, but the subsequent metabolic responses of both agents are distinct. We postulate that ibuprofen may inhibit tumor cells also by COX- and lactate-independent mechanisms after long-term treatment in physiological dosages, whereas diclofenac mainly acts by inhibition of STAT-3 signaling and downstream modulation of glycolysis. PMID:26485029

  14. Specific Inflammatory Stimuli Lead to Distinct Platelet Responses in Mice and Humans.

    Directory of Open Access Journals (Sweden)

    Lea M Beaulieu

    Full Text Available Diverse and multi-factorial processes contribute to the progression of cardiovascular disease. These processes affect cells involved in the development of this disease in varying ways, ultimately leading to atherothrombosis. The goal of our study was to compare the differential effects of specific stimuli--two bacterial infections and a Western diet--on platelet responses in ApoE-/- mice, specifically examining inflammatory function and gene expression. Results from murine studies were verified using platelets from participants of the Framingham Heart Study (FHS; n = 1819 participants.Blood and spleen samples were collected at weeks 1 and 9 from ApoE-/- mice infected with Porphyromonas gingivalis or Chlamydia pneumoniae and from mice fed a Western diet for 9 weeks. Transcripts based on data from a Western diet in ApoE-/- mice were measured in platelet samples from FHS using high throughput qRT-PCR.At week 1, both bacterial infections increased circulating platelet-neutrophil aggregates. At week 9, these cells individually localized to the spleen, while Western diet resulted in increased platelet-neutrophil aggregates in the spleen only. Microarray analysis of platelet RNA from infected or Western diet-fed mice at week 1 and 9 showed differential profiles. Genes, such as Serpina1a, Ttr, Fgg, Rpl21, and Alb, were uniquely affected by infection and diet. Results were reinforced in platelets obtained from participants of the FHS.Using both human studies and animal models, results demonstrate that variable sources of inflammatory stimuli have the ability to influence the platelet phenotype in distinct ways, indicative of the diverse function of platelets in thrombosis, hemostasis, and immunity.

  15. Intrarenal neuroblastoma mimics Wilms' tumor

    International Nuclear Information System (INIS)

    Muniz, Maria T. Cartaxo; Soares, Andrezza B.; Freitas, Elizabete M.; Araujo, Marcela; Pureza, Leda M.M.; Morais, Adriana; Antunes, Consuelo; Salles, Terezinha de J. Marques; Borges, Josenilda C.; Morais, Vera L.L. de; Romualdo Filho, Jose; Magalhaes, Mario H.

    2005-01-01

    This work reports the case history of a child with intrarenal neuroblastoma, initially diagnosed as Wilms' tumor. The patient, a one year and three months old girl, presented a hard abdominal mass on the left flank that extended to the meso gastric region, plus fever and paleness. The ultrasound of the entire abdomen revealed an intrarenal mass. Biopsy with fine needle in many points of the tumor revealed Wilms' tumor. The scarcely of the material, however, made immunohistoquemistry impossible at that moment. Because of the child's severe condition the SIOP protocol was started. As no clinical response was observed, an exploratory laparotomy was indicated with partial resection of the tumor and bone marrow aspiration (MO). The histopathologic study revealed a malignant neoplasia of small cells, poorly differentiated. IHQ was negative for WT-1 and positive for NB-84, synaptofisin, cromogranine. N-myc amplification was observed by molecular biology. The bone marrow aspiration identified metastatic small round cells infiltration. Intrarenal neuroblastoma is a rare entity that clinically and radiographically resembles Wilms' tumor. The objective of this case report is to show the importance of immunohistochemical and molecular analysis in the diagnosis of intrarenal neuroblastoma. (author)

  16. [Cervical neuroblastoma in an infant].

    Science.gov (United States)

    Arvai, Krisztina; Tóth, Judit; Németh, Tamás; Kiss, Csongor; Molnár, Péter; Oláh, Eva

    2004-01-01

    The case of a one-month-old patient admitted to the Department of Pediatrics (Medical and Health Science Center, Debrecen University) because of respiratory distress caused by a cervical mass compressing the upper respiratory pathways is presented. The mass could only be partially removed, the histological diagnosis proved to be neuroblastoma (SBCT: "small blue cell tumor"). Despite the fact that the DNA index of tumor cells (ploidy measurements) and the age of the patient suggested a favourable prognosis, the tumor continued to grow and metastases appeared. Because of symptoms of compression exerted on the respiratory system by the tumor, chemotherapy had to be applied. Since a standard OPEC/OJEC chemotherapeutic protocol proved to be not entirely effective and a residual tumor was still present, retinoic acid and interferon treatment was introduced. Presently, 4 years after the diagnosis, the patient is in complete remission and can be considered to be cured. The case presented here demonstrates that despite the favorable prognosis of the majority of infant neuroblastomas, in some cases the anatomic location of the tumor, leading to disturbance of vital functions, may serve as indication of chemotherapy. Our experience also proved the efficacy of retinoic acid and interferon treatment in relapsed neuroblastoma.

  17. Intracellular fragment of NLRR3 (NLRR3-ICD) stimulates ATRA-dependent neuroblastoma differentiation

    International Nuclear Information System (INIS)

    Akter, Jesmin; Takatori, Atsushi; Islam, Md. Sazzadul; Nakazawa, Atsuko; Ozaki, Toshinori; Nagase, Hiroki; Nakagawara, Akira

    2014-01-01

    Highlights: • NLRR3 is a membrane protein highly expressed in favorable neuroblastoma. • NLRR3-ICD was produced through proteolytic processing by secretases. • NLRR3-ICD was induced to be translocated into cell nucleus following ATRA exposure. • NLRR3-ICD plays a pivotal role in ATRA-mediated neuroblastoma differentiation. - Abstract: We have previously identified neuronal leucine-rich repeat protein-3 (NLRR3) gene which is preferentially expressed in favorable human neuroblastomas as compared with unfavorable ones. In this study, we have found for the first time that NLRR3 is proteolytically processed by secretases and its intracellular domain (NLRR3-ICD) is then released to translocate into cell nucleus during ATRA-mediated neuroblastoma differentiation. According to our present observations, NLRR3-ICD was induced to accumulate in cell nucleus of neuroblastoma SH-SY5Y cells following ATRA treatment. Since the proteolytic cleavage of NLRR3 was blocked by α- or γ-secretase inhibitor, it is likely that NLRR3-ICD is produced through the secretase-mediated processing of NLRR3. Intriguingly, forced expression of NLRR3-ICD in neuroblastoma SK-N-BE cells significantly suppressed their proliferation as examined by a live-cell imaging system and colony formation assay. Similar results were also obtained in neuroblastoma TGW cells. Furthermore, overexpression of NLRR3-ICD stimulated ATRA-dependent neurite elongation in SK-N-BE cells. Together, our present results strongly suggest that NLRR3-ICD produced by the secretase-mediated proteolytic processing of NLRR3 plays a crucial role in ATRA-mediated neuronal differentiation, and provide a clue to develop a novel therapeutic strategy against aggressive neuroblastomas

  18. Intracellular fragment of NLRR3 (NLRR3-ICD) stimulates ATRA-dependent neuroblastoma differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Akter, Jesmin [Laboratory of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, Chiba 260-8717 (Japan); Takatori, Atsushi, E-mail: atakatori@chiba-cc.jp [Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba 260-8717 (Japan); Islam, Md. Sazzadul [Laboratory of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, Chiba 260-8717 (Japan); Nakazawa, Atsuko [Department of Pathology, National Center for Child Health and Development, Tokyo (Japan); Ozaki, Toshinori, E-mail: tozaki@chiba-cc.jp [Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba 260-8717 (Japan); Nagase, Hiroki [Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba 260-8717 (Japan); Nakagawara, Akira [Saga Medical Centre, 840-8571 (Japan)

    2014-10-10

    Highlights: • NLRR3 is a membrane protein highly expressed in favorable neuroblastoma. • NLRR3-ICD was produced through proteolytic processing by secretases. • NLRR3-ICD was induced to be translocated into cell nucleus following ATRA exposure. • NLRR3-ICD plays a pivotal role in ATRA-mediated neuroblastoma differentiation. - Abstract: We have previously identified neuronal leucine-rich repeat protein-3 (NLRR3) gene which is preferentially expressed in favorable human neuroblastomas as compared with unfavorable ones. In this study, we have found for the first time that NLRR3 is proteolytically processed by secretases and its intracellular domain (NLRR3-ICD) is then released to translocate into cell nucleus during ATRA-mediated neuroblastoma differentiation. According to our present observations, NLRR3-ICD was induced to accumulate in cell nucleus of neuroblastoma SH-SY5Y cells following ATRA treatment. Since the proteolytic cleavage of NLRR3 was blocked by α- or γ-secretase inhibitor, it is likely that NLRR3-ICD is produced through the secretase-mediated processing of NLRR3. Intriguingly, forced expression of NLRR3-ICD in neuroblastoma SK-N-BE cells significantly suppressed their proliferation as examined by a live-cell imaging system and colony formation assay. Similar results were also obtained in neuroblastoma TGW cells. Furthermore, overexpression of NLRR3-ICD stimulated ATRA-dependent neurite elongation in SK-N-BE cells. Together, our present results strongly suggest that NLRR3-ICD produced by the secretase-mediated proteolytic processing of NLRR3 plays a crucial role in ATRA-mediated neuronal differentiation, and provide a clue to develop a novel therapeutic strategy against aggressive neuroblastomas.

  19. Distinctive Citizenship

    DEFF Research Database (Denmark)

    Kaur, Ravinder

    2009-01-01

    The refugee, in India's Partition history, appears as an enigmatic construct - part pitiful, part heroic, though mostly shorn of agency - representing the surface of the human tragedy of Partition. Yet this archetype masks the undercurrent of social distinctions that produced hierarchies of post...

  20. How Human Amygdala and Bed Nucleus of the Stria Terminalis May Drive Distinct Defensive Responses.

    Science.gov (United States)

    Klumpers, Floris; Kroes, Marijn C W; Baas, Johanna M P; Fernández, Guillén

    2017-10-04

    contributions to defensive reactions, there is a paucity of human studies that directly compared these regions on activity and connectivity during threat processing. We show strong evidence for a dissociable role of the BNST and amygdala in threat processing by demonstrating in two large participant samples that they show a distinct temporal signature of threat responding as well as a discriminable pattern of functional connections and differential sensitivity to early life threat. Copyright © 2017 the authors 0270-6474/17/379645-12$15.00/0.

  1. Dextran-Catechin: An anticancer chemically-modified natural compound targeting copper that attenuates neuroblastoma growth

    Science.gov (United States)

    Vittorio, Orazio; Brandl, Miriam; Cirillo, Giuseppe; Kimpton, Kathleen; Hinde, Elizabeth; Gaus, Katharina; Yee, Eugene; Kumar, Naresh; Duong, Hien; Fleming, Claudia; Haber, Michelle; Norris, Murray; Boyer, Cyrille; Kavallaris, Maria

    2016-01-01

    Neuroblastoma is frequently diagnosed at advanced stage disease and treatment includes high dose chemotherapy and surgery. Despite the use of aggressive therapy survival rates are poor and children that survive their disease experience long term side effects from their treatment, highlighting the need for effective and less toxic therapies. Catechin is a natural polyphenol with anti-cancer properties and limited side effects, however its mechanism of action is unknown. Here we report that Dextran-Catechin, a conjugated form of catechin that increases serum stability, is preferentially and markedly active against neuroblastoma cells having high levels of intracellular copper, without affecting non-malignant cells. Copper transporter 1 (CTR1) is the main transporter of copper in mammalian cells and it is upregulated in neuroblastoma. Functional studies showed that depletion of CTR1 expression reduced intracellular copper levels and led to a decrease in neuroblastoma cell sensitivity to Dextran-Catechin, implicating copper in the activity of this compound. Mechanistically, Dextran-Catechin was found to react with copper, inducing oxidative stress and decreasing glutathione levels, an intracellular antioxidant and regulator of copper homeostasis. In vivo, Dextran-Catechin significantly attenuated tumour growth in human xenograft and syngeneic models of neuroblastoma. Thus, Dextran-Catechin targets copper, inhibits tumour growth, and may be valuable in the treatment of aggressive neuroblastoma and other cancers dependent on copper for their growth. PMID:27374085

  2. Tumorigenic and Antiproliferative Properties of the TALE-Transcription Factors MEIS2D and MEIS2A in Neuroblastoma.

    Science.gov (United States)

    Groß, Anja; Schulz, Catrine; Kolb, Jasmine; Koster, Jan; Wehner, Sibylle; Czaplinski, Sebastian; Khilan, Abdulghani; Rohrer, Hermann; Harter, Patrick N; Klingebiel, Thomas; Langer, Julian D; Geerts, Dirk; Schulte, Dorothea

    2018-04-15

    Neuroblastoma is one of only a few human cancers that can spontaneously regress even after extensive dissemination, a poorly understood phenomenon that occurs in as many as 10% of patients. In this study, we identify the TALE-homeodomain transcription factor MEIS2 as a key contributor to this phenomenon. We identified MEIS2 as a MYCN-independent factor in neuroblastoma and showed that in this setting the alternatively spliced isoforms MEIS2A and MEIS2D exert antagonistic functions. Specifically, expression of MEIS2A was low in aggressive stage 4 neuroblastoma but high in spontaneously regressing stage 4S neuroblastoma. Moderate elevation of MEIS2A expression reduced proliferation of MYCN -amplified human neuroblastoma cells, induced neuronal differentiation and impaired the ability of these cells to form tumors in mice. In contrast, MEIS2A silencing or MEIS2D upregulation enhanced the aggressiveness of the tumor phenotype. Mechanistically, MEIS2A uncoupled a negative feedback loop that restricts accumulation of cellular retinoic acid, an effective agent in neuroblastoma treatment. Overall, our results illuminate the basis for spontaneous regression in neuroblastoma and identify an MEIS2A-specific signaling network as a potential therapeutic target in this common pediatric malignancy. Significance: This study illuminates the basis for spontaneous regressions that can occur in a common pediatric tumor, with implications for the development of new treatment strategies. Cancer Res; 78(8); 1935-47. ©2018 AACR . ©2018 American Association for Cancer Research.

  3. Advances in the translational genomics of neuroblastoma

    Science.gov (United States)

    Bosse, Kristopher R.; Maris, John M.

    2015-01-01

    Neuroblastoma is an embryonal malignancy that commonly affects young children and is remarkably heterogenous in its malignant potential. Recently, the genetic basis of neuroblastoma has come into focus, which has catalyzed not only a more comprehensive understanding of neuroblastoma tumorigenesis, but has also revealed novel oncogenic vulnerabilities that are being leveraged therapeutically. Neuroblastoma is a model pediatric solid tumor in its use of recurrent genomic alterations, such as high-level MYCN amplification, for risk stratification. Given the relative paucity of recurrent activating somatic point mutations or gene fusions in primary neuroblastoma tumors studied at initial diagnosis, innovative treatment approaches beyond small molecules targeting mutated or dysregulated kinases will be required moving forward to achieve noticeable improvements in overall patient survival. However, the clonally acquired, oncogenic aberrations in relapsed neuroblastomas are currently being defined and may offer an opportunity to improve patient outcomes with molecularly targeted therapy directed towards aberrantly regulated pathways in relapsed disease. This review will summarize the current state of knowledge of neuroblastoma genetics and genomics, highlighting the improved prognostication and potential therapeutic opportunities that have arisen from recent advances in understanding germline predisposition, recurrent segmental chromosomal alterations, somatic point mutations and translocations, and clonal evolution in relapsed neuroblastoma. PMID:26539795

  4. CT diagnosis of neuroblastoma in childhood

    International Nuclear Information System (INIS)

    Li Xin; Zhang Liqun; Yang Zhiyong

    1997-01-01

    Purpose: To evaluate CT in the diagnosis of neuroblastoma in childhood. Materials and methods: Analysis of CT manifestations in 26 cases proved by operation and pathology, including neuroblastoma 21 cases, ganglioneuroblastoma 5 cases. Thorax 7 cases (27%), adrenal gland 16 cases (62%), abdomen-pelvis paravertebral sympathetic chain 3 cases (11%). Bolus injection of contrast medium was given in all cases. Results: Adrenal gland and posterior superior mediastinum were the most common sites for neuroblastoma. 73% of neuroblastoma had calcifications. Neuroblastoma was more commonly calcified than ganglioneuroblastoma. Metastases were also calcified. Degree of enhancement was associated with the type of neuroblastoma. Tumor extension into the spinal canal was seen in 2 cases. 43% neuroblastoma of adrenal directly invaded the kidney in 7 cases. Right lobe of liver was involved in 3 cases, metastases to liver in 1 case, enlargement of lymph nodes 19 cases. Approximately 68% of patients showed increase of urinary Vanilly-mandelic acid (VMA). Preoperative diagnostic accuracy was 92%. Conclusion: CT is recognized as a useful technique for the diagnosis of neuroblastoma. The site of predilection, calcification, lymph node metastases and VMA increase in urine or serum are important basis for diagnosis

  5. Neuroblastoma : Crossing borders in targeted therapy

    NARCIS (Netherlands)

    Bate-Eya, L.T.

    2017-01-01

    Neuroblastoma is the most commonly diagnosed childhood cancer and accounts for about 15% of all pediatric malignancies deaths. Thus far, the treatment options of neuroblastoma is limited with only a 30-40% long term survival rate in high-risk patients. In this thesis, we describe the isolation and

  6. POSTTREATMENT NEUROBLASTOMA MATURATION TO GANGLIONIC CELL TUMOR

    Directory of Open Access Journals (Sweden)

    M. V. Ryzhova

    2012-01-01

    Full Text Available Tumor cells can differentiate into more mature forms in undifferentiated or poorly differentiated tumors, such as medulloblastomas with increased nodularity, as well as neuroblastomas. The authors describe 2 cases of neuroblastoma maturation into ganglioneuroblastoma 5 months after chemotherapy in a 2-year-old girl and 3 years after radiotherapy in a 16-year-old girl.

  7. Congenital bilateral neuroblastoma (stage IV-S): case report

    International Nuclear Information System (INIS)

    Lee, Jeong Hee; Lee, Hee Jung; Woo, Seong Ku; Lee, Sang Rak; Kim, Heung Sik

    2002-01-01

    Congenital neonatal neuroblastoma is not uncommon but bilateral adrenal neuroblastoma is rare, accounting for about ten percent of neuroblastomas in children. We report the US the MR findings of a stage IV-S congenital bilateral neuroblastoma occurring in a one-day-old neonate

  8. Suppression of the ATP-binding cassette transporter ABCC4 impairs neuroblastoma tumour growth and sensitises to irinotecan in vivo.

    Science.gov (United States)

    Murray, Jayne; Valli, Emanuele; Yu, Denise M T; Truong, Alan M; Gifford, Andrew J; Eden, Georgina L; Gamble, Laura D; Hanssen, Kimberley M; Flemming, Claudia L; Tan, Alvin; Tivnan, Amanda; Allan, Sophie; Saletta, Federica; Cheung, Leanna; Ruhle, Michelle; Schuetz, John D; Henderson, Michelle J; Byrne, Jennifer A; Norris, Murray D; Haber, Michelle; Fletcher, Jamie I

    2017-09-01

    The ATP-binding cassette transporter ABCC4 (multidrug resistance protein 4, MRP4) mRNA level is a strong predictor of poor clinical outcome in neuroblastoma which may relate to its export of endogenous signalling molecules and chemotherapeutic agents. We sought to determine whether ABCC4 contributes to development, growth and drug response in neuroblastoma in vivo. In neuroblastoma patients, high ABCC4 protein levels were associated with reduced overall survival. Inducible knockdown of ABCC4 strongly inhibited the growth of human neuroblastoma cells in vitro and impaired the growth of neuroblastoma xenografts. Loss of Abcc4 in the Th-MYCN transgenic neuroblastoma mouse model did not impact tumour formation; however, Abcc4-null neuroblastomas were strongly sensitised to the ABCC4 substrate drug irinotecan. Our findings demonstrate a role for ABCC4 in neuroblastoma cell proliferation and chemoresistance and provide rationale for a strategy where inhibition of ABCC4 should both attenuate the growth of neuroblastoma and sensitise tumours to ABCC4 chemotherapeutic substrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Sublethal irradiation promotes invasiveness of neuroblastoma cells

    International Nuclear Information System (INIS)

    Schweigerer, Lothar; Rave-Fraenk, Margret; Schmidberger, Heinz; Hecht, Monica

    2005-01-01

    Neuroblastoma is the most frequent extracranial solid tumour of childhood. Despite multiple clinical efforts, clinical outcome has remained poor. Neuroblastoma is considered to be radiosensitive, but some clinical studies including the German trial NB90 failed to show a clinical benefit of radiation therapy. The mechanisms underlying this apparent discrepancy are still unclear. We have therefore investigated the effects of radiation on neuroblastoma cell behaviour in vitro. We show that sublethal doses of irradiation up-regulated the expression of the hepatocyte growth factor (HGF) and its receptor c-Met in some neuroblastoma cell lines. The increase in HGF/c-Met expression was correlated with enhanced invasiveness and activation of proteases degrading the extracellular matrix. Thus, irradiation at sublethal doses may promote the metastatic dissemination of neuroblastoma cells through activating the HGF/c-Met pathway and triggering matrix degradation

  10. Neurotoxicity induced by dexamethasone in the human neuroblastoma SH-SY5Y cell line can be prevented by folic acid.

    Science.gov (United States)

    Budni, J; Romero, A; Molz, S; Martín-de-Saavedra, M D; Egea, J; Del Barrio, L; Tasca, C I; Rodrigues, A L S; López, M G

    2011-09-08

    Folic acid (folate) is a vitamin of the B-complex group that is essential for cell replication. Folate is a major determinant of one-carbon metabolism, in which S-adenosylmethionine donates methyl groups that are crucial for neurological function. Many roles for folic acid have been reported, including neuroprotective and antidepressant properties. On the other hand, increased concentrations of corticoids have proven neurotoxic effects and hypersecretion of glucocorticoids has been linked to different mood disorders. The purpose of this study was to investigate the potential protective effect of folic acid on dexamethasone-induced cellular death in SH-SY5Y neuroblastoma cell line and the possible intracellular signaling pathway involved in such effect. Exposure to 1 mM dexamethasone for 48 h caused a significant reduction of cell viability measured as 3-[4,5 dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) reduction. Exposure of SH-SY5Y cells for 72 h to increasing concentrations of folate (1-300 μM) was not cytotoxic. However, pretreatment with folate (10-300 μM) reduced dexamethasone-induced toxicity in a significant manner. To explore the putative intracellular signaling pathways implicated in the protective effect of folate we used different protein kinase inhibitors. The protective effect of folic acid on dexamethasone-induced neurotoxicity was reversed by the phosphatidylinositol-3 kinase/Akt (PI3K/Akt, LY294002), Ca²⁺/Calmodulin-dependent protein kinase II (CaMKII, KN-93), and protein kinase A (PKA, H-89) inhibitors, but not the mitogen-activated protein/extracellular signal-regulated kinase (MEK1/2, PD98059) and protein kinase C (PKC, chelerythrine) inhibitors. In conclusion, the results of this study show that folic acid can protect against dexamethasone-induced neurotoxicity and its protective mechanism is related to a signaling pathway that involves PI3K/Akt, CaMKII, and PKA. Copyright © 2011. Published by Elsevier Ltd.

  11. Selection of optimal therapy for neuroblastoma: a study of the immunomodulatory effects of surgery and irradiation in the murine C1300 neuroblastoma model

    International Nuclear Information System (INIS)

    Topalian, S.L.; Ziegler, M.M.

    1987-01-01

    Human neuroblastoma is an immunogenic tumor for which therapy directed in an immunologic context may offer some advantage over conventional treatment. This study examines the immunomodulatory effects of surgery and irradiation in the murine C1300 neuroblastoma model. In vivo studies of primary tumor growth characteristics after treatment demonstrated no superiority of either therapeutic modality in control of local tumor or prolongation of host survival. However, irradiated hosts showed an increased ability to reject a secondary tumor challenge, compared to their surgical counterparts. That this phenomenon may be immune-related is suggested by in vitro studies of T lymphocyte function utilizing mixed lymphocyte-tumor cell cultures and PHA lymphoblastogenesis

  12. Intestinal Lymphangiectasia Secondary to Neuroblastoma

    Directory of Open Access Journals (Sweden)

    RM Reifen

    1994-01-01

    Full Text Available An eight month-old infant presented with a 10-day history of vomiting and diarrhea, and a one-week history of swelling of the lower extremities. Laboratory evaluations revealed hypoproteinemia and lymphocytopenia due to protein-losing enteropathy. Peroral small bowel biopsy showed intestinal lymphangiectasia. Subsequent onset of unexplained ecchymosis and obstructive jaundice resulted in additional studies which revealed an omental neuroblastoma as the underlying etiology of the infant’s symptoms. This report emphasizes the importance of considering secondary, obstructive causes for lymphangiectasia and protein-losing enteropathy.

  13. MIBG-treatment in neuroblastoma

    International Nuclear Information System (INIS)

    Treuner, J.; Gerein, V.; Klingebiel, T.; Schwabe, D.; Feine, U; Happ, J.; Niethammer, D.; Maul, F.; Dopfer, R.; Kornhuber, B.; Berthold, F.; Jurgens, H.; Hor, G.

    1988-01-01

    This paper reports the results of 27 children with neuroblastoma treated with 131 I-Metaiodobenzylguanidine (MIBG). They were either refractory to conventional therapy or experienced relapse after initially successful treatment. 7 children revealed stage IV and 20 stage III at the beginning of MIBG-treatment. MIBG was administered by infusion lasting from 30 min to 30 hrs. In most children the dose was split into two portions each infused over a period of 4 hrs with a 24 hrs interval between. Courses were repeated up to 6 times and maximum activity given to one patient cumulatively was 38,221 MBq. 24 patients were valuable for analysis of results

  14. NMR metabolomics of human lung tumours reveals distinct metabolic signatures for adenocarcinoma and squamous cell carcinoma

    OpenAIRE

    Rocha, CM; Barros, AS; Goodfellow, BJ; Carreira, IM; Gomes, AA; Sousa, V; Bernardo, J; Carvalho, L; Gil, AM; Duarte, IF

    2015-01-01

    Lung tumour subtyping, particularly the distinction between adenocarcinoma (AdC) and squamous cell carcinoma (SqCC), is a critical diagnostic requirement. In this work, the metabolic signatures of lung carcinomas were investigated through (1)H NMR metabolomics, with a view to provide additional criteria for improved diagnosis and treatment planning. High Resolution Magic Angle Spinning Nuclear Magnetic Resonance (NMR) spectroscopy was used to analyse matched tumour and adjacent control tissue...

  15. Typical skeletal changes due to metastasising neuroblastomas

    International Nuclear Information System (INIS)

    Eggerath, A.; Persigehl, M.; Mertens, R.; Technische Hochschule Aachen

    1983-01-01

    Compared with other solid tumours in childhood, neuroblastomas show a marked tendency to metastasise to the skeleton. The differentiation of these lesions from inflammatory and other malignant bone lesions in this age group is often difficult. The radiological findings in ten patients with metastasing and histologically confirmed neuroblastomas have been reviewed and the typical appearances in the skeleton are described. The most important features in the differential diagnosies are discussed and the significance of bone changes in the diagnosis of neuroblastoma have been evaluated. (orig.) [de

  16. An Involvement of PI3-K/Akt Activation and Inhibition of AIF Translocation in Neuroprotective Effects of Undecylenic Acid (UDA) Against Pro-Apoptotic Factors-Induced Cell Death in Human Neuroblastoma SH-SY5Y Cells.

    Science.gov (United States)

    Jantas, Danuta; Piotrowski, Marek; Lason, Wladyslaw

    2015-12-01

    Undecylenic acid (UDA), a naturally occurring 11-carbon unsaturated fatty acid, has been used for several years as an economical antifungal agent and a nutritional supplement. Recently, the potential usefulness of UDA as a neuroprotective drug has been suggested based on the ability of this agent to inhibit μ-calpain activity. In order to verify neuroprotective potential of UDA, we tested protective efficacy of this compound against cell damage evoked by pro-apoptotic factors (staurosporine and doxorubicin) and oxidative stress (hydrogen peroxide) in human neuroblastoma SH-SY5Y cells. We showed that UDA partially protected SH-SY5Y cells against the staurosporine- and doxorubicin-evoked cell death; however, this effect was not connected with its influence on caspase-3 activity. UDA decreased the St-induced changes in mitochondrial and cytosolic AIF level, whereas in Dox-model it affected only the cytosolic AIF content. Moreover, UDA (1-40 μM) decreased the hydrogen peroxide-induced cell damage which was connected with attenuation of hydrogen peroxide-mediated necrotic (PI staining, ADP/ATP ratio) and apoptotic (mitochondrial membrane potential, caspase-3 activation, AIF translocation) changes. Finally, we demonstrated that an inhibitor of PI3-K/Akt (LY294002) but not MAPK/ERK1/2 (U0126) pathway blocked the protection mediated by UDA in all tested models of SH-SY5Y cell injury. These in vitro data point to UDA as potentially effective neuroprotectant the utility of which should be further validated in animal studies. © 2015 Wiley Periodicals, Inc.

  17. SIRB, sans iron oxide rhodamine B, a novel cross-linked dextran nanoparticle, labels human neuroprogenitor and SH-SY5Y neuroblastoma cells and serves as a USPIO cell labeling control.

    Science.gov (United States)

    Shen, Wei-Bin; Vaccaro, Dennis E; Fishman, Paul S; Groman, Ernest V; Yarowsky, Paul

    2016-05-01

    This is the first report of the synthesis of a new nanoparticle, sans iron oxide rhodamine B (SIRB), an example of a new class of nanoparticles. SIRB is designed to provide all of the cell labeling properties of the ultrasmall superparamagnetic iron oxide (USPIO) nanoparticle Molday ION Rhodamine B (MIRB) without containing the iron oxide core. MIRB was developed to label cells and allow them to be tracked by MRI or to be manipulated by magnetic gradients. SIRB possesses a similar size, charge and cross-linked dextran coating as MIRB. Of great interest is understanding the biological and physiological changes in cells after they are labeled with a USPIO. Whether these effects are due to the iron oxide buried within the nanoparticle or to the surface coating surrounding the iron oxide core has not been considered previously. MIRB and SIRB represent an ideal pairing of nanoparticles to identify nanoparticle anatomy responsible for post-labeling cytotoxicity. Here we report the effects of SIRB labeling on the SH-SY5Y neuroblastoma cell line and primary human neuroprogenitor cells (hNPCs). These effects are contrasted with the effects of labeling SH-SY5Y cells and hNPCs with MIRB. We find that SIRB labeling, like MIRB labeling, (i) occurs without the use of transfection reagents, (ii) is packaged within lysosomes distributed within cell cytoplasm, (iii) is retained within cells with no loss of label after cell storage, and (iv) does not alter cellular viability or proliferation, and (v) SIRB labeled hNPCs differentiate normally into neurons or astrocytes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Neuroblastoma Treatment (PDQ®)—Patient Version

    Science.gov (United States)

    Neuroblastoma treatment may include surgery, observation, chemotherapy, radiation therapy, radioactive iodine, and high-dose chemotherapy with stem cell transplant and targeted therapy. Treatment also depends on risk category. Learn more in this expert-reviewed summary.

  19. Narcolepsy/Cataplexy and Occult Neuroblastoma

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2013-11-01

    Full Text Available Investigators at the University of Chicago and Northwestern University, Chicago, IL; University Hospital Southampton, UK; and Kiev Paediatric Hospital, Ukraine, report three children with narcolepsy and cataplexy subsequently diagnosed with neuroblastoma.

  20. Allelic variants of CAMTA1 and FLJ10737 within a commonly deleted region at 1p36 in neuroblastoma

    DEFF Research Database (Denmark)

    Henrich, Kai-Oliver; Claas, Andreas; Praml, Christian

    2007-01-01

    Deletion of a distal portion of 1p is seen in a wide range of human malignancies, including neuroblastoma. Here, a 1p36.3 commonly deleted region of 216 kb has been defined encompassing two genes, CAMTA1 and FLJ10737. Low expression of CAMTA1 has been recently shown to be an independent predictor...... of poor outcome in neuroblastoma patients. The present study surveys CAMTA1 and FLJ10737 for genetic alterations by fluorescence-based single strand conformation polymorphism (SSCP) using a panel of DNAs from 88 neuroblastomas, their matching blood samples and 97 unaffected individuals. Nucleotide...... variants encoding amino acid substitutions were found in both genes. One CAMTA1 variant (T1336I) was not detected in 97 unaffected individuals, another (N1177K) resides in a conserved domain of the CAMTA1 protein and was found hemizygous in six neuroblastomas. We found no evidence for somatic mutations...

  1. Evidence of chromaffin oxygen sensing in neuroblastoma.

    Science.gov (United States)

    Hedborg, F; Franklin, G; Norrman, J; Grimelius, L; Wassberg, E; Hero, B; Schilling, F; Berthold, F; Harms, D; Sandstedt, B

    2001-01-01

    With the aid of IGF2 and VEGF in situ hybridization; tyrosine hydroxylase, chromogranin A, and Ki67 immunohistochemistry; and TUNEL staining applied to a large series of clinical neuroblastomas and to an animal model, we show here that stroma-poor neuroblastomas show evidence of chromaffin differentiation similar to that of type 1 small intensely fluorescent (SIF) cells and that this occurs in a vascular-dependent fashion, indicating a role for local tumor hypoxia in the differentiation process.

  2. Multidisciplinary management of cervical neuroblastoma in infants.

    Science.gov (United States)

    Csanády, Miklós; Vass, Gábor; Bartyik, Katalin; Majoros, Valéria; Rovó, László

    2014-12-01

    Neuroblastoma is the most common malignancy in infancy, it is a histologically and genetically heterogeneous tumor, the therapy and outcome of which is influenced by age, histological variant and genetic background as well. We present two consecutive infant patients with neuroblastoma of the neck discussing the etiology, the diagnosis and the surgical and oncological treatment of the tumor, which was observed in a relatively rare manifestation in the head-neck region. Our first patient (age: 5.5 months) was MYCN (v-myc myelocytomatosis viral related oncogene, neuroblastoma derived) negative, INSS (International Neuroblastoma Staging System) Stage 3 and INRGSS (International Neuroblastoma Risk Group Staging System) Stage 3 because of the contralateral lymph node involvement while the complete gross resection of the primary tumor mass was feasible. The patient is tumor free after three years of follow-up. Our second patient (age: 5 months) was MYCN negative, INSS Stage 2 and INRGSS Stage 1, as both the primary tumor and the ipsilateral lymph nodes were totally removed via a modified radical neck dissection. The patient is tumor free after three years of follow-up. For MYCN negative patients, especially in early age, the prognosis of neuroblastoma is good, surgical resection and chemotherapy together is an adequate treatment protocol (as in our two patients). While MYCN-amplified patients require a combined and aggressive treatment with surgery, chemotherapy, radiotherapy, and immunotherapy to be able to obtain a favorable survival rate according to the literature. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Dog and human inflammatory bowel disease rely on overlapping yet distinct dysbiosis networks.

    Science.gov (United States)

    Vázquez-Baeza, Yoshiki; Hyde, Embriette R; Suchodolski, Jan S; Knight, Rob

    2016-10-03

    Inflammatory bowel disease (IBD) is an autoimmune condition that is difficult to diagnose, and animal models of this disease have questionable human relevance 1 . Here, we show that the dysbiosis network underlying IBD in dogs differs from that in humans, with some bacteria such as Fusobacterium switching roles between the two species (as Bacteroides fragilis switches roles between humans and mice) 2 . For example, a dysbiosis index trained on humans fails when applied to dogs, but a dog-specific dysbiosis index achieves high correlations with the overall dog microbial community diversity patterns. In addition, a random forest classifier trained on dog-specific samples achieves high discriminatory power, even when using stool samples rather than the mucosal biopsies required for high discriminatory power in humans 2 . These relationships were not detected in previously published dog IBD data sets due to their limited sample size and statistical power 3 . Taken together, these results reveal the need to train host-specific dysbiosis networks and point the way towards a generalized understanding of IBD across different mammalian models.

  4. Distinctive Roles of Canonical and Noncanonical Wnt Signaling in Human Embryonic Cardiomyocyte Development

    Directory of Open Access Journals (Sweden)

    Silvia Mazzotta

    2016-10-01

    Full Text Available Wnt signaling is a key regulator of vertebrate heart development; however, specific roles for human cardiomyocyte development remain uncertain. Here we use human embryonic stem cells (hESCs to analyze systematically in human cardiomyocyte development the expression of endogenous Wnt signaling components, monitor pathway activity, and dissect stage-specific requirements for canonical and noncanonical Wnt signaling mechanisms using small-molecule inhibitors. Our analysis suggests that WNT3 and WNT8A, via FZD7 and canonical signaling, regulate BRACHYURY expression and mesoderm induction; that WNT5A/5B, via ROR2 and noncanonical signaling, regulate MESP1 expression and cardiovascular development; and that later in development WNT2, WNT5A/5B, and WNT11, via FZD4 and FZD6, regulate functional cardiomyocyte differentiation via noncanonical Wnt signaling. Our findings confirm in human development previously proposed roles for canonical Wnt signaling in sequential stages of vertebrate cardiomyogenesis, and identify more precise roles for noncanonical signaling and for individual Wnt signal and Wnt receptor genes in human cardiomyocyte development.

  5. Adiponectin and Its Receptors Are Differentially Expressed in Human Tissues and Cell Lines of Distinct Origin

    Directory of Open Access Journals (Sweden)

    Simon Jasinski-Bergner

    2017-12-01

    Full Text Available Background: Adiponectin is secreted by adipose tissue and exerts high abundance and an anti-inflammatory potential. However, only little information exists about the expression profiles of adiponectin and its recently identified receptor CDH13 in non-tumorous human tissues and their association to clinical parameters. Methods: The expression levels of adiponectin and CDH13 were analyzed in heart, liver, kidney, spleen, skin, blood vessels, peripheral nerve and bone marrow of 21 human body donors, in 12 human cell lines, and in purified immune effector cell populations of healthy blood donors by immunohistochemistry, Western-blot, and semi-quantitative PCR. The obtained results were then correlated to clinical parameters, including age, sex and known diseases like cardiovascular and renal diseases. Results: Adiponectin expression in renal corpuscles was significantly higher in humans with known renal diseases. A coordinated expression of adiponectin and CDH13 was observed in the myocard. High levels of adiponectin could be detected in the bone marrow, in certain lymphoid tumor cell lines and in purified immune effector cell populations of healthy donors, in particular in cytotoxic T cells. Conclusion: For the first time, the expression profiles of adiponectin and CDH13 are analyzed in many human tissues in correlation to each other and to clinical parameters.

  6. Distinct sets of locomotor modules control the speed and modes of human locomotion

    Science.gov (United States)

    Yokoyama, Hikaru; Ogawa, Tetsuya; Kawashima, Noritaka; Shinya, Masahiro; Nakazawa, Kimitaka

    2016-01-01

    Although recent vertebrate studies have revealed that different spinal networks are recruited in locomotor mode- and speed-dependent manners, it is unknown whether humans share similar neural mechanisms. Here, we tested whether speed- and mode-dependence in the recruitment of human locomotor networks exists or not by statistically extracting locomotor networks. From electromyographic activity during walking and running over a wide speed range, locomotor modules generating basic patterns of muscle activities were extracted using non-negative matrix factorization. The results showed that the number of modules changed depending on the modes and speeds. Different combinations of modules were extracted during walking and running, and at different speeds even during the same locomotor mode. These results strongly suggest that, in humans, different spinal locomotor networks are recruited while walking and running, and even in the same locomotor mode different networks are probably recruited at different speeds. PMID:27805015

  7. From stem cells to human development: a distinctly human perspective on early embryology, cellular differentiation and translational research.

    Science.gov (United States)

    Craft, April M; Johnson, Matthew

    2017-01-01

    Over 100 scientists with common interests in human development, disease and regeneration gathered in late September 2016 for The Company of Biologists' second 'From Stem Cells to Human Development' meeting held in historic Southbridge. In this Meeting Review, we highlight some of the exciting new findings that were presented, and discuss emerging themes and convergences in human development and disease that arose during these discussions. © 2017. Published by The Company of Biologists Ltd.

  8. Differentiated neuroprogenitor cells incubated with human or canine adenovirus, or lentiviral vectors have distinct transcriptome profiles.

    Directory of Open Access Journals (Sweden)

    Stefania Piersanti

    Full Text Available Several studies have demonstrated the potential for vector-mediated gene transfer to the brain. Helper-dependent (HD human (HAd and canine (CAV-2 adenovirus, and VSV-G-pseudotyped self-inactivating HIV-1 vectors (LV effectively transduce human brain cells and their toxicity has been partly analysed. However, their effect on the brain homeostasis is far from fully defined, especially because of the complexity of the central nervous system (CNS. With the goal of dissecting the toxicogenomic signatures of the three vectors for human neurons, we transduced a bona fide human neuronal system with HD-HAd, HD-CAV-2 and LV. We analysed the transcriptional response of more than 47,000 transcripts using gene chips. Chip data showed that HD-CAV-2 and LV vectors activated the innate arm of the immune response, including Toll-like receptors and hyaluronan circuits. LV vector also induced an IFN response. Moreover, HD-CAV-2 and LV vectors affected DNA damage pathways--but in opposite directions--suggesting a differential response of the p53 and ATM pathways to the vector genomes. As a general response to the vectors, human neurons activated pro-survival genes and neuron morphogenesis, presumably with the goal of re-establishing homeostasis. These data are complementary to in vivo studies on brain vector toxicity and allow a better understanding of the impact of viral vectors on human neurons, and mechanistic approaches to improve the therapeutic impact of brain-directed gene transfer.

  9. Two distinct genes for ADP/ATP translocase are expressed at the mRNA level in adult human liver

    International Nuclear Information System (INIS)

    Houldsworth, J.; Attardi, G.

    1988-01-01

    Several clones hybridizing with a bovine ADP/ATP translocase cDNA were isolated from an adult human liver cDNA library in the vector pEX1. DNA sequence analysis revealed that these clones encode two distinct forms of translocase. In particular, two clones specifying the COOH-end-proximal five-sixths of the protein exhibit a 9% amino acid sequence divergence and totally dissimilar 3' untranslated regions. One of these cDNAs is nearly identical in sequence to an ADP/ATP translocase clone (hp2F1) recently isolated from a human fibroblast cDNA library with three amino acid changes and a few differences in the 3' untranslated region. Another clone isolated from the pEX1 library contains a reading frame encoding the remaining, NH 2 -end-proximal, 37 amino acids of the translocase. This sequence differs significantly (14% amino acid sequence divergence) from the corresponding segment of hp2F1, and the 5' untranslated regions of the two clones are totally dissimilar. RNA transfer hybridization experiments utilizing the clones isolated from the pEX1 library revealed the presence in HeLa cells of three distinct mRNA species. The pattern of hybridization and the sizes of these mRNAs suggest a greater complexity of organization and expression of the ADP/ATP translocase genes in human cells than indicated by the analysis of the cDNA clones

  10. Long-term control of olfactory neuroblastoma in a dog treated with surgery and radiation therapy.

    Science.gov (United States)

    Gumpel, E; Moore, A S; Simpson, D J; Hoffmann, K L; Taylor, D P

    2017-07-01

    Olfactory neuroblastoma is a rare malignancy of the nasal cavity in dogs that is thought to arise from specialised sensory neuroendocrine olfactory cells derived from the neural crest. An 8-year-old dog was presented for reclusiveness and pacing. On CT and MRI, a contract-enhancing mass was disclosed within the rostral fossa, extending caudally from the cribriform plate into the left nasal sinus. Surgical excision was performed and the diagnosis was histological grade III (Hyams grading scheme) olfactory neuroblastoma. Based on human CT criteria this was high stage (modified Kadish stage C). Surgical excision was incomplete and was followed by curative-intent radiation therapy using a linear accelerator to a total dose of 48 Gy. The dog survived 20 months after diagnosis. Although olfactory neuroblastoma is a rare tumour in dogs, aggressive local therapy may allow for prolonged survival, even when the tumour is advanced. © 2017 Australian Veterinary Association.

  11. Association of telomerase activity with radio- and chemosensitivity of neuroblastomas

    Directory of Open Access Journals (Sweden)

    Willich Normann

    2010-07-01

    Full Text Available Abstract Background Telomerase activity compensates shortening of telomeres during cell division and enables cancer cells to escape senescent processes. It is also supposed, that telomerase is associated with radio- and chemoresistance. In the here described study we systematically investigated the influence of telomerase activity (TA and telomere length on the outcome of radio- and chemotherapy in neuroblastoma. Methods We studied the effects on dominant negative (DN mutant, wild type (WT of the telomerase catalytic unit (hTERT using neuroblastoma cell lines. The cells were irradiated with 60Co and treated with doxorubicin, etoposide, cisplatin and ifosfamide, respectively. Viability was determined by MTS/MTT-test and the GI50 was calculated. Telomere length was measured by southernblot analysis and TA by Trap-Assay. Results Compared to the hTERT expressing cells the dominant negative cells showed increased radiosensitivity with decreased telomere length. Independent of telomere length, telomerase negative cells are significantly more sensitive to irradiation. The effect of TA knock-down or overexpression on chemosensitivity were dependent on TA, the anticancer drug, and the chemosensitivity of the maternal cell line. Conclusions Our results supported the concept of telomerase inhibition as an antiproliferative treatment approach in neuroblastomas. Telomerase inhibition increases the outcome of radiotherapy while in combination with chemotherapy the outcome depends on drug- and cell line and can be additive/synergistic or antagonistic. High telomerase activity is one distinct cancer stem cell feature and the here described cellular constructs in combination with stem cell markers like CD133, Aldehyddehydrogenase-1 (ALDH-1 or Side population (SP may help to investigate the impact of telomerase activity on cancer stem cell survival under therapy.

  12. Immunohistochemical evaluation of molecular radiotherapy target expression in neuroblastoma tissue

    Energy Technology Data Exchange (ETDEWEB)

    Gains, Jennifer E.; Gaze, Mark N. [University College London Hospitals NHS Foundation Trust, Department of Oncology, London (United Kingdom); Sebire, Neil J. [Great Ormond Street Hospital for Children NHS Foundation Trust, Department of Pathology, London (United Kingdom); Moroz, Veronica; Wheatley, Keith [University of Birmingham, Cancer Research UK Clinical Trials Unit, Birmingham (United Kingdom)

    2018-03-15

    Neuroblastoma may be treated with molecular radiotherapy, {sup 131}I meta-Iodobenzylguanidine and {sup 177}Lu Lutetium DOTATATE, directed at distinct molecular targets: Noradrenaline Transporter Molecule (NAT) and Somatostatin Receptor (SSTR2), respectively. This study used immunohistochemistry to evaluate target expression in archival neuroblastoma tissue, to determine whether it might facilitate clinical use of molecular radiotherapy. Tissue bank samples of formalin fixed paraffin embedded neuroblastoma tissue from patients for whom clinical outcome data were available were sectioned and stained with haematoxylin and eosin, and monoclonal antibodies directed against NAT and SSTR2. Sections were examined blinded to clinical information and scored for the percentage and intensity of tumour cells stained. These data were analysed in conjunction with clinical data. Tissue from 75 patients was examined. Target expression scores varied widely between patients: NAT median 45%, inter-quartile range 25% - 65%; and SSTR2 median 55%, interquartile range 30% - 80%; and in some cases heterogeneity of expression between different parts of a tumour was observed. A weak positive correlation was observed between the expression scores of the different targets: correlation coefficient = 0.23, p = 0.05. MYCN amplified tumours had lower SSTR2 scores: mean difference 23% confidence interval 8% - 39%, p < 0.01. Survival did not differ by scores. As expression of both targets is variable and heterogeneous, imaging assessment of both may yield more clinical information than either alone. The clinical value of immunohistochemical assessment of target expression requires prospective evaluation. Variable target expression within a patient may contribute to treatment failure. (orig.)

  13. Distinct pattern of TP53 mutations in human immunodeficiency virus-related head and neck squamous cell carcinoma.

    Science.gov (United States)

    Gleber-Netto, Frederico O; Zhao, Mei; Trivedi, Sanchit; Wang, Jiping; Jasser, Samar; McDowell, Christina; Kadara, Humam; Zhang, Jiexin; Wang, Jing; William, William N; Lee, J Jack; Nguyen, Minh Ly; Pai, Sara I; Walline, Heather M; Shin, Dong M; Ferris, Robert L; Carey, Thomas E; Myers, Jeffrey N; Pickering, Curtis R

    2018-01-01

    Human immunodeficiency virus-infected individuals (HIVIIs) have a higher incidence of head and neck squamous cell carcinoma (HNSCC), and clinical and histopathological differences have been observed in their tumors in comparison with those of HNSCC patients without a human immunodeficiency virus (HIV) infection. The reasons for these differences are not clear, and molecular differences between HIV-related HNSCC and non-HIV-related HNSCC may exist. This study compared the mutational patterns of HIV-related HNSCC and non-HIV-related HNSCC. The DNA of 20 samples of HIV-related HNSCCs and 32 samples of non-HIV-related HNSCCs was sequenced. DNA libraries covering exons of 18 genes frequently mutated in HNSCC (AJUBA, CASP8, CCND1, CDKN2A, EGFR, FAT1, FBXW7, HLA-A, HRAS, KEAP1, NFE2L2, NOTCH1, NOTCH2, NSD1, PIK3CA, TGFBR2, TP53, and TP63) were prepared and sequenced on an Ion Personal Genome Machine sequencer. DNA sequencing data were analyzed with Ion Reporter software. The human papillomavirus (HPV) status of the tumor samples was assessed with in situ hybridization, the MassARRAY HPV multiplex polymerase chain reaction assay, and p16 immunostaining. Mutation calls were compared among the studied groups. HIV-related HNSCC revealed a distinct pattern of mutations in comparison with non-HIV-related HNSCC. TP53 mutation frequencies were significantly lower in HIV-related HNSCC. Mutations in HIV+ patients tended to be TpC>T nucleotide changes for all mutated genes but especially for TP53. HNSCC in HIVIIs presents a distinct pattern of genetic mutations, particularly in the TP53 gene. HIV-related HNSCC may have a distinct biology, and an effect of the HIV virus on the pathogenesis of these tumors should not be ruled out. Cancer 2018;124:84-94. © 2017 American Cancer Society. © 2017 American Cancer Society.

  14. Distinct olfactory cross-modal effects on the human motor system.

    Directory of Open Access Journals (Sweden)

    Simone Rossi

    Full Text Available BACKGROUND: Converging evidence indicates that action observation and action-related sounds activate cross-modally the human motor system. Since olfaction, the most ancestral sense, may have behavioural consequences on human activities, we causally investigated by transcranial magnetic stimulation (TMS whether food odour could additionally facilitate the human motor system during the observation of grasping objects with alimentary valence, and the degree of specificity of these effects. METHODOLOGY/PRINCIPAL FINDINGS: In a repeated-measure block design, carried out on 24 healthy individuals participating to three different experiments, we show that sniffing alimentary odorants immediately increases the motor potentials evoked in hand muscles by TMS of the motor cortex. This effect was odorant-specific and was absent when subjects were presented with odorants including a potentially noxious trigeminal component. The smell-induced corticospinal facilitation of hand muscles during observation of grasping was an additive effect which superimposed to that induced by the mere observation of grasping actions for food or non-food objects. The odour-induced motor facilitation took place only in case of congruence between the sniffed odour and the observed grasped food, and specifically involved the muscle acting as prime mover for hand/fingers shaping in the observed action. CONCLUSIONS/SIGNIFICANCE: Complex olfactory cross-modal effects on the human corticospinal system are physiologically demonstrable. They are odorant-specific and, depending on the experimental context, muscle- and action-specific as well. This finding implies potential new diagnostic and rehabilitative applications.

  15. Innate Immune Responses of Bat and Human Cells to Filoviruses: Commonalities and Distinctions.

    Science.gov (United States)

    Kuzmin, Ivan V; Schwarz, Toni M; Ilinykh, Philipp A; Jordan, Ingo; Ksiazek, Thomas G; Sachidanandam, Ravi; Basler, Christopher F; Bukreyev, Alexander

    2017-04-15

    Marburg (MARV) and Ebola (EBOV) viruses are zoonotic pathogens that cause severe hemorrhagic fever in humans. The natural reservoir of MARV is the Egyptian rousette bat ( Rousettus aegyptiacus ); that of EBOV is unknown but believed to be another bat species. The Egyptian rousette develops subclinical productive infection with MARV but is refractory to EBOV. Interaction of filoviruses with hosts is greatly affected by the viral interferon (IFN)-inhibiting domains (IID). Our study was aimed at characterization of innate immune responses to filoviruses and the role of filovirus IID in bat and human cells. The study demonstrated that EBOV and MARV replicate to similar levels in all tested cell lines, indicating that permissiveness for EBOV at cell and organism levels do not necessarily correlate. Filoviruses, particularly MARV, induced a potent innate immune response in rousette cells, which was generally stronger than that in human cells. Both EBOV VP35 and VP24 IID were found to suppress the innate immune response in rousette cells, but only VP35 IID appeared to promote virus replication. Along with IFN-α and IFN-β, IFN-γ was demonstrated to control filovirus infection in bat cells but not in human cells, suggesting host species specificity of the antiviral effect. The antiviral effects of bat IFNs appeared not to correlate with induction of IFN-stimulated genes 54 and 56, which were detected in human cells ectopically expressing bat IFN-α and IFN-β. As bat IFN-γ induced the type I IFN pathway, its antiviral effect is likely to be partially induced via cross talk. IMPORTANCE Bats serve as reservoirs for multiple emerging viruses, including filoviruses, henipaviruses, lyssaviruses, and zoonotic coronaviruses. Although there is no evidence for symptomatic disease caused by either Marburg or Ebola viruses in bats, spillover of these viruses into human populations causes deadly outbreaks. The reason for the lack of symptomatic disease in bats infected with

  16. Genes expressed in specific areas of the human fetal cerebral cortex display distinct patterns of evolution.

    Directory of Open Access Journals (Sweden)

    Nelle Lambert

    2011-03-01

    Full Text Available The developmental mechanisms through which the cerebral cortex increased in size and complexity during primate evolution are essentially unknown. To uncover genetic networks active in the developing cerebral cortex, we combined three-dimensional reconstruction of human fetal brains at midgestation and whole genome expression profiling. This novel approach enabled transcriptional characterization of neurons from accurately defined cortical regions containing presumptive Broca and Wernicke language areas, as well as surrounding associative areas. We identified hundreds of genes displaying differential expression between the two regions, but no significant difference in gene expression between left and right hemispheres. Validation by qRTPCR and in situ hybridization confirmed the robustness of our approach and revealed novel patterns of area- and layer-specific expression throughout the developing cortex. Genes differentially expressed between cortical areas were significantly associated with fast-evolving non-coding sequences harboring human-specific substitutions that could lead to divergence in their repertoires of transcription factor binding sites. Strikingly, while some of these sequences were accelerated in the human lineage only, many others were accelerated in chimpanzee and/or mouse lineages, indicating that genes important for cortical development may be particularly prone to changes in transcriptional regulation across mammals. Genes differentially expressed between cortical regions were also enriched for transcriptional targets of FoxP2, a key gene for the acquisition of language abilities in humans. Our findings point to a subset of genes with a unique combination of cortical areal expression and evolutionary patterns, suggesting that they play important roles in the transcriptional network underlying human-specific neural traits.

  17. Distinct patterns of mitochondrial genome diversity in bonobos (Pan paniscus and humans

    Directory of Open Access Journals (Sweden)

    Zsurka Gábor

    2010-09-01

    Full Text Available Abstract Background We have analyzed the complete mitochondrial genomes of 22 Pan paniscus (bonobo, pygmy chimpanzee individuals to assess the detailed mitochondrial DNA (mtDNA phylogeny of this close relative of Homo sapiens. Results We identified three major clades among bonobos that separated approximately 540,000 years ago, as suggested by Bayesian analysis. Incidentally, we discovered that the current reference sequence for bonobo likely is a hybrid of the mitochondrial genomes of two distant individuals. When comparing spectra of polymorphic mtDNA sites in bonobos and humans, we observed two major differences: (i Of all 31 bonobo mtDNA homoplasies, i.e. nucleotide changes that occurred independently on separate branches of the phylogenetic tree, 13 were not homoplasic in humans. This indicates that at least a part of the unstable sites of the mitochondrial genome is species-specific and difficult to be explained on the basis of a mutational hotspot concept. (ii A comparison of the ratios of non-synonymous to synonymous changes (dN/dS among polymorphic positions in bonobos and in 4902 Homo sapiens mitochondrial genomes revealed a remarkable difference in the strength of purifying selection in the mitochondrial genes of the F0F1-ATPase complex. While in bonobos this complex showed a similar low value as complexes I and IV, human haplogroups displayed 2.2 to 7.6 times increased dN/dS ratios when compared to bonobos. Conclusions Some variants of mitochondrially encoded subunits of the ATPase complex in humans very likely decrease the efficiency of energy conversion leading to production of extra heat. Thus, we hypothesize that the species-specific release of evolutionary constraints for the mitochondrial genes of the proton-translocating ATPase is a consequence of altered heat homeostasis in modern humans.

  18. Dual Transcriptome Profiling of Leishmania-Infected Human Macrophages Reveals Distinct Reprogramming Signatures.

    Science.gov (United States)

    Fernandes, Maria Cecilia; Dillon, Laura A L; Belew, Ashton Trey; Bravo, Hector Corrada; Mosser, David M; El-Sayed, Najib M

    2016-05-10

    Macrophages are mononuclear phagocytes that constitute a first line of defense against pathogens. While lethal to many microbes, they are the primary host cells of Leishmania spp. parasites, the obligate intracellular pathogens that cause leishmaniasis. We conducted transcriptomic profiling of two Leishmania species and the human macrophage over the course of intracellular infection by using high-throughput RNA sequencing to characterize the global gene expression changes and reprogramming events that underlie the interactions between the pathogen and its host. A systematic exclusion of the generic effects of large-particle phagocytosis revealed a vigorous, parasite-specific response of the human macrophage early in the infection that was greatly tempered at later time points. An analogous temporal expression pattern was observed with the parasite, suggesting that much of the reprogramming that occurs as parasites transform into intracellular forms generally stabilizes shortly after entry. Following that, the parasite establishes an intracellular niche within macrophages, with minimal communication between the parasite and the host cell later during the infection. No significant difference was observed between parasite species transcriptomes or in the transcriptional response of macrophages infected with each species. Our comparative analysis of gene expression changes that occur as mouse and human macrophages are infected by Leishmania spp. points toward a general signature of the Leishmania-macrophage infectome. Little is known about the transcriptional changes that occur within mammalian cells harboring intracellular pathogens. This study characterizes the gene expression signatures of Leishmania spp. parasites and the coordinated response of infected human macrophages as the pathogen enters and persists within them. After accounting for the generic effects of large-particle phagocytosis, we observed a parasite-specific response of the human macrophages early in

  19. Large scale aggregate microarray analysis reveals three distinct molecular subclasses of human preeclampsia.

    Science.gov (United States)

    Leavey, Katherine; Bainbridge, Shannon A; Cox, Brian J

    2015-01-01

    Preeclampsia (PE) is a life-threatening hypertensive pathology of pregnancy affecting 3-5% of all pregnancies. To date, PE has no cure, early detection markers, or effective treatments short of the removal of what is thought to be the causative organ, the placenta, which may necessitate a preterm delivery. Additionally, numerous small placental microarray studies attempting to identify "PE-specific" genes have yielded inconsistent results. We therefore hypothesize that preeclampsia is a multifactorial disease encompassing several pathology subclasses, and that large cohort placental gene expression analysis will reveal these groups. To address our hypothesis, we utilized known bioinformatic methods to aggregate 7 microarray data sets across multiple platforms in order to generate a large data set of 173 patient samples, including 77 with preeclampsia. Unsupervised clustering of these patient samples revealed three distinct molecular subclasses of PE. This included a "canonical" PE subclass demonstrating elevated expression of known PE markers and genes associated with poor oxygenation and increased secretion, as well as two other subclasses potentially representing a poor maternal response to pregnancy and an immunological presentation of preeclampsia. Our analysis sheds new light on the heterogeneity of PE patients, and offers up additional avenues for future investigation. Hopefully, our subclassification of preeclampsia based on molecular diversity will finally lead to the development of robust diagnostics and patient-based treatments for this disorder.

  20. Genomic binding profiles of functionally distinct RNA polymerase III transcription complexes in human cells.

    Science.gov (United States)

    Moqtaderi, Zarmik; Wang, Jie; Raha, Debasish; White, Robert J; Snyder, Michael; Weng, Zhiping; Struhl, Kevin

    2010-05-01

    Genome-wide occupancy profiles of five components of the RNA polymerase III (Pol III) machinery in human cells identified the expected tRNA and noncoding RNA targets and revealed many additional Pol III-associated loci, mostly near short interspersed elements (SINEs). Several genes are targets of an alternative transcription factor IIIB (TFIIIB) containing Brf2 instead of Brf1 and have extremely low levels of TFIIIC. Strikingly, expressed Pol III genes, unlike nonexpressed Pol III genes, are situated in regions with a pattern of histone modifications associated with functional Pol II promoters. TFIIIC alone associates with numerous ETC loci, via the B box or a novel motif. ETCs are often near CTCF binding sites, suggesting a potential role in chromosome organization. Our results suggest that human Pol III complexes associate preferentially with regions near functional Pol II promoters and that TFIIIC-mediated recruitment of TFIIIB is regulated in a locus-specific manner.

  1. Distinct human antibody response to the biological warfare agent Burkholderia mallei.

    Science.gov (United States)

    Varga, John J; Vigil, Adam; DeShazer, David; Waag, David M; Felgner, Philip; Goldberg, Joanna B

    2012-10-01

    The genetic similarity between Burkholderia mallei (glanders) and Burkholderia pseudomallei (melioidosis) had led to the general assumption that pathogenesis of each bacterium would be similar. In 2000, the first human case of glanders in North America since 1945 was reported in a microbiology laboratory worker. Leveraging the availability of pre-exposure sera for this individual and employing the same well-characterized protein array platform that has been previously used to study a large cohort of melioidosis patients in southeast Asia, we describe the antibody response in a human with glanders. Analysis of 156 peptides present on the array revealed antibodies against 17 peptides with a > 2-fold increase in this infection. Unexpectedly, when the glanders data were compared with a previous data set from B. pseudomallei infections, there were only two highly increased antibodies shared between these two infections. These findings have implications in the diagnosis and treatment of B. mallei and B. pseudomallei infections.

  2. Uterine Natural Killer Cells: Functional Distinctions and Influence on Pregnancy in Humans and Mice

    Directory of Open Access Journals (Sweden)

    Francesco Colucci

    2017-04-01

    Full Text Available Our understanding of development and function of natural killer (NK cells has progressed significantly in recent years. However, exactly how uterine NK (uNK cells develop and function is still unclear. To help investigators that are beginning to study tissue NK cells, we summarize in this review our current knowledge of the development and function of uNK cells, and what is yet to be elucidated. We compare and contrast the biology of human and mouse uNK cells in the broader context of the biology of innate lymphoid cells and with reference to peripheral NK cells. We also review how uNK cells may regulate trophoblast invasion and uterine spiral arterial remodeling in human and murine pregnancy.

  3. Distinct functions of human RecQ helicases during DNA replication.

    Science.gov (United States)

    Urban, Vaclav; Dobrovolna, Jana; Janscak, Pavel

    2017-06-01

    DNA replication is the most vulnerable process of DNA metabolism in proliferating cells and therefore it is tightly controlled and coordinated with processes that maintain genomic stability. Human RecQ helicases are among the most important factors involved in the maintenance of replication fork integrity, especially under conditions of replication stress. RecQ helicases promote recovery of replication forks being stalled due to different replication roadblocks of either exogenous or endogenous source. They prevent generation of aberrant replication fork structures and replication fork collapse, and are involved in proper checkpoint signaling. The essential role of human RecQ helicases in the genome maintenance during DNA replication is underlined by association of defects in their function with cancer predisposition. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Integrative analysis of RNA, translation, and protein levels reveals distinct regulatory variation across humans.

    Science.gov (United States)

    Cenik, Can; Cenik, Elif Sarinay; Byeon, Gun W; Grubert, Fabian; Candille, Sophie I; Spacek, Damek; Alsallakh, Bilal; Tilgner, Hagen; Araya, Carlos L; Tang, Hua; Ricci, Emiliano; Snyder, Michael P

    2015-11-01

    Elucidating the consequences of genetic differences between humans is essential for understanding phenotypic diversity and personalized medicine. Although variation in RNA levels, transcription factor binding, and chromatin have been explored, little is known about global variation in translation and its genetic determinants. We used ribosome profiling, RNA sequencing, and mass spectrometry to perform an integrated analysis in lymphoblastoid cell lines from a diverse group of individuals. We find significant differences in RNA, translation, and protein levels suggesting diverse mechanisms of personalized gene expression control. Combined analysis of RNA expression and ribosome occupancy improves the identification of individual protein level differences. Finally, we identify genetic differences that specifically modulate ribosome occupancy--many of these differences lie close to start codons and upstream ORFs. Our results reveal a new level of gene expression variation among humans and indicate that genetic variants can cause changes in protein levels through effects on translation. © 2015 Cenik et al.; Published by Cold Spring Harbor Laboratory Press.

  5. Human DNA-Damage-Inducible 2 Protein Is Structurally and Functionally Distinct from Its Yeast Ortholog

    Czech Academy of Sciences Publication Activity Database

    Sivá, Monika; Svoboda, Michal; Veverka, Václav; Trempe, J. F.; Hofmann, K.; Kožíšek, Milan; Hexnerová, Rozálie; Sedlák, František; Belza, Jan; Brynda, Jiří; Šácha, Pavel; Hubálek, Martin; Starková, Jana; Flaisigová, Iva; Konvalinka, Jan; Grantz Šašková, Klára

    2016-01-01

    Roč. 6, Jul 27 (2016), č. článku 30443. ISSN 2045-2322 R&D Projects: GA ČR(CZ) GBP208/12/G016 Institutional support: RVO:61388963 Keywords : human DNA-damage-inducible 2 protein * proteasome * ubiquitin * retroviral protease-like domain Subject RIV: CE - Biochemistry Impact factor: 4.259, year: 2016 http://www.nature.com/articles/srep30443

  6. Semantic projection: recovering human knowledge of multiple, distinct object features from word embeddings

    OpenAIRE

    Grand, Gabriel; Blank, Idan Asher; Pereira, Francisco; Fedorenko, Evelina

    2018-01-01

    The words of a language reflect the structure of the human mind, allowing us to transmit thoughts between individuals. However, language can represent only a subset of our rich and detailed cognitive architecture. Here, we ask what kinds of common knowledge (semantic memory) are captured by word meanings (lexical semantics). We examine a prominent computational model that represents words as vectors in a multidimensional space, such that proximity between word-vectors approximates semantic re...

  7. Neuroblastoma

    Science.gov (United States)

    ... the cancer has spread to the bones or bone marrow) weakness, numbness, inability to move a body part, or difficulty walking (if the cancer presses on the spinal cord) drooping eyelid, unequal pupils, sweating, and red ...

  8. Distinct populations of neurons respond to emotional valence and arousal in the human subthalamic nucleus.

    Science.gov (United States)

    Sieger, Tomáš; Serranová, Tereza; Růžička, Filip; Vostatek, Pavel; Wild, Jiří; Štastná, Daniela; Bonnet, Cecilia; Novák, Daniel; Růžička, Evžen; Urgošík, Dušan; Jech, Robert

    2015-03-10

    Both animal studies and studies using deep brain stimulation in humans have demonstrated the involvement of the subthalamic nucleus (STN) in motivational and emotional processes; however, participation of this nucleus in processing human emotion has not been investigated directly at the single-neuron level. We analyzed the relationship between the neuronal firing from intraoperative microrecordings from the STN during affective picture presentation in patients with Parkinson's disease (PD) and the affective ratings of emotional valence and arousal performed subsequently. We observed that 17% of neurons responded to emotional valence and arousal of visual stimuli according to individual ratings. The activity of some neurons was related to emotional valence, whereas different neurons responded to arousal. In addition, 14% of neurons responded to visual stimuli. Our results suggest the existence of neurons involved in processing or transmission of visual and emotional information in the human STN, and provide evidence of separate processing of the affective dimensions of valence and arousal at the level of single neurons as well.

  9. No mutations found by RET mutation scanning in sporadic and hereditary neuroblastoma

    NARCIS (Netherlands)

    Hofstra, R. M.; Cheng, N. C.; Hansen, C.; Stulp, R. P.; Stelwagen, T.; Clausen, N.; Tommerup, N.; Caron, H.; Westerveld, A.; Versteeg, R.; Buys, C. H.

    1996-01-01

    Neuroblastoma occasionally occurs in diseases associated with abnormal neurocrest differentiation, e.g. Hirschsprung disease. Expression studies in developing mice suggest that the proto-oncogene RET plays a role in neurocrest differentiation. In humans expression of RET is limited to certain tumor

  10. No mutations found by RET mutation scanning in sporadic and hereditary neuroblastoma

    NARCIS (Netherlands)

    Hofstra, RMW; Cheng, NC; Stulp, RP; Stelwagen, T; Clausen, N; Tommerup, N; Caron, H; Westerveld, A; Buys, CHCM

    Neuroblastoma occasionally occurs in diseases associated with abnormal neurocrest differentiation, e.g. Hirschsprung disease. Expression studies in developing mice suggest that the proto-oncogene RET plays a role in neurocrest differentiation. In humans expression of RT is limited to certain tumor

  11. Evolution of two distinct phylogenetic lineages of the emerging human pathogen Mycobacterium ulcerans

    Directory of Open Access Journals (Sweden)

    Portaels Francoise

    2007-09-01

    Full Text Available Abstract Background Comparative genomics has greatly improved our understanding of the evolution of pathogenic mycobacteria such as Mycobacterium tuberculosis. Here we have used data from a genome microarray analysis to explore insertion-deletion (InDel polymorphism among a diverse strain collection of Mycobacterium ulcerans, the causative agent of the devastating skin disease, Buruli ulcer. Detailed analysis of large sequence polymorphisms in twelve regions of difference (RDs, comprising irreversible genetic markers, enabled us to refine the phylogenetic succession within M. ulcerans, to define features of a hypothetical M. ulcerans most recent common ancestor and to confirm its origin from Mycobacterium marinum. Results M. ulcerans has evolved into five InDel haplotypes that separate into two distinct lineages: (i the "classical" lineage including the most pathogenic genotypes – those that come from Africa, Australia and South East Asia; and (ii an "ancestral" M. ulcerans lineage comprising strains from Asia (China/Japan, South America and Mexico. The ancestral lineage is genetically closer to the progenitor M. marinum in both RD composition and DNA sequence identity, whereas the classical lineage has undergone major genomic rearrangements. Conclusion Results of the InDel analysis are in complete accord with recent multi-locus sequence analysis and indicate that M. ulcerans has passed through at least two major evolutionary bottlenecks since divergence from M. marinum. The classical lineage shows more pronounced reductive evolution than the ancestral lineage, suggesting that there may be differences in the ecology between the two lineages. These findings improve the understanding of the adaptive evolution and virulence of M. ulcerans and pathogenic mycobacteria in general and will facilitate the development of new tools for improved diagnostics and molecular epidemiology.

  12. Butyrate and deoxycholic acid play common and distinct roles in HCT116 human colon cell proliferation.

    Science.gov (United States)

    Zeng, Huawei; Claycombe, Kate J; Reindl, Katie M

    2015-10-01

    Consumption of a high-fat diet causes an increase in bile acid deoxycholic acid (DCA) in colon lumen and colon cancer risk, while butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit colon cancer-preventive effects. To distinguish these opposing effects of DCA and butyrate (two major metabolites in colon lumen), we examined the effects of physiologically relevant doses of butyrate (0.5-2 mmol/l) and DCA (0.05-0.3 mmol/l) on colon cell proliferation. We hypothesize that butyrate and DCA each modulates the cell cycle and apoptosis via common and distinct cellular signaling targets. In this study, we demonstrated that both butyrate and DCA inhibited cell proliferation by up to 89% and 92% and increased cell apoptosis rate by up to 3.1- and 4.5-fold, respectively. Cell cycle analyses revealed that butyrate led to an increase in G1 and G2 fractions with a concomitant drop in the S-phase fraction, but DCA induced an increase in only G1 fraction with a concomitant drop in the S-phase fraction when compared with the untreated cells. The examination of early cellular signaling revealed that DCA but not butyrate increased intracellular reactive oxygen species, genomic DNA breakage, the activation of ERK1/2, caspase-3 and PARP. In contrast, DCA decreased activated Rb protein level, and butyrate but not DCA increased p21 expression. Collectively, although both butyrate and DCA inhibit colonic cell proliferation, butyrate increases tumor suppressor gene expression, whereas DCA decreases tumor suppressor activation in cell cycle and apoptosis pathways. Published by Elsevier Inc.

  13. Porphyromonas uenonis sp. nov., a pathogen for humans distinct from P. asaccharolytica and P. endodontalis.

    Science.gov (United States)

    Finegold, Sydney M; Vaisanen, Marja-Liisa; Rautio, Merja; Eerola, Erkki; Summanen, Paula; Molitoris, Denise; Song, Yuli; Liu, Chengxu; Jousimies-Somer, Hannele

    2004-11-01

    Three Porphyromonas species (Porphyromonas asaccharolytica, P. endodontalis, and the novel species that is the subject of the present report, P. uenonis) are very much alike in terms of biochemical characteristics, such as enzyme profiles and cellular fatty acid contents. P. asaccharolytica is distinguished from the other two species by virtue of production of alpha-fucosidase and glyoxylic acid positivity. The novel species is difficult to differentiate from P. endodontalis phenotypically and was designated a P. endodontalis-like organism for some time. However, P. endodontalis is recovered almost exclusively from oral sources and also grows poorly on Biolog Universal Agar, both characteristics that are in contrast to those of the other two organisms. Furthermore, P. uenonis is glycerol positive in the Biolog AN Microplate system. Both P. asaccharolytica and P. uenonis are positive by 13 other tests in the Biolog system, whereas P. endodontalis is negative by all of these tests. P. asaccharolytica grew well in both solid and liquid media without supplementation with 5% horse serum, whereas the other two species grew poorly without supplementation. Sequencing of 16S rRNA revealed about 10% divergence between the novel species and P. endodontalis but less than 2% sequence difference between the novel species and P. asaccharolytica. Subsequent DNA-DNA hybridization studies documented that the novel organism was indeed distinct from P. asaccharolytica. We propose the name Porphyromonas uenonis for the novel species. We have recovered P. uenonis from four clinical infections in adults, all likely of intestinal origin, and from the feces of six children.

  14. Porphyromonas uenonis sp. nov., a Pathogen for Humans Distinct from P. asaccharolytica and P. endodontalis

    Science.gov (United States)

    Finegold, Sydney M.; Vaisanen, Marja-Liisa; Rautio, Merja; Eerola, Erkki; Summanen, Paula; Molitoris, Denise; Song, Yuli; Liu, Chengxu; Jousimies-Somer, Hannele

    2004-01-01

    Three Porphyromonas species (Porphyromonas asaccharolytica, P. endodontalis, and the novel species that is the subject of the present report, P. uenonis) are very much alike in terms of biochemical characteristics, such as enzyme profiles and cellular fatty acid contents. P. asaccharolytica is distinguished from the other two species by virtue of production of α-fucosidase and glyoxylic acid positivity. The novel species is difficult to differentiate from P. endodontalis phenotypically and was designated a P. endodontalis-like organism for some time. However, P. endodontalis is recovered almost exclusively from oral sources and also grows poorly on Biolog Universal Agar, both characteristics that are in contrast to those of the other two organisms. Furthermore, P. uenonis is glycerol positive in the Biolog AN Microplate system. Both P. asaccharolytica and P. uenonis are positive by 13 other tests in the Biolog system, whereas P. endodontalis is negative by all of these tests. P. asaccharolytica grew well in both solid and liquid media without supplementation with 5% horse serum, whereas the other two species grew poorly without supplementation. Sequencing of 16S rRNA revealed about 10% divergence between the novel species and P. endodontalis but less than 2% sequence difference between the novel species and P. asaccharolytica. Subsequent DNA-DNA hybridization studies documented that the novel organism was indeed distinct from P. asaccharolytica. We propose the name Porphyromonas uenonis for the novel species. We have recovered P. uenonis from four clinical infections in adults, all likely of intestinal origin, and from the feces of six children. PMID:15528728

  15. Therapeutically targeting glypican-2 via single-domain antibody-based chimeric antigen receptors and immunotoxins in neuroblastoma.

    Science.gov (United States)

    Li, Nan; Fu, Haiying; Hewitt, Stephen M; Dimitrov, Dimiter S; Ho, Mitchell

    2017-08-08

    Neuroblastoma is a childhood cancer that is fatal in almost half of patients despite intense multimodality treatment. This cancer is derived from neuroendocrine tissue located in the sympathetic nervous system. Glypican-2 (GPC2) is a cell surface heparan sulfate proteoglycan that is important for neuronal cell adhesion and neurite outgrowth. In this study, we find that GPC2 protein is highly expressed in about half of neuroblastoma cases and that high GPC2 expression correlates with poor overall survival compared with patients with low GPC2 expression. We demonstrate that silencing of GPC2 by CRISPR-Cas9 or siRNA results in the inhibition of neuroblastoma tumor cell growth. GPC2 silencing inactivates Wnt/β-catenin signaling and reduces the expression of the target gene N-Myc, an oncogenic driver of neuroblastoma tumorigenesis. We have isolated human single-domain antibodies specific for GPC2 by phage display technology and found that the single-domain antibodies can inhibit active β-catenin signaling by disrupting the interaction of GPC2 and Wnt3a. To explore GPC2 as a potential target in neuroblastoma, we have developed two forms of antibody therapeutics, immunotoxins and chimeric antigen receptor (CAR) T cells. Immunotoxin treatment was demonstrated to inhibit neuroblastoma growth in mice. CAR T cells targeting GPC2 eliminated tumors in a disseminated neuroblastoma mouse model where tumor metastasis had spread to multiple clinically relevant sites, including spine, skull, legs, and pelvis. This study suggests GPC2 as a promising therapeutic target in neuroblastoma.

  16. Mouse neuroblastoma cell based model and the effect of epileptic events on calcium oscillations and neural spikes

    Science.gov (United States)

    Kim, Suhwan; Baek, Juyeong; Jung, Unsang; Lee, Sangwon; Jung, Woonggyu; Kim, Jeehyun; Kang, Shinwon

    2013-05-01

    Recently, Mouse neuroblastoma cells are considered as an attractive model for the study of human neurological and prion diseases, and intensively used as a model system in different areas. Among those areas, differentiation of neuro2a (N2A) cells, receptor mediated ion current, and glutamate induced physiological response are actively investigated. The reason for the interest to mouse neuroblastoma N2A cells is that they have a fast growing rate than other cells in neural origin with a few another advantages. This study evaluated the calcium oscillations and neural spikes recording of mouse neuroblastoma N2A cells in an epileptic condition. Based on our observation of neural spikes in mouse N2A cell with our proposed imaging modality, we report that mouse neuroblastoma N2A cells can be an important model related to epileptic activity studies. It is concluded that the mouse neuroblastoma N2A cells produce the epileptic spikes in vitro in the same way as produced by the neurons or the astrocytes. This evidence advocates the increased and strong level of neurotransmitters release by enhancement in free calcium using the 4-aminopyridine which causes the mouse neuroblastoma N2A cells to produce the epileptic spikes and calcium oscillation.

  17. Human glioblastoma-associated microglia/monocytes express a distinct RNA profile compared to human control and murine samples.

    Science.gov (United States)

    Szulzewsky, Frank; Arora, Sonali; de Witte, Lot; Ulas, Thomas; Markovic, Darko; Schultze, Joachim L; Holland, Eric C; Synowitz, Michael; Wolf, Susanne A; Kettenmann, Helmut

    2016-08-01

    Glioblastoma (GBM) is the most aggressive brain tumor in adults. It is strongly infiltrated by microglia and peripheral monocytes that support tumor growth. In the present study we used RNA sequencing to compare the expression profile of CD11b(+) human glioblastoma-associated microglia/monocytes (hGAMs) to CD11b(+) microglia isolated from non-tumor samples. Hierarchical clustering and principal component analysis showed a clear separation of the two sample groups and we identified 334 significantly regulated genes in hGAMs. In comparison to human control microglia hGAMs upregulated genes associated with mitotic cell cycle, cell migration, cell adhesion, and extracellular matrix organization. We validated the expression of several genes associated with extracellular matrix organization in samples of human control microglia, hGAMs, and the hGAMs-depleted fraction via qPCR. The comparison to murine GAMs (mGAMs) showed that both cell populations share a significant fraction of upregulated transcripts compared with their respective controls. These genes were mostly related to mitotic cell cycle. However, in contrast to murine cells, human GAMs did not upregulate genes associated to immune activation. Comparison of human and murine GAMs expression data to several data sets of in vitro-activated human macrophages and murine microglia showed that, in contrast to mGAMs, hGAMs share a smaller overlap to these data sets in general and in particular to cells activated by proinflammatory stimulation with LPS + INFγ or TNFα. Our findings provide new insights into the biology of human glioblastoma-associated microglia/monocytes and give detailed information about the validity of murine experimental models. GLIA 2016 GLIA 2016;64:1416-1436. © 2016 Wiley Periodicals, Inc.

  18. Distinct motor strategies underlying split-belt adaptation in human walking and running.

    Science.gov (United States)

    Ogawa, Tetsuya; Kawashima, Noritaka; Obata, Hiroki; Kanosue, Kazuyuki; Nakazawa, Kimitaka

    2015-01-01

    The aim of the present study was to elucidate the adaptive and de-adaptive nature of human running on a split-belt treadmill. The degree of adaptation and de-adaptation was compared with those in walking by calculating the antero-posterior component of the ground reaction force (GRF). Adaptation to walking and running on a split-belt resulted in a prominent asymmetry in the movement pattern upon return to the normal belt condition, while the two components of the GRF showed different behaviors depending on the gaits. The anterior braking component showed prominent adaptive and de-adaptive behaviors in both gaits. The posterior propulsive component, on the other hand, exhibited such behavior only in running, while that in walking showed only short-term aftereffect (lasting less than 10 seconds) accompanied by largely reactive responses. These results demonstrate a possible difference in motor strategies (that is, the use of reactive feedback and adaptive feedforward control) by the central nervous system (CNS) for split-belt locomotor adaptation between walking and running. The present results provide basic knowledge on neural control of human walking and running as well as possible strategies for gait training in athletic and rehabilitation scenes.

  19. Distinct Contributions of Replication and Transcription to Mutation Rate Variation of Human Genomes

    KAUST Repository

    Cui, Peng; Ding, Feng; Lin, Qiang; Zhang, Lingfang; Li, Ang; Zhang, Zhang; Hu, Songnian; Yu, Jun

    2012-01-01

    Here, we evaluate the contribution of two major biological processes—DNA replication and transcription—to mutation rate variation in human genomes. Based on analysis of the public human tissue transcriptomics data, high-resolution replicating map of Hela cells and dbSNP data, we present significant correlations between expression breadth, replication time in local regions and SNP density. SNP density of tissue-specific (TS) genes is significantly higher than that of housekeeping (HK) genes. TS genes tend to locate in late-replicating genomic regions and genes in such regions have a higher SNP density compared to those in early-replication regions. In addition, SNP density is found to be positively correlated with expression level among HK genes. We conclude that the process of DNA replication generates stronger mutational pressure than transcription-associated biological processes do, resulting in an increase of mutation rate in TS genes while having weaker effects on HK genes. In contrast, transcription-associated processes are mainly responsible for the accumulation of mutations in highly-expressed HK genes.

  20. Two spatiotemporally distinct value systems shape reward-based learning in the human brain.

    Science.gov (United States)

    Fouragnan, Elsa; Retzler, Chris; Mullinger, Karen; Philiastides, Marios G

    2015-09-08

    Avoiding repeated mistakes and learning to reinforce rewarding decisions is critical for human survival and adaptive actions. Yet, the neural underpinnings of the value systems that encode different decision-outcomes remain elusive. Here coupling single-trial electroencephalography with simultaneously acquired functional magnetic resonance imaging, we uncover the spatiotemporal dynamics of two separate but interacting value systems encoding decision-outcomes. Consistent with a role in regulating alertness and switching behaviours, an early system is activated only by negative outcomes and engages arousal-related and motor-preparatory brain structures. Consistent with a role in reward-based learning, a later system differentially suppresses or activates regions of the human reward network in response to negative and positive outcomes, respectively. Following negative outcomes, the early system interacts and downregulates the late system, through a thalamic interaction with the ventral striatum. Critically, the strength of this coupling predicts participants' switching behaviour and avoidance learning, directly implicating the thalamostriatal pathway in reward-based learning.

  1. Distinct motor strategies underlying split-belt adaptation in human walking and running.

    Directory of Open Access Journals (Sweden)

    Tetsuya Ogawa

    Full Text Available The aim of the present study was to elucidate the adaptive and de-adaptive nature of human running on a split-belt treadmill. The degree of adaptation and de-adaptation was compared with those in walking by calculating the antero-posterior component of the ground reaction force (GRF. Adaptation to walking and running on a split-belt resulted in a prominent asymmetry in the movement pattern upon return to the normal belt condition, while the two components of the GRF showed different behaviors depending on the gaits. The anterior braking component showed prominent adaptive and de-adaptive behaviors in both gaits. The posterior propulsive component, on the other hand, exhibited such behavior only in running, while that in walking showed only short-term aftereffect (lasting less than 10 seconds accompanied by largely reactive responses. These results demonstrate a possible difference in motor strategies (that is, the use of reactive feedback and adaptive feedforward control by the central nervous system (CNS for split-belt locomotor adaptation between walking and running. The present results provide basic knowledge on neural control of human walking and running as well as possible strategies for gait training in athletic and rehabilitation scenes.

  2. Distinct Contributions of Replication and Transcription to Mutation Rate Variation of Human Genomes

    KAUST Repository

    Cui, Peng

    2012-03-23

    Here, we evaluate the contribution of two major biological processes—DNA replication and transcription—to mutation rate variation in human genomes. Based on analysis of the public human tissue transcriptomics data, high-resolution replicating map of Hela cells and dbSNP data, we present significant correlations between expression breadth, replication time in local regions and SNP density. SNP density of tissue-specific (TS) genes is significantly higher than that of housekeeping (HK) genes. TS genes tend to locate in late-replicating genomic regions and genes in such regions have a higher SNP density compared to those in early-replication regions. In addition, SNP density is found to be positively correlated with expression level among HK genes. We conclude that the process of DNA replication generates stronger mutational pressure than transcription-associated biological processes do, resulting in an increase of mutation rate in TS genes while having weaker effects on HK genes. In contrast, transcription-associated processes are mainly responsible for the accumulation of mutations in highly-expressed HK genes.

  3. A 6-gene signature identifies four molecular subgroups of neuroblastoma

    Science.gov (United States)

    2011-01-01

    Background There are currently three postulated genomic subtypes of the childhood tumour neuroblastoma (NB); Type 1, Type 2A, and Type 2B. The most aggressive forms of NB are characterized by amplification of the oncogene MYCN (MNA) and low expression of the favourable marker NTRK1. Recently, mutations or high expression of the familial predisposition gene Anaplastic Lymphoma Kinase (ALK) was associated to unfavourable biology of sporadic NB. Also, various other genes have been linked to NB pathogenesis. Results The present study explores subgroup discrimination by gene expression profiling using three published microarray studies on NB (47 samples). Four distinct clusters were identified by Principal Components Analysis (PCA) in two separate data sets, which could be verified by an unsupervised hierarchical clustering in a third independent data set (101 NB samples) using a set of 74 discriminative genes. The expression signature of six NB-associated genes ALK, BIRC5, CCND1, MYCN, NTRK1, and PHOX2B, significantly discriminated the four clusters (p INSS stage 4 and/or dead of disease, p < 0.05, Fisher's exact test). Conclusions Based on expression profiling we have identified four molecular subgroups of neuroblastoma, which can be distinguished by a 6-gene signature. The fourth subgroup has not been described elsewhere, and efforts are currently made to further investigate this group's specific characteristics. PMID:21492432

  4. A 6-gene signature identifies four molecular subgroups of neuroblastoma

    Directory of Open Access Journals (Sweden)

    Kogner Per

    2011-04-01

    Full Text Available Abstract Background There are currently three postulated genomic subtypes of the childhood tumour neuroblastoma (NB; Type 1, Type 2A, and Type 2B. The most aggressive forms of NB are characterized by amplification of the oncogene MYCN (MNA and low expression of the favourable marker NTRK1. Recently, mutations or high expression of the familial predisposition gene Anaplastic Lymphoma Kinase (ALK was associated to unfavourable biology of sporadic NB. Also, various other genes have been linked to NB pathogenesis. Results The present study explores subgroup discrimination by gene expression profiling using three published microarray studies on NB (47 samples. Four distinct clusters were identified by Principal Components Analysis (PCA in two separate data sets, which could be verified by an unsupervised hierarchical clustering in a third independent data set (101 NB samples using a set of 74 discriminative genes. The expression signature of six NB-associated genes ALK, BIRC5, CCND1, MYCN, NTRK1, and PHOX2B, significantly discriminated the four clusters (p ALK, BIRC5, and PHOX2B, and was significantly associated with higher tumour stage, poor outcome and poor survival compared to the Type 1-corresponding favourable group (INSS stage 4 and/or dead of disease, p Conclusions Based on expression profiling we have identified four molecular subgroups of neuroblastoma, which can be distinguished by a 6-gene signature. The fourth subgroup has not been described elsewhere, and efforts are currently made to further investigate this group's specific characteristics.

  5. Metastatic neuroblastoma in the brain parenchyma; a case report

    International Nuclear Information System (INIS)

    Kim, Ho Sung; Choi, Choong Gon; Shin, Ji Hoon; Lee, Ho Kyu; Suh, Dae Chul

    2000-01-01

    During childhood, neuroblastoma is a relatively common malignant neoplasm which commonly metastasizes to other organs. Metastasis to the central nervous system from an extracranial neuroblastoma is rare, however, and brain parenchymal metastasis is very rare. We describe a case of brain parenchymal metastasis from primary abdominal neuroblastoma, and review the literature

  6. Two Distinct Isoforms of Matrix Metalloproteinase-2 Are Associated with Human Delayed Kidney Graft Function.

    Directory of Open Access Journals (Sweden)

    Shaynah Wanga

    Full Text Available Delayed graft function (DGF is a frequent complication of renal transplantation, particularly in the setting of transplantation of kidneys derived from deceased donors and expanded-criteria donors. DGF results from tubular epithelial cell injury and has immediate and long term consequences. These include requirement for post-transplantation dialysis, increased incidence of acute rejection, and poorer long-term outcomes. DGF represents one of the clearest clinical examples of renal acute ischemia/reperfusion injury. Experimental studies have demonstrated that ischemia/reperfusion injury induces the synthesis of the full length secreted isoform of matrix metalloproteinase-2 (FL-MMP-2, as well as an intracellular N-terminal truncated MMP-2 isoform (NTT-MMP-2 that initiates an innate immune response. We hypothesized that the two MMP-2 isoforms mediate tubular epithelial cell injury in DGF. Archival renal biopsy sections from 10 protocol biopsy controls and 41 cases with a clinical diagnosis of DGF were analyzed for the extent of tubular injury, expression of the FL-MMP-2 and NTT-MMP-2 isoforms by immunohistochemistry (IHC, in situ hybridization, and qPCR to determine isoform abundance. Differences in transcript abundance were related to tubular injury score. Markers of MMP-2-mediated injury included TUNEL staining and assessment of peritubular capillary density. There was a clear relationship between tubular epithelial cell expression of both FL-MMP-2 and NTT-MMP-2 IHC with the extent of tubular injury. The MMP-2 isoforms were detected in the same tubular segments and were present at sites of tubular injury. qPCR demonstrated highly significant increases in both the FL-MMP-2 and NTT-MMP-2 transcripts. Statistical analysis revealed highly significant associations between FL-MMP-2 and NTT-MMP-2 transcript abundance and the extent of tubular injury, with NTT-MMP-2 having the strongest association. We conclude that two distinct MMP-2 isoforms are

  7. Neuroprotective effects of metabotropic glutamate receptor group II and III activators against MPP(+)-induced cell death in human neuroblastoma SH-SY5Y cells: the impact of cell differentiation state.

    Science.gov (United States)

    Jantas, D; Greda, A; Golda, S; Korostynski, M; Grygier, B; Roman, A; Pilc, A; Lason, W

    2014-08-01

    Recent studies have documented that metabotropic glutamate receptors from group II and III (mGluR II/III) are a potential target in the symptomatic treatment of Parkinson's disease (PD), however, the neuroprotective effects of particular mGluR II/III subtypes in relation to PD pathology are recognized only partially. In the present study, we investigated the effect of various mGluR II/III activators in the in vitro model of PD using human neuroblastoma SH-SY5Y cell line and mitochondrial neurotoxin MPP(+). We demonstrated that all tested mGluR ligands: mGluR II agonist - LY354740, mGluR III agonist - ACPT-I, mGluR4 PAM - VU0361737, mGluR8 agonist - (S)-3,4-DCPG, mGluR8 PAM - AZ12216052 and mGluR7 allosteric agonist - AMN082 were protective against MPP(+)-evoked cell damage in undifferentiated (UN-) SH-SY5Y cells with the highest neuroprotection mediated by mGluR8-specific agents. However, in retinoic acid- differentiated (RA-) SH-SY5Y cells we found protection mediated only by mGluR8 activators. We also demonstrated the cell proliferation stimulating effect for mGluR4 and mGluR8 PAMs. Next, we showed that the protection mediated by mGluR II/III activators in UN-SH-SY5Y was not accompanied by the modulation of caspase-3 activity, however, a decrease in the number of apoptotic nuclei was found. Finally, we showed that the inhibitor of necroptosis, necrostatin-1 blocked the mGluR III-mediated protection. Altogether our comparative in vitro data add a further proof to neuroprotective effects of mGluR agonists or PAMs and point to mGluR8 as a promising target for neuroprotective interventions in PD. The results also suggest the participation of necroptosis-related molecular pathways in neuroprotective effects of mGluR III activation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Gadd153 and NF-κB crosstalk regulates 27-hydroxycholesterol-induced increase in BACE1 and β-amyloid production in human neuroblastoma SH-SY5Y cells.

    Directory of Open Access Journals (Sweden)

    Gurdeep Marwarha

    Full Text Available β-amyloid (Aβ peptide, accumulation of which is a culprit for Alzheimer's disease (AD, is derived from the initial cleavage of amyloid precursor protein by the aspartyl protease BACE1. Identification of cellular mechanisms that regulate BACE1 production is of high relevance to the search for potential disease-modifying therapies that inhibit BACE1 to reduce Aβ accumulation and AD progression. In the present study, we show that the cholesterol oxidation product 27-hydroxycholesterol (27-OHC increases BACE1 and Aβ levels in human neuroblastoma SH-SY5Y cells. This increase in BACE1 involves a crosstalk between the two transcription factors NF-κB and the endoplasmic reticulum stress marker, the growth arrest and DNA damage induced gene-153 (gadd153, also called CHOP. We specifically show that 27-OHC induces a substantial increase in NF-κB binding to the BACE1 promoter and subsequent increase in BACE1 transcription and Aβ production. The NF-κB inhibitor, sc514, significantly attenuated the 27-OHC-induced increase in NF-κB-mediated BACE1 expression and Aβ genesis. We further show that the 27-OHC-induced NF-κB activation and increased NF-κB-mediated BACE1 expression is contingent on the increased activation of gadd153. Silencing gadd153 expression with siRNA alleviated the 27-OHC-induced increase in NF-κB activation, NF-κB binding to the BACE1 promoter, and subsequent increase in BACE1 transcription and Aβ production. We also show that increased levels of BACE1 in the triple transgenic mouse model for AD is preceded by gadd153 and NF-κB activation. In summary, our study demonstrates that gadd153 and NF-κB work in concert to regulate BACE1 expression. Agents that inhibit gadd153 activation and subsequent interaction with NF-κB might be promising targets to reduce BACE1 and Aβ overproduction and may ultimately serve as disease-modifying treatments for AD.

  9. Different mutations of the human c-mpl gene indicate distinct haematopoietic diseases.

    Science.gov (United States)

    He, Xin; Chen, Zhigang; Jiang, Yangyan; Qiu, Xi; Zhao, Xiaoying

    2013-01-25

    The human c-mpl gene (MPL) plays an important role in the development of megakaryocytes and platelets as well as the self-renewal of haematopoietic stem cells. However, numerous MPL mutations have been identified in haematopoietic diseases. These mutations alter the normal regulatory mechanisms and lead to autonomous activation or signalling deficiencies. In this review, we summarise 59 different MPL mutations and classify these mutations into four different groups according to the associated diseases and mutation rates. Using this classification, we clearly distinguish four diverse types of MPL mutations and obtain a deep understand of their clinical significance. This will prove to be useful for both disease diagnosis and the design of individual therapy regimens based on the type of MPL mutations.

  10. Distinct migration and contact dynamics of resting and IL-2-activated human natural killer cells

    Directory of Open Access Journals (Sweden)

    Per Erik Olofsson

    2014-03-01

    Full Text Available Natural killer (NK cells serve as one of the first lines of defense against viral infections and transformed cells. NK cell cytotoxicity is not dependent on antigen presentation by target cells, but is dependent on integration of activating and inhibitory signals triggered by receptor–ligand interactions formed at a tight intercellular contact between the NK and target cell, i.e. the immune synapse. We have studied the single-cell migration behavior and target-cell contact dynamics of resting and IL-2-activated human peripheral blood NK cells. Small populations of NK cells and target cells were confined in microwells and imaged by fluorescence microscopy for >8 h. Only the IL-2-activated population of NK cells showed efficient cytotoxicity against the human embryonic kidney (HEK 293T target cells. We found that although the average migration speeds were comparable, activated NK cells showed significantly more dynamic migration behavior, with more frequent transitions between periods of low and high motility. Resting NK cells formed fewer and weaker contacts with target cells, which manifested as shorter conjugation times and in many cases a complete lack of post-conjugation attachment to target cells. Activated NK cells were approximately twice as big as the resting cells, displayed a more migratory phenotype, and were more likely to employ motile scanning of the target cell surface during conjugation. Taken together, our experiments quantify, at the single-cell level, how activation by IL-2 leads to altered NK cell cytotoxicity, migration behavior and contact dynamics.

  11. Distinct Transcriptional and Alternative Splicing Signatures of Decidual CD4+ T Cells in Early Human Pregnancy

    Directory of Open Access Journals (Sweden)

    Weihong Zeng

    2017-06-01

    Full Text Available Decidual CD4+ T (dCD4 T cells are crucial for the maternal-fetal immune tolerance required for a healthy pregnancy outcome. However, their molecular and functional characteristics are not well elucidated. In this study, we performed the first analysis of transcriptional and alternative splicing (AS landscapes for paired decidual and peripheral blood CD4+ T (pCD4 T cells in human early pregnancy using high throughput mRNA sequencing. Our data showed that dCD4 T cells are endowed with a unique transcriptional signature when compared to pCD4 T cells: dCD4 T cells upregulate 1,695 genes enriched in immune system process whereas downregulate 1,011 genes mainly related to mRNA catabolic process and the ribosome. Moreover, dCD4 T cells were observed to be at M phase, and show increased activation, proliferation, and cytokine production, as well as display an effector-memory phenotype and a heterogenous nature containing Th1, Th17, and Treg cell subsets. However, dCD4 T cells undergo a comparable number of upregulated and downregulated AS events, both of which are enriched in the genes related to cellular metabolic process. And the changes at the AS event level do not reflect measurable differences at the gene expression level in dCD4 T cells. Collectively, our findings provide a comprehensive portrait of the unique transcriptional signature and AS profile of CD4+ T cells in human decidua and help us gain more understanding of the functional characteristic of these cells during early pregnancy.

  12. Distinctive genetic activity pattern of the human dental pulp between deciduous and permanent teeth.

    Directory of Open Access Journals (Sweden)

    Ji-Hee Kim

    Full Text Available Human deciduous and permanent teeth exhibit different developmental processes, morphologies, histological characteristics and life cycles. In addition, their pulp tissues react differently to external stimuli, such as the pulp sensitivity test, dental trauma and pulp therapy materials. These suggest differences in gene expression and regulation, and in this study we compared gene-expression profiles of the human dental pulp from deciduous and permanent teeth. Pulp tissues from permanent premolars and deciduous molars aged 11-14 years were extirpated and mRNA was isolated for cDNA microarray analysis, and quantitative real-time PCR (qPCR. Other teeth were used for immunohistochemical analysis (IHC. Microarray analysis identified 263 genes with a twofold or greater difference in expression level between the two types of pulp tissue, 43 and 220 of which were more abundant in deciduous and permanent pulp tissues, respectively. qPCR analysis was conducted for eight randomly selected genes, and the findings were consistent with the cDNA microarray results. IHC confirmed that insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1 was broadly expressed in deciduous dental pulp tissue, but minimally expressed in permanent dental pulp tissue. Immunohistochemical analysis showed that calbindin 1 (CALB1, leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5, and gamma-aminobutyric acid A receptor beta 1 (GABRB1 were abundantly expressed in permanent predentin/odontoblasts, but only minimally expressed in deciduous dental pulp tissue. These results show that deciduous and permanent pulp tissues have different characteristics and gene expression, suggesting that they may have different functions and responses to therapies focused on pulp or dentin regeneration.

  13. Distinctive genetic activity pattern of the human dental pulp between deciduous and permanent teeth.

    Science.gov (United States)

    Kim, Ji-Hee; Jeon, Mijeong; Song, Je-Seon; Lee, Jae-Ho; Choi, Byung-Jai; Jung, Han-Sung; Moon, Seok Jun; DenBesten, Pamela K; Kim, Seong-Oh

    2014-01-01

    Human deciduous and permanent teeth exhibit different developmental processes, morphologies, histological characteristics and life cycles. In addition, their pulp tissues react differently to external stimuli, such as the pulp sensitivity test, dental trauma and pulp therapy materials. These suggest differences in gene expression and regulation, and in this study we compared gene-expression profiles of the human dental pulp from deciduous and permanent teeth. Pulp tissues from permanent premolars and deciduous molars aged 11-14 years were extirpated and mRNA was isolated for cDNA microarray analysis, and quantitative real-time PCR (qPCR). Other teeth were used for immunohistochemical analysis (IHC). Microarray analysis identified 263 genes with a twofold or greater difference in expression level between the two types of pulp tissue, 43 and 220 of which were more abundant in deciduous and permanent pulp tissues, respectively. qPCR analysis was conducted for eight randomly selected genes, and the findings were consistent with the cDNA microarray results. IHC confirmed that insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) was broadly expressed in deciduous dental pulp tissue, but minimally expressed in permanent dental pulp tissue. Immunohistochemical analysis showed that calbindin 1 (CALB1), leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), and gamma-aminobutyric acid A receptor beta 1 (GABRB1) were abundantly expressed in permanent predentin/odontoblasts, but only minimally expressed in deciduous dental pulp tissue. These results show that deciduous and permanent pulp tissues have different characteristics and gene expression, suggesting that they may have different functions and responses to therapies focused on pulp or dentin regeneration.

  14. Different therapeutic effects of cells derived from human amniotic membrane on premature ovarian aging depend on distinct cellular biological characteristics.

    Science.gov (United States)

    Ding, Chenyue; Li, Hong; Wang, Yun; Wang, Fuxin; Wu, Huihua; Chen, Rulei; Lv, Jinghuan; Wang, Wei; Huang, Boxian

    2017-07-27

    Many reports have shown that various kinds of stem cells have the ability to recover premature ovarian aging (POA) function. Transplantation of human amniotic epithelial cells (hAECs) improves ovarian function damaged by chemotherapy in a mice model. Understanding of how to evaluate the distinct effects of adult stem cells in curing POA and how to choose stem cells in clinical application is lacking. To build a different degrees of POA model, mice were administered different doses of cyclophosphamide: light dose (70 mg/kg, 2 weeks), medium dose (70 mg/kg, 1 week; 120 mg/kg, 1 week), and high dose (120 mg/kg, 2 weeks). Enzyme-linked immunosorbent assay detected serum levels of sex hormones, and hematoxylin and eosin staining allowed follicle counting and showed the ovarian tissue structure. DiIC 18 (5)-DS was employed to label human amniotic mesenchymal stem cells (hAMSCs) and hAECs for detecting the cellular retention time in ovaries by a live imaging system. Proliferation of human ovarian granule cells (ki67, AMH, FSHR, FOXL2, and CYP19A1) and immunological rejection of human peripheral blood mononuclear cells (CD4, CD11b, CD19, and CD56) were measured by flow cytometry (fluorescence-activated cell sorting (FACS)). Distinction of cellular biological characteristics between hAECs and hAMSCs was evaluated, such as collagen secretory level (collagen I, II, III, IV, and VI), telomerase activity, pluripotent markers tested by western blot, expression level of immune molecules (HLA-ABC and HLA-DR) analyzed by FACS, and cytokines (growth factors, chemotactic factors, apoptosis factors, and inflammatory factors) measured by a protein antibody array methodology. After hAMSCs and hAECs were transplanted into a different degrees of POA model, hAMSCs exerted better therapeutic activity on mouse ovarian function in the high-dose administration group, promoting the proliferation rate of ovarian granular cells from premature ovarian failure patients, but also provoking immune

  15. FGF1 protects neuroblastoma SH-SY5Y cells from p53-dependent apoptosis through an intracrine pathway regulated by FGF1 phosphorylation

    Science.gov (United States)

    Pirou, Caroline; Montazer-Torbati, Fatemeh; Jah, Nadège; Delmas, Elisabeth; Lasbleiz, Christelle; Mignotte, Bernard; Renaud, Flore

    2017-01-01

    Neuroblastoma, a sympathetic nervous system tumor, accounts for 15% of cancer deaths in children. In contrast to most human tumors, p53 is rarely mutated in human primary neuroblastoma, suggesting impaired p53 activation in neuroblastoma. Various studies have shown correlations between fgf1 expression levels and both prognosis severity and tumor chemoresistance. As we previously showed that fibroblast growth factor 1 (FGF1) inhibited p53-dependent apoptosis in neuron-like PC12 cells, we initiated the study of the interaction between the FGF1 and p53 pathways in neuroblastoma. We focused on the activity of either extracellular FGF1 by adding recombinant rFGF1 in media, or of intracellular FGF1 by overexpression in human SH-SY5Y and mouse N2a neuroblastoma cell lines. In both cell lines, the genotoxic drug etoposide induced a classical mitochondrial p53-dependent apoptosis. FGF1 was able to inhibit p53-dependent apoptosis upstream of mitochondrial events in SH-SY5Y cells by both extracellular and intracellular pathways. Both rFGF1 addition and etoposide treatment increased fgf1 expression in SH-SY5Y cells. Conversely, rFGF1 or overexpressed FGF1 had no effect on p53-dependent apoptosis and fgf1 expression in neuroblastoma N2a cells. Using different FGF1 mutants (that is, FGF1K132E, FGF1S130A and FGF1S130D), we further showed that the C-terminal domain and phosphorylation of FGF1 regulate its intracrine anti-apoptotic activity in neuroblastoma SH-SY5Y cells. This study provides the first evidence for a role of an intracrine growth factor pathway on p53-dependent apoptosis in neuroblastoma, and could lead to the identification of key regulators involved in neuroblastoma tumor progression and chemoresistance. PMID:29048426

  16. Mdm2 Deficiency Suppresses MYCN-Driven Neuroblastoma Tumorigenesis In Vivo

    Directory of Open Access Journals (Sweden)

    Zaowen Chen

    2009-08-01

    Full Text Available Neuroblastoma is derived from neural crest precursor components of the peripheral sympathetic nervous system and accounts for more than 15% of all pediatric cancer deaths. A clearer understanding of the molecular basis of neuroblastoma is required for novel therapeutic approaches to improve morbidity and mortality. Neuroblastoma is uniformly p53 wild type at diagnosis and must overcome p53-mediated tumor suppression during pathogenesis. Amplification of the MYCN oncogene correlates with the most clinically aggressive form of the cancer, and MDM2, a primary inhibitor of the p53 tumor suppressor, is a direct transcriptional target of, and positively regulated by, both MYCN and MYCC. We hypothesize that MDM2 contributes to MYCN-driven tumorigenesis helping to ameliorate p53-dependent apoptotic oncogenic stress during tumor initiation and progression. To study the interaction of MYCN and MDM2, we generated an Mdm2 haploinsufficient transgenic animal model of neuroblastoma. In Mdm2+/-MYCN transgenics, tumor latency and animal survival are remarkably extended, whereas tumor incidence and growth are reduced. Analysis of the Mdm2/p53 pathway reveals remarkable p53 stabilization counterbalanced by epigenetic silencing of the p19Arf gene in the Mdm2 haploinsufficient tumors. In human neuroblastoma xenograft models, conditional small interfering RNA-mediated knockdown of MDM2 in cells expressing wild-type p53 dramatically suppresses tumor growth in a p53-dependent manner. In summary, we provided evidence for a crucial role for direct inhibition of p53 by MDM2 and suppression of the p19ARF/p53 axis in neuroblastoma tumorigenesis, supporting the development of therapies targeting these pathways.

  17. Chemotherapy-Induced Apoptosis in a Transgenic Model of Neuroblastoma Proceeds Through p53 Induction

    Directory of Open Access Journals (Sweden)

    Louis Chesler

    2008-11-01

    Full Text Available Chemoresistance in neuroblastoma is a significant issue complicating treatment of this common pediatric solid tumor. MYCN-amplified neuroblastomas are infrequently mutated at p53 and are chemosensitive at diagnosis but acquire p53 mutations and chemoresistance with relapse. Paradoxically, Myc-driven transformation is thought to require apoptotic blockade. We used the TH-MYCN transgenic murine model to examine the role of p53-driven apoptosis on neuroblastoma tumorigenesis and the response to chemotherapy. Tumors formed with high penetrance and low latency in p53-haploinsufficient TH-MYCN mice. Cyclophosphamide (CPM induced a complete remission in p53 wild type TH-MYCN tumors, mirroring the sensitivity of childhood neuroblastoma to this agent. Treated tumors showed a prominent proliferation block, induction of p53 protein, and massive apoptosis proceeding through induction of the Bcl-2 homology domain-3-only proteins PUMA and Bim, leading to the activation of Bax and cleavage of caspase-3 and -9. Apoptosis induced by CPM was reduced in p53-haploinsufficient tumors. Treatment of MYCN-expressing human neuroblastoma cell lines with CPM induced apoptosis that was suppressible by siRNA to p53. Taken together, the results indicate that the p53 pathway plays a significant role in opposing MYCN-driven oncogenesis in a mouse model of neuroblastoma and that basal inactivation of the pathway is achieved in progressing tumors. This, in part, explains the striking sensitivity of such tumors to chemotoxic agents that induce p53-dependent apoptosis and is consistent with clinical observations that therapy-associated mutations in p53 are a likely contributor to the biology of tumors at relapse and secondarily mediate resistance to therapy.

  18. Current strategy for the imaging of neuroblastoma

    International Nuclear Information System (INIS)

    Brisse, H.; Neuenschwander, S.; Edeline, V.; Michon, J.; Zucker, J.M.; Couanet, D.

    2001-01-01

    Advances in the management of neuroblastoma lead radiologists and nuclear medicine specialists to optimize their procedures in order to propose a rational use of their techniques, adjusted to the various clinical presentations and to therapeutic management. The aim of this paper is to assess the imaging procedures for the diagnosis and follow-up of neuroblastoma in children according to current therapeutic European protocols. An imaging strategy at diagnosis is first proposed: optimal assessment of local extension of the primary tumour is made with MRI, or spiral-CT when MRI is not available, for all locations except for abdominal tumours for which CT remains the best imaging modality. Metastatic extension is assessed with mlBG scan and liver sonography. Indications for bone metastasis evaluation with either radiological or radionuclide techniques are detailed. Imaging follow-up during treatment for metastatic or unresectable tumours is described. A check-list of radiological main points to be evaluated before surgery is proposed for localized neuroblastoma. The imaging strategy for the diagnosis of 'occult' neuroblastoma is considered. Finally, we explain the management of neuroblastoma detected during the prenatal or neonatal period. (authors)

  19. Diagnosis and treatment of neuroblastoma using metaiodobenzylguanidine

    International Nuclear Information System (INIS)

    Edeling, C.J.; Frederiksen, P.B.; Kamper, J.; Jeppesen, P.

    1987-01-01

    Neuroblastoma is a lethal and not uncommon tumor in childhood. Early detection and display of the spread of the tumor is highly desirable for proper treatment. Nine children suspected of having neuroblastomas were examined by I-131 metaiodobenzylguanidine (I-131 MIBG) imaging. In two recent studies I-123 metaiodobenzylguanidine (I-123 MIBG) was used. A primary adrenal neuroblastoma was correctly identified in three cases. In two patients additional tumor sites were found. In one patient, who was in complete remission, no pathologic accumulation of I-131 MIBG was found. I-131 MIBG images were also normal in four patients with other types of neoplastic diseases. A boy with multiple metastases was treated with 100 mCi of I-131 MIBG. He developed transient gastrointestinal illness and there was no regression of the tumor deposits. In one girl with a large adrenal neuroblastoma high uptake of I-131 MIBG was observed. She received two therapy doses of I-131 MIBG (35 mCi and 75 mCi) with curative intention giving a total absorbed dose in the tumor of approximately 76 Gy. In spite of high retention of radioactivity in the tumor, regression did not occur, but her general condition was improved. In the present study, images of superior quality were obtained with I-123 MIBG imaging. It is concluded that imaging using I-131 MIBG or I-123 MIBG should be used in both the initial evaluation and the follow-up of children with neuroblastoma

  20. Knockdown of astrocyte elevated gene-1 inhibits proliferation and enhancing chemo-sensitivity to cisplatin or doxorubicin in neuroblastoma cells

    Directory of Open Access Journals (Sweden)

    Xie Li

    2009-02-01

    Full Text Available Abstract Background Astrocyte elevated gene-1 (AEG-1 was originally characterized as a HIV-1-inducible gene in primary human fetal astrocyte. Recent studies highlight a potential role of AEG-1 in promoting tumor progression and metastasis. The aim of this study was to investigate if AEG-1 serves as a potential therapeutic target of human neuroblastoma. Methods We employed RNA interference to reduce AEG-1 expression in human neuroblastoma cell lines and analyzed their phenotypic changes. Results We found that the knockdown of AEG-1 expression in human neuroblastoma cells significantly inhibited cell proliferation and apoptosis. The specific downregulation induced cell arrest in the G0/G1 phase of cell cycle. In the present study, we also observed a significant enhancement of chemo-sensitivity to cisplatin and doxorubicin by knockdown of AEG-1. Conclusion Our study suggests that overexpressed AEG-1 enhance the tumorogenic properties of neuroblastoma cells. The inhibition of AEG-1 expression could be a new adjuvant therapy for neuroblastoma.

  1. Diversity of human lip prints: a collaborative study of ethnically distinct world populations.

    Science.gov (United States)

    Sharma, Namita Alok; Eldomiaty, Magda Ahmed; Gutiérrez-Redomero, Esperanza; George, Adekunle Olufemi; Garud, Rajendra Somnath; Sánchez-Andrés, Angeles; Almasry, Shaima Mohamed; Rivaldería, Noemí; Al-Gaidi, Sami Awda; Ilesanmi, Toyosi

    2014-01-01

    Cheiloscopy is a comparatively recent counterpart to the long established dactyloscopic studies. Ethnic variability of these lip groove patterns has not yet been explored. This study was a collaborative effort aimed at establishing cheiloscopic variations amongst modern human populations from four geographically and culturally far removed nations: India, Saudi Arabia, Spain and Nigeria. Lip prints from a total of 754 subjects were collected and each was divided into four equal quadrants. The patterns were classified into six regular types (A-F), while some patterns which could not be fitted into the regular ones were segregated into G groups (G-0, G-1, G-2). Furthermore, co-dominance of more than one pattern type in a single quadrant forced us to identify the combination (COM, G-COM) patterns. The remarkable feature noted after compilation of the data included pattern C (a bifurcate/branched prototype extending the entire height of the lip) being a frequent feature of the lips of all the populations studied, save for the Nigerian population in which it was completely absent and which showed a tendency for pattern A (a vertical linear groove) and a significantly higher susceptibility for combination (COM) patterns. Chi-square test and correspondence analysis applied to the frequency of patterns appearing in the defined topographical areas indicated a significant variation for the populations studied.

  2. Cryo-EM structures of the human endolysosomal TRPML3 channel in three distinct states.

    Science.gov (United States)

    Zhou, Xiaoyuan; Li, Minghui; Su, Deyuan; Jia, Qi; Li, Huan; Li, Xueming; Yang, Jian

    2017-12-01

    TRPML3 channels are mainly localized to endolysosomes and play a critical role in the endocytic pathway. Their dysfunction causes deafness and pigmentation defects in mice. TRPML3 activity is inhibited by low endolysosomal pH. Here we present cryo-electron microscopy (cryo-EM) structures of human TRPML3 in the closed, agonist-activated, and low-pH-inhibited states, with resolutions of 4.06, 3.62, and 4.65 Å, respectively. The agonist ML-SA1 lodges between S5 and S6 and opens an S6 gate. A polycystin-mucolipin domain (PMD) forms a luminal cap. S1 extends into this cap, forming a 'gating rod' that connects directly to a luminal pore loop, which undergoes dramatic conformational changes in response to low pH. S2 extends intracellularly and interacts with several intracellular regions to form a 'gating knob'. These unique structural features, combined with the results of electrophysiological studies, indicate a new mechanism by which luminal pH and other physiological modulators such as PIP 2 regulate TRPML3 by changing S1 and S2 conformations.

  3. Distinct cell stress responses induced by ATP restriction in quiescent human fibroblasts

    Directory of Open Access Journals (Sweden)

    Nirupama Yalamanchili

    2016-10-01

    Full Text Available Quiescence is the prevailing state of many cell types under homeostatic conditions. Yet, surprisingly little is known about how quiescent cells respond to energetic and metabolic challenges. To better understand compensatory responses of quiescent cells to metabolic stress, we established, in human primary dermal fibroblasts, an experimental ‘energy restriction’ model. Quiescence was achieved by short-term culture in serum-deprived media and ATP supply restricted using a combination of glucose transport inhibitors and mitochondrial uncouplers. In aggregate, these measures led to markedly reduced intracellular ATP levels while not compromising cell viability over the observation period of 48 h. Analysis of the transcription factor landscape induced by this treatment revealed alterations in several signal transduction nodes beyond the expected biosynthetic adaptations. These included increased abundance of NF-κB regulated transcription factors and altered transcription factor subsets regulated by Akt and p53. The observed changes in gene regulation and corresponding alterations in key signaling nodes are likely to contribute to cell survival at intracellular ATP concentrations substantially below those achieved by growth factor deprivation alone. This experimental model provides a benchmark for the investigation of cell survival pathways and related molecular targets that are associated with restricted energy supply associated with biological aging and metabolic diseases.

  4. Classic and Golli Myelin Basic Protein have distinct developmental trajectories in human visual cortex.

    Science.gov (United States)

    Siu, Caitlin R; Balsor, Justin L; Jones, David G; Murphy, Kathryn M

    2015-01-01

    Traditionally, myelin is viewed as insulation around axons, however, more recent studies have shown it also plays an important role in plasticity, axonal metabolism, and neuroimmune signaling. Myelin is a complex multi-protein structure composed of hundreds of proteins, with Myelin Basic Protein (MBP) being the most studied. MBP has two families: Classic-MBP that is necessary for activity driven compaction of myelin around axons, and Golli-MBP that is found in neurons, oligodendrocytes, and T-cells. Furthermore, Golli-MBP has been called a "molecular link" between the nervous and immune systems. In visual cortex specifically, myelin proteins interact with immune processes to affect experience-dependent plasticity. We studied myelin in human visual cortex using Western blotting to quantify Classic- and Golli-MBP expression in post-mortem tissue samples ranging in age from 20 days to 80 years. We found that Classic- and Golli-MBP have different patterns of change across the lifespan. Classic-MBP gradually increases to 42 years and then declines into aging. Golli-MBP has early developmental changes that are coincident with milestones in visual system sensitive period, and gradually increases into aging. There are three stages in the balance between Classic- and Golli-MBP expression, with Golli-MBP dominating early, then shifting to Classic-MBP, and back to Golli-MBP in aging. Also Golli-MBP has a wave of high inter-individual variability during childhood. These results about cortical MBP expression are timely because they compliment recent advances in MRI techniques that produce high resolution maps of cortical myelin in normal and diseased brain. In addition, the unique pattern of Golli-MBP expression across the lifespan suggests that it supports high levels of neuroimmune interaction in cortical development and in aging.

  5. Distinct Trypanosoma cruzi isolates induce activation and apoptosis of human neutrophils.

    Directory of Open Access Journals (Sweden)

    Luísa M D Magalhães

    Full Text Available Neutrophils are critical players in the first line of defense against pathogens and in the activation of subsequent cellular responses. We aimed to determine the effects of the interaction of Trypanosoma cruzi with human neutrophils, using isolates of the two major discrete type units (DTUs associated with Chagas' disease in Latin America (clone Col1.7G2 and Y strain, DTU I and II, respectively. Thus, we used CFSE-stained trypomastigotes to measure neutrophil-T. cruzi interaction, neutrophil activation, cytokine expression and death, after infection with Col1.7G2 and Y strain. Our results show that the frequency of CFSE+ neutrophils, indicative of interaction, and CFSE intensity on a cell-per-cell basis were similar when comparing Col1.7G2 and Y strains. Interaction with T. cruzi increased neutrophil activation, as measured by CD282, CD284, TNF and IL-12 expression, although at different levels between the two strains. No change in IL-10 expression was observed after interaction of neutrophils with either strain. We observed that exposure to Y and Col1.7G2 caused marked neutrophil death. This was specific to neutrophils, since interaction of either strain with monocytes did not cause death. Our further analysis showed that neutrophil death was a result of apoptosis, which was associated with an upregulation of TNF-receptor, TNF and FasLigand, but not of Fas. Induction of TNF-associated neutrophil apoptosis by the different T. cruzi isolates may act as an effective common mechanism to decrease the host's immune response and favor parasite survival.

  6. DNA Repair in Human Pluripotent Stem Cells Is Distinct from That in Non-Pluripotent Human Cells

    Science.gov (United States)

    Luo, Li Z.; Park, Sang-Won; Bates, Steven E.; Zeng, Xianmin; Iverson, Linda E.; O'Connor, Timothy R.

    2012-01-01

    The potential for human disease treatment using human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells (iPSCs), also carries the risk of added genomic instability. Genomic instability is most often linked to DNA repair deficiencies, which indicates that screening/characterization of possible repair deficiencies in pluripotent human stem cells should be a necessary step prior to their clinical and research use. In this study, a comparison of DNA repair pathways in pluripotent cells, as compared to those in non-pluripotent cells, demonstrated that DNA repair capacities of pluripotent cell lines were more heterogeneous than those of differentiated lines examined and were generally greater. Although pluripotent cells had high DNA repair capacities for nucleotide excision repair, we show that ultraviolet radiation at low fluxes induced an apoptotic response in these cells, while differentiated cells lacked response to this stimulus, and note that pluripotent cells had a similar apoptotic response to alkylating agent damage. This sensitivity of pluripotent cells to damage is notable since viable pluripotent cells exhibit less ultraviolet light-induced DNA damage than do differentiated cells that receive the same flux. In addition, the importance of screening pluripotent cells for DNA repair defects was highlighted by an iPSC line that demonstrated a normal spectral karyotype, but showed both microsatellite instability and reduced DNA repair capacities in three out of four DNA repair pathways examined. Together, these results demonstrate a need to evaluate DNA repair capacities in pluripotent cell lines, in order to characterize their genomic stability, prior to their pre-clinical and clinical use. PMID:22412831

  7. Co-existence of Distinct Prion Types Enables Conformational Evolution of Human PrPSc by Competitive Selection*

    Science.gov (United States)

    Haldiman, Tracy; Kim, Chae; Cohen, Yvonne; Chen, Wei; Blevins, Janis; Qing, Liuting; Cohen, Mark L.; Langeveld, Jan; Telling, Glenn C.; Kong, Qingzhong; Safar, Jiri G.

    2013-01-01

    The unique phenotypic characteristics of mammalian prions are thought to be encoded in the conformation of pathogenic prion proteins (PrPSc). The molecular mechanism responsible for the adaptation, mutation, and evolution of prions observed in cloned cells and upon crossing the species barrier remains unsolved. Using biophysical techniques and conformation-dependent immunoassays in tandem, we isolated two distinct populations of PrPSc particles with different conformational stabilities and aggregate sizes, which frequently co-exist in the most common human prion disease, sporadic Creutzfeldt-Jakob disease. The protein misfolding cyclic amplification replicates each of the PrPSc particle types independently and leads to the competitive selection of those with lower initial conformational stability. In serial propagation with a nonglycosylated mutant PrPC substrate, the dominant PrPSc conformers are subject to further evolution by natural selection of the subpopulation with the highest replication rate due to its lowest stability. Cumulatively, the data show that sporadic Creutzfeldt-Jakob disease PrPSc is not a single conformational entity but a dynamic collection of two distinct populations of particles. This implies the co-existence of different prions, whose adaptation and evolution are governed by the selection of progressively less stable, faster replicating PrPSc conformers. PMID:23974118

  8. The human Vδ2+ T-cell compartment comprises distinct innate-like Vγ9+ and adaptive Vγ9- subsets.

    Science.gov (United States)

    Davey, Martin S; Willcox, Carrie R; Hunter, Stuart; Kasatskaya, Sofya A; Remmerswaal, Ester B M; Salim, Mahboob; Mohammed, Fiyaz; Bemelman, Frederike J; Chudakov, Dmitriy M; Oo, Ye H; Willcox, Benjamin E

    2018-05-02

    Vδ2 + T cells form the predominant human γδ T-cell population in peripheral blood and mediate T-cell receptor (TCR)-dependent anti-microbial and anti-tumour immunity. Here we show that the Vδ2 + compartment comprises both innate-like and adaptive subsets. Vγ9 + Vδ2 + T cells display semi-invariant TCR repertoires, featuring public Vγ9 TCR sequences equivalent in cord and adult blood. By contrast, we also identify a separate, Vγ9 - Vδ2 + T-cell subset that typically has a CD27 hi CCR7 + CD28 + IL-7Rα + naive-like phenotype and a diverse TCR repertoire, however in response to viral infection, undergoes clonal expansion and differentiation to a CD27 lo CD45RA + CX 3 CR1 + granzymeA/B + effector phenotype. Consistent with a function in solid tissue immunosurveillance, we detect human intrahepatic Vγ9 - Vδ2 + T cells featuring dominant clonal expansions and an effector phenotype. These findings redefine human γδ T-cell subsets by delineating the Vδ2 + T-cell compartment into innate-like (Vγ9 + ) and adaptive (Vγ9 - ) subsets, which have distinct functions in microbial immunosurveillance.

  9. Vitamin K3 analogs induce selective tumor cytotoxicity in neuroblastoma.

    Science.gov (United States)

    Kitano, Toru; Yoda, Hiroyuki; Tabata, Keiichi; Miura, Motofumi; Toriyama, Masaharu; Motohashi, Shigeyasu; Suzuki, Takashi

    2012-01-01

    We investigated the cytotoxicity of eight vitamin K3 (VK3) analogs against neuroblastoma cell lines (IMR-32, LA-N-1, NB-39, and SK-N-SH) and normal cell lines (human umbilical vein endothelial cells (HUVEC) and human dermal fibroblasts (HDF)) using a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. 2-[(2-Methoxy)ethylthio]-3-methyl-1,4-naphthoquinone (VK3-OCH(3)) showed especially potent cytotoxic activities against neuroblastoma cells compared with normal cells. In a Hoechst 33342 staining experiment, apoptotic morphologies characterized by cell shrinkage, nuclear condensation, and nuclear fragmentation were observed in IMR-32 and LA-N-1 cells after 48 h of treatment with 10(-5) M of VK3-OCH(3). To clarify the molecular mechanisms of apoptosis induced by VK3-OCH(3), we examined the expression of apoptosis related proteins using a Proteome Profiler Array and western blotting. Heme oxygenase (HO)-1 was remarkably increased by VK3-OCH(3) compared with the control (173% in IMR-32 and 170% in LA-N-1 at 24 h). Moreover, caveolin-1 was induced by VK3-OCH(3) at 48 h. In addition, VK3-OCH(3) arrested the cell cycle at the G2/M phase in IMR-32 cells. These results suggest that VK3-OCH(3) exhibited a selective antitumor activity via HO-1-related mechanisms.

  10. The pre-rRNA processing factor DEF is rate limiting for the pathogenesis of MYCN-driven neuroblastoma.

    Science.gov (United States)

    Tao, T; Sondalle, S B; Shi, H; Zhu, S; Perez-Atayde, A R; Peng, J; Baserga, S J; Look, A T

    2017-07-06

    The nucleolar factor, digestive organ expansion factor (DEF), has a key role in ribosome biogenesis, functioning in pre-ribosomal RNA (pre-rRNA) processing as a component of the small ribosomal subunit (SSU) processome. Here we show that the peripheral sympathetic nervous system (PSNS) is very underdeveloped in def-deficient zebrafish, and that def haploinsufficiency significantly decreases disease penetrance and tumor growth rate in a MYCN-driven transgenic zebrafish model of neuroblastoma that arises in the PSNS. Consistent with these findings, DEF is highly expressed in human neuroblastoma, and its depletion in human neuroblastoma cell lines induces apoptosis. Interestingly, overexpression of MYCN in zebrafish and in human neuroblastoma cells results in the appearance of intermediate pre-rRNAs species that reflect the processing of pre-rRNAs through Pathway 2, a pathway that processes pre-rRNAs in a different temporal order than the more often used Pathway 1. Our results indicate that DEF and possibly other components of the SSU processome provide a novel site of vulnerability in neuroblastoma cells that could be exploited for targeted therapy.

  11. MYCN-driven regulatory mechanisms controlling LIN28B in neuroblastoma

    Science.gov (United States)

    Beckers, Anneleen; Van Peer, Gert; Carter, Daniel R.; Gartlgruber, Moritz; Herrmann, Carl; Agarwal, Saurabh; Helsmoortel, Hetty H.; Althoff, Kristina; Molenaar, Jan J.; Cheung, Belamy B.; Schulte, Johannes H.; Benoit, Yves; Shohet, Jason M.; Westermann, Frank; Marshall, Glenn M.; Vandesompele, Jo; De Preter, Katleen; Speleman, Frank

    2016-01-01

    LIN28B has been identified as an oncogene in various tumor entities, including neuroblastoma, a childhood cancer that originates from neural crest-derived cells, and is characterized by amplification of the MYCN oncogene. Recently, elevated LIN28B expression levels were shown to contribute to neuroblastoma tumorigenesis via let-7 dependent de-repression of MYCN. However, additional insight in the regulation of LIN28B in neuroblastoma is lacking. Therefore, we have performed a comprehensive analysis of the regulation of LIN28B in neuroblastoma, with a specific focus on the contribution of miRNAs. We show that MYCN regulates LIN28B expression in neuroblastoma tumors via two distinct parallel mechanisms. First, through an unbiased LIN28B-3′UTR reporter screen, we found that miR-26a-5p and miR-26b-5p regulate LIN28B expression. Next, we demonstrated that MYCN indirectly affects the expression of miR-26a-5p, and hence regulates LIN28B, therefor establishing a MYCN-miR-26a-5p-LIN28B regulatory axis. Second, we provide evidence that MYCN regulates LIN28B expression via interaction with the LIN28B promotor, establishing a direct MYCN-LIN28B regulatory axis. We believe that these findings mark LIN28B as an important effector of the MYCN oncogenic phenotype and underlines the importance of MYCN-regulated miRNAs in establishing the MYCN-driven oncogenic process. PMID:26123663

  12. Human Na(v)1.8: enhanced persistent and ramp currents contribute to distinct firing properties of human DRG neurons.

    Science.gov (United States)

    Han, Chongyang; Estacion, Mark; Huang, Jianying; Vasylyev, Dymtro; Zhao, Peng; Dib-Hajj, Sulayman D; Waxman, Stephen G

    2015-05-01

    Although species-specific differences in ion channel properties are well-documented, little has been known about the properties of the human Nav1.8 channel, an important contributor to pain signaling. Here we show, using techniques that include voltage clamp, current clamp, and dynamic clamp in dorsal root ganglion (DRG) neurons, that human Na(v)1.8 channels display slower inactivation kinetics and produce larger persistent current and ramp current than previously reported in other species. DRG neurons expressing human Na(v)1.8 channels unexpectedly produce significantly longer-lasting action potentials, including action potentials with half-widths in some cells >10 ms, and increased firing frequency compared with the narrower and usually single action potentials generated by DRG neurons expressing rat Na(v)1.8 channels. We also show that native human DRG neurons recapitulate these properties of Na(v)1.8 current and the long-lasting action potentials. Together, our results demonstrate strikingly distinct properties of human Na(v)1.8, which contribute to the firing properties of human DRG neurons.

  13. Distinct pools of cdc25C are phosphorylated on specific TP sites and differentially localized in human mitotic cells.

    Directory of Open Access Journals (Sweden)

    Celine Franckhauser

    Full Text Available BACKGROUND: The dual specificity phosphatase cdc25C was the first human cdc25 family member found to be essential in the activation of cdk1/cyclin B1 that takes place at the entry into mitosis. Human cdc25C is phosphorylated on Proline-dependent SP and TP sites when it becomes active at mitosis and the prevalent model is that this phosphorylation/activation of cdc25C would be part of an amplification loop with cdk1/cyclin B1. METHODOLOGY/PRINCIPAL FINDINGS: Using highly specific antibodies directed against cdc25C phospho-epitopes, pT67 and pT130, we show here that these two phospho-forms of cdc25C represent distinct pools with differential localization during human mitosis. Phosphorylation on T67 occurs from prophase and the cdc25C-pT67 phospho-isoform closely localizes with condensed chromosomes throughout mitosis. The phospho-T130 form of cdc25C arises in late G2 and associates predominantly with centrosomes from prophase to anaphase B where it colocalizes with Plk1. As shown by immunoprecipitation of each isoform, these two phospho-forms are not simultaneously phosphorylated on the other mitotic TP sites or associated with one another. Phospho-T67 cdc25C co-precipitates with MPM2-reactive proteins while pT130-cdc25C is associated with Plk1. Interaction and colocalization of phosphoT130-cdc25C with Plk1 demonstrate in living cells, that the sequence around pT130 acts as a true Polo Box Domain (PBD binding site as previously identified from in vitro peptide screening studies. Overexpression of non-phosphorylatable alanine mutant forms for each isoform, but not wild type cdc25C, strongly impairs mitotic progression showing the functional requirement for each site-specific phosphorylation of cdc25C at mitosis. CONCLUSIONS/SIGNIFICANCE: These results show for the first time that in human mitosis, distinct phospho-isoforms of cdc25C exist with different localizations and interacting partners, thus implying that the long-standing model of a cdc25C

  14. Large-scale expression analysis reveals distinct microRNA profiles at different stages of human neurodevelopment.

    Directory of Open Access Journals (Sweden)

    Brandon Smith

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are short non-coding RNAs predicted to regulate one third of protein coding genes via mRNA targeting. In conjunction with key transcription factors, such as the repressor REST (RE1 silencing transcription factor, miRNAs play crucial roles in neurogenesis, which requires a highly orchestrated program of gene expression to ensure the appropriate development and function of diverse neural cell types. Whilst previous studies have highlighted select groups of miRNAs during neural development, there remains a need for amenable models in which miRNA expression and function can be analyzed over the duration of neurogenesis. PRINCIPAL FINDINGS: We performed large-scale expression profiling of miRNAs in human NTera2/D1 (NT2 cells during retinoic acid (RA-induced transition from progenitors to fully differentiated neural phenotypes. Our results revealed dynamic changes of miRNA patterns, resulting in distinct miRNA subsets that could be linked to specific neurodevelopmental stages. Moreover, the cell-type specific miRNA subsets were very similar in NT2-derived differentiated cells and human primary neurons and astrocytes. Further analysis identified miRNAs as putative regulators of REST, as well as candidate miRNAs targeted by REST. Finally, we confirmed the existence of two predicted miRNAs; pred-MIR191 and pred-MIR222 associated with SLAIN1 and FOXP2, respectively, and provided some evidence of their potential co-regulation. CONCLUSIONS: In the present study, we demonstrate that regulation of miRNAs occurs in precise patterns indicative of their roles in cell fate commitment, progenitor expansion and differentiation into neurons and glia. Furthermore, the similarity between our NT2 system and primary human cells suggests their roles in molecular pathways critical for human in vivo neurogenesis.

  15. Aging and cytomegalovirus (CMV) infection differentially and jointly affect distinct circulating T cell subsets in humans1

    Science.gov (United States)

    Wertheimer, Anne M.; Bennett, Michael S.; Park, Byung; Uhrlaub, Jennifer L.; Martinez, Carmine; Pulko, Vesna; Currier, Noreen L.; Nikolich-Zugich, Dragana; Kaye, Jeffrey; Nikolich-Zugich, Janko

    2014-01-01

    The impact of intrinsic aging upon human peripheral blood T-cell subsets remains incompletely quantified and understood. This impact must be distinguished from the influence of latent persistent microorganisms, particularly cytomegalovirus (CMV), which has been associated with age-related changes in the T cell pool. In a cross-sectional cohort of 152 CMV-negative individuals, aged 21–101 years, we found that aging correlated strictly to an absolute loss of naïve CD8, but not CD4, T cells, but, contrary to many reports, did not lead to an increase in memory T cell numbers. The loss of naïve CD8 T cells was not altered by CMV in 239 subjects (range 21–96 years) but the decline in CD4+ naïve cells showed significance in CMV+ individuals. These individuals also exhibited an absolute increase in the effector/effector memory CD4+ and CD8+ cells with age. That increase was seen mainly, if not exclusively, in older subjects with elevated anti-CMV Ab titers, suggesting that efficacy of viral control over time may determine the magnitude of CMV impact upon T cell memory, and perhaps upon immune defense. These findings provide important new insights into the age-related changes in the peripheral blood pool of older adults, demonstrating that aging and CMV exert both distinct and joint influence upon blood T cell homeostasis in humans. PMID:24501199

  16. Small protease sensitive oligomers of PrPSc in distinct human prions determine conversion rate of PrP(C.

    Directory of Open Access Journals (Sweden)

    Chae Kim

    Full Text Available The mammalian prions replicate by converting cellular prion protein (PrP(C into pathogenic conformational isoform (PrP(Sc. Variations in prions, which cause different disease phenotypes, are referred to as strains. The mechanism of high-fidelity replication of prion strains in the absence of nucleic acid remains unsolved. We investigated the impact of different conformational characteristics of PrP(Sc on conversion of PrP(C in vitro using PrP(Sc seeds from the most frequent human prion disease worldwide, the Creutzfeldt-Jakob disease (sCJD. The conversion potency of a broad spectrum of distinct sCJD prions was governed by the level, conformation, and stability of small oligomers of the protease-sensitive (s PrP(Sc. The smallest most potent prions present in sCJD brains were composed only of∼20 monomers of PrP(Sc. The tight correlation between conversion potency of small oligomers of human sPrP(Sc observed in vitro and duration of the disease suggests that sPrP(Sc conformers are an important determinant of prion strain characteristics that control the progression rate of the disease.

  17. Human phenotypically distinct TGFBI corneal dystrophies are linked to the stability of the fourth FAS1 domain of TGFBIp

    DEFF Research Database (Denmark)

    Runager, Kasper; Basaiawmoit, Rajiv Vaid; Deva, Taru

    2011-01-01

    Mutations in the human TGFBI gene encoding TGFBIp have been linked to protein deposits in the cornea leading to visual impairment. The protein consists of an N-terminal Cys-rich EMI domain and four consecutive fasciclin 1 (FAS1) domains. We have compared the stabilities of wild-type (WT) human...... TGFBIp and six mutants known to produce phenotypically distinct deposits in the cornea. Amino acid substitutions in the first FAS1 (FAS1-1) domain (R124H, R124L, and R124C) did not alter the stability. However, substitutions within the fourth FAS1 (FAS1-4) domain (A546T, R555Q, and R555W) affected...... the overall stability of intact TGFBIp revealing the following stability ranking R555W>WT>R555Q>A546T. Significantly, the stability ranking of the isolated FAS1-4 domains mirrored the behavior of the intact protein. In addition, it was linked to the aggregation propensity as the least stable mutant (A546T...

  18. Metformin inhibition of neuroblastoma cell proliferation is differently modulated by cell differentiation induced by retinoic acid or overexpression of NDM29 non-coding RNA

    OpenAIRE

    Costa, Delfina; Gigoni, Arianna; Würth, Roberto; Cancedda, Ranieri; Florio, Tullio; Pagano, Aldo

    2014-01-01

    Background Metformin is a widely used oral hypoglycemizing agent recently proposed as potential anti-cancer drug. In this study we report the antiproliferative effect of metformin treatment in a high risk neuroblastoma cell model, focusing on possible effects associated to different levels of differentiation and/or tumor initiating potential. Methods Antiproliferative and cytotoxic effects of metformin were tested in human SKNBE2 and SH-SY5Y neuroblastoma cell lines and in SKNBE2 cells in whi...

  19. Two distinct variants of simian foamy virus in naturally infected mandrills (Mandrillus sphinx and cross-species transmission to humans

    Directory of Open Access Journals (Sweden)

    Marx Preston

    2010-12-01

    Full Text Available Abstract Background Each of the pathogenic human retroviruses (HIV-1/2 and HTLV-1 has a nonhuman primate counterpart, and the presence of these retroviruses in humans results from interspecies transmission. The passage of another simian retrovirus, simian foamy virus (SFV, from apes or monkeys to humans has been reported. Mandrillus sphinx, a monkey species living in central Africa, is naturally infected with SFV. We evaluated the natural history of the virus in a free-ranging colony of mandrills and investigated possible transmission of mandrill SFV to humans. Results We studied 84 semi-free-ranging captive mandrills at the Primate Centre of the Centre International de Recherches Médicales de Franceville (Gabon and 15 wild mandrills caught in various areas of the country. The presence of SFV was also evaluated in 20 people who worked closely with mandrills and other nonhuman primates. SFV infection was determined by specific serological (Western blot and molecular (nested PCR of the integrase region in the polymerase gene assays. Seropositivity for SFV was found in 70/84 (83% captive and 9/15 (60% wild-caught mandrills and in 2/20 (10% humans. The 425-bp SFV integrase fragment was detected in peripheral blood DNA from 53 captive and 8 wild-caught mandrills and in two personnel. Sequence and phylogenetic studies demonstrated the presence of two distinct strains of mandrill SFV, one clade including SFVs from mandrills living in the northern part of Gabon and the second consisting of SFV from animals living in the south. One man who had been bitten 10 years earlier by a mandrill and another bitten 22 years earlier by a macaque were found to be SFV infected, both at the Primate Centre. The second man had a sequence close to SFVmac sequences. Comparative sequence analysis of the virus from the first man and from the mandrill showed nearly identical sequences, indicating genetic stability of SFV over time. Conclusion Our results show a high

  20. Two distinct variants of simian foamy virus in naturally infected mandrills (Mandrillus sphinx) and cross-species transmission to humans.

    Science.gov (United States)

    Mouinga-Ondémé, Augustin; Betsem, Edouard; Caron, Mélanie; Makuwa, Maria; Sallé, Bettina; Renault, Noemie; Saib, Ali; Telfer, Paul; Marx, Preston; Gessain, Antoine; Kazanji, Mirdad

    2010-12-14

    Each of the pathogenic human retroviruses (HIV-1/2 and HTLV-1) has a nonhuman primate counterpart, and the presence of these retroviruses in humans results from interspecies transmission. The passage of another simian retrovirus, simian foamy virus (SFV), from apes or monkeys to humans has been reported. Mandrillus sphinx, a monkey species living in central Africa, is naturally infected with SFV. We evaluated the natural history of the virus in a free-ranging colony of mandrills and investigated possible transmission of mandrill SFV to humans. We studied 84 semi-free-ranging captive mandrills at the Primate Centre of the Centre International de Recherches Médicales de Franceville (Gabon) and 15 wild mandrills caught in various areas of the country. The presence of SFV was also evaluated in 20 people who worked closely with mandrills and other nonhuman primates. SFV infection was determined by specific serological (Western blot) and molecular (nested PCR of the integrase region in the polymerase gene) assays. Seropositivity for SFV was found in 70/84 (83%) captive and 9/15 (60%) wild-caught mandrills and in 2/20 (10%) humans. The 425-bp SFV integrase fragment was detected in peripheral blood DNA from 53 captive and 8 wild-caught mandrills and in two personnel. Sequence and phylogenetic studies demonstrated the presence of two distinct strains of mandrill SFV, one clade including SFVs from mandrills living in the northern part of Gabon and the second consisting of SFV from animals living in the south. One man who had been bitten 10 years earlier by a mandrill and another bitten 22 years earlier by a macaque were found to be SFV infected, both at the Primate Centre. The second man had a sequence close to SFVmac sequences. Comparative sequence analysis of the virus from the first man and from the mandrill showed nearly identical sequences, indicating genetic stability of SFV over time. Our results show a high prevalence of SFV infection in a semi-free-ranging colony

  1. PD-L1 Is a Therapeutic Target of the Bromodomain Inhibitor JQ1 and, Combined with HLA Class I, a Promising Prognostic Biomarker in Neuroblastoma.

    Science.gov (United States)

    Melaiu, Ombretta; Mina, Marco; Chierici, Marco; Boldrini, Renata; Jurman, Giuseppe; Romania, Paolo; D'Alicandro, Valerio; Benedetti, Maria C; Castellano, Aurora; Liu, Tao; Furlanello, Cesare; Locatelli, Franco; Fruci, Doriana

    2017-08-01

    Purpose: This study sought to evaluate the expression of programmed cell death-ligand-1 (PD-L1) and HLA class I on neuroblastoma cells and programmed cell death-1 (PD-1) and lymphocyte activation gene 3 (LAG3) on tumor-infiltrating lymphocytes to better define patient risk stratification and understand whether this tumor may benefit from therapies targeting immune checkpoint molecules. Experimental Design: In situ IHC staining for PD-L1, HLA class I, PD-1, and LAG3 was assessed in 77 neuroblastoma specimens, previously characterized for tumor-infiltrating T-cell density and correlated with clinical outcome. Surface expression of PD-L1 was evaluated by flow cytometry and IHC in neuroblastoma cell lines and tumors genetically and/or pharmacologically inhibited for MYC and MYCN. A dataset of 477 human primary neuroblastomas from GEO and ArrayExpress databases was explored for PD-L1, MYC, and MYCN correlation. Results: Multivariate Cox regression analysis demonstrated that the combination of PD-L1 and HLA class I tumor cell density is a prognostic biomarker for predicting overall survival in neuroblastoma patients ( P = 0.0448). MYC and MYCN control the expression of PD-L1 in neuroblastoma cells both in vitro and in vivo Consistently, abundance of PD-L1 transcript correlates with MYC expression in primary neuroblastoma. Conclusions: The combination of PD-L1 and HLA class I represents a novel prognostic biomarker for neuroblastoma. Pharmacologic inhibition of MYCN and MYC may be exploited to target PD-L1 and restore an efficient antitumor immunity in high-risk neuroblastoma. Clin Cancer Res; 23(15); 4462-72. ©2017 AACR . ©2017 American Association for Cancer Research.

  2. Anti-Neuroblastoma Properties of a Recombinant Sunflower Lectin

    Directory of Open Access Journals (Sweden)

    Marcela Pinedo

    2017-01-01

    Full Text Available According to their sugar recognition specificity, plant lectins are proposed as bioactive proteins with potential in cancer treatment and diagnosis. Helja is a mannose-specific jacalin-like lectin from sunflower which was shown to inhibit the growth of certain fungi. Here, we report its recombinant expression in a prokaryotic system and its activity in neurobalstoma cells. Helja coding sequence was fused to the pET-32 EK/LIC, the enterokinase/Ligation-independent cloning vector and a 35 kDa protein was obtained in Escherichia coli representing Helja coupled to thioredoxin (Trx. The identity of this protein was verified using anti-Helja antibodies. This chimera, named Trx-rHelja, was enriched in the soluble bacterial extracts and was purified using Ni+2-Sepharose and d-mannose-agarose chromatography. Trx-rHelja and the enterokinase-released recombinant Helja (rHelja both displayed toxicity on human SH-SY5Y neuroblastomas. rHelja decreased the viability of these tumor cells by 75% according to the tetrazolium reduction assay, and microscopic analyses revealed that the cell morphology was disturbed. Thus, the stellate cells of the monolayer became spheroids and were isolated. Our results indicate that rHelja is a promising tool for the development of diagnostic or therapeutic methods for neuroblastoma cells, the most common solid tumors in childhood.

  3. Neonatal acute megakaryoblastic leukemia mimicking congenital neuroblastoma

    OpenAIRE

    Kawasaki, Yukako; Makimoto, Masami; Nomura, Keiko; Hoshino, Akihiro; Hamashima, Takeru; Hiwatari, Mitsuteru; Nakazawa, Atsuko; Takita, Junko; Yoshida, Taketoshi; Kanegane, Hirokazu

    2014-01-01

    Key Clinical Message We describe a neonate with abdominal distension, massive hepatomegaly, and high serum neuron-specific enolase level suggestive of congenital neuroblastoma. The patient died of pulmonary hemorrhage after therapy. Autopsy revealed that the tumor cells in the liver indicated acute megakaryocytic leukemia with the RBM15-MKL1 fusion gene.

  4. Monoclonal Antibody Therapy for Advanced Neuroblastoma

    Science.gov (United States)

    NCI is sponsoring two clinical trials of a monoclonal antibody called ch14.18, in combination with other drugs, to see if the antibody may be helpful for children or young adults (up to age 21) with relapsed or refractory neuroblastoma.

  5. Soluble immune complexes shift the TLR-induced cytokine production of distinct polarized human macrophage subsets towards IL-10.

    Directory of Open Access Journals (Sweden)

    Carmen A Ambarus

    Full Text Available BACKGROUND: Costimulation of murine macrophages with immune complexes (ICs and TLR ligands leads to alternative activation. Studies on human myeloid cells, however, indicate that ICs induce an increased pro-inflammatory cytokine production. This study aimed to clarify the effect of ICs on the pro- versus anti-inflammatory profile of human polarized macrophages. MATERIALS AND METHODS: Monocytes isolated from peripheral blood of healthy donors were polarized for four days with IFN-γ, IL-4, IL-10, GM-CSF, M-CSF, or LPS, in the presence or absence of heat aggregated gamma-globulins (HAGGs. Phenotypic polarization markers were measured by flow cytometry. Polarized macrophages were stimulated with HAGGs or immobilized IgG alone or in combination with TLR ligands. TNF, IL-6, IL-10, IL-12, and IL-23 were measured by Luminex and/or RT-qPCR. RESULTS: HAGGs did not modulate the phenotypic polarization and the cytokine production of macrophages. However, HAGGs significantly altered the TLR-induced cytokine production of all polarized macrophage subsets, with the exception of MΦ(IL-4. In particular, HAGGs consistently enhanced the TLR-induced IL-10 production in both classically and alternatively polarized macrophages (M1 and M2. The effect of HAGGs on TNF and IL-6 production was less pronounced and depended on the polarization status, while IL-23p19 and IL-12p35 expression was not affected. In contrast with HAGGs, immobilized IgG induced a strong upregulation of not only IL-10, but also TNF and IL-6. CONCLUSION: HAGGs alone do not alter the phenotype and cytokine production of in vitro polarized human macrophages. In combination with TLR-ligands, however, HAGGs but not immobilized IgG shift the cytokine production of distinct macrophage subsets toward IL-10.

  6. Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components*

    Science.gov (United States)

    van Herwijnen, Martijn J.C.; Zonneveld, Marijke I.; Goerdayal, Soenita; Nolte – 't Hoen, Esther N.M.; Garssen, Johan; Stahl, Bernd; Maarten Altelaar, A.F.; Redegeld, Frank A.; Wauben, Marca H.M.

    2016-01-01

    Breast milk contains several macromolecular components with distinctive functions, whereby milk fat globules and casein micelles mainly provide nutrition to the newborn, and whey contains molecules that can stimulate the newborn's developing immune system and gastrointestinal tract. Although extracellular vesicles (EV) have been identified in breast milk, their physiological function and composition has not been addressed in detail. EV are submicron sized vehicles released by cells for intercellular communication via selectively incorporated lipids, nucleic acids, and proteins. Because of the difficulty in separating EV from other milk components, an in-depth analysis of the proteome of human milk-derived EV is lacking. In this study, an extensive LC-MS/MS proteomic analysis was performed of EV that had been purified from breast milk of seven individual donors using a recently established, optimized density-gradient-based EV isolation protocol. A total of 1963 proteins were identified in milk-derived EV, including EV-associated proteins like CD9, Annexin A5, and Flotillin-1, with a remarkable overlap between the different donors. Interestingly, 198 of the identified proteins are not present in the human EV database Vesiclepedia, indicating that milk-derived EV harbor proteins not yet identified in EV of different origin. Similarly, the proteome of milk-derived EV was compared with that of other milk components. For this, data from 38 published milk proteomic studies were combined in order to construct the total milk proteome, which consists of 2698 unique proteins. Remarkably, 633 proteins identified in milk-derived EV have not yet been identified in human milk to date. Interestingly, these novel proteins include proteins involved in regulation of cell growth and controlling inflammatory signaling pathways, suggesting that milk-derived EVs could support the newborn's developing gastrointestinal tract and immune system. Overall, this study provides an expansion of

  7. ATP7A is a novel target of retinoic acid receptor β2 in neuroblastoma cells

    Science.gov (United States)

    Bohlken, A; Cheung, B B; Bell, J L; Koach, J; Smith, S; Sekyere, E; Thomas, W; Norris, M; Haber, M; Lovejoy, D B; Richardson, D R; Marshall, G M

    2009-01-01

    Increased retinoic acid receptor β (RARβ2) gene expression is a hallmark of cancer cell responsiveness to retinoid anticancer effects. Moreover, low basal or induced RARβ2 expression is a common feature of many human cancers, suggesting that RARβ2 may act as a tumour suppressor gene in the absence of supplemented retinoid. We have previously shown that low RARβ2 expression is a feature of advanced neuroblastoma. Here, we demonstrate that the ABC domain of the RARβ2 protein alone was sufficient for the growth inhibitory effects of RARβ2 on neuroblastoma cells. ATP7A, the copper efflux pump, is a retinoid-responsive gene, was upregulated by ectopic overexpression of RARβ2. The ectopic overexpression of the RARβ2 ABC domain was sufficient to induce ATP7A expression, whereas, RARβ2 siRNA blocked the induction of ATP7A expression in retinoid-treated neuroblastoma cells. Forced downregulation of ATP7A reduced copper efflux and increased viability of retinoid-treated neuroblastoma cells. Copper supplementation enhanced cell growth and reduced retinoid-responsiveness, whereas copper chelation reduced the viability and proliferative capacity. Taken together, our data demonstrates ATP7A expression is regulated by retinoic acid receptor β and it has effects on intracellular copper levels, revealing a link between the anticancer action of retinoids and copper metabolism. PMID:19127267

  8. A biology-driven approach identifies the hypoxia gene signature as a predictor of the outcome of neuroblastoma patients

    Directory of Open Access Journals (Sweden)

    Fardin Paolo

    2010-07-01

    Full Text Available Abstract Background Hypoxia is a condition of low oxygen tension occurring in the tumor microenvironment and it is related to poor prognosis in human cancer. To examine the relationship between hypoxia and neuroblastoma, we generated and tested an in vitro derived hypoxia gene signature for its ability to predict patients' outcome. Results We obtained the gene expression profile of 11 hypoxic neuroblastoma cell lines and we derived a robust 62 probesets signature (NB-hypo taking advantage of the strong discriminating power of the l1-l2 feature selection technique combined with the analysis of differential gene expression. We profiled gene expression of the tumors of 88 neuroblastoma patients and divided them according to the NB-hypo expression values by K-means clustering. The NB-hypo successfully stratifies the neuroblastoma patients into good and poor prognosis groups. Multivariate Cox analysis revealed that the NB-hypo is a significant independent predictor after controlling for commonly used risk factors including the amplification of MYCN oncogene. NB-hypo increases the resolution of the MYCN stratification by dividing patients with MYCN not amplified tumors in good and poor outcome suggesting that hypoxia is associated with the aggressiveness of neuroblastoma tumor independently from MYCN amplification. Conclusions Our results demonstrate that the NB-hypo is a novel and independent prognostic factor for neuroblastoma and support the view that hypoxia is negatively correlated with tumors' outcome. We show the power of the biology-driven approach in defining hypoxia as a critical molecular program in neuroblastoma and the potential for improvement in the current criteria for risk stratification.

  9. HOXD-AS1 is a novel lncRNA encoded in HOXD cluster and a marker of neuroblastoma progression revealed via integrative analysis of noncoding transcriptome

    Science.gov (United States)

    2014-01-01

    Background Long noncoding RNAs (lncRNAs) constitute a major, but poorly characterized part of human transcriptome. Recent evidence indicates that many lncRNAs are involved in cancer and can be used as predictive and prognostic biomarkers. Significant fraction of lncRNAs is represented on widely used microarray platforms, however they have usually been ignored in cancer studies. Results We developed a computational pipeline to annotate lncRNAs on popular Affymetrix U133 microarrays, creating a resource allowing measurement of expression of 1581 lncRNAs. This resource can be utilized to interrogate existing microarray datasets for various lncRNA studies. We found that these lncRNAs fall into three distinct classes according to their statistical distribution by length. Remarkably, these three classes of lncRNAs were co-localized with protein coding genes exhibiting distinct gene ontology groups. This annotation was applied to microarray analysis which identified a 159 lncRNA signature that discriminates between localized and metastatic stages of neuroblastoma. Analysis of an independent patient cohort revealed that this signature differentiates also relapsing from non-relapsing primary tumors. This is the first example of the signature developed via the analysis of expression of lncRNAs solely. One of these lncRNAs, termed HOXD-AS1, is encoded in HOXD cluster. HOXD-AS1 is evolutionary conserved among hominids and has all bona fide features of a gene. Studying retinoid acid (RA) response of SH-SY5Y cell line, a model of human metastatic neuroblastoma, we found that HOXD-AS1 is a subject to morphogenic regulation, is activated by PI3K/Akt pathway and itself is involved in control of RA-induced cell differentiation. Knock-down experiments revealed that HOXD-AS1 controls expression levels of clinically significant protein-coding genes involved in angiogenesis and inflammation, the hallmarks of metastatic cancer. Conclusions Our findings greatly extend the number of

  10. Characterization of Variant Creutzfeldt-Jakob Disease Prions in Prion Protein-humanized Mice Carrying Distinct Codon 129 Genotypes*

    Science.gov (United States)

    Takeuchi, Atsuko; Kobayashi, Atsushi; Ironside, James W.; Mohri, Shirou; Kitamoto, Tetsuyuki

    2013-01-01

    To date, all clinical variant Creutzfeldt-Jakob disease (vCJD) patients are homozygous for methionine at polymorphic codon 129 (129M/M) of the prion protein (PrP) gene. However, the appearance of asymptomatic secondary vCJD infection in individuals with a PRNP codon 129 genotype other than M/M and transmission studies using animal models have raised the concern that all humans might be susceptible to vCJD prions, especially via secondary infection. To reevaluate this possibility and to analyze in detail the transmission properties of vCJD prions to transgenic animals carrying distinct codon 129 genotype, we performed intracerebral inoculation of vCJD prions to humanized knock-in mice carrying all possible codon 129 genotypes (129M/M, 129M/V, or 129V/V). All humanized knock-in mouse lines were susceptible to vCJD infection, although the attack rate gradually decreased from 129M/M to 129M/V and to 129V/V. The amount of PrP deposition including florid/amyloid plaques in the brain also gradually decreased from 129M/M to 129M/V and to 129V/V. The biochemical properties of protease-resistant abnormal PrP in the brain and transmissibility of these humanized mouse-passaged vCJD prions upon subpassage into knock-in mice expressing bovine PrP were not affected by the codon 129 genotype. These results indicate that individuals with the 129V/V genotype may be more susceptible to secondary vCJD infection than expected and may lack the neuropathological characteristics observed in vCJD patients with the 129M/M genotype. Besides the molecular typing of protease-resistant PrP in the brain, transmission studies using knock-in mice carrying bovine PrP may aid the differential diagnosis of secondary vCJD infection, especially in individuals with the 129V/V genotype. PMID:23792955

  11. Characterization of variant Creutzfeldt-Jakob disease prions in prion protein-humanized mice carrying distinct codon 129 genotypes.

    Science.gov (United States)

    Takeuchi, Atsuko; Kobayashi, Atsushi; Ironside, James W; Mohri, Shirou; Kitamoto, Tetsuyuki

    2013-07-26

    To date, all clinical variant Creutzfeldt-Jakob disease (vCJD) patients are homozygous for methionine at polymorphic codon 129 (129M/M) of the prion protein (PrP) gene. However, the appearance of asymptomatic secondary vCJD infection in individuals with a PRNP codon 129 genotype other than M/M and transmission studies using animal models have raised the concern that all humans might be susceptible to vCJD prions, especially via secondary infection. To reevaluate this possibility and to analyze in detail the transmission properties of vCJD prions to transgenic animals carrying distinct codon 129 genotype, we performed intracerebral inoculation of vCJD prions to humanized knock-in mice carrying all possible codon 129 genotypes (129M/M, 129M/V, or 129V/V). All humanized knock-in mouse lines were susceptible to vCJD infection, although the attack rate gradually decreased from 129M/M to 129M/V and to 129V/V. The amount of PrP deposition including florid/amyloid plaques in the brain also gradually decreased from 129M/M to 129M/V and to 129V/V. The biochemical properties of protease-resistant abnormal PrP in the brain and transmissibility of these humanized mouse-passaged vCJD prions upon subpassage into knock-in mice expressing bovine PrP were not affected by the codon 129 genotype. These results indicate that individuals with the 129V/V genotype may be more susceptible to secondary vCJD infection than expected and may lack the neuropathological characteristics observed in vCJD patients with the 129M/M genotype. Besides the molecular typing of protease-resistant PrP in the brain, transmission studies using knock-in mice carrying bovine PrP may aid the differential diagnosis of secondary vCJD infection, especially in individuals with the 129V/V genotype.

  12. Characterizing genes with distinct methylation patterns in the context of protein-protein interaction network: application to human brain tissues.

    Science.gov (United States)

    Li, Yongsheng; Xu, Juan; Chen, Hong; Zhao, Zheng; Li, Shengli; Bai, Jing; Wu, Aiwei; Jiang, Chunjie; Wang, Yuan; Su, Bin; Li, Xia

    2013-01-01

    DNA methylation is an essential epigenetic mechanism involved in transcriptional control. However, how genes with different methylation patterns are assembled in the protein-protein interaction network (PPIN) remains a mystery. In the present study, we systematically dissected the characterization of genes with different methylation patterns in the PPIN. A negative association was detected between the methylation levels in the brain tissues and topological centralities. By focusing on two classes of genes with considerably different methylation levels in the brain tissues, namely the low methylated genes (LMGs) and high methylated genes (HMGs), we found that their organizing principles in the PPIN are distinct. The LMGs tend to be the center of the PPIN, and attacking them causes a more deleterious effect on the network integrity. Furthermore, the LMGs express their functions in a modular pattern and substantial differences in functions are observed between the two types of genes. The LMGs are enriched in the basic biological functions, such as binding activity and regulation of transcription. More importantly, cancer genes, especially recessive cancer genes, essential genes, and aging-related genes were all found more often in the LMGs. Additionally, our analysis presented that the intra-classes communications are enhanced, but inter-classes communications are repressed. Finally, a functional complementation was revealed between methylation and miRNA regulation in the human genome. We have elucidated the assembling principles of genes with different methylation levels in the context of the PPIN, providing key insights into the complex epigenetic regulation mechanisms.

  13. Genetically Distinct Glossina fuscipes fuscipes Populations in the Lake Kyoga Region of Uganda and Its Relevance for Human African Trypanosomiasis

    Directory of Open Access Journals (Sweden)

    Richard Echodu

    2013-01-01

    Full Text Available Tsetse flies (Glossina spp. are the sole vectors of Trypanosoma brucei—the agent of human (HAT and animal (AAT trypanosomiasis. Glossina fuscipes fuscipes (Gff is the main vector species in Uganda—the only country where the two forms of HAT disease (rhodesiense and gambiense occur, with gambiense limited to the northwest. Gff populations cluster in three genetically distinct groups in northern, southern, and western Uganda, respectively, with a contact zone present in central Uganda. Understanding the dynamics of this contact zone is epidemiologically important as the merger of the two diseases is a major health concern. We used mitochondrial and microsatellite DNA data from Gff samples in the contact zone to understand its spatial extent and temporal stability. We show that this zone is relatively narrow, extending through central Uganda along major rivers with south to north introgression but displaying no sex-biased dispersal. Lack of obvious vicariant barriers suggests that either environmental conditions or reciprocal competitive exclusion could explain the patterns of genetic differentiation observed. Lack of admixture between northern and southern populations may prevent the sympatry of the two forms of HAT disease, although continued control efforts are needed to prevent the recolonization of tsetse-free regions by neighboring populations.

  14. Mutagenesis Analysis Reveals Distinct Amino Acids of the Human Serotonin 5-HT2C Receptor Underlying the Pharmacology of Distinct Ligands.

    Science.gov (United States)

    Liu, Yue; Canal, Clinton E; Cordova-Sintjago, Tania C; Zhu, Wanying; Booth, Raymond G

    2017-01-18

    While exploring the structure-activity relationship of 4-phenyl-2-dimethylaminotetralins (PATs) at serotonin 5-HT 2C receptors, we discovered that relatively minor modification of PAT chemistry impacts function at 5-HT 2C receptors. In HEK293 cells expressing human 5-HT 2C-INI receptors, for example, (-)-trans-3'-Br-PAT and (-)-trans-3'-Cl-PAT are agonists regarding Gα q -inositol phosphate signaling, whereas (-)-trans-3'-CF 3 -PAT is an inverse agonist. To investigate the ligand-receptor interactions that govern this change in function, we performed site-directed mutagenesis of 14 amino acids of the 5-HT 2C receptor based on molecular modeling and reported G protein-coupled receptor crystal structures, followed by molecular pharmacology studies. We found that S3.36, T3.37, and F5.47 in the orthosteric binding pocket are critical for affinity (K i ) of all PATs tested, we also found that F6.44, M6.47, C7.45, and S7.46 are primarily involved in regulating EC/IC 50 functional potencies of PATs. We discovered that when residue S5.43, N6.55, or both are mutated to alanine, (-)-trans-3'-CF 3 -PAT switches from inverse agonist to agonist function, and when N6.55 is mutated to leucine, (-)-trans-3'-Br-PAT switches from agonist to inverse agonist function. Notably, most point-mutations that affected PAT pharmacology did not significantly alter affinity (K D ) of the antagonist radioligand [ 3 H]mesulergine, but every mutation tested negatively impacted serotonin binding. Also, amino acid mutations differentially affected the pharmacology of other commercially available 5-HT 2C ligands tested. Collectively, the data show that functional outcomes shared by different ligands are mediated by different amino acids and that some 5-HT 2C receptor residues important for pharmacology of one ligand are not necessarily important for another ligand.

  15. Treatment of extradural paraspinal neuroblastoma with an intraspinal component

    International Nuclear Information System (INIS)

    Ho, K.S.Y.; Wara, W.M.; Ablin, A.R.

    1982-01-01

    Neuroblastoma originates from neural crest cells and can be found wherever sympathetic neural tissue is normally located. When the tumor arises from a paraspinal sympathetic ganglion, it has a propensity to extend through the intervertebral foramina, producing an extradural paraspinal neuroblastoma with an interspinal component (''dumbell'' neuroblastoma) which may result in spinal cord compression. The records of all children with neuroblastomas referred to the UCSF Department of Radiation Oncology and the Division of Pediatric Oncology from January 1, 1970, to December 31, 1979, are reviewed in this report. Patients who at initial presentation had a ''dumbell'' neuroblastoma were selected for study. Neuroblastoma was diagnosed histologically in all patients except one. Disease-free interval and length of survival was measured from the date of completion of radiotherapy, mostly after surgery. The results of diagnostic X-rays and laboratory studies are shown. Radiotherapeutic doses and results are tabulated. (Auth.)

  16. The antimicrobial peptide, lactoferricin B, is cytotoxic to neuroblastoma cells in vitro and inhibits xenograft growth in vivo.

    Science.gov (United States)

    Eliassen, Liv Tone; Berge, Gerd; Leknessund, Arild; Wikman, Mari; Lindin, Inger; Løkke, Cecilie; Ponthan, Frida; Johnsen, John Inge; Sveinbjørnsson, Baldur; Kogner, Per; Flaegstad, Trond; Rekdal, Øystein

    2006-08-01

    Antimicrobial peptides have been shown to exert cytotoxic activity towards cancer cells through their ability to interact with negatively charged cell membranes. In this study the cytotoxic effect of the antimicrobial peptide, LfcinB was tested in a panel of human neuroblastoma cell lines. LfcinB displayed a selective cytotoxic activity against both MYCN-amplified and non-MYCN-amplified cell lines. Non-transformed fibroblasts were not substantially affected by LfcinB. Treatment of neuroblastoma cells with LfcinB induced rapid destabilization of the cytoplasmic membrane and formation of membrane blebs. Depolarization of the mitochondria membranes and irreversible changes in the mitochondria morphology was also evident. Immuno- and fluorescence-labeled LfcinB revealed that the peptide co-localized with mitochondria. Furthermore, treatment of neuroblastoma cells with LfcinB induced cleavage of caspase-6, -7 and -9 followed by cell death. However, neither addition of the pan-caspase inhibitor, zVAD-fmk, or specific caspase inhibitors could reverse the cytotoxic effect induced by LfcinB. Treatment of established SH-SY-5Y neuroblastoma xenografts with repeated injections of LfcinB resulted in significant tumor growth inhibition. These results revealed a selective destabilizing effect of LfcinB on two important targets in the neuroblastoma cells, the cytoplasmic- and the mitochondria membrane. Copyright (c) 2006 Wiley-Liss, Inc.

  17. Mouse neuroblastoma cell-based model and the effect of epileptic events on calcium oscillations and neural spikes

    Science.gov (United States)

    Kim, Suhwan; Jung, Unsang; Baek, Juyoung; Lee, Sangwon; Jung, Woonggyu; Kim, Jeehyun; Kang, Shinwon

    2013-01-01

    Recently, mouse neuroblastoma cells have been considered as an attractive model for the study of human neurological and prion diseases, and they have been intensively used as a model system in different areas. For example, the differentiation of neuro2a (N2A) cells, receptor-mediated ion current, and glutamate-induced physiological responses have been actively investigated with these cells. These mouse neuroblastoma N2A cells are of interest because they grow faster than other cells of neural origin and have a number of other advantages. The calcium oscillations and neural spikes of mouse neuroblastoma N2A cells in epileptic conditions are evaluated. Based on our observations of neural spikes in these cells with our proposed imaging modality, we reported that they can be an important model in epileptic activity studies. We concluded that mouse neuroblastoma N2A cells produce epileptic spikes in vitro in the same way as those produced by neurons or astrocytes. This evidence suggests that increased levels of neurotransmitter release due to the enhancement of free calcium from 4-aminopyridine causes the mouse neuroblastoma N2A cells to produce epileptic spikes and calcium oscillations.

  18. BET inhibition silences expression of MYCN and BCL2 and induces cytotoxicity in neuroblastoma tumor models.

    Directory of Open Access Journals (Sweden)

    Anastasia Wyce

    Full Text Available BET family proteins are epigenetic regulators known to control expression of genes involved in cell growth and oncogenesis. Selective inhibitors of BET proteins exhibit potent anti-proliferative activity in a number of hematologic cancer models, in part through suppression of the MYC oncogene and downstream Myc-driven pathways. However, little is currently known about the activity of BET inhibitors in solid tumor models, and whether down-regulation of MYC family genes contributes to sensitivity. Here we provide evidence for potent BET inhibitor activity in neuroblastoma, a pediatric solid tumor associated with a high frequency of MYCN amplifications. We treated a panel of neuroblastoma cell lines with a novel small molecule inhibitor of BET proteins, GSK1324726A (I-BET726, and observed potent growth inhibition and cytotoxicity in most cell lines irrespective of MYCN copy number or expression level. Gene expression analyses in neuroblastoma cell lines suggest a role of BET inhibition in apoptosis, signaling, and N-Myc-driven pathways, including the direct suppression of BCL2 and MYCN. Reversal of MYCN or BCL2 suppression reduces the potency of I-BET726-induced cytotoxicity in a cell line-specific manner; however, neither factor fully accounts for I-BET726 sensitivity. Oral administration of I-BET726 to mouse xenograft models of human neuroblastoma results in tumor growth inhibition and down-regulation MYCN and BCL2 expression, suggesting a potential role for these genes in tumor growth. Taken together, our data highlight the potential of BET inhibitors as novel therapeutics for neuroblastoma, and suggest that sensitivity is driven by pleiotropic effects on cell growth and apoptotic pathways in a context-specific manner.

  19. Case report: value of gene expression profiling in the diagnosis of atypical neuroblastoma.

    Science.gov (United States)

    Harttrampf, Anne C; Chen, Qingrong; Jüttner, Eva; Geiger, Julia; Vansant, Gordon; Khan, Javed; Kontny, Udo

    2017-08-17

    Nephroblastoma and neuroblastoma belong to the most common abdominal malignancies in childhood. Similarities in the initial presentation may provide difficulties in distinguishing between these two entities, especially if unusual variations to prevalent patterns of disease manifestation occur. Because of the risk of tumor rupture, European protocols do not require biopsy for diagnosis, which leads to misdiagnosis in some cases. We report on a 4½-year-old girl with a renal tumor displaying radiological and laboratory characteristics supporting the diagnosis of nephroblastoma. Imaging studies showed tumor extension into the inferior vena cava and bilateral lung metastases while urine catecholamines and MIBG-scintigraphy were negative. Preoperative chemotherapy with vincristine, actinomycine D and adriamycin according to the SIOP2001/GPOH protocol for the treatment of nephroblastoma was initiated and followed by surgical tumor resection. Histopathology revealed an undifferentiated tumor with expression of neuronal markers, suggestive of neuroblastoma. MYCN amplification could not be detected. DNA-microarray analysis was performed using Affymetrix genechip human genome U133 plus 2.0 and artificial neural network analysis. Results were confirmed by multiplex RT-PCR. Principal component analysis using 84 genes showed that the patient sample was clearly clustering with neuroblastoma tumors. This was confirmed by hierarchical clustering of the multiplex RT-PCR data. The patient underwent treatment for high-risk neuroblastoma comprising chemotherapy including cisplatin, etoposide, vindesine, dacarbacine, ifosfamide, vincristine, adriamycine and autologous stem cell transplantation followed by maintenance therapy with 13-cis retinoic acid (GPOH NB2004 High Risk Trial Protocol) and is in complete long-term remission. The use of gene expression profiling in an individual patient strongly contributed to clarification in a diagnostic dilemma which finally led to a change of

  20. A 6-gene signature identifies four molecular subgroups of neuroblastoma

    LENUS (Irish Health Repository)

    Abel, Frida

    2011-04-14

    Abstract Background There are currently three postulated genomic subtypes of the childhood tumour neuroblastoma (NB); Type 1, Type 2A, and Type 2B. The most aggressive forms of NB are characterized by amplification of the oncogene MYCN (MNA) and low expression of the favourable marker NTRK1. Recently, mutations or high expression of the familial predisposition gene Anaplastic Lymphoma Kinase (ALK) was associated to unfavourable biology of sporadic NB. Also, various other genes have been linked to NB pathogenesis. Results The present study explores subgroup discrimination by gene expression profiling using three published microarray studies on NB (47 samples). Four distinct clusters were identified by Principal Components Analysis (PCA) in two separate data sets, which could be verified by an unsupervised hierarchical clustering in a third independent data set (101 NB samples) using a set of 74 discriminative genes. The expression signature of six NB-associated genes ALK, BIRC5, CCND1, MYCN, NTRK1, and PHOX2B, significantly discriminated the four clusters (p < 0.05, one-way ANOVA test). PCA clusters p1, p2, and p3 were found to correspond well to the postulated subtypes 1, 2A, and 2B, respectively. Remarkably, a fourth novel cluster was detected in all three independent data sets. This cluster comprised mainly 11q-deleted MNA-negative tumours with low expression of ALK, BIRC5, and PHOX2B, and was significantly associated with higher tumour stage, poor outcome and poor survival compared to the Type 1-corresponding favourable group (INSS stage 4 and\\/or dead of disease, p < 0.05, Fisher\\'s exact test). Conclusions Based on expression profiling we have identified four molecular subgroups of neuroblastoma, which can be distinguished by a 6-gene signature. The fourth subgroup has not been described elsewhere, and efforts are currently made to further investigate this group\\'s specific characteristics.

  1. The association of congenital neuroblastoma and congenital heart disease

    International Nuclear Information System (INIS)

    Bellah, R.; D'Andrea, A.; Children's Hospital, Boston, MA; Darillis, E.; Fellows, K.E.

    1989-01-01

    Several authors have reported an association between neuroblastoma and congenital heart disease; others contend that, unlike specific wellknown associations between malignancy and congenital defects (Wilm's tumor and aniridia, leukemia and Down's syndrome), no real relationship exists. We present three cases of cyanotic congenital heart disease in which subclinical neuroblastoma was found. We speculate that abnormal neural crest cell migration and development may be a common link between cardiac malformations and congenital neuroblastoma. (orig.)

  2. Marrow Derived Antibody Library for the Treatment of Neuroblastoma

    Science.gov (United States)

    2015-12-01

    Award Number: W81XWH-12-1-0332 TITLE: Marrow-Derived Antibody Library for the Treatment of Neuroblastoma PRINCIPAL INVESTIGATOR: Giselle...Marrow-Derived Antibody Library for Treatment of Neuroblastoma 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...to Spectrum Health. 14. ABSTRACT Neuroblastoma (NB) is the most common solid tumor in children, which accounts for 15% of all pediatric cancer deaths

  3. Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components.

    Science.gov (United States)

    van Herwijnen, Martijn J C; Zonneveld, Marijke I; Goerdayal, Soenita; Nolte-'t Hoen, Esther N M; Garssen, Johan; Stahl, Bernd; Maarten Altelaar, A F; Redegeld, Frank A; Wauben, Marca H M

    2016-11-01

    Breast milk contains several macromolecular components with distinctive functions, whereby milk fat globules and casein micelles mainly provide nutrition to the newborn, and whey contains molecules that can stimulate the newborn's developing immune system and gastrointestinal tract. Although extracellular vesicles (EV) have been identified in breast milk, their physiological function and composition has not been addressed in detail. EV are submicron sized vehicles released by cells for intercellular communication via selectively incorporated lipids, nucleic acids, and proteins. Because of the difficulty in separating EV from other milk components, an in-depth analysis of the proteome of human milk-derived EV is lacking. In this study, an extensive LC-MS/MS proteomic analysis was performed of EV that had been purified from breast milk of seven individual donors using a recently established, optimized density-gradient-based EV isolation protocol. A total of 1963 proteins were identified in milk-derived EV, including EV-associated proteins like CD9, Annexin A5, and Flotillin-1, with a remarkable overlap between the different donors. Interestingly, 198 of the identified proteins are not present in the human EV database Vesiclepedia, indicating that milk-derived EV harbor proteins not yet identified in EV of different origin. Similarly, the proteome of milk-derived EV was compared with that of other milk components. For this, data from 38 published milk proteomic studies were combined in order to construct the total milk proteome, which consists of 2698 unique proteins. Remarkably, 633 proteins identified in milk-derived EV have not yet been identified in human milk to date. Interestingly, these novel proteins include proteins involved in regulation of cell growth and controlling inflammatory signaling pathways, suggesting that milk-derived EVs could support the newborn's developing gastrointestinal tract and immune system. Overall, this study provides an expansion of

  4. Ancient, independent evolution and distinct molecular features of the novel human T-lymphotropic virus type 4

    Directory of Open Access Journals (Sweden)

    Wolfe Nathan D

    2009-02-01

    Full Text Available Abstract Background Human T-lymphotropic virus type 4 (HTLV-4 is a new deltaretrovirus recently identified in a primate hunter in Cameroon. Limited sequence analysis previously showed that HTLV-4 may be distinct from HTLV-1, HTLV-2, and HTLV-3, and their simian counterparts, STLV-1, STLV-2, and STLV-3, respectively. Analysis of full-length genomes can provide basic information on the evolutionary history and replication and pathogenic potential of new viruses. Results We report here the first complete HTLV-4 sequence obtained by PCR-based genome walking using uncultured peripheral blood lymphocyte DNA from an HTLV-4-infected person. The HTLV-4(1863LE genome is 8791-bp long and is equidistant from HTLV-1, HTLV-2, and HTLV-3 sharing only 62–71% nucleotide identity. HTLV-4 has a prototypic genomic structure with all enzymatic, regulatory, and structural proteins preserved. Like STLV-2, STLV-3, and HTLV-3, HTLV-4 is missing a third 21-bp transcription element found in the long terminal repeats of HTLV-1 and HTLV-2 but instead contains unique c-Myb and pre B-cell leukemic transcription factor binding sites. Like HTLV-2, the PDZ motif important for cellular signal transduction and transformation in HTLV-1 and HTLV-3 is missing in the C-terminus of the HTLV-4 Tax protein. A basic leucine zipper (b-ZIP region located in the antisense strand of HTLV-1 and believed to play a role in viral replication and oncogenesis, was also found in the complementary strand of HTLV-4. Detailed phylogenetic analysis shows that HTLV-4 is clearly a monophyletic viral group. Dating using a relaxed molecular clock inferred that the most recent common ancestor of HTLV-4 and HTLV-2/STLV-2 occurred 49,800 to 378,000 years ago making this the oldest known PTLV lineage. Interestingly, this period coincides with the emergence of Homo sapiens sapiens during the Middle Pleistocene suggesting that early humans may have been susceptible hosts for the ancestral HTLV-4. Conclusion The

  5. Magnetic resonance imaging of olfactory neuroblastoma

    International Nuclear Information System (INIS)

    Iio, Mitsuhiro; Homma, Akihiro; Furuta, Yasushi; Fukuda, Satoshi

    2006-01-01

    Olfactory neuroblastoma is an uncommon intranasal tumor originating from olfactory neuroepithelium. Despite the development of electron microscopy and immunohistochemical testing, the pathological diagnosis of this tumor is still difficult because of the wide range of histological features. Magnetic resonance imaging (MR) of this tumor and the pattern of contrast enhancement have not been well described. The purpose of this report was to analyze the MR characteristics of olfactory neuroblastomas. The MR signal, pattern of contrast enhancement, and correlation with high-resolution computed tomography (CT) imaging were examined. Seventeen patients with olfactory neuroblastoma were treated at Hokkaido University Hospital and a related hospital during the past 25 years. MR images taken in 12 patients and CT images taken in 9 patients with histologically confirmed olfactory neuroblastoma were retrospectively reviewed. Compared with brain gray matter, 11 tumors were hypointense on T1-weighted images, 9 homogeneously and 2 heterogeneously. Eight tumors were hyperintense on T2-weighted images, 3 homogeneously and 5 heterogeneously, although their appearance was less intense than that of sinusitis. Gadolinium enhancement was moderate in one case and marked in 10 of the 11 cases, 9 homogeneously and 2 heterogeneously. Nine of the 11 tumors showed smooth regular shaped margins; 2 of these tumors exhibited irregular infiltrating margins on gadolinium-enhanced images, compared to the pre-contrast T1-weighted images. Eight of the 11 tumors had clearly demarcated margins, while 3 of the 11 tumors did not exhibit gadolinium enhancement. Six of the 12 cases (50%) exhibited intracranial cysts on the gadolinium-enhanced images. T2-weighted or gadolinium-enhanced images successfully distinguished sinusitis from tumors in 4 cases whereas the CT images failed. Gadolinium enhancement, particularly in the tangential plane, demonstrated intracranial extension not apparent on the CT images

  6. TAZ promotes epithelial to mesenchymal transition via the upregulation of connective tissue growth factor expression in neuroblastoma cells.

    Science.gov (United States)

    Wang, Qiang; Xu, Zhilin; An, Qun; Jiang, Dapeng; Wang, Long; Liang, Bingxue; Li, Zhaozhu

    2015-02-01

    Neuroblastoma (NB) is a neuroendocrine cancer that occurs most commonly in infants and young children. The Hippo signaling pathway regulates cell proliferation and apoptosis, and its primary downstream effectors are TAZ and yes‑associated protein 1 (YAP). The effect of TAZ on the metastatic progression of neuroblastoma and the underlying mechanisms involved remain elusive. In the current study, it was determined by western blot analysis that the migratory and invasive properties of SK‑N‑BE(2) human neuroblastoma cells are associated with high expression levels of TAZ. Repressed expression of TAZ in SK‑N‑BE(2) cells was shown to result in a reduction in aggressiveness of the cell line, by Transwell migration and invasion assay. In contrast, overexpression of TAZ in SK‑N‑SH human neuroblastoma cells was shown by Transwell migration and invasion assays, and western blot analysis, to result in epithelial‑mesenchymal transition (EMT) and increased invasiveness. Mechanistically, the overexpression of TAZ was demonstrated to upregulate the expression levels of connective tissue growth factor (CTGF), by western blot analysis and chromatin immunoprecipitation assay, while the knockdown of TAZ downregulated it. Furthermore, TAZ was shown by luciferase assay to induce CTGF expression by modulating the activation of the TGF‑β/Smad3 signaling pathway. In conclusion, the present study is, to the best of our knowledge, the first to demonstrate that the overexpression of TAZ induces EMT, increasing the invasive abilities of neuroblastoma cells. This suggests that TAZ may serve as a potential target in the development of novel therapies for the treatment of neuroblastoma.

  7. Downregulation of survivin by siRNA inhibits invasion and promotes apoptosis in neuroblastoma SH-SY5Y cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.; Liang, H. [Department of Pediatrics, Qilu Hospital, Shandong University, Jinan (China); Cao, W. [Department of Obstetrics, Qingdao Central Hospital, Qingdao (China); Xu, R.; Ju, X.L. [Department of Pediatrics, Qilu Hospital, Shandong University, Jinan (China)

    2014-05-23

    Neuroblastoma is a solid tumor that occurs mainly in children. Malignant neuroblastomas have a poor prognosis because conventional chemotherapeutic agents are not very effective. Survivin, a member of the inhibitor of the apoptosis protein family, plays a significant role in cell division, inhibition of apoptosis, and promotion of cell proliferation and invasion. Previous studies found that survivin is highly expressed in some malignant neuroblastomas and is correlated with poor prognosis. The aim of this study was to investigate whether survivin could serve as a potential therapeutic target of human neuroblastoma. We employed RNA interference to reduce survivin expression in the human neuroblastoma SH-SY5Y cell line and analyzed the effect of RNA interference on cell proliferation and invasion in vitro and in vivo. RNA interference of survivin led to a significant decrease in invasiveness and proliferation and increased apoptosis in SH-SY5Y cells in vitro. RNA interference of survivin inhibited tumor growth in vivo by 68±13% (P=0.002) and increased the number of apoptotic cells by 9.8±1.2% (P=0.001) compared with negative small interfering RNA (siRNA) treatment controls. Moreover, RNA interference of survivin inhibited the formation of lung metastases by 92% (P=0.002) and reduced microvascular density by 60% (P=0.0003). Survivin siRNA resulted in significant downregulation of survivin mRNA and protein expression both in vitro and in vivo compared with negative siRNA treatment controls. RNA interference of survivin was found to be a potent inhibitor of SH-SY5Y tumor growth and metastasis formation. These results support further clinical development of RNA interference of survivin as a treatment of neuroblastoma and other cancer types.

  8. Distinct Signaling Pathways After Higher or Lower Doses of Radiation in Three Closely Related Human Lymphoblast Cell Lines

    International Nuclear Information System (INIS)

    Lu, T.-P.; Lai, L.-C.; Lin, B.-I.; Chen, L.-H.; Hsiao, T.-H.; Liber, Howard L.; Cook, John A.; Mitchell, James B.; Tsai, M.-H.; Chuang, Eric Y.

    2010-01-01

    Purpose: The tumor suppressor p53 plays an essential role in cellular responses to DNA damage caused by ionizing radiation; therefore, this study aims to further explore the role that p53 plays at different doses of radiation. Materials and Methods: The global cellular responses to higher-dose (10 Gy) and lower dose (iso-survival dose, i.e., the respective D0 levels) radiation were analyzed using microarrays in three human lymphoblast cell lines with different p53 status: TK6 (wild-type p53), NH32 (p53-null), and WTK1 (mutant p53). Total RNAs were extracted from cells harvested at 0, 1, 3, 6, 9, and 24 h after higher and lower dose radiation exposures. Template-based clustering, hierarchical clustering, and principle component analysis were applied to examine the transcriptional profiles. Results: Differential expression profiles between 10 Gy and iso-survival radiation in cells with different p53 status were observed. Moreover, distinct gene expression patterns were exhibited among these three cells after 10 Gy radiation treatment, but similar transcriptional responses were observed in TK6 and NH32 cells treated with iso-survival radiation. Conclusions: After 10 Gy radiation exposure, the p53 signaling pathway played an important role in TK6, whereas the NFkB signaling pathway appeared to replace the role of p53 in WTK1. In contrast, after iso-survival radiation treatment, E2F4 seemed to play a dominant role independent of p53 status. This study dissected the impacts of p53, NFkB and E2F4 in response to higher or lower doses of γ-irradiation.

  9. Two structurally distinct inhibitors of glycogen synthase kinase 3 induced centromere positive micronuclei in human lymphoblastoid TK6 cells.

    Science.gov (United States)

    Mishima, Masayuki; Tanaka, Kenji; Takeiri, Akira; Harada, Asako; Kubo, Chiyomi; Sone, Sachiko; Nishimura, Yoshikazu; Tachibana, Yukako; Okazaki, Makoto

    2008-08-25

    Glycogen synthase kinase 3 (GSK3) is an attractive novel pharmacological target. Inhibition of GSK3 is recently regarded as one of the viable approaches to therapy for Alzheimer's disease, cancer, diabetes mellitus, osteoporosis, and bipolar mood disorder. Here, we have investigated the aneugenic potential of two potent and highly specific inhibitors of GSK3 by using an in vitro micronucleus test with human lymphoblastoid TK6 cells. One inhibitor was a newly synthesized maleimide derivative and the other was a previously known aminopyrimidine derivative. Both compounds elicited statistically significant and concentration-dependent increases in micronucleated cells. One hundred micronuclei (MN) of each were analyzed using centromeric DNA staining with fluorescence in situ hybridization. Both the two structurally distinct compounds induced centromere-positive micronuclei (CMN). Calculated from the frequency of MN cells and the percentage of CMN, CMN cell incidence after treatment with the maleimide compound at 1.2 microM, 2.4 microM, and 4.8 microM was 11.6, 27.7, and 56.3 per 1000 cells, respectively; the negative control was 4.5. CMN cell incidence after the treatment with the aminopyrimidine compound at 1.8 microM, 3.6 microM, and 5.4 microM was 6.7, 9.8 and 17.2 per 1000 cells, respectively. Both compounds exhibited concentration-dependent increase in the number of mitotic cells. The frequency of CMN cells correlated well with mitotic cell incidence after treatment with either compound. Furthermore, both inhibitors induced abnormal mitotic cells with asymmetric mitotic spindles and lagging anaphase chromosomes. These results lend further support to the hypothesis that the inhibition of GSK3 activity affects microtubule function and exhibits an aneugenic mode of action.

  10. The two Na+ sites in the human serotonin transporter play distinct roles in the ion coupling and electrogenicity of transport.

    Science.gov (United States)

    Felts, Bruce; Pramod, Akula Bala; Sandtner, Walter; Burbach, Nathan; Bulling, Simon; Sitte, Harald H; Henry, L Keith

    2014-01-17

    Neurotransmitter transporters of the SLC6 family of proteins, including the human serotonin transporter (hSERT), utilize Na(+), Cl(-), and K(+) gradients to induce conformational changes necessary for substrate translocation. Dysregulation of ion movement through monoamine transporters has been shown to impact neuronal firing potentials and could play a role in pathophysiologies, such as depression and anxiety. Despite multiple crystal structures of prokaryotic and eukaryotic SLC transporters indicating the location of both (or one) conserved Na(+)-binding sites (termed Na1 and Na2), much remains uncertain in regard to the movements and contributions of these cation-binding sites in the transport process. In this study, we utilize the unique properties of a mutation of hSERT at a single, highly conserved asparagine on TM1 (Asn-101) to provide several lines of evidence demonstrating mechanistically distinct roles for Na1 and Na2. Mutations at Asn-101 alter the cation dependence of the transporter, allowing Ca(2+) (but not other cations) to functionally replace Na(+) for driving transport and promoting 5-hydroxytryptamine (5-HT)-dependent conformational changes. Furthermore, in two-electrode voltage clamp studies in Xenopus oocytes, both Ca(2+) and Na(+) illicit 5-HT-induced currents in the Asn-101 mutants and reveal that, although Ca(2+) promotes substrate-induced current, it does not appear to be the charge carrier during 5-HT transport. These findings, in addition to functional evaluation of Na1 and Na2 site mutants, reveal separate roles for Na1 and Na2 and provide insight into initiation of the translocation process as well as a mechanism whereby the reported SERT stoichiometry can be obtained despite the presence of two putative Na(+)-binding sites.

  11. The Two Na+ Sites in the Human Serotonin Transporter Play Distinct Roles in the Ion Coupling and Electrogenicity of Transport*

    Science.gov (United States)

    Felts, Bruce; Pramod, Akula Bala; Sandtner, Walter; Burbach, Nathan; Bulling, Simon; Sitte, Harald H.; Henry, L. Keith

    2014-01-01

    Neurotransmitter transporters of the SLC6 family of proteins, including the human serotonin transporter (hSERT), utilize Na+, Cl−, and K+ gradients to induce conformational changes necessary for substrate translocation. Dysregulation of ion movement through monoamine transporters has been shown to impact neuronal firing potentials and could play a role in pathophysiologies, such as depression and anxiety. Despite multiple crystal structures of prokaryotic and eukaryotic SLC transporters indicating the location of both (or one) conserved Na+-binding sites (termed Na1 and Na2), much remains uncertain in regard to the movements and contributions of these cation-binding sites in the transport process. In this study, we utilize the unique properties of a mutation of hSERT at a single, highly conserved asparagine on TM1 (Asn-101) to provide several lines of evidence demonstrating mechanistically distinct roles for Na1 and Na2. Mutations at Asn-101 alter the cation dependence of the transporter, allowing Ca2+ (but not other cations) to functionally replace Na+ for driving transport and promoting 5-hydroxytryptamine (5-HT)-dependent conformational changes. Furthermore, in two-electrode voltage clamp studies in Xenopus oocytes, both Ca2+ and Na+ illicit 5-HT-induced currents in the Asn-101 mutants and reveal that, although Ca2+ promotes substrate-induced current, it does not appear to be the charge carrier during 5-HT transport. These findings, in addition to functional evaluation of Na1 and Na2 site mutants, reveal separate roles for Na1 and Na2 and provide insight into initiation of the translocation process as well as a mechanism whereby the reported SERT stoichiometry can be obtained despite the presence of two putative Na+-binding sites. PMID:24293367

  12. Human decidual macrophages and NK cells differentially express Toll-like receptors and display distinct cytokine profiles upon TLR stimulation.

    Directory of Open Access Journals (Sweden)

    Marion eDuriez

    2014-07-01

    Full Text Available Maternofetal pathogen transmission is partially controlled at the level of the maternal uterine mucosa at the fetal implantation site (the decidua basalis, where maternal and fetal cells are in close contact. Toll-like receptors (TLRs may play an important role in initiating rapid immune responses against pathogens in the decidua basalis, however the tolerant microenvironment should be preserved in order to allow fetal development. Here we investigated the expression and functionality of TLRs expressed by decidual macrophages (dMs and NK cells (dNKs, the major decidual immune cell populations.We report for the first time that both human dMs and dNK cells express mRNAs encoding TLRs 1-9, albeit with a higher expression level in dMs. TLR2, TLR3 and TLR4 protein expression checked by flow cytometry was positive for both dMs and dNK cells. In vitro treatment of primary dMs and dNK cells with specific TLR2, TLR3, TLR4, TLR7/8 and TLR9 agonists enhanced their secretion of pro- and anti-inflammatory cytokines, as well as cytokines and chemokines involved in immune cell crosstalk. Only dNK cells released IFN-γ, whereas only dMs released IL-1β, IL-10 and IL-12. TLR9 activation of dMs resulted in a distinct pattern of cytokine expression compared to the other TLRs. The cytokine profiles expressed by dMs and dNK cells upon TLR activation are compatible with maintenance of the fetotolerant immune environment during initiation of immune responses to pathogens at the maternofetal interface.

  13. A comparison of targetting of neuroblastoma with MIBG and anti L1-CAM antibody mAb chCE7: therapeutic efficacy in a neuroblastoma xenograft model and imaging of neuroblastoma patients

    International Nuclear Information System (INIS)

    Hoefnagel, C.A.; Rutgers, M.; Buitenhuis, C.K.M.; Smets, L.A.; Kraker, J. de; Meli, M.; Carrel, F.; Schubiger, P.A.; Novak-Hofer, I.; Amstutz, H.

    2001-01-01

    Modine-131 labelled anti L1-CAM antibody mAb chCE7 was compared with the effective neuroblastoma-seeking agent 131 I-labelled metaiodobenzylguanidine (MIBG) with regard to (a) its therapeutic efficacy in treating nude mice with neuroblastoma xenografts and (b) its tumour targetting ability in neuroblastoma patients. The SK-N-SH tumour cells used in the mouse experiments show good MIBG uptake and provide a relatively low number of 6,300 binding sites/cell for mAb chCE7. Tumours were treated with single injections of 131 I-MIBG (110 MBq) and with 131 I-labelled mAb chCE7 (17 MBq) and both agents showed antitumour activity. After therapy with 131 I-chCE7, the subcutaneous tumours nearly disappeared; treatment with 131 I-MIBG was somewhat less effective, resulting in a 70% reduction in tumour volume. A calculated tumour regrowth delay of 9 days occurred with a radioactivity dose of 17 MBq of an irrelevant control antibody mAb 35, which does not bind to SK-N-SH cells, compared with a regrowth delay of 34 days with 131 I-mAb chCE7 and of 24 days with 131 I-MIBG. General toxicity appeared to be mild, as assessed by a transient, approximate 10% maximum decrease in body weight during the treatments. The superior growth inhibition achieved by 131 I-chCE7 compared with 131 I-MIBG can be explained by its prolonged retention in the tumours, due to slower normal tissue and plasma clearance. Cross-reaction of mAb chCE7 with L1-CAM present in normal human tissues was investigated by direct binding of radioiodinated mAb to frozen tissue sections. Results showed a strong reaction with normal human brain tissue and weak but detectable binding to normal adult kidney sections. Seven patients with recurrent neuroblastoma were sequentially imaged with 131 I-MIBG and 131 I-chCE7. The results underlined the heterogeneity of neuroblastoma and showed the two imaging modalities to be complementary. 131 I-chCE7 scintigraphy may have clinical utility in detecting metastases which do not

  14. DNA methylation fingerprint of neuroblastoma reveals new biological and clinical insights

    Directory of Open Access Journals (Sweden)

    Soledad Gómez

    2015-09-01

    We have analyzed the DNA methylome of neuroblastoma using high-density microarrays (Infinium Human Methylation 450k BeadChip to define the epigenetic landscape of this pediatric tumor and its potential clinicopathological impact. Here, we provide the detail of methods and quality control parameters of the microarray data used for the study. Methylation data has been deposited at NCBI Gene Expression Omnibus data repository, accession number GSE54719; superseries record GSE54721.

  15. Caspase 8/10 are not mediating apoptosis in neuroblastoma cells treated with CDK inhibitory drugs

    OpenAIRE

    Ribas i Fortuny, Judit; Gómez Arbonés, Javier; Boix Torras, Jacint

    2005-01-01

    Olomoucine and Roscovitine are pharmacological inhibitors of cyclin-dependent kinases (CDK) displaying a promising profile as anticancer agents. Both compounds are effective inductors of apoptosis in a human neuroblastoma cell line, SH-SY5Y. The characterization of this process had suggested the involvement of an extrinsic pathway [Ribas, J., Boix, J., 2004. Cell differentiation, Caspase inhibition, and macromolecular synthesis blockage, but not Bcl-2 or Bcl-XL proteins, protect SH-SY5Y cells...

  16. Environment Mediated Drug Resistance in Neuroblastoma

    Science.gov (United States)

    2015-12-01

    activate STAT3 and MYC in neuroblastomas independently of IL6). Figure 9: Effect of IL-6 knockout crossing with NB- Tag mice. (A) MRI of abdominal...production. (D) Representative MRI images of NB-Tag and NB- Tag/IL-6KO pre-chemotherapy, post 3 and 6 weeks of chemotherapy. Task 6. Contribution of bone...described (16). Cells were lysed in radioimmunoprecipitation assay (RIPA) buffer supplemented with 1 tablet of complete mini-EDTA protease inhibitor

  17. Mechanistically Distinct Pathways of Divergent Regulatory DNA Creation Contribute to Evolution of Human-Specific Genomic Regulatory Networks Driving Phenotypic Divergence of Homo sapiens.

    Science.gov (United States)

    Glinsky, Gennadi V

    2016-09-19

    Thousands of candidate human-specific regulatory sequences (HSRS) have been identified, supporting the hypothesis that unique to human phenotypes result from human-specific alterations of genomic regulatory networks. Collectively, a compendium of multiple diverse families of HSRS that are functionally and structurally divergent from Great Apes could be defined as the backbone of human-specific genomic regulatory networks. Here, the conservation patterns analysis of 18,364 candidate HSRS was carried out requiring that 100% of bases must remap during the alignments of human, chimpanzee, and bonobo sequences. A total of 5,535 candidate HSRS were identified that are: (i) highly conserved in Great Apes; (ii) evolved by the exaptation of highly conserved ancestral DNA; (iii) defined by either the acceleration of mutation rates on the human lineage or the functional divergence from non-human primates. The exaptation of highly conserved ancestral DNA pathway seems mechanistically distinct from the evolution of regulatory DNA segments driven by the species-specific expansion of transposable elements. Genome-wide proximity placement analysis of HSRS revealed that a small fraction of topologically associating domains (TADs) contain more than half of HSRS from four distinct families. TADs that are enriched for HSRS and termed rapidly evolving in humans TADs (revTADs) comprise 0.8-10.3% of 3,127 TADs in the hESC genome. RevTADs manifest distinct correlation patterns between placements of human accelerated regions, human-specific transcription factor-binding sites, and recombination rates. There is a significant enrichment within revTAD boundaries of hESC-enhancers, primate-specific CTCF-binding sites, human-specific RNAPII-binding sites, hCONDELs, and H3K4me3 peaks with human-specific enrichment at TSS in prefrontal cortex neurons (P sapiens is driven by the evolution of human-specific genomic regulatory networks via at least two mechanistically distinct pathways of creation of

  18. Comprehensive proteomic analysis of human milk-derived extracellular vesicles unveils a novel functional proteome distinct from other milk components

    NARCIS (Netherlands)

    van Herwijnen, Martijn J C; Zonneveld, Marijke I; Goerdayal, Soenita; Nolte-'t Hoen, Esther N M; Garssen, Johan; Stahl, Bernd; Altelaar, A F Maarten; Redegeld, Frank A; Wauben, Marca H M

    2016-01-01

    Breast milk contains several macromolecular components with distinctive functions, whereby milk fat globules and casein micelles mainly provide nutrition to the newborn, while whey contains molecules that can stimulate the newborn's developing immune system and gastrointestinal tract. Although

  19. Customized oligonucleotide microarray gene expression-based classification of neuroblastoma patients outperforms current clinical risk stratification.

    Science.gov (United States)

    Oberthuer, André; Berthold, Frank; Warnat, Patrick; Hero, Barbara; Kahlert, Yvonne; Spitz, Rüdiger; Ernestus, Karen; König, Rainer; Haas, Stefan; Eils, Roland; Schwab, Manfred; Brors, Benedikt; Westermann, Frank; Fischer, Matthias

    2006-11-01

    To develop a gene expression-based classifier for neuroblastoma patients that reliably predicts courses of the disease. Two hundred fifty-one neuroblastoma specimens were analyzed using a customized oligonucleotide microarray comprising 10,163 probes for transcripts with differential expression in clinical subgroups of the disease. Subsequently, the prediction analysis for microarrays (PAM) was applied to a first set of patients with maximally divergent clinical courses (n = 77). The classification accuracy was estimated by a complete 10-times-repeated 10-fold cross validation, and a 144-gene predictor was constructed from this set. This classifier's predictive power was evaluated in an independent second set (n = 174) by comparing results of the gene expression-based classification with those of risk stratification systems of current trials from Germany, Japan, and the United States. The first set of patients was accurately predicted by PAM (cross-validated accuracy, 99%). Within the second set, the PAM classifier significantly separated cohorts with distinct courses (3-year event-free survival [EFS] 0.86 +/- 0.03 [favorable; n = 115] v 0.52 +/- 0.07 [unfavorable; n = 59] and 3-year overall survival 0.99 +/- 0.01 v 0.84 +/- 0.05; both P model, the PAM predictor classified patients of the second set more accurately than risk stratification of current trials from Germany, Japan, and the United States (P < .001; hazard ratio, 4.756 [95% CI, 2.544 to 8.893]). Integration of gene expression-based class prediction of neuroblastoma patients may improve risk estimation of current neuroblastoma trials.

  20. Intracellular expression of toll-like receptor 4 in neuroblastoma cells and their unresponsiveness to lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Mori Isamu

    2006-12-01

    Full Text Available Abstract Background Recently it has been reported that, toll-like receptors (TLRs are expressed on a series of tumor cells, such as colon cancer, breast cancer, prostate cancer, melanoma and lung cancer. Although some cancer cells like melanoma cells are known to respond to lipopolysaccharide (LPS via TLR4, not all cancer cells are positive for TLR4. There is little information on the expression and function of TLR4 in neuroblastoma cells. In this study, we investigated the expression of TLR4 in human neuroblastoma NB-1 cell line. Methods Expression and localization of TLR4 were detected by reverse transcription-polymerase chain reaction (RT-PCR and flow cytometric analysis, respectively. Activation of nuclear factor (NF-κB by LPS was detected by degradation of IκB-α and NF-κB luciferase assay. Activation and expression of mitogen-activated protein (MAP kinase and interferon regulatory factor (IRF-3 was detected by immunoblot analysis. Results Human NB-1 neuroblastoma cells expressed intracellular form of TLR4, but not the cell surface form. Further, NB-1 cells express CD14, MD2 and MyD88, which are required for LPS response. However, LPS did not significantly induce NF-κB activation in NB-1 cells although it slightly degraded IκB-α. NB-1 cells expressed no IRF-3, which plays a pivotal role on the MyD88-independent pathway of LPS signaling. Collectively, NB-1 cells are capable to avoid their response to LPS. Conclusion Although human NB-1 neuroblastoma cells possessed all the molecules required for LPS response, they did not respond to LPS. It might be responsible for intracellular expression of TLR4 or lack of IRF-3.

  1. Intracellular expression of toll-like receptor 4 in neuroblastoma cells and their unresponsiveness to lipopolysaccharide

    International Nuclear Information System (INIS)

    Hassan, Ferdaus; Islam, Shamima; Tumurkhuu, Gantsetseg; Naiki, Yoshikazu; Koide, Naoki; Mori, Isamu; Yoshida, Tomoaki; Yokochi, Takashi

    2006-01-01

    Recently it has been reported that, toll-like receptors (TLRs) are expressed on a series of tumor cells, such as colon cancer, breast cancer, prostate cancer, melanoma and lung cancer. Although some cancer cells like melanoma cells are known to respond to lipopolysaccharide (LPS) via TLR4, not all cancer cells are positive for TLR4. There is little information on the expression and function of TLR4 in neuroblastoma cells. In this study, we investigated the expression of TLR4 in human neuroblastoma NB-1 cell line. Expression and localization of TLR4 were detected by reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometric analysis, respectively. Activation of nuclear factor (NF)-κB by LPS was detected by degradation of IκB-α and NF-κB luciferase assay. Activation and expression of mitogen-activated protein (MAP) kinase and interferon regulatory factor (IRF)-3 was detected by immunoblot analysis. Human NB-1 neuroblastoma cells expressed intracellular form of TLR4, but not the cell surface form. Further, NB-1 cells express CD14, MD2 and MyD88, which are required for LPS response. However, LPS did not significantly induce NF-κB activation in NB-1 cells although it slightly degraded IκB-α. NB-1 cells expressed no IRF-3, which plays a pivotal role on the MyD88-independent pathway of LPS signaling. Collectively, NB-1 cells are capable to avoid their response to LPS. Although human NB-1 neuroblastoma cells possessed all the molecules required for LPS response, they did not respond to LPS. It might be responsible for intracellular expression of TLR4 or lack of IRF-3

  2. The Shared Goals and Distinct Strengths of the Medical Humanities: Can the Sum of the Parts Be Greater Than the Whole?

    Science.gov (United States)

    Greene, Jeremy A; Jones, David S

    2017-12-01

    Since the 1960s, faculty from diverse fields have banded together under the banner of the medical humanities, a term which unites art, literature, history, anthropology, religious studies, philosophy, and other disciplines. Arguments for the relevance of medical humanities often emphasize contributions that any of these disciplines can make to medical education, whether those involve empathy, professionalism, critical reasoning, or tolerating ambiguity. The authors argue that the constituent disciplines of the medical humanities are not interchangeable parts, but represent different perspectives and methodologies that offer their own distinct contributions to medical training. Efforts to define a role for medical humanities in medical education should pursue two strategies in parallel. On the one hand, advocates of the medical humanities should continue to make the case for the shared contributions that all of the disciplines can make to medical education. But advocates for the medical humanities should also emphasize the valuable contributions of each specific discipline, in terms that medical educators can understand. The authors illustrate this point by delineating contributions of their own discipline, medical history. Historical analysis contributes essential insights to the understanding of disease, therapeutics, and institutions-things that all physicians must know in order to be effective as clinicians, just as they must learn anatomy or pathophysiology. Analogous but different arguments can be made for literature, philosophy, and the other disciplines that constitute the medical humanities. The field of medical humanities will be most successful if it builds on both the shared and the distinct contributions of its disciplines.

  3. Cloning of human basic A1, a distinct 59-kDa dystrophin-associated protein encoded on chromosome 8q23-24

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, A.H. [Harvard Medical School, Boston, MA (United States); Yoshida, Mikiharu; Hagiwara, Yasuko; Ozawa, Eijiro [National Institute of Neuroscience, Ogawa Higashi, Kodaira (Japan); Anderson, M.S.; Feener, C.A.; Selig, S. [Howard Hughes Medical Institute at Children`s Hospital, Boston, MA (United States); Kunkel, L.M. [Harvard Medical School, Boston, MA (United States)]|[Howard Hughes Medical Institute at Children`s Hosptial, Boston, MA (United States)

    1994-05-10

    Duchenne and Becker muscular dystrophies are caused by defects of dystrophin, which forms a part of the membrane cytoskeleton of specialized cells such as muscle. It has been previously shown that the dystrophin-associated protein A1 (59-kDa DAP) is actually a heterogeneous group of phosphorylated proteins consisting of an acidic ({alpha}-A1) and a distinct basic ({beta}-A1) component. Partial peptide sequence of the A1 complex purified from rabbit muscle permitted the design of oligonucleotide probes that were used to isolate a cDNA for one human isoform of A1. This cDNA encodes a basic A1 isoform that is distinct from the recently described syntrophins in Torpedo and mouse and is expressed in many tissues with at least five distinct mRNA species of 5.9, 4.8, 4.3, 3.1, and 1.5 kb. A comparison of the human cDNA sequence with the GenBank expressed sequence tag (EST) data base has identified a relative from human skeletal muscle, EST25263, which is probably a human homologue of the published mouse syntrophin 2. The authors have mapped the human basic component of A1 and EST25263 genes to chromosomes 8q23-24 and 16, respectively.

  4. Rho-associated kinase is a therapeutic target in neuroblastoma.

    Science.gov (United States)

    Dyberg, Cecilia; Fransson, Susanne; Andonova, Teodora; Sveinbjörnsson, Baldur; Lännerholm-Palm, Jessika; Olsen, Thale K; Forsberg, David; Herlenius, Eric; Martinsson, Tommy; Brodin, Bertha; Kogner, Per; Johnsen, John Inge; Wickström, Malin

    2017-08-08

    Neuroblastoma is a peripheral neural system tumor that originates from the neural crest and is the most common and deadly tumor of infancy. Here we show that neuroblastoma harbors frequent mutations of genes controlling the Rac/Rho signaling cascade important for proper migration and differentiation of neural crest cells during neuritogenesis. RhoA is activated in tumors from neuroblastoma patients, and elevated expression of Rho-associated kinase (ROCK)2 is associated with poor patient survival. Pharmacological or genetic inhibition of ROCK1 and 2, key molecules in Rho signaling, resulted in neuroblastoma cell differentiation and inhibition of neuroblastoma cell growth, migration, and invasion. Molecularly, ROCK inhibition induced glycogen synthase kinase 3β-dependent phosphorylation and degradation of MYCN protein. Small-molecule inhibition of ROCK suppressed MYCN -driven neuroblastoma growth in TH- MYCN homozygous transgenic mice and MYCN gene-amplified neuroblastoma xenograft growth in nude mice. Interference with Rho/Rac signaling might offer therapeutic perspectives for high-risk neuroblastoma.

  5. Targeted BCL2 inhibition effectively inhibits neuroblastoma tumour growth

    NARCIS (Netherlands)

    Lamers, Fieke; Schild, Linda; den Hartog, Ilona J. M.; Ebus, Marli E.; Westerhout, Ellen M.; Ora, Ingrid; Koster, Jan; Versteeg, Rogier; Caron, Huib N.; Molenaar, Jan J.

    2012-01-01

    Genomic aberrations of key regulators of the apoptotic pathway have hardly been identified in neuroblastoma. We detected high BCL2 mRNA and protein levels in the majority of neuroblastoma tumours by Affymetrix expression profiling and Tissue Micro Array analysis. This BCL2 mRNA expression is

  6. Neuroblastoma Treatment (PDQ®)—Health Professional Version

    Science.gov (United States)

    Neuroblastoma treatment depends on the assigned risk category (low, intermediate, high, stage 4S). Get detailed information about the genomic/biologic features, presentation, diagnosis/staging, risk groups, prognosis and treatment of newly diagnosed and recurrent neuroblastoma in this summary for clinicians.

  7. Distinct Skeletal Muscle Gene Regulation from Active Contraction, Passive Vibration, and Whole Body Heat Stress in Humans.

    Directory of Open Access Journals (Sweden)

    Michael A Petrie

    Full Text Available Skeletal muscle exercise regulates several important metabolic genes in humans. We know little about the effects of environmental stress (heat and mechanical stress (vibration on skeletal muscle. Passive mechanical stress or systemic heat stress are often used in combination with many active exercise programs. We designed a method to deliver a vibration stress and systemic heat stress to compare the effects with active skeletal muscle contraction.The purpose of this study is to examine whether active mechanical stress (muscle contraction, passive mechanical stress (vibration, or systemic whole body heat stress regulates key gene signatures associated with muscle metabolism, hypertrophy/atrophy, and inflammation/repair.Eleven subjects, six able-bodied and five with chronic spinal cord injury (SCI participated in the study. The six able-bodied subjects sat in a heat stress chamber for 30 minutes. Five subjects with SCI received a single dose of limb-segment vibration or a dose of repetitive electrically induced muscle contractions. Three hours after the completion of each stress, we performed a muscle biopsy (vastus lateralis or soleus to analyze mRNA gene expression.We discovered repetitive active muscle contractions up regulated metabolic transcription factors NR4A3 (12.45 fold, PGC-1α (5.46 fold, and ABRA (5.98 fold; and repressed MSTN (0.56 fold. Heat stress repressed PGC-1α (0.74 fold change; p < 0.05; while vibration induced FOXK2 (2.36 fold change; p < 0.05. Vibration similarly caused a down regulation of MSTN (0.74 fold change; p < 0.05, but to a lesser extent than active muscle contraction. Vibration induced FOXK2 (p < 0.05 while heat stress repressed PGC-1α (0.74 fold and ANKRD1 genes (0.51 fold; p < 0.05.These findings support a distinct gene regulation in response to heat stress, vibration, and muscle contractions. Understanding these responses may assist in developing regenerative rehabilitation interventions to improve muscle cell

  8. Radiobiological considerations in the treatment of neuroblastoma by total body irradiation

    International Nuclear Information System (INIS)

    Wheldon, T.E.; O'Donoghue, J.; Gregor, A.; Livingstone, A.; Wilson, L.; West of Scotland Health Boards, Glasgow

    1986-01-01

    Neuroblastoma is a radiosensitive neoplasm for which total body irradiation (TBI) is presently under clinical consideration. Collated data on the radiobiology of human neuroblastoma cells in vitro indicates moderate cellular radiosensitivity and low capacity for accumulation of sublethal damage. Mathematical studies incorporating these parameters suggest that low dose fractionated TBI is unlikely to achieve significant levels of tumour cell kill. When high dose TBI is used in conjuction with bone marrow rescue a tumour 'log cell kill' of 4-5 should be achievable. This effect would be additional to that acheived by chemotherapy. Fractionated TBI with bone marrow rescue may be curative for some patients in clinical remission who are presently destined to relapse. (Auth.)

  9. Co-circulation of genetically distinct human metapneumovirus and human bocavirus strains in young children with respiratory tract infections in Italy.

    Science.gov (United States)

    Zappa, Alessandra; Canuti, Marta; Frati, Elena; Pariani, Elena; Perin, Silvana; Ruzza, Maria Lorena; Farina, Claudio; Podestà, Alberto; Zanetti, Alessandro; Amendola, Antonella; Tanzi, Elisabetta

    2011-01-01

    The discovery of human Metapneumovirus (hMPV) and human Bocavirus (hBoV) identified the etiological causes of several cases of acute respiratory tract infections in children. This report describes the molecular epidemiology of hMPV and hBoV infections observed following viral surveillance of children hospitalized for acute respiratory tract infections in Milan, Italy. Pharyngeal swabs were collected from 240 children ≤3 years of age (130 males, 110 females; median age, 5.0 months; IQR, 2.0-12.5 months) and tested for respiratory viruses, including hMPV and hBoV, by molecular methods. hMPV-RNA and hBoV-DNA positive samples were characterized molecularly and a phylogenetical analysis was performed. PCR analysis identified 131/240 (54.6%) samples positive for at least one virus. The frequency of hMPV and hBoV infections was similar (8.3% and 12.1%, respectively). Both infections were associated with lower respiratory tract infections: hMPV was present as a single infectious agent in 7.2% of children with bronchiolitis, hBoV was associated with 18.5% of pediatric pneumonias and identified frequently as a single etiological agent. Genetically distinct hMPV and hBoV strains were identified in children examined with respiratory tract infections. Phylogenetic analysis showed an increased prevalence of hMPV genotype A (A2b sublineage) compared to genotype B (80% vs. 20%, respectively) and of the hBoV genotype St2 compared to genotype St1 (71.4% vs. 28.6%, respectively). Interestingly, a shift in hMPV infections resulting from A2 strains has been observed in recent years. In addition, the occurrence of recombination events between two hBoV strains with a breakpoint located in the VP1/VP2 region was identified. © 2010 Wiley-Liss, Inc.

  10. N-myc oncogene amplification is correlated to trace metal concentrations in neuroblastoma cultured cells

    International Nuclear Information System (INIS)

    Gouget, B.; Sergeant, C.; Benard, J.; Llabador, Y.; Simonoff, M.

    2000-01-01

    N-myc oncogene amplification is a powerful predictor of aggressive behavior of neuroblastoma (NB), the most common solid tumor of the early childhood. Since N-myc overexpression - subsequent to amplification - determines a phenotype of invasiveness and metastatic spreading, it is assumed that N-myc amplified neuroblasts synthesize zinc metalloenzymes leading to tumor invasion and formation of metastases. In order to test a possible relation between N-myc oncogene amplification and trace metal contents in human NB cells, Fe, Cu and Zn concentrations have been measured by nuclear microprobe analysis in three human neuroblastoma cell lines with various degrees of N-myc amplification. Elemental determinations show uniform distribution of trace metals within the cells, but variations of intracellular trace metal concentrations with respect to the degree of N-myc amplification are highly dependent on the nature of the element. Zinc concentration is higher in both N-myc amplified cell lines (IMR-32 and IGR-N-91) than in the non-amplified cells (SK-N-SH). In contrast, intracellular iron content is particularly low in N-myc amplified cell lines. Moreover, copper concentrations showed an increase with the degree of N-myc amplification. These results indicate that a relationship exists between intracellular trace metals and N-myc oncogene amplification. They further suggest that trace metals very probably play a determinant role in mechanisms of the neuroblastoma invasiveness

  11. Reversible adaptive plasticity: A mechanism for neuroblastoma cell heterogeneity and chemo-resistance

    Directory of Open Access Journals (Sweden)

    Lina eChakrabarti

    2012-08-01

    Full Text Available We describe a novel form of tumor cell plasticity characterized by reversible adaptive plasticity in murine and human neuroblastoma. Two cellular phenotypes were defined by their ability to exhibit adhered, anchorage dependent (AD or sphere forming, anchorage independent (AI growth. The tumor cells could transition back and forth between the two phenotypes and the transition was dependent on the culture conditions. Both cell phenotypes exhibited stem-like features such as expression of nestin, self-renewal capacity and mesenchymal differentiation potential. The AI tumorspheres were found to be more resistant to chemotherapy and proliferated slower in vitro compared to the AD cells. Identification of specific molecular markers like MAP2, β-catenin and PDGFRβ enabled us to characterize and observe both phenotypes in established mouse tumors. Irrespective of the phenotype originally implanted in mice, tumors grown in vivo show phenotypic heterogeneity in molecular marker signatures and are indistinguishable in growth or histologic appearance. Similar molecular marker heterogeneity was demonstrated in primary human tumor specimens. Chemotherapy or growth factor receptor inhibition slowed tumor growth in mice and promoted initial loss of AD or AI heterogeneity, respectively. Simultaneous targeting of both phenotypes led to further tumor growth delay with emergence of new unique phenotypes. Our results demonstrate that neuroblastoma cells are plastic, dynamic and may optimize their ability to survive by changing their phenotype. Phenotypic switching appears to be an adaptive mechanism to unfavorable selection pressure and could explain the phenotypic and functional heterogeneity of neuroblastoma.

  12. Reversible Adaptive Plasticity: A Mechanism for Neuroblastoma Cell Heterogeneity and Chemo-Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarti, Lina; Abou-Antoun, Thamara; Vukmanovic, Stanislav; Sandler, Anthony D., E-mail: asandler@childrensnational.org [The Joseph E. Robert Center for Surgical Care, Children’s National Medical Center, Washington, DC (United States); The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Medical Center, Washington, DC (United States)

    2012-08-02

    We describe a novel form of tumor cell plasticity characterized by reversible adaptive plasticity in murine and human neuroblastoma. Two cellular phenotypes were defined by their ability to exhibit adhered, anchorage dependent (AD) or sphere forming, anchorage independent (AI) growth. The tumor cells could transition back and forth between the two phenotypes and the transition was dependent on the culture conditions. Both cell phenotypes exhibited stem-like features such as expression of nestin, self-renewal capacity, and mesenchymal differentiation potential. The AI tumorspheres were found to be more resistant to chemotherapy and proliferated slower in vitro compared to the AD cells. Identification of specific molecular markers like MAP2, β-catenin, and PDGFRβ enabled us to characterize and observe both phenotypes in established mouse tumors. Irrespective of the phenotype originally implanted in mice, tumors grown in vivo show phenotypic heterogeneity in molecular marker signatures and are indistinguishable in growth or histologic appearance. Similar molecular marker heterogeneity was demonstrated in primary human tumor specimens. Chemotherapy or growth factor receptor inhibition slowed tumor growth in mice and promoted initial loss of AD or AI heterogeneity, respectively. Simultaneous targeting of both phenotypes led to further tumor growth delay with emergence of new unique phenotypes. Our results demonstrate that neuroblastoma cells are plastic, dynamic, and may optimize their ability to survive by changing their phenotype. Phenotypic switching appears to be an adaptive mechanism to unfavorable selection pressure and could explain the phenotypic and functional heterogeneity of neuroblastoma.

  13. International consensus for neuroblastoma molecular diagnostics: report from the International Neuroblastoma Risk Group (INRG) Biology Committee

    Science.gov (United States)

    Ambros, P F; Ambros, I M; Brodeur, G M; Haber, M; Khan, J; Nakagawara, A; Schleiermacher, G; Speleman, F; Spitz, R; London, W B; Cohn, S L; Pearson, A D J; Maris, J M

    2009-01-01

    Neuroblastoma serves as a paradigm for utilising tumour genomic data for determining patient prognosis and treatment allocation. However, before the establishment of the International Neuroblastoma Risk Group (INRG) Task Force in 2004, international consensus on markers, methodology, and data interpretation did not exist, compromising the reliability of decisive genetic markers and inhibiting translational research efforts. The objectives of the INRG Biology Committee were to identify highly prognostic genetic aberrations to be included in the new INRG risk classification schema and to develop precise definitions, decisive biomarkers, and technique standardisation. The review of the INRG database (n=8800 patients) by the INRG Task Force finally enabled the identification of the most significant neuroblastoma biomarkers. In addition, the Biology Committee compared the standard operating procedures of different cooperative groups to arrive at international consensus for methodology, nomenclature, and future directions. Consensus was reached to include MYCN status, 11q23 allelic status, and ploidy in the INRG classification system on the basis of an evidence-based review of the INRG database. Standardised operating procedures for analysing these genetic factors were adopted, and criteria for proper nomenclature were developed. Neuroblastoma treatment planning is highly dependant on tumour cell genomic features, and it is likely that a comprehensive panel of DNA-based biomarkers will be used in future risk assignment algorithms applying genome-wide techniques. Consensus on methodology and interpretation is essential for uniform INRG classification and will greatly facilitate international and cooperative clinical and translational research studies. PMID:19401703

  14. Analysis of 1;17 translocation breakpoints in neuroblastoma: implications for mapping of neuroblastoma genes

    NARCIS (Netherlands)

    van Roy, N.; Laureys, G.; van Gele, M.; Opdenakker, G.; Miura, R.; van der Drift, P.; Chan, A.; Versteeg, R.; Speleman, F.

    1997-01-01

    Deletions and translocations resulting in loss of distal 1p-material are known to occur frequently in advanced neuroblastomas. Fluorescence in situ hybridisation (FISH) showed that 17q was most frequently involved in chromosome 1p translocations. A review of the literature shows that 10 of 27 cell

  15. The MSX1 homeobox transcription factor is a downstream target of PHOX2B and activates the Delta-Notch pathway in neuroblastoma

    International Nuclear Information System (INIS)

    Revet, Ingrid; Huizenga, Gerda; Chan, Alvin; Koster, Jan; Volckmann, Richard; Sluis, Peter van; Ora, Ingrid; Versteeg, Rogier; Geerts, Dirk

    2008-01-01

    Neuroblastoma is an embryonal tumour of the peripheral sympathetic nervous system (SNS). One of the master regulator genes for peripheral SNS differentiation, the homeobox transcription factor PHOX2B, is mutated in familiar and sporadic neuroblastomas. Here we report that inducible expression of PHOX2B in the neuroblastoma cell line SJNB-8 down-regulates MSX1, a homeobox gene important for embryonic neural crest development. Inducible expression of MSX1 in SJNB-8 caused inhibition of both cell proliferation and colony formation in soft agar. Affymetrix micro-array and Northern blot analysis demonstrated that MSX1 strongly up-regulated the Delta-Notch pathway genes DLK1, NOTCH3, and HEY1. In addition, the proneural gene NEUROD1 was down-regulated. Western blot analysis showed that MSX1 induction caused cleavage of the NOTCH3 protein to its activated form, further confirming activation of the Delta-Notch pathway. These experiments describe for the first time regulation of the Delta-Notch pathway by MSX1, and connect these genes to the PHOX2B oncogene, indicative of a role in neuroblastoma biology. Affymetrix micro-array analysis of a neuroblastic tumour series consisting of neuroblastomas and the more benign ganglioneuromas showed that MSX1, NOTCH3 and HEY1 are more highly expressed in ganglioneuromas. This suggests a block in differentiation of these tumours at distinct developmental stages or lineages

  16. N-Myc knockdown and apigenin treatment controlled growth of malignant neuroblastoma cells having N-Myc amplification.

    Science.gov (United States)

    Hossain, Md Motarab; Banik, Naren L; Ray, Swapan K

    2013-10-15

    Malignant neuroblastomas mostly occur in children and are frequently associated with N-Myc amplification. Oncogene amplification, which is selective increase in copy number of the oncogene, provides survival advantages in solid tumors including malignant neuroblastoma. We have decreased expression of N-Myc oncogene using short hairpin RNA (shRNA) plasmid to increase anti-tumor efficacy of the isoflavonoid apigenin (APG) in human malignant neuroblastoma SK-N-DZ and SK-N-BE2 cell lines that harbor N-Myc amplification. N-Myc knockdown induced morphological and biochemical features of neuronal differentiation. Combination of N-Myc knockdown and APG most effectively induced morphological and biochemical features of apoptotic death. This combination therapy also prevented cell migration and decreased N-Myc driven survival, angiogenic, and invasive factors. Collectively, N-Myc knockdown and APG treatment is a promising strategy for controlling the growth of human malignant neuroblastoma cell lines that harbor N-Myc amplification. © 2013 Elsevier B.V. All rights reserved.

  17. Management and outcome of stage 3 neuroblastoma

    Science.gov (United States)

    Modak, Shakeel; Kushner, Brian H.; LaQuaglia, Michael P.; Kramer, Kim; Cheung, Nai-Kong V.

    2013-01-01

    Purpose The management of patients with International Neuroblastoma Staging System (INSS) stage 3 neuroblastoma (NB) is not consistent worldwide. We describe a single centre approach at Memorial Sloan-Kettering Cancer Centre (MSKCC) from 1991 to 2007 that minimizes therapy except for those patients with MYCN-amplified NB. Methods In this retrospective analysis of 69 patients, tumour MYCN was not amplified in 53 and amplified in 16. Event-free survival (EFS) and overall survival (OS) were determined by Kaplan–Meier analysis. Results Fourteen patients with non-MYCN-amplified tumours were treated with surgery alone (group A) and the remaining 39 (group B) with surgery following chemotherapy that was initiated and administered at non-MSKCC institutions. Chemotherapy was discontinued after surgery in 38/39 of the latter. The 10-year EFS and OS for all patients with MYCN-non-amplified NB were 74.9 ± 16.9% and 92.6 ± 5.5%, respectively. There was no difference in OS between groups A and B (p = 0.2; 10-year OS for groups A and B was 84.6 ± 14% and 97.1 ± 2.9%, respectively). Patients with MYCN-amplified disease (group C) underwent dose-intensive induction, tumour resection and local radiotherapy: 13 achieved complete or very good partial remission, and 10 received myeloablative chemotherapy. 11/16 patients also received 3F8-based immunotherapy: 10 remain free of disease. The 10-year EFS and OS for patients with MYCN-amplified neuroblastoma treated with immunotherapy were both 90.9 ± 8.7%. Conclusion Patients with MYCN-non-amplified stage 3 NB can be successfully treated with surgery without the need for radiotherapy or continuation of chemotherapy. Combination of dose-intensive chemotherapy, surgery, radiotherapy and immunotherapy was associated with a favourable outcome for most patients with MYCN-amplified stage 3 NB. PMID:18996003

  18. Heterogeneity of neuroblastoma cell identity defined by transcriptional circuitries.

    Science.gov (United States)

    Boeva, Valentina; Louis-Brennetot, Caroline; Peltier, Agathe; Durand, Simon; Pierre-Eugène, Cécile; Raynal, Virginie; Etchevers, Heather C; Thomas, Sophie; Lermine, Alban; Daudigeos-Dubus, Estelle; Geoerger, Birgit; Orth, Martin F; Grünewald, Thomas G P; Diaz, Elise; Ducos, Bertrand; Surdez, Didier; Carcaboso, Angel M; Medvedeva, Irina; Deller, Thomas; Combaret, Valérie; Lapouble, Eve; Pierron, Gaelle; Grossetête-Lalami, Sandrine; Baulande, Sylvain; Schleiermacher, Gudrun; Barillot, Emmanuel; Rohrer, Hermann; Delattre, Olivier; Janoueix-Lerosey, Isabelle

    2017-09-01

    Neuroblastoma is a tumor of the peripheral sympathetic nervous system, derived from multipotent neural crest cells (NCCs). To define core regulatory circuitries (CRCs) controlling the gene expression program of neuroblastoma, we established and analyzed the neuroblastoma super-enhancer landscape. We discovered three types of identity in neuroblastoma cell lines: a sympathetic noradrenergic identity, defined by a CRC module including the PHOX2B, HAND2 and GATA3 transcription factors (TFs); an NCC-like identity, driven by a CRC module containing AP-1 TFs; and a mixed type, further deconvoluted at the single-cell level. Treatment of the mixed type with chemotherapeutic agents resulted in enrichment of NCC-like cells. The noradrenergic module was validated by ChIP-seq. Functional studies demonstrated dependency of neuroblastoma with noradrenergic identity on PHOX2B, evocative of lineage addiction. Most neuroblastoma primary tumors express TFs from the noradrenergic and NCC-like modules. Our data demonstrate a previously unknown aspect of tumor heterogeneity relevant for neuroblastoma treatment strategies.

  19. High dose melphalan in the treatment of advanced neuroblastoma: results of a randomised trial (ENSG-1) by the European Neuroblastoma Study Group

    NARCIS (Netherlands)

    Pritchard, Jon; Cotterill, Simon J.; Germond, Shirley M.; Imeson, John; de Kraker, Jan; Jones, David R.

    2005-01-01

    High dose myeloablative chemotherapy ("megatherapy"), with haematopoietic stem cell support, is now widely used to consolidate response to induction chemotherapy in patients with advanced neuroblastoma. In this study (European Neuroblastoma Study Group, ENSG1), the value of melphalan myeloablative

  20. Distinct human and mouse membrane trafficking systems for sweet taste receptors T1r2 and T1r3.

    Science.gov (United States)

    Shimizu, Madoka; Goto, Masao; Kawai, Takayuki; Yamashita, Atsuko; Kusakabe, Yuko

    2014-01-01

    The sweet taste receptors T1r2 and T1r3 are included in the T1r taste receptor family that belongs to class C of the G protein-coupled receptors. Heterodimerization of T1r2 and T1r3 is required for the perception of sweet substances, but little is known about the mechanisms underlying this heterodimerization, including membrane trafficking. We developed tagged mouse T1r2 and T1r3, and human T1R2 and T1R3 and evaluated membrane trafficking in human embryonic kidney 293 (HEK293) cells. We found that human T1R3 surface expression was only observed when human T1R3 was coexpressed with human T1R2, whereas mouse T1r3 was expressed without mouse T1r2 expression. A domain-swapped chimera and truncated human T1R3 mutant showed that the Venus flytrap module and cysteine-rich domain (CRD) of human T1R3 contain a region related to the inhibition of human T1R3 membrane trafficking and coordinated regulation of human T1R3 membrane trafficking. We also found that the Venus flytrap module of both human T1R2 and T1R3 are needed for membrane trafficking, suggesting that the coexpression of human T1R2 and T1R3 is required for this event. These results suggest that the Venus flytrap module and CRD receive taste substances and play roles in membrane trafficking of human T1R2 and T1R3. These features are different from those of mouse receptors, indicating that human T1R2 and T1R3 are likely to have a novel membrane trafficking system.

  1. Infection of neuroblastoma cells by rabies virus is modulated by the virus titer.

    Science.gov (United States)

    Fuoco, Natalia Langenfeld; Dos Ramos Silva, Sandriana; Fernandes, Elaine Raniero; Luiz, Fernanda Guedes; Ribeiro, Orlando Garcia; Katz, Iana Suly Santos

    2018-01-01

    Rabies is a lethal viral infection that can affect almost all mammals, including humans. To better understand the replication of Rabies lyssavirus, we investigated if the viral load in brains naturally infected with rabies influences viral internalization and viral growth kinetics in neuroblastoma cells, and if the viral load affects mortality in mice after intradermal infection. We noted that high initial viral loads in brains (group II) were unfavourable for increasing viral titers during serial passages in neuroblastoma cells when compared to low initial viral loads in brains (group I). In addition, group I strains showed higher viral growth and enhanced internalization efficiency in neuroblastoma cells than group II strains. However, we observed that the dominant virus subpopulation in group II promoted efficient viral infection in the central nervous system in the new host, providing a selective advantage to the virus. Our data indicate that rabies infection in animal models depends on not only the virus strain but also the amount of virus. This study may serve as a basis for understanding the biologic proprieties of Rabies lyssavirus strains with respect to the effects on viral replication and the impact on pathogenesis, improving virus yields for use in vaccine development. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Human brain basis of musical rhythm perception: common and distinct neural substrates for meter, tempo, and pattern.

    Science.gov (United States)

    Thaut, Michael H; Trimarchi, Pietro Davide; Parsons, Lawrence M

    2014-06-17

    Rhythm as the time structure of music is composed of distinct temporal components such as pattern, meter, and tempo. Each feature requires different computational processes: meter involves representing repeating cycles of strong and weak beats; pattern involves representing intervals at each local time point which vary in length across segments and are linked hierarchically; and tempo requires representing frequency rates of underlying pulse structures. We explored whether distinct rhythmic elements engage different neural mechanisms by recording brain activity of adult musicians and non-musicians with positron emission tomography (PET) as they made covert same-different discriminations of (a) pairs of rhythmic, monotonic tone sequences representing changes in pattern, tempo, and meter, and (b) pairs of isochronous melodies. Common to pattern, meter, and tempo tasks were focal activities in right, or bilateral, areas of frontal, cingulate, parietal, prefrontal, temporal, and cerebellar cortices. Meter processing alone activated areas in right prefrontal and inferior frontal cortex associated with more cognitive and abstract representations. Pattern processing alone recruited right cortical areas involved in different kinds of auditory processing. Tempo processing alone engaged mechanisms subserving somatosensory and premotor information (e.g., posterior insula, postcentral gyrus). Melody produced activity different from the rhythm conditions (e.g., right anterior insula and various cerebellar areas). These exploratory findings suggest the outlines of some distinct neural components underlying the components of rhythmic structure.

  3. Seleno methionine-75 as a scanning agent for neuroblastoma

    International Nuclear Information System (INIS)

    Covington, E.E.; D'Angio, G.J.; Helson, L.; Romano, R.W.

    1974-01-01

    Neuroblastoma is a functioning tumor and patients with this tumor are known to excrete vanilmandelic acid and other degradation products of norepinephrine. It also accumulates and produces excess cystathionine for which methionine is a precursor in the normal anabolic pathway. This was the rationale for testing 75 Se-methionine as a possible scanning agent in patients with neuroblastoma. D'Angio et al reported the results of a preliminary investigation in which 3 of 4 patients with neuroblastoma, all with known metastases of the skull, had positive scans correctly localizing the disease. These preliminary data seemed encouraging, and further investigation was undertaken. The results are reported

  4. Importance of ERK activation in As2O3-induced differentiation and promyelocytic leukemia nuclear bodies formation in neuroblastoma cells.

    Science.gov (United States)

    Petit, A; Delaune, A; Falluel-Morel, A; Goullé, J-P; Vannier, J-P; Dubus, I; Vasse, M

    2013-11-01

    Neuroblastoma malignant cell growth is dependent on their undifferentiated status. Arsenic trioxide (As2O3) induces neuroblastoma cell differentiation in vitro, but its mechanisms still remains unknown. We used three human neuroblastoma cell lines (SH-SY5Y, IGR-N-91, LAN-1) that differ from their MYCN and p53 status to explore the intracellular events activated by As2O3 and involved in neurite outgrowth, a morphological marker of differentiation. As2O3 (2μM) induced neurite outgrowth in all cell lines, which was dependent on ERK activation but independent on MYCN status. This process was induced either by a sustained (3 days) or a transient (2h) incubation with As2O3, indicating that very early events trigger the induction of differentiation. In parallel, As2O3 induced a rapid assembly of promyelocytic leukemia nuclear bodies (PML-NB) in an ERK-dependent manner. In conclusion, mechanisms leading to neuroblastoma cell differentiation in response to As2O3 appear to involve the ERK pathway activation and PML-NB formation, which are observed in response to other differentiating molecules such as retinoic acid derivates. This open new perspectives based on the use of treatment combinations to potentiate the differentiating effects of each drug alone and reduce their adverse side effects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Functional characterization of a new p53 mutant generated by homozygous deletion in a neuroblastoma cell line

    International Nuclear Information System (INIS)

    Nakamura, Yohko; Ozaki, Toshinori; Niizuma, Hidetaka; Ohira, Miki; Kamijo, Takehiko; Nakagawara, Akira

    2007-01-01

    p53 is a key modulator of a variety of cellular stresses. In human neuroblastomas, p53 is rarely mutated and aberrantly expressed in cytoplasm. In this study, we have identified a novel p53 mutant lacking its COOH-terminal region in neuroblastoma SK-N-AS cells. p53 accumulated in response to cisplatin (CDDP) and thereby promoting apoptosis in neuroblastoma SH-SY5Y cells bearing wild-type p53, whereas SK-N-AS cells did not undergo apoptosis. We found another p53 (p53ΔC) lacking a part of oligomerization domain and nuclear localization signals in SK-N-AS cells. p53ΔC was expressed largely in cytoplasm and lost the transactivation function. Furthermore, a 3'-part of the p53 locus was homozygously deleted in SK-N-AS cells. Thus, our present findings suggest that p53 plays an important role in the DNA-damage response in certain neuroblastoma cells and it seems to be important to search for p53 mutations outside DNA-binding domain

  6. Integrin α4 Enhances Metastasis and May Be Associated with Poor Prognosis in MYCN-low Neuroblastoma.

    Directory of Open Access Journals (Sweden)

    Shanique A Young

    Full Text Available High-risk neuroblastoma is associated with an overall survival rate of 30-50%. Neuroblastoma-expressed cell adhesion receptors of the integrin family impact cell adhesion, migration, proliferation and survival. Integrin α4 is essential for neural crest cell motility during development, is highly expressed on leukocytes, and is critical for transendothelial migration. Thus, cancer cells that express this receptor may exhibit increased metastatic potential. We show that α4 expression in human and murine neuroblastoma cell lines selectively enhances in vitro interaction with the alternatively spliced connecting segment 1 of fibronectin, as well as vascular cell adhesion molecule-1 and increases migration. Integrin α4 expression enhanced experimental metastasis in a syngeneic tumor model, reconstituting a pattern of organ involvement similar to that seen in patients. Accordingly, antagonism of integrin α4 blocked metastasis, suggesting adhesive function of the integrin is required. However, adhesive function was not sufficient, as mutants of integrin α4 that conserved the matrix-adhesive and promigratory function in vitro were compromised in their metastatic capacity in vivo. Clinically, integrin α4 is more frequently expressed in non-MYNC amplified tumors, and is selectively associated with poor prognosis in this subset of disease. These results reveal an unexpected role for integrin α4 in neuroblastoma dissemination and identify α4 as a potential prognostic indicator and therapeutic target.

  7. Structure and dynamics of the human pleckstrin DEP domain: distinct molecular features of a novel DEP domain subfamily.

    Science.gov (United States)

    Civera, Concepcion; Simon, Bernd; Stier, Gunter; Sattler, Michael; Macias, Maria J

    2005-02-01

    Pleckstrin1 is a major substrate for protein kinase C in platelets and leukocytes, and comprises a central DEP (disheveled, Egl-10, pleckstrin) domain, which is flanked by two PH (pleckstrin homology) domains. DEP domains display a unique alpha/beta fold and have been implicated in membrane binding utilizing different mechanisms. Using multiple sequence alignments and phylogenetic tree reconstructions, we find that 6 subfamilies of the DEP domain exist, of which pleckstrin represents a novel and distinct subfamily. To clarify structural determinants of the DEP fold and to gain further insight into the role of the DEP domain, we determined the three-dimensional structure of the pleckstrin DEP domain using heteronuclear NMR spectroscopy. Pleckstrin DEP shares main structural features with the DEP domains of disheveled and Epac, which belong to different DEP subfamilies. However, the pleckstrin DEP fold is distinct from these structures and contains an additional, short helix alpha4 inserted in the beta4-beta5 loop that exhibits increased backbone mobility as judged by NMR relaxation measurements. Based on sequence conservation, the helix alpha4 may also be present in the DEP domains of regulator of G-protein signaling (RGS) proteins, which are members of the same DEP subfamily. In pleckstrin, the DEP domain is surrounded by two PH domains. Structural analysis and charge complementarity suggest that the DEP domain may interact with the N-terminal PH domain in pleckstrin. Phosphorylation of the PH-DEP linker, which is required for pleckstrin function, could regulate such an intramolecular interaction. This suggests a role of the pleckstrin DEP domain in intramolecular domain interactions, which is distinct from the functions of other DEP domain subfamilies found so far.

  8. Division of Giardia isolates from humans into two genetically distinct assemblages by electrophoretic analysis of enzymes encoded at 27 loci and comparison with Giardia muris.

    Science.gov (United States)

    Mayrhofer, G; Andrews, R H; Ey, P L; Chilton, N B

    1995-07-01

    Giardia that infect humans are known to be heterogeneous but they are assigned currently to a single species, Giardia intestinalis (syn. G. lamblia). The genetic differences that exist within G. intestinalis have not yet been assessed quantitatively and neither have they been compared in magnitude with those that exist between G. intestinalis and species that are morphologically similar (G. duodenalis) or morphologically distinct (e.g. G. muris). In this study, 60 Australian isolates of G. intestinalis were analysed electrophoretically at 27 enzyme loci and compared with G. muris and a feline isolate of G. duodenalis. Isolates of G. intestinalis were distinct genetically from both G. muris (approximately 80% fixed allelic differences) and the feline G. duodenalis isolate (approximately 75% fixed allelic differences). The G. intestinalis isolates were extremely heterogeneous but they fell into 2 major genetic assemblages, separated by fixed allelic differences at approximately 60% of loci examined. The magnitude of the genetic differences between the G. intestinalis assemblages approached the level that distinguished the G. duodenalis isolate from the morphologically distinct G. muris. This raises important questions about the evolutionary relationships of the assemblages with Homo sapiens, the possibility of ancient or contemporary transmission from animal hosts to humans and the biogeographical origins of the two clusters.

  9. Distinct molecular sites of anaesthetic action: pentobarbital block of human brain sodium channels is alleviated by removal of fast inactivation

    NARCIS (Netherlands)

    Wartenberg, H. C.; Urban, B. W.; Duch, D. S.

    1999-01-01

    Fast inactivation of sodium channel function is modified by anaesthetics. Its quantitative contribution to the overall anaesthetic effect is assessed by removing the fast inactivation mechanism enzymatically. Sodium channels from human brain cortex were incorporated into planar lipid bilayers. After

  10. CASE REPORT Proptosis as a manifestation of neuroblastoma ...

    African Journals Online (AJOL)

    in children less than 15 years of age, with 90% of all neuroblastomas occurring before ... Examination of the eyes showed a left axial, non-pulsatile proptosis with full ... robulbar enhancing masses (white arrows) with sphenoid bone involve-.

  11. Distinct adiponectin profiles might contribute to differences in susceptibility to type 2 diabetes in dogs and humans.

    Science.gov (United States)

    Verkest, K R; Rand, J S; Fleeman, L M; Morton, J M; Richards, A A; Rose, F J; Whitehead, J P

    2011-08-01

    Dogs develop obesity-associated insulin resistance but not type 2 diabetes mellitus. Low adiponectin is associated with progression to type 2 diabetes in obese humans. The aims of this study were to compare total and high molecular weight (HMW) adiponectin and the ratio of HMW to total adiponectin (S(A)) between dogs and humans and to examine whether total or HMW adiponectin or both are associated with insulin resistance in naturally occurring obese dogs. We compared adiponectin profiles between 10 lean dogs and 10 lean humans and between 6 lean dogs and 6 age- and sex-matched, client-owned obese dogs. Total adiponectin was measured with assays validated in each species. We measured S(A) with velocity centrifugation on sucrose gradients. The effect of total and HMW adiponectin concentrations on MINMOD-estimated insulin sensitivity was assessed with linear regression. Lean dogs had total and HMW adiponectin concentrations three to four times higher than lean humans (total: dogs 32 ± 5.6 mg/L, humans 10 ± 1.3 mg/L, Pobese dogs (0.76 ± 0.05 in both groups; P=1). Total adiponectin, HMW adiponectin, and S(A) were not associated with insulin sensitivity in dogs. We propose that differences in adiponectin profiles between humans and dogs might contribute to the propensity of humans but not dogs to develop type 2 diabetes. Dogs with chronic, naturally occurring obesity do not have selectively reduced HMW adiponectin, and adiponectin does not appear to be important in the development of canine obesity-associated insulin resistance. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Cytoarchitectonic identification and probabilistic mapping of two distinct areas within the anterior ventral bank of the human intraparietal sulcus

    Science.gov (United States)

    Choi, Hi-Jae; Zilles, Karl; Mohlberg, Hartmut; Schleicher, Axel; Fink, Gereon R.; Armstrong, Este; Amunts, Katrin

    2008-01-01

    Anatomical studies in the macaque cortex and functional imaging studies in humans have demonstrated the existence of different cortical areas within the IntraParietal Sulcus (IPS). Such functional segregation, however, does not correlate with presently available architectonic maps of the human brain. This is particularly true for the classical Brodmann map, which is still widely used as an anatomical reference in functional imaging studies. The aim of this cytoarchitectonic mapping study was to use previously defined algorithms to determine whether consistent regions and borders can be found within the cortex of the anterior IPS in a population of ten postmortem human brains. Two areas, the human IntraParietal area 1 (hIP1) and the human IntraParietal area 2 (hIP2), were delineated in serial histological sections of the anterior, lateral bank of the human IPS. The region hIP1 is located posterior and medial to hIP2, and the former is always within the depths of the IPS. The latter, on the other hand, sometimes reaches the free surface of the superior parietal lobule. The delineations were registered to standard reference space, and probabilistic maps were calculated, thereby quantifying the intersubject variability in location and extent of both areas. In the future, they can be a tool in analyzing structure – function relationships and a basis for determining degrees of homology in the IPS among anthropoid primates. We conclude that the human intraparietal sulcus has a finer grained parcellation than shown in Brodmann’s map. PMID:16432904

  13. Neuroblastoma: morphological pattern, molecular genetic features, and prognostic factors

    Directory of Open Access Journals (Sweden)

    A. M. Stroganova

    2016-01-01

    Full Text Available Neuroblastoma, the most common extracranial tumor of childhood, arises from the developing neurons of the sympathetic nervous system (neural cress stem cells and has various biological and clinical characteristics. The mean age at disease onset is 18 months. Neuroblastoma has a number of unique characteristics: a capacity for spontaneous regression in babies younger than 12 months even in the presence of distant metastases, for differentiation (maturation into ganglioneuroma in infants after the first year of life, and for swift aggressive development and rapid metastasis. There are 2 clinical classifications of neuroblastoma: the International neuroblastoma staging system that is based on surgical results and the International Neuroblastoma Risk Group Staging System. One of the fundamentally important problems for the clinical picture of neuroblastoma is difficulties making its prognosis. Along with clinical parameters (a patient’s age, tumor extent and site, some histological, molecular biochemical (ploidy and genetic (chromosomal aberrations, MYCN gene status, deletion of the locus 1p36 and 11q, the longer arm of chromosome 17, etc. characteristics of tumor cells are of considerable promise. MYCN gene amplification is observed in 20–30 % of primary neuroblastomas and it is one of the major indicators of disease aggressiveness, early chemotherapy resistance, and a poor prognosis. There are 2 types of MYCN gene amplification: extrachromosomal (double acentric chromosomes and intrachromosomal (homogenically painted regions. Examination of double acentric chromosomes revealed an interesting fact that it may be eliminated (removed from the nucleus through the formation of micronuclei. MYCN oncogene amplification is accompanied frequently by 1p36 locus deletion and longer 17q arm and less frequently by 11q23 deletion; these are poor prognostic factors for the disease. The paper considers in detail the specific, unique characteristics of the

  14. Human skin basement membrane-associated heparan sulphate proteoglycan: distinctive differences in ultrastructural localization as a function of developmental age

    DEFF Research Database (Denmark)

    Horiguchi, Y; Fine, J D; Couchman, J R

    1991-01-01

    was identical to that observed in neonatal and adult human skin. These findings demonstrate that active remodelling of the dermo-epidermal junction occurs during at least the first two trimesters, and affects not only basement membrane-associated structures but also specific antigens.......Recent studies have demonstrated that skin basement membrane components are expressed within the dermo-epidermal junction in an orderly sequence during human foetal development. We have investigated the ultrastructural localization of basement membrane-related antigens in human foetal skin...... at different developmental ages using two monoclonal antibodies to a well-characterized basement membrane-associated heparan sulphate proteoglycan. A series of foetal skin specimens (range, 54-142 gestational days) were examined using an immunoperoxidase immunoelectron microscopic technique. In specimens...

  15. /sup 131/I-meta-iodobenzylguanidine scintigraphy of neuroblastomas

    International Nuclear Information System (INIS)

    Munkner, T.

    1986-01-01

    Sixteen neuroblastoma patients have been studied by /sup 131/I-meta-iodobenzylguanidine scintigraphy. Three patients were possibly cured, and their scintigraphy results were normal. Thirteen patients had tumors and metastases demonstrated by /sup 131/I-MIBG, two of these patients had a normal vanillylmandelic acid excretion levels. One patient has been treated by /sup 131/I-MIBG, but died. /sup 131/I-MIBG was concentrated in other cells too, e.g., in erythrocytes and platelets. Neuroblastoma is the most common solid malignant disease in children. It has a poor prognosis in patients more than one year old. Early detection and a display of the spread of the tumor is of utmost importance for planning and controlling the treatment. Mass screening for neuroblastoma in infants has been suggested and tried in Japan. Scintigraphy after injection of /sup 131/I-meta-iodobenzylguanidine has been used successfully for locating neuroblastomas. An initial study failed to demonstrate neuroblastoma by means of MIBG in two patients. Since the latter part of 1983, MIBG has been used in a number of European centers for imaging neuroblastomas with very promising results, and a multicenter investigation has been initiated. The Ann Arbor group has recently extended its studies to a group of ten patients and has confirmed the European results

  16. Vastatins have a distinct effect on sterol synthesis and progesterone secretion in human granulosa cells in vitro

    NARCIS (Netherlands)

    Vliet, A.K. van; Thiel, G.C.F. van; Naaktgeboren, N.; Cohen, L.H.

    1996-01-01

    Lovastatin and simvastatin are strong inhibitors of cholesterol synthesis in cultured human granulosa cells, as measured within 6 days after isolation, with IC50-values of respectively 27.0 and 18.2 nM obtained after 3.5 hours of incubation with the drugs. Pravastatin is a much weaker inhibitor of

  17. Natural killer cells facilitate PRAME-specific T-cell reactivity against neuroblastoma

    Science.gov (United States)

    Spel, Lotte; Boelens, Jaap-Jan; van der Steen, Dirk M.; Blokland, Nina J.G.; van Noesel, Max M.; Molenaar, Jan J.; Heemskerk, Mirjam H.M.

    2015-01-01

    Neuroblastoma is the most common solid tumor in children with an estimated 5-year progression free survival of 20–40% in stage 4 disease. Neuroblastoma actively avoids recognition by natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). Although immunotherapy has gained traction for neuroblastoma treatment, these immune escape mechanisms restrain clinical results. Therefore, we aimed to improve neuroblastoma immunogenicity to further the development of antigen-specific immunotherapy against neuroblastoma. We found that neuroblastoma cells significantly increase surface expression of MHC I upon exposure to active NK cells which thereby readily sensitize neuroblastoma cells for recognition by CTLs. We show that oncoprotein PRAME serves as an immunodominant antigen for neuroblastoma as NK-modulated neuroblastoma cells are recognized by PRAMESLLQHLIGL/A2-specific CTL clones. Furthermore, NK cells induce MHC I upregulation in neuroblastoma through contact-dependent secretion of IFNγ. Our results demonstrate remarkable plasticity in the peptide/MHC I surface expression of neuroblastoma cells, which is reversed when neuroblastoma cells experience innate immune attack by sensitized NK cells. These findings support the exploration of NK cells as adjuvant therapy to enforce neuroblastoma-specific CTL responses. PMID:26452036

  18. Olfactory neuroblastoma complicated by postirradiation pneumocephalus

    Energy Technology Data Exchange (ETDEWEB)

    Fusejima, Toru; Matsumura, Kenichirou; Hayano, Makoto [Mito Saiseikai Hospital (Japan)

    1990-11-01

    A 56-year-old male was admitted with the complaints of nasal bleeding, gait disturbance, and disturbance of consciousness. Neurological examination revealed drowsiness, right hemiparesis, and choked discs. Computed tomography scan showed an enhanced mass at the frontal base, which extended to the left nasal and paranasal cavities. Angiography showed a tumor stain with a mass sign. The intracranial part of the tumor was removed completely and he was discharged ambulatorily. Two months after surgery, however, he was admitted again for the regrowth of the tumor. Ventriculoperitoneal shunting was emplaced and radiation therapy was given to the brain and nasal cavity. After 3000 rad irradiation the clinical condition suddenly became worse because of pneumocephalus. The cranial tumor disappeared after irradiation but he died of metastases and general prostration. Clinically this case was diagnosed as an olfactory groove meningioma at first, but immunohistochemical diagnosis was olfactory neuroblastoma. (author).

  19. Proton-Beam Therapy for Olfactory Neuroblastoma

    International Nuclear Information System (INIS)

    Nishimura, Hideki; Ogino, Takashi; Kawashima, Mitsuhiko; Nihei, Keiji; Arahira, Satoko; Onozawa, Masakatsu; Katsuta, Shoichi; Nishio, Teiji

    2007-01-01

    Purpose: To analyze the feasibility and efficacy of proton-beam therapy (PBT) for olfactory neuroblastoma (ONB) as a definitive treatment, by reviewing our preliminary experience. Olfactory neuroblastoma is a rare disease, and a standard treatment strategy has not been established. Radiation therapy for ONB is challenging because of the proximity of ONBs to critical organs. Proton-beam therapy can provide better dose distribution compared with X-ray irradiation because of its physical characteristics, and is deemed to be a feasible treatment modality. Methods and Materials: A retrospective review was performed on 14 patients who underwent PBT for ONB as definitive treatment at the National Cancer Center Hospital East (Kashiwa, Chiba, Japan) from November 1999 to February 2005. A total dose of PBT was 65 cobalt Gray equivalents (Gy E ), with 2.5-Gy E once-daily fractionations. Results: The median follow-up period for surviving patients was 40 months. One patient died from disseminated disease. There were two persistent diseases, one of which was successfully salvaged with surgery. The 5-year overall survival rate was 93%, the 5-year local progression-free survival rate was 84%, and the 5-year relapse-free survival rate was 71%. Liquorrhea was observed in one patient with Kadish's stage C disease (widely destroying the skull base). Most patients experienced Grade 1 to 2 dermatitis in the acute phase. No other adverse events of Grade 3 or greater were observed according to the RTOG/EORTC acute and late morbidity scoring system. Conclusions: Our preliminary results of PBT for ONB achieved excellent local control and survival outcomes without serious adverse effects. Proton-beam therapy is considered a safe and effective modality that warrants further study

  20. Cross-study analysis of gene expression data for intermediate neuroblastoma identifies two biological subtypes

    International Nuclear Information System (INIS)

    Warnat, Patrick; Oberthuer, André; Fischer, Matthias; Westermann, Frank; Eils, Roland; Brors, Benedikt

    2007-01-01

    Neuroblastoma patients show heterogeneous clinical courses ranging from life-threatening progression to spontaneous regression. Recently, gene expression profiles of neuroblastoma tumours were associated with clinically different phenotypes. However, such data is still rare for important patient subgroups, such as patients with MYCN non-amplified advanced stage disease. Prediction of the individual course of disease and optimal therapy selection in this cohort is challenging. Additional research effort is needed to describe the patterns of gene expression in this cohort and to identify reliable prognostic markers for this subset of patients. We combined gene expression data from two studies in a meta-analysis in order to investigate differences in gene expression of advanced stage (3 or 4) tumours without MYCN amplification that show contrasting outcomes (alive or dead) at five years after initial diagnosis. In addition, a predictive model for outcome was generated. Gene expression profiles from 66 patients were included from two studies using different microarray platforms. In the combined data set, 72 genes were identified as differentially expressed by meta-analysis at a false discovery rate (FDR) of 8.33%. Meta-analysis detected 34 differentially expressed genes that were not found as significant in either single study. Outcome prediction based on data of both studies resulted in a predictive accuracy of 77%. Moreover, the genes that were differentially expressed in subgroups of advanced stage patients without MYCN amplification accurately separated MYCN amplified tumours from low stage tumours without MYCN amplification. Our findings support the hypothesis that neuroblastoma consists of two biologically distinct subgroups that differ by characteristic gene expression patterns, which are associated with divergent clinical outcome

  1. Diversity and Adaptation of Human Respiratory Syncytial Virus Genotypes Circulating in Two Distinct Communities: Public Hospital and Day Care Center

    Directory of Open Access Journals (Sweden)

    Gustavo Rocha Garcia

    2012-10-01

    Full Text Available HRSV is one of the most important pathogens causing acute respiratory tract diseases as bronchiolitis and pneumonia among infants. HRSV was isolated from two distinct communities, a public day care center and a public hospital in São José do Rio Preto – SP, Brazil. We obtained partial sequences from G gene that were used on phylogenetic and selection pressure analysis. HRSV accounted for 29% of respiratory infections in hospitalized children and 7.7% in day care center children. On phylogenetic analysis of 60 HRSV strains, 48 (80% clustered within or adjacent to the GA1 genotype; GA5, NA1, NA2, BA-IV and SAB1 were also observed. SJRP GA1 strains presented variations among deduced amino acids composition and lost the potential O-glycosilation site at amino acid position 295, nevertheless this resulted in an insertion of two potential O-glycosilation sites at positions 296 and 297. Furthermore, a potential O-glycosilation site insertion, at position 293, was only observed for hospital strains. Using SLAC and MEME methods, only amino acid 274 was identified to be under positive selection. This is the first report on HRSV circulation and genotypes classification derived from a day care center community in Brazil.

  2. Distinct GAGE and MAGE-A expression during early human development indicate specific roles in lineage differentiation

    DEFF Research Database (Denmark)

    Gjerstorff, Morten; Harkness, Linda; Kassem, Moustapha

    2008-01-01

    BACKGROUND: Expression of cancer/testis-associated proteins (CTAs) has traditionally been considered to be restricted to germ cells in normal tissues and to different types of malignancies. We have evaluated the potential role of CTAs in early human development. METHODS: Using immunohistochemistry...... and RT-PCR, we investigated the expression of CTAs in differentiated human embryonic stem cells (hESC) and in late embryos and early fetuses. RESULTS: We found that melanoma antigen A (MAGE-A) family members were expressed during differentiation of hESC to embryoid bodies and in teratomas, and overlapped...... with expression of the neuroectodermal markers beta-tubulin 3, Pax6 and nestin. A widespread expression of MAGE-A was also observed in neurons of the early developing central nervous system and peripheral nerves. G antigen (GAGE) expression was present in the early ectoderm of embryos, including cells...

  3. Distinct gene expression signatures in human embryonic stem cells differentiated towards definitive endoderm at single-cell level

    DEFF Research Database (Denmark)

    Norrman, Karin; Strömbeck, Anna; Semb, Henrik

    2013-01-01

    for the three activin A based protocols applied. Our data provide novel insights in DE gene expression at the cellular level of in vitro differentiated human embryonic stem cells, and illustrate the power of using single-cell gene expression profiling to study differentiation heterogeneity and to characterize...... of anterior definitive endoderm (DE). Here, we differentiated human embryonic stem cells towards DE using three different activin A based treatments. Differentiation efficiencies were evaluated by gene expression profiling over time at cell population level. A panel of key markers was used to study DE...... formation. Final DE differentiation was also analyzed with immunocytochemistry and single-cell gene expression profiling. We found that cells treated with activin A in combination with sodium butyrate and B27 serum-free supplement medium generated the most mature DE cells. Cell population studies were...

  4. RNA sequencing of the human milk fat layer transcriptome reveals distinct gene expression profiles at three stages of lactation.

    Directory of Open Access Journals (Sweden)

    Danielle G Lemay

    Full Text Available Aware of the important benefits of human milk, most U.S. women initiate breastfeeding but difficulties with milk supply lead some to quit earlier than intended. Yet, the contribution of maternal physiology to lactation difficulties remains poorly understood. Human milk fat globules, by enveloping cell contents during their secretion into milk, are a rich source of mammary cell RNA. Here, we pair this non-invasive mRNA source with RNA-sequencing to probe the milk fat layer transcriptome during three stages of lactation: colostral, transitional, and mature milk production. The resulting transcriptomes paint an exquisite portrait of human lactation. The resulting transcriptional profiles cluster not by postpartum day, but by milk Na:K ratio, indicating that women sampled during similar postpartum time frames could be at markedly different stages of gene expression. Each stage of lactation is characterized by a dynamic range (10(5-fold in transcript abundances not previously observed with microarray technology. We discovered that transcripts for isoferritins and cathepsins are strikingly abundant during colostrum production, highlighting the potential importance of these proteins for neonatal health. Two transcripts, encoding β-casein (CSN2 and α-lactalbumin (LALBA, make up 45% of the total pool of mRNA in mature lactation. Genes significantly expressed across all stages of lactation are associated with making, modifying, transporting, and packaging milk proteins. Stage-specific transcripts are associated with immune defense during the colostral stage, up-regulation of the machinery needed for milk protein synthesis during the transitional stage, and the production of lipids during mature lactation. We observed strong modulation of key genes involved in lactose synthesis and insulin signaling. In particular, protein tyrosine phosphatase, receptor type, F (PTPRF may serve as a biomarker linking insulin resistance with insufficient milk supply. This

  5. Proteomic analysis of human skin treated with larval schistosome peptidases reveals distinct invasion strategies among species of blood flukes.

    Directory of Open Access Journals (Sweden)

    Jessica Ingram

    2011-09-01

    Full Text Available Skin invasion is the initial step in infection of the human host by schistosome blood flukes. Schistosome larvae have the remarkable ability to overcome the physical and biochemical barriers present in skin in the absence of any mechanical trauma. While a serine peptidase with activity against insoluble elastin appears to be essential for this process in one species of schistosomes, Schistosoma mansoni, it is unknown whether other schistosome species use the same peptidase to facilitate entry into their hosts.Recent genome sequencing projects, together with a number of biochemical studies, identified alternative peptidases that Schistosoma japonicum or Trichobilharzia regenti could use to facilitate migration through skin. In this study, we used comparative proteomic analysis of human skin treated with purified cercarial elastase, the known invasive peptidase of S. mansoni, or S. mansoni cathespin B2, a close homolog of the putative invasive peptidase of S. japonicum, to identify substrates of either peptidase. Select skin proteins were then confirmed as substrates by in vitro digestion assays.This study demonstrates that an S. mansoni ortholog of the candidate invasive peptidase of S. japonicum and T. regenti, cathepsin B2, is capable of efficiently cleaving many of the same host skin substrates as the invasive serine peptidase of S. mansoni, cercarial elastase. At the same time, identification of unique substrates and the broader species specificity of cathepsin B2 suggest that the cercarial elastase gene family amplified as an adaptation of schistosomes to human hosts.

  6. Simian Immunodeficiency Virus and Human Immunodeficiency Virus Type 1 Nef Proteins Show Distinct Patterns and Mechanisms of Src Kinase Activation

    Science.gov (United States)

    Greenway, Alison L.; Dutartre, Hélène; Allen, Kelly; McPhee, Dale A.; Olive, Daniel; Collette, Yves

    1999-01-01

    The nef gene from human and simian immunodeficiency viruses (HIV and SIV) regulates cell function and viral replication, possibly through binding of the nef product to cellular proteins, including Src family tyrosine kinases. We show here that the Nef protein encoded by SIVmac239 interacts with and also activates the human Src kinases Lck and Hck. This is in direct contrast to the inhibitory effect of HIV type 1 (HIV-1) Nef on Lck catalytic activity. Unexpectedly, however, the interaction of SIV Nef with human Lck or Hck is not mediated via its consensus proline motif, which is known to mediate HIV-1 Nef binding to Src homology 3 (SH3) domains, and various experimental analyses failed to show significant interaction of SIV Nef with the SH3 domain of either kinase. Instead, SIV Nef can bind Lck and Hck SH2 domains, and its N-terminal 50 amino acid residues are sufficient for Src kinase binding and activation. Our results provide evidence for multiple mechanisms by which Nef binds to and regulates Src kinases. PMID:10364375

  7. Distinct Expression Profiles and Novel Targets of MicroRNAs in Human Spermatogonia, Pachytene Spermatocytes, and Round Spermatids between OA Patients and NOA Patients

    Directory of Open Access Journals (Sweden)

    Chencheng Yao

    2017-12-01

    Full Text Available Human spermatogenesis includes three main stages, namely, the mitosis of spermatogonia, meiosis of spermatocytes, and spermiogenesis of spermatids, which are precisely regulated by epigenetic and genetic factors. Abnormality of epigenetic and genetic factors can result in aberrant spermatogenesis and eventual male infertility. However, epigenetic regulators in controlling each stage of normal and abnormal human spermatogenesis remain unknown. Here, we have revealed for the first time the distinct microRNA profiles in human spermatogonia, pachytene spermatocytes, and round spermatids between obstructive azoospermia (OA patients and non-obstructive azoospermia (NOA patients. Human spermatogonia, pachytene spermatocytes, and round spermatids from OA patients and NOA patients were isolated using STA-PUT velocity sedimentation and identified by numerous hallmarks for these cells. RNA deep sequencing showed that 396 microRNAs were differentially expressed in human spermatogonia between OA patients and NOA patients and 395 differentially expressed microRNAs were found in human pachytene spermatocytes between OA patients and NOA patients. Moreover, 378 microRNAs were differentially expressed in human round spermatids between OA patients and NOA patients. The differential expression of numerous microRNAs identified by RNA deep sequencing was verified by real-time PCR. Moreover, a number of novel targeting genes for microRNAs were predicted using various kinds of software and further verified by real-time PCR. This study thus sheds novel insights into epigenetic regulation of human normal spermatogenesis and the etiology of azoospermia, and it could offer new targets for molecular therapy to treat male infertility.

  8. Distinct Dasatinib-Induced Mechanisms of Apoptotic Response and Exosome Release in Imatinib-Resistant Human Chronic Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Juan Liu

    2016-04-01

    Full Text Available Although dasatinib is effective in most imatinib mesylate (IMT-resistant chronic myeloid leukemia (CML patients, the underlying mechanism of its effectiveness in eliminating imatinib-resistant cells is only partially understood. This study investigated the effects of dasatinib on signaling mechanisms driving-resistance in imatinib-resistant CML cell line K562 (K562RIMT. Compared with K562 control cells, exsomal release, the phosphoinositide 3-kinase (PI3K/protein kinase B (Akt/ mammalian target of rapamycin (mTOR signaling and autophagic activity were increased significantly in K562RIMT cells and mTOR-independent beclin-1/Vps34 signaling was shown to be involved in exosomal release in these cells. We found that Notch1 activation-mediated reduction of phosphatase and tensin homolog (PTEN was responsible for the increased Akt/mTOR activities in K562RIMT cells and treatment with Notch1 γ-secretase inhibitor prevented activation of Akt/mTOR. In addition, suppression of mTOR activity by rapamycin decreased the level of activity of p70S6K, induced upregulation of p53 and caspase 3, and led to increase of apoptosis in K562RIMT cells. Inhibition of autophagy by spautin-1 or beclin-1 knockdown decreased exosomal release, but did not affect apoptosis in K562RIMT cells. In summary, in K562RIMT cells dasatinib promoted apoptosis through downregulation of Akt/mTOR activities, while preventing exosomal release and inhibiting autophagy by downregulating expression of beclin-1 and Vps34. Our findings reveal distinct dasatinib-induced mechanisms of apoptotic response and exosomal release in imatinib-resistant CML cells.

  9. Bifidobacterium breve UCC2003 metabolises the human milk oligosaccharides lacto-N-tetraose and lacto-N-neo-tetraose through overlapping, yet distinct pathways

    Science.gov (United States)

    James, Kieran; Motherway, Mary O’Connell; Bottacini, Francesca; van Sinderen, Douwe

    2016-01-01

    In this study, we demonstrate that the prototype B. breve strain UCC2003 possesses specific metabolic pathways for the utilisation of lacto-N-tetraose (LNT) and lacto-N-neotetraose (LNnT), which represent the central moieties of Type I and Type II human milk oligosaccharides (HMOs), respectively. Using a combination of experimental approaches, the enzymatic machinery involved in the metabolism of LNT and LNnT was identified and characterised. Homologs of the key genetic loci involved in the utilisation of these HMO substrates were identified in B. breve, B. bifidum, B. longum subsp. infantis and B. longum subsp. longum using bioinformatic analyses, and were shown to be variably present among other members of the Bifidobacterium genus, with a distinct pattern of conservation among human-associated bifidobacterial species. PMID:27929046

  10. Characterization of distinct mesenchymal-like cell populations from human skeletal muscle in situ and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Lecourt, Severine, E-mail: severine.lecourt@sls.aphp.fr [UPMC/AIM UMR S 974, Groupe Hospitalier Pitie-Salpetriere, Paris (France); INSERM U974, Groupe Hospitalier Pitie-Salpetriere, Paris (France); CNRS UMR 7215, Groupe Hospitalier Pitie-Salpetriere, Paris (France); Laboratoire de Therapie Cellulaire, Hopital Saint Louis, Paris (France); Marolleau, Jean-Pierre, E-mail: Marolleau.Jean-Pierre@chu-amiens.fr [Laboratoire de Therapie Cellulaire, Hopital Saint Louis, Paris (France); CHU Amiens Hopital Sud, Service d' Hematologie Clinique, UPJV, Amiens (France); Fromigue, Olivia, E-mail: olivia.fromigue@larib.inserm.fr [INSERM U606, Universite Paris 07, Hopital Lariboisiere, Paris (France); Vauchez, Karine, E-mail: k.vauchez@institut-myologie.org [UPMC/AIM UMR S 974, Groupe Hospitalier Pitie-Salpetriere, Paris (France); INSERM U974, Groupe Hospitalier Pitie-Salpetriere, Paris (France); CNRS UMR 7215, Groupe Hospitalier Pitie-Salpetriere, Paris (France); Genzyme S.A.S., Saint-Germain en Laye (France); Andriamanalijaona, Rina, E-mail: rinandria@yahoo.fr [Laboratoire de Biochimie des Tissus Conjonctifs, Faculte de Medecine, Caen (France); Ternaux, Brigitte, E-mail: brigitte.ternaux@orange.fr [Laboratoire de Therapie Cellulaire, Hopital Saint Louis, Paris (France); Lacassagne, Marie-Noelle, E-mail: mnlacassagne@free.fr [Laboratoire de Therapie Cellulaire, Hopital Saint Louis, Paris (France); Robert, Isabelle, E-mail: isa-robert@hotmail.fr [Laboratoire de Therapie Cellulaire, Hopital Saint Louis, Paris (France); Boumediene, Karim, E-mail: karim.boumediene@unicaen.fr [Laboratoire de Biochimie des Tissus Conjonctifs, Faculte de Medecine, Caen (France); Chereau, Frederic, E-mail: fchereau@pervasistx.com [Myosix S.A., Saint-Germain en Laye (France); Marie, Pierre, E-mail: pierre.marie@larib.inserm.fr [INSERM U606, Universite Paris 07, Hopital Lariboisiere, Paris (France); and others

    2010-09-10

    Human skeletal muscle is an essential source of various cellular progenitors with potential therapeutic perspectives. We first used extracellular markers to identify in situ the main cell types located in a satellite position or in the endomysium of the skeletal muscle. Immunohistology revealed labeling of cells by markers of mesenchymal (CD13, CD29, CD44, CD47, CD49, CD62, CD73, CD90, CD105, CD146, and CD15 in this study), myogenic (CD56), angiogenic (CD31, CD34, CD106, CD146), hematopoietic (CD10, CD15, CD34) lineages. We then analysed cell phenotypes and fates in short- and long-term cultures of dissociated muscle biopsies in a proliferation medium favouring the expansion of myogenic cells. While CD56{sup +} cells grew rapidly, a population of CD15{sup +} cells emerged, partly from CD56{sup +} cells, and became individualized. Both populations expressed mesenchymal markers similar to that harboured by human bone marrow-derived mesenchymal stem cells. In differentiation media, both CD56{sup +} and CD15{sup +} cells shared osteogenic and chondrogenic abilities, while CD56{sup +} cells presented a myogenic capacity and CD15{sup +} cells presented an adipogenic capacity. An important proportion of cells expressed the CD34 antigen in situ and immediately after muscle dissociation. However, CD34 antigen did not persist in culture and this initial population gave rise to adipogenic cells. These results underline the diversity of human muscle cells, and the shared or restricted commitment abilities of the main lineages under defined conditions.

  11. Distinct spatial relationship of interleukin-9 receptor with IL-2R and MHC glycoproteins in human T lymphoma cells

    OpenAIRE

    Nizsalóczki, Enikő; Csomós, István; Nagy, Péter; Fazekas, Zsolt; Goldman, Carolyn K.; Waldmann, Thomas A.; Damjanovich, Sándor; Vámosi, György; Mátyus, László; Bodnár, Andrea

    2014-01-01

    The IL-9R consists of the α-subunit and the γc-chain shared with other cytokine receptors, including IL-2R, an important regulator of T cells. We have previously shown that IL-2R is expressed in common clusters with MHC glycoproteins in lipid rafts of human T lymphoma cells raising the question what the relationship between clusters of IL-2R/MHC and IL-9R is. Confocal microscopic co-localization and FRET experiments capable of detecting membrane protein organization at different size scales r...

  12. Photobiomodulation of distinct lineages of human dermal fibroblasts: a rational approach towards the selection of effective light parameters for skin rejuvenation and wound healing

    Science.gov (United States)

    Mignon, Charles; Uzunbajakava, Natallia E.; Raafs, Bianca; Moolenaar, Mitchel; Botchkareva, Natalia V.; Tobin, Desmond J.

    2016-03-01

    Distinct lineages of human dermal fibroblasts play complementary roles in skin rejuvenation and wound healing, which makes them a target of phototherapy. However, knowledge about differential responses of specific cell lineages to different light parameters and moreover the actual molecular targets remain to be unravelled. The goal of this study was to investigate the impact of a range of parameters of light on the metabolic activity, collagen production, and cell migration of distinct lineages of human dermal fibroblasts. A rational approach was used to identify parameters with high therapeutic potential. Fibroblasts exhibited both inhibitory and cytotoxic change when exposed to a high dose of blue and cyan light in tissue culture medium containing photo-reactive species, but were stimulated by high dose red and near infrared light. Cytotoxic effects were eliminated by refreshing the medium after light exposure by removing potential ROS formed by extracellular photo-reactive species. Importantly, distinct lineages of fibroblasts demonstrated opposite responses to low dose blue light treatment when refreshing the medium after exposure. Low dose blue light treatment also significantly increased collagen production by papillary fibroblasts; high dose significantly retarded closure of the scratch wound without signs of cytotoxicity, and this is likely to have involved effects on both cell migration and proliferation. We recommend careful selection of fibroblast subpopulations and their culture conditions, a systematic approach in choosing and translating treatment parameters, and pursuit of fundamental research on identification of photoreceptors and triggered molecular pathways, while seeking effective parameters to address different stages of skin rejuvenation and wound healing.

  13. Identification of a distinct small cell population from human bone marrow reveals its multipotency in vivo and in vitro.

    Directory of Open Access Journals (Sweden)

    James Wang

    Full Text Available Small stem cells, such as spore-like cells, blastomere-like stem cells (BLSCs, and very-small embryonic-like stem cells (VSELs have been described in recent studies, although their multipotency in human tissues has not yet been confirmed. Here, we report the discovery of adult multipotent stem cells derived from human bone marrow, which we call StemBios (SB cells. These isolated SB cells are smaller than 6 ìm and are DAPI+ and Lgr5+ (Leucine-Rich Repeat Containing G Protein-Coupled Receptor 5. Because Lgr5 has been characterized as a stem cell marker in the intestine, we hypothesized that SB cells may have a similar function. In vivo cell tracking assays confirmed that SB cells give rise to three types of cells, and in vitro studies demonstrated that SB cells cultured in proprietary media are able to grow to 6-25 ìm in size. Once the SB cells have attached to the wells, they differentiate into different cell lineages upon exposure to specific differentiation media. We are the first to demonstrate that stem cells smaller than 6 ìm can differentiate both in vivo and in vitro. In the future, we hope that SB cells will be used therapeutically to cure degenerative diseases.

  14. Neuroblastoma - remembering the three physicians who described it a century ago: James Homer Wright, William Pepper, and Robert Hutchison

    International Nuclear Information System (INIS)

    Rothenberg, Alexis B.; Berdon, Walter E.; D'Angio, Giulio J.; Yamashiro, Darrell J.; Cowles, Robert A.

    2009-01-01

    Neuroblastoma is often widespread at the time of diagnosis. Three physicians between 1900 and 1910 played an important role in the pathologic definition of neuroblastoma and its route of spread in relation to the age of the patient. These findings eventually led to the advances in treatment and decreased morbidity of today. In 1910 James Homer Wright was the first to recognize the tumor as being of primitive neural cell origin, calling it neuroblastoma and emphasizing the bundle of cells termed rosettes. While Wright recognized the neural nature of the tumor, the authors of previous reports had described its two distinct patterns of spread. In 1901 William Pepper published a series of infants with massive hepatic infiltration associated with adrenal tumors without spread to bone, and in 1907 Robert Grieve Hutchison reported his experience with a similar pathologic process in older infants and children who had orbital and skull metastases. Wright's valuable unifying concept served to tie together the descriptions of Pepper and Hutchison. A century later the names of these physicians should be remembered - Wright, who defined the adrenal tumor as of primitive neural origin, Pepper for his clinically accurate report of massive liver involvement in the infant, and Hutchison for describing the propensity of the tumor to spread to bone in older children. (orig.)

  15. Stage IVN neuroblastoma: MRI diagnosis of left supraclavicular ''Virchow's'' nodal spread

    International Nuclear Information System (INIS)

    Abramson, S.J.; Berdon, W.E.; Stolar, C.; Ruzal-Shapiro, C.; Garvin, J.

    1996-01-01

    Stage IV neuroblastoma is associated with high mortality; an exception are patients whose stage IV status includes distant positive nodes, but no skeletal metastases - stage IVN neuroblastoma. We describe our experience with preoperative MRI in three patients with extensive abdominal neuroblastoma without cortical bony involvement but with unsuspected metastatic involvement to the left supraclavicular (Virchow's) node. We review findings of left supraclavicular nodal spread in five earlier cases of IVN neuroblastoma. (orig.). With 3 figs., 1 tab

  16. Human murine mammary tumour virus-like agents are genetically distinct from endogenous retroviruses and are not detectable in breast cancer cell lines or biopsies

    International Nuclear Information System (INIS)

    Mant, Christine; Gillett, Cheryl; D'Arrigo, Corrado; Cason, John

    2004-01-01

    It has been reported that a human murine mammary tumour virus (MMTV)-like virus (HMLV), which may be an endogenous human retrovirus (HERV), occurs in the human breast cancer cell lines T47D and MCF-7 and, in 38% of human breast cancer biopsies. As the aetiology of most breast cancers remains unknown, it is important to verify these observations in differing breast cancer populations worldwide. Thus, we sought to determine the genetic relationships between HMLVs, MMTVs, and HERVs, and to investigate the association between HMLVs and breast cancer biopsies from South London, UK. Phylogenetic analyses of the env/pol region indicated that HMLVs are indistinct from MMTVs, and that MMTVS/HMLVs exhibit only low sequence homologies with HERVs. A search of the human genome confirmed that HMLVs are not endogenous. Using MMTV polymerase chain reaction (PCR) primers described previously, we amplified DNA from all cell lines except MCF-7 and from 7 of 44 (16%) breast cancer biopsies. A restriction fragment length polymorphism assay was designed to distinguish between HMLVs and MMTVs, and upon analyses, PCR amplicons appeared to be HMLVs. To confirm these findings, amplicons from the T47D cell line and from four randomly selected breast cancer patients were sequenced. Of 106 DNA sequences obtained, 103 were homologous with a short arm of human chromosome (Chr) 3 (3p13), two with Chr 4, and one with Chr 8. None of the sequences exhibited significant nucleotide homology with MMTVs, HMLVs, or with HERVs (all <50%). Thus, we conclude that (i) HMLVs are integral members of the MMTV family; (ii) MMTVs/HMLVs are genetically distinct from HERVs; (iii) MMTV/HMLV DNA is not present in human breast cancer cell lines or clinical biopsies in our locality

  17. Silencing Intersectin 1 Slows Orthotopic Neuroblastoma Growth in Mice.

    Science.gov (United States)

    Harris, Jamie; Herrero-Garcia, Erika; Russo, Angela; Kajdacsy-Balla, Andre; O'Bryan, John P; Chiu, Bill

    2017-11-01

    Neuroblastoma accounts for 15% of all pediatric cancer deaths. Intersectin 1 (ITSN1), a scaffold protein involved in phosphoinositide 3-kinase (PI3K) signaling, regulates neuroblastoma cells independent of MYCN status. We hypothesize that by silencing ITSN1 in neuroblastoma cells, tumor growth will be decreased in an orthotopic mouse tumor model. SK-N-AS neuroblastoma cells transfected with empty vector (pSR), vectors expressing scrambled shRNA (pSCR), or shRNAs targeting ITSN1 (sh#1 and sh#2) were used to create orthotopic neuroblastoma tumors in mice. Volume was monitored weekly with ultrasound. End-point was tumor volume >1000 mm. Tumor cell lysates were analyzed with anti-ITSN1 antibody by Western blot. Orthotopic tumors were created in all cell lines. Twenty-five days post injection, pSR tumor size was 917.6±247.7 mm, pSCR was 1180±159.9 mm, sh#1 was 526.3±212.8 mm, and sh#2 was 589.2±74.91 mm. sh#1-tumors and sh#2-tumors were smaller than pSCR (P=0.02), no difference between sh#1 and sh#2. Survival was superior in sh#2-tumors (P=0.02), trended towards improved survival in sh#1-tumors (P=0.09), compared with pSCR-tumors, no difference in pSR tumors. Western blot showed decreased ITSN1 expression in sh#1 and sh#2 compared with pSR and pSCR. Silencing ITSN1 in neuroblastoma cells led to decreased tumor growth in an orthotopic mouse model. Orthotopic animal models can provide insight into the role of ITSN1 pathways in neuroblastoma tumorigenesis.

  18. Telomerase activation by genomic rearrangements in high-risk neuroblastoma

    Science.gov (United States)

    Peifer, Martin; Hertwig, Falk; Roels, Frederik; Dreidax, Daniel; Gartlgruber, Moritz; Menon, Roopika; Krämer, Andrea; Roncaioli, Justin L.; Sand, Frederik; Heuckmann, Johannes M.; Ikram, Fakhera; Schmidt, Rene; Ackermann, Sandra; Engesser, Anne; Kahlert, Yvonne; Vogel, Wenzel; Altmüller, Janine; Nürnberg, Peter; Thierry-Mieg, Jean; Thierry-Mieg, Danielle; Mariappan, Aruljothi; Heynck, Stefanie; Mariotti, Erika; Henrich, Kai-Oliver; Glöckner, Christian; Bosco, Graziella; Leuschner, Ivo; Schweiger, Michal R.; Savelyeva, Larissa; Watkins, Simon C.; Shao, Chunxuan; Bell, Emma; Höfer, Thomas; Achter, Viktor; Lang, Ulrich; Theissen, Jessica; Volland, Ruth; Saadati, Maral; Eggert, Angelika; de Wilde, Bram; Berthold, Frank; Peng, Zhiyu; Zhao, Chen; Shi, Leming; Ortmann, Monika; Büttner, Reinhard; Perner, Sven; Hero, Barbara; Schramm, Alexander; Schulte, Johannes H.; Herrmann, Carl; O’Sullivan, Roderick J.; Westermann, Frank; Thomas, Roman K.; Fischer, Matthias

    2016-01-01

    Neuroblastoma is a malignant paediatric tumour of the sympathetic nervous system1. Roughly half of these tumours regress spontaneously or are cured by limited therapy. By contrast, high-risk neuroblastomas have an unfavourable clinical course despite intensive multimodal treatment, and their molecular basis has remained largely elusive2–4. Here we have performed whole-genome sequencing of 56 neuroblastomas (high-risk, n = 39; low-risk, n = 17) and discovered recurrent genomic rearrangements affecting a chromosomal region at 5p15.33 proximal of the telomerase reverse transcriptase gene (TERT). These rearrangements occurred only in high-risk neuroblastomas (12/39, 31%) in a mutually exclusive fashion with MYCN amplifications and ATRX mutations, which are known genetic events in this tumour type1,2,5. In an extended case series (n = 217), TERT rearrangements defined a subgroup of high-risk tumours with particularly poor outcome. Despite a large structural diversity of these rearrangements, they all induced massive transcriptional upregulation of TERT. In the remaining high-risk tumours, TERT expression was also elevated in MYCN-amplified tumours, whereas alternative lengthening of telomeres was present in neuroblastomas without TERT or MYCN alterations, suggesting that telomere lengthening represents a central mechanism defining this subtype. The 5p15.33 rearrangements juxtapose the TERT coding sequence to strong enhancer elements, resulting in massive chromatin remodelling and DNA methylation of the affected region. Supporting a functional role of TERT, neuroblastoma cell lines bearing rearrangements or amplified MYCN exhibited both upregulated TERT expression and enzymatic telomerase activity. In summary, our findings show that remodelling of the genomic context abrogates transcriptional silencing of TERT in high-risk neuroblastoma and places telomerase activation in the centre of transformation in a large fraction of these tumours. PMID:26466568

  19. Dual targeting of wild-type and mutant p53 by small molecule RITA results in the inhibition of N-Myc and key survival oncogenes and kills neuroblastoma cells in vivo and in vitro.

    Science.gov (United States)

    Burmakin, Mikhail; Shi, Yao; Hedström, Elisabeth; Kogner, Per; Selivanova, Galina

    2013-09-15

    Restoration of the p53 function in tumors is a promising therapeutic strategy due to the high potential of p53 as tumor suppressor and the fact that established tumors depend on p53 inactivation for their survival. Here, we addressed the question whether small molecule RITA can reactivate p53 in neuroblastoma and suppress the growth of neuroblastoma cells in vitro and in vivo. The ability of RITA to inhibit growth and to induce apoptosis was shown in seven neuroblastoma cell lines. Mechanistic studies were carried out to determine the p53 dependence and the molecular mechanism of RITA-induced apoptosis in neuroblastoma, using cell viability assays, RNAi silencing, co-immunoprecipitation, qPCR, and Western blotting analysis. In vivo experiments were conducted to study the effect of RITA on human neuroblastoma xenografts in mice. RITA induced p53-dependent apoptosis in a set of seven neuroblastoma cell lines, carrying wild-type or mutant p53; it activated p53 and triggered the expression of proapoptotic p53 target genes. Importantly, p53 activated by RITA inhibited several key oncogenes that are high-priority targets for pharmacologic anticancer strategies in neuroblastoma, including N-Myc, Aurora kinase, Mcl-1, Bcl-2, Wip-1, MDM2, and MDMX. Moreover, RITA had a strong antitumor effect in vivo. Reactivation of wild-type and mutant p53 resulting in the induction of proapoptotic factors along with ablation of key oncogenes by compounds such as RITA may be a highly effective strategy to treat neuroblastoma. ©2013 AACR.

  20. Distinct contributions of functional and deep neural network features to representational similarity of scenes in human brain and behavior.

    Science.gov (United States)

    Groen, Iris Ia; Greene, Michelle R; Baldassano, Christopher; Fei-Fei, Li; Beck, Diane M; Baker, Chris I

    2018-03-07

    Inherent correlations between visual and semantic features in real-world scenes make it difficult to determine how different scene properties contribute to neural representations. Here, we assessed the contributions of multiple properties to scene representation by partitioning the variance explained in human behavioral and brain measurements by three feature models whose inter-correlations were minimized a priori through stimulus preselection. Behavioral assessments of scene similarity reflected unique contributions from a functional feature model indicating potential actions in scenes as well as high-level visual features from a deep neural network (DNN). In contrast, similarity of cortical responses in scene-selective areas was uniquely explained by mid- and high-level DNN features only, while an object label model did not contribute uniquely to either domain. The striking dissociation between functional and DNN features in their contribution to behavioral and brain representations of scenes indicates that scene-selective cortex represents only a subset of behaviorally relevant scene information.

  1. Neuroblastoma na Criança: Relato de Caso/Neuroblastoma in Children: Case Report

    Directory of Open Access Journals (Sweden)

    Maysa Carla Mendonça Tame

    2013-03-01

    Full Text Available Introdução: o neuroblastoma é uma neoplasia maligna, que apresenta ampla variedade em termos de localização, característica histopatológica e biológica. A apresentação clínica, extremamente variável, reflete as possíveis localizações do tumor primário dentro do sistema nervoso simpático. Os sintomas mais frequentes incluem, dor e distensão abdominais, dores ósseas localizadas, sintomas sistêmicos (anorexia, mal-estar geral, febre e diarreia. É um tumor raro, com uma incidência de 10 casos por milhão de crianças entre zero e quatro anos de idade. Casuística: Relatou-se o caso de um paciente, atualmente com quatro anos e oito meses, com neuroblastoma, tumor primário de supra-adrenal esquerda, metastático para medula óssea bilateral e múltiplos ossos, que iniciou tratamento quimioterápico-neoadjuvante, imediatamente após o diagnóstico, com posterior avaliação para cirurgia, quimioterapia adjuvante e radioterapia, e transplante autólogo de medula óssea. O tratamento se baseia na estratificação do grupo de risco, podendo envolver: quimioterapia, radioterapia, cirurgia para ressecção do tumor e transplante autólogo de medula óssea. O prognóstico está relacionado com a idade da criança ao diagnóstico, determinadas características histológicas, estadiamento e com alterações genéticas do tumor. Discussão: Seguindo o protocolo, o tumor foi estadiado em nível 4, segundo o International Neuroblastoma Staging System (INSS, e proposto o tratamento com multimodalidade, que inclui quimioterapia intensiva com uma combinação de agentes, seguida de ressecção cirúrgica, doses elevadas de quimioterapia, e radioterapia para posterior transplante autólogo de medula óssea. Este tratamento foi iniciado pela paciente no dia 24/08/2011, e tem previsão de duração de no mínimo um ano. Introduction: Neuroblastoma is a malignant neoplasm that presents a wide variety in terms of location, histopathological and

  2. Generation of human antibody fragments recognizing distinct epitopes of the nucleocapsid (N SARS-CoV protein using a phage display approach

    Directory of Open Access Journals (Sweden)

    Grasso Felicia

    2005-09-01

    Full Text Available Abstract Background Severe acute respiratory syndrome (SARS-CoV is a newly emerging virus that causes SARS with high mortality rate in infected people. Successful control of the global SARS epidemic will require rapid and sensitive diagnostic tests to monitor its spread, as well as, the development of vaccines and new antiviral compounds including neutralizing antibodies that effectively prevent or treat this disease. Methods The human synthetic single-chain fragment variable (scFv ETH-2 phage antibody library was used for the isolation of scFvs against the nucleocapsid (N protein of SARS-CoV using a bio panning-based strategy. The selected scFvs were characterized under genetics-molecular aspects and for SARS-CoV N protein detection in ELISA, western blotting and immunocytochemistry. Results Human scFv antibodies to N protein of SARS-CoV can be easily isolated by selecting the ETH-2 phage library on immunotubes coated with antigen. These in vitro selected human scFvs specifically recognize in ELISA and western blotting studies distinct epitopes in N protein domains and detect in immunohistochemistry investigations SARS-CoV particles in infected Vero cells. Conclusion The human scFv antibodies isolated and described in this study represent useful reagents for rapid detection of N SARS-CoV protein and SARS virus particles in infected target cells.

  3. Altered ion transport in normal human bronchial epithelial cells following exposure to chemically distinct metal welding fume particles

    Energy Technology Data Exchange (ETDEWEB)

    Fedan, Jeffrey S., E-mail: jsf2@cdc.gov; Thompson, Janet A.; Meighan, Terence G.; Zeidler-Erdely, Patti C.; Antonini, James M.

    2017-07-01

    Welding fume inhalation causes pulmonary toxicity, including susceptibility to infection. We hypothesized that airway epithelial ion transport is a target of fume toxicity, and investigated the effects of fume particulates from manual metal arc-stainless steel (MMA-SS) and gas metal arc-mild steel (GMA-MS) on ion transport in normal human bronchial epithelium (NHBE) cultured in air-interface. MMA-SS particles, more soluble than GMA-MS particles, contain Cr, Ni, Fe and Mn; GMA-MS particles contain Fe and Mn. MMA-SS or GMA-MS particles (0.0167–166.7 μg/cm{sup 2}) were applied apically to NHBEs. After 18 h transepithelial potential difference (V{sub t}), resistance (R{sub t}), and short circuit current (I{sub sc}) were measured. Particle effects on Na{sup +} and Cl¯ channels and the Na{sup +},K{sup +},2Cl¯-cotransporter were evaluated using amiloride (apical), 5-nitro-2-[(3-phenylpropyl)amino]benzoic acid (NPPB, apical), and bumetanide (basolateral), respectively. MMA-SS (0.0167–16.7 μg/cm{sup 2}) increased basal V{sub t}. Only 16.7 μg/cm{sup 2} GMA-MS increased basal V{sub t} significantly. MMA-SS or GMA-MS exposure potentiated I{sub sc} responses (decreases) to amiloride and bumetanide, while not affecting those to NPPB, GMA-MS to a lesser degree than MMA-SS. Variable effects on R{sub t} were observed in response to amiloride, and bumetanide. Generally, MMA-SS was more potent in altering responses to amiloride and bumetanide than GMA-MS. Hyperpolarization occurred in the absence of LDH release, but decreases in V{sub t}, R{sub t}, and I{sub sc} at higher fume particulate doses accompanied LDH release, to a greater extent for MMA-SS. Thus, Na{sup +} transport and Na{sup +},K{sup +},2Cl¯-cotransport are affected by fume exposure; MMA-MS is more potent than GMA-MS. Enhanced Na{sup +} absorption and decreased airway surface liquid could compromise defenses against infection. - Highlights: • Welding fume particle toxicity was investigated in human bronchial

  4. Nephrin expression is reduced in human diabetic nephropathy: evidence for a distinct role for glycated albumin and angiotensin II.

    Science.gov (United States)

    Doublier, Sophie; Salvidio, Gennaro; Lupia, Enrico; Ruotsalainen, Vesa; Verzola, Daniela; Deferrari, Giacomo; Camussi, Giovanni

    2003-04-01

    We studied the distribution of nephrin in renal biopsies from 17 patients with diabetes and nephrotic syndrome (7 type 1 and 10 type 2 diabetes), 6 patients with diabetes and microalbuminuria (1 type 1 and 5 type 2 diabetes), and 10 normal subjects. Nephrin expression was semiquantitatively evaluated by measuring immunofluorescence intensity by digital image analysis. We found an extensive reduction of nephrin staining in both type 1 (67 +/- 9%; P < 0.001) and type 2 (65 +/- 10%; P < 0.001) diabetic patients with diabetes and nephrotic syndrome when compared with control subjects. The pattern of staining shifted from punctate/linear distribution to granular. In patients with microalbuminuria, the staining pattern of nephrin also showed granular distribution and reduction intensity of 69% in the patient with type 1 diabetes and of 62 +/- 4% (P < 0.001) in the patients with type 2 diabetes. In vitro studies on human cultured podocytes demonstrated that glycated albumin and angiotensin II reduced nephrin expression. Glycated albumin inhibited nephrin synthesis through the engagement of receptor for advanced glycation end products, whereas angiotensin II acted on cytoskeleton redistribution, inducing the shedding of nephrin. This study indicates that the alteration in nephrin expression is an early event in proteinuric patients with diabetes and suggests that glycated albumin and angiotensin II contribute to nephrin downregulation.

  5. Expression of Immunoglobulin Receptors with Distinctive Features Indicating Antigen Selection by Marginal Zone B Cells from Human Spleen

    Science.gov (United States)

    Colombo, Monica; Cutrona, Giovanna; Reverberi, Daniele; Bruno, Silvia; Ghiotto, Fabio; Tenca, Claudya; Stamatopoulos, Kostas; Hadzidimitriou, Anastasia; Ceccarelli, Jenny; Salvi, Sandra; Boccardo, Simona; Calevo, Maria Grazia; De Santanna, Amleto; Truini, Mauro; Fais, Franco; Ferrarini, Manlio

    2013-01-01

    Marginal zone (MZ) B cells, identified as surface (s)IgMhighsIgDlowCD23low/−CD21+CD38− B cells, were purified from human spleens, and the features of their V(D)J gene rearrangements were investigated and compared with those of germinal center (GC), follicular mantle (FM) and switched memory (SM) B cells. Most MZ B cells were CD27+ and exhibited somatic hypermutations (SHM), although to a lower extent than SM B cells. Moreover, among MZ B-cell rearrangements, recurrent sequences were observed, some of which displayed intraclonal diversification. The same diversifying sequences were detected in very low numbers in GC and FM B cells and only when a highly sensitive, gene-specific polymerase chain reaction was used. This result indicates that MZ B cells could expand and diversify in situ and also suggested the presence of a number of activation-induced cytidine deaminase (AID)-expressing B cells in the MZ. The notion of antigen-driven expansion/selection in situ is further supported by the VH CDR3 features of MZ B cells with highly conserved amino acids at specific positions and by the finding of shared (“stereotyped”) sequences in two different spleens. Collectively, the data are consistent with the notion that MZ B cells are a special subset selected by in situ antigenic stimuli. PMID:23877718

  6. Distinct responses of human granulosa lutein cells after hCG or LH stimulation in a spheroidal cell culture system.

    Science.gov (United States)

    Becker, Julia; Walz, Andrea; Daube, Stefanie; Keck, Christoph; Pietrowski, Detlef

    2007-10-01

    The growth and development of the corpus luteum (CL) is regulated by gonadotropic hormones. It is formed by granulosa cells (GCs), theca cells, and endothelial cells, and is the primary source of circulating progesterone. During early pregnancy only human chorionic gonadotropin (hCG) but not luteinizing hormone (LH) extends the life span of the CL, although hCG and LH interact with the same receptor and have similar actions on the CL. In this study a recently by our group established spheroidal GC culture assay served as a model of CL development on which we compared the actions of the gonadotropic hormones LH and hCG. To find out which signal pathways take part in the hormonal regulation of GC we stimulated GC-spheroids with modulators of protein kinases A and C dependent signaling cascades and determined their impact on sprout forming activity in GC. Our results indicate that PKA-dependent signaling pathways play a major role in mediating the hormonal-induced signaling cascades leading to sprouting in GC. Furthermore, this study strongly indicates that the different effects of hCG and LH in the maintenance of the CL may be reasoned in different signal transduction pathways triggered by hCG or LH. (c) 2007 Wiley-Liss, Inc.

  7. Sialoglycoproteins in morphological distinct stages of Mucor polymorphosporus and their influence on phagocytosis by human blood phagocytes.

    Science.gov (United States)

    Almeida, Catia Amancio; de Campos-Takaki, Galba Maria; Portela, Maristela Barbosa; Travassos, Luiz R; Alviano, Celuta Sales; Alviano, Daniela Sales

    2013-10-01

    The possible role of sialic acids in host cells-fungi interaction and their association with glycoproteins were evaluated using a clinical isolate of the dimorphic fungus Mucor polymorphosporus. Lectin-binding assays with spores and yeast cells denoted the presence of surface sialoglycoconjugates containing 2,3- and 2,6-linked sialylglycosyl groups. Western blotting with peroxidase-labeled Limulus polyphemus agglutinin revealed the occurrence of different sialoglycoprotein types in both cell lysates and cell wall protein extracts of mycelia, spores, and yeasts of M. polymorphosporus. Sialic acids contributed to the surface negative charge of spores and yeast forms as evaluated by adherence to a cationic substrate. Sialidase-treated spores were less resistant to phagocytosis by human neutrophils and monocytes from healthy individuals than control (untreated) fungal suspensions. The results suggest that sialic acids are terminal units of various glycoproteins of M. polymorphosporus, contributing to negative charge of yeasts and spore cells and protecting infectious propagules from destruction by host cells.

  8. Use of a molecular genetic platform technology to produce human Wnt proteins reveals distinct local and distal signaling abilities.

    Directory of Open Access Journals (Sweden)

    Jennifer L Green

    Full Text Available Functional and mechanistic studies of Wnt signaling have been severely hindered by the inaccessibility of bioactive proteins. To overcome this long-standing barrier, we engineered and characterized a panel of Chinese hamster ovary (CHO cell lines with inducible transgenes encoding tagged and un-tagged human WNT1, WNT3A, WNT5A, WNT7A, WNT11, WNT16 or the soluble Wnt antagonist Fzd8CRD, all integrated into an identical genomic locus. Using a quantitative real-time bioluminescence assay, we show that cells expressing WNT1, 3A and 7A stimulate Wnt/beta-catenin reporter activity, while the other WNT expressing cell lines interfere with this activation. Additionally, in contrast to WNT3A, WNT1 only exhibits activity when cell-associated, and thus only signals to neighboring cells. The reporter assay also revealed a rapid decline of Wnt activity at 37°C, indicating that Wnt activity is highly labile. These engineered cell lines will reduce the cost of making and purifying Wnt proteins and serve as a continuous, reliable and regulatable source of Wnts to research laboratories around the world.

  9. Assessment of citalopram and escitalopram on neuroblastoma cell lines: Cell toxicity and gene modulation

    Science.gov (United States)

    Sakka, Laurent; Delétage, Nathalie; Chalus, Maryse; Aissouni, Youssef; Sylvain-Vidal, Valérie; Gobron, Stéphane; Coll, Guillaume

    2017-01-01

    Selective serotonin reuptake inhibitors (SSRI) are common antidepressants which cytotoxicity has been assessed in cancers notably colorectal carcinomas and glioma cell lines. We assessed and compared the cytotoxicity of 2 SSRI, citalopram and escitalopram, on neuroblastoma cell lines. The study was performed on 2 non-MYCN amplified cell lines (rat B104 and human SH-SY5Y) and 2 human MYCN amplified cell lines (IMR32 and Kelly). Citalopram and escitalopram showed concentration-dependent cytotoxicity on all cell lines. Citalopram was more cytotoxic than escitalopram. IMR32 was the most sensitive cell line. The absence of toxicity on human primary Schwann cells demonstrated the safety of both molecules for myelin. The mechanisms of cytotoxicity were explored using gene-expression profiles and quantitative real-time PCR (qPCR). Citalopram modulated 1 502 genes and escitalopram 1 164 genes with a fold change ≥ 2. 1 021 genes were modulated by both citalopram and escitalopram; 481 genes were regulated only by citalopram while 143 genes were regulated only by escitalopram. Citalopram modulated 69 pathways (KEGG) and escitalopram 42. Ten pathways were differently modulated by citalopram and escitalopram. Citalopram drastically decreased the expression of MYBL2, BIRC5 and BARD1 poor prognosis factors of neuroblastoma with fold-changes of -107 (pescitalopram. PMID:28467792

  10. Assessment of citalopram and escitalopram on neuroblastoma cell lines. Cell toxicity and gene modulation.

    Science.gov (United States)

    Sakka, Laurent; Delétage, Nathalie; Chalus, Maryse; Aissouni, Youssef; Sylvain-Vidal, Valérie; Gobron, Stéphane; Coll, Guillaume

    2017-06-27

    Selective serotonin reuptake inhibitors (SSRI) are common antidepressants which cytotoxicity has been assessed in cancers notably colorectal carcinomas and glioma cell lines. We assessed and compared the cytotoxicity of 2 SSRI, citalopram and escitalopram, on neuroblastoma cell lines. The study was performed on 2 non-MYCN amplified cell lines (rat B104 and human SH-SY5Y) and 2 human MYCN amplified cell lines (IMR32 and Kelly). Citalopram and escitalopram showed concentration-dependent cytotoxicity on all cell lines. Citalopram was more cytotoxic than escitalopram. IMR32 was the most sensitive cell line. The absence of toxicity on human primary Schwann cells demonstrated the safety of both molecules for myelin. The mechanisms of cytotoxicity were explored using gene-expression profiles and quantitative real-time PCR (qPCR). Citalopram modulated 1 502 genes and escitalopram 1 164 genes with a fold change ≥ 2. 1 021 genes were modulated by both citalopram and escitalopram; 481 genes were regulated only by citalopram while 143 genes were regulated only by escitalopram. Citalopram modulated 69 pathways (KEGG) and escitalopram 42. Ten pathways were differently modulated by citalopram and escitalopram. Citalopram drastically decreased the expression of MYBL2, BIRC5 and BARD1 poor prognosis factors of neuroblastoma with fold-changes of -107 (pescitalopram.

  11. Control of proliferation and osteogenic differentiation of human dental-pulp-derived stem cells by distinct surface structures.

    Science.gov (United States)

    Kolind, K; Kraft, D; Bøggild, T; Duch, M; Lovmand, J; Pedersen, F S; Bindslev, D A; Bünger, C E; Foss, M; Besenbacher, F

    2014-02-01

    The ability to control the behavior of stem cells provides crucial benefits, for example, in tissue engineering and toxicity/drug screening, which utilize the stem cell's capacity to engineer new tissues for regenerative purposes and the testing of new drugs in vitro. Recently, surface topography has been shown to influence stem cell differentiation; however, general trends are often difficult to establish due to differences in length scales, surface chemistries and detailed surface topographies. Here we apply a highly versatile screening approach to analyze the interplay of surface topographical parameters on cell attachment, morphology, proliferation and osteogenic differentiation of human mesenchymal dental-pulp-derived stem cells (DPSCs) cultured with and without osteogenic differentiation factors in the medium (ODM). Increasing the inter-pillar gap size from 1 to 6 μm for surfaces with small pillar sizes of 1 and 2 μm resulted in decreased proliferation and in more elongated cells with long pseudopodial protrusions. The same alterations of pillar topography, up to an inter-pillar gap size of 4 μm, also resulted in enhanced mineralization of DPSCs cultured without ODM, while no significant trend was observed for DPSCs cultured with ODM. Generally, cells cultured without ODM had a larger deposition of osteogenic markers on structured surfaces relative to the unstructured surfaces than what was found when culturing with ODM. We conclude that the topographical design of biomaterials can be optimized for the regulation of DPSC differentiation and speculate that the inclusion of ODM alters the ability of the cells to sense surface topographical cues. These results are essential in order to transfer the use of this highly proliferative, easily accessible stem cell into the clinic for use in cell therapy and regenerative medicine. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Distinct Skeletal Muscle Gene Regulation from Active Contraction, Passive Vibration, and Whole Body Heat Stress in Humans.

    Science.gov (United States)

    Petrie, Michael A; Kimball, Amy L; McHenry, Colleen L; Suneja, Manish; Yen, Chu-Ling; Sharma, Arpit; Shields, Richard K

    2016-01-01

    Skeletal muscle exercise regulates several important metabolic genes in humans. We know little about the effects of environmental stress (heat) and mechanical stress (vibration) on skeletal muscle. Passive mechanical stress or systemic heat stress are often used in combination with many active exercise programs. We designed a method to deliver a vibration stress and systemic heat stress to compare the effects with active skeletal muscle contraction. The purpose of this study is to examine whether active mechanical stress (muscle contraction), passive mechanical stress (vibration), or systemic whole body heat stress regulates key gene signatures associated with muscle metabolism, hypertrophy/atrophy, and inflammation/repair. Eleven subjects, six able-bodied and five with chronic spinal cord injury (SCI) participated in the study. The six able-bodied subjects sat in a heat stress chamber for 30 minutes. Five subjects with SCI received a single dose of limb-segment vibration or a dose of repetitive electrically induced muscle contractions. Three hours after the completion of each stress, we performed a muscle biopsy (vastus lateralis or soleus) to analyze mRNA gene expression. We discovered repetitive active muscle contractions up regulated metabolic transcription factors NR4A3 (12.45 fold), PGC-1α (5.46 fold), and ABRA (5.98 fold); and repressed MSTN (0.56 fold). Heat stress repressed PGC-1α (0.74 fold change; p muscle contraction. Vibration induced FOXK2 (p muscle contractions. Understanding these responses may assist in developing regenerative rehabilitation interventions to improve muscle cell development, growth, and repair.

  13. A comprehensive characterization of rare mitochondrial DNA variants in neuroblastoma.

    Science.gov (United States)

    Calabrese, Francesco Maria; Clima, Rosanna; Pignataro, Piero; Lasorsa, Vito Alessandro; Hogarty, Michael D; Castellano, Aurora; Conte, Massimo; Tonini, Gian Paolo; Iolascon, Achille; Gasparre, Giuseppe; Capasso, Mario

    2016-08-02

    Neuroblastoma, a tumor of the developing sympathetic nervous system, is a common childhood neoplasm that is often lethal. Mitochondrial DNA (mtDNA) mutations have been found in most tumors including neuroblastoma. We extracted mtDNA data from a cohort of neuroblastoma samples that had undergone Whole Exome Sequencing (WES) and also used snap-frozen samples in which mtDNA was entirely sequenced by Sanger technology. We next undertook the challenge of determining those mutations that are relevant to, or arisen during tumor development. The bioinformatics pipeline used to extract mitochondrial variants from matched tumor/blood samples was enriched by a set of filters inclusive of heteroplasmic fraction, nucleotide variability, and in silico prediction of pathogenicity. Our in silico multistep workflow applied both on WES and Sanger-sequenced neuroblastoma samples, allowed us to identify a limited burden of somatic and germline mitochondrial mutations with a potential pathogenic impact. The few singleton germline and somatic mitochondrial mutations emerged, according to our in silico analysis, do not appear to impact on the development of neuroblastoma. Our findings are consistent with the hypothesis that most mitochondrial somatic mutations can be considered as 'passengers' and consequently have no discernible effect in this type of cancer.

  14. Autoantibody signature differentiates Wilms tumor patients from neuroblastoma patients.

    Directory of Open Access Journals (Sweden)

    Jana Schmitt

    Full Text Available Several studies report autoantibody signatures in cancer. The majority of these studies analyzed adult tumors and compared the seroreactivity pattern of tumor patients with the pattern in healthy controls. Here, we compared the autoimmune response in patients with neuroblastoma and patients with Wilms tumor representing two different childhood tumors. We were able to differentiate untreated neuroblastoma patients from untreated Wilms tumor patients with an accuracy of 86.8%, a sensitivity of 87.0% and a specificity of 86.7%. The separation of treated neuroblastoma patients from treated Wilms tumor patients' yielded comparable results with an accuracy of 83.8%. We furthermore identified the antigens that contribute most to the differentiation between both tumor types. The analysis of these antigens revealed that neuroblastoma was considerably more immunogenic than Wilms tumor. The reported antigens have not been found to be relevant for comparative analyses between other tumors and controls. In summary, neuroblastoma appears as a highly immunogenic tumor as demonstrated by the extended number of antigens that separate this tumor from Wilms tumor.

  15. Neuroblastoma, a Paradigm for Big Data Science in Pediatric Oncology.

    Science.gov (United States)

    Salazar, Brittany M; Balczewski, Emily A; Ung, Choong Yong; Zhu, Shizhen

    2016-12-27

    Pediatric cancers rarely exhibit recurrent mutational events when compared to most adult cancers. This poses a challenge in understanding how cancers initiate, progress, and metastasize in early childhood. Also, due to limited detected driver mutations, it is difficult to benchmark key genes for drug development. In this review, we use neuroblastoma, a pediatric solid tumor of neural crest origin, as a paradigm for exploring "big data" applications in pediatric oncology. Computational strategies derived from big data science-network- and machine learning-based modeling and drug repositioning-hold the promise of shedding new light on the molecular mechanisms driving neuroblastoma pathogenesis and identifying potential therapeutics to combat this devastating disease. These strategies integrate robust data input, from genomic and transcriptomic studies, clinical data, and in vivo and in vitro experimental models specific to neuroblastoma and other types of cancers that closely mimic its biological characteristics. We discuss contexts in which "big data" and computational approaches, especially network-based modeling, may advance neuroblastoma research, describe currently available data and resources, and propose future models of strategic data collection and analyses for neuroblastoma and other related diseases.

  16. Neuroblastoma, a Paradigm for Big Data Science in Pediatric Oncology

    Directory of Open Access Journals (Sweden)

    Brittany M. Salazar

    2016-12-01

    Full Text Available Pediatric cancers rarely exhibit recurrent mutational events when compared to most adult cancers. This poses a challenge in understanding how cancers initiate, progress, and metastasize in early childhood. Also, due to limited detected driver mutations, it is difficult to benchmark key genes for drug development. In this review, we use neuroblastoma, a pediatric solid tumor of neural crest origin, as a paradigm for exploring “big data” applications in pediatric oncology. Computational strategies derived from big data science–network- and machine learning-based modeling and drug repositioning—hold the promise of shedding new light on the molecular mechanisms driving neuroblastoma pathogenesis and identifying potential therapeutics to combat this devastating disease. These strategies integrate robust data input, from genomic and transcriptomic studies, clinical data, and in vivo and in vitro experimental models specific to neuroblastoma and other types of cancers that closely mimic its biological characteristics. We discuss contexts in which “big data” and computational approaches, especially network-based modeling, may advance neuroblastoma research, describe currently available data and resources, and propose future models of strategic data collection and analyses for neuroblastoma and other related diseases.

  17. TIAM1 variants improve clinical outcome in neuroblastoma.

    Science.gov (United States)

    Sanmartín, Elena; Yáñez, Yania; Fornés-Ferrer, Victoria; Zugaza, José L; Cañete, Adela; Castel, Victoria; Font de Mora, Jaime

    2017-07-11

    Identification of tumor driver mutations is crucial for improving clinical outcome using a personalized approach to the treatment of cancer. Neuroblastoma is a tumor of the peripheral sympathetic nervous system for which only a few driver alterations have been described including MYCN amplification and ALK mutations. We assessed 106 primary neuroblastoma tumors by next generation sequencing using a customized amplicon-based gene panel. Our results reveal that genetic variants in TIAM1 gene associate with better clinical outcome, suggesting a role for these TIAM1 variants in preventing progression of this disease. The detected variants are located within the different domains of TIAM1 that signal to the upstream regulator RAS and downstream effector molecules MYC and RAC, which are all implicated in neuroblastoma etiology and progression. Clinical outcome was improved in tumors where a TIAM1 variant was present concomitantly with either ALK mutation or MYCN amplification. Given the function of these signaling molecules in cell survival, proliferation, differentiation and neurite outgrowth, our data suggest that the TIAM1-mediated network is essential to neuroblastoma and thus, inhibiting TIAM1 reflects a rational strategy for improving therapy efficacy in neuroblastoma.

  18. Stage 4S neuroblastoma, a disseminated tumor with excellent outcome

    International Nuclear Information System (INIS)

    Elimam, Najla A.; Atra, Ayad A.; Fayea, Najwa Y.; Al-Asaad, Tareq G.; Khattab, Taha M.; Al-Sulami, Ganadeel A.; Felimban, Sami K.

    2006-01-01

    To review the clinical features and outcome of all cases of stage 4S neuroblastoma treated at our center. We retrospectively reviewed the files of all patients (n=75) with neuroblastoma treated at King Abdul-Aziz Medical City, Jeddah, Kingdom of Saudi Arabia between 1986 and 2005. We studied the clinical features and outcome of patients with stage 4S neuroblastoma. Six patients (8%) were confirmed to have stage 4S neuroblastoma. Three were boys with a median age at diagnosis of 4.5 months (range 28 days-11 moths). Four patients required no intervention. The remaining 2 patients were treated chemotherapy due to progressive hepatomegaly and respiratory distress. No patient required radiotherapy or surgical intervention. With a median follow up of four years (range 9 months --- 15.5 years), all patients are alive and well. Two patients continue to have a residual abdominal mass, while complete resolution occurred in the others. Stage 4S neuroblastoma is special tumor that carries excellent prognosis. Spontaneous regression may occur and intervention is only required in symptomatic patients. (author)

  19. Advances in Risk Classification and Treatment Strategies for Neuroblastoma

    Science.gov (United States)

    Pinto, Navin R.; Applebaum, Mark A.; Volchenboum, Samuel L.; Matthay, Katherine K.; London, Wendy B.; Ambros, Peter F.; Nakagawara, Akira; Berthold, Frank; Schleiermacher, Gudrun; Park, Julie R.; Valteau-Couanet, Dominique; Pearson, Andrew D.J.

    2015-01-01

    Risk-based treatment approaches for neuroblastoma have been ongoing for decades. However, the criteria used to define risk in various institutional and cooperative groups were disparate, limiting the ability to compare clinical trial results. To mitigate this problem and enhance collaborative research, homogenous pretreatment patient cohorts have been defined by the International Neuroblastoma Risk Group classification system. During the past 30 years, increasingly intensive, multimodality approaches have been developed to treat patients who are classified as high risk, whereas patients with low- or intermediate-risk neuroblastoma have received reduced therapy. This treatment approach has resulted in improved outcome, although survival for high-risk patients remains poor, emphasizing the need for more effective treatments. Increased knowledge regarding the biology and genetic basis of neuroblastoma has led to the discovery of druggable targets and promising, new therapeutic approaches. Collaborative efforts of institutions and international cooperative groups have led to advances in our understanding of neuroblastoma biology, refinements in risk classification, and stratified treatment strategies, resulting in improved outcome. International collaboration will be even more critical when evaluating therapies designed to treat small cohorts of patients with rare actionable mutations. PMID:26304901

  20. Healthy young adults implement distinctive avoidance strategies while walking and circumventing virtual human vs. non-human obstacles in a virtual environment.

    Science.gov (United States)

    Souza Silva, Wagner; Aravind, Gayatri; Sangani, Samir; Lamontagne, Anouk

    2018-03-01

    This study examines how three types of obstacles (cylinder, virtual human and virtual human with footstep sounds) affect circumvention strategies of healthy young adults. Sixteen participants aged 25.2 ± 2.5 years (mean ± 1SD) were tested while walking overground and viewing a virtual room through a helmet mounted display. As participants walked towards a stationary target in the far space, they avoided an obstacle (cylinder or virtual human) approaching either from the right (+40°), left (-40°) or head-on (0°). Obstacle avoidance strategies were characterized using the position and orientation of the head. Repeated mixed model analysis showed smaller minimal distances (p = 0.007) while avoiding virtual humans as compared to cylinders. Footstep sounds added to virtual humans did not modify (p = 0.2) minimal distances compared to when no sound was provided. Onset times of avoidance strategies were similar across conditions (p = 0.06). Results indicate that the nature of the obstacle (human-like vs. non-human object) matters and can modify avoidance strategies. Smaller obstacle clearances in response to virtual humans may reflect the use of a less conservative avoidance strategy, due to a resemblance of obstacles to pedestrians and a recall of strategies used in daily locomotion. The lack of influence of footstep sounds supports the fact that obstacle avoidance primarily relies on visual cues and the principle of 'inverse effectiveness' whereby multisensory neurons' response to multimodal stimuli becomes weaker when the unimodal sensory stimulus (vision) is strong. Present findings should be taken into consideration to optimize the ecological validity of VR-based obstacle avoidance paradigms used in research and rehabilitation. Copyright © 2018 Elsevier B.V. All rights reserved.