WorldWideScience

Sample records for distinct geographic lineages

  1. Mycobacterium tuberculosis Lineage 4 comprises globally distributed and geographically restricted sublineages

    Science.gov (United States)

    Coscolla, Mireia; Liu, Qingyun; Trauner, Andrej; Fenner, Lukas; Rutaihwa, Liliana; Borrell, Sonia; Luo, Tao; Gao, Qian; Kato-Maeda, Midori; Ballif, Marie; Egger, Matthias; Macedo, Rita; Mardassi, Helmi; Moreno, Milagros; Tudo Vilanova, Griselda; Fyfe, Janet; Globan, Maria; Thomas, Jackson; Jamieson, Frances; Guthrie, Jennifer L.; Asante-Poku, Adwoa; Yeboah-Manu, Dorothy; Wampande, Eddie; Ssengooba, Willy; Joloba, Moses; Henry Boom, W.; Basu, Indira; Bower, James; Saraiva, Margarida; Vaconcellos, Sidra E. G.; Suffys, Philip; Koch, Anastasia; Wilkinson, Robert; Gail-Bekker, Linda; Malla, Bijaya; Ley, Serej D.; Beck, Hans-Peter; de Jong, Bouke C.; Toit, Kadri; Sanchez-Padilla, Elisabeth; Bonnet, Maryline; Gil-Brusola, Ana; Frank, Matthias; Penlap Beng, Veronique N.; Eisenach, Kathleen; Alani, Issam; Wangui Ndung’u, Perpetual; Revathi, Gunturu; Gehre, Florian; Akter, Suriya; Ntoumi, Francine; Stewart-Isherwood, Lynsey; Ntinginya, Nyanda E.; Rachow, Andrea; Hoelscher, Michael; Cirillo, Daniela Maria; Skenders, Girts; Hoffner, Sven; Bakonyte, Daiva; Stakenas, Petras; Diel, Roland; Crudu, Valeriu; Moldovan, Olga; Al-Hajoj, Sahal; Otero, Larissa; Barletta, Francesca; Jane Carter, E.; Diero, Lameck; Supply, Philip; Comas, Iñaki; Niemann, Stefan; Gagneux, Sebastien

    2016-01-01

    Generalist and specialist species differ in the breadth of their ecological niche. Little is known about the niche width of obligate human pathogens. Here we analyzed a global collection of Mycobacterium tuberculosis Lineage 4 clinical isolates, the most geographically widespread cause of human tuberculosis. We show that Lineage 4 comprises globally distributed and geographically restricted sublineages, suggesting a distinction between generalists and specialists. Population genomic analyses showed that while the majority of human T cell epitopes were conserved in all sublineages, the proportion of variable epitopes was higher in generalists. Our data further support a European origin for the most common generalist sublineage. Hence, the global success of Lineage 4 reflects distinct strategies adopted by different sublineages and the influence of human migration. PMID:27798628

  2. Evidence of two distinct phylogenetic lineages of dog rabies virus circulating in Cambodia.

    Science.gov (United States)

    Mey, Channa; Metlin, Artem; Duong, Veasna; Ong, Sivuth; In, Sotheary; Horwood, Paul F; Reynes, Jean-Marc; Bourhy, Hervé; Tarantola, Arnaud; Buchy, Philippe

    2016-03-01

    This first extensive retrospective study of the molecular epidemiology of dog rabies in Cambodia included 149 rabies virus (RABV) entire nucleoprotein sequences obtained from 1998-2011. The sequences were analyzed in conjunction with RABVs from other Asian countries. Phylogenetic reconstruction confirmed the South-East Asian phylogenetic clade comprising viruses from Cambodia, Vietnam, Thailand, Laos and Myanmar. The present study represents the first attempt to classify the phylogenetic lineages inside this clade, resulting in the confirmation that all the Cambodian viruses belonged to the South-East Asian (SEA) clade. Three distinct phylogenetic lineages in the region were established with the majority of viruses from Cambodia closely related to viruses from Thailand, Laos and Vietnam, forming the geographically widespread phylogenetic lineage SEA1. A South-East Asian lineage SEA2 comprised two viruses from Cambodia was identified, which shared a common ancestor with RABVs originating from Laos. Viruses from Myanmar formed separate phylogenetic lineages within the major SEA clade. Bayesian molecular clock analysis suggested that the time to most recent common ancestor (TMRCA) of all Cambodian RABVs dated to around 1950. The TMRCA of the Cambodian SEA1 lineage was around 1964 and that of the SEA2 lineage was around 1953. The results identified three phylogenetically distinct and geographically separated lineages inside the earlier identified major SEA clade, covering at least five countries in the region. A greater understanding of the molecular epidemiology of rabies in South-East Asia is an important step to monitor progress on the efforts to control canine rabies in the region. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Morphological and genetic evidence for multiple evolutionary distinct lineages in the endangered and commercially exploited red lined torpedo barbs endemic to the Western Ghats of India.

    Science.gov (United States)

    John, Lijo; Philip, Siby; Dahanukar, Neelesh; Anvar Ali, Palakkaparambil Hamsa; Tharian, Josin; Raghavan, Rajeev; Antunes, Agostinho

    2013-01-01

    Red lined torpedo barbs (RLTBS) (Cyprinidae: Puntius) endemic to the Western Ghats Hotspot of India, are popular and highly priced freshwater aquarium fishes. Two decades of indiscriminate exploitation for the pet trade, restricted range, fragmented populations and continuing decline in quality of habitats has resulted in their 'Endangered' listing. Here, we tested whether the isolated RLTB populations demonstrated considerable variation qualifying to be considered as distinct conservation targets. Multivariate morphometric analysis using 24 size-adjusted characters delineated all allopatric populations. Similarly, the species-tree highlighted a phylogeny with 12 distinct RLTB lineages corresponding to each of the different riverine populations. However, coalescence-based methods using mitochondrial DNA markers identified only eight evolutionarily distinct lineages. Divergence time analysis points to recent separation of the populations, owing to the geographical isolation, more than 5 million years ago, after the lineages were split into two ancestral stocks in the Paleocene, on north and south of a major geographical gap in the Western Ghats. Our results revealing the existence of eight evolutionarily distinct RLTB lineages calls for the re-determination of conservation targets for these cryptic and endangered taxa.

  4. Morphological and genetic evidence for multiple evolutionary distinct lineages in the endangered and commercially exploited red lined torpedo barbs endemic to the Western Ghats of India.

    Directory of Open Access Journals (Sweden)

    Lijo John

    Full Text Available Red lined torpedo barbs (RLTBS (Cyprinidae: Puntius endemic to the Western Ghats Hotspot of India, are popular and highly priced freshwater aquarium fishes. Two decades of indiscriminate exploitation for the pet trade, restricted range, fragmented populations and continuing decline in quality of habitats has resulted in their 'Endangered' listing. Here, we tested whether the isolated RLTB populations demonstrated considerable variation qualifying to be considered as distinct conservation targets. Multivariate morphometric analysis using 24 size-adjusted characters delineated all allopatric populations. Similarly, the species-tree highlighted a phylogeny with 12 distinct RLTB lineages corresponding to each of the different riverine populations. However, coalescence-based methods using mitochondrial DNA markers identified only eight evolutionarily distinct lineages. Divergence time analysis points to recent separation of the populations, owing to the geographical isolation, more than 5 million years ago, after the lineages were split into two ancestral stocks in the Paleocene, on north and south of a major geographical gap in the Western Ghats. Our results revealing the existence of eight evolutionarily distinct RLTB lineages calls for the re-determination of conservation targets for these cryptic and endangered taxa.

  5. Three reciprocally monophyletic mtDNA lineages elucidate the taxonomic status of Grant's gazelles

    DEFF Research Database (Denmark)

    Lorenzen, Eline Deidre; Arctander, Peter; Siegismund, Hans Redlef

    2008-01-01

    are discussed in reference to the four currently recognised subspecies. We suggest Grant's gazelles be raised to the superspecies Nanger (granti) comprising three taxonomic units corresponding to the three mtDNA lineages. There was no evidence of gene flow between the notata and granti lineages, despite...... their geographic proximity, suggesting reproductive isolation. These constitute evolutionary significant units within the adaptive evolutionary framework. Due to its restricted geographic distribution and genetic and morphological distinctiveness, we suggest the petersii lineage be raised to the species Nanger...

  6. Native fauna on exotic trees: phylogenetic conservatism and geographic contingency in two lineages of phytophages on two lineages of trees.

    Science.gov (United States)

    Gossner, Martin M; Chao, Anne; Bailey, Richard I; Prinzing, Andreas

    2009-05-01

    The relative roles of evolutionary history and geographical and ecological contingency for community assembly remain unknown. Plant species, for instance, share more phytophages with closer relatives (phylogenetic conservatism), but for exotic plants introduced to another continent, this may be overlaid by geographically contingent evolution or immigration from locally abundant plant species (mass effects). We assessed within local forests to what extent exotic trees (Douglas-fir, red oak) recruit phytophages (Coleoptera, Heteroptera) from more closely or more distantly related native plants. We found that exotics shared more phytophages with natives from the same major plant lineage (angiosperms vs. gymnosperms) than with natives from the other lineage. This was particularly true for Heteroptera, and it emphasizes the role of host specialization in phylogenetic conservatism of host use. However, for Coleoptera on Douglas-fir, mass effects were important: immigration from beech increased with increasing beech abundance. Within a plant phylum, phylogenetic proximity of exotics and natives increased phytophage similarity, primarily in younger Coleoptera clades on angiosperms, emphasizing a role of past codiversification of hosts and phytophages. Overall, phylogenetic conservatism can shape the assembly of local phytophage communities on exotic trees. Whether it outweighs geographic contingency and mass effects depends on the interplay of phylogenetic scale, local abundance of native tree species, and the biology and evolutionary history of the phytophage taxon.

  7. Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells

    Science.gov (United States)

    Sojka, Dorothy K; Plougastel-Douglas, Beatrice; Yang, Liping; Pak-Wittel, Melissa A; Artyomov, Maxim N; Ivanova, Yulia; Zhong, Chao; Chase, Julie M; Rothman, Paul B; Yu, Jenny; Riley, Joan K; Zhu, Jinfang; Tian, Zhigang; Yokoyama, Wayne M

    2014-01-01

    Natural killer (NK) cells belong to the innate immune system; they can control virus infections and developing tumors by cytotoxicity and producing inflammatory cytokines. Most studies of mouse NK cells, however, have focused on conventional NK (cNK) cells in the spleen. Recently, we described two populations of liver NK cells, tissue-resident NK (trNK) cells and those resembling splenic cNK cells. However, their lineage relationship was unclear; trNK cells could be developing cNK cells, related to thymic NK cells, or a lineage distinct from both cNK and thymic NK cells. Herein we used detailed transcriptomic, flow cytometric, and functional analysis and transcription factor-deficient mice to determine that liver trNK cells form a distinct lineage from cNK and thymic NK cells. Taken together with analysis of trNK cells in other tissues, there are at least four distinct lineages of NK cells: cNK, thymic, liver (and skin) trNK, and uterine trNK cells. DOI: http://dx.doi.org/10.7554/eLife.01659.001 PMID:24714492

  8. Biome specificity of distinct genetic lineages within the four-striped mouse Rhabdomys pumilio (Rodentia: Muridae) from southern Africa with implications for taxonomy.

    Science.gov (United States)

    du Toit, Nina; van Vuuren, Bettine Jansen; Matthee, Sonja; Matthee, Conrad A

    2012-10-01

    Within southern Africa, a link between past climatic changes and faunal diversification has been hypothesized for a diversity of taxa. To test the hypothesis that evolutionary divergences may be correlated to vegetation changes (induced by changes in climate), we selected the widely distributed four-striped mouse, Rhabdomys, as a model. Two species are currently recognized, the mesic-adapted R. dilectus and arid-adapted R. pumilio. However, the morphology-based taxonomy and the distribution boundaries of previously described subspecies remain poorly defined. The current study, which spans seven biomes, focuses on the spatial genetic structure of the arid-adapted R. pumilio (521 specimens from 31 localities), but also includes limited sampling of the mesic-adapted R. dilectus (33 specimens from 10 localities) to act as a reference for interspecific variation within the genus. The mitochondrial COI gene and four nuclear introns (Eef1a1, MGF, SPTBN1, Bfib7) were used for the construction of gene trees. Mitochondrial DNA analyses indicate that Rhabdomys consists of four reciprocally monophyletic, geographically structured clades, with three distinct lineages present within the arid-adapted R. pumilio. These monophyletic lineages differ by at least 7.9% (±0.3) and these results are partly confirmed by a multilocus network of the combined nuclear intron dataset. Ecological niche modeling in MaxEnt supports a strong correlation between regional biomes and the distribution of distinct evolutionary lineages of Rhabdomys. A Bayesian relaxed molecular clock suggests that the geographic clades diverged between 3.09 and 4.30Ma, supporting the hypothesis that the radiation within the genus coincides with paleoclimatic changes (and the establishment of the biomes) characterizing the Miocene-Pliocene boundary. Marked genetic divergence at the mitochondrial DNA level, coupled with strong nuclear and mtDNA signals of non-monophyly of R. pumilio, support the notion that a taxonomic

  9. Development of peptide-based lineage-specific serology for chronic Chagas disease: geographical and clinical distribution of epitope recognition.

    Directory of Open Access Journals (Sweden)

    Tapan Bhattacharyya

    2014-05-01

    Full Text Available BACKGROUND: Chagas disease, caused by infection with the protozoan Trypanosoma cruzi, remains a serious public health issue in Latin America. Genetically diverse, the species is sub-divided into six lineages, known as TcI-TcVI, which have disparate geographical and ecological distributions. TcII, TcV, and TcVI are associated with severe human disease in the Southern Cone countries, whereas TcI is associated with cardiomyopathy north of the Amazon. T. cruzi persists as a chronic infection, with cardiac and/or gastrointestinal symptoms developing years or decades after initial infection. Identifying an individual's history of T. cruzi lineage infection directly by genotyping of the parasite is complicated by the low parasitaemia and sequestration in the host tissues. METHODOLOGY/PRINCIPAL FINDINGS: We have applied here serology against lineage-specific epitopes of the T. cruzi surface antigen TSSA, as an indirect approach to allow identification of infecting lineage. Chagasic sera from chronic patients from a range of endemic countries were tested by ELISA against synthetic peptides representing lineage-specific TSSA epitopes bound to avidin-coated ELISA plates via a biotin labelled polyethylene glycol-glycine spacer to increase rotation and ensure each amino acid side chain could freely interact with their antibodies. 79/113 (70% of samples from Brazil, Bolivia, and Argentina recognised the TSSA epitope common to lineages TcII/TcV/TcVI. Comparison with clinical information showed that a higher proportion of Brazilian TSSApep-II/V/VI responders had ECG abnormalities than non-responders (38% vs 17%; p<0.0001. Among northern chagasic sera 4/20 (20% from Ecuador reacted with this peptide; 1/12 Venezuelan and 1/34 Colombian samples reacted with TSSApep-IV. In addition, a proposed TcI-specific epitope, described elsewhere, was demonstrated here to be highly conserved across lineages and therefore not applicable to lineage-specific serology. CONCLUSIONS

  10. Development of peptide-based lineage-specific serology for chronic Chagas disease: geographical and clinical distribution of epitope recognition.

    Science.gov (United States)

    Bhattacharyya, Tapan; Falconar, Andrew K; Luquetti, Alejandro O; Costales, Jaime A; Grijalva, Mario J; Lewis, Michael D; Messenger, Louisa A; Tran, Trang T; Ramirez, Juan-David; Guhl, Felipe; Carrasco, Hernan J; Diosque, Patricio; Garcia, Lineth; Litvinov, Sergey V; Miles, Michael A

    2014-05-01

    Chagas disease, caused by infection with the protozoan Trypanosoma cruzi, remains a serious public health issue in Latin America. Genetically diverse, the species is sub-divided into six lineages, known as TcI-TcVI, which have disparate geographical and ecological distributions. TcII, TcV, and TcVI are associated with severe human disease in the Southern Cone countries, whereas TcI is associated with cardiomyopathy north of the Amazon. T. cruzi persists as a chronic infection, with cardiac and/or gastrointestinal symptoms developing years or decades after initial infection. Identifying an individual's history of T. cruzi lineage infection directly by genotyping of the parasite is complicated by the low parasitaemia and sequestration in the host tissues. We have applied here serology against lineage-specific epitopes of the T. cruzi surface antigen TSSA, as an indirect approach to allow identification of infecting lineage. Chagasic sera from chronic patients from a range of endemic countries were tested by ELISA against synthetic peptides representing lineage-specific TSSA epitopes bound to avidin-coated ELISA plates via a biotin labelled polyethylene glycol-glycine spacer to increase rotation and ensure each amino acid side chain could freely interact with their antibodies. 79/113 (70%) of samples from Brazil, Bolivia, and Argentina recognised the TSSA epitope common to lineages TcII/TcV/TcVI. Comparison with clinical information showed that a higher proportion of Brazilian TSSApep-II/V/VI responders had ECG abnormalities than non-responders (38% vs 17%; p<0.0001). Among northern chagasic sera 4/20 (20%) from Ecuador reacted with this peptide; 1/12 Venezuelan and 1/34 Colombian samples reacted with TSSApep-IV. In addition, a proposed TcI-specific epitope, described elsewhere, was demonstrated here to be highly conserved across lineages and therefore not applicable to lineage-specific serology. These results demonstrate the considerable potential for synthetic

  11. Evolution of two distinct phylogenetic lineages of the emerging human pathogen Mycobacterium ulcerans

    Directory of Open Access Journals (Sweden)

    Portaels Francoise

    2007-09-01

    Full Text Available Abstract Background Comparative genomics has greatly improved our understanding of the evolution of pathogenic mycobacteria such as Mycobacterium tuberculosis. Here we have used data from a genome microarray analysis to explore insertion-deletion (InDel polymorphism among a diverse strain collection of Mycobacterium ulcerans, the causative agent of the devastating skin disease, Buruli ulcer. Detailed analysis of large sequence polymorphisms in twelve regions of difference (RDs, comprising irreversible genetic markers, enabled us to refine the phylogenetic succession within M. ulcerans, to define features of a hypothetical M. ulcerans most recent common ancestor and to confirm its origin from Mycobacterium marinum. Results M. ulcerans has evolved into five InDel haplotypes that separate into two distinct lineages: (i the "classical" lineage including the most pathogenic genotypes – those that come from Africa, Australia and South East Asia; and (ii an "ancestral" M. ulcerans lineage comprising strains from Asia (China/Japan, South America and Mexico. The ancestral lineage is genetically closer to the progenitor M. marinum in both RD composition and DNA sequence identity, whereas the classical lineage has undergone major genomic rearrangements. Conclusion Results of the InDel analysis are in complete accord with recent multi-locus sequence analysis and indicate that M. ulcerans has passed through at least two major evolutionary bottlenecks since divergence from M. marinum. The classical lineage shows more pronounced reductive evolution than the ancestral lineage, suggesting that there may be differences in the ecology between the two lineages. These findings improve the understanding of the adaptive evolution and virulence of M. ulcerans and pathogenic mycobacteria in general and will facilitate the development of new tools for improved diagnostics and molecular epidemiology.

  12. Distinct epigenomic landscapes of pluripotent and lineage-committed human cells.

    Science.gov (United States)

    Hawkins, R David; Hon, Gary C; Lee, Leonard K; Ngo, Queminh; Lister, Ryan; Pelizzola, Mattia; Edsall, Lee E; Kuan, Samantha; Luu, Ying; Klugman, Sarit; Antosiewicz-Bourget, Jessica; Ye, Zhen; Espinoza, Celso; Agarwahl, Saurabh; Shen, Li; Ruotti, Victor; Wang, Wei; Stewart, Ron; Thomson, James A; Ecker, Joseph R; Ren, Bing

    2010-05-07

    Human embryonic stem cells (hESCs) share an identical genome with lineage-committed cells, yet possess the remarkable properties of self-renewal and pluripotency. The diverse cellular properties in different cells have been attributed to their distinct epigenomes, but how much epigenomes differ remains unclear. Here, we report that epigenomic landscapes in hESCs and lineage-committed cells are drastically different. By comparing the chromatin-modification profiles and DNA methylomes in hESCs and primary fibroblasts, we find that nearly one-third of the genome differs in chromatin structure. Most changes arise from dramatic redistributions of repressive H3K9me3 and H3K27me3 marks, which form blocks that significantly expand in fibroblasts. A large number of potential regulatory sequences also exhibit a high degree of dynamics in chromatin modifications and DNA methylation. Additionally, we observe novel, context-dependent relationships between DNA methylation and chromatin modifications. Our results provide new insights into epigenetic mechanisms underlying properties of pluripotency and cell fate commitment.

  13. Distinct lineages of Ebola virus in Guinea during the 2014 West African epidemic.

    Science.gov (United States)

    Simon-Loriere, Etienne; Faye, Ousmane; Faye, Oumar; Koivogui, Lamine; Magassouba, Nfaly; Keita, Sakoba; Thiberge, Jean-Michel; Diancourt, Laure; Bouchier, Christiane; Vandenbogaert, Matthias; Caro, Valérie; Fall, Gamou; Buchmann, Jan P; Matranga, Christan B; Sabeti, Pardis C; Manuguerra, Jean-Claude; Holmes, Edward C; Sall, Amadou A

    2015-08-06

    An epidemic of Ebola virus disease of unprecedented scale has been ongoing for more than a year in West Africa. As of 29 April 2015, there have been 26,277 reported total cases (of which 14,895 have been laboratory confirmed) resulting in 10,899 deaths. The source of the outbreak was traced to the prefecture of Guéckédou in the forested region of southeastern Guinea. The virus later spread to the capital, Conakry, and to the neighbouring countries of Sierra Leone, Liberia, Nigeria, Senegal and Mali. In March 2014, when the first cases were detected in Conakry, the Institut Pasteur of Dakar, Senegal, deployed a mobile laboratory in Donka hospital to provide diagnostic services to the greater Conakry urban area and other regions of Guinea. Through this process we sampled 85 Ebola viruses (EBOV) from patients infected from July to November 2014, and report their full genome sequences here. Phylogenetic analysis reveals the sustained transmission of three distinct viral lineages co-circulating in Guinea, including the urban setting of Conakry and its surroundings. One lineage is unique to Guinea and closely related to the earliest sampled viruses of the epidemic. A second lineage contains viruses probably reintroduced from neighbouring Sierra Leone on multiple occasions, while a third lineage later spread from Guinea to Mali. Each lineage is defined by multiple mutations, including non-synonymous changes in the virion protein 35 (VP35), glycoprotein (GP) and RNA-dependent RNA polymerase (L) proteins. The viral GP is characterized by a glycosylation site modification and mutations in the mucin-like domain that could modify the outer shape of the virion. These data illustrate the ongoing ability of EBOV to develop lineage-specific and potentially phenotypically important variation.

  14. Phylogenetic evidence of a new canine distemper virus lineage among domestic dogs in Colombia, South America.

    Science.gov (United States)

    Espinal, Maria A; Díaz, Francisco J; Ruiz-Saenz, Julian

    2014-08-06

    Canine distemper virus (CDV) is a highly contagious viral disease of carnivores affecting both wild and domestic populations. The hemagglutinin gene, encoding for the attachment protein that determines viral tropism, shows high heterogeneity among strains, allowing for the distinction of ten different lineages distributed worldwide according to a geographic pattern. We obtained the sequences of the full-length H gene of 15 wild-type CDV strains circulating in domestic dog populations from the Aburrá Valley, Colombia. A phylogenetic analysis of H gene nucleotide sequences from Colombian CDV viruses along with field isolates from different geographic regions and vaccine strains was performed. Colombian wild-type viruses formed a distinct monophyletic cluster clearly separated from the previously identified wild-type and vaccine lineages, suggesting that a novel genetic variant, quite different from vaccines and other lineages, is circulating among dog populations in the Aburrá Valley. We propose naming this new lineage as "South America 3". This information indicates that there are at least three different CDV lineages circulating in domestic and wild carnivore populations in South America. The first one, renamed Europe/South America 1, circulates in Brazil and Uruguay; the second, South America 2, appears to be restricted to Argentina; and the third, South America 3, which comprises all the strains characterized in this study, may also be circulating in other northern countries of South America. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Genetic Characterization of Spondweni and Zika Viruses and Susceptibility of Geographically Distinct Strains of Aedes aegypti, Aedes albopictus and Culex quinquefasciatus (Diptera: Culicidae to Spondweni Virus.

    Directory of Open Access Journals (Sweden)

    Andrew D Haddow

    2016-10-01

    Full Text Available Zika virus (ZIKV has extended its known geographic distribution to the New World and is now responsible for severe clinical complications in a subset of patients. While substantial genetic and vector susceptibility data exist for ZIKV, less is known for the closest related flavivirus, Spondweni virus (SPONV. Both ZIKV and SPONV have been known to circulate in Africa since the mid-1900s, but neither has been genetically characterized by gene and compared in parallel. Furthermore, the susceptibility of peridomestic mosquito species incriminated or suspected in the transmission of ZIKV to SPONV was unknown.In this study, two geographically distinct strains of SPONV were genetically characterized and compared to nine genetically and geographically distinct ZIKV strains. Additionally, the susceptibility of both SPONV strains was determined in three mosquito species. The open reading frame (ORF of the SPONV 1952 Nigerian Chuku strain, exhibited a nucleotide and amino acid identity of 97.8% and 99.2%, respectively, when compared to the SPONV 1954 prototype South African SA Ar 94 strain. The ORF of the SPONV Chuku strain exhibited a nucleotide and amino acid identity that ranged from 68.3% to 69.0% and 74.6% to 75.0%, respectively, when compared to nine geographically and genetically distinct strains of ZIKV. The ORF of the nine African and Asian lineage ZIKV strains exhibited limited nucleotide divergence. Aedes aegypti, Ae. albopictus and Culex quinquefasciatus susceptibility and dissemination was low or non-existent following artificial infectious blood feeding of moderate doses of both SPONV strains.SPONV and ZIKV nucleotide and amino acid divergence coupled with differences in geographic distribution, ecology and vector species support previous reports that these viruses are separate species. Furthermore, the low degree of SPONV infection or dissemination in Ae. albopictus, Ae. aegypti and Cx. quinquefasciatus following exposure to two

  16. Cryptic variation in an ecological indicator organism: mitochondrial and nuclear DNA sequence data confirm distinct lineages of Baetis harrisoni Barnard (Ephemeroptera: Baetidae in southern Africa

    Directory of Open Access Journals (Sweden)

    Pereira-da-Conceicoa Lyndall L

    2012-02-01

    Full Text Available Abstract Background Baetis harrisoni Barnard is a mayfly frequently encountered in river studies across Africa, but the external morphological features used for identifying nymphs have been observed to vary subtly between different geographic locations. It has been associated with a wide range of ecological conditions, including pH extremes of pH 2.9–10.0 in polluted waters. We present a molecular study of the genetic variation within B. harrisoni across 21 rivers in its distribution range in southern Africa. Results Four gene regions were examined, two mitochondrial (cytochrome c oxidase subunit I [COI] and small subunit ribosomal 16S rDNA [16S] and two nuclear (elongation factor 1 alpha [EF1α] and phosphoenolpyruvate carboxykinase [PEPCK]. Bayesian and parsimony approaches to phylogeny reconstruction resulted in five well-supported major lineages, which were confirmed using a general mixed Yule-coalescent (GMYC model. Results from the EF1α gene were significantly incongruent with both mitochondrial and nuclear (PEPCK results, possibly due to incomplete lineage sorting of the EF1α gene. Mean between-clade distance estimated using the COI and PEPCK data was found to be an order of magnitude greater than the within-clade distance and comparable to that previously reported for other recognised Baetis species. Analysis of the Isolation by Distance (IBD between all samples showed a small but significant effect of IBD. Within each lineage the contribution of IBD was minimal. Tentative dating analyses using an uncorrelated log-normal relaxed clock and two published estimates of COI mutation rates suggest that diversification within the group occurred throughout the Pliocene and mid-Miocene (~2.4–11.5 mya. Conclusions The distinct lineages of B. harrisoni correspond to categorical environmental variation, with two lineages comprising samples from streams that flow through acidic Table Mountain Sandstone and three lineages with samples from

  17. Molecular phylogenetics of the genus Costularia (Schoeneae, Cyperaceae) reveals multiple distinct evolutionary lineages.

    Science.gov (United States)

    Larridon, Isabel; Bauters, Kenneth; Semmouri, Ilias; Viljoen, Jan-Adriaan; Prychid, Christina J; Muasya, A Muthama; Bruhl, Jeremy J; Wilson, Karen L; Senterre, Bruno; Goetghebeur, Paul

    2018-04-19

    We investigated the monophyly of Costularia (25 species), a genus of tribe Schoeneae (Cyperaceae) that illustrates a remarkable distribution pattern from southeastern Africa, over Madagascar, the Mascarenes and Seychelles, to Malesia and New Caledonia. A further species, Tetraria borneensis, has been suggested to belong to Costularia. Relationships and divergence times were inferred using an existing four marker phylogeny of Cyperaceae tribe Schoeneae expanded with newly generated sequence data mainly for Costularia s.l. species. Phylogenetic reconstruction was executed using Bayesian inference and maximum likelihood approaches. Divergence times were estimated using a relaxed molecular clock model, calibrated with fossil data. Based on our results, Tetraria borneensis is not related to the species of Costularia. Costularia s.l. is composed of four distinct evolutionary lineages. Two lineages, one including the type species, are part of the Oreobolus clade, i.e. a much reduced genus Costularia restricted to southeastern Africa, Madagascar, the Mascarenes and Seychelles, and a small endemic genus from New Caledonia for which a new genus Chamaedendron is erected based on Costularia subgenus Chamaedendron. The other two lineages are part of the Tricostularia clade, i.e. a separate single-species lineage from the Seychelles for which a new genus (Xyroschoenus) is described, and Costularia subgenus Lophoschoenus. For the latter, more research is needed to test whether they are congeneric with the species placed in the reticulate-sheathed Tetraria clade. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Lineage range estimation method reveals fine-scale endemism linked to Pleistocene stability in Australian rainforest herpetofauna.

    Science.gov (United States)

    Rosauer, Dan F; Catullo, Renee A; VanDerWal, Jeremy; Moussalli, Adnan; Moritz, Craig

    2015-01-01

    Areas of suitable habitat for species and communities have arisen, shifted, and disappeared with Pleistocene climate cycles, and through this shifting landscape, current biodiversity has found paths to the present. Evolutionary refugia, areas of relative habitat stability in this shifting landscape, support persistence of lineages through time, and are thus crucial to the accumulation and maintenance of biodiversity. Areas of endemism are indicative of refugial areas where diversity has persisted, and endemism of intraspecific lineages in particular is strongly associated with late-Pleistocene habitat stability. However, it remains a challenge to consistently estimate the geographic ranges of intraspecific lineages and thus infer phylogeographic endemism, because spatial sampling for genetic analyses is typically sparse relative to species records. We present a novel technique to model the geographic distribution of intraspecific lineages, which is informed by the ecological niche of a species and known locations of its constituent lineages. Our approach allows for the effects of isolation by unsuitable habitat, and captures uncertainty in the extent of lineage ranges. Applying this method to the arc of rainforest areas spanning 3500 km in eastern Australia, we estimated lineage endemism for 53 species of rainforest dependent herpetofauna with available phylogeographic data. We related endemism to the stability of rainforest habitat over the past 120,000 years and identified distinct concentrations of lineage endemism that can be considered putative refugia. These areas of lineage endemism are strongly related to historical stability of rainforest habitat, after controlling for the effects of current environment. In fact, a dynamic stability model that allows movement to track suitable habitat over time was the most important factor in explaining current patterns of endemism. The techniques presented here provide an objective, practical method for estimating

  19. [Differences on geographic distribution of rabies virus lineages in China].

    Science.gov (United States)

    Wang, Q; Li, M L; Chen, Y; Wang, B; Tao, X Y; Zhu, W Y

    2018-04-10

    Objective: To study the lineages of rabies virus and the epidemic characteristics in different provincial populations of China, to provide information for the development of control and prevention measures in each respective provinces. Methods: Full length N and G genes and full-genome of epidemic strains of rabies virus collected in China were downloaded from GenBank and combined with newly sequenced strains by our lab. Each strain was classified under six lineages of China rabies by constructing phylogenetic trees based on the N or G sequences. Numbers of strains and lineages in each province were counted and compared. Results: Six lineages (China Ⅰ-Ⅵ) were prevalent in China, with 4 found in Yunnan and Hunan. In 6 provinces, including Henan and Fujian, 3 lineages were found. In 8 provinces, including Shanghai and Jiangxi, 2 lineages were found Only 1 lineage, were found in Beijing, Tianjin and other 12 provinces. the China Ⅰ, was the dominant one in 25 provinces. In recent years, China Ⅲ had been found in wild animals and spread over livestock in Inner Mongolia and Xinjiang areas. Qinghai and Tibet had been influenced by China Ⅳ, which also been found in wild animals of Inner Mongolia and Heilongjiang. Conclusion: There had been obvious differences in lineages and strain numbers of rabies virus identified in different provinces in China.

  20. Exploring demographic, physical, and historical explanations for the genetic structure of two lineages of Greater Antillean bats.

    Directory of Open Access Journals (Sweden)

    Robert A Muscarella

    2011-03-01

    Full Text Available Observed patterns of genetic structure result from the interactions of demographic, physical, and historical influences on gene flow. The particular strength of various factors in governing gene flow, however, may differ between species in biologically relevant ways. We investigated the role of demographic factors (population size and sex-biased dispersal and physical features (geographic distance, island size and climatological winds on patterns of genetic structure and gene flow for two lineages of Greater Antillean bats. We used microsatellite genetic data to estimate demographic characteristics, infer population genetic structure, and estimate gene flow among island populations of Erophylla sezekorni/E. bombifrons and Macrotus waterhousii (Chiroptera: Phyllostomidae. Using a landscape genetics approach, we asked if geographic distance, island size, or climatological winds mediate historical gene flow in this system. Samples from 13 islands spanning Erophylla's range clustered into five genetically distinct populations. Samples of M. waterhousii from eight islands represented eight genetically distinct populations. While we found evidence that a majority of historical gene flow between genetic populations was asymmetric for both lineages, we were not able to entirely rule out incomplete lineage sorting in generating this pattern. We found no evidence of contemporary gene flow except between two genetic populations of Erophylla. Both lineages exhibited significant isolation by geographic distance. Patterns of genetic structure and gene flow, however, were not explained by differences in relative effective population sizes, island area, sex-biased dispersal (tested only for Erophylla, or surface-level climatological winds. Gene flow among islands appears to be highly restricted, particularly for M. waterhousii, and we suggest that this species deserves increased taxonomic attention and conservation concern.

  1. Whole Genome Sequencing of Mycobacterium africanum Strains from Mali Provides Insights into the Mechanisms of Geographic Restriction.

    Science.gov (United States)

    Winglee, Kathryn; Manson McGuire, Abigail; Maiga, Mamoudou; Abeel, Thomas; Shea, Terrance; Desjardins, Christopher A; Diarra, Bassirou; Baya, Bocar; Sanogo, Moumine; Diallo, Souleymane; Earl, Ashlee M; Bishai, William R

    2016-01-01

    Mycobacterium africanum, made up of lineages 5 and 6 within the Mycobacterium tuberculosis complex (MTC), causes up to half of all tuberculosis cases in West Africa, but is rarely found outside of this region. The reasons for this geographical restriction remain unknown. Possible reasons include a geographically restricted animal reservoir, a unique preference for hosts of West African ethnicity, and an inability to compete with other lineages outside of West Africa. These latter two hypotheses could be caused by loss of fitness or altered interactions with the host immune system. We sequenced 92 MTC clinical isolates from Mali, including two lineage 5 and 24 lineage 6 strains. Our genome sequencing assembly, alignment, phylogeny and average nucleotide identity analyses enabled us to identify features that typify lineages 5 and 6 and made clear that these lineages do not constitute a distinct species within the MTC. We found that in Mali, lineage 6 and lineage 4 strains have similar levels of diversity and evolve drug resistance through similar mechanisms. In the process, we identified a putative novel streptomycin resistance mutation. In addition, we found evidence of person-to-person transmission of lineage 6 isolates and showed that lineage 6 is not enriched for mutations in virulence-associated genes. This is the largest collection of lineage 5 and 6 whole genome sequences to date, and our assembly and alignment data provide valuable insights into what distinguishes these lineages from other MTC lineages. Lineages 5 and 6 do not appear to be geographically restricted due to an inability to transmit between West African hosts or to an elevated number of mutations in virulence-associated genes. However, lineage-specific mutations, such as mutations in cell wall structure, secretion systems and cofactor biosynthesis, provide alternative mechanisms that may lead to host specificity.

  2. Regenerant arabidopsis lineages display a distinct genome-wide spectrum of mutations conferring variant phenotypes

    KAUST Repository

    Jiang, Caifu

    2011-07-28

    Multicellular organisms can be regenerated from totipotent differentiated somatic cell or nuclear founders [1-3]. Organisms regenerated from clonally related isogenic founders might a priori have been expected to be phenotypically invariant. However, clonal regenerant animals display variant phenotypes caused by defective epigenetic reprogramming of gene expression [2], and clonal regenerant plants exhibit poorly understood heritable phenotypic ("somaclonal") variation [4-7]. Here we show that somaclonal variation in regenerant Arabidopsis lineages is associated with genome-wide elevation in DNA sequence mutation rate. We also show that regenerant mutations comprise a distinctive molecular spectrum of base substitutions, insertions, and deletions that probably results from decreased DNA repair fidelity. Finally, we show that while regenerant base substitutions are a likely major genetic cause of the somaclonal variation of regenerant Arabidopsis lineages, transposon movement is unlikely to contribute substantially to that variation. We conclude that the phenotypic variation of regenerant plants, unlike that of regenerant animals, is substantially due to DNA sequence mutation. 2011 Elsevier Ltd. All rights reserved.

  3. Regenerant arabidopsis lineages display a distinct genome-wide spectrum of mutations conferring variant phenotypes

    KAUST Repository

    Jiang, Caifu; Mithani, Aziz; Gan, Xiangchao; Belfield, Eric J.; Klingler, John  P.; Zhu, Jian-Kang; Ragoussis, Jiannis; Mott, Richard; Harberd, Nicholas  P.

    2011-01-01

    Multicellular organisms can be regenerated from totipotent differentiated somatic cell or nuclear founders [1-3]. Organisms regenerated from clonally related isogenic founders might a priori have been expected to be phenotypically invariant. However, clonal regenerant animals display variant phenotypes caused by defective epigenetic reprogramming of gene expression [2], and clonal regenerant plants exhibit poorly understood heritable phenotypic ("somaclonal") variation [4-7]. Here we show that somaclonal variation in regenerant Arabidopsis lineages is associated with genome-wide elevation in DNA sequence mutation rate. We also show that regenerant mutations comprise a distinctive molecular spectrum of base substitutions, insertions, and deletions that probably results from decreased DNA repair fidelity. Finally, we show that while regenerant base substitutions are a likely major genetic cause of the somaclonal variation of regenerant Arabidopsis lineages, transposon movement is unlikely to contribute substantially to that variation. We conclude that the phenotypic variation of regenerant plants, unlike that of regenerant animals, is substantially due to DNA sequence mutation. 2011 Elsevier Ltd. All rights reserved.

  4. Possible Northward Introgression of a Tropical Lineage of Rhipicephalus sanguineus Ticks at a Site of Emerging Rocky Mountain Spotted Fever.

    Science.gov (United States)

    Villarreal, Zachary; Stephenson, Nicole; Foley, Janet

    2018-06-01

    Increasing rates of Rocky Mountain spotted fever (RMSF) in the southwestern United States and northern Mexico underscore the importance of studying the ecology of the brown dog tick, Rhipicephalus sanguineus, the vector in that region. This species is reported to comprise distinct tropical and temperate lineages that may differ in vectorial capacity for RMSF and are hypothesized to be limited in their geographical range by climatic conditions. In this study, lineage was determined for ticks from 9 locations in California, Arizona, and Mexico by DNA sequencing of 12S, 16S, and D-loop ribosomal RNA. As expected, sites in northern California and eastern Arizona had temperate-lineage ticks, and phylogenetic analysis revealed considerable genetic variability among these temperate-lineage ticks. However, tropical-lineage ticks extended north from Oaxaca, Mexico were well established along the entire border from San Diego, California to western Arizona, and were found as far north as Lytle Creek near Los Angeles, California (a site where both lineages were detected). Far less genetic variability in the tropical lineage despite the large geographical distances is supportive of a hypothesis of rapid northward expansion. Discovery of the tropical lineage north of the identified climatic limitations suggests that more work is needed to characterize this tick's ecology, vectorial capacity, expansion, possible evolution, and response to climate change.

  5. Multiple, Distinct Intercontinental Lineages but Isolation of Australian Populations in a Cosmopolitan Lichen-Forming Fungal Taxon, Psora decipiens (Psoraceae, Ascomycota

    Directory of Open Access Journals (Sweden)

    Steven D. Leavitt

    2018-02-01

    Full Text Available Multiple drivers shape the spatial distribution of species, including dispersal capacity, niche incumbency, climate variability, orographic barriers, and plate tectonics. However, biogeographic patterns of fungi commonly do not fit conventional expectations based on studies of animals and plants. Fungi, in general, are known to occur across exceedingly broad, intercontinental distributions, including some important components of biological soil crust communities (BSCs. However, molecular data often reveal unexpected biogeographic patterns in lichenized fungal species that are assumed to have cosmopolitan distributions. The lichen-forming fungal species Psora decipiens is found on all continents, except Antarctica and occurs in BSCs across diverse habitats, ranging from hot, arid deserts to alpine habitats. In order to better understand factors that shape population structure in cosmopolitan lichen-forming fungal species, we investigated biogeographic patterns in the cosmopolitan taxon P. decipiens, along with the closely related taxa P. crenata and P. saviczii. We generated a multi-locus sequence dataset based on a worldwide sampling of these taxa in order to reconstruct evolutionary relationships and explore phylogeographic patterns. Both P. crenata and P. decipiens were not recovered as monophyletic; and P. saviczii specimens were recovered as a monophyletic clade closely related to a number of lineages comprised of specimens representing P. decipiens. Striking phylogeographic patterns were observed for P. crenata, with populations from distinct geographic regions belonging to well-separated, monophyletic lineages. South African populations of P. crenata were further divided into well-supported sub-clades. While well-supported phylogenetic substructure was also observed for the nominal taxon P. decipiens, nearly all lineages were comprised of specimens collected from intercontinental populations. However, all Australian specimens representing

  6. The Molecular Epidemiology and Evolution of Murray Valley Encephalitis Virus: Recent Emergence of Distinct Sub-lineages of the Dominant Genotype 1.

    Directory of Open Access Journals (Sweden)

    David T Williams

    2015-11-01

    Full Text Available Recent increased activity of the mosquito-borne Murray Valley encephalitis virus (MVEV in Australia has renewed concerns regarding its potential to spread and cause disease.To better understand the genetic relationships between earlier and more recent circulating strains, patterns of virus movement, as well as the molecular basis of MVEV evolution, complete pre-membrane (prM and Envelope (Env genes were sequenced from sixty-six MVEV strains from different regions of the Australasian region, isolated over a sixty year period (1951-2011. Phylogenetic analyses indicated that, of the four recognized genotypes, only G1 and G2 are contemporary. G1 viruses were dominant over the sampling period and found across the known geographic range of MVEV. Two distinct sub-lineages of G1 were observed (1A and 1B. Although G1B strains have been isolated from across mainland Australia, Australian G1A strains have not been detected outside northwest Australia. Similarly, G2 is comprised of only Western Australian isolates from mosquitoes, suggesting G1B and G2 viruses have geographic or ecological restrictions. No evidence of recombination was found and a single amino acid substitution in the Env protein (S332G was found to be under positive selection, while several others were found to be under directional evolution. Evolutionary analyses indicated that extant genotypes of MVEV began to diverge from a common ancestor approximately 200 years ago. G2 was the first genotype to diverge, followed by G3 and G4, and finally G1, from which subtypes G1A and G1B diverged between 1964 and 1994.The results of this study provides new insights into the genetic diversity and evolution of MVEV. The demonstration of co-circulation of all contemporary genetic lineages of MVEV in northwestern Australia, supports the contention that this region is the enzootic focus for this virus.

  7. Biogeography and ecology of the rare and abundant microbial lineages in deep-sea hydrothermal vents.

    Science.gov (United States)

    Anderson, Rika E; Sogin, Mitchell L; Baross, John A

    2015-01-01

    Environmental gradients generate countless ecological niches in deep-sea hydrothermal vent systems, which foster diverse microbial communities. The majority of distinct microbial lineages in these communities occur in very low abundance. However, the ecological role and distribution of rare and abundant lineages, particularly in deep, hot subsurface environments, remain unclear. Here, we use 16S rRNA tag sequencing to describe biogeographic patterning and microbial community structure of both rare and abundant archaea and bacteria in hydrothermal vent systems. We show that while rare archaeal lineages and almost all bacterial lineages displayed geographically restricted community structuring patterns, the abundant lineages of archaeal communities displayed a much more cosmopolitan distribution. Finally, analysis of one high-volume, high-temperature fluid sample representative of the deep hot biosphere described a unique microbial community that differed from microbial populations in diffuse flow fluid or sulfide samples, yet the rare thermophilic archaeal groups showed similarities to those that occur in sulfides. These results suggest that while most archaeal and bacterial lineages in vents are rare and display a highly regional distribution, a small percentage of lineages, particularly within the archaeal domain, are successful at widespread dispersal and colonization. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Molecular evolution of avian reovirus: evidence for genetic diversity and reassortment of the S-class genome segments and multiple cocirculating lineages

    International Nuclear Information System (INIS)

    Liu, Hung J.; Lee, Long H.; Hsu, Hsiao W.; Kuo, Liam C.; Liao, Ming H.

    2003-01-01

    Nucleotide sequences of the S-class genome segments of 17 field-isolates and vaccine strains of avian reovirus (ARV) isolated over a 23-year period from different hosts, pathotypes, and geographic locations were examined and analyzed to define phylogenetic profiles and evolutionary mechanism. The S1 genome segment showed noticeably higher divergence than the other S-class genes. The σC-encoding gene has evolved into six distinct lineages. In contrast, the other S-class genes showed less divergence than that of the σC-encoding gene and have evolved into two to three major distinct lineages, respectively. Comparative sequence analysis provided evidence indicating extensive sequence divergence between ARV and other orthoreoviruses. The evolutionary trees of each gene were distinct, suggesting that these genes evolve in an independent manner. Furthermore, variable topologies were the result of frequent genetic reassortment among multiple cocirculating lineages. Results showed genetic diversity correlated more closely with date of isolation and geographic sites than with host species and pathotypes. This is the first evidence demonstrating genetic variability among circulating ARVs through a combination of evolutionary mechanisms involving multiple cocirculating lineages and genetic reassortment. The evolutionary rates and patterns of base substitutions were examined. The evolutionary rate for the σC-encoding gene and σC protein was higher than for the other S-class genes and other family of viruses. With the exception of the σC-encoding gene, which nonsynonymous substitutions predominate over synonymous, the evolutionary process of the other S-class genes can be explained by the neutral theory of molecular evolution. Results revealed that synonymous substitutions predominate over nonsynonymous in the S-class genes, even though genetic diversity and substitution rates vary among the viruses

  9. Photobiomodulation of distinct lineages of human dermal fibroblasts: a rational approach towards the selection of effective light parameters for skin rejuvenation and wound healing

    Science.gov (United States)

    Mignon, Charles; Uzunbajakava, Natallia E.; Raafs, Bianca; Moolenaar, Mitchel; Botchkareva, Natalia V.; Tobin, Desmond J.

    2016-03-01

    Distinct lineages of human dermal fibroblasts play complementary roles in skin rejuvenation and wound healing, which makes them a target of phototherapy. However, knowledge about differential responses of specific cell lineages to different light parameters and moreover the actual molecular targets remain to be unravelled. The goal of this study was to investigate the impact of a range of parameters of light on the metabolic activity, collagen production, and cell migration of distinct lineages of human dermal fibroblasts. A rational approach was used to identify parameters with high therapeutic potential. Fibroblasts exhibited both inhibitory and cytotoxic change when exposed to a high dose of blue and cyan light in tissue culture medium containing photo-reactive species, but were stimulated by high dose red and near infrared light. Cytotoxic effects were eliminated by refreshing the medium after light exposure by removing potential ROS formed by extracellular photo-reactive species. Importantly, distinct lineages of fibroblasts demonstrated opposite responses to low dose blue light treatment when refreshing the medium after exposure. Low dose blue light treatment also significantly increased collagen production by papillary fibroblasts; high dose significantly retarded closure of the scratch wound without signs of cytotoxicity, and this is likely to have involved effects on both cell migration and proliferation. We recommend careful selection of fibroblast subpopulations and their culture conditions, a systematic approach in choosing and translating treatment parameters, and pursuit of fundamental research on identification of photoreceptors and triggered molecular pathways, while seeking effective parameters to address different stages of skin rejuvenation and wound healing.

  10. Two distinct mtDNA lineages of the blue crab reveal large-scale population structure in its native Atlantic distribution

    Science.gov (United States)

    Alaniz Rodrigues, Marcos; Dumont, Luiz Felipe Cestari; dos Santos, Cléverson Rannieri Meira; D'Incao, Fernando; Weiss, Steven; Froufe, Elsa

    2017-10-01

    For the first time, a molecular approach was used to evaluate the phylogenetic structure of the disjunct native American distribution of the blue crab Callinectes sapidus. Population structure was investigated by sequencing 648bp of the Cytochrome oxidase subunit 1 (COI), in a total of 138 sequences stemming from individual samples from both the northern and southern hemispheres of the Western Atlantic distribution of the species. A Bayesian approach was used to construct a phylogenetic tree for all samples, and a 95% confidence parsimony network was created to depict the relationship among haplotypes. Results revealed two highly distinct lineages, one containing all samples from the United States and some from Brazil (lineage 1) and the second restricted to Brazil (lineage 2). In addition, gene flow (at least for females) was detected among estuaries at local scales and there is evidence for shared haplotypes in the south. Furthermore, the findings of this investigation support the contemporary introduction of haplotypes that have apparently spread from the south to the north Atlantic.

  11. Genomic Comparison of Two Family-Level Groups of the Uncultivated NAG1 Archaeal Lineage from Chemically and Geographically Disparate Hot Springs

    Directory of Open Access Journals (Sweden)

    Eric D. Becraft

    2017-10-01

    Full Text Available Recent progress based on single-cell genomics and metagenomic investigations of archaea in a variety of extreme environments has led to significant advances in our understanding of the diversity, evolution, and metabolic potential of archaea, yet the vast majority of archaeal diversity remains undersampled. In this work, we coordinated single-cell genomics with metagenomics in order to construct a near-complete genome from a deeply branching uncultivated archaeal lineage sampled from Great Boiling Spring (GBS in the U.S. Great Basin, Nevada. This taxon is distantly related (distinct families to an archaeal genome, designated “Novel Archaeal Group 1” (NAG1, which was extracted from a metagenome recovered from an acidic iron spring in Yellowstone National Park (YNP. We compared the metabolic predictions of the NAG1 lineage to better understand how these archaea could inhabit such chemically distinct environments. Similar to the NAG1 population previously studied in YNP, the NAG1 population from GBS is predicted to utilize proteins as a primary carbon source, ferment simple carbon sources, and use oxygen as a terminal electron acceptor under oxic conditions. However, GBS NAG1 populations contained distinct genes involved in central carbon metabolism and electron transfer, including nitrite reductase, which could confer the ability to reduce nitrite under anaerobic conditions. Despite inhabiting chemically distinct environments with large variations in pH, GBS NAG1 populations shared many core genomic and metabolic features with the archaeon identified from YNP, yet were able to carve out a distinct niche at GBS.

  12. Molecular analyses reveal two geographic and genetic lineages for tapeworms, Taenia solium and Taenia saginata, from Ecuador using mitochondrial DNA.

    Science.gov (United States)

    Solano, Danilo; Navarro, Juan Carlos; León-Reyes, Antonio; Benítez-Ortiz, Washington; Rodríguez-Hidalgo, Richar

    2016-12-01

    Tapeworms Taenia solium and Taenia saginata are the causative agents of taeniasis/cysticercosis. These are diseases with high medical and veterinary importance due to their impact on public health and rural economy in tropical countries. The re-emergence of T. solium as a result of human migration, the economic burden affecting livestock industry, and the large variability of symptoms in several human cysticercosis, encourage studies on genetic diversity, and the identification of these parasites with molecular phylogenetic tools. Samples collected from the Ecuadorian provinces: Loja, Guayas, Manabí, Tungurahua (South), and Imbabura, Pichincha (North) from 2000 to 2012 were performed under Maximum Parsimony analyses and haplotype networks using partial sequences of mitochondrial DNA, cytochrome oxidase subunit I (COI) and NADH subunit I (NDI), from Genbank and own sequences of Taenia solium and Taenia saginata from Ecuador. Both species have shown reciprocal monophyly, which confirms its molecular taxonomic identity. The COI and NDI genes results suggest phylogenetic structure for both parasite species from south and north of Ecuador. In T. solium, both genes gene revealed greater geographic structure, whereas in T. saginata, the variability for both genes was low. In conclusion, COI haplotype networks of T. solium suggest two geographical events in the introduction of this species in Ecuador (African and Asian lineages) and occurring sympatric, probably through the most common routes of maritime trade between the XV-XIX centuries. Moreover, the evidence of two NDI geographical lineages in T. solium from the north (province of Imbabura) and the south (province of Loja) of Ecuador derivate from a common Indian ancestor open new approaches for studies on genetic populations and eco-epidemiology. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Round herring (genus Etrumeus) contain distinct evolutionary lineages coincident with a biogeographic barrier along Australia’s southern temperate coastline

    KAUST Repository

    DiBattista, Joseph

    2014-08-28

    Molecular genetic surveys of marine fishes have revealed that some widely distributed species are actually a composite of multiple evolutionary lineages. This is apparent in the round herrings (genus Etrumeus), wherein a globally distributed taxon (Etrumeus sadina Mitchill 1814) has proven to contain at least seven valid taxa, with more likely awaiting discovery. Here, we survey evolutionary lineages of the nominal E. sadina (formerly E. teres, a junior synonym) across the southern temperate zone of Australia, a marine region divided into three biogeographic provinces based primarily on the distribution of intertidal faunas. Results from morphological and mitochondrial DNA data reveal two evolutionary lineages corresponding to eastern and southwestern provinces (d = 0.007 for cytochrome c oxidase subunit I and d = 0.017 for cytochrome b), possibly initiated by the Bassian Isthmus between Australia and Tasmania during low sea-level stands. The Australian round herring is also genetically distinct from the nearest congeneric forms in the Indian and Pacific Oceans, with a corresponding modal difference in gill-raker counts in most cases. Based on these data, we resurrect the title Etrumeus jacksoniensis for the Australian round herring. While the Bassian Isthmus may have initiated the partition of evolutionary lineages within Australia, additional oceanographic and ecological factors must reinforce this separation in order to maintain diagnostic genetic differences along a continuous temperate coastline. © 2014 Springer-Verlag Berlin Heidelberg.

  14. Round herring (genus Etrumeus) contain distinct evolutionary lineages coincident with a biogeographic barrier along Australia’s southern temperate coastline

    KAUST Repository

    DiBattista, Joseph; Randall, John E.; Newman, Stephen J.; Bowen, Brian W.

    2014-01-01

    Molecular genetic surveys of marine fishes have revealed that some widely distributed species are actually a composite of multiple evolutionary lineages. This is apparent in the round herrings (genus Etrumeus), wherein a globally distributed taxon (Etrumeus sadina Mitchill 1814) has proven to contain at least seven valid taxa, with more likely awaiting discovery. Here, we survey evolutionary lineages of the nominal E. sadina (formerly E. teres, a junior synonym) across the southern temperate zone of Australia, a marine region divided into three biogeographic provinces based primarily on the distribution of intertidal faunas. Results from morphological and mitochondrial DNA data reveal two evolutionary lineages corresponding to eastern and southwestern provinces (d = 0.007 for cytochrome c oxidase subunit I and d = 0.017 for cytochrome b), possibly initiated by the Bassian Isthmus between Australia and Tasmania during low sea-level stands. The Australian round herring is also genetically distinct from the nearest congeneric forms in the Indian and Pacific Oceans, with a corresponding modal difference in gill-raker counts in most cases. Based on these data, we resurrect the title Etrumeus jacksoniensis for the Australian round herring. While the Bassian Isthmus may have initiated the partition of evolutionary lineages within Australia, additional oceanographic and ecological factors must reinforce this separation in order to maintain diagnostic genetic differences along a continuous temperate coastline. © 2014 Springer-Verlag Berlin Heidelberg.

  15. Lineage Reprogramming of Astroglial Cells from Different Origins into Distinct Neuronal Subtypes

    Directory of Open Access Journals (Sweden)

    Malek Chouchane

    2017-07-01

    Full Text Available Astroglial cells isolated from the rodent postnatal cerebral cortex are particularly susceptible to lineage reprogramming into neurons. However, it remains unknown whether other astroglial populations retain the same potential. Likewise, little is known about the fate of induced neurons (iNs in vivo. In this study we addressed these questions using two different astroglial populations isolated from the postnatal brain reprogrammed either with Neurogenin-2 (Neurog2 or Achaete scute homolog-1 (Ascl1. We show that cerebellum (CerebAstro and cerebral cortex astroglia (CtxAstro generates iNs with distinctive neurochemical and morphological properties. Both astroglial populations contribute iNs to the olfactory bulb following transplantation in the postnatal and adult mouse subventricular zone. However, only CtxAstro transfected with Neurog2 differentiate into pyramidal-like iNs after transplantation in the postnatal cerebral cortex. Altogether, our data indicate that the origin of the astroglial population and transcription factors used for reprogramming, as well as the region of integration, affect the fate of iNs.

  16. Differences in virulence and sporulation of Phytophthora kernoviae isolates originating from two distinct geographical regions

    Science.gov (United States)

    Phytophthora kernoviae has only been isolated from the United Kingdom (U.K.) and New Zealand. To understand what differences may exist between isolates from these two distinct geographical regions, virulence studies on three host plants and sporulation on host leaves were conducted on select isolat...

  17. Phylogenetics and differentiation of Salmonella Newport lineages by whole genome sequencing.

    Directory of Open Access Journals (Sweden)

    Guojie Cao

    Full Text Available Salmonella Newport has ranked in the top three Salmonella serotypes associated with foodborne outbreaks from 1995 to 2011 in the United States. In the current study, we selected 26 S. Newport strains isolated from diverse sources and geographic locations and then conducted 454 shotgun pyrosequencing procedures to obtain 16-24 × coverage of high quality draft genomes for each strain. Comparative genomic analysis of 28 S. Newport strains (including 2 reference genomes and 15 outgroup genomes identified more than 140,000 informative SNPs. A resulting phylogenetic tree consisted of four sublineages and indicated that S. Newport had a clear geographic structure. Strains from Asia were divergent from those from the Americas. Our findings demonstrated that analysis using whole genome sequencing data resulted in a more accurate picture of phylogeny compared to that using single genes or small sets of genes. We selected loci around the mutS gene of S. Newport to differentiate distinct lineages, including those between invH and mutS genes at the 3' end of Salmonella Pathogenicity Island 1 (SPI-1, ste fimbrial operon, and Clustered, Regularly Interspaced, Short Palindromic Repeats (CRISPR associated-proteins (cas. These genes in the outgroup genomes held high similarity with either S. Newport Lineage II or III at the same loci. S. Newport Lineages II and III have different evolutionary histories in this region and our data demonstrated genetic flow and homologous recombination events around mutS. The findings suggested that S. Newport Lineages II and III diverged early in the serotype evolution and have evolved largely independently. Moreover, we identified genes that could delineate sublineages within the phylogenetic tree and that could be used as potential biomarkers for trace-back investigations during outbreaks. Thus, whole genome sequencing data enabled us to better understand the genetic background of pathogenicity and evolutionary history of S

  18. Strong and stable geographic differentiation of swamp buffalo maternal and paternal lineages indicates domestication in the China/Indochina border region.

    Science.gov (United States)

    Zhang, Yi; Lu, Yongfang; Yindee, Marnoch; Li, Kuan-Yi; Kuo, Hsiao-Yun; Ju, Yu-Ten; Ye, Shaohui; Faruque, Md Omar; Li, Qiang; Wang, Yachun; Cuong, Vu Chi; Pham, Lan Doan; Bouahom, Bounthong; Yang, Bingzhuang; Liang, Xianwei; Cai, Zhihua; Vankan, Dianne; Manatchaiworakul, Wallaya; Kowlim, Nonglid; Duangchantrasiri, Somphot; Wajjwalku, Worawidh; Colenbrander, Ben; Zhang, Yuan; Beerli, Peter; Lenstra, Johannes A; Barker, J Stuart F

    2016-04-01

    The swamp type of the Asian water buffalo is assumed to have been domesticated by about 4000 years BP, following the introduction of rice cultivation. Previous localizations of the domestication site were based on mitochondrial DNA (mtDNA) variation within China, accounting only for the maternal lineage. We carried out a comprehensive sampling of China, Taiwan, Vietnam, Laos, Thailand, Nepal and Bangladesh and sequenced the mtDNA Cytochrome b gene and control region and the Y-chromosomal ZFY, SRY and DBY sequences. Swamp buffalo has a higher diversity of both maternal and paternal lineages than river buffalo, with also a remarkable contrast between a weak phylogeographic structure of river buffalo and a strong geographic differentiation of swamp buffalo. The highest diversity of the swamp buffalo maternal lineages was found in south China and north Indochina on both banks of the Mekong River, while the highest diversity in paternal lineages was in the China/Indochina border region. We propose that domestication in this region was later followed by introgressive capture of wild cows west of the Mekong. Migration to the north followed the Yangtze valley as well as a more eastern route, but also involved translocations of both cows and bulls over large distances with a minor influence of river buffaloes in recent decades. Bayesian analyses of various migration models also supported domestication in the China/Indochina border region. Coalescence analysis yielded consistent estimates for the expansion of the major swamp buffalo haplogroups with a credibility interval of 900 to 3900 years BP. The spatial differentiation of mtDNA and Y-chromosomal haplotype distributions indicates a lack of gene flow between established populations that is unprecedented in livestock. © 2015 John Wiley & Sons Ltd.

  19. Ecological Niche Modelling of the Bacillus anthracis A1.a sub-lineage in Kazakhstan

    Science.gov (United States)

    2011-01-01

    Background Bacillus anthracis, the causative agent of anthrax, is a globally distributed zoonotic pathogen that continues to be a veterinary and human health problem in Central Asia. We used a database of anthrax outbreak locations in Kazakhstan and a subset of genotyped isolates to model the geographic distribution and ecological associations of B. anthracis in Kazakhstan. The aims of the study were to test the influence of soil variables on a previous ecological niche based prediction of B. anthracis in Kazakhstan and to determine if a single sub-lineage of B. anthracis occupies a unique ecological niche. Results The addition of soil variables to the previously developed ecological niche model did not appreciably alter the limits of the predicted geographic or ecological distribution of B. anthracis in Kazakhstan. The A1.a experiment predicted the sub-lineage to be present over a larger geographic area than did the outbreak based experiment containing multiple lineages. Within the geographic area predicted to be suitable for B. anthracis by all ten best subset models, the A1.a sub-lineage was associated with a wider range of ecological tolerances than the outbreak-soil experiment. Analysis of rule types showed that logit rules predominate in the outbreak-soil experiment and range rules in the A1.a sub-lineage experiment. Random sub-setting of locality points suggests that models of B. anthracis distribution may be sensitive to sample size. Conclusions Our analysis supports careful consideration of the taxonomic resolution of data used to create ecological niche models. Further investigations into the environmental affinities of individual lineages and sub-lineages of B. anthracis will be useful in understanding the ecology of the disease at large and small scales. With model based predictions serving as approximations of disease risk, these efforts will improve the efficacy of public health interventions for anthrax prevention and control. PMID:22152056

  20. Lineage-Restricted Mammary Stem Cells Sustain the Development, Homeostasis, and Regeneration of the Estrogen Receptor Positive Lineage.

    Science.gov (United States)

    Van Keymeulen, Alexandra; Fioramonti, Marco; Centonze, Alessia; Bouvencourt, Gaëlle; Achouri, Younes; Blanpain, Cédric

    2017-08-15

    The mammary gland (MG) is composed of different cell lineages, including the basal and the luminal cells (LCs) that are maintained by distinct stem cell (SC) populations. LCs can be subdivided into estrogen receptor (ER) + and ER - cells. LCs act as the cancer cell of origin in different types of mammary tumors. It remains unclear whether the heterogeneity found in luminal-derived mammary tumors arises from a pre-existing heterogeneity within LCs. To investigate LC heterogeneity, we used lineage tracing to assess whether the ER + lineage is maintained by multipotent SCs or by lineage-restricted SCs. To this end, we generated doxycycline-inducible ER-rtTA mice that allowed us to perform genetic lineage tracing of ER + LCs and study their fate and long-term maintenance. Our results show that ER + cells are maintained by lineage-restricted SCs that exclusively contribute to the expansion of the ER + lineage during puberty and their maintenance during adult life. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Macroevolutionary diversification with limited niche disparity in a species-rich lineage of cold-climate lizards.

    Science.gov (United States)

    Reaney, Ashley M; Saldarriaga-Córdoba, Mónica; Pincheira-Donoso, Daniel

    2018-02-06

    Life diversifies via adaptive radiation when natural selection drives the evolution of ecologically distinct species mediated by their access to novel niche space, or via non-adaptive radiation when new species diversify while retaining ancestral niches. However, while cases of adaptive radiation are widely documented, examples of non-adaptively radiating lineages remain rarely observed. A prolific cold-climate lizard radiation from South America (Phymaturus), sister to a hyper-diverse adaptive radiation (Liolaemus), has extensively diversified phylogenetically and geographically, but with exceptionally minimal ecological and life-history diversification. This lineage, therefore, may offer unique opportunities to investigate the non-adaptive basis of diversification, and in combination with Liolaemus, to cover the whole spectrum of modes of diversification predicted by theory, from adaptive to non-adaptive. Using phylogenetic macroevolutionary modelling performed on a newly created 58-species molecular tree, we establish the tempo and mode of diversification in the Phymaturus radiation. Lineage accumulation in Phymaturus opposes a density-dependent (or 'niche-filling') process of diversification. Concurrently, we found that body size diversification is better described by an Ornstein-Uhlenbeck evolutionary model, suggesting stabilizing selection as the mechanism underlying niche conservatism (i.e., maintaining two fundamental size peaks), and which has predominantly evolved around two major adaptive peaks on a 'Simpsonian' adaptive landscape. Lineage diversification of the Phymaturus genus does not conform to an adaptive radiation, as it is characterised by a constant rate of species accumulation during the clade's history. Their strict habitat requirements (rocky outcrops), predominantly invariant herbivory, and especially the constant viviparous reproduction across species have likely limited their opportunities for adaptive diversifications throughout novel

  2. Application of a random walk model to geographic distributions of animal mitochondrial DNA variation.

    Science.gov (United States)

    Neigel, J E; Avise, J C

    1993-12-01

    In rapidly evolving molecules, such as animal mitochondrial DNA, mutations that delineate specific lineages may not be dispersed at sufficient rates to attain an equilibrium between genetic drift and gene flow. Here we predict conditions that lead to nonequilibrium geographic distributions of mtDNA lineages, test the robustness of these predictions and examine mtDNA data sets for consistency with our model. Under a simple isolation by distance model, the variance of an mtDNA lineage's geographic distribution is expected be proportional to its age. Simulation results indicated that this relationship is fairly robust. Analysis of mtDNA data from natural populations revealed three qualitative distributional patterns: (1) significant departure of lineage structure from equilibrium geographic distributions, a pattern exhibited in three rodent species with limited dispersal; (2) nonsignificant departure from equilibrium expectations, exhibited by two avian and two marine fish species with potentials for relatively long-distance dispersal; and (3) a progression from nonequilibrium distributions for younger lineages to equilibrium distributions for older lineages, a condition displayed by one surveyed avian species. These results demonstrate the advantages of considering mutation and genealogy in the interpretation of mtDNA geographic variation.

  3. Cell lineage analysis of the mammalian female germline.

    Directory of Open Access Journals (Sweden)

    Yitzhak Reizel

    Full Text Available Fundamental aspects of embryonic and post-natal development, including maintenance of the mammalian female germline, are largely unknown. Here we employ a retrospective, phylogenetic-based method for reconstructing cell lineage trees utilizing somatic mutations accumulated in microsatellites, to study female germline dynamics in mice. Reconstructed cell lineage trees can be used to estimate lineage relationships between different cell types, as well as cell depth (number of cell divisions since the zygote. We show that, in the reconstructed mouse cell lineage trees, oocytes form clusters that are separate from hematopoietic and mesenchymal stem cells, both in young and old mice, indicating that these populations belong to distinct lineages. Furthermore, while cumulus cells sampled from different ovarian follicles are distinctly clustered on the reconstructed trees, oocytes from the left and right ovaries are not, suggesting a mixing of their progenitor pools. We also observed an increase in oocyte depth with mouse age, which can be explained either by depth-guided selection of oocytes for ovulation or by post-natal renewal. Overall, our study sheds light on substantial novel aspects of female germline preservation and development.

  4. Evidence of two distinct functionally specialized fibroblast lineages in breast stroma

    DEFF Research Database (Denmark)

    Morsing, Mikkel; Klitgaard, Marie Christine; Jafari Kermani, Abbas

    2016-01-01

    Background The terminal duct lobular unit (TDLU) is the most dynamic structure in the human breast and the putative site of origin of human breast cancer. Although stromal cells contribute to a specialized microenvironment in many organs, this component remains largely understudied in the human...... conditions followed by analysis of adipogenic and osteogenic differentiation. To test whether the two fibroblast lineages are functionally imprinted by their site of origin, single cell sorted CD271low/MUC1high normal breast luminal epithelial cells are plated on fibroblast feeders for the observation...... fibroblast lineages exist in the normal human breast, of which the lobular fibroblasts have properties in common with mesenchymal stem cells and support epithelial growth and morphogenesis. We propose that lobular fibroblasts constitute a specialized microenvironment for human breast luminal epithelial...

  5. Phylogenetic associations with demographic, epidemiological and drug resistance characteristics of Mycobacterium tuberculosis lineages in the SITVIT2 database: Macro- and micro-geographical cleavages and phylogeographical specificities

    Directory of Open Access Journals (Sweden)

    Nalin Rastogi

    2015-01-01

    Conclusions: This research was focused to improve the in-depth phylogenetic characterization of MTBC lineages in conjunction with epidemiological analysis of circulating clones to generate evidence-based geographical mapping of predominant clinical isolates of tubercle bacilli causing the bulk of the disease both at the country and regional levels. Further superimposition of these maps with socio-political, economical, and demographical characteristics available through Geographic Information Systems (GIS allows access to a precise view of prevailing disparities as seen at the level of the United Nation's sub-regional stratification. An in-depth comprehension of these disparities and drawbacks is important to take appropriate actions by decision-makers and public health authorities alike, in order to better monitor, understand and control the tuberculosis epidemic worldwide.

  6. Analysis of the type II-A CRISPR-Cas system of Streptococcus agalactiae reveals distinctive features according to genetic lineages

    Science.gov (United States)

    Lier, Clément; Baticle, Elodie; Horvath, Philippe; Haguenoer, Eve; Valentin, Anne-Sophie; Glaser, Philippe; Mereghetti, Laurent; Lanotte, Philippe

    2015-01-01

    CRISPR-Cas systems (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) are found in 90% of archaea and about 40% of bacteria. In this original system, CRISPR arrays comprise short, almost unique sequences called spacers that are interspersed with conserved palindromic repeats. These systems play a role in adaptive immunity and participate to fight non-self DNA such as integrative and conjugative elements, plasmids, and phages. In Streptococcus agalactiae, a bacterium implicated in colonization and infections in humans since the 1960s, two CRISPR-Cas systems have been described. A type II-A system, characterized by proteins Cas9, Cas1, Cas2, and Csn2, is ubiquitous, and a type I–C system, with the Cas8c signature protein, is present in about 20% of the isolates. Unlike type I–C, which appears to be non-functional, type II-A appears fully functional. Here we studied type II-A CRISPR-cas loci from 126 human isolates of S. agalactiae belonging to different clonal complexes that represent the diversity of the species and that have been implicated in colonization or infection. The CRISPR-cas locus was analyzed both at spacer and repeat levels. Major distinctive features were identified according to the phylogenetic lineages previously defined by multilocus sequence typing, especially for the sequence type (ST) 17, which is considered hypervirulent. Among other idiosyncrasies, ST-17 shows a significantly lower number of spacers in comparison with other lineages. This characteristic could reflect the peculiar virulence or colonization specificities of this lineage. PMID:26124774

  7. Pliocene-Pleistocene lineage diversifications in the Eastern Indigo Snake (Drymarchon couperi) in the Southeastern United States.

    Science.gov (United States)

    Krysko, Kenneth L; Nuñez, Leroy P; Lippi, Catherine A; Smith, Daniel J; Granatosky, Michael C

    2016-05-01

    Indigo Snakes (Drymarchon; with five currently recognized species) occur from northern Argentina, northward to the United States in southern Texas and eastward in disjunct populations in Florida and Georgia. Based on this known allopatry and a difference in supralabial morphology the two United States taxa previously considered as subspecies within D. corais (Boie 1827), the Western Indigo Snake, D. melanurus erebennus (Cope 1860), and Eastern Indigo Snake, D. couperi (Holbrook 1842), are currently recognized as separate species. Drymarchon couperi is a Federally-designated Threatened species by the United States Fish and Wildlife Service under the Endangered Species Act, and currently being incorporated into a translocation program. This, combined with its disjunct distribution makes it a prime candidate for studying speciation and genetic divergence. In this study, we (1) test the hypothesis that D. m. erebennus and D. couperi are distinct lineages by analyzing 2411 base pairs (bp) of two mitochondrial (mtDNA) loci and one single copy nuclear (scnDNA) locus; (2) estimate the timing of speciation using a relaxed phylogenetics method to determine if Milankovitch cycles during the Pleistocene might have had an influence on lineage diversifications; (3) examine historical population demography to determine if identified lineages have undergone population declines, expansions, or remained stable during the most recent Milankovitch cycles; and (4) use this information to assist in an effective and scientifically sound translocation program. Our molecular data support the initial hypothesis that D. melanurus and D. couperi should be recognized as distinct species, but further illustrate that D. couperi is split into two distinct genetic lineages that correspond to historical biogeography and sea level changes in peninsular Florida. These two well-supported genetic lineages (herein termed Atlantic and Gulf lineages) illustrate a common biogeographic distributional break

  8. IMP-27, a Unique Metallo-β-Lactamase Identified in Geographically Distinct Isolates of Proteus mirabilis.

    Science.gov (United States)

    Dixon, Nyssa; Fowler, Randal C; Yoshizumi, A; Horiyama, Tsukasa; Ishii, Y; Harrison, Lucas; Geyer, Chelsie N; Moland, Ellen Smith; Thomson, Kenneth; Hanson, Nancy D

    2016-10-01

    A novel metallo-β-lactamase gene, blaIMP-27, was identified in unrelated Proteus mirabilis isolates from two geographically distinct locations in the United States. Both isolates harbor blaIMP-27 as part of the first gene cassette in a class 2 integron. Antimicrobial susceptibility testing indicated susceptibility to aztreonam, piperacillin-tazobactam, and ceftazidime but resistance to ertapenem. However, hydrolysis assays indicated that ceftazidime was a substrate for IMP-27. Copyright © 2016 Dixon et al.

  9. In silico genomic analyses reveal three distinct lineages of Escherichia coli O157:H7, one of which is associated with hyper-virulence.

    Science.gov (United States)

    Laing, Chad R; Buchanan, Cody; Taboada, Eduardo N; Zhang, Yongxiang; Karmali, Mohamed A; Thomas, James E; Gannon, Victor Pj

    2009-06-29

    Many approaches have been used to study the evolution, population structure and genetic diversity of Escherichia coli O157:H7; however, observations made with different genotyping systems are not easily relatable to each other. Three genetic lineages of E. coli O157:H7 designated I, II and I/II have been identified using octamer-based genome scanning and microarray comparative genomic hybridization (mCGH). Each lineage contains significant phenotypic differences, with lineage I strains being the most commonly associated with human infections. Similarly, a clade of hyper-virulent O157:H7 strains implicated in the 2006 spinach and lettuce outbreaks has been defined using single-nucleotide polymorphism (SNP) typing. In this study an in silico comparison of six different genotyping approaches was performed on 19 E. coli genome sequences from 17 O157:H7 strains and single O145:NM and K12 MG1655 strains to provide an overall picture of diversity of the E. coli O157:H7 population, and to compare genotyping methods for O157:H7 strains. In silico determination of lineage, Shiga-toxin bacteriophage integration site, comparative genomic fingerprint, mCGH profile, novel region distribution profile, SNP type and multi-locus variable number tandem repeat analysis type was performed and a supernetwork based on the combination of these methods was produced. This supernetwork showed three distinct clusters of strains that were O157:H7 lineage-specific, with the SNP-based hyper-virulent clade 8 synonymous with O157:H7 lineage I/II. Lineage I/II/clade 8 strains clustered closest on the supernetwork to E. coli K12 and E. coli O55:H7, O145:NM and sorbitol-fermenting O157 strains. The results of this study highlight the similarities in relationships derived from multi-locus genome sampling methods and suggest a "common genotyping language" may be devised for population genetics and epidemiological studies. Future genotyping methods should provide data that can be stored centrally and

  10. In silico genomic analyses reveal three distinct lineages of Escherichia coli O157:H7, one of which is associated with hyper-virulence

    Directory of Open Access Journals (Sweden)

    Karmali Mohamed A

    2009-06-01

    Full Text Available Abstract Background Many approaches have been used to study the evolution, population structure and genetic diversity of Escherichia coli O157:H7; however, observations made with different genotyping systems are not easily relatable to each other. Three genetic lineages of E. coli O157:H7 designated I, II and I/II have been identified using octamer-based genome scanning and microarray comparative genomic hybridization (mCGH. Each lineage contains significant phenotypic differences, with lineage I strains being the most commonly associated with human infections. Similarly, a clade of hyper-virulent O157:H7 strains implicated in the 2006 spinach and lettuce outbreaks has been defined using single-nucleotide polymorphism (SNP typing. In this study an in silico comparison of six different genotyping approaches was performed on 19 E. coli genome sequences from 17 O157:H7 strains and single O145:NM and K12 MG1655 strains to provide an overall picture of diversity of the E. coli O157:H7 population, and to compare genotyping methods for O157:H7 strains. Results In silico determination of lineage, Shiga-toxin bacteriophage integration site, comparative genomic fingerprint, mCGH profile, novel region distribution profile, SNP type and multi-locus variable number tandem repeat analysis type was performed and a supernetwork based on the combination of these methods was produced. This supernetwork showed three distinct clusters of strains that were O157:H7 lineage-specific, with the SNP-based hyper-virulent clade 8 synonymous with O157:H7 lineage I/II. Lineage I/II/clade 8 strains clustered closest on the supernetwork to E. coli K12 and E. coli O55:H7, O145:NM and sorbitol-fermenting O157 strains. Conclusion The results of this study highlight the similarities in relationships derived from multi-locus genome sampling methods and suggest a "common genotyping language" may be devised for population genetics and epidemiological studies. Future genotyping

  11. Genomic signatures of geographic isolation and natural selection in coral reef fishes.

    Science.gov (United States)

    Gaither, Michelle R; Bernal, Moisés A; Coleman, Richard R; Bowen, Brian W; Jones, Shelley A; Simison, W Brian; Rocha, Luiz A

    2015-04-01

    The drivers of speciation remain among the most controversial topics in evolutionary biology. Initially, Darwin emphasized natural selection as a primary mechanism of speciation, but the architects of the modern synthesis largely abandoned that view in favour of divergence by geographic isolation. The balance between selection and isolation is still at the forefront of the evolutionary debate, especially for the world's tropical oceans where biodiversity is high, but isolating barriers are few. Here, we identify the drivers of speciation in Pacific reef fishes of the genus Acanthurus by comparative genome scans of two peripheral populations that split from a large Central-West Pacific lineage at roughly the same time. Mitochondrial sequences indicate that populations in the Hawaiian Archipelago and the Marquesas Islands became isolated approximately 0.5 Ma. The Hawaiian lineage is morphologically indistinguishable from the widespread Pacific form, but the Marquesan form is recognized as a distinct species that occupies an unusual tropical ecosystem characterized by upwelling, turbidity, temperature fluctuations, algal blooms and little coral cover. An analysis of 3737 SNPs reveals a strong signal of selection at the Marquesas, with 59 loci under disruptive selection including an opsin Rh2 locus. While both the Hawaiian and Marquesan populations indicate signals of drift, the former shows a weak signal of selection that is comparable with populations in the Central-West Pacific. This contrast between closely related lineages reveals one population diverging due primarily to geographic isolation and genetic drift, and the other achieving taxonomic species status under the influence of selection. © 2015 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  12. Instruction of hematopoietic lineage choice by cytokine signaling

    Energy Technology Data Exchange (ETDEWEB)

    Endele, Max; Etzrodt, Martin; Schroeder, Timm, E-mail: timm.schroeder@bsse.ethz.ch

    2014-12-10

    Hematopoiesis is the cumulative consequence of finely tuned signaling pathways activated through extrinsic factors, such as local niche signals and systemic hematopoietic cytokines. Whether extrinsic factors actively instruct the lineage choice of hematopoietic stem and progenitor cells or are only selectively allowing survival and proliferation of already intrinsically lineage-committed cells has been debated over decades. Recent results demonstrated that cytokines can instruct lineage choice. However, the precise function of individual cytokine-triggered signaling molecules in inducing cellular events like proliferation, lineage choice, and differentiation remains largely elusive. Signal transduction pathways activated by different cytokine receptors are highly overlapping, but support the production of distinct hematopoietic lineages. Cellular context, signaling dynamics, and the crosstalk of different signaling pathways determine the cellular response of a given extrinsic signal. New tools to manipulate and continuously quantify signaling events at the single cell level are therefore required to thoroughly interrogate how dynamic signaling networks yield a specific cellular response. - Highlights: • Recent studies provided definite proof for lineage-instructive action of cytokines. • Signaling pathways involved in hematopoietic lineage instruction remain elusive. • New tools are emerging to quantitatively study dynamic signaling networks over time.

  13. The origin of widespread species in a poor dispersing lineage (diving beetle genus Deronectes

    Directory of Open Access Journals (Sweden)

    David García-Vázquez

    2016-09-01

    Full Text Available In most lineages, most species have restricted geographic ranges, with only few reaching widespread distributions. How these widespread species reached their current ranges is an intriguing biogeographic and evolutionary question, especially in groups known to be poor dispersers. We reconstructed the biogeographic and temporal origin of the widespread species in a lineage with particularly poor dispersal capabilities, the diving beetle genus Deronectes (Dytiscidae. Most of the ca. 60 described species of Deronectes have narrow ranges in the Mediterranean area, with only four species with widespread European distributions. We sequenced four mitochondrial and two nuclear genes of 297 specimens of 109 different populations covering the entire distribution of the four lineages of Deronectes, including widespread species. Using Bayesian probabilities with an a priori evolutionary rate, we performed (1 a global phylogeny/phylogeography to estimate the relationships of the main lineages within each group and root them, and (2 demographic analyses of the best population coalescent model for each species group, including a reconstruction of the geographical history estimated from the distribution of the sampled localities. We also selected 56 specimens to test for the presence of Wolbachia, a maternally transmitted parasite that can alter the patterns of mtDNA variability. All species of the four studied groups originated in the southern Mediterranean peninsulas and were estimated to be of Pleistocene origin. In three of the four widespread species, the central and northern European populations were nested within those in the northern areas of the Anatolian, Balkan and Iberian peninsulas respectively, suggesting a range expansion at the edge of the southern refugia. In the Mediterranean peninsulas the widespread European species were replaced by vicariant taxa of recent origin. The fourth species (D. moestus was proven to be a composite of unrecognised

  14. Distinct virulence of Rift Valley fever phlebovirus strains from different genetic lineages in a mouse model.

    Directory of Open Access Journals (Sweden)

    Tetsuro Ikegami

    Full Text Available Rift Valley fever phlebovirus (RVFV causes high rates of abortions and fetal malformations in ruminants, and hemorrhagic fever, encephalitis, or blindness in humans. Viral transmission occurs via mosquito vectors in endemic areas, which necessitates regular vaccination of susceptible livestock animals to prevent the RVF outbreaks. Although ZH501 strain has been used as a challenge strain for past vaccine efficacy studies, further characterization of other RVFV strains is important to optimize ruminant and nonhuman primate RVFV challenge models. This study aimed to characterize the virulence of wild-type RVFV strains belonging to different genetic lineages in outbred CD1 mice. Mice were intraperitoneally infected with 1x103 PFU of wild-type ZH501, Kenya 9800523, Kenya 90058, Saudi Arabia 200010911, OS1, OS7, SA75, Entebbe, or SA51 strains. Among them, mice infected with SA51, Entebbe, or OS7 strain showed rapid dissemination of virus in livers and peracute necrotic hepatitis at 2-3 dpi. Recombinant SA51 (rSA51 and Zinga (rZinga strains were recovered by reverse genetics, and their virulence was also tested in CD1 mice. The rSA51 strain reproduced peracute RVF disease in mice, whereas the rZinga strain showed a similar virulence with that of rZH501 strain. This study showed that RVFV strains in different genetic lineages display distinct virulence in outbred mice. Importantly, since wild-type RVFV strains contain defective-interfering RNA or various genetic subpopulations during passage from original viral isolations, recombinant RVFV strains generated by reverse genetics will be better suitable for reproducible challenge studies for vaccine development as well as pathological studies.

  15. Unequal contribution of native South African phylogeographic lineages to the invasion of the African clawed frog, Xenopus laevis, in Europe

    Directory of Open Access Journals (Sweden)

    Charlotte De Busschere

    2016-02-01

    Full Text Available Due to both deliberate and accidental introductions, invasive African Clawed Frog (Xenopus laevis populations have become established worldwide. In this study, we investigate the geographic origins of invasive X. laevis populations in France and Portugal using the phylogeographic structure of X. laevis in its native South African range. In total, 80 individuals from the whole area known to be invaded in France and Portugal were analysed for two mitochondrial and three nuclear genes, allowing a comparison with 185 specimens from the native range. Our results show that native phylogeographic lineages have contributed differently to invasive European X. laevis populations. In Portugal, genetic and historical data suggest a single colonization event involving a small number of individuals from the south-western Cape region in South Africa. In contrast, French invasive X. laevis encompass two distinct native phylogeographic lineages, i.e., one from the south-western Cape region and one from the northern regions of South Africa. The French X. laevis population is the first example of a X. laevis invasion involving multiple lineages. Moreover, the lack of population structure based on nuclear DNA suggests a potential role for admixture within the invasive French population.

  16. Genetic diversity and geographic distribution of genetically distinct rabies viruses in the Philippines.

    Directory of Open Access Journals (Sweden)

    Mariko Saito

    Full Text Available BACKGROUND: Rabies continues to be a major public health problem in the Philippines, where 200-300 human cases were reported annually between 2001 and 2011. Understanding the phylogeography of rabies viruses is important for establishing a more effective and feasible control strategy. METHODS: We performed a molecular analysis of rabies viruses in the Philippines using rabied animal brain samples. The samples were collected from 11 of 17 regions, which covered three island groups (Luzon, Visayas, and Mindanao. Partial nucleoprotein (N gene sequencing was performed on 57 samples and complete glycoprotein (G gene sequencing was performed on 235 samples collected between 2004 and 2010. RESULTS: The Philippine strains of rabies viruses were included in a distinct phylogenetic cluster, previously named Asian 2b, which appeared to have diverged from the Chinese strain named Asian 2a. The Philippine strains were further divided into three major clades, which were found exclusively in different island groups: clades L, V, and M in Luzon, Visayas, and Mindanao, respectively. Clade L was subdivided into nine subclades (L1-L9 and clade V was subdivided into two subclades (V1 and V2. With a few exceptions, most strains in each subclade were distributed in specific geographic areas. There were also four strains that were divided into two genogroups but were not classified into any of the three major clades, and all four strains were found in the island group of Luzon. CONCLUSION: We detected three major clades and two distinct genogroups of rabies viruses in the Philippines. Our data suggest that viruses of each clade and subclade evolved independently in each area without frequent introduction into other areas. An important implication of these data is that geographically targeted dog vaccination using the island group approach may effectively control rabies in the Philippines.

  17. Patterns of genetic diversity in three plant lineages endemic to the Cape Verde Islands.

    Science.gov (United States)

    Romeiras, Maria M; Monteiro, Filipa; Duarte, M Cristina; Schaefer, Hanno; Carine, Mark

    2015-05-15

    Conservation of plant diversity on islands relies on a good knowledge of the taxonomy, distribution and genetic diversity of species. In recent decades, a combination of morphology- and DNA-based approaches has become the standard for investigating island plant lineages and this has led, in some cases, to the discovery of previously overlooked diversity, including 'cryptic species'. The flora of the Cape Verde archipelago in the North Atlantic is currently thought to comprise ∼740 vascular plant species, 92 of them endemics. Despite the fact that it is considered relatively well known, there has been a 12 % increase in the number of endemics in the last two decades. Relatively few of the Cape Verde plant lineages have been included in genetic studies so far and little is known about the patterns of diversification in the archipelago. Here we present an updated list for the endemic Cape Verde flora and analyse diversity patterns for three endemic plant lineages (Cynanchum, Globularia and Umbilicus) based on one nuclear (ITS) and four plastid DNA regions. In all three lineages, we find genetic variation. In Cynanchum, we find two distinct haplotypes with no clear geographical pattern, possibly reflecting different ploidy levels. In Globularia and Umbilicus, differentiation is evident between populations from northern and southern islands. Isolation and drift resulting from the small and fragmented distributions, coupled with the significant distances separating the northern and southern islands, could explain this pattern. Overall, our study suggests that the diversity in the endemic vascular flora of Cape Verde is higher than previously thought and further work is necessary to characterize the flora. Published by Oxford University Press on behalf of the Annals of Botany Company.

  18. Prevalence and lineage diversity of avian haemosporidians from three distinct cerrado habitats in Brazil.

    Directory of Open Access Journals (Sweden)

    Nayara O Belo

    Full Text Available Habitat alteration can disrupt host-parasite interactions and lead to the emergence of new diseases in wild populations. The cerrado habitat of Brazil is being fragmented and degraded rapidly by agriculture and urbanization. We screened 676 wild birds from three habitats (intact cerrado, disturbed cerrado and transition area Amazonian rainforest-cerrado for the presence of haemosporidian parasites (Plasmodium and Haemoproteus to determine whether different habitats were associated with differences in the prevalence and diversity of infectious diseases in natural populations. Twenty one mitochondrial lineages, including 11 from Plasmodium and 10 from Haemoproteus were identified. Neither prevalence nor diversity of infections by Plasmodium spp. or Haemoproteus spp. differed significantly among the three habitats. However, 15 of the parasite lineages had not been previously described and might be restricted to these habitats or to the region. Six haemosporidian lineages previously known from other regions, particularly the Caribbean Basin, comprised 50-80% of the infections in each of the samples, indicating a regional relationship between parasite distribution and abundance.

  19. Traces of sub-Saharan and Middle Eastern lineages in Indian Muslim populations

    Science.gov (United States)

    Eaaswarkhanth, Muthukrishnan; Haque, Ikramul; Ravesh, Zeinab; Romero, Irene Gallego; Meganathan, Poorlin Ramakodi; Dubey, Bhawna; Khan, Faizan Ahmed; Chaubey, Gyaneshwer; Kivisild, Toomas; Tyler-Smith, Chris; Singh, Lalji; Thangaraj, Kumarasamy

    2010-01-01

    Islam is the second most practiced religion in India, next to Hinduism. It is still unclear whether the spread of Islam in India has been only a cultural transformation or is associated with detectable levels of gene flow. To estimate the contribution of West Asian and Arabian admixture to Indian Muslims, we assessed genetic variation in mtDNA, Y-chromosomal and LCT/MCM6 markers in 472, 431 and 476 samples, respectively, representing six Muslim communities from different geographical regions of India. We found that most of the Indian Muslim populations received their major genetic input from geographically close non-Muslim populations. However, low levels of likely sub-Saharan African, Arabian and West Asian admixture were also observed among Indian Muslims in the form of L0a2a2 mtDNA and E1b1b1a and J*(xJ2) Y-chromosomal lineages. The distinction between Iranian and Arabian sources was difficult to make with mtDNA and the Y chromosome, as the estimates were highly correlated because of similar gene pool compositions in the sources. In contrast, the LCT/MCM6 locus, which shows a clear distinction between the two sources, enabled us to rule out significant gene flow from Arabia. Overall, our results support a model according to which the spread of Islam in India was predominantly cultural conversion associated with minor but still detectable levels of gene flow from outside, primarily from Iran and Central Asia, rather than directly from the Arabian Peninsula. PMID:19809480

  20. Sympatric speciation: perfume preferences of orchid bee lineages.

    Science.gov (United States)

    Jackson, Duncan E

    2008-12-09

    Female attraction to an environmentally derived mating signal released by male orchid bees may be tightly linked to shared olfactory preferences of both sexes. A change in perfume preference may have led to divergence of two morphologically distinct lineages.

  1. Lineage fusion in Galápagos giant tortoises.

    Science.gov (United States)

    Garrick, Ryan C; Benavides, Edgar; Russello, Michael A; Hyseni, Chaz; Edwards, Danielle L; Gibbs, James P; Tapia, Washington; Ciofi, Claudio; Caccone, Adalgisa

    2014-11-01

    Although many classic radiations on islands are thought to be the result of repeated lineage splitting, the role of past fusion is rarely known because during these events, purebreds are rapidly replaced by a swarm of admixed individuals. Here, we capture lineage fusion in action in a Galápagos giant tortoise species, Chelonoidis becki, from Wolf Volcano (Isabela Island). The long generation time of Galápagos tortoises and dense sampling (841 individuals) of genetic and demographic data were integral in detecting and characterizing this phenomenon. In C. becki, we identified two genetically distinct, morphologically cryptic lineages. Historical reconstructions show that they colonized Wolf Volcano from Santiago Island in two temporally separated events, the first estimated to have occurred ~199 000 years ago. Following arrival of the second wave of colonists, both lineages coexisted for approximately ~53 000 years. Within that time, they began fusing back together, as microsatellite data reveal widespread introgressive hybridization. Interestingly, greater mate selectivity seems to be exhibited by purebred females of one of the lineages. Forward-in-time simulations predict rapid extinction of the early arriving lineage. This study provides a rare example of reticulate evolution in action and underscores the power of population genetics for understanding the past, present and future consequences of evolutionary phenomena associated with lineage fusion. © 2014 John Wiley & Sons Ltd.

  2. The dinoflagellates Durinskia baltica and Kryptoperidinium foliaceum retain functionally overlapping mitochondria from two evolutionarily distinct lineages

    Directory of Open Access Journals (Sweden)

    Keeling Patrick J

    2007-09-01

    Full Text Available Abtract Background The dinoflagellates Durinskia baltica and Kryptoperidinium foliaceum are distinguished by the presence of a tertiary plastid derived from a diatom endosymbiont. The diatom is fully integrated with the host cell cycle and is so altered in structure as to be difficult to recognize it as a diatom, and yet it retains a number of features normally lost in tertiary and secondary endosymbionts, most notably mitochondria. The dinoflagellate host is also reported to retain mitochondrion-like structures, making these cells unique in retaining two evolutionarily distinct mitochondria. This redundancy raises the question of whether the organelles share any functions in common or have distributed functions between them. Results We show that both host and endosymbiont mitochondrial genomes encode genes for electron transport proteins. We have characterized cytochrome c oxidase 1 (cox1, cytochrome oxidase 2 (cox2, cytochrome oxidase 3 (cox3, cytochrome b (cob, and large subunit of ribosomal RNA (LSUrRNA of endosymbiont mitochondrial ancestry, and cox1 and cob of host mitochondrial ancestry. We show that all genes are transcribed and that those ascribed to the host mitochondrial genome are extensively edited at the RNA level, as expected for a dinoflagellate mitochondrion-encoded gene. We also found evidence for extensive recombination in the host mitochondrial genes and that recombination products are also transcribed, as expected for a dinoflagellate. Conclusion Durinskia baltica and K. foliaceum retain two mitochondria from evolutionarily distinct lineages, and the functions of these organelles are at least partially overlapping, since both express genes for proteins in electron transport.

  3. Contrasting microsatellite diversity in the evolutionary lineages of Phytophthora lateralis.

    Science.gov (United States)

    Vettraino, AnnaMaria; Brasier, Clive M; Webber, Joan F; Hansen, Everett M; Green, Sarah; Robin, Cecile; Tomassini, Alessia; Bruni, Natalia; Vannini, Andrea

    2017-02-01

    Following recent discovery of Phytophthora lateralis on native Chamaecyparis obtusa in Taiwan, four phenotypically distinct lineages were discriminated: the Taiwan J (TWJ) and Taiwan K (TWK) in Taiwan, the Pacific Northwest (PNW) in North America and Europe and the UK in west Scotland. Across the four lineages, we analysed 88 isolates from multiple sites for microsatellite diversity. Twenty-one multilocus genotypes (MLGs) were resolved with high levels of diversity of the TWK and PNW lineages. No alleles were shared between the PNW and the Taiwanese lineages. TWK was heterozygous at three loci, whereas TWJ isolates were homozygous apart from one isolate, which exhibited a unique allele also present in the TWK lineage. PNW lineage was heterozygous at three loci. The evidence suggests its origin may be a yet unknown Asian source. North American and European PNW isolates shared all their alleles and also a dominant MLG, consistent with a previous proposal that this lineage is a recent introduction into Europe from North America. The UK lineage was monomorphic and homozygous at all loci. It shared its alleles with the PNW and the TWJ and TWK lineages, hence a possible origin in a recent hybridisation event between a Taiwan lineage and PNW cannot be ruled out. Copyright © 2016 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  4. The Linderniaceae and Gratiolaceae are further lineages distinct from the Scrophulariaceae (Lamiales).

    Science.gov (United States)

    Rahmanzadeh, R; Müller, K; Fischer, E; Bartels, D; Borsch, T

    2005-01-01

    The Lamiales are one of the largest orders of angiosperms, with about 22,000 species. The Scrophulariaceae, as one of their most important families, has recently been shown to be polyphyletic. As a consequence, this family was re-classified and several groups of former scrophulariaceous genera now belong to different families, such as the Calceolariaceae, Plantaginaceae, or Phrymaceae. In the present study, relationships of the genera Craterostigma, Lindernia and its allies, hitherto classified within the Scrophulariaceae, were analyzed. Sequences of the chloroplast trnK intron and the matK gene (approximately 2.5 kb) were generated for representatives of all major lineages of the Lamiales and the former Scrophulariaceae. Bayesian and parsimony analyses revealed two isolated lineages, one of which consists of Lindernia and its allies, the other of Gratiola and allies. Gratiola was previously assumed to be related to Lindernia and was therefore included here. It is proposed to treat the two clades as separate families, Linderniaceae and Gratiolaceae. For the Linderniaceae, several morphological synapomorphies exist in addition to molecular data, such as conspicuous club-shaped stamen appendages.

  5. Circulation of influenza B lineages in northern Viet Nam, 2007-2014.

    Science.gov (United States)

    Le, Thi Thanh; Pham, Thu Hang; Pham, Thi Hien; Nguyen, Le Khanh Hang; Nguyen, Co Thach; Hoang, Vu Mai Phuong; Tran, Thu Huong; Nguyen, Vu Son; Ngo, Huong Giang; Le, Quynh Mai

    2015-01-01

    Influenza B viruses circulate throughout Viet Nam, and their activities vary by region. There have been two antigenically distinct lineages of influenza B viruses co-circulating in the past 20 years; however, only one lineage is selected as a component of contemporary trivalent seasonal influenza vaccines. To improve the understanding of circulating influenza B lineages and influenza vaccine mismatches, we report the virus lineages circulating in northern Viet Nam over an eight-year period (2007-2014). Lineages of 331 influenza B viruses were characterized by haemagglutination inhibition assay against standard reference ferret (Yamagata) and sheep (Victoria) antisera. Sequence analysis of the haemagglutinin gene was performed in 64 selected influenza B isolates. The proportion of influenza B lineages changed by year. The Yamagata lineage predominated in 2007, 2008 and 2012; the Victoria lineage predominated in 2009-2014 except 2012. The two lineages showed continuous evolution over time. The Northern Hemisphere's influenza vaccine components were mismatched with the predominant circulating viruses in 2007, 2009 and 2014. The seasonality of influenza B activity is more variable in tropical and subtropical regions than in temperate zones. Our data showed a common co-circulation of both influenza B lineages in northern Viet Nam, and it was difficult to predict which one was the predominant lineage. Quadrivalent influenza vaccines containing both lineages may improve the effectiveness of influenza vaccine programmes in the future.

  6. Variability of geographically distinct isolates of maize rayado fino virus in Latin America.

    Science.gov (United States)

    Hammond, R W; Kogel, R; Ramirez, P

    1997-12-01

    We have examined the molecular epidemiology of the leafhopper-borne maize rayado fino virus (MRFV) in Latin America. The coat protein gene and 3' non-translated region of 14 isolates of MRFV collected from Latin America and the United States were sequenced and phylogenetic relationships examined. The nucleotide sequence revealed remarkable conservation, with a sequence similarity of 88-99%. Phylogenetic analysis of sequence data obtained from a 633 bp fragment showed that MRFV has diverged into three main clusters, i.e. the geographically distinct northern and southern isolates and the Colombian isolates. Significant differences between the isolates collected from Colombia, previously named maize rayado colombiana virus, based upon differences in symptomatology and serological relationships to MRFV, and the other MRFV isolates, provides additional evidence supporting its designation as a unique strain of MRFV.

  7. Cryptic infection of a broad taxonomic and geographic diversity of tadpoles by Perkinsea protists.

    Science.gov (United States)

    Chambouvet, Aurélie; Gower, David J; Jirků, Miloslav; Yabsley, Michael J; Davis, Andrew K; Leonard, Guy; Maguire, Finlay; Doherty-Bone, Thomas M; Bittencourt-Silva, Gabriela Bueno; Wilkinson, Mark; Richards, Thomas A

    2015-08-25

    The decline of amphibian populations, particularly frogs, is often cited as an example in support of the claim that Earth is undergoing its sixth mass extinction event. Amphibians seem to be particularly sensitive to emerging diseases (e.g., fungal and viral pathogens), yet the diversity and geographic distribution of infectious agents are only starting to be investigated. Recent work has linked a previously undescribed protist with mass-mortality events in the United States, in which infected frog tadpoles have an abnormally enlarged yellowish liver filled with protist cells of a presumed parasite. Phylogenetic analyses revealed that this infectious agent was affiliated with the Perkinsea: a parasitic group within the alveolates exemplified by Perkinsus sp., a "marine" protist responsible for mass-mortality events in commercial shellfish populations. Using small subunit (SSU) ribosomal DNA (rDNA) sequencing, we developed a targeted PCR protocol for preferentially sampling a clade of the Perkinsea. We tested this protocol on freshwater environmental DNA, revealing a wide diversity of Perkinsea lineages in these environments. Then, we used the same protocol to test for Perkinsea-like lineages in livers of 182 tadpoles from multiple families of frogs. We identified a distinct Perkinsea clade, encompassing a low level of SSU rDNA variation different from the lineage previously associated with tadpole mass-mortality events. Members of this clade were present in 38 tadpoles sampled from 14 distinct genera/phylogroups, from five countries across three continents. These data provide, to our knowledge, the first evidence that Perkinsea-like protists infect tadpoles across a wide taxonomic range of frogs in tropical and temperate environments, including oceanic islands.

  8. Shared and unique signals of high-altitude adaptation in geographically distinct Tibetan populations.

    Directory of Open Access Journals (Sweden)

    Tana Wuren

    Full Text Available Recent studies have used a variety of analytical methods to identify genes targeted by selection in high-altitude populations located throughout the Tibetan Plateau. Despite differences in analytic strategies and sample location, hypoxia-related genes, including EPAS1 and EGLN1, were identified in multiple studies. By applying the same analytic methods to genome-wide SNP information used in our previous study of a Tibetan population (n = 31 from the township of Maduo, located in the northeastern corner of the Qinghai-Tibetan Plateau (4200 m, we have identified common targets of natural selection in a second geographically and linguistically distinct Tibetan population (n = 46 in the Tuo Tuo River township (4500 m. Our analyses provide evidence for natural selection based on iHS and XP-EHH signals in both populations at the p<0.02 significance level for EPAS1, EGLN1, HMOX2, and CYP17A1 and for PKLR, HFE, and HBB and HBG2, which have also been reported in other studies. We highlight differences (i.e., stratification and admixture in the two distinct Tibetan groups examined here and report selection candidate genes common to both groups. These findings should be considered in the prioritization of selection candidate genes in future genetic studies in Tibet.

  9. Luminal progenitors restrict their lineage potential during mammary gland development.

    Science.gov (United States)

    Rodilla, Veronica; Dasti, Alessandro; Huyghe, Mathilde; Lafkas, Daniel; Laurent, Cécile; Reyal, Fabien; Fre, Silvia

    2015-02-01

    The hierarchical relationships between stem cells and progenitors that guide mammary gland morphogenesis are still poorly defined. While multipotent basal stem cells have been found within the myoepithelial compartment, the in vivo lineage potential of luminal progenitors is unclear. Here we used the expression of the Notch1 receptor, previously implicated in mammary gland development and tumorigenesis, to elucidate the hierarchical organization of mammary stem/progenitor cells by lineage tracing. We found that Notch1 expression identifies multipotent stem cells in the embryonic mammary bud, which progressively restrict their lineage potential during mammary ductal morphogenesis to exclusively generate an ERαneg luminal lineage postnatally. Importantly, our results show that Notch1-labelled cells represent the alveolar progenitors that expand during pregnancy and survive multiple successive involutions. This study reveals that postnatal luminal epithelial cells derive from distinct self-sustained lineages that may represent the cells of origin of different breast cancer subtypes.

  10. Biomechanical consequences of rapid evolution in the polar bear lineage.

    Science.gov (United States)

    Slater, Graham J; Figueirido, Borja; Louis, Leeann; Yang, Paul; Van Valkenburgh, Blaire

    2010-11-05

    The polar bear is the only living ursid with a fully carnivorous diet. Despite a number of well-documented craniodental adaptations for a diet of seal flesh and blubber, molecular and paleontological data indicate that this morphologically distinct species evolved less than a million years ago from the omnivorous brown bear. To better understand the evolution of this dietary specialization, we used phylogenetic tests to estimate the rate of morphological specialization in polar bears. We then used finite element analysis (FEA) to compare the limits of feeding performance in the polar bear skull to that of the phylogenetically and geographically close brown bear. Results indicate that extremely rapid evolution of semi-aquatic adaptations and dietary specialization in the polar bear lineage produced a cranial morphology that is weaker than that of brown bears and less suited to processing tough omnivorous or herbivorous diets. Our results suggest that continuation of current climate trends could affect polar bears by not only eliminating their primary food source, but also through competition with northward advancing, generalized brown populations for resources that they are ill-equipped to utilize.

  11. Little Divergence Among Mitochondrial Lineages of Prochilodus (Teleostei, Characiformes

    Directory of Open Access Journals (Sweden)

    Bruno F. Melo

    2018-04-01

    Full Text Available Evidence that migration prevents population structure among Neotropical characiform fishes has been reported recently but the effects upon species diversification remain unclear. Migratory species of Prochilodus have complex species boundaries and intrincate taxonomy representing a good model to address such questions. Here, we analyzed 147 specimens through barcode sequences covering all species of Prochilodus across a broad geographic area of South America. Species delimitation and population genetic methods revealed very little genetic divergence among mitochondrial lineages suggesting that extensive gene flow resulted likely from the highly migratory behavior, natural hybridization or recent radiation prevent accumulation of genetic disparity among lineages. Our results clearly delimit eight genetic lineages in which four of them contain a single species and four contain more than one morphologically problematic taxon including a trans-Andean species pair and species of the P. nigricans group. Information about biogeographic distribution of haplotypes presented here might contribute to further research on the population genetics and taxonomy of Prochilodus.

  12. Differential tolerance to cyanobacterial exposure between geographically distinct populations of Perca fluviatilis.

    Science.gov (United States)

    Persson, Karl-Johan; Bergström, Kristofer; Mazur-Marzec, Hannah; Legrand, Catherine

    2013-12-15

    Toxic cyanobacterial blooms are an important problem worldwide. Cyanobacteria may negatively impact young-of-the-year (YOY) fish directly (toxin production, turbidity, decrease in water quality) or indirectly (trophic toxin transfer, changes in prey species composition). Here we test whether there are any differences in cyanobacterial tolerance between four geographically distinct populations of European perch (Perca fluviatilis). We show that P. fluviatilis may develop tolerance against cyanobacteria demonstrated by the ability of individuals from a marine site (exposed to annual cyanobacterial blooms) to increase their detoxification more than individuals from an oligotrophic site (rarely exposed to cyanobacteria). Our results also revealed significant interaction effects between genotypes within a population and response to cyanobacterial exposure in terms of absolute growth and detoxification activity. This genotype by treatment interaction may result in local adaptations to cyanobacterial exposure in P. fluviatilis. Hence, the sensitivity against cyanobacterial exposure may differ between within species populations increasing the importance of local management of fish populations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Potato virus Y (PVY) Isolates from Physalis peruviana are Unable to Systemically Infect Potato or Pepper and Form a Distinct New Lineage Within the PVYC Strain Group.

    Science.gov (United States)

    Green, Kelsie J; Chikh-Ali, Mohamad; Hamasaki, Randall T; Melzer, Michael J; Karasev, Alexander V

    2017-11-01

    Poha, or cape gooseberry (Physalis peruviana L.), is a plant species cultivated in Hawaii for fresh fruit production. In 2015, an outbreak of virus symptoms occurred on poha farms in the South Kohala District of the island of Hawaii. The plants displayed mosaic, stunting, and leaf deformation, and produced poor fruit. Initial testing found the problem associated with Potato virus Y (PVY) infection. Six individual PVY isolates, named Poha1 to Poha6, were collected from field-grown poha plants and subjected to biological and molecular characterization. All six isolates induced mosaic and vein clearing in tobacco, and three of them exhibited O-serotype while the other three reacted only with polyclonal antibodies and had no identifiable serotype. Until now, PVY isolates have been broadly divided into pepper or potato adapted; however, these six PVY isolates from poha were unable to establish systemic infection in pepper and in four tested potato cultivars. Whole-genome sequences for the six isolates were determined, and no evidence of recombination was found in any of them. Phylogenetic analysis placed poha PVY isolates in a distinct, monophyletic "Poha" clade within the PVY C lineage, suggesting that they represented a novel, biologically and evolutionarily unique group. The genetic diversity within this poha PVY C clade was unusually high, suggesting a long association of PVY C with this solanaceous host or a prolonged geographical separation of PVY C in poha in Hawaii.

  14. Is mitochondrial DNA divergence of near easter crested newts, Triturus karelinii group, reflected by differentiation of skull shape

    NARCIS (Netherlands)

    Ivanovic, A.; Uzum, N.; Wielstra, B.M.; Olgun, K.; Litvinchuk, S.N.; Kalezic, M.L.; Arntzen, J.W.

    2013-01-01

    The Eurasian Triturus karelinii group of crested newts comprises three distinct, geographically coherent mitochondrial DNA lineages, designated as the eastern, central and western lineage. These three lineages are genetically as diverged as other, morphologically well-differentiated crested newt

  15. Pax7 lineage contributions to the mammalian neural crest.

    Directory of Open Access Journals (Sweden)

    Barbara Murdoch

    Full Text Available Neural crest cells are vertebrate-specific multipotent cells that contribute to a variety of tissues including the peripheral nervous system, melanocytes, and craniofacial bones and cartilage. Abnormal development of the neural crest is associated with several human maladies including cleft/lip palate, aggressive cancers such as melanoma and neuroblastoma, and rare syndromes, like Waardenburg syndrome, a complex disorder involving hearing loss and pigment defects. We previously identified the transcription factor Pax7 as an early marker, and required component for neural crest development in chick embryos. In mammals, Pax7 is also thought to play a role in neural crest development, yet the precise contribution of Pax7 progenitors to the neural crest lineage has not been determined.Here we use Cre/loxP technology in double transgenic mice to fate map the Pax7 lineage in neural crest derivates. We find that Pax7 descendants contribute to multiple tissues including the cranial, cardiac and trunk neural crest, which in the cranial cartilage form a distinct regional pattern. The Pax7 lineage, like the Pax3 lineage, is additionally detected in some non-neural crest tissues, including a subset of the epithelial cells in specific organs.These results demonstrate a previously unappreciated widespread distribution of Pax7 descendants within and beyond the neural crest. They shed light regarding the regionally distinct phenotypes observed in Pax3 and Pax7 mutants, and provide a unique perspective into the potential roles of Pax7 during disease and development.

  16. Signatures of natural selection among lineages and habitats in Oncorhynchus mykiss

    DEFF Research Database (Denmark)

    Limborg, Morten; Blankenship, S.; Young, S.

    2012-01-01

    lineage. Overall patterns of variation affirmed clear distinctions between lineages and in most instances, isolation by distance within them. Evidence for divergent selection at eight candidate loci included significant landscape correlations, particularly with temperature. High diversity of two...... nonsynonymous mutations within the peptide-binding region of the major histocompatibility complex (MHC) class II (DAB) gene provided signatures of balancing selection. Weak signals for potential selection between sympatric resident and anadromous populations were revealed from genome scans and allele frequency...

  17. Expanding the Entamoeba Universe: New Hosts Yield Novel Ribosomal Lineages.

    Science.gov (United States)

    Jacob, Alison S; Busby, Eloise J; Levy, Abigail D; Komm, Natasha; Clark, C Graham

    2016-01-01

    Removing the requirement for cell culture has led to a substantial increase in the number of lineages of Entamoeba recognized as distinct. Surveying the range of potential host species for this parasite genus has barely been started and it is clear that additional sampling of the same host in different locations often identifies additional diversity. In this study, using small subunit ribosomal RNA gene sequencing, we identify four new lineages of Entamoeba, including the first report of Entamoeba from an elephant, and extend the host range of some previously described lineages. In addition, examination of microbiome data from a number of host animals suggests that substantial Entamoeba diversity remains to be uncovered. © 2015 The Author(s) Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.

  18. Circulation of influenza B lineages in northern Viet Nam, 2007–2014

    Science.gov (United States)

    Le, Thi Thanh; Pham, Thu Hang; Pham, Thi Hien; Nguyen, Le Khanh Hang; Hoang, Vu Mai Phuong; Tran, Thu Huong; Nguyen, Vu Son; Ngo, Huong Giang

    2015-01-01

    Introduction Influenza B viruses circulate throughout Viet Nam, and their activities vary by region. There have been two antigenically distinct lineages of influenza B viruses co-circulating in the past 20 years; however, only one lineage is selected as a component of contemporary trivalent seasonal influenza vaccines. To improve the understanding of circulating influenza B lineages and influenza vaccine mismatches, we report the virus lineages circulating in northern Viet Nam over an eight-year period (2007–2014). Methods Lineages of 331 influenza B viruses were characterized by haemagglutination inhibition assay against standard reference ferret (Yamagata) and sheep (Victoria) antisera. Sequence analysis of the haemagglutinin gene was performed in 64 selected influenza B isolates. Results The proportion of influenza B lineages changed by year. The Yamagata lineage predominated in 2007, 2008 and 2012; the Victoria lineage predominated in 2009–2014 except 2012. The two lineages showed continuous evolution over time. The Northern Hemisphere’s influenza vaccine components were mismatched with the predominant circulating viruses in 2007, 2009 and 2014. Discussion The seasonality of influenza B activity is more variable in tropical and subtropical regions than in temperate zones. Our data showed a common co-circulation of both influenza B lineages in northern Viet Nam, and it was difficult to predict which one was the predominant lineage. Quadrivalent influenza vaccines containing both lineages may improve the effectiveness of influenza vaccine programmes in the future. PMID:26798557

  19. Association between Mycobacterium tuberculosis lineage and site of disease in Florida, 2009-2015.

    Science.gov (United States)

    Séraphin, Marie Nancy; Doggett, Richard; Johnston, Lori; Zabala, Jose; Gerace, Alexandra M; Lauzardo, Michael

    2017-11-01

    Mycobacterium tuberculosis is characterized into four global lineages with strong geographical restriction. To date one study in the United States has investigated M. tuberculosis lineage association with tuberculosis (TB) disease presentation (extra-pulmonary versus pulmonary). We update this analysis using recent (2009-2015) data from the State of Florida to measure lineage association with pulmonary TB, the infectious form of the disease. M. tuberculosis lineage was assigned based on the spacer oligonucleotide typing (spoligotyping) patterns. TB disease site was defined as exclusively pulmonary or extra-pulmonary. We used ORs to measure the association between M. tuberculosis lineages and pulmonary compared to extra-pulmonary TB. The final multivariable model was adjusted for patient socio-demographics, HIV and diabetes status. We analyzed 3061 cases, 83.4% were infected with a Euro-American lineage, 8.4% Indo-Oceanic and 8.2% East-Asian lineage. The majority of the cases (86.0%) were exclusively pulmonary. Compared to the Indo-Oceanic lineage, infection with a Euro-American (AOR=1.87, 95% CI: 1.21, 2.91) or an East-Asian (AOR=2.11, 95% CI: 1.27, 3.50) lineage favored pulmonary disease compared to extra-pulmonary. In a sub-analysis among pulmonary cases, strain lineage was not associated with sputum smear positive status, indicating that the observed association with pulmonary disease is independent of host contagiousness. As an obligate pathogen, M. tuberculosis' fitness is directly correlated to its transmission potential. In this analysis, we show that M. tuberculosis lineage is associated with pulmonary disease presentation. This association may explain the predominance in a region of certain lineages compared to others. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Major genomic mitochondrial lineages delineate early human expansions

    Directory of Open Access Journals (Sweden)

    Flores Carlos

    2001-08-01

    Full Text Available Abstract Background The phylogeographic distribution of human mitochondrial DNA variations allows a genetic approach to the study of modern Homo sapiens dispersals throughout the world from a female perspective. As a new contribution to this study we have phylogenetically analysed complete mitochondrial DNA(mtDNA sequences from 42 human lineages, representing major clades with known geographic assignation. Results We show the relative relationships among the 42 lineages and present more accurate temporal calibrations than have been previously possible to give new perspectives as how modern humans spread in the Old World. Conclusions The first detectable expansion occurred around 59,000–69,000 years ago from Africa, independently colonizing western Asia and India and, following this southern route, swiftly reaching east Asia. Within Africa, this expansion did not replace but mixed with older lineages detectable today only in Africa. Around 39,000–52,000 years ago, the western Asian branch spread radially, bringing Caucasians to North Africa and Europe, also reaching India, and expanding to north and east Asia. More recent migrations have entangled but not completely erased these primitive footprints of modern human expansions.

  1. Defining the cellular lineage hierarchy in the interfollicular epidermis of adult skin.

    Science.gov (United States)

    Sada, Aiko; Jacob, Fadi; Leung, Eva; Wang, Sherry; White, Brian S; Shalloway, David; Tumbar, Tudorita

    2016-06-01

    The interfollicular epidermis regenerates from heterogeneous basal skin cell populations that divide at different rates. It has previously been presumed that infrequently dividing basal cells known as label-retaining cells (LRCs) are stem cells, whereas non-LRCs are short-lived progenitors. Here we employ the H2B-GFP pulse-chase system in adult mouse skin and find that epidermal LRCs and non-LRCs are molecularly distinct and can be differentiated by Dlx1(CreER) and Slc1a3(CreER) genetic marking, respectively. Long-term lineage tracing and mathematical modelling of H2B-GFP dilution data show that LRCs and non-LRCs constitute two distinct stem cell populations with different patterns of proliferation, differentiation and upward cellular transport. During homeostasis, these populations are enriched in spatially distinct skin territories and can preferentially produce unique differentiated lineages. On wounding or selective killing, they can temporarily replenish each other's territory. These two discrete interfollicular stem cell populations are functionally interchangeable and intrinsically well adapted to thrive in distinct skin environments.

  2. Occurrence of different Canine distemper virus lineages in Italian dogs.

    Science.gov (United States)

    Balboni, Andrea; De Lorenzo Dandola, Giorgia; Scagliarini, Alessandra; Prosperi, Santino; Battilani, Mara

    2014-01-01

    This study describes the sequence analysis of the H gene of 7 Canine distemper virus (CDV) strains identified in dogs in Italy between years 2002-2012. The phylogenetic analysis showed that the CDV strains belonged to 2 clusters: 6 viruses were identified as Arctic-like lineage and 1 as Europe 1 lineage. These data show a considerable prevalence of Arctic-like-CDVs in the analysed dogs. The dogs and the 3 viruses more recently identified showed 4 distinctive amino acid mutations compared to all other Arctic CDVs.

  3. Biomechanical consequences of rapid evolution in the polar bear lineage.

    Directory of Open Access Journals (Sweden)

    Graham J Slater

    2010-11-01

    Full Text Available The polar bear is the only living ursid with a fully carnivorous diet. Despite a number of well-documented craniodental adaptations for a diet of seal flesh and blubber, molecular and paleontological data indicate that this morphologically distinct species evolved less than a million years ago from the omnivorous brown bear. To better understand the evolution of this dietary specialization, we used phylogenetic tests to estimate the rate of morphological specialization in polar bears. We then used finite element analysis (FEA to compare the limits of feeding performance in the polar bear skull to that of the phylogenetically and geographically close brown bear. Results indicate that extremely rapid evolution of semi-aquatic adaptations and dietary specialization in the polar bear lineage produced a cranial morphology that is weaker than that of brown bears and less suited to processing tough omnivorous or herbivorous diets. Our results suggest that continuation of current climate trends could affect polar bears by not only eliminating their primary food source, but also through competition with northward advancing, generalized brown populations for resources that they are ill-equipped to utilize.

  4. Mitochondrial lineage M1 traces an early human backflow to Africa.

    Science.gov (United States)

    González, Ana M; Larruga, José M; Abu-Amero, Khaled K; Shi, Yufei; Pestano, José; Cabrera, Vicente M

    2007-07-09

    The out of Africa hypothesis has gained generalized consensus. However, many specific questions remain unsettled. To know whether the two M and N macrohaplogroups that colonized Eurasia were already present in Africa before the exit is puzzling. It has been proposed that the east African clade M1 supports a single origin of haplogroup M in Africa. To test the validity of that hypothesis, the phylogeographic analysis of 13 complete mitochondrial DNA (mtDNA) sequences and 261 partial sequences belonging to haplogroup M1 was carried out. The coalescence age of the African haplogroup M1 is younger than those for other M Asiatic clades. In contradiction to the hypothesis of an eastern Africa origin for modern human expansions out of Africa, the most ancestral M1 lineages have been found in Northwest Africa and in the Near East, instead of in East Africa. The M1 geographic distribution and the relative ages of its different subclades clearly correlate with those of haplogroup U6, for which an Eurasian ancestor has been demonstrated. This study provides evidence that M1, or its ancestor, had an Asiatic origin. The earliest M1 expansion into Africa occurred in northwestern instead of eastern areas; this early spread reached the Iberian Peninsula even affecting the Basques. The majority of the M1a lineages found outside and inside Africa had a more recent eastern Africa origin. Both western and eastern M1 lineages participated in the Neolithic colonization of the Sahara. The striking parallelism between subclade ages and geographic distribution of M1 and its North African U6 counterpart strongly reinforces this scenario. Finally, a relevant fraction of M1a lineages present today in the European Continent and nearby islands possibly had a Jewish instead of the commonly proposed Arab/Berber maternal ascendance.

  5. Mitochondrial lineage M1 traces an early human backflow to Africa

    Directory of Open Access Journals (Sweden)

    Pestano José

    2007-07-01

    Full Text Available Abstract Background The out of Africa hypothesis has gained generalized consensus. However, many specific questions remain unsettled. To know whether the two M and N macrohaplogroups that colonized Eurasia were already present in Africa before the exit is puzzling. It has been proposed that the east African clade M1 supports a single origin of haplogroup M in Africa. To test the validity of that hypothesis, the phylogeographic analysis of 13 complete mitochondrial DNA (mtDNA sequences and 261 partial sequences belonging to haplogroup M1 was carried out. Results The coalescence age of the African haplogroup M1 is younger than those for other M Asiatic clades. In contradiction to the hypothesis of an eastern Africa origin for modern human expansions out of Africa, the most ancestral M1 lineages have been found in Northwest Africa and in the Near East, instead of in East Africa. The M1 geographic distribution and the relative ages of its different subclades clearly correlate with those of haplogroup U6, for which an Eurasian ancestor has been demonstrated. Conclusion This study provides evidence that M1, or its ancestor, had an Asiatic origin. The earliest M1 expansion into Africa occurred in northwestern instead of eastern areas; this early spread reached the Iberian Peninsula even affecting the Basques. The majority of the M1a lineages found outside and inside Africa had a more recent eastern Africa origin. Both western and eastern M1 lineages participated in the Neolithic colonization of the Sahara. The striking parallelism between subclade ages and geographic distribution of M1 and its North African U6 counterpart strongly reinforces this scenario. Finally, a relevant fraction of M1a lineages present today in the European Continent and nearby islands possibly had a Jewish instead of the commonly proposed Arab/Berber maternal ascendance.

  6. Development of an RT-qPCR assay for the specific detection of a distinct genetic lineage of the infectious bursal disease virus.

    Science.gov (United States)

    Tomás, Gonzalo; Hernández, Martín; Marandino, Ana; Techera, Claudia; Grecco, Sofia; Hernández, Diego; Banda, Alejandro; Panzera, Yanina; Pérez, Ruben

    2017-04-01

    The infectious bursal disease virus (IBDV) is a major health threat to the world's poultry industry despite intensive controls including proper biosafety practices and vaccination. IBDV (Avibirnavirus, Birnaviridae) is a non-enveloped virus with a bisegmented double-stranded RNA genome. The virus is traditionally classified into classic, variant and very virulent strains, each with different epidemiological relevance and clinical implications. Recently, a novel worldwide spread genetic lineage was described and denoted as distinct (d) IBDV. Here, we report the development and validation of a reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assay for the specific detection of dIBDVs in the global poultry industry. The assay employs a TaqMan-MGB probe that hybridizes with a unique molecular signature of dIBDV. The assay successfully detected all the assessed strains belonging to the dIBDV genetic lineage, showing high specificity and absence of cross-reactivity with non-dIBDVs, IBDV-negative samples and other common avian viruses. Using serial dilutions of in vitro-transcribed RNA we obtained acceptable PCR efficiencies and determination coefficients, and relatively small intra- and inter-assay variability. The assay demonstrated a wide dynamic range between 10 3 and 10 8 RNA copies/reaction. This rapid, specific and quantitative assay is expected to improve IBDV surveillance and control worldwide and to increase our understanding of the molecular epidemiology of this economically detrimental poultry pathogen.

  7. Homologous Recombination between Genetically Divergent Campylobacter fetus Lineages Supports Host-Associated Speciation

    Science.gov (United States)

    Duim, Birgitta; van der Graaf-van Bloois, Linda; Wagenaar, Jaap A; Zomer, Aldert L

    2018-01-01

    Abstract Homologous recombination is a major driver of bacterial speciation. Genetic divergence and host association are important factors influencing homologous recombination. Here, we study these factors for Campylobacter fetus, which shows a distinct intraspecific host dichotomy. Campylobacter fetus subspecies fetus (Cff) and venerealis are associated with mammals, whereas C. fetus subsp. testudinum (Cft) is associated with reptiles. Recombination between these genetically divergent C. fetus lineages is extremely rare. Previously it was impossible to show whether this barrier to recombination was determined by the differential host preferences, by the genetic divergence between both lineages or by other factors influencing recombination, such as restriction-modification, CRISPR/Cas, and transformation systems. Fortuitously, a distinct C. fetus lineage (ST69) was found, which was highly related to mammal-associated C. fetus, yet isolated from a chelonian. The whole genome sequences of two C. fetus ST69 isolates were compared with those of mammal- and reptile-associated C. fetus strains for phylogenetic and recombination analysis. In total, 5.1–5.5% of the core genome of both ST69 isolates showed signs of recombination. Of the predicted recombination regions, 80.4% were most closely related to Cft, 14.3% to Cff, and 5.6% to C. iguaniorum. Recombination from C. fetus ST69 to Cft was also detected, but to a lesser extent and only in chelonian-associated Cft strains. This study shows that despite substantial genetic divergence no absolute barrier to homologous recombination exists between two distinct C. fetus lineages when occurring in the same host type, which provides valuable insights in bacterial speciation and evolution. PMID:29608720

  8. Response to comment on "Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage".

    Science.gov (United States)

    Hailer, Frank; Kutschera, Verena E; Hallström, Björn M; Fain, Steven R; Leonard, Jennifer A; Arnason, Ulfur; Janke, Axel

    2013-03-29

    Nakagome et al. reanalyzed some of our data and assert that we cannot refute the mitochondrial DNA-based scenario for polar bear evolution. Their single-locus test statistic is strongly affected by introgression and incomplete lineage sorting, whereas our multilocus approaches are better suited to recover the true species relationships. Indeed, our sister-lineage model receives high support in a Bayesian model comparison.

  9. Investigation of bacterial communities within the digestive organs of the hydrothermal vent shrimp Rimicaris exoculata provide insights into holobiont geographic clustering.

    Directory of Open Access Journals (Sweden)

    Dominique A Cowart

    Full Text Available Prokaryotic communities forming symbiotic relationships with the vent shrimp, Rimicaris exoculata, are well studied components of hydrothermal ecosystems at the Mid-Atlantic Ridge (MAR. Despite the tight link between host and symbiont, the observed lack of spatial genetic structure seen in R. exoculata contrasts with the geographic differentiation detected in specific bacterial ectosymbionts. The geographic clustering of bacterial lineages within a seemingly panmictic host suggests either the presence of finer scale restriction to gene flow not yet detected in the host, horizontal transmission (environmental selection of its endosymbionts as a consequence of unique vent geochemistry, or vertically transmitted endosymbionts that exhibit genetic differentiation. To identify which hypothesis best fits, we tested whether bacterial assemblages exhibit differentiation across sites or host populations by performing a 16S rRNA metabarcoding survey on R. exoculata digestive prokaryote samples (n = 31 taken from three geochemically distinct vents across MAR: Rainbow, Trans-Atlantic Geotraverse (TAG and Logatchev. Analysis of communities across two organs (digestive tract, stomach, three molt colors (white, red, black and three life stages (eggs, juveniles, adults also provided insights into symbiont transmission mode. Examining both whole communities and operational taxonomic units (OTUs confirmed the presence of three main epibionts: Epsilonproteobacteria, Mollicutes and Deferribacteres. With these findings, we identified a clear pattern of geographic segregation by vent in OTUs assigned to Epsilonproteobacteria. Additionally, we detected evidence for differentiation among all communities associated to vents and life stages. Overall, results suggest a combination of environmental selection and vertical inheritance of some of the symbiotic lineages.

  10. Engineered Murine HSCs Reconstitute Multi-lineage Hematopoiesis and Adaptive Immunity

    Directory of Open Access Journals (Sweden)

    Yi-Fen Lu

    2016-12-01

    Full Text Available Hematopoietic stem cell (HSC transplantation is curative for malignant and genetic blood disorders, but is limited by donor availability and immune-mismatch. Deriving HSCs from patient-matched embryonic/induced-pluripotent stem cells (ESCs/iPSCs could address these limitations. Prior efforts in murine models exploited ectopic HoxB4 expression to drive self-renewal and enable multi-lineage reconstitution, yet fell short in delivering robust lymphoid engraftment. Here, by titrating exposure of HoxB4-ESC-HSC to Notch ligands, we report derivation of engineered HSCs that self-renew, repopulate multi-lineage hematopoiesis in primary and secondary engrafted mice, and endow adaptive immunity in immune-deficient recipients. Single-cell analysis shows that following engraftment in the bone marrow niche, these engineered HSCs further specify to a hybrid cell type, in which distinct gene regulatory networks of hematopoietic stem/progenitors and differentiated hematopoietic lineages are co-expressed. Our work demonstrates engineering of fully functional HSCs via modulation of genetic programs that govern self-renewal and lineage priming.

  11. Adaptive radiation versus 'radiation' and 'explosive diversification': why conceptual distinctions are fundamental to understanding evolution.

    Science.gov (United States)

    Givnish, Thomas J

    2015-07-01

    Adaptive radiation is the rise of a diversity of ecological roles and role-specific adaptations within a lineage. Recently, some researchers have begun to use 'adaptive radiation' or 'radiation' as synonymous with 'explosive species diversification'. This essay aims to clarify distinctions between these concepts, and the related ideas of geographic speciation, sexual selection, key innovations, key landscapes and ecological keys. Several examples are given to demonstrate that adaptive radiation and explosive diversification are not the same phenomenon, and that focusing on explosive diversification and the analysis of phylogenetic topology ignores much of the rich biology associated with adaptive radiation, and risks generating confusion about the nature of the evolutionary forces driving species diversification. Some 'radiations' involve bursts of geographic speciation or sexual selection, rather than adaptive diversification; some adaptive radiations have little or no effect on speciation, or even a negative effect. Many classic examples of 'adaptive radiation' appear to involve effects driven partly by geographic speciation, species' dispersal abilities, and the nature of extrinsic dispersal barriers; partly by sexual selection; and partly by adaptive radiation in the classical sense, including the origin of traits and invasion of adaptive zones that result in decreased diversification rates but add to overall diversity. © 2015 The Author. New Phytologist © 2015 New Phytologist Trust.

  12. A Predominantly Neolithic Origin for European Paternal Lineages

    Science.gov (United States)

    Balaresque, Patricia; Bowden, Georgina R.; Adams, Susan M.; Leung, Ho-Yee; King, Turi E.; Rosser, Zoë H.; Goodwin, Jane; Moisan, Jean-Paul; Richard, Christelle; Millward, Ann; Demaine, Andrew G.; Barbujani, Guido; Previderè, Carlo; Wilson, Ian J.; Tyler-Smith, Chris; Jobling, Mark A.

    2010-01-01

    The relative contributions to modern European populations of Paleolithic hunter-gatherers and Neolithic farmers from the Near East have been intensely debated. Haplogroup R1b1b2 (R-M269) is the commonest European Y-chromosomal lineage, increasing in frequency from east to west, and carried by 110 million European men. Previous studies suggested a Paleolithic origin, but here we show that the geographical distribution of its microsatellite diversity is best explained by spread from a single source in the Near East via Anatolia during the Neolithic. Taken with evidence on the origins of other haplogroups, this indicates that most European Y chromosomes originate in the Neolithic expansion. This reinterpretation makes Europe a prime example of how technological and cultural change is linked with the expansion of a Y-chromosomal lineage, and the contrast of this pattern with that shown by maternally inherited mitochondrial DNA suggests a unique role for males in the transition. PMID:20087410

  13. First report of multiple lineages of dengue viruses type 1 in Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Simões Jaqueline BS

    2011-08-01

    Full Text Available Abstract Background In Brazil dengue has been a major public health problem since DENV-1 introduction and spread in 1986. After a low or silent co-circulation, DENV-1 re-emerged in 2009 causing a major epidemic in the country in 2010 and 2011. In this study, the phylogeny of DENV-1 strains isolated in RJ after its first introduction in 1986 and after its emergence in 2009 and 2010 was performed in order to document possible evolutionary patterns or introductions in a re-emergent virus. Findings The analysis of the E gene sequences demonstrated that DENV-1 isolated during 2009/2010 still belong to genotype V (Americas/Africa but grouping in a distinct clade (lineage II of that represented by earlier DENV-1 (lineage I. However, strains isolated in 2011 grouped together forming another distinct clade (lineage III. Conclusions The monitoring of DENV is important to observe the spread of potentially virulent strains as well to evaluate its impact over the population during an outbreak. Whether explosive epidemics reported in Brazil caused mainly by DENV-1 was due to lineage replacement, or due the population susceptibility to this serotype which has not circulated for almost a decade or even due to the occurrence of secondary infections in a hyperendemic country, is not clear. This is the first report of multiple lineages of DENV-1 detected in Brazil.

  14. First report of multiple lineages of dengue viruses type 1 in Rio de Janeiro, Brazil.

    Science.gov (United States)

    dos Santos, Flavia B; Nogueira, Fernanda B; Castro, Márcia G; Nunes, Priscila Cg; de Filippis, Ana Maria B; Faria, Nieli Rc; Simões, Jaqueline Bs; Sampaio, Simone A; Santos, Clarice R; Nogueira, Rita Maria R

    2011-08-03

    In Brazil dengue has been a major public health problem since DENV-1 introduction and spread in 1986. After a low or silent co-circulation, DENV-1 re-emerged in 2009 causing a major epidemic in the country in 2010 and 2011. In this study, the phylogeny of DENV-1 strains isolated in RJ after its first introduction in 1986 and after its emergence in 2009 and 2010 was performed in order to document possible evolutionary patterns or introductions in a re-emergent virus. The analysis of the E gene sequences demonstrated that DENV-1 isolated during 2009/2010 still belong to genotype V (Americas/Africa) but grouping in a distinct clade (lineage II) of that represented by earlier DENV-1 (lineage I). However, strains isolated in 2011 grouped together forming another distinct clade (lineage III). The monitoring of DENV is important to observe the spread of potentially virulent strains as well to evaluate its impact over the population during an outbreak. Whether explosive epidemics reported in Brazil caused mainly by DENV-1 was due to lineage replacement, or due the population susceptibility to this serotype which has not circulated for almost a decade or even due to the occurrence of secondary infections in a hyperendemic country, is not clear. This is the first report of multiple lineages of DENV-1 detected in Brazil.

  15. Bacillus anthracis in China and its relationship to worldwide lineages

    Directory of Open Access Journals (Sweden)

    Schupp James M

    2009-04-01

    Full Text Available Abstract Background The global pattern of distribution of 1033 B. anthracis isolates has previously been defined by a set of 12 conserved canonical single nucleotide polymorphisms (canSNP. These studies reinforced the presence of three major lineages and 12 sub-lineages and sub-groups of this anthrax-causing pathogen. Isolates that form the A lineage (unlike the B and C lineages have become widely dispersed throughout the world and form the basis for the geographical disposition of "modern" anthrax. An archival collection of 191 different B. anthracis isolates from China provides a glimpse into the possible role of Chinese trade and commerce in the spread of certain sub-lineages of this pathogen. Canonical single nucleotide polymorphism (canSNP and multiple locus VNTR analysis (MLVA typing has been used to examine this archival collection of isolates. Results The canSNP study indicates that there are 5 different sub-lineages/sub-groups in China out of 12 previously described world-wide canSNP genotypes. Three of these canSNP genotypes were only found in the western-most province of China, Xinjiang. These genotypes were A.Br.008/009, a sub-group that is spread across most of Europe and Asia; A.Br.Aust 94, a sub-lineage that is present in Europe and India, and A.Br.Vollum, a lineage that is also present in Europe. The remaining two canSNP genotypes are spread across the whole of China and belong to sub-group A.Br.001/002 and the A.Br.Ames sub-lineage, two closely related genotypes. MLVA typing adds resolution to the isolates in each canSNP genotype and diversity indices for the A.Br.008/009 and A.Br.001/002 sub-groups suggest that these represent older and established clades in China. Conclusion B. anthracis isolates were recovered from three canSNP sub-groups (A.Br.008/009, A.Br.Aust94, and A.Br.Vollum in the western most portion of the large Chinese province of Xinjiang. The city of Kashi in this province appears to have served as a crossroads

  16. Short communication. Occurrence of different Canine distemper virus lineages in Italian dogs

    Directory of Open Access Journals (Sweden)

    Andrea Balboni

    2014-09-01

    Full Text Available This study describes the sequence analysis of the H gene of 7 Canine distemper virus (CDV strains identified in dogs in Italy between years 2002-2012. The phylogenetic analysis showed that the CDV strains belonged to 2 clusters: 6 viruses were identified as Arctic‑like lineage and 1 as Europe 1 lineage. These data show a considerable prevalence of Arctic‑like‑CDVs in the analysed dogs. The dogs and the 3 viruses more recently identified showed 4 distinctive amino acid mutations compared to all other Arctic CDVs.

  17. Cryptic lineage differentiation among Indo-Pacific bottlenose dolphins (Tursiops aduncus) in the northwest Indian Ocean.

    Science.gov (United States)

    Gray, H W I; Nishida, S; Welch, A J; Moura, A E; Tanabe, S; Kiani, M S; Culloch, R; Möller, L; Natoli, A; Ponnampalam, L S; Minton, G; Gore, M; Collins, T; Willson, A; Baldwin, R; Hoelzel, A R

    2018-05-01

    Phylogeography can provide insight into the potential for speciation and identify geographic regions and evolutionary processes associated with species richness and evolutionary endemism. In the marine environment, highly mobile species sometimes show structured patterns of diversity, but the processes isolating populations and promoting differentiation are often unclear. The Delphinidae (oceanic dolphins) are a striking case in point and, in particular, bottlenose dolphins (Tursiops spp.). Understanding the radiation of species in this genus is likely to provide broader inference about the processes that determine patterns of biogeography and speciation, because both fine-scale structure over a range of kilometers and relative panmixia over an oceanic range are known for Tursiops populations. In our study, novel Tursiops spp. sequences from the northwest Indian Ocean (including mitogenomes and two nuDNA loci) are included in a worldwide Tursiops spp. phylogeographic analysis. We discover a new 'aduncus' type lineage in the Arabian Sea (off India, Pakistan and Oman) that diverged from the Australasian lineage ∼261 Ka. Effective management of coastal dolphins in the region will need to consider this new lineage as an evolutionarily significant unit. We propose that the establishment of this lineage could have been in response to climate change during the Pleistocene and show data supporting hypotheses for multiple divergence events, including vicariance across the Indo-Pacific barrier and in the northwest Indian Ocean. These data provide valuable transferable inference on the potential mechanisms for population and species differentiation across this geographic range. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Genome-wide SNP data and morphology support the distinction of two new species of Kovarikia Soleglad, Fet & Graham, 2014 endemic to California (Scorpiones, Vaejovidae

    Directory of Open Access Journals (Sweden)

    Robert W. Bryson Jr.

    2018-02-01

    Full Text Available Morphologically conserved taxa such as scorpions represent a challenge to delimit. We recently discovered populations of scorpions in the genus Kovarikia Soleglad, Fet & Graham, 2014 on two isolated mountain ranges in southern California. We generated genome-wide single nucleotide polymorphism data and used Bayes factors species delimitation to compare alternative species delimitation scenarios which variously placed scorpions from the two localities with geographically adjacent species or into separate lineages. We also estimated a time-calibrated phylogeny of Kovarikia and examined and compared the morphology of preserved specimens from across its distribution. Genetic results strongly support the distinction of two new lineages, which we describe and name here. Morphology among the species of Kovarikia was relatively conserved, despite deep genetic divergences, consistent with recent studies of stenotopic scorpions with limited vagility. Phylogeographic structure discovered in several previously described species also suggests additional cryptic species are probably present in the genus.

  19. Genome-wide SNP data and morphology support the distinction of two new species of Kovarikia Soleglad, Fet & Graham, 2014 endemic to California (Scorpiones, Vaejovidae)

    Science.gov (United States)

    Bryson, Robert W.; Wood, Dustin A.; Graham, Matthew R.; Soleglad, Michael E.; McCormack, John E.

    2018-01-01

    Morphologically conserved taxa such as scorpions represent a challenge to delimit. We recently discovered populations of scorpions in the genus Kovarikia Soleglad, Fet & Graham, 2014 on two isolated mountain ranges in southern California. We generated genome-wide single nucleotide polymorphism data and used Bayes factors species delimitation to compare alternative species delimitation scenarios which variously placed scorpions from the two localities with geographically adjacent species or into separate lineages. We also estimated a time-calibrated phylogeny of Kovarikia and examined and compared the morphology of preserved specimens from across its distribution. Genetic results strongly support the distinction of two new lineages, which we describe and name here. Morphology among the species of Kovarikia was relatively conserved, despite deep genetic divergences, consistent with recent studies of stenotopic scorpions with limited vagility. Phylogeographic structure discovered in several previously described species also suggests additional cryptic species are probably present in the genus.

  20. The Tetramerium lineage (Acanthaceae: Justicieae) does not support the Pleistocene Arc hypothesis for South American seasonally dry forests.

    Science.gov (United States)

    Côrtes, Ana Luiza A; Rapini, Alessandro; Daniel, Thomas F

    2015-06-01

    The Tetramerium lineage (Acanthaceae) presents a striking ecological structuring in South America, with groups concentrated in moist forests or in seasonally dry forests. In this study, we investigate the circumscription and relationships of the South American genera as a basis for better understanding historic interactions between dry and moist biomes in the Neotropics. We dated the ancestral distribution of the Tetramerium lineage based on one nuclear and four plastid DNA regions. Maximum parsimony, maximum likelihood, and Bayesian inference analyses were performed for this study using 104 terminals. Phylogenetic divergences were dated using a relaxed molecular clock approach and ancestral distributions obtained from dispersal-vicariance analyses. The genera Pachystachys, Schaueria, and Thyrsacanthus are nonmonophyletic. A dry forest lineage dispersed from North America to South America and reached the southwestern part of the continent between the end of the Miocene and beginning of the Pleistocene. This period coincides with the segregation between Amazonian and Atlantic moist forests that established the geographic structure currently found in the group. The South American genera Pachystachys, Schaueria, and Thyrsacanthus need to be recircumscribed. The congruence among biogeographical events found for the Tetramerium lineage suggests that the dry forest centers currently dispersed throughout South America are relatively old remnants, probably isolated since the Neogene, much earlier than the Last Glacial Maximum postulated by the Pleistocene Arc hypothesis. In addition to exploring the Pleistocene Arc hypothesis, this research also informs evolution in a lineage with numerous geographically restricted and threatened species. © 2015 Botanical Society of America, Inc.

  1. Consequences of genomic diversity in Mycobacterium tuberculosis

    Science.gov (United States)

    Coscolla, Mireia; Gagneux, Sebastien

    2014-01-01

    The causative agent of human tuberculosis, Mycobacterium tuberculosis complex (MTBC), comprises seven phylogenetically distinct lineages associated with different geographical regions. Here we review the latest findings on the nature and amount of genomic diversity within and between MTBC lineages. We then review recent evidence for the effect of this genomic diversity on mycobacterial phenotypes measured experimentally and in clinical settings. We conclude that overall, the most geographically widespread Lineage 2 (includes Beijing) and Lineage 4 (also known as Euro-American) are more virulent than other lineages that are more geographically restricted. This increased virulence is associated with delayed or reduced pro-inflammatory host immune responses, greater severity of disease, and enhanced transmission. Future work should focus on the interaction between MTBC and human genetic diversity, as well as on the environmental factors that modulate these interactions. PMID:25453224

  2. Two Distinct Yersinia pestis Populations Causing Plague among Humans in the West Nile Region of Uganda.

    Science.gov (United States)

    Respicio-Kingry, Laurel B; Yockey, Brook M; Acayo, Sarah; Kaggwa, John; Apangu, Titus; Kugeler, Kiersten J; Eisen, Rebecca J; Griffith, Kevin S; Mead, Paul S; Schriefer, Martin E; Petersen, Jeannine M

    2016-02-01

    Plague is a life-threatening disease caused by the bacterium, Yersinia pestis. Since the 1990s, Africa has accounted for the majority of reported human cases. In Uganda, plague cases occur in the West Nile region, near the border with Democratic Republic of Congo. Despite the ongoing risk of contracting plague in this region, little is known about Y. pestis genotypes causing human disease. During January 2004-December 2012, 1,092 suspect human plague cases were recorded in the West Nile region of Uganda. Sixty-one cases were culture-confirmed. Recovered Y. pestis isolates were analyzed using three typing methods, single nucleotide polymorphisms (SNPs), pulsed field gel electrophoresis (PFGE), and multiple variable number of tandem repeat analysis (MLVA) and subpopulations analyzed in the context of associated geographic, temporal, and clinical data for source patients. All three methods separated the 61 isolates into two distinct 1.ANT lineages, which persisted throughout the 9 year period and were associated with differences in elevation and geographic distribution. We demonstrate that human cases of plague in the West Nile region of Uganda are caused by two distinct 1.ANT genetic subpopulations. Notably, all three typing methods used, SNPs, PFGE, and MLVA, identified the two genetic subpopulations, despite recognizing different mutation types in the Y. pestis genome. The geographic and elevation differences between the two subpopulations is suggestive of their maintenance in highly localized enzootic cycles, potentially with differing vector-host community composition. This improved understanding of Y. pestis subpopulations in the West Nile region will be useful for identifying ecologic and environmental factors associated with elevated plague risk.

  3. Lineage specific expression of Polycomb Group Proteins in human embryonic stem cells in vitro.

    Science.gov (United States)

    Pethe, Prasad; Pursani, Varsha; Bhartiya, Deepa

    2015-05-01

    Human embryonic (hES) stem cells are an excellent model to study lineage specification and differentiation into various cell types. Differentiation necessitates repression of specific genes not required for a particular lineage. Polycomb Group (PcG) proteins are key histone modifiers, whose primary function is gene repression. PcG proteins form complexes called Polycomb Repressive Complexes (PRCs), which catalyze histone modifications such as H2AK119ub1, H3K27me3, and H3K9me3. PcG proteins play a crucial role during differentiation of stem cells. The expression of PcG transcripts during differentiation of hES cells into endoderm, mesoderm, and ectoderm lineage is yet to be shown. In-house derived hES cell line KIND1 was differentiated into endoderm, mesoderm, and ectoderm lineages; followed by characterization using RT-PCR for HNF4A, CDX2, MEF2C, TBX5, SOX1, and MAP2. qRT-PCR and western blotting was performed to compare expression of PcG transcripts and proteins across all the three lineages. We observed that cells differentiated into endoderm showed upregulation of RING1B, BMI1, EZH2, and EED transcripts. Mesoderm differentiation was characterized by significant downregulation of all PcG transcripts during later stages. BMI1 and RING1B were upregulated while EZH2, SUZ12, and EED remained low during ectoderm differentiation. Western blotting also showed distinct expression of BMI1 and EZH2 during differentiation into three germ layers. Our study shows that hES cells differentiating into endoderm, mesoderm, and ectoderm lineages show distinct PcG expression profile at transcript and protein level. © 2015 International Federation for Cell Biology.

  4. A novel lineage of myoviruses infecting cyanobacteria is widespread in the oceans.

    Science.gov (United States)

    Sabehi, Gazalah; Shaulov, Lihi; Silver, David H; Yanai, Itai; Harel, Amnon; Lindell, Debbie

    2012-02-07

    Viruses infecting bacteria (phages) are thought to greatly impact microbial population dynamics as well as the genome diversity and evolution of their hosts. Here we report on the discovery of a novel lineage of tailed dsDNA phages belonging to the family Myoviridae and describe its first representative, S-TIM5, that infects the ubiquitous marine cyanobacterium, Synechococcus. The genome of this phage encodes an entirely unique set of structural proteins not found in any currently known phage, indicating that it uses lineage-specific genes for virion morphogenesis and represents a previously unknown lineage of myoviruses. Furthermore, among its distinctive collection of replication and DNA metabolism genes, it carries a mitochondrial-like DNA polymerase gene, providing strong evidence for the bacteriophage origin of the mitochondrial DNA polymerase. S-TIM5 also encodes an array of bacterial-like metabolism genes commonly found in phages infecting cyanobacteria including photosynthesis, carbon metabolism and phosphorus acquisition genes. This suggests a common gene pool and gene swapping of cyanophage-specific genes among different phage lineages despite distinct sets of structural and replication genes. All cytosines following purine nucleotides are methylated in the S-TIM5 genome, constituting a unique methylation pattern that likely protects the genome from nuclease degradation. This phage is abundant in the Red Sea and S-TIM5 gene homologs are widespread in the oceans. This unusual phage type is thus likely to be an important player in the oceans, impacting the population dynamics and evolution of their primary producing cyanobacterial hosts.

  5. Mesenchymal progenitor cells for the osteogenic lineage.

    Science.gov (United States)

    Ono, Noriaki; Kronenberg, Henry M

    2015-09-01

    Mesenchymal progenitors of the osteogenic lineage provide the flexibility for bone to grow, maintain its function and homeostasis. Traditionally, colony-forming-unit fibroblasts (CFU-Fs) have been regarded as surrogates for mesenchymal progenitors; however, this definition cannot address the function of these progenitors in their native setting. Transgenic murine models including lineage-tracing technologies based on the cre-lox system have proven to be useful in delineating mesenchymal progenitors in their native environment. Although heterogeneity of cell populations of interest marked by a promoter-based approach complicates overall interpretation, an emerging complexity of mesenchymal progenitors has been revealed. Current literatures suggest two distinct types of bone progenitor cells; growth-associated mesenchymal progenitors contribute to explosive growth of bone in early life, whereas bone marrow mesenchymal progenitors contribute to the much slower remodeling process and response to injury that occurs mainly in adulthood. More detailed relationships of these progenitors need to be studied through further experimentation.

  6. Trophoblast lineage cells derived from human induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Chen, Ying; Wang, Kai; Chandramouli, Gadisetti V.R.; Knott, Jason G.; Leach, Richard

    2013-01-01

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro

  7. Trophoblast lineage cells derived from human induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying, E-mail: ying.chen@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Wang, Kai; Chandramouli, Gadisetti V.R. [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Knott, Jason G. [Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University (United States); Leach, Richard, E-mail: Richard.leach@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Department of Obstetrics, Gynecology and Women’s Health, Spectrum Health Medical Group (United States)

    2013-07-12

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro.

  8. Phylogenetic diversity and biogeography of the Mamiellophyceae lineage of eukaryotic phytoplankton across the oceans.

    Science.gov (United States)

    Monier, Adam; Worden, Alexandra Z; Richards, Thomas A

    2016-08-01

    High-throughput diversity amplicon sequencing of marine microbial samples has revealed that members of the Mamiellophyceae lineage are successful phytoplankton in many oceanic habitats. Indeed, these eukaryotic green algae can dominate the picoplanktonic biomass, however, given the broad expanses of the oceans, their geographical distributions and the phylogenetic diversity of some groups remain poorly characterized. As these algae play a foundational role in marine food webs, it is crucial to assess their global distribution in order to better predict potential changes in abundance and community structure. To this end, we analyzed the V9-18S small subunit rDNA sequences deposited from the Tara Oceans expedition to evaluate the diversity and biogeography of these phytoplankton. Our results show that the phylogenetic composition of Mamiellophyceae communities is in part determined by geographical provenance, and do not appear to be influenced - in the samples recovered - by water depth, at least at the resolution possible with the V9-18S. Phylogenetic classification of Mamiellophyceae sequences revealed that the Dolichomastigales order encompasses more sequence diversity than other orders in this lineage. These results indicate that a large fraction of the Mamiellophyceae diversity has been hitherto overlooked, likely because of a combination of size fraction, sequencing and geographical limitations. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Tightly congruent bursts of lineage and phenotypic diversification identified in a continental ant radiation.

    Science.gov (United States)

    Price, Shauna L; Etienne, Rampal S; Powell, Scott

    2016-04-01

    Adaptive diversification is thought to be shaped by ecological opportunity. A prediction of this ecological process of diversification is that it should result in congruent bursts of lineage and phenotypic diversification, but few studies have found this expected association. Here, we study the relationship between rates of lineage diversification and body size evolution in the turtle ants, a diverse Neotropical clade. Using a near complete, time-calibrated phylogeny we investigated lineage diversification dynamics and body size disparity through model fitting analyses and estimation of per-lineage rates of cladogenesis and phenotypic evolution. We identify an exceptionally high degree of congruence between the high rates of lineage and body size diversification in a young clade undergoing renewed diversification in the ecologically distinct Chacoan biogeographical region of South America. It is likely that the region presented turtle ants with novel ecological opportunity, which facilitated a nested burst of diversification and phenotypic evolution within the group. Our results provide a compelling quantitative example of tight congruence between rates of lineage and phenotypic diversification, meeting the key predicted pattern of adaptive diversification shaped by ecological opportunity. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  10. Cryptic lineage diversity, body size divergence, and sympatry in a species complex of Australian lizards (Gehyra).

    Science.gov (United States)

    Moritz, Craig C; Pratt, Renae C; Bank, Sarah; Bourke, Gayleen; Bragg, Jason G; Doughty, Paul; Keogh, J Scott; Laver, Rebecca J; Potter, Sally; Teasdale, Luisa C; Tedeschi, Leonardo G; Oliver, Paul M

    2018-01-01

    Understanding the joint evolutionary and ecological underpinnings of sympatry among close relatives remains a key challenge in biology. This problem can be addressed through joint phylogenomic and phenotypic analysis of complexes of closely related lineages within, and across, species and hence representing the speciation continuum. For a complex of tropical geckos from northern Australia-Gehyra nana and close relatives-we combine mtDNA phylogeography, exon-capture sequencing, and morphological data to resolve independently evolving lineages and infer their divergence history and patterns of morphological evolution. Gehyra nana is found to include nine divergent lineages and is paraphyletic with four other species from the Kimberley region of north-west Australia. Across these 13 taxa, 12 of which are restricted to rocky habitats, several lineages overlap geographically, including on the diverse Kimberley islands. Morphological evolution is dominated by body size shifts, and both body size and shape have evolved gradually across the group. However, larger body size shifts are observed among overlapping taxa than among closely related parapatric lineages of G. nana, and sympatric lineages are more divergent than expected at random. Whether elevated body size differences among sympatric lineages are due to ecological sorting or character displacement remains to be determined. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  11. The Chthonomonas calidirosea Genome Is Highly Conserved across Geographic Locations and Distinct Chemical and Microbial Environments in New Zealand's Taupō Volcanic Zone.

    Science.gov (United States)

    Lee, Kevin C; Stott, Matthew B; Dunfield, Peter F; Huttenhower, Curtis; McDonald, Ian R; Morgan, Xochitl C

    2016-06-15

    the phylum Armatimonadetes It additionally compares the microbial communities and chemistry of each of the geographically distinct sites from which the four C. calidirosea strains were isolated. C. calidirosea was previously reported to possess a highly disorganized genome, but it was unclear whether this reflected rapid evolution. Here, we show that each isolation site has a distinct chemistry and microbial community, but despite this, the C. calidirosea genome is highly conserved across all isolation sites. Furthermore, genomic sequence differences only partially paralleled geographic distance, suggesting that C. calidirosea genotypes are not primarily determined by adaptive evolution. Instead, the presence of C. calidirosea may be driven by stochastic dispersal and localized extinction. This ecological mechanism may apply to many other low-abundance taxa. Copyright © 2016 Lee et al.

  12. On geographic barriers and Pleistocene glaciations: Tracing the diversification of the Russet-crowned Warbler (Myiothlypis coronata) along the Andes

    Science.gov (United States)

    2018-01-01

    We studied the phylogeography and plumage variation of the Russet-crowned Warbler (Myiothlypis coronata), from Venezuela to Bolivia, with focus on populations from Ecuador and northern Peru. We analyzed sequences of mitochondrial and nuclear genes, geographic distributions, as well as photographs of specimens deposited at museum collections. Phylogenetic analyses identified three major lineages formed by populations from: Venezuela and Colombia (M. c. regulus), Ecuador and northern Peru (M. elata, M. castaneiceps, M. orientalis, M. c. chapmani), and central Peru and Bolivia (M. c. coronata). We found further population structure within M. c. regulus and M. c. coronata, and population structure and complexity of plumage variation within the Ecuador-northern Peru lineage. Time-calibrated trees estimated that most intraspecific variation originated during the Pleistocene; however, this pattern may not be attributed to an increase in diversification rate during that period. We discuss these results in the context of the importance of geographic-ecological barriers in promoting lineage diversification along the Andes and put forward a preliminary taxonomic proposal for major lineages identified in this study. PMID:29522515

  13. On geographic barriers and Pleistocene glaciations: Tracing the diversification of the Russet-crowned Warbler (Myiothlypis coronata) along the Andes.

    Science.gov (United States)

    Prieto-Torres, David A; Cuervo, Andrés M; Bonaccorso, Elisa

    2018-01-01

    We studied the phylogeography and plumage variation of the Russet-crowned Warbler (Myiothlypis coronata), from Venezuela to Bolivia, with focus on populations from Ecuador and northern Peru. We analyzed sequences of mitochondrial and nuclear genes, geographic distributions, as well as photographs of specimens deposited at museum collections. Phylogenetic analyses identified three major lineages formed by populations from: Venezuela and Colombia (M. c. regulus), Ecuador and northern Peru (M. elata, M. castaneiceps, M. orientalis, M. c. chapmani), and central Peru and Bolivia (M. c. coronata). We found further population structure within M. c. regulus and M. c. coronata, and population structure and complexity of plumage variation within the Ecuador-northern Peru lineage. Time-calibrated trees estimated that most intraspecific variation originated during the Pleistocene; however, this pattern may not be attributed to an increase in diversification rate during that period. We discuss these results in the context of the importance of geographic-ecological barriers in promoting lineage diversification along the Andes and put forward a preliminary taxonomic proposal for major lineages identified in this study.

  14. Pharmacogenomic identification of small molecules for lineage specific manipulation of subventricular zone germinal activity.

    Directory of Open Access Journals (Sweden)

    Kasum Azim

    2017-03-01

    Full Text Available Strategies for promoting neural regeneration are hindered by the difficulty of manipulating desired neural fates in the brain without complex genetic methods. The subventricular zone (SVZ is the largest germinal zone of the forebrain and is responsible for the lifelong generation of interneuron subtypes and oligodendrocytes. Here, we have performed a bioinformatics analysis of the transcriptome of dorsal and lateral SVZ in early postnatal mice, including neural stem cells (NSCs and their immediate progenies, which generate distinct neural lineages. We identified multiple signaling pathways that trigger distinct downstream transcriptional networks to regulate the diversity of neural cells originating from the SVZ. Next, we used a novel in silico genomic analysis, searchable platform-independent expression database/connectivity map (SPIED/CMAP, to generate a catalogue of small molecules that can be used to manipulate SVZ microdomain-specific lineages. Finally, we demonstrate that compounds identified in this analysis promote the generation of specific cell lineages from NSCs in vivo, during postnatal life and adulthood, as well as in regenerative contexts. This study unravels new strategies for using small bioactive molecules to direct germinal activity in the SVZ, which has therapeutic potential in neurodegenerative diseases.

  15. LEGAL INSTRUMENT FOR PROTECTION OF GEOGRAPHICAL INDICATION PRODUCT IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Almusawir Nansa

    2013-07-01

    Full Text Available As an archipelago country, Indonesia comprises of a large territory where every region is capable of producing distinctive and characterized products due to its geographical, social, and cultural factors, in addition to its higher quality compared to imported products. In the market, goods with distinct characterization as a result of various geographical locations of production regions is known as Geographical Indication Products. Geographical Indication defines as a characterization that indicates the origin of a product, which includes several influencing factors such as geographical factor, natural factor, human factor or the combination of both factors which eventually contribute to establish a certain distinction and quality upon a product. Several geographical indicated products in Indonesia are widely known to have excellent reputation on the market, namely Delinese tobacco, Temanggung tobacco, Ciancur rice, Muntok white pepper, Lampung black pepper, Kerinci cinnamon, Cilembu cassava, Bandanese nutmeg, Proboliggo sweet mango, Balinese Kintamani coffee, Kalosi coffee, Papuan matoa, etc. Those are several richness of goods from certain regions in Indonesia widely known for their characterization. Characterization of goods are resulted by variation of geographic locations of producing regions in Indonesia. These goods possess high quality and high economic value. Consequently, certain instruments are required to provide protection upon the regions producing those goods against the act of counterfeiting.

  16. Unique mitochondrial DNA lineages in Irish stickleback populations: cryptic refugium or rapid recolonization?

    Science.gov (United States)

    Ravinet, Mark; Harrod, Chris; Eizaguirre, Christophe; Prodöhl, Paulo A

    2014-06-01

    Repeated recolonization of freshwater environments following Pleistocene glaciations has played a major role in the evolution and adaptation of anadromous taxa. Located at the western fringe of Europe, Ireland and Britain were likely recolonized rapidly by anadromous fishes from the North Atlantic following the last glacial maximum (LGM). While the presence of unique mitochondrial haplotypes in Ireland suggests that a cryptic northern refugium may have played a role in recolonization, no explicit test of this hypothesis has been conducted. The three-spined stickleback is native and ubiquitous to aquatic ecosystems throughout Ireland, making it an excellent model species with which to examine the biogeographical history of anadromous fishes in the region. We used mitochondrial and microsatellite markers to examine the presence of divergent evolutionary lineages and to assess broad-scale patterns of geographical clustering among postglacially isolated populations. Our results confirm that Ireland is a region of secondary contact for divergent mitochondrial lineages and that endemic haplotypes occur in populations in Central and Southern Ireland. To test whether a putative Irish lineage arose from a cryptic Irish refugium, we used approximate Bayesian computation (ABC). However, we found no support for this hypothesis. Instead, the Irish lineage likely diverged from the European lineage as a result of postglacial isolation of freshwater populations by rising sea levels. These findings emphasize the need to rigorously test biogeographical hypothesis and contribute further evidence that postglacial processes may have shaped genetic diversity in temperate fauna.

  17. Yellow Rust Epidemics Worldwide Were Caused by Pathogen Races from Divergent Genetic Lineages

    DEFF Research Database (Denmark)

    Ali, Sajid; Rodriguez Algaba, Julian; Thach, Tine

    2017-01-01

    population across geographical regions. The results emphasized the lack of predictability of emergence of new races with high epidemic potential, which stresses the need for additional investments in population biology and surveillance activities of pathogens on global food crops, and assessments of disease...... that these epidemics were often driven by races from few but highly divergent genetic lineages. PstS1 was predominant in North America; PstS2 in West Asia and North Africa; and both PstS1 and PstS2 in East Africa. PstS4 was prevalent in Northern Europe on triticale; PstS5 and PstS9 were prevalent in Central Asia......; whereas PstS6 was prevalent in epidemics in East Africa. PstS7, PstS8 and PstS10 represented three genetic lineages prevalent in Europe. Races from other lineages were in low frequencies. Virulence to Yr9 and Yr27 was common in epidemics in Africa and Asia, while virulence to Yr17 and Yr32 were prevalent...

  18. BMP signalling differentially regulates distinct haematopoietic stem cell types

    NARCIS (Netherlands)

    M. Crisan (Mihaela); P. Solaimani Kartalaei (Parham); C.S. Vink (Chris); T. Yamada-Inagawa (Tomoko); K. Bollerot (Karine); W.F.J. van IJcken (Wilfred); R. Van Der Linden (Reinier); S.C. de Sousa Lopes (Susana Chuva); R. Monteiro (Rui); C.L. Mummery (Christine); E.A. Dzierzak (Elaine)

    2015-01-01

    textabstractAdult haematopoiesis is the outcome of distinct haematopoietic stem cell (HSC) subtypes with self-renewable repopulating ability, but with different haematopoietic cell lineage outputs. The molecular basis for this heterogeneity is largely unknown. BMP signalling regulates HSCs as they

  19. BRD4 localization to lineage-specific enhancers is associated with a distinct transcription factor repertoire

    OpenAIRE

    Najafova, Zeynab; Tirado-Magallanes, Roberto; Subramaniam, Malayannan; Hossan, Tareq; Schmidt, Geske; Nagarajan, Sankari; Baumgart, Simon J.; Mishra, Vivek?Kumar; Bedi, Upasana; Hesse, Eric; Knapp, Stefan; Hawse, John R.; Johnsen, Steven A.

    2016-01-01

    Proper temporal epigenetic regulation of gene expression is essential for cell fate determination and tissue development. The Bromodomain-containing Protein-4 (BRD4)was previously shown to control the transcription of defined subsets of genes in various cell systems. In this study we examined the role of BRD4 in promoting lineage-specific gene expression and show that BRD4 is essential for osteoblast differentiation. Genome-wide analyses demonstrate that BRD4 is rec...

  20. The influence of life-history strategy on genetic differentiation and lineage divergence in darters (Percidae: Etheostomatinae).

    Science.gov (United States)

    Fluker, Brook L; Kuhajda, Bernard R; Harris, Phillip M

    2014-11-01

    Recent studies determined that darters with specialized breeding strategies can exhibit deep lineage divergence over fine geographic scales without apparent physical barriers to gene flow. However, the extent to which intrinsic characteristics interact with extrinsic factors to influence population divergence and lineage diversification in darters is not well understood. This study employed comparative phylogeographic and population genetic methods to investigate the influence of life history on gene flow, dispersal ability, and lineage divergence in two sympatric sister darters with differing breeding strategies. Our results revealed highly disparate phylogeographic histories, patterns of genetic structure, and dispersal abilities between the two species suggesting that life history may contribute to lineage diversification in darters, especially by limiting dispersal among large river courses. Both species also showed striking differences in demographic history, indicating that extrinsic factors differentially affected each species during the Pleistocene. Collectively, our results indicate that intrinsic and extrinsic factors have influenced levels of gene flow among populations within both species examined. However, we suggest that life-history strategy may play a more important role in lineage diversification in darters than previously appreciated, a finding that has potentially important implications for understanding diversification of the rich North American freshwater fish fauna. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  1. Short beak and dwarfism syndrome of mule duck is caused by a distinct lineage of goose parvovirus.

    Science.gov (United States)

    Palya, Vilmos; Zolnai, Anna; Benyeda, Zsófia; Kovács, Edit; Kardi, Veronika; Mató, Tamás

    2009-04-01

    From the early 1970s to the present, numerous cases of short beak and dwarfism syndrome (SBDS) have been reported in mule ducks from France. The animals showed strong growth retardation with smaller beak and tarsus. It was suggested that the syndrome was caused by goose parvovirus on the basis of serological investigation, but the causative agent has not been isolated and the disease has not so far been reproduced by experimental infection. The aim of the present study was to characterize the virus strains isolated from field cases of SBDS, and to reproduce the disease experimentally. Phylogenetic analysis proved that the parvovirus isolates obtained from SBDS of mule duck belonged to a distinct lineage of goose parvovirus-related group of waterfowl parvoviruses. The authors carried out experimental infections of 1-day-old, 2-week-old and 3-week-old mule ducks by the oral route with three different parvovirus strains: strain D17/99 of goose parvovirus from Derzsy's disease, strain FM of Muscovy duck parvovirus from the parvovirus disease of Muscovy ducks, and strain D176/02 isolated from SBDS of mule duck. The symptoms of SBDS of the mule duck could only be reproduced with the mule duck isolate (strain D176/02) following 1-day-old inoculation. Infection with a genetically different strain of goose parvovirus isolated from classical Derzsy's disease (D17/99) or with the Muscovy duck parvovirus strain (FM) did not cause any clinical symptoms or pathological lesions in mule ducks.

  2. Transcription factor expression uniquely identifies most postembryonic neuronal lineages in the Drosophila thoracic central nervous system.

    Science.gov (United States)

    Lacin, Haluk; Zhu, Yi; Wilson, Beth A; Skeath, James B

    2014-03-01

    Most neurons of the adult Drosophila ventral nerve cord arise from a burst of neurogenesis during the third larval instar stage. Most of this growth occurs in thoracic neuromeres, which contain 25 individually identifiable postembryonic neuronal lineages. Initially, each lineage consists of two hemilineages--'A' (Notch(On)) and 'B' (Notch(Off))--that exhibit distinct axonal trajectories or fates. No reliable method presently exists to identify these lineages or hemilineages unambiguously other than labor-intensive lineage-tracing methods. By combining mosaic analysis with a repressible cell marker (MARCM) analysis with gene expression studies, we constructed a gene expression map that enables the rapid, unambiguous identification of 23 of the 25 postembryonic lineages based on the expression of 15 transcription factors. Pilot genetic studies reveal that these transcription factors regulate the specification and differentiation of postembryonic neurons: for example, Nkx6 is necessary and sufficient to direct axonal pathway selection in lineage 3. The gene expression map thus provides a descriptive foundation for the genetic and molecular dissection of adult-specific neurogenesis and identifies many transcription factors that are likely to regulate the development and differentiation of discrete subsets of postembryonic neurons.

  3. Widespread occurrence of secondary lipid biosynthesis potential in microbial lineages.

    Directory of Open Access Journals (Sweden)

    Christine N Shulse

    Full Text Available Bacterial production of long-chain omega-3 polyunsaturated fatty acids (PUFAs, such as eicosapentaenoic acid (EPA, 20:5n-3 and docosahexaenoic acid (DHA, 22:6n-3, is constrained to a narrow subset of marine γ-proteobacteria. The genes responsible for de novo bacterial PUFA biosynthesis, designated pfaEABCD, encode large, multi-domain protein complexes akin to type I iterative fatty acid and polyketide synthases, herein referred to as "Pfa synthases". In addition to the archetypal Pfa synthase gene products from marine bacteria, we have identified homologous type I FAS/PKS gene clusters in diverse microbial lineages spanning 45 genera representing 10 phyla, presumed to be involved in long-chain fatty acid biosynthesis. In total, 20 distinct types of gene clusters were identified. Collectively, we propose the designation of "secondary lipids" to describe these biosynthetic pathways and products, a proposition consistent with the "secondary metabolite" vernacular. Phylogenomic analysis reveals a high degree of functional conservation within distinct biosynthetic pathways. Incongruence between secondary lipid synthase functional clades and taxonomic group membership combined with the lack of orthologous gene clusters in closely related strains suggests horizontal gene transfer has contributed to the dissemination of specialized lipid biosynthetic activities across disparate microbial lineages.

  4. Lake Tanganyika--a 'melting pot' of ancient and young cichlid lineages (Teleostei: Cichlidae?

    Directory of Open Access Journals (Sweden)

    Juliane D Weiss

    Full Text Available A long history of research focused on the East Africa cichlid radiations (EAR revealed discrepancies between mtDNA and nuclear phylogenies, suggesting that interspecific hybridisation may have been significant during the radiation of these fishes. The approximately 250 cichlid species of Lake Tanganyika have their roots in a monophyletic African cichlid assemblage, but controversies remain about the precise phylogenetic origin and placement of different lineages and consequently about L. Tanganyika colonization scenarios. 3312 AFLP loci and the mitochondrial ND2 gene were genotyped for 91 species representing almost all major lacustrine and riverine haplotilapiine east African cichlid lineages with a focus on L. Tanganyika endemics. Explicitly testing for the possibility of ancient hybridisation events, a comprehensive phylogenetic network hypothesis is proposed for the origin and diversification of L. Tanganyika cichlids. Inference of discordant phylogenetic signal strongly suggests that the genomes of two endemic L. Tanganyika tribes, Eretmodini and Tropheini, are composed of an ancient mixture of riverine and lacustrine lineages. For the first time a strong monophyly signal of all non-haplochromine mouthbrooding species endemic to L. Tanganyika ("ancient mouthbrooders" was detected. Further, in the genomes of early diverging L. Tanganyika endemics Trematocarini, Bathybatini, Hemibatini and Boulengerochromis genetic components of other lineages belonging to the East African Radiation appear to be present. In combination with recent palaeo-geological results showing that tectonic activity in the L. Tanganyika region resulted in highly dynamic and heterogeneous landscape evolution over the Neogene and Pleistocene, the novel phylogenetic data render a single lacustrine basin as the geographical cradle of the endemic L. Tanganyika cichlid lineages unlikely. Instead a scenario of a pre-rift origin of several independent L. Tanganyika precursor

  5. A primitive Late Pliocene cheetah, and evolution of the cheetah lineage

    Science.gov (United States)

    Christiansen, Per; Mazák, Ji H.

    2009-01-01

    The cheetah lineage is a group of large, slender, and long-limbed cats with a distinctive skull and dental morphology, of which only the extant cheetah (Acinonyx jubatus) is present today. The lineage is characterized by having abbreviated, tall, and domed crania, and a trenchant dentition with a much reduced, posteriorly placed protocone on the upper carnassial. In this article, we report on a new discovery of a Late Pliocene specimen from China with an estimated age of ≈2.2–2.5 million years, making it one of the oldest specimens known to date. A cladistic analysis confirmed that it is the most primitive cheetah known, and it shares a number of unambiguous derived cranial traits with the Acinonyx lineage, but has more primitive dentition than previously known cheetahs, demonstrating that the many unusual skull and dental characters hitherto considered characteristic of cheetahs evolved in a gradual fashion. Isolated teeth of primitive cheetahs may not be recognizable as such, but can be confused with, for instance, those of leopards or other similar-sized pantherine cats or pumas. The age and morphology of the new specimen supports an Old World origin of the cheetah lineage, not a New World one, as has been suggested. We name the new species Acinonyx kurteni in honor of the late Björn Kurtén. PMID:19114651

  6. A primitive Late Pliocene cheetah, and evolution of the cheetah lineage.

    Science.gov (United States)

    Christiansen, Per; Mazák, Ji H

    2009-01-13

    The cheetah lineage is a group of large, slender, and long-limbed cats with a distinctive skull and dental morphology, of which only the extant cheetah (Acinonyx jubatus) is present today. The lineage is characterized by having abbreviated, tall, and domed crania, and a trenchant dentition with a much reduced, posteriorly placed protocone on the upper carnassial. In this article, we report on a new discovery of a Late Pliocene specimen from China with an estimated age of approximately 2.2-2.5 million years, making it one of the oldest specimens known to date. A cladistic analysis confirmed that it is the most primitive cheetah known, and it shares a number of unambiguous derived cranial traits with the Acinonyx lineage, but has more primitive dentition than previously known cheetahs, demonstrating that the many unusual skull and dental characters hitherto considered characteristic of cheetahs evolved in a gradual fashion. Isolated teeth of primitive cheetahs may not be recognizable as such, but can be confused with, for instance, those of leopards or other similar-sized pantherine cats or pumas. The age and morphology of the new specimen supports an Old World origin of the cheetah lineage, not a New World one, as has been suggested. We name the new species Acinonyx kurteni in honor of the late Björn Kurtén.

  7. Emergence of a new lineage of dengue virus type 2 identified in travelers entering Western Australia from Indonesia, 2010-2012.

    Directory of Open Access Journals (Sweden)

    Timo Ernst

    2015-01-01

    Full Text Available Dengue virus (DENV transmission is ubiquitous throughout the tropics. More than 70% of the current global dengue disease burden is borne by people who live in the Asia-Pacific region. We sequenced the E gene of DENV isolated from travellers entering Western Australia between 2010-2012, most of whom visited Indonesia, and identified a diverse array of DENV1-4, including multiple co-circulating viral lineages. Most viruses were closely related to lineages known to have circulated in Indonesia for some time, indicating that this geographic region serves as a major hub for dengue genetic diversity. Most notably, we identified a new lineage of DENV-2 (Cosmopolitan genotype that emerged in Bali in 2011-2012. The spread of this lineage should clearly be monitored. Surveillance of symptomatic returned travellers provides important and timely information on circulating DENV serotypes and genotypes, and can reveal the herald wave of dengue and other emerging infectious diseases.

  8. Environmental filtering structures tree functional traits combination and lineages across space in tropical tree assemblages.

    Science.gov (United States)

    Asefa, Mengesha; Cao, Min; Zhang, Guocheng; Ci, Xiuqin; Li, Jie; Yang, Jie

    2017-03-09

    Environmental filtering consistently shapes the functional and phylogenetic structure of species across space within diverse forests. However, poor descriptions of community functional and lineage distributions across space hamper the accurate understanding of coexistence mechanisms. We combined environmental variables and geographic space to explore how traits and lineages are filtered by environmental factors using extended RLQ and fourth-corner analyses across different spatial scales. The dispersion patterns of traits and lineages were also examined in a 20-ha tropical rainforest dynamics plot in southwest China. We found that environmental filtering was detected across all spatial scales except the largest scale (100 × 100 m). Generally, the associations between functional traits and environmental variables were more or less consistent across spatial scales. Species with high resource acquisition-related traits were associated with the resource-rich part of the plot across the different spatial scales, whereas resource-conserving functional traits were distributed in limited-resource environments. Furthermore, we found phylogenetic and functional clustering at all spatial scales. Similar functional strategies were also detected among distantly related species, suggesting that phylogenetic distance is not necessarily a proxy for functional distance. In summary, environmental filtering considerably structured the trait and lineage assemblages in this species-rich tropical rainforest.

  9. Pox neuro control of cell lineages that give rise to larval poly-innervated external sensory organs in Drosophila.

    Science.gov (United States)

    Jiang, Yanrui; Boll, Werner; Noll, Markus

    2015-01-15

    The Pox neuro (Poxn) gene of Drosophila plays a crucial role in the development of poly-innervated external sensory (p-es) organs. However, how Poxn exerts this role has remained elusive. In this study, we have analyzed the cell lineages of all larval p-es organs, namely of the kölbchen, papilla 6, and hair 3. Surprisingly, these lineages are distinct from any previously reported cell lineages of sensory organs. Unlike the well-established lineage of mono-innervated external sensory (m-es) organs and a previously proposed model of the p-es lineage, we demonstrate that all wild-type p-es lineages exhibit the following features: the secondary precursor, pIIa, gives rise to all three support cells-socket, shaft, and sheath, whereas the other secondary precursor, pIIb, is neuronal and gives rise to all neurons. We further show that in one of the p-es lineages, that of papilla 6, one cell undergoes apoptosis. By contrast in Poxn null mutants, all p-es lineages have a reduced number of cells and their pattern of cell divisions is changed to that of an m-es organ, with the exception of a lineage in a minority of mutant kölbchen that retains a second bipolar neuron. Indeed, the role of Poxn in p-es lineages is consistent with the specification of the developmental potential of secondary precursors and the regulation of cell division but not apoptosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Ecological and genetic divergence between two lineages of Middle American túngara frogs Physalaemus (= Engystomops pustulosus

    Directory of Open Access Journals (Sweden)

    Ron Santiago R

    2010-05-01

    Full Text Available Abstract Background Uncovering how populations of a species differ genetically and ecologically is important for understanding evolutionary processes. Here we combine population genetic methods (microsatellites with phylogenetic information (mtDNA to define genetic population clusters of the wide-spread Neotropical túngara frog (Physalaemus pustulosus. We measure gene flow and migration within and between population clusters and compare genetic diversity between population clusters. By applying ecological niche modeling we determine whether the two most divergent genetic groups of the túngara frog (1 inhabit different habitats, and (2 are separated geographically by unsuitable habitat across a gap in the distribution. Results Most population structure is captured by dividing all sample localities into two allopatric genetic lineages. The Northern genetic lineage (NW Costa Rica is genetically homogenous while the Southern lineage (SW Costa Rica and Panama is sub-divided into three population clusters by both microsatellite and mtDNA analyses. Gene flow is higher within the Northern lineage than within the Southern lineage, perhaps due to increased landscape heterogeneity in the South. Niche modeling reveals differences in suitable habitat between the Northern and Southern lineages: the Northern lineage inhabits dry/pine-oak forests, while the Southern lineage is confined to tropical moist forests. Both lineages seem to have had little movement across the distribution gap, which persisted during the last glacial maximum. The lack of movement was more pronounced for the Southern lineage than for the Northern lineage. Conclusions This study confirms the finding of previous studies that túngara frogs diverged into two allopatric genetic lineages north and south of the gap in the distribution in central Costa Rica several million years ago. The allopatric distribution is attributed to unsuitable habitat and probably other unknown ecological factors

  11. The shape and temporal dynamics of phylogenetic trees arising from geographic speciation.

    Science.gov (United States)

    Pigot, Alex L; Phillimore, Albert B; Owens, Ian P F; Orme, C David L

    2010-12-01

    Phylogenetic trees often depart from the expectations of stochastic models, exhibiting imbalance in diversification among lineages and slowdowns in the rate of lineage accumulation through time. Such departures have led to a widespread perception that ecological differences among species or adaptation and subsequent niche filling are required to explain patterns of diversification. However, a key element missing from models of diversification is the geographical context of speciation and extinction. In this study, we develop a spatially explicit model of geographic range evolution and cladogenesis, where speciation arises via vicariance or peripatry, and explore the effects of these processes on patterns of diversification. We compare the results with those observed in 41 reconstructed avian trees. Our model shows that nonconstant rates of speciation and extinction are emergent properties of the apportioning of geographic ranges that accompanies speciation. The dynamics of diversification exhibit wide variation, depending on the mode of speciation, tendency for range expansion, and rate of range evolution. By varying these parameters, the model is able to capture many, but not all, of the features exhibited by birth-death trees and extant bird clades. Under scenarios with relatively stable geographic ranges, strong slowdowns in diversification rates are produced, with faster rates of range dynamics leading to constant or accelerating rates of apparent diversification. A peripatric model of speciation with stable ranges also generates highly unbalanced trees typical of bird phylogenies but fails to produce realistic range size distributions among the extant species. Results most similar to those of a birth-death process are reached under a peripatric speciation scenario with highly volatile range dynamics. Taken together, our results demonstrate that considering the geographical context of speciation and extinction provides a more conservative null model of

  12. Quantitative rather than qualitative differences in gene expression predominate in intestinal cell maturation along distinct cell lineages

    International Nuclear Information System (INIS)

    Velcich, Anna; Corner, Georgia; Paul, Doru; Zhuang Min; Mariadason, John M.; Laboisse, Christian; Augenlicht, Leonard

    2005-01-01

    Several cell types are present in the intestinal epithelium that likely arise from a common precursor, the stem cell, and each mature cell type expresses a unique set of genes that characterizes its functional phenotype. Although the process of differentiation is intimately linked to the cessation of proliferation, the mechanisms that dictate intestinal cell fate determination are not well characterized. To investigate the reprogramming of gene expression during the cell lineage allocation/differentiation process, we took advantage of a unique system of two clonal derivatives of HT29 cells, Cl16E and Cl19A cells, which spontaneously differentiate as mucus producing goblet and chloride-secreting cells, respectively, as a function of time. By profiling gene expression, we found that these two cell lines show remarkably similar kinetics of change in gene expression and common clusters of coordinately regulated genes. This demonstrates that lineage-specific differentiation of intestinal epithelial cells is characterized overall by the sequential recruitment of functionally similar gene sets independent of the final phenotype of the mature cells

  13. Concise classification of the genomic porcine endogenous retroviral gamma1 load to defined lineages.

    Science.gov (United States)

    Klymiuk, Nikolai; Wolf, Eckhard; Aigner, Bernhard

    2008-02-05

    We investigated the infection history of porcine endogenous retroviruses (PERV) gamma1 by analyzing published env and LTR sequences. PERV sequences from various breeds, porcine cell lines and infected human primary cells were included in the study. We identified a considerable number of retroviral lineages indicating multiple independent colonization events of the porcine genome. A recent boost of the proviral load in an isolated pig herd and exclusive occurrence of distinct lineages in single studies indicated the ongoing colonization of the porcine genome with endogenous retroviruses. Retroviral recombination between co-packaged genomes was a general factor for PERV gamma1 diversity which indicated the simultaneous expression of different proviral loci over a period of time. In total, our detailed description of endogenous retroviral lineages is the prerequisite for breeding approaches to minimize the infectious potential of porcine tissues for the subsequent use in xenotransplantation.

  14. Yellow Rust Epidemics Worldwide Were Caused by Pathogen Races from Divergent Genetic Lineages

    Science.gov (United States)

    Ali, Sajid; Rodriguez-Algaba, Julian; Thach, Tine; Sørensen, Chris K.; Hansen, Jens G.; Lassen, Poul; Nazari, Kumarse; Hodson, David P.; Justesen, Annemarie F.; Hovmøller, Mogens S.

    2017-01-01

    We investigated whether the recent worldwide epidemics of wheat yellow rust were driven by races of few clonal lineage(s) or populations of divergent races. Race phenotyping of 887 genetically diverse Puccinia striiformis isolates sampled in 35 countries during 2009–2015 revealed that these epidemics were often driven by races from few but highly divergent genetic lineages. PstS1 was predominant in North America; PstS2 in West Asia and North Africa; and both PstS1 and PstS2 in East Africa. PstS4 was prevalent in Northern Europe on triticale; PstS5 and PstS9 were prevalent in Central Asia; whereas PstS6 was prevalent in epidemics in East Africa. PstS7, PstS8 and PstS10 represented three genetic lineages prevalent in Europe. Races from other lineages were in low frequencies. Virulence to Yr9 and Yr27 was common in epidemics in Africa and Asia, while virulence to Yr17 and Yr32 were prevalent in Europe, corresponding to widely deployed resistance genes. The highest diversity was observed in South Asian populations, where frequent recombination has been reported, and no particular race was predominant in this area. The results are discussed in light of the role of invasions in shaping pathogen population across geographical regions. The results emphasized the lack of predictability of emergence of new races with high epidemic potential, which stresses the need for additional investments in population biology and surveillance activities of pathogens on global food crops, and assessments of disease vulnerability of host varieties prior to their deployment at larger scales. PMID:28676811

  15. Yellow Rust Epidemics Worldwide Were Caused by Pathogen Races from Divergent Genetic Lineages

    Directory of Open Access Journals (Sweden)

    Sajid Ali

    2017-06-01

    Full Text Available We investigated whether the recent worldwide epidemics of wheat yellow rust were driven by races of few clonal lineage(s or populations of divergent races. Race phenotyping of 887 genetically diverse Puccinia striiformis isolates sampled in 35 countries during 2009–2015 revealed that these epidemics were often driven by races from few but highly divergent genetic lineages. PstS1 was predominant in North America; PstS2 in West Asia and North Africa; and both PstS1 and PstS2 in East Africa. PstS4 was prevalent in Northern Europe on triticale; PstS5 and PstS9 were prevalent in Central Asia; whereas PstS6 was prevalent in epidemics in East Africa. PstS7, PstS8 and PstS10 represented three genetic lineages prevalent in Europe. Races from other lineages were in low frequencies. Virulence to Yr9 and Yr27 was common in epidemics in Africa and Asia, while virulence to Yr17 and Yr32 were prevalent in Europe, corresponding to widely deployed resistance genes. The highest diversity was observed in South Asian populations, where frequent recombination has been reported, and no particular race was predominant in this area. The results are discussed in light of the role of invasions in shaping pathogen population across geographical regions. The results emphasized the lack of predictability of emergence of new races with high epidemic potential, which stresses the need for additional investments in population biology and surveillance activities of pathogens on global food crops, and assessments of disease vulnerability of host varieties prior to their deployment at larger scales.

  16. Male Lineages in Brazil: Intercontinental Admixture and Stratification of the European Background

    Science.gov (United States)

    Geppert, Maria; Roewer, Lutz; Palha, Teresinha; Alvarez, Luis; Ribeiro-dos-Santos, Ândrea; Santos, Sidney

    2016-01-01

    The non-recombining nature of the Y chromosome and the well-established phylogeny of Y-specific Single Nucleotide Polymorphisms (Y-SNPs) make them useful for defining haplogroups with high geographical specificity; therefore, they are more apt than the Y-STRs to detect population stratification in admixed populations from diverse continental origins. Different Y-SNP typing strategies have been described to address issues of population history and movements within geographic territories of interest. In this study, we investigated a set of 41 Y-SNPs in 1217 unrelated males from the five Brazilian geopolitical regions, aiming to disclose the genetic structure of male lineages in the country. A population comparison based on pairwise FST genetic distances did not reveal statistically significant differences in haplogroup frequency distributions among populations from the different regions. The genetic differences observed among regions were, however, consistent with the colonization history of the country. The sample from the Northern region presented the highest Native American ancestry (8.4%), whereas the more pronounced African contribution could be observed in the Northeastern population (15.1%). The Central-Western and Southern samples showed the higher European contributions (95.7% and 93.6%, respectively). The Southeastern region presented significant European (86.1%) and African (12.0%) contributions. The subtyping of the most frequent European lineage in Brazil (R1b1a-M269) allowed differences in the genetic European background of the five Brazilian regions to be investigated for the first time. PMID:27046235

  17. Evolutionary change in physiological phenotypes along the human lineage.

    Science.gov (United States)

    Vining, Alexander Q; Nunn, Charles L

    2016-01-01

    Research in evolutionary medicine provides many examples of how evolution has shaped human susceptibility to disease. Traits undergoing rapid evolutionary change may result in associated costs or reduce the energy available to other traits. We hypothesize that humans have experienced more such changes than other primates as a result of major evolutionary change along the human lineage. We investigated 41 physiological traits across 50 primate species to identify traits that have undergone marked evolutionary change along the human lineage. We analysed the data using two Bayesian phylogenetic comparative methods. One approach models trait covariation in non-human primates and predicts human phenotypes to identify whether humans are evolutionary outliers. The other approach models adaptive shifts under an Ornstein-Uhlenbeck model of evolution to assess whether inferred shifts are more common on the human branch than on other primate lineages. We identified four traits with strong evidence for an evolutionary increase on the human lineage (amylase, haematocrit, phosphorus and monocytes) and one trait with strong evidence for decrease (neutrophilic bands). Humans exhibited more cases of distinct evolutionary change than other primates. Human physiology has undergone increased evolutionary change compared to other primates. Long distance running may have contributed to increases in haematocrit and mean corpuscular haemoglobin concentration, while dietary changes are likely related to increases in amylase. In accordance with the pathogen load hypothesis, human monocyte levels were increased, but many other immune-related measures were not. Determining the mechanisms underlying conspicuous evolutionary change in these traits may provide new insights into human disease. The Author(s) 2016. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.

  18. Constrained body shape among highly genetically divergent allopatric lineages of the supralittoral isopod Ligia occidentalis (Oniscidea).

    Science.gov (United States)

    Santamaria, Carlos A; Mateos, Mariana; DeWitt, Thomas J; Hurtado, Luis A

    2016-03-01

    Multiple highly divergent lineages have been identified within Ligia occidentalis sensu lato, a rocky supralittoral isopod distributed along a ~3000 km latitudinal gradient that encompasses several proposed marine biogeographic provinces and ecoregions in the eastern Pacific. Highly divergent lineages have nonoverlapping geographic distributions, with distributional limits that generally correspond with sharp environmental changes. Crossbreeding experiments suggest postmating reproductive barriers exist among some of them, and surveys of mitochondrial and nuclear gene markers do not show evidence of hybridization. Populations are highly isolated, some of which appear to be very small; thus, the effects of drift are expected to reduce the efficiency of selection. Large genetic divergences among lineages, marked environmental differences in their ranges, reproductive isolation, and/or high isolation of populations may have resulted in morphological differences in L. occidentalis, not detected yet by traditional taxonomy. We used landmark-based geometric morphometric analyses to test for differences in body shape among highly divergent lineages of L. occidentalis, and among populations within these lineages. We analyzed a total of 492 individuals from 53 coastal localities from the southern California Bight to Central Mexico, including the Gulf of California. We conducted discriminant function analyses (DFAs) on body shape morphometrics to assess morphological variation among genetically differentiated lineages and their populations. We also tested for associations between phylogeny and morphological variation, and whether genetic divergence is correlated to multivariate morphological divergence. We detected significant differences in body shape among highly divergent lineages, and among populations within these lineages. Nonetheless, neither lineages nor populations can be discriminated on the basis of body shape, because correct classification rates of cross

  19. Genotypic and geographical distribution of porcine reproductive and respiratory syndrome viruses in mainland China in 1996-2016.

    Science.gov (United States)

    Gao, Jia-Cong; Xiong, Jun-Yao; Ye, Chao; Chang, Xiao-Bo; Guo, Jin-Chao; Jiang, Cheng-Gang; Zhang, Gui-Hong; Tian, Zhi-Jun; Cai, Xue-Hui; Tong, Guang-Zhi; An, Tong-Qing

    2017-09-01

    Porcine reproductive and respiratory syndrome (PRRS) has caused huge economic losses to Chinese swine industry and remains a major threat since it was first reported in 1996. However, investigations of molecular epidemiological and genetic diversity of PRRS viruses (PRRSVs) in China were limited to a small number of representative strains collected in several areas. Moreover, lineage classifications reported by individual researchers were quite different. In the present study, we sequenced ORF5 sequences of 217 PRRSVs from clinical samples, retrieved all the available ORF5 sequences of PRRSVs isolated in China in 1996-2016 (n=2213) from GenBank, and systematically analyzed corresponding epidemiological data. NA-type PRRSVs in China were classified into five lineages: lineage 1, lineage 3, lineage 5, lineage 8, and lineage 9. Most strains in China belonged to lineage 8 (85.6%), with dominant strains being classified as sublineage 8.3 (78.3%). Importantly, the emerging lineage 1 and lineage 3 strains spread rapidly, and their proportions among circulating PRRSVs have significantly increased in recent years. The geographical distribution of different PRRSV lineages in each province was analyzed and possible inter-province transmission routes were outlined for main lineages and sublineages. To our knowledge, this study is the most comprehensive and extensive phylogeographical analysis of PRRSVs in China since PRRS outbreak in 1996. Our dataset can serve as a canonical standard for PRRSV classification and will help to study genetic evolution of PRRSV. The results of the present study may also improve prevention of PRRS in China. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Ascl1 (Mash1) lineage cells contribute to discrete cell populations in CNS architecture.

    Science.gov (United States)

    Kim, Euiseok J; Battiste, James; Nakagawa, Yasushi; Johnson, Jane E

    2008-08-01

    Ascl1 (previously Mash1) is a bHLH transcription factor essential for neuronal differentiation and specification in the nervous system. Although it has been studied for its role in several neural lineages, the full complement of lineages arising from Ascl1 progenitor cells remains unknown. Using an inducible Cre-flox genetic fate-mapping strategy, Ascl1 lineages were determined throughout the brain. Ascl1 is present in proliferating progenitor cells but these cells are actively differentiating as evidenced by rapid migration out of germinal zones. Ascl1 lineage cells contribute to distinct cell types in each major brain division: the forebrain including the cerebral cortex, olfactory bulb, hippocampus, striatum, hypothalamus, and thalamic nuclei, the midbrain including superior and inferior colliculi, and the hindbrain including Purkinje and deep cerebellar nuclei cells and cells in the trigeminal sensory system. Ascl1 progenitor cells at early stages in each CNS region preferentially become neurons, and at late stages they become oligodendrocytes. In conclusion, Ascl1-expressing progenitor cells in the brain give rise to multiple, but not all, neuronal subtypes and oligodendrocytes depending on the temporal and spatial context, consistent with a broad role in neural differentiation with some subtype specification.

  1. Host and geographic structure of endophytic and endolichenic fungi at a continental scale.

    Science.gov (United States)

    U'Ren, Jana M; Lutzoni, François; Miadlikowska, Jolanta; Laetsch, Alexander D; Arnold, A Elizabeth

    2012-05-01

    Endophytic and endolichenic fungi occur in healthy tissues of plants and lichens, respectively, playing potentially important roles in the ecology and evolution of their hosts. However, previous sampling has not comprehensively evaluated the biotic, biogeographic, and abiotic factors that structure their communities. Using molecular data we examined the diversity, composition, and distributions of 4154 endophytic and endolichenic Ascomycota cultured from replicate surveys of ca. 20 plant and lichen species in each of five North American sites (Madrean coniferous forest, Arizona; montane semideciduous forest, North Carolina; scrub forest, Florida; Beringian tundra and forest, western Alaska; subalpine tundra, eastern central Alaska). Endolichenic fungi were more abundant and diverse per host species than endophytes, but communities of endophytes were more diverse overall, reflecting high diversity in mosses and lycophytes. Endophytes of vascular plants were largely distinct from fungal communities that inhabit mosses and lichens. Fungi from closely related hosts from different regions were similar in higher taxonomy, but differed at shallow taxonomic levels. These differences reflected climate factors more strongly than geographic distance alone. Our study provides a first evaluation of endophytic and endolichenic fungal associations with their hosts at a continental scale. Both plants and lichens harbor abundant and diverse fungal communities whose incidence, diversity, and composition reflect the interplay of climatic patterns, geographic separation, host type, and host lineage. Although culture-free methods will inform future work, our study sets the stage for empirical assessments of ecological specificity, metabolic capability, and comparative genomics.

  2. IS3 profiling identifies the enterohaemorrhagic Escherichia coli O-island 62 in a distinct enteroaggregative E. coli lineage

    Directory of Open Access Journals (Sweden)

    Okeke Iruka N

    2011-03-01

    Full Text Available Abstract Background Enteroaggregative Escherichia coli (EAEC are important diarrhoeal pathogens that are defined by a HEp-2 adherence assay performed in specialist laboratories. Multilocus sequence typing (MLST has revealed that aggregative adherence is convergent, providing an explanation for why not all EAEC hybridize with the plasmid-derived probe for this category, designated CVD432. Some EAEC lineages are globally disseminated or more closely associated with disease. Results To identify genetic loci conserved within significant EAEC lineages, but absent from non-EAEC, IS3-based PCR profiles were generated for 22 well-characterised EAEC strains. Six bands that were conserved among, or missing from, specific EAEC lineages were cloned and sequenced. One band corresponded to the aggR gene, a plasmid-encoded regulator that has been used as a diagnostic target but predominantly detects EAEC bearing the plasmid already marked by CVD432. The sequence from a second band was homologous to an open-reading frame within the cryptic enterohaemorrhagic E. coli (EHEC O157 genomic island, designated O-island 62. Screening of an additional 46 EAEC strains revealed that the EHEC O-island 62 was only present in those EAEC strains belonging to the ECOR phylogenetic group D, largely comprised of sequence type (ST complexes 31, 38 and 394. Conclusions The EAEC 042 gene orf1600, which lies within the EAEC equivalent of O-island 62 island, can be used as a marker for EAEC strains belonging to the ECOR phylogenetic group D. The discovery of EHEC O-island 62 in EAEC validates the genetic profiling approach for identifying conserved loci among phylogenetically related strains.

  3. Comparative genomic analysis of Helicobacter pylori from Malaysia identifies three distinct lineages suggestive of differential evolution.

    Science.gov (United States)

    Kumar, Narender; Mariappan, Vanitha; Baddam, Ramani; Lankapalli, Aditya K; Shaik, Sabiha; Goh, Khean-Lee; Loke, Mun Fai; Perkins, Tim; Benghezal, Mohammed; Hasnain, Seyed E; Vadivelu, Jamuna; Marshall, Barry J; Ahmed, Niyaz

    2015-01-01

    The discordant prevalence of Helicobacter pylori and its related diseases, for a long time, fostered certain enigmatic situations observed in the countries of the southern world. Variation in H. pylori infection rates and disease outcomes among different populations in multi-ethnic Malaysia provides a unique opportunity to understand dynamics of host-pathogen interaction and genome evolution. In this study, we extensively analyzed and compared genomes of 27 Malaysian H. pylori isolates and identified three major phylogeographic lineages: hspEastAsia, hpEurope and hpSouthIndia. The analysis of the virulence genes within the core genome, however, revealed a comparable pathogenic potential of the strains. In addition, we identified four genes limited to strains of East-Asian lineage. Our analyses identified a few strain-specific genes encoding restriction modification systems and outlined 311 core genes possibly under differential evolutionary constraints, among the strains representing different ethnic groups. The cagA and vacA genes also showed variations in accordance with the host genetic background of the strains. Moreover, restriction modification genes were found to be significantly enriched in East-Asian strains. An understanding of these variations in the genome content would provide significant insights into various adaptive and host modulation strategies harnessed by H. pylori to effectively persist in a host-specific manner. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage.

    Science.gov (United States)

    Hailer, Frank; Kutschera, Verena E; Hallström, Björn M; Klassert, Denise; Fain, Steven R; Leonard, Jennifer A; Arnason, Ulfur; Janke, Axel

    2012-04-20

    Recent studies have shown that the polar bear matriline (mitochondrial DNA) evolved from a brown bear lineage since the late Pleistocene, potentially indicating rapid speciation and adaption to arctic conditions. Here, we present a high-resolution data set from multiple independent loci across the nuclear genomes of a broad sample of polar, brown, and black bears. Bayesian coalescent analyses place polar bears outside the brown bear clade and date the divergence much earlier, in the middle Pleistocene, about 600 (338 to 934) thousand years ago. This provides more time for polar bear evolution and confirms previous suggestions that polar bears carry introgressed brown bear mitochondrial DNA due to past hybridization. Our results highlight that multilocus genomic analyses are crucial for an accurate understanding of evolutionary history.

  5. West Nile virus outbreak in Israel in 2015: phylogenetic and geographic characterization in humans and mosquitoes.

    Science.gov (United States)

    Lustig, Y; Kaufman, Z; Mannasse, B; Koren, R; Katz-Likvornik, S; Orshan, L; Glatman-Freedman, A; Mendelson, E

    2017-12-01

    West Nile Virus (WNV) is endemic in Israel and was responsible for several outbreaks in the past 16 years. The aim of the present study was to investigate the spatial distribution of WNV acute infections from an outbreak that occurred in 2015 in Israel and report the molecular and geographic characterization of WNV isolates from human cases and mosquito pools obtained during this outbreak. Using a geographical layer comprising 51 continuous areas of Israel, the number of WNV infection cases per 100 000 people in each area and the locations of WNV-infected mosquitoes in 2015 were analysed. Sequencing and phylogenetic analyses followed by geographic localization were performed on 13 WNV human isolates and 19 WNV-infected mosquito pools. Substantial geographical variation in the prevalence of acute WNV in patients in Israel was found and an overall correlation with WNV-infected mosquitoes. All human patients sequenced were infected only with the Mediterranean subtype of WNV Lineage 1 and resided primarily in the coastal regions in central Israel. In contrast, mosquitoes were infected with both the Mediterranean and Eastern European subtypes of WNV lineage 1; however, only the Mediterranean subtype was found in mosquitoes from the coastal region in central Israel. These results demonstrate differential geographic dispersion in Israel of the two WNV subtypes and may also point to a differential pattern of human infections. As a geographical bridge between Europe, Asia and Africa, analysis of WNV circulation in humans and mosquitoes in Israel provides information relevant to WNV infections in Eurasia. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  6. Lineages that cheat death: surviving the squeeze on range size.

    Science.gov (United States)

    Waldron, Anthony

    2010-08-01

    Evolutionary lineages differ greatly in their net diversification rates, implying differences in rates of extinction and speciation. Lineages with a large average range size are commonly thought to have reduced extinction risk (although linking low extinction to high diversification has proved elusive). However, climate change cycles can dramatically reduce the geographic range size of even widespread species, and so most species may be periodically reduced to a few populations in small, isolated remnants of their range. This implies a high and synchronous extinction risk for the remaining populations, and so for the species as a whole. Species will only survive through these periods if their individual populations are "threat tolerant," somehow able to persist in spite of the high extinction risk. Threat tolerance is conceptually different from classic extinction resistance, and could theoretically have a stronger relationship with diversification rates than classic resistance. I demonstrate that relationship using primates as a model. I also show that narrowly distributed species have higher threat tolerance than widespread ones, confirming that tolerance is an unusual form of resistance. Extinction resistance may therefore operate by different rules during periods of adverse global environmental change than in more benign periods.

  7. Single-Cell Transcriptomic Analysis Defines Heterogeneity and Transcriptional Dynamics in the Adult Neural Stem Cell Lineage

    Directory of Open Access Journals (Sweden)

    Ben W. Dulken

    2017-01-01

    Full Text Available Neural stem cells (NSCs in the adult mammalian brain serve as a reservoir for the generation of new neurons, oligodendrocytes, and astrocytes. Here, we use single-cell RNA sequencing to characterize adult NSC populations and examine the molecular identities and heterogeneity of in vivo NSC populations. We find that cells in the NSC lineage exist on a continuum through the processes of activation and differentiation. Interestingly, rare intermediate states with distinct molecular profiles can be identified and experimentally validated, and our analysis identifies putative surface markers and key intracellular regulators for these subpopulations of NSCs. Finally, using the power of single-cell profiling, we conduct a meta-analysis to compare in vivo NSCs and in vitro cultures, distinct fluorescence-activated cell sorting strategies, and different neurogenic niches. These data provide a resource for the field and contribute to an integrative understanding of the adult NSC lineage.

  8. Detection of Evolutionarily Distinct Avian Influenza A Viruses in Antarctica

    Science.gov (United States)

    Vijaykrishna, Dhanasekaran; Butler, Jeffrey; Baas, Chantal; Maurer-Stroh, Sebastian; Silva-de-la-Fuente, M. Carolina; Medina-Vogel, Gonzalo; Olsen, Bjorn; Kelso, Anne; Barr, Ian G.; González-Acuña, Daniel

    2014-01-01

    ABSTRACT Distinct lineages of avian influenza viruses (AIVs) are harbored by spatially segregated birds, yet significant surveillance gaps exist around the globe. Virtually nothing is known from the Antarctic. Using virus culture, molecular analysis, full genome sequencing, and serology of samples from Adélie penguins in Antarctica, we confirmed infection by H11N2 subtype AIVs. Their genetic segments were distinct from all known contemporary influenza viruses, including South American AIVs, suggesting spatial separation from other lineages. Only in the matrix and polymerase acidic gene phylogenies did the Antarctic sequences form a sister relationship to South American AIVs, whereas distant phylogenetic relationships were evident in all other gene segments. Interestingly, their neuraminidase genes formed a distant relationship to all avian and human influenza lineages, and the polymerase basic 1 and polymerase acidic formed a sister relationship to the equine H3N8 influenza virus lineage that emerged during 1963 and whose avian origins were previously unknown. We also estimated that each gene segment had diverged for 49 to 80 years from its most closely related sequences, highlighting a significant gap in our AIV knowledge in the region. We also show that the receptor binding properties of the H11N2 viruses are predominantly avian and that they were unable to replicate efficiently in experimentally inoculated ferrets, suggesting their continuous evolution in avian hosts. These findings add substantially to our understanding of both the ecology and the intra- and intercontinental movement of Antarctic AIVs and highlight the potential risk of an incursion of highly pathogenic AIVs into this fragile environment. PMID:24803521

  9. Distinct Processes Drive Diversification in Different Clades of Gesneriaceae.

    Science.gov (United States)

    Roalson, Eric H; Roberts, Wade R

    2016-07-01

    Using a time-calibrated phylogenetic hypothesis including 768 Gesneriaceae species (out of [Formula: see text]3300 species) and more than 29,000 aligned bases from 26 gene regions, we test Gesneriaceae for diversification rate shifts and the possible proximal drivers of these shifts: geographic distributions, growth forms, and pollination syndromes. Bayesian Analysis of Macroevolutionary Mixtures analyses found five significant rate shifts in Beslerieae, core Nematanthus, core Columneinae, core Streptocarpus, and Pacific Cyrtandra These rate shifts correspond with shifts in diversification rates, as inferred by Binary State Speciation and Extinction Model and Geographic State Speciation and Extinction model, associated with hummingbird pollination, epiphytism, unifoliate growth, and geographic area. Our results suggest that diversification processes are extremely variable across Gesneriaceae clades with different combinations of characters influencing diversification rates in different clades. Diversification patterns between New and Old World lineages show dramatic differences, suggesting that the processes of diversification in Gesneriaceae are very different in these two geographic regions. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Diversity, Host Specialization, and Geographic Structure of Filarial Nematodes Infecting Malagasy Bats.

    Science.gov (United States)

    Ramasindrazana, Beza; Dellagi, Koussay; Lagadec, Erwan; Randrianarivelojosia, Milijaona; Goodman, Steven M; Tortosa, Pablo

    2016-01-01

    We investigated filarial infection in Malagasy bats to gain insights into the diversity of these parasites and explore the factors shaping their distribution. Samples were obtained from 947 individual bats collected from 52 sites on Madagascar and representing 31 of the 44 species currently recognized on the island. Samples were screened for the presence of micro- and macro-parasites through both molecular and morphological approaches. Phylogenetic analyses showed that filarial diversity in Malagasy bats formed three main groups, the most common represented by Litomosa spp. infecting Miniopterus spp. (Miniopteridae); a second group infecting Pipistrellus cf. hesperidus (Vespertilionidae) embedded within the Litomosoides cluster, which is recognized herein for the first time from Madagascar; and a third group composed of lineages with no clear genetic relationship to both previously described filarial nematodes and found in M. griveaudi, Myotis goudoti, Neoromicia matroka (Vespertilionidae), Otomops madagascariensis (Molossidae), and Paratriaenops furculus (Hipposideridae). We further analyzed the infection rates and distribution pattern of Litomosa spp., which was the most diverse and prevalent filarial taxon in our sample. Filarial infection was disproportionally more common in males than females in Miniopterus spp., which might be explained by some aspect of roosting behavior of these cave-dwelling bats. We also found marked geographic structure in the three Litomosa clades, mainly linked to bioclimatic conditions rather than host-parasite associations. While this study demonstrates distinct patterns of filarial nematode infection in Malagasy bats and highlights potential drivers of associated geographic distributions, future work should focus on their alpha taxonomy and characterize arthropod vectors.

  11. Diversity, Host Specialization, and Geographic Structure of Filarial Nematodes Infecting Malagasy Bats.

    Directory of Open Access Journals (Sweden)

    Beza Ramasindrazana

    Full Text Available We investigated filarial infection in Malagasy bats to gain insights into the diversity of these parasites and explore the factors shaping their distribution. Samples were obtained from 947 individual bats collected from 52 sites on Madagascar and representing 31 of the 44 species currently recognized on the island. Samples were screened for the presence of micro- and macro-parasites through both molecular and morphological approaches. Phylogenetic analyses showed that filarial diversity in Malagasy bats formed three main groups, the most common represented by Litomosa spp. infecting Miniopterus spp. (Miniopteridae; a second group infecting Pipistrellus cf. hesperidus (Vespertilionidae embedded within the Litomosoides cluster, which is recognized herein for the first time from Madagascar; and a third group composed of lineages with no clear genetic relationship to both previously described filarial nematodes and found in M. griveaudi, Myotis goudoti, Neoromicia matroka (Vespertilionidae, Otomops madagascariensis (Molossidae, and Paratriaenops furculus (Hipposideridae. We further analyzed the infection rates and distribution pattern of Litomosa spp., which was the most diverse and prevalent filarial taxon in our sample. Filarial infection was disproportionally more common in males than females in Miniopterus spp., which might be explained by some aspect of roosting behavior of these cave-dwelling bats. We also found marked geographic structure in the three Litomosa clades, mainly linked to bioclimatic conditions rather than host-parasite associations. While this study demonstrates distinct patterns of filarial nematode infection in Malagasy bats and highlights potential drivers of associated geographic distributions, future work should focus on their alpha taxonomy and characterize arthropod vectors.

  12. Three explanations for biodiversity hotspots: small range size, geographical overlap and time for species accumulation. An Australian case study.

    Science.gov (United States)

    Cook, Lyn G; Hardy, Nate B; Crisp, Michael D

    2015-07-01

    To understand the generation and maintenance of biodiversity hotspots, we tested three major hypotheses: rates of diversification, ecological limits to diversity, and time for species accumulation. Using dated molecular phylogenies, measures of species' range size and geographical clade overlap, niche modelling, and lineages-through-time plots of Australian Fabaceae, we compared the southwest Australia Floristic Region (SWAFR; a global biodiversity hotspot) with a latitudinally equivalent non-hotspot, southeast Australia (SEA). Ranges of species (real and simulated) were smaller in the SWAFR than in SEA. Geographical overlap of clades was significantly greater for Daviesia in the SWAFR than in SEA, but the inverse for Bossiaea. Lineage diversification rates over the past 10 Myr did not differ between the SWAFR and SEA in either genus. Interaction of multiple factors probably explains the differences in measured diversity between the two regions. Steeper climatic gradients in the SWAFR probably explain the smaller geographical ranges of both genera there. Greater geographical overlap of clades in the SWAFR, combined with a longer time in the region, can explain why Daviesia is far more species-rich there than in SEA. Our results indicate that the time for speciation and ecological limits hypotheses, in concert, can explain the differences in biodiversity. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  13. A Diverse Range of Novel RNA Viruses in Geographically Distinct Honey Bee Populations.

    Science.gov (United States)

    Remnant, Emily J; Shi, Mang; Buchmann, Gabriele; Blacquière, Tjeerd; Holmes, Edward C; Beekman, Madeleine; Ashe, Alyson

    2017-08-15

    Understanding the diversity and consequences of viruses present in honey bees is critical for maintaining pollinator health and managing the spread of disease. The viral landscape of honey bees ( Apis mellifera ) has changed dramatically since the emergence of the parasitic mite Varroa destructor , which increased the spread of virulent variants of viruses such as deformed wing virus. Previous genomic studies have focused on colonies suffering from infections by Varroa and virulent viruses, which could mask other viral species present in honey bees, resulting in a distorted view of viral diversity. To capture the viral diversity within colonies that are exposed to mites but do not suffer the ultimate consequences of the infestation, we examined populations of honey bees that have evolved naturally or have been selected for resistance to Varroa This analysis revealed seven novel viruses isolated from honey bees sampled globally, including the first identification of negative-sense RNA viruses in honey bees. Notably, two rhabdoviruses were present in three geographically diverse locations and were also present in Varroa mites parasitizing the bees. To characterize the antiviral response, we performed deep sequencing of small RNA populations in honey bees and mites. This provided evidence of a Dicer-mediated immune response in honey bees, while the viral small RNA profile in Varroa mites was novel and distinct from the response observed in bees. Overall, we show that viral diversity in honey bee colonies is greater than previously thought, which encourages additional studies of the bee virome on a global scale and which may ultimately improve disease management. IMPORTANCE Honey bee populations have become increasingly susceptible to colony losses due to pathogenic viruses spread by parasitic Varroa mites. To date, 24 viruses have been described in honey bees, with most belonging to the order Picornavirales Collapsing Varroa -infected colonies are often overwhelmed

  14. A Diverse Range of Novel RNA Viruses in Geographically Distinct Honey Bee Populations

    Science.gov (United States)

    Shi, Mang; Buchmann, Gabriele; Blacquière, Tjeerd; Beekman, Madeleine; Ashe, Alyson

    2017-01-01

    ABSTRACT Understanding the diversity and consequences of viruses present in honey bees is critical for maintaining pollinator health and managing the spread of disease. The viral landscape of honey bees (Apis mellifera) has changed dramatically since the emergence of the parasitic mite Varroa destructor, which increased the spread of virulent variants of viruses such as deformed wing virus. Previous genomic studies have focused on colonies suffering from infections by Varroa and virulent viruses, which could mask other viral species present in honey bees, resulting in a distorted view of viral diversity. To capture the viral diversity within colonies that are exposed to mites but do not suffer the ultimate consequences of the infestation, we examined populations of honey bees that have evolved naturally or have been selected for resistance to Varroa. This analysis revealed seven novel viruses isolated from honey bees sampled globally, including the first identification of negative-sense RNA viruses in honey bees. Notably, two rhabdoviruses were present in three geographically diverse locations and were also present in Varroa mites parasitizing the bees. To characterize the antiviral response, we performed deep sequencing of small RNA populations in honey bees and mites. This provided evidence of a Dicer-mediated immune response in honey bees, while the viral small RNA profile in Varroa mites was novel and distinct from the response observed in bees. Overall, we show that viral diversity in honey bee colonies is greater than previously thought, which encourages additional studies of the bee virome on a global scale and which may ultimately improve disease management. IMPORTANCE Honey bee populations have become increasingly susceptible to colony losses due to pathogenic viruses spread by parasitic Varroa mites. To date, 24 viruses have been described in honey bees, with most belonging to the order Picornavirales. Collapsing Varroa-infected colonies are often

  15. Change of niche in guanaco (Lama guanicoe): the effects of climate change on habitat suitability and lineage conservatism in Chile.

    Science.gov (United States)

    Castillo, Andrea G; Alò, Dominique; González, Benito A; Samaniego, Horacio

    2018-01-01

    The main goal of this contribution was to define the ecological niche of the guanaco ( Lama guanicoe ), to describe potential distributional changes, and to assess the relative importance of niche conservatism and divergence processes between the two lineages described for the species ( L.g. cacsilensis and L.g. guanicoe ). We used maximum entropy to model lineage's climate niche from 3,321 locations throughout continental Chile, and developed future niche models under climate change for two extreme greenhouse gas emission scenarios (RCP2.6 and RCP8.5). We evaluated changes of the environmental niche and future distribution of the largest mammal in the Southern Cone of South America. Evaluation of niche conservatism and divergence were based on identity and background similarity tests. We show that: (a) the current geographic distribution of lineages is associated with different climatic requirements that are related to the geographic areas where these lineages are located; (b) future distribution models predict a decrease in the distribution surface under both scenarios; (c) a 3% decrease of areal protection is expected if the current distribution of protected areas is maintained, and this is expected to occur at the expense of a large reduction of high quality habitats under the best scenario; (d) current and future distribution ranges of guanaco mostly adhere to phylogenetic niche divergence hypotheses between lineages. Associating environmental variables with species ecological niche seems to be an important aspect of unveiling the particularities of, both evolutionary patterns and ecological features that species face in a changing environment. We report specific descriptions of how these patterns may play out under the most extreme climate change predictions and provide a grim outlook of the future potential distribution of guanaco in Chile. From an ecological perspective, while a slightly smaller distribution area is expected, this may come with an important

  16. Testing the Sensory Drive Hypothesis: Geographic variation in echolocation frequencies of Geoffroy's horseshoe bat (Rhinolophidae: Rhinolophus clivosus).

    Science.gov (United States)

    Jacobs, David S; Catto, Sarah; Mutumi, Gregory L; Finger, Nikita; Webala, Paul W

    2017-01-01

    Geographic variation in sensory traits is usually influenced by adaptive processes because these traits are involved in crucial life-history aspects including orientation, communication, lineage recognition and mate choice. Studying this variation can therefore provide insights into lineage diversification. According to the Sensory Drive Hypothesis, lineage diversification may be driven by adaptation of sensory systems to local environments. It predicts that acoustic signals vary in association with local climatic conditions so that atmospheric attenuation is minimized and transmission of the signals maximized. To test this prediction, we investigated the influence of climatic factors (specifically relative humidity and temperature) on geographic variation in the resting frequencies of the echolocation pulses of Geoffroy's horseshoe bat, Rhinolophus clivosus. If the evolution of phenotypic variation in this lineage tracks climate variation, human induced climate change may lead to decreases in detection volumes and a reduction in foraging efficiency. A complex non-linear interaction between relative humidity and temperature affects atmospheric attenuation of sound and principal components composed of these correlated variables were, therefore, used in a linear mixed effects model to assess their contribution to observed variation in resting frequencies. A principal component composed predominantly of mean annual temperature (factor loading of -0.8455) significantly explained a proportion of the variation in resting frequency across sites (P < 0.05). Specifically, at higher relative humidity (around 60%) prevalent across the distribution of R. clivosus, increasing temperature had a strong negative effect on resting frequency. Climatic factors thus strongly influence acoustic signal divergence in this lineage, supporting the prediction of the Sensory Drive Hypothesis. The predicted future increase in temperature due to climate change is likely to decrease the

  17. Testing the Sensory Drive Hypothesis: Geographic variation in echolocation frequencies of Geoffroy's horseshoe bat (Rhinolophidae: Rhinolophus clivosus.

    Directory of Open Access Journals (Sweden)

    David S Jacobs

    Full Text Available Geographic variation in sensory traits is usually influenced by adaptive processes because these traits are involved in crucial life-history aspects including orientation, communication, lineage recognition and mate choice. Studying this variation can therefore provide insights into lineage diversification. According to the Sensory Drive Hypothesis, lineage diversification may be driven by adaptation of sensory systems to local environments. It predicts that acoustic signals vary in association with local climatic conditions so that atmospheric attenuation is minimized and transmission of the signals maximized. To test this prediction, we investigated the influence of climatic factors (specifically relative humidity and temperature on geographic variation in the resting frequencies of the echolocation pulses of Geoffroy's horseshoe bat, Rhinolophus clivosus. If the evolution of phenotypic variation in this lineage tracks climate variation, human induced climate change may lead to decreases in detection volumes and a reduction in foraging efficiency. A complex non-linear interaction between relative humidity and temperature affects atmospheric attenuation of sound and principal components composed of these correlated variables were, therefore, used in a linear mixed effects model to assess their contribution to observed variation in resting frequencies. A principal component composed predominantly of mean annual temperature (factor loading of -0.8455 significantly explained a proportion of the variation in resting frequency across sites (P < 0.05. Specifically, at higher relative humidity (around 60% prevalent across the distribution of R. clivosus, increasing temperature had a strong negative effect on resting frequency. Climatic factors thus strongly influence acoustic signal divergence in this lineage, supporting the prediction of the Sensory Drive Hypothesis. The predicted future increase in temperature due to climate change is likely to

  18. Phylogenetic heritability of geographic range size in haematophagous ectoparasites: time of divergence and variation among continents.

    Science.gov (United States)

    Krasnov, Boris R; Shenbrot, Georgy I; van der Mescht, Luther; Warburton, Elizabeth M; Khokhlova, Irina S

    2018-04-12

    To understand existence, patterns and mechanisms behind phylogenetic heritability in the geographic range size (GRS) of parasites, we measured phylogenetic signal (PS) in the sizes of both regional (within a region) and continental (within a continent) geographic ranges of fleas in five regions. We asked whether (a) GRS is phylogenetically heritable and (b) the manifestation of PS varies between regions. We also asked whether geographic variation in PS reflects the effects of the environment's spatiotemporal stability (e.g. glaciation disrupting geographic ranges) or is associated with time since divergence (accumulation differences among species over time). Support for the former hypothesis would be indicated by stronger PS in southern than in northern regions, whereas support for the latter hypothesis would be shown by stronger PS in regions with a large proportion of species belonging to the derived lineages than in regions with a large proportion of species belonging to the basal lineages. We detected significant PS in both regional and continental GRSs of fleas from Canada and in continental GRS of fleas from Mongolia. No PS was found in the GRS of fleas from Australia and Southern Africa. Venezuelan fleas demonstrated significant PS in regional GRS only. Local Indicators of Phylogenetic Association detected significant local positive autocorrelations of GRS in some clades even in regions in which PS has not been detected across the entire phylogeny. This was mainly characteristic of younger taxa.

  19. Contrasting sodic and mildly potassic magma differentiation lineages at The Pleaides volcanic complex, northern Victoria Land, Antarctica

    Science.gov (United States)

    Kim, J.; Park, J. W.; Lee, J.; Kyle, P. R.; Lee, M. J.

    2017-12-01

    The magma evolution of The Pleiades, a Quaternary alkaline volcanic complex in northern Victoria Land, Antarctica, is investigated using major and trace elements, and Sr, Nd and Pb isotopic data. The volcanic rocks can be subdivided into two distinct magmatic lineages based on petrography and whole-rock compositions: (1) a sodic silica-undersaturated alkaline lineage with abundant kaersutite phenocrysts, and (2) a mildly-potassic and mildly-alkaline, nearly silica-saturated lineage containing olivine but not kaersutite. The basanite and trachybasalt of both lineages exhibit similar degrees of negative K anomalies, moderately steep rare earth element patterns, and elevated trace element ratios such as Ce/Pb (> 20) and Nb/U (> 38), suggesting their primary magmas were generated by low degree (≤3%) of partial melting of amphibole and garnet-bearing mantle sources. The sodic lineage is characterized by elevated 206Pb/204Pb (>19.5) ratios and narrow ranges of 87Sr/86Sr (0.70313-0.70327) and 143Nd/144Nd (0.51289-0.51290) ratios consistent with a significant HIMU component typical of Neogene volcanic rocks in Antarctica. The mafic rocks of the potassic lineage have isotopic compositions similar to those of the sodic lineage, however the evolved lavas in the lineage have higher 87Sr/86Sr (> 0.7035) and lower 143Nd/144Nd (< 0.51285) and 206Pb/204Pb (< 19.3) ratios than the mafic rocks, suggesting significant amounts of crustal contamination. The pressure-temperature paths estimated by clinopyroxene-liquid thermobarometry are similar in each lineage. The mafic magmas were emplaced at Moho depths ( 1.2 GPa) and the evolved magmas pooled at middle-crustal depths ( 0.7 GPa). Mass-balance calculations based on whole-rock and mineral compositions show that kaersutite fractionation has played a major role in magma differentiation of the sodic lineage whereas the compositional variations of the potassic lineage can be ascribed to fractionation of a kaersutite-free mineral

  20. Retinoic Acid Is Essential for Th1 Cell Lineage Stability and Prevents Transition to a Th17 Cell Program

    Science.gov (United States)

    Brown, Chrysothemis C.; Esterhazy, Daria; Sarde, Aurelien; London, Mariya; Pullabhatla, Venu; Osma-Garcia, Ines; al-Bader, Raya; Ortiz, Carla; Elgueta, Raul; Arno, Matthew; de Rinaldis, Emanuele; Mucida, Daniel; Lord, Graham M.; Noelle, Randolph J.

    2015-01-01

    Summary CD4+ T cells differentiate into phenotypically distinct T helper cells upon antigenic stimulation. Regulation of plasticity between these CD4+ T-cell lineages is critical for immune homeostasis and prevention of autoimmune disease. However, the factors that regulate lineage stability are largely unknown. Here we investigate a role for retinoic acid (RA) in the regulation of lineage stability using T helper 1 (Th1) cells, traditionally considered the most phenotypically stable Th subset. We found that RA, through its receptor RARα, sustains stable expression of Th1 lineage specifying genes, as well as repressing genes that instruct Th17-cell fate. RA signaling is essential for limiting Th1-cell conversion into Th17 effectors and for preventing pathogenic Th17 responses in vivo. Our study identifies RA-RARα as a key component of the regulatory network governing maintenance and plasticity of Th1-cell fate and defines an additional pathway for the development of Th17 cells. PMID:25769610

  1. Metagenome Sequence Analysis of Filamentous Microbial Communities Obtained from Geochemically Distinct Geothermal Channels Reveals Specialization of Three Aquificales Lineages

    Directory of Open Access Journals (Sweden)

    Cristina eTakacs-vesbach

    2013-05-01

    Full Text Available The Aquificales are thermophilic microorganisms that inhabit hydrothermal systems worldwide and are considered one of the earliest lineages of the domain Bacteria. We analyzed metagenome sequence obtained from six thermal ‘filamentous streamer’ communities (~40 Mbp per site, which targeted three different groups of Aquificales found in Yellowstone National Park (YNP. Unassembled metagenome sequence and PCR-amplified 16S rRNA gene libraries revealed that acidic, sulfidic sites were dominated by Hydrogenobaculum (Aquificaceae populations, whereas the circumneutral pH (6.5 - 7.8 sites containing dissolved sulfide were dominated by Sulfurihydrogenibium spp. (Hydrogenothermaceae. Thermocrinis (Aquificaceae populations were found primarily in the circumneutral sites with undetectable sulfide, and to a lesser extent in one sulfidic system at pH 8. Phylogenetic analysis of assembled sequence containing 16S rRNA genes as well as conserved protein-encoding genes revealed that the composition and function of these communities varied across geochemical conditions. Each Aquificales lineage contained genes for CO2 fixation by the reverse TCA cycle, but only the Sulfurihydrogenibium populations perform citrate cleavage using ATP citrate lyase (Acl. The Aquificaceae populations use an alternative pathway catalyzed by two separate enzymes, citryl CoA synthetase (Ccs and citryl CoA lyase (Ccl. All three Aquificales lineages contained evidence of aerobic respiration, albeit due to completely different types of heme Cu oxidases (subunit I involved in oxygen reduction. The distribution of Aquificales populations and differences among functional genes involved in energy generation and electron transport is consistent with the hypothesis that geochemical parameters (e.g., pH, sulfide, H2, O2 have resulted in niche specialization among members of the Aquificales.

  2. Plasmidome interchange between Clostridium botulinum, Clostridium novyi and Clostridium haemolyticum converts strains of independent lineages into distinctly different pathogens.

    Science.gov (United States)

    Skarin, Hanna; Segerman, Bo

    2014-01-01

    Clostridium botulinum (group III), Clostridium novyi and Clostridium haemolyticum are well-known pathogens causing animal botulism, gas gangrene/black disease, and bacillary hemoglobinuria, respectively. A close genetic relationship exists between the species, which has resulted in the collective term C. novyi sensu lato. The pathogenic traits in these species, e.g., the botulinum neurotoxin and the novyi alpha toxin, are mainly linked to a large plasmidome consisting of plasmids and circular prophages. The plasmidome of C. novyi sensu lato has so far been poorly characterized. In this study we explored the genomic relationship of a wide range of strains of C. novyi sensu lato with a special focus on the dynamics of the plasmidome. Twenty-four genomes were sequenced from strains selected to represent as much as possible the genetic diversity in C. novyi sensu lato. Sixty-one plasmids were identified in these genomes and 28 of them were completed. The genomic comparisons revealed four separate lineages, which did not strictly correlate with the species designations. The plasmids were categorized into 13 different plasmid groups on the basis of their similarity and conservation of plasmid replication or partitioning genes. The plasmid groups, lineages and species were to a large extent entwined because plasmids and toxin genes had moved across the lineage boundaries. This dynamic process appears to be primarily driven by phages. We here present a comprehensive characterization of the complex species group C. novyi sensu lato, explaining the intermixed genetic properties. This study also provides examples how the reorganization of the botulinum toxin and the novyi alpha toxin genes within the plasmidome has affected the pathogenesis of the strains.

  3. Plasmidome interchange between Clostridium botulinum, Clostridium novyi and Clostridium haemolyticum converts strains of independent lineages into distinctly different pathogens.

    Directory of Open Access Journals (Sweden)

    Hanna Skarin

    Full Text Available Clostridium botulinum (group III, Clostridium novyi and Clostridium haemolyticum are well-known pathogens causing animal botulism, gas gangrene/black disease, and bacillary hemoglobinuria, respectively. A close genetic relationship exists between the species, which has resulted in the collective term C. novyi sensu lato. The pathogenic traits in these species, e.g., the botulinum neurotoxin and the novyi alpha toxin, are mainly linked to a large plasmidome consisting of plasmids and circular prophages. The plasmidome of C. novyi sensu lato has so far been poorly characterized. In this study we explored the genomic relationship of a wide range of strains of C. novyi sensu lato with a special focus on the dynamics of the plasmidome. Twenty-four genomes were sequenced from strains selected to represent as much as possible the genetic diversity in C. novyi sensu lato. Sixty-one plasmids were identified in these genomes and 28 of them were completed. The genomic comparisons revealed four separate lineages, which did not strictly correlate with the species designations. The plasmids were categorized into 13 different plasmid groups on the basis of their similarity and conservation of plasmid replication or partitioning genes. The plasmid groups, lineages and species were to a large extent entwined because plasmids and toxin genes had moved across the lineage boundaries. This dynamic process appears to be primarily driven by phages. We here present a comprehensive characterization of the complex species group C. novyi sensu lato, explaining the intermixed genetic properties. This study also provides examples how the reorganization of the botulinum toxin and the novyi alpha toxin genes within the plasmidome has affected the pathogenesis of the strains.

  4. Persistence of the mitochondrial lineage responsible for the Irish potato famine in extant New World Phytophthora infestans

    DEFF Research Database (Denmark)

    Martin, Michael David; Ho, Simon Y W; Wales, Nathan

    2014-01-01

    )-century Europe, three from 1950s U.K. and 34 from modern populations across the New World. We use phylogenetic analyses to identify the HERB-1 lineage in modern populations from both Mexico and South America, and to demonstrate distinct mitochondrial haplotypes were present in 19(th)-century Europe...

  5. A new "American" subgroup of African-lineage Chikungunya virus detected in and isolated from mosquitoes collected in Haiti, 2016.

    Science.gov (United States)

    White, Sarah Keller; Mavian, Carla; Salemi, Marco; Morris, John Glenn; Elbadry, Maha A; Okech, Bernard A; Lednicky, John A; Dunford, James C

    2018-01-01

    As part of on-going arboviral surveillance activity in a semi-rural region in Haiti, Chikungunya virus (CHIKV)-positive mosquito pools were identified in 2014 (the peak of the Caribbean Asian-clade epidemic), and again in 2016 by RT-PCR. In 2014, CHIKV was only identified in Aedes aegypti (11 positive pools/124 screened). In contrast, in sampling in 2016, CHIKV was not identified in Ae. aegypti, but, rather, in (a) a female Aedes albopictus pool, and (b) a female Culex quinquefasciatus pool. Genomic sequence analyses indicated that the CHIKV viruses in the 2016 mosquito pools were from the East-Central-South African (ECSA) lineage, rather than the Asian lineage. In phylogenetic studies, these ECSA lineage strains form a new ECSA subgroup (subgroup IIa) together with Brazilian ECSA lineage strains from an isolated human outbreak in 2014, and a mosquito pool in 2016. Additional analyses date the most recent common ancestor of the ECSA IIa subgroup around May 2007, and the 2016 Haitian CHIKV genomes around December 2015. Known CHIKV mutations associated with improved Ae. albopictus vector competence were not identified. Isolation of this newly identified lineage from Ae. albopictus is of concern, as this vector has a broader geographic range than Ae. aegypti, especially in temperate areas of North America, and stresses the importance for continued vector surveillance.

  6. Uncovering the mutation-fixation correlation in short lineages

    Directory of Open Access Journals (Sweden)

    Vallender Eric J

    2007-09-01

    Full Text Available Abstract Background We recently reported a highly unexpected positive correlation between the fixation probability of nonsynonymous mutations (estimated by ω and neutral mutation rate (estimated by Ks in mammalian lineages. However, this positive correlation was observed for lineages with relatively long divergence time such as the human-mouse lineage, and was not found for very short lineages such as the human-chimpanzee lineage. It was previously unclear how to interpret this discrepancy. It may indicate that the positive correlation between ω and Ks in long lineages is a false finding. Alternatively, it may reflect a biologically meaningful difference between various lineages. Finally, the lack of positive correlation in short lineages may be the result of methodological artifacts. Results Here we show that a strong positive correlation can indeed be seen in short lineages when a method was introduced to correct for the inherently high levels of stochastic noise in the use of Ks as an estimator of neutral mutation rate. Thus, the previously noted lack of positive correlation between ω and Ks in short lineages is due to stochastic noise in Ks that makes it a far less reliable estimator of neutral mutation rate in short lineages as compared to long lineages. Conclusion A positive correlation between ω and Ks can be observed in all mammalian lineages for which large amounts of sequence data are available, including very short lineages. It confirms the authenticity of this highly unexpected correlation, and argues that the correction likely applies broadly across all mammals and perhaps even non-mammalian species.

  7. Laboratory-Cultured Strains of the Sea Anemone Exaiptasia Reveal Distinct Bacterial Communities

    KAUST Repository

    Herrera Sarrias, Marcela; Ziegler, Maren; Voolstra, Christian R.; Aranda, Manuel

    2017-01-01

    Exaiptasia is a laboratory sea anemone model system for stony corals. Two clonal strains are commonly used, referred to as H2 and CC7, that originate from two genetically distinct lineages and that differ in their Symbiodinium specificity. However, little is known about their other microbial associations. Here, we examined and compared the taxonomic composition of the bacterial assemblages of these two symbiotic Exaiptasia strains, both of which have been cultured in the laboratory long-term under identical conditions. We found distinct bacterial microbiota for each strain, indicating the presence of host-specific microbial consortia. Putative differences in the bacterial functional profiles (i.e., enrichment and depletion of various metabolic processes) based on taxonomic inference were also detected, further suggesting functional differences of the microbiomes associated with these lineages. Our study contributes to the current knowledge of the Exaiptasia holobiont by comparing the bacterial diversity of two commonly used strains as models for coral research.

  8. Laboratory-Cultured Strains of the Sea Anemone Exaiptasia Reveal Distinct Bacterial Communities

    KAUST Repository

    Herrera Sarrias, Marcela

    2017-05-02

    Exaiptasia is a laboratory sea anemone model system for stony corals. Two clonal strains are commonly used, referred to as H2 and CC7, that originate from two genetically distinct lineages and that differ in their Symbiodinium specificity. However, little is known about their other microbial associations. Here, we examined and compared the taxonomic composition of the bacterial assemblages of these two symbiotic Exaiptasia strains, both of which have been cultured in the laboratory long-term under identical conditions. We found distinct bacterial microbiota for each strain, indicating the presence of host-specific microbial consortia. Putative differences in the bacterial functional profiles (i.e., enrichment and depletion of various metabolic processes) based on taxonomic inference were also detected, further suggesting functional differences of the microbiomes associated with these lineages. Our study contributes to the current knowledge of the Exaiptasia holobiont by comparing the bacterial diversity of two commonly used strains as models for coral research.

  9. Molecular evidence for species-level distinctions in clouded leopards.

    Science.gov (United States)

    Buckley-Beason, Valerie A; Johnson, Warren E; Nash, Willliam G; Stanyon, Roscoe; Menninger, Joan C; Driscoll, Carlos A; Howard, JoGayle; Bush, Mitch; Page, John E; Roelke, Melody E; Stone, Gary; Martelli, Paolo P; Wen, Ci; Ling, Lin; Duraisingam, Ratna K; Lam, Phan V; O'Brien, Stephen J

    2006-12-05

    Among the 37 living species of Felidae, the clouded leopard (Neofelis nebulosa) is generally classified as a monotypic genus basal to the Panthera lineage of great cats. This secretive, mid-sized (16-23 kg) carnivore, now severely endangered, is traditionally subdivided into four southeast Asian subspecies (Figure 1A). We used molecular genetic methods to re-evaluate subspecies partitions and to quantify patterns of population genetic variation among 109 clouded leopards of known geographic origin (Figure 1A, Tables S1 ans S2 in the Supplemental Data available online). We found strong phylogeographic monophyly and large genetic distances between N. n. nebulosa (mainland) and N. n. diardi (Borneo; n = 3 individuals) with mtDNA (771 bp), nuclear DNA (3100 bp), and 51 microsatellite loci. Thirty-six fixed mitochondrial and nuclear nucleotide differences and 20 microsatellite loci with nonoverlapping allele-size ranges distinguished N. n. nebulosa from N. n. diardi. Along with fixed subspecies-specific chromosomal differences, this degree of differentiation is equivalent to, or greater than, comparable measures among five recognized Panthera species (lion, tiger, leopard, jaguar, and snow leopard). These distinctions increase the urgency of clouded leopard conservation efforts, and if affirmed by morphological analysis and wider sampling of N. n. diardi in Borneo and Sumatra, would support reclassification of N. n. diardi as a new species (Neofelis diardi).

  10. Comparative genomics identifies distinct lineages of S. Enteritidis from Queensland, Australia.

    Science.gov (United States)

    Graham, Rikki M A; Hiley, Lester; Rathnayake, Irani U; Jennison, Amy V

    2018-01-01

    Salmonella enterica is a major cause of gastroenteritis and foodborne illness in Australia where notification rates in the state of Queensland are the highest in the country. S. Enteritidis is among the five most common serotypes reported in Queensland and it is a priority for epidemiological surveillance due to concerns regarding its emergence in Australia. Using whole genome sequencing, we have analysed the genomic epidemiology of 217 S. Enteritidis isolates from Queensland, and observed that they fall into three distinct clades, which we have differentiated as Clades A, B and C. Phage types and MLST sequence types differed between the clades and comparative genomic analysis has shown that each has a unique profile of prophage and genomic islands. Several of the phage regions present in the S. Enteritidis reference strain P125109 were absent in Clades A and C, and these clades also had difference in the presence of pathogenicity islands, containing complete SPI-6 and SPI-19 regions, while P125109 does not. Antimicrobial resistance markers were found in 39 isolates, all but one of which belonged to Clade B. Phylogenetic analysis of the Queensland isolates in the context of 170 international strains showed that Queensland Clade B isolates group together with the previously identified global clade, while the other two clades are distinct and appear largely restricted to Australia. Locally sourced environmental isolates included in this analysis all belonged to Clades A and C, which is consistent with the theory that these clades are a source of locally acquired infection, while Clade B isolates are mostly travel related.

  11. Localization, Concentration, and Transmission Efficiency of Banana bunchy top virus in Four Asexual Lineages of Pentalonia aphids

    Directory of Open Access Journals (Sweden)

    Alberto Bressan

    2013-02-01

    Full Text Available Banana bunchy top virus (BBTV is the most destructive pathogenic virus of banana plants worldwide. The virus is transmitted in a circulative non-propagative manner by the banana aphid, Pentalonia nigronervosa Coquerel. In this work, we examined the localization, accumulation, and transmission efficiency of BBTV in four laboratory-established lineages of Pentalonia aphids derived from four different host plants: taro (Colocasia esculenta, heliconia (Heliconia spp., red ginger (Alpinia purpurata, and banana (Musa sp.. Mitochondrial sequencing identified three and one lineages as Pentalonia caladii van der Goot, a recently proposed species, and P. nigronervosa, respectively. Microsatellite analysis separated the aphid lineages into four distinct genotypes. The transmission of BBTV was tested using leaf disk and whole-plant assays, both of which showed that all four lineages are competent vectors of BBTV, although the P. caladii from heliconia transmitted BBTV to the leaf disks at a significantly lower rate than did P. nigronervosa. The concentration of BBTV in dissected guts, haemolymph, and salivary glands was quantified by real-time PCR. The BBTV titer reached similar concentrations in the guts, haemolymph, and salivary glands of aphids from all four lineages tested. Furthermore, immunofluorescence assays showed that BBTV antigens localized to the anterior midguts and the principal salivary glands, demonstrating a similar pattern of translocations across the four lineages. The results reported in this study showed for the first time that P. caladii is a competent vector of BBTV.

  12. Localization, concentration, and transmission efficiency of Banana bunchy top virus in four asexual lineages of Pentalonia aphids.

    Science.gov (United States)

    Watanabe, Shizu; Greenwell, April M; Bressan, Alberto

    2013-02-22

    Banana bunchy top virus (BBTV) is the most destructive pathogenic virus of banana plants worldwide. The virus is transmitted in a circulative non-propagative manner by the banana aphid, Pentalonia nigronervosa Coquerel. In this work, we examined the localization, accumulation, and transmission efficiency of BBTV in four laboratory-established lineages of Pentalonia aphids derived from four different host plants: taro (Colocasia esculenta), heliconia (Heliconia spp.), red ginger (Alpinia purpurata), and banana (Musa sp.). Mitochondrial sequencing identified three and one lineages as Pentalonia caladii van der Goot, a recently proposed species, and P. nigronervosa, respectively. Microsatellite analysis separated the aphid lineages into four distinct genotypes. The transmission of BBTV was tested using leaf disk and whole-plant assays, both of which showed that all four lineages are competent vectors of BBTV, although the P. caladii from heliconia transmitted BBTV to the leaf disks at a significantly lower rate than did P. nigronervosa. The concentration of BBTV in dissected guts, haemolymph, and salivary glands was quantified by real-time PCR. The BBTV titer reached similar concentrations in the guts, haemolymph, and salivary glands of aphids from all four lineages tested. Furthermore, immunofluorescence assays showed that BBTV antigens localized to the anterior midguts and the principal salivary glands, demonstrating a similar pattern of translocations across the four lineages. The results reported in this study showed for the first time that P. caladii is a competent vector of BBTV.

  13. Patterns of divergence across the geographic and genomic landscape of a butterfly hybrid zone associated with a climatic gradient

    Science.gov (United States)

    The process of speciation is impacted by the interaction between the genomic architecture of diverging lineages and the environmental context they occupy. Yet, while climate can have a significant impact on this interaction, its role in determining the patterns of geographic and genomic divergence i...

  14. The genetic legacy of religious diversity and intolerance: paternal lineages of Christians, Jews, and Muslims in the Iberian Peninsula.

    Science.gov (United States)

    Adams, Susan M; Bosch, Elena; Balaresque, Patricia L; Ballereau, Stéphane J; Lee, Andrew C; Arroyo, Eduardo; López-Parra, Ana M; Aler, Mercedes; Grifo, Marina S Gisbert; Brion, Maria; Carracedo, Angel; Lavinha, João; Martínez-Jarreta, Begoña; Quintana-Murci, Lluis; Picornell, Antònia; Ramon, Misericordia; Skorecki, Karl; Behar, Doron M; Calafell, Francesc; Jobling, Mark A

    2008-12-01

    Most studies of European genetic diversity have focused on large-scale variation and interpretations based on events in prehistory, but migrations and invasions in historical times could also have had profound effects on the genetic landscape. The Iberian Peninsula provides a suitable region for examination of the demographic impact of such recent events, because its complex recent history has involved the long-term residence of two very different populations with distinct geographical origins and their own particular cultural and religious characteristics-North African Muslims and Sephardic Jews. To address this issue, we analyzed Y chromosome haplotypes, which provide the necessary phylogeographic resolution, in 1140 males from the Iberian Peninsula and Balearic Islands. Admixture analysis based on binary and Y-STR haplotypes indicates a high mean proportion of ancestry from North African (10.6%) and Sephardic Jewish (19.8%) sources. Despite alternative possible sources for lineages ascribed a Sephardic Jewish origin, these proportions attest to a high level of religious conversion (whether voluntary or enforced), driven by historical episodes of social and religious intolerance, that ultimately led to the integration of descendants. In agreement with the historical record, analysis of haplotype sharing and diversity within specific haplogroups suggests that the Sephardic Jewish component is the more ancient. The geographical distribution of North African ancestry in the peninsula does not reflect the initial colonization and subsequent withdrawal and is likely to result from later enforced population movement-more marked in some regions than in others-plus the effects of genetic drift.

  15. Influence of host and geographic locale on the distribution of Colletotrichum cereale lineages

    Science.gov (United States)

    Colletotrichum cereale is an ascomycete inhabitant of cool-season grasses of the Pooideae subfamily. The fungus has increased in frequency over the past decade as a destructive pathogen of Poa annua and Agrostis stolonifera cultivated as turfgrass. DNA fingerprinting has revealed two distinct C. c...

  16. Unveiling current Guanaco distribution in chile based upon niche structure of phylogeographic lineages: Andean puna to subpolar forests.

    Directory of Open Access Journals (Sweden)

    Benito A González

    Full Text Available Niche description and differentiation at broad geographic scales have been recent major topics in ecology and evolution. Describing the environmental niche structure of sister taxa with known evolutionary trajectories stands out as a useful exercise in understanding niche requirements. Here we model the environmental niche structure and distribution of the recently resolved phylogeography of guanaco (Lama guanicoe lineages on the western slope of the southern Andes. Using a maximum entropy framework, field data, and information on climate, topography, human density, and vegetation cover, we identify differences between the two subspecies (L.g.cacsilensis, L.g.guanicoe and their intermediate-hybrid lineage, that most likely determine the distribution of this species. While aridity seems to be a major factor influencing the distribution at the species-level (annual precipitation <900 mm, we also document important differences in niche specificity for each subspecies, where distribution of Northern lineage is explained mainly by elevation (mean = 3,413 m and precipitation seasonality (mean = 161 mm, hybrid lineage by annual precipitation (mean = 139 mm, and Southern subspecies by annual precipitation (mean = 553 mm, precipitation seasonality (mean = 21 mm and grass cover (mean = 8.2%. Among lineages, we detected low levels of niche overlap: I (Similarity Index = 0.06 and D (Schoener's Similarity Index = 0.01; and higher levels when comparing Northern and Southern subspecies with hybrids lineage ( I = 0.32-0.10 and D = 0.12-0.03, respectively. This suggests that important ecological and/or evolutionary processes are shaping the niche of guanacos in Chile, producing discrepancies when comparing range distribution at the species-level (81,756 km(2 with lineages-level (65,321 km(2. The subspecies-specific description of niche structure is provided here based upon detailed spatial distribution of the lineages of guanacos in Chile. Such description

  17. Phylogenetic studies reveal existence of multiple lineages of a single genotype of DENV-1 (genotype III in India during 1956–2007

    Directory of Open Access Journals (Sweden)

    Bhattacharya D

    2009-01-01

    Full Text Available Abstract Background Dengue virus type 1 (DENV-1 have been mostly circulating silently with dominant serotypes DENV-2 and DENV-3 in India. However recent times have marked an increase in DENV-1 circulation in yearly outbreaks. Many studies have not been carried out on this virus type, leaving a lacunae pertaining to the circulating genotypes, since its earliest report in India. In the present study, we sequenced CprM gene junction of 13 DENV-1 isolated from Delhi and Gwalior (North India between 2001–2007 and one 1956 Vellore isolate as reference. For comparison, we retrieved 11 other Indian and 70 global reference sequences from NCBI database, making sure that Indian and global isolates from all decades are available for comparative analysis. Results The region was found to be AT rich with no insertion or deletion. Majority of the nucleotide substitutions were silent, except 3 non-conservative amino acid changes (I → T, A → T and L → S at amino acid positions 59,114 and 155 respectively in the Indian DENV-1 sequences, sequenced in this study. Except two 1997–98 Delhi isolates, which group in genotype I; all other Indian isolates group in genotype III. All Indian genotype III DENV-1 exhibited diversity among them, giving rise to at least 4 distinct lineages (India 1–4 showing proximity to isolates from diverse geographic locations. Conclusion The extensive phylogenetic analysis revealed consistent existence of multiple lineages of DENV-1 genotype III during the last 5 decades in India.

  18. Phylogenetic and paleobotanical evidence for late Miocene diversification of the Tertiary subtropical lineage of ivies (Hedera L., Araliaceae).

    Science.gov (United States)

    Valcárcel, V; Guzmán, B; Medina, N G; Vargas, P; Wen, J

    2017-06-22

    Hedera (ivies) is one of the few temperate genera of the primarily tropical Asian Palmate group of the Araliaceae, which extends its range out of Asia to Europe and the Mediterranean basin. Phylogenetic and phylogeographic results suggested Asia as the center of origin and the western Mediterranean region as one of the secondary centers of diversification. The bird-dispersed fleshy fruits of ivies suggest frequent dispersal over long distances (e.g. Macaronesian archipelagos), although reducing the impact of geographic barriers to gene flow in mainland species. Genetic isolation associated with geographic barriers and independent polyploidization events have been postulated as the main driving forces of diversification. In this study we aim to evaluate past and present diversification patterns in Hedera within a geographic and temporal framework to clarify the biogeographic history of the genus. Phylogenetic (biogeographic, time divergence and diversification) and phylogeographic (coalescence) analyses using four DNA regions (nrITS, trnH-psbA, trnT-trnL, rpl32) revealed a complex spatial pattern of lineage divergence. Scarce geographic limitation to gene flow and limited diversification are observed during the early-mid Miocene, followed by a diversification rate increase related to geographic divergence from the Tortonian/Messinian. Genetic and palaeobotanical evidence points the origin of the Hedera clade in Asia, followed by a gradual E-W Asian extinction and the progressive E-W Mediterranean colonization. The temporal framework for the E Asia - W Mediterranean westward colonization herein reported is congruent with the fossil record. Subsequent range expansion in Europe and back colonization to Asia is also inferred. Uneven diversification among geographic areas occurred from the Tortonian/Messinian onwards with limited diversification in the newly colonized European and Asian regions. Eastern and western Mediterranean regions acted as refugia for Miocene and

  19. Tracking human migrations by the analysis of the distribution of HLA alleles, lineages and haplotypes in closed and open populations

    Science.gov (United States)

    Vina, Marcelo A. Fernandez; Hollenbach, Jill A.; Lyke, Kirsten E.; Sztein, Marcelo B.; Maiers, Martin; Klitz, William; Cano, Pedro; Mack, Steven; Single, Richard; Brautbar, Chaim; Israel, Shosahna; Raimondi, Eduardo; Khoriaty, Evelyne; Inati, Adlette; Andreani, Marco; Testi, Manuela; Moraes, Maria Elisa; Thomson, Glenys; Stastny, Peter; Cao, Kai

    2012-01-01

    The human leucocyte antigen (HLA) system shows extensive variation in the number and function of loci and the number of alleles present at any one locus. Allele distribution has been analysed in many populations through the course of several decades, and the implementation of molecular typing has significantly increased the level of diversity revealing that many serotypes have multiple functional variants. While the degree of diversity in many populations is equivalent and may result from functional polymorphism(s) in peptide presentation, homogeneous and heterogeneous populations present contrasting numbers of alleles and lineages at the loci with high-density expression products. In spite of these differences, the homozygosity levels are comparable in almost all of them. The balanced distribution of HLA alleles is consistent with overdominant selection. The genetic distances between outbred populations correlate with their geographical locations; the formal genetic distance measurements are larger than expected between inbred populations in the same region. The latter present many unique alleles grouped in a few lineages consistent with limited founder polymorphism in which any novel allele may have been positively selected to enlarge the communal peptide-binding repertoire of a given population. On the other hand, it has been observed that some alleles are found in multiple populations with distinctive haplotypic associations suggesting that convergent evolution events may have taken place as well. It appears that the HLA system has been under strong selection, probably owing to its fundamental role in varying immune responses. Therefore, allelic diversity in HLA should be analysed in conjunction with other genetic markers to accurately track the migrations of modern humans. PMID:22312049

  20. Lineage divergence and historical gene flow in the Chinese horseshoe bat (Rhinolophus sinicus.

    Directory of Open Access Journals (Sweden)

    Xiuguang Mao

    Full Text Available Closely related taxa living in sympatry provide good opportunities to investigate the origin of barriers to gene flow as well as the extent of reproductive isolation. The only two recognized subspecies of the Chinese rufous horseshoe bat Rhinolophus sinicus are characterized by unusual relative distributions in which R. s. septentrionalis is restricted to a small area within the much wider range of its sister taxon R. s. sinicus. To determine the history of lineage divergence and gene flow between these taxa, we applied phylogenetic, demographic and coalescent analyses to multi-locus datasets. MtDNA gene genealogies and microsatellite-based clustering together revealed three divergent lineages of sinicus, corresponding to Central China, East China and the offshore Hainan Island. However, the central lineage of sinicus showed a closer relationship with septentrionalis than with other lineages of R. s. sinicus, in contrary to morphological data. Paraphyly of sinicus could result from either past asymmetric mtDNA introgression between these two taxa, or could suggest septentrionalis evolved in situ from its more widespread sister subspecies. To test between these hypotheses, we applied coalescent-based phylogenetic reconstruction and Approximate Bayesian Computation (ABC. We found that septentrionalis is likely to be the ancestral taxon and therefore a recent origin of this subspecies can be ruled out. On the other hand, we found a clear signature of asymmetric mtDNA gene flow from septentrionalis into central populations of sinicus yet no nuclear gene flow, thus strongly pointing to historical mtDNA introgression. We suggest that the observed deeply divergent lineages within R. sinicus probably evolved in isolation in separate Pleistocene refugia, although their close phylogeographic correspondence with distinct eco-environmental zones suggests that divergent selection might also have promoted broad patterns of population genetic structure.

  1. Comparing the Dictyostelium and Entamoeba genomes reveals an ancient split in the Conosa lineage.

    Directory of Open Access Journals (Sweden)

    Jie Song

    2005-12-01

    Full Text Available The Amoebozoa are a sister clade to the fungi and the animals, but are poorly sampled for completely sequenced genomes. The social amoeba Dictyostelium discoideum and amitochondriate pathogen Entamoeba histolytica are the first Amoebozoa with genomes completely sequenced. Both organisms are classified under the Conosa subphylum. To identify Amoebozoa-specific genomic elements, we compared these two genomes to each other and to other eukaryotic genomes. An expanded phylogenetic tree built from the complete predicted proteomes of 23 eukaryotes places the two amoebae in the same lineage, although the divergence is estimated to be greater than that between animals and fungi, and probably happened shortly after the Amoebozoa split from the opisthokont lineage. Most of the 1,500 orthologous gene families shared between the two amoebae are also shared with plant, animal, and fungal genomes. We found that only 42 gene families are distinct to the amoeba lineage; among these are a large number of proteins that contain repeats of the FNIP domain, and a putative transcription factor essential for proper cell type differentiation in D. discoideum. These Amoebozoa-specific genes may be useful in the design of novel diagnostics and therapies for amoebal pathologies.

  2. Retinoic acid is essential for Th1 cell lineage stability and prevents transition to a Th17 cell program.

    Science.gov (United States)

    Brown, Chrysothemis C; Esterhazy, Daria; Sarde, Aurelien; London, Mariya; Pullabhatla, Venu; Osma-Garcia, Ines; Al-Bader, Raya; Ortiz, Carla; Elgueta, Raul; Arno, Matthew; de Rinaldis, Emanuele; Mucida, Daniel; Lord, Graham M; Noelle, Randolph J

    2015-03-17

    CD4(+) T cells differentiate into phenotypically distinct T helper cells upon antigenic stimulation. Regulation of plasticity between these CD4(+) T-cell lineages is critical for immune homeostasis and prevention of autoimmune disease. However, the factors that regulate lineage stability are largely unknown. Here we investigate a role for retinoic acid (RA) in the regulation of lineage stability using T helper 1 (Th1) cells, traditionally considered the most phenotypically stable Th subset. We found that RA, through its receptor RARα, sustains stable expression of Th1 lineage specifying genes, as well as repressing genes that instruct Th17-cell fate. RA signaling is essential for limiting Th1-cell conversion into Th17 effectors and for preventing pathogenic Th17 responses in vivo. Our study identifies RA-RARα as a key component of the regulatory network governing maintenance and plasticity of Th1-cell fate and defines an additional pathway for the development of Th17 cells. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Comparative genomics of Bacillus anthracis from the wool industry highlights polymorphisms of lineage A.Br.Vollum.

    Science.gov (United States)

    Derzelle, Sylviane; Aguilar-Bultet, Lisandra; Frey, Joachim

    2016-12-01

    With the advent of affordable next-generation sequencing (NGS) technologies, major progress has been made in the understanding of the population structure and evolution of the B. anthracis species. Here we report the use of whole genome sequencing and computer-based comparative analyses to characterize six strains belonging to the A.Br.Vollum lineage. These strains were isolated in Switzerland, in 1981, during iterative cases of anthrax involving workers in a textile plant processing cashmere wool from the Indian subcontinent. We took advantage of the hundreds of currently available B. anthracis genomes in public databases, to investigate the genetic diversity existing within the A.Br.Vollum lineage and to position the six Swiss isolates into the worldwide B. anthracis phylogeny. Thirty additional genomes related to the A.Br.Vollum group were identified by whole-genome single nucleotide polymorphism (SNP) analysis, including two strains forming a new evolutionary branch at the basis of the A.Br.Vollum lineage. This new phylogenetic lineage (termed A.Br.H9401) splits off the branch leading to the A.Br.Vollum group soon after its divergence to the other lineages of the major A clade (i.e. 6 SNPs). The available dataset of A.Br.Vollum genomes were resolved into 2 distinct groups. Isolates from the Swiss wool processing facility clustered together with two strains from Pakistan and one strain of unknown origin isolated from yarn. They were clearly differentiated (69 SNPs) from the twenty-five other A.Br.Vollum strains located on the branch leading to the terminal reference strain A0488 of the lineage. Novel analytic assays specific to these new subgroups were developed for the purpose of rapid molecular epidemiology. Whole genome SNP surveys greatly expand upon our knowledge on the sub-structure of the A.Br.Vollum lineage. Possible origin and route of spread of this lineage worldwide are discussed. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights

  4. Unveiling current Guanaco distribution in chile based upon niche structure of phylogeographic lineages: Andean puna to subpolar forests.

    Science.gov (United States)

    González, Benito A; Samaniego, Horacio; Marín, Juan Carlos; Estades, Cristián F

    2013-01-01

    Niche description and differentiation at broad geographic scales have been recent major topics in ecology and evolution. Describing the environmental niche structure of sister taxa with known evolutionary trajectories stands out as a useful exercise in understanding niche requirements. Here we model the environmental niche structure and distribution of the recently resolved phylogeography of guanaco (Lama guanicoe) lineages on the western slope of the southern Andes. Using a maximum entropy framework, field data, and information on climate, topography, human density, and vegetation cover, we identify differences between the two subspecies (L.g.cacsilensis, L.g.guanicoe) and their intermediate-hybrid lineage, that most likely determine the distribution of this species. While aridity seems to be a major factor influencing the distribution at the species-level (annual precipitation ecological and/or evolutionary processes are shaping the niche of guanacos in Chile, producing discrepancies when comparing range distribution at the species-level (81,756 km(2)) with lineages-level (65,321 km(2)). The subspecies-specific description of niche structure is provided here based upon detailed spatial distribution of the lineages of guanacos in Chile. Such description provides a scientific tool to further develop large scale plans for habitat conservation and preservation of intraspecific genetic variability for this far ranging South American camelid, which inhabits a diversity of ecoregion types from Andean puna to subpolar forests.

  5. Comparative phylogeography reveals deep lineages and regional evolutionary hotspots in the Mojave and Sonoran Deserts

    Science.gov (United States)

    Wood, Dustin A.; Vandergast, Amy G.; Barr, Kelly R.; Inman, Richard D.; Esque, Todd C.; Nussear, Kenneth E.; Fisher, Robert N.

    2013-01-01

    Aim: We explored lineage diversification within desert-dwelling fauna. Our goals were (1) to determine whether phylogenetic lineages and population expansions were consistent with younger Pleistocene climate fluctuation hypotheses or much older events predicted by pre-Pleistocene vicariance hypotheses, (2) to assess concordance in spatial patterns of genetic divergence and diversity among species and (3) to identify regional evolutionary hotspots of divergence and diversity and assess their conservation status. Location: Mojave, Colorado, and Sonoran Deserts, USA. Methods: We analysed previously published gene sequence data for twelve species. We used Bayesian gene tree methods to estimate lineages and divergence times. Within each lineage, we tested for population expansion and age of expansion using coalescent approaches. We mapped interpopulation genetic divergence and intra-population genetic diversity in a GIS to identify hotspots of highest genetic divergence and diversity and to assess whether protected lands overlapped with evolutionary hotspots. Results: In seven of the 12 species, lineage divergence substantially predated the Pleistocene. Historical population expansion was found in eight species, but expansion events postdated the Last Glacial Maximum (LGM) in only four. For all species assessed, six hotspots of high genetic divergence and diversity were concentrated in the Colorado Desert, along the Colorado River and in the Mojave/Sonoran ecotone. At least some proportion of the land within each recovered hotspot was categorized as protected, yet four of the six also overlapped with major areas of human development. Main conclusions: Most of the species studied here diversified into distinct Mojave and Sonoran lineages prior to the LGM – supporting older diversification hypotheses. Several evolutionary hotspots were recovered but are not strategically paired with areas of protected land. Long-term preservation of species-level biodiversity would

  6. Whole-genome characterization of Uruguayan strains of avian infectious bronchitis virus reveals extensive recombination between the two major South American lineages.

    Science.gov (United States)

    Marandino, Ana; Tomás, Gonzalo; Panzera, Yanina; Greif, Gonzalo; Parodi-Talice, Adriana; Hernández, Martín; Techera, Claudia; Hernández, Diego; Pérez, Ruben

    2017-10-01

    Infectious bronchitis virus (Gammacoronavirus, Coronaviridae) is a genetically variable RNA virus that causes one of the most persistent respiratory diseases in poultry. The virus is classified in genotypes and lineages with different epidemiological relevance. Two lineages of the GI genotype (11 and 16) have been widely circulating for decades in South America. GI-11 is an exclusive South American lineage while the GI-16 lineage is distributed in Asia, Europe and South America. Here, we obtained the whole genome of two Uruguayan strains of the GI-11 and GI-16 lineages using Illumina high-throughput sequencing. The strains here sequenced are the first obtained in South America for the infectious bronchitis virus and provide new insights into the origin, spreading and evolution of viral variants. The complete genome of the GI-11 and GI-16 strains have 27,621 and 27,638 nucleotides, respectively, and possess the same genomic organization. Phylogenetic incongruence analysis reveals that both strains have a mosaic genome that arose by recombination between Euro Asiatic strains of the GI-16 lineage and ancestral South American GI-11 viruses. The recombination occurred in South America and produced two viral variants that have retained the full-length S1 sequences of the parental lineages but are extremely similar in the rest of their genomes. These recombinant virus have been extraordinary successful, persisting in the continent for several years with a notorious wide geographic distribution. Our findings reveal a singular viral dynamics and emphasize the importance of complete genomic characterization to understand the emergence and evolutionary history of viral variants. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The stream of precursors that colonizes the thymus proceeds selectively through the early T lineage precursor stage of T cell development

    Science.gov (United States)

    Benz, Claudia; Martins, Vera C.; Radtke, Freddy; Bleul, Conrad C.

    2008-01-01

    T cell development in the thymus depends on continuous colonization by hematopoietic precursors. Several distinct T cell precursors have been identified, but whether one or several independent precursor cell types maintain thymopoiesis is unclear. We have used thymus transplantation and an inducible lineage-tracing system to identify the intrathymic precursor cells among previously described thymus-homing progenitors that give rise to the T cell lineage in the thymus. Extrathymic precursors were not investigated in these studies. Both approaches show that the stream of T cell lineage precursor cells, when entering the thymus, selectively passes through the early T lineage precursor (ETP) stage. Immigrating precursor cells do not exhibit characteristics of double-negative (DN) 1c, DN1d, or DN1e stages, or of populations containing the common lymphoid precursor 2 (CLP-2) or the thymic equivalent of circulating T cell progenitors (CTPs). It remains possible that an unknown hematopoietic precursor cell or previously described extrathymic precursors with a CLP, CLP-2, or CTP phenotype feed into T cell development by circumventing known intrathymic T cell lineage progenitor cells. However, it is clear that of the known intrathymic precursors, only the ETP population contributes significant numbers of T lineage precursors to T cell development. PMID:18458114

  8. Specialization to Extremely Low-Nutrient Soils Limits the Nutritional Adaptability of Plant Lineages.

    Science.gov (United States)

    Verboom, G Anthony; Stock, William D; Cramer, Michael D

    2017-06-01

    Specialization to extreme selective situations promotes the acquisition of traits whose coadaptive integration may compromise evolutionary flexibility and adaptability. We test this idea in the context of the foliar stoichiometry of plants native to the South African Cape. Whereas foliar concentrations of nitrogen, phosphorus (P), potassium (K), calcium, magnesium, and sodium showed strong phylogenetic signal, as did the foliar ratios of these nutrients to P, the same was not true of the corresponding soil values. In addition, although foliar traits were often related to soil values, the coefficients of determination were consistently low. These results identify foliar stoichiometry as having a strong genetic component, with variation in foliar nutrient concentrations, especially [P] and [K], being identified as potentially adaptive. Comparison of stoichiometric variation across 11 similarly aged clades revealed consistently low foliar nutrient concentrations in lineages showing specialization to extremely low-nutrient fynbos heathlands. These lineages also display lower rates of evolution of these traits as well as a reduced tendency for foliar [P] to track soil [P]. Reduced evolutionary lability and adaptability in the nutritional traits of fynbos-specialist lineages may explain the floristic distinctness of the fynbos flora and implies a reduced scope for edaphically driven ecological speciation.

  9. The reanalysis of biogeography of the Asian tree frog, Rhacophorus (Anura: Rhacophoridae: geographic shifts and climatic change influenced the dispersal process and diversification

    Directory of Open Access Journals (Sweden)

    Tao Pan

    2017-11-01

    Full Text Available Rapid uplifts of the Tibetan Plateau and climate change in Asia are thought to have profoundly modulated the diversification of most of the species distributed throughout Asia. The ranoid tree frog genus Rhacophorus, the largest genus in the Rhacophoridae, is widely distributed in Asia and especially speciose in the areas south and east of the Tibetan Plateau. Here, we infer phylogenetic relationships among species and estimate divergence times, asking whether the spatiotemporal characteristics of diversification within Rhacophorus were related to rapid uplifts of the Tibetan Plateau and concomitant climate change. Phylogenetic analysis recovered distinct lineage structures in Rhacophorus, which indicated a clear distribution pattern from Southeast Asia toward East Asia and India. Molecular dating suggests that the first split within the genus date back to the Middle Oligocene (approx. 30 Ma. The Rhacophorus lineage through time (LTT showed that there were periods of increased speciation rate: 14–12 Ma and 10–4 Ma. In addition, ancestral area reconstructions supported Southeast Asia as the ancestral area of Rhacophorus. According to the results of molecular dating, ancestral area reconstructions and LTT we think the geographic shifts, the staged rapid rises of the Tibetan Plateau with parallel climatic changes and reinforcement of the Asian monsoons (15 Ma, 8 Ma and 4–3 Ma, possibly prompted a burst of diversification in Rhacophorus.

  10. Lineage specific recombination rates and microevolution in Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Nightingale Kendra K

    2008-10-01

    Full Text Available Abstract Background The bacterium Listeria monocytogenes is a saprotroph as well as an opportunistic human foodborne pathogen, which has previously been shown to consist of at least two widespread lineages (termed lineages I and II and an uncommon lineage (lineage III. While some L. monocytogenes strains show evidence for considerable diversification by homologous recombination, our understanding of the contribution of recombination to L. monocytogenes evolution is still limited. We therefore used STRUCTURE and ClonalFrame, two programs that model the effect of recombination, to make inferences about the population structure and different aspects of the recombination process in L. monocytogenes. Analyses were performed using sequences for seven loci (including the house-keeping genes gap, prs, purM and ribC, the stress response gene sigB, and the virulence genes actA and inlA for 195 L. monocytogenes isolates. Results Sequence analyses with ClonalFrame and the Sawyer's test showed that recombination is more prevalent in lineage II than lineage I and is most frequent in two house-keeping genes (ribC and purM and the two virulence genes (actA and inlA. The relative occurrence of recombination versus point mutation is about six times higher in lineage II than in lineage I, which causes a higher genetic variability in lineage II. Unlike lineage I, lineage II represents a genetically heterogeneous population with a relatively high proportion (30% average of genetic material imported from external sources. Phylograms, constructed with correcting for recombination, as well as Tajima's D data suggest that both lineages I and II have suffered a population bottleneck. Conclusion Our study shows that evolutionary lineages within a single bacterial species can differ considerably in the relative contributions of recombination to genetic diversification. Accounting for recombination in phylogenetic studies is critical, and new evolutionary models that

  11. Lineage-specific responses of microbial communities to environmental change.

    Science.gov (United States)

    Youngblut, Nicholas D; Shade, Ashley; Read, Jordan S; McMahon, Katherine D; Whitaker, Rachel J

    2013-01-01

    A great challenge facing microbial ecology is how to define ecologically relevant taxonomic units. To address this challenge, we investigated how changing the definition of operational taxonomic units (OTUs) influences the perception of ecological patterns in microbial communities as they respond to a dramatic environmental change. We used pyrosequenced tags of the bacterial V2 16S rRNA region, as well as clone libraries constructed from the cytochrome oxidase C gene ccoN, to provide additional taxonomic resolution for the common freshwater genus Polynucleobacter. At the most highly resolved taxonomic scale, we show that distinct genotypes associated with the abundant Polynucleobacter lineages exhibit divergent spatial patterns and dramatic changes over time, while the also abundant Actinobacteria OTUs are highly coherent. This clearly demonstrates that different bacterial lineages demand different taxonomic definitions to capture ecological patterns. Based on the temporal distribution of highly resolved taxa in the hypolimnion, we demonstrate that change in the population structure of a single genotype can provide additional insight into the mechanisms of community-level responses. These results highlight the importance and feasibility of examining ecological change in microbial communities across taxonomic scales while also providing valuable insight into the ecological characteristics of ecologically coherent groups in this system.

  12. Albinism in phylogenetically and geographically distinct populations of Astyanax cavefish arises through the same loss-of-function Oca2 allele

    Science.gov (United States)

    Gross, J B; Wilkens, H

    2013-01-01

    The Mexican tetra, Astyanax mexicanus, comprises 29 populations of cave-adapted fish distributed across a vast karst region in northeastern Mexico. These populations have a complex evolutionary history, having descended from ‘old' and ‘young' ancestral surface-dwelling stocks that invaded the region ∼6.7 and ∼2.8 MYa, respectively. This study investigates a set of captive, pigmented Astyanax cavefish collected from the Micos cave locality in 1970, in which albinism appeared over the past two decades. We combined novel coloration analyses, coding sequence comparisons and mRNA expression level studies to investigate the origin of albinism in captive-bred Micos cavefish. We discovered that albino Micos cavefish harbor two copies of a loss-of-function ocular and cutaneous albinism type II (Oca2) allele previously identified in the geographically distant Pachón cave population. This result suggests that phylogenetically young Micos cavefish and phylogenetically old Pachón cave fish inherited this Oca2 allele from the ancestral surface-dwelling taxon. This likely resulted from the presence of the loss-of-function Oca2 haplotype in the ‘young' ancestral surface-dwelling stock that colonized the Micos cave and also introgressed into the ancient Pachón cave population. The appearance of albinism in captive Micos cavefish, caused by the same loss-of-function allele present in Pachón cavefish, implies that geographically and phylogenetically distinct cave populations can evolve the same troglomorphic phenotype from standing genetic variation present in the ancestral taxon. PMID:23572122

  13. Using Visual Basic to Teach Programming for Geographers.

    Science.gov (United States)

    Slocum, Terry A.; Yoder, Stephen C.

    1996-01-01

    Outlines reasons why computer programming should be taught to geographers. These include experience using macro (scripting) languages and sophisticated visualization software, and developing a deeper understanding of general hardware and software capabilities. Discusses the distinct advantages and few disadvantages of the programming language…

  14. Barcoding of Asian seabass across its geographic range provides evidence for its bifurcation into two distinct species

    Directory of Open Access Journals (Sweden)

    Shubha eVij

    2014-08-01

    Full Text Available Asian seabass or barramundi (Lates calcarifer is an important food fish with commercial value and a wide geographic distribution. Though some reports based on molecular and/or morphological data exist, a comprehensive effort to establish species identity across its range is lacking. In order to address this issue and especially to ascertain whether the wide-spread distribution has resulted in bifurcation of the species, we collected Asian seabass samples from various locations representing the Western and Eastern Coastline of India, Andaman and Nicobar Islands, Bangladesh and Australia. Samples from Malaysia, Indonesia, Thailand and Singapore were collected as part of a previous study. DNA sequence variations, including cytochrome c oxidase subunit 1 (COI, 16S rDNA and the highly variable D-loop (or control region, were examined to establish species delineation. Data from all the sequences analyzed concordantly point to the existence of at least two distinct species - one representing the Indian subcontinent plus Myanmar, and a second, representing Southeast Asia (Singapore, Malaysia, Thailand and Indonesia plus Northern Australia. These data are useful for conservation ecology, aquaculture management, for establishing the extent of genetic diversity in the Asian seabass and implementing selective breeding programs for members of this species complex.

  15. Acute leukemias of ambiguous lineage.

    Science.gov (United States)

    Béné, Marie C; Porwit, Anna

    2012-02-01

    The 2008 edition of the WHO Classification of Tumors of Haematopoietic and Lymphoid Tissues recognizes a special category called "leukemias of ambiguous lineage." The vast majority of these rare leukemias are classified as mixed phenotype acute leukemia (MPAL), although acute undifferentiated leukemias and natural killer lymphoblastic leukemias are also included. The major immunophenotypic markers used by the WHO 2008 to determine the lineage for these proliferations are myeloperoxidase, CD19, and cytoplasmic CD3. However, extensive immunophenotyping is necessary to confirm that the cells indeed belong to 2 different lineages or coexpress differentiation antigens of more than 1 lineage. Specific subsets of MPAL are defined by chromosomal anomalies such as the t(9;22) Philadelphia chromosome BCR-ABL1 or involvement of the MLL gene on chromosome 11q23. Other MPAL are divided into B/myeloid NOS, T/myeloid NOS, B/T NOS, and B/T/myeloid NOS. MPAL are usually of dire prognosis, respond variably to chemotherapy of acute lymphoblastic or acute myeloblastic type, and benefit most from rapid allogeneic hematopoietic stem cell transplantation.

  16. Subcellular Lipid Droplets in Vanilla Leaf Epidermis and Avocado Mesocarp Are Coated with Oleosins of Distinct Phylogenic Lineages1[OPEN

    Science.gov (United States)

    2016-01-01

    Subcellular lipid droplets (LDs) in diverse plant cells and species are coated with stabilizing oleosins of at least five phylogenic lineages and perform different functions. We examined two types of inadequately studied LDs for coated oleosins and their characteristics. The epidermis but not mesophyll of leaves of vanilla (Vanilla planifolia) and most other Asparagales species contained solitary and clustered LDs (avocado (Persea americana) and other Lauraceae species possessed large LDs, which likely function in attracting animals for seed dispersal. They contained transcripts of oleosin of a novel M phylogenic lineage. Each avocado mesocarp fatty cell possessed one to several large LDs (5 to 20 μm) and at their periphery, numerous small LDs (<0.5 μm). Immuno-confocal laser scanning microscopy revealed that oleosin was present mostly on the small LDs. LDs in isolated fractions coalesced rapidly, and the fraction contained oleosin and several other proteins and triacylglycerols as the main lipids. These two new types of oleosin-LDs exemplify the evolutionary plasticity of oleosins-LDs in generating novel functions in diverse cell types and species. PMID:27208281

  17. A Clonal Lineage of Fusarium oxysporum Circulates in the Tap Water of Different French Hospitals.

    Science.gov (United States)

    Edel-Hermann, Véronique; Sautour, Marc; Gautheron, Nadine; Laurent, Julie; Aho, Serge; Bonnin, Alain; Sixt, Nathalie; Hartemann, Philippe; Dalle, Frédéric; Steinberg, Christian

    2016-11-01

    Fusarium oxysporum is typically a soilborne fungus but can also be found in aquatic environments. In hospitals, water distribution systems may be reservoirs for the fungi responsible for nosocomial infections. F. oxysporum was previously detected in the water distribution systems of five French hospitals. Sixty-eight isolates from water representative of all hospital units that were previously sampled and characterized by translation elongation factor 1α sequence typing were subjected to microsatellite analysis and full-length ribosomal intergenic spacer (IGS) sequence typing. All but three isolates shared common microsatellite loci and a common two-locus sequence type (ST). This ST has an international geographical distribution in both the water networks of hospitals and among clinical isolates. The ST dominant in water was not detected among 300 isolates of F. oxysporum that originated from surrounding soils. Further characterization of 15 isolates by vegetative compatibility testing allowed us to conclude that a clonal lineage of F. oxysporum circulates in the tap water of the different hospitals. We demonstrated that a clonal lineage of Fusarium oxysporum inhabits the water distribution systems of several French hospitals. This clonal lineage, which appears to be particularly adapted to water networks, represents a potential risk for human infection and raises questions about its worldwide distribution. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Change of niche in guanaco (Lama guanicoe: the effects of climate change on habitat suitability and lineage conservatism in Chile

    Directory of Open Access Journals (Sweden)

    Andrea G. Castillo

    2018-05-01

    Full Text Available Background The main goal of this contribution was to define the ecological niche of the guanaco (Lama guanicoe, to describe potential distributional changes, and to assess the relative importance of niche conservatism and divergence processes between the two lineages described for the species (L.g. cacsilensis and L.g. guanicoe. Methods We used maximum entropy to model lineage’s climate niche from 3,321 locations throughout continental Chile, and developed future niche models under climate change for two extreme greenhouse gas emission scenarios (RCP2.6 and RCP8.5. We evaluated changes of the environmental niche and future distribution of the largest mammal in the Southern Cone of South America. Evaluation of niche conservatism and divergence were based on identity and background similarity tests. Results We show that: (a the current geographic distribution of lineages is associated with different climatic requirements that are related to the geographic areas where these lineages are located; (b future distribution models predict a decrease in the distribution surface under both scenarios; (c a 3% decrease of areal protection is expected if the current distribution of protected areas is maintained, and this is expected to occur at the expense of a large reduction of high quality habitats under the best scenario; (d current and future distribution ranges of guanaco mostly adhere to phylogenetic niche divergence hypotheses between lineages. Discussion Associating environmental variables with species ecological niche seems to be an important aspect of unveiling the particularities of, both evolutionary patterns and ecological features that species face in a changing environment. We report specific descriptions of how these patterns may play out under the most extreme climate change predictions and provide a grim outlook of the future potential distribution of guanaco in Chile. From an ecological perspective, while a slightly smaller distribution

  19. Analysis of a new strain of Euphorbia mosaic virus with distinct replication specificity unveils a lineage of begomoviruses with short Rep sequences in the DNA-B intergenic region

    Directory of Open Access Journals (Sweden)

    Argüello-Astorga Gerardo R

    2010-10-01

    Full Text Available Abstract Background Euphorbia mosaic virus (EuMV is a member of the SLCV clade, a lineage of New World begomoviruses that display distinctive features in their replication-associated protein (Rep and virion-strand replication origin. The first entirely characterized EuMV isolate is native from Yucatan Peninsula, Mexico; subsequently, EuMV was detected in weeds and pepper plants from another region of Mexico, and partial DNA-A sequences revealed significant differences in their putative replication specificity determinants with respect to EuMV-YP. This study was aimed to investigate the replication compatibility between two EuMV isolates from the same country. Results A new isolate of EuMV was obtained from pepper plants collected at Jalisco, Mexico. Full-length clones of both genomic components of EuMV-Jal were biolistically inoculated into plants of three different species, which developed symptoms indistinguishable from those induced by EuMV-YP. Pseudorecombination experiments with EuMV-Jal and EuMV-YP genomic components demonstrated that these viruses do not form infectious reassortants in Nicotiana benthamiana, presumably because of Rep-iteron incompatibility. Sequence analysis of the EuMV-Jal DNA-B intergenic region (IR led to the unexpected discovery of a 35-nt-long sequence that is identical to a segment of the rep gene in the cognate viral DNA-A. Similar short rep sequences ranging from 35- to 51-nt in length were identified in all EuMV isolates and in three distinct viruses from South America related to EuMV. These short rep sequences in the DNA-B IR are positioned downstream to a ~160-nt non-coding domain highly similar to the CP promoter of begomoviruses belonging to the SLCV clade. Conclusions EuMV strains are not compatible in replication, indicating that this begomovirus species probably is not a replicating lineage in nature. The genomic analysis of EuMV-Jal led to the discovery of a subgroup of SLCV clade viruses that contain in

  20. Evaluation of customised lineage-specific sets of MIRU-VNTR loci for genotyping Mycobacterium tuberculosis complex isolates in Ghana.

    Science.gov (United States)

    Asante-Poku, Adwoa; Nyaho, Michael Selasi; Borrell, Sonia; Comas, Iñaki; Gagneux, Sebastien; Yeboah-Manu, Dorothy

    2014-01-01

    Different combinations of variable number of tandem repeat (VNTR) loci have been proposed for genotyping Mycobacterium tuberculosis complex (MTBC). Existing VNTR schemes show different discriminatory capacity among the six human MTBC lineages. Here, we evaluated the discriminatory power of a "customized MIRU12" loci format proposed previously by Comas et al. based on the standard 24 loci defined by Supply et al. for VNTR-typing of MTBC in Ghana. One hundred and fifty-eight MTBC isolates classified into Lineage 4 and Lineage 5 were used to compare a customized lineage-specific panel of 12 MIRU-VNTR loci ("customized MIRU-12") to the standard MIRU-15 genotyping scheme. The resolution power of each typing method was determined based on the Hunter-Gaston- Discriminatory Index (HGDI). A minimal set of customized MIRU-VNTR loci for typing Lineages 4 (Euro-American) and 5 (M. africanum West African 1) strains from Ghana was defined based on the cumulative HGDI. Among the 106 Lineage 4 strains, the customized MIRU-12 identified a total of 104 distinct genotypes consisting of 2 clusters of 2 isolates each (clustering rate 1.8%), and 102 unique strains while standard MIRU-15 yielded a total of 105 different genotypes, including 1 cluster of 2 isolates (clustering rate: 0.9%) and 104 singletons. Among, 52 Lineage 5 isolates, customized MIRU-12 genotyping defined 51 patterns with 1 cluster of 2 isolates (clustering rate: 0.9%) and 50 unique strains whereas MIRU-15 classified all 52 strains as unique. Cumulative HGDI values for customized MIRU-12 for Lineages 4 and 5 were 0.98 respectively whilst that of standard MIRU-15 was 0.99. A union of loci from the customised MIRU-12 and standard MIRU-15 revealed a set of customized eight highly discriminatory loci: 4052, 2163B, 40, 4165, 2165, 10,16 and 26 with a cumulative HGDI of 0.99 for genotyping Lineage 4 and 5 strains from Ghana.

  1. Evaluation of customised lineage-specific sets of MIRU-VNTR loci for genotyping Mycobacterium tuberculosis complex isolates in Ghana.

    Directory of Open Access Journals (Sweden)

    Adwoa Asante-Poku

    Full Text Available BACKGROUND: Different combinations of variable number of tandem repeat (VNTR loci have been proposed for genotyping Mycobacterium tuberculosis complex (MTBC. Existing VNTR schemes show different discriminatory capacity among the six human MTBC lineages. Here, we evaluated the discriminatory power of a "customized MIRU12" loci format proposed previously by Comas et al. based on the standard 24 loci defined by Supply et al. for VNTR-typing of MTBC in Ghana. METHOD: One hundred and fifty-eight MTBC isolates classified into Lineage 4 and Lineage 5 were used to compare a customized lineage-specific panel of 12 MIRU-VNTR loci ("customized MIRU-12" to the standard MIRU-15 genotyping scheme. The resolution power of each typing method was determined based on the Hunter-Gaston- Discriminatory Index (HGDI. A minimal set of customized MIRU-VNTR loci for typing Lineages 4 (Euro-American and 5 (M. africanum West African 1 strains from Ghana was defined based on the cumulative HGDI. RESULTS AND CONCLUSION: Among the 106 Lineage 4 strains, the customized MIRU-12 identified a total of 104 distinct genotypes consisting of 2 clusters of 2 isolates each (clustering rate 1.8%, and 102 unique strains while standard MIRU-15 yielded a total of 105 different genotypes, including 1 cluster of 2 isolates (clustering rate: 0.9% and 104 singletons. Among, 52 Lineage 5 isolates, customized MIRU-12 genotyping defined 51 patterns with 1 cluster of 2 isolates (clustering rate: 0.9% and 50 unique strains whereas MIRU-15 classified all 52 strains as unique. Cumulative HGDI values for customized MIRU-12 for Lineages 4 and 5 were 0.98 respectively whilst that of standard MIRU-15 was 0.99. A union of loci from the customised MIRU-12 and standard MIRU-15 revealed a set of customized eight highly discriminatory loci: 4052, 2163B, 40, 4165, 2165, 10,16 and 26 with a cumulative HGDI of 0.99 for genotyping Lineage 4 and 5 strains from Ghana.

  2. Circulation of different lineages of Dengue virus 2, genotype American/Asian in Brazil: dynamics and molecular and phylogenetic characterization.

    Directory of Open Access Journals (Sweden)

    Betânia Paiva Drumond

    Full Text Available The American/Asian genotype of Dengue virus type 2 (DENV-2 was introduced into the Americas in the 80's. Although there is no data showing when this genotype was first introduced into Brazil, it was first detected in Brazil in 1990. After which the virus spread throughout the country and major epidemics occurred in 1998, 2007/08 and 2010. In this study we sequenced 12 DENV-2 genomes obtained from serum samples of patients with dengue fever residing in São José do Rio Preto, São Paulo (SJRP/SP, Brazil, in 2008. The whole open reading frame or envelope sequences were used to perform phylogenetic, phylogeographic and evolutionary analyses. Isolates from SJRP/SP were grouped within one lineage (BR3 close to isolates from Rio de Janeiro, Brazil. Isolates from SJRP were probably introduced there at least in 2007, prior to its detection in the 2008 outbreak. DENV-2 circulation in Brazil is characterized by the introduction, displacement and circulation of three well-defined lineages in different times, most probably from the Caribbean. Thirty-seven unique amino acid substitutions were observed among the lineages, including seven amino acid differences in domains I to III of the envelope protein. Moreover, we dated here, for the first time, the introduction of American/Asian genotype into Brazil (lineage BR1 to 1988/89, followed by the introduction of lineages BR2 (1998-2000 and BR3 (2003-05. Our results show a delay between the introduction and detection of DENV-2 lineages in Brazil, reinforcing the importance and need for surveillance programs to detect and trace the evolution of these viruses. Additionally, Brazilian DENV-2 differed in genetic diversity, date of introduction and geographic origin and distribution in Brazil, and these are important factors for the evolution, dynamics and control of dengue.

  3. Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells.

    Science.gov (United States)

    Soucie, Erinn L; Weng, Ziming; Geirsdóttir, Laufey; Molawi, Kaaweh; Maurizio, Julien; Fenouil, Romain; Mossadegh-Keller, Noushine; Gimenez, Gregory; VanHille, Laurent; Beniazza, Meryam; Favret, Jeremy; Berruyer, Carole; Perrin, Pierre; Hacohen, Nir; Andrau, J-C; Ferrier, Pierre; Dubreuil, Patrice; Sidow, Arend; Sieweke, Michael H

    2016-02-12

    Differentiated macrophages can self-renew in tissues and expand long term in culture, but the gene regulatory mechanisms that accomplish self-renewal in the differentiated state have remained unknown. Here we show that in mice, the transcription factors MafB and c-Maf repress a macrophage-specific enhancer repertoire associated with a gene network that controls self-renewal. Single-cell analysis revealed that, in vivo, proliferating resident macrophages can access this network by transient down-regulation of Maf transcription factors. The network also controls embryonic stem cell self-renewal but is associated with distinct embryonic stem cell-specific enhancers. This indicates that distinct lineage-specific enhancer platforms regulate a shared network of genes that control self-renewal potential in both stem and mature cells. Copyright © 2016, American Association for the Advancement of Science.

  4. Identification of a PVL-negative SCCmec-IVa sub-lineage of the methicillin-resistant Staphylococcus aureus CC80 lineage

    DEFF Research Database (Denmark)

    Edslev, Sofie Marie; Westh, Henrik Torkil; Andersen, Paal Skytt

    2018-01-01

    of the CC80 S. aureus lineage was conducted from whole-genome sequences of 217 isolates (23 MSSA and 194 MRSA) from 22 countries. All isolates were further genetically characterized in regard to resistance determinants and PVL carriage, and epidemiological data was obtained for selected isolates. RESULTS....... CONCLUSIONS: This study reports the emergence of a novel CC80 CA-MRSA sub-lineage, showing that the CC80 lineage is more diverse than previously assumed....

  5. Y-chromosome lineages from Portugal, Madeira and Açores record elements of Sephardim and Berber ancestry.

    Science.gov (United States)

    Gonçalves, Rita; Freitas, Ana; Branco, Marta; Rosa, Alexandra; Fernandes, Ana T; Zhivotovsky, Lev A; Underhill, Peter A; Kivisild, Toomas; Brehm, António

    2005-07-01

    A total of 553 Y-chromosomes were analyzed from mainland Portugal and the North Atlantic Archipelagos of Açores and Madeira, in order to characterize the genetic composition of their male gene pool. A large majority (78-83% of each population) of the male lineages could be classified as belonging to three basic Y chromosomal haplogroups, R1b, J, and E3b. While R1b, accounting for more than half of the lineages in any of the Portuguese sub-populations, is a characteristic marker of many different West European populations, haplogroups J and E3b consist of lineages that are typical of the circum-Mediterranean region or even East Africa. The highly diverse haplogroup E3b in Portuguese likely combines sub-clades of distinct origins. The present composition of the Y chromosomes in Portugal in this haplogroup likely reflects a pre-Arab component shared with North African populations or testifies, at least in part, to the influence of Sephardic Jews. In contrast to the marginally low sub-Saharan African Y chromosome component in Portuguese, such lineages have been detected at a moderately high frequency in our previous survey of mtDNA from the same samples, indicating the presence of sex-related gene flow, most likely mediated by the Atlantic slave trade.

  6. Genetic signatures coupled with lineage shift characterise endemic evolution of Dengue virus serotype 2 during 2015 outbreak in Delhi, India.

    Science.gov (United States)

    Choudhary, Manish Chandra; Gupta, Ekta; Sharma, Shvetank; Hasnain, Nadeem; Agarwala, Pragya

    2017-07-01

    In 2015, New Delhi witnessed a massive outbreak of Dengue virus (DENV) resulting in high morbidity and mortality. We report the molecular characterisation of the dominant circulating DENV strain to understand its evolution and dispersal. DENV infections were diagnosed by detection of IgM/NS1 antigen, and serotyping was performed by C-PrM PCR. Envelope gene was amplified, and variation(s) in envelope gene were analysed. Phylogenetic tree construction, time-based phylogeny and origin of DENV were analysed. Site-specific selection pressure of envelope gene variants was analysed. Confirmed DENV infection was observed in 11.34% (32 of 282) cases, while PCR positivity for C-PrM region was observed in 54.16% (13 of 24) of NS1 antigen-positive cases. All samples belonged to serotype 2 and cosmopolitan genotype. Phylogenetic analysis using envelope gene revealed segregation of cosmopolitan genotype strains into specific lineages. The Indian strains clustered separately forming a distinct monophyletic lineage (lineage III) with a signature amino acid substitution viz., I162V and R288K. Selection pressure analysis revealed that 215D, 288R and 304K were positively selected sites. The rate of nucleotide substitution was 6.93 × 10 -4 substitutions site-1 year-1 with time to most common ancestor was around 10 years with JX475906 (Hyderabad strain) and JN030345 (Singapore strain) as its most probable ancestor. We observed evolution of a distinct lineage of DENV-2 strains on the Indian subcontinent with possible changes in endemic circulating dengue strains that might give rise to more pathogenic strains. © 2017 John Wiley & Sons Ltd.

  7. A reporter mouse model for in vivo tracing and in vitro molecular studies of melanocytic lineage cells and their diseases

    Directory of Open Access Journals (Sweden)

    Melissa Crawford

    2017-08-01

    Full Text Available Alterations in melanocytic lineage cells give rise to a plethora of distinct human diseases, including neurocristopathies, cutaneous pigmentation disorders, loss of vision and hearing, and melanoma. Understanding the ontogeny and biology of melanocytic cells, as well as how they interact with their surrounding environment, are key steps in the development of therapies for diseases that involve this cell lineage. Efforts to culture and characterize primary melanocytes from normal or genetically engineered mouse models have at times yielded contrasting observations. This is due, in part, to differences in the conditions used to isolate, purify and culture these cells in individual studies. By breeding ROSAmT/mG and Tyr::CreERT2 mice, we generated animals in which melanocytic lineage cells are identified through expression of green fluorescent protein. We also used defined conditions to systematically investigate the proliferation and migration responses of primary melanocytes on various extracellular matrix (ECM substrates. Under our culture conditions, mouse melanocytes exhibit doubling times in the range of 10 days, and retain exponential proliferative capacity for 50-60 days. In culture, these melanocytes showed distinct responses to different ECM substrates. Specifically, laminin-332 promoted cell spreading, formation of dendrites, random motility and directional migration. In contrast, low or intermediate concentrations of collagen I promoted adhesion and acquisition of a bipolar morphology, and interfered with melanocyte forward movements. Our systematic evaluation of primary melanocyte responses emphasizes the importance of clearly defining culture conditions for these cells. This, in turn, is essential for the interpretation of melanocyte responses to extracellular cues and to understand the molecular basis of disorders involving the melanocytic cell lineage.

  8. Genome-wide evolutionary dynamics of influenza B viruses on a global scale.

    Directory of Open Access Journals (Sweden)

    Pinky Langat

    2017-12-01

    Full Text Available The global-scale epidemiology and genome-wide evolutionary dynamics of influenza B remain poorly understood compared with influenza A viruses. We compiled a spatio-temporally comprehensive dataset of influenza B viruses, comprising over 2,500 genomes sampled worldwide between 1987 and 2015, including 382 newly-sequenced genomes that fill substantial gaps in previous molecular surveillance studies. Our contributed data increase the number of available influenza B virus genomes in Europe, Africa and Central Asia, improving the global context to study influenza B viruses. We reveal Yamagata-lineage diversity results from co-circulation of two antigenically-distinct groups that also segregate genetically across the entire genome, without evidence of intra-lineage reassortment. In contrast, Victoria-lineage diversity stems from geographic segregation of different genetic clades, with variability in the degree of geographic spread among clades. Differences between the lineages are reflected in their antigenic dynamics, as Yamagata-lineage viruses show alternating dominance between antigenic groups, while Victoria-lineage viruses show antigenic drift of a single lineage. Structural mapping of amino acid substitutions on trunk branches of influenza B gene phylogenies further supports these antigenic differences and highlights two potential mechanisms of adaptation for polymerase activity. Our study provides new insights into the epidemiological and molecular processes shaping influenza B virus evolution globally.

  9. Genome-wide evolutionary dynamics of influenza B viruses on a global scale

    Science.gov (United States)

    Langat, Pinky; Bowden, Thomas A.; Edwards, Stephanie; Gall, Astrid; Rambaut, Andrew; Daniels, Rodney S.; Russell, Colin A.; Pybus, Oliver G.; McCauley, John

    2017-01-01

    The global-scale epidemiology and genome-wide evolutionary dynamics of influenza B remain poorly understood compared with influenza A viruses. We compiled a spatio-temporally comprehensive dataset of influenza B viruses, comprising over 2,500 genomes sampled worldwide between 1987 and 2015, including 382 newly-sequenced genomes that fill substantial gaps in previous molecular surveillance studies. Our contributed data increase the number of available influenza B virus genomes in Europe, Africa and Central Asia, improving the global context to study influenza B viruses. We reveal Yamagata-lineage diversity results from co-circulation of two antigenically-distinct groups that also segregate genetically across the entire genome, without evidence of intra-lineage reassortment. In contrast, Victoria-lineage diversity stems from geographic segregation of different genetic clades, with variability in the degree of geographic spread among clades. Differences between the lineages are reflected in their antigenic dynamics, as Yamagata-lineage viruses show alternating dominance between antigenic groups, while Victoria-lineage viruses show antigenic drift of a single lineage. Structural mapping of amino acid substitutions on trunk branches of influenza B gene phylogenies further supports these antigenic differences and highlights two potential mechanisms of adaptation for polymerase activity. Our study provides new insights into the epidemiological and molecular processes shaping influenza B virus evolution globally. PMID:29284042

  10. Interspecific geographic range size-body size relationship and the diversification dynamics of Neotropical furnariid birds.

    Science.gov (United States)

    Inostroza-Michael, Oscar; Hernández, Cristián E; Rodríguez-Serrano, Enrique; Avaria-Llautureo, Jorge; Rivadeneira, Marcelo M

    2018-05-01

    Among the earliest macroecological patterns documented, is the range and body size relationship, characterized by a minimum geographic range size imposed by the species' body size. This boundary for the geographic range size increases linearly with body size and has been proposed to have implications in lineages evolution and conservation. Nevertheless, the macroevolutionary processes involved in the origin of this boundary and its consequences on lineage diversification have been poorly explored. We evaluate the macroevolutionary consequences of the difference (hereafter the distance) between the observed and the minimum range sizes required by the species' body size, to untangle its role on the diversification of a Neotropical species-rich bird clade using trait-dependent diversification models. We show that speciation rate is a positive hump-shaped function of the distance to the lower boundary. The species with highest and lowest distances to minimum range size had lower speciation rates, while species close to medium distances values had the highest speciation rates. Further, our results suggest that the distance to the minimum range size is a macroevolutionary constraint that affects the diversification process responsible for the origin of this macroecological pattern in a more complex way than previously envisioned. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  11. Outbreaks of Foot-and-Mouth Disease in Libya and Saudi Arabia During 2013 Due to an Exotic O/ME-SA/Ind-2001 Lineage Virus.

    Science.gov (United States)

    Knowles, N J; Bachanek-Bankowska, K; Wadsworth, J; Mioulet, V; Valdazo-González, B; Eldaghayes, I M; Dayhum, A S; Kammon, A M; Sharif, M A; Waight, S; Shamia, A M; Tenzin, S; Wernery, U; Grazioli, S; Brocchi, E; Subramaniam, S; Pattnaik, B; King, D P

    2016-10-01

    Foot-and-mouth disease viruses are often restricted to specific geographical regions and spread to new areas may lead to significant epidemics. Phylogenetic analysis of sequences of the VP1 genome region of recent outbreak viruses from Libya and Saudi Arabia has revealed a lineage, O-Ind-2001, normally found in the Indian subcontinent. This paper describes the characterization of field viruses collected from these cases and provides information about a new real-time RT-PCR assay that can be used to detect viruses from this lineage and discriminate them from other endemic FMD viruses that are co-circulating in North Africa and western Eurasia. © 2014 The Authors. Transboundary and Emerging Diseases Published by Blackwell Verlag GmbH.

  12. The Key Role of Epigenetics in the Persistence of Asexual Lineages

    Directory of Open Access Journals (Sweden)

    Emilie Castonguay

    2012-01-01

    Full Text Available Asexual organisms, often perceived as evolutionary dead ends, can be long-lived and geographically widespread. We propose that epigenetic mechanisms could play a crucial role in the evolutionary persistence of these lineages. Genetically identical organisms could rely on phenotypic plasticity to face environmental variation. Epigenetic modifications could be the molecular mechanism enabling such phenotypic plasticity; they can be influenced by the environment and act at shorter timescales than mutation. Recent work on the asexual vertebrate Chrosomus eos-neogaeus (Pisces: Cyprinidae provides broad insights into the contribution of epigenetics in genetically identical individuals. We discuss the extension of these results to other asexual organisms, in particular those resulting from interspecific hybridizations. We finally develop on the evolutionary relevance of epigenetic variation in the context of heritability.

  13. Multiple mesodermal lineage differentiation of Apodemus sylvaticus embryonic stem cells in vitro

    Directory of Open Access Journals (Sweden)

    Yu Weihua

    2010-06-01

    Full Text Available Abstract Background Embryonic stem (ES cells have attracted significant attention from researchers around the world because of their ability to undergo indefinite self-renewal and produce derivatives from the three cell lineages, which has enormous value in research and clinical applications. Until now, many ES cell lines of different mammals have been established and studied. In addition, recently, AS-ES1 cells derived from Apodemus sylvaticus were established and identified by our laboratory as a new mammalian ES cell line. Hence further research, in the application of AS-ES1 cells, is warranted. Results Herein we report the generation of multiple mesodermal AS-ES1 lineages via embryoid body (EB formation by the hanging drop method and the addition of particular reagents and factors for induction at the stage of EB attachment. The AS-ES1 cells generated separately in vitro included: adipocytes, osteoblasts, chondrocytes and cardiomyocytes. Histochemical staining, immunofluorescent staining and RT-PCR were carried out to confirm the formation of multiple mesodermal lineage cells. Conclusions The appropriate reagents and culture milieu used in mesodermal differentiation of mouse ES cells also guide the differentiation of in vitro AS-ES1 cells into distinct mesoderm-derived cells. This study provides a better understanding of the characteristics of AS-ES1 cells, a new species ES cell line and promotes the use of Apodemus ES cells as a complement to mouse ES cells in future studies.

  14. Conformational adaptation of Asian macaque TRIMCyp directs lineage specific antiviral activity.

    Directory of Open Access Journals (Sweden)

    Laura M J Ylinen

    2010-08-01

    Full Text Available TRIMCyps are anti-retroviral proteins that have arisen independently in New World and Old World primates. All TRIMCyps comprise a CypA domain fused to the tripartite domains of TRIM5alpha but they have distinct lentiviral specificities, conferring HIV-1 restriction in New World owl monkeys and HIV-2 restriction in Old World rhesus macaques. Here we provide evidence that Asian macaque TRIMCyps have acquired changes that switch restriction specificity between different lentiviral lineages, resulting in species-specific alleles that target different viruses. Structural, thermodynamic and viral restriction analysis suggests that a single mutation in the Cyp domain, R69H, occurred early in macaque TRIMCyp evolution, expanding restriction specificity to the lentiviral lineages found in African green monkeys, sooty mangabeys and chimpanzees. Subsequent mutations have enhanced restriction to particular viruses but at the cost of broad specificity. We reveal how specificity is altered by a scaffold mutation, E143K, that modifies surface electrostatics and propagates conformational changes into the active site. Our results suggest that lentiviruses may have been important pathogens in Asian macaques despite the fact that there are no reported lentiviral infections in current macaque populations.

  15. Lineage tracing of lamellocytes demonstrates Drosophila macrophage plasticity.

    Directory of Open Access Journals (Sweden)

    Martin Stofanko

    2010-11-01

    Full Text Available Leukocyte-like cells called hemocytes have key functions in Drosophila innate immunity. Three hemocyte types occur: plasmatocytes, crystal cells, and lamellocytes. In the absence of qimmune challenge, plasmatocytes are the predominant hemocyte type detected, while crystal cells and lamellocytes are rare. However, upon infestation by parasitic wasps, or in melanotic mutant strains, large numbers of lamellocytes differentiate and encapsulate material recognized as "non-self". Current models speculate that lamellocytes, plasmatocytes and crystal cells are distinct lineages that arise from a common prohemocyte progenitor. We show here that over-expression of the CoREST-interacting transcription factor Chn in plasmatocytes induces lamellocyte differentiation, both in circulation and in lymph glands. Lamellocyte increases are accompanied by the extinction of plasmatocyte markers suggesting that plasmatocytes are transformed into lamellocytes. Consistent with this, timed induction of Chn over-expression induces rapid lamellocyte differentiation within 18 hours. We detect double-positive intermediates between plasmatocytes and lamellocytes, and show that isolated plasmatocytes can be triggered to differentiate into lamellocytes in vitro, either in response to Chn over-expression, or following activation of the JAK/STAT pathway. Finally, we have marked plasmatocytes and show by lineage tracing that these differentiate into lamellocytes in response to the Drosophila parasite model Leptopilina boulardi. Taken together, our data suggest that lamellocytes arise from plasmatocytes and that plasmatocytes may be inherently plastic, possessing the ability to differentiate further into lamellocytes upon appropriate challenge.

  16. A Tri-Oceanic Perspective: DNA Barcoding Reveals Geographic Structure and Cryptic Diversity in Canadian Polychaetes

    Science.gov (United States)

    Carr, Christina M.; Hardy, Sarah M.; Brown, Tanya M.; Macdonald, Tara A.; Hebert, Paul D. N.

    2011-01-01

    Background Although polychaetes are one of the dominant taxa in marine communities, their distributions and taxonomic diversity are poorly understood. Recent studies have shown that many species thought to have broad distributions are actually a complex of allied species. In Canada, 12% of polychaete species are thought to occur in Atlantic, Arctic, and Pacific Oceans, but the extent of gene flow among their populations has not been tested. Methodology/Principal Findings Sequence variation in a segment of the mitochondrial cytochrome c oxidase I (COI) gene was employed to compare morphological versus molecular diversity estimates, to examine gene flow among populations of widespread species, and to explore connectivity patterns among Canada's three oceans. Analysis of 1876 specimens, representing 333 provisional species, revealed 40 times more sequence divergence between than within species (16.5% versus 0.38%). Genetic data suggest that one quarter of previously recognized species actually include two or more divergent lineages, indicating that richness in this region is currently underestimated. Few species with a tri-oceanic distribution showed genetic cohesion. Instead, large genetic breaks occur between Pacific and Atlantic-Arctic lineages, suggesting their long-term separation. High connectivity among Arctic and Atlantic regions and low connectivity with the Pacific further supports the conclusion that Canadian polychaetes are partitioned into two distinct faunas. Conclusions/Significance Results of this study confirm that COI sequences are an effective tool for species identification in polychaetes, and suggest that DNA barcoding will aid the recognition of species overlooked by the current taxonomic system. The consistent geographic structuring within presumed widespread species suggests that historical range fragmentation during the Pleistocene ultimately increased Canadian polychaete diversity and that the coastal British Columbia fauna played a minor

  17. A tri-oceanic perspective: DNA barcoding reveals geographic structure and cryptic diversity in Canadian polychaetes.

    Directory of Open Access Journals (Sweden)

    Christina M Carr

    Full Text Available Although polychaetes are one of the dominant taxa in marine communities, their distributions and taxonomic diversity are poorly understood. Recent studies have shown that many species thought to have broad distributions are actually a complex of allied species. In Canada, 12% of polychaete species are thought to occur in Atlantic, Arctic, and Pacific Oceans, but the extent of gene flow among their populations has not been tested.Sequence variation in a segment of the mitochondrial cytochrome c oxidase I (COI gene was employed to compare morphological versus molecular diversity estimates, to examine gene flow among populations of widespread species, and to explore connectivity patterns among Canada's three oceans. Analysis of 1876 specimens, representing 333 provisional species, revealed 40 times more sequence divergence between than within species (16.5% versus 0.38%. Genetic data suggest that one quarter of previously recognized species actually include two or more divergent lineages, indicating that richness in this region is currently underestimated. Few species with a tri-oceanic distribution showed genetic cohesion. Instead, large genetic breaks occur between Pacific and Atlantic-Arctic lineages, suggesting their long-term separation. High connectivity among Arctic and Atlantic regions and low connectivity with the Pacific further supports the conclusion that Canadian polychaetes are partitioned into two distinct faunas.Results of this study confirm that COI sequences are an effective tool for species identification in polychaetes, and suggest that DNA barcoding will aid the recognition of species overlooked by the current taxonomic system. The consistent geographic structuring within presumed widespread species suggests that historical range fragmentation during the Pleistocene ultimately increased Canadian polychaete diversity and that the coastal British Columbia fauna played a minor role in Arctic recolonization following deglaciation

  18. Indices of methylation in sperm DNA from fertile men differ between distinct geographical regions

    DEFF Research Database (Denmark)

    Consales, C; Leter, G; Bonde, Jens Peter

    2014-01-01

    STUDY QUESTION: Which are the main determinants, if any, of sperm DNA methylation levels? SUMMARY ANSWER: Geographical region resulted associated with the sperm methylation status assessed on genome-wide repetitive sequences. WHAT IS KNOWN ALREADY: DNA methylation level, assessed on repetitive se...

  19. Developmental toxicity in flounder embryos exposed to crude oils derived from different geographical regions.

    Science.gov (United States)

    Jung, Jee-Hyun; Lee, Eun-Hee; Choi, Kwang-Min; Yim, Un Hyuk; Ha, Sung Yong; An, Joon Geon; Kim, Moonkoo

    2017-06-01

    Crude oils from distinct geographical regions have distinct chemical compositions, and, as a result, their toxicity may be different. However, developmental toxicity of crude oils derived from different geographical regions has not been extensively characterized. In this study, flounder embryos were separately exposed to effluents contaminated by three crude oils including: Basrah Light (BLO), Pyrenees (PCO), and Sakhalin Vityaz (SVO), in addition to a processed fuel oil (MFO-380), to measure developmental toxicity and for gene expressions. Each oil possessed a distinct chemical composition. Edema defect was highest in embryos exposed to PCO and MFO-380 that both have a greater fraction of three-ring PAHs (33% and 22%, respectively) compared to BLO and SVO. Observed caudal fin defects were higher in embryos exposed to SVO and MFO-380, which are both dominated by naphthalenes (81% and 52%, respectively). CYP1A gene expressions were also highest in embryos exposed to SVO and MFO-380. Higher incidence of cardiotoxicity and lower nkx 2.5 expression were detected in embryos exposed to PCO. Unique gene expression profiles were observed in embryos exposed to crude oils with distinct compositions. This study demonstrates that crude oils of different geographical origins with different compositional characteristics induce developmental toxicity to different degrees. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Testing Wallace's intuition: water type, reproductive isolation and divergence in an Amazonian fish.

    Science.gov (United States)

    Pires, Tiago H S; Borghezan, Elio A; Machado, Valeria N; Powell, Daniel L; Röpke, Cristhiana P; Oliveira, Claudio; Zuanon, Jansen; Farias, Izeni P

    2018-06-01

    Alfred Russel Wallace proposed classifying Amazon rivers based on their colour and clarity: white, black and clear water. Wallace also proposed that black waters could mediate diversification and yield distinct fish species. Here, we bring evidence of speciation mediated by water type in the sailfin tetra (Crenuchus spilurus), a fish whose range encompasses rivers of very distinct hydrochemical conditions. Distribution of the two main lineages concords with Wallace's water types: one restricted to the acidic and nutrient-poor waters of the Negro River (herein Rio Negro lineage) and a second widespread throughout the remaining of the species' distribution (herein Amazonas lineage). These lineages occur over a very broad geographical range, suggesting that despite occurring in regions separated by thousands of kilometres, individuals of the distinct lineages fail to occupy each other's habitats, hundreds of metres apart and not separated by physical barrier. Reproductive isolation was assessed in isolated pairs exposed to black-water conditions. All pairs with at least one individual of the lineage not native to black waters showed significantly lower spawning success, suggesting that the water type affected the fitness and contributed to reproductive isolation. Our results endorse Wallace's intuition and highlight the importance of ecological factors in shaping diversity of the Amazon fish fauna. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  1. Early Pleistocene lineages of Bagre bagre (Linnaeus, 1766 (Siluriformes: Ariidae, from the Atlantic coast of South America, with insights into the demography and biogeography of the species

    Directory of Open Access Journals (Sweden)

    Wemerson C. da Silva

    Full Text Available ABSTRACT Coastal and marine environments are characterized by a lack of evident physical barriers or geographic isolation, and it may be difficult to understand how divergence can arise and be sustained in marine environments. The identification of 'soft' barriers is a crucial step towards the understanding of gene flow in marine environments. The marine catfishes of the family Ariidae are a demersal group with restricted migratory behavior, no pelagic larval stages, and mechanisms of larval retention, representing a potentially useful model for the understanding of historical processes of allopatric speciation in the marine environment. In the present study, two lineages of the Coco sea catfish, Bagre bagre , were recognized from their complete segregation at both mitochondrial and morphological levels. One lineage is distributed between Venezuela and the northern coast of Brazil, including the semiarid northeast coast, while the second lineage is found on the eastern coast of Brazil, including the humid northeast coast. Based on distribution area, habitats preference, and genetic variability, inferences are made in relation to biogeography and demography of lineages in Atlantic coast of South America.

  2. Autosomal and mtDNA Markers Affirm the Distinctiveness of Lions in West and Central Africa.

    Science.gov (United States)

    Bertola, Laura D; Tensen, Laura; van Hooft, Pim; White, Paula A; Driscoll, Carlos A; Henschel, Philipp; Caragiulo, Anthony; Dias-Freedman, Isabela; Sogbohossou, Etotépé A; Tumenta, Pricelia N; Jirmo, Tuqa H; de Snoo, Geert R; de Iongh, Hans H; Vrieling, Klaas

    2015-01-01

    The evolutionary history of a species is key for understanding the taxonomy and for the design of effective management strategies for species conservation. The knowledge about the phylogenetic position of the lion (Panthera leo) in West/Central Africa is largely based on mitochondrial markers. Previous studies using mtDNA only have shown this region to hold a distinct evolutionary lineage. In addition, anthropogenic factors have led to a strong decline in West/Central African lion numbers, thus, the conservation value of these populations is particularly high. Here, we investigate whether autosomal markers are concordant with previously described phylogeographic patterns, and confirm the unique position of the West/Central African lion. Analysis of 20 microsatellites and 1,454 bp of the mitochondrial DNA in 16 lion populations representing the entire geographic range of the species found congruence in both types of markers, identifying four clusters: 1) West/Central Africa, 2) East Africa, 3) Southern Africa and 4) India. This is not in line with the current taxonomy, as defined by the IUCN, which only recognizes an African and an Asiatic subspecies. There are no indications that genetic diversity in West/Central Africa lions is lower than in either East or Southern Africa, however, given this genetic distinction and the recent declines of lion numbers in this region, we strongly recommend prioritization of conservation projects in West/Central Africa. As the current taxonomic nomenclature does not reflect the evolutionary history of the lion, we suggest that a taxonomic revision of the lion is warranted.

  3. Autosomal and mtDNA Markers Affirm the Distinctiveness of Lions in West and Central Africa.

    Directory of Open Access Journals (Sweden)

    Laura D Bertola

    Full Text Available The evolutionary history of a species is key for understanding the taxonomy and for the design of effective management strategies for species conservation. The knowledge about the phylogenetic position of the lion (Panthera leo in West/Central Africa is largely based on mitochondrial markers. Previous studies using mtDNA only have shown this region to hold a distinct evolutionary lineage. In addition, anthropogenic factors have led to a strong decline in West/Central African lion numbers, thus, the conservation value of these populations is particularly high. Here, we investigate whether autosomal markers are concordant with previously described phylogeographic patterns, and confirm the unique position of the West/Central African lion. Analysis of 20 microsatellites and 1,454 bp of the mitochondrial DNA in 16 lion populations representing the entire geographic range of the species found congruence in both types of markers, identifying four clusters: 1 West/Central Africa, 2 East Africa, 3 Southern Africa and 4 India. This is not in line with the current taxonomy, as defined by the IUCN, which only recognizes an African and an Asiatic subspecies. There are no indications that genetic diversity in West/Central Africa lions is lower than in either East or Southern Africa, however, given this genetic distinction and the recent declines of lion numbers in this region, we strongly recommend prioritization of conservation projects in West/Central Africa. As the current taxonomic nomenclature does not reflect the evolutionary history of the lion, we suggest that a taxonomic revision of the lion is warranted.

  4. Autosomal and mtDNA Markers Affirm the Distinctiveness of Lions in West and Central Africa

    Science.gov (United States)

    Bertola, Laura D.; Tensen, Laura; van Hooft, Pim; White, Paula A.; Driscoll, Carlos A.; Henschel, Philipp; Caragiulo, Anthony; Dias-Freedman, Isabela; Sogbohossou, Etotépé A.; Tumenta, Pricelia N.; Jirmo, Tuqa H.; de Snoo, Geert R.

    2015-01-01

    The evolutionary history of a species is key for understanding the taxonomy and for the design of effective management strategies for species conservation. The knowledge about the phylogenetic position of the lion (Panthera leo) in West/Central Africa is largely based on mitochondrial markers. Previous studies using mtDNA only have shown this region to hold a distinct evolutionary lineage. In addition, anthropogenic factors have led to a strong decline in West/Central African lion numbers, thus, the conservation value of these populations is particularly high. Here, we investigate whether autosomal markers are concordant with previously described phylogeographic patterns, and confirm the unique position of the West/Central African lion. Analysis of 20 microsatellites and 1,454 bp of the mitochondrial DNA in 16 lion populations representing the entire geographic range of the species found congruence in both types of markers, identifying four clusters: 1) West/Central Africa, 2) East Africa, 3) Southern Africa and 4) India. This is not in line with the current taxonomy, as defined by the IUCN, which only recognizes an African and an Asiatic subspecies. There are no indications that genetic diversity in West/Central Africa lions is lower than in either East or Southern Africa, however, given this genetic distinction and the recent declines of lion numbers in this region, we strongly recommend prioritization of conservation projects in West/Central Africa. As the current taxonomic nomenclature does not reflect the evolutionary history of the lion, we suggest that a taxonomic revision of the lion is warranted. PMID:26466139

  5. Malware Lineage in the Wild

    OpenAIRE

    Haq, Irfan Ul; Chica, Sergio; Caballero, Juan; Jha, Somesh

    2017-01-01

    Malware lineage studies the evolutionary relationships among malware and has important applications for malware analysis. A persistent limitation of prior malware lineage approaches is to consider every input sample a separate malware version. This is problematic since a majority of malware are packed and the packing process produces many polymorphic variants (i.e., executables with different file hash) of the same malware version. Thus, many samples correspond to the same malware version and...

  6. Lineage Selection and the Maintenance of Sex

    Science.gov (United States)

    de Vienne, Damien M.; Giraud, Tatiana; Gouyon, Pierre-Henri

    2013-01-01

    Sex predominates in eukaryotes, despite its short-term disadvantage when compared to asexuality. Myriad models have suggested that short-term advantages of sex may be sufficient to counterbalance its twofold costs. However, despite decades of experimental work seeking such evidence, no evolutionary mechanism has yet achieved broad recognition as explanation for the maintenance of sex. We explore here, through lineage-selection models, the conditions favouring the maintenance of sex. In the first model, we allowed the rate of transition to asexuality to evolve, to determine whether lineage selection favoured species with the strongest constraints preventing the loss of sex. In the second model, we simulated more explicitly the mechanisms underlying the higher extinction rates of asexual lineages than of their sexual counterparts. We linked extinction rates to the ecological and/or genetic features of lineages, thereby providing a formalisation of the only figure included in Darwin's “The origin of species”. Our results reinforce the view that the long-term advantages of sex and lineage selection may provide the most satisfactory explanations for the maintenance of sex in eukaryotes, which is still poorly recognized, and provide figures and a simulation website for training and educational purposes. Short-term benefits may play a role, but it is also essential to take into account the selection of lineages for a thorough understanding of the maintenance of sex. PMID:23825582

  7. Identification and Characterization of Mouse Otic Sensory Lineage Genes

    Directory of Open Access Journals (Sweden)

    Byron H. Hartman

    2015-03-01

    Full Text Available Vertebrate embryogenesis gives rise to all cell types of an organism through the development of many unique lineages derived from the three primordial germ layers. The otic sensory lineage arises from the otic vesicle, a structure formed through invagination of placodal non-neural ectoderm. This developmental lineage possesses unique differentiation potential, giving rise to otic sensory cell populations including hair cells, supporting cells, and ganglion neurons of the auditory and vestibular organs. Here we present a systematic approach to identify transcriptional features that distinguish the otic sensory lineage (from early otic progenitors to otic sensory populations from other major lineages of vertebrate development. We used a microarray approach to analyze otic sensory lineage populations including microdissected otic vesicles (embryonic day 10.5 as well as isolated neonatal cochlear hair cells and supporting cells at postnatal day 3. Non-otic tissue samples including periotic tissues and whole embryos with otic regions removed were used as reference populations to evaluate otic specificity. Otic populations shared transcriptome-wide correlations in expression profiles that distinguish members of this lineage from non-otic populations. We further analyzed the microarray data using comparative and dimension reduction methods to identify individual genes that are specifically expressed in the otic sensory lineage. This analysis identified and ranked top otic sensory lineage-specific transcripts including Fbxo2, Col9a2, and Oc90, and additional novel otic lineage markers. To validate these results we performed expression analysis on select genes using immunohistochemistry and in situ hybridization. Fbxo2 showed the most striking pattern of specificity to the otic sensory lineage, including robust expression in the early otic vesicle and sustained expression in prosensory progenitors and auditory and vestibular hair cells and supporting

  8. Distinct types of glial cells populate the Drosophila antenna

    Directory of Open Access Journals (Sweden)

    Jhaveri Dhanisha

    2005-11-01

    Full Text Available Abstract Background The development of nervous systems involves reciprocal interactions between neurons and glia. In the Drosophila olfactory system, peripheral glial cells arise from sensory lineages specified by the basic helix-loop-helix transcription factor, Atonal. These glia wrap around the developing olfactory axons early during development and pattern the three distinct fascicles as they exit the antenna. In the moth Manduca sexta, an additional set of central glia migrate to the base of the antennal nerve where axons sort to their glomerular targets. In this work, we have investigated whether similar types of cells exist in the Drosophila antenna. Results We have used different P(Gal4 lines to drive Green Fluorescent Protein (GFP in distinct populations of cells within the Drosophila antenna. Mz317::GFP, a marker for cell body and perineural glia, labels the majority of peripheral glia. An additional ~30 glial cells detected by GH146::GFP do not derive from any of the sensory lineages and appear to migrate into the antenna from the brain. Their appearance in the third antennal segment is regulated by normal function of the Epidermal Growth Factor receptor and small GTPases. We denote these distinct populations of cells as Mz317-glia and GH146-glia respectively. In the adult, processes of GH146-glial cells ensheath the olfactory receptor neurons directly, while those of the Mz317-glia form a peripheral layer. Ablation of GH146-glia does not result in any significant effects on the patterning of the olfactory receptor axons. Conclusion We have demonstrated the presence of at least two distinct populations of glial cells within the Drosophila antenna. GH146-glial cells originate in the brain and migrate to the antenna along the newly formed olfactory axons. The number of cells populating the third segment of the antenna is regulated by signaling through the Epidermal Growth Factor receptor. These glia share several features of the sorting

  9. Geographic range did not confer resilience to extinction in terrestrial vertebrates at the end-Triassic crisis.

    Science.gov (United States)

    Dunhill, Alexander M; Wills, Matthew A

    2015-08-11

    Rates of extinction vary greatly through geological time, with losses particularly concentrated in mass extinctions. Species duration at other times varies greatly, but the reasons for this are unclear. Geographical range correlates with lineage duration amongst marine invertebrates, but it is less clear how far this generality extends to other groups in other habitats. It is also unclear whether a wide geographical distribution makes groups more likely to survive mass extinctions. Here we test for extinction selectivity amongst terrestrial vertebrates across the end-Triassic event. We demonstrate that terrestrial vertebrate clades with larger geographical ranges were more resilient to extinction than those with smaller ranges throughout the Triassic and Jurassic. However, this relationship weakened with increasing proximity to the end-Triassic mass extinction, breaking down altogether across the event itself. We demonstrate that these findings are not a function of sampling biases; a perennial issue in studies of this kind.

  10. A reporter mouse model for in vivo tracing and in vitro molecular studies of melanocytic lineage cells and their diseases.

    Science.gov (United States)

    Crawford, Melissa; Leclerc, Valerie; Dagnino, Lina

    2017-08-15

    Alterations in melanocytic lineage cells give rise to a plethora of distinct human diseases, including neurocristopathies, cutaneous pigmentation disorders, loss of vision and hearing, and melanoma. Understanding the ontogeny and biology of melanocytic cells, as well as how they interact with their surrounding environment, are key steps in the development of therapies for diseases that involve this cell lineage. Efforts to culture and characterize primary melanocytes from normal or genetically engineered mouse models have at times yielded contrasting observations. This is due, in part, to differences in the conditions used to isolate, purify and culture these cells in individual studies. By breeding ROSA mT/mG and Tyr::CreER T2 mice, we generated animals in which melanocytic lineage cells are identified through expression of green fluorescent protein. We also used defined conditions to systematically investigate the proliferation and migration responses of primary melanocytes on various extracellular matrix (ECM) substrates. Under our culture conditions, mouse melanocytes exhibit doubling times in the range of 10 days, and retain exponential proliferative capacity for 50-60 days. In culture, these melanocytes showed distinct responses to different ECM substrates. Specifically, laminin-332 promoted cell spreading, formation of dendrites, random motility and directional migration. In contrast, low or intermediate concentrations of collagen I promoted adhesion and acquisition of a bipolar morphology, and interfered with melanocyte forward movements. Our systematic evaluation of primary melanocyte responses emphasizes the importance of clearly defining culture conditions for these cells. This, in turn, is essential for the interpretation of melanocyte responses to extracellular cues and to understand the molecular basis of disorders involving the melanocytic cell lineage. © 2017. Published by The Company of Biologists Ltd.

  11. Fast, Inclusive Searches for Geographic Names Using Digraphs

    Science.gov (United States)

    Donato, David I.

    2008-01-01

    An algorithm specifies how to quickly identify names that approximately match any specified name when searching a list or database of geographic names. Based on comparisons of the digraphs (ordered letter pairs) contained in geographic names, this algorithmic technique identifies approximately matching names by applying an artificial but useful measure of name similarity. A digraph index enables computer name searches that are carried out using this technique to be fast enough for deployment in a Web application. This technique, which is a member of the class of n-gram algorithms, is related to, but distinct from, the soundex, PHONIX, and metaphone phonetic algorithms. Despite this technique's tendency to return some counterintuitive approximate matches, it is an effective aid for fast, inclusive searches for geographic names when the exact name sought, or its correct spelling, is unknown.

  12. Emergence of recombinant forms in geographic regions with co-circulating HIV subtypes in the dynamic HIV-1 epidemic

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ming [Los Alamos National Laboratory; Letiner, Thomas K [Los Alamos National Laboratory; Korber, Bette T [Los Alamos National Laboratory; Foley, Brian [Los Alamos National Laboratory

    2009-01-01

    We have reexamined the subtype designations of {approx}10,000 subtype A, B, C, G, and AG, BC, BF recombinant sequences, and compared the results of the new analysis with their published designations. Intersubtype recombinants dominate HIV epidemics in three different geographical regions. The circulating recombinant from (CRF) CRF02-AG, common in West Central Africa, appears to result from a recombination event that occurred early in the divergence between subtypes A and G, although additional more recent recombination events may have contributed to the breakpoint pattern in this recombinant lineage as well. The Chinese recombinant epidemic strains CRF07 and CRF08, in contrast, result from recent recombinations between more contemporary strains. Nevertheless, CRF07 and CRF08 contributed to many subsequent recombination events. The BF recombinant epidemics in two HIV-1 epicenters in South America are not independent and BF epidemics in South America have an unusually high fraction of unique recombinant forms (URFs) that have each been found only once and carry distinctive breakpoints. Taken together, these analyses reveal a complex and dynamic picture of the current HIV-1 epidemic, and suggest a means of grouping and tracking relationships between viruses through preservation of shared breakpints.

  13. A new morphologically distinct avian malaria parasite that fails detection by established polymerase chain reaction-based protocols for amplification of the cytochrome B gene.

    Science.gov (United States)

    Zehtindjiev, Pavel; Križanauskienė, Asta; Bensch, Staffan; Palinauskas, Vaidas; Asghar, Muhammad; Dimitrov, Dimitar; Scebba, Sergio; Valkiūnas, Gediminas

    2012-06-01

    Plasmodium polymorphum n. sp. (Haemosporida, Plasmodiidae) was found in the skylark, Alauda arvensis (Passeriformes: Alaudidae), during autumnal migration in southern Italy. This organism is illustrated and described based on the morphology of its blood stages. The most distinctive feature of this malaria parasite is the clear preference of its blood stages (trophozoites, meronts, and gametocytes) for immature red blood cells, including erythroblasts. Based on preference of erythrocytic meronts for immature red blood cells, P. polymorphum is most similar to species of the subgenus Huffia . This parasite can be readily distinguished from all other bird malaria parasites, including Plasmodium ( Huffia ) spp., due to preferential development and maturation of its gametocytes in immature red blood cells, a unique character for avian Plasmodium spp. In addition, the margins of nuclei in blood stages of P. polymorphum are markedly smooth and distinct; this is also a distinct diagnostic feature of this parasite. Plasmodium polymorphum has been recorded only in the skylark; it is probably a rare parasite, whose host range and geographical distribution remain unclear. Microscopic examination detected a light infection of Plasmodium relictum (lineage GRW11, parasitemia of 50-fold higher than that of P. relictum and several different primers were tested, we suggest that the failure to amplify P. polymorphum is a more complex problem than why co-infections are commonly overlooked in PCR-based studies. We suggest possible explanations of these results and call for additional research on evolution of mitochondrial genome of hemosporidian parasites.

  14. [Identification of the Mycobacterium tuberculosis Beijing lineage in Ecuador].

    Science.gov (United States)

    Jiménez, Patricia; Calvopiña, Karina; Herrera, Diana; Rojas, Carlos; Pérez-Lago, Laura; Grijalva, Marcelo; Guna, Remedios; García-de Viedma, Darío

    2017-06-01

    Mycobacterium tuberculosis Beijing lineage isolates are considered to be especially virulent, transmissible and prone to acquire resistances. Beijing strains have been reported worldwide, but studies in Latin America are still scarce. The only multinational study performed in the region indicated a heterogeneous distribution for this lineage, which was absent in Chile, Colombia and Ecuador, although further studies found the lineage in Chile and Colombia. To search for the presence of the Beijing lineage in Ecuador, the only country in the region where it remains unreported. We obtained a convenience sample (2006-2012) from two hospitals covering different populations. The isolates were genotyped using 24-MIRU-VNTR. Lineages were assigned by comparing their patterns to those in the MIRU-VNTRplus platform. Isolates belonging to the Beijing lineage were confirmed by allele-specific PCR. We identified the first Beijing isolate in Ecuador in an unexpected epidemiological scenario: A patient was infected in the Andean region, in a population with low mobility and far from the borders of the neighboring countries where Beijing strains had been previously reported. This is the first report of the presence of the Beijing lineage in Ecuador in an unusual epidemiological context that deserves special attention.

  15. Distinct patterns in human milk microbiota and fatty acid profiles across specific geographic locations

    Directory of Open Access Journals (Sweden)

    Himanshu Kumar

    2016-10-01

    Full Text Available Breast feeding results in long term health benefits in the prevention of communicable and non-communicable diseases at both individual and population levels. Geographical location directly impacts the composition of breast milk including microbiota and lipids. The aim of this study was to investigate the influence of geographical location, i.e., Europe (Spain and Finland, Africa (South Africa and Asia (China, on breast milk microbiota and lipid composition in samples obtained from healthy mothers after the first month of lactation. Altogether, 80 women (20 from each country participated in the study, with equal number of women who delivered by vaginal or caesarean section from each country. Lipid composition particularly that of polyunsaturated fatty acids differed between the countries, with the highest amount of n-6 PUFA (25.6% observed in the milk of Chinese women. Milk microbiota composition also differed significantly between the countries (p=0.002. Among vaginally delivered women, Spanish women had highest amount of Bacteroidetes whereas Chinese women had highest amount of Actinobacteria. Women who had had a caesarean section had higher amount of Proteobacteria as observed in the milk of the Spanish and South African women. Interestingly, the Spanish and South African women had significantly higher bacterial genes mapped to lipid, amino acid and carbohydrate metabolism (p<0.05. Association of the lipid profile with the microbiota revealed that monounsaturated fatty acids were negatively associated with Proteobacteria (r= -0.43, p<0.05, while Lactobacillus genus was associated with monounsaturated fatty acids (r= -0.23, p=0.04. These findings reveal that the milk microbiota and lipid composition exhibit differences based on geographical locations in addition to the differences observed due to the mode of delivery.

  16. The measure of success: geographic isolation promotes diversification in Pachydactylus geckos.

    Science.gov (United States)

    Heinicke, Matthew P; Jackman, Todd R; Bauer, Aaron M

    2017-01-11

    Geckos of the genus Pachydactylus and their close relatives comprise the most species-rich clade of lizards in sub-Saharan Africa. Many explanations have been offered to explain species richness patterns of clades. In the Pachydactylus group, one possible explanation is a history of diversification via geographic isolation. If geographic isolation has played a key role in facilitating diversification, then we expect species in more species-rich subclades to have smaller ranges than species in less diverse subclades. We also expect traits promoting geographic isolation to be correlated with small geographic ranges. In order to test these expectations, we performed phylogenetic analyses and tested for correlations among body size, habitat choice, range sizes, and diversification rates in the Pachydactylus group. Both body size and habitat use are inferred to have shifted multiple times across the phylogeny of the Pachydactylus group, with large size and generalist habitat use being ancestral for the group. Geographic range size is correlated with both of these traits. Small-bodied species have more restricted ranges than large-bodied species, and rock-dwelling species have more restricted ranges than either terrestrial or generalist species. Rock-dwelling and small body size are also associated with higher rates of diversification, and subclades retaining ancestral conditions for these traits are less species rich than subclades in which shifts to small body size and rocky habitat use have occurred. The phylogeny also illustrates inadequacies of the current taxonomy of the group. The results are consistent with a model in which lineages more likely to become geographically isolated diversify to a greater extent, although some patterns also resemble those expected of an adaptive radiation in which ecological divergence acts as a driver of speciation. Therefore, the Pachydactylus group may represent an intermediate between clades in which radiation is adaptive versus

  17. Ecotype diversification of an abundant Roseobacter lineage.

    Science.gov (United States)

    Sun, Ying; Zhang, Yao; Hollibaugh, James T; Luo, Haiwei

    2017-04-01

    The Roseobacter DC5-80-3 cluster (also known as the RCA clade) is among the most abundant bacterial lineages in temperate and polar oceans. Previous studies revealed two phylotypes within this cluster that are distinctly distributed in the Antarctic and other ocean provinces. Here, we report a nearly complete genome co-assembly of three closely related single cells co-occurring in the Antarctic, and compare it to the available genomes of the other phylotype from ocean regions where iron is more accessible but phosphorus and nitrogen are less. The Antarctic phylotype exclusively contains an operon structure consisting of a dicitrate transporter fecBCDE and an upstream regulator likely for iron uptake, whereas the other phylotype consistently carry a high-affinity phosphate pst transporter and the phoB-phoR regulatory system, a high-affinity ammonium amtB transporter, urea and taurine utilization systems. Moreover, the Antarctic phylotype uses proteorhodopsin to acquire light, whereas the other uses bacteriochlorophyll-a and the sulfur-oxidizing sox cluster for energy acquisition. This is potentially an iron-saving strategy for the Antarctic phylotype because only the latter two pathways have iron-requiring cytochromes. Therefore, the two DC5-80-3 phylotypes, while diverging by only 1.1% in their 16S rRNA genes, have evolved systematic differences in metabolism to support their distinct ecologies. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Rapid radiations of both kiwifruit hybrid lineages and their parents shed light on a two-layer mode of species diversification.

    Science.gov (United States)

    Liu, Yifei; Li, Dawei; Zhang, Qiong; Song, Chi; Zhong, Caihong; Zhang, Xudong; Wang, Ying; Yao, Xiaohong; Wang, Zupeng; Zeng, Shaohua; Wang, Ying; Guo, Yangtao; Wang, Shuaibin; Li, Xinwei; Li, Li; Liu, Chunyan; McCann, Honour C; He, Weiming; Niu, Yan; Chen, Min; Du, Liuwen; Gong, Junjie; Datson, Paul M; Hilario, Elena; Huang, Hongwen

    2017-07-01

    Reticulate speciation caused by interspecific hybridization is now recognized as an important mechanism in the creation of biological diversity. However, depicting the patterns of phylogenetic networks for lineages that have undergone interspecific gene flow is challenging. Here we sequenced 25 taxa representing natural diversity in the genus Actinidia with an average mapping depth of 26× on the reference genome to reconstruct their reticulate history. We found evidence, including significant gene tree discordance, cytonuclear conflicts, and changes in genome-wide heterozygosity across taxa, collectively supporting extensive reticulation in the genus. Furthermore, at least two separate parental species pairs were involved in the repeated origin of the hybrid lineages, in some of which a further phase of syngameon was triggered. On the basis of the elucidated hybridization relationships, we obtained a highly resolved backbone phylogeny consisting of taxa exhibiting no evidence of hybrid origin. The backbone taxa have distinct demographic histories and are the product of recent rounds of rapid radiations via sorting of ancestral variation under variable climatic and ecological conditions. Our results suggest a mode for consecutive plant diversification through two layers of radiations, consisting of the rapid evolution of backbone lineages and the formation of hybrid swarms derived from these lineages. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  19. Cell lineage branching as a strategy for proliferative control.

    Science.gov (United States)

    Buzi, Gentian; Lander, Arthur D; Khammash, Mustafa

    2015-02-19

    How tissue and organ sizes are specified is one of the great unsolved mysteries in biology. Experiments and mathematical modeling implicate feedback control of cell lineage progression, but a broad understanding of what lineage feedback accomplishes is lacking. By exploring the possible effects of various biologically relevant disturbances on the dynamic and steady state behaviors of stem cell lineages, we find that the simplest and most frequently studied form of lineage feedback - which we term renewal control - suffers from several serious drawbacks. These reflect fundamental performance limits dictated by universal conservation-type laws, and are independent of parameter choice. Here we show that introducing lineage branches can circumvent all such limitations, permitting effective attenuation of a wide range of perturbations. The type of feedback that achieves such performance - which we term fate control - involves promotion of lineage branching at the expense of both renewal and (primary) differentiation. We discuss the evidence that feedback of just this type occurs in vivo, and plays a role in tissue growth control. Regulated lineage branching is an effective strategy for dealing with disturbances in stem cell systems. The existence of this strategy provides a dynamics-based justification for feedback control of cell fate in vivo.

  20. Gastrointestinal parasites of the Common Eider (Somateria mollissima) – Seasonal, geographical and host related variations in the parasite burdens of two distinct Danish populations

    DEFF Research Database (Denmark)

    Jensen, Marie Stengaard; Chriél, Mariann; Al-Sabi, Mohammad Nafi Solaiman

    Due to a recent decline in number of Common Eiders (Somateria mollissima) in Denmark, prevalence, intensity and composition of the gastrointestinal helminth fauna of Common Eiders from two distinct colonies were examined to establish reference data of the helminth fauna of apparently healthy birds....... Furthermore, seasonal, geographical and host related variations in helminth composition were studied. The birds were collected November 2010 to January 2012. Included were a total of 157 eiders from Jutland (N=103) and Zealand (N=54) respectively, comprising 54 males and 102 females of which 20 were gathered...... during the nesting period. The study is ongoing, and so far most parasites have only been identified to the family level. Eight trematode families, two nematode families, one acanthocephala and one cestode family were identified. Intensities of infections were primarily influenced by age of the birds...

  1. Fine mapping of shattering locus Br2 reveals a putative chromosomal inversion polymorphism between the two lineages of Aegilops tauschii.

    Science.gov (United States)

    Zhang, Zhengzhi; Zhu, Huilan; Gill, Bikram S; Li, Wanlong

    2015-04-01

    This work laid the foundation for cloning of shattering gene Br2 and provided first line of evidence that two major Aegilops tauschii lineages are differentiated by an inversion polymorphism. Chromosome inversions often accompany population differentiation and capture local adaptation during speciation. Aegilops tauschii, the D-genome donor species of hexaploid wheat, consists of two genetically isolated lineages, L1 and L2, but little is known about the genetic mechanisms underlying the population differentiation in this diploid species. During fine mapping of the shattering gene Br2 using a large F2 population derived from a cross between TA1604 (an L1 accession) and AL8/78 (an L2 accession), we found contrasting patterns of crossover distribution in the Br2 interval and neighboring regions despite the high local gene synteny with Brachypodium distachyon and rice. Br2 was localized in a 0.08-cM interval, and 13 marker loci formed a block, where single-crossovers were completely suppressed, but double-crossovers were enriched with a recombination rate of ~11 cM/Mb. In contrast, in a neighboring region no double-crossover was recovered, but single-crossover rate reached 24 cM/Mb, which is much higher than the genome-wide average. This result suggests a putative inversion polymorphism between the parental lines in the Br2 region. Genotyping using the markers from the Br2 region divided a collection of 55 randomly sampled A. tauschii accessions into two major groups, and they are largely genetically isolated. The two groups correspond to the L1 and L2 lineages based on their geographic distribution patterns. This provides first evidence that inversions may underlie the evolution of A. tauschii lineages. The presence of inter-lineage inversions may complicate map-based cloning in A. tauschii and transfer of useful traits to wheat.

  2. Disruption of Hox9,10,11 function results in cellular level lineage infidelity in the kidney.

    Science.gov (United States)

    Drake, Keri A; Adam, Mike; Mahoney, Robert; Potter, S Steven

    2018-04-20

    Hox genes are important regulators of development. The 39 mammalian Hox genes have considerable functional overlap, greatly confounding their study. In this report, we generated mice with multiple combinations of paralogous and flanking Abd-B Hox gene mutations to investigate functional redundancies in kidney development. The resulting mice developed a number of kidney abnormalities, including hypoplasia, agenesis, and severe cysts, with distinct Hox functions observed in early metanephric kidney formation and nephron progenitor maintenance. Most surprising, however, was that extensive removal of Hox shared function in these kidneys resulted in cellular level lineage infidelity. Strikingly, mutant nephron tubules consisted of intermixed cells with proximal tubule, loop of Henle, and collecting duct identities, with some single cells expressing markers associated with more than one nephron segment. These results indicate that Hox genes are required for proper lineage selection/maintenance and full repression of genes involved in cell fate restriction in the developing kidney.

  3. The earliest settlers' antiquity and evolutionary history of Indian populations: evidence from M2 mtDNA lineage

    Directory of Open Access Journals (Sweden)

    Kotal M

    2008-08-01

    Full Text Available Abstract Background The "out of Africa" model postulating single "southern route" dispersal posits arrival of "Anatomically Modern Human" to Indian subcontinent around 66–70 thousand years before present (kyBP. However the contributions and legacy of these earliest settlers in contemporary Indian populations, owing to the complex past population dynamics and later migrations has been an issue of controversy. The high frequency of mitochondrial lineage "M2" consistent with its greater age and distribution suggests that it may represent the phylogenetic signature of earliest settlers. Accordingly, we attempted to re-evaluate the impact and contribution of earliest settlers in shaping the genetic diversity and structure of contemporary Indian populations; using our newly sequenced 72 and 4 published complete mitochondrial genomes of this lineage. Results The M2 lineage, harbouring two deep rooting subclades M2a and M2b encompasses approximately one tenth of the mtDNA pool of studied tribes. The phylogeographic spread and diversity indices of M2 and its subclades among the tribes of different geographic regions and linguistic phyla were investigated in detail. Further the reconstructed demographic history of M2 lineage as a surrogate of earliest settlers' component revealed that the demographic events with pronounced regional variations had played pivotal role in shaping the complex net of populations phylogenetic relationship in Indian subcontinent. Conclusion Our results suggest that tribes of southern and eastern region along with Dravidian and Austro-Asiatic speakers of central India are the modern representatives of earliest settlers of subcontinent. The Last Glacial Maximum aridity and post LGM population growth mechanised some sort of homogeneity and redistribution of earliest settlers' component in India. The demic diffusion of agriculture and associated technologies around 3 kyBP, which might have marginalized hunter-gatherer, is

  4. Intraspecific niche models for ponderosa pine (Pinus ponderosa) suggest potential variability in population-level response to climate change

    Science.gov (United States)

    Maguire, Kaitlin C.; Shinneman, Douglas; Potter, Kevin M.; Hipkins, Valerie D.

    2018-01-01

    Unique responses to climate change can occur across intraspecific levels, resulting in individualistic adaptation or movement patterns among populations within a given species. Thus, the need to model potential responses among genetically distinct populations within a species is increasingly recognized. However, predictive models of future distributions are regularly fit at the species level, often because intraspecific variation is unknown or is identified only within limited sample locations. In this study, we considered the role of intraspecific variation to shape the geographic distribution of ponderosa pine (Pinus ponderosa), an ecologically and economically important tree species in North America. Morphological and genetic variation across the distribution of ponderosa pine suggest the need to model intraspecific populations: the two varieties (var. ponderosa and var. scopulorum) and several haplotype groups within each variety have been shown to occupy unique climatic niches, suggesting populations have distinct evolutionary lineages adapted to different environmental conditions. We utilized a recently-available, geographically-widespread dataset of intraspecific variation (haplotypes) for ponderosa pine and a recently-devised lineage distance modeling approach to derive additional, likely intraspecific occurrence locations. We confirmed the relative uniqueness of each haplotype-climate relationship using a niche-overlap analysis, and developed ecological niche models (ENMs) to project the distribution for two varieties and eight haplotypes under future climate forecasts. Future projections of haplotype niche distributions generally revealed greater potential range loss than predicted for the varieties. This difference may reflect intraspecific responses of distinct evolutionary lineages. However, directional trends are generally consistent across intraspecific levels, and include a loss of distributional area and an upward shift in elevation. Our results

  5. Intraspecific niche models for ponderosa pine (Pinus ponderosa) suggest potential variability in population-level response to climate change.

    Science.gov (United States)

    Maguire, Kaitlin C; Shinneman, Douglas J; Potter, Kevin M; Hipkins, Valerie D

    2018-03-14

    Unique responses to climate change can occur across intraspecific levels, resulting in individualistic adaptation or movement patterns among populations within a given species. Thus, the need to model potential responses among genetically distinct populations within a species is increasingly recognized. However, predictive models of future distributions are regularly fit at the species level, often because intraspecific variation is unknown or is identified only within limited sample locations. In this study, we considered the role of intraspecific variation to shape the geographic distribution of ponderosa pine (Pinus ponderosa), an ecologically and economically important tree species in North America. Morphological and genetic variation across the distribution of ponderosa pine suggest the need to model intraspecific populations: the two varieties (var. ponderosa and var. scopulorum) and several haplotype groups within each variety have been shown to occupy unique climatic niches, suggesting populations have distinct evolutionary lineages adapted to different environmental conditions. We utilized a recently-available, geographically-widespread dataset of intraspecific variation (haplotypes) for ponderosa pine and a recently-devised lineage distance modeling approach to derive additional, likely intraspecific occurrence locations. We confirmed the relative uniqueness of each haplotype-climate relationship using a niche-overlap analysis, and developed ecological niche models (ENMs) to project the distribution for two varieties and eight haplotypes under future climate forecasts. Future projections of haplotype niche distributions generally revealed greater potential range loss than predicted for the varieties. This difference may reflect intraspecific responses of distinct evolutionary lineages. However, directional trends are generally consistent across intraspecific levels, and include a loss of distributional area and an upward shift in elevation. Our results

  6. Molecular ecology of the big brown bat (Eptesicus fuscus): Genetic and natural history variation in a hybrid zone

    Science.gov (United States)

    Neubaum, M.A.; Douglas, M.R.; Douglas, M.E.; O'Shea, T.J.

    2007-01-01

    Several geographically distinct mitochondrial DNA (mtDNA) lineages of the big brown bat (Eptesicus fuscus) have been documented in North America. Individuals from 2 of these lineages, an eastern and a western form, co-occur within maternity colonies in Colorado. The discovery of 2 divergent mtDNA lineages in sympatry prompted a set of questions regarding possible biological differences between haplotypes. We captured big brown bats at maternity roosts in Colorado and recorded data on body size, pelage color, litter size, roosting and overwintering behaviors, and local distributions. Wing biopsies were collected for genetic analysis. The ND2 region of the mtDNA molecule was used to determine lineage of the bats. In addition, nuclear DNA (nDNA) intron 1 of the ??-globin gene was used to determine if mtDNA lineages are hybridizing. Eastern and western mtDNA lineages differed by 10.3% sequence divergence and examination of genetic data suggests recent population expansion for both lineages. Differences in distribution occur along the Colorado Front Range, with an increasing proportion of western haplotypes farther south. Results from nDNA analyses demonstrated hybridization between the 2 lineages. Additionally, no outstanding distinctiveness was found between the mtDNA lineages in natural history characters examined. We speculate that historical climate changes separated this species into isolated eastern and western populations, and that secondary contact with subsequent interbreeding was facilitated by European settlement. ?? 2007 American Society of Mammalogists.

  7. Genome Analysis of a Transmissible Lineage of Pseudomonas aeruginosa Reveals Pathoadaptive Mutations and Distinct Evolutionary Paths of Hypermutators

    DEFF Research Database (Denmark)

    Marvig, Rasmus Lykke; Johansen, Helle Krogh; Molin, Søren

    2013-01-01

    Genome sequencing of bacterial pathogens has advanced our understanding of their evolution, epidemiology, and response to antibiotic therapy. However, we still have only a limited knowledge of the molecular changes in in vivo evolving bacterial populations in relation to long-term, chronic...... targeted by mutations to optimize pathogen fitness (pathoadaptive mutations). These genes were related to antibiotic resistance, the cell envelope, or regulatory functions, and we find that the prevalence of pathoadaptive mutations correlates with evolutionary success of co-evolving sub-lineages. The long...... likelihood to acquire mutations and identify two homopolymer-containing genes preferentially mutated in hypermutators. This homopolymer facilitated differential mutagenesis provides a novel genome-wide perspective on the different evolutionary trajectories of hypermutators, which may help explain...

  8. Barcoding against a paradox? Combined molecular species delineations reveal multiple cryptic lineages in elusive meiofaunal sea slugs

    Directory of Open Access Journals (Sweden)

    Jörger Katharina M

    2012-12-01

    Full Text Available Abstract Background Many marine meiofaunal species are reported to have wide distributions, which creates a paradox considering their hypothesized low dispersal abilities. Correlated with this paradox is an especially high taxonomic deficit for meiofauna, partly related to a lower taxonomic effort and partly to a high number of putative cryptic species. Molecular-based species delineation and barcoding approaches have been advocated for meiofaunal biodiversity assessments to speed up description processes and uncover cryptic lineages. However, these approaches show sensitivity to sampling coverage (taxonomic and geographic and the success rate has never been explored on mesopsammic Mollusca. Results We collected the meiofaunal sea-slug Pontohedyle (Acochlidia, Heterobranchia from 28 localities worldwide. With a traditional morphological approach, all specimens fall into two morphospecies. However, with a multi-marker genetic approach, we reveal multiple lineages that are reciprocally monophyletic on single and concatenated gene trees in phylogenetic analyses. These lineages are largely concordant with geographical and oceanographic parameters, leading to our primary species hypothesis (PSH. In parallel, we apply four independent methods of molecular based species delineation: General Mixed Yule Coalescent model (GMYC, statistical parsimony, Bayesian Species Delineation (BPP and Automatic Barcode Gap Discovery (ABGD. The secondary species hypothesis (SSH is gained by relying only on uncontradicted results of the different approaches (‘minimum consensus approach’, resulting in the discovery of a radiation of (at least 12 mainly cryptic species, 9 of them new to science, some sympatric and some allopatric with respect to ocean boundaries. However, the meiofaunal paradox still persists in some Pontohedyle species identified here with wide coastal and trans-archipelago distributions. Conclusions Our study confirms extensive, morphologically

  9. Maternal DNA lineages at the gate of Europe in the 10th century AD

    Science.gov (United States)

    Modi, Alessandra; Vai, Stefania; Pilli, Elena; Mircea, Cristina; Radu, Claudia; Urduzia, Claudia; Pinter, Zeno Karl; Bodolică, Vitalie; Dobrinescu, Cătălin; Hervella, Montserrat; Popescu, Octavian; Lari, Martina; Caramelli, David; Kelemen, Beatrice

    2018-01-01

    Given the paucity of archaeogenetic data available for medieval European populations in comparison to other historical periods, the genetic landscape of this age appears as a puzzle of dispersed, small, known pieces. In particular, Southeastern Europe has been scarcely investigated to date. In this paper, we report the study of mitochondrial DNA in 10th century AD human samples from Capidava necropolis, located in Dobruja (Southeastern Romania, Southeastern Europe). This geographical region is particularly interesting because of the extensive population flux following diverse migration routes, and the complex interactions between distinct population groups during the medieval period. We successfully amplified and typed the mitochondrial control region of 10 individuals. For five of them, we also reconstructed the complete mitochondrial genomes using hybridization-based DNA capture combined with Next Generation Sequencing. We have portrayed the genetic structure of the Capidava medieval population, represented by 10 individuals displaying 8 haplotypes (U5a1c2a, V1a, R0a2’3, H1, U3a, N9a9, H5e1a1, and H13a1a3). Remarkable for this site is the presence of both Central Asiatic (N9a) and common European mtDNA haplotypes, establishing Capidava as a point of convergence between East and West. The distribution of mtDNA lineages in the necropolis highlighted the existence of two groups of two individuals with close maternal relationships as they share the same haplotypes. We also sketch, using comparative statistical and population genetic analyses, the genetic relationships between the investigated dataset and other medieval and modern Eurasian populations. PMID:29538439

  10. Diversity rankings among bacterial lineages in soil.

    Science.gov (United States)

    Youssef, Noha H; Elshahed, Mostafa S

    2009-03-01

    We used rarefaction curve analysis and diversity ordering-based approaches to rank the 11 most frequently encountered bacterial lineages in soil according to diversity in 5 previously reported 16S rRNA gene clone libraries derived from agricultural, undisturbed tall grass prairie and forest soils (n=26,140, 28 328, 31 818, 13 001 and 53 533). The Planctomycetes, Firmicutes and the delta-Proteobacteria were consistently ranked among the most diverse lineages in all data sets, whereas the Verrucomicrobia, Gemmatimonadetes and beta-Proteobacteria were consistently ranked among the least diverse. On the other hand, the rankings of alpha-Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes and Chloroflexi varied widely in different soil clone libraries. In general, lineages exhibiting largest differences in diversity rankings also exhibited the largest difference in relative abundance in the data sets examined. Within these lineages, a positive correlation between relative abundance and diversity was observed within the Acidobacteria, Actinobacteria and Chloroflexi, and a negative diversity-abundance correlation was observed within the Bacteroidetes. The ecological and evolutionary implications of these results are discussed.

  11. What happens in the thymus does not stay in the thymus: how T cells recycle the CD4+-CD8+ lineage commitment transcriptional circuitry to control their function

    Science.gov (United States)

    Vacchio, Melanie S.; Bosselut, Rémy

    2016-01-01

    MHC-restricted CD4+ and CD8+ T cell are at the core of most adaptive immune responses. Although these cells carry distinct functions, they arise from a common precursor during thymic differentiation, in a developmental sequence that matches CD4 and CD8 expression and functional potential with MHC restriction. While the transcriptional control of CD4+-CD8+ lineage choice in the thymus is now better understood, less was known about what maintains the CD4+- and CD8+-lineage integrity of mature T cells. In this review, we discuss the mechanisms that establish in the thymus, and maintain in post-thymic cells, the separation of these lineages. We focus on recent studies that address the mechanisms of epigenetic control of Cd4 expression and emphasize how maintaining a transcriptional circuitry nucleated around Thpok and Runx proteins, the key architects of CD4+-CD8+ lineage commitment in the thymus, is critical for CD4+ T cell helper functions. PMID:27260768

  12. Desmodus rotundus and Artibeus spp. bats might present distinct rabies virus lineages

    Directory of Open Access Journals (Sweden)

    Willian Oliveira Fahl

    Full Text Available In Brazil, bats have been assigned an increasing importance in public health as they are important rabies reservoirs. Phylogenetic studies have shown that rabies virus (RABV strains from frugivorous bats Artibeus spp. are closely associated to those from the vampire bat Desmodus rotundus, but little is known about the molecular diversity of RABV in Artibeus spp. The N and G genes of RABV isolated from Artibeus spp. and cattle infected by D. rotundus were sequenced, and phylogenetic trees were constructed. The N gene nucleotides tree showed three clusters: one for D. rotundus and two for Artibeus spp. Regarding putative N amino acid-trees, two clusters were formed, one for D. rotundus and another for Artibeus spp. RABV G gene phylogeny supported the distinction between D. rotundus and Artibeus spp. strains. These results show the intricate host relationship of RABV's evolutionary history, and are invaluable for the determination of RABV infection sources.

  13. Desmodus rotundus and Artibeus spp. bats might present distinct rabies virus lineages

    Directory of Open Access Journals (Sweden)

    Willian Oliveira Fahl

    2012-12-01

    Full Text Available In Brazil, bats have been assigned an increasing importance in public health as they are important rabies reservoirs. Phylogenetic studies have shown that rabies virus (RABV strains from frugivorous bats Artibeus spp. are closely associated to those from the vampire bat Desmodus rotundus, but little is known about the molecular diversity of RABV in Artibeus spp. The N and G genes of RABV isolated from Artibeus spp. and cattle infected by D. rotundus were sequenced, and phylogenetic trees were constructed. The N gene nucleotides tree showed three clusters: one for D. rotundus and two for Artibeus spp. Regarding putative N amino acid-trees, two clusters were formed, one for D. rotundus and another for Artibeus spp. RABV G gene phylogeny supported the distinction between D. rotundus and Artibeus spp. strains. These results show the intricate host relationship of RABV's evolutionary history, and are invaluable for the determination of RABV infection sources.

  14. Desmodus rotundus and Artibeus spp. bats might present distinct rabies virus lineages.

    Science.gov (United States)

    Fahl, Willian Oliveira; Carnieli, Pedro; Castilho, Juliana Galera; Carrieri, Maria Luiza; Kotait, Ivanete; Iamamoto, Keila; Oliveira, Rafael Novaes; Brandão, Paulo Eduardo

    2012-01-01

    In Brazil, bats have been assigned an increasing importance in public health as they are important rabies reservoirs. Phylogenetic studies have shown that rabies virus (RABV) strains from frugivorous bats Artibeus spp. are closely associated to those from the vampire bat Desmodus rotundus, but little is known about the molecular diversity of RABV in Artibeus spp. The N and G genes of RABV isolated from Artibeus spp. and cattle infected by D. rotundus were sequenced, and phylogenetic trees were constructed. The N gene nucleotides tree showed three clusters: one for D. rotundus and two for Artibeus spp. Regarding putative N amino acid-trees, two clusters were formed, one for D. rotundus and another for Artibeus spp. RABV G gene phylogeny supported the distinction between D. rotundus and Artibeus spp. strains. These results show the intricate host relationship of RABV's evolutionary history, and are invaluable for the determination of RABV infection sources. Copyright © 2012 Elsevier Editora Ltda. All rights reserved.

  15. Three brown trout Salmo trutta lineages in Corsica described through allozyme variation.

    Science.gov (United States)

    Berrebi, P

    2015-01-01

    The brown trout Salmo trutta is represented by three lineages in Corsica: (1) an ancestral Corsican lineage, (2) a Mediterranean lineage and (3) a recently stocked domestic Atlantic S. trutta lineage (all are interfertile); the main focus of this study was the ancestral Corsican S. trutta, but the other lineages were also considered. A total of 38 samples captured between 1993 and 1998 were analysed, with nearly 1000 individuals considered overall. The Corsican ancestral lineage (Adriatic lineage according to the mitochondrial DNA control region nomenclature, AD) mostly inhabits streams in the southern half of the island; the Mediterranean lineage (ME) is present more in the north, especially in Golu River, but most populations are an admixture of these lineages and the domestic Atlantic S. trutta (AT). Locations where the Corsican ancestral S. trutta is dominant are now protected against stocking and sometimes fishing is also forbidden. The presence of the Corsican S. trutta is unique in France. © 2014 The Fisheries Society of the British Isles.

  16. Recent reticulate evolution in the ecologically dominant lineage of coccolithophores

    Directory of Open Access Journals (Sweden)

    El Mahdi eBendif

    2016-05-01

    Full Text Available The coccolithophore family Noëlaerhabdaceae contains a number of taxa that are very abundant in modern oceans, including the cosmopolitan bloom-forming Emiliania huxleyi. Introgressive hybridization has been suggested to account for incongruences between nuclear, mitochondrial and plastidial phylogenies of morphospecies within this lineage, but the number of species cultured to date remains rather limited. Here, we present the characterization of 5 new Noëlaerhabdaceae culture strains isolated from samples collected in the south-east Pacific Ocean. These were analyzed morphologically using scanning electron microscopy and phylogenetically by sequencing 5 marker genes (nuclear 18S and 28S rDNA, plastidial tufA, and mitochondrial cox1 and cox3 genes. Morphologically, one of these strains corresponded to Gephyrocapsa ericsonii and the four others to Reticulofenestra parvula. Ribosomal gene sequences were near identical between these new strains, but divergent from G. oceanica, G. muellerae and E. huxleyi. In contrast to the clear distinction in ribosomal phylogenies, sequences from other genomic compartments clustered with those of E. huxleyi strains with which they share an ecological range (i.e. warm temperate to tropical waters. These data provide strong support for the hypothesis of past (and potentially ongoing introgressive hybridization within this ecologically important lineage and for the transfer of R. parvula to Gephyrocapsa. These results have important implications for understanding the role of hybridization in speciation in vast ocean meta-populations of phytoplankton.

  17. Two hemocyte lineages exist in silkworm larval hematopoietic organ.

    Science.gov (United States)

    Nakahara, Yuichi; Kanamori, Yasushi; Kiuchi, Makoto; Kamimura, Manabu

    2010-07-28

    Insects have multiple hemocyte morphotypes with different functions as do vertebrates, however, their hematopoietic lineages are largely unexplored with the exception of Drosophila melanogaster. To study the hematopoietic lineage of the silkworm, Bombyx mori, we investigated in vivo and in vitro differentiation of hemocyte precursors in the hematopoietic organ (HPO) into the four mature hemocyte subsets, namely, plasmatocytes, granulocytes, oenocytoids, and spherulocytes. Five days after implantation of enzymatically-dispersed HPO cells from a GFP-expressing transgenic line into the hemocoel of normal larvae, differentiation into plasmatocytes, granulocytes and oenocytoids, but not spherulocytes, was observed. When the HPO cells were cultured in vitro, plasmatocytes appeared rapidly, and oenocytoids possessing prophenol oxidase activity appeared several days later. HPO cells were also able to differentiate into a small number of granulocytes, but not into spherulocytes. When functionally mature plasmatocytes were cultured in vitro, oenocytoids were observed 10 days later. These results suggest that the hemocyte precursors in HPO first differentiate into plasmatocytes, which further change into oenocytoids. From these results, we propose that B. mori hemocytes can be divided into two major lineages, a granulocyte lineage and a plasmatocyte-oenocytoid lineage. The origins of the spherulocytes could not be determined in this study. We construct a model for the hematopoietic lineages at the larval stage of B. mori.

  18. Inductive differentiation of two neural lineages reconstituted in a microculture system from Xenopus early gastrula cells.

    Science.gov (United States)

    Mitani, S; Okamoto, H

    1991-05-01

    Neural induction of ectoderm cells has been reconstituted and examined in a microculture system derived from dissociated early gastrula cells of Xenopus laevis. We have used monoclonal antibodies as specific markers to monitor cellular differentiation from three distinct ectoderm lineages in culture (N1 for CNS neurons from neural tube, Me1 for melanophores from neural crest and E3 for skin epidermal cells from epidermal lineages). CNS neurons and melanophores differentiate when deep layer cells of the ventral ectoderm (VE, prospective epidermis region; 150 cells/culture) and an appropriate region of the marginal zone (MZ, prospective mesoderm region; 5-150 cells/culture) are co-cultured, but not in cultures of either cell type on their own; VE cells cultured alone yield epidermal cells as we have previously reported. The extent of inductive neural differentiation in the co-culture system strongly depends on the origin and number of MZ cells initially added to culture wells. The potency to induce CNS neurons is highest for dorsal MZ cells and sharply decreases as more ventrally located cells are used. The same dorsoventral distribution of potency is seen in the ability of MZ cells to inhibit epidermal differentiation. In contrast, the ability of MZ cells to induce melanophores shows the reverse polarity, ventral to dorsal. These data indicate that separate developmental mechanisms are used for the induction of neural tube and neural crest lineages. Co-differentiation of CNS neurons or melanophores with epidermal cells can be obtained in a single well of co-cultures of VE cells (150) and a wide range of numbers of MZ cells (5 to 100). Further, reproducible differentiation of both neural lineages requires intimate association between cells from the two gastrula regions; virtually no differentiation is obtained when cells from the VE and MZ are separated in a culture well. These results indicate that the inducing signals from MZ cells for both neural tube and neural

  19. Plio-Pleistocene climate change and geographic heterogeneity in plant diversity-environment relationships

    DEFF Research Database (Denmark)

    Svenning, J.-C.; Normand, Signe; Skov, Flemming

    2009-01-01

    Plio-Pleistocene climate change may have induced geographic heterogeneity in plant species richness-environment relationships in Europe due to greater in situ species survival and speciation rates in southern Europe. We formulate distinct hypotheses on how Plio-Pleistocene climate change may have...... affected richness-topographic heterogeneity and richness-water-energy availability relationships, causing steeper relationships in southern Europe. We investigated these hypotheses using data from Atlas Florae Europaeae on the distribution of 3069 species and geographically weighted regression (GWR). Our...... analyses showed that plant species richness generally increased with topographic heterogeneity (ln-transformed altitudinal range) and actual evapotranspiration (AET). We also found evidence for strong geographic heterogeneity in the species richness-environment relationship, with a greater increase...

  20. Chlamydia pneumoniae is genetically diverse in animals and appears to have crossed the host barrier to humans on (at least two occasions.

    Directory of Open Access Journals (Sweden)

    Candice M Mitchell

    2010-05-01

    Full Text Available Chlamydia pneumoniae is a common human and animal pathogen associated with a wide range of diseases. Since the first isolation of C. pneumoniae TWAR in 1965, all human isolates have been essentially clonal, providing little evolutionary insight. To address this gap, we investigated the genetic diversity of 30 isolates from diverse geographical locations, from both human and animal origin (amphibian, reptilian, equine and marsupial. Based on the level of variation that we observed at 23 discreet gene loci, it was clearly evident that the animal isolates were more diverse than the isolates of human origin. Furthermore, we show that C. pneumoniae isolates could be grouped into five major genotypes, A-E, with A, B, D and E genotypes linked by geographical location, whereas genotype C was found across multiple continents. Our evidence strongly supports two separate animal-to-human cross species transfer events in the evolutionary history of this pathogen. The C. pneumoniae human genotype identified in the USA, Canada, Taiwan, Iran, Japan, Korea and Australia (non-Indigenous most likely originated from a single amphibian or reptilian lineage, which appears to have been previously geographically widespread. We identified a separate human lineage present in two Australian Indigenous isolates (independent geographical locations. This lineage is distinct and is present in Australian amphibians as well as a range of Australian marsupials.

  1. Evidence of multiple divergent mitochondrial lineages within the ...

    African Journals Online (AJOL)

    On this basis, the mitochondrial cytochrome c oxidase subunit 1 (COI) was used to reconstruct the phylogeny of Bicoxidens and reveal divergent lineages within the genus. Maximum likelihood and Bayesian inference analyses recovered a paraphyletic Bicoxidens phylogram with divergent lineages present in three species ...

  2. Genome-wide analysis of the human Alu Yb-lineage

    Directory of Open Access Journals (Sweden)

    Carter Anthony B

    2004-03-01

    Full Text Available Abstract The Alu Yb-lineage is a 'young' primarily human-specific group of short interspersed element (SINE subfamilies that have integrated throughout the human genome. In this study, we have computationally screened the draft sequence of the human genome for Alu Yb-lineage subfamily members present on autosomal chromosomes. A total of 1,733 Yb Alu subfamily members have integrated into human autosomes. The average ages of Yb-lineage subfamilies, Yb7, Yb8 and Yb9, are estimated as 4.81, 2.39 and 2.32 million years, respectively. In order to determine the contribution of the Alu Yb-lineage to human genomic diversity, 1,202 loci were analysed using polymerase chain reaction (PCR-based assays, which amplify the genomic regions containing individual Yb-lineage subfamily members. Approximately 20 per cent of the Yb-lineage Alu elements are polymorphic for insertion presence/absence in the human genome. Fewer than 0.5 per cent of the Yb loci also demonstrate insertions at orthologous positions in non-human primate genomes. Genomic sequencing of these unusual loci demonstrates that each of the orthologous loci from non-human primate genomes contains older Y, Sg and Sx Alu family members that have been altered, through various mechanisms, into Yb8 sequences. These data suggest that Alu Yb-lineage subfamily members are largely restricted to the human genome. The high copy number, level of insertion polymorphism and estimated age indicate that members of the Alu Yb elements will be useful in a wide range of genetic analyses.

  3. A single origin of the photosynthetic organelle in different Paulinella lineages

    Directory of Open Access Journals (Sweden)

    Ishida Ken-ichiro

    2009-05-01

    that they all share a common photosynthetic ancestor. The strain M0880/a is most closely related to Japanese isolates (Kanazawa-1, -2, and Kaga, whereas FK01 groups closely with a Kawaguchi isolate. Conclusion Our results indicate that Paulinella chromatophora comprises at least two distinct evolutionary lineages and likely encompasses a broader taxonomic diversity than previously thought. The finding of a single plastid origin for both lineages shows these taxa to be valuable models for studying post-endosymbiotic cell and genome evolution.

  4. The Role of Geographical Indication in Supporting Food Safety: A not Taken for Granted Nexus

    Science.gov (United States)

    2014-01-01

    The paper focuses on the role of geographical indication in supporting strategies of food safety. Starting from the distinction between generic and specific quality, the article analyses the main factors influencing food safety in cases of geographical indication products, by stressing the importance of traceability systems and biodiversity in securing generic and specific quality. In the second part, the paper investigates the coordination problems behind a designation of origin and conditions to foster an effective collective action, a prerequisite to grant food safety through geographical indications. PMID:27800417

  5. Insect symbiosis: derivation of yeast-like endosymbionts within an entomopathogenic filamentous lineage.

    Science.gov (United States)

    Suh, S O; Noda, H; Blackwell, M

    2001-06-01

    Yeast-like endosymbionts (YLSs) of insects often are restricted to specific hosts and are essential to the host's survival. For example, in planthoppers (Homoptera: Delphacidae), endosymbionts function in sterol utilization and nitrogen recycling for the hosts. Our study, designed to investigate evolutionary changes in the YLS lineage involved in the planthopper association, strongly suggests an origin of the YLSs from within the filamentous ascomycetes (Euascomycetes), not the true yeasts (Saccharomycetes), as their morphology might indicate. During divergence of the planthopper YLSs, dramatic changes would have occurred in the insect-fungus interaction and the fungal morphology that have previously been undescribed in filamentous ascomycetes. Phylogenetic trees were based on individual and combined data sets of 2.6 kb of the nuclear small- and large-subunit ribosomal RNA genes for YLSs from three rice planthoppers (Laodelphax striatellus, Nilaparvata lugens, and Sogatella furcifera) compared with 56 other fungi. Parsimony analysis placed the planthopper YLSs within Cordyceps (Euascomycetes: Hypocreales: Clavicipitaceae), a genus of filamentous insects and a few fungal pathogenic ascomycetes. Another YLS species restricted to the aphid Hamiltonaphis styraci (Homoptera: Aphididae) was a sister taxon to the planthopper YLSS: Filamentous insect pathogens (Metarhizium and Beauveria) specific to the same species of insect hosts as the YLSs also formed lineages within the Clavicipitaceae, but these were distinct from the clade comprising YLS species. Trees constrained to include the YLSs in families of the Hypocreales other than the Clavicipitaceae were rejected by the Kishino-Hasegawa test. In addition, the results of this study support a hypothesis of two independent origins of insect-associated YLSs from among filamentous ascomycetes: the planthopper YLSs in the Clavicipitaceae and the YLSs associated with anobiid beetles (Symbiotaphrina species). Several lineages of

  6. Lineage diversification and hybridization in the Cayratia japonica-Cayratia tenuifolia species complex.

    Science.gov (United States)

    Ishikawa, Naoko; Ikeda, Hajime; Yi, Ting-shuang; Takabe-Ito, Eriko; Okada, Hiroshi; Tsukaya, Hirokazu

    2014-06-01

    The Cayratia japonica-Cayratia tenuifolia species complex (Vitaceae) is distributed from temperate to tropical East Asia, Southeast Asia, India, and Australia. The spatiotemporal diversification history of this complex was assessed through phylogenetic and biogeographic analyses. Maximum parsimony, neighbor-joining, and maximum likelihood methods were used to analyze sequences of one nuclear (AS1) and two plastid regions (trnL-F and trnC-petN). Bayesian dating analysis was conducted to estimate the divergence times of clades. The likelihood method LAGRANGE was used to infer ancestral areas. The Asian C. japonica and C. tenuifolia should be treated as an unresolved complex, and Australian C. japonica is distinct from the Asian C. japonica-C. tenuifolia species complex and should be treated as separate taxa. The Asian C. japonica-C. tenuifolia species complex was estimated to have diverged from its closest relatives during the Late Eocene (35.1 million years ago [Ma], 95% highest posterior densities [HPD]=23.3-47.3Ma) and most likely first diverged in mid-continental Asia. This complex was first divided into a northern clade and a southern clade during the middle Oligocene (27.3Ma; 95% HPD=17.4-38.1Ma), which is consistent with a large southeastward extrusion of the Indochina region relative to South China along the Red River. Each of the northern and southern clades then further diverged into multiple subclades through a series of dispersal and divergence events following significant geological and climatic changes in East and Southeast Asia during the Miocene. Multiple inter-lineage hybridizations among four lineages were inferred to have occurred following this diversification process, which caused some Asian lineages to be morphologically cryptic. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Extensive geographical and social structure in the paternal lineages of Saudi Arabia revealed by analysis of 27 Y-STRs.

    Science.gov (United States)

    Khubrani, Yahya M; Wetton, Jon H; Jobling, Mark A

    2018-03-01

    Saudi Arabia's indigenous population is organized into patrilineal descent groups, but to date, little has been done to characterize its population structure, in particular with respect to the male-specific region of the Y chromosome. We have used the 27-STR Yfiler ® Plus kit to generate haplotypes in 597 unrelated Saudi males, classified into five geographical regions (North, South, Central, East and West). Overall, Yfiler ® Plus provides a good discrimination capacity of 95.3%, but this is greatly reduced (74.7%) when considering the reduced Yfiler ® set of 17 Y-STRs, justifying the use of the expanded set of markers in this population. Comparison of the five geographical divisions reveals striking differences, with low diversity and similar haplotype spectra in the Central and Northern regions, and high diversity and similar haplotype spectra in the East and West. These patterns likely reflect the geographical isolation of the desert heartland of the peninsula, and the proximity to the sea of the Eastern and Western areas, and consequent historical immigration. We predicted haplogroups from Y-STR haplotypes, testing the performance of prediction by using a large independent set of Saudi Arabian Y-STR + Y-SNP data. Prediction indicated predominance (71%) of haplogroup J1, which was significantly more common in Central, Northern and Southern groups than in East and West, and formed a star-like expansion cluster in a median-joining network with an estimated age of ∼2800 years. Most of our 597 participants were sampled within Saudi Arabia itself, but ∼16% were sampled in the UK. Despite matching these two groups by home sub-region, we observed significant differences in haplotype and predicted haplogroup constitutions overall, and for most sub-regions individually. This suggests social structure influencing the probability of leaving Saudi Arabia, correlated with different Y-chromosome compositions. The UK-recruited sample is an inappropriate proxy for

  8. Lineage-specific late pleistocene expansion of an endemic subtropical gossamer-wing damselfly, Euphaea formosa, in Taiwan

    Directory of Open Access Journals (Sweden)

    Huang Jen-Pan

    2011-04-01

    Full Text Available Abstract Background Pleistocene glacial oscillations have significantly affected the historical population dynamics of temperate taxa. However, the general effects of recent climatic changes on the evolutionary history and genetic structure of extant subtropical species remain poorly understood. In the present study, phylogeographic and historical demographic analyses based on mitochondrial and nuclear DNA sequences were used. The aim was to investigate whether Pleistocene climatic cycles, paleo-drainages or mountain vicariance of Taiwan shaped the evolutionary diversification of a subtropical gossamer-wing damselfly, Euphaea formosa. Results E. formosa populations originated in the middle Pleistocene period (0.3 Mya and consisted of two evolutionarily independent lineages. It is likely that they derived from the Pleistocene paleo-drainages of northern and southern Minjiang, or alternatively by divergence within Taiwan. The ancestral North-central lineage colonized northwestern Taiwan first and maintained a slowly growing population throughout much of the early to middle Pleistocene period. The ancestral widespread lineage reached central-southern Taiwan and experienced a spatial and demographic expansion into eastern Taiwan. This expansion began approximately 30,000 years ago in the Holocene interglacial period. The ancestral southern expansion into eastern Taiwan indicates that the central mountain range (CMR formed a barrier to east-west expansion. However, E. formosa populations in the three major biogeographic regions (East, South, and North-Central exhibit no significant genetic partitions, suggesting that river drainages and mountains did not form strong geographical barriers against gene flow among extant populations. Conclusions The present study implies that the antiquity of E. formosa's colonization is associated with its high dispersal ability and larval tolerance to the late Pleistocene dry grasslands. The effect of late Pleistocene

  9. Lecto- and epitypification of Morchella steppicola (Morchellaceae, Pezizales), a morphologically, phylogenetically, and biogeographically distinct member of the Esculenta Clade from central Eurasia

    Science.gov (United States)

    The steppe morel, Morchella steppicola, is one of the more iconic species of true morels (Morchellaceae, Pezizales) based on its: 1) distinctive cerebriform pileus with densely packed labyrinthine irregular ridges, 2) genealogically exclusive position as the earliest diverging species lineage within...

  10. Two hemocyte lineages exist in silkworm larval hematopoietic organ.

    Directory of Open Access Journals (Sweden)

    Yuichi Nakahara

    Full Text Available BACKGROUND: Insects have multiple hemocyte morphotypes with different functions as do vertebrates, however, their hematopoietic lineages are largely unexplored with the exception of Drosophila melanogaster. METHODOLOGY/PRINCIPAL FINDINGS: To study the hematopoietic lineage of the silkworm, Bombyx mori, we investigated in vivo and in vitro differentiation of hemocyte precursors in the hematopoietic organ (HPO into the four mature hemocyte subsets, namely, plasmatocytes, granulocytes, oenocytoids, and spherulocytes. Five days after implantation of enzymatically-dispersed HPO cells from a GFP-expressing transgenic line into the hemocoel of normal larvae, differentiation into plasmatocytes, granulocytes and oenocytoids, but not spherulocytes, was observed. When the HPO cells were cultured in vitro, plasmatocytes appeared rapidly, and oenocytoids possessing prophenol oxidase activity appeared several days later. HPO cells were also able to differentiate into a small number of granulocytes, but not into spherulocytes. When functionally mature plasmatocytes were cultured in vitro, oenocytoids were observed 10 days later. These results suggest that the hemocyte precursors in HPO first differentiate into plasmatocytes, which further change into oenocytoids. CONCLUSIONS/SIGNIFICANCE: From these results, we propose that B. mori hemocytes can be divided into two major lineages, a granulocyte lineage and a plasmatocyte-oenocytoid lineage. The origins of the spherulocytes could not be determined in this study. We construct a model for the hematopoietic lineages at the larval stage of B. mori.

  11. Generation of polyhormonal and multipotent pancreatic progenitor lineages from human pluripotent stem cells.

    Science.gov (United States)

    Korytnikov, Roman; Nostro, Maria Cristina

    2016-05-15

    Generation of pancreatic β-cells from human pluripotent stem cells (hPSCs) has enormous importance in type 1 diabetes (T1D), as it is fundamental to a treatment strategy based on cellular therapeutics. Being able to generate β-cells, as well as other mature pancreatic cells, from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) will also enable the development of platforms that can be used for disease modeling and drug testing for a variety of pancreas-associated diseases, including cystic fibrosis. For this to occur, it is crucial to develop differentiation strategies that are robust and reproducible across cell lines and laboratories. In this article we describe two serum-free differentiation protocols designed to generate specific pancreatic lineages from hPSCs. Our approach employs a variety of cytokines and small molecules to mimic developmental pathways active during pancreatic organogenesis and allows for the in vitro generation of distinct pancreatic populations. The first protocol is designed to give rise to polyhormonal cells that have the potential to differentiate into glucagon-producing cells. The second protocol is geared to generate multipotent pancreatic progenitor cells, which harbor the potential to generate all pancreatic lineages including: monohormonal endocrine cells, acinar, and ductal cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Stem Cell Lineages: Between Cell and Organism

    Directory of Open Access Journals (Sweden)

    Melinda Bonnie Fagan

    2017-01-01

    Full Text Available Ontologies of living things are increasingly grounded on the concepts and practices of current life science. Biological development is a process, undergone by living things, which begins with a single cell and (in an important class of cases ends with formation of a multicellular organism. The process of development is thus prima facie central for ideas about biological individuality and organismality. However, recent accounts of these concepts do not engage developmental biology. This paper aims to fill the gap, proposing the lineage view of stem cells as an ontological framework for conceptualizing organismal development. This account is grounded on experimental practices of stem cell research, with emphasis on new techniques for generating biological organization in vitro. On the lineage view, a stem cell is the starting point of a cell lineage with a specific organismal source, time-interval of existence, and ‘tree topology’ of branch-points linking the stem to developmental termini. The concept of ‘enkapsis’ accommodates the cell-organism relation within the lineage view; this hierarchical notion is further explicated by considering the methods and results of stem cell experiments. Results of this examination include a (partial characterization of stem cells’ developmental versatility, and the context-dependence of developmental processes involving stem cells.

  13. Determining Lineage Pathways from Cellular Barcoding Experiments

    Directory of Open Access Journals (Sweden)

    Leïla Perié

    2014-02-01

    Full Text Available Cellular barcoding and other single-cell lineage-tracing strategies form experimental methodologies for analysis of in vivo cell fate that have been instrumental in several significant recent discoveries. Due to the highly nonlinear nature of proliferation and differentiation, interrogation of the resulting data for evaluation of potential lineage pathways requires a new quantitative framework complete with appropriate statistical tests. Here, we develop such a framework, illustrating its utility by analyzing data from barcoded multipotent cells of the blood system. This application demonstrates that the data require additional paths beyond those found in the classical model, which leads us to propose that hematopoietic differentiation follows a loss of potential mechanism and to suggest further experiments to test this deduction. Our quantitative framework can evaluate the compatibility of lineage trees with barcoded data from any proliferating and differentiating cell system.

  14. Founding Amerindian mitochondrial DNA lineages in ancient Maya from Xcaret, Quintana Roo.

    Science.gov (United States)

    González-Oliver, A; Márquez-Morfín, L; Jiménez, J C; Torre-Blanco, A

    2001-11-01

    Ancient DNA from the bone remains of 25 out of 28 pre-Columbian individuals from the Late Classic-Postclassic Maya site of Xcaret, Quintana Roo, was recovered, and mitochondrial DNA (mtDNA) was amplified by using the polymerase chain reaction. The presence of the four founding Amerindian mtDNA lineages was investigated by restriction analysis and by direct sequencing in selected individuals. The mtDNA lineages A, B, and C were found in this population. Eighty-four percent of the individuals were lineage A, whereas lineages B and C were present at low frequencies, 4% and 8%, respectively. Lineage D was absent from our sample. One individual did not possess any of the four lineages. Six skeletons out of 7 dated from the Late Classic period were haplotype A, whereas 11 skeletons out of 16 dated from the Postclassic period were also haplotype A. The distribution of mtDNA lineages in the Xcaret population contrasts sharply with that found in ancient Maya from Copán, which lack lineages A and B. On the other hand, our results resemble more closely the frequencies of mtDNA lineages found in contemporary Maya from the Yucatán Peninsula and in other Native American contemporary populations of Mesoamerican origin. Copyright 2001 Wiley-Liss, Inc.

  15. A Systems Perspective on Volunteered Geographic Information

    Directory of Open Access Journals (Sweden)

    Victoria Fast

    2014-12-01

    Full Text Available Volunteered geographic information (VGI is geographic information collected by way of crowdsourcing. However, the distinction between VGI as an information product and the processes that create VGI is blurred. Clearly, the environment that influences the creation of VGI is different than the information product itself, yet most literature treats them as one and the same. Thus, this research is motivated by the need to formalize and standardize the systems that support the creation of VGI. To this end, we propose a conceptual framework for VGI systems, the main components of which—project, participants, and technical infrastructure—form an environment conducive to the creation of VGI. Drawing on examples from OpenStreetMap, Ushahidi, and RinkWatch, we illustrate the pragmatic relevance of these components. Applying a system perspective to VGI allows us to better understand the components and functionality needed to effectively create VGI.

  16. The genetic structure of Turnip mosaic virus population reveals the rapid expansion of a new emergent lineage in China.

    Science.gov (United States)

    Li, Xiangdong; Zhu, Tiansheng; Yin, Xiao; Zhang, Chengling; Chen, Jia; Tian, Yanping; Liu, Jinliang

    2017-08-29

    Turnip mosaic virus (TuMV) is one of the most widespread and economically important virus infecting both crop and ornamental species of the family Brassicaceae. TuMV isolates can be classified to five phylogenetic lineages, basal-B, basal-BR, Asian-BR, world-B and Orchis. To understand the genetic structure of TuMV from radish in China, the 3'-terminal genome of 90 TuMV isolates were determined and analyzed with other available Chinese isolates. The results showed that the Chinese TuMV isolates from radish formed three groups: Asian-BR, basal-BR and world-B. More than half of these isolates (52.54%) were clustered to basal-BR group, and could be further divided into three sub-groups. The TuMV basal-BR isolates in the sub-groups I and II were genetically homologous with Japanese ones, while those in sub-group III formed a distinct lineage. Sub-populations of TuMV basal-BR II and III were new emergent and in a state of expansion. The Chinese TuMV radish populations were under negative selection. Gene flow between TuMV populations from Tai'an, Weifang and Changchun was frequent. The genetic structure of Turnip mosaic virus population reveals the rapid expansion of a new emergent lineage in China.

  17. Genetic characterization of Bombyx mori (Lepidoptera: Bombycidae) breeding and hybrid lines with different geographic origins.

    Science.gov (United States)

    Furdui, Emilia M; Mărghitaş, Liviu A; Dezmirean, Daniel S; Paşca, Ioan; Pop, Iulia F; Erler, Silvio; Schlüns, Ellen A

    2014-01-01

    The domesticated silkworm Bombyx mori L. comprises a large number of geographical breeds and hybrid lines. Knowing the genetic structure of those may provide information to improve the conservation of commercial lines by estimating inbreeding over generations and the consequences of excessive use of those lineages. Here, we analyzed the genetic diversity of seven breeds and eight hybrid lines from Eastern Europe and Asia using highly polymorphic microsatellites markers to determine its genetical impact on their use in global breeding programs. No consistent pattern of deviation from Hardy-Weinberg equilibrium was found for most breed and hybrids; and the absence of a linkage disequilibrium also suggests that the strains are in equilibrium. A principal coordinate analysis revealed a clear separation of two silkworm breeds from the rest: one (IBV) originated from India and the other one (RG90) from Romania/Japan. The tendency of the other breeds from different geographic origins to cluster together in a general mix might be due to similar selection pressures (climate and anthropogenic factors) in different geographic locations. Phylogenetic analyses grouped the different silkworm breeds but not the hybrids according to their geographic origin and confirmed the pattern found in the principal coordinate analysis. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  18. Protection of horses from West Nile virus Lineage 2 challenge following immunization with a whole, inactivated WNV lineage 1 vaccine.

    Science.gov (United States)

    Bowen, Richard A; Bosco-Lauth, Angela; Syvrud, Kevin; Thomas, Anne; Meinert, Todd R; Ludlow, Deborah R; Cook, Corey; Salt, Jeremy; Ons, Ellen

    2014-09-22

    Over the last years West Nile virus (WNV) lineage 2 has spread from the African to the European continent. This study was conducted to demonstrate efficacy of an inactivated, lineage 1-based, WNV vaccine (Equip WNV) against intrathecal challenge of horses with a recent isolate of lineage 2 WNV. Twenty horses, sero-negative for WNV, were enrolled and were randomly allocated to one of two treatment groups: an unvaccinated control group (T01, n=10) and a group administered with Equip WNV (T02, n=10). Horses were vaccinated at Day 0 and 21 and were challenged at day 42 with WNV lineage 2, Nea Santa/Greece/2010. Personnel performing clinical observations were blinded to treatment allocation. Sixty percent of the controls had to be euthanized after challenge compared to none of the vaccinates. A significantly lower percentage of the vaccinated animals showed clinical disease (two different clinical observations present on the same day) on six different days of study and the percentage of days with clinical disease was significantly lower in the vaccinated group. A total of 80% of the non-vaccinated horses showed viremia while only one vaccinated animal was positive by virus isolation on a single occasion. Vaccinated animals started to develop antibodies against WNV lineage 2 from day 14 (2 weeks after the first vaccination) and at day 42 (the time of onset of immunity) they had all developed a strong antibody response. Histopathology scores for all unvaccinated animals ranged from mild to very severe in each of the tissues examined (cervical spinal cord, medulla and pons), whereas in vaccinated horses 8 of 10 animals had no lesions and 2 had minimal lesions in one tissue. In conclusion, Equip WNV significantly reduced the number of viremic horses, the duration and severity of clinical signs of disease and mortality following challenge with lineage 2 WNV. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Spatial and Single-Cell Transcriptional Profiling Identifies Functionally Distinct Human Dermal Fibroblast Subpopulations.

    Science.gov (United States)

    Philippeos, Christina; Telerman, Stephanie B; Oulès, Bénédicte; Pisco, Angela O; Shaw, Tanya J; Elgueta, Raul; Lombardi, Giovanna; Driskell, Ryan R; Soldin, Mark; Lynch, Magnus D; Watt, Fiona M

    2018-04-01

    Previous studies have shown that mouse dermis is composed of functionally distinct fibroblast lineages. To explore the extent of fibroblast heterogeneity in human skin, we used a combination of comparative spatial transcriptional profiling of human and mouse dermis and single-cell transcriptional profiling of human dermal fibroblasts. We show that there are at least four distinct fibroblast populations in adult human skin, not all of which are spatially segregated. We define markers permitting their isolation and show that although marker expression is lost in culture, different fibroblast subpopulations retain distinct functionality in terms of Wnt signaling, responsiveness to IFN-γ, and ability to support human epidermal reconstitution when introduced into decellularized dermis. These findings suggest that ex vivo expansion or in vivo ablation of specific fibroblast subpopulations may have therapeutic applications in wound healing and diseases characterized by excessive fibrosis. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Universally Primed-PCR indicates geographical variation of Peronospora farinosa ex. Chenopodium quinoa.

    Science.gov (United States)

    Danielsen, Solveig; Lübeck, Mette

    2010-02-01

    In the Andean region of South America downy mildew, caused by Peronospora farinosa, is the most important disease of quinoa (Chenopodium quinoa). Peronospora farinosa, a highly polyphyletic species, occurs on quinoa and wild relatives on all continents. However, very little is known about the geographic diversity of the pathogen. As the interest in quinoa as a novel crop is increasing worldwide, geographical differences in the population structure of the downy mildew pathogen must be taken into consideration in order to design appropriate control strategies under a variety of circumstances. As a step towards understanding the geographic diversity of P. farinosa from quinoa, 40 downy mildew isolates from the Andean highlands and Denmark were characterized using universally primed PCR (UP-PCR). Eight UP-PCR primers were tested. A combined analysis of markers separated the Danish and Andean isolates in two distinct clusters. This study raises new questions about the origin and spread of P. farinosa on quinoa, its geographic diversity and host specificity.

  1. Return of a giant: DNA from archival museum samples helps to identify a unique cutthroat trout lineage formerly thought to be extinct.

    Science.gov (United States)

    Peacock, Mary M; Hekkala, Evon R; Kirchoff, Veronica S; Heki, Lisa G

    2017-11-01

    Currently one small, native population of the culturally and ecologically important Lahontan cutthroat trout ( Oncorhynchus clarkii henshawi , LCT, Federally listed) remains in the Truckee River watershed of northwestern Nevada and northeastern California. The majority of populations in this watershed were extirpated in the 1940s due to invasive species, overharvest, anthropogenic water consumption and changing precipitation regimes. In 1977, a population of cutthroat trout discovered in the Pilot Peak Mountains in the Bonneville basin of Utah, was putatively identified as the extirpated LCT lacustrine lineage native to Pyramid Lake in the Truckee River basin based on morphological and meristic characters. Our phylogenetic and Bayesian genotype clustering analyses of museum specimens collected from the large lakes (1872-1913) and contemporary samples collected from populations throughout the extant range provide evidence in support of a genetically distinct Truckee River basin origin for this population. Analysis of museum samples alone identified three distinct genotype clusters and historical connectivity among water bodies within the Truckee River basin. Baseline data from museum collections indicate that the extant Pilot Peak strain represents a remnant of the extirpated lacustrine lineage. Given the limitations on high-quality data when working with a sparse number of preserved museum samples, we acknowledge that, in the end, this may be a more complicated story. However, the paucity of remnant populations in the Truckee River watershed, in combination with data on the distribution of morphological, meristic and genetic data for Lahontan cutthroat trout, suggests that recovery strategies, particularly in the large lacustrine habitats should consider this lineage as an important part of the genetic legacy of this species.

  2. Historical biogeography and diversification of truffles in the Tuberaceae and their newly identified southern hemisphere sister lineage.

    Science.gov (United States)

    Bonito, Gregory; Smith, Matthew E; Nowak, Michael; Healy, Rosanne A; Guevara, Gonzalo; Cázares, Efren; Kinoshita, Akihiko; Nouhra, Eduardo R; Domínguez, Laura S; Tedersoo, Leho; Murat, Claude; Wang, Yun; Moreno, Baldomero Arroyo; Pfister, Donald H; Nara, Kazuhide; Zambonelli, Alessandra; Trappe, James M; Vilgalys, Rytas

    2013-01-01

    Truffles have evolved from epigeous (aboveground) ancestors in nearly every major lineage of fleshy fungi. Because accelerated rates of morphological evolution accompany the transition to the truffle form, closely related epigeous ancestors remain unknown for most truffle lineages. This is the case for the quintessential truffle genus Tuber, which includes species with socio-economic importance and esteemed culinary attributes. Ecologically, Tuber spp. form obligate mycorrhizal symbioses with diverse species of plant hosts including pines, oaks, poplars, orchids, and commercially important trees such as hazelnut and pecan. Unfortunately, limited geographic sampling and inconclusive phylogenetic relationships have obscured our understanding of their origin, biogeography, and diversification. To address this problem, we present a global sampling of Tuberaceae based on DNA sequence data from four loci for phylogenetic inference and molecular dating. Our well-resolved Tuberaceae phylogeny shows high levels of regional and continental endemism. We also identify a previously unknown epigeous member of the Tuberaceae--the South American cup-fungus Nothojafnea thaxteri (E.K. Cash) Gamundí. Phylogenetic resolution was further improved through the inclusion of a previously unrecognized Southern hemisphere sister group of the Tuberaceae. This morphologically diverse assemblage of species includes truffle (e.g. Gymnohydnotrya spp.) and non-truffle forms that are endemic to Australia and South America. Southern hemisphere taxa appear to have diverged more recently than the Northern hemisphere lineages. Our analysis of the Tuberaceae suggests that Tuber evolved from an epigeous ancestor. Molecular dating estimates Tuberaceae divergence in the late Jurassic (~156 million years ago), with subsequent radiations in the Cretaceous and Paleogene. Intra-continental diversification, limited long-distance dispersal, and ecological adaptations help to explain patterns of truffle

  3. Historical biogeography and diversification of truffles in the Tuberaceae and their newly identified southern hemisphere sister lineage.

    Directory of Open Access Journals (Sweden)

    Gregory Bonito

    Full Text Available Truffles have evolved from epigeous (aboveground ancestors in nearly every major lineage of fleshy fungi. Because accelerated rates of morphological evolution accompany the transition to the truffle form, closely related epigeous ancestors remain unknown for most truffle lineages. This is the case for the quintessential truffle genus Tuber, which includes species with socio-economic importance and esteemed culinary attributes. Ecologically, Tuber spp. form obligate mycorrhizal symbioses with diverse species of plant hosts including pines, oaks, poplars, orchids, and commercially important trees such as hazelnut and pecan. Unfortunately, limited geographic sampling and inconclusive phylogenetic relationships have obscured our understanding of their origin, biogeography, and diversification. To address this problem, we present a global sampling of Tuberaceae based on DNA sequence data from four loci for phylogenetic inference and molecular dating. Our well-resolved Tuberaceae phylogeny shows high levels of regional and continental endemism. We also identify a previously unknown epigeous member of the Tuberaceae--the South American cup-fungus Nothojafnea thaxteri (E.K. Cash Gamundí. Phylogenetic resolution was further improved through the inclusion of a previously unrecognized Southern hemisphere sister group of the Tuberaceae. This morphologically diverse assemblage of species includes truffle (e.g. Gymnohydnotrya spp. and non-truffle forms that are endemic to Australia and South America. Southern hemisphere taxa appear to have diverged more recently than the Northern hemisphere lineages. Our analysis of the Tuberaceae suggests that Tuber evolved from an epigeous ancestor. Molecular dating estimates Tuberaceae divergence in the late Jurassic (~156 million years ago, with subsequent radiations in the Cretaceous and Paleogene. Intra-continental diversification, limited long-distance dispersal, and ecological adaptations help to explain patterns of

  4. Sex-biased dispersal creates spatial genetic structure in a parthenogenetic ant with a dependent-lineage reproductive system.

    Science.gov (United States)

    Kuhn, A; Bauman, D; Darras, H; Aron, S

    2017-10-01

    Reproduction and dispersal are key aspects of species life history that influence spatial genetic structure in populations. Several ant species in the genus Cataglyphis have evolved a unique breeding system in which new reproductives (that is, queens and males) are produced asexually by parthenogenesis; in contrast, non-reproductives (that is, workers) are produced via sexual reproduction by mates from distinct genetic lineages. We investigated how these two coexisting reproductive methods affect population-level spatial genetic structure using the ant Cataglyphis mauritanica as a model. We obtained genotypes for queens and their male mates from 338 colonies, and we found that the two lineages present in the study population occurred with equal frequency. Furthermore, analysis of spatial genetic structure revealed strong sex-biased dispersal. Because queens were produced by parthenogenesis and because they dispersed over short distances, there was an extreme level of spatial structuring: a mosaic of patches composed of clonal queens was formed. Males, on the other hand, dispersed over several hundred metres and, thus, across patches, ensuring successful interlineage mating.

  5. Admixture of Eastern and Western European Red Deer Lineages as a Result of Postglacial Recolonization of the Czech Republic (Central Europe).

    Science.gov (United States)

    Krojerová-Prokešová, Jarmila; Barančeková, Miroslava; Koubek, Petr

    2015-01-01

    Due to a restriction of the distributional range of European red deer (Cervus elaphus L.) during the Quaternary and subsequent recolonization of Europe from different refugia, a clear phylogeographical pattern in genetic structure has been revealed using mitochondrial DNA markers. In Central Europe, 2 distinct, eastern and western, lineages of European red deer are present; however, admixture between them has not yet been studied in detail. We used mitochondrial DNA (control region and cytochrome b gene) sequences and 22 microsatellite loci from 522 individuals to investigate the genetic diversity of red deer in what might be expected to be an intermediate zone. We discovered a high number of unique mtDNA haplotypes belonging to each lineage and high levels of genetic diversity (cyt b H = 0.867, D-loop H = 0.914). The same structuring of red deer populations was also revealed by microsatellite analysis, with results from both analyses thus suggesting a suture zone between the 2 lineages. Despite the fact that postglacial recolonization of Central Europe by red deer occurred more than 10000 years ago, the degree of admixture between the 2 lineages is relatively small, with only 10.8% admixed individuals detected. Direct translocations of animals by humans have slightly blurred the pattern in this region; however, this blurring was more apparent when using maternally inherited markers than nuclear markers. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Nonstimulated human uncommitted mesenchymal stem cells express cell markers of mesenchymal and neural lineages.

    Science.gov (United States)

    Minguell, José J; Fierro, Fernando A; Epuñan, María J; Erices, Alejandro A; Sierralta, Walter D

    2005-08-01

    Ex vivo cultures of human bone marrow-derived mesenchymal stem cells (MSCs) contain subsets of progenitors exhibiting dissimilar properties. One of these subsets comprises uncommitted progenitors displaying distinctive features, such as morphology, a quiescent condition, growth factor production, and restricted tissue biodistribution after transplantation. In this study, we assessed the competence of these cells to express, in the absence of differentiation stimuli, markers of mesoderm and ectodermic (neural) cell lineages. Fluorescence microscopy analysis showed a unique pattern of expression of osteogenic, chondrogenic, muscle, and neural markers. The depicted "molecular signature" of these early uncommitted progenitors, in the absence of differentiation stimuli, is consistent with their multipotentiality and plasticity as suggested by several in vitro and in vivo studies.

  7. Clone-specific differences in Pragmites australis: Effects of ploidy level and geographic origin

    DEFF Research Database (Denmark)

    Hansen, D.; Lambertini, Carla; Jampeetong, Arunothai

    2007-01-01

    by the geographic origin, the euploidy level (4x, 6x, 8x and 12x), and to assess differences between native and introduced clones in North America. Growth, morphology, photosynthetic characteristics, photosynthetic pigments and enzymes were measured on 11 geographically distinct clones propagated in a common...... result in an increase in plant size, probably because the number of cell divisions during development is reduced. Four North American clones were included in the study. The clone from the Atlantic Coast and the supposed invasive European clone resembled each other. The Gulf Coast clone differed from...

  8. Cell lineages of the embryo of the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Deppe, U; Schierenberg, E; Cole, T; Krieg, C; Schmitt, D; Yoder, B; von Ehrenstein, G

    1978-01-01

    Embryogenesis of the free-living soil nematode Caenorhabditis elegans produces a juvenile having about 550 cells at hatching. We have determined the lineages of 182 cells by tracing the divisions of individual cells in living embryos. An invariant pattern of cleavage divisions of the egg generates a set of stem cells. These stem cells are the founders of six stem cell lineages. Each lineage has its own clock--i.e., an autonomous rhythm of synchronous cell divisions. The rhythms are maintained in spite of extensive cellular rearrangement. The rate and the orientation of the cell divisions of the cell lineages are essentially invariant among individuals. Thus, the destiny of cells seems to depend primarily on their lineage history. The anterior position of the site of origin of the stem cells in the egg relates to the rate of the cell cycle clock, suggesting intracellular preprogramming of the uncleaved egg. We used a technique that allows normal embryogenesis, from the fertilized egg to hatching, outside the parent under a cover glass. Embryogenesis was followed microscopically with Nomarski interference optics and high-resolution video recording.

  9. mtDNA variation in the Yanomami: evidence for additional New World founding lineages.

    Science.gov (United States)

    Easton, R D; Merriwether, D A; Crews, D E; Ferrell, R E

    1996-07-01

    Native Americans have been classified into four founding haplogroups with as many as seven founding lineages based on mtDNA RFLPs and DNA sequence data. mtDNA analysis was completed for 83 Yanomami from eight villages in the Surucucu and Catrimani Plateau regions of Roraima in northwestern Brazil. Samples were typed for 15 polymorphic mtDNA sites (14 RFLP sites and 1 deletion site), and a subset was sequenced for both hypervariable regions of the mitochondrial D-loop. Substantial mitochondrial diversity was detected among the Yanomami, five of seven accepted founding haplotypes and three others were observed. Of the 83 samples, 4 (4.8%) were lineage B1, 1 (1.2%) was lineage B2, 31 (37.4%) were lineage C1, 29 (34.9%) were lineage C2, 2 (2.4%) were lineage D1, 6 (7.2%) were lineage D2, 7 (8.4%) were a haplotype we designated "X6," and 3 (3.6%) were a haplotype we designated "X7." Sequence analysis found 43 haplotypes in 50 samples. B2, X6, and X7 are previously unrecognized mitochondrial founding lineage types of Native Americans. The widespread distribution of these haplotypes in the New World and Asia provides support for declaring these lineages to be New World founding types.

  10. Single-cell transcriptomic reconstruction reveals cell cycle and multi-lineage differentiation defects in Bcl11a-deficient hematopoietic stem cells.

    Science.gov (United States)

    Tsang, Jason C H; Yu, Yong; Burke, Shannon; Buettner, Florian; Wang, Cui; Kolodziejczyk, Aleksandra A; Teichmann, Sarah A; Lu, Liming; Liu, Pentao

    2015-09-21

    Hematopoietic stem cells (HSCs) are a rare cell type with the ability of long-term self-renewal and multipotency to reconstitute all blood lineages. HSCs are typically purified from the bone marrow using cell surface markers. Recent studies have identified significant cellular heterogeneities in the HSC compartment with subsets of HSCs displaying lineage bias. We previously discovered that the transcription factor Bcl11a has critical functions in the lymphoid development of the HSC compartment. In this report, we employ single-cell transcriptomic analysis to dissect the molecular heterogeneities in HSCs. We profile the transcriptomes of 180 highly purified HSCs (Bcl11a (+/+) and Bcl11a (-/-)). Detailed analysis of the RNA-seq data identifies cell cycle activity as the major source of transcriptomic variation in the HSC compartment, which allows reconstruction of HSC cell cycle progression in silico. Single-cell RNA-seq profiling of Bcl11a (-/-) HSCs reveals abnormal proliferative phenotypes. Analysis of lineage gene expression suggests that the Bcl11a (-/-) HSCs are constituted of two distinct myeloerythroid-restricted subpopulations. Remarkably, similar myeloid-restricted cells could also be detected in the wild-type HSC compartment, suggesting selective elimination of lymphoid-competent HSCs after Bcl11a deletion. These defects are experimentally validated in serial transplantation experiments where Bcl11a (-/-) HSCs are myeloerythroid-restricted and defective in self-renewal. Our study demonstrates the power of single-cell transcriptomics in dissecting cellular process and lineage heterogeneities in stem cell compartments, and further reveals the molecular and cellular defects in the Bcl11a-deficient HSC compartment.

  11. Genetic diversity and differentiation among insular honey bee populations in the southwest Indian Ocean likely reflect old geographical isolation and modern introductions.

    Science.gov (United States)

    Techer, Maéva Angélique; Clémencet, Johanna; Simiand, Christophe; Turpin, Patrick; Garnery, Lionel; Reynaud, Bernard; Delatte, Hélène

    2017-01-01

    With globalization the Western honey bee has become a nearly cosmopolitan species, but it was originally restricted to the Old World. This renowned model of biodiversity has diverged into five evolutionary lineages and several geographic "subspecies." If Apis mellifera unicolor is indubitably an African subspecies endemic to Madagascar, its relationship with honey bees from three archipelagos in the southwest Indian Ocean (SWIO) hotspot of biodiversity is misunderstood. We compared recent mtDNA diversity data to an original characterization of the nuclear diversity from honey bees in the Mascarenes and Comoros archipelagos, using 14 microsatellites, but also additional mtDNA tRNALeu-cox2 analysis. Our sampling offers the most comprehensive dataset for the SWIO populations with a total of 3,270 colonies from 10 islands compared with 855 samples from Madagascar, 113 from Africa, and 138 from Europe. Comprehensive mitochondrial screening confirmed that honey bees from La Réunion, Mauritius, and Comoros archipelagos are mainly of African origin (88.1% out of 2,746 colonies) and that coexistence with European lineages occurs only in the Mascarenes. PCA, Bayesian, and genetic differentiation analysis showed that African colonies are not significantly distinct on each island, but have diversified among islands and archipelagos. FST levels progressively decreased in significance from European and African continental populations, to SWIO insular and continental populations, and finally among islands from the same archipelago. Among African populations, Madagascar shared a nuclear background with and was most closely related to SWIO island populations (except Rodrigues). Only Mauritius Island presented clear cytoplasmic disequilibrium and genetic structure characteristic of an admixed population undergoing hybridization, in this case, between A. m. unicolor and A. m. ligustica, A. m. carnica and A. m. mellifera-like individuals. Finally, global genetic clustering analysis

  12. Genetic diversity and differentiation among insular honey bee populations in the southwest Indian Ocean likely reflect old geographical isolation and modern introductions.

    Directory of Open Access Journals (Sweden)

    Maéva Angélique Techer

    Full Text Available With globalization the Western honey bee has become a nearly cosmopolitan species, but it was originally restricted to the Old World. This renowned model of biodiversity has diverged into five evolutionary lineages and several geographic "subspecies." If Apis mellifera unicolor is indubitably an African subspecies endemic to Madagascar, its relationship with honey bees from three archipelagos in the southwest Indian Ocean (SWIO hotspot of biodiversity is misunderstood. We compared recent mtDNA diversity data to an original characterization of the nuclear diversity from honey bees in the Mascarenes and Comoros archipelagos, using 14 microsatellites, but also additional mtDNA tRNALeu-cox2 analysis. Our sampling offers the most comprehensive dataset for the SWIO populations with a total of 3,270 colonies from 10 islands compared with 855 samples from Madagascar, 113 from Africa, and 138 from Europe. Comprehensive mitochondrial screening confirmed that honey bees from La Réunion, Mauritius, and Comoros archipelagos are mainly of African origin (88.1% out of 2,746 colonies and that coexistence with European lineages occurs only in the Mascarenes. PCA, Bayesian, and genetic differentiation analysis showed that African colonies are not significantly distinct on each island, but have diversified among islands and archipelagos. FST levels progressively decreased in significance from European and African continental populations, to SWIO insular and continental populations, and finally among islands from the same archipelago. Among African populations, Madagascar shared a nuclear background with and was most closely related to SWIO island populations (except Rodrigues. Only Mauritius Island presented clear cytoplasmic disequilibrium and genetic structure characteristic of an admixed population undergoing hybridization, in this case, between A. m. unicolor and A. m. ligustica, A. m. carnica and A. m. mellifera-like individuals. Finally, global genetic

  13. Fast and scalable inference of multi-sample cancer lineages.

    KAUST Repository

    Popic, Victoria; Salari, Raheleh; Hajirasouliha, Iman; Kashef-Haghighi, Dorna; West, Robert B; Batzoglou, Serafim

    2015-01-01

    Somatic variants can be used as lineage markers for the phylogenetic reconstruction of cancer evolution. Since somatic phylogenetics is complicated by sample heterogeneity, novel specialized tree-building methods are required for cancer phylogeny reconstruction. We present LICHeE (Lineage Inference for Cancer Heterogeneity and Evolution), a novel method that automates the phylogenetic inference of cancer progression from multiple somatic samples. LICHeE uses variant allele frequencies of somatic single nucleotide variants obtained by deep sequencing to reconstruct multi-sample cell lineage trees and infer the subclonal composition of the samples. LICHeE is open source and available at http://viq854.github.io/lichee .

  14. Fast and scalable inference of multi-sample cancer lineages.

    KAUST Repository

    Popic, Victoria

    2015-05-06

    Somatic variants can be used as lineage markers for the phylogenetic reconstruction of cancer evolution. Since somatic phylogenetics is complicated by sample heterogeneity, novel specialized tree-building methods are required for cancer phylogeny reconstruction. We present LICHeE (Lineage Inference for Cancer Heterogeneity and Evolution), a novel method that automates the phylogenetic inference of cancer progression from multiple somatic samples. LICHeE uses variant allele frequencies of somatic single nucleotide variants obtained by deep sequencing to reconstruct multi-sample cell lineage trees and infer the subclonal composition of the samples. LICHeE is open source and available at http://viq854.github.io/lichee .

  15. Clonally Expanding Thymocytes Having Lineage Capability in Gamma-Ray-Induced Mouse Atrophic Thymus

    International Nuclear Information System (INIS)

    Yamamoto, Takashi; Morita, Shin-ichi; Go, Rieka; Obata, Miki; Katsuragi, Yoshinori; Fujita, Yukari; Maeda, Yoshitaka; Yokoyama, Minesuke; Aoyagi, Yutaka; Ichikawa, Hitoshi; Mishima, Yukio; Kominami, Ryo

    2010-01-01

    Purpose: To characterize, in the setting of γ-ray-induced atrophic thymus, probable prelymphoma cells showing clonal growth and changes in signaling, including DNA damage checkpoint. Methods and Materials: A total of 111 and 45 mouse atrophic thymuses at 40 and 80 days, respectively, after γ-irradiation were analyzed with polymerase chain reaction for D-J rearrangements at the TCRβ locus, flow cytometry for cell cycle, and Western blotting for the activation of DNA damage checkpoints. Results: Limited D-J rearrangement patterns distinct from normal thymus were detected at high frequencies (43 of 111 for 40-day thymus and 21 of 45 for 80-day thymus). Those clonally expanded thymocytes mostly consisted of CD4 + CD8 + double-positive cells, indicating the retention of lineage capability. They exhibited pausing at a late G1 phase of cell cycle progression but did not show the activation of DNA damage checkpoints such as γH2AX, Chk1/2, or p53. Of interest is that 17 of the 52 thymuses showing normal D-J rearrangement patterns at 40 days after irradiation showed allelic loss at the Bcl11b tumor suppressor locus, also indicating clonal expansion. Conclusion: The thymocytes of clonal growth detected resemble human chronic myeloid leukemia in possessing self-renewal and lineage capability, and therefore they can be a candidate of the lymphoma-initiating cells.

  16. Lineage Switching in Acute Leukemias: A Consequence of Stem Cell Plasticity?

    Directory of Open Access Journals (Sweden)

    Elisa Dorantes-Acosta

    2012-01-01

    Full Text Available Acute leukemias are the most common cancer in childhood and characterized by the uncontrolled production of hematopoietic precursor cells of the lymphoid or myeloid series within the bone marrow. Even when a relatively high efficiency of therapeutic agents has increased the overall survival rates in the last years, factors such as cell lineage switching and the rise of mixed lineages at relapses often change the prognosis of the illness. During lineage switching, conversions from lymphoblastic leukemia to myeloid leukemia, or vice versa, are recorded. The central mechanisms involved in these phenomena remain undefined, but recent studies suggest that lineage commitment of plastic hematopoietic progenitors may be multidirectional and reversible upon specific signals provided by both intrinsic and environmental cues. In this paper, we focus on the current knowledge about cell heterogeneity and the lineage switch resulting from leukemic cells plasticity. A number of hypothetical mechanisms that may inspire changes in cell fate decisions are highlighted. Understanding the plasticity of leukemia initiating cells might be fundamental to unravel the pathogenesis of lineage switch in acute leukemias and will illuminate the importance of a flexible hematopoietic development.

  17. Genetically distant American Canine distemper virus lineages have recently caused epizootics with somewhat different characteristics in raccoons living around a large suburban zoo in the USA

    Science.gov (United States)

    Lednicky, John A; Dubach, Jean; Kinsel, Michael J; Meehan, Thomas P; Bocchetta, Maurizio; Hungerford, Laura L; Sarich, Nicolene A; Witecki, Kelley E; Braid, Michael D; Pedrak, Casandra; Houde, Christiane M

    2004-01-01

    Background Mortality rates have differed during distemper outbreaks among free-ranging raccoons (Procyon lotor) living around a large Chicago-area zoo, and appeared higher in year 2001 than in 1998 and 2000. We hypothesized that a more lethal variant of the local Canine distemper virus (CDV) lineage had emerged in 2001, and sought the genetic basis that led to increased virulence. However, a more complex model surfaced during preliminary analyses of CDV genomic sequences in infected tissues and of virus isolated in vitro from the raccoons. Results Phylogenetic analyses of subgenomic CDV fusion (F) -, phosphoprotein (P) -, and complete hemagglutinin (H) – gene sequences indicated that distinct American CDV lineages caused the distemper epizootics. The 1998 outbreak was caused by viruses that are likely from an old CDV lineage that includes CDV Snyder Hill and Lederle, which are CDV strains from the early 1950's. The 2000 and 2001 viruses appear to stem from the lineage of CDV A75/17, which was isolated in the mid 1970's. Only the 2001 viruses formed large syncytia in brain and/or lung tissue, and during primary isolation in-vitro in Vero cells, demonstrating at least one phenotypic property by which they differed from the other viruses. Conclusions Two different American CDV lineages caused the raccoon distemper outbreaks. The 1998 viruses are genetically distant to the 2000/2001 viruses. Since CDV does not cause persistent infections, the cycling of different CDV lineages within the same locale suggests multiple reintroductions of the virus to area raccoons. Our findings establish a precedent for determining whether the perceived differences in mortality rates are actual and attributable in part to inherent differences between CDV strains arising from different CDV lineages. PMID:15507154

  18. Genetically distant American Canine distemper virus lineages have recently caused epizootics with somewhat different characteristics in raccoons living around a large suburban zoo in the USA

    Directory of Open Access Journals (Sweden)

    Lednicky John A

    2004-09-01

    Full Text Available Abstract Background Mortality rates have differed during distemper outbreaks among free-ranging raccoons (Procyon lotor living around a large Chicago-area zoo, and appeared higher in year 2001 than in 1998 and 2000. We hypothesized that a more lethal variant of the local Canine distemper virus (CDV lineage had emerged in 2001, and sought the genetic basis that led to increased virulence. However, a more complex model surfaced during preliminary analyses of CDV genomic sequences in infected tissues and of virus isolated in vitro from the raccoons. Results Phylogenetic analyses of subgenomic CDV fusion (F -, phosphoprotein (P -, and complete hemagglutinin (H – gene sequences indicated that distinct American CDV lineages caused the distemper epizootics. The 1998 outbreak was caused by viruses that are likely from an old CDV lineage that includes CDV Snyder Hill and Lederle, which are CDV strains from the early 1950's. The 2000 and 2001 viruses appear to stem from the lineage of CDV A75/17, which was isolated in the mid 1970's. Only the 2001 viruses formed large syncytia in brain and/or lung tissue, and during primary isolation in-vitro in Vero cells, demonstrating at least one phenotypic property by which they differed from the other viruses. Conclusions Two different American CDV lineages caused the raccoon distemper outbreaks. The 1998 viruses are genetically distant to the 2000/2001 viruses. Since CDV does not cause persistent infections, the cycling of different CDV lineages within the same locale suggests multiple reintroductions of the virus to area raccoons. Our findings establish a precedent for determining whether the perceived differences in mortality rates are actual and attributable in part to inherent differences between CDV strains arising from different CDV lineages.

  19. Complex communities of small protists and unexpected occurrence of typical marine lineages in shallow freshwater systems.

    Science.gov (United States)

    Simon, Marianne; Jardillier, Ludwig; Deschamps, Philippe; Moreira, David; Restoux, Gwendal; Bertolino, Paola; López-García, Purificación

    2015-10-01

    Although inland water bodies are more heterogeneous and sensitive to environmental variation than oceans, the diversity of small protists in these ecosystems is much less well known. Some molecular surveys of lakes exist, but little information is available from smaller, shallower and often ephemeral freshwater systems, despite their global distribution and ecological importance. We carried out a comparative study based on massive pyrosequencing of amplified 18S rRNA gene fragments of protists in the 0.2-5 μm size range in one brook and four shallow ponds located in the Natural Regional Park of the Chevreuse Valley, France. Our study revealed a wide diversity of small protists, with 812 stringently defined operational taxonomic units (OTUs) belonging to the recognized eukaryotic supergroups (SAR--Stramenopiles, Alveolata, Rhizaria--Archaeplastida, Excavata, Amoebozoa, Opisthokonta) and to groups of unresolved phylogenetic position (Cryptophyta, Haptophyta, Centrohelida, Katablepharida, Telonemida, Apusozoa). Some OTUs represented deep-branching lineages (Cryptomycota, Aphelida, Colpodellida, Tremulida, clade-10 Cercozoa, HAP-1 Haptophyta). We identified several lineages previously thought to be marine including, in addition to MAST-2 and MAST-12, already detected in freshwater, MAST-3 and possibly MAST-6. Protist community structures were different in the five ecosystems. These differences did not correlate with geographical distances, but seemed to be influenced by environmental parameters. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Reporting of perinatal health indicators for international comparisons: enhancing the appearance of geographical plots

    NARCIS (Netherlands)

    Lack, N.; Blondel, B.; Mohangoo, A.D.; Sakkeus, L.; Cans, C.; Bouvier-Colle, M.H.; Macfarlane, A.; Zeitlin, J.

    2013-01-01

    Background: Tabulating annual national health indicators sorted by outcome may be misleading for two reasons. The implied rank order is largely a result of heterogeneous population sizes. Distinctions between geographically adjacent regions are not visible. Methods: Regional data are plotted in a

  1. Evidence of at least two evolutionary lineages in Melipona subnitida (Apidae, Meliponini) suggested by mtDNA variability and geometric morphometrics of forewings

    Science.gov (United States)

    Bonatti, Vanessa; Simões, Zilá Luz Paulino; Franco, Fernando Faria; Francoy, Tiago Mauricio

    2014-01-01

    Melipona subnitida, a tropical stingless bee, is an endemic species of the Brazilian northeast and exhibits great potential for honey and pollen production in addition to its role as one of the main pollinators of the Caatinga biome. To understand the genetic structure and better assist in the conservation of this species, we characterized the population variability of M. subnitida using geometric morphometrics of the forewing and cytochrome c oxidase I gene fragment sequencing. We collected workers from six localities in the northernmost distribution. Both methodologies indicated that the variability among the sampled populations is related both to the environment in which samples were collected and the geographical distance between the sampling sites, indicating that differentiation among the populations is due to the existence of at least evolutionary lineages. Molecular clock data suggest that this differentiation may have begun in the middle Pleistocene, approximately 396 kya. The conservation of all evolutionary lineages is important since they can present differential resistance to environmental changes, as resistance to drought and diseases.

  2. Symbiodinium diversity among host clionaid sponges from Caribbean and Pacific reefs: Evidence of heteroplasmy and putative host-specific symbiont lineages.

    Science.gov (United States)

    Hill, Malcolm; Allenby, Ashley; Ramsby, Blake; Schönberg, Christine; Hill, April

    2011-04-01

    Among the Porifera, symbiosis with Symbiodinium spp. (i.e., zooxanthellae) is largely restricted to members of the family Clionaidae. We surveyed the diversity of zooxanthellae associated with sponges from the Caribbean and greater Indo-Pacific regions using chloroplast large subunit (cp23S) domain V sequences. We provide the first report of Clade C Symbiodinium harbored by a sponge (Cliona caesia), and the first report of Clade A Symbiodinium from an Indo-Pacific sponge (C. jullieni). Clade A zooxanthellae were also identified in sponges from the Caribbean, which has been reported previously. Sponges that we examined from the Florida Keys all harbored Clade G Symbiodinium as did C. orientalis from the Indo-Pacific, which also supports earlier work with sponges. Two distinct Clade G lineages were identified in our phylogenetic analysis; Symbiodinium extracted from clionaid sponges formed a monophyletic group sister to Symbiodinium found in foraminiferans. Truncated and 'normal' length variants of 23S rDNA sequences were detected simultaneously in all three morphotypes of C. varians providing the first evidence of chloroplast-based heteroplasmy in a sponge. None of the other sponge species examined showed evidence of heteroplasmy. As in previous work, length variation in cp23S domain V sequences was found to correspond in a highly precise manner to finer resolution of phylogenetic topology among Symbiodinium clades. On a global scale, existing data indicate that members of the family Clionaidae that host zooxanthellae can form symbiotic associations with at least four Symbiodinium clades. The majority of sponge hosts appear to harbor only one cladal type of symbiont, but some species can harbor more than one clade of zooxanthellae concurrently. The observed differences in the number of partners harbored by sponges raise important questions about the degree of coevolutionary integration and specificity of these symbioses. Although our sample sizes are small, we

  3. Lineage plasticity-mediated therapy resistance in prostate cancer.

    Science.gov (United States)

    Blee, Alexandra M; Huang, Haojie

    2018-06-12

    Therapy resistance is a significant challenge for prostate cancer treatment in clinic. Although targeted therapies such as androgen deprivation and androgen receptor (AR) inhibition are effective initially, tumor cells eventually evade these strategies through multiple mechanisms. Lineage reprogramming in response to hormone therapy represents a key mechanism that is increasingly observed. The studies in this area have revealed specific combinations of alterations present in adenocarcinomas that provide cells with the ability to transdifferentiate and perpetuate AR-independent tumor growth after androgen-based therapies. Interestingly, several master regulators have been identified that drive plasticity, some of which also play key roles during development and differentiation of the cell lineages in the normal prostate. Thus, further study of each AR-independent tumor type and understanding underlying mechanisms are warranted to develop combinational therapies that combat lineage plasticity in prostate cancer.

  4. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage.

    Science.gov (United States)

    Merker, Matthias; Blin, Camille; Mona, Stefano; Duforet-Frebourg, Nicolas; Lecher, Sophie; Willery, Eve; Blum, Michael G B; Rüsch-Gerdes, Sabine; Mokrousov, Igor; Aleksic, Eman; Allix-Béguec, Caroline; Antierens, Annick; Augustynowicz-Kopeć, Ewa; Ballif, Marie; Barletta, Francesca; Beck, Hans Peter; Barry, Clifton E; Bonnet, Maryline; Borroni, Emanuele; Campos-Herrero, Isolina; Cirillo, Daniela; Cox, Helen; Crowe, Suzanne; Crudu, Valeriu; Diel, Roland; Drobniewski, Francis; Fauville-Dufaux, Maryse; Gagneux, Sébastien; Ghebremichael, Solomon; Hanekom, Madeleine; Hoffner, Sven; Jiao, Wei-wei; Kalon, Stobdan; Kohl, Thomas A; Kontsevaya, Irina; Lillebæk, Troels; Maeda, Shinji; Nikolayevskyy, Vladyslav; Rasmussen, Michael; Rastogi, Nalin; Samper, Sofia; Sanchez-Padilla, Elisabeth; Savic, Branislava; Shamputa, Isdore Chola; Shen, Adong; Sng, Li-Hwei; Stakenas, Petras; Toit, Kadri; Varaine, Francis; Vukovic, Dragana; Wahl, Céline; Warren, Robin; Supply, Philip; Niemann, Stefan; Wirth, Thierry

    2015-03-01

    Mycobacterium tuberculosis strains of the Beijing lineage are globally distributed and are associated with the massive spread of multidrug-resistant (MDR) tuberculosis in Eurasia. Here we reconstructed the biogeographical structure and evolutionary history of this lineage by genetic analysis of 4,987 isolates from 99 countries and whole-genome sequencing of 110 representative isolates. We show that this lineage initially originated in the Far East, from where it radiated worldwide in several waves. We detected successive increases in population size for this pathogen over the last 200 years, practically coinciding with the Industrial Revolution, the First World War and HIV epidemics. Two MDR clones of this lineage started to spread throughout central Asia and Russia concomitantly with the collapse of the public health system in the former Soviet Union. Mutations identified in genes putatively under positive selection and associated with virulence might have favored the expansion of the most successful branches of the lineage.

  5. Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage.

    OpenAIRE

    Merker Matthias; Blin Camille; Mona Stefano; Duforet-Frebourg Nicolas; Lecher Sophie; Willery Eve; Blum Michael G B; Rüsch-Gerdes Sabine; Mokrousov Igor; Aleksic Eman; Allix-Béguec Caroline; Antierens Annick; Augustynowicz-Kopec Ewa; Ballif Marie; Barletta Francesca

    2015-01-01

    International audience; Mycobacterium tuberculosis strains of the Beijing lineage are globally distributed and are associated with the massive spread of multidrug-resistant (MDR) tuberculosis in Eurasia. Here we reconstructed the biogeographical structure and evolutionary history of this lineage by genetic analysis of 4,987 isolates from 99 countries and whole-genome sequencing of 110 representative isolates. We show that this lineage initially originated in the Far East, from where it radiat...

  6. Potential distribution of the endangered endemic lizard Liolaemus lutzae Mertens, 1938 (Liolaemidae: are there other suitable areas for a geographically restricted species?

    Directory of Open Access Journals (Sweden)

    GR. Winck

    Full Text Available In this study we attempted to access further information on the geographical distribution of the endangered lizard Liolaemus lutzae, estimating its potential distribution through the maximum entropy algorithm. For this purpose, we related its points of occurrence with matrices of environmental variables. After examining the correlation between environmental matrices, we selected 10 for model construction. The main variables influencing the current geographic distribution of L. lutzae were the diurnal temperature range and altitude. The species endemism seemed to be a consequence of a reduction of the original distribution area. Alternatively, the resulting model may reflect the geographic distribution of an ancestral lineage, since the model selected areas of occurrence of the two other species of Liolaemus from Brazil (L. arambarensis and L. occipitalis, all living in sand dune habitats and having psamophilic habits. Due to the high loss rate of habitat occupied by the species, the conservation and recovery of the remaining areas affected by human actions is essential.

  7. Geographic patterns of genetic variation in a broadly distributed marine vertebrate: new insights into loggerhead turtle stock structure from expanded mitochondrial DNA sequences.

    Directory of Open Access Journals (Sweden)

    Brian M Shamblin

    Full Text Available Previous genetic studies have demonstrated that natal homing shapes the stock structure of marine turtle nesting populations. However, widespread sharing of common haplotypes based on short segments of the mitochondrial control region often limits resolution of the demographic connectivity of populations. Recent studies employing longer control region sequences to resolve haplotype sharing have focused on regional assessments of genetic structure and phylogeography. Here we synthesize available control region sequences for loggerhead turtles from the Mediterranean Sea, Atlantic, and western Indian Ocean basins. These data represent six of the nine globally significant regional management units (RMUs for the species and include novel sequence data from Brazil, Cape Verde, South Africa and Oman. Genetic tests of differentiation among 42 rookeries represented by short sequences (380 bp haplotypes from 3,486 samples and 40 rookeries represented by long sequences (∼800 bp haplotypes from 3,434 samples supported the distinction of the six RMUs analyzed as well as recognition of at least 18 demographically independent management units (MUs with respect to female natal homing. A total of 59 haplotypes were resolved. These haplotypes belonged to two highly divergent global lineages, with haplogroup I represented primarily by CC-A1, CC-A4, and CC-A11 variants and haplogroup II represented by CC-A2 and derived variants. Geographic distribution patterns of haplogroup II haplotypes and the nested position of CC-A11.6 from Oman among the Atlantic haplotypes invoke recent colonization of the Indian Ocean from the Atlantic for both global lineages. The haplotypes we confirmed for western Indian Ocean RMUs allow reinterpretation of previous mixed stock analysis and further suggest that contemporary migratory connectivity between the Indian and Atlantic Oceans occurs on a broader scale than previously hypothesized. This study represents a valuable model for

  8. Cryptic Diversity in the Ubiquist Species Parisotoma notabilis (Collembola, Isotomidae): A Long-Used Chimeric Species?

    Science.gov (United States)

    Porco, David; Potapov, Mikhail; Bedos, Anne; Busmachiu, Galina; Weiner, Wanda M.; Hamra-Kroua, Salah; Deharveng, Louis

    2012-01-01

    Parisotoma notabilis is the most common species of Collembola in Europe and is currently designated as ubiquist. This species has been extensively used in numerous studies and is considered as well characterized on a morphological ground. Despite the homogeneity of its morphology, the sequencing of the barcoding fragment (5′ end of COI) for several populations throughout Europe and North America revealed four distinct genetic lineages. The divergence found between these lineages was similar to the genetic distance among other species of the genus Parisotoma included in the analysis. All four lineages have been confirmed by the nuclear gene 28S. This congruence between mitochondrial and nuclear signals, as well as the geographical distribution pattern of lineages observed in Europe, supports the potential specific status of these lineages. Based on specimens from the type locality (Hamburg), the species name was successfully assigned to one of these lineages. This finding raises several problems as Parisotoma notabilis has been widely used in many ecological studies. Accumulation of new data for the different lineages detected, especially ecological information and life history traits, is needed to help resolve this situation. PMID:23049931

  9. Three distinct modes of intron dynamics in the evolution of eukaryotes.

    Science.gov (United States)

    Carmel, Liran; Wolf, Yuri I; Rogozin, Igor B; Koonin, Eugene V

    2007-07-01

    Several contrasting scenarios have been proposed for the origin and evolution of spliceosomal introns, a hallmark of eukaryotic genes. A comprehensive probabilistic model to obtain a definitive reconstruction of intron evolution was developed and applied to 391 sets of conserved genes from 19 eukaryotic species. It is inferred that a relatively high intron density was reached early, i.e., the last common ancestor of eukaryotes contained >2.15 introns/kilobase, and the last common ancestor of multicellular life forms harbored approximately 3.4 introns/kilobase, a greater intron density than in most of the extant fungi and in some animals. The rates of intron gain and intron loss appear to have been dropping during the last approximately 1.3 billion years, with the decline in the gain rate being much steeper. Eukaryotic lineages exhibit three distinct modes of evolution of the intron-exon structure. The primary, balanced mode, apparently, operates in all lineages. In this mode, intron gain and loss are strongly and positively correlated, in contrast to previous reports on inverse correlation between these processes. The second mode involves an elevated rate of intron loss and is prevalent in several lineages, such as fungi and insects. The third mode, characterized by elevated rate of intron gain, is seen only in deep branches of the tree, indicating that bursts of intron invasion occurred at key points in eukaryotic evolution, such as the origin of animals. Intron dynamics could depend on multiple mechanisms, and in the balanced mode, gain and loss of introns might share common mechanistic features.

  10. The Characteristics of Astrocytomas and Oligodendrogliomas Are Caused by Two Distinct and Interchangeable Signaling Formats

    Directory of Open Access Journals (Sweden)

    Chengkai Dai

    2005-04-01

    Full Text Available Chronic platelet-derived growth factor (PDGF signaling in glial progenitors leads to the formation of oligodendrogliomas in mice, whereas chronic combined Ras and Akt signaling leads to astrocytomas. Different histologies of these tumors imply that the pathways activated by these two oncogenic stimulations are different, and that the apparent lineage of the tumor cells may result from specific signaling activity. Therefore, we have investigated the signaling effects of PDGF in culture and in gliomas in vivo. In culture, PDGF transiently activates ERK1/2 and Akt, and subsequently elevates p21 and PCNA expression similar to chronic PDGF autocrine signaling in cultured astrocytes and PDGF-induced oligodendrogliomas in vivo. Culture experiments show that autocrine PDGF stimulation, and combined active Ras and Akt generate signaling patterns that are in some ways mutually exclusive. Furthermore, forced Akt activity in the context of chronic PDGF stimulation results in cells with an astrocytic differentiation pattern both in culture and in vivo. These data imply that these two interconvertible signaling motifs are distinct in mice and lead to gliomas resembling the two major glioma histologies found in humans. The ability of signaling activity to convert tumor cells from one lineage to another presents a mechanism for the development of tumors apparently comprised of cells from multiple lineages.

  11. Evolutionary dynamics of endogenous feline leukemia virus proliferation among species of the domestic cat lineage

    International Nuclear Information System (INIS)

    Polani, Sagi; Roca, Alfred L.; Rosensteel, Bryan B.; Kolokotronis, Sergios-Orestis; Bar-Gal, Gila Kahila

    2010-01-01

    Endogenous feline leukemia viruses (enFeLVs) occur in the germ lines of the domestic cat and related wild species (genus Felis). We sequenced the long terminal repeats and part of the env region of enFeLVs in domestic cats and five wild species. A total of 305 enFeLV sequences were generated across 17 individuals, demonstrating considerable diversity within two major clades. Distinct proliferations of enFeLVs occurred before and after the black-footed cat diverged from the other species. Diversity of enFeLVs was limited for the sand cat and jungle cat suggesting that proliferation of enFeLVs occurred within these species after they diverged. Relationships among enFeLVs were congruent with host species relationships except for the jungle cat, which carried only enFeLVs from a lineage that recently invaded the germline (enFeLV-AGTT). Comparison of wildcat and domestic cat enFeLVs indicated that a distinctive germ line invasion of enFeLVs has not occurred since the cat was domesticated.

  12. Complex patterns of speciation in cosmopolitan "rock posy" lichens--discovering and delimiting cryptic fungal species in the lichen-forming Rhizoplaca melanophthalma species-complex (Lecanoraceae, Ascomycota).

    Science.gov (United States)

    Leavitt, Steven D; Fankhauser, Johnathon D; Leavitt, Dean H; Porter, Lyndon D; Johnson, Leigh A; St Clair, Larry L

    2011-06-01

    A growing body of evidence indicates that in some cases morphology-based species circumscription of lichenized fungi misrepresents the number of existing species. The cosmopolitan "rock posy" lichen (Rhizoplaca melanophthalma) species-complex includes a number of morphologically distinct species that are both geographically and ecologically widespread, providing a model system to evaluate speciation in lichen-forming ascomycetes. In this study, we assembled multiple lines of evidence from nuclear DNA sequence data, morphology, and biochemistry for species delimitation in the R. melanophthalma species-complex. We identify a total of ten candidate species in this study, four of which were previously recognized as distinct taxa and six previously unrecognized lineages found within what has been thus far considered a single species. Candidate species are supported using inferences from multiple empirical operational criteria. Multiple instances of sympatry support the view that these lineages merit recognition as distinct taxa. Generally, we found little corroboration between morphological and chemical characters, and previously unidentified lineages were morphologically polymorphic. However, secondary metabolite data supported one cryptic saxicolous lineage, characterized by orsellinic-derived gyrophoric and lecanoric acids, which we consider to be taxonomically significant. Our study of the R. melanophthalma species-complex indicates that the genus Rhizoplaca, as presently circumscribed, is more diverse in western North American than originally perceived, and we present our analyses as a working example of species delimitation in morphologically cryptic and recently diverged lichenized fungi. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. A global phylogenetic analysis in order to determine the host species and geography dependent features present in the evolution of avian H9N2 influenza hemagglutinin

    Directory of Open Access Journals (Sweden)

    Andrew R. Dalby

    2014-10-01

    Full Text Available A complete phylogenetic analysis of all of the H9N2 hemagglutinin sequences that were collected between 1966 and 2012 was carried out in order to build a picture of the geographical and host specific evolution of the hemagglutinin protein. To improve the quality and applicability of the output data the sequences were divided into subsets based upon location and host species.The phylogenetic analysis of hemagglutinin reveals that the protein has distinct lineages between China and the Middle East, and that wild birds in both regions retain a distinct form of the H9 molecule, from the same lineage as the ancestral hemagglutinin. The results add further evidence to the hypothesis that the current predominant H9N2 hemagglutinin lineage might have originated in Southern China. The study also shows that there are sampling problems that affect the reliability of this and any similar analysis. This raises questions about the surveillance of H9N2 and the need for wider sampling of the virus in the environment.The results of this analysis are also consistent with a model where hemagglutinin has predominantly evolved by neutral drift punctuated by occasional selection events. These selective events have produced the current pattern of distinct lineages in the Middle East, Korea and China. This interpretation is in agreement with existing studies that have shown that there is widespread intra-country sequence evolution.

  14. Signatures of cytoplasmic proteins in the exoproteome distinguish community- and hospital-associated methicillin-resistant Staphylococcus aureus USA300 lineages

    DEFF Research Database (Denmark)

    Mekonnen, Solomon A.; Palma Medina, Laura M.; Glasner, Corinna

    2017-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is the common name for a heterogeneous group of highly drug-resistant staphylococci. Two major MRSA classes are distinguished based on epidemiology, namely community-associated (CA) and hospital-associated (HA) MRSA. Notably, the distinction of CA......- and HA-MRSA based on molecular traits remains difficult due to the high genomic plasticity of S. aureus. Here we sought to pinpoint global distinguishing features of CA- and HA-MRSA through a comparative genome and proteome analysis of the notorious MRSA lineage USA300. We show for the first time that CA......- and HA-MRSA isolates can be distinguished by 2 distinct extracellular protein abundance clusters that are predictive not only for epidemiologic behavior, but also for their growth and survival within epithelial cells. This ‘exoproteome profiling’ also groups more distantly related HA-MRSA isolates...

  15. Highly variable rates of genome rearrangements between hemiascomycetous yeast lineages.

    Directory of Open Access Journals (Sweden)

    2006-03-01

    Full Text Available Hemiascomycete yeasts cover an evolutionary span comparable to that of the entire phylum of chordates. Since this group currently contains the largest number of complete genome sequences it presents unique opportunities to understand the evolution of genome organization in eukaryotes. We inferred rates of genome instability on all branches of a phylogenetic tree for 11 species and calculated species-specific rates of genome rearrangements. We characterized all inversion events that occurred within synteny blocks between six representatives of the different lineages. We show that the rates of macro- and microrearrangements of gene order are correlated within individual lineages but are highly variable across different lineages. The most unstable genomes correspond to the pathogenic yeasts Candida albicans and Candida glabrata. Chromosomal maps have been intensively shuffled by numerous interchromosomal rearrangements, even between species that have retained a very high physical fraction of their genomes within small synteny blocks. Despite this intensive reshuffling of gene positions, essential genes, which cluster in low recombination regions in the genome of Saccharomyces cerevisiae, tend to remain syntenic during evolution. This work reveals that the high plasticity of eukaryotic genomes results from rearrangement rates that vary between lineages but also at different evolutionary times of a given lineage.

  16. Broad phylogenomic sampling and the sister lineage of land plants.

    Directory of Open Access Journals (Sweden)

    Ruth E Timme

    Full Text Available The tremendous diversity of land plants all descended from a single charophyte green alga that colonized the land somewhere between 430 and 470 million years ago. Six orders of charophyte green algae, in addition to embryophytes, comprise the Streptophyta s.l. Previous studies have focused on reconstructing the phylogeny of organisms tied to this key colonization event, but wildly conflicting results have sparked a contentious debate over which lineage gave rise to land plants. The dominant view has been that 'stoneworts,' or Charales, are the sister lineage, but an alternative hypothesis supports the Zygnematales (often referred to as "pond scum" as the sister lineage. In this paper, we provide a well-supported, 160-nuclear-gene phylogenomic analysis supporting the Zygnematales as the closest living relative to land plants. Our study makes two key contributions to the field: 1 the use of an unbiased method to collect a large set of orthologs from deeply diverging species and 2 the use of these data in determining the sister lineage to land plants. We anticipate this updated phylogeny not only will hugely impact lesson plans in introductory biology courses, but also will provide a solid phylogenetic tree for future green-lineage research, whether it be related to plants or green algae.

  17. Evolutionary relationships in the sand-dwelling cichlid lineage of lake tanganyika suggest multiple colonization of rocky habitats and convergent origin of biparental mouthbrooding.

    Science.gov (United States)

    Koblmüller, Stephan; Salzburger, Walter; Sturmbauer, Christian

    2004-01-01

    The cichlid species flock of Lake Tanganyika is comprised of seven seeding lineages that evolved in step with changes of the lake environment. One seeding lineage diversified into at least six lineages within a short period of time. Our study focuses on the diversification of one of these lineages, the Ectodini, comprising highly specialized, sand- and rock-dwelling species. They display two distinct breeding styles: maternal and biparental mouthbrooding. By analyzing three mtDNA gene segments in 30 species representing all 13 described genera, we show that the Ectodini rapidly diversified into four clades at the onset of their radiation. The monotypic genus Grammatotria is likely to represent the most ancestral split, followed by the almost contemporary origin of three additional clades, the first comprising the benthic genus Callochromis, the second comprising the benthic genera Asprotilapia, Xenotilapia, Enantiopus, and Microdontochromis, and the third comprising the semi-pelagic genera Ophthalmotilapia, Cardiopharynx, Cyathopharynx, Ectodus, Aulonocranus, Lestradea, and Cunningtonia. Our study confirms the benthic and sand-dwelling life-style as ancestral. Rocky habitats were colonized independently in the Xenotilapia- and Ophthalmotilapia-clade. The Xenotilapia-clade comprises both maternal and biparental mouthbrooders. Their mode of breeding appears to be highly plastic: biparental mouthbrooding either evolved once in the common ancestor of the clade, to be reverted at least three times, or evolved at least five times independently from a maternally mouthbrooding ancestor. Furthermore, the genera Xenotilapia, Microdontochromis, Lestradea, and Ophthalmotilapia appeared paraphyletic in our analyses, suggesting the need of taxonomic revision.

  18. Deciphering the recent phylogenetic expansion of the originally deeply rooted Mycobacterium tuberculosis lineage 7.

    Science.gov (United States)

    Yimer, Solomon A; Namouchi, Amine; Zegeye, Ephrem Debebe; Holm-Hansen, Carol; Norheim, Gunnstein; Abebe, Markos; Aseffa, Abraham; Tønjum, Tone

    2016-06-30

    A deeply rooted phylogenetic lineage of Mycobacterium tuberculosis (M. tuberculosis) termed lineage 7 was discovered in Ethiopia. Whole genome sequencing of 30 lineage 7 strains from patients in Ethiopia was performed. Intra-lineage genome variation was defined and unique characteristics identified with a focus on genes involved in DNA repair, recombination and replication (3R genes). More than 800 mutations specific to M. tuberculosis lineage 7 strains were identified. The proportion of non-synonymous single nucleotide polymorphisms (nsSNPs) in 3R genes was higher after the recent expansion of M. tuberculosis lineage 7 strain started. The proportion of nsSNPs in genes involved in inorganic ion transport and metabolism was significantly higher before the expansion began. A total of 22346 bp deletions were observed. Lineage 7 strains also exhibited a high number of mutations in genes involved in carbohydrate transport and metabolism, transcription, energy production and conversion. We have identified unique genomic signatures of the lineage 7 strains. The high frequency of nsSNP in 3R genes after the phylogenetic expansion may have contributed to recent variability and adaptation. The abundance of mutations in genes involved in inorganic ion transport and metabolism before the expansion period may indicate an adaptive response of lineage 7 strains to enable survival, potentially under environmental stress exposure. As lineage 7 strains originally were phylogenetically deeply rooted, this may indicate fundamental adaptive genomic pathways affecting the fitness of M. tuberculosis as a species.

  19. Genome-Nuclear Lamina Interactions Regulate Cardiac Stem Cell Lineage Restriction.

    Science.gov (United States)

    Poleshko, Andrey; Shah, Parisha P; Gupta, Mudit; Babu, Apoorva; Morley, Michael P; Manderfield, Lauren J; Ifkovits, Jamie L; Calderon, Damelys; Aghajanian, Haig; Sierra-Pagán, Javier E; Sun, Zheng; Wang, Qiaohong; Li, Li; Dubois, Nicole C; Morrisey, Edward E; Lazar, Mitchell A; Smith, Cheryl L; Epstein, Jonathan A; Jain, Rajan

    2017-10-19

    Progenitor cells differentiate into specialized cell types through coordinated expression of lineage-specific genes and modification of complex chromatin configurations. We demonstrate that a histone deacetylase (Hdac3) organizes heterochromatin at the nuclear lamina during cardiac progenitor lineage restriction. Specification of cardiomyocytes is associated with reorganization of peripheral heterochromatin, and independent of deacetylase activity, Hdac3 tethers peripheral heterochromatin containing lineage-relevant genes to the nuclear lamina. Deletion of Hdac3 in cardiac progenitor cells releases genomic regions from the nuclear periphery, leading to precocious cardiac gene expression and differentiation into cardiomyocytes; in contrast, restricting Hdac3 to the nuclear periphery rescues myogenesis in progenitors otherwise lacking Hdac3. Our results suggest that availability of genomic regions for activation by lineage-specific factors is regulated in part through dynamic chromatin-nuclear lamina interactions and that competence of a progenitor cell to respond to differentiation signals may depend upon coordinated movement of responding gene loci away from the nuclear periphery. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. The causal agents of witches' broom and frosty pod rot of cacao (chocolate, Theobroma cacao) form a new lineage of Marasmiaceae.

    Science.gov (United States)

    Aime, M C; Phillips-Mora, W

    2005-01-01

    The two most devastating diseases of cacao (Theobroma cacao)--the source of chocolate--in tropical America are caused by the fungi Crinipellis perniciosa (witches' broom disease) and Moniliophthora roreri (frosty pod rot or moniliasis disease). Despite the agricultural, socio-economic and environmental impact of these fungi, most aspects of their life cycles are unknown, and the phylogenetic relationships of M. roreri have yet to be conclusively established. In this paper, extensive phylogenetic analyses of five nuclear gene regions (28S rDNA, 18S rDNA, ITS, RPB1, and EF1-alpha) confirm that C. perniciosa and M. roreri are sister taxa that belong in the Marasmiaceae (euagarics). Furthermore, these taxa form part of a separate and distinct lineage within the family. This lineage includes the biotrophic fungi Moniliophthora perniciosa comb. nov. and M. roreri, as well as one undescribed endophytic species. The sister genera to Moniliophthora are Marasmius, Crinipellis and Chaetocalathus, which consist mainly of saprotrophic litter fungi.

  1. High Yield of Adult Oligodendrocyte Lineage Cells Obtained from Meningeal Biopsy

    Directory of Open Access Journals (Sweden)

    Sissi Dolci

    2017-10-01

    Full Text Available Oligodendrocyte loss can lead to cognitive and motor deficits. Current remyelinating therapeutic strategies imply either modulation of endogenous oligodendrocyte precursors or transplantation of in vitro expanded oligodendrocytes. Cell therapy, however, still lacks identification of an adequate source of oligodendrocyte present in adulthood and able to efficiently produce transplantable cells. Recently, a neural stem cell-like population has been identified in meninges. We developed a protocol to obtain high yield of oligodendrocyte lineage cells from one single biopsy of adult rat meningeal tissue. From 1 cm2 of adult rat spinal cord meninges, we efficiently expanded a homogenous culture of 10 millions of meningeal-derived oligodendrocyte lineage cells in a short period of time (approximately 4 weeks. Meningeal-derived oligodendrocyte lineage cells show typical mature oligodendrocyte morphology and express specific oligodendrocyte markers, such as galactosylceramidase and myelin basic protein. Moreover, when transplanted in a chemically demyelinated spinal cord model, meningeal-derived oligodendrocyte lineage cells display in vivo-remyelinating potential. This oligodendrocyte lineage cell population derives from an accessible and adult source, being therefore a promising candidate for autologous cell therapy of demyelinating diseases. In addition, the described method to differentiate meningeal-derived neural stem cells into oligodendrocyte lineage cells may represent a valid in vitro model to dissect oligodendrocyte differentiation and to screen for drugs capable to promote oligodendrocyte regeneration.

  2. Chemically and geographically distinct solid-phase iron pools in the Southern Ocean.

    Science.gov (United States)

    von der Heyden, B P; Roychoudhury, A N; Mtshali, T N; Tyliszczak, T; Myneni, S C B

    2012-11-30

    Iron is a limiting nutrient in many parts of the oceans, including the unproductive regions of the Southern Ocean. Although the dominant fraction of the marine iron pool occurs in the form of solid-phase particles, its chemical speciation and mineralogy are challenging to characterize on a regional scale. We describe a diverse array of iron particles, ranging from 20 to 700 nanometers in diameter, in the waters of the Southern Ocean euphotic zone. Distinct variations in the oxidation state and composition of these iron particles exist between the coasts of South Africa and Antarctica, with different iron pools occurring in different frontal zones. These speciation variations can result in solubility differences that may affect the production of bioavailable dissolved iron.

  3. Distinguishing between incomplete lineage sorting and genomic introgressions: complete fixation of allospecific mitochondrial DNA in a sexually reproducing fish (Cobitis; Teleostei, despite clonal reproduction of hybrids.

    Directory of Open Access Journals (Sweden)

    Lukas Choleva

    Full Text Available Distinguishing between hybrid introgression and incomplete lineage sorting causing incongruence among gene trees in that they exhibit topological differences requires application of statistical approaches that are based on biologically relevant models. Such study is especially challenging in hybrid systems, where usual vectors mediating interspecific gene transfers--hybrids with Mendelian heredity--are absent or unknown. Here we study a complex of hybridizing species, which are known to produce clonal hybrids, to discover how one of the species, Cobitis tanaitica, has achieved a pattern of mito-nuclear mosaic genome over the whole geographic range. We appplied three distinct methods, including the method using solely the information on gene tree topologies, and found that the contrasting mito-nuclear signal might not have resulted from the retention of ancestral polymorphism. Instead, we found two signs of hybridization events related to C. tanaitica; one concerning nuclear gene flow and the other suggested mitochondrial capture. Interestingly, clonal inheritance (gynogenesis of contemporary hybrids prevents genomic introgressions and non-clonal hybrids are either absent or too rare to be detected among European Cobitis. Our analyses therefore suggest that introgressive hybridizations are rather old episodes, mediated by previously existing hybrids whose inheritance was not entirely clonal. Cobitis complex thus supports the view that the type of resulting hybrids depends on a level of genomic divergence between sexual species.

  4. Imaging retinal progenitor lineages in developing zebrafish embryos.

    Science.gov (United States)

    Jusuf, Patricia; Harris, William A; Poggi, Lucia

    2013-03-01

    In this protocol, we describe how to make and analyze four dimensional (4D) movies of retinal lineage in the zebrafish embryo in vivo. 4D consists of three spatial dimensions (3D) reconstructed from stacks of confocal planes plus one time dimension. Our imaging is performed on transgenic cells that express fluorescent proteins under the control of cell-specific promoters or on cells that transiently express such reporters in specific retinal cell progenitors. An important aspect of lineage tracing is the ability to follow individual cells as they undergo multiple cell divisions, final migration, and differentiation. This may mean many hours of 4D imaging, requiring that cells be kept healthy and maintained under conditions suitable for normal development. The longest movies we have made are ∼50 h. By analyzing these movies, we can see when a specific cell was born and who its sister was, allowing us to reconstruct its retinal lineages in vivo.

  5. Pancreas lineage allocation and specification are regulated by sphingosine-1-phosphate signalling

    Science.gov (United States)

    Serafimidis, Ioannis; Rodriguez-Aznar, Eva; Lesche, Mathias; Yoshioka, Kazuaki; Takuwa, Yoh; Dahl, Andreas; Pan, Duojia; Gavalas, Anthony

    2017-01-01

    During development, progenitor expansion, lineage allocation, and implementation of differentiation programs need to be tightly coordinated so that different cell types are generated in the correct numbers for appropriate tissue size and function. Pancreatic dysfunction results in some of the most debilitating and fatal diseases, including pancreatic cancer and diabetes. Several transcription factors regulating pancreas lineage specification have been identified, and Notch signalling has been implicated in lineage allocation, but it remains unclear how these processes are coordinated. Using a combination of genetic approaches, organotypic cultures of embryonic pancreata, and genomics, we found that sphingosine-1-phosphate (S1p), signalling through the G protein coupled receptor (GPCR) S1pr2, plays a key role in pancreas development linking lineage allocation and specification. S1pr2 signalling promotes progenitor survival as well as acinar and endocrine specification. S1pr2-mediated stabilisation of the yes-associated protein (YAP) is essential for endocrine specification, thus linking a regulator of progenitor growth with specification. YAP stabilisation and endocrine cell specification rely on Gαi subunits, revealing an unexpected specificity of selected GPCR intracellular signalling components. Finally, we found that S1pr2 signalling posttranscriptionally attenuates Notch signalling levels, thus regulating lineage allocation. Both S1pr2-mediated YAP stabilisation and Notch attenuation are necessary for the specification of the endocrine lineage. These findings identify S1p signalling as a novel key pathway coordinating cell survival, lineage allocation, and specification and linking these processes by regulating YAP levels and Notch signalling. Understanding lineage allocation and specification in the pancreas will shed light in the origins of pancreatic diseases and may suggest novel therapeutic approaches. PMID:28248965

  6. Two Hemocyte Lineages Exist in Silkworm Larval Hematopoietic Organ

    OpenAIRE

    Nakahara, Yuichi; Kanamori, Yasushi; Kiuchi, Makoto; Kamimura, Manabu

    2010-01-01

    BACKGROUND: Insects have multiple hemocyte morphotypes with different functions as do vertebrates, however, their hematopoietic lineages are largely unexplored with the exception of Drosophila melanogaster. METHODOLOGY/PRINCIPAL FINDINGS: To study the hematopoietic lineage of the silkworm, Bombyx mori, we investigated in vivo and in vitro differentiation of hemocyte precursors in the hematopoietic organ (HPO) into the four mature hemocyte subsets, namely, plasmatocytes, granulocytes, oenocyto...

  7. Complete avian malaria parasite genomes reveal features associated with lineage-specific evolution in birds and mammals

    Science.gov (United States)

    Böhme, Ulrike; Otto, Thomas D.; Cotton, James A.; Steinbiss, Sascha; Sanders, Mandy; Oyola, Samuel O.; Nicot, Antoine; Gandon, Sylvain; Patra, Kailash P.; Herd, Colin; Bushell, Ellen; Modrzynska, Katarzyna K.; Billker, Oliver; Vinetz, Joseph M.; Rivero, Ana; Newbold, Chris I.; Berriman, Matthew

    2018-01-01

    Avian malaria parasites are prevalent around the world and infect a wide diversity of bird species. Here, we report the sequencing and analysis of high-quality draft genome sequences for two avian malaria species, Plasmodium relictum and Plasmodium gallinaceum. We identify 50 genes that are specific to avian malaria, located in an otherwise conserved core of the genome that shares gene synteny with all other sequenced malaria genomes. Phylogenetic analysis suggests that the avian malaria species form an outgroup to the mammalian Plasmodium species, and using amino acid divergence between species, we estimate the avian- and mammalian-infective lineages diverged in the order of 10 million years ago. Consistent with their phylogenetic position, we identify orthologs of genes that had previously appeared to be restricted to the clades of parasites containing Plasmodium falciparum and Plasmodium vivax, the species with the greatest impact on human health. From these orthologs, we explore differential diversifying selection across the genus and show that the avian lineage is remarkable in the extent to which invasion-related genes are evolving. The subtelomeres of the P. relictum and P. gallinaceum genomes contain several novel gene families, including an expanded surf multigene family. We also identify an expansion of reticulocyte binding protein homologs in P. relictum, and within these proteins, we detect distinct regions that are specific to nonhuman primate, humans, rodent, and avian hosts. For the first time in the Plasmodium lineage, we find evidence of transposable elements, including several hundred fragments of LTR-retrotransposons in both species and an apparently complete LTR-retrotransposon in the genome of P. gallinaceum. PMID:29500236

  8. Response pattern's of immunoglobulins evaluation in different lineages of mice infected with T. cruzi

    International Nuclear Information System (INIS)

    Silva, Andreia dos Santos

    2006-01-01

    The present work has employed different mice lineages (A/J, C57BL/6, B6AF1, BXA1 and BXA2) that were challenged with different doses of T. cruzi. The objective was to evaluate the pattern of immunoglobulins response presented by resistant and susceptible mice to T. cruzi as well as the lineages developed from the matting between them. So that evaluation was done by using lineages serums' sample, analyzed by ELISA's method. In agreement with the results observed all the lineages presented higher response to IgG2a and IgG2b, if compared with the titles to IgG1. IgG1 immunoglobulins involve a type Th2 pattern response which expressed allergic immunological responses, while IgG2 involves a pattern response Th1 that expresses cellular immunological response. The different lineages used in this research also presented different immunological response pattern by the infection with T. cruzi. Mice of the lineage C57BL/6 are resistant to the infection, while the animals of the lineage A/J are susceptible. The animals of the lineage B6AF1 are more resistant to the infection than their original parental C57BL/6. The immunological response developed by hybrid mice present traces of both susceptible and resistant parental A/J and C57BL/6, respectively. The animals of the lineage BXA1 can be considered resistant to the infection, but they don't present the same control as that presented by those of the lineages B6AF1 and C57BL/6. The animals of the lineage BXA2 can be considered susceptible to the infection, but they can control it for a long period, surviving like this, longer than the animals of the lineage A/J. In addition it was observed that the IgG2b immunoglobulins are very important to the resistance of mice to T. cruzi infection. (author)

  9. Limited geographic distribution of the novel cyclovirus CyCV-VN.

    Science.gov (United States)

    Le, Van Tan; de Jong, Menno D; Nguyen, Van Kinh; Nguyen, Vu Trung; Taylor, Walter; Wertheim, Heiman F L; van der Ende, Arie; van der Hoek, Lia; Canuti, Marta; Crusat, Martin; Sona, Soeng; Nguyen, Hanh Uyen; Giri, Abhishek; Nguyen, Thi Thuy Chinh Bkrong; Ho, Dang Trung Nghia; Farrar, Jeremy; Bryant, Juliet E; Tran, Tinh Hien; Nguyen, Van Vinh Chau; van Doorn, H Rogier

    2014-02-05

    A novel cyclovirus, CyCV-VN, was recently identified in cerebrospinal fluid (CSF) from patients with central nervous system (CNS) infections in central and southern Vietnam. To explore the geographic distribution of this novel virus, more than 600 CSF specimens from patients with suspected CNS infections in northern Vietnam, Cambodia, Nepal and The Netherlands were screened for the presence of CyCV-VN but all were negative. Sequence comparison and phylogenetic analysis between CyCV-VN and another novel cyclovirus recently identified in CSF from Malawian patients indicated that these represent distinct cycloviral species, albeit phylogenetically closely related. The data suggest that CyCV-VN has a limited geographic distribution within southern and central Vietnam. Further research is needed to determine the global distribution and diversity of cycloviruses and importantly their possible association with human disease.

  10. Evolution of type 2 vaccine derived poliovirus lineages. Evidence for codon-specific positive selection at three distinct locations on capsid wall.

    Directory of Open Access Journals (Sweden)

    Tapani Hovi

    Full Text Available Partial sequences of 110 type 2 poliovirus strains isolated from sewage in Slovakia in 2003-2005, and most probably originating from a single dose of oral poliovirus vaccine, were subjected to a detailed genetic analysis. Evolutionary patterns of these vaccine derived poliovirus strains (SVK-aVDPV2 were compared to those of type 1 and type 3 wild poliovirus (WPV lineages considered to have a single seed strain origin, respectively. The 102 unique SVK-aVDPV VP1 sequences were monophyletic differing from that of the most likely parental poliovirus type 2/Sabin (PV2 Sabin by 12.5-15.6%. Judging from this difference and from the rate of accumulation of synonymous transversions during the 22 month observation period, the relevant oral poliovirus vaccine dose had been administered to an unknown recipient more than 12 years earlier. The patterns of nucleotide substitution during the observation period differed from those found in the studied lineages of WPV1 or 3, including a lower transition/transversion (Ts/Tv bias and strikingly lower Ts/Tv rate ratios at the 2(nd codon position for both purines and pyrimidines. A relatively low preference of transitions at the 2(nd codon position was also found in the large set of VP1 sequences of Nigerian circulating (cVDPV2, as well as in the smaller sets from the Hispaniola cVDPV1 and Egypt cVDPV2 outbreaks, and among aVDPV1and aVDPV2 strains recently isolated from sewage in Finland. Codon-wise analysis of synonymous versus non-synonymous substitution rates in the VP1 sequences suggested that in five codons, those coding for amino acids at sites 24, 144, 147, 221 and 222, there may have been positive selection during the observation period. We conclude that pattern of poliovirus VP1 evolution in prolonged infection may differ from that found in WPV epidemics. Further studies on sufficiently large independent datasets are needed to confirm this suggestion and to reveal its potential significance.

  11. Lineage-Specific Expansion of the Chalcone Synthase Gene Family in Rosids.

    Directory of Open Access Journals (Sweden)

    Kattina Zavala

    Full Text Available Rosids are a monophyletic group that includes approximately 70,000 species in 140 families, and they are found in a variety of habitats and life forms. Many important crops such as fruit trees and legumes are rosids. The evolutionary success of this group may have been influenced by their ability to produce flavonoids, secondary metabolites that are synthetized through a branch of the phenylpropanoid pathway where chalcone synthase is a key enzyme. In this work, we studied the evolution of the chalcone synthase gene family in 12 species belonging to the rosid clade. Our results show that the last common ancestor of the rosid clade possessed six chalcone synthase gene lineages that were differentially retained during the evolutionary history of the group. In fact, of the six gene lineages that were present in the last common ancestor, 7 species retained 2 of them, whereas the other 5 only retained one gene lineage. We also show that one of the gene lineages was disproportionately expanded in species that belonged to the order Fabales (soybean, barrel medic and Lotus japonicas. Based on the available literature, we suggest that this gene lineage possesses stress-related biological functions (e.g., response to UV light, pathogen defense. We propose that the observed expansion of this clade was a result of a selective pressure to increase the amount of enzymes involved in the production of phenylpropanoid pathway-derived secondary metabolites, which is consistent with the hypothesis that suggested that lineage-specific expansions fuel plant adaptation.

  12. Molecular identification of vectors of Leishmania in Colombia: mitochondrial introgression in the Lutzomyia townsendi series.

    Science.gov (United States)

    Testa, J M; Montoya-Lerma, J; Cadena, H; Oviedo, M; Ready, P D

    2002-12-01

    The identity of the sandfly vectors of Leishmania braziliensis in Valle del Cauca Department, Colombia, was originally given as Lutzomyia townsendi, but then changed to L. youngi, another member of the L. townsendi series (Verrucarum group) with isomorphic females. To identify members of this series in Valle del Cauca, we analyzed the nuclear gene elongation factor-alpha (EF-alpha) and the mitochondrial gene cytochrome b (Cyt b). DNA sequences from the L. verrucarum series (L. columbiana, L. evansi and L. ovallesi) were used as outgroups. Flies from two locations on the western cordillera of the Andes were identified as L. townsendi s.s., according to male morphology and distinctive gene lineages. In the third location, on the central cordillera of the Andes, most specimens were identified as belonging to a geographical population of L. youngi, according to male morphology, an EF-alpha lineage shared with L. youngi from the Venezuelan-type locality, and a distinctive Cyt b sub-lineage. All other specimens were identified as L. youngi with the introgressed Cyt b sequences of L. townsendi. Such interspecific introgression implies that vectorial traits and ecological associations may no longer be viewed as fixed properties of different morphospecies.

  13. Geographic Names

    Data.gov (United States)

    Minnesota Department of Natural Resources — The Geographic Names Information System (GNIS), developed by the United States Geological Survey in cooperation with the U.S. Board of Geographic Names, provides...

  14. Spiralian phylogeny informs the evolution of microscopic lineages.

    Science.gov (United States)

    Laumer, Christopher E; Bekkouche, Nicolas; Kerbl, Alexandra; Goetz, Freya; Neves, Ricardo C; Sørensen, Martin V; Kristensen, Reinhardt M; Hejnol, Andreas; Dunn, Casey W; Giribet, Gonzalo; Worsaae, Katrine

    2015-08-03

    Despite rapid advances in the study of metazoan evolutionary history [1], phylogenomic analyses have so far neglected a number of microscopic lineages that possess a unique combination of characters and are thus informative for our understanding of morphological evolution. Chief among these lineages are the recently described animal groups Micrognathozoa and Loricifera, as well as the two interstitial "Problematica" Diurodrilus and Lobatocerebrum [2]. These genera show a certain resemblance to Annelida in their cuticle and gut [3, 4]; however, both lack primary annelid characters such as segmentation and chaetae [5]. Moreover, they show unique features such as an inverted body-wall musculature or a novel pharyngeal organ. This and their ciliated epidermis have led some to propose relationships with other microscopic spiralians, namely Platyhelminthes, Gastrotricha, and in the case of Diurodrilus, with Micrognathozoa [6, 7]-lineages that are grouped by some analyses into "Platyzoa," a clade whose status remains uncertain [1, 8-11]. Here, we assess the interrelationships among the meiofaunal and macrofaunal members of Spiralia using 402 orthologs mined from genome and transcriptome assemblies of 90 taxa. Lobatocerebrum and Diurodrilus are found to be deeply nested members of Annelida, and unequivocal support is found for Micrognathozoa as the sister group of Rotifera. Analyses using site-heterogeneous substitution models further recover a lophophorate clade and position Loricifera + Priapulida as sister group to the remaining Ecdysozoa. Finally, with several meiofaunal lineages branching off early in the diversification of Spiralia, the emerging concept of a microscopic, acoelomate, direct-developing ancestor of Spiralia is reviewed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Human Kin Investment as a Function of Genetic Relatedness and Lineage

    Directory of Open Access Journals (Sweden)

    Gregory D. Webster

    2004-01-01

    Full Text Available Two independent samples of students were asked to allocate fictional lotteries of varying dollar amounts to their blood relatives. In both studies, a reliable genetic relatedness by lineage interaction emerged, such that the genetic effect was a more positive predictor of percent of money allocated for relatives of a direct lineage (e.g., parents, grandparents than it was for peripheral relatives (e.g., siblings, aunts and uncles. In a third study, this interaction was replicated in an archival analysis of wills. The implications of accounting for differences in relatives' lineages in studies of kin investment are discussed.

  16. CRX is a diagnostic marker of retinal and pineal lineage tumors.

    Directory of Open Access Journals (Sweden)

    Sandro Santagata

    2009-11-01

    Full Text Available CRX is a homeobox transcription factor whose expression and function is critical to maintain retinal and pineal lineage cells and their progenitors. To determine the biologic and diagnostic potential of CRX in human tumors of the retina and pineal, we examined its expression in multiple settings.Using situ hybridization and immunohistochemistry we show that Crx RNA and protein expression are exquisitely lineage restricted to retinal and pineal cells during normal mouse and human development. Gene expression profiling analysis of a wide range of human cancers and cancer cell lines also supports that CRX RNA is highly lineage restricted in cancer. Immunohistochemical analysis of 22 retinoblastomas and 13 pineal parenchymal tumors demonstrated strong expression of CRX in over 95% of these tumors. Importantly, CRX was not detected in the majority of tumors considered in the differential diagnosis of pineal region tumors (n = 78. The notable exception was medulloblastoma, 40% of which exhibited CRX expression in a heterogeneous pattern readily distinguished from that seen in retino-pineal tumors.These findings describe new potential roles for CRX in human cancers and highlight the general utility of lineage restricted transcription factors in cancer biology. They also identify CRX as a sensitive and specific clinical marker and a potential lineage dependent therapeutic target in retinoblastoma and pineoblastoma.

  17. TECHNOLOGICAL CHARACTERIZATION AND CLASSIFICATION OF WHEAT LINEAGES CULTIVATED IN THE CERRADO MINEIRO

    Directory of Open Access Journals (Sweden)

    Raul Antônio Viana Madeira

    2015-06-01

    Full Text Available Farmers need highly productive wheat cultivars in order to reach better profitability. However, this alone is not enough, because, in order to serve the mills, the food industry, and more specifically, the bakers, wheat cultivars must present minimum quality requirements that result in final products of superior quality. This study was conducted with the goals of performing the technological characterization of wheat flour five lineages developed for cultivation in the Cerrado Mineiro; compare the flours of these lineages with the wheat flour of two commercial wheat cultivars, and classify the wheat lineages according to current Brazilian legislation. A completely randomized design was conducted with seven treatments and three replicates. Moisture, protein and ashes content, and the rheological characteristics of the flours were determined. The EP066066 lineage as rated was basic wheat. The EP066055, EP064021, EP062043 and EP063065 were rated as bread wheat. Among the studied lineages, the wheat flour from the EP062043 stood from the others, presenting considerable gluten contents, good level of mixing tolerance, good stability and good gluten strength.

  18. The Three Lineages of the Diploid Hybrid Verticillium longisporum Differ in Virulence and Pathogenicity.

    Science.gov (United States)

    Novakazi, Fluturë; Inderbitzin, Patrik; Sandoya, German; Hayes, Ryan J; von Tiedemann, Andreas; Subbarao, Krishna V

    2015-05-01

    Verticillium longisporum is an economically important vascular pathogen of Brassicaceae crops in different parts of the world. V. longisporum is a diploid hybrid that consists of three different lineages, each of which originated from a separate hybridization event between two different sets of parental species. We used 20 isolates representing the three V. longisporum lineages and the relative V. dahliae, and performed pathogenicity tests on 11 different hosts, including artichoke, cabbage, cauliflower, cotton, eggplant, horseradish, lettuce, linseed, oilseed rape (canola), tomato, and watermelon. V. longisporum was overall more virulent on the Brassicaceae crops than V. dahliae, which was more virulent than V. longisporum across the non-Brassicaceae crops. There were differences in virulence between the three V. longisporum lineages. V. longisporum lineage A1/D1 was the most virulent lineage on oilseed rape, and V. longisporum lineage A1/D2 was the most virulent lineage on cabbage and horseradish. We also found that on the non-Brassicaceae hosts eggplant, tomato, lettuce, and watermelon, V. longisporum was more or equally virulent than V. dahliae. This suggests that V. longisporum may have a wider potential host range than currently appreciated.

  19. T-lineage blast crisis of chronic myelogenous leukemia: simple record of 4 cases

    Directory of Open Access Journals (Sweden)

    Kartika W. Taroeno-Hariadi

    2005-09-01

    Full Text Available Blast crisis (BC transformation in chronic myelogenous leukemia (CML can involve each differentiation lineage of the hematopoietic system, i.e. granulocyte, monocyte, erythrocyte, megakaryocyte, and lymphocyte lineage. The lymphoid blast crisis (BC leukemia cells usually belong to B-lineage, commonly having the phenotype of Pre-B stage of the B-lineage, in which cell-surface immunoglobulin (sIg is not yet expressed. In contrast, T-lineage BC of CML is extremely rare. The objective of this study is to describe the fenotype, fusion transcript of bcr-abl, TdT, and cytoplasmic CD3 in T-lineage BC CML cases. Case report study. This report shows a simple summary of 4 cases of T-lineage BC of CML which have been collected in the phenotypic and genotypic analysis study for 17 years (1987-2004. In all cases, the chromosomal analysis revealed the presence of t(9;22(q34;q11 at presentation. Cell surface analysis were done at diagnosis. Cases’ mononuclear cells stored as 10% DMSO were retrieved to be performed reverse transcription (RT PCR BCR-ABL multiplex to demonstrate the presence of the fusion transcript of bcr-abl. RT-PCR was also performed for detecting the expression of cytoplasmic CD3ε and terminal deoxynucleotydil transferase (TdT. The results of cell surface antigen (CSA at presentation showed that 1 case was CD7+, CD5-, and CD2-; 1 case CD7+, CD5+, and CD2-; and 2 cases CD7+, CD5+ and CD2+ indicating that all these T-lineage BC of CML cells show the phenotype of pre-(pro- thymic stage phenotype. In the present study, two cases showed b2a2, one e1a2, and one negative bcr-abl transcript. The RT-PCR revealed the presence of CD3ε mRNA in all cases, and TdT mRNA in only one case. These results can constitute a basis for the future analysis of T-lineage BC of CML from now on. (Med J Indones 2005; 14: 184-9Keywords: chronic myelogenous leukemia (CML, blastic crisis (BC, T-lineage, bcr-abl fusion gene, CDε, TdT

  20. Th17-lineage cells in pulmonary sarcoidosis and Löfgren's syndrome: Friend or foe?

    Science.gov (United States)

    Miedema, Jelle R; Kaiser, Ylva; Broos, Caroline E; Wijsenbeek, Marlies S; Grunewald, Johan; Kool, Mirjam

    2018-02-01

    Sarcoidosis, a multisystem granulomatous disorder, has historically been classified as Th1-driven disease. However, increasing data demonstrate a key role of Th17-cell plasticity in granuloma formation and maintenance. In Löfgren's syndrome (LS), an acute and distinct phenotype of sarcoidosis with a favorable outcome, differences in Th17-lineage cell subsets, cytokine expression and T-cell suppressive mechanisms may account for differences in clinical presentation as well as prognosis compared to non-LS sarcoidosis. In contrast with LS, up to 20% of non-LS sarcoidosis patients may progress to irreversible pulmonary fibrosis. In non-LS sarcoidosis patients, IFN-γ-producing Th17.1-cells appear to be more pathogenic and possibly linked to disease progression, while a broader range of cytokines is found in bronchoalveolar lavage fluid (BALF) in LS patients. Differences in Cytotoxic T-lymphocyte antigen 4 (CTLA-4) expression on Th17-cells and regulatory T-cells (Treg) could contribute to Th17-cell pathogenicity and consequently to either disease resolution or ongoing inflammation in sarcoidosis. Furthermore, several genes and SNPs are associated with disease susceptibility and outcome in sarcoidosis, the majority of which are involved in antigen presentation, T-cell activation or regulation of T-cell survival. Novel insights into the role of Th17-cells in the pathogenesis of both LS and non-LS sarcoidosis will unravel pathogenic and benign Th17-lineage cell function and drivers of Th17-cell plasticity. This will also help identify new treatment strategies for LS and non-LS sarcoidosis patients by altering Th17-cell activation, suppress conversion into more pathogenic subtypes, or influence cytokine signaling towards a beneficial signature of Th17-lineage cells. In this review, we summarize new insights into Th17-cell plasticity in the complex pathogenesis of sarcoidosis and connect these cells to the different disease phenotypes, discuss the role of genetic

  1. Spatiotemporal dynamics of DENV-2 Asian-American genotype lineages in the Americas.

    Directory of Open Access Journals (Sweden)

    Daiana Mir

    Full Text Available The Asian/American (AS/AM genotype of dengue virus type 2 (DENV-2 has been evolving in the Americas over the last 30 years, leading to several waves of dengue epidemics and to the emergence of different viral lineages in the region. In this study, we investigate the spatiotemporal dissemination pattern of the DENV-2 lineages at a regional level. We applied phylogenetic and phylogeographic analytical methods to a comprehensive data set of 582 DENV-2 E gene sequences of the AS/AM genotype isolated from 29 different American countries over a period of 30 years (1983 to 2012. Our study reveals that genetic diversity of DENV-2 AS/AM genotype circulating in the Americas mainly resulted from one single founder event and can be organized in at least four major lineages (I to IV, which emerged in the Caribbean region at the early 1980s and then spread and die out with different dynamics. Lineages I and II dominate the epidemics in the Caribbean region during the 1980s and early 1990 s, lineage III becomes the prevalent DENV-2 one in the Caribbean and South America during the 1990 s, whereas lineage IV dominates the epidemics in South and Central America during the 2000s. Suriname and Guyana seem to represent important entry points for DENV-2 from the Lesser Antilles to South America, whereas Venezuela, Brazil and Nicaragua were pointed as the main secondary hubs of dissemination to other mainland countries. Our study also indicates that DENV-2 AS/AM genotype was disseminated within South America following two main routes. The first route hits Venezuela and the western side of the Andes, while the second route mainly hits Brazil and the eastern side of the Andes. The phenomenon of DENV-2 lineage replacement across successive epidemic outbreaks was a common characteristic in all American countries, although the timing of lineage replacements greatly vary across locations.

  2. Step-wise and lineage-specific diversification of plant RNA polymerase genes and origin of the largest plant-specific subunits.

    Science.gov (United States)

    Wang, Yaqiong; Ma, Hong

    2015-09-01

    Proteins often function as complexes, yet little is known about the evolution of dissimilar subunits of complexes. DNA-directed RNA polymerases (RNAPs) are multisubunit complexes, with distinct eukaryotic types for different classes of transcripts. In addition to Pol I-III, common in eukaryotes, plants have Pol IV and V for epigenetic regulation. Some RNAP subunits are specific to one type, whereas other subunits are shared by multiple types. We have conducted extensive phylogenetic and sequence analyses, and have placed RNAP gene duplication events in land plant history, thereby reconstructing the subunit compositions of the novel RNAPs during land plant evolution. We found that Pol IV/V have experienced step-wise duplication and diversification of various subunits, with increasingly distinctive subunit compositions. Also, lineage-specific duplications have further increased RNAP complexity with distinct copies in different plant families and varying divergence for subunits of different RNAPs. Further, the largest subunits of Pol IV/V probably originated from a gene fusion in the ancestral land plants. We propose a framework of plant RNAP evolution, providing an excellent model for protein complex evolution. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  3. Prolonged Co-circulation of Two Distinct Dengue Virus Type 3 Lineages in the Hyperendemic Area of Medellín, Colombia

    Science.gov (United States)

    Ospina, Marta C.; Diaz, Francisco J.; Osorio, Jorge E.

    2010-01-01

    During the past two decades, Dengue virus-3 (DENV-3) has re-emerged in the Western Hemisphere causing significant epidemics of dengue fever (DF) and dengue hemorrhagic fever (DHF). In an effort to understand the molecular evolution of DENV-3 and their relationships to other DENV-3 circulating in the western hemisphere, we conducted a phylogenetic study on DENV-3 isolates made between 2002 and 2007 in the metropolitan area of Medellín, Colombia. An unexpected co-circulation of two different variants of DENV-3 subtype III during at least 5 years in Medellín was found. In addition, a more complete analysis of DENV-3 viruses isolated in other South American regions revealed the existence of three different subtype III lineages, all derived from independent introductions. This study documents significant genetic diversity of circulating viruses within the same subtype and an unusual capacity of the population of this city to support continuous circulation of multiple variants of dengue virus. PMID:20810837

  4. Geographic Media Literacy

    Science.gov (United States)

    Lukinbeal, Chris

    2014-01-01

    While the use of media permeates geographic research and pedagogic practice, the underlying literacies that link geography and media remain uncharted. This article argues that geographic media literacy incorporates visual literacy, information technology literacy, information literacy, and media literacy. Geographic media literacy is the ability…

  5. Polycomb enables primitive endoderm lineage priming in embryonic stem cells

    DEFF Research Database (Denmark)

    Illingworth, Robert S; Hölzenspies, Jurriaan J; Roske, Fabian V

    2016-01-01

    Mouse embryonic stem cells (ESCs), like the blastocyst from which they are derived, contain precursors of the epiblast (Epi) and primitive endoderm (PrEn) lineages. While transient in vivo, these precursor populations readily interconvert in vitro. We show that altered transcription is the driver...... polycomb with dynamic changes in transcription and stalled lineage commitment, allowing cells to explore alternative choices prior to a definitive decision....

  6. Soil-transmitted helminth prevalence and infection intensity among geographically and economically distinct Shuar communities in the Ecuadorian Amazon.

    Science.gov (United States)

    Cepon-Robins, Tara J; Liebert, Melissa A; Gildner, Theresa E; Urlacher, Samuel S; Colehour, Alese M; Snodgrass, J Josh; Madimenos, Felicia C; Sugiyama, Lawrence S

    2014-10-01

    Soil-transmitted helminth (STH) infections can result in a variety of negative health outcomes (e.g., diarrhea, nutritional deficiencies). Market integration (MI; participation in market-based economies) has been suggested to alter levels of STH exposure due to associated changes in diet, sanitation, and behavior, but the effects are complicated and not well understood. Some effects of economic development result in decreased exposure to certain pathogens, and other factors can lead to higher pathogen exposure. With geographic location used as a proxy, the present study investigates the effects of economic development on parasite load among an indigenous population at multiple points along the spectrum of MI. This research has many implications for public health, including an increased understanding of how social and economic changes alter disease risk around the world and how changing parasite load affects other health outcomes (i.e., allergy, autoimmunity). Specifically, this study examines the prevalence of intestinal helminths among the Shuar, an indigenous group in the Morona-Santiago region of Ecuador, from 2 geographically/economically separated areas, with the following objectives: (1) report STH infection prevalence and intensity among Shuar; (2) explore STH infection prevalence and intensity as it relates to age distribution in the Shuar population; (3) compare STH infection patterns in geographically and economically separated Shuar communities at different levels of MI. Kato-Katz thick smears were made from fresh stool samples and examined to determine STH presence/intensity. Results indicate that 65% of the 211 participants were infected with at least 1 STH. Twenty-five percent of the sample had coinfections with at least 2 species of helminth. Infection was more common among juveniles (<15 yr) than adults. Infection prevalence and intensity was highest among more isolated communities with less market access. This study documents preliminary

  7. Geographic patterns of genetic variation and conservation consequences in three South American rodents.

    Science.gov (United States)

    Miranda, Gustavo B; Andrades-Miranda, Jaqueline; Oliveira, Luiz F B; Langguth, Alfredo; Mattevi, Margarete S

    2007-12-01

    In this study, the geographic patterns of genetic variation of three rodent species belonging to the tribe Oryzomyini were investigated using the mitochondrial cytochrome b and nuclear IRBP genes in biomes that are undergoing degradation processes to a greater or lesser degree. The samples are from 25 collecting localities distributed throughout the Amazon, Cerrado, Atlantic Forest, and Pampa biomes. The results show that the three species have a population and geographic structure, besides being in demographic equilibrium. The phylogenetic analyses performed on Euryoryzomys russatus and Hylaeamys megacephalus showed these specimens grouped in three distinct clades forming geographic gradients (North-South direction in H. megacephalus). Intraspecific genetic divergence was higher in H. megacephalus (4.53%), followed by E. russatus (1.79%), and lowest in Sooretamys angouya (0.88%). The results obtained indicate that, necessarily, the management strategies to preserve genetic diversity should be different for each species, since each of them presented specific population parameters.

  8. Evolution of plastid gene rps2 in a lineage of hemiparasitic and holoparasitic plants: Many losses of photosynthesis and complex patterns of rate variation

    Science.gov (United States)

    dePamphilis, Claude W.; Young, Nelson D.; Wolfe, Andrea D.

    1997-01-01

    The plastid genomes of some nonphotosynthetic parasitic plants have experienced an extreme reduction in gene content and an increase in evolutionary rate of remaining genes. Nothing is known of the dynamics of these events or whether either is a direct outcome of the loss of photosynthesis. The parasitic Scrophulariaceae and Orobanchaceae, representing a continuum of heterotrophic ability ranging from photosynthetic hemiparasites to nonphotosynthetic holoparasites, are used to investigate these issues. We present a phylogenetic hypothesis for parasitic Scrophulariaceae and Orobanchaceae based on sequences of the plastid gene rps2, encoding the S2 subunit of the plastid ribosome. Parasitic Scrophulariaceae and Orobanchaceae form a monophyletic group in which parasitism can be inferred to have evolved once. Holoparasitism has evolved independently at least five times, with certain holoparasitic lineages representing single species, genera, and collections of nonphotosynthetic genera. Evolutionary loss of the photosynthetic gene rbcL is limited to a subset of holoparasitic lineages, with several holoparasites retaining a full length rbcL sequence. In contrast, the translational gene rps2 is retained in all plants investigated but has experienced rate accelerations in several hemi- as well as holoparasitic lineages, suggesting that there may be substantial molecular evolutionary changes to the plastid genome of parasites before the loss of photosynthesis. Independent patterns of synonymous and nonsynonymous rate acceleration in rps2 point to distinct mechanisms underlying rate variation in different lineages. Parasitic Scrophulariaceae (including the traditional Orobanchaceae) provide a rich platform for the investigation of molecular evolutionary process, gene function, and the evolution of parasitism. PMID:9207097

  9. Ancient DNA analyses reveal contrasting phylogeographic patterns amongst kiwi (Apteryx spp. and a recently extinct lineage of spotted kiwi.

    Directory of Open Access Journals (Sweden)

    Lara D Shepherd

    Full Text Available The little spotted kiwi (Apteryx owenii is a flightless ratite formerly found throughout New Zealand but now greatly reduced in distribution. Previous phylogeographic studies of the related brown kiwi (A. mantelli, A. rowi and A. australis, with which little spotted kiwi was once sympatric, revealed extremely high levels of genetic structuring, with mitochondrial DNA haplotypes often restricted to populations. We surveyed genetic variation throughout the present and pre-human range of little spotted kiwi by obtaining mitochondrial DNA sequences from contemporary and ancient samples. Little spotted kiwi and great spotted kiwi (A. haastii formed a monophyletic clade sister to brown kiwi. Ancient samples of little spotted kiwi from the northern North Island, where it is now extinct, formed a lineage that was distinct from remaining little spotted kiwi and great spotted kiwi lineages, potentially indicating unrecognized taxonomic diversity. Overall, little spotted kiwi exhibited much lower levels of genetic diversity and structuring than brown kiwi, particularly through the South Island. Our results also indicate that little spotted kiwi (or at least hybrids involving this species survived on the South Island mainland until more recently than previously thought.

  10. Y-chromosome lineages in native South American population.

    Science.gov (United States)

    Blanco-Verea, A; Jaime, J C; Brión, M; Carracedo, A

    2010-04-01

    The present work tries to investigate the population structure and variation of the Amerindian indigenous populations living in Argentina. A total of 134 individuals from three ethnic groups (Kolla, Mapuche and Diaguitas) living in four different regions were collected and analysed for 26 Y-SNPs and 11 Y-STRs. Intra-population variability was analysed, looking for population substructure and neighbour populations were considered for genetic comparative analysis, in order to estimate the contribution of the Amerindian and the European pool, to the current population. We observe a high frequency of R1b1 and Q1a3a* Y-chromosome haplogroups, in the ethnic groups Mapuche, Diaguita and Kolla, characteristic of European and Native American populations, respectively. When we compare our native Argentinean population with other from the South America we also observe that frequency values for Amerindian lineages are relatively lower in our population. These results show a clear Amerindian genetic component but we observe a predominant European influence too, suggesting that typically European male lineages have given rise to the displacement of genuinely Amerindian male lineages in our South American population. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  11. Public access to New Hampshire state waters: a comparison of three cohorts of residents across three distinct geographic

    Science.gov (United States)

    Kim Pawlawski; Robert A. Robertson; Laura Pfister

    2003-01-01

    This study was intended to provide New Hampshire agencies with a better understanding of public access-related demand information. Through an analysis of three groups of New Hampshire residents based upon geographic location and length of residency, important issues and attitudes were identified from all over the State. The results of this study will assist in policy-...

  12. The fps/fes proto-oncogene regulates hematopoietic lineage output.

    Science.gov (United States)

    Sangrar, Waheed; Gao, Yan; Zirngibl, Ralph A; Scott, Michelle L; Greer, Peter A

    2003-12-01

    The fps/fes proto-oncogene is abundantly expressed in myeloid cells, and the Fps/Fes cytoplasmic protein-tyrosine kinase is implicated in signaling downstream from hematopoietic cytokines, including interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), and erythropoietin (EPO). Studies using leukemic cell lines have previously suggested that Fps/Fes contributes to granulomonocytic differentiation, and that it might play a more selective role in promoting survival and differentiation along the monocytic pathway. In this study we have used a genetic approach to explore the role of Fps/Fes in hematopoiesis. We used transgenic mice that tissue-specifically express a mutant human fps/fes transgene (fps(MF)) that was engineered to encode Fps/Fes kinase that is activated through N-terminal myristoylation (MFps). Hematopoietic function was assessed using lineage analysis, hematopoietic progenitor cell colony-forming assays, and biochemical approaches. fps(MF) transgenic mice displayed a skewed hematopoietic output reflected by increased numbers of circulating granulocytic and monocytic cells and a corresponding decrease in lymphoid cells. Bone marrow colony assays of progenitor cells revealed a significant increase in the number of both granulomonocytic and multi-lineage progenitors. A molecular analysis of signaling in mature monocytic cells showed that MFps promoted GM-CSF-induced STAT3, STAT5, and ERK1/2 activation. These observations support a role for Fps/Fes in signaling pathways that contribute to lineage determination at the level of multi-lineage hematopoietic progenitors as well as the more committed granulomonocytic progenitors.

  13. Origin, lineage and function of cerebellar glia.

    Science.gov (United States)

    Buffo, Annalisa; Rossi, Ferdinando

    2013-10-01

    The glial cells of the cerebellum, and particularly astrocytes and oligodendrocytes, are characterized by a remarkable phenotypic variety, in which highly peculiar morphological features are associated with specific functional features, unique among the glial cells of the entire CNS. Here, we provide a critical report about the present knowledge of the development of cerebellar glia, including lineage relationships between cerebellar neurons, astrocytes and oligodendrocytes, the origins and the genesis of the repertoire of glial types, and the processes underlying their acquisition of mature morphological and functional traits. In parallel, we describe and discuss some fundamental roles played by specific categories of glial cells during cerebellar development. In particular, we propose that Bergmann glia exerts a crucial scaffolding activity that, together with the organizing function of Purkinje cells, is necessary to achieve the normal pattern of foliation and layering of the cerebellar cortex. Moreover, we discuss some of the functional tasks of cerebellar astrocytes and oligodendrocytes that are distinctive of cerebellar glia throughout the CNS. Notably, we report about the regulation of synaptic signalling in the molecular and granular layer mediated by Bergmann glia and parenchymal astrocytes, and the functional interaction between oligodendrocyte precursor cells and neurons. On the whole, this review provides an extensive overview of the available literature and some novel insights about the origin and differentiation of the variety of cerebellar glial cells and their function in the developing and mature cerebellum. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Subspecies of Hypolepis rugosula (Dennstaedtiaceae; Pteridophyta around the world: morphological and biogeographic perspectives

    Directory of Open Access Journals (Sweden)

    Pedro Bond Schwartsburd

    2014-06-01

    Full Text Available The "Hypolepis rugosula complex" has been the subject of great debate among pteridologists: some have considered H. rugosula a single subcosmopolitan (or circum-Antarctic species, whereas others have considered it a species-complex, encompassing several species. In the 1920s and 1930s, four geographically distinct varietiesof H. rugosula were recognized. In this work, we present a new taxonomy (with new combinations and statuses, as well as typification and full synonymy, together with complete distribution data for the species, with an infraspecific classification based on morphological and biogeographic perspectives. Hypolepis rugosula occurs in southern temperate regions and high-elevation tropical regions of the Americas, Africa (including Madagascar, Oceania and the Philippines, as well as in some isolated oceanic volcanic islands (e.g., Saint Helena and Tristan da Cunha. Here, 15 geographically distinct subspecies are recognized. All subspecies are geographically segregated from each other, except in New Zealand, where two occur sympatrically-possibly due to two different arrival and colonization times. Four patterns of "indument" (referring to catenate and glandular hairs collectively are distinguished. Different lineages are successful in their respective habitats; we observed two lineages with different ploidy levels (tetraploid and octoploid. Although long-distance dispersal is the best explanation for the extant distribution of H. rugosula;we do not exclude vicariance as a possible explanation for their occurrence on the land masses that were once united as Gondwana. Therefore, we are assuming that a fern species could remain unchanged for more than 70 Myr, and we are adopting the refugia theory, albeit with a different focus.

  15. A snapshot of genetic lineages of Mycobacterium tuberculosis in Ireland over a two-year period, 2010 and 2011.

    LENUS (Irish Health Repository)

    Fitzgibbon, M M

    2013-01-01

    Mycobacterial interspersed repetitive-unit-variable-number tandem repeat typing alone was used to investigate the genetic lineages among 361 Mycobacterium tuberculosis strains circulating in Ireland over a two-year period, 2010 and 2011. The majority of isolates, 63% (229\\/361), belonged to lineage 4 (Euro-American), while lineages 1 (Indo-Oceanic), 2 (East-Asian) and 3 (East-African–Indian) represented 12% of isolates each (42\\/361, 45\\/361, and 45\\/361, respectively). Sub-lineages Beijing (lineage 2), East-African–Indian (lineage 1) and Delhi\\/central-Asian (lineage 3) predominated among foreign-born cases, while a higher proportion of Euro-American lineages were identified among cases born in Ireland. Eighteen molecular clusters involving 63 tuberculosis (TB) cases were identified across four sub-lineages of lineage 4. While the mean cluster size was 3.5 TB cases, the largest cluster (involving 12 Irish-born cases) was identified in the Latin American–Mediterranean sub-lineage. Clustering of isolates was higher among Irish-born TB cases (47 of 63 clustered cases), whereas only one cluster (3\\/63) involved solely foreign-born individuals. Four multidrug-resistant cases identified during this period represented lineages 2 and 4. This study provides the first insight into the structure of the M. tuberculosis population in Ireland.

  16. Lineage fate of ductular reactions in liver injury and carcinogenesis.

    Science.gov (United States)

    Jörs, Simone; Jeliazkova, Petia; Ringelhan, Marc; Thalhammer, Julian; Dürl, Stephanie; Ferrer, Jorge; Sander, Maike; Heikenwalder, Mathias; Schmid, Roland M; Siveke, Jens T; Geisler, Fabian

    2015-06-01

    Ductular reactions (DRs) are observed in virtually all forms of human liver disease; however, the histogenesis and function of DRs in liver injury are not entirely understood. It is widely believed that DRs contain bipotential liver progenitor cells (LPCs) that serve as an emergency cell pool to regenerate both cholangiocytes and hepatocytes and may eventually give rise to hepatocellular carcinoma (HCC). Here, we used a murine model that allows highly efficient and specific lineage labeling of the biliary compartment to analyze the histogenesis of DRs and their potential contribution to liver regeneration and carcinogenesis. In multiple experimental and genetic liver injury models, biliary cells were the predominant precursors of DRs but lacked substantial capacity to produce new hepatocytes, even when liver injuries were prolonged up to 12 months. Genetic modulation of NOTCH and/or WNT/β-catenin signaling within lineage-tagged DRs impaired DR expansion but failed to redirect DRs from biliary differentiation toward the hepatocyte lineage. Further, lineage-labeled DRs did not produce tumors in genetic and chemical HCC mouse models. In summary, we found no evidence in our system to support mouse biliary-derived DRs as an LPC pool to replenish hepatocytes in a quantitatively relevant way in injury or evidence that DRs give rise to HCCs.

  17. Comparative genome analysis of Pseudogymnoascus spp. reveals primarily clonal evolution with small genome fragments exchanged between lineages.

    Science.gov (United States)

    Leushkin, Evgeny V; Logacheva, Maria D; Penin, Aleksey A; Sutormin, Roman A; Gerasimov, Evgeny S; Kochkina, Galina A; Ivanushkina, Natalia E; Vasilenko, Oleg V; Kondrashov, Alexey S; Ozerskaya, Svetlana M

    2015-05-21

    Pseudogymnoascus spp. is a wide group of fungi lineages in the family Pseudorotiaceae including an aggressive pathogen of bats P. destructans. Although several lineages of P. spp. were shown to produce ascospores in culture, the vast majority of P. spp. demonstrates no evidence of sexual reproduction. P. spp. can tolerate a wide range of different temperatures and salinities and can survive even in permafrost layer. Adaptability of P. spp. to different environments is accompanied by extremely variable morphology and physiology. We sequenced genotypes of 14 strains of P. spp., 5 of which were extracted from permafrost, 1 from a cryopeg, a layer of unfrozen ground in permafrost, and 8 from temperate surface environments. All sequenced genotypes are haploid. Nucleotide diversity among these genomes is very high, with a typical evolutionary distance at synonymous sites dS ≈ 0.5, suggesting that the last common ancestor of these strains lived >50 Mya. The strains extracted from permafrost do not form a separate clade. Instead, each permafrost strain has close relatives from temperate environments. We observed a strictly clonal population structure with no conflicting topologies for ~99% of genome sequences. However, there is a number of short (~100-10,000 nt) genomic segments with the total length of 67.6 Kb which possess phylogenetic patterns strikingly different from the rest of the genome. The most remarkable case is a MAT-locus, which has 2 distinct alleles interspersed along the whole-genome phylogenetic tree. Predominantly clonal structure of genome sequences is consistent with the observations that sexual reproduction is rare in P. spp. Small number of regions with noncanonical phylogenies seem to arise due to some recombination events between derived lineages of P. spp., with MAT-locus being transferred on multiple occasions. All sequenced strains have heterothallic configuration of MAT-locus.

  18. Mito-nuclear discord in six congeneric lineages of Holarctic ducks (genus Anas).

    Science.gov (United States)

    Peters, Jeffrey L; Winker, Kevin; Millam, Kendra C; Lavretsky, Philip; Kulikova, Irina; Wilson, Robert E; Zhuravlev, Yuri N; McCracken, Kevin G

    2014-06-01

    Many species have Holarctic distributions that extend across Europe, Asia and North America. Most genetics research on these species has examined only mitochondrial (mt) DNA, which has revealed wide variance in divergence between Old World (OW) and New World (NW) populations, ranging from shallow, unstructured genealogies to deeply divergent lineages. In this study, we sequenced 20 nuclear introns to test for concordant patterns of OW-NW differentiation between mtDNA and nuclear (nu) DNA for six lineages of Holarctic ducks (genus Anas). Genetic differentiation for both marker types varied widely among these lineages (idiosyncratic population histories), but mtDNA and nuDNA divergence within lineages was not significantly correlated. Moreover, compared with the association between mtDNA and nuDNA divergence observed among different species, OW-NW nuDNA differentiation was generally lower than mtDNA divergence, at least for lineages with deeply divergent mtDNA. Furthermore, coalescent estimates indicated significantly higher rates of gene flow for nuDNA than mtDNA for four of the six lineages. Thus, Holarctic ducks show prominent mito-nuclear discord between OW and NW populations, and we reject differences in sorting rates as the sole cause of the within-species discord. Male-mediated intercontinental gene flow is likely a leading contributor to this discord, although selection could also cause increased mtDNA divergence relative to weak nuDNA differentiation. The population genetics of these ducks contribute to growing evidence that mtDNA can be an unreliable indicator of stage of speciation and that more holistic approaches are needed for species delimitation. © 2014 John Wiley & Sons Ltd.

  19. Is the diversification of Mediterranean Basin plant lineages coupled to karyotypic changes?

    Science.gov (United States)

    Escudero, M; Balao, F; Martín-Bravo, S; Valente, L; Valcárcel, V

    2018-01-01

    The Mediterranean Basin region, home to 25,000 plant species, is included in the worldwide list of hotspots of biodiversity. Despite the indisputably important role of chromosome transitions in plant evolution and diversification, no reference study to date has dealt with the possible relationship between chromosome evolution and lineage diversification in the Mediterranean Basin. Here we study patterns of diversification, patterns of chromosome number transition (either polyploidy or dysploidy) and the relationship between the two for 14 Mediterranean Basin angiosperm lineages using previously published phylogenies. We found a mixed pattern, with half of the lineages displaying a change in chromosome transition rates after the onset of the Mediterranean climate (six increases, one decrease) and the other half (six) experiencing constant rates of chromosome transitions through time. We have also found a heterogeneous pattern regarding diversification rates, with lineages exhibiting moderate (five phylogenies) or low (six) initial diversification rates that either increased (six) or declined (five) through time. Our results reveal no clear link between diversification rates and chromosome number transition rates. By promoting the formation of new habitats and driving the extinction of many species, the Mediterranean onset and the posterior Quaternary climatic oscillations could have been key for the establishment of new chromosomal variants in some plant phylogenies but not in others. While the biodiversity of the Mediterranean Basin may be partly influenced by the chromosomal diversity of its lineages, this study concludes that lineage diversification in the region is largely decoupled from karyotypic evolution. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. CtGEM typing: Discrimination of Chlamydia trachomatis ocular and urogenital strains and major evolutionary lineages by high resolution melting analysis of two amplified DNA fragments.

    Science.gov (United States)

    Giffard, Philip M; Andersson, Patiyan; Wilson, Judith; Buckley, Cameron; Lilliebridge, Rachael; Harris, Tegan M; Kleinecke, Mariana; O'Grady, Kerry-Ann F; Huston, Wilhelmina M; Lambert, Stephen B; Whiley, David M; Holt, Deborah C

    2018-01-01

    Chlamydia trachomatis infects the urogenital tract (UGT) and eyes. Anatomical tropism is correlated with variation in the major outer membrane protein encoded by ompA. Strains possessing the ocular ompA variants A, B, Ba and C are typically found within the phylogenetically coherent "classical ocular lineage". However, variants B, Ba and C have also been found within three distinct strains in Australia, all associated with ocular disease in children and outside the classical ocular lineage. CtGEM genotyping is a method for detecting and discriminating ocular strains and also the major phylogenetic lineages. The rationale was facilitation of surveillance to inform responses to C. trachomatis detection in UGT specimens from young children. CtGEM typing is based on high resolution melting analysis (HRMA) of two PCR amplified fragments with high combinatorial resolving power, as defined by computerised comparison of 65 whole genomes. One fragment is from the hypothetical gene defined by Jali-1891 in the C. trachomatis B_Jali20 genome, while the other is from ompA. Twenty combinatorial CtGEM types have been shown to exist, and these encompass unique genotypes for all known ocular strains, and also delineate the TI and T2 major phylogenetic lineages, identify LGV strains and provide additional resolution beyond this. CtGEM typing and Sanger sequencing were compared with 42 C. trachomatis positive clinical specimens, and there were no disjunctions. CtGEM typing is a highly efficient method designed and tested using large scale comparative genomics. It divides C. trachomatis into clinically and biologically meaningful groups, and may have broad application in surveillance.

  1. Speciation with gene flow in whiptail lizards from a Neotropical xeric biome.

    Science.gov (United States)

    Oliveira, Eliana F; Gehara, Marcelo; São-Pedro, Vinícius A; Chen, Xin; Myers, Edward A; Burbrink, Frank T; Mesquita, Daniel O; Garda, Adrian A; Colli, Guarino R; Rodrigues, Miguel T; Arias, Federico J; Zaher, Hussam; Santos, Rodrigo M L; Costa, Gabriel C

    2015-12-01

    Two main hypotheses have been proposed to explain the diversification of the Caatinga biota. The riverine barrier hypothesis (RBH) claims that the São Francisco River (SFR) is a major biogeographic barrier to gene flow. The Pleistocene climatic fluctuation hypothesis (PCH) states that gene flow, geographic genetic structure and demographic signatures on endemic Caatinga taxa were influenced by Quaternary climate fluctuation cycles. Herein, we analyse genetic diversity and structure, phylogeographic history, and diversification of a widespread Caatinga lizard (Cnemidophorus ocellifer) based on large geographical sampling for multiple loci to test the predictions derived from the RBH and PCH. We inferred two well-delimited lineages (Northeast and Southwest) that have diverged along the Cerrado-Caatinga border during the Mid-Late Miocene (6-14 Ma) despite the presence of gene flow. We reject both major hypotheses proposed to explain diversification in the Caatinga. Surprisingly, our results revealed a striking complex diversification pattern where the Northeast lineage originated as a founder effect from a few individuals located along the edge of the Southwest lineage that eventually expanded throughout the Caatinga. The Southwest lineage is more diverse, older and associated with the Cerrado-Caatinga boundaries. Finally, we suggest that C. ocellifer from the Caatinga is composed of two distinct species. Our data support speciation in the presence of gene flow and highlight the role of environmental gradients in the diversification process. © 2015 John Wiley & Sons Ltd.

  2. Virulence, sporulation, and elicitin production in three clonal lineages of Phytophthora ramorum

    Science.gov (United States)

    Phytophthora ramorum populations are clonal and consist of three lineages. Recent studies have shown that the clonal lineages may have varying degrees of aggressiveness on some host species, such as Quercus rubra. In this study, we examined virulence, sporulation and elicitin production of five P. ...

  3. Genetic diversity of Entamoeba: Novel ribosomal lineages from cockroaches.

    Directory of Open Access Journals (Sweden)

    Tetsuro Kawano

    Full Text Available Our current taxonomic perspective on Entamoeba is largely based on small-subunit ribosomal RNA genes (SSU rDNA from Entamoeba species identified in vertebrate hosts with minor exceptions such as E. moshkovskii from sewage water and E. marina from marine sediment. Other Entamoeba species have also been morphologically identified and described from non-vertebrate species such as insects; however, their genetic diversity remains unknown. In order to further disclose the diversity of the genus, we investigated Entamoeba spp. in the intestines of three cockroach species: Periplaneta americana, Blaptica dubia, and Gromphadorhina oblongonota. We obtained 134 Entamoeba SSU rDNA sequences from 186 cockroaches by direct nested PCR using the DNA extracts of intestines from cockroaches, followed by scrutinized BLASTn screening and phylogenetic analyses. All the sequences identified in this study were distinct from those reported from known Entamoeba species, and considered as novel Entamoeba ribosomal lineages. Furthermore, they were positioned at the base of the clade of known Entamoeba species and displayed remarkable degree of genetic diversity comprising nine major groups in the three cockroach species. This is the first report of the diversity of SSU rDNA sequences from Entamoeba in non-vertebrate host species, and should help to understand the genetic diversity of the genus Entamoeba.

  4. Optimizing and accelerating the assignation of lineages in Mycobacterium tuberculosis using novel alternative single-tube assays.

    Directory of Open Access Journals (Sweden)

    María Carcelén

    Full Text Available The assignation of lineages in Mycobacterium tuberculosis (MTB provides valuable information for evolutionary and phylogeographic studies and makes for more accurate knowledge of the distribution of this pathogen worldwide. Differences in virulence have also been found for certain lineages. MTB isolates were initially assigned to lineages based on data obtained from genotyping techniques, such as spoligotyping or MIRU-VNTR analysis, some of which are more suitable for molecular epidemiology studies. However, since these methods are subject to a certain degree of homoplasy, other criteria have been chosen to assign lineages. These are based on targeting robust and specific SNPs for each lineage. Here, we propose two newly designed multiplex targeting methods-both of which are single-tube tests-to optimize the assignation of the six main lineages in MTB. The first method is based on ASO-PCR and offers an inexpensive and easy-to-implement assay for laboratories with limited resources. The other, which is based on SNaPshot, enables more refined standardized assignation of lineages for laboratories with better resources. Both methods performed well when assigning lineages from cultured isolates from a control panel, a test panel, and a problem panel from an unrelated population, Mexico, which included isolates in which standard genotyping was not able to classify lineages. Both tests were also able to assign lineages from stored isolates, without the need for subculture or purification of DNA, and even directly from clinical specimens with a medium-high bacilli burden. Our assays could broaden the contexts where information on lineages can be acquired, thus enabling us to quickly update data from retrospective collections and to merge data with those obtained at the time of diagnosis of a new TB case.

  5. Concise Review: Plasma and Nuclear Membranes Convey Mechanical Information to Regulate Mesenchymal Stem Cell Lineage.

    Science.gov (United States)

    Uzer, Gunes; Fuchs, Robyn K; Rubin, Janet; Thompson, William R

    2016-06-01

    Numerous factors including chemical, hormonal, spatial, and physical cues determine stem cell fate. While the regulation of stem cell differentiation by soluble factors is well-characterized, the role of mechanical force in the determination of lineage fate is just beginning to be understood. Investigation of the role of force on cell function has largely focused on "outside-in" signaling, initiated at the plasma membrane. When interfaced with the extracellular matrix, the cell uses integral membrane proteins, such as those found in focal adhesion complexes to translate force into biochemical signals. Akin to these outside-in connections, the internal cytoskeleton is physically linked to the nucleus, via proteins that span the nuclear membrane. Although structurally and biochemically distinct, these two forms of mechanical coupling influence stem cell lineage fate and, when disrupted, often lead to disease. Here we provide an overview of how mechanical coupling occurs at the plasma and nuclear membranes. We also discuss the role of force on stem cell differentiation, with focus on the biochemical signals generated at the cell membrane and the nucleus, and how those signals influence various diseases. While the interaction of stem cells with their physical environment and how they respond to force is complex, an understanding of the mechanical regulation of these cells is critical in the design of novel therapeutics to combat diseases associated with aging, cancer, and osteoporosis. Stem Cells 2016;34:1455-1463. © 2016 AlphaMed Press.

  6. Genotypic lineages and restriction fragment length polymorphism of canine distemper virus isolates in Thailand.

    Science.gov (United States)

    Radtanakatikanon, Araya; Keawcharoen, Juthatip; Charoenvisal, Na Taya; Poovorawan, Yong; Prompetchara, Eakachai; Yamaguchi, Ryoji; Techangamsuwan, Somporn

    2013-09-27

    Canine distemper virus (CDV) is known to cause multisystemic disease in all families of terrestrial carnivores. Attenuated live vaccines have been used to control CDV in a variety of species for many decades, yet a number of CDV infections in vaccinated dogs are still observed. The aims of this study were to investigate the genetic diversity of CDV lineages based on phosphoprotein (P), hemagglutinin (H) and fusion protein (F) genes and to develop the restriction fragment length polymorphism (RFLP) technique for effective differentiation among individual wild-type and vaccine lineages in Thailand. Four commercial vaccine products, thirteen conjunctival swabs and various tissues from 9 necropsied dogs suspected of having CDV infections were included. Virus isolation was performed using Vero cell expressing canine signaling lymphocyte activation molecules (Vero-DST cells). Reverse-transcription polymerase chain reaction (RT-PCR) on 3 gene regions from the dog derived specimens and the vaccines were carried out, then RFLP analysis upon F-gene amplified fragments was developed. Nucleotide sequence and phylogenetic analysis were compared with other CDV lineages in Genbank. Phylogenetic relationships revealed that CDV field isolates were separated from the vaccine lineage and could be divided into two clusters; one of which belonged to the Asia-1 lineage and another, not related to any previous recognized lineages was proposed as 'Asia-4'. RFLP patterns demonstrating concordance with phylogenetic trees of the distemper virus allowed for differentiation between the Asia-1, Asia-4 and vaccine lineages. Thus, RFLP technique is able to effectively distinguish individual wild-type canine distemper virus from vaccine lineages in Thailand. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. LCGbase: A Comprehensive Database for Lineage-Based Co-regulated Genes.

    Science.gov (United States)

    Wang, Dapeng; Zhang, Yubin; Fan, Zhonghua; Liu, Guiming; Yu, Jun

    2012-01-01

    Animal genes of different lineages, such as vertebrates and arthropods, are well-organized and blended into dynamic chromosomal structures that represent a primary regulatory mechanism for body development and cellular differentiation. The majority of genes in a genome are actually clustered, which are evolutionarily stable to different extents and biologically meaningful when evaluated among genomes within and across lineages. Until now, many questions concerning gene organization, such as what is the minimal number of genes in a cluster and what is the driving force leading to gene co-regulation, remain to be addressed. Here, we provide a user-friendly database-LCGbase (a comprehensive database for lineage-based co-regulated genes)-hosting information on evolutionary dynamics of gene clustering and ordering within animal kingdoms in two different lineages: vertebrates and arthropods. The database is constructed on a web-based Linux-Apache-MySQL-PHP framework and effective interactive user-inquiry service. Compared to other gene annotation databases with similar purposes, our database has three comprehensible advantages. First, our database is inclusive, including all high-quality genome assemblies of vertebrates and representative arthropod species. Second, it is human-centric since we map all gene clusters from other genomes in an order of lineage-ranks (such as primates, mammals, warm-blooded, and reptiles) onto human genome and start the database from well-defined gene pairs (a minimal cluster where the two adjacent genes are oriented as co-directional, convergent, and divergent pairs) to large gene clusters. Furthermore, users can search for any adjacent genes and their detailed annotations. Third, the database provides flexible parameter definitions, such as the distance of transcription start sites between two adjacent genes, which is extendable to genes that flanking the cluster across species. We also provide useful tools for sequence alignment, gene

  8. Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Hain Torsten

    2012-04-01

    Full Text Available Abstract Background Listeria monocytogenes is a food-borne pathogen that causes infections with a high-mortality rate and has served as an invaluable model for intracellular parasitism. Here, we report complete genome sequences for two L. monocytogenes strains belonging to serotype 4a (L99 and 4b (CLIP80459, and transcriptomes of representative strains from lineages I, II, and III, thereby permitting in-depth comparison of genome- and transcriptome -based data from three lineages of L. monocytogenes. Lineage III, represented by the 4a L99 genome is known to contain strains less virulent for humans. Results The genome analysis of the weakly pathogenic L99 serotype 4a provides extensive evidence of virulence gene decay, including loss of several important surface proteins. The 4b CLIP80459 genome, unlike the previously sequenced 4b F2365 genome harbours an intact inlB invasion gene. These lineage I strains are characterized by the lack of prophage genes, as they share only a single prophage locus with other L. monocytogenes genomes 1/2a EGD-e and 4a L99. Comparative transcriptome analysis during intracellular growth uncovered adaptive expression level differences in lineages I, II and III of Listeria, notable amongst which was a strong intracellular induction of flagellar genes in strain 4a L99 compared to the other lineages. Furthermore, extensive differences between strains are manifest at levels of metabolic flux control and phosphorylated sugar uptake. Intriguingly, prophage gene expression was found to be a hallmark of intracellular gene expression. Deletion mutants in the single shared prophage locus of lineage II strain EGD-e 1/2a, the lma operon, revealed severe attenuation of virulence in a murine infection model. Conclusion Comparative genomics and transcriptome analysis of L. monocytogenes strains from three lineages implicate prophage genes in intracellular adaptation and indicate that gene loss and decay may have led to the emergence

  9. Exploiting Heparan Sulfate Proteoglycans in Human Neurogenesis—Controlling Lineage Specification and Fate

    Directory of Open Access Journals (Sweden)

    Chieh Yu

    2017-10-01

    Full Text Available Unspecialized, self-renewing stem cells have extraordinary application to regenerative medicine due to their multilineage differentiation potential. Stem cell therapies through replenishing damaged or lost cells in the injured area is an attractive treatment of brain trauma and neurodegenerative neurological disorders. Several stem cell types have neurogenic potential including neural stem cells (NSCs, embryonic stem cells (ESCs, induced pluripotent stem cells (iPSCs, and mesenchymal stem cells (MSCs. Currently, effective use of these cells is limited by our lack of understanding and ability to direct lineage commitment and differentiation of neural lineages. Heparan sulfate proteoglycans (HSPGs are ubiquitous proteins within the stem cell microenvironment or niche and are found localized on the cell surface and in the extracellular matrix (ECM, where they interact with numerous signaling molecules. The glycosaminoglycan (GAG chains carried by HSPGs are heterogeneous carbohydrates comprised of repeating disaccharides with specific sulfation patterns that govern ligand interactions to numerous factors including the fibroblast growth factors (FGFs and wingless-type MMTV integration site family (Wnts. As such, HSPGs are plausible targets for guiding and controlling neural stem cell lineage fate. In this review, we provide an overview of HSPG family members syndecans and glypicans, and perlecan and their role in neurogenesis. We summarize the structural changes and subsequent functional implications of heparan sulfate as cells undergo neural lineage differentiation as well as outline the role of HSPG core protein expression throughout mammalian neural development and their function as cell receptors and co-receptors. Finally, we highlight suitable biomimetic approaches for exploiting the role of HSPGs in mammalian neurogenesis to control and tailor cell differentiation into specific lineages. An improved ability to control stem cell specific neural

  10. Quantifying Selective Pressures Driving Bacterial Evolution Using Lineage Analysis

    Science.gov (United States)

    Lambert, Guillaume; Kussell, Edo

    2015-01-01

    Organisms use a variety of strategies to adapt to their environments and maximize long-term growth potential, but quantitative characterization of the benefits conferred by the use of such strategies, as well as their impact on the whole population's rate of growth, remains challenging. Here, we use a path-integral framework that describes how selection acts on lineages—i.e., the life histories of individuals and their ancestors—to demonstrate that lineage-based measurements can be used to quantify the selective pressures acting on a population. We apply this analysis to Escherichia coli bacteria exposed to cyclical treatments of carbenicillin, an antibiotic that interferes with cell-wall synthesis and affects cells in an age-dependent manner. While the extensive characterization of the life history of thousands of cells is necessary to accurately extract the age-dependent selective pressures caused by carbenicillin, the same measurement can be recapitulated using lineage-based statistics of a single surviving cell. Population-wide evolutionary pressures can be extracted from the properties of the surviving lineages within a population, providing an alternative and efficient procedure to quantify the evolutionary forces acting on a population. Importantly, this approach is not limited to age-dependent selection, and the framework can be generalized to detect signatures of other trait-specific selection using lineage-based measurements. Our results establish a powerful way to study the evolutionary dynamics of life under selection and may be broadly useful in elucidating selective pressures driving the emergence of antibiotic resistance and the evolution of survival strategies in biological systems.

  11. Cell tracing reveals a dorsoventral lineage restriction plane in the mouse limb bud mesenchyme.

    Science.gov (United States)

    Arques, Carlos G; Doohan, Roisin; Sharpe, James; Torres, Miguel

    2007-10-01

    Regionalization of embryonic fields into independent units of growth and patterning is a widespread strategy during metazoan development. Compartments represent a particular instance of this regionalization, in which unit coherence is maintained by cell lineage restriction between adjacent regions. Lineage compartments have been described during insect and vertebrate development. Two common characteristics of the compartments described so far are their occurrence in epithelial structures and the presence of signaling regions at compartment borders. Whereas Drosophila compartmental organization represents a background subdivision of embryonic fields that is not necessarily related to anatomical structures, vertebrate compartment borders described thus far coincide with, or anticipate, anatomical or cell-type discontinuities. Here, we describe a general method for clonal analysis in the mouse and use it to determine the topology of clone distribution along the three limb axes. We identify a lineage restriction boundary at the limb mesenchyme dorsoventral border that is unrelated to any anatomical discontinuity, and whose lineage restriction border is not obviously associated with any signaling center. This restriction is the first example in vertebrates of a mechanism of primordium subdivision unrelated to anatomical boundaries. Furthermore, this is the first lineage compartment described within a mesenchymal structure in any organism, suggesting that lineage restrictions are fundamental not only for epithelial structures, but also for mesenchymal field patterning. No lineage compartmentalization was found along the proximodistal or anteroposterior axes, indicating that patterning along these axes does not involve restriction of cell dispersion at specific axial positions.

  12. New Lineage of Lassa Virus, Togo, 2016

    Science.gov (United States)

    Whitmer, Shannon L.M.; Strecker, Thomas; Cadar, Daniel; Dienes, Hans-Peter; Faber, Kelly; Patel, Ketan; Brown, Shelley M.; Davis, William G.; Klena, John D.; Rollin, Pierre E.; Schmidt-Chanasit, Jonas; Fichet-Calvet, Elisabeth; Noack, Bernd; Emmerich, Petra; Rieger, Toni; Wolff, Svenja; Fehling, Sarah Katharina; Eickmann, Markus; Mengel, Jan Philipp; Schultze, Tilman; Hain, Torsten; Ampofo, William; Bonney, Kofi; Aryeequaye, Juliana Naa Dedei; Ribner, Bruce; Varkey, Jay B.; Mehta, Aneesh K.; Lyon, G. Marshall; Kann, Gerrit; De Leuw, Philipp; Schuettfort, Gundolf; Stephan, Christoph; Wieland, Ulrike; Fries, Jochen W.U.; Kochanek, Matthias; Kraft, Colleen S.; Wolf, Timo; Nichol, Stuart T.; Becker, Stephan; Ströher, Ute

    2018-01-01

    We describe a strain of Lassa virus representing a putative new lineage that was isolated from a cluster of human infections with an epidemiologic link to Togo. This finding extends the known range of Lassa virus to Togo. PMID:29460758

  13. Phylogenetic fields through time: temporal dynamics of geographical co-occurrence and phylogenetic structure within species ranges.

    Science.gov (United States)

    Villalobos, Fabricio; Carotenuto, Francesco; Raia, Pasquale; Diniz-Filho, José Alexandre F

    2016-04-05

    Species co-occur with different sets of other species across their geographical distribution, which can be either closely or distantly related. Such co-occurrence patterns and their phylogenetic structure within individual species ranges represent what we call the species phylogenetic fields (PFs). These PFs allow investigation of the role of historical processes--speciation, extinction and dispersal--in shaping species co-occurrence patterns, in both extinct and extant species. Here, we investigate PFs of large mammalian species during the last 3 Myr, and how these correlate with trends in diversification rates. Using the fossil record, we evaluate species' distributional and co-occurrence patterns along with their phylogenetic structure. We apply a novel Bayesian framework on fossil occurrences to estimate diversification rates through time. Our findings highlight the effect of evolutionary processes and past climatic changes on species' distributions and co-occurrences. From the Late Pliocene to the Recent, mammal species seem to have responded in an individualistic manner to climate changes and diversification dynamics, co-occurring with different sets of species from different lineages across their geographical ranges. These findings stress the difficulty of forecasting potential effects of future climate changes on biodiversity. © 2016 The Author(s).

  14. Transcriptional regulation of lineage commitment--a stochastic model of cell fate decisions.

    Directory of Open Access Journals (Sweden)

    Jose Teles

    molecular scenarios of entry into commitment. The model suggests distinct dependencies of different commitment-associated genes on mRNA dynamics and promoter activity, which globally influence the probability of lineage commitment.

  15. Ezh2 represses the basal cell lineage during lung endoderm development.

    Science.gov (United States)

    Snitow, Melinda E; Li, Shanru; Morley, Michael P; Rathi, Komal; Lu, Min Min; Kadzik, Rachel S; Stewart, Kathleen M; Morrisey, Edward E

    2015-01-01

    The development of the lung epithelium is regulated in a stepwise fashion to generate numerous differentiated and stem cell lineages in the adult lung. How these different lineages are generated in a spatially and temporally restricted fashion remains poorly understood, although epigenetic regulation probably plays an important role. We show that the Polycomb repressive complex 2 component Ezh2 is highly expressed in early lung development but is gradually downregulated by late gestation. Deletion of Ezh2 in early lung endoderm progenitors leads to the ectopic and premature appearance of Trp63+ basal cells that extend the entire length of the airway. Loss of Ezh2 also leads to reduced secretory cell differentiation. In their place, morphologically similar cells develop that express a subset of basal cell genes, including keratin 5, but no longer express high levels of either Trp63 or of standard secretory cell markers. This suggests that Ezh2 regulates the phenotypic switch between basal cells and secretory cells. Together, these findings show that Ezh2 restricts the basal cell lineage during normal lung endoderm development to allow the proper patterning of epithelial lineages during lung formation. © 2015. Published by The Company of Biologists Ltd.

  16. High Y-chromosomal diversity and low relatedness between paternal lineages on a communal scale in the Western European Low Countries during the surname establishment.

    Science.gov (United States)

    Larmuseau, M H D; Boon, N; Vanderheyden, N; Van Geystelen, A; Larmuseau, H F M; Matthys, K; De Clercq, W; Decorte, R

    2015-07-01

    There is limited knowledge on the biological relatedness between citizens and on the demographical dynamics within villages, towns and cities in pre-17th century Western Europe. By combining Y-chromosomal genotypes, in-depth genealogies and surname data in a strict genetic genealogical approach, it is possible to provide insights into the genetic diversity and the relatedness between indigenous paternal lineages within a particular community at the time of the surname adoption. To obtain these insights, six Flemish communities were selected in this study based on the differences in geography and historical development. After rigorous selection of appropriate DNA donors, low relatedness between Y chromosomes of different surnames was found within each community, although there is co-occurrence of these surnames in each community since the start of the surname adoption between the 14th and 15th century. Next, the high communal diversity in Y-chromosomal lineages was comparable with the regional diversity across Flanders at that time. Moreover, clinal distributions of particular Y-chromosomal lineages between the communities were observed according to the clinal distributions earlier observed across the Flemish regions and Western Europe. No significant indication for genetic differences between communities with distinct historical development was found in the analysis. These genetic results provide relevant information for studies in historical sciences, archaeology, forensic genetics and genealogy.

  17. Proposed model for the high rate of rearrangement and rapid migration observed in some IncA/C plasmid lineages.

    Science.gov (United States)

    Meinersmann, R J; Lindsey, R L; Bono, J L; Smith, T P; Oakley, B B

    2013-08-01

    IncA/C plasmids are a class of plasmids from the Enterobacteriaceae that are relatively large (49 to >180 kbp), that are readily transferred by conjugation, and that carry multiple antimicrobial resistance genes. Reconstruction of the phylogeny of these plasmids has been difficult because of the high rate of remodeling by recombination-mediated horizontal gene transfer (HGT). We hypothesized that evaluation of nucleotide polymorphisms relative to the rate of HGT would help to develop a clock to show whether anthropic practices have had significant influences on the lineages of the plasmid. A system was developed to rapidly sequence up to 191 known open reading frames from each of 39 recently isolated IncA/C plasmids from a diverse panel of Salmonella enterica and Escherichia coli strains. With these data plus sequences from GenBank, we were able to distinguish six distinct lineages that had extremely low numbers of polymorphisms within each lineage, especially among the largest group designated as group 1. Two regions, each about half the plasmid in size, could be distinguished with a separate lineal pattern. The distribution of group 1 showed that it has migrated extremely rapidly with fewer polymorphisms than can be expected in 2,000 years. Remodeling by frequent HGT was evident, with a pattern that appeared to have the highest rate just upstream of the putative conjugation origin of transfer (oriT). It seems likely that when an IncA/C plasmid is transferred by conjugation there is an opportunity for plasmid remodeling adjacent to the oriT, which was also adjacent to a multiple antimicrobial resistance gene cassette.

  18. Association between Mycobacterium tuberculosis complex phylogenetic lineage and acquired drug resistance.

    Directory of Open Access Journals (Sweden)

    Courtney M Yuen

    Full Text Available BACKGROUND: Development of resistance to antituberculosis drugs during treatment (i.e., acquired resistance can lead to emergence of resistant strains and consequent poor clinical outcomes. However, it is unknown whether Mycobacterium tuberculosis complex species and lineage affects the likelihood of acquired resistance. METHODS: We analyzed data from the U.S. National Tuberculosis Surveillance System and National Tuberculosis Genotyping Service for tuberculosis cases during 2004-2011 with assigned species and lineage and both initial and final drug susceptibility test results. We determined univariate associations between species and lineage of Mycobacterium tuberculosis complex bacteria and acquired resistance to isoniazid, rifamycins, fluoroquinolones, and second-line injectables. We used Poisson regression with backward elimination to generate multivariable models for acquired resistance to isoniazid and rifamycins. RESULTS: M. bovis was independently associated with acquired resistance to isoniazid (adjusted prevalence ratio = 8.46, 95% CI 2.96-24.14 adjusting for HIV status, and with acquired resistance to rifamycins (adjusted prevalence ratio = 4.53, 95% CI 1.29-15.90 adjusting for homelessness, HIV status, initial resistance to isoniazid, site of disease, and administration of therapy. East Asian lineage was associated with acquired resistance to fluoroquinolones (prevalence ratio = 6.10, 95% CI 1.56-23.83. CONCLUSIONS: We found an association between mycobacterial species and lineage and acquired drug resistance using U.S. surveillance data. Prospective clinical studies are needed to determine the clinical significance of these findings, including whether rapid genotyping of isolates at the outset of treatment may benefit patient management.

  19. Recovering mitochondrial DNA lineages of extinct Amerindian nations in extant homopatric Brazilian populations.

    Science.gov (United States)

    Gonçalves, Vanessa F; Parra, Flavia C; Gonçalves-Dornelas, Higgor; Rodrigues-Carvalho, Claudia; Silva, Hilton P; Pena, Sergio Dj

    2010-12-01

    Brazilian Amerindians have experienced a drastic population decrease in the past 500 years. Indeed, many native groups from eastern Brazil have vanished. However, their mitochondrial mtDNA haplotypes, still persist in Brazilians, at least 50 million of whom carry Amerindian mitochondrial lineages. Our objective was to test whether, by analyzing extant rural populations from regions anciently occupied by specific Amerindian groups, we could identify potentially authentic mitochondrial lineages, a strategy we have named 'homopatric targeting'. We studied 173 individuals from Queixadinha, a small village located in a territory previously occupied by the now extinct Botocudo Amerindian nation. Pedigree analysis revealed 74 unrelated matrilineages, which were screened for Amerindian mtDNA lineages by restriction fragment length polymorphism. A cosmopolitan control group was composed of 100 individuals from surrounding cities. All Amerindian lineages identified had their hypervariable segment HVSI sequenced, yielding 13 Amerindian haplotypes in Queixadinha, nine of which were not present in available databanks or in the literature. Among these haplotypes, there was a significant excess of haplogroup C (70%) and absence of haplogroup A lineages, which were the most common in the control group. The novelty of the haplotypes and the excess of the C haplogroup suggested that we might indeed have identified Botocudo lineages. To validate our strategy, we studied teeth extracted from 14 ancient skulls of Botocudo Amerindians from the collection of the National Museum of Rio de Janeiro. We recovered mtDNA sequences from all the teeth, identifying only six different haplotypes (a low haplotypic diversity of 0.8352 ± 0.0617), one of which was present among the lineages observed in the extant individuals studied. These findings validate the technique of homopatric targeting as a useful new strategy to study the peopling and colonization of the New World, especially when direct

  20. Evolution and genome specialization of Brucella suis biovar 2 Iberian lineages.

    Science.gov (United States)

    Ferreira, Ana Cristina; Tenreiro, Rogério; de Sá, Maria Inácia Corrêa; Dias, Ricardo

    2017-09-12

    Swine brucellosis caused by B. suis biovar 2 is an emergent disease in domestic pigs in Europe. The emergence of this pathogen has been linked to the increase of extensive pig farms and the high density of infected wild boars (Sus scrofa). In Portugal and Spain, the majority of strains share specific molecular characteristics, which allowed establishing an Iberian clonal lineage. However, several strains isolated from wild boars in the North-East region of Spain are similar to strains isolated in different Central European countries. Comparative analysis of five newly fully sequenced B. suis biovar 2 strains belonging to the main circulating clones in Iberian Peninsula, with publicly available Brucella spp. genomes, revealed that strains from Iberian clonal lineage share 74% similarity with those reference genomes. Besides the 210 kb translocation event present in all biovar 2 strains, an inversion with 944 kb was presented in chromosome I of strains from the Iberian clone. At left and right crossover points, the inversion disrupted a TRAP dicarboxylate transporter, DctM subunit, and an integral membrane protein TerC. The gene dctM is well conserved in Brucella spp. except in strains from the Iberian clonal lineage. Intraspecies comparative analysis also exposed a number of biovar-, haplotype- and strain-specific insertion-deletion (INDELs) events and single nucleotide polymorphisms (SNPs) that could explain differences in virulence and host specificities. Most discriminative mutations were associated to membrane related molecules (29%) and enzymes involved in catabolism processes (20%). Molecular identification of both B. suis biovar 2 clonal lineages could be easily achieved using the target-PCR procedures established in this work for the evaluated INDELs. Whole-genome analyses supports that the B. suis biovar 2 Iberian clonal lineage evolved from the Central-European lineage and suggests that the genomic specialization of this pathogen in the Iberian Peninsula

  1. Multiple geographic origins of commensalism and complex dispersal history of Black Rats.

    Science.gov (United States)

    Aplin, Ken P; Suzuki, Hitoshi; Chinen, Alejandro A; Chesser, R Terry; Ten Have, José; Donnellan, Stephen C; Austin, Jeremy; Frost, Angela; Gonzalez, Jean Paul; Herbreteau, Vincent; Catzeflis, Francois; Soubrier, Julien; Fang, Yin-Ping; Robins, Judith; Matisoo-Smith, Elizabeth; Bastos, Amanda D S; Maryanto, Ibnu; Sinaga, Martua H; Denys, Christiane; Van Den Bussche, Ronald A; Conroy, Chris; Rowe, Kevin; Cooper, Alan

    2011-01-01

    The Black Rat (Rattus rattus) spread out of Asia to become one of the world's worst agricultural and urban pests, and a reservoir or vector of numerous zoonotic diseases, including the devastating plague. Despite the global scale and inestimable cost of their impacts on both human livelihoods and natural ecosystems, little is known of the global genetic diversity of Black Rats, the timing and directions of their historical dispersals, and the risks associated with contemporary movements. We surveyed mitochondrial DNA of Black Rats collected across their global range as a first step towards obtaining an historical genetic perspective on this socioeconomically important group of rodents. We found a strong phylogeographic pattern with well-differentiated lineages of Black Rats native to South Asia, the Himalayan region, southern Indochina, and northern Indochina to East Asia, and a diversification that probably commenced in the early Middle Pleistocene. We also identified two other currently recognised species of Rattus as potential derivatives of a paraphyletic R. rattus. Three of the four phylogenetic lineage units within R. rattus show clear genetic signatures of major population expansion in prehistoric times, and the distribution of particular haplogroups mirrors archaeologically and historically documented patterns of human dispersal and trade. Commensalism clearly arose multiple times in R. rattus and in widely separated geographic regions, and this may account for apparent regionalism in their associated pathogens. Our findings represent an important step towards deeper understanding the complex and influential relationship that has developed between Black Rats and humans, and invite a thorough re-examination of host-pathogen associations among Black Rats.

  2. Virulence Strategies of the Dominant USA300 Lineage of Community Associated Methicillin Resistant Staphylococcus aureus (CA-MRSA)

    Science.gov (United States)

    Thurlow, Lance R.; Joshi, Gauri S.; Richardson, Anthony R.

    2014-01-01

    Methicillin-Resistant Staphylococcus aureus (MRSA) poses a serious threat to worldwide health. Historically, MRSA clones have strictly been associated with hospital settings and most hospital-associated MRSA (HA-MRSA) disease resulted from a limited number of virulent clones. Recently, MRSA has spread into the community causing disease in otherwise healthy people with no discernible contact with healthcare environments. These community-associated (CA-MRSA) are phylogenetically distinct from traditional HA-MRSA clones and CA-MRSA strains seem to exhibit hyper virulence and more efficient host:host transmission. Consequently, CA-MRSA clones belonging to the USA300 lineage have become dominant sources of MRSA infections in North America. The rise of this successful USA300 lineage represents an important step in the evolution of emerging pathogens and a great deal of effort has been exerted to understand how these clones evolved. Here we review much of the recent literature aimed at illuminating the source of USA300 success and broadly categorize these findings into three main categories: newly acquired virulence genes, altered expression of common virulence determinants and alterations in protein sequence that increase fitness. We argue that none of these evolutionary events alone account for the success of USA300, but rather their combination may be responsible for the rise and spread of CA-MRSA. PMID:22309135

  3. New Geographical Insights of the Latest Expansion of Fusarium oxysporum f.sp. cubense Tropical Race 4 Into the Greater Mekong Subregion

    Directory of Open Access Journals (Sweden)

    Si-Jun Zheng

    2018-04-01

    Full Text Available Banana is the most popular and most exported fruit and also a major food crop for millions of people around the world. Despite its importance and the presence of serious disease threats, research into this crop is limited. One of those is Panama disease or Fusarium wilt. In the previous century Fusarium wilt wiped out the “Gros Michel” based banana industry in Central America. The epidemic was eventually quenched by planting “Cavendish” bananas. However, 50 years ago the disease recurred, but now on “Cavendish” bananas. Since then the disease has spread across South-East Asia, to the Middle-East and the Indian subcontinent and leaped into Africa. Here, we report the presence of Fusarium oxysporum f.sp. cubense Tropical Race 4 (Foc TR4 in “Cavendish” plantations in Laos, Myanmar, and Vietnam. A combination of classical morphology, DNA sequencing, and phenotyping assays revealed a very close relationship between the Foc TR4 strains in the entire Greater Mekong Subregion (GMS, which is increasingly prone to intensive banana production. Analyses of single-nucleotide polymorphisms enabled us to initiate a phylogeography of Foc TR4 across three geographical areas—GMS, Indian subcontinent, and the Middle East revealing three distinct Foc TR4 sub-lineages. Collectively, our data place these new incursions in a broader agroecological context and underscore the need for awareness campaigns and the implementation of validated quarantine measures to prevent further international dissemination of Foc TR4.

  4. Extending the generality of leaf economic design principles in the cycads, an ancient lineage.

    Science.gov (United States)

    Zhang, Yong-Jiang; Cao, Kun-Fang; Sack, Lawren; Li, Nan; Wei, Xue-Mei; Goldstein, Guillermo

    2015-04-01

    Cycads are the most ancient lineage of living seed plants, but the design of their leaves has received little study. We tested whether cycad leaves are governed by the same fundamental design principles previously established for ferns, conifers and angiosperms, and characterized the uniqueness of this relict lineage in foliar trait relationships. Leaf structure, photosynthesis, hydraulics and nutrient composition were studied in 33 cycad species from nine genera and three families growing in two botanical gardens. Cycads varied greatly in leaf structure and physiology. Similarly to other lineages, light-saturated photosynthetic rate per mass (Am ) was related negatively to leaf mass per area and positively to foliar concentrations of chlorophyll, nitrogen (N), phosphorus and iron, but unlike angiosperms, leaf photosynthetic rate was not associated with leaf hydraulic conductance. Cycads had lower photosynthetic N use efficiency and higher photosynthetic performance relative to hydraulic capacity compared with other lineages. These findings extend the relationships shown for foliar traits in angiosperms to the cycads. This functional convergence supports the modern synthetic understanding of leaf design, with common constraints operating across lineages, even as they highlight exceptional aspects of the biology of this key relict lineage. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  5. Differential trypanocidal activity of novel macrolide antibiotics; correlation to genetic lineage.

    Science.gov (United States)

    Aquilino, Carolina; Gonzalez Rubio, Maria Luisa; Seco, Elena Maria; Escudero, Leticia; Corvo, Laura; Soto, Manuel; Fresno, Manuel; Malpartida, Francisco; Bonay, Pedro

    2012-01-01

    Here we report the systematic study of the anti-trypanocidal activity of some new products derived from S. diastatus on 14 different T. cruzi strains spanning the six genetic lineages of T. cruzi. As the traditional growth inhibition curves giving similar IC(50) showed great differences on antibiotic and lineage tested, we decided to preserve the wealth of information derived from each inhibition curve and used an algorithm related to potency of the drugs, combined in a matrix data set used to generate a cluster tree. The cluster thus generated based just on drug susceptibility data closely resembles the phylogenies of the lineages derived from genetic data and provides a novel approach to correlate genetic data with phenotypes related to pathogenesis of Chagas disease. Furthermore we provide clues on the drugs mechanism of action.

  6. Reticulate evolution and incomplete lineage sorting among the ponderosa pines.

    Science.gov (United States)

    Willyard, Ann; Cronn, Richard; Liston, Aaron

    2009-08-01

    Interspecific gene flow via hybridization may play a major role in evolution by creating reticulate rather than hierarchical lineages in plant species. Occasional diploid pine hybrids indicate the potential for introgression, but reticulation is hard to detect because ancestral polymorphism is still shared across many groups of pine species. Nucleotide sequences for 53 accessions from 17 species in subsection Ponderosae (Pinus) provide evidence for reticulate evolution. Two discordant patterns among independent low-copy nuclear gene trees and a chloroplast haplotype are better explained by introgression than incomplete lineage sorting or other causes of incongruence. Conflicting resolution of three monophyletic Pinus coulteri accessions is best explained by ancient introgression followed by a genetic bottleneck. More recent hybridization transferred a chloroplast from P. jeffreyi to a sympatric P. washoensis individual. We conclude that incomplete lineage sorting could account for other examples of non-monophyly, and caution against any analysis based on single-accession or single-locus sampling in Pinus.

  7. Pathology of fatal lineage 1 and 2 West Nile virus infections in horses in South Africa

    Directory of Open Access Journals (Sweden)

    June H. Williams

    2014-09-01

    Full Text Available Since 2007, West Nile virus (WNV has been reported in South African horses, causing severe neurological signs. All cases were of lineage 2, except for one case that clustered with lineage 1 viruses. In the present study, gross and microscopic lesions of six South African lineage 2-infected horses and the one lineage 1 case are described. Diagnoses were confirmed by real-time reverse-transcriptase polymerase chain reaction (RT-PCR of central nervous system (CNS tissue and one by RT-PCR of a brain virus isolate. The CNS of all cases was negative by RT-PCR or immunohistochemistry (IHC for African horse sickness (AHS, equine encephalosis virus, equine herpes viruses 1 and 4, other zoonotic flaviviruses, alphaviruses, and shunivirus, and either by immunofluorescence or IHC for rabies. Gross visceral lesions were nonspecific but often mimicked those of AHS. The CNS histopathology of WNV lineage 2 cases resembled the nonsuppurative polioencephalomyelitis reported in the Northern Hemisphere lineage 1 and recent Hungarian lineage 2 cases. Occasional meningitis, focal spinal ventral horn poliomalacia, dorsal and lateral horn poliomyelitis, leucomyelitis, asymmetrical ventral motor spinal neuritis and frequent olfactory region involvement were also seen. Lineage 2 cases displayed marked variations in CNS lesion severity, type and distribution, and suggested various viral entry routes into the CNS, based on findings in experimental mice and hamsters. Lineage 1 lesions were comparable to the milder lineage 2 cases. West Nile virus IHC on CNS sections with marked lesions from all cases elicited only two antigen-positive cells in the olfactory cortex of one case. The presence in the CNS of T-lymphocytes, B-lymphocytes, plasma cells and macrophage-monocytes was confirmed by cluster of differentiation (CD 3, CD20, multiple myeloma oncogene 1 (MUM1 and macrophage (MAC 387 IHC.

  8. Distinct population structure for co-occurring Anopheles goeldii and Anopheles triannulatus in Amazonian Brazil

    Directory of Open Access Journals (Sweden)

    Sascha Naomi McKeon

    2013-08-01

    Full Text Available To evaluate whether environmental heterogeneity contributes to the genetic heterogeneity in Anopheles triannulatus, larval habitat characteristics across the Brazilian states of Roraima and Pará and genetic sequences were examined. A comparison with Anopheles goeldii was utilised to determine whether high genetic diversity was unique to An. triannulatus. Student t test and analysis of variance found no differences in habitat characteristics between the species. Analysis of population structure of An. triannulatus and An. goeldii revealed distinct demographic histories in a largely overlapping geographic range. Cytochrome oxidase I sequence parsimony networks found geographic clustering for both species; however nuclear marker networks depicted An. triannulatus with a more complex history of fragmentation, secondary contact and recent divergence. Evidence of Pleistocene expansions suggests both species are more likely to be genetically structured by geographic and ecological barriers than demography. We hypothesise that niche partitioning is a driving force for diversity, particularly in An. triannulatus.

  9. Geographic Clusters of Basal Cell Carcinoma in a Northern California Health Plan Population.

    Science.gov (United States)

    Ray, G Thomas; Kulldorff, Martin; Asgari, Maryam M

    2016-11-01

    Rates of skin cancer, including basal cell carcinoma (BCC), the most common cancer, have been increasing over the past 3 decades. A better understanding of geographic clustering of BCCs can help target screening and prevention efforts. Present a methodology to identify spatial clusters of BCC and identify such clusters in a northern California population. This retrospective study used a BCC registry to determine rates of BCC by census block group, and used spatial scan statistics to identify statistically significant geographic clusters of BCCs, adjusting for age, sex, and socioeconomic status. The study population consisted of white, non-Hispanic members of Kaiser Permanente Northern California during years 2011 and 2012. Statistically significant geographic clusters of BCC as determined by spatial scan statistics. Spatial analysis of 28 408 individuals who received a diagnosis of at least 1 BCC in 2011 or 2012 revealed distinct geographic areas with elevated BCC rates. Among the 14 counties studied, BCC incidence ranged from 661 to 1598 per 100 000 person-years. After adjustment for age, sex, and neighborhood socioeconomic status, a pattern of 5 discrete geographic clusters emerged, with a relative risk ranging from 1.12 (95% CI, 1.03-1.21; P = .006) for a cluster in eastern Sonoma and northern Napa Counties to 1.40 (95% CI, 1.15-1.71; P Costa and west San Joaquin Counties, compared with persons residing outside that cluster. In this study of a northern California population, we identified several geographic clusters with modestly elevated incidence of BCC. Knowledge of geographic clusters can help inform future research on the underlying etiology of the clustering including factors related to the environment, health care access, or other characteristics of the resident population, and can help target screening efforts to areas of highest yield.

  10. Phylogeography of a Morphologically Cryptic Golden Mole Assemblage from South-Eastern Africa.

    Directory of Open Access Journals (Sweden)

    Samantha Mynhardt

    Full Text Available The Greater Maputaland-Pondoland-Albany (GMPA region of southern Africa was recently designated as a centre of vertebrate endemism. The phylogeography of the vertebrate taxa occupying this region may provide insights into the evolution of faunal endemism in south-eastern Africa. Here we investigate the phylogeographic patterns of an understudied small mammal species assemblage (Amblysomus endemic to the GMPA, to test for cryptic diversity within the genus, and to better understand diversification across the region. We sampled specimens from 50 sites across the distributional range of Amblysomus, with emphasis on the widespread A. hottentotus, to analyse geographic patterns of genetic diversity using mitochondrial DNA (mtDNA and nuclear intron data. Molecular dating was used to elucidate the evolutionary and phylogeographic history of Amblysomus. Our phylogenetic reconstructions show that A. hottentotus comprises several distinct lineages, or evolutionarily significant units (ESUs, some with restricted geographic ranges and thus worthy of conservation attention. Divergence of the major lineages dated to the early Pliocene, with later radiations in the GMPA during the late-Pliocene to early-Pleistocene. Evolutionary diversification within Amblysomus may have been driven by uplift of the Great Escarpment c. 5-3 million years ago (Ma, habitat changes associated with intensification of the east-west rainfall gradient across South Africa and the influence of subsequent global climatic cycles. These drivers possibly facilitated geographic spread of ancestral lineages, local adaptation and vicariant isolation. Our study adds to growing empirical evidence identifying East and southern Africa as cradles of vertebrate diversity.

  11. Convergent Metabolic Specialization through Distinct Evolutionary Paths in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    La Rosa, Ruggero; Johansen, Helle Krogh; Molin, Søren

    2018-01-01

    fibrosis (CF) infection. In this work, we investigated how and through which trajectories evolution of Pseudomonas aeruginosa occurs when migrating from the environment to the airways of CF patients, and specifically, we determined reduction of growth rate and metabolic specialization as signatures...... of adaptive evolution. We show that central metabolic pathways of three distinct Pseudomonas aeruginosa lineages coevolving within the same environment become restructured at the cost of versatility during long-term colonization. Cell physiology changes from naive to adapted phenotypes resulted in (i......) alteration of growth potential that particularly converged to a slow-growth phenotype, (ii) alteration of nutritional requirements due to auxotrophy, (iii) tailored preference for carbon source assimilation from CF sputum, (iv) reduced arginine and pyruvate fermentation processes, and (v) increased oxygen...

  12. Dynamic of H5N1 virus in Cambodia and emergence of a novel endemic sub-clade.

    Science.gov (United States)

    Sorn, San; Sok, Touch; Ly, Sovann; Rith, Sareth; Tung, Nguyen; Viari, Alain; Gavotte, Laurent; Holl, Davun; Seng, Heng; Asgari, Nima; Richner, Beat; Laurent, Denis; Chea, Nora; Duong, Veasna; Toyoda, Tetsuya; Yasuda, Chadwick Y; Kitsutani, Paul; Zhou, Paul; Bing, Sun; Deubel, Vincent; Donis, Ruben; Frutos, Roger; Buchy, Philippe

    2013-04-01

    In Cambodia, the first detection of HPAI H5N1 virus in birds occurred in January 2004 and since then there have been 33 outbreaks in poultry while 21 human cases were reported. The origin and dynamics of these epizootics in Cambodia remain unclear. In this work we used a range of bioinformatics methods to analyze the Cambodian virus sequences together with those from neighboring countries. Six HA lineages belonging to clades 1 and 1.1 were identified since 2004. Lineage 1 shares an ancestor with viruses from Thailand and disappeared after 2005, to be replaced by lineage 2 originating from Vietnam and then by lineage 3. The highly adapted lineage 4 was seen only in Cambodia. Lineage 5 is circulating both in Vietnam and Cambodia since 2008 and was probably introduced in Cambodia through unregistered transboundary poultry trade. Lineage 6 is endemic to Cambodia since 2010 and could be classified as a new clade according to WHO/OIE/FAO criteria for H5N1 virus nomenclature. We propose to name it clade 1.1A. There is a direct filiation of lineages 2 to 6 with a temporal evolution and geographic differentiation for lineages 4 and 6. By the end of 2011, two lineages, i.e. lineages 5 and 6, with different transmission paths cocirculate in Cambodia. The presence of lineage 6 only in Cambodia suggests the existence of a transmission specific to this country whereas the presence of lineage 5 in both Cambodia and Vietnam indicates a distinct way of circulation of infected poultry. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Imaging geographic atrophy in age-related macular degeneration.

    Science.gov (United States)

    Göbel, Arno P; Fleckenstein, Monika; Schmitz-Valckenberg, Steffen; Brinkmann, Christian K; Holz, Frank G

    2011-01-01

    Advances in retinal imaging technology have largely contributed to the understanding of the natural history, prognostic markers and disease mechanisms of geographic atrophy (GA) due to age-related macular degeneration. There is still no therapy available to halt or slow the disease process. In order to evaluate potential therapeutic effects in interventional trials, there is a need for precise quantification of the GA progression rate. Fundus autofluorescence imaging allows for accurate identification and segmentation of atrophic areas and currently represents the gold standard for evaluating progressive GA enlargement. By means of high-resolution spectral-domain optical coherence tomography, distinct microstructural alterations related to GA can be visualized. Copyright © 2011 S. Karger AG, Basel.

  14. There is no fitness but fitness, and the lineage is its bearer

    Science.gov (United States)

    2016-01-01

    Inclusive fitness has been the cornerstone of social evolution theory for more than a half-century and has matured as a mathematical theory in the past 20 years. Yet surprisingly for a theory so central to an entire field, some of its connections to evolutionary theory more broadly remain contentious or underappreciated. In this paper, we aim to emphasize the connection between inclusive fitness and modern evolutionary theory through the following fact: inclusive fitness is simply classical Darwinian fitness, averaged over social, environmental and demographic states that members of a gene lineage experience. Therefore, inclusive fitness is neither a generalization of classical fitness, nor does it belong exclusively to the individual. Rather, the lineage perspective emphasizes that evolutionary success is determined by the effect of selection on all biological and environmental contexts that a lineage may experience. We argue that this understanding of inclusive fitness based on gene lineages provides the most illuminating and accurate picture and avoids pitfalls in interpretation and empirical applications of inclusive fitness theory. PMID:26729925

  15. There is no fitness but fitness, and the lineage is its bearer.

    Science.gov (United States)

    Akçay, Erol; Van Cleve, Jeremy

    2016-02-05

    Inclusive fitness has been the cornerstone of social evolution theory for more than a half-century and has matured as a mathematical theory in the past 20 years. Yet surprisingly for a theory so central to an entire field, some of its connections to evolutionary theory more broadly remain contentious or underappreciated. In this paper, we aim to emphasize the connection between inclusive fitness and modern evolutionary theory through the following fact: inclusive fitness is simply classical Darwinian fitness, averaged over social, environmental and demographic states that members of a gene lineage experience. Therefore, inclusive fitness is neither a generalization of classical fitness, nor does it belong exclusively to the individual. Rather, the lineage perspective emphasizes that evolutionary success is determined by the effect of selection on all biological and environmental contexts that a lineage may experience. We argue that this understanding of inclusive fitness based on gene lineages provides the most illuminating and accurate picture and avoids pitfalls in interpretation and empirical applications of inclusive fitness theory. © 2016 The Author(s).

  16. Lineage tracing of genome-edited alleles reveals high fidelity axolotl limb regeneration.

    Science.gov (United States)

    Flowers, Grant Parker; Sanor, Lucas D; Crews, Craig M

    2017-09-16

    Salamanders are unparalleled among tetrapods in their ability to regenerate many structures, including entire limbs, and the study of this ability may provide insights into human regenerative therapies. The complex structure of the limb poses challenges to the investigation of the cellular and molecular basis of its regeneration. Using CRISPR/Cas, we genetically labelled unique cell lineages within the developing axolotl embryo and tracked the frequency of each lineage within amputated and fully regenerated limbs. This allowed us, for the first time, to assess the contributions of multiple low frequency cell lineages to the regenerating limb at once. Our comparisons reveal that regenerated limbs are high fidelity replicas of the originals even after repeated amputations.

  17. Ascl1 (Mash1) lineage cells contribute to discrete cell populations in CNS architecture

    OpenAIRE

    Kim, Euiseok J.; Battiste, James; Nakagawa, Yasushi; Johnson, Jane E.

    2008-01-01

    Ascl1 (previously Mash1) is a bHLH transcription factor essential for neuronal differentiation and specification in the nervous system. Although it has been studied for its role in several neural lineages, the full complement of lineages arising from Ascl1 progenitor cells remains unknown. Using an inducible Cre-flox genetic fate mapping strategy, Ascl1 lineages were determined throughout the brain. Ascl1 is present in proliferating progenitor cells but these cells are actively differentiatin...

  18. Collective place branding - an alternative strategy for territorial development compared to geographical indications?

    OpenAIRE

    Donner, Mechthild

    2016-01-01

    Geographical Indications (GIs) protecting the origin of specific food products are expanding worldwide and promoted as first order tool for agricultural and local development in developing countries. At the same time, collective place brands are adopted by public and private sectors in Europe as novel strategy to jointly valorise and promote a package of place-specific (food) products and (tourism) services, which supports a distinctive territorial identity or a territorial project.We here pr...

  19. Differential trypanocidal activity of novel macrolide antibiotics; correlation to genetic lineage.

    Directory of Open Access Journals (Sweden)

    Carolina Aquilino

    Full Text Available Here we report the systematic study of the anti-trypanocidal activity of some new products derived from S. diastatus on 14 different T. cruzi strains spanning the six genetic lineages of T. cruzi. As the traditional growth inhibition curves giving similar IC(50 showed great differences on antibiotic and lineage tested, we decided to preserve the wealth of information derived from each inhibition curve and used an algorithm related to potency of the drugs, combined in a matrix data set used to generate a cluster tree. The cluster thus generated based just on drug susceptibility data closely resembles the phylogenies of the lineages derived from genetic data and provides a novel approach to correlate genetic data with phenotypes related to pathogenesis of Chagas disease. Furthermore we provide clues on the drugs mechanism of action.

  20. Chromosomal barcoding as a tool for multiplexed phenotypic characterization of laboratory evolved lineages

    DEFF Research Database (Denmark)

    Jahn, Leonie Johanna; Porse, Andreas; Munck, Christian

    2018-01-01

    experiments can be automated in a high-throughput fashion. However, the characterization of the resulting lineages can become a time consuming task, when the performance of each lineage is evaluated individually. Here, we present a novel method for the markerless insertion of randomized genetic barcodes...

  1. Cytomegalovirus immune evasion of myeloid lineage cells.

    Science.gov (United States)

    Brinkmann, Melanie M; Dağ, Franziska; Hengel, Hartmut; Messerle, Martin; Kalinke, Ulrich; Čičin-Šain, Luka

    2015-06-01

    Cytomegalovirus (CMV) evades the immune system in many different ways, allowing the virus to grow and its progeny to spread in the face of an adverse environment. Mounting evidence about the antiviral role of myeloid immune cells has prompted the research of CMV immune evasion mechanisms targeting these cells. Several cells of the myeloid lineage, such as monocytes, dendritic cells and macrophages, play a role in viral control, but are also permissive for CMV and are naturally infected by it. Therefore, CMV evasion of myeloid cells involves mechanisms that qualitatively differ from the evasion of non-CMV-permissive immune cells of the lymphoid lineage. The evasion of myeloid cells includes effects in cis, where the virus modulates the immune signaling pathways within the infected myeloid cell, and those in trans, where the virus affects somatic cells targeted by cytokines released from myeloid cells. This review presents an overview of CMV strategies to modulate and evade the antiviral activity of myeloid cells in cis and in trans.

  2. Long-term live cell imaging and automated 4D analysis of drosophila neuroblast lineages.

    Directory of Open Access Journals (Sweden)

    Catarina C F Homem

    Full Text Available The developing Drosophila brain is a well-studied model system for neurogenesis and stem cell biology. In the Drosophila central brain, around 200 neural stem cells called neuroblasts undergo repeated rounds of asymmetric cell division. These divisions typically generate a larger self-renewing neuroblast and a smaller ganglion mother cell that undergoes one terminal division to create two differentiating neurons. Although single mitotic divisions of neuroblasts can easily be imaged in real time, the lack of long term imaging procedures has limited the use of neuroblast live imaging for lineage analysis. Here we describe a method that allows live imaging of cultured Drosophila neuroblasts over multiple cell cycles for up to 24 hours. We describe a 4D image analysis protocol that can be used to extract cell cycle times and growth rates from the resulting movies in an automated manner. We use it to perform lineage analysis in type II neuroblasts where clonal analysis has indicated the presence of a transit-amplifying population that potentiates the number of neurons. Indeed, our experiments verify type II lineages and provide quantitative parameters for all cell types in those lineages. As defects in type II neuroblast lineages can result in brain tumor formation, our lineage analysis method will allow more detailed and quantitative analysis of tumorigenesis and asymmetric cell division in the Drosophila brain.

  3. The Effect of Geographic Units of Analysis on Measuring Geographic Variation in Medical Services Utilization

    Directory of Open Access Journals (Sweden)

    Agnus M. Kim

    2016-07-01

    Full Text Available Objectives: We aimed to evaluate the effect of geographic units of analysis on measuring geographic variation in medical services utilization. For this purpose, we compared geographic variations in the rates of eight major procedures in administrative units (districts and new areal units organized based on the actual health care use of the population in Korea. Methods: To compare geographic variation in geographic units of analysis, we calculated the age–sex standardized rates of eight major procedures (coronary artery bypass graft surgery, percutaneous transluminal coronary angioplasty, surgery after hip fracture, knee-replacement surgery, caesarean section, hysterectomy, computed tomography scan, and magnetic resonance imaging scan from the National Health Insurance database in Korea for the 2013 period. Using the coefficient of variation, the extremal quotient, and the systematic component of variation, we measured geographic variation for these eight procedures in districts and new areal units. Results: Compared with districts, new areal units showed a reduction in geographic variation. Extremal quotients and inter-decile ratios for the eight procedures were lower in new areal units. While the coefficient of variation was lower for most procedures in new areal units, the pattern of change of the systematic component of variation between districts and new areal units differed among procedures. Conclusions: Geographic variation in medical service utilization could vary according to the geographic unit of analysis. To determine how geographic characteristics such as population size and number of geographic units affect geographic variation, further studies are needed.

  4. Phylogenetic features of hemagglutin gene in canine distemper virus strains from different genetic lineages.

    Science.gov (United States)

    Liao, Peng; Guo, Li; Wen, Yongjun; Yang, Yangling; Cheng, Shipeng

    2015-01-01

    In the present study, the genotype of two Canine distemper virus (CDV) strains, namely, ZJJ-SD and ZJJ-LN, were investigated, based on the whole hemagglutinin (HA) gene. The CDV strains were obtained from two foxes in Shandong Province and Liaoning Province in 2011. Phylogenetic analyses were carried out for 260 CDV strains worldwide, and a statistical analysis was performed in the amino acid substitutions at positions 530 and 549 of the HA protein. Phylogenetic analyses revealed that the two strains, ZJJ-SD and ZJJ-LN, belonged to the CDV Asia I lineage. Site 530 of HA protein was found to be relatively conserved within CDV lineages in different host species by combining the genetic sequence data with the published data from 260 CDV strains worldwide. The data analysis showed a bias toward the predicted substitution Y549H for the non-dog strains in Asia I and Europe lineages. The ratio of site 549 genetic drift in the HA gene were significantly different between dogs and non-dogs in the two lineages. The strain ZJJ-SD, from wild canid, has an Y549H substitution. It is one of three Y549H substitution for wild canids in Asia I lineages. Site 530 of HA protein was not immediately relative to CDV genetic drift from dogs to non-dogs. Statistical analysis indicated that non-dog strains have a high probability to contain Y549H than dog strains in Asia I and Europe lineages. Thus, site 549 is considered important in genetic drift from dogs to non-dogs, at least in Asia I and Europe lineages.

  5. Extensive lineage-specific gene duplication and evolution of the spiggin multi-gene family in stickleback

    Directory of Open Access Journals (Sweden)

    Nishida Mutsumi

    2007-11-01

    Full Text Available Abstract Background The threespine stickleback (Gasterosteus aculeatus has a characteristic reproductive mode; mature males build nests using a secreted glue-like protein called spiggin. Although recent studies reported multiple occurrences of genes that encode this glue-like protein spiggin in threespine and ninespine sticklebacks, it is still unclear how many genes compose the spiggin multi-gene family. Results Genome sequence analysis of threespine stickleback showed that there are at least five spiggin genes and two pseudogenes, whereas a single spiggin homolog occurs in the genomes of other fishes. Comparative genome sequence analysis demonstrated that Muc19, a single-copy mucous gene in human and mouse, is an ortholog of spiggin. Phylogenetic and molecular evolutionary analyses of these sequences suggested that an ancestral spiggin gene originated from a member of the mucin gene family as a single gene in the common ancestor of teleosts, and gene duplications of spiggin have occurred in the stickleback lineage. There was inter-population variation in the copy number of spiggin genes and positive selection on some codons, indicating that additional gene duplication/deletion events and adaptive evolution at some amino acid sites may have occurred in each stickleback population. Conclusion A number of spiggin genes exist in the threespine stickleback genome. Our results provide insight into the origin and dynamic evolutionary process of the spiggin multi-gene family in the threespine stickleback lineage. The dramatic evolution of genes for mucous substrates may have contributed to the generation of distinct characteristics such as "bio-glue" in vertebrates.

  6. IL-17A influences essential functions of the monocyte/macrophage lineage and is involved in advanced murine and human atherosclerosis.

    Science.gov (United States)

    Erbel, Christian; Akhavanpoor, Mohammadreza; Okuyucu, Deniz; Wangler, Susanne; Dietz, Alex; Zhao, Li; Stellos, Konstantinos; Little, Kristina M; Lasitschka, Felix; Doesch, Andreas; Hakimi, Maani; Dengler, Thomas J; Giese, Thomas; Blessing, Erwin; Katus, Hugo A; Gleissner, Christian A

    2014-11-01

    Atherosclerosis is a chronic inflammatory disease. Lesion progression is primarily mediated by cells of the monocyte/macrophage lineage. IL-17A is a proinflammatory cytokine, which modulates immune cell trafficking and is involved inflammation in (auto)immune and infectious diseases. But the role of IL-17A still remains controversial. In the current study, we investigated effects of IL-17A on advanced murine and human atherosclerosis, the common disease phenotype in clinical care. The 26-wk-old apolipoprotein E-deficient mice were fed a standard chow diet and treated either with IL-17A mAb (n = 15) or irrelevant Ig (n = 10) for 16 wk. Furthermore, essential mechanisms of IL-17A in atherogenesis were studied in vitro. Inhibition of IL-17A markedly prevented atherosclerotic lesion progression (p = 0.001) by reducing inflammatory burden and cellular infiltration (p = 0.01) and improved lesion stability (p = 0.01). In vitro experiments showed that IL-17A plays a role in chemoattractance, monocyte adhesion, and sensitization of APCs toward pathogen-derived TLR4 ligands. Also, IL-17A induced a unique transcriptome pattern in monocyte-derived macrophages distinct from known macrophage types. Stimulation of human carotid plaque tissue ex vivo with IL-17A induced a proinflammatory milieu and upregulation of molecules expressed by the IL-17A-induced macrophage subtype. In this study, we show that functional blockade of IL-17A prevents atherosclerotic lesion progression and induces plaque stabilization in advanced lesions in apolipoprotein E-deficient mice. The underlying mechanisms involve reduced inflammation and distinct effects of IL-17A on monocyte/macrophage lineage. In addition, translational experiments underline the relevance for the human system. Copyright © 2014 by The American Association of Immunologists, Inc.

  7. Pathogenicity evaluation of twelve West Nile virus strains belonging to four lineages from five continents in a mouse model: discrimination between three pathogenicity categories.

    Science.gov (United States)

    Pérez-Ramírez, Elisa; Llorente, Francisco; Del Amo, Javier; Fall, Gamou; Sall, Amadou Alpha; Lubisi, Alison; Lecollinet, Sylvie; Vázquez, Ana; Jiménez-Clavero, Miguel Ángel

    2017-04-01

    Rodent models have been used extensively to study West Nile virus (WNV) infection because they develop severe neurological symptoms similar to those observed in human WNV neuroinvasive disease. Most of this research has focused on old lineage (L) 1 strains, while information about pathogenicity is lacking for the most recent L1 and L2 strains, as well as for newly defined lineages. In this study, 4-week-old Swiss mice were inoculated with a collection of 12 WNV isolates, comprising 10 old and recent L1 and L2 strains, the putative L6 strain from Malaysia and the proposed L7 strain Koutango (KOU). The intraperitoneal inoculation of 10-fold dilutions of each strain allowed the characterization of the isolates in terms of LD50, median survival times, ID50, replication in neural and extraneural tissues and antibody production. Based on these results, we classified the isolates in three groups: high virulence (all L1a strains, recent L2 strains and KOU), moderate virulence (B956 strain) and low virulence (Kunjin and Malaysian isolates). We determined that the inoculation of a single dose of 1000 p.f.u. would be sufficient to classify WNV strains by pathotype. We confirmed the enhanced virulence of the KOU strain with a high capacity to cause rapid systemic infection. We also corroborated that differences in pathogenicity among strains do not correlate with phylogenetic lineage or geographic origin, and confirmed that recent European and African WNV strains belonging to L1 and L2 are highly virulent and do not differ in their pathotype profile compared to the prototype NY99 strain.

  8. Geographical information systems

    DEFF Research Database (Denmark)

    Möller, Bernd

    2004-01-01

    The chapter gives an introduction to Geographical Information Systems (GIS) with particular focus on their application within environmental management.......The chapter gives an introduction to Geographical Information Systems (GIS) with particular focus on their application within environmental management....

  9. Vsx2 in the zebrafish retina: restricted lineages through derepression

    Directory of Open Access Journals (Sweden)

    Higashijima Shin-ichi

    2009-04-01

    Full Text Available Abstract Background The neurons in the vertebrate retina arise from multipotent retinal progenitor cells (RPCs. It is not clear, however, which progenitors are multipotent or why they are multipotent. Results In this study we show that the homeodomain transcription factor Vsx2 is initially expressed throughout the retinal epithelium, but later it is downregulated in all but a minor population of bipolar cells and all Müller glia. The Vsx2-negative daughters of Vsx2-positive RPCs divide and give rise to all other cell types in the retina. Vsx2 is a repressor whose targets include transcription factors such as Vsx1, which is expressed in the progenitors of distinct non-Vsx2 bipolars, and the basic helix-loop-helix transcription factor Ath5, which restricts the fate of progenitors to retinal ganglion cells, horizontal cells, amacrine cells and photoreceptors fates. Foxn4, expressed in the progenitors of amacrine and horizontal cells, is also negatively regulated by Vsx2. Conclusion Our data thus suggest Vsx2-positive RPCs are fully multipotent retinal progenitors and that when Vsx2 is downregulated, Vsx2-negative progenitors escape Vsx2 repression and so are able to express factors that restrict lineage potential.

  10. Asymptotic distributions of coalescence times and ancestral lineage numbers for populations with temporally varying size.

    Science.gov (United States)

    Chen, Hua; Chen, Kun

    2013-07-01

    The distributions of coalescence times and ancestral lineage numbers play an essential role in coalescent modeling and ancestral inference. Both exact distributions of coalescence times and ancestral lineage numbers are expressed as the sum of alternating series, and the terms in the series become numerically intractable for large samples. More computationally attractive are their asymptotic distributions, which were derived in Griffiths (1984) for populations with constant size. In this article, we derive the asymptotic distributions of coalescence times and ancestral lineage numbers for populations with temporally varying size. For a sample of size n, denote by Tm the mth coalescent time, when m + 1 lineages coalesce into m lineages, and An(t) the number of ancestral lineages at time t back from the current generation. Similar to the results in Griffiths (1984), the number of ancestral lineages, An(t), and the coalescence times, Tm, are asymptotically normal, with the mean and variance of these distributions depending on the population size function, N(t). At the very early stage of the coalescent, when t → 0, the number of coalesced lineages n - An(t) follows a Poisson distribution, and as m → n, $$n\\left(n-1\\right){T}_{m}/2N\\left(0\\right)$$ follows a gamma distribution. We demonstrate the accuracy of the asymptotic approximations by comparing to both exact distributions and coalescent simulations. Several applications of the theoretical results are also shown: deriving statistics related to the properties of gene genealogies, such as the time to the most recent common ancestor (TMRCA) and the total branch length (TBL) of the genealogy, and deriving the allele frequency spectrum for large genealogies. With the advent of genomic-level sequencing data for large samples, the asymptotic distributions are expected to have wide applications in theoretical and methodological development for population genetic inference.

  11. Determining the control networks regulating stem cell lineages in colonic crypts

    OpenAIRE

    Yang, J; Axelrod, DE; Komarova, NL

    2017-01-01

    The question of stem cell control is at the center of our understanding of tissue functioning, both in healthy and cancerous conditions. It is well accepted that cellular fate decisions (such as divisions, differentiation, apoptosis) are orchestrated by a network of regulatory signals emitted by different cell populations in the lineage and the surrounding tissue. The exact regulatory network that governs stem cell lineages in a given tissue is usually unknown. Here we propose an algorithm to...

  12. Defining the Minimal Factors Required for Erythropoiesis through Direct Lineage Conversion

    Directory of Open Access Journals (Sweden)

    Sandra Capellera-Garcia

    2016-06-01

    Full Text Available Erythroid cell commitment and differentiation proceed through activation of a lineage-restricted transcriptional network orchestrated by a group of well characterized genes. However, the minimal set of factors necessary for instructing red blood cell (RBC development remains undefined. We employed a screen for transcription factors allowing direct lineage reprograming from fibroblasts to induced erythroid progenitors/precursors (iEPs. We show that Gata1, Tal1, Lmo2, and c-Myc (GTLM can rapidly convert murine and human fibroblasts directly to iEPs. The transcriptional signature of murine iEPs resembled mainly that of primitive erythroid progenitors in the yolk sac, whereas addition of Klf1 or Myb to the GTLM cocktail resulted in iEPs with a more adult-type globin expression pattern. Our results demonstrate that direct lineage conversion is a suitable platform for defining and studying the core factors inducing the different waves of erythroid development.

  13. Effect of lineage-specific metabolic traits of Lactobacillus reuteri on sourdough microbial ecology.

    Science.gov (United States)

    Lin, Xiaoxi B; Gänzle, Michael G

    2014-09-01

    This study determined the effects of specific metabolic traits of Lactobacillus reuteri on its competitiveness in sourdoughs. The competitiveness of lactobacilli in sourdough generally depends on their growth rate; acid resistance additionally contributes to competitiveness in sourdoughs with long fermentation times. Glycerol metabolism via glycerol dehydratase (gupCDE) accelerates growth by the regeneration of reduced cofactors; glutamate metabolism via glutamate decarboxylase (gadB) increases acid resistance by generating a proton motive force. Glycerol and glutamate metabolisms are lineage-specific traits in L. reuteri; therefore, this study employed glycerol dehydratase-positive sourdough isolates of human-adapted L. reuteri lineage I, glutamate decarboxylase-positive strains of rodent-adapted L. reuteri lineage II, as well as mutants with deletions in gadB or gupCDE. The competitivenesses of the strains were quantified by inoculation of wheat and sorghum sourdoughs with defined strains, followed by propagation of doughs with a 10% inoculum and 12-h or 72-h fermentation cycles. Lineage I L. reuteri strains dominated sourdoughs propagated with 12-h fermentation cycles; lineage II L. reuteri strains dominated sourdoughs propagated with 72-h fermentation cycles. L. reuteri 100-23ΔgadB was outcompeted by its wild-type strain in sourdoughs fermented with 72-h fermentation cycles; L. reuteri FUA3400ΔgupCDE was outcompeted by its wild-type strain in sourdoughs fermented with both 12-h and 72-h fermentation cycles. Competition experiments with isogenic pairs of strains resulted in a constant rate of strain displacement of the less competitive mutant strain. In conclusion, lineage-specific traits of L. reuteri determine the competitiveness of this species in sourdough fermentations. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. Diversification in the northern neotropics: mitochondrial and nuclear DNA phylogeography of the iguana Ctenosaura pectinata and related species.

    Science.gov (United States)

    Zarza, Eugenia; Reynoso, Victor H; Emerson, Brent C

    2008-07-01

    While Quaternary climatic changes are considered by some to have been a major factor promoting speciation within the neotropics, others suggest that much of the neotropical species diversity originated before the Pleistocene. Using mitochondrial and nuclear sequence data, we evaluate the relative importance of Pleistocene and pre-Pleistocene events within the evolutionary history of the Mexican iguana Ctenosaura pectinata, and related species. Results support the existence of cryptic lineages with strong mitochondrial divergence (> 4%) among them. Some of these lineages form zones of secondary contact, with one of them hybridizing with C. hemilopha. Evolutionary network analyses reveal the oldest populations of C. pectinata to be those of the northern and southern Mexican coastal regions. Inland and mid-latitudinal coastal populations are younger in age as a consequence of a history of local extinction within these regions followed by re-colonization. Estimated divergence times suggest that C. pectinata originated during the Pliocene, whereas geographically distinct mitochondrial DNA lineages first started to diverge during the Pliocene, with subsequent divergence continuing through the Pleistocene. Our results highlight the influence of both Pliocene and Pleistocene events in shaping the geographical distribution of genetic variation within neotropical lowland organisms. Areas of high genetic diversity in southern Mexico were detected, this finding plus the high levels of genetic diversity within C. pectinata, have implications for the conservation of this threatened species.

  15. Detection of Arctic and European cluster of canine distemper virus in north and center of Iran.

    Science.gov (United States)

    Namroodi, Somayeh; Rostami, Amir; Majidzadeh-Ardebili, Keyvan; Ghalyanchi Langroudi, Arash; Morovvati, Abbas

    2015-01-01

    Canine distemper virus (CDV) creates a very contagious viral multi-systemic canine distemper (CD) disease that affects most species of Carnivora order. The virus is genetically heterogeneous, particularly in section of the hemagglutinin (H) gene. Sequence analysis of the H gene can be useful to investigate distinction of various lineages related to geographical distribution and CDV molecular epidemiology. Since vaccination program is conducted only in large cities of Iran, CD still remains as one of the major causes of death in dogs in this country. In order to monitor H gene, CDV has been detected in 14 out of 19 sampled dogs through the amplification of nucleoprotein (NP) gene in nested-PCR assay. In the next step 665 bp of H gene was amplified in 9 out of 14 NP-gene positive dogs. Phylogenetic analysis distinguished two distinct CDV genotypes in Iran. JN941238 has been embedded in European cluster and JN941239 has been embedded in Arctic cluster. Nucleic analysis has been shown high difference among both Iranian CDV lineages with CDV vaccine strains.

  16. SIRPA, VCAM1 and CD34 identify discrete lineages during early human cardiovascular development

    Directory of Open Access Journals (Sweden)

    Rhys J.P. Skelton

    2014-07-01

    Full Text Available The study of human cardiogenesis would benefit from a detailed cell lineage fate map akin to that established for the haematopoietic lineages. Here we sought to define cell lineage relationships based on the expression of NKX2-5 and the cell surface markers VCAM1, SIRPA and CD34 during human cardiovascular development. Expression of NKX2-5GFP was used to identify cardiac progenitors and cardiomyocytes generated during the differentiation of NKX2-5GFP/w human embryonic stem cells (hESCs. Cardiovascular cell lineages sub-fractionated on the basis of SIRPA, VCAM1 and CD34 expression were assayed for differentiation potential and gene expression. The NKX2-5posCD34pos population gave rise to endothelial cells that rapidly lost NKX2-5 expression in culture. Conversely, NKX2-5 expression was maintained in myocardial committed cells, which progressed from being NKX2-5posSIRPApos to NKX2-5posSIRPAposVCAM1pos. Up-regulation of VCAM1 was accompanied by the expression of myofilament markers and reduced clonal capacity, implying a restriction of cell fate potential. Combinatorial expression of NKX2-5, SIRPA, VCAM1 and CD34 can be used to define discrete stages of cardiovascular cell lineage differentiation. These markers identify specific stages of cardiomyocyte and endothelial lineage commitment and, thus provide a scaffold for establishing a fate map of early human cardiogenesis.

  17. Lineage and the rights of cloned child in the islamic jurisprudence.

    Science.gov (United States)

    Moeinifar, Mohaddeseh; Ardebeli, Faezeh Azimzadeh

    2012-10-01

    Lineage in the Islamic law is one of the most basic human rights each individual inherits from his family. When modern assisted reproductive technologies appeared in recent decades, the issue of lineage and the child's rights did not encounter serious challenges. But with the advent of these technologies, the issue of the child's lineage resulting from new technologies has become the center of attention. These technologies have a large share in the field of medicine. A new technique known as cloning has entered the realm of science and technology. Considering the possibility of the widespread use of this technique, the subject of cloned child's lineage and his/her rights would be one of the major issues related to this subject. In this paper, the authors have examined the various aspects of the subject and the opinions of theologians in this regard in order to present a best solution to this issue. In fact, the fundamental concern in this paper is to figure out the relationship between the cloned child, the cell donor, the egg donor and the owner of the uterus. In this paper, after considering the concepts of the parentage and identical twins' relationship would be explored and then a detailed analysis of the parental relationship and the Shiite jurisprudence scholars' opinion on these issues would be presented. Finally, the rights of cloned children would be taken into consideration.

  18. Clavulina-Membranomyces is the most important lineage within the highly diverse ectomycorrhizal fungal community of Abies religiosa.

    Science.gov (United States)

    Argüelles-Moyao, Andrés; Garibay-Orijel, Roberto; Márquez-Valdelamar, Laura Margarita; Arellano-Torres, Elsa

    2017-01-01

    Abies religiosa is an endemic conifer of Mexico, where its monodominant forests are the winter refuge of the monarch butterfly. Due to climate change, it has been estimated that by 2090, A. religiosa populations will decline by 96.5 %. To achieve success, reforestation programs should consider its ectomycorrhizal (ECM) fungi. We used ITS nrDNA sequences to identify the ECM fungi associated with A. religiosa and, based on its abundance and frequency, determined the diversity and community structure in a pure A. religiosa forest near Mexico City. Using sequence metadata, we inferred the species geographic distribution and host preferences. We conducted phylogenetic analyses of the Clavulinaceae (the most important family). The ECM community held 83 species, among which the richest genera were Inocybe (21 species), Tomentella (10 species), and Russula (8 species). Besides its low species richness, the Clavulina-Membranomyces lineage was the most dominant family. Clavulina cf. cinerea and Membranomyces sp. exhibited the highest relative abundance and relative frequency values. Phylogenetic analyses placed the Clavulinaceae genotypes in three different clades: one within Membranomyces and two within Clavulina. A meta-analysis showed that the majority of the ECM fungi (45.78 %) associated with A. religiosa in Mexico have also been sequenced from North America and are shared by Pinaceae and Fagaceae. In contrast, because they have not been sequenced previously, 32.2 % of the species have a restricted distribution. Here, we highlight the emerging pattern that the Clavulina-Membranomyces lineage is dominant in several ECM communities in the Neotropics, including Aldinia and Dicymbe legume tropical forests in the Guyana Shield, the Alnus acuminata subtropical communities, and the A. religiosa temperate forests in Mexico.

  19. Geographic Ontologies, Gazetteers and Multilingualism

    Directory of Open Access Journals (Sweden)

    Robert Laurini

    2015-01-01

    Full Text Available Different languages imply different visions of space, so that terminologies are different in geographic ontologies. In addition to their geometric shapes, geographic features have names, sometimes different in diverse languages. In addition, the role of gazetteers, as dictionaries of place names (toponyms, is to maintain relations between place names and location. The scope of geographic information retrieval is to search for geographic information not against a database, but against the whole Internet: but the Internet stores information in different languages, and it is of paramount importance not to remain stuck to a unique language. In this paper, our first step is to clarify the links between geographic objects as computer representations of geographic features, ontologies and gazetteers designed in various languages. Then, we propose some inference rules for matching not only types, but also relations in geographic ontologies with the assistance of gazetteers.

  20. Stress Tolerance Variations in Saccharomyces cerevisiae Strains from Diverse Ecological Sources and Geographical Locations.

    Directory of Open Access Journals (Sweden)

    Yan-Lin Zheng

    Full Text Available The budding yeast Saccharomyces cerevisiae is a platform organism for bioethanol production from various feedstocks and robust strains are desirable for efficient fermentation because yeast cells inevitably encounter stressors during the process. Recently, diverse S. cerevisiae lineages were identified, which provided novel resources for understanding stress tolerance variations and related shaping factors in the yeast. This study characterized the tolerance of diverse S. cerevisiae strains to the stressors of high ethanol concentrations, temperature shocks, and osmotic stress. The results showed that the isolates from human-associated environments overall presented a higher level of stress tolerance compared with those from forests spared anthropogenic influences. Statistical analyses indicated that the variations of stress tolerance were significantly correlated with both ecological sources and geographical locations of the strains. This study provides guidelines for selection of robust S. cerevisiae strains for bioethanol production from nature.

  1. Some maternal lineages of domestic horses may have origins in East Asia revealed with further evidence of mitochondrial genomes and HVR-1 sequences

    Directory of Open Access Journals (Sweden)

    Hongying Ma

    2018-06-01

    Full Text Available Objectives There are large populations of indigenous horse (Equus caballus in China and some other parts of East Asia. However, their matrilineal genetic diversity and origin remained poorly understood. Using a combination of mitochondrial DNA (mtDNA and hypervariable region (HVR-1 sequences, we aim to investigate the origin of matrilineal inheritance in these domestic horses. Methods To investigate patterns of matrilineal inheritance in domestic horses, we conducted a phylogenetic study using 31 de novo mtDNA genomes together with 317 others from the GenBank. In terms of the updated phylogeny, a total of 5,180 horse mitochondrial HVR-1 sequences were analyzed. Results Eightteen haplogroups (Aw-Rw were uncovered from the analysis of the whole mitochondrial genomes. Most of which have a divergence time before the earliest domestication of wild horses (about 5,800 years ago and during the Upper Paleolithic (35–10 KYA. The distribution of some haplogroups shows geographic patterns. The Lw haplogroup contained a significantly higher proportion of European horses than the horses from other regions, while haplogroups Jw, Rw, and some maternal lineages of Cw, have a higher frequency in the horses from East Asia. The 5,180 sequences of horse mitochondrial HVR-1 form nine major haplogroups (A-I. We revealed a corresponding relationship between the haplotypes of HVR-1 and those of whole mitochondrial DNA sequences. The data of the HVR-1 sequences also suggests that Jw, Rw, and some haplotypes of Cw may have originated in East Asia while Lw probably formed in Europe. Conclusions Our study supports the hypothesis of the multiple origins of the maternal lineage of domestic horses and some maternal lineages of domestic horses may have originated from East Asia.

  2. Bringing together evolution on serpentine and polyploidy: spatiotemporal history of the diploid-tetraploid complex of Knautia arvensis (Dipsacaceae.

    Directory of Open Access Journals (Sweden)

    Filip Kolář

    Full Text Available Polyploidization is one of the leading forces in the evolution of land plants, providing opportunities for instant speciation and rapid gain of evolutionary novelties. Highly selective conditions of serpentine environments act as an important evolutionary trigger that can be involved in various speciation processes. Whereas the significance of both edaphic speciation on serpentine and polyploidy is widely acknowledged in plant evolution, the links between polyploid evolution and serpentine differentiation have not yet been examined. To fill this gap, we investigated the evolutionary history of the perennial herb Knautia arvensis (Dipsacaceae, a diploid-tetraploid complex that exhibits an intriguing pattern of eco-geographic differentiation. Using plastid DNA sequencing and AFLP genotyping of 336 previously cytotyped individuals from 40 populations from central Europe, we unravelled the patterns of genetic variation among the cytotypes and the edaphic types. Diploids showed the highest levels of genetic differentiation, likely as a result of long term persistence of several lineages in ecologically distinct refugia and/or independent immigration. Recurrent polyploidization, recorded in one serpentine island, seems to have opened new possibilities for the local serpentine genotype. Unlike diploids, the serpentine tetraploids were able to escape from the serpentine refugium and spread further; this was also attributable to hybridization with the neighbouring non-serpentine tetraploid lineages. The spatiotemporal history of K. arvensis allows tracing the interplay of polyploid evolution and ecological divergence on serpentine, resulting in a complex evolutionary pattern. Isolated serpentine outcrops can act as evolutionary capacitors, preserving distinct karyological and genetic diversity. The serpentine lineages, however, may not represent evolutionary 'dead-ends' but rather dynamic systems with a potential to further influence the surrounding

  3. Rapid and specific detection of Asian- and African-lineage Zika viruses.

    Science.gov (United States)

    Chotiwan, Nunya; Brewster, Connie D; Magalhaes, Tereza; Weger-Lucarelli, James; Duggal, Nisha K; Rückert, Claudia; Nguyen, Chilinh; Garcia Luna, Selene M; Fauver, Joseph R; Andre, Barb; Gray, Meg; Black, William C; Kading, Rebekah C; Ebel, Gregory D; Kuan, Guillermina; Balmaseda, Angel; Jaenisch, Thomas; Marques, Ernesto T A; Brault, Aaron C; Harris, Eva; Foy, Brian D; Quackenbush, Sandra L; Perera, Rushika; Rovnak, Joel

    2017-05-03

    Understanding the dynamics of Zika virus transmission and formulating rational strategies for its control require precise diagnostic tools that are also appropriate for resource-poor environments. We have developed a rapid and sensitive loop-mediated isothermal amplification (LAMP) assay that distinguishes Zika viruses of Asian and African lineages. The assay does not detect chikungunya virus or flaviviruses such as dengue, yellow fever, or West Nile viruses. The assay conditions allowed direct detection of Zika virus RNA in cultured infected cells; in mosquitoes; in virus-spiked samples of human blood, plasma, saliva, urine, and semen; and in infected patient serum, plasma, and semen samples without the need for RNA isolation or reverse transcription. The assay offers rapid, specific, sensitive, and inexpensive detection of the Asian-lineage Zika virus strain that is currently circulating in the Western hemisphere, and can also detect the African-lineage Zika virus strain using separate, specific primers. Copyright © 2017, American Association for the Advancement of Science.

  4. Telomerase Protects Werner Syndrome Lineage-Specific Stem Cells from Premature Aging

    Directory of Open Access Journals (Sweden)

    Hoi-Hung Cheung

    2014-04-01

    Full Text Available Werner syndrome (WS patients exhibit premature aging predominantly in mesenchyme-derived tissues, but not in neural lineages, a consequence of telomere dysfunction and accelerated senescence. The cause of this lineage-specific aging remains unknown. Here, we document that reprogramming of WS fibroblasts to pluripotency elongated telomere length and prevented telomere dysfunction. To obtain mechanistic insight into the origin of tissue-specific aging, we differentiated iPSCs to mesenchymal stem cells (MSCs and neural stem/progenitor cells (NPCs. We observed recurrence of premature senescence associated with accelerated telomere attrition and defective synthesis of the lagging strand telomeres in MSCs, but not in NPCs. We postulate this “aging” discrepancy is regulated by telomerase. Expression of hTERT or p53 knockdown ameliorated the accelerated aging phenotypein MSC, whereas inhibition of telomerase sensitized NPCs to DNA damage. Our findings unveil a role for telomerase in the protection of accelerated aging in a specific lineage of stem cells.

  5. Rapid and specific detection of Asian- and African-lineage Zika viruses

    Science.gov (United States)

    Chotiwan, Nunya; Brewster, Connie D.; Magalhaes, Tereza; Weger-Lucarelli, James; Duggal, Nisha K.; Rückert, Claudia; Nguyen, Chilinh; Garcia Luna, Selene M.; Fauver, Joseph R.; Andre, Barb; Gray, Meg; Black, William C.; Kading, Rebekah C.; Ebel, Gregory D.; Kuan, Guillermina; Balmaseda, Angel; Jaenisch, Thomas; Marques, Ernesto T. A.; Brault, Aaron C.; Harris, Eva; Foy, Brian D.; Quackenbush, Sandra L.; Perera, Rushika; Rovnak, Joel

    2017-01-01

    Understanding the dynamics of Zika virus transmission and formulating rational strategies for its control require precise diagnostic tools that are also appropriate for resource-poor environments. We have developed a rapid and sensitive loop-mediated isothermal amplification (LAMP) assay that distinguishes Zika viruses of Asian and African lineages. The assay does not detect chikungunya virus or flaviviruses such as dengue, yellow fever, or West Nile viruses. The assay conditions allowed direct detection of Zika virus RNA in cultured infected cells; in mosquitoes; in virus-spiked samples of human blood, plasma, saliva, urine, and semen; and in infected patient serum, plasma, and semen samples without the need for RNA isolation or reverse transcription. The assay offers rapid, specific, sensitive, and inexpensive detection of the Asian-lineage Zika virus strain that is currently circulating in the Western hemisphere, and can also detect the African-lineage Zika virus strain using separate, specific primers. PMID:28469032

  6. Geographic variation in health insurance benefits in Qianjiang District, China: a cross-sectional study.

    Science.gov (United States)

    Wu, Yue; Zhang, Liang; Liu, Xuejiao; Ye, Ting; Wang, Yongfei

    2018-02-05

    , meanwhile, geographical accessibility and economic factors had positive effects (p geographic variation in health insurance benefits widely existed in Qianjiang District and the distribution of health insurance benefits for insured inpatients in primary healthcare institutions was distinctly different from that in secondary healthcare institutions. When combining the NRCM and URMIS in China, the geographical accessibility, healthcare-seeking behavior and economic factors required significant attention.

  7. Ring distributions leading to species formation: a global topographic analysis of geographic barriers associated with ring species.

    Science.gov (United States)

    Monahan, William B; Pereira, Ricardo J; Wake, David B

    2012-03-12

    In the mid 20th century, Ernst Mayr and Theodosius Dobzhansky championed the significance of circular overlaps or ring species as the perfect demonstration of speciation, yet in the over 50 years since, only a handful of such taxa are known. We developed a topographic model to evaluate whether the geographic barriers that favor processes leading to ring species are common or rare, and to predict where other candidate ring barriers might be found. Of the 952,147 geographic barriers identified on the planet, only about 1% are topographically similar to barriers associated with known ring taxa, with most of the likely candidates occurring in under-studied parts of the world (for example, marine environments, tropical latitudes). Predicted barriers separate into two distinct categories: (i) single cohesive barriers (barriers - formed by groups of barriers (each 184,000 to 1.7 million km2) in close geographic proximity (totaling 1.9 to 2.3 million km2) - associated with taxa that differentiate at larger spatial scales (birds: Phylloscopus trochiloides and Larus (sp. argentatus and fuscus)). When evaluated globally, we find a large number of cohesive barriers that are topographically similar to those associated with known ring taxa. Yet, compared to cohesive barriers, an order of magnitude fewer composite barriers are similar to those that favor ring divergence in species with higher dispersal. While these findings confirm that the topographic conditions that favor evolutionary processes leading to ring speciation are, in fact, rare, they also suggest that many understudied natural systems could provide valuable demonstrations of continuous divergence towards the formation of new species. Distinct advantages of the model are that it (i) requires no a priori information on the relative importance of features that define barriers, (ii) can be replicated using any kind of continuously distributed environmental variable, and (iii) generates spatially explicit hypotheses of

  8. The rate and potential relevance of new mutations in a colonizing plant lineage.

    Directory of Open Access Journals (Sweden)

    Moises Exposito-Alonso

    2018-02-01

    Full Text Available By following the evolution of populations that are initially genetically homogeneous, much can be learned about core biological principles. For example, it allows for detailed studies of the rate of emergence of de novo mutations and their change in frequency due to drift and selection. Unfortunately, in multicellular organisms with generation times of months or years, it is difficult to set up and carry out such experiments over many generations. An alternative is provided by "natural evolution experiments" that started from colonizations or invasions of new habitats by selfing lineages. With limited or missing gene flow from other lineages, new mutations and their effects can be easily detected. North America has been colonized in historic times by the plant Arabidopsis thaliana, and although multiple intercrossing lineages are found today, many of the individuals belong to a single lineage, HPG1. To determine in this lineage the rate of substitutions-the subset of mutations that survived natural selection and drift-, we have sequenced genomes from plants collected between 1863 and 2006. We identified 73 modern and 27 herbarium specimens that belonged to HPG1. Using the estimated substitution rate, we infer that the last common HPG1 ancestor lived in the early 17th century, when it was most likely introduced by chance from Europe. Mutations in coding regions are depleted in frequency compared to those in other portions of the genome, consistent with purifying selection. Nevertheless, a handful of mutations is found at high frequency in present-day populations. We link these to detectable phenotypic variance in traits of known ecological importance, life history and growth, which could reflect their adaptive value. Our work showcases how, by applying genomics methods to a combination of modern and historic samples from colonizing lineages, we can directly study new mutations and their potential evolutionary relevance.

  9. Phylogeographic Evidence for 2 Genetically Distinct Zoonotic Plasmodium knowlesi Parasites, Malaysia.

    Science.gov (United States)

    Yusof, Ruhani; Ahmed, Md Atique; Jelip, Jenarun; Ngian, Hie Ung; Mustakim, Sahlawati; Hussin, Hani Mat; Fong, Mun Yik; Mahmud, Rohela; Sitam, Frankie Anak Thomas; Japning, J Rovie-Ryan; Snounou, Georges; Escalante, Ananias A; Lau, Yee Ling

    2016-08-01

    Infections of humans with the zoonotic simian malaria parasite Plasmodium knowlesi occur throughout Southeast Asia, although most cases have occurred in Malaysia, where P. knowlesi is now the dominant malaria species. This apparently skewed distribution prompted an investigation of the phylogeography of this parasite in 2 geographically separated regions of Malaysia, Peninsular Malaysia and Malaysian Borneo. We investigated samples collected from humans and macaques in these regions. Haplotype network analyses of sequences from 2 P. knowlesi genes, type A small subunit ribosomal 18S RNA and cytochrome c oxidase subunit I, showed 2 genetically distinct divergent clusters, 1 from each of the 2 regions of Malaysia. We propose that these parasites represent 2 distinct P. knowlesi types that independently became zoonotic. These types would have evolved after the sea-level rise at the end of the last ice age, which separated Malaysian Borneo from Peninsular Malaysia.

  10. Sequencing of emerging canine distemper virus strain reveals new distinct genetic lineage in the United States associated with disease in wildlife and domestic canine populations.

    Science.gov (United States)

    Riley, Matthew C; Wilkes, Rebecca P

    2015-12-18

    Recent outbreaks of canine distemper have prompted examination of strains from clinical samples submitted to the University of Tennessee College of Veterinary Medicine (UTCVM) Clinical Virology Lab. We previously described a new strain of CDV that significantly diverged from all genotypes reported to date including America 2, the genotype proposed to be the main lineage currently circulating in the US. The aim of this study was to determine when this new strain appeared and how widespread it is in animal populations, given that it has also been detected in fully vaccinated adult dogs. Additionally, we sequenced complete viral genomes to characterize the strain and determine if variation is confined to known variable regions of the genome or if the changes are also present in more conserved regions. Archived clinical samples were genotyped using real-time RT-PCR amplification and sequencing. The genomes of two unrelated viruses from a dog and fox each from a different state were sequenced and aligned with previously published genomes. Phylogenetic analysis was performed using coding, non-coding and genome-length sequences. Virus neutralization assays were used to evaluate potential antigenic differences between this strain and a vaccine strain and mixed ANOVA test was used to compare the titers. Genotyping revealed this strain first appeared in 2011 and was detected in dogs from multiple states in the Southeast region of the United States. It was the main strain detected among the clinical samples that were typed from 2011-2013, including wildlife submissions. Genome sequencing demonstrated that it is highly conserved within a new lineage and preliminary serologic testing showed significant differences in neutralizing antibody titers between this strain and the strain commonly used in vaccines. This new strain represents an emerging CDV in domestic dogs in the US, may be associated with a stable reservoir in the wildlife population, and could facilitate vaccine

  11. Persistence of the single lineage of transmissible 'social cancer' in an asexual ant.

    Science.gov (United States)

    Dobata, S; Sasaki, T; Mori, H; Hasegawa, E; Shimada, M; Tsuji, K

    2011-02-01

    How cooperation can arise and persist, given the threat of cheating phenotypes, is a central problem in evolutionary biology, but the actual significance of cheating in natural populations is still poorly understood. Theories of social evolution predict that cheater lineages are evolutionarily short-lived. However, an exception comes from obligate socially parasitic species, some of which thought to have arisen as cheaters within cooperator colonies and then diverged through sympatric speciation. This process requires the cheater lineage to persist by avoiding rapid extinction that would result from the fact that the cheaters inflict fitness cost on their host. We examined whether this prerequisite is fulfilled, by estimating the persistence time of cheaters in a field population of the parthenogenetic ant Pristomyrmex punctatus. Population genetic analysis found that the cheaters belong to one monophyletic lineage which we infer has persisted for 200-9200 generations. We show that the cheaters migrate and are thus horizontally transmitted between colonies, a trait allowing the lineage to avoid rapid extinction with its host colony. Although horizontal transmission of disruptive cheaters has the potential to induce extinction of the entire population, such collapse is likely averted when there is spatially restricted migration in a structured population, a scenario that matches the observed isolation by distance pattern that we found. We compare our result with other examples of disruptive and horizontally transmissible cheater lineages in nature. © 2010 Blackwell Publishing Ltd.

  12. Colon stem cell and crypt dynamics exposed by cell lineage reconstruction.

    Directory of Open Access Journals (Sweden)

    Yitzhak Reizel

    2011-07-01

    Full Text Available Stem cell dynamics in vivo are often being studied by lineage tracing methods. Our laboratory has previously developed a retrospective method for reconstructing cell lineage trees from somatic mutations accumulated in microsatellites. This method was applied here to explore different aspects of stem cell dynamics in the mouse colon without the use of stem cell markers. We first demonstrated the reliability of our method for the study of stem cells by confirming previously established facts, and then we addressed open questions. Our findings confirmed that colon crypts are monoclonal and that, throughout adulthood, the process of monoclonal conversion plays a major role in the maintenance of crypts. The absence of immortal strand mechanism in crypts stem cells was validated by the age-dependent accumulation of microsatellite mutations. In addition, we confirmed the positive correlation between physical and lineage proximity of crypts, by showing that the colon is separated into small domains that share a common ancestor. We gained new data demonstrating that colon epithelium is clustered separately from hematopoietic and other cell types, indicating that the colon is constituted of few progenitors and ruling out significant renewal of colonic epithelium from hematopoietic cells during adulthood. Overall, our study demonstrates the reliability of cell lineage reconstruction for the study of stem cell dynamics, and it further addresses open questions in colon stem cells. In addition, this method can be applied to study stem cell dynamics in other systems.

  13. Mode of morphological differentiation in the Latitarsi-ground beetles (Coleoptera, Carabidae) of the world inferred from a phylogenetic tree of mitochondrial ND5 gene sequences.

    Science.gov (United States)

    Su, Zhi-Hui; Imura, Yûki; Zhou, Hong-Zhang; Okamoto, Munehiro; Osawa, Syozo

    2003-02-01

    The Latitarsi is one large division of the subtribe Carabina (subfamily Carabinae, family Carabidae), and has been considered as a discrete morphological group consisting of 17 genera. The phylogenetic relationships and evolutionary pattern of the Latitarsi ground beetles have been investigated by analyzing mitochondrial NADH dehydrogenase subunit 5 (ND5) gene sequences. The phylogenetic tree suggests that the Latitarsi members do not form a single cluster, i.e., not monophyletic and at least 16 lineages belonging to the so-called Latitarsi emerged at about the same time of the Carabina radiation together with the members of other divisions. This suggests that these lineages (A, B, C, H, L, N, O, P, Q, R, S, T, U, V, W and X in Fig. 2a) may be treated each as a phylogenetically distinct division equivalent to other divisions. The group with bootstrap value of more than 80 percent has been considered as a single lineage (division) with two exceptions, V and X. The independency of each lineage has been assumed by the traditional morphology as well as a single clustering on the trees constructed by independent methods, unchanged topology by replacement of outgroups, etc. Generally speaking, the members in a single lineage are geographically linked. Many phylogenetic lineages are composed of a single or only a few species without conspicuous morphological differentiation. In contrast to such a "silent morphological evolution", a remarkable morphological differentiation occasionally took place in several lineages.

  14. Geographic variation in resource use by specialist versus generalist butterflyfishes

    KAUST Repository

    Lawton, Rebecca J.; Cole, Andrew J.; Berumen, Michael L.; Pratchett, Morgan S.

    2011-01-01

    Localised patterns of resource use can be constrained by multiple factors. Comparison of resource use at multiple locations with differing resource availability can allow fundamental specialists to be distinguished from species that simply feed predominantly on prey types that are locally abundant. This study investigates geographic variation in the feeding ecology of coral-feeding butterflyfishes to examine whether patterns of resource use and levels of dietary specialisation vary among distinct locations, corresponding with changes in resource availability. Our specific aims were to investigate whether the dietary niche breadth of four butterflyfishes varies among five geographically separated locations and assess whether each species utilises similar resources in each location. Resource availability and dietary composition of four butterflyfishes were quantified at three sites across each of five geographic locations throughout the Pacific. Niche breadth, niche overlap, and resource selection functions were calculated for each species at each site and compared among locations. Availability of dietary resources varied significantly among locations and sites. Chaetodon vagabundus, C. citrinellus and C. lunulatus had low levels of dietary specialisation and used different resources in each location. Chaetodon trifascialis had high levels of dietary specialisation and used the same few resources in each location. Our results indicate that relative levels of dietary specialisation among different butterflyfishes do hold at larger spatial scales, however, geographical variation in the dietary composition of all butterflyfishes indicates that prey availability has a fundamental influence on dietary composition. Highly specialised species such as C. trifascialis will be highly vulnerable to coral loss as they appear to be largely inflexible in their dietary composition. However, the increased feeding plasticity observed here for C. trifascialis suggests this species may

  15. Geographic variation in resource use by specialist versus generalist butterflyfishes

    KAUST Repository

    Lawton, Rebecca J.

    2011-11-14

    Localised patterns of resource use can be constrained by multiple factors. Comparison of resource use at multiple locations with differing resource availability can allow fundamental specialists to be distinguished from species that simply feed predominantly on prey types that are locally abundant. This study investigates geographic variation in the feeding ecology of coral-feeding butterflyfishes to examine whether patterns of resource use and levels of dietary specialisation vary among distinct locations, corresponding with changes in resource availability. Our specific aims were to investigate whether the dietary niche breadth of four butterflyfishes varies among five geographically separated locations and assess whether each species utilises similar resources in each location. Resource availability and dietary composition of four butterflyfishes were quantified at three sites across each of five geographic locations throughout the Pacific. Niche breadth, niche overlap, and resource selection functions were calculated for each species at each site and compared among locations. Availability of dietary resources varied significantly among locations and sites. Chaetodon vagabundus, C. citrinellus and C. lunulatus had low levels of dietary specialisation and used different resources in each location. Chaetodon trifascialis had high levels of dietary specialisation and used the same few resources in each location. Our results indicate that relative levels of dietary specialisation among different butterflyfishes do hold at larger spatial scales, however, geographical variation in the dietary composition of all butterflyfishes indicates that prey availability has a fundamental influence on dietary composition. Highly specialised species such as C. trifascialis will be highly vulnerable to coral loss as they appear to be largely inflexible in their dietary composition. However, the increased feeding plasticity observed here for C. trifascialis suggests this species may

  16. Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau

    Science.gov (United States)

    Xiong, Jinbo; Liu, Yongqin; Lin, Xiangui; Zhang, Huayong; Zeng, Jun; Hou, Juzhi; Yang, Yongping; Yao, Tandong; Knight, Rob; Chu, Haiyan

    2012-01-01

    Continent-scale biogeography has been extensively studied in soils and marine systems, but little is known about biogeographical patterns in non-marine sediments. We used barcode pyrosequencing to quantify the effects of local geochemical properties and geographic distance for bacterial community structure and membership, using sediment samples from 15 lakes on the Tibetan Plateau (4–1670 km apart). Bacterial communities were surprisingly diverse, and distinct from soil communities. Four of 26 phyla detected were dominant: Proteobacteria, Bacteroidetes, Firmicutes and Actinobacteria, albeit 20.2% of sequences were unclassified at the phylum level. As previously observed in acidic soil, pH was the dominant factor influencing alkaline sediment community structure, phylotype richness and phylogenetic diversity. In contrast, archaeal communities were less affected by pH. More geographically distant sites had more dissimilar communities (r = 0.443, P = 0.030). Variance partitioning analysis showed that geographic distance (historical contingencies) contributed more to bacterial community variation (12.2%) than any other factor, although the environmental factors explained more variance when combined (28.9%). Together, our results show that pH is the best predictor of bacterial community structure in alkaline sediments, and confirm that both geographic distance and chemical factors govern bacterial biogeography in lake sediments. PMID:22676420

  17. Genome-wide patterns of differentiation and spatially varying selection between postglacial recolonization lineages of Populus alba (Salicaceae), a widespread forest tree.

    Science.gov (United States)

    Stölting, Kai N; Paris, Margot; Meier, Cécile; Heinze, Berthold; Castiglione, Stefano; Bartha, Denes; Lexer, Christian

    2015-08-01

    Studying the divergence continuum in plants is relevant to fundamental and applied biology because of the potential to reveal functionally important genetic variation. In this context, whole-genome sequencing (WGS) provides the necessary rigour for uncovering footprints of selection. We resequenced populations of two divergent phylogeographic lineages of Populus alba (n = 48), thoroughly characterized by microsatellites (n = 317), and scanned their genomes for regions of unusually high allelic differentiation and reduced diversity using > 1.7 million single nucleotide polymorphisms (SNPs) from WGS. Results were confirmed by Sanger sequencing. On average, 9134 high-differentiation (≥ 4 standard deviations) outlier SNPs were uncovered between populations, 848 of which were shared by ≥ three replicate comparisons. Annotation revealed that 545 of these were located in 437 predicted genes. Twelve percent of differentiation outlier genome regions exhibited significantly reduced genetic diversity. Gene ontology (GO) searches were successful for 327 high-differentiation genes, and these were enriched for 63 GO terms. Our results provide a snapshot of the roles of 'hard selective sweeps' vs divergent selection of standing genetic variation in distinct postglacial recolonization lineages of P. alba. Thus, this study adds to our understanding of the mechanisms responsible for the origin of functionally relevant variation in temperate trees. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  18. Evidence of ancient DNA reveals the first European lineage in Iron Age Central China.

    Science.gov (United States)

    Xie, C Z; Li, C X; Cui, Y Q; Zhang, Q C; Fu, Y Q; Zhu, H; Zhou, H

    2007-07-07

    Various studies on ancient DNA have attempted to reconstruct population movement in Asia, with much interest focused on determining the arrival of European lineages in ancient East Asia. Here, we discuss our analysis of the mitochondrial DNA of human remains excavated from the Yu Hong tomb in Taiyuan, China, dated 1400 years ago. The burial style of this tomb is characteristic of Central Asia at that time. Our analysis shows that Yu Hong belonged to the haplogroup U5, one of the oldest western Eurasian-specific haplogroups, while his wife can be classified as haplogroup G, the type prevalent in East Asia. Our findings show that this man with European lineage arrived in Taiyuan approximately 1400 years ago, and most probably married a local woman. Haplogroup U5 was the first west Eurasian-specific lineage to be found in the central part of ancient China, and Taiyuan may be the easternmost location of the discovered remains of European lineage in ancient China.

  19. The mitochondrial lineage U8a reveals a Paleolithic settlement in the Basque country

    Directory of Open Access Journals (Sweden)

    Larruga José M

    2006-05-01

    Full Text Available Abstract Background It is customary, in population genetics studies, to consider Basques as the direct descendants of the Paleolithic Europeans. However, until now there has been no irrefutable genetic proof to support this supposition. Even studies based on mitochondrial DNA (mtDNA, an ideal molecule for constructing datable maternal genealogies, have failed to achieve this. It could be that incoming gene flow has replaced the Basque ancient lineages but it could also be that these lineages have not been detected due to a lack of resolution of the Basque mtDNA genealogies. To assess this possibility we analyzed here the mtDNA of a large sample of autochthonous Basques using mtDNA genomic sequencing for those lineages that could not be unequivocally classified by diagnostic RFLP analysis and control region (HVSI and HVSII sequencing. Results We show that Basques have the most ancestral phylogeny in Europe for the rare mitochondrial subhaplogroup U8a. Divergence times situate the Basque origin of this lineage in the Upper Palaeolithic. Most probably, their primitive founders came from West Asia. The lack of U8a lineages in Africa points to an European and not a North African route of entrance. Phylogeographic analysis suggest that U8a had two expansion periods in Europe, the first, from a south-western area including the Iberian peninsula and Mediterranean France before 30,000 years ago, and the second, from Central Europe around 15,000–10,000 years ago. Conclusion It has bee