WorldWideScience

Sample records for distillate fuel processing

  1. Process of producing fuels from slates or bituminous shales. [distillation at incandescent heat

    Energy Technology Data Exchange (ETDEWEB)

    Huppenbauer, M

    1902-07-31

    A process of producing a fuel from slates or bituminous shales by saturating or impregnating them after preliminary distillation with the vapors of tars, resins, oils, etc., is given. The process is characterized by the bituminous shale being submitted in the form of fragments to distillation at incandescent heat to make the shale porous and able to absorb the vapors of the substances already mentioned.

  2. Low grade bioethanol for fuel mixing on gasoline engine using distillation process

    Science.gov (United States)

    Abikusna, Setia; Sugiarto, Bambang; Suntoro, Dedi; Azami

    2017-03-01

    Utilization of renewable energy in Indonesia is still low, compared to 34% oil, 20% coal and 20% gas, utilization of energy sources for water 3%, geothermal 1%, 2% biofuels, and biomass 20%. Whereas renewable energy sources dwindling due to the increasing consumption of gasoline as a fuel. It makes us have to look for alternative renewable energy, one of which is bio ethanol. Several studies on the use of ethanol was done to the researchers. Our studies using low grade bio ethanol which begins with the disitillation independently utilize flue gas heat at compact distillator, produces high grade bio ethanol and ready to be mixed with gasoline. Stages of our study is the compact distillator design of the motor dynamic continued with good performance and emission testing and ethanol distilled. Some improvement is made is through the flue gas heat control mechanism in compact distillator using gate valve, at low, medium, and high speed engine. Compact distillator used is kind of a batch distillation column. Column design process using the shortcut method, then carried the tray design to determine the overall geometry. The distillation is done by comparing the separator with a tray of different distances. As well as by varying the volume of the feed and ethanol levels that will feed distilled. In this study, we analyzed the mixing of ethanol through variation between main jet and pilot jet in the carburetor separately interchangeably with gasoline. And finally mixing mechanism bio ethanol with gasoline improved with fuel mixer for performance.

  3. Producing fuel alcohol by extractive distillation: Simulating the process with glycerol

    OpenAIRE

    Ana María Uyazán; Iván Dario Gil; Jaime Aguilar; Gerardo Rodríguez Niño; Luis A Caicedo Mesa

    2006-01-01

    Downstream separation processes in biotechnology form part of the stages having most impact on a product’s final cost. The tendency throughout the world today is to replace fossil fuels with those having a renewable origin such as ethanol; this, in turn, produces a demand for the same and the need for optimising fermentation, treating vinazas and dehydration processes. The present work approaches the problem of dehydration through simulating azeotropic ethanol extractive distillation using gl...

  4. Producing fuel alcohol by extractive distillation: Simulating the process with glycerol

    Directory of Open Access Journals (Sweden)

    Ana María Uyazán

    2006-01-01

    Full Text Available Downstream separation processes in biotechnology form part of the stages having most impact on a product’s final cost. The tendency throughout the world today is to replace fossil fuels with those having a renewable origin such as ethanol; this, in turn, produces a demand for the same and the need for optimising fermentation, treating vinazas and dehydration processes. The present work approaches the problem of dehydration through simulating azeotropic ethanol extractive distillation using glycerol as separation agent. Simulations were done on an Aspen Plus process simulator (Aspen Tech version 11.1. The simulated process involves two distillation columns, a dehydrator and a glycerol recuperation column. Simulation restrictions were ethanol’s molar composition in dehydrator column distillate and the process’s energy consumption. The effect of molar reflux ratio, solvent-feed ratio, solvent entry and feed stage and solvent entry temperature were evaluated on the chosen restrictions. The results showed that the ethanol-water mixture dehydration with glycerol as separation agent is efficient from the energy point of view.

  5. Production of bio-fuel ethanol from distilled grain waste eluted from Chinese spirit making process.

    Science.gov (United States)

    Tan, Li; Sun, Zhaoyong; Zhang, Wenxue; Tang, Yueqin; Morimura, Shigeru; Kida, Kenji

    2014-10-01

    Distilled grain waste eluted from Chinese spirit making is rich in carbohydrates, and could potentially serve as feedstock for the production of bio-fuel ethanol. Our study evaluated two types of saccharification methods that convert distilled grain waste to monosaccharides: enzymatic saccharification and concentrated H2SO4 saccharification. Results showed that enzymatic saccharification performed unsatisfactorily because of inefficient removal of lignin during pretreatment. Concentrated H2SO4 saccharification led to a total sugar recovery efficiency of 79.0 %, and to considerably higher sugar concentrations than enzymatic saccharification. The process of ethanol production from distilled grain waste based on concentrated H2SO4 saccharification was then studied. The process mainly consisted of concentrated H2SO4 saccharification, solid-liquid separation, decoloration, sugar-acid separation, oligosaccharide hydrolysis, and continuous ethanol fermentation. An improved simulated moving bed system was employed to separate sugars from acid after concentrated H2SO4 saccharification, by which 95.8 % of glucose and 85.8 % of xylose went into the sugar-rich fraction, while 83.3 % of H2SO4 went into the acid-rich fraction. A flocculating yeast strain, Saccharomyces cerevisiae KF-7, was used for continuous ethanol fermentation, which produced an ethanol yield of 91.9-98.9 %, based on glucose concentration.

  6. Process of distilling heavy hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    1929-12-03

    This invention has for its object the distillation of heavy liquid hydrocarbons for the purpose of obtaining lighter hydrocarbons stable and immediately salable for fuels in combustion motors. The process is distinguished by the fact that the heavy hydrocarbon is distilled by means of heating to a temperature in keeping with the nature of the material to be treated up to 350/sup 0/C under pressure or without pressure the distillation being carried out on catalysts containing successively nickel, copper, and iron (3 parts of nickel, 1 part of copper, and 1 part of iron), the vapors produced by this distillation being exposed in turn to the action of catalysts of the same nature and in the same proportion.

  7. Catalytic distillation process

    Science.gov (United States)

    Smith, L.A. Jr.

    1982-06-22

    A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  8. Distillation modeling for a uranium refining process

    Energy Technology Data Exchange (ETDEWEB)

    Westphal, B.R.

    1996-03-01

    As part of the spent fuel treatment program at Argonne National Laboratory, a vacuum distillation process is being employed for the recovery of uranium following an electrorefining process. Distillation of a salt electrolyte, containing a eutectic mixture of lithium and potassium chlorides, from uranium is achieved by a simple batch operation and is termed {open_quotes}cathode processing{close_quotes}. The incremental distillation of electrolyte salt will be modeled by an equilibrium expression and on a molecular basis since the operation is conducted under moderate vacuum conditions. As processing continues, the two models will be compared and analyzed for correlation with actual operating results. Possible factors that may contribute to aberrations from the models include impurities at the vapor-liquid boundary, distillate reflux, anomalous pressure gradients, and mass transport phenomena at the evaporating surface. Ultimately, the purpose of either process model is to enable the parametric optimization of the process.

  9. Distillation modeling for a uranium refining process

    International Nuclear Information System (INIS)

    Westphal, B.R.

    1996-01-01

    As part of the spent fuel treatment program at Argonne National Laboratory, a vacuum distillation process is being employed for the recovery of uranium following an electrorefining process. Distillation of a salt electrolyte, containing a eutectic mixture of lithium and potassium chlorides, from uranium is achieved by a simple batch operation and is termed open-quotes cathode processingclose quotes. The incremental distillation of electrolyte salt will be modeled by an equilibrium expression and on a molecular basis since the operation is conducted under moderate vacuum conditions. As processing continues, the two models will be compared and analyzed for correlation with actual operating results. Possible factors that may contribute to aberrations from the models include impurities at the vapor-liquid boundary, distillate reflux, anomalous pressure gradients, and mass transport phenomena at the evaporating surface. Ultimately, the purpose of either process model is to enable the parametric optimization of the process

  10. Process of coking or distilling fuels, bituminous shale, and the like

    Energy Technology Data Exchange (ETDEWEB)

    Jurgensen, R

    1892-03-17

    The charge present in a chamber is exposed without changes to stepwise higher temperatures. This is accomplished so that only a few chambers whose contents are almost finished are heated by generator gas. The distillation products of these chambers go through the charge of the following chambers and carry out carbonization products, which are given for the most part by passage through the following chambers to the colder charge in condensed form, whereby the gases escape out the chimney.

  11. Distillation process using microchannel technology

    Science.gov (United States)

    Tonkovich, Anna Lee [Dublin, OH; Simmons, Wayne W [Dublin, OH; Silva, Laura J [Dublin, OH; Qiu, Dongming [Carbondale, IL; Perry, Steven T [Galloway, OH; Yuschak, Thomas [Dublin, OH; Hickey, Thomas P [Dublin, OH; Arora, Ravi [Dublin, OH; Smith, Amanda [Galloway, OH; Litt, Robert Dwayne [Westerville, OH; Neagle, Paul [Westerville, OH

    2009-11-03

    The disclosed invention relates to a distillation process for separating two or more components having different volatilities from a liquid mixture containing the components. The process employs microchannel technology for effecting the distillation and is particularly suitable for conducting difficult separations, such as the separation of ethane from ethylene, wherein the individual components are characterized by having volatilities that are very close to one another.

  12. 40 CFR 1065.703 - Distillate diesel fuel.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Distillate diesel fuel. 1065.703... Standards § 1065.703 Distillate diesel fuel. (a) Distillate diesel fuels for testing must be clean and... distillate diesel fuels: (1) Cetane improver. (2) Metal deactivator. (3) Antioxidant, dehazer. (4) Rust...

  13. Lubricity characteristics of marine distillate fuels

    Energy Technology Data Exchange (ETDEWEB)

    Crutchley, Ian [Innospec Fuel Specialties, Ellesmere Port (United Kingdom); Green, Michael [Intertek Lintec ShipCare Services, Darlington (United Kingdom)

    2012-08-15

    This article from Innospec Fuel Specialties, Ellesmere Port, UK, and Intertek Lintec ShipCare Services, Darlington, UK, examines the lubricity characteristics of marine distillate fuels available today in relation to the requirements and limits imposed in ISO8217:2010. It will estimate expected failure rates and also asses the perceived relationship between lubricity, sulphur content and viscosity. (orig.)

  14. Process and apparatus for destructive distillation

    Energy Technology Data Exchange (ETDEWEB)

    Dalin, D; Hedbaeck, T J

    1951-01-10

    A process of distilling wood, coal, shale, and like materials in an externally heated retort, consists of heating the retort by burning fuel in a combustion chamber completely or partly surrounding the retort and passing a heat-absorbing medium through ducts which are mounted in or adjacent the greater part of the length of the retort walls which are so arranged as to effect a greater degree of heat extraction at one part of the retort than at another part of the retort. The zones of different heat extraction being related to the heat developed in the combustion chamber maintains the most favourable distillation temperature in all parts of the retort.

  15. Method of dry distillation of low-grade fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hellsing, G H; Wengstrom, R O.A.

    1920-05-20

    A method of dry distillation of low-grade fuels is characterized by having the process take place in a furnace that is charged alternately by partly cooled, red-hot, and fresh raw materials. The patent has one more claim.

  16. Biodiesel of distilled hydrogenated fat and biodiesel of distilled residual oil: fuel consumption in agricultural tractor

    Energy Technology Data Exchange (ETDEWEB)

    Camara, Felipe Thomaz da; Lopes, Afonso; Silva, Rouverson Pereira da; Oliveira, Melina Cais Jejcic; Furlani, Carlos Eduardo Angeli [Universidade Estadual Paulista (UNESP), Jaboticabal, SP (Brazil); Dabdoub, Miguel Joaquim [Universidade de Sao Paulo (USP), Ribeirao Preto (Brazil)

    2008-07-01

    Great part of the world-wide oil production is used in fry process; however, after using, such product becomes an undesirable residue, and the usual methods of discarding of these residues, generally contaminate the environment, mainly the rivers. In function of this, using oil and residual fat for manufacturing biodiesel, besides preventing ambient contamination, turning up an undesirable residue in to fuel. The present work had as objective to evaluate the fuel consumption of a Valtra BM100 4x2 TDA tractor functioning with methylic biodiesel from distilled hydrogenated fat and methylic biodiesel from distilled residual oil, in seven blends into diesel. The work was conducted at the Department of Agricultural Engineering, at UNESP - Jaboticabal, in an entirely randomized block statistical design, factorial array of 2 x 7, with three repetitions. The factors combinations were two types of methylic distilled biodiesel (residual oil and hydrogenated fat) and seven blends (B{sub 0}, B{sub 5}, B{sub 1}5, B{sub 2}5, B{sub 5}0, B{sub 7}5 and B{sub 1}00). The results had evidenced that additioning 15% of biodiesel into diesel, the specific consumption was similar, and biodiesel of residual oil provided less consumption than biodiesel from hydrogenated fat. (author)

  17. Importance of low-temperature distillation of coal for German fuel economics

    Energy Technology Data Exchange (ETDEWEB)

    Rosendahl, F

    1942-01-01

    Improved processes are available to give low-temperature distillation products economic importance. Low-temperature distillation is limited to the utilization of high-volatile nut coals and briquets. The coke formed can be used as a smokeless fuel, and the tar directly as a fuel oil. Phenols can be extracted, in order to work up the residue into fuel oil and motor fuel. Large deposits of coal in Upper Silesia and in the Saar District are suitable for low-temperature distillation.

  18. Designing reactive distillation processes with improved efficiency

    NARCIS (Netherlands)

    Almeida-Rivera, C.P.

    2005-01-01

    In this dissertation a life-span inspired perspective is taken on the conceptual design of grassroots reactive distillation processes. Attention was paid to the economic performance of the process and to potential losses of valuable resources over the process life span. The research was cast in a

  19. Process for distilling shales, peats, etc

    Energy Technology Data Exchange (ETDEWEB)

    Felizat, G

    1922-01-09

    The invention has for its object: a process for the distillation of shales, peats, and analogous products characterized by injecting across the substance a very rapid stream of superheated steam under pressure in order to effect a rapid removal of the products of distillation, to lower also the temperature at which it distills, to equalize the temperature throughout the mass, to hydrogenate the heavy hydrocarbons. An apparatus is put into operation characterized by the combination of a retort receiving the material to be distilled with a superheater for the steam, the combustion products which escape from the hearth of the superheater going to encircle the retort while the steam which comes off the superheater traverses this retort, the pressure of the steam being regulated by a convenient regulator; the products of the distillation result from the simultaneous action of the hot gases and steam on the contents of the retort being, on the other hand, separated at the outlet of this retort by means of cooling in a gas separator, a condenser, and part of the gas after being separated serving to heat the mentioned superheater.

  20. Process and apparatus for distilling bituminous minerals

    Energy Technology Data Exchange (ETDEWEB)

    Veyrier, J A

    1922-03-27

    This process of distillation of bituminous minerals and particularly bituminous limestone is characterized by the fact that the minerals are introduced into the retort where they stand only the temperature necessary to distill the water and lighter oils that they contain and then are drawn out into the hearth and serve for heating the retort. The apparatus is characterized by the fact that the retort has a screw conveyor, placed in the flue of the hearth, supplied with a chamber for evacuation below this hearth.

  1. Process of distilling bituminous shale

    Energy Technology Data Exchange (ETDEWEB)

    Mayet, M

    1859-05-19

    This new process consists of placing at the end of a tube or the end of one or more retorts, an aspirating pump and compressor or a blower with two valves doing the same work or, better yet, a fan for sucking the vapor from the shale as it is formed in order to prevent its accumulating in the retorts and being decomposed. A second tube, pierced with little holes, placed in series with the pump, blower, or fan, acts as a vessel or receiver for the water. The vapors from the shale are compressed by the aspirator in the receiver for the water and condensed completely, without loss of gas and disinfect themselves for the most part.

  2. Retort for distilling oil from shales and other fuels

    Energy Technology Data Exchange (ETDEWEB)

    Wood, E C

    1931-04-17

    A retort is constructed in the form of a flat shallow covered conduit through which the fuel in a pulverized form is continuously conveyed on a train of pans so loaded as to completely fill the conduit, heat being applied to an adequate central portion of the conduit to effect the distillation of the fuel. The roof or cover is sufficiently higher for the extent of such heated portion to afford space for and thereby facilitate the offtake of the distillation products while the ends of the conduit remain sealed against the escape of such products.

  3. Fuel processing

    International Nuclear Information System (INIS)

    Allardice, R.H.

    1990-01-01

    The technical and economic viability of the fast breeder reactor as an electricity generating system depends not only upon the reactor performance but also on a capability to recycle plutonium efficiently, reliably and economically through the reactor and fuel cycle facilities. Thus the fuel cycle is an integral and essential part of the system. Fuel cycle research and development has focused on demonstrating that the challenging technical requirements of processing plutonium fuel could be met and that the sometimes conflicting requirements of the fuel developer, fuel fabricator and fuel reprocessor could be reconciled. Pilot plant operation and development and design studies have established both the technical and economic feasibility of the fuel cycle but scope for further improvement exists through process intensification and flowsheet optimization. These objectives and the increasing processing demands made by the continuing improvement to fuel design and irradiation performance provide an incentive for continuing fuel cycle development work. (author)

  4. Integrated Process Design and Control of Reactive Distillation Processes

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil; Sales-Cruz, Mauricio; Huusom, Jakob Kjøbsted

    2015-01-01

    on the element concept, which is used to translate a system of compounds into elements. The operation of the reactive distillation column at the highest driving force and other candidate points is analyzed through analytical solution as well as rigorous open-loop and closed-loop simulations. By application...... of this approach, it is shown that designing the reactive distillation process at the maximum driving force results in an optimal design in terms of controllability and operability. It is verified that the reactive distillation design option is less sensitive to the disturbances in the feed at the highest driving...

  5. Sodium removal of fuel elements by vacuum distillation

    International Nuclear Information System (INIS)

    Buescher, E.; Haubold, W.; Jansing, W.; Kirchner, G.

    1978-01-01

    Cleaning of sodium-wetted core components can be performed by using either lead, moist nitrogen, or alcohol. The advantages of these methods for cleaning fuel elements without causing damage are well known. The disadvantage is that large amounts of radioactive liquids are formed during handling in the latter two cases. In this paper a new method to clean components is described. The main idea is to remove all liquid metal from the core components within a comparatively short period of time. Fuel elements removed from the reactor must be cooled because of high decay heat release. To date, vacuum distillation of fuel elements has not yet been applied

  6. Process of distillation of oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Saxton, A L

    1968-08-16

    In an oil-shale distillation apparatus with a single retort, in which separate zones of preheating, distillation, combustion, and cooling are maintained, the operation is conducted at a presssure higher than the atmospheric pressure, preferably at a gage pressure between about 0.35 and 7.0 bars. This permits increasing the capacity of the installation.

  7. Operation and Design of Diabatic Distillation Processes

    DEFF Research Database (Denmark)

    Bisgaard, Thomas

    Diabatic operation of a distillation column implies that heat is exchanged in one or more stages in the column. The most common way of realising diabatic operation is by internal heat integration resulting in a heat-integrated distillation column (HIDiC). When operating the rectifying section...... at a higher pressure, a driving forcefor transferring heat from the rectifying section to the stripping section is achieved. As a result, the condenser and reboiler duties can be significantly reduced. For two-product distillation, the HIDiC is a favourable alternative to the conventional distillation column....... Energy savings up to 83% are reported for the HIDiC compared to the CDiC, while the reported economical savings are as high as 40%. However, a simpler heat-integrated distillation column configuration exists, which employs compression in order to obtain a direct heat integration between the top vapour...

  8. Distillate Fuel Trends: International Supply Variations and Alternate Fuel Properties

    Science.gov (United States)

    2013-01-31

    fuel in NATO countries will have some amount of FAME present. There is some work being done on hydrocarbon alternatives but the regulatory structure ... synthesis or hydrotreatment – Requirements and test methods.” According to the specification, paraffinic diesel fuel does not meet the current requirements...or international specification for triglyceride based fuel oils (straight vegetable oil / raw vegetable oil). The same holds true for alcohol-based

  9. Harmonisation of microbial sampling and testing methods for distillate fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hill, G.C.; Hill, E.C. [ECHA Microbiology Ltd., Cardiff (United Kingdom)

    1995-05-01

    Increased incidence of microbial infection in distillate fuels has led to a demand for organisations such as the Institute of Petroleum to propose standards for microbiological quality, based on numbers of viable microbial colony forming units. Variations in quality requirements, and in the spoilage significance of contaminating microbes plus a tendency for temporal and spatial changes in the distribution of microbes, makes such standards difficult to implement. The problem is compounded by a diversity in the procedures employed for sampling and testing for microbial contamination and in the interpretation of the data obtained. The following paper reviews these problems and describes the efforts of The Institute of Petroleum Microbiology Fuels Group to address these issues and in particular to bring about harmonisation of sampling and testing methods. The benefits and drawbacks of available test methods, both laboratory based and on-site, are discussed.

  10. Process for obtaining a distillation product free from sulfur

    Energy Technology Data Exchange (ETDEWEB)

    Heyl, G E

    1920-06-12

    A process is described of obtaining from shale a hydrocarbon product free from sulfur, by distillation, consisting in mixing with the shale a portion of mineral oil and metallic debris, such as turnings and drillings, heating the mixture in a rotary drum and recovering and condensing the vapors distilled.

  11. Fusion reactor fuel processing

    International Nuclear Information System (INIS)

    Johnson, E.F.

    1972-06-01

    For thermonuclear power reactors based on the continuous fusion of deuterium and tritium the principal fuel processing problems occur in maintaining desired compositions in the primary fuel cycled through the reactor, in the recovery of tritium bred in the blanket surrounding the reactor, and in the prevention of tritium loss to the environment. Since all fuel recycled through the reactor must be cooled to cryogenic conditions for reinjection into the reactor, cryogenic fractional distillation is a likely process for controlling the primary fuel stream composition. Another practical possibility is the permeation of the hydrogen isotopes through thin metal membranes. The removal of tritium from the ash discharged from the power system would be accomplished by chemical procedures to assure physiologically safe concentration levels. The recovery process for tritium from the breeder blanket depends on the nature of the blanket fluids. For molten lithium the only practicable possibility appears to be permeation from the liquid phase. For molten salts the process would involve stripping with inert gas followed by chemical recovery. In either case extremely low concentrations of tritium in the melts would be desirable to maintain low tritium inventories, and to minimize escape of tritium through unwanted permeation, and to avoid embrittlement of metal walls. 21 refs

  12. Process modeling and control applied to real-time monitoring of distillation processes by near-infrared spectroscopy.

    Science.gov (United States)

    de Oliveira, Rodrigo R; Pedroza, Ricardo H P; Sousa, A O; Lima, Kássio M G; de Juan, Anna

    2017-09-08

    A distillation device that acquires continuous and synchronized measurements of temperature, percentage of distilled fraction and NIR spectra has been designed for real-time monitoring of distillation processes. As a process model, synthetic commercial gasoline batches produced in Brazil, which contain mixtures of pure gasoline blended with ethanol have been analyzed. The information provided by this device, i.e., distillation curves and NIR spectra, has served as initial information for the proposal of new strategies of process modeling and multivariate statistical process control (MSPC). Process modeling based on PCA batch analysis provided global distillation trajectories, whereas multiset MCR-ALS analysis is proposed to obtain a component-wise characterization of the distillation evolution and distilled fractions. Distillation curves, NIR spectra or compressed NIR information under the form of PCA scores and MCR-ALS concentration profiles were tested as the seed information to build MSPC models. New on-line PCA-based MSPC approaches, some inspired on local rank exploratory methods for process analysis, are proposed and work as follows: a) MSPC based on individual process observation models, where multiple local PCA models are built considering the sole information in each observation point; b) Fixed Size Moving Window - MSPC, in which local PCA models are built considering a moving window of the current and few past observation points; and c) Evolving MSPC, where local PCA models are built with an increasing window of observations covering all points since the beginning of the process until the current observation. Performance of different approaches has been assessed in terms of sensitivity to fault detection and number of false alarms. The outcome of this work will be of general use to define strategies for on-line process monitoring and control and, in a more specific way, to improve quality control of petroleum derived fuels and other substances submitted

  13. Ocean thermocline driven membrane distillation process

    KAUST Repository

    Francis, Lijo

    2017-07-20

    Systems and methods using membrane distillation are provided for desalinating water, for example for the production of potable water, to address freshwater requirements. In an aspect the systems and methods do not require applying an external heat source, or the energy cost of the heating source, to heat the feed stream to the membrane. In an aspect, the sensible heat present in surface seawater is used for the heat energy for the warm stream fed to the membrane, and deep seawater is used as the cold/coolant feed to the membrane to provide the needed temperature gradient or differential across the membrane.

  14. Process and apparatus to distil petroleum. Verfahren und Vorrichtung zur Erdoel-Destillation

    Energy Technology Data Exchange (ETDEWEB)

    Buchenau, R.; Fauser, F.; Fischer, W.

    1982-12-23

    In a process to distil petroleum the raw petroleum is distilled in the first instance at atmospheric pressure to separate the low-boiling components and subsequently under vacuum to separate the remaining components. The vacuum distillation is carried out as a flash distillation using a shortway distiller.

  15. Molten salt extractive distillation process for zirconium-hafnium separation

    International Nuclear Information System (INIS)

    McLaughlin, D.F.; Stoltz, R.A.

    1989-01-01

    This patent describes an improvement in a process for zirconium-hafnium separation. It utilizes an extractive distillation column with a mixture of zirconium and hafnium tetrachlorides introduced into a distillation column having a top and bottom with hafnium enriched overheads taken from the top of the column and a molten salt solvent circulated through the column to provide a liquid phase, and with molten salt solvent containing zirconium chloride being taken from the bottom of the distillation column. The improvements comprising: utilizing a molten salt solvent consisting principally of lithium chloride and at least one of sodium, potassium, magnesium and calcium chlorides; stripping of the zirconium chloride taken from the bottom of the distillation column by electrochemically reducing zirconium from the molten salt solvent; and utilizing a pressurized reflux condenser on the top of the column to add the hafnium chloride enriched overheads to the molten salt solvent previously stripped of zirconium chloride

  16. A catalytic distillation process for light gas oil hydrodesulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Vargas-Villamil, F.D.; Marroquin, J.O.; Paz, C. de la; Rodriguez, E. [Prog. de Matematicas Aplicadas y Computacion, Prog. de Tratamiento de Crudo Maya, Instituto Mexicano del Petroleo, Mexico City, DF (Mexico)

    2004-07-01

    A light gas oil hydrodesulfurization process via catalytic distillation is developed and compared to a conventional process. By integrating the separation and reaction into a single unit, the catalytic distillation may produce a diesel with low concentration of sulfur compounds at a lower cost than the traditional reaction/separation process. The process proposed in this work is compared to an optimised conventional hydrodesulfurization unit which represents fairly well a plant that belongs to the National System of Refineries. During the optimisation of the conventional process, a compromise is established among the production of diesel and naphtha and the operating costs. The results show that the light gas oil hydrodesulfurization via catalytic distillation is as or more efficient than the conventional process. However, the removal of the sulfur compounds is carried out under less rigorous conditions. This design reduces the fix and operational costs. (author)

  17. Investigation of non-volatile additives on the process of distillation of hydrocarbon mixtures

    Directory of Open Access Journals (Sweden)

    М.Б. Степанов

    2009-02-01

    Full Text Available  The given results of researches of influence of nonvolatile additives on processes of distillation of individual hydrocarbons and their mixes, including petroleum and mineral oil. With the help of the developed computer system of the continuous control of distillation it is shown, that at the presence of small amounts of the additive decrease of temperature of the beginning of boiling of hydrocarbons is observed, their speeds of banish and exits of light fuel mineral oil grow during initial oil refining

  18. Comparing pervaporation and vapor permeation hybrid distillation processes

    NARCIS (Netherlands)

    Fontalvo, J.; Cuellar, P.; Timmer, J.M.K.; Vorstman, M.A.G.; Wijers, J.G.; Keurentjes, J.T.F.

    2005-01-01

    Previous studies have shown that hybrid distillation processes using either pervaporation or vapor permeation can be very attractive for the separation of mixtures. In this paper, a comparison between these two hybrid processes has been made. A tool has been presented that can assist designers and

  19. Separation of Process Wastewater with Extractive Heterogeneous-Azeotropic Distillation

    Directory of Open Access Journals (Sweden)

    Tóth András József

    2016-10-01

    Full Text Available The application of vapour-liquid equilibria-based separation alternatives can be extraordinarily complicated for the treatment of process wastewaters containing heterogeneous-azeotropic. Despite dissimilar successfully tested methods for separation, there is possibility to get better distillation method by enabling the separation of more and more specific process wastewater. Extractive heterogeneous-azeotropic distillation (EHAD is a new advance in treatment of fine chemical wastewater showing special features to cope with the treatment of highly non-ideal mixtures. This method combines the worth of heterogeneous-azeotropic and extractive distillations in one apparatus without addition of any extra materials. The study of the separations of ternary component process wastewater from the fine chemical industry shows both in the modelled and experimental results that EHAD can be successfully applied. The measured and modelled compositions at extreme purities, that is, close to 0% or 100%, can be different because of the inaccuracies of the modelling. This highlights the paramount importance of the experiments if special extra-fine chemicals with almost no impurities, e.g. of pharmacopoeial quality are to be produced by special distillation technique. This study expands the application of EHAD technique, this new field is the separation of process wastewaters.

  20. A Systematic Synthesis Framework for Extractive Distillation Processes

    DEFF Research Database (Denmark)

    Kossack, S.; Kraemer, K.; Gani, Rafiqul

    2008-01-01

    An effective extractive distillation process depends on the choice of the extractive agent. in this contribution, heuristic rules for entrainer selection and the design of entrainers through computer-aided molecular design are reviewed. The potential of the generated alternatives is then evaluated...

  1. Conceptual design of distillation-based hybrid separation processes.

    Science.gov (United States)

    Skiborowski, Mirko; Harwardt, Andreas; Marquardt, Wolfgang

    2013-01-01

    Hybrid separation processes combine different separation principles and constitute a promising design option for the separation of complex mixtures. Particularly, the integration of distillation with other unit operations can significantly improve the separation of close-boiling or azeotropic mixtures. Although the design of single-unit operations is well understood and supported by computational methods, the optimal design of flowsheets of hybrid separation processes is still a challenging task. The large number of operational and design degrees of freedom requires a systematic and optimization-based design approach. To this end, a structured approach, the so-called process synthesis framework, is proposed. This article reviews available computational methods for the conceptual design of distillation-based hybrid processes for the separation of liquid mixtures. Open problems are identified that must be addressed to finally establish a structured process synthesis framework for such processes.

  2. Fuel processing. Wastes processing

    International Nuclear Information System (INIS)

    Bourgeois, M.

    2000-01-01

    The gaseous, liquid and solid radioactive effluents generated by the fuel reprocessing, can't be release in the environment. They have to be treated in order to respect the limits of the pollution regulations. These processing are detailed and discussed in this technical paper. A second part is devoted to the SPIN research program relative to the separation of the long life radionuclides in order to reduce the radioactive wastes storage volume. (A.L.B.)

  3. Systematic Integrated Process Design and Control of Binary Element Reactive Distillation Processes

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil; Sales-Cruz, Mauricio; Huusom, Jakob Kjøbsted

    2016-01-01

    In this work, integrated process design and control of reactive distillation processes is considered through a computer-aided framework. First, a set of simple design methods for reactive distillation column that are similar in concept to non-reactive distillation design methods are extended...... to design-control of reactive distillation columns. These methods are based on the element concept where the reacting system of compounds is represented as elements. When only two elements are needed to represent the reacting system of more than two compounds, a binary element system is identified....... It is shown that the same design-control principles that apply to a non-reacting binary system of compounds are also valid for a reactive binary system of elements for distillation columns. Application of this framework shows that designing the reactive distillation process at the maximum driving force...

  4. Does lower energy usage mean lower carbon dioxide emissions? - A new perspective on the distillation process

    Energy Technology Data Exchange (ETDEWEB)

    Andika, Riezqa; Husnil, Yuli Amalia; Lee, Moonyong [Yeungnam University, Gyeongsan (Korea, Republic of)

    2014-07-15

    Although fossil fuels play an important role as the primary energy source that currently cannot be replaced easily with other energy sources, their depletion and environmental impact are becoming major concerns. Improvements in energy efficiency are believed to solve both problems simultaneously. We examined the relationships between the improvement in energy efficiency, energy usage and CO{sub 2} emissions in industry, especially in the distillation process. The energy efficiency improvement of dimethyl ether (DME) purification performed with dividing-wall column distillation (DWC) and acetic acid recovery performed with mechanical vapor recompression (MVR) were evaluated by recalculating the amount of fuel burnt and its CO{sub 2} emission. The results showed that the paradigm of lower energy being directly proportional to lower CO{sub 2} emissions is not entirely correct. To avoid this confusion, a tool for examining the uncommon behavior of various systems was developed.

  5. Method of dry distillation of solid and liquid fuels. [below 500/sup 0/C

    Energy Technology Data Exchange (ETDEWEB)

    Michot-Dupont, G F

    1932-07-29

    A method of manufacture is given of liquid fuels with a low boiling temperature by means of dry distillation of coals, lignites, peat, and similar materials at temperatures below 500/sup 0/C in the presence of fatty acids (such as acetates). It is characterized by carrying out the distillation after adding at least one more basic reacting salt in such quantity that the reaction takes place under highly basic conditions.

  6. Integrated Process Design and Control of Multi-element Reactive Distillation Processes

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil; Sales-Cruz, Mauricio; Huusom, Jakob Kjøbsted

    2016-01-01

    In this work, integrated process design and control of reactive distillation processes involving multi-elements is presented. The reactive distillation column is designed using methods and tools which are similar in concept to non-reactive distillation design methods, such as driving force approach....... The methods employed in this work are based on equivalent element concept. This concept facilitates the representation of a multi-element reactive system as equivalent binary light and heavy key elements. First, the reactive distillation column is designed at the maximum driving force where through steady...

  7. Comparative techno-economic analysis and process design for indirect liquefaction pathways to distillate-range fuels via biomass-derived oxygenated intermediates upgrading: Liquid Transportation Fuel Production via Biomass-derived Oxygenated Intermediates Upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Eric C. D. [National Renewable Energy Laboratory, Golden CO USA; Snowden-Swan, Lesley J. [Pacific Northwest National Laboratory, Richland WA USA; Talmadge, Michael [National Renewable Energy Laboratory, Golden CO USA; Dutta, Abhijit [National Renewable Energy Laboratory, Golden CO USA; Jones, Susanne [Pacific Northwest National Laboratory, Richland WA USA; Ramasamy, Karthikeyan K. [Pacific Northwest National Laboratory, Richland WA USA; Gray, Michel [Pacific Northwest National Laboratory, Richland WA USA; Dagle, Robert [Pacific Northwest National Laboratory, Richland WA USA; Padmaperuma, Asanga [Pacific Northwest National Laboratory, Richland WA USA; Gerber, Mark [Pacific Northwest National Laboratory, Richland WA USA; Sahir, Asad H. [National Renewable Energy Laboratory, Golden CO USA; Tao, Ling [National Renewable Energy Laboratory, Golden CO USA; Zhang, Yanan [National Renewable Energy Laboratory, Golden CO USA

    2016-09-27

    This paper presents a comparative techno-economic analysis (TEA) of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with specific focus on pathways utilizing oxygenated intermediates. The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include: biomass to syngas via indirect gasification, gas cleanup, conversion of syngas to alcohols/oxygenates followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. Conversion of biomass-derived syngas to oxygenated intermediates occurs via three different pathways, producing: 1) mixed alcohols over a MoS2 catalyst, 2) mixed oxygenates (a mixture of C2+ oxygenated compounds, predominantly ethanol, acetic acid, acetaldehyde, ethyl acetate) using an Rh-based catalyst, and 3) ethanol from syngas fermentation. This is followed by the conversion of oxygenates/alcohols to fuel-range olefins in two approaches: 1) mixed alcohols/ethanol to 1-butanol rich mixture via Guerbet reaction, followed by alcohol dehydration, oligomerization, and hydrogenation, and 2) mixed oxygenates/ethanol to isobutene rich mixture and followed by oligomerization and hydrogenation. The design features a processing capacity of 2,000 tonnes/day (2,205 short tons) of dry biomass. The minimum fuel selling prices (MFSPs) for the four developing pathways range from $3.40 to $5.04 per gasoline-gallon equivalent (GGE), in 2011 US dollars. Sensitivity studies show that MFSPs can be improved with co-product credits and are comparable to the commercial Fischer-Tropsch benchmark ($3.58/GGE). Overall, this comparative TEA study documents potential economics for the developmental biofuel pathways via mixed oxygenates.

  8. Distillation as a pretreatment process of waste scintillation solutions

    International Nuclear Information System (INIS)

    Dellamano, J.C.

    1988-05-01

    A process to pretreat scintillation solutions composed basically of PPO, POPOP, TOLUENE and ANTAROX, utilized by radioimmunoassay laboratories, is described. The technique employed is distillation which permits a waste reduction to about 40% of the initial volume with the recovery of the solvent (toluene). The recovered toluene can be resued for the same purpose, since it is free of radioactive material as assured by quality control procedures. (author) [pt

  9. Effect of hydroprocessing severity on characteristics of jet fuel from OSCO 2 and Paraho distillates

    Science.gov (United States)

    Prok, G. M.; Flores, F. J.; Seng, G. T.

    1981-01-01

    Jet A boiling range fuels and broad-property research fuels were produced by hydroprocessing shale oil distillates, and their properties were measured to characterize the fuels. The distillates were the fraction of whole shale oil boiling below 343 C from TOSCO 2 and Paraho syncrudes. The TOSCO 2 was hydroprocessed at medium severity, and the Paraho was hydroprocessed at high, medium, and low severities. Fuels meeting Jet A requirements except for the freezing point were produced from the medium severity TOSCO 2 and the high severity Paraho. Target properties of a broad property research fuel were met by the medium severity TOSCO 2 and the high severity Paraho except for the freezing point and a high hydrogen content. Medium and low severity Paraho jet fuels did not meet thermal stability and freezing point requirements.

  10. Emulsification of waste cooking oils and fatty acid distillates as diesel engine fuels: An attractive alternative

    Directory of Open Access Journals (Sweden)

    Eliezer Ahmed Melo Espinosa

    2016-06-01

    Full Text Available The scope of this paper is to analyze the possibility and feasibility of the use of emulsification method applied to waste cooking oils and fatty acid distillates as diesel engine fuels, compared with other commonly used methods. These waste products are obtained from the refining oil industry, food industry and service sector, mainly. They are rarely used as feedstock to produce biofuels and other things, in spite of constitute a potential source of environmental contamination. From the review of the state of arts, significant decreases in exhaust emissions of nitrogen oxides, cylinder pressure as well as increases of the ignition delay, brake specific fuel consumption, hydrocarbon, smoke opacity, carbon monoxide, particulate matters to emulsified waste cooking oils and fatty acid distillates compared with diesel fuel are reported. In some experiments the emulsified waste cooking oils achieved better performance than neat fatty acid distillates, neat waste cooking oils and their derivatives methyl esters.

  11. Hydrodeoxygenation of oxidized distilled bio-oil for the production of gasoline fuel type

    International Nuclear Information System (INIS)

    Luo, Yan; Guda, Vamshi Krishna; Hassan, El Barbary; Steele, Philip H.; Mitchell, Brian; Yu, Fei

    2016-01-01

    Highlights: • Oxidation had more influence on the yield of total hydrocarbons than distillation. • The highest total hydrocarbon yield was obtained from oxidized distilled bio-oil. • The 2nd-stage hydrocarbons were in the range of gasoline fuel boiling points. • The main products for upgrading of oxidized bio-oil were aliphatic hydrocarbons. • The main products for upgrading of non-oxidized bio-oil were aromatic hydrocarbons. - Abstract: Distilled and oxidized distilled bio-oils were subjected to 1st-stage mild hydrodeoxygenation and 2nd-stage full hydrodeoxygenation using nickel/silica–alumina catalyst as a means to enhance hydrocarbon yield. Raw bio-oil was treated for hydrodeoxygenation as a control to which to compare study treatments. Following two-stage hydrodeoxygenation, four types of hydrocarbons were mainly comprised of gasoline and had water contents, oxygen contents and total acid numbers of nearly zero and higher heating values of 44–45 MJ/kg. Total hydrocarbon yields for raw bio-oil, oxidized raw bio-oil, distilled bio-oil and oxidized distilled bio-oil were 11.6, 16.2, 12.9 and 20.5 wt.%, respectively. The results indicated that oxidation had the most influence on increasing the yield of gasoline fuel type followed by distillation. Gas chromatography/mass spectrometry characterization showed that 66.0–76.6% of aliphatic hydrocarbons and 19.5–31.6% of aromatic hydrocarbons were the main products for oxidized bio-oils while 35.5–38.7% of aliphatic hydrocarbons and 58.2–63.1% of aromatic hydrocarbons were the main products for non-oxidized bio-oils. Both aliphatic and aromatic hydrocarbons are important components for liquid transportation fuels and chemical products.

  12. Dynamic modeling of the isoamyl acetate reactive distillation process

    Directory of Open Access Journals (Sweden)

    Ali Syed Sadiq

    2017-03-01

    Full Text Available The cost-effectiveness of reactive distillation (RD processes makes them highly attractive for industrial applications. However, their preliminary design and subsequent scale-up and operation are challenging. Specifically, the response of RD system during fluctuations in process parameters is of paramount importance to ensure the stability of the whole process. As a result of carrying out simulations using Aspen Plus, it is shown that the RD process for isoamyl acetate production was much more economical than conventional reactor distillation configuration under optimized process conditions due to lower utilities consumption, higher conversion and smaller sizes of condenser and reboiler. Rigorous dynamic modeling of RD system was performed to evaluate its sensitivity to disturbances in critical process parameters; the product flow was quite sensitive to disturbances. Even more sensitive was product composition when the disturbance in heat duties of condenser or reboiler led to a temperature decrease. However, positive disturbance in alcohol feed is of particular concern, which clearly made the system unstable.

  13. 40 CFR 80.620 - What are the additional requirements for diesel fuel or distillates produced by foreign...

    Science.gov (United States)

    2010-07-01

    ... audits of the foreign refinery. (i) Inspections and audits may be either announced in advance by EPA, or... diesel fuel or distillate was produced, assurance that the diesel fuel or distillate remained segregated...: (i) Be approved in advance by EPA, based on a demonstration of ability to perform the procedures...

  14. Application of the Advanced Distillation Curve Method to Fuels for Advanced Combustion Engine Gasolines

    KAUST Repository

    Burger, Jessica L.

    2015-07-16

    © This article not subject to U.S. Copyright. Published 2015 by the American Chemical Society. Incremental but fundamental changes are currently being made to fuel composition and combustion strategies to diversify energy feedstocks, decrease pollution, and increase engine efficiency. The increase in parameter space (by having many variables in play simultaneously) makes it difficult at best to propose strategic changes to engine and fuel design by use of conventional build-and-test methodology. To make changes in the most time- and cost-effective manner, it is imperative that new computational tools and surrogate fuels are developed. Currently, sets of fuels are being characterized by industry groups, such as the Coordinating Research Council (CRC) and other entities, so that researchers in different laboratories have access to fuels with consistent properties. In this work, six gasolines (FACE A, C, F, G, I, and J) are characterized by the advanced distillation curve (ADC) method to determine the composition and enthalpy of combustion in various distillate volume fractions. Tracking the composition and enthalpy of distillate fractions provides valuable information for determining structure property relationships, and moreover, it provides the basis for the development of equations of state that can describe the thermodynamic properties of these complex mixtures and lead to development of surrogate fuels composed of major hydrocarbon classes found in target fuels.

  15. Process of heat-treating fuels of a bituminous nature, such as shale

    Energy Technology Data Exchange (ETDEWEB)

    Bergh, S V

    1927-11-25

    A process is described of heat treating any kind of material of a bituminous nature usable as fuel, like shale, mineral coal, peat, etc., whereby the fuel undergoes in a retort or the like a distillation for recovering from it the total amount or the greatest part of gaseous or vaporous distillation products. The warm distillation residue is burned, characterized by the retorts, containing the fuel going through, being wholly or partly surrounded by materials to be heated. These materials and the warm distillation residue resulting from the distillation during the burning are moved forward independently one of the other.

  16. Effectiveness of Water Desalination by Membrane Distillation Process

    Directory of Open Access Journals (Sweden)

    Marek Gryta

    2012-07-01

    Full Text Available The membrane distillation process constitutes one of the possibilities for a new method for water desalination. Four kinds of polypropylene membranes with different diameters of capillaries and pores, as well as wall thicknesses were used in studied. The morphology of the membrane used and the operating parameters significantly influenced process efficiency. It was found that the membranes with lower wall thickness and a larger pore size resulted in the higher yields. Increasing both feed flow rate and temperature increases the permeate flux and simultaneously the process efficiency. However, the use of higher flow rates also enhanced heat losses by conduction, which decreases the thermal efficiency. This efficiency also decreases when the salt concentration in the feed was enhanced. The influence of fouling on the process efficiency was considered.

  17. Reoxidation of uranium in electrolytically reduced simulated oxide fuel during residual salt distillation

    International Nuclear Information System (INIS)

    Eun-Young Choi; Jin-Mok Hur; Min Ku Jeon; University of Science and Technology, Yuseong-gu, Daejeon

    2017-01-01

    We report that residual salt removal by high-temperature distillation causes partial reoxidation of uranium metal to uranium oxide in electrolytically reduced simulated oxide fuel. Specifically, the content of uranium metal in the above product decreases with increasing distillation temperatures, which can be attributed to reoxidation by Li 2 O contained in residual salt (LiCl). Additionally, we estimate the fractions of Li 2 O reacted with uranium metal under these conditions, showing that they decrease with decreasing temperature, and calculate some thermodynamic parameters of the above reoxidation. (author)

  18. Safe, acceptable anti-microbial strategies for distillate fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hill, E.C. [ECHA Microbiology Ltd., Cardiff (United Kingdom)

    1995-05-01

    Microbiological fouling, spoilage and corrosion have for years been considered as end-user problems but they have now become endemic up-stream affecting cargoes, tank farms and terminals. Trading agreements to share storage and distribution facilities impose the need to mutually agree antimicrobial strategies which satisfy all health, safety and environmental regulations wherever that fuel is distributed and used. Also agreed must be the infection levels at which antimicrobial action is initiated. Physical decontamination methods are described and the use of biocides discussed in relation to increasing regulatory restrictions.

  19. Destructive distillation

    Energy Technology Data Exchange (ETDEWEB)

    Cosden, S; Cosden, J S

    1937-09-08

    A means and process are described for the destructive distillation of solid carbonaceous materials in which the process comprises charging the material, in a finely divided condition into a stream of hot combustion gases, and allows the hot gases to act pyrolytically on the organic compounds contained in the material, separating the volatile liberated constituents from residuary constituents. Hot reaction gases are generated by fuel ignition means in a generator and are immediately intermingled with comminuted carbonaceous material from a hopper, in a narrow conduit. The mixture of material and reaction fluid is then passed through an elongated confined path, which is exteriorly heated by the combustion chamber of the furnace, where the destructive distillation is effected. Volatile and solid constituents are separated in the chamber, and the volatile constituents are fractionated and condensed.

  20. Low temperature distillation of coal, shale, etc

    Energy Technology Data Exchange (ETDEWEB)

    1938-08-12

    A process is disclosed for the low temperature distillation of solid carbonaceous fuels, such as coal, lignite, shale or the like, which comprises feeding or supplying the comminuted fuel in the form of a layer of shallow depth to drying and distilling zones in succession moving the fuel forward through the zones, submitting it to progressively increasing nonuniform heating therein by combustion gases supplied to the distillation zone and traveling thence to the drying zone, the gases heating the distillation zone indirectly and the drying zone both indirectly and then directly such that the fuel retains its solid discrete form during substantially the whole of its travel through the drying and distillation zones, subjecting the fuel for a portion of its travel to a zigzag ploughing and propelling movement on a heated sole, and increasing the heating so as to cause fusion of the fuel immediately prior to its discharge from the distillation zone.

  1. Fuels Processing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NETL’s Fuels Processing Laboratory in Morgantown, WV, provides researchers with the equipment they need to thoroughly explore the catalytic issues associated with...

  2. Impact of 50% Synthesized Iso-Paraffins (SIP) on Middle Distillate Fuel Filtration and Coalescence

    Science.gov (United States)

    2014-10-30

    Paraffins DEFINITIONS Coalescence - the ability to shed water Conventional Material Source - crude oil , natural gas liquid condensates...Impact of 50% Synthesized Iso-Paraffins (SIP) on Middle Distillate Fuel Filtration and Coalescence NF&LCFT REPORT 441/15-003 30 October 2014...heavy oil , shale oil , and oil sands Effluent - stream leaving a system Influent - stream entering a system Turnover - time required to flow the

  3. Analysis and Environmental Fate of Air Force Distillate and High Density Fuels

    Science.gov (United States)

    1981-10-01

    728.1 128 0.8 Toluenc 751.3 92 0.6 XTHDCPD 1049.6 136 66.8 NTHDCPD 1079.2 136 1.5HNN 1509.6 186 20.1 JP-1O XTHDCPD 1050.3 136 96.8 ITHDCPD 1079.6 136 1,5...deionized water and the salts listed below. Blanks of both waters were routinely extracted and analyzed for possible 4.nterferences. MNN PXTX XTHDCPD ...through 13; complete data summaries for the distillate fuels may be found in Appendix C. All com- ponents of the high density fuels except XTHDCPD of

  4. Fuels processing for transportation fuel cell systems

    Science.gov (United States)

    Kumar, R.; Ahmed, S.

    Fuel cells primarily use hydrogen as the fuel. This hydrogen must be produced from other fuels such as natural gas or methanol. The fuel processor requirements are affected by the fuel to be converted, the type of fuel cell to be supplied, and the fuel cell application. The conventional fuel processing technology has been reexamined to determine how it must be adapted for use in demanding applications such as transportation. The two major fuel conversion processes are steam reforming and partial oxidation reforming. The former is established practice for stationary applications; the latter offers certain advantages for mobile systems and is presently in various stages of development. This paper discusses these fuel processing technologies and the more recent developments for fuel cell systems used in transportation. The need for new materials in fuels processing, particularly in the area of reforming catalysis and hydrogen purification, is discussed.

  5. Process for paraffin isomerization of a distillate range hydrocarbon feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Chen, N.Y.; Garwood, W.E.; McCullen, S.B.

    1993-01-19

    Various catalytic processes have been proposed to isomerize n-paraffins so as to lower the pour point of distillate range hydrocarbon feedstocks. However, many available feedstocks contain nitrogen impurities which tend to poison conventional paraffin isomerization catalysts. A process has been developed to obviate or alleviate this problem. According to the invention, the paraffin-containing feedstock is contacted with a crystalline aluminosilicate zeolite catalyst having pore openings defined by a ratio of sorption of n-hexane to o-xylene of over 3 vol % and the ability to crack 3-methylpentane in preference to 2,3 dimethylbutane under defined conditions. The zeolite catalyst includes a Group VIII metal and has a zeolite SiO[sub 2]/Al[sub 2]O[sub 3] ratio of at least 20:1. The contacting is carried out at 199-454 C and a pressure of 100-1,000 psig, preferably 250-600 psig. The group of medium pore zeolites which can be used in the process of the invention includes ZSM-22, ZSM-23, and ZSM-35. The Group VIII metals used in the catalyst are preferably selected from Pt, Pd, Ir, Os, Rh, and Ru and the metal is preferably incorporated into the zeolite by ion exchange up to a metal content of preferably 0.1-3 wt %. Experiments are described to illustrate the invention. 1 tab.

  6. Process and apparatus to analyze high-boiling products by distillation

    Energy Technology Data Exchange (ETDEWEB)

    Goupil, J.; Mouton, M.; Fischer, W.

    1982-05-19

    In the described process to analyze high-boiling petroleum products by distillation, contents of these products with atmospheric boiling points above 500/sup 0/C can be isolated as distillates. For this purpose the continuous shortway distillation process is employed and at least a part of the components of the apparatus which serve to introduce the raw product are heated seperately and held at different temperatures. The raw product is distributed on the combustion surface of the shortway distiller by a roller wiping system.

  7. Aroma Stripping under various Forms of Membrane Distillation Processes: Experiments and modeling

    DEFF Research Database (Denmark)

    Jonsson, Gunnar Eigil

    Concentration of fruit juices by membrane distillation is an interesting process as it can be done at low temperature giving a gentle concentration process with little deterioration of the juices. Since the juices contains many different aroma compounds with a wide range of chemical properties...... such as volatility, activity coefficient and vapor pressure, it is important to know how these aroma compounds will eventually pass through the membrane. Experiments have been made on an aroma model solution and on black currant juice in a lab scale membrane distillation set up which can be operated in various types...... of MD configurations: Vacuum Membrane Distillation , Sweeping Gas Membrane Distillation , Direct Contact Membrane Distillation and Osmotic Membrane Distillation. The influence of feed temperature and feed flow rate on the permeate flux and concentration factor for different types of aroma compounds have...

  8. Nonlinear control of a multicomponent distillation process coupled with a binary distillation model as an EKF predictor.

    Science.gov (United States)

    Jana, Amiya Kumar; Ganguly, Saibal; Samanta, Amar Nath

    2006-10-01

    The work is devoted to design the globally linearizing control (GLC) strategy for a multicomponent distillation process. The control system is comprised with a nonlinear transformer, a nonlinear closed-loop state estimator [extended Kalman filter (EKF)], and a linear external controller [conventional proportional integral (PI) controller]. The model of a binary distillation column has been used as a state predictor to avoid huge design complexity of the EKF estimator. The binary components are the light key and the heavy key of the multicomponent system. The proposed GLC-EKF (GLC in conjunction with EKF) control algorithm has been compared with the GLC-ROOLE [GLC coupled with reduced-order open-loop estimator (ROOLE)] and the dual-loop PI controller based on set point tracking and disturbance rejection performance. Despite huge process/predictor mismatch, the superiority of the GLC-EKF has been inspected over the GLC-ROOLE control structure.

  9. Irreversibility analysis in the process of solar distillation

    International Nuclear Information System (INIS)

    Chávez, S; Terres, H; Lizardi, A; López, R; Lara, A

    2017-01-01

    In this work an irreversibility analysis for the thermal process of solar distillation of three different substances is presented, for which it employs a solar still of a slope where three experimental tests with 5.5 L of brine, river water and MgCl 2 were performed. Temperature data principally in the glass cover, absorber plate, fluid, environment and the incident solar radiation on the device were obtained. With measurements of temperature, solar radiation and exergetic balance, irreversibilities are found on the device. The results show that the highest values of irreversibilities are concentrated in the absorber plate with an average of 321 W, 342 W and 276 W, followed by the cover glass with an average of 75.8 W, 80.4 W and 86.7 W and finally the fluid with 15.3 W, 15.9 W and 16 W, for 5.5 L of brine, river water and MgCl 2 . (paper)

  10. Distillers Dried Grains with Solubles (DDGS) – A Key to the Fuel Ethanol Industry

    Science.gov (United States)

    Corn-based ethanol in the U.S. has dramatically increased in recent years; so has the quantity of associated coproducts. Nonfermentable components are removed from the process as whole stillage, centrifuged to remove water – which is then evaporated to produce condensed distillers solubles (CDS), a...

  11. Fuel quality processing study, volume 1

    Science.gov (United States)

    Ohara, J. B.; Bela, A.; Jentz, N. E.; Syverson, H. T.; Klumpe, H. W.; Kessler, R. E.; Kotzot, H. T.; Loran, B. L.

    1981-01-01

    A fuel quality processing study to provide a data base for an intelligent tradeoff between advanced turbine technology and liquid fuel quality, and also, to guide the development of specifications of future synthetic fuels anticipated for use in the time period 1985 to 2000 is given. Four technical performance tests are discussed: on-site pretreating, existing refineries to upgrade fuels, new refineries to upgrade fuels, and data evaluation. The base case refinery is a modern Midwest refinery processing 200,000 BPD of a 60/40 domestic/import petroleum crude mix. The synthetic crudes used for upgrading to marketable products and turbine fuel are shale oil and coal liquids. Of these syncrudes, 50,000 BPD are processed in the existing petroleum refinery, requiring additional process units and reducing petroleum feed, and in a new refinery designed for processing each syncrude to produce gasoline, distillate fuels, resid fuels, and turbine fuel, JPGs and coke. An extensive collection of synfuel properties and upgrading data was prepared for the application of a linear program model to investigate the most economical production slate meeting petroleum product specifications and turbine fuels of various quality grades. Technical and economic projections were developed for 36 scenarios, based on 4 different crude feeds to either modified existing or new refineries operated in 2 different modes to produce 7 differing grades of turbine fuels. A required product selling price of turbine fuel for each processing route was calculated. Procedures and projected economics were developed for on-site treatment of turbine fuel to meet limitations of impurities and emission of pollutants.

  12. Conceptual process design of extractive distillation processes for ethylbenzene/styrene separation

    NARCIS (Netherlands)

    Jongmans, Mark; Hermens, E.; Raijmakers, M.; Maassen, J.I.W.; Schuur, Boelo; de Haan, A.B.

    2012-01-01

    In the current styrene production process the distillation of the close-boiling ethylbenzene/styrene mixture to obtain an ethylbenzene impurity level of 100 ppm in styrene accounts for 75–80% of the energy requirements. The future target is to reach a level of 1–10 ppm, which will increase the

  13. Theoretical and experimental study of integrated membrane / distillation processes for industrial applications

    NARCIS (Netherlands)

    Perez, P.

    2007-01-01

    In industrial practice the separation of an azeotropic mixture usually involves adding a third component to the distillation process to break the azeotrope. The major disadvantages of this so called azeotropic and extractive distillation are the relatively high capital and high energy costs and the

  14. A rapid colorimetric method for predicting the storage stability of middle distillate fuels

    Energy Technology Data Exchange (ETDEWEB)

    Marshman, S.J. [Defense Research Agency, Surrey (United Kingdom)

    1995-05-01

    Present methods used to predict the storage stability of distillate fuels such as ASTM D2274, ASTM D4625, DEF STAN 05-50 Method 40 and in-house methods are very time consuming, taking a minimum of 16 hours. In addition, some of these methods under- or over-predict the storage stability of the test fuel. A rapid colorimetric test for identifying cracked, straight run or hydrofined fuels was reported at the previous Conference. Further work has shown that while a visual appraisal is acceptable for refinery-fresh fuels, colour development may be masked by other coloured compounds in older fuels. Use of a spectrometric finish to the method has extended the scope of the method to include older fuels. The test can be correlated with total sediment from ASTM D4625 (13 weeks at 43{degrees}C) over a sediment range of 0-60mg/L. A correlation of 0.94 was obtained for 40 fuels.

  15. Destructive distillation

    Energy Technology Data Exchange (ETDEWEB)

    1938-07-05

    A process and apparatus for the destructive distillation at low temperature of mineral or organic material particularly oil shale, is given in which the process comprises distilling the material in a horizontal gaseous stream, subjecting the hot residues to the action of a gaseous stream containing a predetermined amount of oxygen so as to burn, at least partly, the carbon-containing substances, and the process uses the gases from this combustion for the indirect heating of the gases serving for the distillation.

  16. The development of the super-biodiesel production continuously from Sunan pecan oil through the process of reactive distillation

    Science.gov (United States)

    Yohana, Eflita; Yulianto, Moh. Endy; Ikhsan, Diyono; Nanta, Aditya Marga; Puspitasari, Ristiyanti

    2016-06-01

    In general, a vegetable oil-based biodiesel production commercially operates a batch process with high investments and operational costs. Thus, it is necessary to develop super-biodiesel production from sunan pecan oil continuously through the process of reactive distillation. There are four advantages of the reactive distillation process for the biodiesel production, as follows: (i) it incorporates the process of transesterification reaction, and product separation of residual reactants become one stage of the process, so it saves the investment and operation costs, (ii) it reduces the need for raw materials because the methanol needed corresponds to the stoichiometry, so it also reduces the operation costs, (iii) the holdup time in the column is relatively short (5±0,5 minutes) compared to the batch process (1-2 hours), so it will reduce the operational production costs, and (iv) it is able to shift the reaction equilibrium, because the products and reactants that do not react are instantly separated (based on Le Chatelier's principles) so the conversion will be increased. However, the very crucial problem is determining the design tools and process conditions in order to maximize the conversion of the transesterification reaction in both phases. Thus, the purpose of this research was to design a continuous reactive distillation process by using a recycled condensate to increase the productivity of the super-biodiesel from sunan pecan oil. The research was carried out in three stages including (i) designing and fabricating the reactive distillation equipment, (ii) testing the tool performance and the optimization of the biodiesel production, and (iii) biodiesel testing on the diesel engine. These three stages were needed in designing and scaling-up the process tools and the process operation commercially. The reactive distillation process tools were designed and manufactured with reference to the design system tower by Kitzer, et.al. (2008). The manufactured

  17. Simulation calculations for a catalytic exchange/cryogenic distillation hydrogen isotope separation process

    International Nuclear Information System (INIS)

    Rodman, M.; Howard, D.W.

    1984-01-01

    Some of the aspects of the optimization and simulation calculations for the Moderator Detritiation Plant thay may be applicable to other processes are described. The FORTRAN optimization program and the CPES and PROCESS distillation calculation are covered

  18. Tritium separation factors in distillation and chemical exchange processes

    International Nuclear Information System (INIS)

    Dave, S.M.; Ghosh, S.K.; Sadhukhan, H.K.

    1982-01-01

    The vapour pressures of different isotopic hydrogen, water and ammonia molecules have been calculated. These vapour pressures can be used to evaluate relative volatilities of different species for separation of tritium isotopes by distillation. The equilibrium constants for various exchange reactions involving different deuterated and tritiated species of hydrogen, water and ammonia molecules have also been calculated for different temperatures. (author)

  19. Development on the cryogenic hydrogen isotopes distillation process technology for tritium removal (Final report)

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Ki Woung; Kim, Yong Ik; Na, Jeong Won; Ku, Jae Hyu; Kim, Kwang Rak; Jeong, Yong Won; Lee, Han Soo; Cho, Young Hyun; Ahn, Do Hee; Baek, Seung Woo; Kang, Hee Seok; Kim, You Sun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-12-01

    While tritium exposure to the site-workers in Wolsung NPP is up to about 40% of the total personnel exposure, Ministry of Science and Technology has asked tritium removal facility for requirement of post heavy-water reactor construction. For the purpose of essential removal of tritium from the Wolsung heavy-water reactor system, a preliminary study on the cryogenic Ar-N{sub 2} and H{sub 2}-D{sub 2} distillation process for development of liquid-phase catalytic exchange cryogenic hydrogen distillation process technology. The Ar-N{sub 2} distillation column showed good performance with approximately 97% of final Ar concentration, and a computer simulation code was modified using these data. A simulation code developed for cryogenic hydrogen isotopes (H{sub 2}, HD, D{sub 2}, HT, DT, T{sub 2}) distillation column showed good performance after comparison with the result of a JAERI code, and a H{sub 2}-D{sub 2} distillation column was made. Gas chromatography for hydrogen isotopes analysis was established using a vacuum sampling loop, and a schematic diagram of H{sub 2}-D{sub 2} distillation process was suggested. A feasibility on modification of H{sub 2}-D{sub 2} distillation process control system using Laser Raman Spectroscopy was studied, and the consideration points for tritium storage system for Wolsung tritium removal facility was suggested. 31 tabs., 79 figs., 68 refs. (Author).

  20. Development on the cryogenic hydrogen isotopes distillation process technology for tritium removal (Final report)

    International Nuclear Information System (INIS)

    Sung, Ki Woung; Kim, Yong Ik; Na, Jeong Won; Ku, Jae Hyu; Kim, Kwang Rak; Jeong, Yong Won; Lee, Han Soo; Cho, Young Hyun; Ahn, Do Hee; Baek, Seung Woo; Kang, Hee Seok; Kim, You Sun

    1995-12-01

    While tritium exposure to the site-workers in Wolsung NPP is up to about 40% of the total personnel exposure, Ministry of Science and Technology has asked tritium removal facility for requirement of post heavy-water reactor construction. For the purpose of essential removal of tritium from the Wolsung heavy-water reactor system, a preliminary study on the cryogenic Ar-N 2 and H 2 -D 2 distillation process for development of liquid-phase catalytic exchange cryogenic hydrogen distillation process technology. The Ar-N 2 distillation column showed good performance with approximately 97% of final Ar concentration, and a computer simulation code was modified using these data. A simulation code developed for cryogenic hydrogen isotopes (H 2 , HD, D 2 , HT, DT, T 2 ) distillation column showed good performance after comparison with the result of a JAERI code, and a H 2 -D 2 distillation column was made. Gas chromatography for hydrogen isotopes analysis was established using a vacuum sampling loop, and a schematic diagram of H 2 -D 2 distillation process was suggested. A feasibility on modification of H 2 -D 2 distillation process control system using Laser Raman Spectroscopy was studied, and the consideration points for tritium storage system for Wolsung tritium removal facility was suggested. 31 tabs., 79 figs., 68 refs. (Author)

  1. Distilling tar; distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    Brash, P; Young, W

    1866-09-17

    The tarry residue, which separates on treating crude shale oil with sulfuric acid, is redistilled, in the manner described in Specification No. 1278, A.D. 1866, together with shale. Previous to the distillation, the acid is neutralized with lime, or may be separated by blowing steam into the tar and adding salt. The purified tar thus obtained is absorbed by ashes, or is mixed with lime or other alkaline matter, or the shale may be mixed with lime and distilled with the tar, which is allowed to flow over and through the shale during the process. The tar obtained in the purification of natural paraffin may be similarly utilized.

  2. Integrated Design and Control of Reactive and Non-Reactive Distillation Processes

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil; Sales-Cruz, Mauricio; Huusom, Jakob Kjøbsted

    , an alternative approach is to tackle process design and controllability issues simultaneously, in the early stages of process design. This simultaneous synthesis approach provides optimal/near optimal operation and more efficient control of conventional (non-reactive binary distillation columns) (Hamid et al...... of methodologies have been proposed and applied on various problems to address the interactions between process design and control, and they range from optimization-based approaches to model-based methods (Sharifzadeh, 2013). In this work, integrated design and control of non-reactive distillation, ternary...... reactive distillation processes. The element concept (Pérez Cisneros et al., 1997) is used to translate a ternary system of compounds (A + B ↔ C) to a binary system of element (WA and WB). In the case of multicomponent reactive distillation processes the equivalent element concept is used to translate...

  3. Process of distilling, heating, and condensing bituminous shales, etc

    Energy Technology Data Exchange (ETDEWEB)

    Bayle, M

    1892-04-26

    The distillation apparatus is composed of a vertical cylinder, whose walls are formed of metal, cast iron, sheet iron, cast or welded steel, refractory clay or other convenient material. The cylinder is fixed. Along its axis passes a shaft, receiving a rotary motion from an endless screw, engaging with a helicoidal toothed wheel. The shaft carries a series of plates, moving with it, over which circulates successively the mineral, pushed from one plate to a lower one by a small scraper.

  4. Gas retorts: gas manufacture, process for distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    Bell, J

    1874-05-23

    In apparatus for distilling shale, coal, etc. for making oil and gas, tubular retorts are supported horizontally in a chamber by plates from a brick setting and are heated partly by jets of gas from a pipe supplied through a cock from a gas holder, and partly by the waste gases from a furnace, which heats gas retorts placed in a chamber, air being supplied beneath the grate by a fan.

  5. Optimal design of advanced distillation configuration for enhanced energy efficiency of waste solvent recovery process in semiconductor industry

    International Nuclear Information System (INIS)

    Chaniago, Yus Donald; Minh, Le Quang; Khan, Mohd Shariq; Koo, Kee-Kahb; Bahadori, Alireza; Lee, Moonyong

    2015-01-01

    Highlights: • Thermally coupled distillation process is proposed for waste solvent recovery. • A systematic optimization procedure is used to optimize distillation columns. • Response surface methodology is applied to optimal design of distillation column. • Proposed advanced distillation allows energy efficient waste solvent recovery. - Abstract: The semiconductor industry is one of the largest industries in the world. On the other hand, the huge amount of solvent used in the industry results in high production cost and potential environmental damage because most of the valuable chemicals discharged from the process are incinerated at high temperatures. A distillation process is used to recover waste solvent, reduce the production-related costs and protect the environment from the semiconductor industrial waste. Therefore, in this study, a distillation process was used to recover the valuable chemicals from semiconductor industry discharge, which otherwise would have been lost to the environment. The conventional sequence of distillation columns, which was optimized using the Box and sequential quadratic programming method for minimum energy objectives, was used. The energy demands of a distillation problem may have a substantial influence on the profitability of a process. A thermally coupled distillation and heat pump-assisted distillation sequence was implemented to further improve the distillation performance. Finally, a comparison was made between the conventional and advanced distillation sequences, and the optimal conditions for enhancing recovery were determined. The proposed advanced distillation configuration achieved a significant energy saving of 40.5% compared to the conventional column sequence

  6. Efficient ethanol recovery from fermentation broths with integrated distillation-membrane process

    Science.gov (United States)

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane separati...

  7. Experimental Validation of Hybrid Distillation-Vapor Permeation Process for Energy Efficient Ethanol-Water Separation

    Science.gov (United States)

    The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation step,...

  8. Design of a thermally integrated bioethanol-fueled solid oxide fuel cell system integrated with a distillation column

    Science.gov (United States)

    Jamsak, W.; Douglas, P. L.; Croiset, E.; Suwanwarangkul, R.; Laosiripojana, N.; Charojrochkul, S.; Assabumrungrat, S.

    Solid oxide fuel cell systems integrated with a distillation column (SOFC-DIS) have been investigated in this study. The MER (maximum energy recovery) network for SOFC-DIS system under the base conditions (C EtOH = 25%, EtOH recovery = 80%, V = 0.7 V, fuel utilization = 80%, T SOFC = 1200 K) yields Q Cmin = 73.4 and Q Hmin = 0 kW. To enhance the performance of SOFC-DIS, utilization of internal useful heat sources from within the system (e.g. condenser duty and hot water from the bottom of the distillation column) and a cathode recirculation have been considered in this study. The utilization of condenser duty for preheating the incoming bioethanol and cathode recirculation for SOFC-DIS system were chosen and implemented to the SOFC-DIS (CondBio-CathRec). Different MER designs were investigated. The obtained MER network of CondBio-CathRec configuration shows the lower minimum cold utility (Q Cmin) of 55.9 kW and total cost index than that of the base case. A heat exchanger loop and utility path were also investigated. It was found that eliminate the high temperature distillate heat exchanger can lower the total cost index. The recommended network is that the hot effluent gas is heat exchanged with the anode heat exchanger, the external reformer, the air heat exchanger, the distillate heat exchanger and the reboiler, respectively. The corresponding performances of this design are 40.8%, 54.3%, 0.221 W cm -2 for overall electrical efficiency, Combine Heat and Power (CHP) efficiency and power density, respectively. The effect of operating conditions on composite curves on the design of heat exchanger network was investigated. The obtained composite curves can be divided into two groups: the threshold case and the pinch case. It was found that the pinch case which T SOFC = 1173 K yields higher total cost index than the CondBio-CathRec at the base conditions. It was also found that the pinch case can become a threshold case by adjusting split fraction or operating at

  9. Integrated membrane distillation-crystallization: process design and cost estimations for seawater treatment and fluxes of single salt solutions

    NARCIS (Netherlands)

    Creusen, R.J.M.; Medevoort, J. van; Roelands, C.P.M.; Renesse van Duivenbode, J.A.D. van; Hanemaaijer, J.H.; Leerdam, R.C. van

    2013-01-01

    The goal of this research is to design an integrated membrane distillation-crystallization (MDC) process for desalination of seawater with pure water and dry salts as the only products. The process is based on a combination of membrane distillation (MD) and osmotic distillation (OD) steps with

  10. Control properties of hybrid distillation processes for the separation of biobutanol

    DEFF Research Database (Denmark)

    Sánchez-Ramírez, Eduardo; Alcocer-García, Heriberto; Quiroz-Ramírez, Juan José

    2017-01-01

    value decomposition technique and a closed-loop dynamic analysis was performed on several hybrid distillation processes including conventional, thermally coupled, thermodynamically equivalent and intensified designs. The results indicated that under the closed-loop control policy, an intensified design...... which is integrated for only two distillation columns instead of three distillation columns, showed good dynamic properties. In addition, thermally coupled sequence A showed better control properties under open-loop analysis. CONCLUSIONS: Using both SVD analysis and closed-loop tests the dynamics...

  11. Catalytic Reactive Distillation for the Esterification Process: Experimental and Simulation

    Directory of Open Access Journals (Sweden)

    M. Mallaiah

    2017-10-01

    Full Text Available In the present study, methyl acetate has been synthesized using esterification of acetic acid with methanol in a continuous packed bed catalytic reactive distillation col- umn in the presence of novel Indion 180 ion exchange resin solid catalyst. The experiments were conducted at various operating conditions like reboiler temperature, reflux ratio, and different feed flow rates of the acetic acid and methanol. The non-ideal pseudo-homogeneous kinetic model has been developed for esterification of acetic acid with methanol in the presence of Indion 180 catalyst. The developed kinetic model was used for the simulation of the reactive distillation column for the synthesis of methyl acetate using equilibrium stage model in Aspen Plus version 7.3. The simulation results were compared with experimental results, and found that there is a good agreement between them. The sensitivity analyses were also carried out for the different parameters of bot- tom flow rate, feed temperatures of acetic acid and methanol, and feed flow rate of acetic acid and methanol.

  12. Mathematical modeling of a single stage ultrasonically assisted distillation process.

    Science.gov (United States)

    Mahdi, Taha; Ahmad, Arshad; Ripin, Adnan; Abdullah, Tuan Amran Tuan; Nasef, Mohamed M; Ali, Mohamad W

    2015-05-01

    The ability of sonication phenomena in facilitating separation of azeotropic mixtures presents a promising approach for the development of more intensified and efficient distillation systems than conventional ones. To expedite the much-needed development, a mathematical model of the system based on conservation principles, vapor-liquid equilibrium and sonochemistry was developed in this study. The model that was founded on a single stage vapor-liquid equilibrium system and enhanced with ultrasonic waves was coded using MATLAB simulator and validated with experimental data for ethanol-ethyl acetate mixture. The effects of both ultrasonic frequency and intensity on the relative volatility and azeotropic point were examined, and the optimal conditions were obtained using genetic algorithm. The experimental data validated the model with a reasonable accuracy. The results of this study revealed that the azeotropic point of the mixture can be totally eliminated with the right combination of sonication parameters and this can be utilized in facilitating design efforts towards establishing a workable ultrasonically intensified distillation system. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Chemical and biological effects of heavy distillate recycle in the SRC-II process

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, B.W.; Pelroy, R.A.; Anderson, R.P.; Freel, J.

    1983-12-01

    Recent work from the Merriam Laboratory continuous coal liquefaction units shows that heavy distillate from the SRC-II process can be recycled to extinction, and hence a distillate product boiling entirely below 310/sup 0/C (590/sup 0/F) (or other selected boiling points) is feasible. In these runs distillate yield was not reduced; gas make was unaffected; and hydrogen consumption was increased only slightly, in keeping with the generally higher hydrogen content of lighter end products. Total distillate yield (C/sub 5/-590/sup 0/F) was 56 wt %, MAF coal in runs with subbituminous coal from the Amax Belle Ayr mine. Product endpoint is well below 371/sup 0/C (700/sup 0/F), the temperature above which coal distillates appear to become genotoxic; and the product was shown to be free of mutagenic activity in the Ames test. Chemical analyses showed both the < 270/sup 0/C (< 518/sup 0/F) and the < 310/sup 0/C (< 590/sup 0/F) distillates to be essentially devoid of several reference polycyclic compounds known to be carcinogenic in laboratory animals. Tests for tumorigenic or carcinogenic activity were not carried out on these materials. However, a comparison of chemical data from the Merriam heavy distillate samples with data on the other SRC-II distillates where carcinogenesis or tumorigenesis data is available leads to the expectation that < 371/sup 0/C (< 700/sup 0/F) materials from the Merriam Laboratory will have greatly reduced tumorigenic and carcinogenic activity in skin painting tests. Other studies suggest the product should be more readily upgraded than full-range (C/sub 5/-900/sup 0/F) distillate.

  14. Cryogenic distillation: a fuel enrichment system for near-term tokamak-type D-T fusion reactors

    International Nuclear Information System (INIS)

    Misra, B.; Davis, J.F.

    1980-02-01

    The successful operation and economic viability of deuterium-tritium- (D-T-) fueled tokamak-type commercial power fusion reactors will depend to a large extent on the development of reliable tritium-containment and fuel-recycle systems. Of the many operating steps in the fuel recycle scheme, separation or enrichment of the isotropic species of hydrogen by cryogenic distillation is one of the most important. A parametric investigation was carried out to study the effects of the various operating conditions and the composition of the spent fuel on the degree of separation. A computer program was developed for the design and analysis of a system of interconnected distillation columns for isotopic separation such that the requirements of near-term D-T-fueled reactors are met. The analytical results show that a distillation cascade consisting of four columns is capable of reprocessing spent fuel varying over a wide range of compositions to yield reinjection-grade fuel with essentially unlimited D/T ratio

  15. A reactive distillation process for the treatment of LiCl-KCl eutectic waste salt containing rare earth chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Eun, H.C., E-mail: ehc2004@kaeri.re.kr; Choi, J.H.; Kim, N.Y.; Lee, T.K.; Han, S.Y.; Lee, K.R.; Park, H.S.; Ahn, D.H.

    2016-11-15

    The pyrochemical process, which recovers useful resources (U/TRU metals) from used nuclear fuel using an electrochemical method, generates LiCl-KCl eutectic waste salt containing radioactive rare earth chlorides (RECl{sub 3}). It is necessary to develop a simple process for the treatment of LiCl-KCl eutectic waste salt in a hot-cell facility. For this reason, a reactive distillation process using a chemical agent was achieved as a method to separate rare earths from the LiCl-KCl waste salt. Before conducting the reactive distillation, thermodynamic equilibrium behaviors of the reactions between rare earth (Nd, La, Ce, Pr) chlorides and the chemical agent (K{sub 2}CO{sub 3}) were predicted using software. The addition of the chemical agent was determined to separate the rare earth chlorides into an oxide form using these equilibrium results. In the reactive distillation test, the rare earth chlorides in LiCl-KCl eutectic salt were decontaminated at a decontamination factor (DF) of more than 5000, and were mainly converted into oxide (Nd{sub 2}O{sub 3}, CeO{sub 2}, La{sub 2}O{sub 3}, Pr{sub 2}O{sub 3}) or oxychloride (LaOCl, PrOCl) forms. The LiCl-KCl was purified into a form with a very low concentration (<1 ppm) for the rare earth chlorides.

  16. Direct Contact Membrane Distillation of Dairy Process Streams

    Directory of Open Access Journals (Sweden)

    Mike Weeks

    2011-01-01

    Full Text Available Membrane distillation (MD was applied for the concentration of a range of dairy streams, such as whole milk, skim milk and whey. MD of a pure lactose solution was also investigated. Direct contact MD (DCMD mode experiments were carried out in continuous concentration mode, keeping the warm feed/retentate and cold permeate stream temperatures at 54 °C and 5 °C respectively. Performance in terms of flux and retention was assessed. The flux was found to decrease with an increase of dry-matter concentration in the feed. Retention of dissolved solids was found to be close to 100% and independent of the dry-matter concentration in the feed. Fourier Transform Infrared Spectroscopy (FTIR of the fouled membranes confirms organics being present in the fouling layer.

  17. Method and arrangement of distillation of shales

    Energy Technology Data Exchange (ETDEWEB)

    Bergh, S V

    1920-03-29

    A method is given of distilling shale and other bituminous materials utilizing the heat from the combustion of the residue, possibly with additional heat from other fuels. It is characterized by the shale, which is arranged in layers, being first submitted to a process of distillation utilizing the heat mentioned, and at the same time recovering the products of distillation, and second the shale being burned without disturbing the layers to any appreciable extent. The patent has 16 more claims.

  18. Dehydration of ethanol with salt extractive distillation-a comparative analysis between processes with salt recovery

    Energy Technology Data Exchange (ETDEWEB)

    Ligero, E.L.; Ravagnani, T.M.K. [Departamento de Engenharia de Sistemas Qumicos, Faculdade de Engenharia Qumica, Universidade Estadual de Campinas, Campinas, Sao Paulo (Brazil)

    2003-07-01

    Anhydrous ethanol can be obtained from a dilute aqueous solution of ethanol via extractive distillation with potassium acetate. Two process flowsheets with salt recovery were proposed. In the first, dilute ethanol is directly fed to a salt extractive distillation column and, after that, the salt is recovered in a multiple effect evaporator followed by a spray dryer. In the second, the concentrated ethanol from conventional distillation is fed to a salt extractive distillation column. In this case, salt is recovered in a single spray dryer. In both processes the recovered salt is recycled to be used in the extractive distillation column. Every component of each process was rigorously modeled and its behavior was simulated for a wide range of operating conditions. A global simulation was then carried out. The results show that the second process is more interesting in terms of energy consumption than the first. Furthermore, it would be easier to implement changes on existing benzene extractive anhydrous ethanol plants to convert them to more ecologically attractive concentrated ethanol feed processes. (author)

  19. Modeling of steam distillation mechanism during steam injection process using artificial intelligence.

    Science.gov (United States)

    Daryasafar, Amin; Ahadi, Arash; Kharrat, Riyaz

    2014-01-01

    Steam distillation as one of the important mechanisms has a great role in oil recovery in thermal methods and so it is important to simulate this process experimentally and theoretically. In this work, the simulation of steam distillation is performed on sixteen sets of crude oil data found in the literature. Artificial intelligence (AI) tools such as artificial neural network (ANN) and also adaptive neurofuzzy interference system (ANFIS) are used in this study as effective methods to simulate the distillate recoveries of these sets of data. Thirteen sets of data were used to train the models and three sets were used to test the models. The developed models are highly compatible with respect to input oil properties and can predict the distillate yield with minimum entry. For showing the performance of the proposed models, simulation of steam distillation is also done using modified Peng-Robinson equation of state. Comparison between the calculated distillates by ANFIS and neural network models and also equation of state-based method indicates that the errors of the ANFIS model for training data and test data sets are lower than those of other methods.

  20. Modeling of Steam Distillation Mechanism during Steam Injection Process Using Artificial Intelligence

    Science.gov (United States)

    Ahadi, Arash; Kharrat, Riyaz

    2014-01-01

    Steam distillation as one of the important mechanisms has a great role in oil recovery in thermal methods and so it is important to simulate this process experimentally and theoretically. In this work, the simulation of steam distillation is performed on sixteen sets of crude oil data found in the literature. Artificial intelligence (AI) tools such as artificial neural network (ANN) and also adaptive neurofuzzy interference system (ANFIS) are used in this study as effective methods to simulate the distillate recoveries of these sets of data. Thirteen sets of data were used to train the models and three sets were used to test the models. The developed models are highly compatible with respect to input oil properties and can predict the distillate yield with minimum entry. For showing the performance of the proposed models, simulation of steam distillation is also done using modified Peng-Robinson equation of state. Comparison between the calculated distillates by ANFIS and neural network models and also equation of state-based method indicates that the errors of the ANFIS model for training data and test data sets are lower than those of other methods. PMID:24883365

  1. Continuous esterification for biodiesel production from palm fatty acid distillate using economical process

    Energy Technology Data Exchange (ETDEWEB)

    Chongkhong, S.; Tongurai, C.; Chetpattananondh, P. [Department of Chemical Engineering, Faculty of Engineering, Prince of Songkla University, Hat-Yai, Songkhla 90112 (Thailand)

    2009-04-15

    An overflow system for continuous esterification of palm fatty acid distillate (PFAD) using an economical process was developed using a continuous stirred tank reactor (CSTR). Continuous production compared to batch production at the same condition had higher product purity. The optimum condition for the esterification process was a 8.8:1:0.05 molar ratio of methanol to PFAD to sulfuric acid catalyst, 60 min of residence time at 75 C under its own pressure. The free fatty acid (FFA) content in the PFAD was reduced from 93 to less than 1.5%wt by optimum esterification. The esterified product had to be neutralized with 10.24%wt of 3 M sodium hydroxide in water solution at a reaction temperature of 80 C for 20 min to reduce the residual FFA and glycerides. The components and properties of fatty acid methyl ester (FAME) could meet the standard requirements for biodiesel fuel. Eventually the production costs were calculated to disclose its commercialization. (author)

  2. Recovery of Navy distillate fuel from reclaimed product. Volume II. Literature review

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, D.W.; Whisman, M.L.

    1984-11-01

    In an effort to assist the Navy to better utilize its waste hydrocarbons, NIPER, with support from the US Department of Energy, is conducting research designed to ultimately develop a practical technique for converting Reclaimed Product (RP) into specification Naval Distillate Fuel (F-76). This first phase of the project was focused on reviewing the literature and available information from equipment manufacturers. The literature survey has been carefully culled for methodology applicable to the conversion of RP into diesel fuel suitable for Navy use. Based upon the results of this study, a second phase has been developed and outlined in which experiments will be performed to determine the most practical recycling technologies. It is realized that the final selection of one particular technology may be site-specific due to vast differences in RP volume and available facilities. A final phase, if funded, would involve full-scale testing of one of the recommended techniques at a refueling depot. The Phase I investigations are published in two volumes. Volume 1, Technical Discussion, includes the narrative and Appendices I and II. Appendix III, a detailed Literature Review, includes both a narrative portion and an annotated bibliography containing about 800 references and abstracts. This appendix, because of its volume, has been published separately as Volume 2.

  3. Recovery of Navy distillate fuel from reclaimed product. Volume I. Technical discussion

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, D.W.; Whisman, M.L.

    1984-11-01

    In an effort to assist the Navy to better utilize its waste hydrocarbons, NIPER, with support from the US Department of Energy, is conducting research designed to ultimately develop a practical technique for converting Reclaimed Product (RP) into specification Naval Distillate Fuel (F-76). The first phase of the project was focused on reviewing the literature and available information from equipment manufacturers. The literature survey has been carefully culled for methodology applicable to the conversion of RP into diesel fuel suitable for Navy use. Based upon the results of this study, a second phase has been developed and outlined in which experiments will be performed to determine the most practical recycling technologies. It is realized that the final selection of one particular technology may be site-specific due to vast differences in RP volume and available facilities. A final phase, if funded, would involve full-scale testing of one of the recommended techniques at a refueling depot. The Phase I investigations are published in two volumes. Volume 1, Technical Discussion, includes the narrative and Appendices I and II. Appendix III, a detailed Literature Review, includes both a narrative portion and an annotated bibliography containing about 800 referenvces and abstracts. This appendix, because of its volume, has been published separately as Volume 2. 18 figures, 4 tables.

  4. Techno-economic assessment of hybrid extraction and distillation processes for furfural production from lignocellulosic biomass.

    Science.gov (United States)

    Nhien, Le Cao; Long, Nguyen Van Duc; Kim, Sangyong; Lee, Moonyong

    2017-01-01

    Lignocellulosic biomass is one of the most promising alternatives for replacing mineral resources to overcome global warming, which has become the most important environmental issue in recent years. Furfural was listed by the National Renewable Energy Laboratory as one of the top 30 potential chemicals arising from biomass. However, the current production of furfural is energy intensive and uses inefficient technology. Thus, a hybrid purification process that combines extraction and distillation to produce furfural from lignocellulosic biomass was considered and investigated in detail to improve the process efficiency. This effective hybrid process depends on the extracting solvent, which was selected based on a comprehensive procedure that ranged from solvent screening to complete process design. Various solvents were first evaluated in terms of their extraction ability. Then, the most promising solvents were selected to study the separation feasibility. Eventually, processes that used the three best solvents (toluene, benzene, and butyl chloride) were designed and optimized in detail using Aspen Plus. Sustainability analysis was performed to evaluate these processes in terms of their energy requirements, total annual costs (TAC), and carbon dioxide (CO 2 ) emissions. The results showed that butyl chloride was the most suitable solvent for the hybrid furfural process because it could save 44.7% of the TAC while reducing the CO 2 emissions by 45.5% compared to the toluene process. In comparison with the traditional purification process using distillation, this suggested hybrid extraction/distillation process can save up to 19.2% of the TAC and reduce 58.3% total annual CO 2 emissions. Furthermore, a sensitivity analysis of the feed composition and its effect on the performance of the proposed hybrid system was conducted. Butyl chloride was found to be the most suitable solvent for the hybrid extraction/distillation process of furfural production. The proposed

  5. New Design Methods And Algorithms For High Energy-Efficient And Low-cost Distillation Processes

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, Rakesh [Purdue Univ., West Lafayette, IN (United States)

    2013-11-21

    This project sought and successfully answered two big challenges facing the creation of low-energy, cost-effective, zeotropic multi-component distillation processes: first, identification of an efficient search space that includes all the useful distillation configurations and no undesired configurations; second, development of an algorithm to search the space efficiently and generate an array of low-energy options for industrial multi-component mixtures. Such mixtures are found in large-scale chemical and petroleum plants. Commercialization of our results was addressed by building a user interface allowing practical application of our methods for industrial problems by anyone with basic knowledge of distillation for a given problem. We also provided our algorithm to a major U.S. Chemical Company for use by the practitioners. The successful execution of this program has provided methods and algorithms at the disposal of process engineers to readily generate low-energy solutions for a large class of multicomponent distillation problems in a typical chemical and petrochemical plant. In a petrochemical complex, the distillation trains within crude oil processing, hydrotreating units containing alkylation, isomerization, reformer, LPG (liquefied petroleum gas) and NGL (natural gas liquids) processing units can benefit from our results. Effluents from naphtha crackers and ethane-propane crackers typically contain mixtures of methane, ethylene, ethane, propylene, propane, butane and heavier hydrocarbons. We have shown that our systematic search method with a more complete search space, along with the optimization algorithm, has a potential to yield low-energy distillation configurations for all such applications with energy savings up to 50%.

  6. Catalytic Hydrotreatment of Light Distillates Obtained from Bio-Oil for Use in Oxygenated Liquid Fuels

    Directory of Open Access Journals (Sweden)

    Xianwei Zheng

    2015-06-01

    Full Text Available Bio-oil can be fractionated into three parts according to their boiling points. This research reported that light distillates could be converted into oxygenated liquid fuels through a two-stage hydrotreatment approach, using a Pd/C catalyst. The main goal of the first hydrotreatment stage was to stabilize the high active components, which contained carbon–carbon double bonds and aldehyde groups. The second hydrotreatment stage aimed to saturate the components with benzene rings and keto groups, resulting in saturated oxygenated compounds. The H/Ceff ratio was improved greatly after the two-stage hydrotreatment, increasing from 0.51 (in the reactant to 1.67 (in the final products. The high heating value of the final products was 31.63 MJ/kg. After the two-stage hydrotreatment, the main products were C5–C9 alcohols, which were tested via gas chromatography–mass spectrometry. The products could be blended with gasoline directly. Based on the experiments regarding the hydrogenated model compounds, a reaction schematic for the two-stage hydrotreatment was created. Moreover, the bio-oil hydrotreatment kinetics were investigated. The order of the hydrotreatment reaction was 2.0, and the apparent activation energy (Ea was 57.29 KJ/mol.

  7. Process for carbonizing, distilling, and vaporizing of coal from any source

    Energy Technology Data Exchange (ETDEWEB)

    Limberg, T

    1916-10-15

    A process is described for carbonizing, distilling, and vaporizing coal from any source, especially of humid and bituminous coals as well as bituminous shale and peat for recovering an especially light tar with a large aliphatic hydrocarbon content that is characterized in that it is exposed to internal heating under vacuum at a temperature below dull-red heat. The distillation products of the material are washed away by the heating gases for the whole length of the furnace and are removed immediately and carried into separate condensers.

  8. Efficient ethanol recovery from fermentation broths with integrated distillation-vapor permeation hybrid process

    Science.gov (United States)

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative hybrid process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane s...

  9. Conceptual design of heterogeneous azeotropic distillation process for ethanol dehydration using 1-butanol as entrainer

    Directory of Open Access Journals (Sweden)

    Paritta Prayoonyong

    2014-12-01

    Full Text Available The synthesis of a heterogeneous azeotropic distillation process for ethanol dehydration using 1-butanol as entrainer is presented. The residue curve map of the ethanol/water/1-butanol mixture is computationally generated using non-random twoliquid thermodynamic model. It is found that 1-butanol leads to a residue curve map topological structure different from that generated by typical entrainers used in ethanol dehydration. Synthesised by residue curve map analysis, the distillation flowsheet for ethanol dehydration by 1-butanol comprises a double-feed column integrated with an overhead decanter and a simple column. The double-feed column is used to recover water as the top product, whereas the simple column is used for recovering ethanol and 1-butanol. The separation feasibility and the economically near-optimal designs of distillation columns in the flowsheet are evaluated and identified by using the boundary value design method. The distillation flowsheet using 1-butanol is compared with the conventional process using benzene as entrainer. Based on their total annualised costs, the ethanol dehydration process using 1-butanol is less economically attractive than the process using benzene. However, 1-butanol is less toxic than benzene.

  10. Processing Maple Syrup with a Vapor Compression Distiller: An Economic Analysis

    Science.gov (United States)

    Lawrence D. Garrett

    1977-01-01

    A test of vapor compression distillers for processing maple syrup revealed that: (1) vapor compression equipment tested evaporated 1 pound of water with .047 pounds of steam equivalent (electrical energy); open-pan evaporators of similar capacity required 1.5 pounds of steam equivalent (oil energy) to produce 1 pound of water; (2) vapor compression evaporation produced...

  11. Modeling of air-gap membrane distillation process: A theoretical and experimental study

    KAUST Repository

    Alsaadi, Ahmad Salem; Ghaffour, NorEddine; Li, Junde; Gray, Stephen R.; Francis, Lijo; Maab, Husnul; Amy, Gary L.

    2013-01-01

    A one dimensional (1-D) air gap membrane distillation (AGMD) model for flat sheet type modules has been developed. This model is based on mathematical equations that describe the heat and mass transfer mechanisms of a single-stage AGMD process

  12. Some design aspects of multistage flash distillation process

    International Nuclear Information System (INIS)

    Ahmad, Mohammad.

    1975-01-01

    The purpose of this paper is to examine the effect of the design variables of multistage flash (MSF) process on the performance and/or the cost of the desalting plant, and to establish certain design trends

  13. Mini-channel heat exchangers for industrial distillation processes

    NARCIS (Netherlands)

    Van de Bor, D.M.

    2014-01-01

    In this thesis the technical and economic performance of compression-resorption heat pumps has been investigated. The main objective of this thesis was to improve the performance and reduce the investment costs of compression-resorption heat pumps applied in process industry. A model that is able to

  14. Comparative TEA for Indirect Liquefaction Pathways to Distillate-Range Fuels via Oxygenated Intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Eric; Snowden-Swan, Lesley J.; Talmadge, Michael; Dutta, Abhijit; Jones, Susanne; Ramasamy, Karthikeyan; Gray, Michael; Dagle, Robert; Padmaperuma, Asanga; Gerber, Mark; Sahir, Asad; Tao, Ling; Zhang, Yanan

    2017-03-03

    This paper presents a comparative techno-economic analysis of five conversion pathways from biomass to gasoline-, jet-, and diesel-range hydrocarbons via indirect liquefaction with specific focus on pathways utilizing oxygenated intermediates (derived either via thermochemical or biochemical conversion steps). The four emerging pathways of interest are compared with one conventional pathway (Fischer-Tropsch) for the production of the hydrocarbon blendstocks. The processing steps of the four emerging pathways include: biomass-to-syngas via indirect gasification, gas cleanup, conversion of syngas to alcohols/oxygenates, followed by conversion of alcohols/oxygenates to hydrocarbon blendstocks via dehydration, oligomerization, and hydrogenation. We show that the emerging pathways via oxygenated intermediates have the potential to be cost competitive with the conventional Fischer-Tropsch process. The evaluated pathways and the benchmark process generally exhibit similar fuel yields and carbon conversion efficiencies. The resulting minimum fuel selling prices are comparable to the benchmark at approximately $3.60 per gallon-gasoline equivalent, with potential for two new pathways to be more economically competitive. Additionally, the coproduct values can play an important role in the economics of the processes with oxygenated intermediates derived via syngas fermentation. Major cost drivers for the integrated processes are tied to achievable fuel yields and conversion efficiency of the intermediate steps, i.e., the production of oxygenates/alcohols from syngas and the conversion of oxygenates/alcohols to hydrocarbon fuels.

  15. MODELING AND SIMULATION OF A BENZENE RECOVERY PROCESS BY EXTRACTIVE DISTILLATION

    Directory of Open Access Journals (Sweden)

    L. B. Brondani

    2015-03-01

    Full Text Available Abstract Extractive distillation processes with N-formylmorpholine (NFM are used industrially to separate benzene from six carbon non-aromatics. In the process studied in this work, the stream of interest consists of nearly 20 different hydrocarbons. A new set of NRTL parameters was correlated based on literature experimental data. Both vapor-liquid equilibrium as well as infinite dilution activity coefficient data were taken into account; missing parameters were estimated with the UNIFAC group contribution model. The extractive distillation process was simulated using ASPEN Plus®. Very good agreement with plant data was obtained. The influences of the main operational parameters, solvent to feed ratio and solvent temperature, were studied. Theoretical optimum operating values were obtained and can be implemented to improve the industrial process. Extreme static sensitivity with respect to reboiler heat was observed, indicating that this can be the source of instabilities.

  16. Process for continuous distillation of bituminous minerals, etc

    Energy Technology Data Exchange (ETDEWEB)

    Marie, J J

    1923-01-26

    An apparatus is described for operating the process, in which the petroleum-bearing asphaltic or bituminous minerals are charged to the upper part of a vertical furnace with a lining of refractory material and varying sections; air is necessary for combustion and inert gas is necessary to regulate this combustion and to remove the hydrocarbons being blown into the lower part of the furnace; the hydrocarbons in vapor state or gases being removed are received in the condensers where they are deposited in the liquid state; the liquid from the condensers is next centrifuged to give oils essentially like natural petroleum, leaving as residue solid hydrocarbons and entrained mineral; the minerals treated are removed by gravity at the bottom of the furnace.

  17. High performance liquid chromatographic hydrocarbon group-type analyses of mid-distillates employing fuel-derived fractions as standards

    Science.gov (United States)

    Seng, G. T.; Otterson, D. A.

    1983-01-01

    Two high performance liquid chromatographic (HPLC) methods have been developed for the determination of saturates, olefins and aromatics in petroleum and shale derived mid-distillate fuels. In one method the fuel to be analyzed is reacted with sulfuric acid, to remove a substantial portion of the aromatics, which provides a reacted fuel fraction for use in group type quantitation. The second involves the removal of a substantial portion of the saturates fraction from the HPLC system to permit the determination of olefin concentrations as low as 0.3 volume percent, and to improve the accuracy and precision of olefins determinations. Each method was evaluated using model compound mixtures and real fuel samples.

  18. Compound process fuel cycle concept

    International Nuclear Information System (INIS)

    Ikegami, Tetsuo

    2005-01-01

    Mass flow of light water reactor spent fuel for a newly proposed nuclear fuel cycle concept 'Compound Process Fuel Cycle' has been studied in order to assess the capacity of the concept for accepting light water reactor spent fuels, taking an example for boiling water reactor mixed oxide spent fuel of 60 GWd/t burn-up and for a fast reactor core of 3 GW thermal output. The acceptable heavy metal of boiling water reactor mixed oxide spent fuel is about 3.7 t/y/reactor while the burn-up of the recycled fuel is about 160 GWd/t and about 1.6 t/y reactor with the recycled fuel burn-up of about 300 GWd/t, in the case of 2 times recycle and 4 times recycle respectively. The compound process fuel cycle concept has such flexibility that it can accept so much light water reactor spent fuels as to suppress the light water reactor spent fuel pile-up if not so high fuel burn-up is expected, and can aim at high fuel burn-up if the light water reactor spent fuel pile-up is not so much. Following distinctive features of the concept have also been revealed. A sort of ideal utilization of boiling water reactor mixed oxide spent fuel might be achieved through this concept, since both plutonium and minor actinide reach equilibrium state beyond 2 times recycle. Changes of the reactivity coefficients during recycles are mild, giving roughly same level of reactivity coefficients as the conventional large scale fast breeder core. Both the radio-activity and the heat generation after 4 year cooling and after 4 times recycle are less than 2.5 times of those of the pre recycle fuel. (author)

  19. Development of a vacuum distillation process for Pu pyro-chemistry spent salts treatment

    International Nuclear Information System (INIS)

    Bourges, G.; Lambertin, D.; Baudrot, C.; Pescayre, L.; Thiebaut, C.

    2004-01-01

    The pyrochemical purification of plutonium has generated spent salts, which are disposed in nuclear facility. To reduce stored quantities, the development of a pyrochemical treatment is in progress. The feed salt, typically composed of various Pu and Am species spread into monovalent or divalent chloride matrix, is first oxidized to convert the actinides into oxides. Then the chlorides are separated from the actinide oxides by vacuum distillation. Temperatures higher than 750 deg C for mono-chloride salts mixture NaCl/KCl and higher than 1100 deg C for divalent CaCl 2 base salts, are required to produce an industrial flow of vaporization. Inactive qualification of the process for NaCl/KCl base salt has been carried with lanthanide surrogates. Then, a pilot equipment, called Distillator has been designed and built for production-scale distillation of NaCl/KCl and CaCl 2 oxidized plutonium salts. Industrial flows of vaporization have been obtained with this pilot equipment: about 4 g/cm 2 /h for NaCl/KCl at 800 - 900 deg C and 1 Pa, and more than 1.5 g/cm 2 /h for CaCl 2 base salts between 1000 - 1200 deg C at 0.1 Pa. The last step will be the integration of the Distillator into a glove box. (authors)

  20. Vacuum distillation for the separation of LiCl-KCl eutectic salt and cadmium in pyro process

    International Nuclear Information System (INIS)

    Kwon, S. W.; Park, K. M.; Lee, S. J.; Park, S. B.; Woo, M. S.; Kim, K. R.; Kim, J. G.; Ahn, D. H.; Lee, H. S.

    2010-10-01

    Electrorefining is a key step in pyro processing. Electrorefining process is generally composed of two recovery steps- a deposit of uranium onto a solid cathode (electrorefining) and then the recovery of the remaining uranium and Tru (Transuranic) elements simultaneously by a liquid cadmium cathode (electrowinning). In this study, distillation experiments of a LiCl-KCl eutectic salt and cadmium metal were carried out to examine the distillation behaviors for the development of the electrorefining and the electrowinning processes. The experimental set-up was composed of a distillation tower with an evaporator and a condenser, vacuum pump, control unit, and an off gas treatment system. The solid-liquid separation prior to distillation of the LiCl-KCl eutectic salt was proposed and found to be feasible for the reduction of the burden of the distillation process. The LiCl-KCl eutectic salt was successfully distilled after the liquid salt separation. Distillation experiments for cadmium metal were also carried out. The apparent evaporation rates of LiCl-KCl eutectic salt and cadmium increased with an increasing temperature. The evaporation behaviors of cadmium metal and cadmium-cerium alloy were compared. Cadmium in the alloy was successfully distilled and separated from cerium. The evaporation rate of cadmium in the alloy was lower than that of cadmium metal. The low evaporation rate of the alloy was probably caused by the formation of an intermetallic compound and the residual salt during the preparation of the alloy. Therefore, the distillation temperature for the distillation of the liquid cathode should be higher than the distillation of cadmium metal. The measured evaporation rates of the eutectic salt and cadmium were compared with the values calculated by a relation based on the kinetics of gases. The theoretical values of the evaporation rate calculated by the Hertz-Langmuir relation were higher than the experimental values. The deviations were compensated for

  1. Worldwide Distillate Fuel Quality and Engine Technology Through the Year 2010

    National Research Council Canada - National Science Library

    Westbrook, S

    2000-01-01

    This report gives the results of a program to assess the potential changes in future petroleum refining technology and the potential changes in the properties of future commercial, distillate, marine...

  2. Distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    Bennie, G

    1875-11-12

    For distilling shale, or other oil-yielding minerals, two or more, preferably four, vertical retorts are mounted in a brickwork oven and are heated in the first place by coal, coke or other fuel on a grate. The spent material from the retorts is discharged from one or more in turn on to the grate and is used, together with additional fuel if necessary, to maintain the heat of the retorts. The retorts are charged by means of hoppers and lids and are discharged by means of movable bottoms actuated by rods and levers acting in combination with outlet valves. The retorts are tapered from the bottom upwards.

  3. Aroma Stripping under various Forms of Membrane Distillation Processes: Experiments and modeling

    DEFF Research Database (Denmark)

    Jonsson, Gunnar Eigil

    the large different in permeate flux and concentration factor that was observed for the different MD configurations. This is highly related to the heat and mass transfer resistances in the membrane as well as in the boundary layers adjacent to the membrane surface and how the driving force develops along......Concentration of fruit juices by membrane distillation is an interesting process as it can be done at low temperature giving a gentle concentration process with little deterioration of the juices. Since the juices contains many different aroma compounds with a wide range of chemical properties...... such as volatility, activity coefficient and vapor pressure, it is important to know how these aroma compounds will eventually pass through the membrane. Experiments have been made on an aroma model solution and on black currant juice in a lab scale membrane distillation set up which can be operated in various types...

  4. Catalytic processes for cleaner fuels

    International Nuclear Information System (INIS)

    Catani, R.; Marchionna, M.; Rossini, S.

    1999-01-01

    More stringent limitations on vehicle emissions require different measurement: fuel reformulation is one of the most important and is calling for a noticeable impact on refinery assets. Composition rangers of the future fuels have been defined on a time scale. In this scenario the evolution of catalytic technologies becomes a fundamental tool for allowing refinery to reach the fixed-by-law targets. In this paper, the refinery process options to meet each specific requirements of reformulated fuels are surveyed [it

  5. Conceptual design of heterogeneous azeotropic distillation process for ethanol dehydration using 1-butanol as entrainer

    OpenAIRE

    Paritta Prayoonyong

    2014-01-01

    The synthesis of a heterogeneous azeotropic distillation process for ethanol dehydration using 1-butanol as entrainer is presented. The residue curve map of the ethanol/water/1-butanol mixture is computationally generated using non-random twoliquid thermodynamic model. It is found that 1-butanol leads to a residue curve map topological structure different from that generated by typical entrainers used in ethanol dehydration. Synthesis...

  6. Separation of ethanol and water by extractive distillation with salt and solvent as entrainer: process simulation

    OpenAIRE

    Gil, I. D.; Uyazán, A. M.; Aguilar, J. L.; Rodríguez, G.; Caicedo, L. A.

    2008-01-01

    The aim of this work is to simulate and analyze an extractive distillation process for azeotropic ethanol dehydration with ethylene glycol and calcium chloride mixture as entrainer. The work was developed with Aspen Plus® simulator version 11.1. Calculation of the activity coefficients employed to describe vapor liquid equilibrium of ethanol - water - ethylene glycol - calcium chloride system was done with the NRTL-E equation and they were validated with experimental data. The dehydration pro...

  7. Distillation of LiCl from the LiCl-Li2O molten salt of the electrolytic reduction process

    International Nuclear Information System (INIS)

    Kim, I.S.; Oh, S.C.; Im, H.S.; Hur, J.M.; Lee, H.S.

    2013-01-01

    Electrolytic reduction of the uranium oxide in LiCl-Li 2 O molten salt for the treatment of spent nuclear fuel requires the separation of the residual salt from the reduced metal product, which contains about 20 wt% salt. In order to separate the residual salt and reuse it in the electrolytic reduction, a vacuum distillation process was developed. Lab-scale distillation equipment was designed and installed in an argon atmosphere glove box. The equipment consisted of an evaporator in which the reduced metal product was contained and exposed to a high temperature and reduced pressure; a receiver; and a vertically oriented condenser that operated at a temperature below the melting point of lithium chloride. We performed experiments with LiCl-Li 2 O salt to evaluate the evaporation rate of LiCl salt and varied the operating temperature to discern its effect on the behavior of salt evaporation. Complete removal of the LiCl salt from the evaporator was accomplished by reducing the internal pressure to <100 mTorr and heating to 900 deg C. We achieved evaporation efficiency as high as 100 %. (author)

  8. Attainability and minimum energy of single-stage membrane and membrane/distillation hybrid processes

    KAUST Repository

    Alshehri, Ali

    2014-12-01

    As an energy-efficient separation method, membrane technology has attracted more and more attentions in many challenging separation processes. The attainability and the energy consumption of a membrane process are the two basic fundamental questions that need to be answered. This report aims to use process simulations to find: (1) at what conditions a single-stage membrane process can meet the separation task that is defined by product purity and recovery ratio and (2) what are the most important parameters that determine the energy consumption. To perform a certain separation task, it was found that both membrane selectivity and pressure ratio exhibit a minimum value that is defined only by product purity and recovery ratio. The membrane/distillation hybrid system was used to study the energy consumption. A shortcut method was developed to calculate the minimum practical separation energy (MPSE) of the membrane process and the distillation process. It was found that the MPSE of the hybrid system is only determined by the membrane selectivity and the applied transmembrane pressure ratio in three stages. At the first stage when selectivity is low, the membrane process is not competitive to the distillation process. Adding a membrane unit to a distillation tower will not help in reducing energy. At the second medium selectivity stage, the membrane/distillation hybrid system can help reduce the energy consumption, and the higher the membrane selectivity, the lower is the energy. The energy conservation is further improved as pressure ratio increases. At the third stage when both selectivity and pressure ratio are high, the hybrid system will change to a single-stage membrane unit and this change will cause significant reduction in energy consumption. The energy at this stage keeps decreasing with selectivity at slow rate, but slightly increases with pressure ratio. Overall, the higher the membrane selectivity, the more the energy is saved. Therefore, the two

  9. High-temperature distillation and consolidation of U–Zr cathode product from molten salt electrorefining of simulated metallic fuel

    International Nuclear Information System (INIS)

    Iizuka, Masatoshi; Akagi, Masaaki; Koyama, Tadafumi

    2014-01-01

    High-temperature distillation experiments were performed using U–Zr cathode products of various compositions to obtain knowledge on suitable operation conditions and equipment design such as the container material. The LiCl–KCl–UCl 3 electrolyte adhering to the U–Zr cathode products was almost completely vaporized at 1273–1573 K, under pressure of 10–300 Pa. Massive ingots were obtained from the remaining cathode products by heating them at 1573–1673 K. Three different phases were identified in a distillation product of a higher Zr content. A U-rich bulk (3.9 wt% Zr) and a deposit of a relatively low Zr content (17.2 wt% Zr) were considered to be formed during the cooling process of the distillation product. Another Zr-rich deposit (64.7 wt% Zr), which might cause the inhomogeneity of product ingots, was expected to result from Zr-rich spots that originally existed in the cathode product. The Cl content in the cathode product was decreased by distillation to less than 1/200 of that after electrorefining, while it was markedly larger at a higher Zr concentration. To limit the amount of Zr-rich deposit and the Cl content, the amount of Zr in the distillation product should be controlled to a sufficiently low level by optimization of the operating procedures and conditions in the electrorefining and distillation steps. The zirconia coating material developed in this study showed superior performance in inhibiting reaction between the melted U–Zr alloy melt and the graphite crucible and also in the easy release of the U–Zr ingot from the crucible

  10. Equipment and obtention process of 131I by dry distillation starting from TeO2

    International Nuclear Information System (INIS)

    Alanis M, J.

    2000-08-01

    The present invention refers to an equipment and process for the obtaining of 131 I by dry distillation starting from TeO 2 that has three interconnected systems, the manipulation system, the electric system and the distillation system, the combination of these systems, allows to improve the yield and the separation of the 131 I during the distillation process, since inside the electric system it is an oven that has a special design based on a temperature gradient. The more relevant aspects of the equipment its are the design of each one of its components that give as result the effectiveness of the production of 131 I in routinary form (industrial) whose final product can end up reaching a radiochemical purity up to 99% and a radionuclide purity of approximately 100%. The object of this invention is to provide a distillation equipment different to those that at the moment exist, thanks to its novel internal construction whose main characteristics already gather advantages on those existent. The reaction of obtaining of the TeO 2 , the development of the technique and studies of TeO 2 sintering and the irradiation experiments, its contributed to characterize with more precision the 'new process of obtaining of 131 I by dry via starting from the Te' developed in the ININ, and in this way it was achieved a more pure product, more economic, with less risks, from a point of view of Radiological Safety and mainly that it avoids the import to the country and it makes to self-sufficient Mexico in the production of 131 I. (Author)

  11. An intensified esterification process of palm oil fatty acid distillate catalyzed by delipidated rice bran lipase.

    Science.gov (United States)

    Chong, Fui Chin; Tey, Beng Ti; Dom, Zanariah Mohd; Ibrahim, Nordin; Rahman, Russly Abd; Ling, Tau Chuan

    2006-09-07

    An intensified esterification process was operated by circulating 10 l of reaction mixtures, consisting of palm oil fatty acid distillate (PFAD) and glycerol in hexane, through a packed-bed reactor (PBR) filled with 10 kg of delipidated rice bran lipase (RBL). The influence of the process parameters, such as reaction temperature and type of water-removal agent, on the performance of this intensified esterification process were investigated. The highest degree of esterification (61%) was achieved at a reaction temperature of 65 masculineC, using silica gels as the water-removal agent. Thin-layer chromatography (TLC) analysis showed that the major composition of the esterified product was diacylglycerol.

  12. Integrated forward osmosis-membrane distillation process for human urine treatment.

    Science.gov (United States)

    Liu, Qianliang; Liu, Caihong; Zhao, Lei; Ma, Weichao; Liu, Huiling; Ma, Jun

    2016-03-15

    This study demonstrated a forward osmosis-membrane distillation (FO-MD) hybrid system for real human urine treatment. A series of NaCl solutions at different concentrations were adopted for draw solutions in FO process, which were also the feed solutions of MD process. To establish a stable and continuous integrated FO-MD system, individual FO process with different NaCl concentrations and individual direct contact membrane distillation (DCMD) process with different feed temperatures were firstly investigated separately. Four stable equilibrium conditions were obtained from matching the water transfer rates of individual FO and MD processes. It was found that the integrated system is stable and sustainable when the water transfer rate of FO subsystem is equal to that of MD subsystem. The rejections to main contaminants in human urine were also investigated. Although individual FO process had relatively high rejection to Total Organic Carbon (TOC), Total Nitrogen (TN) and Ammonium Nitrogen (NH4(+)-N) in human urine, these contaminants could also accumulate in draw solution after long term performance. The MD process provided an effective rejection to contaminants in draw solution after FO process and the integrated system revealed nearly complete rejection to TOC, TN and NH4(+)-N. This work provided a potential treatment process for human urine in some fields such as water regeneration in space station and water or nutrient recovery from source-separated urine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Research Regarding the Anticorosiv Protection of Atmospheric and Vacuum Distillation Unit that Process Crude Oil

    Directory of Open Access Journals (Sweden)

    M. Morosanu

    2011-12-01

    Full Text Available Due to high boiling temperature, organic acids are present in the warmer areas of metal equipment from atmospheric and vacuum distillation units and determine, increased corrosion processes in furnace tubes, transfer lines, metal equipment within the distillation columns etc. In order to protect the corrosion of metal equipment from atmospheric and vacuum distillation units, against acids, de authors researched solution which integrates corrosion inhibitors and selecting materials for equipment construction. For this purpose, we tested the inhibitor PET 1441, which has dialchilfosfat in his composition and inhibitor based on phosphate ester. In this case, to the metal surface forms a complex phosphorous that forms of high temperature and high fluid speed. In order to form the passive layer and to achieve a 90% protection, we initially insert a shock dose, and in order to ensure further protection there is used a dose of 20 ppm. The check of anticorrosion protection namely the inhibition efficiency is achieved by testing samples made from steel different.

  14. Process of desulfurizing dephenolating, and cracking raw pitch obtained by dry distilling lignite, shale, etc

    Energy Technology Data Exchange (ETDEWEB)

    1932-12-21

    A process is described of desulfurizing, dephenelating, and cracking the dry pitch obtained by dry distillation of lignite, bituminous shale, asphaltic rocks, and peat and fossil coals, that is characterized by the raw material being distilled in a retort together with calcium oxide, the vapors escaping from the still being compelled to pass through a catalyst tube containing calcium oxide mixed with other metallic oxide, the catalyst being helped by suitable heating to a temperature higher than that of the retort mentioned. For the purpose of lessening the quantity of phenolic groups contained in the raw tar to eliminate a great part of the sulfur belonging to the thiophenols and hydrogen sulfide without removing the organic radical to which they are attached, to accomplish a pyrogenic dissociation at the temperature of distillation of the pitch by means of using bone acid (phosphoric) to obtain a greater yield of light hydrocarbon from heavy hydrocarbons. Another purpose is the elimination of sulfur and thiophene and whatever neutral sulfur is contained in the primary pitch, by means of iron sulfate and copper in the anhydrous state or by means of other sulfates whose metals have the ability to form sulfides with sulfur.

  15. Ethanol dehydration via azeotropic distillation with gasoline fractions as entrainers: A pilot-scale study of the manufacture of an ethanol–hydrocarbon fuel blend

    OpenAIRE

    Gomis Yagües, Vicente; Pedraza Berenguer, Ricardo; Saquete Ferrándiz, María Dolores; Font, Alicia; Garcia-Cano, Jorge

    2015-01-01

    We establish experimentally and through simulations the economic and technical viability of dehydrating ethanol by means of azeotropic distillation, using a hydrocarbon as entrainer. The purpose of this is to manufacture a ready-to-use ethanol–hydrocarbon fuel blend. In order to demonstrate the feasibility of this proposition, we have tested an azeotropic water–ethanol feed mixture, using a hydrocarbon as entrainer, in a semi pilot-plant scale distillation column. Four different hydrocarbons ...

  16. Identification of Distillation Process Dynamics Comparing Process Knowledge and Black Box Based Approaches

    DEFF Research Database (Denmark)

    Rasmussen, Knud H; Nielsen, C. S.; Jørgensen, Sten Bay

    1990-01-01

    A distillation plant equipped with a heat pump separates a mixture of isopropanol and methanol. The mixture contains some water as impurity. The model development aims at dual composition control design, where top and bottom compositions should follow the setpoints, and disturbances should...... obtained in closed loop operation of the distillation plant. In the present work, the two approaches are compared in terms of how well the model fits, and predicts the data, the conditioning of the model parameter estimation, and convenience of usage....

  17. Experimental Evaluation of Hybrid Distillation-Vapor Permeation Process for Efficient Ethanol Recovery from Ethanol-Water Mixtures

    Science.gov (United States)

    The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions [1]. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation ...

  18. Adding rectifying/stripping section type heat integration to a pressure-swing distillation (PSD) process

    International Nuclear Information System (INIS)

    Huang Kejin; Shan Lan; Zhu Qunxiong; Qian Jixin

    2008-01-01

    This paper studies the economical effect of considering rectifying/stripping section type heat integration in a pressure-swing distillation (PSD) process separating a binary homogeneous pressure-sensitive azeotrope. The schemes for arranging heat integration between the rectifying section and the stripping section of the high- and low-pressure distillation columns, respectively, are derived and an effective procedure is devised for the conceptual process design of the heat-integrated PSD processes. In terms of the separation of a binary azeotropic mixture of acetonitrile and water, intensive comparisons are made between the conventional and heat-integrated PSD processes. It is demonstrated that breaking a pressure-sensitive azeotropic mixture can be made more economical than the current practice with the conventional PSD process. For boosting further the thermodynamic efficiency of a PSD process, it is strongly suggested to consider simultaneously the condenser/reboiler type heat integration with the rectifying/stripping section type heat integration in process synthesis and design

  19. Adding rectifying/stripping section type heat integration to a pressure-swing distillation (PSD) process

    Energy Technology Data Exchange (ETDEWEB)

    Huang Kejin [School of Information Science and Technology, Beijing University of Chemical Technology, Chaoyang-qu, Beijing-shi, Beijing 100029 (China)], E-mail: huangkj@mail.buct.edu.cn; Shan Lan; Zhu Qunxiong [School of Information Science and Technology, Beijing University of Chemical Technology, Chaoyang-qu, Beijing-shi, Beijing 100029 (China); Qian Jixin [School of Information Science and Technology, Zhejiang University, Xihu-qu, Hangzhou-shi, Zhejiang 300027 (China)

    2008-06-15

    This paper studies the economical effect of considering rectifying/stripping section type heat integration in a pressure-swing distillation (PSD) process separating a binary homogeneous pressure-sensitive azeotrope. The schemes for arranging heat integration between the rectifying section and the stripping section of the high- and low-pressure distillation columns, respectively, are derived and an effective procedure is devised for the conceptual process design of the heat-integrated PSD processes. In terms of the separation of a binary azeotropic mixture of acetonitrile and water, intensive comparisons are made between the conventional and heat-integrated PSD processes. It is demonstrated that breaking a pressure-sensitive azeotropic mixture can be made more economical than the current practice with the conventional PSD process. For boosting further the thermodynamic efficiency of a PSD process, it is strongly suggested to consider simultaneously the condenser/reboiler type heat integration with the rectifying/stripping section type heat integration in process synthesis and design.

  20. Innovative reactive distillation process for the production of the MTBE substitute isooctane from isobutene

    Energy Technology Data Exchange (ETDEWEB)

    Chalakova, M. [Magdeburg Univ. (Germany). Process Systems Engineering; Kaur, R.; Mahajani, S. [Indian Inst. of Technology, Mumbai (India); Freund, H. [Max-Planck-Institute for Dynamics of Complex Technical Systems, Magdeburg (Germany); Sundmacher, K. [Magdeburg Univ. (Germany). Process Systems Engineering]|[Max-Planck-Institute for Dynamics of Complex Technical Systems, Magdeburg (Germany)

    2007-07-01

    Isooctane is a promising candidate to replace MTBE as gasoline additive if it can be produced in economically and environmentally efficient processes. A promising reaction way at mild conditions is the so called indirect alkylation of isobutene (IB). In the present work two innovative reactive distillation (RD) concepts where the reactions are carried out either simultaneously (fully integrated) or sequentially (partially integrated) are designed. Suitable operation conditions are identified and a comparison with the conventional process scheme under performance and economic aspects is carried out. (orig.)

  1. Systematic Integrated Process Design and Control of Reactive Distillation Processes Involving Multi-elements

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil; Sales-Cruz, Mauricio; Huusom, Jakob Kjøbsted

    2016-01-01

    driving force approach. Next, through analytical, steady-state and closed-loop dynamic analysis it is verified that the control structure, disturbance rejection and energy requirement of the reactive distillation column is better than any other operation point that is not at the maximum driving force...

  2. Distillation plant for tritium enrichment in metallic lithium

    International Nuclear Information System (INIS)

    Barnert, E.; Butzek, D.; Cordewiner, J.; Heinrichs, E.

    1984-06-01

    To close the external fuel cycle of fusion reactors, the tritium obtained from lithium must be separated off. One way of doing this is by high-temperature distillation and subsequent permeation. The construction of high-temperature distillation plant is described. For the time being, deuterium is processed instead of tritium. (orig.) [de

  3. Distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    Dow, P

    1884-09-11

    The invention has for its object to regulate the temperature at any point of vertical retorts in which steam or steam and air are employed for the distillation of shale, coal, and other substances. Vertical steam pipes at the exterior of each retort and connected with main pipes have a series of branches at different levels and furnished with regulating-valves or cocks. The admission of air is similarly regulated and spy-holes with shutters blocked or sealed against the escape of such products by the fuel intake at one end of the conduit and the congested masses of coke discharged at the other.

  4. REGSOLexpert: Entrainer Selection Tool for waste solvent recovery by batch distillation processes

    OpenAIRE

    Rodriguez-Donis, Ivonne; Gerbaud, Vincent; Baudouin, Olivier; Joulia, Xavier

    2009-01-01

    A general procedure to systematize the search of several alternatives enabling the separation of non-ideal binary mixtures such as pressure-swing distillation, azeotropic and extractive distillation is presented. The use of heterogeneous entrainers is specially highlighted.

  5. Initial cathode processing experiences and results for the treatment of spent fuel

    International Nuclear Information System (INIS)

    Westphal, B.R.; Laug, D.V.; Brunsvold, A.R.; Roach, P.D.

    1996-01-01

    As part of the spent fuel treatment demonstration at Argonne National Laboratory, a vacuum distillation process is being employed for the recovery of uranium following an electrorefining process. Distillation of a salt electrolyte, primarily consisting of a eutectic mixture of lithium and potassium chlorides, from uranium is achieved by a batch operation termed ''cathode processing.'' Cathode processing is performed in a retort furnace which enables the production of a stable uranium product that can be isotopically diluted and stored. To date, experiments have been performed with two distillation units; one for prototypical testing and the other for actual spent fuel treatment operations. The results and experiences from these initial experiments with both units will be discussed as well as problems encountered and their resolution

  6. Model predictive control in light naphtha distillation column of gasoline hydrogenation process

    Directory of Open Access Journals (Sweden)

    Kornkrit Chiewchanchairat

    2015-03-01

    Full Text Available The main scope of this research is for designing and implementing of model predictive control (MPC on the light naphtha distillation column of gasoline hydrogenation process. This model is designed by using robust multivariable predictive control technology (RMPCT. The performance of MPC controller is better than PID controllers 32.1 % those are comparing by using as the same of objective function and also in the MPC controller can be used for steam optimization that is shown in this research, stream consumption is reduced 6.6 Kg/ m3 of fresh feed.

  7. Application of the Advanced Distillation Curve Method to Fuels for Advanced Combustion Engine Gasolines

    KAUST Repository

    Burger, Jessica L.; Schneider, Nico; Bruno, Thomas J.

    2015-01-01

    . To make changes in the most time- and cost-effective manner, it is imperative that new computational tools and surrogate fuels are developed. Currently, sets of fuels are being characterized by industry groups, such as the Coordinating Research Council

  8. Application of the Advanced Distillation Curve Method to the Comparison of Diesel Fuel Oxygenates: 2,5,7,10-Tetraoxaundecane (TOU), 2,4,7,9-Tetraoxadecane (TOD), and Ethanol/Fatty Acid Methyl Ester (FAME) Mixtures.

    Science.gov (United States)

    Burger, Jessica L; Lovestead, Tara M; LaFollette, Mark; Bruno, Thomas J

    2017-08-17

    Although they are amongst the most efficient engine types, compression-ignition engines have difficulties achieving acceptable particulate emission and NO x formation. Indeed, catalytic after-treatment of diesel exhaust has become common and current efforts to reformulate diesel fuels have concentrated on the incorporation of oxygenates into the fuel. One of the best ways to characterize changes to a fuel upon the addition of oxygenates is to examine the volatility of the fuel mixture. In this paper, we present the volatility, as measured by the advanced distillation curve method, of a prototype diesel fuel with novel diesel fuel oxygenates: 2,5,7,10-tetraoxaundecane (TOU), 2,4,7,9-tetraoxadecane (TOD), and ethanol/fatty acid methyl ester (FAME) mixtures. We present the results for the initial boiling behavior, the distillation curve temperatures, and track the oxygenates throughout the distillations. These diesel fuel blends have several interesting thermodynamic properties that have not been seen in our previous oxygenate studies. Ethanol reduces the temperatures observed early in the distillation (near ethanol's boiling temperature). After these early distillation points (once the ethanol has distilled out), B100 has the greatest impact on the remaining distillation curve and shifts the curve to higher temperatures than what is seen for diesel fuel/ethanol blends. In fact, for the 15% B100 mixture most of the distillation curve reaches temperatures higher than those seen diesel fuel alone. In addition, blends with TOU and TOD also exhibited uncommon characteristics. These additives are unusual because they distill over most the distillation curve (up to 70%). The effects of this can be seen both in histograms of oxygenate concentration in the distillate cuts and in the distillation curves. Our purpose for studying these oxygenate blends is consistent with our vision for replacing fit-for-purpose properties with fundamental properties to enable the development of

  9. Separation of ethanol and water by extractive distillation with salt and solvent as entrainer: process simulation

    Directory of Open Access Journals (Sweden)

    I. D. Gil

    2008-03-01

    Full Text Available The aim of this work is to simulate and analyze an extractive distillation process for azeotropic ethanol dehydration with ethylene glycol and calcium chloride mixture as entrainer. The work was developed with Aspen Plus® simulator version 11.1. Calculation of the activity coefficients employed to describe vapor liquid equilibrium of ethanol - water - ethylene glycol - calcium chloride system was done with the NRTL-E equation and they were validated with experimental data. The dehydration process used two columns: the main extractive column and the recovery column. The solvent to feed molar ratio S/F=0.3, molar reflux ratio RR=0.35, number of theoretical stages Ns=18, feed stage Sf=12, feed solvent stage SS=3, and feed solvent temperature TS=80 ºC, were determined to obtain a distillate with at least 99.5 % mole of ethanol. A substantial reduction in the energy consumption, compared with the conventional processes, was predicted by using ethylene glycol and calcium chloride as entrainer.

  10. Development of conversion efficient processes for +525[degree]C pitch to low boiling distillates

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, R.N.

    1992-10-22

    Catalytic hydroprocessing of Esso pitch (+525[degree]C fraction) was investigated using a continuous reactor system at various operating conditions. The catalysts studied included ZnCl[sub 2], SnCl[sub 4], SiO[sub 2], Ni/W, Co/Mo, Zn/Cr, and H[sub 3]PO[sub 4]/SiO[sub 2]. The catalysts were characterized by surface area and acidity measurements. The gas and liquid products were collected and analyzed, and results are presented. The work demonstrates the effectiveness of a continuous flash hydropyrolysis process for the conversion of petroleum residuals to low boiling distillates. It has been found that in the presence of ZnCl[sub 2] catalyst, conversions up to 92% can be obtained under relatively moderate conditions of temperature and hydrogen pressure. The formation of gaseous products is less than 5 wt %. The favorable conditions of operation, a reduction in sulfur content, increase in H/C ratio, and a significant yield of low boiling distillates is obtained. The process variables, such as temperature, hydrogen pressure, and liquid residence times influence product yield and quality. Coke formation was almost negligible even under conditions of high pitch conversion. A review of various techniques of pyrolysis and hydropyrolysis of materials such as coal, bitumen, and heavy oil is included. 198 refs., 46 figs., 40 tabs.

  11. A novel design of reactive distillation configuration for 2-methoxy-2-methylheptane process

    Directory of Open Access Journals (Sweden)

    Hussain Arif

    2017-01-01

    Full Text Available The study aims to reveal the possibility of reactive distillation (RD in the 2-methoxy-2-methylheptane (MMH production process. MMH is getting more industrial and academic interests as a gasoline additive to replace methyl tert-butyl ether. Traditionally, MMH is obtained by carrying out the reaction in the reactor followed by three distillation columns. The high yield of MMH could be achieved by keeping the large reactor size or by using the large excess of 2-methyl-1-heptene (MH. Both former and latter strategies are associated with the high capital and operating costs. To solve these problems, this study proposed an innovative RD configuration to take synergistic benefits of reaction and separation involved. This innovative RD configuration allows the production of MMH with significantly lower capital, operating and total annual costs. For desired MMH yield, the result demonstrates that the proposed RD configuration can reduce energy, capital, and total annual costs up to 7.7, 31.3, and 17.1%, respectively, compared to a conventional process. Furthermore, the influence of some important design parameters on the RD column performance was also explored to overcome the temperature limitation of acid resin catalyst inside the reactive zone of the RD column.

  12. Performance indicators of bioethanol distillation

    International Nuclear Information System (INIS)

    Marriaga, Nilson

    2009-01-01

    The increase of biofuels demand accelerates the construction of new production plants and technological improvements in the process so the development of versatile tools for evaluating alternatives becomes an undeniable challenge. It was established through heuristic rules, thermodynamic analysis and simulation computer the energy consumption and performance indicators that govern, from fermented mash (ethanol 8.5 % v/v), the distillation of various capacities for bioethanol production: 20, 60, 100 and 150 KLD (kiloliters / day) through Aspen PlusTM simulator. It was found that the distillation demand nearly 30% of heat that would be obtained by burning alcohol fuel produced thus it is necessary the use of raw materials that generate enough biomass to produce the steam required. In addition, correlations were found to allow for easy diameters of distillation columns in terms of production capacity.

  13. Investigations of Trace Oxygenates in Middle Distillate Fuels using Gas Chromatography

    OpenAIRE

    RENEE LOUISE WEBSTER

    2017-01-01

    There can be up to one million different compounds in aviation or diesel fuels, making the analysis of trace components within the complex matrix highly challenging. Many trace oxygenated compounds may be present in fuels and can have dramatic effects on the fuel’s properties. Advanced analytical chemistry techniques have been used to contribute a critical understanding of the role of trace oxygenates on the chemistry of both emerging alternate and fossil fuels. Knowledge of these molecular s...

  14. Process for prevention of water build-up in cryogenic distillation column

    International Nuclear Information System (INIS)

    Hopewell, R.B.

    1988-01-01

    In a process for the separation of a hydrocarbon and acid gas containing feed stream in a cryogenic distillation column, a zone of the column which is operated at a temperature of 60 0 F or less, wherein free water accumulates or forms hydrates in the column from water vapor in the feed stream during the cryogenic process, and which process comprises separating the feed stream in the column into an overhead stream and a bottom stream, this patent describes the improvement which comprises: withdrawing a hydrocarbon and acid gas vapor stream which stream is enriched in water vapor with respect to the feed stream, thereby preventing the excess accumulation of free water or the formation of hydrates in the cryogenic column

  15. An Intensified Esterification Process of Palm Oil Fatty Acid Distillate Catalyzed by Delipidated Rice Bran Lipase

    Directory of Open Access Journals (Sweden)

    Fui Chin Chong

    2006-01-01

    Full Text Available An intensified esterification process was operated by circulating 10 l of reaction mixtures, consisting of palm oil fatty acid distillate (PFAD and glycerol in hexane, through a packed-bed reactor (PBR filled with 10 kg of delipidated rice bran lipase (RBL. The influence of the process parameters, such as reaction temperature and type of water-removal agent, on the performance of this intensified esterification process were investigated. The highest degree of esterification (61% was achieved at a reaction temperature of 65°C, using silica gels as the water-removal agent. Thin-layer chromatography (TLC analysis showed that the major composition of the esterified product was diacylglycerol.

  16. Distilling shale and the like

    Energy Technology Data Exchange (ETDEWEB)

    Gee, H T.P.

    1922-02-23

    In distilling shale or like bituminous fuels by internal heating with hot gas obtained by the gasifying of the shale residues with air or steam or a mixture of these, the amount and temperature of the gaseous distilling medium is regulated between the gasifying and the distilling chambers, by the introduction of cold gas or air.

  17. Vacuumed gap membrane distillation (vagmed) module, multi-stage vagmed systems, and vagmed processes

    KAUST Repository

    Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Francis, Lijo

    2016-01-01

    Vacuumed gap membrane distillation (VAGMED) modules, and multi-stage VAGMED systems and processes using the modules are provided. In an embodiment, the membrane distillation modules (10) can comprise: a) a condenser (12) including a condensation surface (15); b) a first passageway (13) having an inlet for receiving a first feed stream (14) and an outlet through which the first stream can pass out of the first passageway, the first passageway configured to bring the first feed stream into thermal communication with the condensation surface; c) an evaporator (17) including a permeable evaporation surface allowing condensable gas to pass there through; d) a second passageway (18) having an inlet for receiving a second feed stream (19) and an outlet through which the second feed stream can pass out of the second passageway, the second passageway configured to bring the second feed stream into communication with the permeable evaporation surface; and e) an enclosure (24) providing a vacuum compartment within which the condenser, the evaporator and the first and second passageways of the module are contained.

  18. Vacuumed gap membrane distillation (vagmed) module, multi-stage vagmed systems, and vagmed processes

    KAUST Repository

    Ghaffour, Noreddine

    2016-06-30

    Vacuumed gap membrane distillation (VAGMED) modules, and multi-stage VAGMED systems and processes using the modules are provided. In an embodiment, the membrane distillation modules (10) can comprise: a) a condenser (12) including a condensation surface (15); b) a first passageway (13) having an inlet for receiving a first feed stream (14) and an outlet through which the first stream can pass out of the first passageway, the first passageway configured to bring the first feed stream into thermal communication with the condensation surface; c) an evaporator (17) including a permeable evaporation surface allowing condensable gas to pass there through; d) a second passageway (18) having an inlet for receiving a second feed stream (19) and an outlet through which the second feed stream can pass out of the second passageway, the second passageway configured to bring the second feed stream into communication with the permeable evaporation surface; and e) an enclosure (24) providing a vacuum compartment within which the condenser, the evaporator and the first and second passageways of the module are contained.

  19. On Entropy Generation and the Effect of Heat and Mass Transfer Coupling in a Distillation Process

    Science.gov (United States)

    Burgos-Madrigal, Paulina; Mendoza, Diego F.; López de Haro, Mariano

    2018-01-01

    The entropy production rates as obtained from the exergy analysis, entropy balance and the nonequilibrium thermodynamics approach are compared for two distillation columns. The first case is a depropanizer column involving a mixture of ethane, propane, n-butane and n-pentane. The other is a weighed sample of Mexican crude oil distilled with a pilot scale fractionating column. The composition, temperature and flow profiles, for a given duty and operating conditions in each column, are obtained with the Aspen Plus V8.4 software by using the RateFrac model with a rate-based nonequilibrium column. For the depropanizer column the highest entropy production rate is found in the central trays where most of the mass transfer occurs, while in the second column the highest values correspond to the first three stages (where the vapor mixture is in contact with the cold liquid reflux), and to the last three stages (where the highest temperatures take place). The importance of the explicit inclusion of thermal diffusion in these processes is evaluated. In the depropanizer column, the effect of the coupling between heat and mass transfer is found to be negligible, while for the fractionating column it becomes appreciable.

  20. Control of a reactive batch distillation process using an iterative learning technique

    International Nuclear Information System (INIS)

    Ahn, Hyunsoo; Lee, Kwang Soon; Kim, Mansuk; Lee, Juhyun

    2014-01-01

    Quadratic criterion-based iterative learning control (QILC) was applied to a numerical reactive batch distillation process, in which methacrylic anhydride (MAN) is produced through the reaction of methacrylic acid with acetic anhydride. The role of distillation is to shift the equilibrium conversion toward the direction of the product by removing acetic acid (AcH), a by-product of the reaction. Two temperatures at both ends of the column were controlled by individual control loops. A nonlinear PID controller manipulating the reflux ratio was employed to regulate the top temperature at the boiling point of AcH. A constrained QILC was used for the tracking of the reactor temperature. A time-varying reference trajectory for the reactor temperature that satisfies the target conversion and purity of MAN was obtained through repeated simulations and confirmation experiments in the pilot plant. The QILC achieved satisfactory tracking in several batch runs with gentle control movements, while the PID control as a substitute of the QILC in a comparative study exhibited unacceptable performance

  1. Electrochemical processing of spent nuclear fuels: An overview of oxide reduction in pyroprocessing technology

    Directory of Open Access Journals (Sweden)

    Eun-Young Choi

    2015-12-01

    Full Text Available The electrochemical reduction process has been used to reduce spent oxide fuel to a metallic form using pyroprocessing technology for a closed fuel cycle in combination with a metal-fuel fast reactor. In the electrochemical reduction process, oxides fuels are loaded at the cathode basket in molten Li2O–LiCl salt and electrochemically reduced to the metal form. Various approaches based on thermodynamic calculations and experimental studies have been used to understand the electrode reaction and efficiently treat spent fuels. The factors that affect the speed of the electrochemical reduction have been determined to optimize the process and scale-up the electrolysis cell. In addition, demonstrations of the integrated series of processes (electrorefining and salt distillation with the electrochemical reduction have been conducted to realize the oxide fuel cycle. This overview provides insight into the current status of and issues related to the electrochemical processing of spent nuclear fuels.

  2. Removal of antibiotics from surface and distilled water in conventional water treatment processes

    Science.gov (United States)

    Adams, C.; Wang, Y.; Loftin, K.; Meyer, M.

    2002-01-01

    Conventional drinking water treatment processes were evaluated under typical water treatment plant conditions to determine their effectiveness in the removal of seven common antibiotics: carbadox, sulfachlorpyridazine, sulfadimethoxine, sulfamerazine, sulfamethazine, sulfathiazole, and trimethoprim. Experiments were conducted using synthetic solutions prepared by spiking both distilled/ deionized water and Missouri River water with the studied compounds. Sorption on Calgon WPH powdered activated carbon, reverse osmosis, and oxidation with chlorine and ozone under typical plant conditions were all shown to be effective in removing the studied antibiotics. Conversely, coagulation/flocculation/sedimentation with alum and iron salts, excess lime/soda ash softening, ultraviolet irradiation at disinfection dosages, and ion exchange were all relatively ineffective methods of antibiotic removal. This study shows that the studied antibiotics could be effectively removed using processes already in use many water treatment plants. Additional work is needed on by-product formation and the removal of other classes of antibiotics.

  3. Sensitivity of process design to uncertainties in property estimates applied to extractive distillation

    DEFF Research Database (Denmark)

    Jones, Mark Nicholas; Hukkerikar, Amol; Sin, Gürkan

    thermodynamic and thermo-physical models is critical to obtain a feasible and operable process design and many guidelines pertaining to this can be found in the literature. But even if appropriate models have been chosen, the user needs to keep in mind that these models contain uncertainties which may propagate...... through the calculation steps to such an extent that the final design might not be feasible or lead to poor performance. Therefore it is necessary to evaluate the sensitivity of process design to the uncertainties in property estimates obtained from thermo-physical property models. Uncertainty...... of the methodology is illustrated using a case study of extractive distillation in which acetone is separated from methanol using water as a solvent. Among others, the vapour pressure of acetone and water was found to be the most critical and even small uncertainties from -0.25 % to +0.75 % in vapour pressure data...

  4. The solvent absorption-extractive distillation (SAED) process for ethanol recovery from gas/vapor streams

    Energy Technology Data Exchange (ETDEWEB)

    Dale, M.C.

    1993-12-31

    A low energy system for ethanol recovery and dehydration has been developed. This system utilizes a solvent for (1) absorption of ethanol vapors, and then the same solvent for (2) extractive distillation. The ideal solvent for this process would have a high affinity for ethanol, and no affinity for water. Heavy alcohols such as dodecanol, and tridecanol, some phosphorals, and some fatty acids have been determined to meet the desired specifications. These solvents have the effect of making water more volatile than ethanol. Thus, a water stream is taken off initially in the dehydration column, and a near anhydrous ethanol stream is recovered from the ethanol/solvent stripper column. Thus the solvent serves dual uses (1) absorption media, and (2) dehydration media. The SAED process as conceptualized would use a solvent similar to solvents used for direct extractive separation of ethanol from aqueous ethanol solutions.

  5. Destructive distillation

    Energy Technology Data Exchange (ETDEWEB)

    Urquhart, D

    1882-08-19

    Manufacture of ammonia and purification of shale oils are described. In the distillation of shales, increase of ammonia is obtained and the oils are less contaminated by sulfur, by mixing a small proportion, about two to three percent, of lime or slaked line with the shale. The same process is used with other carbonaceous substances containing nitrogen, such as peat, coal, or the like; but a smaller proportion of lime is used than in the former case, and the lime is slaked with caustic soda solution. When slack or waste coal or other carbonaceous substances are distilled by heated air or gases arising from imperfect combustion, as in furnaces on the gas producer principle, slaked lime is added to the slack or other material.

  6. Distilling oils

    Energy Technology Data Exchange (ETDEWEB)

    Leffer, L G

    1912-01-29

    In a process for converting heavy hydrocarbons, such as petroleum or shale oil, into light hydrocarbons by distilling under the pressure of an inert gas, the operation is conducted at a temperature not exceeding 410/sup 0/C and under an accurately regulated pressure, the gas being circulated through the still and the condenser by means of a pump. The oil in the still may be agitated by stirring vanes or by blowing the gas through it. Hydrogen, nitrogen, carbon dioxide, methane, or gases generated in the distillation may be used as pressure media; the gas is heated before its admission to the still. A pressure of from 11 to 12 atmospheres is used in treating gas oil. Specification 10,277/89 is referred to.

  7. Distilling coal

    Energy Technology Data Exchange (ETDEWEB)

    Blythe, F C

    1914-09-14

    In the destructive distillation of bituminous coal, heavy hydrocarbon oil, such as petroleum, kerosine, shale oil, and heavy tar oil, obtained in some cases during the process, is added to the coal, which is then distilled under pressure and at a comparatively low temperature regulated so as to produce a large proportion of hydrocarbon oils and a small proportion of permanent gas. In one method, about 5 to 10 parts of hydrocarbon oil are mixed with 100 parts of crushed or ground coal, and the mixture is heated in a closed vessel, provided in some cases with an agitator, under a pressure of about 60 lb/in/sup 2/, and the temperature may be gradually raised to 350/sup 0/C and then to about 500/sup 0/C. The heating may be by means of superheated steam with or without external heat.

  8. Progress of fusion fuel processing system development at the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Nishi, Masataka; Yamanishi, Toshihiko; Kawamura, Yoshinori; Iwai, Yasunori; Isobe, Kanetsugu; O'Hira, Shigeru; Hayashi, Takumi; Nakamura, Hirofumi; Kobayashi, Kazuhiro; Suzuki, Takumi; Yamada, Masayuki; Konishi, Satoshi

    2000-01-01

    The Tritium Process Laboratory (TPL) at the Japan Atomic Energy Research Institute has been working on the development of fuel processing technology for fusion reactors as a major activity. A fusion fuel processing loop was installed and is being tested with tritium under reactor relevant conditions. The loop at the TPL consists of ZrCo based tritium storage beds, a plasma exhaust processing system using a palladium diffuser and an electrolytic reactor, cryogenic distillation columns for isotope separation, and analytical systems based on newly developed micro gas chromatographs and Raman Spectroscopy. Several extended demonstration campaigns were performed under realistic reactor conditions to test tritiated impurity processing. A sophisticated control technique of distillation column was performed at the same time, and integrated fuel circulation was successfully demonstrated. Major recent design work on the International Thermonuclear Experimental Reactor (ITER) tritium plant at the TPL is devoted to water detritiation based on liquid phase catalytic exchange for improved tritium removal from waste water

  9. Modeling RP-1 Fuel Advanced Distillation Data using Comprehensive Two-Dimensional Gas Chromatography Coupled with Time-of-Flight Mass Spectrometry and Partial Least Squares Analysis

    Science.gov (United States)

    2014-05-07

    of a variety of complex liquid samples including, but not limited to, crude oil [12], gasoline [16], biodiesel fuel [17, 19], jet fuel [5, 10, 11...measurements for corrosive fluids: Application to two crude oils . Fuel 87:3055–3064. doi: 10.1016/j.fuel.2008.04.032 13. Ott LS, Hadler AB, Bruno TJ...Windom BC, Bruno TJ (2013) Application of Pressure-Controlled Advanced Distillation Curve Analysis: Virgin and Waste Oils . Ind Eng Chem Res 52:327–337

  10. Reactive Distillation and Air Stripping Processes for Water Recycling and Trace Contaminant Control

    Science.gov (United States)

    Boul, Peter J.; Lange, Kevin E.; Conger, Bruce; Anderson, Molly

    2009-01-01

    Reactive distillation designs are considered to reduce the presence of volatile organic compounds in the purified water. Reactive distillation integrates a reactor with a distillation column. A review of the literature in this field has revealed a variety of functional reactive columns in industry. Wastewater may be purified by a combination of a reactor and a distiller (e.g., the EWRS or VPCAR concepts) or, in principle, through a design which integrates the reactor with the distiller. A review of the literature in reactive distillation has identified some different designs in such combinations of reactor and distiller. An evaluation of reactive distillation and reactive air stripping is presented with regards to the reduction of volatile organic compounds in the contaminated water and air. Among the methods presented, an architecture is presented for the evaluation of the simultaneous oxidation of organics in air and water. These and other designs are presented in light of potential improvements in power consumptions and air and water purities for architectures which include catalytic activity integrated into the water processor. In particular, catalytic oxidation of organics may be useful as a tool to remove contaminants that more traditional distillation and/or air stripping columns may not remove. A review of the current leading edge at the commercial level and at the research frontier in catalytically active materials is presented. Themes and directions from the engineering developments in catalyst design are presented conceptually in light of developments in the nanoscale chemistry of a variety of catalyst materials.

  11. Changes in Volatile Compounds of Chinese Luzhou-Flavor Liquor during the Fermentation and Distillation Process.

    Science.gov (United States)

    Ding, Xiaofei; Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2015-11-01

    The aim of this study was to investigate the dynamic of volatile compounds in the Zaopei during the fermentation and distillation process by headspace solid-phase microextraction-gas chromatography mass spectrometry (HS-SPME-GCMS). Physicochemical properties analysis of Zaopei (fermented grains [FG], fermented grains mixed with sorghum [FGS], streamed grains [SG], and streamed grains mixed with Daqu [SGD]) showed distinct changes. A total number of 66 volatile compounds in the Zaopei were identified, in which butanoic acid, hexanoic acid, ethyl hexanoate, ethyl lactate, ethyl octanoate, hexyl hexanoate, ethyl hydrocinnamate, ethyl oleate, ethyl hexadecanoate, and ethyl linoleate were considered to be the dominant compounds due to their high concentrations. FG had the highest volatile compounds (112.43 mg/kg), which significantly decreased by 17.05% in the FGS, 67.12% in the SG, and 73.75% in the SGD. Furthermore, about 61.49% of volatile compounds of FGS were evaporated into raw liquor, whereas head, heart, and tail liquor accounted for 29.84%, 39.49%, and 30.67%, respectively. Each volatile class generally presented a decreasing trend, except for furans. Especially, the percentage of esters was 55.51% to 67.41% in the Zaopei, and reached 92.60% to 97.67% in the raw liquor. Principal component analysis based ordination of volatile compounds data segregated FGS and SGD samples. In addition, radar diagrams of the odor activity values suggested that intense flavor of fruit was weakened most from FG to SGD. The dynamic of volatile compounds in the Zaopei during the fermentation and distillation process was tested by SPME-GCMS. The result of this study demonstrated that both volatile compounds of Zaopei and thermal reaction during distillation simply determined the unique feature of raw liquor. This study was conducted based on the real products from liquor manufactory, so it is practicable that the method can be used in an industry setting. © 2015 Institute of Food

  12. Control of Refining Processes on Mid-Distillates by Near Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Zanier-Szydlowski N.

    1999-07-01

    Full Text Available The purpose of this paper is to demonstrate the accuracy of physicochemical determinations based on equations calculated by multivariate analysis of near infrared spectra which gives access to simultaneous analyses both on-line and off-line. Detailed results concerning the determination of the refractive index at 20°C, the density, the weight% of hydrogen, the % of aromatic carbon, the weight% of mono-, di- and total aromatics and the cetane number on mid-distillates are given in a shorter time than using the conventional approach by standardized methods. It is shown that near infrared spectroscopy combined with chemometrics should allow detailed and precise comparisons of the hydrotreatment process efficiencies.

  13. An improved crude oil atmospheric distillation process for energy integration: Part II: New approach for energy saving by use of residual heat

    International Nuclear Information System (INIS)

    Benali, Tahar; Tondeur, Daniel; Jaubert, Jean Noël

    2012-01-01

    In Part I of this paper, it was shown on thermodynamic grounds that introducing a flash in the preheating train of an atmospheric oil distillation process, together with an appropriate introduction of the resulting vapour into the column, could potentially bring substantial energy savings, by reducing the duty of the preheating furnace, by doing some pre-fractionation and by reducing the column irreversibilities. Part II expands on this idea by showing how this can be done while keeping the throughput and the product characteristics unchanged. The outcome is that placing several flashes after the heat exchangers and feeding the corresponding vapour streams to the appropriate trays of the column reduces the pumparound flows and the heat brought to the preheating train. The resulting heat deficit may then be compensated in an additional heat exchanger by using low level heat recuperated from the products of the distillation and/or imported from other processes. The use of this residual heat reduces the furnace duty by approximately an equivalent amount. Thus high level energy (fuel-gas burnt in the furnace) is replaced by residual low level heat. The simulation with an example flowsheet shows that the savings on fuel could be as high as 21%. - Highlights: ► Flash installation in the preheating train of the crude oil distillation process. ► Pumparound streams and heat sent to the preheating train are reduced. ► A high level heat deficit is induced and replaced by low level heat. ► Considerable energy savings and greenhouse gas emissions are achieved.

  14. A secondary fuel removal process: plasma processing

    Energy Technology Data Exchange (ETDEWEB)

    Min, J Y; Kim, Y S [Hanyang Univ., Seoul (Korea, Republic of); Bae, K K; Yang, M S [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-07-01

    Plasma etching process of UO{sub 2} by using fluorine containing gas plasma is studied as a secondary fuel removal process for DUPIC (Direct Use of PWR spent fuel Into Candu) process which is taken into consideration for potential future fuel cycle in Korea. CF{sub 4}/O{sub 2} gas mixture is chosen for reactant gas and the etching rates of UO{sub 2} by the gas plasma are investigated as functions of CF{sub 4}/O{sub 2} ratio, plasma power, substrate temperature, and plasma gas pressure. It is found that the optimum CF{sub 4}/O{sub 2} ratio is around 4:1 at all temperatures up to 400 deg C and the etching rate increases with increasing r.f. power and substrate temperature. Under 150W r.f. power the etching rate reaches 1100 monolayers/min at 400 deg C, which is equivalent to about 0.5mm/min. (author).

  15. Modeling of air-gap membrane distillation process: A theoretical and experimental study

    KAUST Repository

    Alsaadi, Ahmad Salem

    2013-06-03

    A one dimensional (1-D) air gap membrane distillation (AGMD) model for flat sheet type modules has been developed. This model is based on mathematical equations that describe the heat and mass transfer mechanisms of a single-stage AGMD process. It can simulate AGMD modules in both co-current and counter-current flow regimes. The theoretical model was validated using AGMD experimental data obtained under different operating conditions and parameters. The predicted water vapor flux was compared to the flux measured at five different feed water temperatures, two different feed water salinities, three different air gap widths and two MD membranes with different average pore sizes. This comparison showed that the model flux predictions are strongly correlated with the experimental data, with model predictions being within +10% of the experimentally determined values. The model was then used to study and analyze the parameters that have significant effect on scaling-up the AGMD process such as the effect of increasing the membrane length, and feed and coolant flow rates. The model was also used to analyze the maximum thermal efficiency of the AGMD process by tracing changes in water production rate and the heat input to the process along the membrane length. This was used to understand the gain in both process production and thermal efficiency for different membrane surface areas and the resultant increases in process capital and water unit cost. © 2013 Elsevier B.V.

  16. Waste Heat Recovery and Recycling in Thermal Separation Processes: Distillation, Multi-Effect Evaporation (MEE) and Crystallization Processes

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel A. Dada; Chandrakant B. Panchal; Luke K. Achenie; Aaron Reichl; Chris C. Thomas

    2012-12-03

    Evaporation and crystallization are key thermal separation processes for concentrating and purifying inorganic and organic products with energy consumption over 1,000 trillion Btu/yr. This project focused on a challenging task of recovering low-temperature latent heat that can have a paradigm shift in the way thermal process units will be designed and operated to achieve high-energy efficiency and significantly reduce the carbon footprint as well as water footprint. Moreover, this project has evaluated the technical merits of waste-heat powered thermal heat pumps for recovery of latent heat from distillation, multi-effect evaporation (MEE), and crystallization processes and recycling into the process. The Project Team has estimated the potential energy, economics and environmental benefits with the focus on reduction in CO2 emissions that can be realized by 2020, assuming successful development and commercialization of the technology being developed. Specifically, with aggressive industry-wide applications of heat recovery and recycling with absorption heat pumps, energy savings of about 26.7 trillion Btu/yr have been estimated for distillation process. The direct environmental benefits of this project are the reduced emissions of combustible products. The estimated major reduction in environmental pollutants in the distillation processes is in CO2 emission equivalent to 3.5 billion lbs/year. Energy consumption associated with water supply and treatments can vary between 1,900 kWh and 23,700 kWh per million-gallon water depending on sources of natural waters [US DOE, 2006]. Successful implementation of this technology would significantly reduce the demand for cooling-tower waters, and thereby the use and discharge of water treatment chemicals. The Project Team has also identified and characterized working fluid pairs for the moderate-temperature heat pump. For an MEE process, the two promising fluids are LiNO3+KNO3+NANO3 (53:28:19 ) and LiNO3+KNO3+NANO2

  17. Microbial development in distillers wet grains produced during fuel ethanol production from corn (Zea mays)

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, R.M.; Rosentrater, K.A. [United States Dept. of Agriculture, Brookings, SD (United States). North Central Agricultural Research Laboratory

    2007-09-15

    The microbiology of post-production distillers wet grains (DWG) was investigated over a period of 9 days at an industrial ethanol plant. Samples of the DWG were physically and chemically characterized. Compositional analyses were conducted for protein, fiber, and fat. Fixed suspensions of DWG were dispersed and disrupted by sonication. Bacterial cells were enumerated under epifluorescent illumination. Solid media and standard dilution were used to enumerate total colony-forming units (CFU) of lactic-acid producing bacteria (LAB), and aerobic heterotrophic organisms. The DWG had a pH of approximately 4.4, a moisture content of 53.5 per cent, and 4 x 10{sup 5} total yeast cells. Thirteen morphologically distinct isolates were identified during the study, 10 of which were yeasts and molds from 6 different genera. Two of the yeasts were of the lactic-acid Pediococcus pentosaceus strain, and 1 of the yeasts was an aerobic heterotrophic bacteria. Results showed that the matrix of the DWG produced severe technical difficulties for several of the culture-independent community-level analyses. It was concluded that numbers of potentially beneficial bacteria appeared to increase over the time period relative to potential spoilage agents. Molds capable of producing mycotoxins colonized the DWG and grew to high densities over the 9 day period. 31 refs., 3 tabs., 2 figs.

  18. Food Grade Ehanol Production With Fermentation And Distillation Process Using Stem Sorghum

    Directory of Open Access Journals (Sweden)

    Yuliana Setyowati

    2015-03-01

    Full Text Available 10% -12% of sugar in its stem which is the optimum sugar concentration in fermentation process for bioethanol production. Sorghum has a high potential to be developed as a raw material for food-grade ethanol production which can be used to support food-grade ethanol demand in Indonesia through a fermentation process. This research focused on the effect of microorganism varieties in the fermentation process which are mutant Zymomonas mobilis (A3, Saccharomyces cerevisiae and Pichia stipitis mixture. The Research for purification process are separated into two parts, distillation with steel wool structured packing and dehydration process using molecular sieve and eliminating impurities using activated carbon. The research can be concluded that the best productivity shown in continuous fermentation in the amount of 84.049 (g / L.hr using the mixture of Saccharomyces cerevisiae and Pichia stipitis. The highest percentage of ethanol yield produced in batch fermentation using the mixture of Saccharomyces cerevisiae and Pichia stipitis that is equal to 51.269%. And for the adsorption, the best result shown in continuous fermentation by using Zymomonas Mobilis of 88.374%..

  19. Thermodynamic modelling of a membrane distillation crystallisation process for the treatment of mining wastewater.

    Science.gov (United States)

    Nathoo, Jeeten; Randall, Dyllon Garth

    2016-01-01

    Membrane distillation (MD) could be applicable in zero liquid discharge applications. This is due to the fact that MD is applicable at high salinity ranges which are generally outside the scope of reverse osmosis (RO) applications, although this requires proper management of precipitating salts to avoid membrane fouling. One way of managing these salts is with MD crystallisation (MDC). This paper focuses on the applicability of MDC for the treatment of mining wastewater by thermodynamically modelling the aqueous chemistry of the process at different temperatures. The paper is based on the typical brine generated from an RO process in the South African coal mining industry and investigates the effect water recovery and operating temperature have on the salts that are predicted to crystallise out, the sequence in which they will crystallise out and purities as a function of the water recovery. The study confirmed the efficacy of using thermodynamic modelling as a tool for investigating and predicting the crystallisation aspects of the MDC process. The key finding from this work was that, for an MDC process, a purer product can be obtained at higher operating temperatures and recoveries because of the inverse solubility of calcium sulphate.

  20. Multipartite nonlocality distillation

    International Nuclear Information System (INIS)

    Hsu, Li-Yi; Wu, Keng-Shuo

    2010-01-01

    The stronger nonlocality than that allowed in quantum theory can provide an advantage in information processing and computation. Since quantum entanglement is distillable, can nonlocality be distilled in the nonsignalling condition? The answer is positive in the bipartite case. In this article the distillability of the multipartite nonlocality is investigated. We propose a distillation protocol solely exploiting xor operations on output bits. The probability-distribution vectors and matrix are introduced to tackle the correlators. It is shown that only the correlators with extreme values can survive the distillation process. As the main result, the amplified nonlocality cannot maximally violate any Bell-type inequality. Accordingly, a distillability criterion in the postquantum region is proposed.

  1. Dynamic modeling and experimental validation for direct contact membrane distillation (DCMD) process

    KAUST Repository

    Eleiwi, Fadi

    2016-02-01

    This work proposes a mathematical dynamic model for the direct contact membrane distillation (DCMD) process. The model is based on a 2D Advection–Diffusion Equation (ADE), which describes the heat and mass transfer mechanisms that take place inside the DCMD module. The model studies the behavior of the process in the time varying and the steady state phases, contributing to understanding the process performance, especially when it is driven by intermittent energy supply, such as the solar energy. The model is experimentally validated in the steady state phase, where the permeate flux is measured for different feed inlet temperatures and the maximum absolute error recorded is 2.78 °C. Moreover, experimental validation includes the time variation phase, where the feed inlet temperature ranges from 30 °C to 75 °C with 0.1 °C increment every 2min. The validation marks relative error to be less than 5%, which leads to a strong correlation between the model predictions and the experiments.

  2. Dynamic modeling and experimental validation for direct contact membrane distillation (DCMD) process

    KAUST Repository

    Eleiwi, Fadi; Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Francis, Lijo; Laleg-Kirati, Taous-Meriem

    2016-01-01

    This work proposes a mathematical dynamic model for the direct contact membrane distillation (DCMD) process. The model is based on a 2D Advection–Diffusion Equation (ADE), which describes the heat and mass transfer mechanisms that take place inside the DCMD module. The model studies the behavior of the process in the time varying and the steady state phases, contributing to understanding the process performance, especially when it is driven by intermittent energy supply, such as the solar energy. The model is experimentally validated in the steady state phase, where the permeate flux is measured for different feed inlet temperatures and the maximum absolute error recorded is 2.78 °C. Moreover, experimental validation includes the time variation phase, where the feed inlet temperature ranges from 30 °C to 75 °C with 0.1 °C increment every 2min. The validation marks relative error to be less than 5%, which leads to a strong correlation between the model predictions and the experiments.

  3. Process and apparatus for the distillation of shale and other bituminous substances

    Energy Technology Data Exchange (ETDEWEB)

    Aitken, H

    1883-01-14

    The upper part of a vertical retort used for distillation is made of fire-resisting material, and the lower part of iron. The firing is carried out on the grate, so that the gases play over and under the retorts. The distillation products are carried off through a condenser. For raising the heat in the retorts and for increasing the yield of distillation proudcts the lower part of the exhausted shale is removed from the retort and it is filled up again. The exhaust gases serve to warm up the air for combustion.

  4. Sodium distiller II

    International Nuclear Information System (INIS)

    Goncalves, A.C.; Castro, P.M. e; Torres, A.R.; Correa, S.M.

    1990-01-01

    A sodium distiller allows the evaluation of the sodium purity, contained in plants and circuits of Fast Reactors. The sodium distillers of the IEN Reactor's Department was developed initially as a prototype, for the testing of the distillation process and in a second step, as a equipment dedicated to attendance the operation of these circuits. This last one was build in stainless steel, with external heat, rotating crucible of nickel for four samples, purge system for pipe cleaning and a sight glass that permits the observation of the distillation during all the operation. The major advantage of this equipment is the short time to do a distillation operation, which permits its routine utilization. As a consequence of the development of the distillers and its auxiliary systems an important amount of new information was gathered concerning components and systems behaviour under high temperature, vacuum and sodium. (author)

  5. The usefulness of intermediate products of plum processing for alcoholic fermentation and chemical composition of the obtained distillates.

    Science.gov (United States)

    Balcerek, Maria; Pielech-Przybylska, Katarzyna; Patelski, Piotr; Sapińska, Ewelina; Księżopolska, Mirosława

    2013-05-01

    In this study, an evaluation of intermediate products of plum processing as potential raw materials for distillates production was performed. Effects of composition of mashes on ethanol yield, chemical composition and taste, and flavor of the obtained spirits were determined. The obtained results showed that spontaneous fermentations of the tested products of plum processing with native microflora of raisins resulted in lower ethanol yields, compared to the ones fermented with wine yeast Saccharomyces bayanus. The supplementation of mashes with 120 g/L of sucrose caused an increase in ethanol contents from 6.2 ± 0.2 ÷ 6.5 ± 0.2% v/v in reference mashes (without sucrose addition, fermented with S. bayanus) to ca. 10.3 ± 0.3% v/v, where its highest yields amounted to 94.7 ± 2.9 ÷ 95.6 ± 2.9% of theoretical capacity, without negative changes in raw material originality of distillates. The concentrations of volatile compounds in the obtained distillates exceeding 2000 mg/L alcohol 100% v/v and low content of methanol and hydrocyanic acid, as well as their good taste and aroma make the examined products of plum processing be very attractive raw materials for the plum distillates production. © 2013 Institute of Food Technologists®

  6. Modeling of Steam Distillation Mechanism during Steam Injection Process Using Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Amin Daryasafar

    2014-01-01

    neurofuzzy interference system (ANFIS are used in this study as effective methods to simulate the distillate recoveries of these sets of data. Thirteen sets of data were used to train the models and three sets were used to test the models. The developed models are highly compatible with respect to input oil properties and can predict the distillate yield with minimum entry. For showing the performance of the proposed models, simulation of steam distillation is also done using modified Peng-Robinson equation of state. Comparison between the calculated distillates by ANFIS and neural network models and also equation of state-based method indicates that the errors of the ANFIS model for training data and test data sets are lower than those of other methods.

  7. Performance modeling of direct contact membrane distillation (DCMD) seawater desalination process using a commercial composite membrane

    KAUST Repository

    Lee, Junggil

    2015-01-10

    This paper presents the development of a rigorous theoretical model to predict the transmembrane flux of a flat sheet hydrophobic composite membrane, comprising both an active layer of polytetrafluoroethylene and a scrim-backing support layer of polypropylene, in the direct contact membrane distillation (DCMD) process. An integrated model includes the mass, momentum, species and energy balances for both retentate and permeate flows, coupled with the mass transfer of water vapor through the composite membrane and the heat transfer across the membrane and through the boundary layers adjacent to the membrane surfaces. Experimental results and model predictions for permeate flux and performance ratio are compared and shown to be in good agreement. The permeate flux through the composite layer can be ignored in the consideration of mass transfer pathways at the composite membrane. The effect of the surface porosity and the thickness of active and support layers on the process performance of composite membrane has also been studied. Among these parameters, surface porosity is identified to be the main factor significantly influencing the permeate flux and performance ratio, while the relative influence of the surface porosity on the performance ratio is less than that on flux.

  8. Membrane/distillation hybrid process research and development. Final report, phase II

    Energy Technology Data Exchange (ETDEWEB)

    Mazanec, T.J.

    1997-07-01

    This report covers work conducted under the grant awarded to BP by DOE in late 1991 entitled {open_quotes}Membrane/Distillation Hybrid Process Research and Development.{close_quotes} The program was directed towards development and commercialization of the BP process for separation of vapor phase olefins from non-olefins via facilitated transport using an aqueous facilitator. The program has come to a very successful conclusion, with formation of a partnership between BP and Stone and Webster Engineering Corporation (SWEC) to market and commercialize the technology. The focus of this report is the final portion of the program, during which engineering re-design, facilitator optimization, economic analysis, and marketing have been the primary activities. At the end of Phase II BP was looking to partner with an engineering firm to advance the selective olefin recovery (SOR) technology from the lab/demo stage to full commercialization. In August 1995 BP and SWEC reached an agreement to advance the technology by completing additional Phase III work with DOE and beginning marketing activities.

  9. Distillation methods

    International Nuclear Information System (INIS)

    Konecny, C.

    1975-01-01

    Two main methods of separation using the distillation method are given and evaluated, namely evaporation and distillation in carrier gas flow. Two basic apparatus are described for illustrating the methods used. The use of the distillation method in radiochemistry is documented by a number of examples of the separation of elements in elemental state, volatile halogenides and oxides. Tables give a survey of distillation methods used for the separation of the individual elements and give conditions under which this separation takes place. The suitability of the use of distillation methods in radiochemistry is discussed with regard to other separation methods. (L.K.)

  10. Heterogeneous batch distillation processes for waste solvent recovery in pharmaceutical industry

    OpenAIRE

    Rodriguez-Donis, Ivonne; Gerbaud, Vincent; Arias-Barreto, Alien; Joulia, Xavier

    2009-01-01

    A summary about our experiences in the introduction of heterogeneous entrainers in azeotropic and extractive batch distillation is presented in this work. Essential advantages of the application of heterogeneous entrainers are showed by rigorous simulation and experimental verification in a bench batch distillation column for separating several azeotropic mixtures such as acetonitrile – water, n hexane – ethyl acetate and chloroform – methanol, commonly found in pharmaceutical industry.

  11. Dry Process Fuel Performance Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Myung Seung; Song, K. C.; Moon, J. S. and others

    2005-04-15

    The objective of the project is to establish the performance evaluation system of DUPIC fuel during the Phase II R and D. In order to fulfil this objectives, irradiation test of DUPIC fuel was carried out in HANARO using the non-instrumented and SPND-instrumented rig. Also, the analysis on the in-reactor behavior analysis of DUPIC fuel, out-pile test using simulated DUPIC fuel as well as performance and integrity assessment in a commercial reactor were performed during this Phase. The R and D results of the Phase II are summarized as follows : - Performance evaluation of DUPIC fuel via irradiation test in HANARO - Post irradiation examination of irradiated fuel and performance analysis - Development of DUPIC fuel performance code (modified ELESTRES) considering material properties of DUPIC fuel - Irradiation behavior and integrity assessment under the design power envelope of DUPIC fuel - Foundamental technology development of thermal/mechanical performance evaluation using ANSYS (FEM package)

  12. Dry Process Fuel Performance Evaluation

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Song, K. C.; Moon, J. S. and others

    2005-04-01

    The objective of the project is to establish the performance evaluation system of DUPIC fuel during the Phase II R and D. In order to fulfil this objectives, irradiation test of DUPIC fuel was carried out in HANARO using the non-instrumented and SPND-instrumented rig. Also, the analysis on the in-reactor behavior analysis of DUPIC fuel, out-pile test using simulated DUPIC fuel as well as performance and integrity assessment in a commercial reactor were performed during this Phase. The R and D results of the Phase II are summarized as follows : - Performance evaluation of DUPIC fuel via irradiation test in HANARO - Post irradiation examination of irradiated fuel and performance analysis - Development of DUPIC fuel performance code (modified ELESTRES) considering material properties of DUPIC fuel - Irradiation behavior and integrity assessment under the design power envelope of DUPIC fuel - Foundamental technology development of thermal/mechanical performance evaluation using ANSYS (FEM package)

  13. Separation and Recycling of Spent Carbon Cathode Blocks in the Aluminum Industry by the Vacuum Distillation Process

    Science.gov (United States)

    Yaowu, Wang; Jianping, Peng; Yuezhong, Di

    2018-04-01

    Aluminum is the second most produced metal after iron. China is the top producer of primary aluminum with a production capacity of 41,000 kt and an output in 2016 of 32,000 kt. A large amount of spent carbon cathode block (SCCB) is produced after electrolytic pot failure. SCCB consists of carbon, fluorides, alkali metals, carbides, nitrides, cyanides, and oxides, and is considered to be a hazardous material because it contains significant concentrations of toxic and soluble cyanides and fluorides. There is no economical and efficient process for the treatment of SCCB and is most commonly disposed in landfill. In this study, the vacuum distillation process (VDP) has been used to separate and recycle SCCB. The results show that Na3AlF6, NaF, and sodium metal can be effectively separated from SCCB by VDP, and the distillation ratio is above 80% at a distillation temperature of 1200°C. The carbon content in the distilled SCCB is above 91% and the impurities are mainly CaF2 and Al2O3.

  14. Development of an energy module for the multi-objective optimisation of complex distillation processes

    Energy Technology Data Exchange (ETDEWEB)

    Tijani, Alhassan Salami

    2010-06-04

    Reduction of energy consumption has increasingly come into sharp focus in the chemical process industry. This is of great value not only for existing plant but also for the development of new processes. Therefore, the challenge for process design engineers to develop an integrated chemical process that simultaneously satisfies economic and environmental objectives has increased considerably. Particularly, multi-objective optimization in the chemical industry has become increasingly popular during the last decade. The main problem lies, in selecting the alternative best design during decision making with multiple and often conflicting objectives. This thesis work presents a methodology for the multi-objective optimization of process design alternatives under economic and environmental objectives and also to establish the linkage between exergy and the environment. Four distillation units design alternatives with increasing level of heat integration were considered. Each design is analysed from exergy, potential environmental impact (PEI) and economic point of view. A non-dominated solution known as the ''Pareto optimal solution'' is generated for decision making. The thermodynamic efficiency indicates where exergy losses occur. The demand for industrial process heat by means of solar energy has generated much interest because it offers an innovative way to reduce operating cost and improve clean renewable electric power. Concentrated Solar Thermal Power (CSP) can provide solution to global energy problems within a relatively short time and is capable of contributing to carbon dioxide reduction, which is an important step towards zero emissions in the process industries. This work provides an overview of a simulation model to evaluate the environmental and economic performance of two case studies of solar thermal power plants. A methodology is presented to integrate solar thermal power plant into industrial processes and this is then compared with an existing

  15. Development of an energy module for the multi-objective optimisation of complex distillation processes

    Energy Technology Data Exchange (ETDEWEB)

    Tijani, Alhassan Salami

    2010-06-04

    Reduction of energy consumption has increasingly come into sharp focus in the chemical process industry. This is of great value not only for existing plant but also for the development of new processes. Therefore, the challenge for process design engineers to develop an integrated chemical process that simultaneously satisfies economic and environmental objectives has increased considerably. Particularly, multi-objective optimization in the chemical industry has become increasingly popular during the last decade. The main problem lies, in selecting the alternative best design during decision making with multiple and often conflicting objectives. This thesis work presents a methodology for the multi-objective optimization of process design alternatives under economic and environmental objectives and also to establish the linkage between exergy and the environment. Four distillation units design alternatives with increasing level of heat integration were considered. Each design is analysed from exergy, potential environmental impact (PEI) and economic point of view. A non-dominated solution known as the ''Pareto optimal solution'' is generated for decision making. The thermodynamic efficiency indicates where exergy losses occur. The demand for industrial process heat by means of solar energy has generated much interest because it offers an innovative way to reduce operating cost and improve clean renewable electric power. Concentrated Solar Thermal Power (CSP) can provide solution to global energy problems within a relatively short time and is capable of contributing to carbon dioxide reduction, which is an important step towards zero emissions in the process industries. This work provides an overview of a simulation model to evaluate the environmental and economic performance of two case studies of solar thermal power plants. A methodology is presented to integrate solar thermal power plant into industrial processes and this is then compared with

  16. Zeolites as Catalysts for Fuels Refining after Indirect Liquefaction Processes

    Directory of Open Access Journals (Sweden)

    Arno de Klerk

    2018-01-01

    Full Text Available The use of zeolite catalysts for the refining of products from methanol synthesis and Fisher–Tropsch synthesis was reviewed. The focus was on fuels refining processes and differences in the application to indirect liquefaction products was compared to petroleum, which is often a case of managing different molecules. Processes covered were skeletal isomerisation of n-butenes, hydroisomerisation of n-butane, aliphatic alkylation, alkene oligomerisation, methanol to hydrocarbons, ethanol and heavier alcohols to hydrocarbons, carbonyls to hydrocarbons, etherification of alkenes with alcohols, light naphtha hydroisomerisation, catalytic naphtha reforming, hydroisomerisation of distillate, hydrocracking and fluid catalytic cracking. The zeolite types that are already industrially used were pointed out, as well as zeolite types that have future promise for specific conversion processes.

  17. Cyclic distillation technology - A mini-review

    DEFF Research Database (Denmark)

    Bîldea, Costin Sorin; Pătruţ, Cătălin; Jørgensen, Sten Bay

    2016-01-01

    Process intensification in distillation systems has received much attention during the pastdecades, with the aim of increasing both energy and separation efficiency. Varioustechniques, such as internal heat-integrated distillation, membrane distillation, rotating packedbed, dividing-wall columns...

  18. Distillation irrigation: a low-energy process for coupling water purification and drip irrigation

    Science.gov (United States)

    Constantz, J.

    1989-01-01

    A method is proposed for combining solar distillation and drip irrigation to simultaneously desalinize water and apply this water to row crops. In this paper, the basic method is illustrated by a simple device constructed primarily of sheets of plastic, which uses solar energy to distill impaired water and apply the distillate to a widely spaced row crop. To predict the performance of the proposed device, an empirical equation for distillate production, dp, is developed from reported solar still production rates, and a modified Jensen-Haise equation is used to calculate the potential evapotranspiration, et, for a row crop. Monthly values for et and dp are calculated by using a generalized row crop at five locations in the Western United States. Calculated et values range from 1 to 22 cm month-1 and calculated dp values range from 2 to 11 cm month-1, depending on the location, the month, and the crop average. When the sum of dp plus precipitation, dp + P, is compared to et for the case of 50% distillation irrigation system coverage, the results indicate that the crop's et is matched by dp + P, at the cooler locations only. However, when the system coverage is increased to 66%, the crop's et is matched by dp + P even at the hottest location. Potential advantages of distillation irrigation include the ability: (a) to convert impaired water resources to water containing no salts or sediments; and (b) to efficiently and automatically irrigate crops at a rate that is controlled primarily by radiation intensities. The anticipated disadvantages of distillation irrigation include: (a) the high costs of a system, due to the large amounts of sheeting required, the short lifetime of the sheeting, and the physically cumbersome nature of a system; (b) the need for a widely spaced crop to reduce shading of the system by the crop; and (c) the production of a concentrated brine or precipitate, requiring proper off-site disposal. ?? 1989.

  19. Destructive distillation

    Energy Technology Data Exchange (ETDEWEB)

    Mitting, E K

    1882-08-09

    The broken-up shale is placed in cast-iron retorts, heated externally, having exit tubes placed at a low level. Each retort is provided with a steam-pipe with a regulating-cock outside, the pipe being carried around the walls of the retort in a spiral or zig-zag way to ensure superheating of the steam, perforations being made in the pipe to allow exit for the steam into the retort. The steam, which may if desired be superheated before entrance, is passed into the retort when the latter has attained a temperature of from 210 to 250/sup 0/C and the passage is continued while the temperature rises, as long as distillation goes on. The exit pipe to the retort leads to a condenser of much condensing-surface, provided with a drag obtained by an exhausting steam jet or otherwise. The distilled products consist of tar, oils, wax, ammoniacal water (stated to be in greater proportion through the use of the process), and lighting and heating gas. The latter gas goes through a scrubber to a gasholder. The carbonaceous residue in the retort is discharged when cooled below a red heat, into sheet-iron cylinders, with tightly fitting lids, to avoid as far as possible contact with the atmosphere.

  20. Effects of Cuban Crude Oil on the Process of Leach, Sedimentation and Distillation in Nicaro

    Directory of Open Access Journals (Sweden)

    Ing. María Elena Magaña-Haynes

    2015-11-01

    Full Text Available ine"> process of leaching, sedimentation and distillation ofthe processed minerals at “René Ramos Latour” Company was evaluated. Two periods of testswere performed; one when oil was introduced into the furnace by spear and the other when itwas introduced by spear and chamber. The results demonstrated the feasibility of using theCuban crude in reduction and leaching process of mineral by the use of spear and chamber aswell. Nickel and cobalt extractions achieved by stepwise exceed values found in the relatedliterature. Deposition of mineral was good reaching values of 1,736 -1,745 kg/m3 at the bottomof the sedimentation stage leach and 1,774 -1,807 kg/m3 in the washing stage. The thickenerswere maintained with high clear liquor level throughout the test with values between 28,0-30,0ppm. The sedimentation rate achieved low values both in the first and in the second leachingstage. Sedimentation unit area was 0,23 m2 /T day, so that no sedimentation problems werepresented. It was observed an increase in the sulfur content up to values of 6,52 g/L for a nickelcontent of 12,0g/L, which caused that the dissolved nickel in downloading stills were of 0,392 g/L and 2,58 g/L of ammonia. The sulfur content in the nickel carbonate was increased upto 6,30 %, which is 2,5 % higher than conventional.

  1. Collective processing device for spent fuel

    International Nuclear Information System (INIS)

    Irie, Hiroaki; Taniguchi, Noboru.

    1996-01-01

    The device of the present invention comprises a sealing vessel, a transporting device for transporting spent fuels to the sealing vessel, a laser beam cutting device for cutting the transported spent fuels, a dissolving device for dissolving the cut spent fuels, and a recovering device for recovering radioactive materials from the spent fuels during processing. Reprocessing treatments comprising each processing of dismantling, shearing and dissolving are conducted in the sealing vessel can ensure a sealing barrier for the radioactive materials (fissionable products and heavy nuclides). Then, since spent fuels can be processed in a state of assemblies, and the spent fuels are easily placed in the sealing vessel, operation efficiency is improved, as well as operation cost is saved. Further, since the spent fuels can be cut by a remote laser beam operation, there can be prevented operator's exposure due to radioactive materials released from the spent fuels during cutting operation. (T.M.)

  2. Dry distillation

    Energy Technology Data Exchange (ETDEWEB)

    1939-11-30

    To heat rapidly, and prevent agglutination of carbonaceous material duriing distillation of shale, a furnace of the tunnel type has four compartments (the preheating chamber, the distillation chamber proper, and two cooling chambers). Waggons, which convey the material through the distilling chamber, have perforated bottoms. Above the waggons in the distilling chamber are three heating sections having pipes which pass through the sections and communicate with the distilling chamber. Fans cause the distillation gases to circulate through the material and the pipes. The heating gases from three fire boxes are introduced into the oven, and circulate around pipes and are drawn to the discharge apertures by the fans. The heating gases introduced at two points travel in the direction of the material being treated, while the gases introduced at a third point travel in counter flow thereto. Gas is discharged by two pipes. Trucks carrying treated material are passed to two cooling chambers.

  3. Dry process fuel performance technology development

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kweon Ho; Kim, K. W.; Kim, B. K. (and others)

    2006-06-15

    The objective of the project is to establish the performance evaluation system of DUPIC fuel during the Phase III R and D. In order to fulfil this objectives, property model development of DUPIC fuel and irradiation test was carried out in Hanaro using the instrumented rig. Also, the analysis on the in-reactor behavior analysis of DUPIC fuel, out-pile test using simulated DUPIC fuel as well as performance and integrity assessment in a commercial reactor were performed during this Phase. The R and D results of the Phase III are summarized as follows: Fabrication process establishment of simulated DUPIC fuel for property measurement, Property model development for the DUPIC fuel, Performance evaluation of DUPIC fuel via irradiation test in Hanaro, Post irradiation examination of irradiated fuel and performance analysis, Development of DUPIC fuel performance code (KAOS)

  4. Dry process fuel performance technology development

    International Nuclear Information System (INIS)

    Kang, Kweon Ho; Kim, K. W.; Kim, B. K.

    2006-06-01

    The objective of the project is to establish the performance evaluation system of DUPIC fuel during the Phase III R and D. In order to fulfil this objectives, property model development of DUPIC fuel and irradiation test was carried out in Hanaro using the instrumented rig. Also, the analysis on the in-reactor behavior analysis of DUPIC fuel, out-pile test using simulated DUPIC fuel as well as performance and integrity assessment in a commercial reactor were performed during this Phase. The R and D results of the Phase III are summarized as follows: Fabrication process establishment of simulated DUPIC fuel for property measurement, Property model development for the DUPIC fuel, Performance evaluation of DUPIC fuel via irradiation test in Hanaro, Post irradiation examination of irradiated fuel and performance analysis, Development of DUPIC fuel performance code (KAOS)

  5. Distilling solid carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, H; Laing, B

    1926-12-04

    In a process of distilling solid carbonaceous materials with by-product recovery, the time factor and the temperature gradient during the distillation period are so controlled that a temperature difference exceeding 150/sup 0/C is avoided between the temperatures at the center and periphery of any suitable size of material or thickness of fuel bed. The material is heated by direct contact with an inert gas, such as water gas, producer gas, or combustion gases, which is passed in counterflow to the material and whose volume is such as to lower the vapor tension or partial pressure of the volatilizable oils and to withdraw the oils without cracking of the oil vapors. The material may be subjected to a preliminary heat treatment by gases containing 2 to 3 percent of free oxygen to reduce its coking properties, and free oxygen may be added either to the heating gases during the heat treatment, or to the retort and heating gases and vapors to polymerize resinous bodies prior to condensation or during condensation and while the oils are still wholly or partially in the vapor state.

  6. Shale distillation

    Energy Technology Data Exchange (ETDEWEB)

    Blanding, F H

    1946-08-29

    A continuous method of distilling shale to produce valuable hydrocarbon oils is described which comprises providing a fluidized mass of the shale in a distillation zone, withdrawing hydrocarbon vapors from the zone, mixing fresh cold shale with the hydrocarbon vapors to quench the same, whereby the fresh shale is preheated, recovering hydrocarbon vapors and product vapors from the mixture and withdrawing preheated shale from the mixture and charging it to a shale distillation zone.

  7. Distilling shale

    Energy Technology Data Exchange (ETDEWEB)

    Heyl, G E

    1917-02-06

    The yield of oil obtained by distilling shale is increased by first soaking the shale with about 10 percent of its volume of a liquid hydrocarbon for a period of 24 hours or longer. Distillation is carried on up to a temperature of about 220/sup 0/C., and a further 10 percent of hydrocarbon is then added and the distillation continued up to a temperature of about 400/sup 0/C.

  8. Spent fuel storage process equipment development

    International Nuclear Information System (INIS)

    Park, Hyun Soo; Lee, Jae Sol; Yoo, Jae Hyung

    1990-02-01

    Nuclear energy which is a major energy source of national energy supply entails spent fuels. Spent fuels which are high level radioactive meterials, are tricky to manage and need high technology. The objectives of this study are to establish and develop key elements of spent fuel management technologies: handling equipment and maintenance, process automation technology, colling system, and cleanup system. (author)

  9. Destructive, distillation

    Energy Technology Data Exchange (ETDEWEB)

    Jameson, J

    1882-10-23

    The apparatus employed resembles a reverberatory furnace, having a brickwork chamber with pipes or passages leading from the bottom, through which gases and vapors, arising from destructive distillation or heating of the materials with which the chamber is charged to a certain depth, are drawn by suction produced by a fan or blower. The materials are heated from above by firegates admitted from a separate furnace or fireplace. When shale is thus treated, to obtain burning gas, oil, and ammonia, the suction may be so regulated as to give preponderance to whichever product is desired, the depth of material treated being also concerned in the result. The process is applicable also in the treatment of coal pit refuse, sawdust, peat, and other matters, to obtain volatile products; in burning limestone to obtain carbon dioxide; and in roasting ores. Reference is made to a former Specification for coking coal, No. 1947, A. D. 1882.

  10. Co-Processing of Jatropha-Derived Bio-Oil with Petroleum Distillates over Mesoporous CoMo and NiMo Sulfide Catalysts

    Directory of Open Access Journals (Sweden)

    Shih-Yuan Chen

    2018-02-01

    Full Text Available The co-processing of an unconventional type of Jatropha bio-oil with petroleum distillates over mesoporous alumina-supported CoMo and NiMo sulfide catalysts (denoted CoMo/γ-Al2O3 and NiMo/γ-Al2O3 was studied. Either a stainless-steel high-pressure batch-type reactor or an up-flow fixed-bed reaction system was used under severe reaction conditions (330–350 °C and 5–7 MPa, similar to the conditions of the conventional diesel hydrodesulfurization (HDS process. To understand the catalytic performance of the mesoporous sulfide catalysts for co-processing, we prepared two series of oil feedstocks. First, model diesel oils, consisting of hydrocarbons and model molecules with various heteroatoms (sulfur, oxygen, and nitrogen were used for the study of the reaction mechanisms. Secondly, low-grade oil feedstocks, which were prepared by dissolving of an unconventional type of Jatropha bio-oil (ca. 10 wt % in the petroleum distillates, were used to study the practical application of the catalysts. Surface characterization by gas sorption, spectroscopy, and electron microscopy indicated that the CoMo/γ-Al2O3 sulfide catalyst, which has a larger number of acidic sites and coordinatively unsaturated sites (CUS on the mesoporous alumina framework, was associated with small Co-incorporated MoS2-like slabs with high stacking numbers and many active sites at the edges and corners. In contrast, the NiMo/γ-Al2O3 sulfide catalyst, which had a lower number of acidic sites and CUS on mesoporous alumina framework, was associated with large Ni-incorporated MoS2-like slabs with smaller stacking numbers, yielding more active sites at the brims and corresponding to high hydrogenation (HYD activity. Concerning the catalytic performance, the mesoporous CoMo/γ-Al2O3 sulfide catalyst with large CUS number was highly active for the conventional diesel HDS process; unfortunately, it was deactivated when oxygen- and nitrogen-containing model molecules or Jatropha bio

  11. A systematic framework for the feasibility and technical evaluation of reactive distillation processes

    NARCIS (Netherlands)

    Shah, M.R.; Kiss, A.A.; Zondervan, E.; Haan, de A.B.

    2012-01-01

    This study presents a novel design methodology for the feasibility and technical evaluation of reactive distillation (RD), and discusses the applicability of various design methods of RD. The proposed framework for the feasibility evaluation determines the boundary conditions (e.g. relative

  12. Extractive distillation with ionic liquids as solvents : selection and conceptual process design

    NARCIS (Netherlands)

    Gutierrez Hernandez, J.P.

    2013-01-01

    Extractive distillation technology is widely used in the chemical and petrochemical industries for separating azeotropic, close-boiling and low relative volatility mixtures. It uses an additional solvent in order to interact with the components of different chemical structure within the mixture. The

  13. Fuel corrosion processes under waste disposal conditions

    International Nuclear Information System (INIS)

    Shoesmith, D.W.

    2000-01-01

    The release of the majority of radionuclides from spent nuclear fuel under permanent disposal conditions will be controlled by the rate of dissolution of the UO 2 fuel matrix. In this manuscript the mechanism of the coupled anodic (fuel dissolution) and cathodic (oxidant reduction) reactions which constitute the overall fuel corrosion process is reviewed, and the many published observations on fuel corrosion under disposal conditions discussed. The primary emphasis is on summarizing the overall mechanistic behaviour and establishing the primary factors likely to control fuel corrosion. Included are discussions on the influence of various oxidants including radiolytic ones, pH, temperature, groundwater composition, and the formation of corrosion product deposits. The relevance of the data recorded on unirradiated UO 2 to the interpretation of spent fuel behaviour is included. Based on the review, the data used to develop fuel corrosion models under the conditions anticipated in Yucca Mountain (NV, USA) are evaluated

  14. Low temperature destructive distillation

    Energy Technology Data Exchange (ETDEWEB)

    1938-07-05

    A process is given and apparatus is described for the destructive distillation at low temperature of coal, oil shale, and the like by subjection to the action of a stream of hot gases or superhearted steam, flowing in a closed circuit. Subsequent treatment of the distillation residues with a gas stream containing oxygen results in combustion of the carbon-containing material therein brings to a high temperature the solid residue, in which the process comprises subsequently contacting the hot solid residue with the fluid stream effecting the distillation.

  15. A new green process for biodiesel production from waste oils via catalytic distillation using a solid acid catalyst – Modeling, economic and environmental analysis

    Directory of Open Access Journals (Sweden)

    Aashish Gaurav

    2016-04-01

    Full Text Available The challenges in the chemical processing industry today are environmental concerns, energy and capital costs. Catalytic distillation (CD is a green reactor technology which combines a catalytic reaction and separation via distillation in the same distillation column. Utilization of CD in chemical process development could result in capital and energy savings, and the reduction of greenhouse gases. The efficacy of CD and the economic merits, in terms of energy and equipment savings, brought by CD for the production of biodiesel from waste oil such as yellow grease is quantified. Process flow sheets for industrial routes for an annual production of 10 million gallon ASTM purity biodiesel in a conventional process (reactor followed by distillation and CD configurations are modeled in Aspen Plus. Material and energy flows, as well as sized unit operation blocks, are used to conduct an economic assessment of each process. Total capital investment, total operating and utility costs are calculated for each process. The waste oil feedstock is yellow grease containing both triglyceride and free fatty acid. Both transesterification and esterification reactions are considered in the process simulations. Results show a significant advantage of CD compared to a conventional biodiesel processes due to the reduction of distillation columns, waste streams and greenhouse gas emissions. The significant savings in capital and energy costs together with the reduction of greenhouse gases demonstrate that process intensification via CD is a feasible and new green process for the biodiesel production from waste oils. Keywords: Yellow grease, Catalytic distillation, Aspen plus economic analyzer, Process intensification

  16. Manufacturing technology and process for BWR fuel

    International Nuclear Information System (INIS)

    Kato, Shigeru

    1996-01-01

    Following recent advanced technologies, processes and requests of the design changes of BWR fuel, Nuclear Fuel Industries, Ltd. (NFI) has upgraded the manufacturing technology and honed its own skills to complete its brand-new automated facility in Tokai in the latter half of 1980's. The plant uses various forms of automation throughout the manufacturing process: the acceptance of uranium dioxide powder, pelletizing, fuel rod assembling, fuel bundle assembling and shipment. All processes are well computerized and linked together to establish the integrated control system with three levels of Production and Quality Control, Process Control and Process Automation. This multi-level system plays an important role in the quality assurance system which generates the highest quality of fuels and other benefits. (author)

  17. Distilling shale and coal

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, H; Young, G

    1923-01-09

    In a process of recovering oil from shale or coal the material is ground and may be subjected to a cleaning or concentrating process of the kind described in Specification 153,663 after which it is distilled in a furnace as described in Specification 13,625/09 the sections of the furnace forming different temperature zones, and the rate of the passage of the material is regulated so that distillation is complete with respect to the temperature of each zone, the whole distillation being accomplished in successive stages. The vapors are taken off at each zone and superheated steam may be passed into the furnace at suitable points and the distillation terminated at any stage of the process.

  18. Fuel processing requirements and techniques for fuel cell propulsion power

    Science.gov (United States)

    Kumar, R.; Ahmed, S.; Yu, M.

    Fuels for fuel cells in transportation systems are likely to be methanol, natural gas, hydrogen, propane, or ethanol. Fuels other than hydrogen will need to be reformed to hydrogen on-board the vehicle. The fuel reformer must meet stringent requirements for weight and volume, product quality, and transient operation. It must be compact and lightweight, must produce low levels of CO and other byproducts, and must have rapid start-up and good dynamic response. Catalytic steam reforming, catalytic or noncatalytic partial oxidation reforming, or some combination of these processes may be used. This paper discusses salient features of the different kinds of reformers and describes the catalysts and processes being examined for the oxidation reforming of methanol and the steam reforming of ethanol. Effective catalysts and reaction conditions for the former have been identified; promising catalysts and reaction conditions for the latter are being investigated.

  19. Conversion of microalgae to jet fuel: process design and simulation.

    Science.gov (United States)

    Wang, Hui-Yuan; Bluck, David; Van Wie, Bernard J

    2014-09-01

    Microalgae's aquatic, non-edible, highly genetically modifiable nature and fast growth rate are considered ideal for biomass conversion to liquid fuels providing promise for future shortages in fossil fuels and for reducing greenhouse gas and pollutant emissions from combustion. We demonstrate adaptability of PRO/II software by simulating a microalgae photo-bio-reactor and thermolysis with fixed conversion isothermal reactors adding a heat exchanger for thermolysis. We model a cooling tower and gas floatation with zero-duty flash drums adding solids removal for floatation. Properties data are from PRO/II's thermodynamic data manager. Hydrotreating is analyzed within PRO/II's case study option, made subject to Jet B fuel constraints, and we determine an optimal 6.8% bioleum bypass ratio, 230°C hydrotreater temperature, and 20:1 bottoms to overhead distillation ratio. Process economic feasibility occurs if cheap CO2, H2O and nutrient resources are available, along with solar energy and energy from byproduct combustion, and hydrotreater H2 from product reforming. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Powder handling for automated fuel processing

    International Nuclear Information System (INIS)

    Frederickson, J.R.; Eschenbaum, R.C.; Goldmann, L.H.

    1989-01-01

    Installation of the Secure Automated Fabrication (SAF) line has been completed. It is located in the Fuel Cycle Plant (FCP) at the Department of Energy's (DOE) Hanford site near Richland, Washington. The SAF line was designed to fabricate advanced reactor fuel pellets and assemble fuel pins by automated, remote operation. This paper describes powder handling equipment and techniques utilized for automated powder processing and powder conditioning systems in this line. 9 figs

  1. Distilling shale

    Energy Technology Data Exchange (ETDEWEB)

    Justice, P M

    1917-09-19

    Light paraffin oils and other oils for motors are obtained from shale, and benzene, toluene, and solvent naphtha are obtained from coal by a process in which the coal or shale is preferably powered to pass through a mesh of 64 to the inch and is heated with a mixture of finely ground carbonate or the like which under the action of heat gives off carbonic acid, and with small iron scrap or its equivalent which is adapted to increase the volume of hydrocarbons evolved. The temperature of the retort is maintained between 175 and 800/sup 0/C., and after all the vapors are given off at the higher temperature a fine jet of water may be injected into the retort and the temperature increased. The produced oil is condensed and purified by fractional distillation, and the gas formed is stored after passing it through a tower packed with coke saturated with a non-volatile oil with recovery of an oil of light specific gravity which is condensed in the tower. The residuum from the still in which the produced oil is fractionated may be treated with carbonate and iron, as in the first stage of the process, and the distillate therefrom passed to a second retort containing manganese dioxide and iron scrap preferably in the proportion of one part or two. The mixture, e.g., one containing shale or oil with six to thirteen percent of oxygen, to which is added three to eight per cent of carbonate, and from one and a half to four per cent of scrap iron, is conveyed by belts and an overhead skip to a hopper of a retort in a furnace heated by burners supplied with producer gas. The retort is fitted with a detachable lid and the vapors formed are led by a pipe to a vertical water-cooled condenser with a drain-cock which leads the condensed oils to a tank, from which a pipe leads to a packed tower for removing light oils and from which the gas passes to a holder.

  2. Mathematical modeling of biomass fuels formation process

    International Nuclear Information System (INIS)

    Gaska, Krzysztof; Wandrasz, Andrzej J.

    2008-01-01

    The increasing demand for thermal and electric energy in many branches of industry and municipal management accounts for a drastic diminishing of natural resources (fossil fuels). Meanwhile, in numerous technical processes, a huge mass of wastes is produced. A segregated and converted combustible fraction of the wastes, with relatively high calorific value, may be used as a component of formed fuels. The utilization of the formed fuel components from segregated groups of waste in associated processes of co-combustion with conventional fuels causes significant savings resulting from partial replacement of fossil fuels, and reduction of environmental pollution resulting directly from the limitation of waste migration to the environment (soil, atmospheric air, surface and underground water). The realization of technological processes with the utilization of formed fuel in associated thermal systems should be qualified by technical criteria, which means that elementary processes as well as factors of sustainable development, from a global viewpoint, must not be disturbed. The utilization of post-process waste should be preceded by detailed technical, ecological and economic analyses. In order to optimize the mixing process of fuel components, a mathematical model of the forming process was created. The model is defined as a group of data structures which uniquely identify a real process and conversion of this data in algorithms based on a problem of linear programming. The paper also presents the optimization of parameters in the process of forming fuels using a modified simplex algorithm with a polynomial worktime. This model is a datum-point in the numerical modeling of real processes, allowing a precise determination of the optimal elementary composition of formed fuels components, with assumed constraints and decision variables of the task

  3. Fouling in Membrane Distillation, Osmotic Distillation and Osmotic Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Mourad Laqbaqbi

    2017-03-01

    Full Text Available Various membrane separation processes are being used for seawater desalination and treatment of wastewaters in order to deal with the worldwide water shortage problem. Different types of membranes of distinct morphologies, structures and physico-chemical characteristics are employed. Among the considered membrane technologies, membrane distillation (MD, osmotic distillation (OD and osmotic membrane distillation (OMD use porous and hydrophobic membranes for production of distilled water and/or concentration of wastewaters for recovery and recycling of valuable compounds. However, the efficiency of these technologies is hampered by fouling phenomena. This refers to the accumulation of organic/inorganic deposits including biological matter on the membrane surface and/or in the membrane pores. Fouling in MD, OD and OMD differs from that observed in electric and pressure-driven membrane processes such electrodialysis (ED, membrane capacitive deionization (MCD, reverse osmosis (RO, nanofiltration (NF, ultrafiltration (UF, microfiltration (MF, etc. Other than pore blockage, fouling in MD, OD and OMD increases the risk of membrane pores wetting and reduces therefore the quantity and quality of the produced water or the concentration efficiency of the process. This review deals with the observed fouling phenomena in MD, OD and OMD. It highlights different detected fouling types (organic fouling, inorganic fouling and biofouling, fouling characterization techniques as well as various methods of fouling reduction including pretreatment, membrane modification, membrane cleaning and antiscalants application.

  4. Microwave processing in MOX fuel cycle

    International Nuclear Information System (INIS)

    Mallik, G.K.; Malav, R.K.; Panakkal, J.P.; Kamath, H.S.

    2005-01-01

    The prominent aspect of the microwave heating technique applications in nuclear material processing is its eco-friendly status. It is envisaged that no active liquid waste will be generated from microwave processing. AFFF has fabricated the (U, Pu) 2 O mixed oxide fuels for PHWRs, BWRs and PFBR. AFFF is also working for the AHWR fuel cycle. The present paper summarises about the process experiments, instrumental development, results, and future applications of microwave heating technique. (author)

  5. Biodiesel by catalytic reactive distillation powered by metal oxides

    NARCIS (Netherlands)

    Kiss, A.A.; Dimian, A.C.; Rothenberg, G.

    2008-01-01

    The properties and use of biodiesel as a renewable fuel as well as the problems associated with its current production processes are outlined. A novel sustainable esterification process based on catalytic reactive distillation is proposed. The pros and cons of manufacturing biodiesel via fatty acid

  6. A review of the FT distillate pathway in GHGenius

    International Nuclear Information System (INIS)

    2006-01-01

    Fischer-Tropsch (FT) distillates products are now used throughout the world as a commercial fuel. However, lifecycle greenhouse gas (GHG) emissions from FT distillates fuels are higher than diesel fuel produced from crude oil. This paper provided details of a lifecycle analysis of FT distillates pathways created for GHGenius, a model used to analyze emissions from a variety of combustion sources. The study examined values reported in tests conducted by major oil and gas operators and described the conversion technologies typically used at FT distillates production facilities. Summaries of reports on FT distillates emissions were also provided. Three primary factors were identified that contributed to different results reported for FT distillates emissions: (1) the efficiency of the conversion process; (2) the allocation procedure used in the conventional oil refinery for the emissions of individual products; and (3) the emissions associated with natural gas production. The GHGenius model was used to quantify the impact of the 3 main factors. An alternative system expansion methodology was used to compare crude oil diesel pathways with a high efficiency, low gas leak scenario in order to achieve high values reported by some oil and gas operators. 5 refs., 5 tabs., 5 figs

  7. Chemical aspects of nuclear fuel fabrication processes

    Energy Technology Data Exchange (ETDEWEB)

    Naylor, A; Ellis, J F; Watson, R H

    1986-04-01

    Processes used by British Nuclear Fuels plc for the conversion of uranium ore concentrates to uranium metal and uranium hexafluoride, are reviewed. Means of converting the latter compound, after enrichment, to sintered UO/sub 2/ fuel bodies are also described. An overview is given of the associated chemical engineering technology.

  8. Fuel Quality/Processing Study. Volume II. Appendix, Task I, literature survey

    Energy Technology Data Exchange (ETDEWEB)

    O' Hara, J B; Bela, A; Jentz, N E; Klumpe, H W; Kessler, R E; Kotzot, H T; Loran, B I

    1981-04-01

    This activity was begun with the assembly of information from Parsons' files and from contacts in the development and commercial fields. A further more extensive literature search was carried out using the Energy Data Base and the American Petroleum Institute Data Base. These are part of the DOE/RECON system. Approximately 6000 references and abstracts were obtained from the EDB search. These were reviewed and the especially pertinent documents, approximately 300, were acquired in the form of paper copy or microfiche. A Fuel Properties form was developed for listing information pertinent to gas turbine liquid fuel properties specifications. Fuel properties data for liquid fuels from selected synfuel processes, deemed to be successful candidates for near future commercial plants were tabulated on the forms. The processes selected consisted of H-Coal, SRC-II and Exxon Donor Solvent (EDS) coal liquefaction processes plus Paraho and Tosco shale oil processes. Fuel properties analyses for crude and distillate syncrude process products are contained in Section 2. Analyses representing synthetic fuels given refinery treatments, mostly bench scale hydrotreating, are contained in Section 3. Section 4 discusses gas turbine fuel specifications based on petroleum source fuels as developed by the major gas turbine manufacturers. Section 5 presents the on-site gas turbine fuel treatments applicable to petroleum base fuels impurities content in order to prevent adverse contaminant effects. Section 7 relates the environmental aspects of gas turbine fuel usage and combustion performance. It appears that the near future stationary industrial gas turbine fuel market will require that some of the synthetic fuels be refined to the point that they resemble petroleum based fuels.

  9. Destructive distillation under pressure

    Energy Technology Data Exchange (ETDEWEB)

    1932-09-08

    A process of destructive distillation of distillable carbonaceous material under pressure is described, consisting of regulating the temperature by introducing the carbonaceous materials to a point where the reaction of hydrogenation has begun but has not stopped, by placing it in indirect heat-exchange with a cooling agent at a critical temperature below the reaction temperature, the agent being under pressure and introduced in the liquid state. Water is used as the cooling agent.

  10. Fuel corrosion processes under waste disposal conditions

    International Nuclear Information System (INIS)

    Shoesmith, D.W.

    1999-09-01

    Under the oxidizing conditions likely to be encountered in the Yucca Mountain Repository, fuel dissolution is a corrosion process involving the coupling of the anodic dissolution of the fuel with the cathodic reduction of oxidants available within the repository. The oxidants potentially available to drive fuel corrosion are environmental oxygen, supplied by the transport through the permeable rock of the mountain and molecular and radical species produced by the radiolysis of available aerated water. The mechanism of these coupled anodic and cathodic reactions is reviewed in detail. While gaps in understanding remain, many kinetic features of these reactions have been studied in considerable detail, and a reasonably justified mechanism for fuel corrosion is available. The corrosion rate is determined primarily by environmental factors rather than the properties of the fuel. Thus, with the exception of increase in rate due to an increase in surface area, pre-oxidation of the fuel has little effect on the corrosion rate

  11. Fuel corrosion processes under waste disposal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shoesmith, D.W. [Univ. of Western Ontario, Dept. of Chemistry, London, Ontario (Canada)

    1999-09-01

    Under the oxidizing conditions likely to be encountered in the Yucca Mountain Repository, fuel dissolution is a corrosion process involving the coupling of the anodic dissolution of the fuel with the cathodic reduction of oxidants available within the repository. The oxidants potentially available to drive fuel corrosion are environmental oxygen, supplied by the transport through the permeable rock of the mountain and molecular and radical species produced by the radiolysis of available aerated water. The mechanism of these coupled anodic and cathodic reactions is reviewed in detail. While gaps in understanding remain, many kinetic features of these reactions have been studied in considerable detail, and a reasonably justified mechanism for fuel corrosion is available. The corrosion rate is determined primarily by environmental factors rather than the properties of the fuel. Thus, with the exception of increase in rate due to an increase in surface area, pre-oxidation of the fuel has little effect on the corrosion rate.

  12. Numerical of Bioethanol Production from Liquid Waste of Rise Flour by Distillation Process

    Directory of Open Access Journals (Sweden)

    Ni Ketut Sari

    2016-01-01

    The results obtained experimentally study the composition of bioethanol a maximum of 95% to 96%, the results of experiments and simulations EWI ternary system form the temperature profile, the profile of the composition of liquid and vapor composition profile dimensionless time functions both at the bottom and in the distillate shows the results of the same approach. The simulation results before used reference in experiments performed the validation beforehand, so that the ternary system simulation EWI after validation of reference can be used in experiments.

  13. Designing Solutions by a Student Centred Approach: Integration of Chemical Process Simulation with Statistical Tools to Improve Distillation Systems

    Directory of Open Access Journals (Sweden)

    Isabel M. Joao

    2017-09-01

    Full Text Available Projects thematically focused on simulation and statistical techniques for designing and optimizing chemical processes can be helpful in chemical engineering education in order to meet the needs of engineers. We argue for the relevance of the projects to improve a student centred approach and boost higher order thinking skills. This paper addresses the use of Aspen HYSYS by Portuguese chemical engineering master students to model distillation systems together with statistical experimental design techniques in order to optimize the systems highlighting the value of applying problem specific knowledge, simulation tools and sound statistical techniques. The paper summarizes the work developed by the students in order to model steady-state processes, dynamic processes and optimize the distillation systems emphasizing the benefits of the simulation tools and statistical techniques in helping the students learn how to learn. Students strengthened their domain specific knowledge and became motivated to rethink and improve chemical processes in their future chemical engineering profession. We discuss the main advantages of the methodology from the students’ and teachers perspective

  14. Sequential Strategy Of Experimental Design I: Optimization Of Extractive Distillation Process Of Ethanol-water Using [bmim][n(cn)(2)] As Entrainer

    OpenAIRE

    Jaimes Figueroa; Jaiver Efren; Rodrigues; Maria Isabel; Wolf Maciel; Maria Regina

    2016-01-01

    Nowadays, one of the methods available to obtain the anhydrous ethanol is the extractive distillation process, which presents great potential depending on the solvent used. It is imperative that the solvent promotes dehydration, but low cost, the low energy consumption, and low waste generation and emissions must be taken into account. Within this context, there is high demand for new efficient solvents for extractive distillation of ethanol-water mixture, so, the ionic liquids (ILs) have som...

  15. A new divided-wall heat integrated distillation column (HIDiC) for batch processing: Feasibility and analysis

    International Nuclear Information System (INIS)

    Jana, Amiya K.

    2016-01-01

    Highlights: • A novel heat integrated configuration is proposed for batch distillation. • The shell is divided into two closed semi-cylinders by a metal wall. • An open-loop variable manipulation policy is formulated. • The column improves its energy efficiency and economic performance. - Abstract: This work introduces a new heat integrated distillation column (HIDiC) for batch processing. Under this scheme, the entire cylindrical shell is proposed to divide vertically by a metal wall into two closed semi-cylinders. Aiming to generate an internal heat source, a heat pump system is employed over the left hand division to elevate the pressure of the right hand part with the application of HIDiC concept. This new divided-wall HIDiC column utilizes its own energy source by transferring heat from the high pressure (HP) to low pressure (LP) side, thereby reducing the utility consumption in both the still and condenser. To make this thermal integration technology more effective, a typical tray configuration is proposed in both sides of the divided-wall. Unlike the continuous flow distillation, the batch column shows unsteady state process characteristics that make its operation more challenging. With this, an open-loop variable manipulation policy is formulated so that the dynamics of the heat integrated column remain close, if not same, with its conventional counterpart. This is a necessary condition required for a fair comparison between them. Finally, the proposed configuration is illustrated by a binary column, showing an improvement in energy savings, entropy generation and cost over its conventional analogous. This thermally integrated configuration is relatively simple than the traditional HIDiC in terms of design and operation.

  16. Optimization of the process of aromatic and medicinal plant maceration in grape marc distillates to obtain herbal liqueurs and spirits.

    Science.gov (United States)

    Rodríguez-Solana, Raquel; Vázquez-Araújo, Laura; Salgado, José Manuel; Domínguez, José Manuel; Cortés-Diéguez, Sandra

    2016-11-01

    Herbal liqueurs are alcoholic beverages produced by the maceration or distillation of aromatic and medicinal plants in alcohol, and are also highly valued for their medicinal properties. The process conditions, as well as the number and quantity of the plants employed, will have a great influence on the quality of the liqueur obtained. The aim of this research was to optimize these important variables. A Box-Benhken experimental design was used to evaluate the independent variables: alcohol content, amount of plant and time during the experimental maceration of plants in grape marc distillate. Four plants were assessed, with the main compound of each plant representing the dependent variable evaluated with respect to following the evolution of the maceration process. Bisabolol oxide A in Matricaria recutita L., linalool in Coriander sativum L. and eucalyptol in Eucalyptus globulus Labill. were quantified using a gas chromatography-flame ionization detector. Glycyrrhizic acid in Glycyrrhiza glabra L was determined using a high-performance liquid chromatography-diode array detector. Other dependent variables were also evaluated: total phenolic content, color parameters and consumer preference (i.e. appearance). The experimental designs allowed the selection of the optimal maceration conditions for each parameter, including the preference score of consumers: 70% (v/v) of ethanol, 40 g L -1 plant concentration and a maceration process of 3 weeks. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. Fuel processing for molten-salt reactors

    International Nuclear Information System (INIS)

    Hightower, J.R. Jr.

    1976-01-01

    Research devoted to development of processes for the isolation of protactinium and for the removal of fission products from molten-salt breeder reactors is reported. During this report period, engineering development progressed on continuous fluorinators for uranium removal, the metal transfer process for rare-earth removal, the fuel reconstitution step, and molten salt--bismuth contactors to be used in reductive extraction processes. The metal transfer experiment MTE-3B was started. In this experiment all parts of the metal transfer process for rare-earth removal are demonstrated using salt flow rates which are about 1 percent of those required to process the fuel salt in a 1000-MW(e) MSBR. During this report period the salt and bismuth phases were transferred to the experimental vessels, and two runs with agitator speeds of 5 rps were made to measure the rate of transfer of neodymium from the fluoride salt to the Bi--Li stripper solution. The uranium removed from the fuel salt by fluorination must be returned to the processed salt in the fuel reconstitution step before the fuel salt is returned to the reactor. An engineering experiment to demonstrate the fuel reconstitution step is being installed. In this experiment gold-lined equipment will be used to avoid introducing products of corrosion by UF 6 and UF 5 . Alternative methods for providing the gold lining include electroplating and mechanical fabrication

  18. Using comprehensive two-dimensional gas chromatography for the analysis of oxygenates in middle distillates I. Determination of the nature of biodiesels blend in diesel fuel.

    Science.gov (United States)

    Adam, Frédérick; Bertoncini, Fabrice; Coupard, Vincent; Charon, Nadège; Thiébaut, Didier; Espinat, Didier; Hennion, Marie-Claire

    2008-04-04

    In the current energetic context (increasing consumption of vehicle fuels, greenhouse gas emission etc.) government policies lead to mandatory introduction in fossil fuels of fuels resulting from renewable sources of energy such as biomass. Blending of fatty acid alkyl esters from vegetable oils (also known as biodiesel) with conventional diesel fuel is one of the solutions technologically available; B5 blends (up to 5%w/w esters in fossil fuel) are marketed over Europe. Therefore, for quality control as well as for forensic reasons, it is of major importance to monitor the biodiesel origin (i.e. the fatty acid ester distribution) and its content when it is blend with petroleum diesel. This paper reports a comprehensive two-dimensional gas chromatography (GC x GC) method that was developed for the individual quantitation of fatty acid esters in middle distillates matrices. Several first and the second dimension columns have been investigated and their performances to achieve (i) a group type separation of hydrocarbons and (ii) individual identification and quantitation of fatty acid ester blend with diesel are reported and discussed. Finally, comparison of quantitative GC x GC results with reference methods demonstrates the benefits of GC x GC approach which enables fast and reliable individual quantitation of fatty acid esters in one single run. Results show that under developed chromatographic conditions, quantitative group type analysis of hydrocarbons is also possible, meaning that simultaneous quantification of hydrocarbons and fatty acid esters can be achieved in one single run.

  19. Shale distillation

    Energy Technology Data Exchange (ETDEWEB)

    Blanding, F H

    1948-08-03

    A continuous method of distilling shale to produce valuable hydrocarbon oils is described, which comprises providing a fluidized mass of the shale in a distillation zone, withdrawing hydrocarbon vapors containing shale fines from the zone, mixing sufficient fresh cold shale with the hydrocarbon vapors to quench the same and to cause condensation of the higher boiling constituents thereof, charging the mixture of vapors, condensate, and cold shale to a separation zone where the shale is maintained in a fluidized condition by the upward movement of the hydrocarbon vapors, withdrawing condensate from the separation zone and recycling a portion of the condensate to the top of the separation zone where it flows countercurrent to the vapors passing therethrough and causes shale fines to be removed from the vapors by the scrubbing action of the condensate, recovering hydrocarbon vapors and product vapors from the separation zone, withdrawing preheated shale from the separation zone and charging it to a shale distillation zone.

  20. Process for producing nuclear reactor fuel oxides

    International Nuclear Information System (INIS)

    Goenrich, H.; Druckenbrodt, W.G.

    1981-01-01

    The waste gases of the calcination process furnace in the AVC or AV/PuC process (manufacture of nuclear reactor fuel dioxides) are returned to the furnace in a closed circuit. The NH 3 produced replaces the hydrogen which would otherwise be required for reduction in this process. (orig.) [de

  1. Fouling mitigation in membrane distillation processes during ammonia stripping from pig manure

    DEFF Research Database (Denmark)

    Zarebska, Agata; Amor, Angel Cid; Ciurkot, Klaudia

    2015-01-01

    Over time fouling leads to membrane wetting. This is the biggest obstacle to widespread use of membrane distillation (MD) for ammonia removal from animal slurry. Feed pretreatment and cleaning strategies of membrane surfaces are the most common methods to prevent or diminish fouling phenomena....... This study investigates preliminary fouling of polypropylene (PP) and polytetrafluoroethylene (PTFE) membranes. A model manure solution was used as feed. In addition cleaning efficiencies with deionized water, NaOH/citric acid, and Novadan agents were studied. Further microfiltration and ultrafiltration were...... examined as manure pretreatment to diminish fouling. To this end polyvinylidene fluoride membranes (PVDF 0.2 µm and 150 kDa respectively) were used. Organic fouling was shown to be dominant. For the model manure solution the fouling comprised lipids, carbohydrates and proteins. For pig slurry the fouling...

  2. A PROCESS FOR SEPARATING AZEOTROPIC MIXTURES BY EXTRACTIVE AND CONVECTIVE DISTILLATION

    Science.gov (United States)

    Frazer, J.W.

    1961-12-19

    A method is described for separating an azeotrope of carbon tetrachloride and 1,1,2,2-tetrafluorodinitroethane boiling at 60 deg C. The ndethod comnprises, specifically, feeding azeotrope vapors admixed with a non- reactive gas into an extractive distillation column heated to a temperature preferably somewhat above the boiling point of the constant boiling mixture. A solvent, di-n-butylphthalate, is metered into the column above the gas inlet and permitted to flow downward, earrying with it the higher bomling fraction, while the constituent having the lower boiling point passes out of the top of the column with the non-reactive gas and is collected in a nitrogen cold trap. Other solvents which alter the vapor pressure relationship may be substituted. The method is generally applicable to azeotropic mixtures. A number of specific mixtures whicb may be separated are disclosed. (AEC)

  3. Sensitivity analysis of a light gas oil deep hydrodesulfurization process via catalytic distillation

    Energy Technology Data Exchange (ETDEWEB)

    Rosales-Quintero, A.; Vargas-Villamil, F.D. [Prog. de Matematicas Aplicadas y Computacion, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, Mexico, D.F. 07330 (Mexico); Arce-Medina, E. [Instituto Politecnico Nacional, ESIQIE, Ed. 8 Col. Lindavista, Mexico, D.F. 07738 (Mexico)

    2008-01-30

    In this work, a sensitivity analysis of a light gas oil deep hydrodesulfurization catalytic distillation column is presented. The aim is to evaluate the effects of various parameters and operating conditions on the organic sulfur compound elimination by using a realistic light gas oil fraction. The hydrocarbons are modeled using pseudocompounds, while the organic sulfur compounds are modeled using model compounds, i.e., dibenzothiophene (DBT) and 4,6-dimethyl dibenzothiophene (4,6-DMDBT). These are among the most refractive sulfur compounds present in the oil fractions. A sensitivity analysis is discussed for the reflux ratio, bottom flow rate, condenser temperature, hydrogen and gas oil feed stages, catalyst loading, the reactive, stripping, and rectifying stages, feed disturbances, and multiple feeds. The results give insight into the qualitative effect of some of the operating variables and disturbances on organic sulfur elimination. In addition, they show that special attention must be given to the bottom flow rate and LGO feed rate control. (author)

  4. Distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    Bell, T

    1863-09-14

    Shales and other bituminous minerals are distilled in horizontal retorts arranged side by side and with furnaces beneath their front ends. The furnace gases pass, preferably through a brickwork grating, into spaces between the retorts and beneath a horizontal partition towards the back ends. They return above the partition to the front of the retorts, and finally enter a horizontal flue leading to a chimney. The front end of each retort is fitted with a hopper for charging and with a door for discharging. The products of distillation pass through perforated partitions inside the retorts and are conveyed away by pipes at the back.

  5. Effect of process distillation on mutagenicity and cell-transformation activity of solvent-refined, coal-derived liquids

    Energy Technology Data Exchange (ETDEWEB)

    Pelroy, R.A.; Frazier, M.E.; Later, D.W.; Wright, C.W.; Wilson, B.W.

    1985-05-01

    Blended SRC-II process streams, representing a full boiling range distillate material, were fractionally distilled into non-overlapping 50 F cuts with bp between 300 and 850 C and another set with bp ranging between 138 and 1055 F. Distillate cuts were assayed for mutagenic activity using the histidine reversion assay with Salmonella typhimurium strains TA98, TA100, TA1535 and TA1537, as well as for mammalian-cell transformation (mct) activity in the Syrian hamster embryo test, and DNA damage in the prophage induction assay (pia). Samples were also separated into chemical class fractions by alumina column chromatography and analysed by high resolution gas chromatography. In the met and microbial mutagenicity assays, significant activity was found almost exclusively in cuts with bp> above 700 F, with the highest activity in the mct assay observed for cuts above 800 F. All of the cuts showed increased levels of DNA damage as expressed by lambda pia in Escherichia coli 8177. However, the greatest activity was associated with cuts with bp in the 800 F+ range. Chemical analysis of the 50 F cuts showed a variety of polycyclic aromatic hydrocarbons (PAH) and amino-PAH compounds to be present in the cuts with bp> above 700 F and essentially absent from cuts with bp< 700 F. The sample set of non-overlapping (50 F) cuts were reblended according to the proportions of each cut found in the original blend material. These reblended composites were then assayed to compare their activity with that predicted from the activities of the component cuts. The results indicated the microbial mutagenicity response was essentially additive. Met activities were non-additive, indicating a compositional effect on the expression of transforming agents in the complex mixture. 18 references.

  6. Process for dehydration of oregano using propane gas as fuel

    Directory of Open Access Journals (Sweden)

    Carlos O. Velásquez-Santos

    2014-08-01

    Full Text Available The article describes two important issues, the first is the process to design, implement and validate a mechanical dryer of oregano, using propane gas as fuel, and the second is the cost of the process of dehydrated, taking into account the cost of electric energy consumption by the fan and the cost of propane gas consumption by the heat exchanger. To achieve this, it was necessary review the state of the art and the study of the raw material (oregano, were established as premises of design the necessary technical specifications and the variables involved in the process, using conceptual methods and simulation to ensure that it complies with the ISO standard 7925:1999, which defines the requirements for the marketing of dried oregano and processed. Emphasis was made on the percentage of moisture that is 10%, the moisture of the product was found by the azeotropic distillation method, subsequently was validated the functionality and efficiency, comparing the results from an experimental design, then it was obtained the drying curve of oregano with the prototype of drying and it was checked if it meets ISO 7925:1999 standard and the NTC 4423 standard in order to obtain a final product dehydrated with the percentage of humidity appropriate.

  7. Distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    Irvine, R

    1884-04-04

    In obtaining paraffin by distillation of shales, etc., containing sulfur, the steam used for heating is charged with ammonia or ammonium carbonate in suspension. This prevents the sulfur from decomposing the paraffin. The ammonia, etc., may also be used alone or in solution in water.

  8. Destructive distillation

    Energy Technology Data Exchange (ETDEWEB)

    Allison, C A

    1906-05-22

    The invention relates to an apparatus in which the destructive distillation or coking of coal, peat, shale, etc., is carried out by means of a current of hot gases at a temperature of 700--800/sup 0/F., as described in Specification No. 11,925, A.D. 1906.

  9. Energy Efficient Bioethanol Purification by Heat Pump Assisted Extractive Distillation

    NARCIS (Netherlands)

    Kiss, Anton A.; Luo, Hao; Bildea, Costin Sorin

    2015-01-01

    The purification of bioethanol fuel requires an energy demanding separation process to concentrate the diluted streams obtained in the fermentation stage and to overcome the azeotropic behaviour of ethanol-water mixture. The classic separation sequence consists of three distillation columns that

  10. Novel heat-pump-assisted extractive distillation for bioethanol purification

    NARCIS (Netherlands)

    Luo, Hao; Bildea, Costin Sorin; Kiss, Anton A.

    2015-01-01

    The purification of bioethanol fuel involves an energy-intensive separation process to concentrate the diluted streams obtained in the fermentation stage and to overcome the azeotropic behavior of the ethanol-water mixture. The conventional separation sequence employs three distillation columns that

  11. Process to produce homogenized reactor fuels

    International Nuclear Information System (INIS)

    Hart, P.E.; Daniel, J.L.; Brite, D.W.

    1980-01-01

    The fuels consist of a mixture of PuO 2 and UO 2 . In order to increase the homogeneity of mechanically mixed fuels the pellets are sintered in a hydrogen atmosphere with a sufficiently low oxygen potential. This results in a reduction of Pu +4 to Pu +3 . By the reduction process water vapor is obtained increasing the pressure within the PuO 2 particles and causing PuO 2 to be pressed into the uranium oxide structure. (DG) [de

  12. Evaluation of air gap membrane distillation process running under sub-atmospheric conditions: Experimental and simulation studies

    KAUST Repository

    Alsaadi, Ahmad S.; Francis, Lijo; Maab, Husnul; Amy, Gary L.; Ghaffour, NorEddine

    2015-01-01

    The importance of removing non-condensable gases from air gap membrane distillation (AGMD) modules in improving the water vapor flux is presented in this paper. Additionally, a previously developed AGMD mathematical model is used to predict to the degree of flux enhancement under sub-atmospheric pressure conditions. Since the mathematical model prediction is expected to be very sensitive to membrane distillation (MD) membrane resistance when the mass diffusion resistance is eliminated, the permeability of the membrane was carefully measured with two different methods (gas permeance test and vacuum MD permeability test). The mathematical model prediction was found to highly agree with the experimental data, which showed that the removal of non-condensable gases increased the flux by more than three-fold when the gap pressure was maintained at the saturation pressure of the feed temperature. The importance of staging the sub-atmospheric AGMD process and how this could give better control over the gap pressure as the feed temperature decreases are also highlighted in this paper. The effect of staging on the sub-atmospheric AGMD flux and its relation to membrane capital cost are briefly discussed.

  13. Evaluation of air gap membrane distillation process running under sub-atmospheric conditions: Experimental and simulation studies

    KAUST Repository

    Alsaadi, Ahmad S.

    2015-04-16

    The importance of removing non-condensable gases from air gap membrane distillation (AGMD) modules in improving the water vapor flux is presented in this paper. Additionally, a previously developed AGMD mathematical model is used to predict to the degree of flux enhancement under sub-atmospheric pressure conditions. Since the mathematical model prediction is expected to be very sensitive to membrane distillation (MD) membrane resistance when the mass diffusion resistance is eliminated, the permeability of the membrane was carefully measured with two different methods (gas permeance test and vacuum MD permeability test). The mathematical model prediction was found to highly agree with the experimental data, which showed that the removal of non-condensable gases increased the flux by more than three-fold when the gap pressure was maintained at the saturation pressure of the feed temperature. The importance of staging the sub-atmospheric AGMD process and how this could give better control over the gap pressure as the feed temperature decreases are also highlighted in this paper. The effect of staging on the sub-atmospheric AGMD flux and its relation to membrane capital cost are briefly discussed.

  14. Pyrochemical processing of DOE spent nuclear fuel

    International Nuclear Information System (INIS)

    Laidler, J.J.

    1995-01-01

    A compact, efficient method for conditioning spent nuclear fuel is under development. This method, known as pyrochemical processing, or open-quotes pyroprocessing,close quotes provides a separation of fission products from the actinide elements present in spent fuel and further separates pure uranium from the transuranic elements. The process can facilitate the timely and environmentally-sound treatment of the highly diverse collection of spent fuel currently in the inventory of the United States Department of Energy (DOE). The pyroprocess utilizes elevated-temperature processes to prepare spent fuel for fission product separation; that separation is accomplished by a molten salt electrorefining step that provides efficient (>99.9%) separation of transuranics. The resultant waste forms from the pyroprocess, are stable under envisioned repository environment conditions and highly leach-resistant. Treatment of any spent fuel type produces a set of common high-level waste forms, one a mineral and the other a metal alloy, that can be readily qualified for repository disposal and avoid the substantial costs that would be associated with the qualification of the numerous spent fuel types included in the DOE inventory

  15. Development of advanced spent fuel management process. System analysis of advanced spent fuel management process

    International Nuclear Information System (INIS)

    Ro, S.G.; Kang, D.S.; Seo, C.S.; Lee, H.H.; Shin, Y.J.; Park, S.W.

    1999-03-01

    The system analysis of an advanced spent fuel management process to establish a non-proliferation model for the long-term spent fuel management is performed by comparing the several dry processes, such as a salt transport process, a lithium process, the IFR process developed in America, and DDP developed in Russia. In our system analysis, the non-proliferation concept is focused on the separation factor between uranium and plutonium and decontamination factors of products in each process, and the non-proliferation model for the long-term spent fuel management has finally been introduced. (Author). 29 refs., 17 tabs., 12 figs

  16. Method for processing spent nuclear reactor fuel

    International Nuclear Information System (INIS)

    Levenson, M.; Zebroski, E.L.

    1981-01-01

    A method and apparatus are claimed for processing spent nuclear reactor fuel wherein plutonium is continuously contaminated with radioactive fission products and diluted with uranium. Plutonium of sufficient purity to fabricate nuclear weapons cannot be produced by the process or in the disclosed reprocessing plant. Diversion of plutonium is prevented by radiation hazards and ease of detection

  17. Brazing process in nuclear fuel element fabrication

    International Nuclear Information System (INIS)

    Katam, K.; Sudarsono

    1982-01-01

    The purpose of the brazing process is to join the spacers and pads of fuel pins, so that the process is meant as a soldering technique and not only as a hardening or reinforcing process such as in common brazing purposes. There are some preliminary processes before executing the brazing process such as: materials preparation, sand blasting, brazing metal coating tack welding the spacers and pads on the fuel cladding. The metal brazing used is beryllium in strip form which will be evaporated in vacuum condition to coat the spacers and pads. The beryllium vapor and dust is very hazardous to the workers, so all the line process of brazing needs specials safety protection and equipment to protect the workers and the processing area. Coating process temperature is 2470 deg C with a vacuum pressure of 10 -5 mmHg. Brazing process temperature process is 1060 deg C with a vacuum pressure of 10 -6 mmHg. The brazing process with beryllium coating probably will give metallurgical structural change in the fuel cladding metal at the locations of spacers and pads. The quality of brazing is highly influenced by and is depending on the chemical composition of the metal and the brazing metal, materials preparations, temperature, vacuum pressure, time of coating and brazing process. The quality control of brazing could be performed with methods of visuality geometry, radiography and metallography. (author)

  18. Integration of membrane distillation into traditional salt farming method: Process development and modelling

    Science.gov (United States)

    Hizam, S.; Bilad, M. R.; Putra, Z. A.

    2017-10-01

    Farmers still practice the traditional salt farming in many regions, particularly in Indonesia. This archaic method not only produces low yield and poor salt quality, it is also laborious. Furthermore, the farming locations typically have poor access to fresh water and are far away from electricity grid, which restrict upgrade to a more advanced technology for salt production. This paper proposes a new concept of salt harvesting method that improves the salt yield and at the same time facilitates recovery of fresh water from seawater. The new concept integrates solar powered membrane distillation (MD) and photovoltaic cells to drive the pumping. We performed basic solar still experiments to quantify the heat flux received by a pond. The data were used as insight for designing the proposed concept, particularly on operational strategy and the most effective way to integrate MD. After the conceptual design had been developed, we formulated mass and energy balance to estimate the performance of the proposed concept. Based on our data and design, it is expected that the system would improve the yield and quality of the salt production, maximizing fresh water harvesting, and eventually provides economical gain for salt farmers hence improving their quality of life. The key performance can only be measured via experiment using gain output ratio as performance indicator, which will be done in a future study.

  19. Simulation of N-Propanol Dehydration Process Via Heterogeneous Azeotropic Distillation Using the NRTL Equation

    Directory of Open Access Journals (Sweden)

    Wyczesany Andrzej

    2017-03-01

    Full Text Available Numerical values of the NRTL equation parameters for calculation of the vapour - liquid - liquid equilibria (VLLE at atmospheric pressures have been presented for 5 ternary mixtures. These values were fitted to the experimental VLLE and vapour - liquid equilibrium (VLE data to describe simultaneously, as accurately as possible, the VLE and the liquid - liquid equilibria (LLE. The coefficients of this model called further NRTL-VLL were used for simulations of n-propanol dehydration via heterogeneous azeotropic distillation. The calculations performed by a ChemCAD simulator were done for 4 mixtures using hydrocarbons, ether and ester as an entrainer. In majority simulations the top streams of the azeotropic column had composition and temperature similar to the corresponding experimental values of ternary azeotropes. The agreement between the concentrations of both liquid phases formed in a decanter and the experimental values of the LLE was good for all four simulations. The energy requirements were the most advantageous for the simulation with di-npropyl ether (DNPE and isooctane. Simulations were performed also for one mixture using the NRTL equation coefficients taken from the ChemCAD database. In that case the compositions of the liquid organic phases leaving the decanter differed significantly from the experimental LLE data.

  20. Development of advanced spent fuel management process

    International Nuclear Information System (INIS)

    Park, Seong Won; Shin, Y. J.; Cho, S. H.

    2004-03-01

    The research on spent fuel management focuses on the maximization of the disposal efficiency by a volume reduction, the improvement of the environmental friendliness by the partitioning and transmutation of the long lived nuclides, and the recycling of the spent fuel for an efficient utilization of the uranium source. In the second phase which started in 2001, the performance test of the advanced spent fuel management process consisting of voloxidation, reduction of spent fuel and the lithium recovery process has been completed successfully on a laboratory scale. The world-premier spent fuel reduction hot test of a 5 kgHM/batch has been performed successfully by joint research with Russia and the valuable data on the actinides and FPs material balance and the characteristics of the metal product were obtained with experience to help design an engineering scale reduction system. The electrolytic reduction technology which integrates uranium oxide reduction in a molten LiCl-Li 2 O system and Li 2 O electrolysis is developed and a unique reaction system is also devised. Design data such as the treatment capacity, current density and mass transfer behavior obtained from the performance test of a 5 kgU/batch electrolytic reduction system pave the way for the third phase of the hot cell demonstration of the advanced spent fuel management technology

  1. Development of advanced spent fuel management process

    International Nuclear Information System (INIS)

    Shin, Young Joon; Cho, S. H.; You, G. S.

    2001-04-01

    Currently, the economic advantage of any known approach to the back end fuel cycle of a nuclear power reactor has not been well established. Thus the long term storage of the spent fuel in a safe manner is one of the important issues to be resolved in countries where the nuclear power has a relatively heavy weight in power production of that country. At KAERI, as a solution to this particular issue midterm storage of the spent fuel, an alternative approach has been developed. This approach includes the decladding and pulverization process of the spent PWR fuel rod, the reducing process from the uranium oxide to a metallic uranium powder using Li metal in a LiCl salt, the continuous casting process of the reduced metal, and the recovery process of Li from mixed salts by the electrolysis. We conducted the laboratory scale tests of each processes for the technical feasibility and determination for the operational conditions for this approach. Also, we performed the theoretical safety analysis and conducted integral tests for the equipment integration through the Mock-up facility with non-radioactive samples. There were no major issues in the approach, however, material incompatibility of the alkaline metal and oxide in a salt at a high temperature and the reactor that contains the salt became a show stopper of the process. Also the difficulty of the clear separation of the salt with metals reduced from the oxide became a major issue

  2. Destructive distillation

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, A; Renfrewshire, I; Black, W

    1889-06-14

    The invention relates to a method of, and apparatus for, distilling shale, coal, or other oil or tar-yielding minerals, to obtain gases, liquids, or other products. The distillation is effected in vertical retorts by the combustion of the partially spent material in the lower part of the retorts, to which steam and air are admitted. The retorts are built of firebrick, and provided with iron casings. They are fed through hoppers and discharged through the openings. The discharging is facilitated by a cone, or its equivalent, in the base of each retort. Steam and air are admitted through the pipes. The interior may be viewed through holes. The products are taken off from the space around the hopper.

  3. Distilling shale

    Energy Technology Data Exchange (ETDEWEB)

    Armour, J; Armour, H

    1889-05-07

    The invention relates to retorts and accessory apparatus for distilling shale or other oil-yielding minerals. A series of long vertical retorts, composed of fire-brick or similar refractory material, are arranged in two rows in a bench, being divided into groups of four by transverse vertical partitions. The retorts are surmounted by metal casings or hoppers into which the fresh mineral is charged, and from which the distillate passes off through lateral pipes. Any uncondensed gases from the retorts may be passed into the flues surrounding them by the pipe and burned. The products of combustion from a furnace pass through a series of horizontal flues, being compelled to pass completely round each retort before entering the flue above. The products from two or more sets pass from the upper flues into flues running along the top of the bench, and return through a central flue to the chimney.

  4. Distilling shale

    Energy Technology Data Exchange (ETDEWEB)

    Kern, L

    1922-07-21

    In the distillation of shale and similar materials the shale is ground and briquetted and the briquettes are placed in a retort so that air passages are left between them, after which they are uniformly and slowly heated to at least 700/sup 0/C, the air passages facilitating the escape of the oil vapors, and the slow heating preventing fusion of the flux forming constituents. After the bitumen has been driven off, air is passed into the retort and heating continued to about 1050/sup 0/C, the result being a porous product suitable for insulating purposes or as a substitute for kieselguhr. The ground shale may be mixed prior to distillation with peat, sawdust, or the like, and with substances which yield acids, such as chlorides, more particularly magnesium chloride, the acids acting on the bitumen.

  5. Chemical composition of distillers grains, a review.

    Science.gov (United States)

    Liu, KeShun

    2011-03-09

    In recent years, increasing demand for ethanol as a fuel additive and decreasing dependency on fossil fuels have resulted in a dramatic increase in the amount of grains used for ethanol production. Dry-grind is the major process, resulting in distillers dried grains with solubles (DDGS) as a major coproduct. Like fuel ethanol, DDGS has quickly become a global commodity. However, high compositional variation has been the main problem hindering its use as a feed ingredient. This review provides updated information on the chemical composition of distillers grains in terms of nutrient levels, changes during dry-grind processing, and causes for large variation. The occurrence in grain feedstock and the fate of mycotoxins during processing are also covered. During processing, starch is converted to glucose and then to ethanol and carbon dioxide. Most other components are relatively unchanged but concentrated in DDGS about 3-fold over the original feedstock. Mycotoxins, if present in the original feedstock, are also concentrated. Higher fold of increases in S, Na, and Ca are mostly due to exogenous addition during processing, whereas unusual changes in inorganic phosphorus (P) and phytate P indicate phytate hydrolysis by yeast phytase. Fermentation causes major changes, but other processing steps are also responsible. The causes for varying DDGS composition are multiple, including differences in feedstock species and composition, process methods and parameters, the amount of condensed solubles added to distiller wet grains, the effect of fermentation yeast, and analytical methodology. Most of them can be attributed to the complexity of the dry-grind process itself. It is hoped that information provided in this review will improve the understanding of the dry-grind process and aid in the development of strategies to control the compositional variation in DDGS.

  6. Distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, J M

    1884-06-03

    The invention relates to retorts for the destructive distillation of shale, dross, and other carbonaceous or oleaginous materials, and for the distillation and carbonization of sawdust, shavings, tan bark, and the like. The material is fed from a trapped hopper on a series of trays or casings of cast iron or other material, separated by flue spaces and arranged in a tier round a vertical rotating shaft passing through tubular pieces cast on the casings. The shaft is fitted with arms which carry stirring-blades so disposed that the material is shifted from side to side and slowly fed towards the ducts through which it passes to the casing next below, and is finally withdrawn from the apparatus by a pipe, which may be trapped or otherwise. Furnace gases are admitted through openings in the enclosing brickwork having settings to support the casings, the lowermost of which may be fitted below the inlet for furnace gases and their contents cooled by the circulation of cold water round them. The gaseous or volatile products of distillation pass to a condenser by means of openings and the pipe, which may be formed in sections to obtain access to the casings, or doors may be provided for this purpose. The ducts may be arranged alternately at the edge and center of the casings, which may be jacketed, and heated air or steam may be employed instead of furnace gases. Means may also be provided for admitting superheated steam into one or more of the casings.

  7. Destructive distillation

    Energy Technology Data Exchange (ETDEWEB)

    Young, W

    1877-03-29

    The method consists in agitating or circulating the distillation products inside the retort by means of jets of gas, steam, or vapor, or by means of reciprocating pistons; condensing certain of the heavy hydrocarbons; sealing or luting the doors of retorts or distilling-vessels; and conducting the distillation for the manufacture of oil so that the charging or discharging doors may be fitted with self-sealing lids. Several arrangements are shown and described; a single horizontal retort is divided into two compartments by a perforated plate which supports the coal, shale, or other bituminous substance, beneath which a piston is reciprocated or a jet of steam, gas, or vapor injected; a vertical retort is fitted with a central tube into which steam, gas, or vapor is injected, or it may be divided into two compartments and the jet injected into one of these; a pair of vertical retorts are connected by a horizontal passage at the top and bottom, and into the upper one steam, gas, or vapor is injected, or the lower one is fitted with a piston.

  8. Distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    Newton, A V

    1856-04-22

    In order to obtain, at the first distillation, from coal, shale, and bituminous substances an oil sufficiently pure for illuminating and other purposes, the material broken into very small pieces and placed on the bottom of the retort, is evenly covered with common sand, about four times greater in weight than the weight of the coal. The coal and sand are then gradually raised to a temperature of 212/sup 0/F. Steam containing carbonaceous impurities first passes to the condenser, and subsequently oil, which rises to the surface of the water in the receiving-vessel. When some bituminous substances are employed, the temperature, after oil ceases to come over, may be gradually raised until the oil produced ceases to be pure. Most kinds of clay and earth, chalk, gypsum, black oxide of manganese, plumbago, or charcoal may be used separately, in combination, or with added chemicals, instead of sand as the medium for filtering the gas or vapor from which the oil is formed. Either the oil obtained by the first distillation or oils obtained by other means may be rectified by distilling with sand.

  9. Hydrous pyrolysis/oxidation process for in situ destruction of chlorinated hydrocarbon and fuel hydrocarbon contaminants in water and soil

    Science.gov (United States)

    Knauss, Kevin G.; Copenhaver, Sally C.; Aines, Roger D.

    2000-01-01

    In situ hydrous pyrolysis/oxidation process is useful for in situ degradation of hydrocarbon water and soil contaminants. Fuel hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, petroleum distillates and other organic contaminants present in the soil and water are degraded by the process involving hydrous pyrolysis/oxidation into non-toxic products of the degradation. The process uses heat which is distributed through soils and water, optionally combined with oxygen and/or hydrocarbon degradation catalysts, and is particularly useful for remediation of solvent, fuel or other industrially contaminated sites.

  10. Design of desalination system based on multistage flash distillation (MSF) method : MSF desalination process and thermodynamics aspect

    International Nuclear Information System (INIS)

    Sunaryo, G.R.; Sumijanto; Latifah, S.N.

    1999-01-01

    During the development of making fresh water for supplying the potable water in Jakarta and eastern Indonesia, Indonesia Atomic Energy Agency (BATAN) has been developing the application of small power reactor for dual purposes,electricity and fresh water producing. One of the most popular method, because of the cheapest maintenance, is the Multi Stage Flash Distillation (MSF) which us study on designing the miniscale of MDF, the process fundamental aspects are the scale formation, degassing dissolved gas and diminishing foam, and from the thermodynamic aspect it is known that the total amount of heat required for MSF desalination is equal to free energy differences between water in solution and pure water times the ratio of total boiling temperature and the boiling temperature elevation with boiling temperature, where the range value is 35-40 kj/kg. Since the complex aspect of irreversible the heat required become 7 times higher as 240∼280 kj/kg

  11. Development of advanced spent fuel management process

    International Nuclear Information System (INIS)

    Ro, Seung Gy; Shin, Y. J.; Do, J. B.; You, G. S.; Seo, J. S.; Lee, H. G.

    1998-03-01

    This study is to develop an advanced spent fuel management process for countries which have not yet decided a back-end nuclear fuel cycle policy. The aims of this process development based on the pyroreduction technology of PWR spent fuels with molten lithium, are to reduce the storage volume by a quarter and to reduce the storage cooling load in half by the preferential removal of highly radioactive decay-heat elements such as Cs-137 and Sr-90 only. From the experimental results which confirm the feasibility of metallization technology, it is concluded that there are no problems in aspects of reaction kinetics and equilibrium. However, the operating performance test of each equipment on an engineering scale still remain and will be conducted in 1999. (author). 21 refs., 45 tabs., 119 figs

  12. Review on Fuel Loading Process and Performance for Advanced Fuel Handling Equipment

    International Nuclear Information System (INIS)

    Chang, Sang-Gyoon; Lee, Dae-Hee; Kim, Young-Baik; Lee, Deuck-Soo

    2007-01-01

    The fuel loading process and the performance of the advanced fuel handling equipment for OPR 1000 (Optimized Power Plant) are analyzed and evaluated. The fuel handling equipment, which acts critical processes in the refueling outage, has been improved to reduce fuel handling time. The analysis of the fuel loading process can be a useful tool to improve the performance of the fuel handling equipment effectively. Some recommendations for further improvement are provided based on this study

  13. Observer-Based Perturbation Extremum Seeking Control with Input Constraints for Direct-Contact Membrane Distillation Process

    KAUST Repository

    Eleiwi, Fadi

    2017-05-08

    An Observer-based Perturbation Extremum Seeking Control (PESC) is proposed for a Direct-Contact Membrane Distillation (DCMD) process. The process is described with a dynamic model that is based on a 2D Advection-Diffusion Equation (ADE) model which has pump flow rates as process inputs. The objective of the controller is to optimize the trade-off between the permeate mass flux and the energy consumption by the pumps inside the process. Cases of single and multiple control inputs are considered through the use of only the feed pump flow rate or both the feed and the permeate pump flow rates. A nonlinear Lyapunov-based observer is designed to provide an estimation for the temperature distribution all over the designated domain of the DCMD process. Moreover, control inputs are constrained with an anti-windup technique to be within feasible and physical ranges. Performance of the proposed structure is analyzed, and simulations based on real DCMD process parameters for each control input are provided.

  14. Observer-based perturbation extremum seeking control with input constraints for direct-contact membrane distillation process

    Science.gov (United States)

    Eleiwi, Fadi; Laleg-Kirati, Taous Meriem

    2018-06-01

    An observer-based perturbation extremum seeking control is proposed for a direct-contact membrane distillation (DCMD) process. The process is described with a dynamic model that is based on a 2D advection-diffusion equation model which has pump flow rates as process inputs. The objective of the controller is to optimise the trade-off between the permeate mass flux and the energy consumption by the pumps inside the process. Cases of single and multiple control inputs are considered through the use of only the feed pump flow rate or both the feed and the permeate pump flow rates. A nonlinear Lyapunov-based observer is designed to provide an estimation for the temperature distribution all over the designated domain of the DCMD process. Moreover, control inputs are constrained with an anti-windup technique to be within feasible and physical ranges. Performance of the proposed structure is analysed, and simulations based on real DCMD process parameters for each control input are provided.

  15. Alternative Fuel for Portland Cement Processing

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Anton K; Duke, Steve R; Burch, Thomas E; Davis, Edward W; Zee, Ralph H; Bransby, David I; Hopkins, Carla; Thompson, Rutherford L; Duan, Jingran; ; Venkatasubramanian, Vignesh; Stephen, Giles

    2012-06-30

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burn characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted

  16. Process of producing a fuel, etc

    Energy Technology Data Exchange (ETDEWEB)

    1924-12-01

    This invention has for its object a process of producing fuels by separating a light oil from primary tar, characterized by a succession of operations comprising preliminary removal of phenols from the oils, removing sulfur completely by the application of suitable catalysts and an agent to fix the free sulfur as hydrogen sulfide; finally, washing to remove ethylenes, pyridines, and impurities from the treatment.

  17. Process and device to produce fuel briquettes

    Energy Technology Data Exchange (ETDEWEB)

    Caroe, C J

    1980-10-23

    A two-stage process for the production of briquettes consisting essentially of cellulose (sawdust, peanut shells) is proposed. The fuel material (in case with additives) is molded by high pressure to pellets of the size of a few centimeters. The pellets are mixed with flammable binding agents like paraffin, wax, polyethylene etc. and molded at a lower pressure or extruded in a second step. A suited molding device is described. The wax content could be lowered with respect to known processes.

  18. Destructive distillation

    Energy Technology Data Exchange (ETDEWEB)

    1915-07-03

    Oils are extracted from coal, lignite, shale, boghead, butumen, asphalt, tar, pitch, etc., by distillation at a low temperature, which may be 300 to 425/sup 0/CC, solvent oils or vapors being circulated during the heating which may be conducted with or without increased or reduced pressure. The solvent oils and the extracted oils are recovered in condensers, etc., last traces being expelled from the material by a current of water vapor. The uncondensed gases may be used for heating, and the solid residue may be used for the production of gas and coke, or may be briquetted.

  19. Distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    Young, W; Brash, P

    1866-05-04

    In the distillation of oil from coal, shale, etc., hydrocarbon vapors which are condensed only with difficulty, and are of small value, are reheated and sent back into the retorts. A jet of steam, or a forcing or exhausting apparatus, may be used for this purpose, and the vapors are passed under false bottoms with which the retorts are preferably provided. In the rectification of the oils, a producer known as still bottoms results which, when redistilled, gives rise to vapors condensable only with difficulty. These vapors may be passed back into the still, or may be mixed and heated, in a separate vessel, with the vapors coming from the still.

  20. Distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    Medlrum, E

    1869-02-06

    The invention relates to the decomposition of the liquids with high boiling points, and the solids with low melting points, left in the purification of paraffin oil obtained from coal or shale. The liquids or melted solids, or their vapors, are passed through a heated iron tube or retort and c., which may be packed with broken stones, spent shale, and c. The temperature is regulated between 700/sup 0/F and a low red heat. The condensed products consist of a mixture of light and heavy oils, which may be separated by distillation. The heavier residues may be again passed through the decomposing apparatus.

  1. Distilling hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Bataafsche, N V; de Brey, J H.C.

    1918-10-30

    Hydrocarbons containing a very volatile constituent and less volatile constituents, such as casing-head gases, still gases from the distillation of crude petroleum and bituminous shale are separated into their constituents by rectification under pressure; a pressure of 20 atmospheres and limiting temperatures of 150/sup 0/C and 40/sup 0/C are mentioned as suitable. The mixture may be subjected to a preliminary treatment consisting in heating to a temperature below the maximum rectification temperature at a pressure greater than that proposed to be used in the rectification.

  2. Attainability and minimum energy of single-stage membrane and membrane/distillation hybrid processes

    KAUST Repository

    Alshehri, Ali; Lai, Zhiping

    2014-01-01

    As an energy-efficient separation method, membrane technology has attracted more and more attentions in many challenging separation processes. The attainability and the energy consumption of a membrane process are the two basic fundamental questions

  3. Influence of processing conditions on apparent viscosity and system parameters during extrusion of distiller's dried grains-based snacks.

    Science.gov (United States)

    Singha, Poonam; Muthukumarappan, Kasiviswanathan; Krishnan, Padmanaban

    2018-01-01

    A combination of different levels of distillers dried grains processed for food application (FDDG), garbanzo flour and corn grits were chosen as a source of high-protein and high-fiber extruded snacks. A four-factor central composite rotatable design was adopted to study the effect of FDDG level, moisture content of blends, extrusion temperature, and screw speed on the apparent viscosity, mass flow rate or MFR, torque, and specific mechanical energy or SME during the extrusion process. With increase in the extrusion temperature from 100 to 140°C, apparent viscosity, specific mechanical energy, and torque value decreased. Increase in FDDG level resulted in increase in apparent viscosity, SME and torque. FDDG had no significant effect (p > .5) on mass flow rate. SME also increased with increase in the screw speed which could be due to the higher shear rates at higher screw speeds. Screw speed and moisture content had significant negative effect ( p  extruder and the system parameters were affected by the processing conditions. This study will be useful for control of extrusion process of blends containing these ingredients for the development of high-protein high-fiber extruded snacks.

  4. Influences of in-fuel physical-chemical processes on serviceability of energy reactor fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Bibilashvili, Yu K; Nekrasova, G A; Sukhanov, G I

    1989-01-01

    In-fuel physico-chemical processes and their effect on stress corrosion cracking of fuel element zirconium cladding are considered in the review. The mechanism of fission product release from the fuel is studied and the negative role of primarily iodine on the cladding corrosion process is demonstrated. Directions for improving the fuel element claddings and fuel to increase the fuel element serviceability are specified.

  5. Influences of in-fuel physical-chemical processes on serviceability of energy reactor fuel elements

    International Nuclear Information System (INIS)

    Bibilashvili, Yu.K.; Nekrasova, G.A.; Sukhanov, G.I.

    1989-01-01

    In-fuel physico-chemical processes and their effect on stress corrosion cracking of fuel element zirconium cladding are considered in the review. The mechanism of fission product release from the fuel is studied and the negative role of primarily iodine on the cladding corrosion process is demonstrated. Directions for improving the fuel element claddings and fuel to increase the fuel element serviceability are specified

  6. Safeguardability of advanced spent fuel conditioning process

    Energy Technology Data Exchange (ETDEWEB)

    Li, T. K. (Tien K.); Lee, S. Y. (Sang Yoon); Burr, Tom; Russo, P. A. (Phyllis A.); Menlove, Howard O.; Kim, H. D.; Ko, W. I. (Won Il); Park, S. W.; Park, H. S.

    2004-01-01

    The Advanced Spent Fuel Conditioning Process (ACP) is an electro-metallurgical treatment technique to convert oxide-type spent nuclear fuel into a metallic form. The Korea Atomic Energy Research Institute (KAERI) has been developing this technology since 1977 for the purpose of spent fuel management and is planning to perform a lab-scale demonstration in 2006. By using of this technology, a significant reduction of the volume and heat load of spent fuel is expected, which would lighten the burden of final disposal in terms of disposal size, safety and economics. In the framework of collaboration agreement to develop the safeguards system for the ACP, a joint study on the safeguardability of the ACP technology has been performed by the Los Alamos National Laboratory (LANL) and the KAERI since 2002. In this study, the safeguardability of the ACP technology was examined for the pilot-scale facility. The process and material flows were conceptually designed, and the uncertainties in material accounting were estimated with international target values.

  7. Destructive distillation

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, H; Laing, B

    1927-12-23

    Oil bearing solids such as coal, tar sands, oil shales, or the like, are distilled in a current of hot gas and are first preheated to a temperature above that at which the heaviest oil fractions in the vapors are liable to condense, for example 100 to 250/sup 0/C, according to the volume of gas passing through the retort, temperature being in inverse proportion to the quantity of oxygen containing constituents in the charge. When the distillation takes place in a controlled volume of hot inert gas of 45,000 cubic feet per ton and the volume of oil recovered is about 20 gallons per ton, the material is preheated to 200 to 250/sup 0/C, when the volume of gas used is 100,000 cubic feet the preheating temperature is 150/sup 0/C. The temperatures of the retort dust extractor etc. do not fall below 100 to 150/sup 0/C until actual condensation of the oil vapor is desired. Specification 287,381 is referred to, and Specification 287,037 also is referred to in the Provisional Specification.

  8. Shale distillation

    Energy Technology Data Exchange (ETDEWEB)

    Jacomini, V V

    1938-06-07

    To produce valuable oils from shale by continuous distillation it is preheated by a heated fluid and introduced into a distilling retort from which the oil vapours and spent material are separately removed and the vapours condensed to recover the oil. The shale is preheated to 400 to 500/sup 0/F in the hopper by combustion gases from a flue and is fed in measured quantities to a surge drum, a loading chamber and surge drum, the latter two being connected to a steam pipe which equalises the pressure thereon. The material passes by two screw conveyors to a retort with deflector bars to scatter the material so that lean hot cycling gas flowing through a pipe is spread out as it makes its way upwardly through the shale and heats the oil so that it is driven off as vapour, collected in the lean gas and carried off through an outlet pipe. A measuring valve is provided at the bottom of a retort and cutter knives cut the spent shale and distribute cooling water thereto. The gases travel through heat exchangers and a condenser to an accumulator where the cycling gas is separated from the vapours, passed to compression, and preheated in a gas exchanger and spiral coils before it is returned to the retort. The oil passes to a storage tank by way of a unit tank in which oil vapours are recovered. Water is collected by a pipe in the tank bottom and returned by shaft to a retort.

  9. Destructive distillation

    Energy Technology Data Exchange (ETDEWEB)

    Young, W

    1881-04-12

    Destructive distillation of shale for the manufacture of mineral oil and ammonia is described. The retorts are arranged in benches, each retort being placed over its own combustion chamber into which the spent shale is discharged and consumed in heating the next charge as described in Specification No. 1578, A. D. 1880. Two forms of retorts are shown, each consisting of two retorts placed above and communicating with one another, the upper being employed to distill the oil at a low red heat, and the lower to eliminate the nitrogen in the form of ammonia at a much higher temperature. The retorts are divided by a sliding damper and have an outlet for the passage of the products placed at the junction. The retorts have an outlet at the top for the escape of the products. Each retort has an opening closed by a cover for charging and a door for discharging. The products of combustion from the combustion chambers pass through ports to a chamber surrounding the lower retorts and thence through ports in the division wall controlled by dampers into the chamber surrounding the upper retorts, whence they pass through flues to the chimney. Around the bottom of each retort are openings communicating with a chamber to which steam is admitted through a valve from a pipe preferably placed in a coil in the flue.

  10. Distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    Byrom, W A; Bennett, J A.B.

    1884-02-22

    Effecting the separation of the various products of the distillation of coal, shale, etc., by taking advantage of the graduated temperature of successive portions of the length of mechanical retorts is described. The substances entering from the hopper are gradually heated in their progress and give off a series of products in their order of volatilization, which pass from openings in the retort through a series of ascension pipes into collecting-vessels. The vessels are designed to contain different portions of the distillate and are sealed against the escape of uncondensed vapor or gas by the condensed liquid. Each of the ascension pipes communicates above its vessel with a common pipe to convey away permanent gases. The flues for heating the retort may be so arranged as to give the greatest heat at the end farthest from the point of entrance, or the stages of heat may be self-regulated by the time necessary for the material to acquire heat as it travels. If necessary the pipes may be fitted with refrigerating-appliances.

  11. Reactive distillation : The front-runner of industrial process intensification - A full review of commercial applications, research, scale-up, design and operation

    NARCIS (Netherlands)

    Harmsen, G. Jan

    Most industrial scale reactive distillations (presently more than 150), operated worldwide today at capacities of 100-3000 ktonnes/y, and are reported in this paper. Most of these plants started up less than 15 years ago. The drivers, processes, systems, scale-up methods and partner collaborations

  12. Hybrid Pressure Retarded Osmosis−Membrane Distillation (PRO−MD) Process for Osmotic Power and Clean Water Generation

    KAUST Repository

    Han, Gang

    2015-05-20

    A novel pressure retarded osmosis−membrane distillation (PRO−MD) hybrid process has been experimentally conceived for sustainable production of renewable osmotic power and clean water from various waters. The proposed PRO−MD system may possess unique advantages of high water recovery rate, huge osmotic power generation, well controlled membrane fouling, and minimal environmental impacts. Experimental results show that the PRO−MD hybrid process is promising that not only can harvest osmotic energy from freshwater but also from wastewater. When employing a 2 M NaCl MD concentrate as the draw solution, ultrahigh power densities of 31.0 W/m2 and 9.3 W/m2 have been demonstrated by the PRO subsystem using deionized water and real wastewater brine as the feeds, respectively. Simultaneously, high purity potable water with a flux of 32.5−63.1 L/(m2.h) can be produced by the MD subsystem at 40−60 °C without any detrimental effects of fouling. The energy consumption in the MD subsystem might be further reduced by applying a heat exchanger in the hybrid system and using low-grade heat or solar energy to heat up the feed solution. The newly developed PRO−MD hybrid process would provide insightful guidelines for the exploration of alternative green technologies for renewable osmotic energy and clean water production.

  13. Putting to point the production process of iodine-131 by dry distillation (Preoperational tests)

    International Nuclear Information System (INIS)

    Alanis M, J.

    2002-12-01

    With the purpose of putting to point the process of production of 131 I, one of the objectives of carrying out the realization of operational tests of the production process of iodine-131, it was of verifying the operation of each one of the following components: heating systems, vacuum system, mechanical system and peripheral equipment that are part of the production process of iodine-131, another of the objectives, was settling down the optimal parameters that were applied in each process during the obtaining of iodine-131, it is necessary to point out that this objective is very important, since the components of the equipment are new and its behavior during the process is different to the equipment where its were carried out the experimental studies. (Author)

  14. Process development and fabrication for sphere-pac fuel rods

    International Nuclear Information System (INIS)

    Welty, R.K.; Campbell, M.H.

    1981-06-01

    Uranium fuel rods containing sphere-pac fuel have been fabricated for in-reactor tests and demonstrations. A process for the development, qualification, and fabrication of acceptable sphere-pac fuel rods is described. Special equipment to control fuel contamination with moisture or air and the equipment layout needed for rod fabrication is described and tests for assuring the uniformity of the fuel column are discussed. Fuel retainers required for sphere-pac fuel column stability and instrumentation to measure fuel column smear density are described. Results of sphere-pac fuel rod fabrication campaigns are reviewed and recommended improvements for high throughput production are noted

  15. Distillation of oil-bearing minerals

    Energy Technology Data Exchange (ETDEWEB)

    1952-05-21

    In the process of distilling oil-bearing minerals such as oil shale which disintegrates during distillation, wherein the subdivided minerals are subjected to a distillation temperature in the form of a highly turbulent dense mass fluidized by an upwardly flowing gasiform medium in a distillation zone and the heat required by the distillation is supplied by burning solid distillation residue with a combustion-supporting gas in the form of a fluidized mass of solids in a separate combustion zone at a temperature substantially higher than the distillation temperature and returning solid combustion residue substantially at the higher temperature to the distillation zone. The steps of starting up the process which consists of maintaining in the distillation and combustion zones dense turbulent fluidized beds of non-disintegrating solids, circulating the non-disintegrating solids between said beds, heating the circulating solids by an auxiliary heat supply until the bed in the distillation zone has reached at least the distillation temperature, thereafter charging fresh oil-bearing minerals to the bed in the distillation zone, continuing the circulation, withdrawing solids which have passed through the combustion zone at a rate adequate to maintain a solids balance, supplying the combustion-supporting gas to the combustion zone to cause the combustion of the residue, and discontinuing the auxilary heating when sufficient heat for the distillation is being generated in the combustion zone.

  16. Efficient ethanol recovery from yeast fermentation broth with integrated distillation-membrane process

    Science.gov (United States)

    A hybrid process integrating vapor stripping with vapor compression and vapor permeation membrane separation, termed Membrane Assisted Vapor Stripping (MAVS), was evaluated for recovery and dehydration of ethanol from aqueous solution as an alternative to conventional distillatio...

  17. Cyclic distillation technology - A mini-review

    NARCIS (Netherlands)

    Bîldea, Costin Sorin; Pătruţ, Cătălin; Jørgensen, Sten Bay; Abildskov, Jens; Kiss, Anton A.

    2016-01-01

    Process intensification in distillation systems has received much attention during past decades, with the aim of increasing both energy and separation efficiency. Various techniques, such as internal heat-integrated distillation, membrane distillation, rotating packed bed, dividing-wall columns and

  18. Modeling closed nuclear fuel cycles processes

    Energy Technology Data Exchange (ETDEWEB)

    Shmidt, O.V. [A.A. Bochvar All-Russian Scientific Research Institute for Inorganic Materials, Rogova, 5a street, Moscow, 123098 (Russian Federation); Makeeva, I.R. [Zababakhin All-Russian Scientific Research Institute of Technical Physics, Vasiliev street 13, Snezhinsk, Chelyabinsk region, 456770 (Russian Federation); Liventsov, S.N. [Tomsk Polytechnic University, Tomsk, Lenin Avenue, 30, 634050 (Russian Federation)

    2016-07-01

    Computer models of processes are necessary for determination of optimal operating conditions for closed nuclear fuel cycle (NFC) processes. Computer models can be quickly changed in accordance with new and fresh data from experimental research. 3 kinds of process simulation are necessary. First, the VIZART software package is a balance model development used for calculating the material flow in technological processes. VIZART involves taking into account of equipment capacity, transport lines and storage volumes. Secondly, it is necessary to simulate the physico-chemical processes that are involved in the closure of NFC. The third kind of simulation is the development of software that allows the optimization, diagnostics and control of the processes which implies real-time simulation of product flows on the whole plant or on separate lines of the plant. (A.C.)

  19. Utilization of solar energy for direct contact membrane distillation process: An experimental study for desalination of real seawater

    International Nuclear Information System (INIS)

    Palanisami, Nallasamy; He, Ke; Moon, Il Shik

    2014-01-01

    Membrane distillation (MD), a non-isothermal membrane separation process, is based on the phenomenon that pure water in its vapor state can be extracted from aqueous solutions by passing vapor through a hydrophobic microporous membrane when a temperature difference is established across it. We used three commercially available hydrophobic microporous membranes (C02, C07 and C12; based on the pore size 0.2, 0.7 and 1.2 µm respectively) for desalination via direct contact MD (DCMD). The effects of operating parameters on permeation flux were studied. In addition, the desalination of seawater by solar assisted DCMD process was experimentally investigated. First, using solar power only short-term (one day), successful desalination of real seawater was achieved without temperature control under the following conditions: feed inlet temperature 65.0 .deg. C, permeate inlet temperature 25.0 .deg. C, and a flow rate of 2.5 L/min. The developed system also worked well in the long-term (150 days) for seawater desalination using both solar and electric power. Long-term test flux was reduced from 28.48 to only 26.50 L/m 2 hr, indicating system feasibility

  20. Utilization of solar energy for direct contact membrane distillation process: An experimental study for desalination of real seawater

    Energy Technology Data Exchange (ETDEWEB)

    Palanisami, Nallasamy; He, Ke; Moon, Il Shik [Sunchon National University, Suncheon (Korea, Republic of)

    2014-01-15

    Membrane distillation (MD), a non-isothermal membrane separation process, is based on the phenomenon that pure water in its vapor state can be extracted from aqueous solutions by passing vapor through a hydrophobic microporous membrane when a temperature difference is established across it. We used three commercially available hydrophobic microporous membranes (C02, C07 and C12; based on the pore size 0.2, 0.7 and 1.2 µm respectively) for desalination via direct contact MD (DCMD). The effects of operating parameters on permeation flux were studied. In addition, the desalination of seawater by solar assisted DCMD process was experimentally investigated. First, using solar power only short-term (one day), successful desalination of real seawater was achieved without temperature control under the following conditions: feed inlet temperature 65.0 .deg. C, permeate inlet temperature 25.0 .deg. C, and a flow rate of 2.5 L/min. The developed system also worked well in the long-term (150 days) for seawater desalination using both solar and electric power. Long-term test flux was reduced from 28.48 to only 26.50 L/m{sup 2}hr, indicating system feasibility.

  1. Destructive distillation

    Energy Technology Data Exchange (ETDEWEB)

    Tennent, R B

    1886-12-02

    The invention has reference to an improved construction or mode of building, arranging, and combining the parts of gas-heated retorts for the distillation of shale and other minerals, which by the improved mode and means comprised therein of heating the retorts by the gases, combined with highly heated air and the use of superheated steam in the retorts, and the utilization of the heat of the escaping waste gases for the superheating of the steam, and the raising of steam in boilers for motive power and other purposes. The retorts are erected in transverse pairs, each retort having its surrounding flame flues heating the air for each pair and with steam superheating chambers and pipes between for each pair heated by the escaping gases from the retorts.

  2. Distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    Craig, A

    1863-11-12

    To obtain hydrocarbons, coal, shale, or other bituminous substance is distilled in an annular retort. The outer surface is heated by an arrangement of furnaces and flues, and the inner surface has a number of small openings through which the evolved hydrocarbons pass. The inner chamber is cooled by cold air or water pipes to condense the hydrocarbon which is then run off to purifying-apparatus. In a modification, the retort is heated from the inside, the hydrocarbon being condensed in an outer case. Another form of retort consists of a narrow flat chamber, heated from one side and with a cooled condensing-chamber on the other; or two retorts may be used, with one condensing-chamber between them.

  3. Distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    Brinjes, J F

    1867-03-12

    The invention relates to means for conveying the material through rotary retorts for distilling shale or the like. The retort is fitted with longitudinal ribs which lift the material and allow it to fall again as the retort rotates. Inclined deflecting plates attached to a fixed shaft cause the material as it falls to be gradually fed towards the discharge end of the retort. By means of the handle, which can be fixed in angular position by a pin entering holes in a quadrant, the angle of the plates may be adjusted and the rate of feed may be thus regulated. Or the plates may be hinged on the shaft or to the inside of the retort, and the angle is then adjusted by a longitudinal rod moved by a handwheel and nut. A similar arrangement may be applied to retorts with an oscillating motion.

  4. Distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    Aitken, H; McAlley, R

    1871-05-18

    Shale or clay is coked or carbonized by the action of heat in retorts in the same way that coal is coked or by any of the methods used for coking or carbonizing coal, ironstone, or wood. Clay or shale, which is poor in carbon, is mixed or ground with coal, moss, peat, or earth mold, oil, tar, or other carbonaceous matter, shale, or the coke of certain kinds of coal after having been used in the manufacture of gas or oil by distillation. The mixture is coked or carbonized or the coke may be used alone and submitted to further coking or carbonization. The volatile hydrocarbons may be used in carbonizing or assisting to carbonize the shale by being burned beneath the retorts or they may be condensed along with sulfur, ammonia, etc., and kept for after use.

  5. Distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    Greenshields, J

    1870-01-13

    In distilling shale or other carbonaceous substances to obtain oil, paraffin, ammonium salts, etc., sulfuric or other acid is added to the material, in the still or before treatment. The shale is first reduced to a fine powder. Acid tar from the treatment of oils may be used instead of acid. Hydrogen is sometimes passed into the still, or iron or other metal is mixed with the shale to generate hydrogen in the still. A figure is included which shows the condenser for paraffin and heavy oils, consisting of an iron cylinder connected with the still by a short pipe and surmounted by a long pipe communicating with other condensers. The pipe projects into the cylinder and perforated plates or baffles are fixed across the central portion of the cylinder. The condensed oils are drawn off by a pipe.

  6. Distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    Walton, G

    1865-05-16

    A retort for the destructive distillation of coal, shale, whereby hydrocarbons are produced, is described. The vertical retort is provided with a charging door, a discharging door, an outlet leading to the condensing plant, an inclined bottom, and a perforated cage to facilitate the escape of the vapor and to regulate the amount of materials operated upon in the retort. The upper part of the cage is conical to deflect the materials fed in by the door and the lower part is also slightly conical to facilitate emptying the retort. The bottom may incline from both back and front, and also from the sides to the center. The apparatus is heated from below, and the flues pass all round the lower part of the retort.

  7. Industrial Maturity of FR Fuel Cycle Processes and Technologies

    International Nuclear Information System (INIS)

    Bruezière, Jérôme

    2013-01-01

    FR fuel cycle processes and technologies have already been proven industrially for Oxide Fuel, and to a lesser extent for metal fuel. In addition, both used oxide fuel reprocessing and fresh oxide fuel manufacturing benefit from similar industrial experience currently deployed for LWR. Alternative fuel type will have to generate very significant benefit in reactor ( safety, cost, … ) to justify corresponding development and industrialization costs

  8. Modification in fuel processing of Mitsubishi Nuclear Fuel's Tokai Works

    International Nuclear Information System (INIS)

    1976-01-01

    Results of the study by the Committee for Examination of Fuel Safety, reported to the AEC of Japan, are presented, concerning safety of the modifications of Tokai Works, Mitsubishi Nuclear Fuel Co., Ltd. Safety has been confirmed thereof. The modifications covered are the following: storage facility of nuclear fuel in increase, analytical facility in transfer, fuel assemblage equipment in addition, incineration facility of combustible solid wastes in installation, experimental facility of uranium recovery in installation, and warehouse in installation. (Mori, K.)

  9. Distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    Young, W; Neilson, A; Young, A

    1876-10-09

    The invention relates to modifications of the retort apparatus, described in Specification No. 2487, A.D. 1872, for the destructive distillation of shale and other bituminous substances. The retorts instead of being worked continuously are completely filled and completely discharged in turn. They are made oblong in cross-section in order to present the material in thin layers and cause it to be acted upon more rapidly and economically. The retorts can thus be heated solely by the combustion of the carbonaceus matter contained in the discharged residues or with a small amount of coal in addition. Each retort is contracted at the bottom and is fitted with a box or chest having a hole in it corresponding to the opening in the retort and a sliding plate of iron, firebrick, or other suitable material, which can be operated by a rod passing through the front of the box, for opening or closing the retort. Underneath the box and over the combustion chamber are placed fireclay blocks leaving an opening, which can be closed by another plate of firebrick or the like. When distillation commences, the gases and vapors in the retort are drawn off through a pipe and a main by an exhauster. In order to prevent air from entering the retort or hydrocarbon vapor from being puffed back by the action of the wind, the gas which remains after the condensation of the oils is forced back into the box between the plates and part of it enters the retort and part the combustion chamber. In order to avoid the liability of the oil being carried past the condensers by the action of the gas, steam may be used as a substitute for the gas or mixed with it in large proportions, a steam jet being used to force the gas into the main supplying the boxes.

  10. Distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    Young, W

    1875-09-07

    The invention relates to apparatus for absorbing and recovering volatile hydrocarbons from gases resulting from the distillation of coal, shale, and the like for the production of mineral oil, or from the coking of coal, charring of wood, and like operations. The apparatus is adapted for the repeated use of the same quantity of absorbent. The gases are passed by pipes through a coke tower down which is allowed to flow a stream of mineral oil or a fatty oil such as rape, olive, lard, tallow, and fish oils. The oil is supplied by a pipe and distributed by a plate which is held up against the opening of the pipe by a spring. The oil absorbs the volatile hydrocarbons contained in the gas and is drawn off by a pipe and passed through a tubular heat-exchanging apparatus, and thence by a pipe to a still formed at the bottom of the coke tower and constructed with a number of trays on the principle of the coffey still. The still is heated by a fire or by admitting the exhaust steam from an engine driving a fan, which draws the gases through the coke tower. The stream is admitted by a pipe and distributed by a perforated disk. Live steam may also be admitted if necessary by a pipe. The volatile oils are distilled off through a pipe to a coil condenser, and flow thence into a tank for separating any condensed water. This tank is covered preferably by a glass plate to allow inspection. The oil remaining in the still flows by a pipe to the heat-exchanger, in which it gives up heat to the oil flowing from the coke tower. It then flows by a pipe through a tubular cooler, cooled by water circulation, and thence to a store tank from which it is again pumped to the top of the coke tower.

  11. Biocatalytic desulfurization of petroleum and middle distillates

    International Nuclear Information System (INIS)

    Monticello, D.J.

    1993-01-01

    Biocatalytic Desulfurization (BDS) represents an alternative approach to the reduction of sulfur in fossil fuels. The objective is to use bacteria to selectively remove sulfur from petroleum and middle distillate fractions, without the concomitant release of carbon. Recently, bacteria have been developed which have the ability to desulfurize dibenzothiophene (DBT) and other organosulfur molecules. These bacteria are being developed for use in a biocatalyst-based desulfurization process. Analysis of preliminary conceptual engineering designs has shown that this process has the potential to complement conventional technology as a method to temper the sulfur levels in crude oil, or remove the recalcitrant sulfur in middle distillates to achieve the deep desulfurization mandated by State and Federal regulations. This paper describes the results of initial feasibility studies, sensitivity analyses and conceptual design work. Feasibility studies with various crude oils and middle distillates achieved unoptimized desulfurization levels of 40-80%. Sensitivity analyses indicate that total desulfurization costs of about $3.00 per barrel for crude oil and less than $2.00 per barrel for diesel are possible. Key criteria for commercial success of the process include the cost and half-life of the biocatalyst, residence time in the reactor, oil/water ratios required to extract the sulfur and the disposition of the separated sulfur products. 9 refs., 3 figs

  12. A Model-Based Methodology for Integrated Design and Operation of Reactive Distillation Processes

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil; Sales-Cruz, Mauricio; Huusom, Jakob Kjøbsted

    2015-01-01

    and resolved. A new approach isto tackle process intensification and controllability issues in an integrated manner, in the early stages of process design. This integrated and simultaneous synthesis approach provides optimal operation and moreefficient control of complex intensified systems that suffice...... calculation of reactive bubble points. For an energy-efficient design, the driving-forc eapproach (to determine the optimal feed location) for a reactive system has been employed. For both thereactive McCabe-Thiele and driving force method, vapor-liquid equilibrium data are based on elements. Thereactive...... system of compounds (methanol, isobutene and MTBE) to a binary system ofelements (elements A and B). For a binary element system, a simple reactive McCabe-Thiele-type method (to determine the number of reactive stages) has been used. The reactive equilibrium curve is constructed through sequential...

  13. Distillation of oil-bearing minerals

    Energy Technology Data Exchange (ETDEWEB)

    1952-12-03

    A process of distilling oil-bearing minerals of the type of oil shale which disintegrate during distillation consists of subjecting the subdivided minerals to a distillation temperature in the form of a highly turbulent dense mass fluidized by an upwardly flowing gasiform medium in a distillation zone and supplying the heat required for the distillation by burning solid distillation residue with a combustion-supporting gas in the form of a fluidized mass of solids in a separate combustion zone at a combustion temperature and returning solid combustion residue substantially at the combustion temperature to the distillation zone. Combustion temperature is positively maintained at a figure not exceeding 1,200/sup 0/F and at a figure which is not substantially more than 50/sup 0/F higher than the distillation temperature.

  14. Pyroelectrochemical process for reprocessing irradiated nuclear fuels

    International Nuclear Information System (INIS)

    Brambilla, G.; Sartorelli, A.

    1982-01-01

    A pyroelectrochemical process for reprocessing irradiated fast reactor mixed oxide or carbide fuels is described. The fuel is dissolved in a bath of molten alkali metal sulfates. The Pu(SO 4 ) 2 formed in the bath is thermally decomposed, leaving crystalline PuO 2 on the bottom of the reaction vessel. Electrodes are then introduced into the bath, and UO 2 is deposited on the cathode. Alternatively, both UO 2 and PuO 2 may be electrodeposited. The molten salts, after decontamination by precipitating the fission products dissolved in the bath by introducing basic agents such as oxides, carbonates, or hydroxides, may be recycled. Since it is not possible to remove cesium from the molten salt bath, periodic disposal and partial renewal with fresh salts is necessary. The melted salts that contain the fission products are conditioned for disposal by embedding them in a metallic matrix

  15. Deep desulfurization of middle distillates. Process adaptation to oil fractions' compositions

    Energy Technology Data Exchange (ETDEWEB)

    Pedernera, Esteban; Reimert, Rainer; Nguyen, Ngoc Luan; Van Buren, Vincent [Division of Fuel Technology, Universitat Karlsruhe TH, Engler-Bunte-Ring 1, 76131 Karlsruhe (Germany)

    2003-04-30

    The influence of oil fractions' compositions on the conversion of sulfurous components was investigated in a trickle-bed reactor in laboratory scale. A commercially available NiMo/{gamma}-Al{sub 2}O{sub 3} catalyst was used throughout the investigations. Experimental results including sulfur conversion of different oil fractions and residence time distributions under reacting conditions are presented. The hydrogen consumption is ascribed to the conversion of sulfur and of nitrogen, to the hydrogenation of aromatics and to hydrocracking based on a simulation applying ASPEN Plus. Various configurations of the desulfurization process are evaluated but no advantage is found by separate treatment of individual oil fractions. In addition, experiments were carried out to determine liquid distribution and wetting efficiency in a catalyst bed by using magnetic resonance imaging (MRI) technique.

  16. Plasma Technologies of Solid Fuels Processing

    International Nuclear Information System (INIS)

    Karpenko, E.I.; Messerle, V.E.; Ustimenko, A.

    2003-01-01

    Use of fuel processing plasma technologies improves ecological and economical indexes of low-grade coal utilization at thermal power plants. This paper presents experimental plasma plant 70 k W of power and 11 kg per hour of coal productivity. On the base of material and heat balances integral indexes of the process of plasma gasification of Podmoskovny brown coal 48% of ash content were found. Synthesis gas with concentration 85.2% was got. Hydrogen concentration in the synthesis gas was higher than carbon monoxide one. Ratio H 2 :CO in synthesis gas was 1.4-1.5. It was shown that steam consumption and temperature of the process increase causes H 2 concentration and coal gasification degree increase. Fulfilled experiments and comparison of their result with theoretical investigations allowed creating pilot experimental plant for plasma processing of low-grade coals. The power of the pilot plant is 1000 k W and coal productivity is 300 kg/h. (author)

  17. Chemical process safety at fuel cycle facilities

    International Nuclear Information System (INIS)

    Ayres, D.A.

    1997-08-01

    This NUREG provides broad guidance on chemical safety issues relevant to fuel cycle facilities. It describes an approach acceptable to the NRC staff, with examples that are not exhaustive, for addressing chemical process safety in the safe storage, handling, and processing of licensed nuclear material. It expounds to license holders and applicants a general philosophy of the role of chemical process safety with respect to NRC-licensed materials; sets forth the basic information needed to properly evaluate chemical process safety; and describes plausible methods of identifying and evaluating chemical hazards and assessing the adequacy of the chemical safety of the proposed equipment and facilities. Examples of equipment and methods commonly used to prevent and/or mitigate the consequences of chemical incidents are discussed in this document

  18. WWER-1000 nuclear fuel manufacturing process at PJSC MSZ

    International Nuclear Information System (INIS)

    Morylev, A.; Bagdatyeva, E.; Aksenov, P.

    2015-01-01

    In this report a brief description of WWER-1000 fuel manufacturing process steps at PJSC MSZ as: uranium dioxide powder fabrication; fuel pellet manufacture fuel rod manufacture working assembly and fuel assembly manufacture is given. The implemented innovations are also presented

  19. 40 CFR 80.513 - What provisions apply to transmix processing facilities?

    Science.gov (United States)

    2010-07-01

    ... processing. This section applies to refineries that produce diesel fuel from transmix by distillation or other refining processes but do not produce diesel fuel by processing crude oil. This section only...

  20. Distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    Young, W; Fyfe, J

    1897-06-03

    Improvements in retorts of the class described in Specification No. 1377, A. D. 1882, for the destructive distillation of shale are disclosed. The retorts are provided with enlarged multiple hoppers for the reception of the fresh shale, and with enlarged chambers for the reception of the exhausted shale. The hoppers are built up of steel plates, and are bolted at the bottom to flanges on the upper ends of the retorts so as to permit of differential expansion. The shale is fed continuously into the retorts by rods or chains carried by a rocking shaft, or by a slit tube attached to a rocking shaft, and in connection with the hydraulic main. The spent shale is discharged into the receiving chambers by means of a series of prongs extending through a grating and carried by a rocking shaft actuated by levers engaging with reciprocating bars. In an alternative arrangement, the pronged rocking shafts are replaced by worms or screws formed into one half with a right-hand thread and the other half with a left-hand thread.

  1. Distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    Bell, T

    1862-03-03

    Apparatus for the primary distillation of shale or other bituminous minerals in large quantity is constructed as follows:--An annular retort chamber is heated by two or more furnaces, one of which communicates with a central or internal vertical flue, and the others with external or encircling flues preferably disposed in zig-zag, helical or other tortuous course; or the gases pass up the external flues and down the internal flue or flues. The retort chamber may be divided by partitions, or there may be two or more separate chambers disposed concentrically or otherwise with intermediate flues. A pipe or pipes are provided to carry away volatile matters, and valved hoppers are arranged at the top of the retort chamber. The refuse or waste passes off by discharge tubes between the furnaces, and the mouths of these tubes dip into water tanks. The bottom of the retort chamber is funnel-shaped at the discharging points. The apparatus is preferably cylindrical, but may be triangular, square, or polygonal, and may be inclined or horizontal instead of vertical.

  2. Distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    Brinjes, J F

    1866-03-13

    Continuous distillation of shale, boghead coal, or other noncaking bituminous material is effected in one or more rotating or oscillating horizontal retorts constructed to advance the charge. In the former case, internal spiral ribs or projections are provided. In the latter case, the retort is subdivided by annular flanges provided each with an opening, and a series of double inclined projections is disposed opposite the openings. An apparatus is shown in which the material is fed continuously from a hopper, and is advanced through upper and lower oscillating retorts, provided with annular flanges, double inclined projections, and longitudinal ribs or ledges. The retorts are supported on antifriction rollers. The retort is oscillated by means of a mangle wheel and a pinion on a shaft connected by a universal joint to a driving-shaft. The retort is oscillated from the retort by means of a chain connection. The retort is situated in a chamber separated by perforated brickwork from the actual furnace chamber, so that it is subjected to a lower temperature than the retort. The hopper delivers to crushing-rollers in a lower hopper which delivers to a shoot controlled by a sliding door. A hook on the retort is connected by a pipe to the retort, and a pipe leads from the hood to a condenser. A hood at the delivery end of the retort is connected by a pipe to an airtight cooler for the residue, which is discharged through doors into a truck of other receiver.

  3. Distillation, destructive

    Energy Technology Data Exchange (ETDEWEB)

    Craig, A

    1865-10-04

    To prevent oil distilled from coal, shale, or other minerals from being condensed and burnt in the retort, the oil is drawn off from the bottom of the retort. In order that the oil may be drawn off free from dirt and dust, the vertical retort is made of greater diameter at the bottom than at the top, and a vessel containing water is placed at the bottom. Within the retort is a cylinder built up of spaced rings, between which the oil percolates to the interior of the cylinder, whence it is drawn off through a pipe near its lower end. Externally, the rings present a smooth surface which offers no obstruction to the descent of the coal, and the passing of dust and dirt to the interior of the cylinder is prevented by making the lower edge of each ring overlap the upper edge of the ring below it. The cylinder may be replaced by a square, or other casing, and may be cast in one piece.

  4. Recent studies related to head-end fuel processing at the Hanford PUREX plant

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, J.L.

    1988-08-01

    This report presents the results of studies addressing several problems in the head-end processing (decladding, metathesis, and core dissolution) of N Reactor fuel elements in the Hanford PUREX plant. These studies were conducted over 2 years: FY 1986 and FY 1987. The studies were divided into three major areas: 1) differences in head-end behavior of fuels having different histories, 2) suppression of /sup 106/Ru volatilization when the ammonia scrubber solution resulting from decladding is decontaminated by distillation prior to being discharged, and 3) suitability of flocculating agents for lowering the amount of transuranic (TRU) element-containing solids that accompany the decladding solution to waste. 16 refs., 43 figs.

  5. Energy efficiency of acetone, butanol, and ethanol (ABE) recovery by heat-integrated distillation.

    Science.gov (United States)

    Grisales Diaz, Victor Hugo; Olivar Tost, Gerard

    2018-03-01

    Acetone, butanol, and ethanol (ABE) is an alternative biofuel. However, the energy requirement of ABE recovery by distillation is considered elevated (> 15.2 MJ fuel/Kg-ABE), due to the low concentration of ABE from fermentation broths (between 15 and 30 g/l). In this work, to reduce the energy requirements of ABE recovery, four processes of heat-integrated distillation were proposed. The energy requirements and economic evaluations were performed using the fermentation broths of several biocatalysts. Energy requirements of the processes with four distillation columns and three distillation columns were similar (between 7.7 and 11.7 MJ fuel/kg-ABE). Double-effect system (DED) with four columns was the most economical process (0.12-0.16 $/kg-ABE). ABE recovery from dilute solutions by DED achieved energy requirements between 6.1 and 8.7 MJ fuel/kg-ABE. Vapor compression distillation (VCD) reached the lowest energy consumptions (between 4.7 and 7.3 MJ fuel/kg-ABE). Energy requirements for ABE recovery DED and VCD were lower than that for integrated reactors. The energy requirements of ABE production were between 1.3- and 2.0-fold higher than that for alternative biofuels (ethanol or isobutanol). However, the energy efficiency of ABE production was equivalent than that for ethanol and isobutanol (between 0.71 and 0.76) because of hydrogen production in ABE fermentation.

  6. Cofermentation of sweet sorghum juice and grain for production of fuel ethanol and distillers' wet grain

    Energy Technology Data Exchange (ETDEWEB)

    Gibbons, W.R.; Westby, C.A.

    1989-01-01

    In an attempt to reduce the costs associated with fuel ethanol production from grain, sweet sorghum juice was used as a partial or complete replacement for tap-water in mash preparation and fermentation. This juice, which was an unutilized by-product of sweet sorghum silage preservation by the Ag-Bag method, contained 6.5-7.6% (wt/wt) reducing sugar and produced up to 3.51% (v/v) ethanol beers after fermentation. Varying amounts of this juice were mixed with water and corn or wheat, either before or after liquefaction (front-end or back-end loading, respectively). When over 60% juice replacement was used in front-end loading trials, salt buildup, due to required pH adjustments during cooking, inhibited yeast metabolism and thereby reduced yields. This inhibition was not observed during back-end loading trials since acid and base usage during cooking were reduced. (author).

  7. Complex plasmochemical processing of solid fuel

    Directory of Open Access Journals (Sweden)

    Vladimir Messerle

    2012-12-01

    Full Text Available Technology of complex plasmaochemical processing of solid fuel by Ecibastuz bituminous and Turgay brown coals is presented. Thermodynamic and experimental study of the technology was fulfilled. Use of this technology allows producing of synthesis gas from organic mass of coal and valuable components (technical silicon, ferrosilicon, aluminum and silicon carbide and microelements of rare metals: uranium, molybdenum, vanadium etc. from mineral mass of coal. Produced a high-calorific synthesis gas can be used for methanol synthesis, as high-grade reducing gas instead of coke, as well as energy gas in thermal power plants.

  8. Experimental study of hydrodynamically induced vibrational processes in VVER-440 fuel assemblies

    International Nuclear Information System (INIS)

    Solonin, V.I.; Perevezentsev, V.V.; Rekshnya, N.F.; Krapivtsev, V.G.

    2000-01-01

    Investigations are described of hydrodynamically induced vibrations in a single fuel assembly of a VVER-440 reactor, performed on a full-scale model installed in a closed loop filled with distilled water; the model fuel elements contained simulators of fuel pellets. Data on hydrodynamic loads were obtained by measuring pressure oscillations along the height of the fuel assembly case. Results of the measurements are presented in graphs and are discussed in some detail. (A.K.)

  9. Destructive distillation

    Energy Technology Data Exchange (ETDEWEB)

    Hislop, G R

    1882-11-03

    Relates to apparatus for the treatment of cannel or common coal, shale, dross, peat, wood, and similar carbonaceous materials and ironstones for the purpose of obtaining gas, ammonia, and oil. A series of horizontal retorts are built into an arched chamber, and are supported by open arches. A series of vertical retorts in a chamber are situated beneath and in front of the retorts, so that the contents of the latter may easily be discharged into them. The carbonaceous material is first subjected to distillation in the retorts, the products passing by pipes to a hydraulic main where the coal tar and mineral oil are collected in the usual way. The gas is passed through oxide of iron and of lime if to be used for illuminating purposes, and through the former only, if to be used solely for heating purposes. The lower ends of the retorts are closed by doors, or may be sealed by water. They are preferably oblong in section and are surrounded by heating-flues, and each preferably contains the spent material from two of the primary retorts. They discharge their contents into a chamber at the bottom, from which they are withdrawn through a door. When the coke has been transferred from the horizontal to the vertical retorts the latter are closed by suitable covers, and the former are recharged with raw material. Superheated steam is introduced into the lower ends of the vertical retorts in order to facilitate the production of ammonia, which, together with the gases generated pass by a pipe to a main.

  10. Comprehensive Assessment of Composition and Thermochemical Variability by High Resolution GC/QToF-MS and the Advanced Distillation-Curve Method as a Basis of Comparison for Reference Fuel Development.

    Science.gov (United States)

    Lovestead, Tara M; Burger, Jessica L; Schneider, Nico; Bruno, Thomas J

    2016-12-15

    Commercial and military aviation is faced with challenges that include high fuel costs, undesirable emissions, and supply chain insecurity that result from the reliance on petroleum-based feedstocks. The development of alternative gas turbine fuels from renewable resources will likely be part of addressing these issues. The United States has established a target for one billion gallons of renewable fuels to enter the supply chain by 2018. These alternative fuels will have to be very similar in properties, chemistry, and composition to existing fuels. To further this goal, the National Jet Fuel Combustion Program (a collaboration of multiple U.S. agencies under the auspices of the Federal Aviation Administration, FAA) is coordinating measurements on three reference gas turbine fuels to be used as a basis of comparison. These fuels are reference fuels with certain properties that are at the limits of experience. These fuels include a low viscosity, low flash point, high hydrogen content "best case" JP-8 (POSF 10264) fuel, a relatively high viscosity, high flash point, low hydrogen content "worst case" JP-5 (POSF 10259) fuel, and a Jet-A (POSF 10325) fuel with relatively average properties. A comprehensive speciation of these fuels is provided in this paper by use of high resolution gas chromatography/quadrupole time-of-flight - mass spectrometry (GC/QToF-MS), which affords unprecedented resolution and exact molecular formula capabilities. The volatility information as derived from the measurement of the advanced distillation curve temperatures, T k and T h , provides an approximation of the vapor liquid equilibrium and examination of the composition channels provides detailed insight into thermochemical data. A comprehensive understanding of the compositional and thermophysical data of gas turbine fuels is required not only for comparison but also for modeling of such complex mixtures, which will, in turn, aid in the development of new fuels with the goals of

  11. Comprehensive Assessment of Composition and Thermochemical Variability by High Resolution GC/QToF-MS and the Advanced Distillation-Curve Method as a Basis of Comparison for Reference Fuel Development*

    Science.gov (United States)

    Lovestead, Tara M.; Burger, Jessica L.; Schneider, Nico; Bruno, Thomas J.

    2018-01-01

    Commercial and military aviation is faced with challenges that include high fuel costs, undesirable emissions, and supply chain insecurity that result from the reliance on petroleum-based feedstocks. The development of alternative gas turbine fuels from renewable resources will likely be part of addressing these issues. The United States has established a target for one billion gallons of renewable fuels to enter the supply chain by 2018. These alternative fuels will have to be very similar in properties, chemistry, and composition to existing fuels. To further this goal, the National Jet Fuel Combustion Program (a collaboration of multiple U.S. agencies under the auspices of the Federal Aviation Administration, FAA) is coordinating measurements on three reference gas turbine fuels to be used as a basis of comparison. These fuels are reference fuels with certain properties that are at the limits of experience. These fuels include a low viscosity, low flash point, high hydrogen content “best case” JP-8 (POSF 10264) fuel, a relatively high viscosity, high flash point, low hydrogen content “worst case” JP-5 (POSF 10259) fuel, and a Jet-A (POSF 10325) fuel with relatively average properties. A comprehensive speciation of these fuels is provided in this paper by use of high resolution gas chromatography/quadrupole time-of-flight – mass spectrometry (GC/QToF-MS), which affords unprecedented resolution and exact molecular formula capabilities. The volatility information as derived from the measurement of the advanced distillation curve temperatures, Tk and Th, provides an approximation of the vapor liquid equilibrium and examination of the composition channels provides detailed insight into thermochemical data. A comprehensive understanding of the compositional and thermophysical data of gas turbine fuels is required not only for comparison but also for modeling of such complex mixtures, which will, in turn, aid in the development of new fuels with the goals of

  12. Dissolution process for advanced-PWR-type fuels

    International Nuclear Information System (INIS)

    Black, D.E.; Decker, L.A.; Pearson, L.G.

    1979-01-01

    The new Fluorinel Dissolution Process and Fuel Storage (FAST) Facility at ICPP will provide underwater storage of spent PWR fuel and a new head-end process for fuel dissolution. The dissolution will be two-stage, using HF and HNO 3 , with an intermittent H 2 SO 4 dissolution for removing stainless steel components. Equipment operation is described

  13. Renormalizing Entanglement Distillation

    Science.gov (United States)

    Waeldchen, Stephan; Gertis, Janina; Campbell, Earl T.; Eisert, Jens

    2016-01-01

    Entanglement distillation refers to the task of transforming a collection of weakly entangled pairs into fewer highly entangled ones. It is a core ingredient in quantum repeater protocols, which are needed to transmit entanglement over arbitrary distances in order to realize quantum key distribution schemes. Usually, it is assumed that the initial entangled pairs are identically and independently distributed and are uncorrelated with each other, an assumption that might not be reasonable at all in any entanglement generation process involving memory channels. Here, we introduce a framework that captures entanglement distillation in the presence of natural correlations arising from memory channels. Conceptually, we bring together ideas from condensed-matter physics—ideas from renormalization and matrix-product states and operators—with those of local entanglement manipulation, Markov chain mixing, and quantum error correction. We identify meaningful parameter regions for which we prove convergence to maximally entangled states, arising as the fixed points of a matrix-product operator renormalization flow.

  14. Establishment and assessment of a novel cleaner production process of corn grain fuel ethanol.

    Science.gov (United States)

    Wang, Ke; Zhang, Jianhua; Tang, Lei; Zhang, Hongjian; Zhang, Guiying; Yang, Xizhao; Liu, Pei; Mao, Zhonggui

    2013-11-01

    An integrated corn ethanol-methane fermentation system was proposed to solve the problem of stillage handling, where thin stillage was treated by anaerobic digestion and then reused to make mash for the following ethanol fermentation. This system was evaluated at laboratory and pilot scale. Anaerobic digestion of thin stillage ran steadily with total chemical oxygen demand removal efficiency of 98% at laboratory scale and 97% at pilot scale. Ethanol production was not influenced by recycling anaerobic digestion effluent at laboratory and pilot scale. Compared with dried distillers' grains with solubles produced in conventional process, dried distillers' grains in the proposed system exhibited higher quality because of increased protein concentration and decreased salts concentration. Energetic assessment indicated that application of this novel process enhanced the net energy balance ratio from 1.26 (conventional process) to 1.76. In conclusion, the proposed system possessed technical advantage over the conventional process for corn fuel ethanol production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Ethyl Acetate Synthesis by Coupling of Fixed-bed Reactor and Reactive Distillation Column—Process Integration Aspects

    Czech Academy of Sciences Publication Activity Database

    Smejkal, Q.; Kolena, J.; Hanika, Jiří

    2009-01-01

    Roč. 154, 1-3 (2009), s. 236-240 ISSN 1385-8947. [International Conference on Chemical Reactors - CHEMREACTOR -18 /18./. Malta, 23.09.2008-03.10.2008] Institutional research plan: CEZ:AV0Z40720504 Keywords : ethyl acetate * esterification * reactive distillation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.816, year: 2009

  16. Destructive distillation of coals

    Energy Technology Data Exchange (ETDEWEB)

    Rollason, A

    1918-08-23

    To obtain light oils and ammonia from coals having volatile and oxygen contents, the crushed material is mixed with 5 percent of ground amorphous calcium carbonate and distilled slowly in a cast iron retort to remove the water and light oils, the ammonia being synthesized at a later stage. The crushed residue is gasified in a producer by a blast of air and superheated steam at about 950/sup 0/C. The steam and air are passed very slowly at low pressure through the fuel to cause the dissociation of the atmospheric nitrogen molecules into atoms. The gases are then passed to a heater, having a temperature of 500/sup 0/C, and thence to a continuously working externally-heated retort charged with fuel, such as the hard retort residues, maintained below 850/sup 0/C. The water vapor in the gases is dissociated by the incandescent fuel, the oxygen combining with the carbon, and the lime present in the fuel causes the hydrogen to combine with the free nitrogen atoms, thus forming ammonia. The gases after leaving the retort are cooled down to 85 to 95/sup 0/C and the ammonia may be recovered by conversion into ammonium sulphate. The resultant cooled gases may again be charged with superheated steam and utilized again in the heater and retort.

  17. Effects of Fuel Quantity on Soot Formation Process for Biomass-Based Renewable Diesel Fuel Combustion

    KAUST Repository

    Jing, Wei; Wu, Zengyang; Roberts, William L.; Fang, Tiegang

    2016-01-01

    Soot formation process was investigated for biomass-based renewable diesel fuel, such as biomass to liquid (BTL), and conventional diesel combustion under varied fuel quantities injected into a constant volume combustion chamber. Soot measurement

  18. Effect of process variables on the quality characteristics of pelleted wheat distiller's dried grains with solubles

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; Lope Tabil; Anthony Opoku; Maria Rosario Mosqueda; Olaniyi Fadeyi

    2011-04-01

    The rapid expansion of ethanol processing plants in Canada has resulted in a significant increase in the production of wheat-based distiller's dried grains with solubles (DDGS). Transportation and flowability problems associated with DDGS necessitate investigations on pelleting. In the present study, the effect of process variables like die temperature (T) and feed moisture content (Mw) on the pellet properties like pellet moisture content, durability and pellet density was explored using a single pelleting machine; further studies on pelleting DDGS using a pilot-scale pellet mill were also conducted to understand the effect of die diameter and steam conditioning on durability and bulk density of pellets. Proximate analysis of DDGS indicated that crude protein and dry matter were in the range of 37.37–40.33% and 91.27–92.60%, respectively. Linear regression models developed for pellet quality attributes like pellet moisture content, pellet density and durability adequately described the single pelleting process with R2 value of 0.97, 0.99 and 0.7, respectively. ANOVA results have indicated that linear terms T and Mw and the interaction term T × Mw were statistically significant at P < 0.01 and P < 0.1 for pellet moisture content and pellet density. Based on the trends of the surface plots, a medium T of about 50–80 °C and a low Mw of about 5.1% resulted in maximum pellet density and durability and minimum pellet moisture content. Results from pilot-scale studies indicated that bulk density, durability and throughput values were 436.8–528.9 kg m-3, 60.3–92.7% and 45.52–68.77 kg h-1, respectively. It was observed that both die diameter and steam addition had a significant effect on the bulk density and the durability values. The highest bulk density and durability were achieved with 6.4 mm die diameter with steam addition compared to 7.9 mm die with or without steam addition.

  19. Property-process relationships in nuclear fuel fabrication

    International Nuclear Information System (INIS)

    Tikare, V.

    2015-01-01

    Nuclear fuels are fabricated using many different techniques as they come in a large variety of shapes and compositions. The design and composition of nuclear fuels are predominantly dictated by the engineering requirements necessary for their function in reactors of various designs. Other engineering properties requirements originate from safety and security concerns, and the easy of handling, storing, transporting and disposing of the radioactive materials. In this chapter, the more common of these fuels will be briefly reviewed and the methods used to fabricate them will be presented. The fuels considered in this paper are oxide fuels used in LWRs and FRs, metal fuels in FRs and particulate fuels used in HTGRs. Fabrication of alternative fuel forms and use of standard fuels in alternative reactors will be discussed briefly. The primary motivation to advance fuel fabrication is to improve performance, reduce cost, reduce waste or enhance safety and security of the fuels. To achieve optimal performance, developing models to advance fuel fabrication has to be done in concert with developing fuel performance models. The specific properties and microstructures necessary for improved fuel performance must be identified using fuel performance models, while fuel fabrication models that can determine processing variables to give the desired microstructure and materials properties must be developed. (author)

  20. Development of Advanced Spent Fuel Management Process

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Chung Seok; Choi, I. K.; Kwon, S. G. (and others)

    2007-06-15

    As a part of research efforts to develop an advanced spent fuel management process, this project focused on the electrochemical reduction technology which can replace the original Li reduction technology of ANL, and we have successfully built a 20 kgHM/batch scale demonstration system. The performance tests of the system in the ACPF hot cell showed more than a 99% reduction yield of SIMFUEL, a current density of 100 mA/cm{sup 2} and a current efficiency of 80%. For an optimization of the process, the prevention of a voltage drop in an integrated cathode, a minimization of the anodic effect and an improvement of the hot cell operability by a modulation and simplization of the unit apparatuses were achieved. Basic research using a bench-scale system was also carried out by focusing on a measurement of the electrochemical reduction rate of the surrogates, an elucidation of the reaction mechanism, collecting data on the partition coefficients of the major nuclides, quantitative measurement of mass transfer rates and diffusion coefficients of oxygen and metal ions in molten salts. When compared to the PYROX process of INL, the electrochemical reduction system developed in this project has comparative advantages in its application of a flexible reaction mechanism, relatively short reaction times and increased process yields.

  1. Development of Advanced Spent Fuel Management Process

    International Nuclear Information System (INIS)

    Seo, Chung Seok; Choi, I. K.; Kwon, S. G.

    2007-06-01

    As a part of research efforts to develop an advanced spent fuel management process, this project focused on the electrochemical reduction technology which can replace the original Li reduction technology of ANL, and we have successfully built a 20 kgHM/batch scale demonstration system. The performance tests of the system in the ACPF hot cell showed more than a 99% reduction yield of SIMFUEL, a current density of 100 mA/cm 2 and a current efficiency of 80%. For an optimization of the process, the prevention of a voltage drop in an integrated cathode, a minimization of the anodic effect and an improvement of the hot cell operability by a modulation and simplization of the unit apparatuses were achieved. Basic research using a bench-scale system was also carried out by focusing on a measurement of the electrochemical reduction rate of the surrogates, an elucidation of the reaction mechanism, collecting data on the partition coefficients of the major nuclides, quantitative measurement of mass transfer rates and diffusion coefficients of oxygen and metal ions in molten salts. When compared to the PYROX process of INL, the electrochemical reduction system developed in this project has comparative advantages in its application of a flexible reaction mechanism, relatively short reaction times and increased process yields

  2. Optimization study of pressure-swing distillation for the separation process of a maximum-boiling azeotropic system of water-ethylenediamine

    Energy Technology Data Exchange (ETDEWEB)

    Fulgueras, Alyssa Marie; Poudel, Jeeban; Kim, Dong Sun; Cho, Jungho [Kongju National University, Cheonan (Korea, Republic of)

    2016-01-15

    The separation of ethylenediamine (EDA) from aqueous solution is a challenging problem because its mixture forms an azeotrope. Pressure-swing distillation (PSD) as a method of separating azeotropic mixture were investigated. For a maximum-boiling azeotropic system, pressure change does not greatly affect the azeotropic composition of the system. However, the feasibility of using PSD was still analyzed through process simulation. Experimental vapor liquid equilibrium data of water-EDA system was studied to predict the suitability of thermodynamic model to be applied. This study performed an optimization of design parameters for each distillation column. Different combinations of operating pressures for the low- and high-pressure columns were used for each PSD simulation case. After the most efficient operating pressures were identified, two column configurations, low-high (LP+HP) and high-low (HP+ LP) pressure column configuration, were further compared. Heat integration was applied to PSD system to reduce low and high temperature utility consumption.

  3. Optimization study of pressure-swing distillation for the separation process of a maximum-boiling azeotropic system of water-ethylenediamine

    International Nuclear Information System (INIS)

    Fulgueras, Alyssa Marie; Poudel, Jeeban; Kim, Dong Sun; Cho, Jungho

    2016-01-01

    The separation of ethylenediamine (EDA) from aqueous solution is a challenging problem because its mixture forms an azeotrope. Pressure-swing distillation (PSD) as a method of separating azeotropic mixture were investigated. For a maximum-boiling azeotropic system, pressure change does not greatly affect the azeotropic composition of the system. However, the feasibility of using PSD was still analyzed through process simulation. Experimental vapor liquid equilibrium data of water-EDA system was studied to predict the suitability of thermodynamic model to be applied. This study performed an optimization of design parameters for each distillation column. Different combinations of operating pressures for the low- and high-pressure columns were used for each PSD simulation case. After the most efficient operating pressures were identified, two column configurations, low-high (LP+HP) and high-low (HP+ LP) pressure column configuration, were further compared. Heat integration was applied to PSD system to reduce low and high temperature utility consumption.

  4. Distillation of combustibles at temperatures below fusion

    Energy Technology Data Exchange (ETDEWEB)

    Dalin, D

    1946-09-26

    A process is described for combustion and distillation for dry fuels, such as bituminous shales, below the temperature of fusion of the ash, for the production of heat, in which the temperature in the charge of fuel forming a vertical column is maintained beneath the temperature of fusion of the ash by a withdrawal of the heat from the combustible charge by means of a fluid absorbing this heat. This fluid being constituted, for example, by water in a suitable form, so that it can be circulated through a convenient cooling system, extending through the different parts of the charge. The fluid circulating also through the desired parts of the charge and absorbing the heat, the quantity of fluid or the surface of absorption increasing with the intensity of the combustion in the part of the combustible charge traversed by the fluid.

  5. Distilling hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Tausz, J

    1924-07-16

    Hydrocarbon oils such as petroleum, shale oils, lignite or coal tar oils are purified by distilling them and collecting the distillate in fractions within narrow limits so that all the impurities are contained in one or more of the narrow fractions. In distilling ligroin obtained by destructive distillation of brown coal, it is found that the coloring and resin-forming constituents are contained in the fractions distilling over at 62 to 86/sup 0/C and 108/sup 0/C. The ligroin is purified, therefore, by distillating in an apparatus provided with an efficient dephlegmotor and removing these two fractions. The distillation may be carried out wholly or in part under reduced pressure, and fractions separated under ordinary pressure may be subsequently distilled under reduced pressure. The hydrocarbons may be first separated into fractions over wider limits and the separate fractions be subjected to a further fractional distillation.

  6. Extraction of Citrus Hystrix D.C. (Kaffir Lime) Essential Oil Using Automated Steam Distillation Process: Analysis of Volatile Compounds

    International Nuclear Information System (INIS)

    Nurhani Kasuan; Zuraida Muhammad; Zakiah Yusoff; Mohd Hezri Fazalul Rahiman; Mohd Nasir Taib; Zaibunnisa Abdul Haiyee

    2013-01-01

    An automated steam distillation was successfully used to extract volatiles from Citrus hystrix D.C (Kaffir lime) peels. The automated steam distillation integrated with robust temperature control can commercially produce large amount of essential oil with efficient heating system. Objective of this study is to quantify the oil production rate using automated steam distillation and analyze the composition of volatiles in Kaffir lime peels oil at different controlled and uncontrolled temperature conditions. From the experimentation, oil extraction from Kaffir lime peels only took approximately less than 3 hours with amount of oil yield was 13.4 % more than uncontrolled temperature. The identified major compounds from Kaffir lime peels oil were sabinene, β-pinene, limonene, α-pinene, camphene, myrcene, terpinen-4-ol, α-terpineol, linalool, terpinolene and citronellal which are considered to have good organoleptic quality. In contrast with uncontrolled temperature, oil analysis revealed that some important volatile compounds were absent such as terpinolene, linalool, terpinen-4-ol due to thermal degradation effect from fast heating of extracted material. (author)

  7. Cost reductions of fuel cells for transport applications: fuel processing options

    Energy Technology Data Exchange (ETDEWEB)

    Teagan, W P; Bentley, J; Barnett, B [Arthur D. Little, Inc., Cambridge, MA (United States)

    1998-03-15

    The highly favorable efficiency/environmental characteristics of fuel cell technologies have now been verified by virtue of recent and ongoing field experience. The key issue regarding the timing and extent of fuel cell commercialization is the ability to reduce costs to acceptable levels in both stationary and transport applications. It is increasingly recognized that the fuel processing subsystem can have a major impact on overall system costs, particularly as ongoing R and D efforts result in reduction of the basic cost structure of stacks which currently dominate system costs. The fuel processing subsystem for polymer electrolyte membrane fuel cell (PEMFC) technology, which is the focus of transport applications, includes the reformer, shift reactors, and means for CO reduction. In addition to low cost, transport applications require a fuel processor that is compact and can start rapidly. This paper describes the impact of factors such as fuel choice operating temperature, material selection, catalyst requirements, and controls on the cost of fuel processing systems. There are fuel processor technology paths which manufacturing cost analyses indicate are consistent with fuel processor subsystem costs of under $150/kW in stationary applications and $30/kW in transport applications. As such, the costs of mature fuel processing subsystem technologies should be consistent with their use in commercially viable fuel cell systems in both application categories. (orig.)

  8. Role of ion chromatograph in nuclear fuel fabrication process at Nuclear Fuel Complex

    International Nuclear Information System (INIS)

    Balaji Rao, Y.; Prasada Rao, G.; Prahlad, B.; Saibaba, N.

    2012-01-01

    The present paper discusses the different applications of ion chromatography followed in nuclear fuel fabrication process at Nuclear Fuel Complex. Some more applications of IC for characterization of nuclear materials and which are at different stages of method development at Control Laboratory, Nuclear Fuel Complex are also highlighted

  9. The Use of Fuel Gas as Stripping Medium in Atmospheric Distillation of Crude Oil L’utilisation de gaz combustible comme moyen d’extraction des fractions légères en distillation atmosphérique du pétrole brut

    OpenAIRE

    Plellis-Tsaltakis C.; Lygeros A.I.

    2011-01-01

    Stripping of petroleum fractions aims to remove the light ends that spoil some of their properties, such as the flash point. Stripping usually employs steam for that purpose. Except for steam, other substances can perform the same function, among them light hydrocarbons. In this article, we investigate the use of refinery fuel gas as stripping medium for a crude oil atmospheric distillation unit. L’extraction des fractions légères du pétrole vise à enlever les produits nuisibles à cer...

  10. Louisiana SIP: LAC 33:III Ch 21 Subchap J, 2147--Limiting Volatile Organic Compound (VOC) Emissions from Reactor Processes and Distillation Operations in Synthetic Organic Chemical manufacturing Industry (SOCMI); SIP effective 1998-02-02 (LAc74) to more..

    Science.gov (United States)

    Louisiana SIP: LAC 33:III Ch 21 Subchap J, 2147--Limiting Volatile Organic Compound (VOC) Emissions from Reactor Processes and Distillation Operations in Synthetic Organic Chemical manufacturing Industry (SOCMI); SIP effective 1998-02-02 (LAc74) more...

  11. Louisiana SIP: LAC 33:III Ch 2147. Limiting Volatile Organic Compound (VOC) Emissions from Reactor Processes and Distillation Operations in Synthetic Organic Chemical manufacturing Industry (SOCMI); SIP effective 2011-08-04 (LAd34) to 2017-09-27

    Science.gov (United States)

    Louisiana SIP: LAC 33:III Ch 2147. Limiting Volatile Organic Compound (VOC) Emissions from Reactor Processes and Distillation Operations in Synthetic Organic Chemical manufacturing Industry (SOCMI); SIP effective 2011-08-04 (LAd34) to 2017-09-27

  12. Method of processing spent fuel cladding tubes

    International Nuclear Information System (INIS)

    Nakatsuka, Masafumi; Ouchi, Atsuhiro; Imahashi, Hiromichi.

    1986-01-01

    Purpose: To decrease the residual activity of spent fuel cladding tubes in a short period of time and enable safety storage with simple storage equipments. Constitution: Spent fuel cladding tubes made of zirconium alloys discharged from a nuclear fuel reprocessing step are exposed to a grain boundary embrittling atmosphere to cause grain boundary destruction. This causes grain boundary fractures to the zirconium crystal grains as the matrix of nuclear fuels and then precipitation products precipitated to the grain boundary fractures are removed. The zirconium constituting the nuclear fuel cladding tube and other ingredient elements contained in the precipitation products are separated in this removing step and they are separately stored respectively. As a result, zirconium constituting most part of the composition of the spent nuclear fuel cladding tubes can be stored safely at a low activity level. (Takahashi, M.)

  13. Nuclear fuel re-processing plant

    International Nuclear Information System (INIS)

    Sasaki, Yuko; Honda, Takashi; Shoji, Saburo; Kobayashi, Shiro; Furuya, Yasumasa

    1989-01-01

    In a nuclear fuel re-processing plant, high Si series stainless steels not always have sufficient corrosion resistance in a solution containing only nitric acid at medium or high concentration. Further, a method of blowing NOx gases may possibly promote the corrosion of equipment constituent materials remarkably. In view of the above, the corrosion promoting effect of nuclear fission products is suppressed without depositing corrosive metal ions as metals in the nitric acid solution. That is, a reducing atmosphere is formed by generating NOx by electrolytic reduction thereby preventing increase in the surface potential of stainless steels. Further, an anode is disposed in the nitric acid solution containing oxidative metal ions to establish an electrical conduction and separate them by way of partition membranes and a constant potential or constant current is applied while maintaining an ionic state so as not to deposit metals. Thus, equipments of re-processing facility can be protected from corrosion with no particular treatment for wastes as radioactive materials. (K.M.)

  14. The investigation of HTGR fuel regeneration process

    Energy Technology Data Exchange (ETDEWEB)

    Lazarev, L N; Bertina, L E; Popik, V P; Isakov, V P; Alkhimov, N B; Pokhitonov, Yu A

    1985-07-01

    The aim of this report is the investigation of HTGR fuel regeneration. The operation in the technologic scheme of uranium extraction from fuel depleted elements is separation of fuel from graphite. Available methods of graphite matrix destruction are: mechanical destruction, chemical destruction, and burning. Mechanical destruction is done in combination with leaching or chlorination. Methods of chemical destruction of graphite matrix are not sufficiently studied. Most of the investigations nowadays sre devoted to removal of graphite by burning.

  15. Electrochemical processing of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, M. A.; Willit, J. L.; Barnes, L. A.; Figueroa, J.; Limmer, S. L.; Blaskovitz, R. [Argonne National Laboratory, Argonne (United States)

    2008-08-15

    Our work in developing the fuel cycles and electrochemical technologies needed for the treatment of spent light water reactor and spent fast reactor fuel is progressing well. Baseline flowsheets along with a theoretical material balance have been developed for treatment of each type of fuel. A discussion about the flowsheets provides the opportunity to present the status of our technology development activities and future research and development directions.

  16. Electrochemical processing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Williamson, M. A.; Willit, J. L.; Barnes, L. A.; Figueroa, J.; Limmer, S. L.; Blaskovitz, R.

    2008-01-01

    Our work in developing the fuel cycles and electrochemical technologies needed for the treatment of spent light water reactor and spent fast reactor fuel is progressing well. Baseline flowsheets along with a theoretical material balance have been developed for treatment of each type of fuel. A discussion about the flowsheets provides the opportunity to present the status of our technology development activities and future research and development directions

  17. The investigation of HTGR fuel regeneration process

    International Nuclear Information System (INIS)

    Lazarev, L.N.; Bertina, L.E.; Popik, V.P.; Isakov, V.P.; Alkhimov, N.B.; Pokhitonov, Yu.A.

    1985-01-01

    The aim of this report is the investigation of HTGR fuel regeneration. The operation in the technologic scheme of uranium extraction from fuel depleted elements is separation of fuel from graphite. Available methods of graphite matrix destruction are: mechanical destruction, chemical destruction, and burning. Mechanical destruction is done in combination with leaching or chlorination. Methods of chemical destruction of graphite matrix are not sufficiently studied. Most of the investigations nowadays sre devoted to removal of graphite by burning

  18. Improvements in or relating to process for the production of fuel gas from a carbonaceous solid

    Energy Technology Data Exchange (ETDEWEB)

    1952-12-03

    A process was designed for the generation of fuel gas from a solid carbonaceous fuel containing volatilizable constituents, which comprises admixing the solid carbonaceous fuel in particle form with sufficient water to form a fluid suspension, passing the suspension through a heating zone at an elevated temperature such that substantially all of the water is vaporized, thereby forming a dispersion of coal in steam and causing the dispersion to attain a velocity of at least 60 ft. per second to shatter the particles of coal by collision, passing the resulting dispersion into a fluidized bed of solid carbonaceous material in a methanization zone into contact with carbon monoxide and hydrogen at a temperature within the range of from 900/sup 0/ to 1,800/sup 0/F whereby carbon monoxide and hydrogen are converted to methane and volatilizable constituents of the solid carbonaceous material are distilled therefrom, withdrawing carbonaceous material from the methanization zone and passing it into contact with oxygen and steam in dilute phase in a gasification zone maintained at a temperature within the range of 2,000/sup 0/ to about 3,000/sup 0/F, passing the resulting gases comprising carbon monoxide and hydrogen from the gasification zone into the methanization zone as the source of carbon monoxide and hydrogen, and discharging the gaseous products of the methanization zone as the raw-product fuel gas.

  19. Fuel Cell Stations Automate Processes, Catalyst Testing

    Science.gov (United States)

    2010-01-01

    Glenn Research Center looks for ways to improve fuel cells, which are an important source of power for space missions, as well as the equipment used to test fuel cells. With Small Business Innovation Research (SBIR) awards from Glenn, Lynntech Inc., of College Station, Texas, addressed a major limitation of fuel cell testing equipment. Five years later, the company obtained a patent and provided the equipment to the commercial world. Now offered through TesSol Inc., of Battle Ground, Washington, the technology is used for fuel cell work, catalyst testing, sensor testing, gas blending, and other applications. It can be found at universities, national laboratories, and businesses around the world.

  20. A Study on the Fabrication of Uranium-Cadmium Alloy and its Distillation Behavior

    International Nuclear Information System (INIS)

    Kim, Ji Yong; Ahn, Do Hee; Kim, Kwang Rag; Paek, Seung Woo; Kim, Si Hyung

    2010-01-01

    The pyrometallurgical nuclear fuel recycle process, called pyroprocessing, has been known as a promising nuclear fuel recycling technology. Pyroprocessing technology is crucial to advanced nuclear systems due to increased nuclear proliferation resistance and economic efficiency. The basic concept of pyroprocessing is group actinide recovery, which enhances the nuclear proliferation resistance significantly. One of the key steps in pyroprocessing is 'electrowinning' which recovers group actinides with lanthanide from the spent nuclear fuels. In this study, a vertical cadmium distiller was manufactured. The evaporation rate of pure cadmium in vertical cadmium distiller varied from 12.3 to 40.8 g/cm 2 /h within a temperature range of 773 ∼ 923 K and pressure below 0.01 torr. Uranium - cadmium alloy was fabricated by electrolysis using liquid cadmium cathode in a high purity argon atmosphere glove box. The distillation behavior of pure cadmium and cadmium in uranium - cadmium alloy was investigated. The distillation behavior of cadmium from this study could be used to develop an actinide recovery process from a liquid cadmium cathode in a cadmium distiller

  1. A Study on the Fabrication of Uranium-Cadmium Alloy and its Distillation Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Yong [University of Science and Technology, Daejeon (Korea, Republic of); Ahn, Do Hee; Kim, Kwang Rag; Paek, Seung Woo; Kim, Si Hyung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-12-15

    The pyrometallurgical nuclear fuel recycle process, called pyroprocessing, has been known as a promising nuclear fuel recycling technology. Pyroprocessing technology is crucial to advanced nuclear systems due to increased nuclear proliferation resistance and economic efficiency. The basic concept of pyroprocessing is group actinide recovery, which enhances the nuclear proliferation resistance significantly. One of the key steps in pyroprocessing is 'electrowinning' which recovers group actinides with lanthanide from the spent nuclear fuels. In this study, a vertical cadmium distiller was manufactured. The evaporation rate of pure cadmium in vertical cadmium distiller varied from 12.3 to 40.8 g/cm{sup 2}/h within a temperature range of 773 {approx} 923 K and pressure below 0.01 torr. Uranium - cadmium alloy was fabricated by electrolysis using liquid cadmium cathode in a high purity argon atmosphere glove box. The distillation behavior of pure cadmium and cadmium in uranium - cadmium alloy was investigated. The distillation behavior of cadmium from this study could be used to develop an actinide recovery process from a liquid cadmium cathode in a cadmium distiller.

  2. Mixed U/Pu oxide fuel fabrication facility co-processed feed, pelletized fuel

    International Nuclear Information System (INIS)

    1978-09-01

    Two conceptual MOX fuel fabrication facilities are discussed in this study. The first facility in the main body of the report is for the fabrication of LWR uranium dioxide - plutonium dioxide (MOX) fuel using co-processed feed. The second facility in the addendum is for the fabrication of co-processed MOX fuel spiked with 60 Co. Both facilities produce pellet fuel. The spiked facility uses the same basic fabrication process as the conventional MOX plant but the fuel feed incorporates a high energy gamma emitter as a safeguard measure against diversion; additional shielding is added to protect personnel from radiation exposure, all operations are automated and remote, and normal maintenance is performed remotely. The report describes the fuel fabrication process and plant layout including scrap and waste processing; and maintenance, ventilation and safety measures

  3. Continuous distillation of bituminous shale. [hot gas in chamber and chamber heated externally

    Energy Technology Data Exchange (ETDEWEB)

    1921-04-27

    A process of continuous distillation of bituminous shale is given in which the heat necessary is produced not only on the exterior but also in the interior of the distillation apparatus in the form of hot gas directly bathing the shale. The residual carbon in the shale after distillation, or maybe with other fuel added to it, can be utilized; the fuel may be utilized not only for the heat it furnishes but also for the gas it gives and which adds itself to the incondensable gas from the distillation. The temperature of the zone of distillation of the shale is regulated by the quantity of gas, the temperature of this gas (which can be lowered voluntarily by injecting into the air a certain quantity of water vapor), the length of the zone comprised between the zone of gasification and distillation; the injection of water vapor permits the recovery of part of the nitrogen of the shale in the form of ammonia; the materials are withdrawn continuously in a mechanical way.

  4. Control of distributed heat transfer mechanisms in membrane distillation plants

    KAUST Repository

    Laleg-Kirati, Taous-Meriem; Eleiwi, Fadi; Karam, Ayman M.

    2017-01-01

    Various examples are provided that are related to boundary control in membrane distillation (MD) processes. In one example, a system includes a membrane distillation (MD) process comprising a feed side and a permeate side separated by a membrane

  5. Modified ADS molten salt processes for back-end fuel cycle of PWR spent fuel

    International Nuclear Information System (INIS)

    Choi, In-Kyu; Yeon, Jei-Won; Kim, Won-Ho

    2002-01-01

    The back-end fuel cycle concept for PWR spent fuel is explained. This concept is adequate for Korea, which has operated both PWR and CANDU reactors. Molten salt processes for accelerator driven system (ADS) were modified both for the transmutation of long-lived radioisotopes and for the utilisation of the remained fissile uranium in PWR spent fuels. Prior to applying molten salt processes to PWR fuel, hydrofluorination and fluorination processes are applied to obtain uranium hexafluoride from the spent fuel pellet. It is converted to uranium dioxide and fabricated into CANDU fuel. From the remained fluoride compounds, transuranium elements can be separated by the molten salt technology such as electrowinning and reductive extraction processes for transmutation purpose without weakening the proliferation resistance of molten salt technology. The proposed fuel cycle concept using fluorination processes is thought to be adequate for our nuclear program and can replace DUPIC (Direct Use of spent PWR fuel in CANDU reactor) fuel cycle. Each process for the proposed fuel cycle concept was evaluated in detail

  6. Materials and processes for solar fuel production

    CERN Document Server

    Viswanathan, Balasubramanian; Lee, Jae Sung

    2014-01-01

    This book features different approaches to non-biochemical pathways for solar fuel production. This one-of-a-kind book addresses photovoltaics, photocatalytic water splitting for clean hydrogen production and CO2 conversion to hydrocarbon fuel through in-depth comprehensive contributions from a select blend of established and experienced authors from across the world. The commercial application of solar based systems, with particular emphasis on non-PV based devices have been discussed. This book intends to serve as a primary resource for a multidisciplinary audience including chemists, engineers and scientists providing a one-stop location for all aspects related to solar fuel production. The material is divided into three sections: Solar assisted water splitting to produce hydrogen; Solar assisted CO2 utilization to produce green fuels and Solar assisted electricity generation. The content strikes a balance between theory, material synthesis and application with the central theme being solar fuels.

  7. Handbook on process and chemistry on nuclear fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsuyuki [Tokyo Univ., Tokyo (Japan); Asakura, Toshihide; Adachi, Takeo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; and others

    2001-12-01

    'Wet-type' nuclear fuel reprocessing technology, based on PUREX technology, has wide applicability as the principal reprocessing technology of the first generation, and relating technologies, waste management for example, are highly developed, too. It is quite important to establish a database summarizing fundamental information about the process and the chemistry of 'wet-type' reprocessing, because it contributes to establish and develop fuel reprocessing process and nuclear fuel cycle treating high burn-up UO{sub 2} fuel and spent MOX fuel, and to utilize 'wet-type' reprocessing technology much widely. This handbook summarizes the fundamental data on process and chemistry, which was collected and examined by 'Editing Committee of Handbook on Process and Chemistry of Nuclear Fuel Reprocessing', from FY 1993 until FY 2000. (author)

  8. Handbook on process and chemistry on nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Suzuki, Atsuyuki; Asakura, Toshihide; Adachi, Takeo

    2001-12-01

    'Wet-type' nuclear fuel reprocessing technology, based on PUREX technology, has wide applicability as the principal reprocessing technology of the first generation, and relating technologies, waste management for example, are highly developed, too. It is quite important to establish a database summarizing fundamental information about the process and the chemistry of 'wet-type' reprocessing, because it contributes to establish and develop fuel reprocessing process and nuclear fuel cycle treating high burn-up UO 2 fuel and spent MOX fuel, and to utilize 'wet-type' reprocessing technology much widely. This handbook summarizes the fundamental data on process and chemistry, which was collected and examined by 'Editing Committee of Handbook on Process and Chemistry of Nuclear Fuel Reprocessing', from FY 1993 until FY 2000. (author)

  9. Handbook on process and chemistry on nuclear fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsuyuki (ed.) [Tokyo Univ., Tokyo (Japan); Asakura, Toshihide; Adachi, Takeo (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2001-12-01

    'Wet-type' nuclear fuel reprocessing technology, based on PUREX technology, has wide applicability as the principal reprocessing technology of the first generation, and relating technologies, waste management for example, are highly developed, too. It is quite important to establish a database summarizing fundamental information about the process and the chemistry of 'wet-type' reprocessing, because it contributes to establish and develop fuel reprocessing process and nuclear fuel cycle treating high burn-up UO{sub 2} fuel and spent MOX fuel, and to utilize 'wet-type' reprocessing technology much widely. This handbook summarizes the fundamental data on process and chemistry, which was collected and examined by 'Editing Committee of Handbook on Process and Chemistry of Nuclear Fuel Reprocessing', from FY 1993 until FY 2000. (author)

  10. Catalytic distillation structure

    Science.gov (United States)

    Smith, L.A. Jr.

    1984-04-17

    Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

  11. Efficiency of fermionic quantum distillation

    Energy Technology Data Exchange (ETDEWEB)

    Herbrych, Jacek W. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Feiguin, Adrian E. [Northeastern Univ., Boston, MA (United States); Dagotto, Elbio R. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Heidrich-Meisner, F. [Ludwig-Maximilians-Univ. Munchen, Munchen (Germany)

    2017-09-13

    Here, we present a time-dependent density-matrix renormalization group investigation of the quantum distillation process within the Fermi-Hubbard model on a quasi-one-dimensional ladder geometry. The term distillation refers to the dynamical, spatial separation of singlons and doublons in the sudden expansion of interacting particles in an optical lattice, i.e., the release of a cloud of atoms from a trapping potential. Remarkably, quantum distillation can lead to a contraction of the doublon cloud, resulting in an increased density of the doublons in the core region compared to the initial state. As a main result, we show that this phenomenon is not limited to chains that were previously studied. Interestingly, there are additional dynamical processes on the two-leg ladder such as density oscillations and self-trapping of defects that lead to a less efficient distillation process. An investigation of the time evolution starting from product states provides an explanation for this behavior. Initial product states are also considered since in optical lattice experiments, such states are often used as the initial setup. We propose configurations that lead to a fast and efficient quantum distillation.

  12. Furnaces for the distillation of coal, etc

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, F A; Deacon, M; Brady, N P.W.

    1918-08-14

    A tunnel or other furnace for the distillation of coal of the kind provided with inverted pockets in its roof to collect diverse distillates in the manner described, characterized by one or more of the pockets being provided with a sloping roof whose gradient from the higher end downwards is in the direction of the forward travel of the fuel beneath it for the purposes described.

  13. Recent advances in fuel product and manufacturing process development

    International Nuclear Information System (INIS)

    Slember, R.J.; Doshi, P.K.

    1987-01-01

    This paper discusses advancements in commercial nuclear fuel products and manufacturing made by the Westinghouse Electric Corporation in response to the commercial nuclear fuel industry's demand for high reliability, increased plant availability and improved operating flexibility. The features and benefits of Westinghouse's most advanced fuel products--VANTAGE 5 for PWR plants and QUAD+ for BWR plants--are described, as well as 'high performance' fuel concepts now under development for delivery in the late 1980s. The paper also disusses the importance of in-process quality control throughout manufacturing towards reducing product variability and improving fuel reliability. (author)

  14. Process for humidifying a gaseous fuel stream

    International Nuclear Information System (INIS)

    Sederquist, R. A.

    1985-01-01

    A fuel gas stream for a fuel cell is humidified by a recirculating hot liquid water stream using the heat of condensation from the humidified stream as the heat to vaporize the liquid water. Humidification is accomplished by directly contacting the liquid water with the dry gas stream in a saturator to evaporate a small portion of water. The recirculating liquid water is reheated by direct contact with the humidified gas stream in a condenser, wherein water is condensed into the liquid stream. Between the steps of humidifying and condensing water from the gas stream it passes through the fuel cell and additional water, in the form of steam, is added thereto

  15. Liquid waste processing from TRIGA spent fuel storage pits

    International Nuclear Information System (INIS)

    Buchtela, Karl

    1988-01-01

    At the Atominstitute of the Austrian Universities and also at other facilities running TRIGA reactors, storage pits for spent fuel elements are installed. During the last revision procedure, the reactor group of the Atominstitute decided to refill the storage pits and to get rid of any contaminated storage pit water. The liquid radioactive waste had been pumped to polyethylene vessels for intermediate storage before decontamination and release. The activity concentration of the storage pit water at the Aominstitute after a storage period of several years was about 40 kBq/l, the total amount of liquid in the storage pits was about 0.25 m 3 . It was attempted to find a simple and inexpensive method to remove especially the radioactive Cesium from the waste solution. Different methods for decontamination like distillation, precipitation and ion exchange are discussed

  16. Distillation of shale in situ

    Energy Technology Data Exchange (ETDEWEB)

    de Ganahl, C F

    1922-07-04

    To distill buried shale or other carbon containing compounds in situ, a portion of the shale bed is rendered permeable to gases, and the temperature is raised to the point of distillation. An area in a shale bed is shattered by explosives, so that it is in a relatively finely divided form, and the tunnel is then blocked by a wall, and fuel and air are admitted through pipes until the temperature of the shale is raised to such a point that a portion of the released hydrocarbons will burn. When distillation of the shattered area takes place and the lighter products pass upwardly through uptakes to condensers and scrubbers, liquid oil passes to a tank and gas to a gasometer while heavy unvaporized products in the distillation zone collect in a drain, flow into a sump, and are drawn off through a pipe to a storage tank. In two modifications, methods of working are set out in cases where the shale lies beneath a substantially level surface.

  17. DUPIC nuclear fuel manufacturing and process technology development

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Park, J. J.; Lee, J. W.

    2000-05-01

    In this study, DUPIC fuel fabrication technology and the active fuel laboratory were developed for the study of spent nuclear fuel. A new nuclear fuel using highly radioactive nuclear materials can be studied at the active fuel laboratory. Detailed DUPIC fuel fabrication process flow was developed considering the manufacturing flow, quality control process and material accountability. The equipment layout of about twenty DUPIC equipment at IMEF M6 hot cell was established for the minimization of the contamination during DUPIC processes. The characteristics of the SIMFUEL powder and pellets was studied in terms of milling conditions. The characteristics of DUPIC powder and pellet was studied by using 1 kg of spent PWR fuel at PIEF nr.9405 hot cell. The results were used as reference process conditions for following DUPIC fuel fabrication at IMEF M6. Based on the reference fabrication process conditions, the main DUPIC pellet fabrication campaign has been started at IMEF M6 using 2 kg of spent PWR fuel since 2000 January. As of March 2000, about thirty DUPIC pellets were successfully fabricated

  18. DUPIC nuclear fuel manufacturing and process technology development

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Myung Seung; Park, J. J.; Lee, J. W. [and others

    2000-05-01

    In this study, DUPIC fuel fabrication technology and the active fuel laboratory were developed for the study of spent nuclear fuel. A new nuclear fuel using highly radioactive nuclear materials can be studied at the active fuel laboratory. Detailed DUPIC fuel fabrication process flow was developed considering the manufacturing flow, quality control process and material accountability. The equipment layout of about twenty DUPIC equipment at IMEF M6 hot cell was established for the minimization of the contamination during DUPIC processes. The characteristics of the SIMFUEL powder and pellets was studied in terms of milling conditions. The characteristics of DUPIC powder and pellet was studied by using 1 kg of spent PWR fuel at PIEF nr.9405 hot cell. The results were used as reference process conditions for following DUPIC fuel fabrication at IMEF M6. Based on the reference fabrication process conditions, the main DUPIC pellet fabrication campaign has been started at IMEF M6 using 2 kg of spent PWR fuel since 2000 January. As of March 2000, about thirty DUPIC pellets were successfully fabricated.

  19. An Automated Process for Generation of New Fuel Breakdown Mechanisms

    National Research Council Canada - National Science Library

    Violi, Angela

    2006-01-01

    .... It combines advanced computational techniques in a synergistic study of the critical processes in fuel decomposition at a level of detail that can help distinguish, correct, and quantify mechanisms for these processes...

  20. Distilling carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Garrow, J R

    1921-04-16

    To obtain an increased yield of by-products such as oils, ammonia, and gas from coal, oil shale, wood, peat, and the like by low and medium temperature processes, the requisite quantity of hot producer gas from a gas producer, is caused to travel, without ignition, through the material as it passes in a continuous manner through the retort so that the sensible heat of the producer gas is utilized to produce distillation of the carbonaceous material, the gases passing to a condenser, absorption apparatus, and an ammonia absorber respectively. In a two-stage method of treatment of materials such as peat or the like, separate supplies of producer gas are utilized for a preliminary drying operation and for the distillation of the material, the drying receptacle and the retort being joined together to render the process continuous. The gas from the drying receptacle may be mixed with the combined producer and retort gas from the retort, after the hydrocarbon oils have deen removed therefrom.

  1. Fuel processing for molten-salt reactors

    International Nuclear Information System (INIS)

    Hightower, J.R. Jr.

    1975-01-01

    Progress is reported on the development of processes for the isolation of protactinium and for the removal of fission products from molten-salt breeder reactors. The metal transfer experiment MTE-3 (for removing rare earths from MSRE fuel salt) was completed and the equipment used in that experiment was examined. The examination showed that no serious corrosion had occurred on the internal surfaces of the vessels, but that serious air oxidation occurred on the external surfaces of the vessels. Analyses of the bismuth phases indicated that the surfaces in contact with the salts were enriched in thorium and iron. Mass transfer coefficients in the mechanically agitated nondispersing contactors were measured in the Salt/Bismuth Flow-through Facility. The measured mass transfer coefficients are about 30 to 40 percent of those predicted by the preferred literature correlation, but were not as low as those seen in some of the runs in MTE-3. Additional studies using water--mercury systems to simulate molten salt-bismuth systems indicated that the model used to interpret results from previous measurements in the water--mercury system has significant deficiencies. Autoresistance heating studies were continued to develop a means of internal heat generation for frozen-wall fluorinators. Equipment was built to test a design of a side arm for the heating electrode. Results of experiments with this equipment indicate that for proper operation the wall temperature must be held much lower than that for which the equipment was designed. Studies with an electrical analog of the equipment indicate that no regions of abnormally high current density exist in the side arm. (JGB)

  2. Modeling of large-scale oxy-fuel combustion processes

    DEFF Research Database (Denmark)

    Yin, Chungen

    2012-01-01

    Quite some studies have been conducted in order to implement oxy-fuel combustion with flue gas recycle in conventional utility boilers as an effective effort of carbon capture and storage. However, combustion under oxy-fuel conditions is significantly different from conventional air-fuel firing......, among which radiative heat transfer under oxy-fuel conditions is one of the fundamental issues. This paper demonstrates the nongray-gas effects in modeling of large-scale oxy-fuel combustion processes. Oxy-fuel combustion of natural gas in a 609MW utility boiler is numerically studied, in which...... calculation of the oxy-fuel WSGGM remarkably over-predicts the radiative heat transfer to the furnace walls and under-predicts the gas temperature at the furnace exit plane, which also result in a higher incomplete combustion in the gray calculation. Moreover, the gray and non-gray calculations of the same...

  3. Modeling the Thermal Rocket Fuel Preparation Processes in the Launch Complex Fueling System

    Directory of Open Access Journals (Sweden)

    A. V. Zolin

    2015-01-01

    Full Text Available It is necessary to carry out fuel temperature preparation for space launch vehicles using hydrocarbon propellant components. A required temperature is reached with cooling or heating hydrocarbon fuel in ground facilities fuel storages. Fuel temperature preparing processes are among the most energy-intensive and lengthy processes that require the optimal technologies and regimes of cooling (heating fuel, which can be defined using the simulation of heat exchange processes for preparing the rocket fuel.The issues of research of different technologies and simulation of cooling processes of rocket fuel with liquid nitrogen are given in [1-10]. Diagrams of temperature preparation of hydrocarbon fuel, mathematical models and characteristics of cooling fuel with its direct contact with liquid nitrogen dispersed are considered, using the numerical solution of a system of heat transfer equations, in publications [3,9].Analytical models, allowing to determine the necessary flow rate and the mass of liquid nitrogen and the cooling (heating time fuel in specific conditions and requirements, are preferred for determining design and operational characteristics of the hydrocarbon fuel cooling system.A mathematical model of the temperature preparation processes is developed. Considered characteristics of these processes are based on the analytical solutions of the equations of heat transfer and allow to define operating parameters of temperature preparation of hydrocarbon fuel in the design and operation of the filling system of launch vehicles.The paper considers a technological system to fill the launch vehicles providing the temperature preparation of hydrocarbon gases at the launch site. In this system cooling the fuel in the storage tank before filling the launch vehicle is provided by hydrocarbon fuel bubbling with liquid nitrogen. Hydrocarbon fuel is heated with a pumping station, which provides fuel circulation through the heat exchanger-heater, with

  4. Single-step syngas-to-distillates (S2D) process based on biomass-derived syngas--a techno-economic analysis.

    Science.gov (United States)

    Zhu, Yunhua; Jones, Susanne B; Biddy, Mary J; Dagle, Robert A; Palo, Daniel R

    2012-08-01

    This study compared biomass gasification based syngas-to-distillate (S2D) systems using techno-economic analysis (TEA). Three cases, state of technology (SOT), goal, and conventional, were compared in terms of performance and cost. The SOT case represented the best available experimental results for a process starting with syngas using a single-step dual-catalyst reactor for distillate generation. The conventional case mirrored a conventional two-step S2D process consisting of separate syngas-to-methanol and methanol-to-gasoline (MTG) processes. The goal case assumed the same performance as the conventional, but with a single-step S2D technology. TEA results revealed that the SOT was more expensive than the conventional and goal cases. The SOT case suffers from low one-pass yield and high selectivity to light hydrocarbons, both of which drive up production cost. Sensitivity analysis indicated that light hydrocarbon yield and single pass conversion efficiency were the key factors driving the high cost for the SOT case. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Method of distillation of alum shale

    Energy Technology Data Exchange (ETDEWEB)

    Hultman, G H

    1920-02-03

    A method is given of distilling alum shale by means of preheated gases obtained from the process of distillation in which the gases are circulating within a system consisting of the retort, the condensation apparatus, and generator, each separate. It is characterized by leading the gases produced during the distillation through a condensation apparatus for separation of the condensable products, such as oil, benzene, ammonia, and sulfur, and the noncondensable gases are conveyed through one or more heated generators that have been charged with residue from the process of distillation (any superfluous amount of gas formed during the process being released). The heated gases are thereupon passed to the retort for completion of the distillation process.

  6. Co-processing of standard gas oil and biocrude oil to hydrocarbon fuels

    International Nuclear Information System (INIS)

    Agblevor, Foster A.; Mante, O.; McClung, R.; Oyama, S.T.

    2012-01-01

    The major obstacle in thermochemical biomass conversion to hydrocarbon fuels using pyrolysis has been the high oxygen content and the poor stability of the product oils, which cause them to solidify during secondary processing. We have developed a fractional catalytic pyrolysis process to convert biomass feedstocks into a product termed “biocrude oils” (stable biomass pyrolysis oils) which are distinct from unstable conventional pyrolysis oils. The biocrude oils are stable, low viscosity liquids that are storable at ambient conditions without any significant increases in viscosity; distillable at both atmospheric pressure and under vacuum without char or solid formation. About 15 wt% biocrude oils containing 20–25% oxygen were blended with 85 wt% standard gas oil and co-cracked in an Advanced Catalyst Evaluation (ACE™) unit using fluid catalytic cracking (FCC) catalysts to produce hydrocarbon fuels that contain negligible amount of oxygen. For the same conversion of 70% for both the standard gas oil and the biocrude oil/gas oil blends, the product gasoline yield was 44 wt%, light cycle oil (LCO) 17 wt%, heavy cycle oil (HCO) 13 wt%, and liquefied petroleum gas (LPG) 16 wt%. However, the coke yield for the standard gas oil was 7.06 wt% compared to 6.64–6.81 wt% for the blends. There appeared to be hydrogen transfer from the cracking of the standard gas oil to the biocrude oil which subsequently eliminated the oxygen in the fuel without external hydrogen addition. We have demonstrated for the first time that biomass pyrolysis oils can be successfully converted into hydrocarbons without hydrogenation pretreatment. -- Highlights: ► The co-processed product had less than 1% oxygen content and contained biocarbons determined by 14 C analysis. ► The co-processing did not affect the yields of gasoline, LCO, and HCO. ► First demonstration of direct conversion of pyrolysis oils into drop-in hydrocarbon fuels.

  7. Directions and prospects of using low grade process fuel to produce alumina

    Directory of Open Access Journals (Sweden)

    О. А. Дубовиков

    2016-08-01

    Full Text Available Power consumption across the globe is constantly increasing for a variety of reasons: growing population, industrialization and fast economic growth. The most widespread gaseous fuel – natural gas – has the low production cost. It is 2-3 times cheaper than liquid fuel production and 6-12 times cheaper than coal production. When natural gas is transported to distances from 1.5 to 2.5 thousand km by the pipeline, its cost with account of transportation is 1.5-2 times less than the cost of coal and the fuel storage facilities are not needed. Plants powered by natural gas have the higher efficiency as compared to the plants operating on other types of fuel. They are easier and cheaper to maintain and are relatively simple in automation, thus enhancing safety and improving the production process flow, do not require complicated fuel feeding or ash handling systems. Gas is combusted with a minimum amount of polluting emissions, which adds to better sanitary conditions and environment protection. But due to depletion of major energy resources many experts see the future of the global energy industry in opportunities associated with the use of solid energy carriers. From the environmental perspective solid fuel gasification is a preferred technology. The use of synthetic gas was first offered and then put to mass scale by English mechanical engineer William Murdoch. He discovered a possibility to use gas for illumination by destructive distillation of bituminous coal. After invention of the gas burner by Robert Bunsen, the illumination gas began to be used as a household fuel. The invention of an industrial gas generator by Siemens brothers made it possible to produce a cheaper generator gas which became a fuel for industrial furnaces. As the calorific value of generator gas produced through gasification is relatively low compared to natural gas, the Mining University studied possibilities to use different types of low grade process fuel at the

  8. Extension of a reactive distillation process design methodology: application to the hydrogen production through the Iodine-Sulfur thermochemical cycle; Generalisation d'une approche de conception de procedes de distillation reactive: application a la production d'hydrogene par le cycle thermochimique I-S

    Energy Technology Data Exchange (ETDEWEB)

    Belaissaoui, B

    2006-02-15

    Reactive distillation is a promising way to improve classical processes. This interest has been comforted by numerous successful applications involving reactive systems in liquid phase but never in vapour phase. In this context, general design tools have been developed for the analysis of reactive distillation processes whatever the reactive phase. A general model for open condensation and evaporation of vapour or liquid reactive systems in chemical equilibrium has been written and applied to extend the feasibility analysis, synthesis and design methods of the sequential design methodology of R. Thery (2002). The extended design methodology is applied to the industrial production of hydrogen through the iodine-sulphur thermochemical cycle by vapour phase reactive distillation. A column configuration is proposed with better performance formerly published configuration. (author)

  9. Optimization of process parameters in flash pyrolysis of waste tyres to liquid and gaseous fuel in a fluidized bed reactor

    International Nuclear Information System (INIS)

    Edwin Raj, R.; Robert Kennedy, Z.; Pillai, B.C.

    2013-01-01

    Highlights: ► Non-recyclable, hazards, under-utilized waste tyre was converted to useful fuel. ► Design of experiment was used to optimize the process parameters. ► Fuel compatibility for IC engines was tested by standard fuel testing procedures. ► Optimized process parameters were tested and the empirical model validated. - Abstract: Pyrolysis process offers solution to utilize huge quantity of worn out automobile tyres to produce fuel for energy needs. Shredded tyre wastes were subjected to pyrolysis at atmospheric pressure under inert gas atmosphere in a fluidized bed combustion setup. The shredded tyre particle size, the feed rate of the feed stock, and the pyrolysis temperature were varied systematically as per the designed experiment to study their influence on product yield. Maximizing the oil yield and subduing the gas and char yield is the objective to optimize the process parameters. A low pyrolysis temperature of 440 °C with low feed rate increases the residence time in the combustion reactor yielding maximum oil. The physical properties of raw pyrolysis oil, distilled oil and the evolved gases were done to find its suitability to utilize them as alternatives to the conventional fuels

  10. Solar power water distillation unit

    International Nuclear Information System (INIS)

    Hameed, Kamran; Khan, Muhammad Muzammil; Ateeq, Ijlal Shahrukh; Omair, Syed Muhammad; Ahmer, Muhammad; Wajid, Abdul

    2013-01-01

    Clean drinking water is the basic necessity for every human being, but about 1.1 billion people in the world lacked proper drinking water. There are many different types of water purification processes such as filtration, reverse osmosis, ultraviolet radiation, carbon absorption, but the most reliable processes are distillation and boiling. Water purification, such as distillation, is especially important in regions where water resources or tap water is not suitable for ingesting without boiling or chemical treatment. In design project It treats the water by combining different methods such as Filtration, Distillation and a technique called concentrated solar power (CSP). Distillation is literally the method seen in nature, whereby: the sun heats the water on the earth's surface, the water is turned into a vapor (evaporation) and rises, leaving contaminants behind, to form clouds. As the upper atmosphere drops in temperature the vapors cool and convert back to water to form water. In this project distillation is achieved by using a parabolic mirror which boils water at high temperature. Filtration is done by sand filter and carbon filter. First sand filter catches the sand particles and the carbon filter which has granules of active carbon is used to remove odor dissolved gases from water. This is the Pre-treatment of water. The filtered water is then collected in a water container at a focus of parabolic mirror where distillation process is done. Another important feature of designed project is the solar tracking of a parabolic mirror which increases the efficiency of a parabolic mirror [1],[2].

  11. PWR-to-PWR fuel cycle model using dry process

    International Nuclear Information System (INIS)

    Iqbal, M.; Jeong, Chang Joon; Rho, Gyu Hong

    2002-03-01

    PWR-to-PWR fuel cycle model has been developed to recycle the spent fuel using the dry fabrication process. Two types of fuels were considered; first fuel was based on low initial enrichment with low discharge burnup and second one was based on more initial enrichment with high discharge burnup in PWR. For recycling calculations, the HELIOS code was used, in which all of the available fission products were considered. The decay of 10 years was applied for reuse of the spent fuel. Sensitivity analysis for the fresh feed material enrichment has also been carried out. If enrichment of the mixing material is increased the saving of uranium reserves would be decreased. The uranium saving of low burned fuel increased from 4.2% to 7.4% in fifth recycling step for 5 wt% to 19.00wt% mixing material enrichment. While for high burned fuel, there was no uranium saving, which implies that higher uranium enrichment required than 5 wt%. For mixing of 15 wt% enriched fuel, the required mixing is about 21.0% and 37.0% of total fuel volume for low and high burned fuel, respectively. With multiple recycling, reductions in waste for low and high burned fuel became 80% and 60%, for first recycling, respectively. In this way, waste can be reduced more and the cost of the waste disposal reduction can provide the economic balance

  12. Method of start-up operation of a liquefaction and distillation apparatus for processing waste gases containing radioactive rare gases

    International Nuclear Information System (INIS)

    Ota, Masakazu; Tani, Akira; Hashimoto, Hiroshi; An, Bunzai; Kanazawa, Toshio.

    1975-01-01

    Object: To enable reduction of cooling time, simplification of maintenance, and release of cooling gas outside system. Structure: In starting of the liquefaction and distillation apparatus, liquid nitrogen is introduced into the tower bottom of a rectification tower from a liquid nitrogen tank through a liquid nitrogen supply line to vaporize the liquid nitrogen with help of heat entered from outside and a heater. The vaporized nitrogen gas moves up while cooling the interior of the rectification tower and is guided by a vacuum pump from the top of tower toward the purifying gas line and low temperature heat exchanger and disharging into atmosphere. When the interior of the apparatus is sufficiently cooled in a manner as described above, the liquid nitrogen supply line is closed, the liquid nitrogen is fed to a condenser, and the waste gases containing the radioactive rare gases from the raw exhaust supply line are introduced into the rectification tower for entry of normal operation. (Kamimura, M.)

  13. Continuous fractional distillation of petroleum

    Energy Technology Data Exchange (ETDEWEB)

    1921-11-05

    This invention has for its object a process of distillation, fractional, and continuous, of shale oil, tar, etc., characterized by the vapors leaving the evaporation chamber being forced, before condensation, to go over a continuous circuit. The vapors traverse first a preheater then return to the vaporization chamber in which they are passed along large surfaces and by application of the counter-current principle in contact with the liquid to be distilled. They stream through the chamber in a continuous manner (the quantity of vapor emitted in the circuit being determined in a manner to advance the distillation just to completion); the excess of vapor formed being removed from the circuit and sent to a condensing apparatus for fractionation.

  14. Refining shale-oil distillates

    Energy Technology Data Exchange (ETDEWEB)

    Altpeter, J

    1952-03-17

    A process is described for refining distillates from shale oil, brown coal, tar, and other tar products by extraction with selective solvents, such as lower alcohols, halogen-hydrins, dichlorodiethyl ether, liquid sulfur dioxide, and so forth, as well as treating with alkali solution, characterized in that the distillate is first treated with completely or almost completely recovered phenol or cresotate solution, the oil is separated from the phenolate with solvent, for example concentrated or adjusted to a determined water content of lower alcohol, furfural, halogen-hydrin, dichlorodiethyl ether, liquid sulfur dioxide, or the like, extracted, and the raffinate separated from the extract layer, if necessary after distillation or washing out of solvent, and freeing with alkali solution from residual phenol or creosol.

  15. Alteration in fuel processing at Tokai Works of Mitsubishi Nuclear Fuel Co., Ltd

    International Nuclear Information System (INIS)

    1977-01-01

    The report of the Committee on Examination of Nuclear Fuel Safety to the Atomic Energy Commission of Japan concerning the alteration is given, which is attached to the reply from the commission to the prime minister, and its safety was confirmed. The alterations are installation of the storage for transport containers containing fuel assemblies, construction of radiation control and other buildings; and improvement and installation of the facilities for chemical-processing, pellet fabrication, fuel assembling, and storage. (Mori, K.)

  16. A conceptual demonstration of freeze desalination-membrane distillation (FD-MD) hybrid desalination process utilizing liquefied natural gas (LNG) cold energy.

    Science.gov (United States)

    Wang, Peng; Chung, Tai-Shung

    2012-09-01

    The severe global water scarcity and record-high fossil oil price have greatly stimulated the research interests on new desalination technologies which can be driven by renewable energy or waste energy. In this study, a hybrid desalination process comprising freeze desalination and membrane distillation (FD-MD) processes was developed and explored in an attempt to utilize the waste cold energy released from re-gasification of liquefied natural gas (LNG). The concept of this technology was demonstrated using indirect-contact freeze desalination (ICFD) and direct-contact membrane distillation (DCMD) configurations. By optimizing the ICFD operation parameters, namely, the usage of nucleate seeds, operation duration and feed concentration, high quality drinkable water with a low salinity ∼0.144 g/L was produced in the ICFD process. At the same time, using the optimized hollow fiber module length and packing density in the DCMD process, ultra pure water with a low salinity of 0.062 g/L was attained at a condition of high energy efficiency (EE). Overall, by combining FD and MD processes and adopting the optimized operation parameters, the hybrid FD-MD system has been successfully demonstrated. A high total water recovery of 71.5% was achieved, and the water quality obtained met the standard for drinkable water. In addition, with results from specific energy calculation, it was proven that the hybrid process is an energy-saving process and utilization of LNG cold energy could greatly reduce the total energy consumption. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Process for assembling a nuclear fuel element

    International Nuclear Information System (INIS)

    Wachtendonk, H.J. von.

    1984-01-01

    Before insertion into the spacers, the fuel rocks are coated with a self-hardening layer of water-soluble polyvinyl and/or polyether polymer to prevent scratches on the cladding tubes. After insertion, the protective conting is removed by means of water. (orig.) [de

  18. State of the art of UO2 fuel fabrication processes

    International Nuclear Information System (INIS)

    Henke, M.; Klemm, U.

    1980-01-01

    Starting from the need of UO 2 for thermal power reactors in the period from 1980 to 1990 and the role of UF 6 conversion into UO 2 within the fuel cycle, the state-of-the-art of the three established industrial processes - ADU process, AUC process, IDR process - is assessed. The number of process stages and requirements on process management are discussed. In particular, the properties of the fabricated UO 2 powders, their influence on the following pellet production and on operational behaviour of the fuel elements under reactor conditions are described. Hence, an evaluation of the three essential conversion processes is derived. (author)

  19. Processing of spent nuclear fuel from light water reactors

    International Nuclear Information System (INIS)

    Sraier, V.

    1978-11-01

    A comprehensive review is given of the reprocessing of spent nuclear fuel from LWR's (covering references up to No. 18 (1977) of INIS inclusively). Particular attention is devoted to waste processing, safety, and reprocessing plants. In the addendum, the present status is shown on the example of KEWA, the projected large German fuel reprocessing plant. (author)

  20. Process for automatic filling of nuclear fuel rod cans

    International Nuclear Information System (INIS)

    Bezold, H.

    1977-01-01

    A drying section is inserted in the production line for the automation of the filling process for fuel rods with nuclear fuel pellets. The pellets are taken in a drum magazine to a drying furnace and then pushed out one after the other into the can to be filled. (TK) [de

  1. Synergistic energy conversion process using nuclear energy and fossil fuels

    International Nuclear Information System (INIS)

    Hori, Masao

    2007-01-01

    Because primary energies such as fossil fuels, nuclear energy and renewable energy are limited in quantity of supply, it is necessary to use available energies effectively for the increase of energy demand that is inevitable this century while keeping environment in good condition. For this purpose, an efficient synergistic energy conversion process using nuclear energy and fossil fuels together converted to energy carriers such are electricity, hydrogen, and synthetic fuels seems to be effective. Synergistic energy conversion processes containing nuclear energy were surveyed and effects of these processes on resource saving and the CO 2 emission reduction were discussed. (T.T.)

  2. Fundamental study on the salt distillation from the mixtures of rare earth precipitates and LiCl-KCl eutectic salt

    International Nuclear Information System (INIS)

    Yang, H. C.; Eun, H. C.; Cho, Y. Z.; Lee, H. S.; Kim, I. T.

    2008-01-01

    An electrorefining process of spent nuclear fuel generates waste salt containing some radioactive metal chlorides. The most effective method to reduce salt waste volume is to separate radioactive metals from non-radioactive salts. A promising approach is to change radioactive metal chlorides into salt-insoluble oxides by an oxygen sparging. Following this, salt distillation process is available to effectively separate the precipitated particulate metal oxides from salt. This study investigated the distillation rates of LiCl-KCl eutectic salt under different vacuums at elevated temperatures. The first part study investigated distillation rates of eutectic salt under different vacuums at high temperatures by using thermo-gravimetric furnace system. In the second part, we tested the removal of eutectic salt from the RE precipitates by using the laboratory vacuum distillation furnace system. Investigated variables were the temperature of mixture, the degree of vacuum and the time

  3. Radioactive waste management of experimental DUPIC fuel fabrication process

    International Nuclear Information System (INIS)

    Lee, H. H.; Park, J. J.; Shin, J. M.; Yang, M. S.; Hong, K. P.

    2001-01-01

    The concept of DUPIC(Direct Use of Spent PWR Fuel in CANDU Reactors) is a dry processing technology to manufacture CANDU compatible DUPIC fuel from spent PWR fuel material. Real spent PWR fuel was used in IMEF M6 hot cell to carry out DUPIC experiment. Afterwards, about 200 kg-U of spent PWR fuel is supposed to be used till 2006. This study has been conducted in some hot cells of PIEF and M6 cell of IMEF. There are various forms of nuclear material such as rod cut, powder, green pellet, sintered pellet, fabrication debris, fuel rod, fuel bundle, sample, and process waste produced from various manufacturing experiment of DUPIC fuel. After completing test, the above nuclear wastes and test equipment etc. will be classified as radioactive waste, transferred to storage facility and managed rigorously according to domestic and international laws until the final management policy is determined. It is desirable to review management options in advance for radioactive waste generated from manufacturing experiment of DUPIC nuclear fuel as well as residual nuclear material and dismantled equipment. This paper includes basic plan for DUPIC radwaste, arising source and estimated amount of radioactive waste, waste classification and packing, transport cask, transport procedures

  4. Distilling hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, J E

    1923-03-19

    In distilling mineral oils such as petroleum, shale oil, distillates and topped or residual oils, particularly to obtain lubricating oils, the distillation is carried out under reduced pressures below an absolute pressure of 25 mm. of mercury and preferably below about 5 mm. of mercury, and the distillate is collected in fractions determined by the physical characteristics, such as viscosity, flash point, fire point, etc. Superheated steam may be passed through the liquid during distillation. A horizontal cylindrical still provided with cross braces and peripheral ribs interrupted at the base is connected through a condensing coil immersed in a steam chest and a baffled chamber with distillate receiver and is evacuated by a pump. Steam from a boiler and superheater is injected into the still through a perforated pipe. Steam and light oil vapors passing from the chamber are condensed in a coil.

  5. Method for pre-processing LWR spent fuel

    International Nuclear Information System (INIS)

    Otsuka, Katsuyuki; Ebihara, Hikoe.

    1986-01-01

    Purpose: To facilitate the decladding of spent fuel, cladding tube processing, and waste gas recovery, and to enable the efficient execution of main re-processing process thereafter. Constitution: Spent fuel assemblies are sent to a cutting process where they are cut into chips of easy-to-process size. The chips, in a thermal decladding process, undergo a thermal cycle processing in air with the processing temperatures increased and decreased within the range of from 700 deg C to 1200 deg C, oxidizing zircaloy comprising the cladding tubes into zirconia. The oxidized cladding tubes have a number of fine cracks and become very brittle and easy to loosen off from fuel pellets when even a slight mechanical force is applied thereto, thus changing into a form of powder. Processed products are then separated into zirconia sand and fuel pellets by a gravitational selection method or by a sifting method, the zirconia sand being sent to a waste processing process and the fuel pellets to a melting-refining process. (Yoshino, Y.)

  6. Safety analysis of IFR fuel processing in the Argonne National Laboratory Fuel Cycle Facility

    International Nuclear Information System (INIS)

    Charak, I; Pedersen, D.R.; Forrester, R.J.; Phipps, R.D.

    1993-01-01

    The Integral Fast Reactor (IFR) concept developed by Argonne National Laboratory (ANL) includes on-site processing and recycling of discharged core and blanket fuel materials. The process is being demonstrated in the Fuel Cycle Facility (FCF) at ANL's Idaho site. This paper describes the safety analyses that were performed in support of the FCF program; the resulting safety analysis report was the vehicle used to secure authorization to operate the facility and carry out the program, which is now under way. This work also provided some insights into safety-related issues of a commercial IFR fuel processing facility. These are also discussed

  7. A hybrid liquid-phase precipitation (LPP) process in conjunction with membrane distillation (MD) for the treatment of the INEEL sodium-bearing liquid waste.

    Science.gov (United States)

    Bader, M S H

    2005-05-20

    A novel hybrid system combining liquid-phase precipitation (LPP) and membrane distillation (MD) is integrated for the treatment of the INEEL sodium-bearing liquid waste. The integrated system provides a "full separation" approach that consists of three main processing stages. The first stage is focused on the separation and recovery of nitric acid from the bulk of the waste stream using vacuum membrane distillation (VMD). In the second stage, polyvalent cations (mainly TRU elements and their fission products except cesium along with aluminum and other toxic metals) are separated from the bulk of monovalent anions and cations (dominantly sodium nitrate) by a front-end LPP. In the third stage, MD is used first to concentrate sodium nitrate to near saturation followed by a rear-end LPP to precipitate and separate sodium nitrate along with the remaining minor species from the bulk of the aqueous phase. The LPP-MD hybrid system uses a small amount of an additive and energy to carry out the treatment, addresses multiple critical species, extracts an economic value from some of waste species, generates minimal waste with suitable disposal paths, and offers rapid deployment. As such, the LPP-MD could be a valuable tool for multiple needs across the DOE complex where no effective or economic alternatives are available.

  8. Distillation of bituminous shale

    Energy Technology Data Exchange (ETDEWEB)

    Seguin, M

    1875-02-16

    The retort with its accessories constitutes a distillation apparatus for shale composed of a cylindrical, vertical, fixed, tubular, and of ring form metal retort. Also it is comprised of a special hearth of large dimensions in the form of a circular pocket receiving from the retort as heating agent the distilled shale and emitting by radiation the heat that makes the distillation apparatus for the shale act.

  9. Effects of Fuel Quantity on Soot Formation Process for Biomass-Based Renewable Diesel Fuel Combustion

    KAUST Repository

    Jing, Wei

    2016-12-01

    Soot formation process was investigated for biomass-based renewable diesel fuel, such as biomass to liquid (BTL), and conventional diesel combustion under varied fuel quantities injected into a constant volume combustion chamber. Soot measurement was implemented by two-color pyrometry under quiescent type diesel engine conditions (1000 K and 21% O2 concentration). Different fuel quantities, which correspond to different injection widths from 0.5 ms to 2 ms under constant injection pressure (1000 bar), were used to simulate different loads in engines. For a given fuel, soot temperature and KL factor show a different trend at initial stage for different fuel quantities, where a higher soot temperature can be found in a small fuel quantity case but a higher KL factor is observed in a large fuel quantity case generally. Another difference occurs at the end of combustion due to the termination of fuel injection. Additionally, BTL flame has a lower soot temperature, especially under a larger fuel quantity (2 ms injection width). Meanwhile, average soot level is lower for BTL flame, especially under a lower fuel quantity (0.5 ms injection width). BTL shows an overall low sooting behavior with low soot temperature compared to diesel, however, trade-off between soot level and soot temperature needs to be carefully selected when different loads are used.

  10. Gas turbine with two circuits and intermediate fuel conversion process

    International Nuclear Information System (INIS)

    Bachl, H.

    1978-01-01

    The combination of a fuel conversion process with a thermal process saves coolant and subsequent separation plant, in order to achieve the greatest possible use of the mechanical or electrical energy. The waste heat of a thermal circuit is taken to an endothermal chemical fuel conversion process arranged before a second circuit. The heat remaining after removal of the heat required for the chemical process is taken to a second thermal circuit. The reaction products of the chemical process which condense out during expansion in the second thermal process are selectively separated from the remaining gas mixture in the individual turbine stages. (HGOE) [de

  11. The Use of Fuel Gas as Stripping Medium in Atmospheric Distillation of Crude Oil L’utilisation de gaz combustible comme moyen d’extraction des fractions légères en distillation atmosphérique du pétrole brut

    Directory of Open Access Journals (Sweden)

    Plellis-Tsaltakis C.

    2011-09-01

    Full Text Available Stripping of petroleum fractions aims to remove the light ends that spoil some of their properties, such as the flash point. Stripping usually employs steam for that purpose. Except for steam, other substances can perform the same function, among them light hydrocarbons. In this article, we investigate the use of refinery fuel gas as stripping medium for a crude oil atmospheric distillation unit. L’extraction des fractions légères du pétrole vise à enlever les produits nuisibles à certaines propriétés comme le point d’éclair. Cette opération utilise habituellement de la vapeur d’eau. D’autres substances peuvent remplir la même fonction, comme les hydrocarbures légers. Dans cet article, on étudie l’utilisation du gaz combustible de la raffinerie comme moyen d’extraction des fractions légères dans une unité de distillation atmosphérique.

  12. Regenerative adsorption distillation system

    KAUST Repository

    Ng, Kim Choon

    2013-12-26

    There is provided a regenerative adsorption distillation system comprising a train of distillation effects in fluid communication with each other. The train of distillation effects comprises at least one intermediate effect between the first and last distillation effects of the train, each effect comprising a vessel and a condensing tube for flow of a fluid therein. The system further comprises a pair of adsorption-desorption beds in vapour communication with the last effect and at least one intermediate effect, wherein the beds contain an adsorbent that adsorbs vapour from the last effect and transmits desorbed vapour into at least one of the intermediate effect.

  13. Regenerative adsorption distillation system

    KAUST Repository

    Ng, Kim Choon; Thu, Kyaw; Amy, Gary; Chunggaze, Mohammed; Al-Ghasham, Tawfiq

    2013-01-01

    There is provided a regenerative adsorption distillation system comprising a train of distillation effects in fluid communication with each other. The train of distillation effects comprises at least one intermediate effect between the first and last distillation effects of the train, each effect comprising a vessel and a condensing tube for flow of a fluid therein. The system further comprises a pair of adsorption-desorption beds in vapour communication with the last effect and at least one intermediate effect, wherein the beds contain an adsorbent that adsorbs vapour from the last effect and transmits desorbed vapour into at least one of the intermediate effect.

  14. Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels

    Science.gov (United States)

    Lilga, Michael A.; Hallen, Richard T.; Albrecht, Karl O.; Cooper, Alan R.; Frye, John G.; Ramasamy, Karthikeyan Kallupalayam

    2018-04-03

    Systems, processes, and catalysts are disclosed for obtaining fuel and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.

  15. Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels

    Science.gov (United States)

    Lilga, Michael A.; Hallen, Richard T.; Albrecht, Karl O.; Cooper, Alan R.; Frye, John G.; Ramasamy, Karthikeyan Kallupalayam

    2017-09-26

    Systems, processes, and catalysts are disclosed for obtaining fuels and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.

  16. Sol-gel process for thermal reactor fuel fabrication

    International Nuclear Information System (INIS)

    Mukerjee, S.K.

    2008-01-01

    Full text: Sol-gel processes have revolutionized conventional ceramic technology by providing extremely fine and uniform powders for the fabrication of ceramics. The use of this technology for nuclear fuel fabrication has also been explored in many countries. Unlike the conventional sol-gel process, sol-gel process for nuclear fuels tries to eliminate the preparation of powders in view of the toxic nature of the powders particularly those of plutonium and 233 U. The elimination of powder handling thus makes this process more readily amenable for use in glove boxes or for remote handling. In this process, the first step is the preparation of microspheres of the fuel material from a solution which is then followed by vibro-compaction of these microspheres of different sizes to obtain the required smear density of fuel inside a pin. The maximum achievable packing density of 92 % makes it suitable for fast reactors only. With a view to extend the applicability of sol-gel process for thermal reactor fuel fabrication the concept of converting the gel microspheres derived from sol-gel process, to the pellets, has been under investigation for several years. The unique feature of this process is that it combines the advantages of sol-gel process for the preparation of fuel oxide gel microspheres of reproducible quality with proven irradiation behavior of the pellet fuel. One of the important pre-requisite for the success of this process is the preparation of soft oxide gel microspheres suitable for conversion to dense pellets free from berry structure. Studies on the internal gelation process, one of the many variants of sol-gel process, for obtaining soft oxide gel microspheres suitable for gel pelletisation is now under investigation at BARC. Some of the recent findings related to Sol-Gel Microsphere Pelletisation (SGMP) in urania-plutonia and thoria-urania systems will be presented

  17. Innovative Design of Solar-Powered Desalination (SPD System using Vacuum-Multi Effect Membrane Distillation (V-MEMD Process

    Directory of Open Access Journals (Sweden)

    Chafidz Achmad

    2018-01-01

    Full Text Available This research focused on the development of an innovative design of solar-powered desalination (SPD system which was expected to solve the water and energy problem simultaneously. We have developed a portable and hybrid solar-powered desalination (SPD system for producing potable water from saline water. It is a self-contained and integrated system which combines solar-thermal collector and solar-photovoltaic for its operation, and thus the system can operate to produce water by only using solar energy. Therefore, the system is highly suitable to be implemented in remote arid and coastal areas without infrastructures or connection to the grid (water and power, but blessed with abundant solar irradiation, like in Saudi Arabia. A Memsys Vacuum Multi-Effect Membrane Distillation (V-MEMD unit was used as the core of the SPD system. A heat pump was also integrated into the SPD system for energy recovery and to improve the performance of the system. The system could be considered as sustainable and “green” desalination technology, which will be very useful for the Kingdom of Saudi Arabia. To study the performance of the system, small-scale tests have been carried out at the Engineering College - King Saud University, Saudi Arabia. Based on the experimental results, the system has run successfully by only utilizing solar energy.

  18. Process, cost modeling and simulations for integrated project development of biomass for fuel and protein

    International Nuclear Information System (INIS)

    Pannir Selvam, P.V.; Wolff, D.M.B.; Souza Melo, H.N.

    1998-01-01

    The construction of the models for biomass project development are described. These models, first constructed using QPRO electronic spread sheet for Windows, are now being developed with the aid of visual and object oriented program as tools using DELPHI V.1 for windows and process simulator SUPERPRO, V.2.7 Intelligent Inc. These models render the process development problems with economic objectives to be solved very rapidly. The preliminary analysis of cost and investments of biomass utilisation projects which are included for this study are: steam, ammonia, carbon dioxide and alkali pretreatment process, methane gas production using anaerobic digestion process, aerobic composting, ethanol fermentation and distillation, effluent treatments using high rate algae production as well as cogeneration of energy for drying. The main project under developments are the biomass valuation projects with the elephant (Napier) grass, sugar cane bagasse and microalgae, using models for mass balance, equipment and production cost. The sensibility analyses are carried out to account for stochastic variation of the process yield, production volume, price variations, using Monte Carlo method. These models allow the identification of economical and scale up problems of the technology. The results obtained with few preliminary project development with few case studies are reported for integrated project development for fuel and protein using process and cost simulation models. (author)

  19. Galvanic cell for processing of used nuclear fuel

    Science.gov (United States)

    Garcia-Diaz, Brenda L.; Martinez-Rodriguez, Michael J.; Gray, Joshua R.; Olson, Luke C.

    2017-02-07

    A galvanic cell and methods of using the galvanic cell is described for the recovery of uranium from used nuclear fuel according to an electrofluorination process. The galvanic cell requires no input energy and can utilize relatively benign gaseous fluorinating agents. Uranium can be recovered from used nuclear fuel in the form of gaseous uranium compound such as uranium hexafluoride, which can then be converted to metallic uranium or UO.sub.2 and processed according to known methodology to form a useful product, e.g., fuel pellets for use in a commercial energy production system.

  20. Electrochemical fluorination for processing of used nuclear fuel

    Science.gov (United States)

    Garcia-Diaz, Brenda L.; Martinez-Rodriguez, Michael J.; Gray, Joshua R.; Olson, Luke C.

    2016-07-05

    A galvanic cell and methods of using the galvanic cell is described for the recovery of uranium from used nuclear fuel according to an electrofluorination process. The galvanic cell requires no input energy and can utilize relatively benign gaseous fluorinating agents. Uranium can be recovered from used nuclear fuel in the form of gaseous uranium compound such as uranium hexafluoride, which can then be converted to metallic uranium or UO.sub.2 and processed according to known methodology to form a useful product, e.g., fuel pellets for use in a commercial energy production system.

  1. Reactive Distillation for Esterification of Bio-based Organic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.

    2008-09-23

    The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential

  2. Bugs and coal: processing fuels with biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, M

    1987-06-01

    Bioprocessing of coal is developing along several fronts, each of potential significance to utilities. Researchers have found a fungus, polyporous versicolor, which can liquefy certain kinds of coal and scientists have genetically engineered bacteria that remove sulfur and ash-forming metal impurities from coal. Research programs are being undertaken to find organisms that will convert lignite into gaseous methane to produce gaseous fuel more economically than the current coal gasification methods. Researchers looking for ways to remove sulfur from coal before it is burned are evaluating the use of a bacterium called thiobacillus ferroxidans to enhance the physical removal of pyrite. 2 refs.

  3. Pressurized water reactor fuel performance problems connected with fuel cladding corrosion processes

    International Nuclear Information System (INIS)

    Dobrevski, I.; Zaharieva, N.

    2008-01-01

    Generally, Pressurized Water Reactor (WWER, PWR) Fuel Element Performance is connected with fuel cladding corrosion and crud deposition processes. By transient to extended fuel cycles in nuclear power reactors, aiming to achieve higher burnup and better fuel utilization, the role of these processes increases significantly. This evolution modifies the chemical and electrochemical conditions in the reactor primary system, including change of fuel claddings' environment. The higher duty cores are always attended with increased boiling (sub-cooled nucleate boiling) mainly on the feed fuel assemblies. This boiling process on fuel cladding surfaces can cause different consequences on fuel element cladding's environment characteristics. In the case of boiling at the cladding surfaces without or with some cover of corrosion product deposition, the behavior of gases dissolved in water phase is strongly influenced by the vapor generation. The increase of vapor partial pressure will reduce the partial pressures of dissolved gases and will cause their stripping out. By these circumstances the concentrations of dissolved gases in cladding wall water layer can dramatically decrease, including also the case by which all dissolved gases to be stripped out. On the other hand it is known that the hydrogen is added to primary coolant in order to avoid the production of oxidants by radiolysis of water. It is clear that if boiling strips out dissolved hydrogen, the creation of oxidizing conditions at the cladding surfaces will be favored. In this case the local production of oxidants will be a result from local processes of water radiolysis, by which not only both oxygen (O 2 ) and hydrogen (H 2 ) but also hydrogen peroxide (H 2 O 2 ) will be produced. While these hydrogen and oxygen will be stripped out preferentially by boiling, the bigger part of hydrogen peroxide will remain in wall water phase and will act as the most important factor for creation of oxidizing conditions in fuel

  4. IMPACT OF THE FERMENTATION PROCESS WITH IMMOBILIZED YEAST CELLS ON THE AROMA PROFILE AND SENSORY QUALITY OF DISTILLATES PRODUCED FROM TWO FIG (Ficus carica L. CULTIVARS

    Directory of Open Access Journals (Sweden)

    Borislav Miličević

    2017-01-01

    Full Text Available The aim of this research was to investigate the influence of immobilized cell fermentation on aroma and sensory characteristics of distillates produced from two fig varieties commonly grown in Croatia (Petrovača bijela and Petrovača crna. Distillate samples were produced both by classical and immobilized yeast fermentation technology. Aroma profile was determined using GC/FID and sensory analysis was conducted according to German DLG model. Results showed that immobilized cell technique gives distillates with higher ethanol and lower ester contents, but of higher sensory quality. It is a promising technique for production of high quality fruit distillates.

  5. Biomass conversion to hydrocarbon fuels using the MixAlco™ process at a pilot-plant scale

    International Nuclear Information System (INIS)

    Taco Vasquez, Sebastian; Dunkleman, John; Chaudhuri, Swades K.; Bond, Austin; Holtzapple, Mark T.

    2014-01-01

    Texas A and M University has built a MixAlco™ pilot plant that converts biomass to hydrocarbons (i.e., jet fuel, gasoline) using the following steps: fermentation, descumming, dewatering, thermal ketonization, distillation, hydrogenation, and oligomerization. This study describes the pilot plant and reports results from an 11-month production campaign. The focus was to produce sufficient jet fuel to be tested by the U.S. military. Because the scale was relatively small, energy-saving features were not included in the pilot plant. Further, the equipment was operated in a manner to maximize productivity even if yields were low. During the production campaign, a total of 6.015 Mg of shredded paper and 120 kg of chicken manure (dry basis) were fermented to produce 126.5 m 3 of fermentation broth with an average concentration of 12.5 kg m −3 . A total of 1582 kg of carboxylate salts were converted to 587 L of raw ketones, which were distilled and hydrogenated to 470 L of mixed alcohols ranging from C3 to C12. These alcohols, plus 300 L of alcohols made by an industrial partner (Terrabon, Inc.) were shipped to an independent contractor (General Electric) and transformed to jet fuel (∼100 L) and gasoline (∼100 L) byproduct. - Highlights: • We produce hydrocarbons from paper and chicken manure in a pilot-scale production using the MixAlco™ process. • About 100 L of jet fuel were produced for military testing. • High production rates and good product quality were preferred rather than high yields or energy efficiency. • The MixAlco™ process converted successfully lignocellulosic biomass to hydrocarbons and viable for commercial-scale production

  6. Advanced fuel cycle on the basis of pyroelectrochemical process for irradiated fuel reprocessing and vibropacking technology

    International Nuclear Information System (INIS)

    Mayorshin, A.A.; Skiba, O.V.; Tsykanov, V.A.; Golovanov, V.N.; Bychkov, A.V.; Kisly, V.A.; Bobrov, D.A.

    2000-01-01

    For advanced nuclear fuel cycle in SSC RIAR there is developed the pyroelectrochemical process to reprocess irradiated fuel and produce granulated oxide fuel UO 2 , PuO 2 or (U,Pu)O 2 from chloride melts. The basic technological stage is the extraction of oxides as a crystal product with the methods either of the electrolysis (UO 2 and UO 2 -PuO 2 ) or of the precipitating crystalIization (PuO 2 ). After treating the granulated fuel is ready for direct use to manufacture vibropacking fuel pins. Electrochemical model for (U,Pu)O 2 coprecipitation is described. There are new processes being developed: electroprecipitation of mixed oxides - (U,Np)O 2 , (U,Pu,Np)O 2 , (U,Am)O 2 and (U,Pu,Am)O 2 . Pyroelectrochemical production of mixed actinide oxides is used both for reprocessing spent fuel and for producing actinide fuel. Both the efficiency of pyroelectrochemical methods application for reprocessing nuclear fuel and of vibropac technology for plutonium recovery are estimated. (author)

  7. Research on plant of metal fuel fabrication using casting process

    International Nuclear Information System (INIS)

    Senda, Yasuhide; Mori, Yukihide

    2003-12-01

    This document presents the plant concept of metal fuel fabrication system (38tHM/y) using casting process in electrolytic recycle, which based on recent studies of its equipment design and quality control system. And we estimate the cost of its construction and operation, including costs of maintenance, consumed hardware and management of waste. The content of this work is as follows. (1) Designing of fuel fabrication equipment: We make material flow diagrams of the fuel fabrication plant and rough designs of the injection casting furnace, demolder and inspection equipment. (2) Designing of resolution system of liquid waste, which comes from analytical process facility. Increased analytical items, we rearrange analytical process facility, estimate its chemicals and amount of waste. (3) Arrangement of equipments: We made a arrangement diagram of the metal fuel fabrication equipments in cells. (4) Estimation of cost data: We estimated cost to construct the facility and to operate it. (author)

  8. Production process and quality control for the HTTR fuel

    International Nuclear Information System (INIS)

    Yoshimuta, S.; Suzuki, N.; Kaneko, M.; Fukuda, K.

    1991-01-01

    Development of the production and inspection technology for High Temperature Engineering Test Reactor (HTTR) fuel has been carried out by cooperative work between Japan Atomic Energy Research Institute (JAERI) and Nuclear Fuel Industries, Ltd (NFI). The performance and the quality level of the developed fuel are well established to meet the design requirements of the HTTR. For the commercial scale production of the fuel, statistical quality control and quality assurance must be carefully considered in order to assure the safety of the HTTR. It is also important to produce the fuel under well controlled process condition. To meet these requirements in the production of the HTTR fuel, a new production process and quality control system is to be introduced in the new facilities. The main feature of the system is a computer integrated control system. Process control data at each production stage of products and semi-products are all gathered by terminal computers and processed by a host computer. The processed information is effectively used for the production, quality and accountancy control. With the aid of this system, all the products will be easily traceable from starting materials to final stages and the statistical evaluation of the quality of products becomes more reliable. (author). 8 figs

  9. IFR fuel cycle process equipment design environment and objectives

    International Nuclear Information System (INIS)

    Rigg, R.H.

    1993-01-01

    Argonne National laboratory (ANL) is refurbishing the hot cell facility originally constructed with the EBR-II reactor. When refurbishment is complete, the facility win demonstrate the complete fuel cycle for current generation high burnup metallic fuel elements. These are sodium bonded, stainless steel clad fuel pins of U-Zr or U-Pu-Zr composition typical of the fuel type proposed for a future Integral Fast Reactor (IFR) design. To the extent possible, the process equipment is being built at full commercial scale, and the facility is being modified to incorporate current DOE facility design requirements and modem remote maintenance principles. The current regulatory and safety environment has affected the design of the fuel fabrication equipment, most of which will be described in greater detail in subsequent papers in this session

  10. Model studying the processes arising during fuel element overheating

    International Nuclear Information System (INIS)

    Usynin, G.B.; Anoshkin, Yu.I.; Vlasichev, G.N.; Galitskikh, Yu.N.; Semenychev, M.A.

    1986-01-01

    A calculational technique for studying heating and melting of fuel elements in the BN type reactors during an accident with heat release failure and a simulator with central rod heater intended for out-of-pile experiments is developed. The time rangeof the characteristic melting steps for the most thermally stressed fuel element at the reactor nominal power is calculated. The experimental study of the fuel element melting using a simulator with a tungsten heater has proved that the technique for the simultor and fuel can melting, respectively, is correct. The developed technique is used for determining the geometrical values and operational conditions for experiments with simulators, when quantitative and qualitative characteristics of the process under study are rather close to those natural for fuel elements

  11. Nuclear reactor fuel cycle technology with pyroelectrochemical processes

    International Nuclear Information System (INIS)

    Skiba, O.V.; Maershin, A.A.; Bychkov, A.V.; Zhdanov, A.N.; Kislyj, V.A.; Vavilov, S.K.; Babikov, L.G.

    1999-01-01

    A group of dry technologies and processes of vibro-packing granulated fuel in combination with unique properties of vibro-packed FEs make it possible to implement a new comprehensive approach to the fuel cycle with plutonium fuel. Testing of a big number of FEs with vibro-packed U-Pu oxide fuel in the BOR-60 reactor, successful testing of experimental FSAs in the BN-600 rector, reliable operation of the experimental and research complex facilities allow to make the conclusion about a real possibility to develop a safe, economically beneficial U-Pu fuel cycle based on the technologies enumerated above and to use both reactor-grade and weapon-grade plutonium in nuclear reactors with a reliable control and accounting system [ru

  12. Treating thin stillage or condensed distillers solubles with phytase for production of low phytate co-products

    Science.gov (United States)

    Fuel ethanol production from grains is mainly based on dry grind processing, during which phytate is concentrated about three fold in distillers dried grains with solubles (DDGS), a major co-product. For reducing phyate in DDGS, two industrial phytase preparations (Natuphos and Ronozyme) were used ...

  13. Development of Voloxidation Process for Treatment of LWR Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Jung, I. H.; Shin, J. M. (and others)

    2007-08-15

    The objective of the project is to develop a process which provides a means to recover fuel from the cladding, and to simplify downstream processes by recovering volatile fission products. This work focuses on the process development in three areas ; the measurement and assessment of the release behavior for the volatile and semi-volatile fission products from the voloxidation process, the assessment of techniques to trap and recover gaseous fission products, and the development of process cycles to optimize fuel cladding separation and fuel particle size. High temperature adsorption method of KAERI was adopted in the co-design of OTS for hot experiment in INL. KAERI supplied 6 sets of filter for hot experiment. Three hot experiment in INL hot cell from the 25th of November for two weeks with attaching 4 KAERI staffs had been carried out. The results were promising. For example, trapping efficiency of Cs was 95% and that of I was 99%, etc.

  14. Analysis of the ATR fuel element swaging process

    International Nuclear Information System (INIS)

    Richins, W.D.; Miller, G.K.

    1995-12-01

    This report documents a detailed evaluation of the swaging process used to connect fuel plates to side plates in Advanced Test Reactor (ATR) fuel elements. The swaging is a mechanical process that begins with fitting a fuel plate into grooves in the side plates. Once a fuel plate is positioned, a lip on each of two side plate grooves is pressed into the fuel plate using swaging wheels to form the joints. Each connection must have a specified strength (measured in terms, of a pullout force capacity) to assure that these joints do not fail during reactor operation. The purpose of this study is to analyze the swaging process and associated procedural controls, and to provide recommendations to assure that the manufacturing process produces swaged connections that meet the minimum strength requirement. The current fuel element manufacturer, Babcock and Wilcox (B ampersand W) of Lynchburg, Virginia, follows established procedures that include quality inspections and process controls in swaging these connections. The procedures have been approved by Lockheed Martin Idaho Technologies and are designed to assure repeatability of the process and structural integrity of each joint. Prior to July 1994, ATR fuel elements were placed in the Hydraulic Test Facility (HTF) at the Idaho National Engineering Laboratory (AGNAIL), Test Reactor Area (TRA) for application of Boehmite (an aluminum oxide) film and for checking structural integrity before placement of the elements into the ATR. The results presented in this report demonstrate that the pullout strength of the swaged connections is assured by the current manufacturing process (with several recommended enhancements) without the need for- testing each element in the HTF

  15. Process for the fabrication of a nuclear fuel

    International Nuclear Information System (INIS)

    Hirose, Yasuo.

    1970-01-01

    Herein disclosed is a process for fabricating a nuclear fuel incorporating either uranium or plutonium. A pellet-like substrate consisting of a packed powder ceramic fuel such as uranium or plutonium is prepared with the horizontal surface of the body provided with a masking. Next, after impregnating the substrate voids with a solution consisting of a fissile material or mixture of fissile material and poison, the solvent is removed by a chemical deposition process which causes the impregnated material to migrate through capillary action toward the vicinity of the fuel body surface. Sintering and pyrolysis of the deposited material and masking are subsequently carried out to yield a fuel body having adjacent to its surface an intensely concentrated layer of either fissile material or a mixture of fissile material and poison. (Owens, K.J.)

  16. On board fuel processing for using in electric vehicles

    International Nuclear Information System (INIS)

    Paez, Daniel E.; Marquez, Marco A.

    1999-01-01

    The increase in vehicle population, the emission effects upon the environment, and the growing concern of industrialized nations to reduce oil dependency, are the arguments for the new developments that may change the automobile revolution within the next decades. However, the electricity to move the future vehicles must come from the processing of liquid fuels on board. Liquid fuels such as gasoline have the advantage of having good on-site system for distribution and supply directly to the vehicle and will compete for staying as the energy source of the future. What are the opportunities in R and D and how to take advantage of them are analyzed in this document. Liquid fuel processing technologies and fuel options are also described by PDVSA-INTEVEP

  17. Methods of producing transportation fuel

    Science.gov (United States)

    Nair, Vijay [Katy, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX; Cherrillo, Ralph Anthony [Houston, TX; Bauldreay, Joanna M [Chester, GB

    2011-12-27

    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing transportation fuel is described herein. The method for producing transportation fuel may include providing formation fluid having a boiling range distribution between -5.degree. C. and 350.degree. C. from a subsurface in situ heat treatment process to a subsurface treatment facility. A liquid stream may be separated from the formation fluid. The separated liquid stream may be hydrotreated and then distilled to produce a distilled stream having a boiling range distribution between 150.degree. C. and 350.degree. C. The distilled liquid stream may be combined with one or more additives to produce transportation fuel.

  18. Capabilities for processing shipping casks at spent fuel storage facilities

    International Nuclear Information System (INIS)

    Baker, W.H.; Arnett, L.M.

    1978-01-01

    Spent fuel is received at a storage facility in heavily shielded casks transported either by rail or truck. The casks are inspected, cooled, emptied, decontaminated, and reshipped. The spent fuel is transferred to storage. The number of locations or space inside the building provided to perform each function in cask processing will determine the rate at which the facility can process shipping casks and transfer spent fuel to storage. Because of the high cost of construction of licensed spent fuel handling and storage facilities and the difficulty in retrofitting, it is desirable to correctly specify the space required. In this paper, the size of the cask handling facilities is specified as a function of rate at which spent fuel is received for storage. The minimum number of handling locations to achieve a given throughput of shipping casks has been determined by computer simulation of the process. The simulation program uses a Monte Carlo technique in which a large number of casks are received at a facility with a fixed number of handling locations in each process area. As a cask enters a handling location, the time to process the cask at that location is selected at random from the distribution of process time. Shipping cask handling times are based on experience at the General Electric Storage Facility, Morris, Illinois. Shipping cask capacity is based on the most recent survey available of the expected capability of reactors to handle existing rail or truck casks

  19. Treatment of waste salts by oxygen sparging and vacuum distillation

    International Nuclear Information System (INIS)

    Cho, Y.J.; Yang, H.C.; Kim, E.H.; Kin, I.T.; Eun, H.C.

    2007-01-01

    Full text of publication follows. During the electrorefining process of the oxide spent fuel from LWR, amounts of waste salts containing some metal chloride species such as rare earths and actinide chlorides are generated, where the reuse of the waste salts is very important from the standpoint of an economical as well as an environmental aspect. In order to reuse the waste salts, a salt vacuum distillation method can be used. For the best separation by a vacuum distillation, the metal chloride species involved in the waste salts must be converted into their oxide(or oxychloride) forms due to the their low volatility compared to that of LiCl-KCl. In this study, an oxygen sparging process was adopted for the oxidation (or precipitation) of rare earth chlorides. The effects of oxygen flow rate and molten salt temperature on the conversion of rare earth chlorides to the precipitate phase (i.e. oxide or oxychloride) were investigated. In addition, distillation characteristics of LiCl-KCl molten salt with system pressure and temperature were studied. (authors)

  20. Method of distillation of bituminous material

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, E G.T.

    1919-11-12

    A method is described of dry distillation of bituminous materials by leading warm combustible gases, mixed or not mixed with steam, through the distillation chamber in direct contact with the materials, during which process the distillation chamber may be heated by other means. It is characterized by the mixture of distillation products (formed by the vapors produced by heating the raw materials) and the gas (circulating gas) used for heating in the process, being led through coolers or similar contrivances, in order to separate through condensation the greater part of the content of the products or materials condensable at ordinary temperatures, and also to recover as much as possible of the highly volatile oils in the gas. Thereafter the gas is split, one part is, without further cleaning, and led through the distillation chamber, after this gas has been reheated in suitable apparatus. The other part (surplus gas), which in volume corresponds approximately to the new-formed distillation gases, is treated according to known methods for the extraction of the remaining products of the distillation, such as volatile oils, ammonia, methyl alcohol, sulfuretted hydrogen, and others. The patent contains three other claims.

  1. Microbubble Distillation for Ethanol-Water Separation

    Directory of Open Access Journals (Sweden)

    Atheer Al-yaqoobi

    2016-01-01

    Full Text Available In the current study, a novel approach for separating ethanol-water mixture by microbubble distillation technology was investigated. Traditional distillation processes require large amounts of energy to raise the liquid to its boiling point to effect removal of volatile components. The concept of microbubble distillation by comparison is to heat the gas phase rather than the liquid phase to achieve separation. The removal of ethanol from the thermally sensitive fermentation broths was taken as a case of study. Consequently the results were then compared with those which could be obtained under equilibrium conditions expected in an “ideal” distillation unit. Microbubble distillation has achieved vapour compositions higher than that which could be obtained under traditional equilibrium conditions. The separation was achieved at liquid temperature significantly less than the boiling point of the mixture. In addition, it was observed that the separation efficiency of the microbubble distillation could be increased by raising the injected air temperature, while the temperature of the liquid mixture increased only moderately. The separation efficiency of microbubble distillation was compared with that of pervaporation for the recovery of bioethanol from the thermally sensitive fermentation broths. The technology could be controlled to give high separation and energy efficiency. This could contribute to improving commercial viability of biofuel production and other coproducts of biorefinery processing.

  2. Technical and economic evaluation of processes for krypton-85 recovery from power fuel-reprocessing plant off-gas

    International Nuclear Information System (INIS)

    Waggoner, R.C.

    1982-08-01

    A technical and economical analysis has been made of methods for collecting and concentrating krypton from the off-gas from a typical nuclear fuel reprocessing plant. The methods considered were cryogenic distillation, fluorocarbon absorption, mordenite adsorption, and selective permeation. The conclusions reached were: Cryogenic distillation is the only demonstrated route to date. Fluorocarbon absorption may offer economic and technical advantages if fully developed and demonstrated. Mordenite adsorption has been demonstrated only on a bench scale and is estimated to cost more than either cryogenic distillation or fluorocarbon absorption. Selective permeation through a silicone rubber membrane is not sufficiently selective for the route to be cost effective

  3. Process and equipment for locating defective fuel rods of a reactor fuel element

    International Nuclear Information System (INIS)

    Jester, A.; Honig, H.

    1977-01-01

    By this equipment, well-known processes for determining defective fuel rods of a reactor fuel element are improved in such a fashion that defective fuel rods can be located individually, so that it is possible to replace them. The equipment consists of a cylindrical test vessel open above, which accommodates the element to be tested, so that an annular space is left between the latter's external circumference and the wall of the vessel, and so that the fuel rods project above the vessel. A bell in the shape of a frustrum of a cone is inverted over the test vessel, which has an infra-red measuring equipment at a certain distance above the tops of the fuel rods. The fuel element to be tested together with the test vessel and hood are immersed in a basin full of water, which displaces water by means of gas from the hood. The post-shutdown heat increases the temperature in the water space of the test vessel, which is stabilised at 100 0 C. In each defective fuel rod the water which has penetrated the defective fuel rod previously, or does so now, starts to boil. The steam rising in the fuel rod raises the temperature of the defective fuel rod compared to all the sound ones. The subsequent measurement easily determines this. Where one can expect interference with the measurement by appreciable amounts of gamma rays, the measuring equipment is removed from the path of radiation by mirror deflection in a suitably shaped measuring hood. (FW) [de

  4. Parallel processing of neutron transport in fuel assembly calculation

    International Nuclear Information System (INIS)

    Song, Jae Seung

    1992-02-01

    Group constants, which are used for reactor analyses by nodal method, are generated by fuel assembly calculations based on the neutron transport theory, since one or a quarter of the fuel assembly corresponds to a unit mesh in the current nodal calculation. The group constant calculation for a fuel assembly is performed through spectrum calculations, a two-dimensional fuel assembly calculation, and depletion calculations. The purpose of this study is to develop a parallel algorithm to be used in a parallel processor for the fuel assembly calculation and the depletion calculations of the group constant generation. A serial program, which solves the neutron integral transport equation using the transmission probability method and the linear depletion equation, was prepared and verified by a benchmark calculation. Small changes from the serial program was enough to parallelize the depletion calculation which has inherent parallel characteristics. In the fuel assembly calculation, however, efficient parallelization is not simple and easy because of the many coupling parameters in the calculation and data communications among CPU's. In this study, the group distribution method is introduced for the parallel processing of the fuel assembly calculation to minimize the data communications. The parallel processing was performed on Quadputer with 4 CPU's operating in NURAD Lab. at KAIST. Efficiencies of 54.3 % and 78.0 % were obtained in the fuel assembly calculation and depletion calculation, respectively, which lead to the overall speedup of about 2.5. As a result, it is concluded that the computing time consumed for the group constant generation can be easily reduced by parallel processing on the parallel computer with small size CPU's

  5. Distilling carbonaceous material

    Energy Technology Data Exchange (ETDEWEB)

    Karrick, L C

    1926-11-02

    Coal, shale and the like are distilled in a current of superheated steam which is passed into a retort at about midway between its ends a further supply being if necessary introduced at the bottom to generate water-gas, and the coke being dry quenched in a hopper below the retort. Combustion products may also be introduced and the temperature may be varied from 950 to 1725/sup 0/F, oil, gas, resin and a residual coke having good adsorbent value, being obtained. The charge from hoppers and auxiliary hoppers is fed to retorts situated between gas and steam preheaters, the rate of downward movement being controlled by discharge rollers having arms, counterweighted rocking arms allowing the residue to be fed downwards into hoppers. Steam from a pipe is superheated in horizontal passages, and admitted through ports into the retort. Preheated fuel gas is burnt in combustion flues and passes down through vertical flues, across horizontal flues and up flues adjacent the retorts, from which by ports and flues it passes down a chamber having an air or gas preheater each having two independent systems, one discharging into the combustion chamber beneath it and the other into an adjacent chamber. Air or gas enters by pipes and after being heated in pipes is fed by ports to the chamber. The volatiles pass off through outlets leading to a main air cooled condenser and a water-cooled condenser delivering to a separating tank connecting with pipes for quenching the residues and with pipes to preheat the charge in the hoppers and maintain a gas barrier the rein. Superheated steam may also be admitted through ports to generate water-gas and increase the total volume of gases and combustion products may be introduced through ports. The upper part of the retort is made of cast iron, the high temperature parts of silica or carborundum brick, and the lower part of chrome iron or other metal.

  6. SEPARATION OF SATURED AND UNSATURATED FATTY ACIDS FROM PALM FATTY ACIDS DISTILLATES IN CONTINUOUS MULTISTAGE COUNTERCURRENT COLUMNS WITH SUPERCRITICAL CARBON DIOXIDE AS SOLVENT: A PROCESS DESIGN METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Nélio Teixeira MACHADO

    1997-12-01

    Full Text Available In this work the separation of multicomponent mixtures in counter-current columns with supercritical carbon dioxide has been investigated using a process design methodology. First the separation task must be defined, then phase equilibria experiments are carried out, and the data obtained are correlated with thermodynamic models or empirical functions. Mutual solubilities, Ki-values, and separation factors aij are determined. Based on this data possible operating conditions for further extraction experiments can be determined. Separation analysis using graphical methods are performed to optimize the process parameters. Hydrodynamic experiments are carried out to determine the flow capacity diagram. Extraction experiments in laboratory scale are planned and carried out in order to determine HETP values, to validate the simulation results, and to provide new materials for additional phase equilibria experiments, needed to determine the dependence of separation factors on concetration. Numerical simulation of the separation process and auxiliary systems is carried out to optimize the number of stages, solvent-to-feed ratio, product purity, yield, and energy consumption. Scale-up and cost analysis close the process design. The separation of palmitic acid and (oleic+linoleic acids from PFAD-Palm Fatty Acids Distillates was used as a case study.

  7. Energy consumption maps for quaternary distillation sequences

    DEFF Research Database (Denmark)

    Gomez-Castro, F.I.; Ramírez-Vallejo, N.E.; Segovia-Hernandez, J.G.

    2016-01-01

    Thermally coupled distillation columns represent a very interesting option for the intensification of distillation systems in order to reduce the energy consumption, and, as a consequence, the environmental impact of the separation process. Several thermally coupled distillation schemes can......, for a given mixture, depends on the nature of the mixture, usually quantified for ternary mixtures through the ease of separation index (ESI), and also on the feed composition. As can be noticed, the size of the design and optimization problem increases when these variables are considered in the generation...

  8. Vacuum distillation of plutonium pyrochemical salts

    International Nuclear Information System (INIS)

    Bourges, Gilles; Faure, S.; Fiers, B.; Saintignon, S.; Lemoine, O.; Cardona-Barrau, D.; Devillard, D.

    2012-01-01

    A pyrochemical process is developed to upgrade the safety of plutonium spent salts interim storage. The feed material, consisting of alkali or alkali-earth chlorides containing various Pu and Am species, is first oxidized to convert the actinides into oxides. Then the chlorides are removed by vacuum distillation which requires temperature from 750 degrees C to 1100 degrees C. After a comprehensive R and D program, full-scale equipment was built to test the distillation of active salts. Tests with NaCl/KCl oxidized spent salt give decontamination factor of chlorides higher than 20000. The distilled salt meets the radiologic requirements to be discarded as low level waste. (authors)

  9. Demonstration of pyrometallurgical processing for metal fuel and HLW

    International Nuclear Information System (INIS)

    Tadafumi, Koyama; Kensuke, Kinoshita; Takatoshi, Hizikata; Tadashi, Inoue; Ougier, M.; Rikard, Malmbeck; Glatz, J.P.; Lothar, Koch

    2001-01-01

    CRIEPI and JRC-ITU have started a joint study on pyrometallurgical processing to demonstrate the capability of this type of process for separating actinide elements from spent fuel and HLW. The equipment dedicated for this experiments has been developed and installed in JRC-ITU. The stainless steel box equipped with tele-manipulators is operated under pure Ar atmosphere, and prepared for later installation in a hot cell. Experiments on pyro-processing of un-irradiated U-Pu-Zr metal alloy fuel by molten salt electrorefining has been carried out. Recovery of U and Pu from this type alloy fuel was first demonstrated with using solid iron cathode and liquid Cd cathode, respectively. (author)

  10. Characteristics analysis of salt vacuum distillation equipment

    International Nuclear Information System (INIS)

    Im, Hun Suk; Oh, Seung Chul; Hong, Sun Seok; Hur, Jin Mok; Lee, Hyo Jik

    2016-01-01

    A new technique for pyroprocessing was designed by adding an oxide reduction process to the previous one. It is regarded as a promising process to treat and recycle oxide spent fuels owing to its enhanced nuclear proliferation resistance and the simplified process equipment and the low process costing. Spent oxide fuel is reduced into a metal by an electrochemical method while using a high-temperature molten salt as the reaction medium. After being subjected to electrorefining and electrowinning processes, the reduced metal fuel can be used in sodium-cooled fast reactors. The salt vacuum distillation process termed cathode processing follows the oxide reduction stage and has been developed to remove the residual salt, allowing for clear fuel metal to be supplied to the next step, which is electrorefining. KAERI has manufactured this apparatus in several sizes and has been able to achieve a fuel recovery rate of 95%. However it is very difficult to scale up the equipment. Because all transport phenomena, including heat transfer and fluid flow, depend on the size and structure of the apparatus used. The ideal method for overcoming this issue is nondimensionalization, which allows one to determine the characteristic properties of a system. A comparison of the dimensionless variables corresponding to the M-type and P-type apparatuses performed on the basis of phase-transition phenomena as well as the results of the above-mentioned analysis elucidated the differences between the two apparatuses. It also means that the structure of the nozzle throat can be the one of the several causes for the recovery performance. First, the standard model (i.e., the M-type apparatus) was analyzed using dimensionless parameters. The characteristics of this apparatus were the following: 1) the diameter of the outlet of the nozzle throat was twice that of the inlet, 2) the ratio of the length to the diameter (L/D) was 8, and 3) the modified heat-transfer factor was 220-270. It indicates

  11. Characteristics analysis of salt vacuum distillation equipment

    Energy Technology Data Exchange (ETDEWEB)

    Im, Hun Suk; Oh, Seung Chul; Hong, Sun Seok; Hur, Jin Mok; Lee, Hyo Jik [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    A new technique for pyroprocessing was designed by adding an oxide reduction process to the previous one. It is regarded as a promising process to treat and recycle oxide spent fuels owing to its enhanced nuclear proliferation resistance and the simplified process equipment and the low process costing. Spent oxide fuel is reduced into a metal by an electrochemical method while using a high-temperature molten salt as the reaction medium. After being subjected to electrorefining and electrowinning processes, the reduced metal fuel can be used in sodium-cooled fast reactors. The salt vacuum distillation process termed cathode processing follows the oxide reduction stage and has been developed to remove the residual salt, allowing for clear fuel metal to be supplied to the next step, which is electrorefining. KAERI has manufactured this apparatus in several sizes and has been able to achieve a fuel recovery rate of 95%. However it is very difficult to scale up the equipment. Because all transport phenomena, including heat transfer and fluid flow, depend on the size and structure of the apparatus used. The ideal method for overcoming this issue is nondimensionalization, which allows one to determine the characteristic properties of a system. A comparison of the dimensionless variables corresponding to the M-type and P-type apparatuses performed on the basis of phase-transition phenomena as well as the results of the above-mentioned analysis elucidated the differences between the two apparatuses. It also means that the structure of the nozzle throat can be the one of the several causes for the recovery performance. First, the standard model (i.e., the M-type apparatus) was analyzed using dimensionless parameters. The characteristics of this apparatus were the following: 1) the diameter of the outlet of the nozzle throat was twice that of the inlet, 2) the ratio of the length to the diameter (L/D) was 8, and 3) the modified heat-transfer factor was 220-270. It indicates

  12. Processing of carbon composite paper as electrode for fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, R.B.; Maheshwari, Priyanka H.; Dhami, T.L. [Carbon Technology Unit, National Physical Laboratory, New Delhi 110012 (India); Sharma, R.K.; Sharma, C.P. [Soft Polymeric Group, Division of Engineering Materials, National Physical Laboratory, New Delhi 110012 (India)

    2006-10-27

    The porous carbon electrode in a fuel cell not only acts as an electrolyte and a catalyst support, but also allows the diffusion of hydrogen fuel through its fine porosity and serves as a current-carrying conductor. A suitable carbon paper electrode is developed and possesses the characteristics of high porosity, permeability and strength along with low electrical resistivity so that it can be effectively used in proton-exchange membrane and phosphoric acid fuel cells. The electrode is prepared through a combination of two important techniques, viz., paper-making technology by first forming a porous chopped carbon fibre preform, and composite technology using a thermosetting resin matrix. The study reveals an interdependence of one parameter on another and how judicious choice of the processing conditions are necessary to achieve the desired characteristics. The current-voltage performance of the electrode in a unit fuel cell matches that of a commercially-available material. (author)

  13. Quality control in the fuel elements production process

    International Nuclear Information System (INIS)

    Katanic-Popovic, J.; Spasic, Z.; Djuricis, Lj.

    1977-01-01

    Recently great attention has been paid at the international level to the analysis of production processes and quality control of fuel and fuel elements with the aim to speed up activity of proposing and accepting standards and measurement methods. IAEA also devoted great interest to these problems appealing to more active participation of all users and producers fuel elements in a general effort to secure successful work of nuclear plants. For adequate and timely participation in future in the establishment and analysis of general requirements and documentation for the control of purchased or self produced fuel elements in out country it is necessary to be well informed and to follow this activity at the international level. (author)

  14. Process and apparatus for sealing nuclear reactor fuel

    International Nuclear Information System (INIS)

    Duncan, R.; Barna, R.P.

    1978-01-01

    A process and apparatus for simultaneously pressurizing a fuel rod having a plug in one end, welding a plug in the other end and sealing a gas pressurizing orifice therein in a single operation is described. A weld chamber is provided which accommodates one end of a seal rod having a plug fixed in the rod end by a friction fit. A mechanism pushes the fuel rod into the weld chamber which is then pressurized to force gas through a plug orifice into the fuel rod. During subsequent rotation of the rod, an electrode in the weld chamber forms a weld puddle which bridges the end plug-fuel rod interface and the plug orifice to thereby weld the plug in the rod and seal the plug orifice in a single operation. 6 claims, 3 figures

  15. Advanced Fuels and Combustion Processes for Propulsion

    Science.gov (United States)

    2010-09-01

    production from biomass steam reforming – Conduct a feasibility analysis of the proposed integrated process Energia Technologies - D. Nguyen & K. Parimi...strength foam material development by Ultramet – Combustion experiments performed U. Of Alabama – End-user input provided by Solar Turbines Major

  16. Improvement of solar ethanol distillation using ultrasonic waves

    Directory of Open Access Journals (Sweden)

    Jaruwat Jareanjit

    2016-08-01

    Full Text Available This report presents a study on the use of ultrasonic waves in solar ethanol distillation to investigate the performance of ultrasonic waves at a frequency of 30 kHz and at 100 Watts that were installed in the inlet area of a 10-litre distillation tank. Based on the non-continuous distillation process (batch distillation, the experiment demonstrated that using ultrasonic waves in solar ethanol distillation caused the average concentration of hourly distilled ethanol to be higher than that of a normal system (solar ethanol distillation without ultrasonic wave at the same or higher distillation rate and hourly distillation volume. The ultrasonic wave was able to enhance the separation of ethanol from the solution (water-ethanol mixture through solar distillation. The amount of pure ethanol product from each distilled batch was clearly larger than the amount of product obtained from a normal system when the initial concentration of ethanol was lower than 50%v/v (% by volume, where an average of approximately 40% and 20% are obtained for an initial ethanol concentration of 10%v/v and 30%v/v, respectively. Furthermore, the distillation rate varied based on the solar radiation value.

  17. PHWR fuel fabrication with imported uranium - procedures and processes

    International Nuclear Information System (INIS)

    Rao, R.V.R.L.V.; Rameswara Rao, A.; Hemantha Rao, G.V.S.; Jayaraj, R.N.

    2010-01-01

    Following the 123 agreement and subsequent agreements with IAEA & NSG, Government of India has entered into bilateral agreements with different countries for nuclear trade. Department of Atomic Energy (DAE), Government of India, has entered into contract with few countries for supply of uranium material for use in the safeguarded PHWRs. Nuclear Fuel Complex (NFC), an industrial unit of DAE, established in the early seventies, is engaged in the production of Nuclear Fuel and Zircaloy items required for Nuclear Power Reactors operating in the country. NFC has placed one of its fuel fabrication facilities (NFC, Block-A, INE-) under safeguards. DAE has opted to procure uranium material in the form of ore concentrate and fuel pellets. Uranium ore concentrate was procured as per the ASTM specifications. Since no international standards are available for PHWR fuel pellets, Specifications have to be finalized based on the present fabrication and operating experience. The process steps have to be modified and fine tuned for handling the imported uranium material especially for ore concentrate. Different transportation methods are to be employed for transportation of uranium material to the facility. Cost of the uranium material imported and the recoveries at various stages of fuel fabrication have impact on the fuel pricing and in turn the unit energy costs. Similarly the operating procedures have to be modified for safeguards inspections by IAEA. NFC has successfully manufactured and supplied fuel bundles for the three 220 MWe safeguarded PHWRs. The paper describes various issues encountered while manufacturing fuel bundles with different types of nuclear material. (author)

  18. The use of artificial neural network modeling to represent the process of concentration by molecular distillation of omega-3 from squid oil

    Directory of Open Access Journals (Sweden)

    Rossi, P.

    2014-12-01

    Full Text Available The concentration of omega-3 compounds obtained for the esterification of squid oil by molecular distillation was carried out in two stages. This operation can process these thermolabile and high molecular weight components at very low temperatures. Given the mathematical complexity of the theoretical model, artificial neural networks (ANN have provided an alternative to a classical computing analysis. The objective of this study was to create a predictive model using artificial neural network techniques to represent the concentration process of omega-3 compounds obtained from squid oil using molecular distillation. Another objective of this study was to analyze the performance of two different alternatives of ANN modeling; one of them is a model that represents all variables in the process and the other is a global model that simulates only the input and output variables of the process. The alternative of the ANN global model showed the best fit to the experimental data.La concentración de compuestos omega-3, obtenidos de la esterificación de aceite de calamar, por destilación molecular fue llevada a cabo en dos etapas. Esta operación permite procesar componentes termolábiles y de alto peso molecular a muy bajas temperaturas. Dada la alta complejidad de los modelos teóricos, las redes neuronales artificiales (RNA conforman una alternativa al análisis computacional clásico. El objetivo de este estudio fue crear un modelo predictivo usando modelos de redes neuronales artificiales para representar el proceso de concentración de compuestos omega-3 obtenidos del aceite de calamar por destilación molecular. Otro objetivo de este estudio fue analizar el desenvolvimiento de dos alternativas de modelos RNA; uno de ellos es un modelo que representa todas las variables en el proceso y otro es un modelo global que simula solo las variables de entrada y de salida del proceso. La alternativa de un modelo RNA global mostró el mejor ajuste de los

  19. Low temperature distillation

    Energy Technology Data Exchange (ETDEWEB)

    1937-07-21

    To distil mineral or organic material, the material is heated by means of a hot gas entering into contact with and traversing the material in a horizontal direction. The vertical retort is charged with material from the hopper and hot gases from the furnace after traversing the boiler enter the preheating zone, pass through the slots and charge therein and are educted through connection by the blower. The charge passes downwardly to the distillation zone wherein hot gases from the heater are passed via pipe and slots through the chambers and to the pipe controlled by the dampers. These gases are recycled by the fan through the heater and chamber, that portion of the gases corresponding to the amount of vapours evolved from the distillation being evacuated via the pipe to the condensing plant not shown. Steam and/or a limited quantity of water may be admitted to the distillation zone.

  20. Cascade Distillation Subsystem Development: Progress Toward a Distillation Comparison Test

    Science.gov (United States)

    Callahan, M. R.; Lubman, A.; Pickering, Karen D.

    2009-01-01

    Recovery of potable water from wastewater is essential for the success of long-duration manned missions to the Moon and Mars. Honeywell International and a team from NASA Johnson Space Center (JSC) are developing a wastewater processing subsystem that is based on centrifugal vacuum distillation. The wastewater processor, referred to as the Cascade Distillation Subsystem (CDS), utilizes an innovative and efficient multistage thermodynamic process to produce purified water. The rotary centrifugal design of the system also provides gas/liquid phase separation and liquid transport under microgravity conditions. A five-stage subsystem unit has been designed, built, delivered and integrated into the NASA JSC Advanced Water Recovery Systems Development Facility for performance testing. A major test objective of the project is to demonstrate the advancement of the CDS technology from the breadboard level to a subsystem level unit. An initial round of CDS performance testing was completed in fiscal year (FY) 2008. Based on FY08 testing, the system is now in development to support an Exploration Life Support (ELS) Project distillation comparison test expected to begin in early 2009. As part of the project objectives planned for FY09, the system will be reconfigured to support the ELS comparison test. The CDS will then be challenged with a series of human-gene-rated waste streams representative of those anticipated for a lunar outpost. This paper provides a description of the CDS technology, a status of the current project activities, and data on the system s performance to date.

  1. Digital mock-up for the spent fuel disassembly processes

    International Nuclear Information System (INIS)

    Lee, J. Y.; Kim, S. H.; Song, T. G.; Kim, Y. H.; Hong, D. H.; Yoon, J. S.

    2000-12-01

    In this study, the graphical design system is developed and the digital mock-up is implemented for designing the spent fuel handling and disassembly processes. The system consists of a 3D graphical modeling system, a devices assembling system, and a motion simulation system. This system is used throughout the design stages from the conceptual design to the motion analysis. By using this system, all the process involved in the spent fuel handling and disassembly processes are analyzed and optimized. Also, this system is used in developing the on-line graphic simulator which synchronously simulates the motion of the equipment in a real time basis by connecting the device controllers with the graphic server through the TCP/IP network. This simulator can be effectively used for detecting the malfunctions of the process equipment which is remotely operated. Thus, the simulator enhances the reliability and safety of the spent fuel handling process by providing the remote monitoring function of the process. The graphical design system and the digital mock-up system can be effectively used for designing the process equipment, as well as the optimized process and maintenance process. And the on-line graphic simulator can be an alternative of the conventional process monitoring system which is a hardware based system

  2. Observer-Based Perturbation Extremum Seeking Control with Input Constraints for Direct-Contact Membrane Distillation Process

    KAUST Repository

    Eleiwi, Fadi; Laleg-Kirati, Taous-Meriem

    2017-01-01

    has pump flow rates as process inputs. The objective of the controller is to optimize the trade-off between the permeate mass flux and the energy consumption by the pumps inside the process. Cases of single and multiple control inputs are considered

  3. Co-processing of lignite-plastic mixtures into liquid distillate fractions in the presence of iron catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, B.N.; Sharypov, V.I.; Beregovtsova, N.G.; Baryshnikov, S.V.; Doroginskaya, A.N. [Russian Academy of Sciences, Krasnoyarsk (Russian Federation). Inst. of Chemistry of Natural Organic Materials Sibirian Branch

    1997-12-31

    Some features of co-processing of Kansk-Achinsk lignite with plastics into hydrocarbon mixtures in the presence of activated iron-containing minerals (hematite, magnetite, pyrrhotite) were investigated under various operating parameters. The following catalytic processes were studied: pyrolysis in an inert atmosphere, hydropyrolysis and water-steam cracking. (orig.)

  4. Process for production of liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    1947-03-14

    The process comprises continually passing a current of carbonaceous material, finely divided in a vertical zone of reaction, finely divided carbonaceous material raised to a fluidized state dispersed in gas flowing from the bottom to the top carrying into the zone of reaction an oxidizing gas in sufficient quantity to supply the heat for combustion by burning part of the carbonaceous material withdrawing from the zone of reaction the products of the combustible fluids, withdrawing from the zone the solid carbonaceous products of the reaction and reacting a part of the lesser products left in a second zone of reaction by means of steam to produce oxides of carbon and hydrogen.

  5. On order reduction in hydrogen isotope distillation models

    International Nuclear Information System (INIS)

    Sarigiannis, D.A.

    1994-01-01

    The design integration of the fuel processing system for the next generation fusion reactor plants (such as ITER and beyond) requires the enhancement of safety features related to the operation of the system. The current drive for inherent safety of hazardous chemical plants warrants the minimization of active toxic or radioactive inventories and the identification of process pathways with minimal risk of accidental or routine releases. New mathematical and numerical tools have been developed for the dynamic simulation and optimization of the safety characteristics related to tritium in all its forms in the fusion fuel processing system. The separation of hydrogen isotopes by cryogenic distillation is a key process therein, due to the importance of the separation performance for the quality of the fuel mixture and the on site inventory, the increased energy requirements for cryogenic operation, and the high order of mathematical complexity required for accurate models, able to predict the transient as well as the steady state behavior of the process. The modeling methodology described here is a part of a new dynamic simulation code that captures the inventory dynamics of all the species in the fusion fuel processing plant. The significant reduction of the computational effort and time required by this code will permit designers to easily explore a variety of design and technology options and assess their impact on the overall power plant safety

  6. Fuel sparing: Control of industrial furnaces using process gas as supplemental fuel

    International Nuclear Information System (INIS)

    Boisvert, Patrick G.; Runstedtler, Allan

    2014-01-01

    Combustible gases from industrial processes can be used to spare purchased fuels such as natural gas and avoid wasteful flaring of the process gases. One of the challenges of incorporating these gases into other furnaces is their intermittent availability. In order to incorporate the gases into a continuously operating furnace, the furnace control system must be carefully designed so that the payload is not affected by the changing fuel. This paper presents a transient computational fluid dynamics (CFD) model of an industrial furnace that supplements natural gas with carbon monoxide during furnace operation. A realistic control system of the furnace is simulated as part of the CFD calculation. The time dependent changes in fuels and air injection on the furnace operation is observed. It is found that there is a trade-off between over-controlling the furnace, which results in too sensitive a response to normal flow oscillations, and under-controlling, which results in a lagged response to the fuel change. - Highlights: •Intermittently available process gases used in a continuously operating furnace. •Study shows a trade-off between over-controlling and under-controlling the furnace. •Over-controlling: response too sensitive to normal flow oscillations. •Under-controlling: lagged response to changing fuel composition. •Normal flow oscillations in furnace would not be apparent in steady-state model

  7. Hybrid Pressure Retarded Osmosis−Membrane Distillation (PRO−MD) Process for Osmotic Power and Clean Water Generation

    KAUST Repository

    Han, Gang; Zuo, Jian; Wan, Chunfeng; Chung, Neal Tai-Shung

    2015-01-01

    unique advantages of high water recovery rate, huge osmotic power generation, well controlled membrane fouling, and minimal environmental impacts. Experimental results show that the PRO−MD hybrid process is promising that not only can harvest osmotic

  8. Aromatically enhanced pear distillates from blanquilla and conference varieties using a packed column.

    Science.gov (United States)

    Arrieta-Garay, Yanine; García-Llobodanin, Laura; Pérez-Correa, José Ricardo; López-Vázquez, Cristina; Orriols, Ignacio; López, Francisco

    2013-05-22

    Pear distillates are generally produced from the Bartlett variety because of its rich aroma. In this study, a chemical and sensorial comparative examination of pear distillates from the three main varieties grown in Spain (Bartlett, Blanquilla, and Conference) using two distillation systems (copper Charentais alembic and packed column) was undertaken. Volatile compounds were identified by gas chromatography to differentiate the spirits according to pear variety and distillation method. The Bartlett distillates from both distillation systems possessed higher ethyl ester and acetate and lower cis-3-hexen-1-ol and 1-hexanol concentrations. Despite these differences, a sensory analysis panel could distinguish only the Bartlett alembic distillate from the alembic distillates of the other varieties. In contrast, the panel rated the packed-column distillates equally. Therefore, less aromatic pear varieties can be used to produce distillates with aromatic characteristics similar to those of the Bartlett variety if a suitable distillation process is used.

  9. Process for producing a fuel suitable for degassing from refuse

    Energy Technology Data Exchange (ETDEWEB)

    Sulzberger, J

    1975-11-20

    Utilization of the heat energy of refuse in waste incineration plants is time-consuming and expensive due to high investment and operation costs. The inventor recommends to process the refuse to a sterile, handy and storable fuel. For this propose the refuse should be crushed, kneaded and pressed. The briquettes produced in this way should be dried.

  10. 40 CFR 60.4325 - What emission limits must I meet for NOX if my turbine burns both natural gas and distillate oil...

    Science.gov (United States)

    2010-07-01

    ... NOX if my turbine burns both natural gas and distillate oil (or some other combination of fuels)? 60... both natural gas and distillate oil (or some other combination of fuels)? You must meet the emission... burning that fuel. Similarly, when your total heat input is greater than 50 percent distillate oil and...

  11. Olefins-selective asymmetric carbon molecular sieve hollow fiber membranes for hybrid membrane-distillation processes for olefin/paraffin separations

    KAUST Repository

    Xu, Liren

    2012-12-01

    In this paper, the development of asymmetric carbon molecular sieve (CMS) hollow fiber membranes and advanced processes for olefin/paraffin separations based on the CMS membranes are reported. Membrane-based olefin/paraffin separations have been pursued extensively over the past decades. CMS membranes are promising to exceed the performance upper bound of polymer materials and have demonstrated excellent stability for gas separations. Previously, a substructure collapse phenomenon was found in Matrimid ® precursor derived CMS fiber. To overcome the permeance loss due to the increased separation layer thickness, 6FDA-DAM and 6FDA/BPDA-DAM precursors were selected as potential new precursors for carbon membrane formation. Defect-free asymmetric 6FDA-DAM and 6FDA/BPDA-DAM hollow fibers were successfully fabricated from a dry-jet/wet-quench spinning process. Polymer rigidity, glass-rubber transition and asymmetric morphology were correlated. CMS hollow fiber membranes produced from 6FDA-polymer precursors showed significant improvement in permeance for ethylene/ethane and propylene/propane separations. Further studies revealed that the CMS membranes are olefins-selective, which means the membranes are able to effectively separate olefins (ethylene and propylene) from paraffins (ethane and propane). This unique feature of CMS materials enables advanced hybrid membrane-distillation process designs. By using the olefins-selective membranes, these new processes may provide advantages over previously proposed retrofitting concepts. Further applications of the membranes are explored for hydrocarbons processes. Significant energy savings and even reduced footprint may be achieved in olefins production units. © 2012 Elsevier B.V.

  12. Handbook on process and chemistry of nuclear fuel reprocessing. 3rd edition

    International Nuclear Information System (INIS)

    2015-03-01

    The fundamental data on spent nuclear fuel reprocessing and related chemistry was collected and summarized as a new edition of 'Handbook on Process and Chemistry of Nuclear Fuel Reprocessing'. The purpose of this handbook is contribution to development of the fuel reprocessing and fuel cycle technology for uranium fuel and mixed oxide fuel utilization. Contents in this book was discussed and reviewed by specialists of science and technology on fuel reprocessing in Japan. (author)

  13. Integrated design of a conventional crude oil distillation tower using pinch analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liebmann, K.; Dhole, V.R.; Jobson, M. [UMIST, Manchester (United Kingdom). Dept. of Process Integration

    1998-03-01

    The substantial energy requirement of crude oil distillation columns is met partly by costly utilities, such as steam and fuel for fired heaters, and partly by heat recovered from the process, using process-to-process heat exchange. Energy savings, therefore, demand not only a distillation column that is energy-efficient, but also a heat exchanger network (HEN) which minimizes utility costs by maximizing heat recovery. A new crude oil distillation design procedure is presented which considers the column, the HEN and their interactions simultaneously, to minimize utility costs. Pinch analysis is used to determine minimum utility costs prior to the design of the HEN. In this method, the column is decomposed into a sequence of simple columns, which enables appropriate distribution of stages and simplifies analysis. Modifications, which further increase the efficiency of the process, are proposed: these are the installation of reboilers, rather than stripping steam, and the thermal coupling of column sections. The detrimental effects of these modifications on the heat recovery opportunities of the process are analysed for a distillation tower with side-strippers. A new step-by-step design procedure is derived from this analysis, and is applied to a case study. (author)

  14. Process for gasifying fuels with the recovery of rich gases

    Energy Technology Data Exchange (ETDEWEB)

    Jahns, F

    1921-04-10

    A process for gasifying fuels with recovery of water-free, rich-in-tar gases in a ring-gas-producer characterized by hot-gas-stream arising from the gasification bed of a fresh chamber in the known way is divided. One part is conducted through an old chamber, the other part is led first during the drying through the fresh fuel and with the received water-vapor also through the old chamber and then during the carbonization with the carbonization products is led to the carbonization-gas conduit.

  15. Structural analysis of advanced spent fuel conditioning process

    International Nuclear Information System (INIS)

    Gu, J. H.; Jung, W. M.; Jo, I. J.; Gug, D. H.; Yoo, K. S.

    2003-01-01

    An advanced spent fuel conditioning process (ACP) is developing for the safe and effective management of spent fuels which arising from the domestic nuclear power plants. And its demonstration facility is under design. This facility will be prepared by modifying IMEF's reserve hot cell facility which reserved for future usage by considering the characteristics of ACP. This study presents a basic structural architecture design and analysis results of ACP hot cell including modification of the IMEF. The results of this study will be used for the detail design of ACP demonstration facility, and utilized as basic data for the licensing of the ACP facility

  16. Method For Processing Spent (Trn,Zr)N Fuel

    Science.gov (United States)

    Miller, William E.; Richmann, Michael K.

    2004-07-27

    A new process for recycling spent nuclear fuels, in particular, mixed nitrides of transuranic elements and zirconium. The process consists of two electrorefiner cells in series configuration. A transuranic element such as plutonium is reduced at the cathode in the first cell, zirconium at the cathode in the second cell, and nitrogen-15 is released and captured for reuse to make transuranic and zirconium nitrides.

  17. Fuel production from coal by the Mobil Oil process using nuclear high-temperature process heat

    International Nuclear Information System (INIS)

    Hoffmann, G.

    1982-01-01

    Two processes for the production of liquid hydrocarbons are presented: Direct conversion of coal into fuel (coal hydrogenation) and indirect conversion of coal into fuel (syngas production, methanol synthesis, Mobil Oil process). Both processes have several variants in which nuclear process heat may be used; in most cases, the nuclear heat is introduced in the gas production stage. The following gas production processes are compared: LURGI coal gasification process; steam reformer methanation, with and without coal hydrogasification and steam gasification of coal. (orig./EF) [de

  18. Processing diets containing corn distillers' dried grains with solubles in growing broiler chickens: effects on performance, pellet quality, ileal amino acids digestibility, and intestinal microbiota.

    Science.gov (United States)

    Kim, J S; Hosseindoust, A R; Shim, Y H; Lee, S H; Choi, Y H; Kim, M J; Oh, S M; Ham, H B; Kumar, A; Chae, B J

    2018-04-03

    The present study investigated the effects of feed form and distillers' dried grains with solubles (DDGS) on growth performance, nutrient digestibility, and intestine microbiota in broilers. A total of 720 broilers (Ross 308; average BW 541 ± 6 g) was randomly allotted to 6 treatments on the basis of BW. There were 6 replicates in each treatment with 20 birds per replicate. Birds were fed 3 different feed forms (mash, simple pellet, and expanded pellet) and DDGS (0 or 20% of diet) in a 3 × 2 factorial arrangement. Simple pellet (SP) and expanded pellet (EP) fed birds showed an increase in BW gain (P digestibility of CP compared to mash feed. The inclusion of DDGS decreased the digestibility of CP, and tended to decrease digestibility of DM (P = 0.056) and gross energy (P = 0.069). Expanded pellet feeding decreased (P digestibility of isoleucine, lysine, methionine, phenylalanine, threonine, cysteine, and glutamine compared with mash diet. Processed feed increased (P digestibility. In addition, DDGS supplementation (20%) decreased pellet quality and CP digestibility in broiler chickens; however, the growth performance and feed intake were not affected.

  19. Process for removal of sulfur compounds from fuel gases

    Science.gov (United States)

    Moore, Raymond H.; Stegen, Gary E.

    1978-01-01

    Fuel gases such as those produced in the gasification of coal are stripped of sulfur compounds and particulate matter by contact with molten metal salt. The fuel gas and salt are intimately mixed by passage through a venturi or other constriction in which the fuel gas entrains the molten salt as dispersed droplets to a gas-liquid separator. The separated molten salt is divided into a major and a minor flow portion with the minor flow portion passing on to a regenerator in which it is contacted with steam and carbon dioxide as strip gas to remove sulfur compounds. The strip gas is further processed to recover sulfur. The depleted, minor flow portion of salt is passed again into contact with the fuel gas for further sulfur removal from the gas. The sulfur depleted, fuel gas then flows through a solid absorbent for removal of salt droplets. The minor flow portion of the molten salt is then recombined with the major flow portion for feed to the venturi.

  20. Fuel processing for PEM fuel cells: transport and kinetic issues of system design

    Science.gov (United States)

    Zalc, J. M.; Löffler, D. G.

    In light of the distribution and storage issues associated with hydrogen, efficient on-board fuel processing will be a significant factor in the implementation of PEM fuel cells for automotive applications. Here, we apply basic chemical engineering principles to gain insight into the factors that limit performance in each component of a fuel processor. A system consisting of a plate reactor steam reformer, water-gas shift unit, and preferential oxidation reactor is used as a case study. It is found that for a steam reformer based on catalyst-coated foils, mass transfer from the bulk gas to the catalyst surface is the limiting process. The water-gas shift reactor is expected to be the largest component of the fuel processor and is limited by intrinsic catalyst activity, while a successful preferential oxidation unit depends on strict temperature control in order to minimize parasitic hydrogen oxidation. This stepwise approach of sequentially eliminating rate-limiting processes can be used to identify possible means of performance enhancement in a broad range of applications.

  1. Destructive distillation: oils

    Energy Technology Data Exchange (ETDEWEB)

    West, J; Glover, S

    1918-01-31

    Canned and other coals are destructively distilled in continuously operated vertical retorts which at their upper portions are maintained at temperatures suitable for low temperature oil distillation such as about 700/sup 0/C, and at their lower portions the temperature is higher and such as to be suitable for the production of gas, e.g., about 1400/sup 0/C. Superheated steam is introduced into the lower portion of the retort, preferably by means of the arrangement described in Specification 120,458, and this is converted into blue water gas which assists the distillation in the center of the coal charge. The retorts are preferably such as are described in Specifications 2663/07 and 7757/14.

  2. Distilling hydrocarbons, etc

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C

    1917-11-23

    In the fractional or destructive distillation of hydrocarbon oils or other liquids, the pressure in the still is raised and lowered alternately. The still is closed to raise the pressure, and is opened to lower the pressure rapidly solely by expansion of the vapors. The operation is effected without intermittent cooling, except such as may occur during the lowering of the pressure. In distilling hydrocarbon oil, pressure steam is blown into the oil until the pressure reaches 5 lb/in./sup 2/. The vapor outlet is then opened until the pressure falls to 2 lb/in./sup 2/, whereupon the vapor outlet is closed and steam is again admitted. The operation is continued until the steam, which is of 20 lb pressure, no longer effects distillation; after this stage, superheated steam is used.

  3. Vapor compression distiller and membrane technology for water revitalization

    Science.gov (United States)

    Ashida, A.; Mitani, K.; Ebara, K.; Kurokawa, H.; Sawada, I.; Kashiwagi, H.; Tsuji, T.; Hayashi, S.; Otsubo, K.; Nitta, K.

    1987-01-01

    Water revitalization for a space station can consist of membrane filtration processes and a distillation process. Water recycling equipment using membrane filtration processes was manufactured for ground testing. It was assembled using commercially available components. Two systems for the distillation are studied: one is absorption type thermopervaporation cell and the other is a vapor compression distiller. Absorption type thermopervaporation, able to easily produce condensed water under zero gravity, was investigated experimentally and through simulated calculation. The vapor compression distiller was studied experimentally and it offers significant energy savings for evaporation of water.

  4. Solvent extraction process development for high plutonium fuel cycles

    Energy Technology Data Exchange (ETDEWEB)

    Anil Kumar, R; Selvaraj, P G; Natarajan, R; Raman, V R [Reprocessing Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1994-06-01

    The purification of high plutonium bearing irradiated fuels using 30% TBP in dodecane diluent requires precise determination of concentration profiles during steady state, transient and process upset conditions. Mathematical models have been developed and a computer code is in use for determining Pu-U concentration profiles in a solvent extraction equipment in a typical reprocessing plant. The process parameters have been optimised for recovery of U and Pu and decontamination from the fission products. This computer code is used to analyse the extraction flow sheets of fuels of two typical Pu-U compositions encountered in Indian fast breeder programme. The analysis include the effect of uncertainty in equilibrium condition prediction by the model and the variation of flows of streams during plant operation. The studies highlight the margin available to avoid second organic phase formation and adjustments required in the process flowsheet. (author). 7 refs., 7 figs., 2 tabs.

  5. Process Investigation for Conversion of MSW into Liquid Fuel

    International Nuclear Information System (INIS)

    Javed, M.T.; Jafri, U.A.; Chugtai, I.R.

    2010-01-01

    An investigation was conducted on pyrolysis technology to convert the municipal solid waste into liquid fuel. The investigation includes the development of the experimental setup for this process and its future prospects in Pakistan. A pyrolysis process is under consideration for many years for the production of synthetic fuel oils from organic solid waste. The system comprises of pyrolysis reactor, condenser for condensable gas, gas holder (for non- condensable gas). The feedstock used in the pyrolysis reactor is the municipal solid waste (includes kitchen waste, papers etc) in fine mesh size i.e. 2.5 - 3.0 mm. The residue obtained were mainly tar (pyrolytic oil), pyrogas (non - condensable gases) and ash, which shows that process has a potential for the treatment of the municipal solid waste and is a good technology for resource recover. (author)

  6. Used nuclear fuel separations process simulation and testing

    International Nuclear Information System (INIS)

    Pereira, C.; Krebs, J.F.; Copple, J.M.; Frey, K.E.; Maggos, L.E.; Figueroa, J.; Willit, J.L.; Papadias, D.D.

    2013-01-01

    Recent efforts in separations process simulation at Argonne have expanded from the traditional focus on solvent extraction flowsheet design in order to capture process dynamics and to simulate other components, processing and systems of a used nuclear fuel reprocessing plant. For example, the Argonne Model for Universal Solvent Extraction (AMUSE) code has been enhanced to make it both more portable and more readily extensible. Moving away from a spreadsheet environment makes the addition of new species and processes simpler for the expert user, which should enable more rapid implementation of chemical models that simulate evolving processes. The dyAMUSE (dynamic AMUSE) version allows the simulation of transient behavior across an extractor. Electrochemical separations have now been modeled using spreadsheet codes that simulate the electrochemical recycle of fast reactor fuel. The user can follow the evolution of the salt, products, and waste compositions in the electro-refiner, cathode processors, and drawdown as a function of fuel batches treated. To further expand capabilities in integrating multiple unit operations, a platform for linking mathematical models representing the different operations that comprise a reprocessing facility was adapted to enable systems-level analysis and optimization of facility functions. (authors)

  7. Used nuclear fuel separations process simulation and testing

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, C.; Krebs, J.F.; Copple, J.M.; Frey, K.E.; Maggos, L.E.; Figueroa, J.; Willit, J.L.; Papadias, D.D. [Argonne National Laboratory: 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2013-07-01

    Recent efforts in separations process simulation at Argonne have expanded from the traditional focus on solvent extraction flowsheet design in order to capture process dynamics and to simulate other components, processing and systems of a used nuclear fuel reprocessing plant. For example, the Argonne Model for Universal Solvent Extraction (AMUSE) code has been enhanced to make it both more portable and more readily extensible. Moving away from a spreadsheet environment makes the addition of new species and processes simpler for the expert user, which should enable more rapid implementation of chemical models that simulate evolving processes. The dyAMUSE (dynamic AMUSE) version allows the simulation of transient behavior across an extractor. Electrochemical separations have now been modeled using spreadsheet codes that simulate the electrochemical recycle of fast reactor fuel. The user can follow the evolution of the salt, products, and waste compositions in the electro-refiner, cathode processors, and drawdown as a function of fuel batches treated. To further expand capabilities in integrating multiple unit operations, a platform for linking mathematical models representing the different operations that comprise a reprocessing facility was adapted to enable systems-level analysis and optimization of facility functions. (authors)

  8. Fractional distillation of oil

    Energy Technology Data Exchange (ETDEWEB)

    Jones, L D

    1931-10-31

    A method of dividing oil into lubricating oil fractions without substantial cracking by introducing the oil in a heated state into a fractionating column from which oil fractions having different boiling points are withdrawn at different levels, while reflux liquid is supplied to the top of the column, and additional heat is introduced into the column by contacting with the oil therein a heated fluid of higher monlecular weight than water and less susceptible to thermal decomposition than is the highest boiling oil fraction resulting from the distillation, or of which any products produced by thermal decomposition will not occur in the highest boiling distillate withdrawn from the column.

  9. Distilling carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Trumble, M J

    1925-06-29

    Carbonaceous materials such as coal, oil shale, peat, or wood are destructively distilled while being subjected to the action of superheated steam and hydrogen, the latter being provided by dissociating a part of the superheated steam. The materials are charged into a retort heated by a burner and superheated steam and hydrogen are passed in by a pipe and nozzles. The distillates enter a dust extractor through openings and escape through openings shielded by cones into an outlet pipe leading to condensers. The dust which settles in the bottom of the apparatus is periodically removed.

  10. Distilling coal, etc

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, J

    1917-12-21

    Coals of various kinds such as shales, bitumens, and oil sand, peat, etc. are distilled at 350 to 450/sup 0/C and in the presence of vapors and gases obtained by cracking hydrocarbon oils, or the gases obtained by separating the condensable hydrocarbons therefrom, and, if desired, with the addition of superheated steam. The hydrocarbons are properly cracked by passing through molten lead as described in Specification 116,304. According to the Provisional Specification, superheated steam alone may be used to effect the distillation.

  11. Concerning permission of change in nuclear fuel processing business of Japan Nuclear Fuel Co. , Ltd

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    In response to an inquiry on the title issue received on Jun. 17, 1988, the Nuclear Safety Commission made a study and submitted the findings to the Prime Minister on Jul. 21, 1988. The study was intended to determine the conformity of the permission to the applicable criteria specified in laws relating to control of nuclear material, nuclear fuel and nuclear reactor. The proposed modification plan included changes in the facilities in the No.1 processing building and changes in processing methods which were required to perform processing of blanket fuel assemblies for fast breeder reactor. It also included changes in the facilities in the No.2 building which were required to improve the processes. The safety study covered the anti-earthquake performance, fire/explosion prevention, criticality control, containment performance, radioactive waste disposal, and other major safety issues. Other investigations included exposure dose evaluation and accident analysis. Study results were examined on the basis of the Basic Guidelines for Nuclear Fuel Facilities Safety Review and the Uranium Processing Safety Review Guidelines. It was concluded that the modifications would not have adverse effect on the safety of the facilities. (Nogami, K.).

  12. Concerning permission of change in nuclear fuel processing business of Japan Nuclear Fuel Co., Ltd

    International Nuclear Information System (INIS)

    1988-01-01

    In response to an inquiry on the title issue received on Jun. 17, 1988, the Nuclear Safety Commission made a study and submitted the findings to the Prime Minister on Jul. 21, 1988. The study was intended to determine the conformity of the permission to the applicable criteria specified in laws relating to control of nuclear material, nuclear fuel and nuclear reactor. The proposed modification plan included changes in the facilities in the No.1 processing building and changes in processing methods which were required to perform processing of blanket fuel assemblies for fast breeder reactor. It also included changes in the facilities in the No.2 building which were required to improve the processes. The safety study covered the anti-earthquake performance, fire/explosion prevention, criticality control, containment performance, radioactive waste disposal, and other major safety issues. Other investigations included exposure dose evaluation and accident analysis. Study results were examined on the basis of the Basic Guidelines for Nuclear Fuel Facilities Safety Review and the Uranium Processing Safety Review Guidelines. It was concluded that the modifications would not have adverse effect on the safety of the facilities. (Nogami, K.)

  13. Distillation Column Flooding Predictor

    Energy Technology Data Exchange (ETDEWEB)

    George E. Dzyacky

    2010-11-23

    The Flooding Predictor™ is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor™ works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillation columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the column’s approach to flood. But column delta-pressure is more an inference of the column’s approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much “left on the table” when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor™, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid

  14. Pyrometallurgical processing of Integral Fast Reactor metal fuels

    International Nuclear Information System (INIS)

    Battles, J.E.; Miller, W.E.; Gay, E.C.

    1991-01-01

    The pyrometallurgical process for recycling spent metal fuels from the Integral Fast Reactor is now in an advanced state of development. This process involves electrorefining spent fuel with a cadmium anode, solid and liquid cathodes, and a molten salt electrolyte (LiCl-KCl) at 500 degrees C. The initial process feasibility and flowsheet verification studies have been conducted in a laboratory-scale electrorefiner. Based on these studies, a dual cathode approach has been adopted, where uranium is recovered on a solid cathode mandrel and uranium-plutonium is recovered in a liquid cadmium cathode. Consolidation and purification (salt and cadmium removal) of uranium and uranium-plutonium products from the electrorefiner have been successful. The process is being developed with the aid of an engineering-scale electrorefiner, which has been successfully operated for more than three years. In this electrorefiner, uranium has been electrotransported from the cadmium anode to a solid cathode in 10 kg quantities. Also, anodic dissolution of 10 kg batches of chopped, simulated fuel (U--10% Zr) has been demonstrated. Development of the liquid cadmium cathode for recovering uranium-plutonium is under way

  15. Towards Extrusion of Ionomers to Process Fuel Cell Membranes

    Directory of Open Access Journals (Sweden)

    Jean-Yves Sanchez

    2011-07-01

    Full Text Available While Proton Exchange Membrane Fuel Cell (PEMFC membranes are currently prepared by film casting, this paper demonstrates the feasibility of extrusion, a solvent-free alternative process. Thanks to water-soluble process-aid plasticizers, duly selected, it was possible to extrude acidic and alkaline polysulfone ionomers. Additionally, the feasibility to extrude composites was demonstrated. The impact of the plasticizers on the melt viscosity was investigated. Following the extrusion, the plasticizers were fully removed in water. The extrusion was found to impact neither on the ionomer chains, nor on the performances of the membrane. This environmentally friendly process was successfully validated for a variety of high performance ionomers.

  16. Ignition delay times of Gasoline Distillation Cuts measured with Ignition Quality Tester

    KAUST Repository

    Naser, Nimal; Singh, Eshan; Ahmed, Ahfaz; Sarathy, Mani

    2017-01-01

    Tailoring fuel properties to maximize the efficiency of internal combustion engines is a way towards achieving cleaner combustion systems. In this work, the ignition properties of various gasoline fuel distillation cuts are analyzed to better

  17. Modular, High-Volume Fuel Cell Leak-Test Suite and Process

    Energy Technology Data Exchange (ETDEWEB)

    Ru Chen; Ian Kaye

    2012-03-12

    Fuel cell stacks are typically hand-assembled and tested. As a result the manufacturing process is labor-intensive and time-consuming. The fluid leakage in fuel cell stacks may reduce fuel cell performance, damage fuel cell stack, or even cause fire and become a safety hazard. Leak check is a critical step in the fuel cell stack manufacturing. The fuel cell industry is in need of fuel cell leak-test processes and equipment that is automatic, robust, and high throughput. The equipment should reduce fuel cell manufacturing cost.

  18. Radiation Monitoring System in Advanced Spent Fuel Conditioning Process Facility

    Energy Technology Data Exchange (ETDEWEB)

    You, Gil Sung; Kook, D. H.; Choung, W. M.; Ku, J. H.; Cho, I. J.; You, G. S.; Kwon, K. C.; Lee, W. K.; Lee, E. P

    2006-09-15

    The Advanced spent fuel Conditioning Process is under development for effective management of spent fuel by converting UO{sub 2} into U-metal. For demonstration of this process, {alpha}-{gamma} type new hot cell was built in the IMEF basement . To secure against radiation hazard, this facility needs radiation monitoring system which will observe the entire operating area before the hot cell and service area at back of it. This system consists of 7 parts; Area Monitor for {gamma}-ray, Room Air Monitor for particulate and iodine in both area, Hot cell Monitor for hot cell inside high radiation and rear door interlock, Duct Monitor for particulate of outlet ventilation, Iodine Monitor for iodine of outlet duct, CCTV for watching workers and material movement, Server for management of whole monitoring system. After installation and test of this, radiation monitoring system will be expected to assist the successful ACP demonstration.

  19. Radiation Monitoring System in Advanced Spent Fuel Conditioning Process Facility

    International Nuclear Information System (INIS)

    You, Gil Sung; Kook, D. H.; Choung, W. M.; Ku, J. H.; Cho, I. J.; You, G. S.; Kwon, K. C.; Lee, W. K.; Lee, E. P.

    2006-09-01

    The Advanced spent fuel Conditioning Process is under development for effective management of spent fuel by converting UO 2 into U-metal. For demonstration of this process, α-γ type new hot cell was built in the IMEF basement . To secure against radiation hazard, this facility needs radiation monitoring system which will observe the entire operating area before the hot cell and service area at back of it. This system consists of 7 parts; Area Monitor for γ-ray, Room Air Monitor for particulate and iodine in both area, Hot cell Monitor for hot cell inside high radiation and rear door interlock, Duct Monitor for particulate of outlet ventilation, Iodine Monitor for iodine of outlet duct, CCTV for watching workers and material movement, Server for management of whole monitoring system. After installation and test of this, radiation monitoring system will be expected to assist the successful ACP demonstration

  20. Process control of an HTGR fuel reprocessing cold pilot plant

    International Nuclear Information System (INIS)

    Rode, J.S.

    1976-10-01

    Development of engineering-scale systems for a large-scale HTGR fuel reprocessing demonstration facility is currently underway in a cold pilot plant. These systems include two fluidized-bed burners, which remove the graphite (carbon) matrix from the crushed HTGR fuel by high temperature (900 0 C) oxidation. The burners are controlled by a digital process controller with an all analog input/output interface which has been in use since March, 1976. The advantages of such a control system to a pilot plant operation can be summarized as follows: (1) Control loop functions and configurations can be changed easily; (2) control constants, alarm limits, output limits, and scaling constants can be changed easily; (3) calculation of data and/or interface with a computerized information retrieval system during operation are available; (4) diagnosis of process control problems is facilitated; and (5) control panel/room space is saved