WorldWideScience

Sample records for dissolved solids tds

  1. Estimation of Rivers Dissolved Solids TDS by Soft Computing (Case Study: Upstream of Boukan Dam

    Directory of Open Access Journals (Sweden)

    S. Zaman Zad Ghavidel

    2017-01-01

    Full Text Available Introduction: A total dissolved solid (TDS is an important indicator for water quality assessment. Since the composition of mineral salts and discharge affects the TDS of water, it is important to understand the relationship of mineral salts composition with TDS. Materials and Methods: In this study, methods of artificial neural networks with Levenberg-Marquardt training algorithm, adaptive neuro fuzzy inference system based on Subtractive Clustering and Gene expression programming were used to model water quality properties of Zarrineh River Basin at upstream of Boukan dam, to be developed in total dissolved solids prediction. ANN and ANFIS programs code were written using MATLAB programming language. Here, the ANN with one hidden layer was used and the hidden nodes’ number was determined using trial and error. Different activation functions (logarithm sigmoid, tangent sigmoid and linear were tried for the hidden and output nodes and the GeneXpro Tools 4.0 were used to obtain the equation of the best models. Therefore, water quality data from two hydrometer stations, namely Anyan and Safakhaneh hydrometer stations were used during the statistical period of 18 years (1389-1372. In this research, for selecting input variables to the data driven models the stepwise regression method was used. In the application, 75% of data set were used for training and the remaining, 25% of data set were used for testing, randomly. In this paper, three statistical evaluation criteria, correlation coefficient (R, the root mean square error (RMSE and mean absolute error (MAE, were used to assess model’s performances. Results and Discussion: By applying stepwise method, the first significant (at 95% level variable entered to the model was the HCO3. The second variable that entered to the model was Ca. The third and fourth ones were Na and Q respectively. Mg was finally entered to the model. The optimal ANN architecture used in this study consists of an input

  2. Measurement of total dissolved solids using electrical conductivity

    International Nuclear Information System (INIS)

    Ray, Vinod K.; Jat, J.R.; Reddy, G.B.; Balaji Rao, Y.; Phani Babu, C.; Kalyanakrishnan, G.

    2017-01-01

    Total dissolved solids (TDS) is an important parameter for the disposal of effluents generated during processing of different raw materials like Magnesium Di-uranate (MDU), Heat Treated Uranium Peroxide (HTUP), Sodium Di-uranate (SDU) in Uranium Extraction plant and Washed and Dried Frit (WDF) in Zirconium Extraction Plant. The present paper describes the use of electrical conductivity for determination of TDS. As electrical conductivity is matrix dependent property, matrix matched standards were prepared for determination of TDS in ammonium nitrate solution (AN) and mixture of ammonium nitrate and ammonium sulphate (AN/AS) and results were found to be in good agreement when compared with evaporation method. (author)

  3. COMMUNITY SCALE STREAM TAXA SENSITIVITIES TO DIFFERENT COMPOSITIONS OF EXCESS TOTAL DISSOLVED SOLIDS

    Science.gov (United States)

    Model stream chronic dosing studies (42 d) were conducted with three total dissolved solids (TDS) recipes. The recipes differed in composition of major ions. Community scale emergence was compared with single-species responses conducted simultaneously using the whole effluent tox...

  4. Correlation between conductivity and total dissolved solid in various type of water: A review

    Science.gov (United States)

    Rusydi, Anna F.

    2018-02-01

    Conductivity (EC) and total dissolved solids (TDS) are water quality parameters, which are used to describe salinity level. These two parameters are correlated and usually expressed by a simple equation: TDS = k EC (in 25 °C). The process of obtaining TDS from water sample is more complex than that of EC. Meanwhile, TDS analysis is very important because it can illustrate groundwater quality, particularly in understanding the effect of seawater intrusion better than EC analysis. These conditions make research in revealing TDS/EC ratios interesting to do. By finding the ratio value, TDS concentration can be measured easily from EC value. However, the ratio cannot be defined easily. Previous research results have found that the correlation between TDS and EC are not always linear. The ratio is not only strongly influenced by salinity contents, but also by materials contents. Furthermore, the analysis of TDS concentration from EC value can be used to give an overview of water quality. For more precision, TDS concentrations need to be analyzed using the gravimetric method in the laboratory.

  5. Forecasting models for flow and total dissolved solids in Karoun river-Iran

    Science.gov (United States)

    Salmani, Mohammad Hassan; Salmani Jajaei, Efat

    2016-04-01

    Water quality is one of the most important factors contributing to a healthy life. From the water quality management point of view, TDS (total dissolved solids) is the most important factor and many water developing plans have been implemented in recognition of this factor. However, these plans have not been perfect and very successful in overcoming the poor water quality problem, so there are a good volume of related studies in the literature. We study TDS and the water flow of the Karoun river in southwest Iran. We collected the necessary time series data from the Harmaleh station located in the river. We present two Univariate Seasonal Autoregressive Integrated Movement Average (ARIMA) models to forecast TDS and water flow in this river. Then, we build up a Transfer Function (TF) model to formulate the TDS as a function of water flow volume. A performance comparison between the Seasonal ARIMA and the TF models are presented.

  6. Bench-Scale and Pilot-Scale Treatment Technologies for the Removal of Total Dissolved Solids from Coal Mine Water: A Review

    Science.gov (United States)

    Coal mine water (CMW) is typically treated to remove suspended solids, acidity, and soluble metals, but high concentrations of total dissolved solids (TDS) have been reported to impact the environment at several CMW discharge points. Consequently, various states have establishe...

  7. Methodology to quantify the role of the factors controlling the variation of rivers' total dissolved solids in Jiu Catchment (Romania)

    Science.gov (United States)

    Adina Morosanu, Gabriela; Zaharia, Liliana; Ioana-Toroimac, Gabriela; Belleudy, Philippe

    2017-04-01

    The total dissolved solids (TDS) is a river water quality parameter reflecting its concentration in solute ions. It is sensitive to many physical and anthropogenic features of the watershed. In this context, the objective of this work is to analyze the spatial variation of the TDS and to identify the role of the main controlling factors (e.g. geology, soils, land use) in Jiu River and some of its main tributaries, by using a methodology based on GIS and multivariate analysis. The Jiu watershed (10,000 kmp) is located in south-western Romania and it has a high diversity of physical and anthropogenic features influencing the water flow and its quality. The study is based on TDS measurements performed in August, 2016, during low flow conditions in the Jiu River and its tributaries. To measure in situ the TDS (ppm), an EC/TDS/Temperature Hand-held Tester was used in the 12 measuring points on Jiu River and in another 7 points on some of its tributaries. Across the hydrographic basin, the recorded TDS values ranged from 31 ppm to 607 ppm, while in the case of Jiu River, the TDS varied between 38 ppm at Lonea station (upper Jiu River) and 314 ppm at Išalniča (in the lower course). For each catchment corresponding to the sampling points, the influence of some contiguous features was defined on the basis of the lithology (marls, limestones, erodible bedrocks) and soils (clay textures), as well as the land cover/use influencing the solubility and solid content. This assessment was carried out in GIS through a set of spatial statistics analysis by calculating the percentages of the catchment coverage area for each determinant. In order to identify the contributions of different catchment features on the TDS variability, principal components analysis (PCA) was then applied. The results revealed the major role of the marls and clayey soils in the increase of TDS (on the Amaradia and Gilort rivers and some sections in the middle course of the Jiu River). In contrast

  8. Response surface modeling for optimization heterocatalytic Fenton oxidation of persistence organic pollution in high total dissolved solid containing wastewater.

    Science.gov (United States)

    Sekaran, G; Karthikeyan, S; Boopathy, R; Maharaja, P; Gupta, V K; Anandan, C

    2014-01-01

    The rice-husk-based mesoporous activated carbon (MAC) used in this study was precarbonized and activated using phosphoric acid. N2 adsorption/desorption isotherm, X-ray powder diffraction, electron spin resonance, X-ray photoelectron spectroscopy and scanning electron microscopy, transmission electron microscopy, (29)Si-NMR spectroscopy, and diffuse reflectance spectroscopy were used to characterize the MAC. The tannery wastewater carrying high total dissolved solids (TDS) discharged from leather industry lacks biodegradability despite the presence of dissolved protein. This paper demonstrates the application of free electron-rich MAC as heterogeneous catalyst along with Fenton reagent for the oxidation of persistence organic compounds in high TDS wastewater. The heterogeneous Fenton oxidation of the pretreated wastewater at optimum pH (3.5), H2O2 (4 mmol/L), FeSO4[Symbol: see text]7H2O (0.2 mmol/L), and time (4 h) removed chemical oxygen demand, biochemical oxygen demand, total organic carbon and dissolved protein by 86, 91, 83, and 90%, respectively.

  9. Geographical differences in the relationship between total dissolved ...

    African Journals Online (AJOL)

    on the Department of Water Affairs water quality database. ... Keywords: conversion factors, electrical conductivity, field instruments, rivers, total dissolved solids, water quality ... of a number of TDS:EC ratios in samples where both measure-.

  10. Solid state modulator for klystron power supply XFEL TDS INJ

    Science.gov (United States)

    Zavadtsev, A. A.; Zavadtsev, D. A.; Zybin, D. A.; Churanov, D. V.; Shemarykin, P. V.

    2016-09-01

    The transverse deflecting system XFEL TDS INJ for European X-ray Free Electron Laser includes power supply for the CPI VKS-8262HS klystron. It has been designed for pulse high-voltage, cathode heating, solenoid and klystron ion pump. The klystron power supply includes solid state modulator, pulse transformer, controlled power supply for cathode heating and commercial power supplies for solenoid and ion pump. Main parameters of the modulator are 110 kV of peak voltage, 72 A peak current, and pulse length up to 6 μs. The klystron power supply has been developed, designed, manufactured, tuned, tested and installed in the XFEL building. All designed parameters are satisfied.

  11. Design and Implementation of Remotely Monitoring System for Total Dissolved Solid in Baghdad Drinking Water Networks

    Directory of Open Access Journals (Sweden)

    Hussein Abdul-Ridha Mohammed

    2018-01-01

    Full Text Available he pollution of drinking water is a dangerous problem for the whole world, it can threaten the health of people and as people in developed society attaches more importance to environmental protection, it is of great research significance to intelligently and remotely monitoring the environment. Therefore in this paper, a remote water monitoring system for Baghdad drinking water system is suggested. The proposed system consists of data sensing and monitoring nodes at different locations in Baghdad to sensing and analyzes the data. These nodes are periodically measured Total Dissolved Solids (TDS. In case of measured value above TDS threshold which is 500 ppm, then an automated warning message will be sent to authorize persons in the maintenance center via Global Position System to take the correct action. This suggested structure has several advantages over traditional monitoring systems in terms of price, portability, reliability, applicability and takes a sample from a water tap in easy and real-time approach.

  12. Annual and seasonal variation of turbidity, total dissolved solids, nitrate and nitrite in the Parsabad water treatment plant, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Zare

    2013-01-01

    Full Text Available Aims: This study investigated the annual and seasonal variation of turbidity; total dissolved solid (TDS, nitrate and nitrite in Parsabad water treatment plant (WTP, Iran. Materials and Methods: The water samples were obtained from the inlet and outlet of Parsabad WTP from February 2002 to June 2009. The samples′ turbidity, TDS, nitrate, nitrite, pH, and temperature were measured according to standard methods once a month and the average of these parameters were calculated for each season of year. Results: The maximum concentration of inlet turbidity, TDS, nitrate and nitrite were 691, 700.5, 25, and 0.17 mg/l, respectively. These parameters for outlet samples in the study period were 3.0, 696.7, 18, and 0.06 mg/l, respectively. While these concentrations in outlet zone were lower than World Health Organization (WHO or United States Environmental Protection Agency (US-EPA water quality guidelines, WTP could not reduce the TDS, nitrate, nitrite and pH value and these parameters were not different in the inlet and outlet samples. However, the WTP reduced the turbidity significantly with an efficiency of up to 85%. Conclusion: This study showed that a common WTP with rapid sand filtration can treat a maximum river turbidity of 700 NTU in several years. As no differences were observed between inlet and outlet TDS, nitrate, nitrite and pH in the studied WTP. It can be concluded that compensatory schemes should be predicted for modification of these parameters when they exceed the standards in the emergency situations.

  13. Control options for river water improvement: a case study of TDS and inorganic nitrogen in the Crocodile river (South Africa)

    CSIR Research Space (South Africa)

    Deksissa, T

    2003-03-01

    Full Text Available for the evaluation of short-term (monthly) basin-wide water quality management options. Keywords: Dynamic model; flow regulation; water quality management; tank in series model Introduction As the demand for water increases in line with human population pressure... flows can cause accelerated sedimentation and increases total dissolved solids (TDS) concen- trations in downstream reaches of the river (Qader, 1998; Mokhlesur et al., 2000). Many other studies have also shown that extremely low flows can have...

  14. Removal of Dissolved Salts and Particulate Contaminants from Seawater: Village Marine Tec., Expeditionary Unit Water Purifier, Generation 1

    Science.gov (United States)

    The EUWP was developed to treat challenging water sources with variable turbidity, chemical contamination, and very high total dissolved solids (TDS), including seawater, during emergency situations when other water treatment facilities are incapacitated. The EUWP components incl...

  15. Analyzing Solutions High in Total Dissolved Solids for Rare Earth Elements (REEs) Using Cation Exchange and Online Pre-Concentration with the seaFAST2 Unit; NETL-TRS-7-2017; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Albany, OR, 2017; p 32

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J. [National Energy Technology Lab. (NETL), Albany, OR (United States); Oregon State Univ., Corvallis, OR (United States). College of Earth, Ocean, and Atmospheric Science; Torres, M. [Oregon State Univ., Corvallis, OR (United States). College of Earth, Ocean, and Atmospheric Science; Verba, C. [National Energy Technology Lab. (NETL), Albany, OR (United States); Oregon State Univ., Corvallis, OR (United States); Hakala, A. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2017-08-01

    The accurate quantification of the rare earth element (REE) dissolved concentrations in natural waters are often inhibited by their low abundances in relation to other dissolved constituents such as alkali, alkaline earth elements, and dissolved solids. The high abundance of these constituents can suppress the overall analytical signal as well as create isobaric interferences on the REEs during analysis. Waters associated with natural gas operations on black shale plays are characterized by high salinities and high total dissolved solids (TDS) contents >150,000 mg/L. Methods used to isolate and quantify dissolved REEs in seawater were adapted in order to develop the capability of analyzing REEs in waters that are high in TDS. First, a synthetic fluid based on geochemical modelling of natural brine formation fluids was created within the Marcellus black shale with a TDS loading of 153,000 mg/L. To this solution, 1,000 ng/mL of REE standards was added based on preliminary analyses of experimental fluids reacted at high pressure and temperature with Marcellus black shale. These synthetic fluids were then run at three different dilution levels of 10, 100, and 1,000–fold dilutions through cation exchange columns using AG50-X8 exchange resin from Eichrom Industries. The eluent from the cation columns were then sent through a seaFAST2 unit directly connected to an inductively coupled plasma mass spectrometer (ICP-MS) to analyze the REEs. Percent recoveries of the REEs ranged from 80–110% and fell within error for the external reference standard used and no signal suppression or isobaric interferences on the REEs were observed. These results demonstrate that a combined use of cation exchange columns and seaFAST2 instrumentation are effective in accurately quantifying the dissolved REEs in fluids that are >150,000 mg/L in TDS and have Ba:Eu ratios in excess of 380,000.

  16. Trends in concentrations of nitrate and total dissolved solids in public supply wells of the Bunker Hill, Lytle, Rialto, and Colton groundwater subbasins, San Bernardino County, California: Influence of legacy land use

    Science.gov (United States)

    Kent, Robert; Landon, Matthew K.

    2013-01-01

    Concentrations and temporal changes in concentrations of nitrate and total dissolved solids (TDS) in groundwater of the Bunker Hill, Lytle, Rialto, and Colton groundwater subbasins of the Upper Santa Ana Valley Groundwater Basin were evaluated to identify trends and factors that may be affecting trends. One hundred, thirty-one public-supply wells were selected for analysis based on the availability of data spanning at least 11 years between the late 1980s and the 2000s. Forty-one of the 131 wells (31%) had a significant (p relations of nitrate trends to depth, lateral position, and VOCs imply that increasing nitrate concentrations are associated with nitrate loading from historical agricultural land use and that more recent urban land use is generally associated with lower nitrate concentrations and greater VOC occurrence. Increasing TDS trends were associated with relatively greater current nitrate concentrations and relatively greater amounts of urban land. Decreasing TDS trends were associated with relatively greater amounts of natural land use. Trends in TDS concentrations were not related to depth, lateral position, or VOC occurrence, reflecting more complex factors affecting TDS than nitrate in the study area.

  17. Interference of dissolved salts in Cerenkov and liquid scintillation estimation of 90Sr

    International Nuclear Information System (INIS)

    Pulhani, Vandana; Jha, S.K.; Tripathi, R.M.; Reddy, Priyanka; Bhade, Sonali

    2014-01-01

    Quenching is the most important effect occurring in Cerenkov and LSC because it affects the efficiency of conversion of β particles into light. Bore well water samples are very often concentrated by evaporation to reduce the detection limit which can also increase the dissolved solid content (TDS) in the sample. Some ground waters are inherently having higher TDS. Self-absorption of beta-particle radiation by the sample especially the lower-energy beta particles depends on sample thickness and density. Environmental samples, after applying the radiochemical procedure, are also estimated by Cerenkov/LSC and might be affected by colour quenching. To get best measurements using Liquid Scintillation and Cerenkov radiations, it is necessary to avoid high salt concentrations and colors which may weaken energy transfers within scintillator cocktails and sample medium. Therefore the degree of self-absorption and quench should be evaluated and taken into account in the calibration. Efficiency is represented as a function spectral quench parameter of external standard SQP(E). The quenching effect of dissolved solids on the efficiency of estimation of 90 Sr by Cerenkov and Liquid Scintillation are studied

  18. Methodology Measuring Rare Earth Elements in High TDS Reservoir Brines Application as Natural Tracers in CCUS Studies

    Science.gov (United States)

    Smith, W.; Mcling, T. L.; Smith, R. W.; Neupane, H.

    2013-12-01

    In recent years rare earth elements (REE) have been demonstrated to be useful natural tracers for geochemical processes in aqueous environments. The application of REE's to carbon dioxide utilization and storage (CCUS) could provide researchers with a sensitive, inexpensive tool for tracking the movement of CO2 and displaced formation brines. By definition, geologic reservoirs that have been deemed suitable for carbon capture and storage contain formation brine with total dissolved solids (TDS) greater than 10,000 ppm and often these formation brines exceed 75,000 ppm TDS. This high TDS water makes it very difficult to measure REE, which typically occur at part per trillion concentrations. Critical to the use of REE for CCUS studies is the development of a procedure, which allows for the pre-concentration of REE's across a wide range of water quality. Additionally, due to the large number of samples that will need analysis, any developed procedure must be inexpensive, reproducible, and quick to implement. As part of the Big Sky Carbon Sequestration Project the INL's Center for Advance Energy Studies is developing REE pre-concentration procedures based on methods reported in the literature. While there are many REE pre-concentration procedures in the literature, our tests have shown these methods have difficulty at TDS greater than seawater (roughly 35,000 ppm TDS). Therefore, the ability to quantitatively measure REE's in formation brines with very high TDS has required the modification of an already developed procedure. After careful consideration and testing we selected methods modified after those described by Kingston et al., 1978 and Strachan et al., 1989 utilizing chelating media for very high TDS waters and ion-exchange media as detailed by Crock et al., 1984; Robinson et al., 1985; and Stetzenbach et al., 1994 for low TDS (tested in our laboratory and have proven effective in greatly reducing interfering monovalent and divalent cation concentrations (e

  19. Cost Effective Recovery of Low-TDS Frac Flowback Water for Re-use

    Energy Technology Data Exchange (ETDEWEB)

    Claire Henderson; Harish Acharya; Hope Matis; Hareesh Kommepalli; Brian Moore; Hua Wang

    2011-03-31

    The project goal was to develop a cost-effective water recovery process to reduce the costs and envi-ronmental impact of shale gas production. This effort sought to develop both a flowback water pre-treatment process and a membrane-based partial demineralization process for the treatment of the low-Total Dissolved Solids (TDS) portion of the flowback water produced during hydrofracturing operations. The TDS cutoff for consideration in this project is < 35,000 {approx} 45,000 ppm, which is the typical limit for economic water recovery employing reverse osmosis (RO) type membrane desalination processes. The ultimate objective is the production of clean, reclaimed water suitable for re-use in hydrofracturing operations. The team successfully compiled data on flowback composition and other attributes across multiple shale plays, identified the likely applicability of membrane treatment processes in those shales, and expanded the proposed product portfolio to include four options suitable for various reuse or discharge applications. Pretreatment technologies were evaluated at the lab scale and down-selected based upon their efficacy in removing key contaminants. The chosen technologies were further validated by performing membrane fouling studies with treated flowback water to demonstrate the technical feasibility of flowback treatment with RO membranes. Process flow schemes were constructed for each of the four product options based on experimental performance data from actual flowback water treatment studies. For the products requiring membrane treatment, membrane system model-ing software was used to create designs for enhanced water recovery beyond the typical seawater desalination benchmark. System costs based upon vendor and internal cost information for all process flow schemes were generated and are below target and in line with customer expectations. Finally, to account for temporal and geographic variability in flowback characteristics as well as local

  20. Amazon River dissolved load: temporal dynamics and annual budget from the Andes to the ocean.

    Science.gov (United States)

    Moquet, Jean-Sébastien; Guyot, Jean-Loup; Crave, Alain; Viers, Jérôme; Filizola, Naziano; Martinez, Jean-Michel; Oliveira, Tereza Cristina; Sánchez, Liz Stefanny Hidalgo; Lagane, Christelle; Casimiro, Waldo Sven Lavado; Noriega, Luis; Pombosa, Rodrigo

    2016-06-01

    The aim of the present study is to estimate the export fluxes of major dissolved species at the scale of the Amazon basin, to identify the main parameters controlling their spatial distribution and to identify the role of discharge variability in the variability of the total dissolved solid (TDS) flux through the hydrological cycle. Data are compiled from the monthly hydrochemistry and daily discharge database of the "Programa Climatologico y Hidrologico de la Cuenca Amazonica de Bolivia" (PHICAB) and the HYBAM observatories from 34 stations distributed over the Amazon basin (for the 1983-1992 and 2000-2012 periods, respectively). This paper consists of a first global observation of the fluxes and temporal dynamics of each geomorphological domain of the Amazon basin. Based on mean interannual monthly flux calculations, we estimated that the Amazon basin delivered approximately 272 × 10(6) t year(-1) (263-278) of TDS during the 2003-2012 period, which represents approximately 7 % of the continental inputs to the oceans. This flux is mainly made up by HCO3, Ca and SiO2, reflecting the preferential contributions of carbonate and silicate chemical weathering to the Amazon River Basin. The main tributaries contributing to the TDS flux are the Marañon and Ucayali Rivers (approximately 50 % of the TDS production over 14 % of the Amazon basin area) due to the weathering of carbonates and evaporites drained by their Andean tributaries. An Andes-sedimentary area-shield TDS flux (and specific flux) gradient is observed throughout the basin and is first explained by the TDS concentration contrast between these domains, rather than variability in runoff. This observation highlights that, under tropical context, the weathering flux repartition is primarily controlled by the geomorphological/geological setting and confirms that sedimentary areas are currently active in terms of the production of dissolved load. The log relationships of concentration vs discharge have

  1. Thioaptamer Diagnostic System (TDS)

    Science.gov (United States)

    Yang, Xianbin

    2015-01-01

    AM Biotechnologies, LLC, in partnership with Sandia National Laboratories, has developed a diagnostic device that quickly detects sampled biomarkers. The TDS quickly quantifies clinically relevant biomarkers using only microliters of a single sample. The system combines ambient-stable, long shelf-life affinity assays with handheld, microfluidic gel electrophoresis affinity assay quantification technology. The TDS is easy to use, operates in microgravity, and permits simultaneous quantification of 32 biomarkers. In Phase I of the project, the partners demonstrated that a thioaptamer assay used in the microfluidic instrument could quantify a specific biomarker in serum in the low nanomolar range. The team also identified novel affinity agents to bone-specific alkaline phosphatase (BAP) and demonstrated their ability to detect BAP with the microfluidic instrument. In Phase II, AM Biotech expanded the number of ambient affinity agents and demonstrated a TDS prototype. In the long term, the clinical version of the TDS will provide a robust, flight-tested diagnostic capability for space exploration missions.

  2. Trends in concentrations of nitrate and total dissolved solids in public supply wells of the Bunker Hill, Lytle, Rialto, and Colton groundwater subbasins, San Bernardino County, California: influence of legacy land use.

    Science.gov (United States)

    Kent, Robert; Landon, Matthew K

    2013-05-01

    Concentrations and temporal changes in concentrations of nitrate and total dissolved solids (TDS) in groundwater of the Bunker Hill, Lytle, Rialto, and Colton groundwater subbasins of the Upper Santa Ana Valley Groundwater Basin were evaluated to identify trends and factors that may be affecting trends. One hundred, thirty-one public-supply wells were selected for analysis based on the availability of data spanning at least 11 years between the late 1980s and the 2000s. Forty-one of the 131 wells (31%) had a significant (p<0.10) increase in nitrate and 14 wells (11%) had a significant decrease in nitrate. For TDS, 46 wells (35%) had a significant increase and 8 wells (6%) had a significant decrease. Slopes for the observed significant trends ranged from -0.44 to 0.91 mg/L/yr for nitrate (as N) and -8 to 13 mg/L/yr for TDS. Increasing nitrate trends were associated with greater well depth, higher percentage of agricultural land use, and being closer to the distal end of the flow system. Decreasing nitrate trends were associated with the occurrence of volatile organic compounds (VOCs); VOC occurrence decreases with increasing depth. The relations of nitrate trends to depth, lateral position, and VOCs imply that increasing nitrate concentrations are associated with nitrate loading from historical agricultural land use and that more recent urban land use is generally associated with lower nitrate concentrations and greater VOC occurrence. Increasing TDS trends were associated with relatively greater current nitrate concentrations and relatively greater amounts of urban land. Decreasing TDS trends were associated with relatively greater amounts of natural land use. Trends in TDS concentrations were not related to depth, lateral position, or VOC occurrence, reflecting more complex factors affecting TDS than nitrate in the study area. Published by Elsevier B.V.

  3. Characterization of dissolved solids in water resources of agricultural lands near Manila, Utah, 2004-05

    Science.gov (United States)

    Gerner, Steven J.; Spangler, L.E.; Kimball, B.A.; Naftz, D.L.

    2006-01-01

    Agricultural lands near Manila, Utah, have been identified as contributing dissolved solids to Flaming Gorge Reservoir. Concentrations of dissolved solids in water resources of agricultural lands near Manila, Utah, ranged from 35 to 7,410 milligrams per liter. The dissolved-solids load in seeps and drains in the study area that discharge to Flaming Gorge Reservoir ranged from less than 0.1 to 113 tons per day. The most substantial source of dissolved solids discharging from the study area to the reservoir was Birch Spring Draw. The mean daily dissolved-solids load near the mouth of Birch Spring Draw was 65 tons per day.The estimated annual dissolved-solids load imported to the study area by Sheep Creek and Peoples Canals is 1,330 and 13,200 tons, respectively. Daily dissolved-solid loads discharging to the reservoir from the study area, less the amount of dissolved solids imported by canals, for the period July 1, 2004, to June 30, 2005, ranged from 72 to 241 tons per day with a mean of 110 tons per day. The estimated annual dissolved-solids load discharging to the reservoir from the study area, less the amount of dissolved solids imported by canals, for the same period was 40,200 tons. Of this 40,200 tons of dissolved solids, about 9,000 tons may be from a regional source that is not associated with agricultural activities. The salt-loading factor is 3,670 milligrams per liter or about 5.0 tons of dissolved solids per acre-foot of deep percolation in Lucerne Valley and 1,620 milligrams per liter or 2.2 tons per acre-foot in South Valley.The variation of δ87Sr with strontium concentration indicates some general patterns that help to define a conceptual model of the processes affecting the concentration of strontium and the δ87Sr isotopic ratio in area waters. As excess irrigation water percolates through soils derived from Mancos Shale, the δ87Sr isotopic ratio (0.21 to 0.69 permil) approaches one that is typical of deep percolation from irrigation on Mancos

  4. The role of baseflow in dissolved solids delivery to streams in the Upper Colorado River Basin

    Science.gov (United States)

    Rumsey, C.; Miller, M. P.; Schwarz, G. E.; Susong, D.

    2017-12-01

    Salinity has a major effect on water users in the Colorado River Basin, estimated to cause almost $300 million per year in economic damages. The Colorado River Basin Salinity Control Program implements and manages projects to reduce salinity (dissolved solids) loads, investing millions of dollars per year in irrigation upgrades, canal projects, and other mitigation strategies. To inform and improve mitigation efforts, there is a need to better understand sources of salinity to streams and how salinity has changed over time. This study explores salinity in baseflow, or groundwater discharge to streams, to assess whether groundwater is a significant contributor of dissolved solids to streams in the Upper Colorado River Basin (UCRB). Chemical hydrograph separation was used to estimate long-term mean annual baseflow discharge and baseflow dissolved solids loads at stream gages (n=69) across the UCRB. On average, it is estimated that 89% of dissolved solids loads originate from the baseflow fraction of streamflow. Additionally, a statistical trend analysis using weighted regressions on time, discharge, and season was used to evaluate changes in baseflow dissolved solids loads in streams with data from 1987 to 2011 (n=29). About two-thirds (62%) of these streams showed statistically significant decreasing trends in baseflow dissolved solids loads. At the two most downstream sites, Green River at Green River, UT and Colorado River at Cisco, UT, baseflow dissolved solids loads decreased by a combined 780,000 metric tons, which is approximately 65% of the estimated basin-scale decrease in total dissolved solids loads in the UCRB attributed to salinity control efforts. Results indicate that groundwater discharged to streams, and therefore subsurface transport processes, play a large role in delivering dissolved solids to streams in the UCRB. Decreasing trends in baseflow dissolved solids loads suggest that salinity mitigation projects, changes in land use, and/or climate are

  5. Modeling Dissolved Solids in the Rincon Valley, New Mexico Using RiverWare

    Science.gov (United States)

    Abudu, S.; Ahn, S. R.; Sheng, Z.

    2017-12-01

    Simulating transport and storage of dissolved solids in surface water and underlying alluvial aquifer is essential to evaluate the impacts of surface water operations, groundwater pumping, and climate variability on the spatial and temporal variability of salinity in the Rio Grande Basin. In this study, we developed a monthly RiverWare water quantity and quality model to simulate the both concentration and loads of dissolved solids for the Rincon Valley, New Mexico from Caballo Reservoir to Leasburg Dam segment of the Rio Grande. The measured flows, concentration and loads of dissolved solids in the main stream and drains were used to develop RiveWare model using 1980-1988 data for calibration, and 1989-1995 data for validation. The transport of salt is tracked using discretized salt and post-process approaches. Flow and salt exchange between the surface water and adjacent groundwater objects is computed using "soil moisture salt with supplemental flow" method in the RiverWare. In the groundwater objects, the "layered salt" method is used to simulate concentration of the dissolved solids in the shallow groundwater storage. In addition, the estimated local inflows under different weather conditions by using a calibrated Soil Water Assessment Tool (SWAT) were fed into the RiverWare to refine the simulation of the flow and dissolved solids. The results show the salt concentration and loads increased at Leasburg Dam, which indicates the river collects salts from the agricultural return flow and the underlying aquifer. The RiverWare model with the local inflow fed by SWAT delivered the better quantification of temporal and spatial salt exchange patterns between the river and the underlying aquifer. The results from the proposed modeling approach can be used to refine the current mass-balance budgets for dissolved-solids transport in the Rio Grande, and provide guidelines for planning and decision-making to control salinity in arid river environment.

  6. Simulated effects of surface coal mining and agriculture on dissolved solids in the Redwater River, east-central Montana

    Science.gov (United States)

    Ferreira, R.F.; Lambing, J.H.

    1985-01-01

    Dissolved solids concentrations in five reaches of the Redwater River in east-central Montana were simulated to evaluate the effects of surface coal mining and agriculture. A mass-balance model of streamflow and dissolved solids load developed for the Tongue River in southeastern Montana was modified and applied to the Redwater River. Mined acreages, dissolved solids concentrations in mined spoils, and irrigated acreage can be varied in the model to study relative changes in the dissolved solids concentration in consecutive reaches of the river. Because of extreme variability and a limited amount of data, the model was not consecutively validated. Simulated mean and median monthly mean streamflows and consistently larger than those calculated from streamflow records. Simulated mean and median monthly mean dissolved solids loads also are consistently larger than regression-derived values. These discrepancies probably result from extremely variable streamflow, overestimates of streamflow from ungaged tributaries, and weak correlations between streamflow and dissolved solids concentrations. The largest increases in simulated dissolved solids concentrations from mining and agriculture occur from September through January because of smaller streamflows and dissolved solids loads. Different combinations of agriculture and mining under mean flow conditions resulted in cumulative percentage increases of dissolved solids concentrations of less than 5% for mining and less than 2% for agriculture. (USGS)

  7. Dissolved helium and TDS in groundwater from Bhavnagar in Gujarat

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    2003-01-02

    Jan 2, 2003 ... by enhanced pumping of old groundwater with relatively higher concentration of dissolved helium and salt .... solubility changes due to these (Weiss 1971) can- ... aquifers and relatively low helium concentra- .... permeability.

  8. an approach to estimate total dissolved solids in groundwater using

    African Journals Online (AJOL)

    resistivities of the aquifer delineated were subsequently used to estimate TDS in groundwater which was correlated with those ... the concentrations of these chemical constituents in the ..... TDS determined by water analysis varied between 17.

  9. Specific Conductance and Dissolved-Solids Characteristics for the Green River and Muddy Creek, Wyoming, Water Years 1999-2008

    Science.gov (United States)

    Clark, Melanie L.; Davidson, Seth L.

    2009-01-01

    Southwestern Wyoming is an area of diverse scenery, wildlife, and natural resources that is actively undergoing energy development. The U.S. Department of the Interior's Wyoming Landscape Conservation Initiative is a long-term science-based effort to assess and enhance aquatic and terrestrial habitats at a landscape scale, while facilitating responsible energy development through local collaboration and partnerships. Water-quality monitoring has been conducted by the U.S. Geological Survey on the Green River near Green River, Wyoming, and Muddy Creek near Baggs, Wyoming. This monitoring, which is being conducted in cooperation with State and other Federal agencies and as part of the Wyoming Landscape Conservation Initiative, is in response to concerns about potentially increased dissolved solids in the Colorado River Basin as a result of energy development. Because of the need to provide real-time dissolved-solids concentrations for the Green River and Muddy Creek on the World Wide Web, the U.S. Geological Survey developed regression equations to estimate dissolved-solids concentrations on the basis of continuous specific conductance using relations between measured specific conductance and dissolved-solids concentrations. Specific conductance and dissolved-solids concentrations were less varied and generally lower for the Green River than for Muddy Creek. The median dissolved-solids concentration for the site on the Green River was 318 milligrams per liter, and the median concentration for the site on Muddy Creek was 943 milligrams per liter. Dissolved-solids concentrations ranged from 187 to 594 milligrams per liter in samples collected from the Green River during water years 1999-2008. Dissolved-solids concentrations ranged from 293 to 2,485 milligrams per liter in samples collected from Muddy Creek during water years 2006-08. The differences in dissolved-solids concentrations in samples collected from the Green River compared to samples collected from Muddy

  10. Modeled Sources, Transport, and Accumulation of Dissolved Solids in Water Resources of the Southwestern United States.

    Science.gov (United States)

    Anning, David W

    2011-10-01

    Information on important source areas for dissolved solids in streams of the southwestern United States, the relative share of deliveries of dissolved solids to streams from natural and human sources, and the potential for salt accumulation in soil or groundwater was developed using a SPAtially Referenced Regressions On Watershed attributes model. Predicted area-normalized reach-catchment delivery rates of dissolved solids to streams ranged from Salton Sea accounting unit.

  11. Bench-Scale and Pilot-Scale Treatment Technologies for the ...

    Science.gov (United States)

    Coal mine water (CMW) is typically treated to remove suspended solids, acidity, and soluble metals, but high concentrations of total dissolved solids (TDS) have been reported to impact the environment at several CMW discharge points. Consequently, various states have established TDS wastewater regulations and the US EPA has proposed a benchmark conductivity limit to reduce TDS impacts in streams near mining sites. Traditional CMW treatment effectively removes some TDS components, but is not effective in removing major salt ions due to their higher solubility. This paper describes the basic principles, effectiveness, advantages and disadvantages of various TDS removal technologies (adsorption, bioremediation, capacitive deionization, desalination, electro-chemical ion exchange, electrocoagulation, electrodialysis, ion exchange, membrane filtration, precipitation, and reverse osmosis) that have at least been tested in bench- and pilot-scale experiments. Recent discussions about new regulations to include total dissolved solids TDS) limits would propel interest in the TDS removal technologies focused on coal mine water. TDS removal is not a new concept and has been developed using different technologies for a number of applications, but coal mine water has unique characteristics (depending on the site, mining process, and solid-water-oxygen interactions), which make it unlikely to have a single technology predominating over others. What are some novel technolog

  12. Effects of electrolyte total dissolved solids (TDS) on performance ...

    African Journals Online (AJOL)

    use

    2011-10-24

    Oct 24, 2011 ... microbial desalination cells; rRNA, ribosomal ribonucleic acid;. NCBI, national center for biotechnology information. microbial fuel cells (MFC) technology provides a new way to saline wastewater treatment. MFCs are bio-electro- chemical reactors which are different from traditional anaerobic biological ...

  13. Ion exchange and trace element surface complexation reactions associated with applied recharge of low-TDS water in the San Joaquin Valley, California

    International Nuclear Information System (INIS)

    McNab, Walt W.; Singleton, Michael J.; Moran, Jean E.; Esser, Bradley K.

    2009-01-01

    Stable isotope data, a dissolved gas tracer study, groundwater age dating, and geochemical modeling were used to identify and characterize the effects of introducing low-TDS recharge water in a shallow aerobic aquifer affected by a managed aquifer recharge project in California's San Joaquin Valley. The data all consistently point to a substantial degree of mixing of recharge water from surface ponds with ambient groundwater in a number of nearby wells screened at depths above 60 m below ground surface. Groundwater age data indicate that the wells near the recharge ponds sample recently recharged water, as delineated by stable O and C isotope data as well as total dissolved solids, in addition to much older groundwater in various mixing proportions. Where the recharge water signature is present, the specific geochemical interactions between the recharge water and the aquifer material appear to include ion exchange reactions (comparative enrichment of affected groundwater with Na and K at the expense of Ca and Mg) and the desorption of oxyanion-forming trace elements (As, V, and Mo), possibly in response to the elevated pH of the recharge water

  14. Application of regression model on stream water quality parameters

    International Nuclear Information System (INIS)

    Suleman, M.; Maqbool, F.; Malik, A.H.; Bhatti, Z.A.

    2012-01-01

    Statistical analysis was conducted to evaluate the effect of solid waste leachate from the open solid waste dumping site of Salhad on the stream water quality. Five sites were selected along the stream. Two sites were selected prior to mixing of leachate with the surface water. One was of leachate and other two sites were affected with leachate. Samples were analyzed for pH, water temperature, electrical conductivity (EC), total dissolved solids (TDS), Biological oxygen demand (BOD), chemical oxygen demand (COD), dissolved oxygen (DO) and total bacterial load (TBL). In this study correlation coefficient r among different water quality parameters of various sites were calculated by using Pearson model and then average of each correlation between two parameters were also calculated, which shows TDS and EC and pH and BOD have significantly increasing r value, while temperature and TDS, temp and EC, DO and BL, DO and COD have decreasing r value. Single factor ANOVA at 5% level of significance was used which shows EC, TDS, TCL and COD were significantly differ among various sites. By the application of these two statistical approaches TDS and EC shows strongly positive correlation because the ions from the dissolved solids in water influence the ability of that water to conduct an electrical current. These two parameters significantly vary among 5 sites which are further confirmed by using linear regression. (author)

  15. Dissolved-solids sources, loads, yields, and concentrations in streams of the conterminous United States

    Science.gov (United States)

    Anning, David W.; Flynn, Marilyn E.

    2014-01-01

    Recent studies have shown that excessive dissolved-solids concentrations in water can have adverse effects on the environment and on agricultural, domestic, municipal, and industrial water users. Such effects motivated the U.S. Geological Survey’s National Water Quality Assessment Program to develop a SPAtially-Referenced Regression on Watershed Attributes (SPARROW) model that has improved the understanding of sources, loads, yields, and concentrations of dissolved solids in streams of the conterminous United States.

  16. Drinking water quality assessment of Iyinna Spring, Umuariaga ...

    African Journals Online (AJOL)

    The following parameters: pH, electrical conductivity, total dissolved solids (TDS), total suspended solids (TSS), nitrate, sulphate, hardness and chloride were evaluated. The study showed that four of the parameters (pH, electrical conductivity, total dissolved solids and nitrate) were significantly different among the stations ...

  17. Inter-relationship between major ions, total dissolved solids and ...

    African Journals Online (AJOL)

    Sulphate and magnesium concentrations were highest in station 7 while other parameters (potassium, chloride, calcium, alkalinity, conductivity and total dissolved solids (T. D. S.)) were highest in station 6. The ponds belong to class 1 of the African waters since they all have electrical conductance of less than 600 s cm-1.

  18. Water resources and effects of potential surface coal mining on dissolved solids in Hanging Woman Creek basin, southeastern Montana

    Science.gov (United States)

    Cannon, M.R.

    1989-01-01

    Groundwater resources of the Hanging Woman Creek basin, Montana include Holocene and Pleistocene alluvial aquifers and sandstone , coal, and clinker aquifers in the Paleocene Fort Union Formation. Surface water resources are composed of Hanging Woman Creek, its tributaries, and small stock ponds. Dissolved-solids concentrations in groundwater ranged from 200 to 11,00 mg/L. Generally, concentrations were largest in alluvial aquifers and smallest in clinker aquifers. Near its mouth, Hanging Woman Creek had a median concentration of about 1,800 mg/L. Mining of the 20-foot to 35-foot-thick Anderson coal bed and 3-foot to 16-foot thick Dietz coal bed could increase dissolved-solids concentrations in shallow aquifers and in Hanging Woman Creek because of leaching of soluble minerals from mine spoils. Analysis of saturated-paste extracts from 158 overburden samples indicated that water moving through mine spoils would have a median increase in dissolved-solids concentration of about 3,700 mg/L, resulting in an additional dissolved-solids load to Hanging Woman Creek of about 3.0 tons/day. Hanging Woman Creek near Birney could have an annual post-mining dissolved-solids load of 3,415 tons at median discharge, a 47% increase from pre-mining conditions load. Post-mining concentrations of dissolved solids, at median discharge, could range from 2,380 mg/L in March to 3,940 mg/L in August, compared to mean pre-mining concentrations that ranged from 1,700 mg/L in July, November, and December to 2,060 mg/L in May. Post-mining concentrations and loads in Hanging Woman Creek would be smaller if a smaller area were mined. (USGS)

  19. Knowledge and understanding of dissolved solids in the Rio Grande–San Acacia, New Mexico, to Fort Quitman, Texas, and plan for future studies and monitoring

    Science.gov (United States)

    Moyer, Douglas; Anderholm, Scott K.; Hogan, James F.; Phillips, Fred M.; Hibbs, Barry J.; Witcher, James C.; Matherne, Anne Marie; Falk, Sarah E.

    2013-01-01

    Availability of water in the Rio Grande Basin has long been a primary concern for water-resource managers. The transport and delivery of water in the basin have been engineered by using reservoirs, irrigation canals and drains, and transmountain-water diversions to meet the agricultural, residential, and industrial demand. In contrast, despite the widespread recognition of critical water-quality problems, there have been minimal management efforts to improve water quality in the Rio Grande. Of greatest concern is salinization (concentration of dissolved solids approaching 1,000 mg/L), a water-quality problem that has been recognized and researched for more than 100 years because of the potential to limit both agricultural and municipal use. To address the issue of salinization, water-resource managers need to have a clear conceptual understanding of the sources of salinity and the factors that control storage and transport, identify critical knowledge gaps in this conceptual understanding, and develop a research plan to address these gaps and develop a salinity management program. In 2009, the U.S. Geological Survey (USGS) in cooperation with the U.S. Army Corps of Engineers (USACE), New Mexico Interstate Stream Commission (NMISC), and New Mexico Environment Department (NMED) initiated a project to summarize the current state of knowledge regarding the transport of dissolved solids in the Rio Grande between San Acacia, New Mexico, and Fort Quitman, Texas. The primary objective is to provide hydrologic information pertaining to the spatial and temporal variability present in the concentrations and loads of dissolved solids in the Rio Grande, the source-specific budget for the mass of dissolved solids transported along the Rio Grande, and the locations at which dissolved solids enter the Rio Grande. Dissolved-solids concentration data provide a good indicator of the general quality of surface water and provide information on the factors governing salinization within

  20. Estimated dissolved-solids loads and trends at selected streams in and near the Uinta Basin, Utah, Water Years 1989–2013

    Science.gov (United States)

    Thiros, Susan A.

    2017-03-23

    The U.S. Geological Survey (USGS), in cooperation with the Colorado River Basin Salinity Control Forum, studied trends in dissolved-solids loads at selected sites in and near the Uinta Basin, Utah. The Uinta Basin study area includes the Duchesne River Basin and the Middle Green River Basin in Utah from below Flaming Gorge Reservoir to the town of Green River.Annual dissolved-solids loads for water years (WY) 1989 through 2013 were estimated for 16 gaging stations in the study area using streamflow and water-quality data from the USGS National Water Information System database. Eight gaging stations that monitored catchments with limited or no agricultural land use (natural subbasins) were used to assess loads from natural sources. Four gaging stations that monitored catchments with agricultural land in the Duchesne River Basin were used to assess loads from agricultural sources. Four other gaging stations were included in the dissolved-solids load and trend analysis to help assess the effects of agricultural areas that drain to the Green River in the Uinta Basin, but outside of the Duchesne River Basin.Estimated mean annual dissolved-solids loads for WY 1989–2013 ranged from 1,520 tons at Lake Fork River above Moon Lake, near Mountain Home, Utah (UT), to 1,760,000 tons at Green River near Green River, UT. The flow-normalized loads at gaging stations upstream of agricultural activities showed no trend or a relatively small change. The largest net change in modeled flow-normalized load was -352,000 tons (a 17.8-percent decrease) at Green River near Green River, UT.Annual streamflow and modeled dissolved-solids loads at the gaging stations were balanced between upstream and downstream sites to determine how much water and dissolved solids were transported to the Duchesne River and a section of the Green River, and how much was picked up in each drainage area. Mass-balance calculations of WY 1989–2013 mean annual dissolved-solids loads at the studied sites show

  1. Decadal-scale changes in dissolved-solids concentrations in groundwater used for public supply, Salt Lake Valley, Utah

    Science.gov (United States)

    Thiros, Susan A.; Spangler, Larry

    2010-01-01

    Basin-fill aquifers are a major source of good-quality water for public supply in many areas of the southwestern United States and have undergone increasing development as populations have grown over time. During 2005, the basin-fill aquifer in Salt Lake Valley, Utah, provided approximately 75,000 acre-feet, or about 29 percent of the total amount of water used by a population of 967,000. Groundwater in the unconsolidated basin-fill deposits that make up the aquifer occurs under unconfined and confined conditions. Water in the shallow unconfined part of the groundwater system is susceptible to near-surface contamination and generally is not used as a source of drinking water. Groundwater for public supply is withdrawn from the deeper unconfined and confined parts of the system, termed the principal aquifer, because yields generally are greater and water quality is better (including lower dissolved-solids concentrations) than in the shallower parts of the system. Much of the water in the principal aquifer is derived from recharge in the adjacent Wasatch Range (mountain-block recharge). In many areas, the principal aquifer is separated from the overlying shallow aquifer by confining layers of less permeable, fine-grained sediment that inhibit the downward movement of water and any potential contaminants from the surface. Nonetheless, under certain hydrologic conditions, human-related activities can increase dissolved-solids concentrations in the principal aquifer and result in groundwater becoming unsuitable for consumption without treatment or mixing with water having lower dissolved-solids concentrations. Dissolved-solids concentrations in areas of the principal aquifer used for public supply typically are less than 500 milligrams per liter (mg/L), the U.S. Environmental Protection Agency (EPA) secondary (nonenforceable) drinking-water standard. However, substantial increases in dissolved-solids concentrations in the principal aquifer have been documented in some

  2. Pollution status of Tinishu Akaki River and its tributaries (Ethiopia ...

    African Journals Online (AJOL)

    The present investigation provides data on physico-chemical parameters, some major ions and nutrients on water samples of Tinishu Akaki River (TAR), Ethiopia. The pH, temperature, electrical conductivity, total dissolved solids (TDS), dissolved oxygen (DO), chemical oxygen demand (COD), biological oxygen demand ...

  3. Dynamic texture perception and oral processing of semi-solid food gels: Part 1: Comparison between QDA, progressive profiling and TDS

    NARCIS (Netherlands)

    Devezeaux de Lavergne, M.S.M.; Delft, van J.M.; Velde, van de F.; Boekel, van M.A.J.S.; Stieger, M.A.

    2015-01-01

    Texture perception of food is a dynamic phenomenon depending on food properties and oral processing. Several sensory techniques enable to measure texture perception over time. The aim of this study was to compare quantitative descriptive analysis (QDA), temporal dominance of sensation (TDS) and

  4. A data reconnaissance on the effect of suspended-sediment concentrations on dissolved-solids concentrations in rivers and tributaries in the Upper Colorado River Basin

    Science.gov (United States)

    Tillman, Fred D.; Anning, David W.

    2014-01-01

    The Colorado River is one of the most important sources of water in the western United States, supplying water to over 35 million people in the U.S. and 3 million people in Mexico. High dissolved-solids loading to the River and tributaries are derived primarily from geologic material deposited in inland seas in the mid-to-late Cretaceous Period, but this loading may be increased by human activities. High dissolved solids in the River causes substantial damages to users, primarily in reduced agricultural crop yields and corrosion. The Colorado River Basin Salinity Control Program was created to manage dissolved-solids loading to the River and has focused primarily on reducing irrigation-related loading from agricultural areas. This work presents a reconnaissance of existing data from sites in the Upper Colorado River Basin (UCRB) in order to highlight areas where suspended-sediment control measures may be useful in reducing dissolved-solids concentrations. Multiple linear regression was used on data from 164 sites in the UCRB to develop dissolved-solids models that include combinations of explanatory variables of suspended sediment, flow, and time. Results from the partial t-test, overall likelihood ratio, and partial likelihood ratio on the models were used to group the sites into categories of strong, moderate, weak, and no-evidence of a relation between suspended-sediment and dissolved-solids concentrations. Results show 68 sites have strong or moderate evidence of a relation, with drainage areas for many of these sites composed of a large percentage of clastic sedimentary rocks. These results could assist water managers in the region in directing field-scale evaluation of suspended-sediment control measures to reduce UCRB dissolved-solids loading.

  5. Thermogravimetric Analysis of Textile Dyeing Sludge (TDS) in N₂/CO₂/O₂ Atmospheres and its Combustion Model with Coal.

    Science.gov (United States)

    Zhuo, Zhongxu; Liu, Jingyong; Sun, Shuiyu; Kuo, Jiahong; Sun, Jian; Chang, Ken-Lin; Fu, Jiewen

    2018-01-01

      The combustion characteristics of textile dyeing sludge (TDS) in N2/O2, CO2/O2, and N2/CO2 atmospheres, and blends of TDS with coal were analyzed using TGA (thermogravimetric analysis). Results showed that the replacement of N2 by CO2 resulted in negative effects on the combustion and pyrolysis of TDS. Comparing N2/O2 and CO2/O2 atmospheres, combustion of TDS was easier in a N2/O2 atmosphere, but the residual mass after TDS pyrolysis in pure CO2 was less than that in N2 by approximately 4.51%. When the proportion of TDS was 30-50% in the blends of coal with TDS, a synergistic interaction clearly occurred, and it significantly promoted combustion. In considering different combustion parameters, the optimal proportion of TDS may be between 20-30%. The activation energy Ea value decreased from 155.6 kJ/mol to 53.35 kJ/mol with an increasing TDS proportion from 0% to 50%, and it rapidly decreased when the TDS proportion was below 20%.

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Hydrogeochemical analysis and evaluation of groundwater quality in the ... total dissolved solids (TDS), Sodium (Na+), Potassium (K+), Calcium (Ca+), ... Centre for Water Resources Development and Management, Kozhikode, Kerala, India.

  7. Estrogenic and AhR activities in dissolved phase and suspended solids from wastewater treatment plants.

    Science.gov (United States)

    Dagnino, Sonia; Gomez, Elena; Picot, Bernadette; Cavaillès, Vincent; Casellas, Claude; Balaguer, Patrick; Fenet, Hélène

    2010-05-15

    The distribution of estrogen receptor (ERalpha) and Aryl Hydrocarbon Receptor (AhR) activities between the dissolved phase and suspended solids were investigated during wastewater treatment. Three wastewater treatment plants with different treatment technologies (waste stabilization ponds (WSPs), trickling filters (TFs) and activated sludge supplemented with a biofilter system (ASB)) were sampled. Estrogenic and AhR activities were detected in both phases in influents and effluents. Estrogenic and AhR activities in wastewater influents ranged from 41.8 to 79 ng/L E(2) Eq. and from 37.9 to 115.5 ng/L TCDD Eq. in the dissolved phase and from 5.5 to 88.6 ng/g E(2) Eq. and from 15 to 700 ng/g TCDD Eq. in the suspended solids. For both activities, WSP showed greater or similar removal efficiency than ASB and both were much more efficient than TF which had the lowest removal efficiency. Moreover, our data indicate that the efficiency of removal of ER and AhR activities from the suspended solid phase was mainly due to removal of suspended solids. Indeed, ER and AhR activities were detected in the effluent suspended solid phase indicating that suspended solids, which are usually not considered in these types of studies, contribute to environmental contamination by endocrine disrupting compounds and should therefore be routinely assessed for a better estimation of the ER and AhR activities released in the environment. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Temporal and spatial variations in total suspended and dissolved solids in the upper part of Manoa stream, Hawaii

    NARCIS (Netherlands)

    Augustijn, Dionysius C.M.; Fares, Ali; Tran, Dai Ngia

    2011-01-01

    Hawaiian watersheds are small, steep, and receive high intensity rainfall events of non-uniform distribution. These geographic and weather patterns result in flashy streams of strongly variable water quality even within various stream segments. Total suspended solids (TSS) and total dissolved solids

  9. The interaction between surface water and groundwater and its ...

    Indian Academy of Sciences (India)

    Surface water; groundwater; stable isotopes; water quality; Second Songhua River basin. .... The total dissolved solid (TDS) was calculated by the con- centrations of major ions in ...... evaluating water quality management effectiveness; J.

  10. Anaerobic treatment of wastewater with high suspended solids from a bulk drug industry using fixed film reactor (AFFR).

    Science.gov (United States)

    Gangagni Rao, A; Venkata Naidu, G; Krishna Prasad, K; Chandrasekhar Rao, N; Venkata Mohan, S; Jetty, Annapurna; Sarma, P N

    2005-01-01

    Studies were carried out on the treatment of wastewater from a bulk drug industry using an anaerobic fixed film reactor (AFFR) designed and fabricated in the laboratory. The chemical oxygen demand (COD) and total dissolved solids (TDS) of the wastewater were found to be very high with low biochemical oxygen demand (BOD) to COD ratio and high total suspended solid (TSS) concentration. Acclimatization of seed consortia and startup of the reactor was carried out by directly using the wastewater, which resulted in reducing the period of startup to 30 days. The reactor was studied at different organic loading rates (OLR) and it was found that the optimum OLR was 10 kg COD/m(3)/day. The wastewater under investigation, which had a considerable quantity of SS, was treated anaerobically without any pretreatment. COD and BOD of the reactor outlet wastewater were monitored and at steady state and optimum OLR 60-70% of COD and 80-90% of BOD were removed. The reactor was subjected to organic shock loads at two different OLR and the reaction could withstand the shocks and performance could be restored to normalcy at that OLR. The results obtained indicated that AFFR could be used efficiently for the treatment of wastewater from a bulk drug industry having high COD, TDS and TSS.

  11. Assessment of dissolved-solids loading to the Colorado River in the Paradox Basin between the Dolores River and Gypsum Canyon, Utah

    Science.gov (United States)

    Shope, Christopher L.; Gerner, Steven J.

    2014-01-01

    Salinity loads throughout the Colorado River Basin have been a concern over recent decades due to adverse impacts on population, natural resources, and regional economics. With substantial financial resources and various reclamation projects, the salt loading to Lake Powell and associated total dissolved-solids concentrations in the Lower Colorado River Basin have been substantially reduced. The Colorado River between its confluence with the Dolores River and Lake Powell traverses a physiographic area where saline sedimentary formations and evaporite deposits are prevalent. However, the dissolved-solids loading in this area is poorly understood due to the paucity of water-quality data. From 2003 to 2011, the U.S. Geological Survey in cooperation with the U.S. Bureau of Reclamation conducted four synoptic sampling events to quantify the salinity loading throughout the study reach and evaluate the occurrence and impacts of both natural and anthropogenic sources. The results from this study indicate that under late-summer base-flow conditions, dissolved-solids loading in the reach is negligible with the exception of the Green River, and that variations in calculated loads between synoptic sampling events are within measurement and analytical uncertainties. The Green River contributed approximately 22 percent of the Colorado River dissolved-solids load, based on samples collected at the lower end of the study reach. These conclusions are supported by water-quality analyses for chloride and bromide, and the results of analyses for the stable isotopes of oxygen and deuterium. Overall, no significant sources of dissolved-solids loading from tributaries or directly by groundwater discharge, with the exception of the Green River, were identified in the study area.

  12. A study of selenium and tin sorption on granite and geothite

    International Nuclear Information System (INIS)

    Ticknor, K.V.; McMurry, J.

    1996-01-01

    Sensitivity analyses based on an illustrative performance assessment case study of a disposal concept for nuclear fuel waste have shown that radioisotopes of Se and Sn could have a significant effect on cumulative radioactive dose if they were to be transported through the geosphere without retardation. Static batch sorption methods, coupled with 2 n factorial experimental designs, were used to determine the extent to which Se and Sn can be sorbed by granite and goethite as a function of total dissolved solids concentration, [TDS], natural fulvic acid concentration as dissolved organic carbon, [DOC], pH and, for the studies with Se, the Se concentration, [Se]. Aqueous speciation and the saturation indices of solubility-controlling solid phases were estimated using the speciation code HARPHRQ with the HATCHES thermodynamic database. The experimental results indicated that Se sorption on granite was, low and not affected by changes in [DOC] or [TDS]. Increased [Se] and increased pH decreased sorption. For Se sorption on goethite, the pH range was narrow but indicated that sorption decreased as pH increased. Increased [TDS] and [Se] lowered sorption on goethite, but changes in [DOC] had no effect on sorption. For Sn, increased pH, [TDS] and [DOC] decreased sorption on granite. For Sn sorption on goethite, increased [DOC] resulted in decreased sorption, but differences in [TDS] and pH had little consistent effect on sorption. (orig.)

  13. A study of selenium and tin sorption on granite and goethite

    International Nuclear Information System (INIS)

    Ticknor, K.V.; McMurry, J.

    1996-01-01

    Sensitivity analyses based on an illustrative performance assessment case study of a disposal concept for nuclear fuel waste have shown that radioisotopes of Se and Sn could have a significant effect on cumulative radioactive dose if they were to be transported through the geosphere without retardation. Static batch sorption methods, coupled with 2 n factorial experimental designs, were used to determine the extent to which Se and Sn can be sorbed by granite and goethite as a function of total dissolved solids concentration, (TDS), natural fulvic acid concentration as dissolved organic carbon, [DOC], pH and, for the studies with Se, the Se concentration, [Se]. Aqueous speciation and the saturation indices of solubility-controlling solid phases were estimated using the speciation code HARPHRQ with the HATCHES thermodynamic database. The experimental results indicated that Se sorption on granite was low and not affected by changes in [DOC] or [TDS]. Increased [Se] and increased pH decreased sorption. For Se sorption on goethite, the pH range was narrow but indicated that sorption decreased as pH increased. Increased [TDS] and [Se] lowered sorption on goethite, but changes in (DOC] had no effect on sorption. For Sn, increased pH, [TDS] and [DOC] decreased sorption on granite. For Sn sorption on goethite, increased [DOC] resulted in decreased sorption, but differences in [TDS] and pH had little consistent effect on sorption. (author)

  14. THE EFFECTS OF ABATTOIR WASTE ON WATER QUALITY IN ...

    African Journals Online (AJOL)

    Osondu

    properties [such as pH, Dissolved Oxygen, salinity, conductivity, and Total Dissolved Solids (TDS)]. The student t ... The paper thus concludes by recommending that a mechanism be put in place for the .... much depend on this same stream water for ... the toxic metals that readily affect human health. ... Copper CU 2+. 0.18- ...

  15. Influence of Reclamation Process on the Ecological Quality of Reclaim Sand

    Directory of Open Access Journals (Sweden)

    Dereń M.

    2017-12-01

    Full Text Available In this article, there were presented results of research on influence of reclamation process on the ecological quality of reclaim sand with furan resin used in nonferrous foundry. The quality of reclaimed sand is mainly define by two group of chemical substances from elution of reclaimed sand: Dissolves Organic Carbon (DOC and Total Dissolves Solids (TDS. Reclaimed sand used in test was prepared in experimental thermal reclaimer and mechanical vibration reclaimer REGMAS installed in Faculty of Foundry Engineering at University Of Science and Technology in Krakow. The reference point is molding sand shaking out and crumble in jaw crusher. Test of elution was made in accredited laboratory in Center For Research and Environmental Control in Katowice up to the standard with Dissolves Organic Carbon (DOC - PN-EN 1484:1999; Total Dissolves Solids (TDS - PN-EN 15216:2010. The standard for elution test is PN-EN 12457- 4:2006. Except that we were made loss of ignition test, to check how many resin was rest on sand grains.

  16. Sensing dissolved sediment porewater concentrations of persistent and bioaccumulative poolutants using disposable solid-phase microextraction fibers

    NARCIS (Netherlands)

    Mayer, P.; Vaes, W.H.J.; Wijnker, F.; Legierse, K.C.H.M.; Kraaij, R.H.; Tolls, J.; Hermens, J.L.M.

    2000-01-01

    Polymer coated glass fibers were applied as disposable samplers to measure dissolved concentrations of persistent and bioaccumulative pollutants (PBPs) in sediment porewater. The method is called matrix solid-phase microextraction (matrix-SPME), because it utilizes the entire sediment matrix as a

  17. Clarification of dissolved irradiated light-water-reactor fuel

    International Nuclear Information System (INIS)

    Rodrigues, G.C.

    1983-02-01

    Bench-scale studies with actual dissolved irradiated light water reactor (LWR) fuels showed that continuous centrifugation is a practical clarification method for reprocessing. Dissolved irradiated LWR fuel was satisfactorily clarified in a bench-scale, continuous-flow bowl centrifuge. The solids separated were successfully reslurried in water. When the reslurried solids were mixed with clarified centrate, the resulting suspension behaved similar to the original dissolver solution during centrifugation. Settling rates for solids in actual irradiated fuel solutions were measured in a bottle centrifuge. The results indicate that dissolver solutions may be clarified under conditions achievable by available plant-scale centrifuge technology. The effective particle diameter of residual solids was calculated to be 0.064 microns for Oconee-1 fuel and 0.138 microns for Dresden-1 fuel. Filtration was shown unsuitable for clarification of LWR fuel solutions. Conventional filtration with filter aid would unacceptably complicate remote canyon operation and maintenance, might introduce dissolved silica from filter aids, and might irreversibly plug the filter with dissolver solids. Inertial filtration exhibited irreversible pluggage with nonradioactive stand-in suspensions under all conditions tested

  18. Removal of Inorganic, Microbial, and Particulate Contaminants from Secondary Treated Wastewater - Village Marine Tec. Expeditionary Unit Water Purifier, Generation 1 at Gallup, NM

    Science.gov (United States)

    The EUWP was developed to treat challenging water sources with variable turbidity, chemical contamination, and very high total dissolved solids (TDS) including seawater, during emergency situations when other water treatment facilities are incapacitated. The EUWP components are ...

  19. Production and analysis of lipton Camellia sinensis wine ...

    African Journals Online (AJOL)

    , specific gravity, alcohol, total acidity, fixed acidity, vitamin C, some inorganic ions, total dissolved solid (TDS), total suspended solutes (TSS), phytochemical and microbial contents as well as its sensory evaluation. The must had pH and ...

  20. Influence of alkalinity, hardness and dissolved solids on drinking water taste: A case study of consumer satisfaction.

    Science.gov (United States)

    Lou, Jie-Chung; Lee, Wei-Li; Han, Jia-Yun

    2007-01-01

    Two surveys of consumer satisfaction with drinking water conducted by Taiwan Water Supply Corp. are presented in this study. The study results show that although a lot of money was invested to modify traditional treatment processes, over 60% of local residents still avoided drinking tap water. Over half of the respondents felt that sample TT (from the traditional treatment process) was not a good drinking water, whether in the first or second survey, whereas almost 60% of respondents felt that samples PA, PB, CCL and CT (from advanced treatment processes) were good to drink. For all drinking water samples, respondent satisfaction with a sample primarily depended on it having no unpleasant flavors. Taiwan Environmental Protection Administration plans to revise the drinking water quality standards for TH and TDS in the near future. The new standards require a lower TH concentration (from currently 400mg/L (as CaCO(3)) to 150mg/L (as CaCO(3))), and a lower TDS maximum admissible concentration from the current guideline of 600 to 250mg/L. Therefore, this study also evaluated the impacts on drinking water tastes caused by variations in TH and TDS concentrations, and assessed the need to issue more strict drinking water quality standards for TH and TDS. The research results showed that most respondents could not tell the difference in water taste among water samples with different TDS, TH and alkalinity. Furthermore, hardness was found to be inversely associated with cardiovascular diseases and cancers, and complying with more strict standards would lead most water facilities to invest billions of dollars to upgrade their treatment processes. Consequently, in terms of drinking water tastes alone, this study suggested that Taiwan Environmental Protection Administration should conduct more thorough reviews of the scientific literature that provides the rationale for setting standards and reconsider if it is necessary to revise drinking water quality standards for TH and

  1. resistivity methods in hydro-geophysical investigation

    African Journals Online (AJOL)

    Home

    age (Short and Stauble, 1967; Asseez, 1989). Above the .... The resistivity of the pore water was used for estimating the total dissolved solids (TDS) in ppm of groundwater using equation (4). .... clear felling a sitka spruce (pica stichensis).

  2. Magnetotelluric Detection Thresholds as a Function of Leakage Plume Depth, TDS and Volume

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Buscheck, T. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mansoor, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Carroll, S. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-04-21

    We conducted a synthetic magnetotelluric (MT) data analysis to establish a set of specific thresholds of plume depth, TDS concentration and volume for detection of brine and CO2 leakage from legacy wells into shallow aquifers in support of Strategic Monitoring Subtask 4.1 of the US DOE National Risk Assessment Partnership (NRAP Phase II), which is to develop geophysical forward modeling tools. 900 synthetic MT data sets span 9 plume depths, 10 TDS concentrations and 10 plume volumes. The monitoring protocol consisted of 10 MT stations in a 2×5 grid laid out along the flow direction. We model the MT response in the audio frequency range of 1 Hz to 10 kHz with a 50 Ωm baseline resistivity and the maximum depth up to 2000 m. Scatter plots show the MT detection thresholds for a trio of plume depth, TDS concentration and volume. Plumes with a large volume and high TDS located at a shallow depth produce a strong MT signal. We demonstrate that the MT method with surface based sensors can detect a brine and CO2 plume so long as the plume depth, TDS concentration and volume are above the thresholds. However, it is unlikely to detect a plume at a depth larger than 1000 m with the change of TDS concentration smaller than 10%. Simulated aquifer impact data based on the Kimberlina site provides a more realistic view of the leakage plume distribution than rectangular synthetic plumes in this sensitivity study, and it will be used to estimate MT responses over simulated brine and CO2 plumes and to evaluate the leakage detectability. Integration of the simulated aquifer impact data and the MT method into the NRAP DREAM tool may provide an optimized MT survey configuration for MT data collection. This study presents a viable approach for sensitivity study of geophysical monitoring methods for leakage detection. The results come in handy for rapid assessment of leakage detectability.

  3. Changing knowledge perspective in a changing world: The Adriatic multidisciplinary TDS approach

    Science.gov (United States)

    Bergamasco, Andrea; Carniel, Sandro; Nativi, Stefano; Signell, Richard P.; Benetazzo, Alvise; Falcieri, Francesco M.; Bonaldo, Davide; Minuzzo, Tiziano; Sclavo, Mauro

    2013-04-01

    The use and exploitation of the marine environment in recent years has been increasingly high, therefore calling for the need of a better description, monitoring and understanding of its behavior. However, marine scientists and managers often spend too much time in accessing and reformatting data instead of focusing on discovering new knowledge from the processes observed and data acquired. There is therefore the need to make more efficient our approach to data mining, especially in a world where rapid climate change imposes rapid and quick choices. In this context, it is mandatory to explore ways and possibilities to make large amounts of distributed data usable in an efficient and easy way, an effort that requires standardized data protocols, web services and standards-based tools. Following the US-IOOS approach, which has been adopted in many oceanographic and meteorological sectors, we present a CNR experience in the direction of setting up a national Italian IOOS framework (at the moment confined at the Adriatic Sea environment), using the THREDDS (THematic Real-time Environmental Distributed Data Services) Data Server (TDS). A TDS is a middleware designed to fill the gap between data providers and data users, and provides services allowing data users to find the data sets pertaining to their scientific needs, to access, visualize and use them in an easy way, without the need of downloading files to the local workspace. In order to achieve this results, it is necessary that the data providers make their data available in a standard form that the TDS understands, and with sufficient metadata so that the data can be read and searched for in a standard way. The TDS core is a NetCDF- Java Library implementing a Common Data Model (CDM), as developed by Unidata (http://www.unidata.ucar.edu), allowing the access to "array-based" scientific data. Climate and Forecast (CF) compliant NetCDF files can be read directly with no modification, while non-compliant files can

  4. Transformation impacts of dissolved and solid phase Fe(II) on trichloroethylene (TCE) reduction in an iron-reducing bacteria (IRB) mixed column system: a mathematical model.

    Science.gov (United States)

    Bae, Yeunook; Kim, Dooil; Cho, Hyun-Hee; Singhal, Naresh; Park, Jae-Woo

    2012-12-01

    In this research, we conducted trichloroethylene (TCE) reduction in a column filled with iron and iron-reducing bacteria (IRB) and developed a mathematical model to investigate the critical reactions between active species in iron/IRB/contaminant systems. The formation of ferrous iron (Fe(II)) in this system with IRB and zero-valent iron (ZVI, Fe(0)) coated with a ferric iron (Fe(III)) crust significantly affected TCE reduction and IRB respiration in various ways. This study presents a new framework for transformation property and reducing ability of both dissolved (Fe(II)(dissolved)) and solid form ferrous iron (Fe(II)(solid)). Results showed that TCE reduction was strongly depressed by Fe(II)(solid) rather than by other inhibitors (e.g., Fe(III) and lactate), suggesting that Fe(II)(solid) might reduce IRB activation due to attachment to IRB cells. Newly exposed Fe(0) from the released Fe(II)(dissolved) was a strong contributor to TCE reduction compared to Fe(II)(solid). In addition, our research confirmed that less Fe(II)(solid) production strongly supported long-term TCE reduction because it may create an easier TCE approach to Fe(0) or increase IRB growth. Our findings will aid the understanding of the contributions of iron media (e.g., Fe(II)(solid), Fe(II)(dissolved), Fe(III), and Fe(0)) to IRB for decontamination in natural groundwater systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Hydrochemical Characteristics of Springs in Oke–Igbo, Ondo State ...

    African Journals Online (AJOL)

    Michael Horsfall

    each spring and analyzed for temperature, pH, electrical conductivity (EC), total dissolved solids (TDS), total ... Boiling of the spring water, is therefore, .... spring against sudden change in pH might also .... The altitude of the springs may have.

  6. Simulation of construction and demolition waste leachate

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, T.G.; Jang, Y.; Thurn, L.G.

    1999-11-01

    Solid waste produced from construction and demolition (C and D) activities is typically disposed of in unlined landfills. Knowledge of C{ampersand}D debris landfill leachate is limited in comparison to other types of wastes. A laboratory study was performed to examine leachate resulting from simulated rainfall infiltrating a mixed C and D waste stream consisting of common construction materials (e.g., concrete, wood, drywall). Lysimeters (leaching columns) filled with the mixed C and D waste were operated under flooded and unsaturated conditions. Leachate constituent concentrations in the leachate from specific waste components were also examined. Leachate samples were collected and analyzed for a number of conventional water quality parameters including pH, alkalinity, total organic carbon, total dissolved solids, and sulfate. In experiments with the mixed C and D waste, high concentrations of total dissolved solids (TDS) and sulfate were detected in the leachate. C and D leachates produced as a result of unsaturated conditions exhibited TDS concentrations in the range of 570--2,200 mg/L. The major contributor to the TDS was sulfate, which ranged in concentration between 280 and 930 mg/L. The concentrations of sulfate in the leachate exceeded the sulfate secondary drinking water standard of 250 mg/L.

  7. studies on the correlation of some aggregate parameters in the ...

    African Journals Online (AJOL)

    BARTH EKWUEME

    simulations for problem solving and forecasting environmental conditions .... METHODS. Parameters: The water quality parameters examined were, Turbidity, Total Dissolved Solids (TDS),. Chemical Oxygen Demand (COD), 5-day Biochemical. Oxygen Demand ..... Vogel's Textbook of Quantitative. Chemical Analysis 6th ed ...

  8. Solubility Enhancement and Formulation of Mouth Dissolving Tablet of Clonazepam with Solid Dispersion Technology

    Directory of Open Access Journals (Sweden)

    Swati C. Jagdale

    2012-01-01

    Full Text Available Clonazepam (CLZ is an anticonvulsant benzodiazepine widely used in the treatment of epilepsy. CLZ is a BCS Class II drug and its bioavailability is thus dissolution limited. The objective of the present study was to prepare solid dispersions (SDs of CLZ by various techniques, using the amphiphilic carrier Gelucire 50/13 in various proportions, to increase its water solubility. Drug-polymer interactions were investigated by Fourier-transform infrared (FTIR and UltraViolet (UV spectroscopy. The SDs were characterized physically by differential scanning calorimetry (DSC and X-ray diffraction (XRD. A phase solubility study was performed and the stability constant (Ks was found to be 275.27, while the negative Gibbs free energy (ΔGo tr indicated spontaneous solubilization of the drug. The dissolution study showed that the SDs considerably enhanced the dissolution rate of the drug. The FTIR and UV spectra revealed no chemical incompatibility between the drug and Gelucire 50/13. XRD patterns and the DSC profiles indicated the CLZ was in the amorphous form, which explains the improved dissolution rate of the drug from its SDs. Finally, mouth dissolving tablets (MDTs were prepared from the optimized batches (kneading method of solid dispersion, using crospovidone and Doshion P544 resin as superdisintegrants. The tablets were characterized by in-vitro disintegration and dissolution tests. The study of the MDTs showed disintegration times in the range 32.0±0.85 to 20.0±1.30 sec and dissolution was faster than for the commercial preparation. In conclusion, this investigation demonstrated the potential of solid dispersions of a drug with Gelucire 50/13 for promoting the dissolution of the drug and contributed to the understanding of the effect of a superdisintegrant on mouth dissolving tablets containing a solid dispersion of a hydrophobic drug.

  9. Individual and community responses in stream mesocosms with different ionic compositions of conductivity and compared to a field-based benchmark

    Science.gov (United States)

    Several anthropogenic activities cause excess total dissolved solids (TDS) content and its correlate, specific conductivity, in surface waters due to increases in the major geochemical ions (e.g., Na, Ca, Cl, SO4). However, the relative concentrations of major ions varies with t...

  10. DECREASE OF SOLIDS IN GRAY WATER BY AERATION PROCESS

    Directory of Open Access Journals (Sweden)

    Gerardo Alonso Torres-Avalos

    2017-07-01

    Full Text Available The activated sludge process is a biological treatment consisting basically of agitation and aeration of a waste water mixture and a selected microorganisms sludge. The oxidation of organic matter was determined with several tests such as BOD5 (Biochemical Oxygen Demand, TSS (Total Sedimented Solids, SS (Sediment Solids, TDS (Total Dissolved Solids, FVS (fixed and volatile solids and finally a measurement of treated water turbidity. The results obtained for the reduction of the organic load during the first two days of treatment (samples 1, 2 and 3 are visible in each of the organic loading tests; during the last two days according to the samples 4 and 5 the solids showed an increase in organic load. The related organoleptic properties such as color showed a notable decrease. As for the tests performed at pH show a change, samples 1, 2 and 3 approaching a range where they are neutral and the last two samples (4 and 5 the pH has an elevation until it becomes alkaline. The efficiency of the method used for the treatment of residual water during the first days reduced the organic load with a variation of TS and TSS of 760, 569 ppm respectively. This is a viable alternative since this is a low cost method with short term results because organoleptic properties such as odor and color were lost during the first day of treatment.

  11. Effects of potential surface coal mining on dissolved solids in Otter Creek and in the Otter Creek alluvial aquifer, southeastern Montana

    Science.gov (United States)

    Cannon, M.R.

    1985-01-01

    Otter Creek drains an area of 709 square miles in the coal-rich Powder River structural basin of southeastern Montana. The Knobloch coal beds in the Tongue River Member of the Paleocene Fort Union Formation is a shallow aquifer and a target for future surface mining in the downstream part of the Otter Creek basin. A mass-balance model was used to estimate the effects of potential mining on the dissolved solids concentration in Otter Creek and in the alluvial aquifer in the Otter Creek valley. With extensive mining of the Knobloch coal beds, the annual load of dissolved solids to Otter Creek at Ashland at median streamflow could increase by 2,873 tons, or a 32-percent increase compared to the annual pre-mining load. Increased monthly loads of Otter Creek, at the median streamflow, could range from 15 percent in February to 208 percent in August. The post-mining dissolved solids load to the subirrigated part of the alluvial valley could increase by 71 percent. The median dissolved solids concentration in the subirrigated part of the valley could be 4,430 milligrams per liter, compared to the pre-mining median concentration of 2,590 milligrams per liter. Post-mining loads from the potentially mined landscape were calculated using saturated-paste-extract data from 506 overburdened samples collected from 26 wells and test holes. Post-mining loads to the Otter Creek valley likely would continue at increased rates for hundreds of years after mining. If the actual area of Knobloch coal disturbed by mining were less than that used in the model, post-mining loads to the Otter Creek valley would be proportionally smaller. (USGS)

  12. Ambient conditions and fate and transport simulations of dissolved solids, chloride, and sulfate in Beaver Lake, Arkansas, 2006--10

    Science.gov (United States)

    Green, W. Reed

    2013-01-01

    Beaver Lake is a large, deep-storage reservoir located in the upper White River Basin in northwestern Arkansas, and was completed in 1963 for the purposes of flood control, hydroelectric power, and water supply. Beaver Lake is affected by point and nonpoint sources of minerals, nutrients, and sediments. The City of Fayetteville discharges about half of its sewage effluent into the White River immediately upstream from the backwater of the reservoir. The City of West Fork discharges its sewage effluent into the West Fork of the White River, and the City of Huntsville discharges its sewage effluent into a tributary of War Eagle Creek. A study was conducted to describe the ambient conditions and fate and transport of dissolved solids, chloride, and sulfate concentrations in Beaver Lake. Dissolved solids, chloride, and sulfate are components of wastewater discharged into Beaver Lake and a major concern of the drinking water utilities that use Beaver Lake as their source. A two-dimensional model of hydrodynamics and water quality was calibrated to include simulations of dissolved solids, chloride, and sulfate for the period January 2006 through December 2010. Estimated daily dissolved solids, chloride, and sulfate loads were increased in the White River and War Eagle Creek tributaries, individually and the two tributaries together, by 1.2, 1.5, 2.0, 5.0, and 10.0 times the baseline conditions to examine fate and transport of these constituents through time at seven locations (segments) in the reservoir, from upstream to downstream in Beaver Lake. Fifteen dissolved solids, chloride, and sulfate fate and transport scenarios were compared to the baseline simulation at each of the seven downstream locations in the reservoir, both 2 meters (m) below the surface and 2 m above the bottom. Concentrations were greater in the reservoir at model segments closer to where the tributaries entered the reservoir. Concentrations resulting from the increase in loading became more diluted

  13. Effects of solid fission products forming dissolved oxide (Nd) and metallic precipitate (Ru) on the thermal conductivity of uranium base oxide fuel

    International Nuclear Information System (INIS)

    Kim, Dong-Joo; Yang, Jae-Ho; Kim, Jong-Hun; Rhee, Young-Woo; Kang, Ki-Won; Kim, Keon-Sik; Song, Kun-Woo

    2007-01-01

    The effects of solid fission products on the thermal conductivity of uranium base oxide nuclear fuel were experimentally investigated. Neodymium (Nd) and ruthenium (Ru) were added to represent the physical states of solid fission products such as 'dissolved oxide' and 'metallic precipitate', respectively. Thermal conductivity was determined on the basis of the thermal diffusivity, density and specific heat values. The effects of the additives on the thermal conductivity were quantified in the form of the thermal resistivity equation - the reciprocal of the phonon conduction equation - which was determined from the measured data. It is concluded that the thermal conductivity of the irradiated nuclear fuel is affected by both the 'dissolved oxide' and the 'metallic precipitate', however, the effects are in the opposite direction and the 'dissolved oxide' influences the thermal conductivity more significantly than that of the 'metallic precipitate'

  14. Sensory quality of drinking water produced by reverse osmosis membrane filtration followed by remineralisation

    DEFF Research Database (Denmark)

    Vingerhoeds, Monique H.; Nijenhuis-de Vries, Mariska A.; Ruepert, Nienke

    2016-01-01

    to their physical-chemical properties. Sensory profiling was done by descriptive analysis using a trained panel.Significant attributes included taste intensity, the tastes bitter, sweet, salt, metal, fresh and dry mouthfeel, bitter and metal aftertaste, and rough afterfeel. Total dissolved solids (TDS) was a major...

  15. STREAMFLOW AND WATER QUALITY REGRESSION MODELING ...

    African Journals Online (AJOL)

    ... downstream Obigbo station show: consistent time-trends in degree of contamination; linear and non-linear relationships for water quality models against total dissolved solids (TDS), total suspended sediment (TSS), chloride, pH and sulphate; and non-linear relationship for streamflow and water quality transport models.

  16. Effluents and Solid Waste Analysis in a Petrochemical Company- A Case Study of Eleme Petrochemical Company Ltd, Port Harcourt, Nigeria

    Directory of Open Access Journals (Sweden)

    A. U. Israel

    2008-01-01

    Full Text Available Effluents and soil samples where sediments from the treated effluents are dumped were analyzed for physicochemical properties, metallic and non-metallic ions. These parameters were compared with established international standard (FEPA. Effluents were classified as process waste water (PWW, clarified water (CW, and final discharge (FD. The petrochemical effluents contained very high concentration of TDS (284.00±014 mg/L and significant concentrations of TSS (78.89±0.01 mg/L, COD (30.10±0.02 mg/L, DO (13.20±0.01 mg/L, BOD (6.12±0.00 mg/L, PO43- (4.34±0.00 mg/L, SO42- (3.59±0.00 mg/L, Cl- (55.52±0.01 mg/L and NO3- (8.40±0.01 mg/L. Low concentrations of iron, zinc, copper, cadmium, lead, nickel and cobalt was also observed. Some heavy metals were not detected at all in some of the effluent samples analyzed. Apart from temperature and total dissolved solid TDS, all the other parameters were below FEPA effluent limitations for guidelines for Petroleum Refinery, Fuel/Gasoline oil category in Nigeria.

  17. Physical and Chemical Status of Drinking Water from Water ...

    African Journals Online (AJOL)

    Erbil, Kurdistan, Iraq, for human consumptions, water samples were collected from three water treatment plants (WTP) on that river. The following water quality parameters were determined which were chosen as the major indicators namely PH, Total Dissolved Solid(TDS), Electrical conductivity(EC), Total Hardness(TH), Cl- ...

  18. Water reuse potential in truck wash using a Rotating Biological Contactor

    OpenAIRE

    Eduardo Lucas Subtil; José Carlos Mierzwa; Ivanildo Hespanhol; Raphael Rodrigues

    2016-01-01

    This study evaluated the water reuse potential for truck washing using the effluent treated by a Rotating Biological Contactor (RBC) operated in full scale. In order to evaluate the reuse potential, a mass balance was performed for the reuse system taking into account the concentration of Total Dissolved Solids as the critical contaminant. The treatment system produced an effluent with average concentration of color, turbidity, TDS and BOD5 of 45 ± 14 uC, 15 ± 6.0 NTU, 244 ± 99 mg TDS / L and...

  19. Optimasi Time Dial Setting (TDS Relay Arus Lebih Menggunakan Adaptive Modified Firefly Algorithm Pada Sistem Kelistrikan PT. Pupuk Kalimantan Timur

    Directory of Open Access Journals (Sweden)

    Vincentius Raki Mahindhara

    2017-01-01

    Full Text Available Penggunaan relay arus lebih (over current relay pada industri memerlukan pengaturan beberapa parameter seperti arus pickup (Ip, time dial setting (TDS, serta waktu operasi (top. Dalam standard acuan dicantumkan batasan-batasan dan formulasi dalam menentukan parameter tersebut. Salah satu permasalahan adalah penentuan TDS pada relay inverse (Kode ANSI 51. Umumnya penentuan nilai TDS dilakukan dengan metode trial and error, hal ini dirasa kurang efektif sehingga diusulkan suatu metode baru dalam menentukan TDS pada sistem kelistrikan eksisting PT. Pupuk Kalimantan Timur. Digunakan algoritma adaptive firefly yang dimodifikasi dalam menyelesaikan permasalahan dengan mempertimbangkan kurva starting motor dan perbedaan tipe kurva antar relay

  20. Solid and suspended/dissolved waste (N, P, O) from rainbow trout (Oncorynchus mykiss)

    DEFF Research Database (Denmark)

    Dalsgaard, Anne Johanne Tang; Pedersen, Per Bovbjerg

    2011-01-01

    differences between the dietary treatment groups in the waste produced. On average, 48% of the ingestedNwas recovered in thewater (TANconstituting 64–79%of this)and7% inthesolids. In comparison, 1% of the ingested P was recovered in the water and 43% in the solids. A breakpoint value of 5.6 g standardized......Quantifying aquaculture waste into different waste fractions will make it possible to design different treatment setups for obtaining specific cleaning objectives. The aim of this study was therefore to measure “all” solid and suspended/dissolved (i.e. unsedimented) waste from juvenile rainbow...... trout (Oncorynchus mykiss) fed three commonly applied commercial diets, “all” waste referring to: total nitrogen (N), total ammonia nitrogen (TAN=NH3-N+NH4-N), total phosphorus (P), and organicmatter characterized by the chemical oxygen demand (COD) and the biological oxygen demand after 5 days (BOD5...

  1. Removal of organic matter from dairy industry waste water using low-cost adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Rao, M.; Bhole, A.G. [College of Engineering, Badnera (India). Civil Engineering Department

    2002-07-01

    The present study envisages the use of cost-effective adsorbents such as fly ash, bagasse, wheat straw dust, sawdust, and coconut coir for the reduction of the TDS (total dissolved solids) from dairy industry effluent waste water. PAC (powdered activated carbon) was also used and the results were compared. Sorption data have been correlated with both the Langmuir and the Freundlich adsorption isotherm models. The Freundlich static isotherm model is found applicable to all the six adsorbents for removing TDS from the dairy waste water. The order of selectivity is PAC, bagasse, fly ash, sawdust, wheat straw, coconut coir for the removal of TDS at optimum conditions. 8 refs., 6 figs., 3 tabs.

  2. Major ions composition of the groundwater and surface water ...

    African Journals Online (AJOL)

    The total ionic concentration increases dramatically from the highlands towards the rift valley following the regional groundwater flow directions to low-lying regions characterized by low annual rainfall and high evapotranspiration. In the rift the total dissolved solids (TDS) variation is dramatic (in places more than 50 fold).

  3. Molecular Beam-Thermal Desorption Spectrometry (MB-TDS) Monitoring of Hydrogen Desorbed from Storage Fuel Cell Anodes.

    Science.gov (United States)

    Lobo, Rui F M; Santos, Diogo M F; Sequeira, Cesar A C; Ribeiro, Jorge H F

    2012-02-06

    Different types of experimental studies are performed using the hydrogen storage alloy (HSA) MlNi 3.6 Co 0.85 Al 0.3 Mn 0.3 (Ml: La-rich mischmetal), chemically surface treated, as the anode active material for application in a proton exchange membrane fuel cell (PEMFC). The recently developed molecular beam-thermal desorption spectrometry (MB-TDS) technique is here reported for detecting the electrochemical hydrogen uptake and release by the treated HSA. The MB-TDS allows an accurate determination of the hydrogen mass absorbed into the hydrogen storage alloy (HSA), and has significant advantages in comparison with the conventional TDS method. Experimental data has revealed that the membrane electrode assembly (MEA) using such chemically treated alloy presents an enhanced surface capability for hydrogen adsorption.

  4. Earth Construction and Landfill Disposal Options for Slaker Grits

    OpenAIRE

    Risto Pöykiö; G. Watkins; H. Nurmesniemi and O. Dahl

    2010-01-01

    Slaker grits, an industrial residue originating from the chemical recovery process at sulfate (kraft) pulp mills, are typically disposed of to landfill in Finland. However, due to the relatively low total heavy metal and low leachable heavy metal, chloride, fluoride, sulfate, Dissolved O rganic Carbon (DOC) and Total Dissolved Solids (TDS) concentrations, the residue is a potential earth construction material. This paper gives an overview of the relevant Finnish legislation on the use of indu...

  5. Molecular Beam-Thermal Desorption Spectrometry (MB-TDS Monitoring of Hydrogen Desorbed from Storage Fuel Cell Anodes

    Directory of Open Access Journals (Sweden)

    Jorge H. F. Ribeiro

    2012-02-01

    Full Text Available Different types of experimental studies are performed using the hydrogen storage alloy (HSA MlNi3.6Co0.85Al0.3Mn0.3 (Ml: La-rich mischmetal, chemically surface treated, as the anode active material for application in a proton exchange membrane fuel cell (PEMFC. The recently developed molecular beam—thermal desorption spectrometry (MB-TDS technique is here reported for detecting the electrochemical hydrogen uptake and release by the treated HSA. The MB-TDS allows an accurate determination of the hydrogen mass absorbed into the hydrogen storage alloy (HSA, and has significant advantages in comparison with the conventional TDS method. Experimental data has revealed that the membrane electrode assembly (MEA using such chemically treated alloy presents an enhanced surface capability for hydrogen adsorption.

  6. Spatial Distribution of TDS in Drinking Water of Tehsil Jampur using Ordinary and Bayesian Kriging

    Directory of Open Access Journals (Sweden)

    Maqsood Ahmad

    2015-09-01

    Full Text Available In this research article, level of TDS in groundwater with spatial domain Tehsil Jampur, Pakistan is considered as response variable. Its enhanced level in drinking water produces both the human health concerns and aquatic ecological impacts. Its high value causes several diseases like bilestone, joints stiffness, obstruction of blood vessel and kidney stones. Some Geostatistical techniques were used to interpolate TDS at unmonitored locations of Tehsil Jampur. Four estimation techniques were comparatively studied for fitting well known matern spatial covariance models. Model based Ordinary Kriging (OK and Bayesian Kriging (BK were used for spatial interpolation at unmonitored locations. Cross validation statistic was used to select best interpolation technique with reduced RMSPE. Prediction maps were generated for visual presentation of interpolated sited for both techniques. This study revealed that among thirty observed locations, 56% water samples exceed the maximum permissible limit (1000g/ml of TDS as described by WHO

  7. 1Departmen

    African Journals Online (AJOL)

    USER

    2016-11-07

    Nov 7, 2016 ... It was informed by the global concern on good drinking water quality which is ... sources i.e. from treated surface water, deep boreholes, wash ... rainwater were tested in the laboratory for pH, total dissolved solids (TDS), total ... examine sources of domestic water ... health risks from different water sources.

  8. Groundwater hydrochemistry evaluation in rural Botswana: A ...

    African Journals Online (AJOL)

    ... of groundwater from domestic water supply boreholes across rural Botswana. Ionic concentrations of K+, Na+, Ca2+, Mg2+, F-, Cl-, SO4 2-, HCO3 -, Fe3+, Mn-, and N. Parameters such as pH, total dissolved solids (TDS), and electrical conductance (EC) were correlated and their levels compared to international standards.

  9. Monitoring of impact of anthropogenic inputs on water quality of mangrove ecosystem of Uran, Navi Mumbai, west coast of India.

    Science.gov (United States)

    Pawar, Prabhakar R

    2013-10-15

    Surface water samples were collected from substations along Sheva creek and Dharamtar creek mangrove ecosystems of Uran (Raigad), Navi Mumbai, west coast of India. Water samples were collected fortnightly from April 2009 to March 2011 during spring low and high tides and were analyzed for pH, Temperature, Turbidity, Total solids (TS), Total dissolved solids (TDS), Total suspended solids (TSS), Dissolved oxygen (DO), Biochemical oxygen demand (BOD), Carbon dioxide (CO2), Chemical oxygen demand (COD), Salinity, Orthophosphate (O-PO4), Nitrite-nitrogen (NO2-N), Nitrate-nitrogen (NO3-N), and Silicates. Variables like pH, turbidity, TDS, salinity, DO, and BOD show seasonal variations. Higher content of O-PO4, NO3-N, and silicates is recorded due to discharge of domestic wastes and sewage, effluents from industries, oil tanking depots and also from maritime activities of Jawaharlal Nehru Port Trust (JNPT), hectic activities of Container Freight Stations (CFS), and other port wastes. This study reveals that water quality from mangrove ecosystems of Uran is deteriorating due to industrial pollution and that mangrove from Uran is facing the threat due to anthropogenic stress. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Geochemical and strontium isotope characterization of produced waters from Marcellus Shale natural gas extraction.

    Science.gov (United States)

    Chapman, Elizabeth C; Capo, Rosemary C; Stewart, Brian W; Kirby, Carl S; Hammack, Richard W; Schroeder, Karl T; Edenborn, Harry M

    2012-03-20

    Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ~375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (ε(Sr)(SW) = +13.8 to +41.6, where ε(Sr) (SW) is the deviation of the (87)Sr/(86)Sr ratio from that of seawater in parts per 10(4)); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

  11. The consequences of the neglect of TDS correction for temperature parameters

    International Nuclear Information System (INIS)

    Stevenson, A.W.; Harada, J.

    1982-01-01

    The importance of carrying out TDS corrections in analyses of charge density distributions from x-ray diffraction data is emphasized. Their relative effect on derived temperature parameter values is discussed and shown to rely primarily on the experimental conditions and not on the softness of the crystal

  12. Modelling of discrete TDS-spectrum of hydrogen desorption

    Science.gov (United States)

    Rodchenkova, Natalia I.; Zaika, Yury V.

    2015-12-01

    High concentration of hydrogen in metal leads to hydrogen embrittlement. One of the methods to evaluate the hydrogen content is the method of thermal desorption spectroscopy (TDS). As the sample is heated under vacuumization, atomic hydrogen diffuses inside the bulk and is desorbed from the surface in the molecular form. The extraction curve (measured by a mass-spectrometric analyzer) is recorded. In experiments with monotonous external heating it is observed that background hydrogen fluxes from the extractor walls and fluxes from the sample cannot be reliably distinguished. Thus, the extraction curve is doubtful. Therefore, in this case experimenters use discrete TDS-spectrum: the sample is removed from the analytical part of the device for the specified time interval, and external temperature is then increased stepwise. The paper is devoted to the mathematical modelling and simulation of experimental studies. In the corresponding boundary-value problem with nonlinear dynamic boundary conditions physical- chemical processes in the bulk and on the surface are taken into account: heating of the sample, diffusion in the bulk, hydrogen capture by defects, penetration from the bulk to the surface and desorption. The model aimed to analyze the dynamics of hydrogen concentrations without preliminary artificial sample saturation. Numerical modelling allows to choose the point on the extraction curve that corresponds to the initial quantity of the surface hydrogen, to estimate the values of the activation energies of diffusion, desorption, parameters of reversible capture and hydride phase decomposition.

  13. Modelling of discrete TDS-spectrum of hydrogen desorption

    International Nuclear Information System (INIS)

    Rodchenkova, Natalia I; Zaika, Yury V

    2015-01-01

    High concentration of hydrogen in metal leads to hydrogen embrittlement. One of the methods to evaluate the hydrogen content is the method of thermal desorption spectroscopy (TDS). As the sample is heated under vacuumization, atomic hydrogen diffuses inside the bulk and is desorbed from the surface in the molecular form. The extraction curve (measured by a mass-spectrometric analyzer) is recorded. In experiments with monotonous external heating it is observed that background hydrogen fluxes from the extractor walls and fluxes from the sample cannot be reliably distinguished. Thus, the extraction curve is doubtful. Therefore, in this case experimenters use discrete TDS-spectrum: the sample is removed from the analytical part of the device for the specified time interval, and external temperature is then increased stepwise. The paper is devoted to the mathematical modelling and simulation of experimental studies. In the corresponding boundary-value problem with nonlinear dynamic boundary conditions physical- chemical processes in the bulk and on the surface are taken into account: heating of the sample, diffusion in the bulk, hydrogen capture by defects, penetration from the bulk to the surface and desorption. The model aimed to analyze the dynamics of hydrogen concentrations without preliminary artificial sample saturation. Numerical modelling allows to choose the point on the extraction curve that corresponds to the initial quantity of the surface hydrogen, to estimate the values of the activation energies of diffusion, desorption, parameters of reversible capture and hydride phase decomposition. (paper)

  14. Effluents from a waste rock deposit of a former uranium mine in Saxony/Germany - Mass flow balance of water and dissolved solids

    International Nuclear Information System (INIS)

    Biehler, D.

    2002-01-01

    Soon after uranium mining had ceased in eastern Germany in 1990, work for remediation of several mining sites began. The Wismut GmbH, owner of the Mine of Dresden-Gittersee's waste rock dump, introduced the concept of reducing the impact to the environment via water and air paths by implementing a multi-layer soil cover. The deposit consists mainly of waste rock (clastic sediments of Doehlener Becken, deep metamorphic rocks) but also of low-grade ore (U-rich coal) and tailing materials. At the time when remediation started, the effluents completely infiltrated the underground. Because of previous surface exfiltration activities, they were already known to be very rich in dissolved solids, especially in sulphate and uranium. As demanded by the state authorities, the owner funded a vast hydrogeological study of the site. In testing the efficiency of surface sealing, the study indicated a mass flow balance of water and dissolved solids for the current situation, and predicted emissions into the water path which would occur after realisation of the proposed soil cover. The field investigation program consisted of: measurements of flow, of concentrations of dissolved solids (esp. U and Ra-226) and of contents of environmental isotopes in precipitation, surface runoff, seepage water and groundwater in the current condition of the dump; the study of waste rock material (geochemistry, mineralogy); waste rock material elution tests; underground investigation by drilling boreholes up to 270 m in depth. The resulting data allowed for: a hydrogeological conceptual model of the site; a consistent mass flow balance for the current condition of the dump; a prediction of concentrations in groundwater resulting after the realisation of a soil cover. The predictions show that the concentrations of dissolved solids in the contaminated groundwater would be significantly decreased. Furthermore it would be possible to reach the standards for drinking water with respect to uranium

  15. Comparison of effect of TDS and Fe in uranium measurement in LED and Xe lamp based fluorimeter

    International Nuclear Information System (INIS)

    Sahoo, S.K.; Mohapatra, S.; Lenka, P.; Dubey, J.S.; Patra, A.C.; Thakur, V.K.; Ravi, P.M.; Tripathi, R.M.

    2014-01-01

    In the present study, the effect of TDS and Fe on uranium fluorescence in water samples is studied by fluorometric techniques based on LED and xenon lamp systems. Fluorimeters are calibrated with uranium standards to establish the relationship between concentration and fluorescence response. Known concentration of uranium standard solution is measured in both LED and Xe lamp based fluorimeter after spiking with a series of concentration of Fe and TDS solution. Most often high levels of TDS are caused by the presence of K, CI, Na, etc. Thus here the effect of TDS is studied with NaCI solution but the effect may differ with the presence other elements. Details of the optimization procedure and measurement of uranium concentration in fluorometric technique are given elsewhere. In LED based system, sodium pyrophosphate with phosphoric acid is used as the complexing agent while sodium polysilicate is used in Xe lamp based system. Fe standard solution of 0.1 to 10 ppm was spiked with known uranium standard and analysed in both the fluorimeters. The fluorescence response gradually decreased upto 50% with 10 ppm of Fe in the solution in the LED based system whereas there was a gradual decrease of fluorescence response with increase in Fe concentration and it was 60% with 10 ppm of Fe. Thus both the instruments show nearly equal response with the increasing concentration of Fe in sample solution. Therefore, in case of high TDS and Fe content in the sample, precautions should be taken during measurement of uranium in water samples directly by fluorimetric techniques

  16. Elemental concentration and chemical parameters of drinking water of Patiala City, India

    International Nuclear Information System (INIS)

    Sharma, H.K.; Singh, B.; Mittal, V.K.; Sahota, H.S.

    1989-01-01

    Neutron activation analysis and energy dispersive x-ray fluorescence techniques have been used to determine 28 major and trace element concentrations in drinking water. Conductivity, pH, hardness, alkalinity, chlorides and sulphates were also measured. The majority of the concentrations are well below the ISI/WHO recommended values. However cadmium, mercury, total dissolved solids (TDS) conductivity and alkalinity were found to be higher in about half the cases compared to ISI/WHO recommended values, whereas sodium was found to be higher in almost all the cases. A linear relationship was observed between TDS and conductivity. (author)

  17. Influence of environmental factors on spectral characteristics of chromophoric dissolved organic matter (CDOM) in Inner Mongolia Plateau, China

    Science.gov (United States)

    Wen, Z. D.; Song, K. S.; Zhao, Y.; Du, J.; Ma, J. H.

    2016-02-01

    Spectral characteristics of chromophoric dissolved organic matter (CDOM) were examined in conjunction with environmental factors in the waters of rivers and terminal lakes within the Hulun Buir plateau, northeast China. Dissolved organic carbon (DOC), total nitrogen (TN), and total phosphorous (TP) were significantly higher in terminal lakes than rivers waters (p CDOM absorption in river waters was significantly lower than terminal lakes. Analysis of the ratio of absorption at 250 to 365 nm (E250 : 365), specific ultraviolet (UV) absorbance (SUVA254), and the spectral slope ratio (Sr) indicated that CDOM in river waters had higher aromaticity, molecular weight, and vascular plant contribution than in terminal lakes. Furthermore, results showed that DOC concentration, CDOM light absorption, and the proportion of autochthonous sources of CDOM in plateau waters were all higher than in other freshwater rivers reported in the literature. The strong evapoconcentration, intense ultraviolet irradiance, and landscape features of the Hulun Buir plateau may be responsible for the above phenomenon. Redundancy analysis (RDA) indicated that the environmental variables total suspended matter (TSM), TN, and electrical conductivity (EC) had a strong correlation with light absorption characteristics, followed by total dissolved solid (TDS) and chlorophyll a. In most sampling locations, CDOM was the dominant non-water light-absorbing substance. Light absorption by non-algal particles often exceeded that by phytoplankton in the plateau waters. Study of these optical-physicochemical correlations is helpful in the evaluation of the potential influence of water quality factors on non-water light absorption in cold plateau water environments. The construction of a correlation between DOC concentration and water quality factors may help contribute to regional estimates of carbon sources and fate for catchment carbon budget assessments.

  18. Physicochemical and sensory qualities of spiced soy-corn milk ...

    African Journals Online (AJOL)

    Soy-corn milk type was produced from a blend of soybean milk and corn milk extract at a ratio of 3:1. The soy-corn milk type was spiced with ginger and garlic extract respectively to improve the taste. Total dissolved solid (TDS), total titrable acidity (TTA) specific gravity (SG), apparent colloidal stability, pH and sensory ...

  19. Comparing the Performance of Artificial Intelligence Models in Estimating Water Quality Parameters in Periods of Low and High Water Flow

    Directory of Open Access Journals (Sweden)

    majid montaseri

    2017-03-01

    Full Text Available Introduction: A total dissolved solid (TDS is an important indicator for water quality assesment. Since the composition of mineral salts and discharge affects the TDS of water, it is important to understand the relationships of mineral salts composition with TDS. Materials and Methods: In this study, methods of artificial neural networks with five different training algorithm,Levenberg-Marquardt (LM, Scaled Conjugate Gradient (SCG, Fletcher Conjugate Gradient (CGF, One Step Secant (OSS and Gradient descent with adaptive learning rate backpropagation(GDAalgorithm and adaptive Neurofuzzy inference system based on Subtractive Clustering were used to model water quality properties of Zarrineh River Basin, to be developed in total dissolved solids prediction. ANN and ANFIS program code were written in MATLAB language. Here, the ANN with one hidden layer was used and the hidden nodes’ number was determined using trial and error. Different activation functions (logarithm sigmoid, tangent sigmoid and linear were tried for the hidden and output nodes. Therefore, water quality data from seven hydrometer stationswere used during the statistical period of 18years (1993-2010.In this research, the study period was divided into two periods of dry and wet flow, and then in a preliminary statistical analysis, the main parameters affecting the estimation of the TDS are determined and isused for modeling. 75% of data are used for remaining and 25% of the data are used for evaluation of the model, randomly. In this paper, three statistical evaluation criteria, correlation coefficient (R, the root mean square error (RMSE and mean absolute error (MAE were used to assess models’ performances. Results and Discussion: By applying correlation coefficients method between the parameters of water quality and discharge with total dissolved solid in two periods, wet and dry periods, the significant (at 95% level variables entered into the model were Q, HCO3., Cl, So4, Ca

  20. Assessment on seasonal variation of groundwater quality of phreatic aquifers - A river basin system

    Digital Repository Service at National Institute of Oceanography (India)

    Laluraj, C.M.; Gopinath, G.

    suspended solids (TDS), fluoride and total iron content will help to identify the quality of ground water. Groundwater contamination can often have serious ill ef- fects on human health. Groundwater with low pH values can cause gastrointestinal disorders... is considered as an important parameter for irrigation and industrial purposes. Total dissolved solids help to identify the potability of groundwater. Total iron content may not have direct effects on human health but is of importance due to aesthetic reasons...

  1. Towards explaining excess CO2 production in wetlands - the roles of solid and dissolved organic matter as electron acceptors and of substrate quality

    Science.gov (United States)

    Knorr, Klaus-Holger; Gao, Chuanyu; Agethen, Svenja; Sander, Michael

    2017-04-01

    To understand carbon storage in water logged, anaerobic peatlands, factors controlling mineralization have been studied for decades. Temperature, substrate quality, water table position and the availability of electron acceptors for oxidation of organic carbon have been identified as major factors. However, many studies reported an excess carbon dioxide (CO2) production over methane (CH4) that cannot be explained by available electron acceptors, and peat soils did not reach strictly methanogenic conditions (i.e., a stoichiometric formation ratio of 1:1 of CO2 to CH4). It has been hypothesized that peat organic matter (OM) provides a previously unrecognized electron acceptor for microbial respiration, elevating CO2 to CH4 ratios. Microbial reduction of dissolved OM has been shown in the mid 90's, but only recently mediated electrochemical techniques opened the possibility to access stocks and changes in electron accepting capacities (EAC) of OM in dissolved and solid form. While it was shown that the EAC of OM follows redox cycles of microbial reduction and O2 reoxidation, changes in the EAC of OM were so far not related quantitatively to CO2 production. We therefore tested if CO2 production in anoxic peat incubations is balanced by the consumption of electron acceptors if EAC of OM is included. We set up anoxic incubations with peat and monitored production of CO2 and CH4, and changes in EAC of OM in the dissolved and solid phase over time. Interestingly, in all incubations, the EAC of dissolved OM was poorly related to CO2 and CH4 production. Instead, dissolved OM was rapidly reduced at the onset of the incubations and thereafter remained in reduced form. In contrast, the decrease in the EAC of particulate (i.e. non-dissolved) OM was closely linked to the observed production of non-methanogenic CO2. Thereby, the total EAC of the solid OM pool by far exceeded the EAC of the dissolved OM pool. Over the course of eight week incubations, measured decreases in the EAC

  2. Geochemical studies of fluoride and other water quality parameters of ground water in Dhule region Maharashtra, India.

    Science.gov (United States)

    Patil, Dilip A; Deshmukh, Prashant K; Fursule, Ravindra A; Patil, Pravin O

    2010-07-01

    This study has been carried out to find out the water pollutants and to test the suitability of water for drinking and irrigation purposes in Dhule and surrounding areas in Maharashtra State in India. The analysis was carried out for the parameters pH, DO (dissolved oxygen), BOD (biological oxygen demand), Cl-, NO3-, F-, S(2)-, total alkalinity, total solid, total dissolved solids (TDS), total suspended solids (TSS), total hardness, calcium, magnesium, carbonate and noncarbonate hardness, and concentrations of calcium and magnesium. These parameters were compared against the standards laid down by World Health Organization (WHO) and Indian Council of Medical Research (ICMR) for drinking water quality. High levels of NO(3)-, Cl-, F-, S(2)-, total solid, TDS, TSS, total hardness, magnesium and calcium have been found in the collected samples. From these observations, it has been found that fluoride is present as per the permissible limit (WHO 2003) in some of the villages studied, but both fluoride and nitrate levels are unacceptable in drinking water samples taken from several villages in Dhule. This is a serious problem and, therefore, requires immediate attention. Excess of theses impurities in water causes many diseases in plants and animals. This study has been carried out to find out the water pollutants and to test the suitability of water for drinking and irrigation purposes in Dhule and surrounding areas in Maharashtra.

  3. The Validity Of "TDS-DTM": A Strategic Methodology Of Merchandise Development Of New JIT-Key To The Excellence Design LEXUS

    OpenAIRE

    Kakuro Amasaka

    2011-01-01

    Recently, the author has touched on the development of the principle of New JIT and its validity. In this paper, the author presents TDS-DTM (Toyota Development System-Design Technical Methods) as a methodology of New JIT, which contributes to strategic product development. The excellence profile design of LEXUS has achieved by TDS-DTM.

  4. Role of water quality assessments in hospital infection control: Experience from a new oncology center in eastern India

    Directory of Open Access Journals (Sweden)

    Ramkrishna Bhalchandra

    2014-01-01

    Full Text Available Water quality assessment and timely intervention are essential for health. Microbiology, total dissolved solids (TDS and free residual chlorine were measured for water quality maintenance in an oncology center in India. Impact of these interventions over a period of 22 months has been demonstrated with four cardinal events. Pseudomonas in hospital water was controlled by adequate chlorination, whereas high TDS in the central sterile supply department water was corrected by the installation of electro-deionization plant. Contaminated bottled water was replaced using quality controlled hospital supply. Timely detection and correction of water-related issues, including reverse osmosis plant was possible through multi-faceted approach to water quality.

  5. Clear sky pure water - PV water pumping and desalination

    International Nuclear Information System (INIS)

    Saleh Al-Zahrani; Yaseen Al-Harbi

    2000-01-01

    Providing adequate portable drinking water is becoming a serious problem in remote areas. Saudi Arabia is a very suitable place to use renewable energy such as photovoltaic (PV) energy. For this reason, a PV system was designed and installed along with water pumping and desalination systems in the village of Sadous, about 72 km from Riyadh. The total number of panels is 158, and they give 11.06 kW. The average pumped water from the well is about 18 m 3 /day with total dissolved solids (TDS) greater than 6000 PPM. The average product water is about 5 m 3 /day with TDS less than 300 PPM. (Author)

  6. Ecological Factors Determining Abundance of Parasitic Mites on Aedes spp. Larvae

    Directory of Open Access Journals (Sweden)

    Nurhadi Eko Firmansyah

    2017-12-01

    Full Text Available Ability to infestation and abundance of parasitic mites in Aedes spp. larvae cannot be separated from the influence of various factors. Ecological factors have been suggested to play a role determine the presence of parasitic mites that under certain conditions become a key factor in determining the abundance of parasitic mites on Aedes spp. larvae. The aim of this study to determine the ecological factors affect the abundance of parasitic mites on Aedes spp. larvae in Bogor Regency. Capturing of Aedes spp. larvae was performed directly on the habitats found in indoor and outdoor. Capturing mites in the body of Aedes spp. larvae was performed using insect forceps. Ecological factors measured were dissolved oxygen (DO, pH, temperature, and total dissolved solid (TDS. The influence of ecological factors was analyzed using regression and correlation analysis. The result of mite identification has been obtained three species of mites that are Halacarus sp., Histiostoma sp., and Hydrozetes sp. The result indicated that total dissolved solid (TDS and temperature was the factors that determined the abundance of mites. The factors of pH, and dissolved oxygen (DO did not determine the abundance of parasitic mites of Aedes spp. larvae. The research result can be further developed as a new alternative to Dengue Hemorraghic Fever control and provide information on parasitic mites that infest Aedes spp. larvae. In addition, this results become an early step in controlling of Aedes spp. strategy platform by the parasitic mites.

  7. Multiple regression equations modelling of groundwater of Ajmer-Pushkar railway line region, Rajasthan (India).

    Science.gov (United States)

    Mathur, Praveen; Sharma, Sarita; Soni, Bhupendra

    2010-01-01

    In the present work, an attempt is made to formulate multiple regression equations using all possible regressions method for groundwater quality assessment of Ajmer-Pushkar railway line region in pre- and post-monsoon seasons. Correlation studies revealed the existence of linear relationships (r 0.7) for electrical conductivity (EC), total hardness (TH) and total dissolved solids (TDS) with other water quality parameters. The highest correlation was found between EC and TDS (r = 0.973). EC showed highly significant positive correlation with Na, K, Cl, TDS and total solids (TS). TH showed highest correlation with Ca and Mg. TDS showed significant correlation with Na, K, SO4, PO4 and Cl. The study indicated that most of the contamination present was water soluble or ionic in nature. Mg was present as MgCl2; K mainly as KCl and K2SO4, and Na was present as the salts of Cl, SO4 and PO4. On the other hand, F and NO3 showed no significant correlations. The r2 values and F values (at 95% confidence limit, alpha = 0.05) for the modelled equations indicated high degree of linearity among independent and dependent variables. Also the error % between calculated and experimental values was contained within +/- 15% limit.

  8. Impact of catastrophic events on small mountainous rivers: Temporal and spatial variations in suspended- and dissolved-solid fluxes along the Choshui River, central western Taiwan, during typhoon Mindulle, July 2-6, 2004

    Science.gov (United States)

    Milliman, J. D.; Lee, T. Y.; Huang, J. C.; Kao, S. J.

    2017-05-01

    Small mountainous rivers deliver disproportionately large quantities of suspended and dissolved solids to the global ocean, often in response to catastrophic events such as earthquakes or floods. Here we report on the impact of a major flood on the Choshui River, central-western Taiwan, generated by typhoon Mindulle, July 2-6, 2004, five years after the nearby Mw 7.6 Chichi earthquake. Water samples taken at 3-h intervals at three stations along main stem, as well as from two downriver tributaries, allow us to delineate the temporal and spatial variability in concentrations and fluxes of suspended and dissolved constituents within the middle and lower portions of the river in response to this flood. High suspended-sediment concentrations, some as high as 200 g/l, reflected the rapid erosion of landslide scars and debris deposits generated by super-typhoon Herb in 1996 and the 1999 Chichi earthquake. Dissolved-solid and suspended-sediment discharges totaled 0.22 and 70 million tons (mt), 50 mt of which were discharged in just two days. Particulate organic carbon (POC) discharge, most of which was pre-modern in age, was 195,000 t. More than half of the discharged water, POC and dissolved solids came from upriver, whereas about 70% of the suspended sediment and 60% of the dissolved nitrate came from two downriver tributaries, the Chenyoulan and Qingshui rivers. Spatial and temporal differences in the character and discharge of suspended and dissolved solids within and between rivers in the Choshui drainage basin reflect different geologies, landslide histories, the effects of human impact, and the abrupt draining of the Tsaoling landslide lake in the Qingshui basin, as well as the possible shifting of importance of groundwater vs. overland flow. Neither wind-blown pollutants nor sea salts appear to have contributed significantly to dissolved solid character or discharge. Sediment contribution from the landslides in the Chenyoulan basin generated by super-typhoon Herb

  9. Physico-chemical properties of drinking water available in educational institutes of karachi city

    International Nuclear Information System (INIS)

    Asadullah, A.; Nisa, K.; Khan, S.I.

    2013-01-01

    in order to investigate the physic-chemical quality, 780 water samples were collected from 490 educational institutes located in various areas of Karachi, during the period of May to September 2005. The parameters include pH, turbidity, total dissolve solids (TDS), hardness and conductivity that were varied from 3.2 to 8.7, 0.2 to 3.1 NTU (nephelometric turbidity unit), 79 to 1066 ppm, 69 to 558ppm and 96 to 1775 mu S/cm, respectively. On the basis of pH 6%, taste 2.1%, turbidity 0%, TDS 2.5% and hardness 1.3%, of the samples were found out of acceptable limits of World Health Organisation (WHO) guidelines. Moreover, the conductivity of the studied waters was found to be the multiple of 0.6001 to that of TDS (R/sup 2/ = 0.987) when regression model was established. (author)

  10. Identification of dissolved-constituent sources in mine-site ground water using batch mixing

    International Nuclear Information System (INIS)

    Clark, G.M.; Williams, R.S. Jr.

    1991-01-01

    Batch-mixing experiments were used to help identify lithologic mineralogic sources of increased concentrations of dissolved solids in water affected by surface coal mining in northwestern Colorado. Ten overburden core samples were analyzed for mineral composition and mixed with distilled water for 90 days until mineral-water equilibrium was reached. Dissolved-solids concentrations ranged from 200 to 8,700 mg/L in water samples extracted from the mixtures after 90 days. Mass-balance simulations were conducted using the geochemical models BALANCE and WATEQF to quantify mineral-water interactions occurring in five selected sample mixtures and in water collected from a spring at a reclaimed mine site. The spring water is affected by mineral-water interactions occurring in all of lithologic units comprising the overburden. Results of the simulations indicate that oxidation of pyrite, dissolution of dolomite, gypsum, and epsomite, and cation-exchange reactions are the primary mineral-water interactions occurring in the overburden. Three lithologic units in the overburden probably contribute most of the dissolved solids to the spring water. Water sample extracts from mixtures using core from these three units accounted for 85 percent of the total dissolved solids in the 10 sample extracts. Other lithologic units in the overburden probably contribute smaller quantities of dissolved solids to the spring water

  11. Concentration and flux of total and dissolved phosphorus, total nitrogen, chloride, and total suspended solids for monitored tributaries of Lake Champlain, 1990-2012

    Science.gov (United States)

    Medalie, Laura

    2014-01-01

    Annual and daily concentrations and fluxes of total and dissolved phosphorus, total nitrogen, chloride, and total suspended solids were estimated for 18 monitored tributaries to Lake Champlain by using the Weighted Regressions on Time, Discharge, and Seasons regression model. Estimates were made for 21 or 23 years, depending on data availability, for the purpose of providing timely and accessible summary reports as stipulated in the 2010 update to the Lake Champlain “Opportunities for Action” management plan. Estimates of concentration and flux were provided for each tributary based on (1) observed daily discharges and (2) a flow-normalizing procedure, which removed the random fluctuations of climate-related variability. The flux bias statistic, an indicator of the ability of the Weighted Regressions on Time, Discharge, and Season regression models to provide accurate representations of flux, showed acceptable bias (less than ±10 percent) for 68 out of 72 models for total and dissolved phosphorus, total nitrogen, and chloride. Six out of 18 models for total suspended solids had moderate bias (between 10 and 30 percent), an expected result given the frequently nonlinear relation between total suspended solids and discharge. One model for total suspended solids with a very high bias was influenced by a single extreme value; however, removal of that value, although reducing the bias substantially, had little effect on annual fluxes.

  12. Freely dissolved concentrations of anionic surfactants in seawater solutions: optimization of the non-depletive solid-phase microextraction method and application to linear alkylbenzene sulfonates.

    NARCIS (Netherlands)

    Rico Rico, A.; Droge, S.T.J.; Widmer, D.; Hermens, J.L.M.

    2009-01-01

    A solid-phase microextraction method (SPME) has been optimized for the analysis of freely dissolved anionic surfactants, namely linear alkylbenzene sulfonates (LAS), in seawater. An effect of the thermal conditioning treatment on the polyacrylate fiber coating was demonstrated for both uptake

  13. Use of Multi-Intake Temporal Dominance of Sensations (TDS) to Evaluate the Influence of Wine on Cheese Perception.

    Science.gov (United States)

    Galmarini, Mara V; Loiseau, Anne-Laure; Debreyer, Doëtte; Visalli, Michel; Schlich, Pascal

    2017-11-01

    Even if wine and cheese have long been consumed together, there is little sensory evidence on how wine can influence the perception of cheese. In this work 4 cheeses were dynamically characterized in terms of dominant sensations without and with wine consumption in between intakes. The tasting protocol was based on multi-intake temporal dominance of sensations (TDS) coupled with hedonic rating. Frequent wine and cheese consumers (n = 31) evaluated 4 cheeses (Epoisses, Chaource, and 2 different Comté) over 3 consecutive bites. In the following sessions they performed the same task, but taking sips of wine (rosé Riceys, white Burgundy, red Burgundy, and red Beaujolais) between bites. All cheese-wine combinations were tasted over 4 sessions. TDS data were analyzed in terms of attribute duration of dominance by ANOVA, MANOVA, and canonical variate analysis. Results showed that wine consumption had an impact (P wine had no impact on the preference of cheese; this stayed constant under all the evaluating conditions. This paper aims to validate an innovative protocol on dynamic sensory data acquisition in which consumers evaluate the impact of a beverage (wine) on a solid food (cheese). This protocol is complementary to a previous one presented in this journal, where the effect of cheese was tested on wine. Together they make up an interesting approach towards developing a new tool for the food sector to better understand the impact of one food product on another. This could lead to a better description of a whole meal, something which is still missing in sensory science. © 2017 Institute of Food Technologists®.

  14. PENURUNAN KADAR RHODAMIN B DALAM AIR LIMBAH DENGAN BIOFILTRASI SISTEM TANAMAN

    Directory of Open Access Journals (Sweden)

    K. Yogi Purnamawati

    2016-01-01

    Full Text Available The textile industry is growing rapidly and as the result it’s producing waste that can harm the environment. One of which is rhodamine B. Rhodamine B is a synthetics dyes that have a form crystalline which an organic base containing amino groups, so it is difficult to degrade naturally by microorganism. Biofiltration system method is one of many ways in handling wastewater. Layered filtration unit of sand and rocks combine with the adsorption of plant and decomposition by microorganisms in rhizosphere so that wastewater can be reused. The aim of this study determined effectiveness and capacity of biofiltration system vegetation in reducing concentrate of rhodamine-B, total dissolved solid (TDS, total suspended solid (TSS and the pH in wastewater. The result showed that biofiltration effectiveness in reducing rhodamine B, TDS and TSS concetrate were 51,70%; 47,60%; 50,44% while decreasing and stabilization of pH obtained at 30 hours treatment time with pH value is 7,5. Capacity of biofiltration system vegetation with volume 0,06 m3 can reduced rhodamine B, TDS and TSS by 0,2256 ppm; 278,0237 ppm and 9,4978 ppm respectively, while the optimum detention time of wastewater in the biosystem for reducing rhodamine B was 30 hours and for TSS and TDS was 36 hours. It can be concluded that biofiltration system vegetation was able to reduce rhodamine B, TDS, TSS and pH of wastewater

  15. An Investigation Into The Water Quality Of Buriganga - A River Running Through Dhaka

    Directory of Open Access Journals (Sweden)

    Shaikh Sayed Ahammed

    2015-08-01

    Full Text Available Buriganga river is used for bathing drinking irrigation and industrial purposes and is considered to be the lifeline of Dhaka city. The water quality of Buriganga has become a matter of concern due to serious levels of pollution. The objective of the study was to determine the water quality of the selected section of Buriganga river which passes through Dhaka city. The water quality parameters were sampled during different seasons summer winter and autumn and in 10 different sampling points along the river along the banks of the Buriganga River. The water quality parameters studied for this study were dissolved oxygen DO biochemical oxygen demand BOD chemical oxygen demand COD pH turbidity conductivity total dissolved solids TDS nitrate and phosphate. The results showed that DO BOD COD TDS turbidity nitrate and phosphate are at an alarming level and a discussion on the possible sources of the pollution are presented.

  16. Estimating relations between temperature, relative humidity as independed variables and selected water quality parameters in Lake Manzala, Egypt

    Directory of Open Access Journals (Sweden)

    Gehan A.H. Sallam

    2018-03-01

    Full Text Available In Egypt, Lake Manzala is the largest and the most productive lake of northern coastal lakes. In this study, the continuous measurements data of the Real Time Water Quality Monitoring stations in Lake Manzala were statistically analyzed to measure the regional and seasonal variations of the selected water quality parameters in relation to the change of air temperature and relative humidity. Simple formulas are elaborated using the DataFit software to predict the selected water quality parameters of the Lake including pH, Dissolved Oxygen (DO, Electrical Conductivity (EC, Total Dissolved Solids (TDS, Turbidity, and Chlorophyll as a function of air temperature, relative humidity and quantities and qualities of the drainage water that discharge into the lake. An empirical positive relation was found between air temperature and the relative humidity and pH, EC and TDS and negative relation with DO. There is no significant effect on the other two parameters of turbidity and chlorophyll.

  17. System and process for dissolution of solids

    Science.gov (United States)

    Liezers, Martin; Farmer, III, Orville T.

    2017-10-10

    A system and process are disclosed for dissolution of solids and "difficult-to-dissolve" solids. A solid sample may be ablated in an ablation device to generate nanoscale particles. Nanoparticles may then swept into a coupled plasma device operating at atmospheric pressure where the solid nanoparticles are atomized. The plasma exhaust may be delivered directly into an aqueous fluid to form a solution containing the atomized and dissolved solids. The composition of the resulting solution reflects the composition of the original solid sample.

  18. Distribution of natural uranium in groundwater around Kudankulam

    International Nuclear Information System (INIS)

    Selvi, B.S.; Vijayakumar, B.; Rana, B.K.; Ravi, P.M.

    2016-01-01

    A systematic study was carried out to estimate the uranium concentration in the ground water around Kudankulam in Southern Tamil Nadu. The uranium concentration in ground water varies from 0.2 to 6.6 μg/l, with a mean value of 2.0 μg/l. The Quantalase uranium analyzer was used to measure the uranium concentration. These groundwater samples were analyzed for the water quality parameters such as pH, conductance, total dissolved solids (TDS), salinity, chloride, and sulfate. An attempt has been made to correlate the uranium concentration with the water quality parameters. It is observed that conductance, TDS, salinity, chloride, and sulfate show positive correlation with uranium concentration. (author)

  19. Test results on direct containment heating by high-pressure melt ejection into the Surtsey vessel: The TDS test series

    International Nuclear Information System (INIS)

    Allen, M.D.; Blanchat, T.K.; Pilch, M.M.

    1994-08-01

    The Technology Development and Scoping (TDS) test series was conducted to test and develop instrumentation and procedures for performing steam-driven, high-pressure melt ejection (HPME) experiments at the Surtsey Test Facility to investigate direct containment heating (DCH). Seven experiments, designated TDS-1 through TDS-7, were performed in this test series. These experiments were conducted using similar initial conditions; the primary variable was the initial pressure in the Surtsey vessel. All experiments in this test series were performed with a steam driving gas pressure of ≅ 4 MPa, 80 kg of lumina/iron/chromium thermite melt simulant, an initial hole diameter of 4.8 cm (which ablated to a final hole diameter of ≅ 6 cm), and a 1/10th linear scale model of the Surry reactor cavity. The Surtsey vessel was purged with argon ( 2 ) to limit the recombination of hydrogen and oxygen, and gas grab samples were taken to measure the amount of hydrogen produced

  20. Characterization of Urban Runoff Pollution between Dissolved and Particulate Phases

    Science.gov (United States)

    Wei, Zhang; Simin, Li; Fengbing, Tang

    2013-01-01

    To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%–30.91%, 83.29%–90.51%, and 61.54–68.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff. PMID:23935444

  1. Characterization of urban runoff pollution between dissolved and particulate phases.

    Science.gov (United States)

    Wei, Zhang; Simin, Li; Fengbing, Tang

    2013-01-01

    To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitrogen, and total dissolved phosphorus in total ones for all the catchments were 26.19%-30.91%, 83.29%-90.51%, and 61.54-68.09%, respectively. During rainfall events, the pollutant concentration at the initial stage of rainfall was high and then sharply decreased to a low value. Affected by catchments characterization and rainfall distribution, the highest concentration of road pollutants might appear in the later period of rainfall. Strong correlations were also found among runoffs pollutants in different phases. Total suspended solid could be considered as a surrogate for particulate matters in both road and roof runoff, while dissolved chemical oxygen demand could be regarded as a surrogate for dissolved matters in roof runoff.

  2. Oxygen enriched air using membrane for palm oil wastewater treatment

    Directory of Open Access Journals (Sweden)

    Ramlah Mohd Tajuddin

    2002-11-01

    Full Text Available A research aimed to explore new method of aeration using oxygen enriched air performance on BOD reduction of palm oil wastewater was conducted. The oxygen enriched air was obtained from an Oxygen Enriched System (OES developed using asymmetric polysulfone hollow fiber membrane with composition consisting of PSF: 22%, DMAc: 31.8%, THF: 31.8%, EtOH: 14.4%. Palm oil wastewater samples were taken from facultative pond effluent. These samples were tested for its initial biochemical oxygen demand (BOD, total suspended solids (TSS, pH, conductivity, turbidity, dissolved oxygen (DO, suspended solids (SS, and total dissolved solids (TDS before being subjected to two modes of aeration system, that is diffused air and oxygen enriched air. These water quality concentrations were tested for every 20 minutes for two-hour period during the aeration process. Results of BOD, TSS, pH, conductivity, DO, SS and TDS concentrations against time of samples from the two modes of aeration were then compared. It was found that DO concentration achieved in oxygen enriched air aeration was better than aeration using diffused air system. Aeration using OES improve the DO concentration in the wastewater and thus improve the BOD reduction and also influence other physical characteristics of wastewater. This phenomenon indicates the advantage of using air with higher oxygen concentration for wastewater aeration instead of diffused air system.

  3. Groundwater and surface-water interaction, water quality, and processes affecting loads of dissolved solids, selenium, and uranium in Fountain Creek near Pueblo, Colorado, 2012–2014

    Science.gov (United States)

    Arnold, L. Rick; Ortiz, Roderick F.; Brown, Christopher R.; Watts, Kenneth R.

    2016-11-28

    In 2012, the U.S. Geological Survey, in cooperation with the Arkansas River Basin Regional Resource Planning Group, initiated a study of groundwater and surface-water interaction, water quality, and loading of dissolved solids, selenium, and uranium to Fountain Creek near Pueblo, Colorado, to improve understanding of sources and processes affecting loading of these constituents to streams in the Arkansas River Basin. Fourteen monitoring wells were installed in a series of three transects across Fountain Creek near Pueblo, and temporary streamgages were established at each transect to facilitate data collection for the study. Groundwater and surface-water interaction was characterized by using hydrogeologic mapping, groundwater and stream-surface levels, groundwater and stream temperatures, vertical hydraulic-head gradients and ratios of oxygen and hydrogen isotopes in the hyporheic zone, and streamflow mass-balance measurements. Water quality was characterized by collecting periodic samples from groundwater, surface water, and the hyporheic zone for analysis of dissolved solids, selenium, uranium, and other selected constituents and by evaluating the oxidation-reduction condition for each groundwater sample under different hydrologic conditions throughout the study period. Groundwater loads to Fountain Creek and in-stream loads were computed for the study area, and processes affecting loads of dissolved solids, selenium, and uranium were evaluated on the basis of geology, geochemical conditions, land and water use, and evapoconcentration.During the study period, the groundwater-flow system generally contributed flow to Fountain Creek and its hyporheic zone (as a single system) except for the reach between the north and middle transects. However, the direction of flow between the stream, the hyporheic zone, and the near-stream aquifer was variable in response to streamflow and stage. During periods of low streamflow, Fountain Creek generally gained flow from

  4. Identification of dissolved-constituent sources in mine-site ground water using batch mixing

    Science.gov (United States)

    Clark, Gregory M.; Williams, Robert S.

    1991-01-01

    Batch-mixing experiments were used to help identify lithologic and mineralogic sources of increased concentrations of dissolved solids in water affected by surface coal mining in northwestern Colorado. Ten overburden core samples were analyzed for mineral composition and mixed with distilled water for 90 days until mineral-water equilibrium was reached. Between one day and 90 days after initial contact, specific conductance in the sample mixtures had a median increase of 306 percent. Dissolved-solids concentrations ranged from 200 to 8,700 mg/L in water samples extracted from the mixtures after 90 days. Mass-balance simulations were conducted using the geochemical models BALANCE and WATEQF to quantify mineral-water interactions occurring in five selected sample mixtures and in water collected from a spring at a reclaimed mine site. The spring water is affected by mineral-water interactions occurring in all of the lithologic units comprising the overburden. Results of the simulations indicate that oxidation of pyrite, dissolution of dolomite, gypsum, and epsomite, and cation-exchange reactions are the primary mineral-water interactions occurring in the overburden. Three lithologic units in the overburden (a coal, a sandstone, and a shale) probably contribute most of the dissolved solids to the spring water. Water sample extracts from mixtures using core from these three units accounted for 85 percent of the total dissolved solids in the 10 sample extracts. Other lithologic units in the over-burden probably contribute smaller quantities of dissolved solids to the spring water.

  5. Pengolahan Internal Air Boiler Dengan Penambahan Asam Sulfat (H2SO4) 98% dan Kaustik Soda (NaOH) Di PTPN III Pabrik Kelapa Sawit Rambutan Tebing Tinggi

    OpenAIRE

    Simanjuntak, Depi Fitri

    2010-01-01

    Have been do observation to treatment of water domestic boiler with additional material of chemistry that is: H2SO4 98 % in tank cation and NaOH in tank anion. From result of observation, so geted, pH value, Total Dissolved Solid (TDS), Phenolphtalein Alkalinity, Methyl Alkalinity, Total Alkalinity, Sulfite, Chloride, Total Hardness, Hardness, has appropriate with prerequirement water of boiler wich used in PTPN III RAMBUTAN TEBING TINGGI. 072409006

  6. Numerical Analysis of the Source of Excessive Na+ and Cl Species in Flowback Water From Hydraulically Fractured Shale Formations

    Energy Technology Data Exchange (ETDEWEB)

    Seales, Maxian B.; Dilmore, Robert; Ertekin, Turgay; Wang, John Yilin

    2016-10-01

    Fracture fluid comprises fresh water, proppant, and a small percentage of other additives, which support the hydraulic fracturing process. Excluding situations in which flowback water is recycled and reused, total dissolve solids in fracture fluid is limited to the fluid additives, such as potassium chloride (1-7 weight percent KCL), which is used as a clay stabilizer to minimize clay swelling, and clay particle migration. However, the composition of recovered fluid, especially as it relates to the total dissolve solids (TDS), is always substantially different than the injected fracture fluid. The ability to predict flowback water volume and composition is useful when planning for the management or reuse of this aqueous byproduct stream. In this work, an ion transport and halite dissolution model was coupled with a fully implicit, dual porosity, numerical simulator, to study the source of the excess solutes in flowback water, and to predict the concentration of both Na+ and Cl- species seen in recovered water. The results showed that mixing alone, between the injected fracture fluid and concentrated in situ formation brine, could not account for the substantial rise in TDS seen in flowback water. Instead, the results proved that halite dissolution is a major contributor to the change in TDS seen in fracture fluid during injection and recovery. Halite dissolution can account for as much as 81% of Cl- and 86.5% of Na+ species seen in 90-day flowback water; mixing, between the injected fracture fluid and in situ concentrated brine, accounts for approximately 19% Cl- and 13% Na+.

  7. Earthquake chemical precursors in groundwater: a review

    Science.gov (United States)

    Paudel, Shukra Raj; Banjara, Sushant Prasad; Wagle, Amrita; Freund, Friedemann T.

    2018-03-01

    We review changes in groundwater chemistry as precursory signs for earthquakes. In particular, we discuss pH, total dissolved solids (TDS), electrical conductivity, and dissolved gases in relation to their significance for earthquake prediction or forecasting. These parameters are widely believed to vary in response to seismic and pre-seismic activity. However, the same parameters also vary in response to non-seismic processes. The inability to reliably distinguish between changes caused by seismic or pre-seismic activities from changes caused by non-seismic activities has impeded progress in earthquake science. Short-term earthquake prediction is unlikely to be achieved, however, by pH, TDS, electrical conductivity, and dissolved gas measurements alone. On the other hand, the production of free hydroxyl radicals (•OH), subsequent reactions such as formation of H2O2 and oxidation of As(III) to As(V) in groundwater, have distinctive precursory characteristics. This study deviates from the prevailing mechanical mantra. It addresses earthquake-related non-seismic mechanisms, but focused on the stress-induced electrification of rocks, the generation of positive hole charge carriers and their long-distance propagation through the rock column, plus on electrochemical processes at the rock-water interface.

  8. Characterization of Urban Runoff Pollution between Dissolved and Particulate Phases

    OpenAIRE

    Wei, Zhang; Simin, Li; Fengbing, Tang

    2013-01-01

    To develop urban stormwater management effectively, characterization of urban runoff pollution between dissolved and particulate phases was studied by 12 rainfall events monitored for five typical urban catchments. The average event mean concentration (AEMC) of runoff pollutants in different phases was evaluated. The AEMC values of runoff pollutants in different phases from urban roads were higher than the ones from urban roofs. The proportions of total dissolved solids, total dissolved nitr...

  9. Analysis of optical thickness determination of materials by THz-TDS

    International Nuclear Information System (INIS)

    Sushko, O; Dubrovka, R; Donnan, R S

    2013-01-01

    Terahertz time-domain spectrometry (THz TDS) is a sensitive probe of the complex dielectric response of materials. Methods vary for converting time-domain response into final material optical parameters together with estimation of associated uncertainties. Here we point out the importance of using an accurate extraction procedure with particular emphasis on the error introduced by associated inaccuracy in thickness determination of a sample. The Total Variation (TV) method is used to estimate sample thickness to sub-micron accuracy, by constructively using the phenomena of multiple internal reflections ('ringing') within a sample. The applicability and performance of the TV methodology is discussed

  10. Assessment of Surface Water Quality in the Malaysian Coastal Waters by Using Multivariate Analyses

    International Nuclear Information System (INIS)

    Yap, C.K.; Chee, M.W.; Shamarina, S.; Edward, F.B.; Chew, W.; Tan, S.G.

    2011-01-01

    Coastal water samples were collected from 20 sampling sites in the southern part of Peninsular Malaysia. Seven physico-chemical parameters were measured directly in-situ while water samples were collected and analysed for 6 dissolved trace metal concentrations. The surface water (0-20 cm) physico-chemical parameters including temperature, salinity, dissolved oxygen (DO), pH, total dissolved solids (TDS), specific conductance (SpC) and turbidity while the dissolved trace metals were Cd, Cu, Fe, Ni, Pb and Zn. The ranges for the physico-chemical parameters were 28.07-35.6 degree Celsius for temperature, 0.18-32.42 ppt for salinity, 2.20-12.03 mg/ L for DO, 5.50-8.53 for pH, 0.24-31.65 mg/ L for TDS, 368-49452 μS/ cm for SpC and 0-262 NTU for turbidity while the dissolved metals (mg/ L) were 0.013-0.147 for Cd, 0.024-0.143 for Cu, 0.266-2.873 for Fe, 0.027-0.651 for Ni, 0.018-0.377 for Pb and 0.032-0.099 for Zn. Based on multivariate analysis (including correlation, cluster and principal component analyses), the polluted sites were found at Kg. Pasir Puteh and Tg. Kupang while Ni and Pb were identified as two major dissolved metals of high variation in the coastal waters. Therefore, water quality monitoring and control of release of untreated anthropogenic wastes into rivers and coastal waters are strongly needed. (author)

  11. Attractive forces between hydrophobic solid surfaces measured by AFM on the first approach in salt solutions and in the presence of dissolved gases.

    Science.gov (United States)

    Azadi, Mehdi; Nguyen, Anh V; Yakubov, Gleb E

    2015-02-17

    Interfacial gas enrichment of dissolved gases (IGE) has been shown to cover hydrophobic solid surfaces in water. The atomic force microscopy (AFM) data has recently been supported by molecular dynamics simulation. It was demonstrated that IGE is responsible for the unexpected stability and large contact angle of gaseous nanobubbles at the hydrophobic solid-water interface. Here we provide further evidence of the significant effect of IGE on an attractive force between hydrophobic solid surfaces in water. The force in the presence of dissolved gas, i.e., in aerated and nonaerated NaCl solutions (up to 4 M), was measured by the AFM colloidal probe technique. The effect of nanobubble bridging on the attractive force was minimized or eliminated by measuring forces on the first approach of the AFM probe toward the flat hydrophobic surface and by using high salt concentrations to reduce gas solubility. Our results confirm the presence of three types of forces, two of which are long-range attractive forces of capillary bridging origin as caused by either surface nanobubbles or gap-induced cavitation. The third type is a short-range attractive force observed in the absence of interfacial nanobubbles that is attributed to the IGE in the form of a dense gas layer (DGL) at hydrophobic surfaces. Such a force was found to increase with increasing gas saturation and to decrease with decreasing gas solubility.

  12. Hydrochemical assessment of groundwater used for irrigation in Rumphi and Karonga districts, Northern Malawi

    Science.gov (United States)

    Wanda, Elijah M. M.; Gulula, Lewis C.; Phiri, Ambrose

    Irrigation water quality is an essential component of sustainable agriculture. Irrigation water quality concerns have often been neglected over concerns of quantity in most irrigation projects in Malawi. In this study, a hydrochemical assessment of groundwater was carried out to characterize, classify groundwater and evaluate its suitability for irrigation use in Karonga and Rumphi districts, Northern Malawi. Groundwater samples were collected during wet (January-April 2011) and dry (July-September 2011) seasons from 107 shallow wells and boreholes drilled for rural water supply using standard sampling procedures. The water samples were analysed for pH, major ions, total dissolved solids and electrical conductivity (EC), using standard methods. Multivariate chemometric (such as Kruskal Wallis test), hydrographical methods (i.e. Piper diagram) and PHREEQC geochemical modelling program were used to characterise the groundwater quality. Electrical conductivity, percentage sodium ion (% Na+), residual sodium carbonate (RSC), total dissolved solids (TDS), sodium adsorption ratio (SAR), Kelly’s ratio (KR) and permeability index (PI) were used to evaluate the suitability of water for irrigation. It was established that groundwater is neutral to alkaline and mostly freshwater (TDS management is suggested for sustainable development of the water resources for better plant growth, long-term as well as maintaining human health in the study area.

  13. Rate transient analysis for homogeneous and heterogeneous gas reservoirs using the TDS technique

    International Nuclear Information System (INIS)

    Escobar, Freddy Humberto; Sanchez, Jairo Andres; Cantillo, Jose Humberto

    2008-01-01

    In this study pressure test analysis in wells flowing under constant wellbore flowing pressure for homogeneous and naturally fractured gas reservoir using the TDS technique is introduced. Although, constant rate production is assumed in the development of the conventional well test analysis methods, constant pressure production conditions are sometimes used in the oil and gas industry. The constant pressure technique or rate transient analysis is more popular reckoned as decline curve analysis under which rate is allows to decline instead of wellbore pressure. The TDS technique, everyday more used even in the most recognized software packages although without using its trade brand name, uses the log-log plot to analyze pressure and pressure derivative test data to identify unique features from which exact analytical expression are derived to easily estimate reservoir and well parameters. For this case, the fingerprint characteristics from the log-log plot of the reciprocal rate and reciprocal rate derivative were employed to obtain the analytical expressions used for the interpretation analysis. Many simulation experiments demonstrate the accuracy of the new method. Synthetic examples are shown to verify the effectiveness of the proposed methodology

  14. The effects of saline water consumption on the ultrasonographic and histopathological appearance of the kidney and liver in Barki sheep.

    Science.gov (United States)

    Ghanem, Mohamed; Zeineldin, Mohamed; Eissa, Attia; El Ebissy, Eman; Mohammed, Rasha; Abdelraof, Yassein

    2018-03-14

    The objective of this study was to evaluate the impact of varying degrees of water salinity on the ultrasonographical and histopathological appearance of the liver and kidneys in Barki sheep. Thirty Barki sheep (initial weight, 29.48 ± 0.81 kg) were allocated into three groups (n=10 per group) based on the type of drinking water for 9 months: the tap water (TW) group (350 ppm total dissolved solids [TDS]); the moderate saline water (MSW) group (4557 ppm TDS); and the high saline water (HSW) group (8934 ppm TDS). After 9 months, the body weight was significantly decreased in sheep subjected to MSW (P=0.0347) and HSW (P=0.0424). Alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, urea, and creatinine were significantly increased (Pinfiltration and vacuolar changes of hepatocytes in both MSW and HSW groups. In conclusion, water salinity negatively affects the body weight, liver and kidney appearance of Barki sheep and thus sheep production.

  15. Effect of degrading yellow oxo-biodegradable low-density polyethylene films to water quality

    Science.gov (United States)

    Requejo, B. A.; Pajarito, B. B.

    2017-05-01

    Polyethylene (PE) contributes largely to plastic wastes that are disposed in aquatic environment as a consequence of its widespread use. In this study, yellow oxo-biodegradable low-density PE films were immersed in deionized water at 50°C for 49 days. Indicators of water quality: pH, oxidation-reduction potential, turbidity, and total dissolved solids (TDS), were monitored at regular intervals. It was observed that pH initially rises and then slowly decreases with time, oxidation-reduction potential decreases then slowly increases with time, turbidity rises above the control at varied rates, and TDS increases abruptly and rises at a hindered rate. Moreover, the films potentially leach out lead chromate. The results imply that degrading oxo-biodegradable LDPE films results to significant reduction of water quality.

  16. Physicochemical Characteristics of Pennar River, A Fresh Water Wetland in Kerala, India

    Directory of Open Access Journals (Sweden)

    P. V. Joseph

    2010-01-01

    Full Text Available Some physicochemical characteristics of a fresh water wetland were investigated. The analysis was carried out for a period of two years. Physical parameters such as colour, odour, temperature, electrical conductivity (EC total suspended solids (TSS total dissolved substances (TDS, total solids (TS, turbidity and chemical parameters such as pH, alkalinity, hardness, dissolved oxygen (DO, biochemical oxygen demand (BOD, chemical oxygen demand (COD, chloride, salinity, flouride, phosphate & nitrate were examined. Results of the study indicated that water in Pennar river is highly contaminated and not safe for drinking. Uncontrolled use of chemical fertilizers and pesticides, unscrupulous dumping of domestic wastes are the major causes of deterioration of water. Poor quality of drinking water was recorded as the major risk factor for the large-scale water-borne diseases in the area.

  17. Study on radon concentration in ground water of Sira and Tiptur taluk of Tumkur district, Karnataka, India

    International Nuclear Information System (INIS)

    Karthik Kumar, M.B.; Nagaiah, N.; Mathews, Gladys; Ambika, M.R.

    2016-01-01

    Radon is a naturally occurring, odor less, tasteless, inert gas that cannot be detected by human senses but can be identified by different techniques. Radon has highest solubility in water, with the mole fraction of 1.25 x 10 -5 at 37 ° C which is fifteen times that of the neon and helium. Radon can enter into the human body in two different ways i.e. ingestion and inhalation which affects the human health. In view of this, activity concentration of dissolved 222 Rn was measured in potable water of Sira and Tiptur taluk of Tumkur district and attempts were also made to understand the dependence of dissolved radon concentration on pH, conductivity and the Total Dissolved Solids (TDS)

  18. Temporal variability and annual budget of inorganic dissolved matter in Andean Pacific Rivers located along a climate gradient from northern Ecuador to southern Peru

    Science.gov (United States)

    Moquet, Jean-Sébastien; Guyot, Jean-Loup; Morera, Sergio; Crave, Alain; Rau, Pedro; Vauchel, Philippe; Lagane, Christelle; Sondag, Francis; Lavado, Casimiro Waldo; Pombosa, Rodrigo; Martinez, Jean-Michel

    2018-01-01

    In Ecuador and Peru, geochemical information from Pacific coastal rivers is limited and scarce. Here, we present an unedited database of major element concentrations from five HYBAM observatory stations monitored monthly between 4 and 10 years, and the discrete sampling of 23 Andean rivers distributed along the climate gradient of the Ecuadorian and Peruvian Pacific coasts. Concentration (C) vs. discharge (Q) relationships of the five monitored basins exhibit a clear dilution behavior for evaporites and/or pyrite solutes, while the solute concentrations delivered by other endmembers are less variable. Spatially, the annual specific fluxes for total dissolved solids (TDS), Ca2+, HCO3-, K+, Mg2+, and SiO2 are controlled on the first order by runoff variability, while Cl-, Na+ and SO42- are controlled by the occurrence of evaporites and/or pyrite. The entire Pacific basin in Ecuador and Peru exported 30 Mt TDS·yr-1, according to a specific flux of ∼70 t·km-2·yr-1. This show that, even under low rainfall conditions, this orogenic context is more active, in terms of solute production, than the global average.

  19. “Experimental study on water pollution tendencies around Lobuliet, Khor bou and Luri streams in Juba, South Sudan

    Directory of Open Access Journals (Sweden)

    John Leju Celestino Ladu

    2012-09-01

    Full Text Available Urbanization and population demand for resources in Juba has led to pollution of aquatic ecosystems and deteriorated water quality. The streams water samples in Juba, central equatoria state, were collected in sterile 500ml plastic containers and instantaneously experimented. The pH, total solids, total dissolved solids, alkalinity and nitrate were used for evaluation. The results were then compared with standard permissible limits. The pH for Khor bou and Luri streams ranges from 6.1 to 6.7. Lobuliet stream showed abnormal pH value ranging from 9.7 to 9.9. Alkalinity ranges from 106.67 to 1060.33 mg/l. Total dissolved solids (TDS ranges from 0.002mg/ml to 20.00mg/l. Statistical analysis using ANOVA indicated that TDS was insignificantly different (p>0.05 among the sites sampled. The nitrite level was low ranging from 0.04mg/l to 0.09mg/l. The cadmium and lead concentration ranges from 0.86mg/l to 1.92mg/l and 0.29mg/l to 0.95mg/l respectively. Analysis of variance showed the concentration of cadmium and lead were significantly different (P<0.05 among the sites sampled. Lobuliet stream had the highest concentration of heavy metals. The study concluded that pollution tendencies were attributed to the discharge of municipal and industrial effluent to the streams and if not properly tackled, may pose adverse impacts to the biogeochemical cycle.

  20. THE QUALITY OF THE NATURAL MINERAL WATERS FROM BUZĂU COUNTY

    Directory of Open Access Journals (Sweden)

    ROBA CARMEN

    2015-03-01

    Full Text Available The main purposes of the present study were: to investigate the physico-chemical parameters of several mineral springs from Buzău County and to classify the investigated waters in mineral water classes, according to national legislation. The analyzed parameters were: pH, temperature, electrical conductivity (EC, total dissolved solids (TDS, salinity, dissolved oxygen (DO and turbidity. The water samples were collected during October 2014. Generally, the water samples proved to be slightly acidic to neutral, with high levels of TDS (37 7 – 1,271 mg/l. Some of the analyzed dissolved ions (carbonates, bromine and phosphate were not detected in the analyzed waters. The major dissolved ions distribution is dominated by the presence of sodium (3.8 – 589.2 mg/l, calcium (36.5 – 126.3 mg/l, sulphates (60.3 – 412.2 mg/l and bicarbonates (213.2 – 915 mg/l. Magnesium ranged between 9.9 – 40.6 mg/l, potassium between 8.7 – 45.2 mg/l, fluoride between 1.0 and 2.9 mg/l., nitrates between 6.4 and 108.9 mg/l and chlorine was between 9.1 and 211.8 mg/l. Some of the investigated water can be commercialized as sodic water, chlorine water, sulphate water and bicarbonate water.

  1. Remediation of chromium and copper on water hyacinth (E. crassipes shoot powder

    Directory of Open Access Journals (Sweden)

    M. Sarkar

    2017-06-01

    Full Text Available Tannery effluent characterization and removal efficiency of Chromium (Cr and Copper (Cu on water hyacinth has been observed by filtration process. The effluent was contaminated by deep blue color, acidic pH, higher value of total dissolve solid (TDS, electrical conductivity (EC, chemical oxygen demand (COD and lower value of dissolve oxygen (DO. After filtration, the effluent shows that the permissible limit of investigated metals. Adsorbent capacity of water hyacinth shoot powder for Cr and Cu ion was found to be 99.98% and 99.96% for standard solution (SS and 98.83% and 99.59% for tannery effluent (TE, respectively.

  2. Contacting particulate solids with liquids

    International Nuclear Information System (INIS)

    Hodgson, T.D.

    1980-01-01

    Apparatus is described for contacting particulate solids with a fluid. The particular applications described are 1) an acid dissolver for dissolving plutonium from plutonium contaminated ash produced by the incineration of waste such as rubber gloves, tissue paper etc. and 2) apparatus for dissolving gel spheres of nuclear fuel material. The liquid, e.g. acid for use in a leaching process flows through a vertical conduit and past a series of baffles spaced along the axis of the conduit. Each baffle defines a mixing chamber and provides a small gap around its perimeter between the baffle and the wall of the conduit. The baffles are provided with sloping top surfaces for preventing solid particles from settling on the baffles and sloping undersurfaces to improve mixing of the liquid and the solid particles. The liquid flows upwards in the conduit but solid particles may be fed from the top or from the bottom of the conduit to mix with the liquid. Gas may be introduced to promote improved flow conditions. (U.K.)

  3. Hubungan Kualitas Air Sumur dengan Kejadian Diare di Daerah Aliran Sungai (DAS Bengawan Solo

    Directory of Open Access Journals (Sweden)

    Saudin Yuniarno

    2015-12-01

    Full Text Available ABSTRACT Background: Water has a role as media of many infectious diseases. One of disease whisch is often transmitted through water is diarrhea. The quality of water consumed by the community must be fillfull for health. So, It becomes the important thing in preventing the incidence of diarrhea.  The aim of this research was to determine the relationship between the quality of well water and the incidence of diarrhea on the community living along the riverside area of Bengawan Solo. Method: This was an observational research using cross sectional design. The subjects of this research were 66 persons staying for each upstream and downstream of Bengawan Solo.The quality of well water was assessed based on the parameters for temperature, pH, Biochemical Oxygen Demand (BOD, total dissolved solid (TDS, and E. coli.  The occurrence of diarrhea was determined by interviewing. Data would be analyzed using chi-square test at 0,05 level of significance. Result: The result of this research showed that variables which had relationship (p-value<0,05 to the incidence of diarrhea were: education, income, distance of well to septictank and to river,  knowledge, attitude, practice, pH, BOD, TDS, and E. coli content.  Well water located on upstream area of Bengawan Solo containing E. coli. Person who had well water containing  E. coli  over standard had 0,17 of probability to suffer diarrhea.  The other one, well water located on downstream area of Bengawan Solo containing total dissolved solid.  Person who had well water containing E. coli and TDS over standard had 0,13 of probability to suffer diarrhea. Conclusion: well water containing E. coli is the main variable associated to the occurrence of diarrhea on upstream area of Bengawan. The content of E. coli and TDS are two variables associated to the occurrence of diarrhea on downstream area of Bengawan. Key words :   Quality of well water, Diarrhea  Incidence, community living on the riverside of

  4. Validação para a população brasileira da Escala de Dominância Télica (TDS no contexto esportivo

    Directory of Open Access Journals (Sweden)

    Guilherme Moraes BALBIM

    2015-12-01

    Full Text Available Resumo O objetivo do estudo foi validar para a língua portuguesa e para uma população brasileira o Telic Dominance Scale (TDS. Participaram do estudo quatro tradutores e três doutores em Psicologia do Esporte envolvidos nos processos de tradução, adaptação e validação de conteúdo da versão para língua portuguesa do TDS. A amostra foi composta por 391 atletas de 16 municípios do Estado do Paraná e São Paulo participantes da fase final dos Jogos Abertos do Paraná 2012 e dos Jogos Abertos do Interior de São Paulo 2012. O instrumento de validação foi o Telic Dominance Scale (TDS. Foi realizada a dupla tradução reversa, análise da validade de conteúdo, análise descritiva dos dados por meio de valores de média, desvio-padrão, mínimo e máximo, alfa de Cronbach, coeficiente de correlação intraclasses e análise fatorial confirmatória. Os resultados demonstraram que 12 itens do TDS foram excluídos da versão para língua portuguesa devido a valores insuficientes no coeficiente de validação de conteúdo; a consistência interna de duas dimensões do instrumento foi satisfatória (α= 0,75 e α= 0,74 e de uma dimensão foi abaixo do recomendável (α= 0,44; demonstrou-se boa estabilidade temporal com coeficiente de correlação intraclasses oscilando entre r = 0,90 e r = 0,98; quanto à validade de constructo, 13 itens foram excluídos por não apresentarem confiabilidade individual; de forma geral; os valores dos indicadores de ajuste absoluto, incremental e parcimonioso do modelo do TDS com 17 itens (X2= 216,26, GL =117, p = 0,001, X2/gl = 1,84, GFI = 0,94, RMR = 0,09, RMSEA = 0,04, TLI = 0,82, NFI = 0,81, AGFI = 0,92, CFI = 0,90, ECVI = 0,72 expressaram a validade de constructo aceitável da versão para língua portuguesa. Conclui-se: a Escala de Dominância Télica (TDS, versão para língua portuguesa do Telic Dominance Scale (TDS é válida e confiável para aplicação no contexto brasileiro.

  5. Effect of solid fission products forming dissolved oxide(Nd) and metallic precipitate(Ru) on the thermophysical properties of MOX fuel

    International Nuclear Information System (INIS)

    Kim, Dong Joo

    2006-02-01

    This study experimentally investigated the effect of solid fission products on the thermophysical properties of the mixed oxide fuel and evaluated them on the basis of the analytical theory. Neodymium and ruthenium were selected for the experiments to represent the physical states of the solid fission product as a 'dissolved oxide' and 'metallic precipitate', respectively. The state of the additives, crystal structures, lattice parameters, and theoretical densities were investigated with X-ray diffraction (XRD). Thermal diffusivities and thermal expansion rates were measured with laser flash method and dilatometry, respectively. The thermal expansion data were then fitted to obtain an correlation equation of the density variation as a function of the temperature. The specific heat capacity values were determined using the Neumann-Kopp's rule. The thermal expansion of the 'Nd.added' sample linearly increased with the concentration of the neodymium, which is primarily due to the fact that the melting point of Nd 2 O 3 is lower than that of UO 2 . On the other hand, the thermal expansion of the 'Ru.added' sample hardly changed with increasing ruthenium content. Thermal conductivities of the simulated MOX fuel were determined on the basis of the thermal diffusivities, density variation, and specific heat values measured in this study. The effect of additives on the thermal conductivity of the samples was quantified in the form of the thermal resistance equation, the reciprocal of the phonon conduction equation, which was determined from measured data. For 'dissolved oxide' sample in the UO 2 matrix, the effect is mainly attributed to the increase of lattice point defects caused by U 4+ , Ce 4+ , Nd 3+ and O 2- ions, which play the role of phonon scattering centers, that is, mean free path of phonon scattering decreases with the point defects, thus increase the thermal resistance. Also, the mass difference between the host (U) and the substituted atom (Ce and/or Nd) can

  6. Groundwater Quality in Jingyuan County, a Semi-Humid Area in Northwest China

    Directory of Open Access Journals (Sweden)

    Wu Jianhua

    2011-01-01

    Full Text Available Groundwater quality assessment is an essential study which plays an important role in the rational development and utilization of groundwater in any part of the world. In the study, groundwater qualities in Jingyuan County, in Ningxia, China were assessed with entropy weighted water quality index method. In the assessment, 12 hydrochemical parameters including chloride, sulphate, sodium, iron, pH, total dissolved solid (TDS, total hardness (TH, nitrate, ammonia, nitrogen, fluoride, iodine and nitrite were selected. The assessment results show that the concentrations of iodine, TH, iron and TDS are the most influencing parameters affecting the groundwater quality. The assessment results are rational and are in consistency with the results of filed investigation of which both indicates the groundwater in Jingyuan County is fit for drinking.

  7. Analysis of uranium and its correlation with some physico-chemical properties of drinking water samples from Amritsar, Punjab.

    Science.gov (United States)

    Singh, Surinder; Rani, Asha; Mahajan, Rakesh Kumar; Walia, Tejinder Pal Singh

    2003-12-01

    Fission track technique has been used for uranium estimation in drinking water samples collected from some areas of Amritsar District, Punjab, India. The uranium concentration in water samples is found to vary from 3.19 to 45.59 microg l(-1). Some of the physico-chemical properties such as pH, conductance and hardness and the content of calcium, magnesium, total dissolved solids (TDS), sodium, potassium, chloride, nitrate and heavy metals viz. zinc, cadmium, lead and copper have been determined in water samples. An attempt has been made to correlate uranium concentration with these water quality parameters. A positive correlation of conductance, nitrate, chloride, sodium, potassium, magnesium, TDS, calcium and hardness with uranium concentration has been observed. However, no correlation has been observed between the concentration of uranium and the heavy metals analysed.

  8. Quantifying anthropogenic contributions to century-scale groundwater salinity changes, San Joaquin Valley, California, USA

    Science.gov (United States)

    Hansen, Jeffrey; Jurgens, Bryant; Fram, Miranda S.

    2018-01-01

    Total dissolved solids (TDS) concentrations in groundwater tapped for beneficial uses (drinking water, irrigation, freshwater industrial) have increased on average by about 100 mg/L over the last 100 years in the San Joaquin Valley, California (SJV). During this period land use in the SJV changed from natural vegetation and dryland agriculture to dominantly irrigated agriculture with growing urban areas. Century-scale salinity trends were evaluated by comparing TDS concentrations and major ion compositions of groundwater from wells sampled in 1910 (Historic) to data from wells sampled in 1993-2015 (Modern). TDS concentrations in subregions of the SJV, the southern (SSJV), western (WSJV), northeastern (NESJV), and southeastern (SESJV) were calculated using a cell-declustering method. TDS concentrations increased in all regions, with the greatest increases found in the SSJV and SESJV. Evaluation of the Modern data from the NESJV and SESJV found higher TDS concentrations in recently recharged (post-1950) groundwater from shallow (soil amendments combined. Bicarbonate showed the greatest increase among major ions, resulting from enhanced silicate weathering due to recharge of irrigation water enriched in CO2 during the growing season. The results of this study demonstrate that large anthropogenic changes to the hydrologic regime, like massive development of irrigated agriculture in semi-arid areas like the SJV, can cause large changes in groundwater quality on a regional scale.

  9. Development of microbial consortium for the biodegradation and biodecolorization of textile effluents

    Directory of Open Access Journals (Sweden)

    Rajendra Ramasany

    2012-06-01

    Full Text Available In the current study three bacterial species (Bacillus sp., Pseudomonas sp., and Alcaligenes sp. and two fungal species (Aspergillus sp., and Penicillium sp. screened from 265 bacterial isolates and 35 fungal isolates respectively, were used in 23 different combinations for the biotreatment of textile waste water collected from Karur, Tiruppur and Coimbatore districts under aerated conditions. The chemical oxygen demand (COD, total solids (TS total dissolved solids (TDS & total suspended solids (TSS, hardness, and color intensity of the textile effluent was found to be very high than the permissible limits before treatment. After treatment one particular combination was capable of reducing the COD of the effluent sample by 75%. About five combinations of microbes efficiently reduced the color of the effluent by more than 50%. Another combination was found to be the most effective in the reduction of TS and TDS by 90% and 69%, respectively. Though there was no drastic change in the pH of the sample, it was not of great concern as the pH of the sample was well within the permissible limits for the discharge of the wastewater in to natural sources after treatment.

  10. DEVELOPMENT OF MICROBIAL CONSORTIUM FOR THE BIODEGRADATION AND BIODECOLORIZATION OF TEXTILE EFFLUENTS

    Directory of Open Access Journals (Sweden)

    Rajendra Ramasany

    2012-01-01

    Full Text Available In the current study three bacterial species (Bacillus sp., Pseudomonas sp., and Alcaligenes sp. and two fungal species (Aspergillus sp., and Penicillium sp. screened from 265 bacterial isolates and 35 fungal isolates respectively, were used in 23 different combinations for the biotreatment of textile waste water collected from Karur, Tiruppur and Coimbatore districts under aerated conditions. The chemical oxygen demand (COD, total solids (TS total dissolved solids (TDS & total suspended solids (TSS, hardness, and color intensity of the textile effluent was found to be very high than the permissible limits before treatment. After treatment one particular combination was capable of reducing the COD of the effluent sample by 75%. About five combinations of microbes efficiently reduced the color of the effluent by more than 50%. Another combination was found to be the most effective in the reduction of TS and TDS by 90% and 69%, respectively. Though there was no drastic change in the pH of the sample, it was not of great concern as the pH of the sample was well within the permissible limits for the discharge of the wastewater in to natural sources after treatment.

  11. Water quality and processes affecting dissolved oxygen concentrations in the Blackwater River, Canaan Valley, West Virginia

    Science.gov (United States)

    Waldron, M.C.; Wiley, J.B.

    1996-01-01

    The water quality and environmental processes affecting dissolved oxygen were determined for the Blackwater River in Canaan Valley, West Virginia. Canaan Valley is oval-shaped (14 miles by 5 miles) and is located in the Allegheny Mountains at an average elevation of 3,200 feet above sea level. Tourism, population, and real estate development have increased in the past two decades. Most streams in Canaan Valley are a dilute calcium magnesium bicarbonate-type water. Streamwater typicaly was soft and low in alkalinity and dissolved solids. Maximum values for specific conductance, hardness, alkalinity, and dissolved solids occurred during low-flow periods when streamflow was at or near baseflow. Dissolved oxygen concentrations are most sensitive to processes affecting the rate of reaeration. The reaeration is affected by solubility (atmospheric pressure, water temperature, humidity, and cloud cover) and processes that determine stream turbulence (stream depth, width, velocity, and roughness). In the headwaters, photosynthetic dissolved oxygen production by benthic algae can result in supersaturated dissolved oxygen concentrations. In beaver pools, dissolved oxygen consumption from sediment oxygen demand and carbonaceous biochemical oxygen demand can result in dissolved oxygen deficits.

  12. Change in lattice parameter of tantalum due to dissolved hydrogen

    Directory of Open Access Journals (Sweden)

    Gyanendra P. Tiwari

    2012-06-01

    Full Text Available The volume expansion of tantalum due to the dissolved hydrogen has been determined using Bragg equation. The hydrogen was dissolved in the pure tantalum metal at constant temperature (360 °C and constant pressure (132 mbar by varying the duration of hydrogen charging. The amount of dissolved hydrogen was within the solid solubility limit. The samples with different hydrogen concentration were analyzed by X-ray diffraction technique. Slight peak shifts as well as peak broadening were observed. The relative changes of lattice parameters plotted against the hydrogen concentration revealed that the lattice parameters varied linearly with the hydrogen concentration.

  13. Water reuse potential in truck wash using a Rotating Biological Contactor

    Directory of Open Access Journals (Sweden)

    Eduardo Lucas Subtil

    2016-11-01

    Full Text Available This study evaluated the water reuse potential for truck washing using the effluent treated by a Rotating Biological Contactor (RBC operated in full scale. In order to evaluate the reuse potential, a mass balance was performed for the reuse system taking into account the concentration of Total Dissolved Solids as the critical contaminant. The treatment system produced an effluent with average concentration of color, turbidity, TDS and BOD5 of 45 ± 14 uC, 15 ± 6.0 NTU, 244 ± 99 mg TDS / L and 14 ± 7.3 mg O2 / L, respectively. Based on the mass balance, and considering the TDS concentration established in NBR 13.696, if the final rinse does not use clean water, the potential for effluent reuse can reach 40%. However, if clean water is used as 30% of the total rinsing volume, it would be possible to reuse 70% of the treated effluent without compromising truck washing performance. This water reuse approach would result in an operational cost reduction of R$ 2,590.75/month.

  14. Sampling and sample handling procedures for priority pollutants in surface coal mining wastewaters. [Detailed list to be analyzed for

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, R. S.; Johnson, D. O.; Henricks, J. D.

    1979-03-01

    The report describes the procedures used by Argonne National Laboratory to sample surface coal mine effluents in order to obtain field and laboratory data on 110 organic compounds or classes of compounds and 14 metals and minerals that are known as priority pollutants, plus 5-day biochemical oxygen demand (BOD/sub 5/), total organic carbon (TOC), chemical oxygen demand (COD), total dissolved solids (TDS), and total suspended solids (TSS). Included are directions for preparation of sampling containers and equipment, methods of sampling and sample preservation, and field and laboratory protocols, including chain-of-custody procedures. Actual analytical procedures are not described, but their sources are referenced.

  15. Selected trace elements in Stockton, New Zealand, waters

    International Nuclear Information System (INIS)

    Alarcon Leon, E.; Anstiss, R.G.

    2002-01-01

    Ni, Mn, As, Pb, Cd, Cr, Cu, Hg, Se, Al, Zn, Fe, SO 4 2- , hardness (calc.) in addition to pH, total dissolved solids (TDS), and total suspended solids (TSS) were measured at 18 (11 surface and 7 subsurface) sampling sites (which were each assigned a semi-quantitative Mudstone Index (MI)) from 20 days over 9 months in the waters which drain the Stockton coal mine area on the Stockton Plateau, New Zealand. Trace element, TDS and TSS concentrations were found to be elevated and pH depressed consistent with acid mine drainage (AMD) and were characterised by significant variability due to environmental processes. Frequent concentration spikes in surface and subsurface waters occurred which sometimes exceeded maximum acceptable values (MAV) and/or aesthetic guideline values (GV) including a number of toxic trace elements. Mean concentrations of Ni and Mn in both surface and subsurface waters and As and Cd in subsurface waters exceeded MAVs. Mean concentrations of Mn, Al, Fe, SO 4 2- , and pH in both surface and subsurface waters exceeded GVs. There tends to be higher trace element and TDS concentrations where there are more mudstones (higher MI) with lower pHs. It is recommended that any further studies focus on geographic distribution, concentration fluctuation factors, movement, and possible exposure issues. (author). 7 refs., 1 fig., 3 tabs

  16. Gamma-amino butyric acid (GABA) synthesis of Lactobacillus in fermentation of defatted rice bran extract

    Science.gov (United States)

    Dat, Lai Quoc; Ngan, Tran Thi Kim; Nu, Nguyen Thi Xuan

    2017-09-01

    This research focused on the synthesis of GABA by Lactobacillus bacteria in fermentation of defatted rice bran extract without adding glutamate. Two strains of Lactobacillus were investigated into capacity of GABA synthesis. Result indicates that, Lactobacillus brevis VTCC - B - 454 exhibited the higher capacity of GABA synthesis in fermentation of defatted rice bran extract than that of Lactobacillus plantarum VTCC - B - 890. Total dissolved solid (TDS), free amino acids (AA) and reducing sugar (RS) contents in fermentation of defatted rice bran extract with two strains also significantly decreased. At pH 5 and 9 %w/w of TDS content in defatted rice bran extract, Lactobacillus brevis VTCC - B - 454 accumulated 2,952 ppm of GABA in 24 hours of fermentation. The result implies that fermentation with Lactobacillus brevis VTCC - B - 454 can be applied for GABA production from defatted rice bran extract.

  17. Prediction of Groundwater Quality Trends Resulting from Anthropogenic Changes in Southeast Florida.

    Science.gov (United States)

    Yi, Quanghee; Stewart, Mark

    2018-01-01

    The effects of surface water flow system changes caused by constructing water-conservation areas and canals in southeast Florida on groundwater quality under the Atlantic Coastal Ridge was investigated with numerical modeling. Water quality data were used to delineate a zone of groundwater with low total dissolved solids (TDS) within the Biscayne aquifer under the ridge. The delineated zone has the following characteristics. Its location generally coincides with an area where the Biscayne aquifer has high transmissivities, corresponds to a high recharge area of the ridge, and underlies a part of the groundwater mound formed under the ridge prior to completion of the canals. This low TDS groundwater appears to be the result of pre-development conditions rather than seepage from the canals constructed after the 1950s. Numerical simulation results indicate that the time for low TDS groundwater under the ridge to reach equilibrium with high TDS surface water in the water-conservation areas and Everglades National Park are approximately 70 and 60 years, respectively. The high TDS groundwater would be restricted to the water-conservation areas and the park due to its slow eastward movement caused by small hydraulic gradients in Rocky Glades and its mixing with the low TDS groundwater under the high-recharge area of the ridge. The flow or physical boundary conditions such as high recharge rates or low hydraulic conductivity layers may affect how the spatial distribution of groundwater quality in an aquifer will change when a groundwater flow system reaches equilibrium with an associated surface water flow system. © 2017, National Ground Water Association.

  18. Process for recovering oil from subterranean formations

    International Nuclear Information System (INIS)

    Knight, B.; Gogarty, W.B.

    1978-01-01

    Improved flooding of oil-bearing formations is obtained by injecting and displacing through the formation a saline solution containing a water-soluble, substantially linear, high molecular weight polymer obtained by irradiating an aqueous solution of an ethylenically unsaturated monomer and a water-soluble salt under controlled conditions of concentration, radiation intensity, conversion, and total radiation dose. The saline water can contain at least 15,000 ppm of TDS (total dissolved solids) and at least 50 ppm and preferably 300 ppm of polyvalent cations. (Auth.)

  19. Chemical and Physical Properties of De-Mineralized Water Compared to Ground Water and Rainwater with Respect to Local and International Standards

    OpenAIRE

    , M.A. Khalifa; , T.A. Nasser

    2010-01-01

    The present study was carried out from 2007 to 2008. Water samples were collected from different stations in Tarhona valley 90 Km from Tripoli, Libya. Water samples were studied including 4 samples from desalination stations, 5 of house roofs rain water, 5 of direct rain water, 5 samples of state wells and 8 of private public wells. The study covers total dissolved solids (TDS), pH, alkaline ions and heavy metals. The desalination water samples showed 74 ppm of mineral salts, these amounts ar...

  20. An introduction to fast dissolving oral thin film drug delivery systems: a review.

    Science.gov (United States)

    Kathpalia, Harsha; Gupte, Aasavari

    2013-12-01

    Many pharmaceutical companies are switching their products from tablets to fast dissolving oral thin films (OTFs). Films have all the advantages of tablets (precise dosage, easy administration) and those of liquid dosage forms (easy swallowing, rapid bioavailability). Statistics have shown that four out of five patients prefer orally disintegrating dosage forms over conventional solid oral dosages forms. Pediatric, geriatric, bedridden, emetic patients and those with Central Nervous System disorders, have difficulty in swallowing or chewing solid dosage forms. Many of these patients are non-compliant in administering solid dosage forms due to fear of choking. OTFs when placed on the tip or the floor of the tongue are instantly wet by saliva. As a result, OTFs rapidly hydrate and then disintegrate and/or dissolve to release the medication for local and/or systemic absorption. This technology provides a good platform for patent non- infringing product development and for increasing the patent life-cycle of the existing products. The application of fast dissolving oral thin films is not only limited to buccal fast dissolving system, but also expands to other applications like gastroretentive, sublingual delivery systems. This review highlights the composition including the details of various types of polymers both natural and synthetic, the different types of manufacturing techniques, packaging materials and evaluation tests for the OTFs.

  1. Analysis of the technique Thermal Desorption Spectroscopy (TDS) and its Application for the Characterization of Metal -Hydrogen Systems; Analisis de la Tecnica Espectroscopia de Desorcion Termica (TDS) y su Applicacion para la Caracterizacion de Sistemas Metal-Hydrogeno

    Energy Technology Data Exchange (ETDEWEB)

    Castro, F J [Comision Nacional de Energia Atomica, Centro Atomico Bariloche (Argentina)

    2000-07-01

    limiting step is the recombination of two hydrogen atoms on the surface of the material. When the surface of the sample is in the a phase (solid solution) the rate limiting step is one of the processes that occurs on the surface of the material: the transfer of a hydrogen atom from the bulk to the surface or the recombination and desorption on the surface. By fitting the spectra we obtain an activation energy equal to 31 n 6 kJ/mol for the b phase, and equal to 35 n 3 kJ/mol for the a phase. We also compare the spectra of the powder with the spectra of the granules, foils and wires. Based on this comparison we analyze the effect on the desorption spectra of the characteristic size and geometry of the samples.Finally, we present a study of hydrogen desorption in the Pd-H system poisoned with sulfur. The poisoning produces as main effects a delay of the absorption and desorption processes without any appreciable loss in the storage capacity of the material.The experimental apparatus and theoretical models developed have been applied to the study of a MH system using samples with different morphology, characteristic size, geometry and surface state. The spectra were measured for different hydrogen concentrations and heating speeds. The results obtained encourage the utilization of TDS for the study and characterization of hydrogen desorption in MH systems. The technique is suited for the detailed analysis of the physical properties of the system and for the qualitative evaluation of the kinetic processes and their possible influence on technological devices.

  2. Influence of drinking water salinity on carcass characteristics and meat quality of Santa Inês lambs.

    Science.gov (United States)

    Castro, Daniela P V; Yamamoto, Sandra M; Araújo, Gherman G L; Pinheiro, Rafael S B; Queiroz, Mario A A; Albuquerque, Ítalo R R; Moura, José H A

    2017-08-01

    This study aimed to evaluate the effects of different salinity levels in drinking water on the quantitative and qualitative characteristics of lamb carcass and meat. Ram lambs (n = 32) were distributed in a completely randomized design with four levels of salinity in the drinking water (640 mg of total dissolved solids (TDS)/L of water, 3188 mg TDS/L water, 5740 mg TDS/L water, and 8326 mg TDS/L water). After slaughter, blending, gutting, and skinning the carcass, hot and biological carcass yields were obtained. Then, the carcasses were cooled at 5 °C for 24 h, and then, the morphometric measurements and the cold carcass yield were determined and the commercial cuts made. In the Longissimus lumborum muscle color, water holding capacity, cooking loss, shear force, and chemical composition were determined. The yields of hot and cold carcass (46.10 and 44.90%), as well as losses to cooling (2.40%) were not affected (P > 0.05) by the salinity levels in the water ingested by the lambs. The meat shear force was 3.47 kg/cm 2 and moisture, crude protein, ether extract, and ash were 73.62, 22.77, 2.5, and 4.3%, respectively. It is possible to supply water with salinity levels of up to 8326 mg TDS/L, because it did not affect the carcass and meat characteristics of Santa Inês lambs.

  3. Geographical differences in the relationship between total dissolved ...

    African Journals Online (AJOL)

    The practical application of these findings is that users of EC meters should not simply apply a blanket conversion factor, but need to select an applicable factor for the river system in which they are measuring. Keywords: conversion factors, electrical conductivity, field instruments, rivers, total dissolved solids, water quality ...

  4. Comparative Assessment of the Physico-Chemical and Bacteriological Qualities of Selected Streams in Louisiana

    Directory of Open Access Journals (Sweden)

    Paul B. Tchounwou

    2005-04-01

    Full Text Available The objective of this research was to compare the chemical/physical parameters and bacterial qualities of selected surface water streams in Louisiana, including a natural stream (control and an animal waste related stream. Samples were collected and analyzed for fecal coliforms. Fecal coliforms isolated from these samples were identified to the species level. Chemical analysis was performed following standard test protocols (LaMotte 2002. An analysis of biological oxygen demand (BOD, chemical oxygen demand (COD, total organic carbon (TOC, total dissolved solids (TDS, conductivity, pH, temperature, ammonia nitrogen, nitrate nitrogen, iron, copper, phosphate, potassium, sulfate, turbidity, zinc and bacterial levels was performed following standard test protocols as presented in Standard Methods for the Examination of Water and Wastewater [9]. Results of the comparisons of the various surface water streams showed that phosphate levels, according to Mitchell and Stapp, were considered good for Lake Claiborne (control and Bayou Dorcheat. The levels were found to be .001 mg/L and .007 mg/L respectively. Other streams associated with animal waste, had higher phosphate levels of 2.07 mg/L and 2.78 mg/L, respectively. Conductivity and total dissolved solids (TDS levels were the lowest in Lake Claiborne and highest in the Hill Farm Research Station stream. It can be concluded from the data that some bacterial levels and various nutrient levels can be affected in water resources due to non-point source pollution. Many of these levels will remain unaffected.

  5. Comparative assessment of the physico-chemical and bacteriological qualities of selected streams in Louisiana.

    Science.gov (United States)

    Hill, Dagne D; Owens, William E; Tchounwou, Paul B

    2005-04-01

    The objective of this research was to compare the chemical/physical parameters and bacterial qualities of selected surface water streams in Louisiana, including a natural stream (control) and an animal waste related stream. Samples were collected and analyzed for fecal coliforms. Fecal coliforms isolated from these samples were identified to the species level. Chemical analysis was performed following standard test protocols (LaMotte 2002). An analysis of biological oxygen demand (BOD), chemical oxygen demand (COD), total organic carbon (TOC), total dissolved solids (TDS), conductivity, pH, temperature, ammonia nitrogen, nitrate nitrogen, iron, copper, phosphate, potassium, sulfate, turbidity, zinc and bacterial levels was performed following standard test protocols as presented in Standard Methods for the Examination of Water and Wastewater [9]. Results of the comparisons of the various surface water streams showed that phosphate levels, according to Mitchell and Stapp, were considered good for Lake Claiborne (control) and Bayou Dorcheat. The levels were found to be .001 mg/L and .007 mg/L respectively. Other streams associated with animal waste, had higher phosphate levels of 2.07 mg/L and 2.78 mg/L, respectively. Conductivity and total dissolved solids (TDS) levels were the lowest in Lake Claiborne and highest in the Hill Farm Research Station stream. It can be concluded from the data that some bacterial levels and various nutrient levels can be affected in water resources due to non-point source pollution. Many of these levels will remain unaffected.

  6. Significance of dissolved methane in effluents of anaerobically ...

    Science.gov (United States)

    The need for energy efficient Domestic Wastewater (DWW) treatment is increasing annually with population growth and expanding global energy demand. Anaerobic treatment of low strength DWW produces methane which can be used to as an energy product. Temperature sensitivity, low removal efficiencies (Chemical Oxygen Demand (COD), Suspended Solids (SS), and Nutrients), alkalinity demand, and potential greenhouse gas (GHG) emissions have limited its application to warmer climates. Although well designed anaerobic Membrane Bioreactors (AnMBRs) are able to effectively treat DWW at psychrophilic temperatures (10–30 °C), lower temperatures increase methane solubility leading to increased energy losses in the form of dissolved methane in the effluent. Estimates of dissolved methane losses are typically based on concentrations calculated using Henry's Law but advection limitations can lead to supersaturation of methane between 1.34 and 6.9 times equilibrium concentrations and 11–100% of generated methane being lost in the effluent. In well mixed systems such as AnMBRs which use biogas sparging to control membrane fouling, actual concentrations approach equilibrium values. Non-porous membranes have been used to recover up to 92.6% of dissolved methane and well suited for degassing effluents of Upflow Anaerobic Sludge Blanket (UASB) reactors which have considerable solids and organic contents and can cause pore wetting and clogging in microporous membrane modules. Micro

  7. Determination of colloidal and dissolved silver in water samples using colorimetric solid-phase extraction.

    Science.gov (United States)

    Hill, April A; Lipert, Robert J; Porter, Marc D

    2010-03-15

    The increase in bacterial resistance to antibiotics has led to resurgence in the use of silver as a biocidal agent in applications ranging from washing machine additives to the drinking water treatment system on the International Space Station (ISS). However, growing concerns about the possible toxicity of colloidal silver to bacteria, aquatic organisms and humans have led to recently issued regulations by the US EPA and FDA regarding the usage of silver. As part of an ongoing project, we have developed a rapid, simple method for determining total silver, both ionic (silver(I)) and colloidal, in 0.1-1mg/L aqueous samples, which spans the ISS potable water target of 0.3-0.5mg/L (total silver) and meets the US EPA limit of 0.1mg/L in drinking water. The method is based on colorimetric solid-phase extraction (C-SPE) and involves the extraction of silver(I) from water samples by passage through a solid-phase membrane impregnated with the colorimetric reagent DMABR (5-[4-(dimethylamino)benzylidene]rhodanine). Silver(I) exhaustively reacts with impregnated DMABR to form a colored compound, which is quantified using a handheld diffuse reflectance spectrophotometer. Total silver is determined by first passing the sample through a cartridge containing Oxone, which exhaustively oxidizes colloidal silver to dissolved silver(I). The method, which takes less than 2 min to complete and requires only approximately 1 mL of sample, has been validated through a series of tests, including a comparison with the ICP-MS analysis of a water sample from ISS that contained both silver(I) and colloidal silver. Potential earth-bound applications are also briefly discussed. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  8. Taxonomy of Means and Ends in Aquaculture Production—Part 2: The Technical Solutions of Controlling Solids, Dissolved Gasses and pH

    Directory of Open Access Journals (Sweden)

    Bjorgvin Vilbergsson

    2016-09-01

    Full Text Available In engineering design, knowing the relationship between the means (technique and the end (desired function or outcome is essential. The means in Aquaculture are technical solutions like airlifts that are used to achive desired functionality (an end like controlling dissolved gasses. In previous work, the authors identified possible functions by viewing aquaculture production systems as transformation processes in which inputs are transformed by treatment techniques (means and produce outputs (ends. The current work creates an overview of technical solutions of treatment functions for both design and research purposes. A comprehensive literature review of all areas of technical solutions is identified and categorized into a visual taxonomy of the treatment functions for controlling solids, controlling dissolved gasses and controlling pH alkalinity and hardness. This article is the second in a sequence of four and partly presents the treatments functions in the taxonomy. The other articles in this series present complementary aspects of this research: Part 1, A transformational view on aquaculture and functions divided into input, treatment and output functions; Part 2, The current taxonomy paper; Part 3, The second part of the taxonomy; and Part 4, Mapping of the means (techniques for multiple treatment functions.

  9. Study of tannery wastewater treatability by precipitation process

    International Nuclear Information System (INIS)

    Abbas, N.; Deba, F.; Iqbal, K.; Shafiq, T.; Ahmed, H.S.

    2010-01-01

    A study was conducted for the removal and recovery of chromium from tannery wastewater, using NaOH, MgO, Ca(OH)/sub 2/ and Al/sub 2/(SO/sub 4/)/sub 3/.18H/sub 2/O as precipitating agents and comparing their effect on pH, total dissolved solids (TDS), total suspended solids (TSS), sludge volume and chromium removal. MgO and Ca(OH)/sub 2/ produced least amount of sludge and dewatering of sludge was also easy as compared to Al/sub 2/(SO/sub 4/)/sub 3/.18H/sub 2/O and NaOH. The chromium removal of MgO and Ca(OH)/sub 2/ was 95% and 96%, respectively. (author)

  10. Data on treatment of sewage wastewater by electrocoagulation using punched aluminum electrode and characterization of generated sludge

    Directory of Open Access Journals (Sweden)

    Vinita Khandegar

    2018-06-01

    Full Text Available The electrocoagulation setup must be optimized in order to design an economically feasible process. Therefore, in this work, the effect of the punched aluminum electrode on the performance of the electrocoagulation (EC has been investigated. A series of experiments were performed for treatment of sewage wastewater using plane electrode and compare with punched electrodes. Effect of contact time, voltage, electrode spacing and stirring speed has been optimized for removal of Biochemical oxygen demand (BOD and Total dissolved solids (TDS. It was observed that the performance of electrocoagulation process increased using punched electrode. Also, the less operating cost noticed in punched electrode as compared to a plane electrode for (70–80% removal of BOD and TDS. These data would be useful in designing of an EC reactor to obtain high removal efficiency at low energy consumption. Keywords: Electrocoagulation, Sewage wastewater, Aluminum, Plane, Punched electrode

  11. Nickel toxicity to benthic organisms: The role of dissolved organic carbon, suspended solids, and route of exposure.

    Science.gov (United States)

    Custer, Kevin W; Hammerschmidt, Chad R; Burton, G Allen

    2016-01-01

    Nickel bioavailability is reduced in the presence of dissolved organic carbon (DOC), suspended solids (TSS), and other complexing ligands; however, no studies have examined the relative importance of Ni exposure through different compartments (water, sediment, food). Hyalella azteca and Lymnaea stagnalis were exposed to Ni-amended water, sediment, and food, either separately or in combination. Both organisms experienced survival and growth effects in several Ni compartment tests. The DOC amendments attenuated L. stagnalis Ni effects (survival, growth, and (62)Ni bioaccumulation), and presence of TSS exposures demonstrated both protective and synergistic effects on H. azteca and L. stagnalis. (62)Ni trophic transfer from food to H. azteca and L. stagnalis was negligible; however, bioaccumulating (62)Ni was attributed to (62)Ni-water ((62)Ni flux from food), (62)Ni-TSS, and (62)Ni-food. Overall, H. azteca and L. stagnalis Ni compartment toxicity increased in the following order: Ni-water > Ni-sediment > Ni-all (water, sediment, food) > Ni-food. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Assessment of groundwater quality of the Tatlicay aquifer and relation to the adjacent evaporitic formations (Cankiri, Turkey).

    Science.gov (United States)

    Apaydın, Ahmet; Aktaş, Sibel Demirci

    2012-04-01

    One of the most important hydrogeologic problems in and adjacent areas of evaporitic formations is severe quality degradation of groundwaters. These kinds of groundwaters contain high content of dissolved solids and generally have some limitations for use. Tatlicay basin (north-central Turkey) is an example to effects of the evaporites on groundwater quality in the adjacent alluvium aquifer. Gypsum and anhydrites in the two evaporite formations (Bayindir and Bozkir) effect of the groundwater quality in the alluvium adversely, by dissolution of the evaporites by surface drainage and infiltration into the alluvium aquifer (widespread effect) and by infiltration of low quality gypsum springs (local effect) into the aquifer. Evaporitic formations significantly increased EC, TDS, Ca and SO(4) parameters in the alluvium aquifer in the central and downstream regions. EC has increased roughly from 500-800 to 1,700-2,000 μS/cm, Ca has roughly increased from 3-4 to 10 meq/l, SO(4) has increased 0.5-1 to 11-12 meq/l. Consequently, three clusters were distinguished in the basin; (1) nonevaporitic waters in low TDS, Na, Ca, Mg, Cl and SO(4), (2) diluted waters in high TDS and relatively high Cl, moderate-relatively high Na, Ca, Mg, SO(4), (3) gypsum springs in highest TDS, Ca, SO(4), but moderate Mg and low Na, Cl.

  13. Detection of hydrogen dissolved in acrylonitrile butadiene rubber by 1H nuclear magnetic resonance

    Science.gov (United States)

    Nishimura, Shin; Fujiwara, Hirotada

    2012-01-01

    Rubber materials, which are used for hydrogen gas seal, can dissolve hydrogen during exposure in high-pressure hydrogen gas. Dissolved hydrogen molecules were detected by solid state 1H NMR of the unfilled vulcanized acrylonitrile butadiene rubber. Two signals were observed at 4.5 ppm and 4.8 ppm, which were assignable to dissolved hydrogen, in the 1H NMR spectrum of NBR after being exposed 100 MPa hydrogen gas for 24 h at room temperature. These signals were shifted from that of gaseous hydrogen molecules. Assignment of the signals was confirmed by quantitative estimation of dissolved hydrogen and peak area of the signals.

  14. Data on wastewater treatment plant by using wetland method, Babol, Iran

    Directory of Open Access Journals (Sweden)

    Yousef Dadban Shahamat

    2018-02-01

    Full Text Available Date in this paper highlights the applications of constructed horizontal surface flow (HF-CW wetland with two different local plants (Louis latifoila and Phragmites -australis (Cav. Trin at the wastewater treatment plant in Babol city. This system was designed as an advanced treatment unit in field scale after the treatment plant. Parameters such as Total Dissolved Solid (TDS, Total Suspended Solid (TSS, Turbidity, Biological Oxygen Demand (BOD and Chemical Oxygen Demand (COD, were investigated. The result shows that treatment efficiency increases with the passage of time. The efficiency of Phragmites planted setups in open environment was fairly good for all studied parameters (28.6% of TDS, 94.4% for TSS, 79.8% for turbidity, 93.7% for BOD and 82.6% for COD. The efficiency of the latifoila set up was also good, but lower than that of Phragmites (26.5% of TDS, 76.9% for TSS, 71.5% for turbidity, 79.1 for BOD and 68.8% for COD. In brief, the obtained dates show that using local plants in (HF-CW wetland not only effectively reduces various contaminants from the effluent of the wastewater according to Effluent Guideline regulations (WHO & EPA, but it is also a cost- effective and environmentally friendly method. Also, it was calculated that in full scale operation [time (1 day and a depth (0.3 m], 8 ha of wetland was needed. Keywords: BOD, Babol, COD, Horizontal subsurface flow wetland, TSS, TSD

  15. Geochemical composition of river loads in the Tropical Andes: first insights from the Ecuadorian Andes

    Science.gov (United States)

    Tenorio Poma, Gustavo; Govers, Gerard; Vanacker, Veerle; Bouillon, Steven; Álvarez, Lenín; Zhiminaicela, Santiago

    2015-04-01

    Processes governing the transport of total suspended material (TSM), total dissolved solids (TDS) and particulate organic carbon (POC) are currently not well known for Tropical Andean river systems. We analyzed the geochemical behavior and the budgets of the particulate and dissolved loads for several sub-catchments in the Paute River basin in the southern Ecuadorian Andes, and examined how anthropogenic activities influenced the dynamics of riverine suspended and dissolved loads. We gathered a large dataset by regularly sampling 8 rivers for their TSM, POC, and TDS. Furthermore, we determined the major elements in the dissolved load and stable isotope composition (δ13C) of both the POC, and the dissolved inorganic carbon (DIC). The rivers that were sampled flow through a wide range of land uses including: 3 nature conservation areas (100 - 300 Km²), an intensive grassland and arable zone (142 Km²); downstream of two cities (1611 and 443 Km²), and 2 degraded basins (286 and 2492 Km²). We described the geochemical characteristics of the river loads both qualitatively and quantitatively. Important differences in TSM, POC and TDS yields were found between rivers: the concentration of these loads increases according with human activities within the basins. For all rivers, TSM, TDS and POC concentrations were dependent on discharge. Overall, a clear relation between TSM and POC (r²=0.62) was observed in all tributaries. The C:N ratios and δ13CPOC suggest that the POC in most rivers is mainly derived from soil organic matter eroded from soils dominated by C3 vegetation (δ13CPOC < -22‰). Low Ca:Si ratios (<1)and high δ13CDIC (-9 to -4) in the Yanuncay, Tomebamba1 and Machángara, rivers suggest that weathering of silica rocks is dominant in these catchments, and that the DIC is mainly derived from the soil or atmospheric CO2. In contrast, the Ca:Si ratio was high for the Burgay and Jadán rivers (1-13), and the low δ13CDIC values (-9 to -15) suggest that

  16. Interfering removal in samples with high amounts of dissolved solids for the determination of arsenic and selenium by TXRF

    International Nuclear Information System (INIS)

    Menegario, Amauri A.; Gomes, Ana Carla F.; Pellegrinotti, Daniel C.; Gine, Maria F.; Krug, Francisco J.; Nascimento Filho, Virgilio F.

    2002-01-01

    A matrix separation flow system coupled with total reflection X-ray fluorescence (TXRF) is proposed to remove Ca ++ , Mg ++ , Na + and K + major cations from samples containing high amounts of totally dissolved solids, using solid-liquid phases in flow system. This system is assembled with a 1.25 mL column of AG50W-X8 resin (in protonated form) and manual commutator, allowed the separation, addition of internal standard and subsequently a 40 μL aliquot of the eluate was deposited in the reflector support, dried in a furnace for 12 hours at 60 ± 5 deg C and analysed by TXRF. All the procedure is carried out in about 90 s and 0.5 mL of sample are required. The proposed approach was applied for determination of As and Se in plant material and sea water samples. When comparing with direct analysis (without separation), a reduction of 2 to 6 times on the limits of detection for these elements was attained. The accuracy of this methodology was satisfactory for As and Se in sea water and Se in rice certified samples. This procedure could be also used for Pb interference removal in the determination of As by X-ray fluorescence. (author)

  17. Appraisal of long term groundwater quality of peninsular India using water quality index and fractal dimension

    Science.gov (United States)

    Rawat, Kishan Singh; Singh, Sudhir Kumar; Jacintha, T. German Amali; Nemčić-Jurec, Jasna; Tripathi, Vinod Kumar

    2017-12-01

    A review has been made to understand the hydrogeochemical behaviour of groundwater through statistical analysis of long term water quality data (year 2005-2013). Water Quality Index ( WQI), descriptive statistics, Hurst exponent, fractal dimension and predictability index were estimated for each water parameter. WQI results showed that majority of samples fall in moderate category during 2005-2013, but monitoring site four falls under severe category (water unfit for domestic use). Brownian time series behaviour (a true random walk nature) exists between calcium (Ca^{2+}) and electric conductivity (EC); magnesium (Mg^{2+}) with EC; sodium (Na+) with EC; sulphate (SO4^{2-}) with EC; total dissolved solids (TDS) with chloride (Cl-) during pre- (2005-2013) and post- (2006-2013) monsoon season. These parameters have a closer value of Hurst exponent ( H) with Brownian time series behaviour condition (H=0.5). The result of times series analysis of water quality data shows a persistent behaviour (a positive autocorrelation) that has played a role between Cl- and Mg^{2+}, Cl- and Ca^{2+}, TDS and Na+, TDS and SO4^{2-}, TDS and Ca^{2+} in pre- and post-monsoon time series because of the higher value of H (>1). Whereas an anti-persistent behaviour (or negative autocorrelation) was found between Cl- and EC, TDS and EC during pre- and post-monsoon due to low value of H. The work outline shows that the groundwater of few areas needs treatment before direct consumption, and it also needs to be protected from contamination.

  18. General Overview of Desalination Technology

    International Nuclear Information System (INIS)

    Ari-Nugroho

    2004-01-01

    Desalination, as discussed in this journal, refers to a water treatment process that removes salts from water. Desalination can be done in a number of ways, but the result is always the same : fresh water is produced from brackish or seawater. The quality of distillate water is indicated by the contents of Total Dissolved Solid (TDS) in it, the less number of TDS contents in it, the highest quality of distillate water it has. This article describes the general analysis of desalination technologies, the varies of water, operation and maintenance of the plant, and general comparison between desalination technologies. Basically, there are two common technologies are being used, i.e. thermal and membrane desalination, which are Multi Effect Distillation (MED), Multi Stage Flash (MSF) and Reverse Osmosis (RO), respectively. Both technologies differ from the energy source. Thermal desalination needs heat source from the power plant, while membrane desalination needs only the electricity to run the pumps. In thermal desalination, the vapour coming from boiling feedwater is condensate, this process produces the lowest saline water, about 10 part per million (ppm). The membrane technology uses semipermeable membrane to separate fresh water from salt dissolve. This technology produces the fresh water about 350-500 ppm. (author)

  19. FoodCASE: A system to manage food composition, consumption and TDS data.

    Science.gov (United States)

    Presser, Karl; Weber, David; Norrie, Moira

    2018-01-01

    Food and nutrition scientists, nowadays, need to manage an increasing amount of data regarding food composition, food consumption and Total Diet Studies (TDS). The corresponding datasets can contain information about several thousand different foods, in different versions from different studies. FoodCASE is a system that has been developed to manage these different datasets. It also support flexible means of linking between datasets and generally provide support for the different processes involved in the acquisition, management and processing of data. In this paper, the most important concepts to implement existing guidelines and standards for proper food data management are presented, as well as different use cases of data import and proofs of concepts demonstrating the ability to manage data in FoodCASE. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Analysis of the technique Thermal Desorption Spectroscopy (TDS) and its Application for the Characterization of Metal -Hydrogen Systems

    International Nuclear Information System (INIS)

    Castro, F.J.

    2000-01-01

    limiting step is the recombination of two hydrogen atoms on the surface of the material. When the surface of the sample is in the a phase (solid solution) the rate limiting step is one of the processes that occurs on the surface of the material: the transfer of a hydrogen atom from the bulk to the surface or the recombination and desorption on the surface. By fitting the spectra we obtain an activation energy equal to 31 n 6 kJ/mol for the b phase, and equal to 35 n 3 kJ/mol for the a phase. We also compare the spectra of the powder with the spectra of the granules, foils and wires. Based on this comparison we analyze the effect on the desorption spectra of the characteristic size and geometry of the samples.Finally, we present a study of hydrogen desorption in the Pd-H system poisoned with sulfur. The poisoning produces as main effects a delay of the absorption and desorption processes without any appreciable loss in the storage capacity of the material.The experimental apparatus and theoretical models developed have been applied to the study of a MH system using samples with different morphology, characteristic size, geometry and surface state. The spectra were measured for different hydrogen concentrations and heating speeds. The results obtained encourage the utilization of TDS for the study and characterization of hydrogen desorption in MH systems. The technique is suited for the detailed analysis of the physical properties of the system and for the qualitative evaluation of the kinetic processes and their possible influence on technological devices

  1. Exploration of diffuse and discrete sources of acid mine drainage to a headwater mountain stream in Colorado, USA

    Science.gov (United States)

    Johnston, Allison; Runkel, Robert L.; Navarre-Sitchler, Alexis; Singha, Kamini

    2017-01-01

    We investigated the impact of acid mine drainage (AMD) contamination from the Minnesota Mine, an inactive gold and silver mine, on Lion Creek, a headwater mountain stream near Empire, Colorado. The objective was to map the sources of AMD contamination, including discrete sources visible at the surface and diffuse inputs that were not readily apparent. This was achieved using geochemical sampling, in-stream and in-seep fluid electrical conductivity (EC) logging, and electrical resistivity imaging (ERI) of the subsurface. The low pH of the AMD-impacted water correlated to high fluid EC values that served as a target for the ERI. From ERI, we identified two likely sources of diffuse contamination entering the stream: (1) the subsurface extent of two seepage faces visible on the surface, and (2) rainfall runoff washing salts deposited on the streambank and in a tailings pile on the east bank of Lion Creek. Additionally, rainfall leaching through the tailings pile is a potential diffuse source of contamination if the subsurface beneath the tailings pile is hydraulically connected with the stream. In-stream fluid EC was lowest when stream discharge was highest in early summer and then increased throughout the summer as stream discharge decreased, indicating that the concentration of dissolved solids in the stream is largely controlled by mixing of groundwater and snowmelt. Total dissolved solids (TDS) load is greatest in early summer and displays a large diel signal. Identification of diffuse sources and variability in TDS load through time should allow for more targeted remediation options.

  2. Experimental investigation of stepped solar still with continuous water circulation

    International Nuclear Information System (INIS)

    El-Agouz, S.A.

    2014-01-01

    Highlights: • Comparison between modified stepped and conventional solar still was carried out. • Effect of storage tank and cotton absorber on productivity was investigated. • Efficiency for modified stepped still is higher than conventional still by 20%. • The day and night efficiency increases by 5% and 3.5% for salt and sea water. - Abstract: This paper presents a modification of stepped solar still with continuous water circulation using a storage tank for sea and salt water. Total dissolved solids (TDS) of seawater and salt water before desalination is 57,100 and 2370 mg/l. A comparison study between modified stepped and conventional solar still was carried out to evaluate the developed desalination system performance under the same climate conditions. The effect of installing a storage tank and cotton black absorber for modified stepped solar still on the distillate productivity was investigated. The results indicate that, the productivity of the modified stepped still is higher than that for conventional still approximately by 43% and 48% for sea and salt water with black absorber respectively, while 53% and 47% of sea and salt water, respectively with cotton absorber. Also, the daily efficiency for modified stepped still is higher than that for conventional still approximately by 20%. The maximum efficiency of modified stepped still is occurring at a feed water flow rate of 1 LPM for sea water and 3 LPM for salt water. Total dissolved solids (TDS) of seawater and salt water after desalination is 41, and 27 mg/l

  3. Phytoremediation Potential of Duckweed (Lemna minor L.) On Steel Wastewater.

    Science.gov (United States)

    Saha, Priyanka; Banerjee, Angela; Sarkar, Supriya

    2015-01-01

    An eco-friendly and cost effective technique- phytoremediation was used to remediate contaminants from waste water. This study demonstrated that phytoremediation ability of duckweed (Lemna minor L.) to remove chloride, sulphate from Biological Oxygen Treatment (BOT) waste water of coke oven plant. The BOT water quality was assessed by analyzing physico-biochemical characters--pH, Biological oxygen demand (BOD), Chemical oxygen demand (COD), total dissolved solids (TDS) and elemental concentration. It was observed that an increase in pH value indicated an improvement of water quality. The experimental results showed that, duckweed effectively removed 30% chloride, 16% sulphate and 14% TDS from BOT waste water, which suggested its ability in phytoremediation for removal of chloride and sulphate from BOT waste water. A maximum increase of 30% relative growth rate of duckweed was achieved after 21 days of experiment. Thus, it was concluded that duckweed, an aquatic plant, can be considered for treatment of the effluent discharged from the coke oven plant.

  4. Efficient Desalination of Brackish Ground Water via a Novel Capacitive Deionization Cell Using Nanoporous Activated Carbon Cloth Electrodes

    Directory of Open Access Journals (Sweden)

    K. Laxman

    2015-12-01

    Full Text Available Sea water intrusion in ground water sources has made brackish water desalination a necessity in Oman. The application of capacitive deionization (CDI for the deionization of ground water samples from wells in Al-Musanaah Wilayat is proposed and demonstrated. A CDI cell is fabricated using nanoporous activated carbon cloth (ACC as the electrodes and is shown to be power efficient for desalting ground water samples with total dissolved solids (TDS of up to 4,000 mg/l. The CDI cell was able to remove up to 73% of the ionic scaling and fouling contaminants from brackish water samples. The power consumption for deionization of brackish water was estimated to be 1 kWh/m3 of desalinated water, which is much lower than the power required to process water with equivalent TDS by the reverse osmosis processes. The CDI process is elaborated, and observations and analysis of the ion adsorption characteristics and electrical properties of the capacitive cell are elucidated.

  5. Hydrogeochemical processes controlling water and dissolved gas chemistry at the Accesa sinkhole (southern Tuscany, central Italy

    Directory of Open Access Journals (Sweden)

    Franco Tassi

    2014-05-01

    Full Text Available The 38.5 m deep Lake Accesa is a sinkhole located in southern Tuscany (Italy that shows a peculiar water composition, being characterized by relatively high total dissolved solids (TDS values (2 g L-1 and a Ca(Mg-SO4 geochemical facies. The presence of significant amounts of extra-atmospheric gases (CO2 and CH4, which increase their concentrations with depth, is also recognized. These chemical features, mimicking those commonly shown by volcanic lakes fed by hydrothermal-magmatic reservoirs, are consistent with those of mineral springs emerging in the study area whose chemistry is produced by the interaction of meteoric-derived waters with Mesozoic carbonates and Triassic evaporites. Although the lake has a pronounced thermocline, water chemistry does not show significant changes along the vertical profile. Lake water balance calculations demonstrate that Lake Accesa has >90% of its water supply from sublacustrine springs whose subterranean pathways are controlled by the local structural assessment that likely determined the sinking event, the resulting funnel-shape being then filled by the Accesa waters. Such a huge water inflow from the lake bottom (~9·106 m3 yr-1 feeds the lake effluent (Bruna River and promotes the formation of water currents, which are able to prevent the establishment of a vertical density gradient. Consequently, a continuous mixing along the whole vertical water column is established. Changes of the drainage system by the deep-originated waters in the nearby former mining district have strongly affected the outflow rates of the local mineral springs; thus, future intervention associated with the ongoing remediation activities should carefully be evaluated to preserve the peculiar chemical features of Lake Accesa.

  6. Lake Darling Flood Control Project, Souris River, North Dakota. General Project Design.

    Science.gov (United States)

    1983-06-01

    difference between the air temperature measured at 10 feet and snow surface temperature. Td ’ - is the difference between dewpoint temperature measured at 10...to atmospheric conditions in the river reach between the outlet of the dam and the gage. f. Total dissolved solids ( TDS ) are generally considered to be...C c o o c a m m o i p - g - *tm-ett 41JI IhcaU ICI (U 4 ) flU)WwooQ- flJ ~rVlrnj M W Nfr- r- 0 r- M WMM - I# )-z .Lr n LZ n Lrr r 4r 111

  7. Delineating fresh water and brackish water aquifers by GIS and groundwater quality data

    International Nuclear Information System (INIS)

    Yasin, M.; Latif, M.

    2007-01-01

    This study was conducted in the Mona project area, Bhalwal, district Sargodha to delineate fresh water and brackish water aquifers by GIS (Geographic Information System) and historic groundwater quality data of 138 deep tube wells installed in the study area. The groundwater quality zonations were made by overlapping maps of TDS (Total Dissolved Solids), SAR (Sodium Adsorption Ratio) and RSC (Residual Sodium Carbonate). Seven zones of groundwater quality consisting of good, marginal, hazardous and their combinations were identified. The results indicated redistribution of salts in the aquifer and rise in water table in some parts of the study area from 1965-1997. (author)

  8. The use of dissolvable layered double hydroxide components in an in situ solid-phase extraction for chromatographic determination of tetracyclines in water and milk samples.

    Science.gov (United States)

    Phiroonsoontorn, Nattaphorn; Sansuk, Sira; Santaladchaiyakit, Yanawath; Srijaranai, Supalax

    2017-10-13

    This research presents a simple and green in situ solid phase extraction (is-SPE) combined with high-performance liquid chromatography (HPLC) for the simultaneous analysis of tetracyclines (TCs) including tetracycline, oxytetracycline, and chlortetracycline. In is-SPE, TCs were efficiently extracted through the precipitation formation of dissolvable layered double hydroxides (LDHs) by mixing the LDH components such as magnesium and aluminum ions (both in metal chloride salts) thoroughly in an alkaline sample solution. After the centrifugation, the precipitate was completely dissolved with trifluoroacetic acid to release the enriched TCs, and then analyzed by HPLC. Under optimized conditions, this method gave good enrichment factors (EFs) of 41-93 with low limits of detection (LODs) of 0.7-6μg/L and limits of quantitation (LOQs) of 3-15μg/L. Also, the proposed method was successfully applied for the determination of TCs in water and milk samples with the recoveries ranging from 81.7-108.1% for water and 55.7-88.7% for milk. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The Contribution of the Type of Detergent to Domestic Laundry Graywater Composition and Its Effect on Treatment Performance

    Directory of Open Access Journals (Sweden)

    Miguel Ángel López Zavala

    2016-05-01

    Full Text Available In this study, the contribution of liquid and powder detergents to the composition of domestic laundry graywater was evaluated. Dosages recommended by the manufacturers were used to prepare detergent solutions and generate laundry graywater. Solutions and graywater were characterized in terms of total solids (TS, total suspended solids (TSS, total dissolved solids (TDS, chemical oxygen demand (COD, total organic carbon (TOC, and concentration of Linear Alkylbenzene Sulfonates (LAS’s. Additionally, the effect of the type of detergent on the treatment performance was also assessed. The coagulation–flocculation process was selected as a potential alternative for treating domestic laundry graywater. Treatment performance was assessed based on the removals of TS, TSS, TDS, turbidity, COD, and electrical conductivity (EC. Optimum coagulant dosages and mixing conditions for flocculation were determined. The results indicate a differential contribution of the type of detergent to the domestic laundry graywater composition. Liquid detergents contributed with more COD and TOC and fewer solids and LAS’s, in comparison with powder detergents. Soiled clothes increased the solids and organic loads of laundry graywater; furthermore, the laundry process reduced the LAS concentration of graywater by 77% for the liquid detergent and 47% for the powder detergent. On the other hand, the coagulation–flocculation process was more effective in treating powder detergent graywater even though the liquid detergent graywater was less polluted. Removal efficiencies on the order of 95% for turbidity and 75% for TSS were achieved for powder detergent graywater; meanwhile, for liquid detergent graywater, the removals were 73% for turbidity and 51% for TSS.

  10. Quality evaluation of commercially sold table water samples in Michael Okpara University of Agriculture, Umudike, Nigeria and surrounding environments

    Directory of Open Access Journals (Sweden)

    D.O. Okorie

    2015-01-01

    Full Text Available In Michael Okpara University of Agriculture, Umudike, Nigeria (MOUAU and surrounding environments, table water of different brands is commercially hawked by vendors. To the best of our knowledge, there is no scientific documentation on the quality of these water samples. Hence this study which evaluated the quality of different brands of water samples commercially sold in MOUAU and surrounding environments. The physicochemical properties (pH, total dissolved solids (TDS, biochemical oxygen demand (BOD, total hardness, dissolved oxygen, Cl, NO3, ammonium nitrogen (NH3N, turbidity, total suspended solids (TSS, Ca, Mg, Na and K of the water samples as indices of their quality were carried out using standard techniques. Results obtained from this study indicated that most of the chemical constituents of these table water samples commercially sold in Umudike environment conformed to the standards given by the Nigerian Industrial Standard (NIS, World Health Organization (WHO and American Public Health Association (APHA, respectively, while values obtained for ammonium nitrogen in these water samples calls for serious checks on methods of their production and delivery to the end users.

  11. The Influence of Tidal Activities on Water Quality of Paka River Terengganu, Malaysia

    International Nuclear Information System (INIS)

    Muhammad Barzani Gasim; Nadila Abdul Khalid; Haniff Muhamad

    2015-01-01

    A study to determine the water quality at seven stations was carried out on the Paka River, Terengganu between two tides. Sampling begins from the estuary of the Paka River, and ended about 14 km from the mouth by a distance 2 km for each station. Sampling was carried out between two tides (high and low tides) and within two variations of time representing the first sampling (wet period) and the second sampling (dries period). Water quality parameters such as temperature, dissolved oxygen, conductivity, salinity, pH and total dissolved solids (TDS) were measured directly in the field using multiparameter the YSI 556. Analysis of sodium, magnesium sulfate was carried out according to the APHA and HACH methods. Determination of primary data and physicochemical characteristics of the River Paka are measured and analyzed for each sampling station. Physicochemical parameters such as temperature, pH, dissolved oxygen, total dissolved solids, salinity, electrical conductivity, sodium, and magnesium sulphate concentration were used to determine its relationship of the movement of tides and other factors that affect water quality. Station 1 shows the highest reading physicochemical parameters than station 7 during the first and second samplings. The higher reading most of physicochemical parameters was also observed during the dry season, this is because the river flow from upstream was decline due to low rainfall intensity. (author)

  12. Assessment of Long-Term Evolution of Groundwater Hydrochemical Characteristics Using Multiple Approaches: A Case Study in Cangzhou, Northern China

    Directory of Open Access Journals (Sweden)

    Wei Li

    2015-03-01

    Full Text Available Water shortage is severe in the North China Plain (NCP. In addition to a deficiency of water resources, deterioration of groundwater quality should be of great concern. In this study, hydrogeological analysis was conducted in combination with principal component analysis, correlation analysis and the co-kriging method to identify factors controlling the content of major ions and total dissolved solids (TDS in areal shallow and deep groundwater and to assess groundwater evolution in Cangzhou, China. The results suggested that groundwater quality degradation occurred and developed in the study area, as indicated by increasing concentrations of major ions, TDS and hardness in both shallow and deep groundwater. In shallow groundwater, whose hydrochemical water types changed from HCO3–Ca.Na.Mg and HCO3.Cl–Na in the west (Zone II to Cl.SO4–Na and Cl–Na in the east (Zone III. Areas with TDS concentrations between 1500 and 2000 mg/L occupied 79.76% of the total in the 1980s, while areas with a TDS concentration ranging from 2500 to 3000 mg/L comprised 59.11% of the total in the 2010s. In deep groundwater, the area with TDS over 1000 mg/L expanded from 5366.39 km2 in the 1960s to 7183.52 km2 in the 2010s. Natural processes (water-rock interactions and anthropogenic activities (groundwater exploitation were the dominant factors controlling the major ions’ content in local groundwater. Dissolution of dolomite, calcite, feldspar and gypsum were the primary sources of major ions in groundwater, and the ion exchange reaction had a strong effect on the cation content, especially for deep groundwater.

  13. Solid-solid interactions in Co3O4-MoO3/MgO system

    International Nuclear Information System (INIS)

    Radwan, Nagi R.E.; Ghozza, Ahmed M.; El-Shobaky, Gamil A.

    2003-01-01

    Cobalt/magnesium mixed oxide solids and cobalt-molybdenum/magnesium mixed oxide solids were prepared by thermal decomposition of basic magnesium carbonate pretreated with different proportions of cobalt nitrate and then with calculated amounts of ammonium molybdate. The proportions of cobalt expressed as Co 3 O 4 were 0.1, 0.2 and 0.3 mol while the concentrations of molybdenum expressed as mol% MoO 3 were 2.5 and 5.0. The prepared mixed solid specimens were calcined in air at 400-1000 deg. C. The solid-solid interactions in Co 3 O 4 -MoO 3 were investigated using DTA, TG and X-ray powder diffraction (XRD) techniques. The results obtained revealed that MgO dissolved cobalt oxide in its lattice forming CoO-MgO solid solution. The amount of cobalt dissolved increases by increasing the temperature in the range 800-1000 deg. C. This finding was confirmed by X-ray diffractograms in which all the diffraction lines of cobalt oxide disappeared at 1000 deg. C. MoO 3 present interacted readily with MgO and cobalt oxide by heat treatment at temperature starting from 400 deg. C producing MgMoO 4 and CoMoO 4 which remained stable by heating at 1000 deg. C. The impregnation of basic magnesium carbonate with cobalt nitrate much enhanced its thermal decomposition yielding MgO, which decomposed completely at 395.5 deg. C instead of 525 deg. C. The formation of magnesium cobaltite (MgCo 2 O 4 ) has been ruled out via XRD investigation at relatively high diffraction angles

  14. Chemical dissolving of sludge from a high level waste tank at the Savannah River Plant

    International Nuclear Information System (INIS)

    Bradley, R.F.; Hill, A.J. Jr.

    1977-11-01

    The concept for decontamination and retirement of radioactive liquid waste tanks at the Savannah River Plant (SRP) involves hydraulic slurrying to remove most of the settled sludges followed by chemical dissolving of residual sludges. Dissolving tests were carried out with small samples of sludge from SRP Tank 16H. Over 95 percent of the sludge was dissolved by 8 wt percent oxalic acid at 85 0 C with agitation in a two-step dissolving process (50 hours per step) and an initial reagent-to-sludge volume of 20. Oxalic acid does not attack the waste tank material of construction, appears to be compatible with the existing waste farm processes and equipment after neutralization, and with future processes planned for fixation of the waste into a high-integrity solid for packaging and shipping

  15. Cryptorchidism and hypospadias as a sign of testicular dysgenesis syndrome (TDS): environmental connection

    DEFF Research Database (Denmark)

    Toppari, Jorma; Virtanen, Helena E; Main, Katharina M

    2010-01-01

    . A monogenic reason for cryptorchidism or hypospadias has been identified only in a small proportion of all cases. Environmental effects appear to play a major role in TDS. Exposure to several persistent chemicals has been found to be associated with the risk of cryptorchidism, and exposure to anti......-androgenic phthalates has been shown to be associated with hormonal changes predisposing to male reproductive problems. Despite progress in identification of endocrine-disrupting substances, we are still far from knowing all the risk factors for these birth defects, and advice for prevention must be based......Cryptorchidism and hypospadias are common genital birth defects that affect 2-9% and 0.2-1% of male newborns, respectively. The incidence of both defects shows large geographic variation, and in several countries increasing trends have been reported. The conditions share many risk factors...

  16. Use of Multi-Intake Temporal Dominance of Sensations (TDS) to Evaluate the Influence of Cheese on Wine Perception.

    Science.gov (United States)

    Galmarini, Mara V; Loiseau, Anne-Laure; Visalli, Michel; Schlich, Pascal

    2016-10-01

    Though the gastronomic sector recommends certain wine-cheese associations, there is little sensory evidence on how cheese influences the perception of wine. It was the aim of this study to dynamically characterize 4 wines as they would be perceived when consumed with and without cheese. The tasting protocol was based on multi-intake temporal dominance of sensations (TDS) coupled with hedonic rating. In the 1st session, 31 French wine and cheese consumers evaluated the wines (Pacherenc, Sancerre, Bourgogne, and Madiran) over 3 consecutive sips. In the following sessions, they performed the same task, but eating small portions of cheese (Epoisses, Comté, Roquefort, Crottin de Chavignol) between sips. All cheeses were tasted with all wines over 4 sessions. TDS data were mainly analyzed in terms of each attribute's duration of dominance by analysis of variance, multivariate analysis of variance, and canonical variate analysis. Results showed that cheese consumption had an impact (P < 0.1) on dominance duration of attributes and on preference for most wines. For example, in Madiran, all cheeses reduced dominance duration (P < 0.01) of astringency and sourness and increased duration of red fruit aroma. Although the number of consumers was small to make extended general conclusions on wine's preference, significant changes were observed before and after cheese intake. © 2016 Institute of Food Technologists®.

  17. Study about ion exchange for decreasing the conductivity of water in power plant and refineries

    International Nuclear Information System (INIS)

    Khosravi, M.; Samani; Hajihosseini, N.

    2002-01-01

    Water has been used directly or indirectly for industries, its use would be in factories: such as steam or as a cooler or the product of the industrial material. water is used more than other material in many industries and what ever is obtained as the effect of industrial activities, it is destabilising like waste. By the control of P H and reducing (total dissolved solid) of water or decreasing conductivity of water, we can protect boiler from corrosion. We want to study this article for different method of decreasing (TDS) in order to produce <1μs/cm conductivity. The suitable method which is ion exchange system will be selected

  18. Results of Characterization and Retrieval Testing on Tank 241-C-109 Heel Solids

    Energy Technology Data Exchange (ETDEWEB)

    Callaway, William S.

    2013-09-26

    test samples at temperatures ranging from 26-30 °C. The metathesized sodium aluminate was then dissolved by addition of volumes of water approximately equal to 1.3 times the volumes of caustic added to the test slurries. Aluminate dissolution was allowed to proceed for 2 days at ambient temperatures of ≈29 °C. Overall, the sequential water and caustic dissolution tests dissolved and removed 80.0 wt% of the tank 241-C-109 crushed heel solids composite test sample. The 20 wt% of solids remaining after the dissolution tests were 85-88 wt% gibbsite. If the density of the residual solids was approximately equal to that of gibbsite, they represented ≈17 vol% of the initial crushed solids composite test sample. In the water dissolution tests, addition of a volume of water ≈6.9 times the initial volume of the crushed solids composite was sufficient to dissolve and recover essentially all of the natrophosphate present. The ratio of the weight of water required to dissolve the natrophosphate solids to the estimated weight of natrophosphate present was 8.51. The Environmental Simulation Program (OLI Systems, Inc., Morris Plains, New Jersey) predicts that an 8.36 w/w ratio would be required to dissolve the estimated weight of natrophosphate present in the absence of other components of the heel solids. Only minor amounts of Al-bearing solids were removed from the composite solids in the water dissolution tests. The caustic metathesis/aluminate dissolution test sequence, executed at temperatures ranging from 27-30 °C, dissolved and recovered ≈69 wt% of the gibbsite estimated to have been present in the initial crushed heel solids composite. This level of gibbsite recovery is consistent with that measured in previous scoping tests on the dissolution of gibbsite in strong caustic solutions. Overall, the sequential water and caustic dissolution tests dissolved and removed 80.3 wt% of the tank 241-C-109 aggregate solids test sample. The residual solids were

  19. Physical analysis of groundwater at thickly populated area of Faisalabad by using GIS

    International Nuclear Information System (INIS)

    Nasir, A.; Arslan, C.; Sattar, A.

    2012-01-01

    Groundwater is the major source of drinking and soil pollution deteriorates its quality. The study was conducted in the area of Ghulam Muhammad Abad, the most thickly populated area of District Faisalabad, Pakistan. Primary information was collected by conducting the general survey of the area. Sampling was done by dividing the entire area into six zones. A total of 159 groundwater samples were collected from newly installed pumps at the depth of 90 ft. The samples were then tested for physical parameters as EC (electrical conductivity), pH, TDS (total dissolved solids), TS (total solids) and TSS (total suspended solids). Test results were compared with the guidelines given by WHO (World Health Organization), and standards drafted by PSI (Pakistan Standard Institution). GIS analysis was done by using ArcGIS v 9.2. These parameters were analyzed in drinking water with respect to drinking purpose. EC of samples ranged from 0.074 S/m to 6.044 S/m. Only 8 samples were found within the permissible limit given by WHO, i.e. 2.504 S/m. GIS analysis showed that most of the area have EC greater than permissible limit. pH value ranged from 2.19 to 6.20. All the samples were found below the permissible limit given by WHO, i.e. 6.5 to 8.5. GIS map for pH indicated that almost 80% area has the pH value ranging from 4.90 to 5.21. TDS in groundwater samples ranged from 309 mg/L to 3530 mg/L. Only 2 samples were found within the permissible limit given by PSI, i.e. 1500 mg/L. GIS analysis revealed that almost 50% area lies under high concentration of TDS. TSS in samples varied from 3 mg/L to 2222 mg/L. There were no guidelines for TSS in drinking water but are supposed to be near to 0 mg/L in groundwater. TS in groundwater samples varied from 400 mg/L to 5200 mg/L. High value of TS effect the value of EC and TDS. Hence, all the values of physical parameters revealed that the groundwater of the area is not suitable for drinking purpose and needs to improve the groundwater quality of

  20. Calculating salt loads to Great Salt Lake and the associated uncertainties for water year 2013; updating a 48 year old standard

    Science.gov (United States)

    Shope, Christopher L.; Angeroth, Cory E.

    2015-01-01

    Effective management of surface waters requires a robust understanding of spatiotemporal constituent loadings from upstream sources and the uncertainty associated with these estimates. We compared the total dissolved solids loading into the Great Salt Lake (GSL) for water year 2013 with estimates of previously sampled periods in the early 1960s.We also provide updated results on GSL loading, quantitatively bounded by sampling uncertainties, which are useful for current and future management efforts. Our statistical loading results were more accurate than those from simple regression models. Our results indicate that TDS loading to the GSL in water year 2013 was 14.6 million metric tons with uncertainty ranging from 2.8 to 46.3 million metric tons, which varies greatly from previous regression estimates for water year 1964 of 2.7 million metric tons. Results also indicate that locations with increased sampling frequency are correlated with decreasing confidence intervals. Because time is incorporated into the LOADEST models, discrepancies are largely expected to be a function of temporally lagged salt storage delivery to the GSL associated with terrestrial and in-stream processes. By incorporating temporally variable estimates and statistically derived uncertainty of these estimates,we have provided quantifiable variability in the annual estimates of dissolved solids loading into the GSL. Further, our results support the need for increased monitoring of dissolved solids loading into saline lakes like the GSL by demonstrating the uncertainty associated with different levels of sampling frequency.

  1. DRINKING WATER FROM DESALINATION OF SEAWATER: OPTIMIZATION OF REVERSE OSMOSIS SYSTEM OPERATING PARAMETERS

    Directory of Open Access Journals (Sweden)

    MARWAN M. SHAMEL

    2006-12-01

    Full Text Available This paper reports on the use of pilot scale membrane separation system coupled with another pilot scale plate heat exchanger to investigate the possibilities of sweetening seawater from Telok Kalong Beach, Terengganu, Malaysia. Reverse osmosis (RO membrane of a surface area of 0.5 m2 was used during the experimental runs. Experiments were conducted at different transmembrane pressures (TMP ranged from 40 to 55 bars, operation temperature ranged from 35 to 45oC, feed concentration (TDS ranged from 34900 to 52500 ppm and cross flow velocities ranged from 1.4 to 2.1 m/s. The result show that the flux values increased linearly with TMP as well as sodium ion rejection. Permeate flux values increased proportionally with the temperature and the later effect was more significant at high pressures. The temperature changing has also influenced the rejection of sodium ion. The minerals content especially NaCl and total dissolved solid (TDS in the drinking water produced in this research are conforming to the standards of World Health Organization (WHO.

  2. Habitat use of Alburnoides namaki, in the Jajroud River (Namak Lake basin, Iran

    Directory of Open Access Journals (Sweden)

    Melahat Hoghoghi

    2016-01-01

    Full Text Available A fish species prefer a particular habitat where provides its biological requirements, hence, understanding their habitat use and preferences are crucial for their effective management and protection. This study was conducted to assess the habitat use and selection patterns of Alburnoides namaki, an endemic fish in Jajroud River, Namak Lake basin, Iran. The river was sampled at 18 equally spaced sites. A number of environmental variables, including elevation, water depth, river width, river slope, velocity, substrate type, average diameter of bed stone, riparian vegetation type and total dissolved solid (TDS and the relative abundance of A. namaki were recorded at each site. The results showed that A. namaki mostly selects upper parts of the river with higher slope, higher depth, lower width, lower velocity, bed rock substrate i.e. bed with boulder cover, TDS of 100-150 ppm, and deciduous forest and residential area riparian type compared with the available ranges. This study provides the habitat use and environmental factors affecting on the distribution of A. namaki in the Jajroud River.

  3. Logging as a means of characterising the water in rock formations in groundwater collection borings; Utilizacion de diagrafias para la caracterizacion del agua de la formaciones en sondeos de captacion de aguas subterranea

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Curiel, J.M.; Miguel, M.J.; Dominguez, S.; Caparrini, N

    1998-12-01

    We present an improvement of the S.P. application to obtain water conductivity and total of dissolved solids in the permeable layers passed through open hole, supposing said levels completely water saturated (under phreatic level). The optimization consists of a methodology for the treatment and interpretation of S.P. logs as well as the development of computer codes to execute the following processes. Laboratory measurements to acquire a set of key values in the interpretation processes (R{sub w}e/R{sub w} and TDS/R{sub w}). Conversion of the obtained data and selected charts, with continuous application range, to analytical curves for their automatic procedure. Algorithms development in order to carry out the automatic determination of base line and the elimination of its displacements. This system have been applied over a set of 27 logs performed by the author in the south area of the Duero basin (Spain) as an example of multi-layered detrital. We show the conductivity and TDS results in comparison with the water analysis obtained through pumping. (Author) 30 refs.

  4. Evaluation of environmental adjustment contract for pig production in Pinhal river sub-basin

    Directory of Open Access Journals (Sweden)

    Magda Regina Mulinari

    2011-12-01

    Full Text Available The objective of this study was to evaluate the efficiency of Environmental Adjustment Contract for pig production (EAC in improving the water quality in Pinhal River sub-basin, located in Concordia, west part of Santa Catarina State. The monitoring of water parameters occurred in eight sites of the river, during three years (2006-2009. To assess whether the EAC was efficient, Brazilian Water Law was used. The average annual concentrations of Total Dissolved Solids (TDS were: 130.2 mg/L, 137.0 mg/L, and 99.8 mg/L. Turbidity showed the same trend of TDS. Concentrations of nitrate and Total Phosphorus (TP decreased from 2006 to 2009; nitrate from 1.81 mg/L NO3-N to 1.54 mg NO3-N; TP from 0.29 mg/L to 0.10 mg/L, respectively. The same trends occurred for Fecal Coliforms and E. coli. These results show that obligations proposed by EAC had potentially improved water quality. These results can help the government, farmers, and society to establish environmentally sound and sustainable programs for pig production.

  5. Data Validation Package May 2016 Groundwater Sampling at the Sherwood, Washington, Disposal Site August 2016

    Energy Technology Data Exchange (ETDEWEB)

    Kreie, Ken [USDOE Office of Legacy Management, Washington, DC (United States); Traub, David [Navarro Research and Engineering, Inc., Oak Ridge, TN (United States)

    2016-08-04

    The 2001 Long-Term Surveillance Plan (LTSP) for the US. Department of Energy Sherwood Project (UMI'RCA Title II) Reclamation Cell, Wellpinit, Washington, does not require groundwater compliance monitoring at the Sherwood site. However, the LTSP stipulates limited groundwater monitoring for chloride and sulfate (designated indicator parameters) and total dissolved solids (TDS) as a best management practice. Samples were collected from the background well, MW-2B, and the two downgradient wells, MW-4 and MW-10, in accordance with the LTSP. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for US. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). Water levels were measured in all wells prior to sampling and in four piezometers completed in the tailings dam. Time-concentration graphs included in this report indicate that the chloride, sulfate, and TDS concentrations are consistent with historical measurements. The concentrations of chloride and sulfate are well below the State of Washington water quality criteria value of 250 milligrams per liter (mg/L) for both parameters.

  6. Transport and solubility of Hetero-disperse dry deposition particulate matter subject to urban source area rainfall-runoff processes

    Science.gov (United States)

    Ying, G.; Sansalone, J.

    2010-03-01

    SummaryWith respect to hydrologic processes, the impervious pavement interface significantly alters relationships between rainfall and runoff. Commensurate with alteration of hydrologic processes the pavement also facilitates transport and solubility of dry deposition particulate matter (PM) in runoff. This study examines dry depositional flux rates, granulometric modification by runoff transport, as well as generation of total dissolved solids (TDS), alkalinity and conductivity in source area runoff resulting from PM solubility. PM is collected from a paved source area transportation corridor (I-10) in Baton Rouge, Louisiana encompassing 17 dry deposition and 8 runoff events. The mass-based granulometric particle size distribution (PSD) is measured and modeled through a cumulative gamma function, while PM surface area distributions across the PSD follow a log-normal distribution. Dry deposition flux rates are modeled as separate first-order exponential functions of previous dry hours (PDH) for PM and suspended, settleable and sediment fractions. When trans-located from dry deposition into runoff, PSDs are modified, with a d50m decreasing from 331 to 14 μm after transport and 60 min of settling. Solubility experiments as a function of pH, contact time and particle size using source area rainfall generate constitutive models to reproduce pH, alkalinity, TDS and alkalinity for historical events. Equilibrium pH, alkalinity and TDS are strongly influenced by particle size and contact times. The constitutive leaching models are combined with measured PSDs from a series of rainfall-runoff events to demonstrate that the model results replicate alkalinity and TDS in runoff from the subject watershed. Results illustrate the granulometry of dry deposition PM, modification of PSDs along the drainage pathway, and the role of PM solubility for generation of TDS, alkalinity and conductivity in urban source area rainfall-runoff.

  7. Monitoring dissolved radioactive cesium in Abukuma River in Fukushima Prefecture

    International Nuclear Information System (INIS)

    Yasutaka, Tetsuo; Kawabe, Yoshishige; Kurosawa, Akihiko; Komai, Takeshi

    2013-01-01

    Radioactive materials were released into the atmosphere and deposited over wide areas of farmland, forests, and cities; elevated levels of "1"3"1I, "1"3"4Cs, and "1"3"7Cs have been detected in these areas due to the accident at the Tokyo Power Fukushima Daiichi Nuclear Power Plant caused by the April 2011 earthquake and tsunami in eastern Japan. Radioactive Cs deposited on farmland and forests gradually leaches into water bodies such as mountain streams and rivers adsorbed onto particles or in a dissolved state. It is important to calrify the level of dissolved and total radioactive Cs in environmental water for forecasting the of discharge of radioactive Cs from forest and watersheds, assessing on the effect of dissolved and total radioactive Cs on not only irrigation water but also rice and other crops, and evaluating the transport of radioactive Cs from rivers to costal areas. Therefore, it is important to monitor their levels in Fukushima Prefecture over time. In this research, we monitored the levels of dissolved and total radioactive Cs in Abukuma River using a conventional evaporative concentration method. By monitoring the river waters since September 2012, it was estimated that the levels of dissolved radioactive Cs were less than 0.128 Bq/L and those of total radioactive Cs were less than 0.274 Bq/L in the main stream and branches of Abukuma River in the low suspended solid condition. (author)

  8. Chemical oxidation of carwash industry wastewater as an effort to decrease water pollution

    Science.gov (United States)

    Bhatti, Zulfiqar Ahmad; Mahmood, Qaisar; Raja, Iftikhar Ahmad; Malik, Amir Haider; Khan, Muhammad Suleman; Wu, Donglei

    Car wash wastewater (CWW) contains petroleum, hydrofluoric acid, ammonium bifluoride products, paint residues, rubber, phosphates, oil, grease and volatile organic compounds (VOCs). The present study dealt with various investigations conducted for the treatment of CWW. A treatment system of 5 L capacity was designed in the laboratory. Due to high load of oil and grease, CWW was aerated and scum was removed. Alum was used as coagulant in primary treatment which resulted 93% and 97% reduction in COD and turbidity. During secondary treatment CWW was further treated with waste hydrogen peroxide which resulted in further 71% and 83% reduction in COD and turbidity, respectively. Other desirable changes were also observed in pH, total dissolved solids (TDS), conductivity and dissolved oxygen contents. It was concluded that designed system could be effectively used to treat carwash wastewater that could be reused in the same station.

  9. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Temporal variations have been observed in both dissolved helium and TDS in the form of increase in basaltic and decrease in alluvial aquifers. The increase in basaltic aquifers has been explained by enhanced pumping of old groundwater with relatively higher concentration of dissolved helium and salt, whereas the ...

  10. Standardization and estimation of gross alpha and beta activities for potable water samples in presence of TDS using TDCR based LSA (Hidex 300SL)

    International Nuclear Information System (INIS)

    Gupta, Anil; Lenka, P.; Sahoo, S.K.; Patra, A.C.; Jha, S.K.; Tripathi, R.M.

    2018-01-01

    Quality of water is important in environmental studies because of its daily use for human consumption and an important route of intake for various elements and radionuclides. Therefore radiological quality of drinking water must be ensured. The screening parameter to evaluate the radiological safety of potable water is by estimating gross alpha and gross beta activities with a limit of 0.5 Bq/l and 1 Bq/l respectively. These have been traditionally being done by radiochemical co-precipitation of alpha and beta emitters followed by counting by ZnS(Ag) counter for alpha and gas flow proportional counter for beta. Gross alpha estimation in water samples with high TDS by ZnS(Ag) is difficult and often leads to underestimation of result due to self-absorption of alpha within the residue. This study was carried out to standardize a method to provide rapid results by simultaneously estimating both gross alpha and gross beta activity in the presence of TDS with adequate sensitivity, minimum sample processing

  11. Characterization and study of correlations among major pollution parameters in textile wastewater

    International Nuclear Information System (INIS)

    Hyder, S.; Bari, A.

    2011-01-01

    Wastewater characterization is an integral part of treatment and management strategies for industrial effluents. This paper outlines the results of detailed wastewater characterization studies conducted for a textile mill in Lahore, Punjab. The results of this study demonstrated that the composition of textile wastewater could change continuously due to inherent nature of textile operations. In general, textile wastewater was high in temperature and alkaline in nature. It was highly polluted in terms of solids and organic content. Most of the portion of solids and organic load was in the soluble form. On the basis of mean values, temperature, pH, TDS (Total Dissolved Solids), BOD (Biochemical Oxygen Demand) and COD (Chemical Oxygen Demand) were above the limits set by NEQS (National Environmental Quality Standards) while chlorides and sulfates were below the limits set by NEQS. Prior neutralization of wastewater with an acid and addition of phosphorus and nitrogen is imperative for its effective treatment. (author)

  12. Thermotransport in interstitial solid solutions

    International Nuclear Information System (INIS)

    Fogel'son, R.L.

    1982-01-01

    On the basis of literature data the problem of thermotransport of impurities (H, N, O, C) in interstitial solid solutions is considered. It is shown that from experimental data on the thermotransport an important parameter of dissolved atoms can be found which characterizes atom state in these solutions-enthalpy of transport

  13. The use of chemical and isotopic data as indicators of the origin of waters and dissolved salts in the Bambui calcareous aquifer (Bahia-Brazil)

    International Nuclear Information System (INIS)

    Siqueira, A.F.

    1978-10-01

    Samples of 25 wells located in the Bambui limestone aquifer in the region of Irece - Bahia, have been analised for the isotopic ratio 18 O/ 16 O and the major chemical species Ca, Mg, Na, K, Cl, SO 4 and bicarbonate. The oxygen-18 data have been found to range between -2,62/00(in a thousand) to -6,66/00(in a thousand) relative to the universal Standard Mean Ocean Water (SMOW) and are compared with the values of the precipitation in the localities of Jacobina and Lencois (meteorological stations nearby) and with the values of the groundwater in sedimentary basins in northeastern Brazil. The comparison suggests that aquifer system is recharged by precipitation originated in northeastern Brazil, instead of originating on coast of Bahia, east of the area. Furthermore, the waters in aquifer are not found homogenized, having widely varying 18 O and chemical composition and being of different ages. The strong correlation between the observations Ca, Mg, Na, Cl and TDS (total dissolved solids) suggests an aerosol origin of salts, not excluding the hypothesis of dissolution of rock, which concentrations. The comparison of characteristic ratios Mg/Ca, SO 4 /Cl and (Cl-Na)/Cl, a Piper diagrama and a dendrogram established by cluster analysis, indicates that the wells may be separated in to two groups according to the isotopic or geochemical environment to which they belong. These groups may represent the differents sources of salt proposed, one being from the limestone, the other having come from aerosols. (Author) [pt

  14. Influence of dissolved organic substances in groundwater on sorption behavior of americium and neptunium

    International Nuclear Information System (INIS)

    Boggs, S. Jr.; Seitz, M.G.

    1984-01-01

    Groundwaters typically contain dissolved organic carbon consisting largely of high molecular weight compounds of humic and fulvic acids. To evaluate whether these dissolved organic substances can enhance the tranport of radionuclides through the groundwater system, experiments were conducted to examine the sorption of americium and neptunium onto crushed basalt in the presence of dissolved humic- and fulvic-acid organic carbon introduced into synthetic groundwater. The partitioning experiments with synthetic groundwater show that increasing the concentration of either humic or fulvic acid in the water has a significant inhibiting effect on sorption of both americium and neptunium. At 22 0 C, adsorption of these radionuclides, as measured by distribution ratios (the ratio of nuclide sorbed onto the solid to nuclide in solution at the end of the experiment), decreased by 25% to 50% by addition of as little as 1 mg/L dissolved organic carbon and by one to two orders of magnitude by addition of 100 to 200 mg/L dissolved organic carbon. Distribution ratios measured in solutions reacted at 90 0 C similarly decreased with the addition of dissolved organic carbon but generally ranged from one to two orders of magnitude higher than those determined in the 22 0 C experiment. These results suggest that organic carbon dissolved in deep groundwaters may significantly enhance the mobility of radionuclides of americium and neptunium. 23 references, 5 figures, 11 tables

  15. Water

    Directory of Open Access Journals (Sweden)

    E. Sanmuga Priya

    2017-05-01

    Full Text Available Phytoremediation through aquatic macrophytes treatment system (AMATS for the removal of pollutants and contaminants from various natural sources is a well established environmental protection technique. Water hyacinth (Eichhornia crassipes, a worst invasive aquatic weed has been utilised for various research activities over the last few decades. The biosorption capacity of the water hyacinth in minimising various contaminants present in the industrial wastewater is well studied. The present review quotes the literatures related to the biosorption capacity of the water hyacinth in reducing the concentration of dyestuffs, heavy metals and minimising certain other physiochemical parameters like TSS (total suspended solids, TDS (total dissolved solids, COD (chemical oxygen demand and BOD (biological oxygen demand in textile wastewater. Sorption kinetics through various models, factors influencing the biosorption capacity, and role of physical and chemical modifications in the water hyacinth are also discussed.

  16. Natural spatial and temporal variations in groundwater chemistry in fractured, sedimentary rocks: scale and implications for solute transport

    International Nuclear Information System (INIS)

    Hoven, Stephen J. van der; Kip Solomon, D.; Moline, Gerilynn R.

    2005-01-01

    Natural tracers (major ions, δ 18 O, and O 2 ) were monitored to evaluate groundwater flow and transport to a depth of 20 m below the surface in fractured sedimentary (primarily shale and limestone) rocks. Large temporal variations in these tracers were noted in the soil zone and the saprolite, and are driven primarily by individual storm events. During nonstorm periods, an upward flow brings water with high TDS, constant δ 18 O, and low dissolved O 2 to the water table. During storm events, low TDS, variable δ 18 O, and high dissolved O 2 water recharges through the unsaturated zone. These oscillating signals are rapidly transmitted along fracture pathways in the saprolite, with changes occurring on spatial scales of several meters and on a time scale of hours. The variations decreased markedly below the boundary between the saprolite and less weathered bedrock. Variations in the bedrock units occurred on time scales of days and spatial scales of at least 20 m. The oscillations of chemical conditions in the shallow groundwater are hypothesized to have significant implications for solute transport. Solutes and colloids that adsorb onto aquifer solids can be released into solution by decreases in ionic strength and pH. The decreases in ionic strength also cause thermodynamic undersaturation of the groundwater with respect to some mineral species and may result in mineral dissolution. Redox conditions are also changing and may result in mineral dissolution/precipitation. The net result of these chemical variations is episodic transport of a wide range of dissolved solutes or suspended particles, a phenomenon rarely considered in contaminant transport studies

  17. Origin and hydrogeochemistry of a shallow flow-through lake on a Pleistocene piedmont, northern Spanish Meseta

    Directory of Open Access Journals (Sweden)

    Margarita Jambrina

    2013-06-01

    Full Text Available The Cristo lagoon, situated on Neogene deposits in the northern Spanish Meseta, occupies a shallow depression on a Pleistocene piedmont. The development of the lacustrine depression on the piedmont was favoured by the fault network, reinforced by substrateloss by weathering, probably during the late Quaternary. Even during the hot summer season, salinity is low, with concentrations of total dissolved solids (TDS being around 150 mg L–1. Only when the lagoon is almost dry do TDS concentrations exceed 500 mg L–1, sometimes rising as high as 1700 mg L–1. Whenthe lake level is high, lake chemistry is dominated by Na+, Ca2+, HCO3– and Cl–. During drier stages, there is a relative increase in Ca2+, Mg2+, Cl–, and SO42–, trending toward a calcium chloride-sulphate brine. Values of pH are above 9 during late spring and summer, resulting primarily from evaporative degassing favoured by the shallow depth of water, and secondarily from photosynthesis by the abundant submerged macrophytes. The infilling deposits, less than 0.5 m thick, are dark brown, massive, sandy muds consisting of quartz and clays (illite, kaolinite, smectite, all of which are allogenic in origin. The main source of dissolved sulphate was the oxidation of sulphides during weathering of lower Palaeozoic rocks in the catchment area. The 13C-depleted nature of dissolved inorganic carbon indicates an origin mostly by respiration and oxidation of organic matter. Geomorphology and hydrogeochemistry indicate a flow-through lake dominated essentially by groundwater flows. 

  18. Water quality analysis and its relation to the scaling and corrosion tendency in an open water cooling system

    International Nuclear Information System (INIS)

    Zaini Hamzah; Halimah Abdul Ghani; Masitah Alias

    2008-01-01

    The problem of scaling and corrosion are common phenomena in a water cooling system especially the open cooling system. This study was carried out in Temenggor dam with an objective to check the water quality at the intake and tailrace of the hydro power plant. In-situ measurement and laboratory analysis on the water samples were carried out. Seven parameters were measured in-situ for example temperature, pH, specific conductivity, dissolved oxygen (DO), total dissolved solid (TDS), turbidity, and chlorine concentration. The water samples were collected using water sampler at three locations near the intake area at surface, and at the interval of one meter up to three meter depth. Two locations at the tailrace also were collected in the same pattern. These samples were brought back to the laboratory in UiTM, Shah Alam for further analysis. Laboratory analysis includes alkalinity, Ca 2+ , Mg 2+ and Fe 2+ concentrations, and total suspended solid (TSS). From the results, the LSI, RSI and PSI were calculated to predict the scaling and corrosion tendency. The index shows strong tendency for corrosion to take place in the cooling system as the related factors supported it. (author)

  19. Heavy Metal Levels and Physico-Chemical Quality of Potable Water Supply in Warri, Nigeria

    International Nuclear Information System (INIS)

    Nduka, K.C.; Orisakwe, E.O.

    2007-01-01

    The interaction between man's activities and the environment is gaining world wide attention. Warri an oil producing community in Delta State of Nigeria is faced with environmental oil pollution. Since open and underground water bodies are regarded as final recipients of most environmental pollutants, this study sought to provide data on the levels of the physico-chemical parameters and contaminants in Warri metropolitan water supply. This study investigated the cadmium, lead and chromium using Atomic Absorption Spectrophotometer, physico - chemical properties such as pH, temperature, total suspended solid TSS, total dissolved solid TDS, electrical conductivity EC, biological oxygen demand BOD, dissolved oxygen DO, chemical oxygen demand COD, and total coliform count of potable water sources in Warri. Ekpan River was found to have 1.2 mg/L of cadmium, 1.0mg/L of chromium, 1.20 mg/L of lead and 2.0 mg/L of manganese. The heavy metals levels and the pollution parameters were lowest in the borehole water samples, except pH which is more acidic in borehole water samples and conductivity which is more in well water samples in all the sampling stations. Some of the parameters were above WHO standards

  20. Floral preferences and climate influence in nectar and pollen foraging by Melipona rufiventris Lepeletier (Hymenoptera: Meliponini) in Ubatuba, São Paulo state, Brazil.

    Science.gov (United States)

    Fidalgo, Adriana de O; Kleinert, Astrid de M P

    2010-01-01

    We describe the environment effects on the amount and quality of resources collected by Melipona rufiventris Lepeletier in the Atlantic Forest at Ubatuba city, São Paulo state, Brazil (44º48'W, 23º22'S). Bees carrying pollen and/or nectar were captured at nest entrances during 5 min every hour, from sunrise to sunset, once a month. Pollen loads were counted and saved for acetolysis. Nectar was collected, the volume was determined and the total dissolved solids were determined by refractometer. Air temperature, relative humidity and light intensity were also registered. The number of pollen loads reached its maximum value between 70% and 90% of relative humidity and 18ºC and 23ºC; for nectar loads this range was broader, 50-90% and 20-30ºC. The number of pollen loads increased as relative humidity rose (rs = 0.401; P < 0.01) and high temperatures had a strong negative influence on the number of pollen loads collected (rs = -0.228; P < 0.01). The number of nectar loads positively correlated with temperature (rs = 0.244; P < 0.01) and light intensity (rs = 0.414; P < 0.01). The percentage of total dissolved solids (TDS) on nectar loads positively correlated with temperature and light intensity (rs = 0.361; P < 0.01 and rs = 0.245; P < 0.01), negatively correlated with relative humidity (rs = -0.629; P < 0.01), and it increased along the day. Most nectar loads had TDS between 11% and 30%, with an average of 24.7%. The volume measures did not show any pattern. Important pollen sources were Sapindaceae, Anacardiaceae, Rubiaceae, Arecaceae, Solanaceae and Myrtaceae; nectar sources were Sapindaceae, Fabaceae, Rubiaceae, Arecaceae and Solanaceae.

  1. Determination of Heavy elements in Drinking Water from Different Regions of Baghdad City (Iraq Using EDXRF Spectrometer

    Directory of Open Access Journals (Sweden)

    Muhanad H. Alrakabi

    2017-11-01

    Full Text Available It was calculated the average concentrations of elements manganese, iron, cobalt, nickel, copper, zinc, arsenic, cadmium and lead in the sixteen samples of drinking water (tap water, were collected from different areas in the Baghdad city. The Results indicated that the average of concentrations of the elements Mn, Fe, Pb, Ni and Cd (0.44ppm, 0.49ppm, 0.04ppm, 0.17ppm and 1.2ppm respectively higher than permissible limit while the concentrations of elements Cu and Zn (0.11ppm and 0.14ppm respectively were lower than the permissible limit of World Health Organization (WHO standards (1ppm and 3ppm respectively for drinking water and the concentration of Arsenic in the nuclear lab sample in college of sciences - Mustansiriyah University was higher than permissible limit. All the drinking water samples were analyzed and determined the physical and chemical properties such as Electrical Conductivity (EC, pH, and Total Dissolved Solids (TDS. The highest value was (1064μS/cm in Al-Tuwaitha sample and the lowest value (531μS/cm in Al-Sadr City (Sector 7 sample for the Electrical Conductivity. The pH values ranged from (7.0-8.2. The average levels of Total Dissolved Solids (TDS, the highest value was 550 mg/L in the Diyala Bridge sample while the lowest value 276mg/L in Al-Sadr City (Sector 7 sample. The results were compared with national and international standards, and it’s also showed that the values of the parameters within the permissible limit of World Health Organization (WHO standards, except the Electrical Conductivity values for some samples were higher than permissible limit. According to these results, all the water projects must be monitored as well as using the proper and modern techniques for treatment the drinking water.

  2. KELAYAKAN PEMANFAATAN LAHAN BEKAS TAMBANG BATUBARA UNTUK RELOKASI PERMUKIMAN PENDUDUK: STUDI KASUS AREAL TAMBANG PT. KITADIN (Feasibility of Former Coal-Mined Land for Resettlement A Case Study at PT. Kitadin

    Directory of Open Access Journals (Sweden)

    Retno Wuryandari

    2005-03-01

    Full Text Available ABSTRAK Penelitian ini bertujuan untuk mengevaluasi kelayakan tanah dan air di lahan penambangan batubara untuk area pemukiman. Penelitian di lakukan di daerah pertambangan batubara PT. Kitadin di kabupaten Kutai Kertanegara, provinsi Kalimantan Timur. Data untuk penelitian ini diperoleh dari survei lapangan dan sumber sekunder. Parameter yang dianalisis meliputi Soil Index Test, Grain Size Distribution, Density and Permeability. Parameter sample air meliputi pH, turbiditas, Total Dissolved Solid (TDS, Mangaan (Mn dan Besi (Fe. Data tersebut dibandingkan dengan kriteria penggunaan lahan untuk mengevaluasi kadar kelayakan/kesesuaian lahan. Hasil menunjukkan bahwa daerah penelitian tertutup lempung dengan plastisitas kurang dari 50%. Akumulasi air dalam lubang daerah penambangan batubara tidak masam dan memadai untuk konsumsi publik pada masa yang akan datang. Secara umum, daerah penelitian di pertambangan memadai untuk daerah permukiman.   ABSTRACT Conducted in PT. Kitadin coal-mined area which is located in Kutai Kartanegara Regency, East Kalimantan Timur Province, the research aimed to evaluate the feasibility conditions of soils and water at the coal-mined lands for settlement area. Data for the research were obtained from both field survey and secondary sources. The soil parameters analysed were Soil Index Test. Grain Size distribution, Density and Permeability. Water sample parameters analysed covered: pH, Turbidity, Total Dissolved Solid (TDS, Manganese (mn and Iron (Fe. The data were compared with land use criteria to evaluate land feasibility class. The results showed that the study area is covered by clay with its plasticity less than 50%. Meanwhile, the accumulated water in the hole of coal-mined area is not acid and adequate for future public consumption the future. Therefore, in general, the study area is considered appropriate and feasible for settlement.

  3. Solids loading evaluation for HB-line scrap recovery filters

    International Nuclear Information System (INIS)

    Crowder, M.L.

    2000-01-01

    The HB-Line Scrap Recovery facility uses wire screen filters to remove solids from plutonium-containing solutions transferred from the slab tank dissolvers. At times, the accumulation of solids is large enough to cause blinding (i.e., pluggage) of the filters. If the solids contain undissolved plutonium, significant accumulation of fissile material could impact operations. To address this potential issue, experiments were performed to define the minimum solids required to completely blind a filter. The solids loading experiments were performed by arranging 25- and 10-microm HB-Line filters in series to simulate the equipment in the scrap recovery process. Separate tests were performed using coarse and fine glass frit and cerium oxide powder suspended in 35 wt% sodium nitrate solution using a small turbine mixer. The solution and solids were transferred from a reservoir through the filter housings by vacuum. In each case, the 25-microm filter blinded first and was full of wet cake. After drying and accounting for the sodium nitrate in the filter cake, the following results were obtained. The results of the solids loading tests demonstrated that at least 800 g of solids accumulated in the filter housing before flow stopped. The actual amount of collected material was dependent upon the physical properties of the solids such as density and particle size. The mass of solids collected by the blinded 25-microm filter increased when successively finer solids were used in the experiments. Based on these results, one should anticipate that filters in the HB-Line Scrap Recovery Facility have the potential to collect similar quantities of material before transfer of solution from the dissolvers is severely impacted

  4. Influence of environmental factors on spectral characteristic of chromophoric dissolved organic matter (CDOM) in Inner Mongolia Plateau, China

    Science.gov (United States)

    Wen, Z. D.; Song, K. S.; Zhao, Y.; Du, J.; Ma, J. H.

    2015-06-01

    Spectral characteristics of chromophoric dissolved organic matter (CDOM) were examined in conjunction with environmental factors in the waters of 22 rivers and 26 terminal waters in Hulun Buir plateau, northeast China. Dissolved organic carbon (DOC), total nitrogen (TN), and total phosphorous (TP) were significantly higher in terminal waters than rivers waters (p CDOM absorption in river waters was significantly lower than terminal waters (p CDOM in river waters had higher aromaticity, molecular weight, and vascular plant contribution than in terminal waters. Furthermore, results showed that DOC concentration, CDOM light absorption, and the proportion of autochthonous sources of CDOM in plateau waters were all higher than in other freshwater rivers reported in the literature. The strong evapoconcentration, intense ultraviolet irradiance and landscape features of Hulun Buir plateau may be responsible for the above phenomenon. Redundancy analysis (RDA) indicated that the environmental variables TSM, TN, and EC had a strong correlation with light absorption characteristics, followed by TDS and chlorophyll a. In most sampling locations, CDOM was the dominant non-water light-absorbing substance. Light absorption by non-algal particles often exceeded that by phytoplankton in the plateau waters. Study of these optical-physicochemical correlations is helpful in the evaluation of the potential influence of water quality factors on non-water light absorption in cold plateau water environments. And the study on organic carbon in plateau lakes had a vital contribution to global carbon balance estimation.

  5. Simultaneous quantification of dissolved organic carbon fractions and copper complexation using solid-phase extraction

    International Nuclear Information System (INIS)

    McElmurry, Shawn P.; Long, David T.; Voice, Thomas C.

    2010-01-01

    Trace metal cycling in natural waters is highly influenced by the amount and type of dissolved organic C (DOC). Although determining individual species of DOC is unrealistic, there has been success in classifying DOC by determining operationally defined fractions. However, current fractionation schemes do not allow for the simultaneous quantification of associated trace metals. Using operational classifications, a scheme was developed to fractionate DOC based on a set of seven solid-phase extraction (SPE) cartridges. The cartridges isolated fractions based on a range of specific mechanisms thought to be responsible for DOC aggregation in solution, as well as molecular weight. The method was evaluated to determine if it can identify differences in DOC characteristics, including differences in Cu-DOC complexation. Results are that: (1) cartridge blanks were low for both DOC and Cu, (2) differences are observed in the distribution of DOC amongst the fractions from various sources that are consistent with what is known about the DOC materials and the mechanisms operative for each cartridge, (3) when present as a free cation, Cu was not retained by non-cationic cartridges allowing the method to be used to assess Cu binding, (4) the capability of the method to provide quantitative assessment of Cu-DOC complexation was demonstrated for a variety of DOC standards, (5) Cu was found to preferentially bind with high molecular weight fractions of DOC, and (6) estimated partitioning coefficients and conditional binding constants for Cu were similar to those reported elsewhere. The method developed describes DOC characteristics based on specific bonding mechanisms (hydrogen, donor-acceptor, London dispersion, and ionic bonding) while simultaneously quantifying Cu-DOC complexation. The method provides researchers a means of describing not only the extent of DOC complexation but also how that complex will be behave in natural waters.

  6. EFFECTIVENESS OF USING DILUTE OXALIC ACID TO DISSOLVE HIGH LEVEL WASTE IRON BASED SLUDGE SIMULANT

    International Nuclear Information System (INIS)

    Ketusky, E

    2008-01-01

    At the Savannah River Site (SRS), near Aiken South Carolina, there is a crucial need to remove residual quantities of highly radioactive iron-based sludge from large select underground storage tanks (e.g., 19,000 liters of sludge per tank), in order to support tank closure. The use of oxalic acid is planned to dissolve the residual sludge, hence, helping in the removal. Based on rigorous testing, primarily using 4 and 8 wt% oxalic acid solutions, it was concluded that the more concentrated the acid, the greater the amount of residual sludge that would be dissolved; hence, a baseline technology on using 8 wt% oxalic acid was developed. In stark contrast to the baseline technology, reports from other industries suggest that the dissolution will most effectively occur at 1 wt% oxalic acid (i.e., maintaining the pH near 2). The driver for using less oxalic acid is that less (i.e., moles) would decrease the severity of the downstream impacts (i.e., required oxalate solids removal efforts). To determine the initial feasibility of using 1 wt% acid to dissolve > 90% of the sludge solids, about 19,000 liters of representative sludge was modeled using about 530,000 liters of 0 to 8 wt% oxalic acid solutions. With the chemical thermodynamic equilibrium based software results showing that 1 wt% oxalic acid could theoretically work, simulant dissolution testing was initiated. For the dissolution testing, existing simulant was obtained, and an approximate 20 liter test rig was built. Multiple batch dissolutions of both wet and air-dried simulant were performed. Overall, the testing showed that dilute oxalic acid dissolved a greater fraction of the stimulant and resulted in a significantly larger acid effectiveness (i.e., grams of sludge dissolved/mole of acid) than the baseline technology. With the potential effectiveness confirmed via simulant testing, additional testing, including radioactive sludge testing, is planned

  7. Classification and Processing Optimization of Barley Milk Production Using NIR Spectroscopy, Particle Size, and Total Dissolved Solids Analysis

    Directory of Open Access Journals (Sweden)

    Jasenka Gajdoš Kljusurić

    2015-01-01

    Full Text Available Barley is a grain whose consumption has a significant nutritional benefit for human health as a very good source of dietary fibre, minerals, vitamins, and phenolic and phytic acids. Nowadays, it is more and more often used in the production of plant milk, which is used to replace cow milk in the diet by an increasing number of consumers. The aim of the study was to classify barley milk and determine the optimal processing conditions in barley milk production based on NIR spectra, particle size, and total dissolved solids analysis. Standard recipe for barley milk was used without added additives. Barley grain was ground and mixed in a blender for 15, 30, 45, and 60 seconds. The samples were filtered and particle size of the grains was determined by laser diffraction particle sizing. The plant milk was also analysed using near infrared spectroscopy (NIRS, in the range from 904 to 1699 nm. Furthermore, conductivity of each sample was determined and microphotographs were taken in order to identify the structure of fat globules and particles in the barley milk. NIR spectra, particle size distribution, and conductivity results all point to 45 seconds as the optimal blending time, since further blending results in the saturation of the samples.

  8. Estimation of Particle Material And Dissolved Flows During Floods In The Inaouene Watershed. (Northeast Of Morocco)

    Science.gov (United States)

    Sibari, Hayat; Haida, Souad; Foutlane, Mohamed

    2018-05-01

    This work aims to estimate the contributions of the Inaouene River during the floods. It is in this context that the dissolved and particulate matter flows were measured during the flood periods followed by the 1996/97 study year at the two hydrological stations Bab Marzouka (upstream) and El Kouchat (downstream). The specific flows of dissolved materials calculated upstream and downstream of the Inaouene watershed correspond respectively to 257 t/ km2/year and 117 t/ km2/year. Chlorides represent 30% and 41% respectively of the total dissolved transport upstream and downstream. The potential mechanical degradation affecting the Inaouene watershed can deliver a solid load estimated at 6.106 t/year corresponding to a specific flow of 2142 t/km2/year.

  9. Characteristic of leachate at Alor Pongsu Landfill Site, Perak, Malaysia: A comparative study

    Science.gov (United States)

    Nor Farhana Zakaria, Siti; Aziz, Hamidi Abdul

    2018-04-01

    Leachate is a harmful by product generated from the landfill site. Leachate contains a high concentration of pollutant which can cause serious pollution to environmental. In this study, characteristics of leachate in Alor Pongsu Landfill Site (APLS) were monitored and analyzed according to the Standard Methods for the Examination of Water and Wastewater (2005). Composition in leachate at APLS was monitored for one year starting from January 2015 until January 2016. Nine parameters were monitored including color, chemical oxygen demand (COD), biological oxygen demand (BOD5), ammoniacal nitrogen (NH3-N), biodegradability ratio (BOD5/COD), temperature, dissolved oxygen (DO), total dissolved solid (TDS) and pH. Based on the analysis, Alor Pongsu Landfill leachate was categorized as stabilized landfill leachate by referring to the BOD5/COD < 0.1. Comparison with allowable discharge limits for leachate shows that most of parameters exceeded the standard discharge limitation. Thus, proper treatment is needed before leachate can be discharged to the environment.

  10. An extensive study of the concentrations of particulate/dissolved radiocaesium derived from the Fukushima Dai-ichi Nuclear Power Plant accident in various river systems and their relationship with catchment inventory

    International Nuclear Information System (INIS)

    Yoshimura, Kazuya; Onda, Yuichi; Sakaguchi, Aya; Yamamoto, Masayoshi; Matsuura, Yuki

    2015-01-01

    An extensive investigation of particulate radiocaesium in suspended solids and dissolved radiocaesium in river water was undertaken at 30 sites in Fukushima and Miyagi Prefectures in December 2012, and their relationships with catchment inventory and the solid/liquid distribution coefficient (K d ) were evaluated. Rivers located in the coastal region on the north side of the Fukushima Dai-ichi Nuclear Power Plant exhibited relatively higher particulate radiocaesium concentrations. Significant correlations were found between concentrations of particulate/dissolved radiocaesium and average catchment inventories, indicating that the concentrations of particulate/dissolved radiocaesium could be approximated from the catchment inventory. Particulate radiocaesium concentration was significantly correlated with dissolved radiocaesium concentration (with the exception of concentrations measured in estuaries), and the geometric mean K d was calculated as 3.6 × 10 5 with a 95% confidence interval of 2.6–5.1 × 10 5 . - Highlights: • Particulate radiocaesium concentration correlated with catchment inventory. • Particulate size can be an important factor of the correlation. • Solid/liquid distribution coefficients were obtained for extensive area

  11. Nitrogen fixation in the activated sludge treatment of thermomechanical pulping wastewater: effect of dissolved oxygen.

    Science.gov (United States)

    Slade, A H; Anderson, S M; Evans, B G

    2003-01-01

    N-ViroTech, a novel technology which selects for nitrogen-fixing bacteria as the bacteria primarily responsible for carbon removal, has been developed to treat nutrient limited wastewaters to a high quality without the addition of nitrogen, and only minimal addition of phosphorus. Selection of the operating dissolved oxygen level to maximise nitrogen fixation forms a key component of the technology. Pilot scale activated sludge treatment of a thermomechanical pulping wastewater was carried out in nitrogen-fixing mode over a 15 month period. The effect of dissolved oxygen was studied at three levels: 14% (Phase 1), 5% (Phase 2) and 30% (Phase 3). The plant was operated at an organic loading of 0.7-1.1 kg BOD5/m3/d, a solids retention time of approximately 10 d, a hydraulic retention time of 1.4 d and a F:M ratio of 0.17-0.23 mg BOD5/mg VSS/d. Treatment performance was very stable over the three dissolved oxygen operating levels. The plant achieved 94-96% BOD removal, 82-87% total COD removal, 79-87% soluble COD removal, and >99% total extractives removal. The lowest organic carbon removals were observed during operation at 30% DO but were more likely to be due to phosphorus limitation than operation at high dissolved oxygen, as there was a significant decrease in phosphorus entering the plant during Phase 3. Discharge of dissolved nitrogen, ammonium and oxidised nitrogen were consistently low (1.1-1.6 mg/L DKN, 0.1-0.2 mg/L NH4+-N and 0.0 mg/L oxidised nitrogen). Discharge of dissolved phosphorus was 2.8 mg/L, 0.1 mg/L and 0.6 mg/L DRP in Phases 1, 2 and 3 respectively. It was postulated that a population of polyphosphate accumulating bacteria developed during Phase 1. Operation at low dissolved oxygen during Phase 2 appeared to promote biological phosphorus uptake which may have been affected by raising the dissolved oxygen to 30% in Phase 3. Total nitrogen and phosphorus discharge was dependent on efficient secondary clarification, and improved over the course of

  12. Groundwater quality from a part of Prakasam District, Andhra Pradesh, India

    Science.gov (United States)

    Subba Rao, N.

    2018-03-01

    Quality of groundwater is assessed from a part of Prakasam district, Andhra Pradesh, India. Groundwater samples collected from thirty locations from the study area were analysed for pH, electrical conductivity (EC), total dissolved solids (TDS), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), bicarbonate ( {HCO}3^{ - } ), chloride (Cl-), sulphate ( {SO}4^{2 - } ), nitrate ( {NO}3^{ - } ) and fluoride (F-). The results of the chemical analysis indicate that the groundwater is alkaline in nature and are mainly characterized by Na+- {HCO}3^{ - } and Na+-Cl- facies. Groundwater chemistry reflects the dominance of rock weathering and is subsequently modified by human activities, which are supported by genetic geochemical evolution and hydrogeochemical relations. Further, the chemical parameters (pH, TDS, Ca2+, Mg2+, Na+, {HCO}3^{ - } , Cl-, {SO}4^{2 - } , {NO}3^{ - } and F-) were compared with the drinking water quality standards. The sodium adsorption ratio, percent sodium, permeability index, residual sodium carbonate, magnesium ratio and Kelly's ratio were computed and USSL, Wilcox and Doneen's diagrams were also used for evaluation of groundwater quality for irrigation. For industrial purpose, the pH, TDS, {HCO}3^{ - } , Cl- and {SO}4^{2 - } were used to assess the impact of incrustation and corrosion activities on metal surfaces. As a whole, it is observed that the groundwater quality is not suitable for drinking, irrigation and industrial purposes due to one or more chemical parameters exceeding their standard limits. Therefore, groundwater management measures were suggested to improve the water quality.

  13. Reverse osmosis plant maintenance and efficacy in chronic kidney disease endemic region in Sri Lanka.

    Science.gov (United States)

    Jayasumana, Channa; Ranasinghe, Omesh; Ranasinghe, Sachini; Siriwardhana, Imalka; Gunatilake, Sarath; Siribaddana, Sisira

    2016-11-01

    Chronic Interstitial Nephritis in Agricultural Communities (CINAC) causes major morbidity and mortality for farmers in North-Central province (NCP) of Sri Lanka. To prevent the CINAC, reverse osmosis (RO) plants are established to purify the water and reduce the exposure to possible nephrotoxins through drinking water. We assessed RO plant maintenance and efficacy in NCP. We have interviewed 10 RO plant operators on plant establishment, maintenance, usage and funding. We also measured total dissolved solids (TDS in ppm) to assess the efficacy of the RO process. Most RO plants were operated by community-based organizations. They provide clean and sustainable water source for many in the NCP for a nominal fee, which tends to be variable. The RO plant operators carry out RO plant maintenance. However, maintenance procedures and quality management practices tend to vary from an operator to another. RO process itself has the ability to lower the TDS of the water. On average, RO process reduces the TDS to 29 ppm. The RO process reduces the impurities in water available to many individuals within CINAC endemic regions. However, there variation in maintenance, quality management, and day-to-day care between operators can be a cause for concern. This variability can affect the quality of water produced by RO plant, its maintenance cost and lifespan. Thus, uniform regulation and training is needed to reduce cost of maintenance and increase the efficacy of RO plants.

  14. Electrodialysis reversal: Process and cost approximations for treating coal-bed methane waters

    Energy Technology Data Exchange (ETDEWEB)

    Sajtar, E.T.; Bagley, D.M. [University of Wyoming, Laramie, WY (United States)

    2009-02-15

    Brackish waters with total dissolved solids (TDS) concentrations less than 10,000 mg/L are extracted from coal-beds in the Wyoming Powder River basin to facilitate the production of coal-bed methane. These waters frequently require treatment before disposal or use. Electrodialysis reversal (EDR) has not yet been used to treat these waters but this technology should be suitable. The question is whether EDR would be cost-effective. The purpose of this work, then, was to develop models for predicting the cost of EDR for brackish waters. These models, developed from data available in the literature, were found to predict actual EDR costs as a function of TDS removal, influent flow rate, chemical rejection efficiency, water recovery, electricity use, and labor cost within 10% of reported values. The total amortized cost for removing 1,000 mg/L of TDS from 10,000 m{sup 3}/day of influent assuming no concentrate disposal costs was predicted to range from $0.23/m{sup 3} to $0.85/m{sup 3} and was highly dependent on capital cost and facility life. Concentrate disposal costs significantly affected total treatment cost, providing a total treatment cost range from $0.38/m{sup 3} to $6.38/m{sup 3}, depending on concentrate disposal cost and water recovery. Pilot demonstrations of EDR in the Powder River basin should be conducted to determine the achievable water recovery when treating these waters.

  15. Vertical variation in groundwater chemistry inferred from fluid specific-conductance well logging of the Snake River Plain Basalt aquifer, Idaho National Engineering Laboratory, southeastern Idaho

    International Nuclear Information System (INIS)

    Wood, S.H.; Bennecke, W.

    1994-01-01

    Well logging of electrical fluid specific conductance (C s ) shows that permeable zones yielding ground water to intrawell flows and the water columns in some wells at INEL have highly different chemistry, with as much as a two-fold variation in C s . This suggests that dedicated-pump sampling of ground water in the aquifer may not be representative of the chemistry of the waste plumes migrating southwest of the nuclear facilities. Natural background C s in basalt-aquifer ground water of this part of the Snake River Plain aquifer is less than 325μS/cm (microSiemans/cm), and total dissolved solids in mg/L units, (TDS) ∼ 0.6C s . This relationship underestimates TDS for waters with chemical waste, when C s is above 800 μS/cm. At well 59 near the ICPP water of 1115 μS/cm (∼6570+ mg/L TDS) enters the well from a permeable zone between 521 and 537 ft depth; the zone being 60 ft below the water level and water of 550 μS/cm. At the time of logging (9/14/93) the 1115/μS/cm water was flowing down the well, mixing with less concentrated waters and exciting at 600 or 624-ft depth. Waste water disposed of down the injection well at ICPP until 1984 was estimated to have a C 5 of 1140 μS/cm, identical to the water detected in logging. 29 refs., 8 figs., 1 tab

  16. Groundwater quality around Tummalapalle area, Cuddapah District, Andhra Pradesh, India

    Science.gov (United States)

    Sreedhar, Y.; Nagaraju, A.

    2017-11-01

    The suitability of groundwater for drinking and irrigation was assessed in Tummalapalle area. Forty groundwater samples were analysed for major cations, anions and other parameters such as pH, electrical conductivity, total dissolved solids (TDS), total alkalinity and total hardness (TH). The parameters such as sodium adsorption ratio, adjusted sodium adsorption ratio (adj.SAR), per cent sodium, potential salinity, residual sodium carbonate, non-carbonate hardness, Kelly's ratio and permeability index were calculated for the evaluation of irrigation water quality. Groundwater chemistry was also analysed by statistical analysis, USSL, Wilcox, Doneen, Piper and Chadhas diagrams, to find out their suitability for irrigation. TDS and TH were used as main parameters to interpret the suitability of groundwater for drinking purpose. The correlation coefficient matrix between the hydrochemical parameters was carried out using Pearson's correlation to infer the possible water-rock interactions responsible for the variation of groundwater chemistry and this has been supported by Gibbs diagram. The results indicate that the groundwater in Tummalapalle area is alkaline in nature. Ca-Mg-HCO3 is the dominant hydrogeochemical facies. Water chemistry of the study area strongly reflects the dominance of weathering of rock-forming minerals such as bicarbonates and silicates. All parameters and diagrams suggest that the water samples of the study are good for irrigation, and the plots of TDS and TH suggest that 12.5% of the samples are good for human consumption.

  17. Extreme drought decouples silicon and carbon geochemical linkages in lakes.

    Science.gov (United States)

    Li, Tianyang; Li, Siyue; Bush, Richard T; Liang, Chuan

    2018-09-01

    Silicon and carbon geochemical linkages were usually regulated by chemical weathering and organism activity, but had not been investigated under the drought condition, and the magnitude and extent of drought effects remain poorly understood. We collected a comprehensive data set from a total of 13 sampling sites covering the main water body of the largest freshwater lake system in Australia, the Lower Lakes. Changes to water quality during drought (April 2008-September 2010) and post-drought (October 2010-October 2013) were compared to reveal the effects of drought on dissolved silica (DSi) and bicarbonate (HCO 3 - ) and other environmental factors, including sodium (Na + ), pH, electrical conductivity (EC), chlorophyll a (Chl-a), total dissolved solids (TDS), dissolved inorganic nitrogen (DIN), total nitrogen (TN), total phosphorus (TP) and water levels. Among the key observations, concentrations of DSi and DIN were markedly lower in drought than in post-drought period while pH, EC and concentrations of HCO 3 - , Na + , Chl-a, TDS, TN, TP and the ratio TN:TP had inverse trends. Stoichiometric ratios of DSi:HCO 3 - , DSi:Na + and HCO 3 - :Na + were significantly lower in the drought period. DSi exhibited significantly negative relationships with HCO 3 - , and DSi:Na + was strongly correlated with HCO 3 - :Na + in both drought and post-drought periods. The backward stepwise regression analysis that could avoid multicollinearity suggested that DSi:HCO 3 - ratio in drought period had significant relationships with fewer variables when compared to the post-drought, and was better predictable using nutrient variables during post-drought. Our results highlight the drought effects on variations of water constituents and point to the decoupling of silicon and carbon geochemical linkages in the Lower Lakes under drought conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Effects of riverbed extraction on physico-chemical parameters of Tinau River, Nepal

    Directory of Open Access Journals (Sweden)

    K.R. Dahal

    2012-09-01

    Full Text Available This study was carried out during June 2010 to March 2011 in the Tinau River, Nepal. The level of pollution was determined based on the protocol of US EPA (Habitat Assessment Protocol. Riverbed extraction was occurring in very large scale in this river since 2002. Five sampling stations were selected to carry out the study. Some specific physico-chemical parameters like Electrical Conductivity (EC, Lead (Pb, pH, Iron (Fe, Phosphorous (P, Ammonia (NH4+, Nitrate (NO3-, Arsenic (As, Total Dissolved Solids (TDS were analyzed. Three major parameters (Pb, As and TDS were closely related to the riverbed extraction and exceeded the limit set by WHO for drinking water. Similar relationship was also seen for EC; however its concentrations did not exceed the limit of WHO. The river water was slightly alkaline based on the pH value (ranging from 7.5 to 9.Other parameters did not seem to be related to the riverbed extraction. However, the nitrate and phosphorous concentrations were also high during the present investigation. Lack of similar studies prevented us to compare the result; however these findings provide the baseline data for future work.

  19. Potential of L-fucose isolated from Brown Seaweeds as Promising Natural Emulsifier compare to Carboxymethyl Cellulose (CMC)

    Science.gov (United States)

    Al-Baarri, A. N.; Legowo, A. M.; Widayat; Abduh, S. B. M.; Lestari, F. P.; Desnasari, D.; Santoso, I. P. M.

    2018-02-01

    L-fucose has been understood as sulfated polysaccharides and it could be extracted and fractionated from brown algae. These polysaccharides contains carbohydrate, sulfate, and protein that may be used as emulsifier. This research was aimed to study the emulsification properties of L-fucose through the determination of total dissolved solids (TDS), color CIE L*a*b* and stability of oil-in-water emulsion. As much as 0.5% of high concentrated L-fucose and 0.5% of carboxymethyl cellulose (CMC) were used as emulsifier in a 10% (v/v) oil-in-water (O/W) emulsion. The emulsifier was added to O/W emulsions and then heated at 72°C. Result of stability emulsion and TDS showed that L-fucose was comparable to the CMC but remarkable changed the color of O/W emulsion. Heating process significantly reduced the stability O/W emulsion when L-fucose was applied. As conclusion, L-fucose might be used as natural emulsifier in O/W emulsion but in the low heat treatment of food processing. This study may provide valuable information for utilizing natural emulsifier from abundant resources from nature.

  20. Dissolved CO2 Increases Breakthrough Porosity in Natural Porous Materials.

    Science.gov (United States)

    Yang, Y; Bruns, S; Stipp, S L S; Sørensen, H O

    2017-07-18

    When reactive fluids flow through a dissolving porous medium, conductive channels form, leading to fluid breakthrough. This phenomenon is caused by the reactive infiltration instability and is important in geologic carbon storage where the dissolution of CO 2 in flowing water increases fluid acidity. Using numerical simulations with high resolution digital models of North Sea chalk, we show that the breakthrough porosity is an important indicator of dissolution pattern. Dissolution patterns reflect the balance between the demand and supply of cumulative surface. The demand is determined by the reactive fluid composition while the supply relies on the flow field and the rock's microstructure. We tested three model scenarios and found that aqueous CO 2 dissolves porous media homogeneously, leading to large breakthrough porosity. In contrast, solutions without CO 2 develop elongated convective channels known as wormholes, with low breakthrough porosity. These different patterns are explained by the different apparent solubility of calcite in free drift systems. Our results indicate that CO 2 increases the reactive subvolume of porous media and reduces the amount of solid residual before reactive fluid can be fully channelized. Consequently, dissolved CO 2 may enhance contaminant mobilization near injection wellbores, undermine the mechanical sustainability of formation rocks and increase the likelihood of buoyance driven leakage through carbonate rich caprocks.

  1. DESIGN OF A DISSOLVED AIR FLOAT (DAF) IN THE TREATMENT OF WASTE WATER A TEXTILE

    OpenAIRE

    Salas Colotta, G.

    2014-01-01

    We presented the design of a dissolved air flotation system (DAF) to separate coagulated solids (dye) in the wastewater of a textile plant. The obtained yields of removal of suspended solids (SS) they are 82%. The size of the float to treat 35 m3/h of residual water of a textile is 5,7 m. Se presenta el diseño de un flotador por aire disuelto (DAF) para separar sólidos coagulados y floculados (tinte) provenientes de los efluentes de una planta textil. Los rendimientos obtenidos de remoción...

  2. Influence of foaming agents on solid thermal conductivity of foam glasses prepared from CRT panel glass

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    2017-01-01

    The understanding of the thermal transport mechanism of foam glass is still lacking. The contribution of solid- and gas conduction to the total thermal conductivity remains to be reported. In many foam glasses, the solid phase consist of a mix of an amorphous and a crystalline part where foaming...... containing glass and crystalline foaming agents and amorphous samples where the foaming agents are completely dissolved in the glass structure, respectively. Results show that the samples prepared by sintering have a higher thermal conductivity than the samples prepared by melt-quenching. The thermal...... conductivities of the sintered and the melt-quenched samples represent an upper and lower limit of the solid phase thermal conductivity of foam glasses prepared with these foaming agents. The content of foaming agents dissolved in the glass structure has a major impact on the solid thermal conductivity of foam...

  3. The effects of particles and dissolved materials on in situ algal pigment fluorescence sensors

    Science.gov (United States)

    Saraceno, J.; Bergamaschi, B. A.; Downing, B. D.

    2013-12-01

    Field deployable sensors that measure algal pigment fluorescence (APF), such as chlorophyll-a (excitation/emission ca. 470/685 nm), and phycocyanin (ca. 590/685 nm), have been used to estimate algal biomass and study food-web dynamics in coastal and oceanic waters for many years. There is also widespread use of these sensors in real time river-observing networks. However, freshwater systems often possess elevated levels of suspended solids and dissolved organic material that can interfere with optical measurements. Data collected under conditions that result in interferences may not be comparable across time and between sites unless the data are appropriately corrected. Using standard reference materials and a surrogate for algal fluorescence (Rhodamine WT), lab experiments were conducted on several commercially available sensors to quantify sensitivity to interferences over a range of naturally occurring surface water conditions (DOC : 0-30 mg/L and turbidity: 0- 1000 FNU ). Chlorophyll-a sensors exhibited a slight but significant positive bias (2 mg/L, with signal quenching reaching a maximum of 15% at 30 mg/L DOC. All phycocyanin sensors displayed a positive non-linear bias with DOC concentration, reaching a maximum of 40% difference at 30 mg/L DOC. Both chlorophyll-a and phycocyanin sensors showed a positive linear relationship with suspended solids concentration (as indicated by turbidity).The effect of suspended solids on APF output can be explained by the detection of scattered excitation light (leaking through emission filters). Similar qualitative effects were observed for the sensors tested, though the magnitude of the effect varied among sensor type. This indicates that differences in sensor designs such as geometry, wavelength and signal post processing techniques is related to its sensitivity to interferences. Although sensors exhibited significant cross sensitivity to interferences, our results indicate that simple corrections can largely remove

  4. Direct gamma-ray measurement of different radionuclides in the surface water of Suez Canal

    International Nuclear Information System (INIS)

    Lasheen, Y.F.; El-Zakla, T.; Seliman, A.F.; Abdel-Rassoul, A.A.

    2008-01-01

    The radioactivity levels of naturally-occurring 238 U, 232 Th, 226 Ra and 40 K and anthropogenic 137 Cs in surface water from eight locations in the Suez Canal have been assessed by gamma-ray spectrometry. The samples were further characterized by determination of the common cations and anions using ion chromatography. A comparison of 137 Cs radioactivity levels in surface water from the Suez Canal with those of other sea waters is presented. The radioactivity levels of 238 U, 232 Th, 226 Ra and 40 K from sea water are also reported. The effect of total dissolved solids (T.D.S.), chloride, sulphate ion concentrations on the radioactivity levels of 238 U, 232 Th and 226 Ra is discussed. (authors)

  5. Biological treatment of textile mill wastewater in the. presence of activated carbon

    International Nuclear Information System (INIS)

    Liaquat, F.; Hassan, M.; Mahboob, S.; Rehman, A.; Liaquat, S.; Khalid, Z.M.

    2005-01-01

    The main goal of this study was to find out effectiveness of biological treatment for the reduction in chemical oxygen demand (COD) and biological oxygen demand (BOD) of the textile processing industrial wastewater in the absence and presence of granular activated carbon (GAC) in shake flask experiment. To check the pollution level, physio-chemical analysis of effluent from Amtex industry (Faisalabad) was carried out. The outlet effluent contained high value of COD (1100 mg/l), BOD (309 mg/l) with pH 9.2, electrical conductivity (Ec) 3.7 mS/m, total dissolved solids (TDS) (2640 mg/l), total solids (TS) (3060 mg/l), total suspended solids (TSS) (420 19/l) and phenol (.34 mg/l). After initial period of activated sludge adaptation to wastewater, shake flask batch cultures (with and without activated carbon) were operated on lab scale. The COD and BOD were noted after very 12 hours for 3 days. The maximum reduction in COD (82%) and BOD (90%) was observed biological treatment in presence of activated carbon at retention time of 72 hours. (author)

  6. Fouling-Resistant Membranes for Treating Concentrated Brines for Water Reuse in Advanced Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hendren, Zachary [RTI International, Research Triangle Park, NC (United States); Choi, Young Chul [RTI International, Research Triangle Park, NC (United States)

    2014-10-14

    The high total dissolved solids (TDS) levels in the wastewater quality generated from unconventional oil and gas development make the current state-of-the art approach to water treatment/disposal untenable. Our proposed membrane technology approach addresses the two major challenges associated with this water: 1) the membrane distillation process removes the high TDS content, which is often 8 times higher than that of seawater, and 2) our novel membrane coating prevents the formation of scale that would otherwise pose a significant operational hurdle. This is accomplished through next-generation electrically conductive membranes that mitigate fouling beyond what is currently possible, and allow for the flexibility to treat to the water to levels desirable for multiple reuse options, thus reducing fresh water withdrawal, all the way to direct disposal into the environment. The overall project objective was to demonstrate the efficacy of membrane distillation (MD) as a cost-savings technology to treat concentrated brines (such as, but not limited to, produced waters generated from fossil fuel extraction) that have high levels of TDS for beneficial water reuse in power production and other industrial operations as well as agricultural and municipal water uses. In addition, a novel fouling-resistant nanocomposite membrane was developed to reduce the need for chemicals to address membrane scaling due to the precipitation of divalent ions in high-TDS waters and improve overall MD performance via an electrically conductive membrane distillation process (ECMD). This anti-fouling membrane technology platform is based on incorporating carbon nanotubes (CNTs) into the surface layer of existing, commercially available MD membranes. The CNTs impart electrical conductivity to the membrane surface to prevent membrane scaling and fouling when an electrical potential is applied.

  7. Heat and mass transfer involving droplets containing soluble solids

    International Nuclear Information System (INIS)

    Oscarson, J.L.; Briggs, D.E.

    1977-01-01

    The mass loss and temperature history of aqueous drops containing dissolved solids were measured under varying conditions of air velocity and temperature. The data taken from these drops were compared with the computer solution to a diffusional model. Very good agreement was obtained

  8. Extraction and quantitation of furanic compounds dissolved in oils

    International Nuclear Information System (INIS)

    Koreh, O.; Torkos, K.; Mahara, M.B.; Borossay, J.

    1998-01-01

    Furans are amongst the decomposition products which are generated by the degradation of cellulose in paper. Paper insulation is used in capacitors, cables and transformers. These furans dissolve in the impregnating mineral oil, and a method, involving liquid/liquid extraction, solid phase extraction and high performance liquid chromatography, has been developed to determine the concentration of 2-furfural the most stable compound in oil. The degradation of paper is being examined in order to find correlation between the change in dielectric and mechanical properties and the increase in concentration of 2-furfural in the oil. (author)

  9. Development and characterization of nifedipine-amino methacrylate copolymer solid dispersion powders with various adsorbents

    Directory of Open Access Journals (Sweden)

    Yotsanan Weerapol

    2017-07-01

    Full Text Available Solid dispersions of nifedipine (NDP, a poorly water-soluble drug, and amino methacrylate copolymer (AMCP with aid of adsorbent, that is, fumed silica, talcum, calcium carbonate, titanium dioxide, and mesoporous silica from rice husks (SRH, were prepared by solvent method. The physicochemical properties of solid dispersions, compared to their physical mixtures, were determined using powder X-ray diffractometry (PXRD and differential scanning calorimetry (DSC. The surface morphology of the prepared solid dispersions was examined by scanning electron microscopy (SEM. The dissolution of NDP from solid dispersions was compared to NDP powders. The effect of adsorbent type on NDP dissolution was also examined. The dissolution of NDP increased with the ratio of NDP:AMCP:adsorbent of 1:4:1 when compared to the other formulations. As indicated from PXRD patterns, DSC thermograms and SEM images, NDP was molecularly dispersed within polymer carrier or in an amorphous form, which confirmed the better dissolution of solid dispersions. Solid dispersions containing SRH provided the highest NDP dissolution, due to a porous nature of SRH, allowing dissolved drug to fill in the pores and consequently dissolve in the medium. The results suggested that solid dispersions containing adsorbents (SRH in particular demonstrated improved dissolution of poorly water-soluble drug when compared to NDP powder.

  10. Solid solutions of hydrogen in niobium, molybdenum and their alloys

    International Nuclear Information System (INIS)

    Ishikawa, T.T.

    1981-01-01

    The solubility of hydrogen in niobium, molybdenum and niobium-molybdenum alloys with varying atomic fraction of molybdenum from 0.15 to 0.75 was measured on the temperature range of 673 0 K to 1273 0 k for one atmosphere hydrogen pressure. The experimental technique involved the saturation of the solvent metal or alloy with hydrogen, followed by quenching and analysis of the solid solution. The results obtained of hydrogen solubility are consistent with the quasi-regular model for the dilute interstitial solid solutions. The partial molar enthalpy and partial molar entropy in excess of the dissolved hydrogen atoms were calculated from data of solubility versus reciprocal doping temperature. The variation of the relative partial molar enthalpy of hydrogen dissolved in niobium-molybdenum alloys, with the increase of molybdenum content of the alloy was analized. (Author) [pt

  11. Dissolved Carbon Fluxes During the 2017 Mississippi River Flood

    Science.gov (United States)

    Reiman, J. H.; Xu, Y. J.

    2017-12-01

    The Mississippi River drains approximately 3.2 million square kilometres of land and discharges about 680 cubic kilometres of water into the Northern Gulf of Mexico annually, acting as a significant medium for carbon transport from land to the ocean. A few studies have documented annual carbon fluxes in the river, however it is unclear whether floods can create riverine carbon pulses. Such information is critical in understanding the effects that extreme precipitation events may have on carbon transport under the changing climate. We hypothesize that carbon concentration and mass loading will increase in response to an increase in river discharge, creating a carbon pulse, and that the source of carbon varies from river rising to falling due to terrestrial runoff processes. This study investigated dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) loadings during the 2017 Mississippi River early-summer flood. Water samples were taken from the Mississippi River at Baton Rouge on the rising limb, crest, and falling limb of the flood. All samples were analysed for concentrations of DOC, DIC, and their respective isotopic signature (δ13C). Partial pressure of carbon dioxide (pCO2) was also recorded in the field at each sampling trip. Additionally, the water samples were analysed for nutrients, dissolved metals, and suspended solids, and in-situ measurements were made on water temperature, pH, dissolved oxygen, and specific conductance. The preliminary findings suggest that carbon species responded differently to the flood event and that δ13C values were dependent on river flood stage. This single flood event transported a large quantity of carbon, indicating that frequent large pulses of riverine carbon should be expected in the future as climate change progresses.

  12. Krypton retention on solid adsorbents

    International Nuclear Information System (INIS)

    Monson, P.R. Jr.

    1982-01-01

    An experimental laboratory program was conducted to develop economical solid adsorbents for the retention of krypton from a dissolver off-gas stream. The study indicates that a solid adsorbent system is feasible and competitive with other developing systems which utilize fluorocarbon absorption nd cryogenic distillation. This technology may have potential applications not only in nuclear fuel reprocessing plants, but also in nuclear reactors and in environmental monitoring. Of the 13 prospective adsorbents evaluated with respect to adsorption capacity and cost, the commercially available hydrogen mordenite was the most cost-effective material at subambient temperatures (-40 0 to -80 0 C). Silver mordenite has a higher capacity for krypton retention, but is 50 times more expensive than hydrogen mordenite

  13. Performance Evaluation of Anaerobic-Aerobic Treatment for the Wastewater of Potato Processing Industry: A Case Study of a Local Chips Factory

    International Nuclear Information System (INIS)

    Haydar, S.; Nadeem, O.

    2014-01-01

    A study was conducted to assess the performance of anaerobic-aerobic treatment system of a local potato processing industry. The wastewater treatment plant (WWTP) consisted of primary treatment, upflow anaerobic sludge blanket (UASB), activated sludge process (ASP) and secondary clarifier. The study analyzed the physical, chemical and biochemical parameters of the influent (raw sewage) as well as the effluent from each component of the plant. Grab wastewater samples were collected on weekly basis and analyzed for the pH, settleable solids (SS), total suspended solids (TSS), total dissolved solids (TDS), biochemical oxygen demand (BOD), and chemical oxygen demand (COD). Study revealed that mean influent wastewater concentrations of TSS, TDS, SS, BOD and COD were 840 mg/L, 2,396 mg/L and 18.7 mL/L, 2,186 mg/L and 3,679 mg/L, respectively. The mean percentage removal efficiency in UASB for TSS, BOD and COD was found to be 56%, 61 % and 51%, respectively. The mean percentage removal efficiency in activated sludge system for TSS, BOD and COD was found to be 70%, 57% and 48%, respectively. The mean percentage removal efficiency of combined anaerobic-aerobic system for TSS, BOD and COD was found to be 93%, 90% and 80%, respectively. The mean effluent concentrations of TSS, BOD and COD were 52 mg/L, 197 mg/L and 784 mg/L, respectively. The effluent from WWTP satisfied NEQS for TSS (200 mg/L) while NEQS for BOD (80 mg/L) and COD (150 mg/L) were not satisfied. Some operational problems, responsible for inadequate efficiencies of the plant components, were identified and solutions were suggested for these problems. (author)

  14. Complex hydrides as room-temperature solid electrolytes for rechargeable batteries

    DEFF Research Database (Denmark)

    Jongh, P. E. de; Blanchard, D.; Matsuo, M.

    2016-01-01

    A central goal in current battery research is to increase the safety and energy density of Li-ion batteries. Electrolytes nowadays typically consist of lithium salts dissolved in organic solvents. Solid electrolytes could facilitate safer batteries with higher capacities, as they are compatible...... electrolytes, discussing in detail LiBH4, strategies towards for fast room-temperature ionic conductors, alternative compounds, and first explorations of implementation of these electrolytes in all-solid-state batteries....

  15. Development of a method for rapid and simultaneous monitoring of particulate and dissolved radiocesium in water with nonwoven fabric cartridge filters

    International Nuclear Information System (INIS)

    Hideki Tsuji; Tetsuo Yasutaka; Yoshihiko Kondo; Yasukazu Suzuki

    2014-01-01

    A method for the rapid and simultaneous monitoring of particulate and dissolved 137 Cs concentration in water was developed. This method uses pleated polypropylene nonwoven fabric filter to collect particulate radiocesium, and nonwoven fabric impregnated with Prussian blue (PB) to absorb dissolved radiocesium. The fabric was placed into cylindrical plastic cartridges (SS-cartridge and PB-cartridge). Traditional monitoring methods, such as evaporative concentration, often require time for pre-processing. However, this method described requires much less pre-processing time before the detection. Experiments conducted with simulated river water demonstrated that almost all of the suspended solids weight was collected in the SS-cartridge, and that more than 92 % of dissolved 137 Cs was absorbed onto the two PB-cartridges by 2.5 L/min flow rate when the range of the pH was 6-8. This device was applied to monitor Abukuma River water at two locations and the results were compared with those obtained using the filtrating and evaporative concentration method. The suspended solids concentration in river water, calculated by weight gain of the SS-cartridge and by sediment weight after filtration with a 0.45-μm membrane filter, agreed well. The radioactivity of the particulate and dissolved 137 Cs also agreed well in one of the two replications of this method. In addition, the required time for pre-processing was reduced by 60 times that by filtrating and evaporative concentration method. This method can separately collect and concentrate particulate and dissolved radiocesium rapidly and simultaneously in the field. (author)

  16. Metal extraction by solid-liquid agglomerates

    International Nuclear Information System (INIS)

    Fuller, E.F.

    1980-01-01

    Dissolved metal values are extracted from a liquid e.g. uranium from phosphoric acid by contacting the liquid with agglomerates for a time to load the agglomerate with the metal value, separating the loaded agglomerates from the liquid phase and stripping the metal value from the loaded agglomerate. The agglomerate may be made by combining finely divided solid particles with a binding liquid to form a paste, adding a suspending liquid to form a mixture, the suspending liquid and binding liquid being immiscible in each other and the solid particles being insoluble in the suspending liquid and shearing the mixture to form the agglomerate. (author)

  17. Photo-lability of deep ocean dissolved black carbon

    Directory of Open Access Journals (Sweden)

    A. Stubbins

    2012-05-01

    Full Text Available Dissolved black carbon (DBC, defined here as condensed aromatics isolated from seawater via PPL solid phase extraction and quantified as benzenepolycarboxylic acid (BPCA oxidation products, is a significant component of the oceanic dissolved organic carbon (DOC pool. These condensed aromatics are widely distributed in the open ocean and appear to be tens of thousands of years old. As such DBC is regarded as highly refractory. In the current study, the photo-lability of DBC, DOC and coloured dissolved organic matter (CDOM; ultraviolet-visible absorbance were determined over the course of a 28 day irradiation of North Atlantic Deep Water under a solar simulator. During the irradiation DBC fell from 1044 ± 164 nM-C to 55 ± 15 nM-C, a 20-fold decrease in concentration. Dissolved black carbon photo-degradation was more rapid and more extensive than for bulk CDOM and DOC. The concentration of DBC correlated with CDOM absorbance and the quality of DBC indicated by the ratios of different BPCAs correlated with CDOM absorbance spectral slope, suggesting the optical properties of CDOM may provide a proxy for both DBC concentrations and quality in natural waters. Further, the photo-lability of components of the DBC pool increased with their degree of aromatic condensation. These trends indicate that a continuum of compounds of varying photo-lability exists within the marine DOC pool. In this continuum, photo-lability scales with aromatic character, specifically the degree of condensation. Scaling the rapid photo-degradation of DBC to rates of DOC photo-mineralisation for the global ocean leads to an estimated photo-chemical half-life for oceanic DBC of less than 800 years. This is more than an order of magnitude shorter than the apparent age of DBC in the ocean. Consequently, photo-degradation is posited as the primary sink for oceanic DBC and the apparent survival of DBC molecules in the oceans for millennia appears to be facilitated not by their

  18. Method for removing dissolved oxygen from aqueous media

    International Nuclear Information System (INIS)

    Silva, S.G. de.

    1985-01-01

    Water for use in steam generation systems, which is contained in a storage tank, is deoxygenated for use in the system by adding hydrogen to a stream of the water and intimately mixing the same, pressurizing the stream to a pressure of 60 to 150 psig, and contacting the pressurized stream with a catalyst bed of palladium or platinum dispersed on a solid carrier. The hydrogen reacts with the dissolved oxygen in the presence of the catalyst at ambient temperatures, to produce a deoxygenated stream of water containing less than 10 ppb of oxygen. The deoxygenated water can be returned to the storage tank or supplied directly to the steam generation system. (author)

  19. Heat impact caused molecular level changes in solid and dissolved soil organic matter

    Science.gov (United States)

    Hofmann, Diana; Steffen, Bernhard; Eckhardt, Kai-Uwe; Leinweber, Peter

    2015-04-01

    The ubiquitous abundance of pyrolysed, highly aromatic organic matter, called "Black Carbon" (BC), in all environmental compartments became increasingly important in different fields of research beyond intensive investigated atmospheric aerosol due to climatic relevance. Its predominant high resistance to abiotic and biotic degradation resulted in turnover times from less than a century to several millennia. This recalcitrance led to the enrichment of BC in soils, accounting for 1-6% (European forest soils) to 60% (Chernozems) of total soil organic matter (SOM). Hence, soil BC acts an important sink in the global carbon cycle. In contrast, consequences for the nitrogen cycle up to date are rather inconsistently discussed. Soil related dissolved organic matter (DOM) is a major controlling factor in soil formation, an important pathway of organic matter transport and one of the largest active carbon reservoirs on earth, if considering oceans and other bodies of water. The aim of this study was to evaluate the effects of artificially simulated wildfire by thermal treatment on the molecular composition of water extractable soil organic matter (DOM). Soils from two outdoor lysimeters with different management history were investigated. Soil samples, non-heated and heated up to 350°C were analyzed for elemental composition (carbon, nitrogen and sulfur) and for bulk molecular composition by Pyrolysis-Field Ionization Mass Spectrometry (Py-FIMS) and synchrotron-based X-ray Absorption Near-Edge Spectroscopy (XANES) at the C- and N K-edges. DOM-samples obtained by hot water extraction, desalting and concentration by solid phase extraction were subsequently analyzed by flow injection analysis in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FTICR-MS), equipped with an ESI source and a 7 T supra-conducting magnet (LTQ-FT Ultra, ThermoFisher Scientific). This technique is the key technique for the analysis of complex samples due to its outstanding mass

  20. Accuracy of different sensors for the estimation of pollutant concentrations (total suspended solids, total and dissolved chemical oxygen demand) in wastewater and stormwater.

    Science.gov (United States)

    Lepot, Mathieu; Aubin, Jean-Baptiste; Bertrand-Krajewski, Jean-Luc

    2013-01-01

    Many field investigations have used continuous sensors (turbidimeters and/or ultraviolet (UV)-visible spectrophotometers) to estimate with a short time step pollutant concentrations in sewer systems. Few, if any, publications compare the performance of various sensors for the same set of samples. Different surrogate sensors (turbidity sensors, UV-visible spectrophotometer, pH meter, conductivity meter and microwave sensor) were tested to link concentrations of total suspended solids (TSS), total and dissolved chemical oxygen demand (COD), and sensors' outputs. In the combined sewer at the inlet of a wastewater treatment plant, 94 samples were collected during dry weather, 44 samples were collected during wet weather, and 165 samples were collected under both dry and wet weather conditions. From these samples, triplicate standard laboratory analyses were performed and corresponding sensors outputs were recorded. Two outlier detection methods were developed, based, respectively, on the Mahalanobis and Euclidean distances. Several hundred regression models were tested, and the best ones (according to the root mean square error criterion) are presented in order of decreasing performance. No sensor appears as the best one for all three investigated pollutants.

  1. Hydrogeochemical characteristics and sources of salinity of the springs near Wenquanzhen in the eastern Sichuan Basin, China

    Science.gov (United States)

    Guo, Juan; Zhou, Xun; Wang, Lidong; Zhang, Yuqi; Shen, Xiaowei; Zhou, Haiyan; Ye, Shen; Fang, Bin

    2017-12-01

    Natural springs have the potential to provide important information on hydrogeochemical processes within aquifers. This study used traditional and classic technical methods and procedures to determine the characteristics and evolution of springs to gain further knowledge on the differences between hot saline springs and cold fresh springs. In a short river segment near Wenquanzhen in the eastern Sichuan Basin, southwest China, several natural springs coexist with total dissolved solids (TDS) ranging from less than 1 to 15 g/L and temperatures from 15 to 40 °C. The springs emanate from the outcropping Lower and Middle Triassic carbonates in the river valley cutting the core of an anticline. The cold springs are of Cl·HCO3-Na·Ca and Cl·SO4-Na types, and the hot saline springs are mainly of Cl-Na type. The chemistry of the springs has undergone some changes with time. The stable hydrogen and oxygen isotopes indicate that the spring waters are of a meteoric origin. The salinity of the springs originates from dissolution of minerals, including halite, gypsum, calcite and dolomite. The evolution of the springs involves the following mechanisms: the groundwater receives recharge from infiltration of precipitation, then undergoes deep circulation in the core of the anticline (incongruent dissolution of the salt-bearing strata occurs), and emerges in the river valley in the form of hot springs with high TDS. Groundwater also undergoes shallow circulation in the northern and southern flanks of the anticline and appears in the river valley in the form of cold springs with low TDS.

  2. Groundwater quality assessment for domestic and agriculture purposes in Puducherry region

    Science.gov (United States)

    Sridharan, M.; Senthil Nathan, D.

    2017-11-01

    Totally about 174 groundwater samples have been collected during pre-monsoon and post-monsoon season to study the suitability for domestic and agriculture purposes along the coastal aquifers of Puducherry region. Parameters such as pH, total dissolved solids (TDS), electrical conductivity (EC), sodium (Na), potassium (K), calcium (Ca), magnesium (Mg), bicarbonate (HCO3), chloride (Cl) and sulfate (SO4) were analyzed to assess the suitability of groundwater for domestic purposes. Sodium adsorption ratio (SAR), magnesium adsorption ratio (MAR), residual sodium bicarbonate (RSC), soluble sodium percentage (Na%), permeability index (PI) and chlorinity index were assessed for irrigation purposes. The higher concentration of ions such as Na, Ca, Cl and So4 indicates seawater intrusion, mineral dissolution, intense agricultural practices and improper sewage disposal. The level of EC, TDS and hardness in the water samples indicates that maximum of them are suitable for drinking and domestic purposes. The parameters such as SAR, Na%, PI, MAR and Chlorinity index indicates that majority of water sample are very good to moderately suitable for agriculture. In pre-monsoon, RSC of about 5.7% of samples was higher which when used for a longer time alter the soil properties and reduce crop production. Wilcox diagram suggests that water samples are of medium saline to low sodium type indicating that groundwater is suitable for irrigation. Temporal variation of groundwater quality shows significant increasing trend in EC, TDS and ions like Mg, K and Cl in the last decade, mainly due to anthropogenic activities with little geogenic impact in the quality of groundwater.

  3. Estimation of salt loads for the Dolores River in the Paradox Valley, Colorado, 1980–2015

    Science.gov (United States)

    Mast, M. Alisa

    2017-07-13

    Regression models that relate total dissolved solids (TDS) concentrations to specific conductance were used to estimate salt loads for two sites on the Dolores River in the Paradox Valley in western Colorado. The salt-load estimates will be used by the Bureau of Reclamation to evaluate salt loading to the river coming from the Paradox Valley and the effect of the Paradox Valley Unit (PVU), a project designed to reduce the salinity of the Colorado River. A second-order polynomial provided the best fit of the discrete data for both sites on the river. The largest bias occurred in samples with elevated sulfate concentrations (greater than 500 milligrams per liter), which were associated with short-duration runoff events in late summer and fall. Comparison of regression models from a period of time before operation began at the PVU and three periods after operation began suggests the relation between TDS and specific conductance has not changed over time. Net salt gain through the Paradox Valley was estimated as the TDS load at the downstream site minus the load at the upstream site. The mean annual salt gain was 137,900 tons per year prior to operation of the PVU (1980–1993) and 43,300 tons per year after the PVU began operation (1997–2015). The difference in annual salt gain in the river between the pre-PVU and post-PVU periods was 94,600 tons per year, which represents a nearly 70 percent reduction in salt loading to the river.

  4. Chemistry and physics at liquid alkali metal/solid metal interfaces

    International Nuclear Information System (INIS)

    Barker, M.G.

    1977-01-01

    This paper describes the chemistry of processes which take place at the interface between liquid alkali metals and solid metal surfaces. A brief review of wetting data for liquid sodium is given and the significance of critical wetting temperatures discussed on the basis of an oxide-film reduction mechanism. The reactions of metal oxides with liquid metals are outlined and a correlation with wetting data established. The transfer of dissolved species from the liquid metal across the interface to form solid phases on the solid metal surface is well recognised. The principal features of such processes are described and a simple thermodynamic explanation is outlined. The reverse process, the removal of solid material into solution, is also considered. (author)

  5. Slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures

    Science.gov (United States)

    Aines, Roger D.; Bourcier, William L.; Viani, Brian

    2013-01-29

    A slurried solid media for simultaneous water purification and carbon dioxide removal from gas mixtures includes the steps of dissolving the gas mixture and carbon dioxide in water providing a gas, carbon dioxide, water mixture; adding a porous solid media to the gas, carbon dioxide, water mixture forming a slurry of gas, carbon dioxide, water, and porous solid media; heating the slurry of gas, carbon dioxide, water, and porous solid media producing steam; and cooling the steam to produce purified water and carbon dioxide.

  6. Influence of Calcium on Microbial Reduction of Solid Phase Uranium (VI)

    International Nuclear Information System (INIS)

    Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M.; Wang, Zheming

    2007-01-01

    The effect of calcium on microbial reduction of a solid phase U(VI), sodium boltwoodite (NaUO2SiO3OH · 1.5H2O), was evaluated in a culture of a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. Batch experiments were performed in a non-growth bicarbonate medium with lactate as electron donor at pH 7 buffered with PIPES. Calcium increased both the rate and extent of Na-boltwoodite dissolution by increasing its solubility through the formation of a ternary aqueous calcium-uranyl-carbonate species. The ternary species, however, decreased the rates of microbial reduction of aqueous U(VI). Laser-induced fluorescence spectroscopy (LIFS) and transmission electron microscopy (TEM) revealed that microbial reduction of solid phase U(VI) is a sequentially coupled process of Na-boltwoodite dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) to U(IV) that accumulated on bacterial surfaces/periplasm. The overall rates of microbial reduction of solid phase U(VI) can be described by the coupled rates of dissolution and microbial reduction that were both influenced by calcium. The results demonstrated that dissolved U(VI) concentration during microbial reduction was a complex function of solid phase U(VI) dissolution kinetics, aqueous U(VI) speciation, and microbial activity

  7. Ingestive behavior of crossbred Santa Inês sheep fed water with different salinity levels

    Directory of Open Access Journals (Sweden)

    José Helder Andrade de Moura

    2016-04-01

    Full Text Available The objective of the present study was to evaluate the effect of four water salinity levels on the ingestive behavior of non-castrated crossbred Santa Inês sheep. Thirty-two non-castrated crossbred Santa Inês sheep in feedlot, at seven months of age and initial average weight of 21.76±1.25 kg, were used in the experiment. The experimental design was completely randomized, with four treatments and eight replicates. Four concentrations of salts in the water fed to the animals were evaluated: low (640 mg/l; medium (3,188 mg/l; high (5,740 mg/l and very high (8,326 mg/l levels of total dissolved solids (TDS. For the ingestive behaviors, the animals were observed every ten minutes, for 24 hours, to determine the time spent feeding, ruminating and idle. Also, cud chewing and the average number of defecations and urinations and the frequency of water ingestion were determined. The time spent feeding, ruminating and idle were not changed by the salinity levels in the water. Dry matter intake, neutral detergent fiber intake, total chewing time, total cud chews per day, number of daily meals, average duration of each meal and number of defecations per day did not change either. However, feeding and rumination efficiency in grams of DM/h, water intake and number of urinations were linearly affected, whereas the variables rumination efficiency in grams of NDF/h, grams of dry matter per cud, grams of neutral detergent fiber per cud, number of cuds, number of chews per cud and chewing time per cud presented quadratic effect. The different levels of total dissolved solids (640; 3,188; 5,740; and 8.326 mg/l in the water fed to the sheep did not cause alterations in their ingestive behavior. In conclusion, water with up to 8,326 mg TDS/l can be an alternative strategic and seasonal method to water crossbred Santa Ines sheep.

  8. Major ion toxicity in effluents: A review with permitting recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Goodfellow, W.L.; Ausley, L.W.; Burton, D.T.; Denton, D.L.; Dorn, P.B.; Grothe, D.R.; Heber, M.A.; Norberg-King, T.J.; Rodgers, J.H. Jr.

    2000-01-01

    Effluent toxicity testing methods have been well defined, but for the most part, these methods do not attempt to segregate the effects of active ionic concentrations and ion imbalances upon test and species performances. The role of various total dissolved solids in effluents on regulatory compliance has emerged during the last few years and has caused confusion in technical assessment and in permitting and compliance issues. This paper assesses the issue of ionic strength and ion imbalance, provides a brief summary of applicable data, presents several case studies demonstrating successful tools to address toxicity resulting from salinity and ion imbalance, and provides recommendations for regulatory and compliance options to manage discharges with salinity/ion imbalance issues. Effluent toxicity resulting from inorganic ion imbalance and the ion concentration of the effluent is pervasive in permitted discharge from many industrial process and municipal discharges where process streams are concentrated, adjusted, or modified. This paper discusses procedures that use weight-of-evidence approaches to identify ion imbalance toxicity, including direct measurement, predictive toxicity models for freshwater, exchange resins, mock effluents, and ion imbalance toxicity with tolerant/susceptible test species. Cost-effective waste treatment control options for a facility whose effluent is toxic because of total dissolved solids (TDS) or because of specific ion(s) are scarce at best. Depending on the discharge situation, TDS toxicity may not be viewed with the same level of concern as other, more traditional, toxicants. These discharge situations often do not require the conservative safety factors required by other toxicants. Selection of the alternative regulatory solutions discussed in this paper may be beneficial, especially because they do not require potentially expensive or high-energy-using treatment options that may be ineffective control options. The information

  9. Loading Concentrations of Pollutant in Alur Ilmu at UKM Bangi Campus: Event Mean Concentration (EMC) Approach

    International Nuclear Information System (INIS)

    Haslinur Md Din; Mohd Ekhwan Toriman; Mazlin Mokhtar

    2012-01-01

    Water pollutant loadings and river discharge are among the basic data used in determining the dynamicity of a river. The input of water quality and river discharge are usually available through the collection of water samples in the field or at the observatory, and are done automatically using the data logger sensor. This paper discusses the concentrations pollutant load water quality and its relationship with discharge (m 3 / s) using Event Mean Concentration (EMC) in the Alur Ilmu, UKM source from the Diptrokarp forest at Hutan Simpan Bangi (2 degree 55' 1 4.72 N 101 degree 46' 5 7.37 E). Alur Ilmu is a 1.79 km long stretching across the main campus of National University of Malaysia before flowing into the Langat River. Water quality was measured using automatic gauging and continuous water quality stations which are installed at downstream of Alur Ilmu (2 degree 55 ' 40.33 N 100 degree 46 ' 47.15 E) and involves in measuring the parameters of total dissolved solid (TDS) and dissolved oxygen (DO). Laboratory analysis carried out for chemical parameters such as ammonia nitrogen (NH 3 -N), total suspended solid (TSS), biochemical oxygen demand (BOD) and chemical oxygen demand (COD) in accordance with guidelines American Public Health Association (APHA, 1995). The normal discharge rate recorded at Alur Ilmu is 0.33 m 3 / s and the wet discharge is 13.04 m 3 / s.The total estimated pollutant loadings according to EMC as DO (18.51±3.01 mg/ L), TDS (794.92±186.72 mg/ L), BOD (11.57±0.28 mg/ L), COD (201.29±1.55 mg/ l), TSS (470.03±27.63 mg/ L) and Ammonia Nitrogen (2.52±0.0 mg/ L). Correlation test showed a direct relationship between rainfall and flow (Q) and several pollutant loadings with R 2 =1 at a significance level of 0.05. The study also classified some of the pollutants concentrations in class III and IV as determined by the Water Quality Index (WQI). (author)

  10. Plan for radionuclide tracer studies of the residence time distribution in the Wilsonville dissolver and preheater

    International Nuclear Information System (INIS)

    Jolley, R.L.; Begovich, J.M.; Brashear, H.R.

    1983-12-01

    Stimulus-response measurements using radiotracers to measure residence time distribution (RTD) and hydrodynamic parameters for the preheaters and dissolvers at the Ft. Lewis Solvent Refined Coal (SRC) and the Exxon Donor Solvent (EDS) coal conversion pilot plants are reviewed. A plan is also presented for a series of radioactive tracer studies proposed for the Advanced Coal Liquefaction Facility at Wilsonville, Alabama, to measure the RTD for the preheater and dissolvers in the SRC-I mode. The tracer for the gas phase will be 133 Xe, and 198 Au (on carbonized resin or as an aqueous colloidal suspension) will be used as the slurry tracer. Four experimental phases are recommended for the RTD tracer studies: (1) preheater; (2) dissolver with 100% takeoff; (3) dissolver with 100% takeoff and solids withdrawal; and (4) dissolver with 50% takeoff. Eighteen gas-tracer and 22 liquid-tracer injections are projected to accomplish the four experimental phases. Two to four tracer injections are projected for preliminary tests to ensure the capability of safe injection of the radiotracers and the collection of statistically significant data. A complete projected cost and time schedule is provided, including procurement of necessary components, preparation of the radiotracers, assembly and testing of tracer injection apparatus and detection systems, onsite work and tracer injections, laboratory experimentation, data analysis, and report writing

  11. Influence of colloidal dissolved organic carbon (DOC) on the sorption of plutonium on natural sediments

    International Nuclear Information System (INIS)

    Nelson, D.M.; Karttunen, J.O.; Mehlhoff, P.

    1982-01-01

    It now appears possible to formulate a practical model to describe the absorption of Pu(IV) by suspended solids. In such a model the constants describing the association of plutonium with both soluble organics and solid adsorbers must be known, as well as any variation in these constants due to solution properties such as pH and ionic strength. If the complexing ability of dissolved organic carbon is sufficiently constant, such a model could describe plutonium behavior in a wide variety of surface and ground waters. Observations to date indicate that the variation in K/sub D/ (K/sub D/ = concentration of Pu(IV) in suspended solids divided by the concentration of Pu(IV) in the water) among water bodies is due primarily to differences in water chemistry and that differences in the character of the absorbing solid are less important. The mathematical relationship and parameter values presented in this report adequately describe the adsorption of Pu(IV) on one-specific sediment

  12. Dissolving method for nuclear fuel oxide

    International Nuclear Information System (INIS)

    Tomiyasu, Hiroshi; Kataoka, Makoto; Asano, Yuichiro; Hasegawa, Shin-ichi; Takashima, Yoichi; Ikeda, Yasuhisa.

    1996-01-01

    In a method of dissolving oxides of nuclear fuels in an aqueous acid solution, the oxides of the nuclear fuels are dissolved in a state where an oxidizing agent other than the acid is present together in the aqueous acid solution. If chlorate ions (ClO 3 - ) are present together in the aqueous acid solution, the chlorate ions act as a strong oxidizing agent and dissolve nuclear fuels such as UO 2 by oxidation. In addition, a Ce compound which generates Ce(IV) by oxidation is added to the aqueous acid solution, and an ozone (O 3 ) gas is blown thereto to dissolve the oxides of nuclear fuels. Further, the oxides of nuclear fuels are oxidized in a state where ClO 2 is present together in the aqueous acid solution to dissolve the oxides of nuclear fuels. Since oxides of the nuclear fuels are dissolved in a state where the oxidizing agent is present together as described above, the oxides of nuclear fuels can be dissolved even at a room temperature, thereby enabling to use a material such as polytetrafluoroethylene and to dissolve the oxides of nuclear fuels at a reduced cost for dissolution. (T.M.)

  13. Economic competitiveness of seawater desalinated by nuclear and fossil energy

    International Nuclear Information System (INIS)

    Tian Li; Wang Yongqing; Guo Jilin; Liu Wei

    2001-01-01

    The levelized discounted production water cost method and the new desalination economic evaluation program (DEEP1.1) were used to compare the economics of desalination using nuclear or fossil energy. The results indicate that nuclear desalination is more economic than fossil desalination with reverse osmosis (RO), multi-effect distillation (MED) and multi-stage flash (MSF). The desalination water cost varies depending on the desalination technology and the water plant size from 0.52-1.98 USD·m -3 with the lowest water price by RO and the highest by MSF. The sensitivity factors for the economic competitiveness increases in order of the discounted rate, desalination plant scale, fossil fuel price, specific power plant investment, seawater temperature and total dissolve solid (TDS). The highest water cost is about 22.6% more than the base case

  14. Determining shallow aquifer vulnerability by the DRASTIC model and hydrochemistry in granitic terrain, southern India

    Science.gov (United States)

    Mondal, N. C.; Adike, S.; Singh, V. S.; Ahmed, S.; Jayakumar, K. V.

    2017-08-01

    Shallow aquifer vulnerability has been assessed using GIS-based DRASTIC model by incorporating the major geological and hydrogeological factors that affect and control the groundwater contamination in a granitic terrain. It provides a relative indication of aquifer vulnerability to the contamination. Further, it has been cross-verified with hydrochemical signatures such as total dissolved solids (TDS), Cl-, HCO3-, SO4^{2-} and Cl-/HCO3- molar ratios. The results show four zones of aquifer vulnerability (i.e., negligible, low, moderate and high) based on the variation of DRASTIC Vulnerability Index (DVI) between 39 and 132. About 57% area in the central part is found moderately and highly contaminated due to the 80 functional tannery disposals and is more prone to groundwater aquifer vulnerability. The high range values of TDS (2304-39,100 mg/l); Na+(239- 6,046 mg/l) and Cl- (532-13,652 mg/l) are well correlated with the observed high vulnerable zones. The values of Cl-/HCO3- (molar ratios: 1.4-106.8) in the high vulnerable zone obviously indicate deterioration of the aquifer due to contamination. Further cumulative probability distributions of these parameters indicate several threshold values which are able to demarcate the diverse vulnerability zones in granitic terrain.

  15. Hydrochemistry of surface water and groundwater in the shale bedrock, Cross River Basin and Niger Delta Region, Nigeria

    Science.gov (United States)

    Nganje, T. N.; Hursthouse, A. S.; Edet, Aniekan; Stirling, D.; Adamu, C. I.

    2017-05-01

    Water chemistry in the shale bedrock of the Cretaceous-Tertiary of the Cross River and Niger Delta hydrological basins has been investigated using major ions. To carry out a characterization of the water bearing units, 30 and 16 representatives surface and groundwater samples were collected. The evolution of the water is characterized by enhanced content of sodium, calcium and sulphate as a result of leaching of shale rock. The spatial changes in groundwater quality of the area shows an anomalous concentrations of ions in the central parts, while lower values characterize the eastern part of the basin covering Ogoja, Ikom and Odukpani areas. The values of total dissolved solids (TDS) and ions increases down gradient in the direction of groundwater flow. The dissolution of halite and gypsum explains part of the contained Na+, Ca2+, Cl- and SO4 2-, but other processes such as ion exchange, silicate weathering and pyrite oxidation also contribute to water composition. The assessment with contamination indicators such as TDS, hardness, chloride, nitrate and sulphate indicates that the water in area is suitable for human consumption in some locations. Modelling using MINTEQA2 program shows that the water from all the shale water bearing units are under saturated with respect to gypsum.

  16. Hydrochemistry and Isotope Hydrology for Groundwater Sustainability of the Coastal Multilayered Aquifer System (Zhanjiang, China

    Directory of Open Access Journals (Sweden)

    Pengpeng Zhou

    2017-01-01

    Full Text Available Groundwater sustainability has become a critical issue for Zhanjiang (China because of serious groundwater level drawdown induced by overexploitation of its coastal multilayered aquifer system. It is necessary to understand the origins, material sources, hydrochemical processes, and dynamics of the coastal groundwater in Zhanjiang to support its sustainable management. To this end, an integrated analysis of hydrochemical and isotopic data of 95 groundwater samples was conducted. Hydrochemical analysis shows that coastal groundwater is fresh; however, relatively high levels of Cl−, Mg2+, and total dissolved solid (TDS imply slight seawater mixing with coastal unconfined groundwater. Stable isotopes (δ18O and δ2H values reveal the recharge sources of groundwater in the multilayered aquifer system. The unconfined groundwater originates from local modern precipitation; the confined groundwater in mainland originates from modern precipitation in northwestern mountain area, and the confined groundwater in Donghai and Leizhou is sourced from rainfall recharge during an older period with a colder climate. Ionic relations demonstrate that silicate weathering, carbonate dissolutions, and cation exchange are the primary processes controlling the groundwater chemical composition. Declining trends of groundwater level and increasing trends of TDS of the confined groundwater in islands reveal the landward extending tendency of the freshwater-seawater mixing zone.

  17. Geochemical Characteristics of Shallow Groundwater in Jiaoshiba Shale Gas Production Area: Implications for Environmental Concerns

    Directory of Open Access Journals (Sweden)

    Yiman Li

    2016-11-01

    Full Text Available The geochemical characteristics of shallow groundwater are essential for environmental impact studies in the shale gas production area. Jiaoshiba in the Sichuan basin is the first commercial-scale shale gas production area in China. This paper studied the geochemical and isotopic characteristics of the shallow groundwater of the area for future environmental concerns. Results show that the average pH of the shallow groundwater is 7.5 and the total dissolved solids (TDS vary from 150 mg/L to 350 mg/L. The main water types are HCO3-Ca and HCO3-Ca·Mg due to the carbonates dissolution equilibrium in karst aquifers. The concentrations of major ions and typical toxic elements including Mn, Cr, Cu, Zn, Ba, and Pb are below the drinking water standard of China and are safe for use as drinking water. The high nitrate content is inferred to be caused by agricultural pollution. The shallow groundwater is recharged by local precipitation and flows in the vertical circulation zone. Evidences from low TDS, water isotopes, and high 3H and 14C indicate that the circulation rate of shallow groundwater is rapid, and the lateral groundwater has strong renewability. Once groundwater pollution from deep shale gas production occurs, it will be recovered soon by enough precipitation.

  18. The Slow Moving Threat of Groundwater Salinization: Mechanisms, Costs, and Adaptation Strategies

    Science.gov (United States)

    Pauloo, R.; Guo, Z.; Fogg, G. E.

    2016-12-01

    Population growth, the Green Revolution, and climate uncertainties have accelerated overdraft in groundwater basins worldwide, which in some regions is converting these basins into closed hydrologic systems, where the dominant exits for water are evapotranspiration and pumping. Irrigated agricultural basins are particularly at risk to groundwater salinization, as naturally occurring (i.e., sodium, potassium, chloride) and anthropogenic (i.e., nitrate fertilizers) salts leach back into the water table through the root zone, while a large portion of pumped groundwater leaves the system as it is evapotranspired by crops. Decreasing water quality associated with increases in Total Dissolved Solids (TDS) has been documented in aquifers across the United States in the past half century. This study suggests that the increase in TDS in aquifers can be partially explained by closed basin hydrogeology and rock-water interactions leading to groundwater salinization. This study will present: (1) a report on historical water quality in the Tulare basin, (2) a forward simulation of salt balance in Tulare Basin based on the Department of Water Resources numerical model C2VSim, and a simple mixing model, (3) an economic analysis forecasting the cost of desalination under varying degrees of managed groundwater recharge where the basin is gradually filled, avoiding hydraulic closure.

  19. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    Energy Technology Data Exchange (ETDEWEB)

    David B. Burnett; Mustafa Siddiqui

    2006-12-29

    for the removal of hydrocarbons from produced water. The results of these experiments show that hydrocarbons from produced water can be reduced from 200 ppm to below 29 ppm level. Experiments were also done to remove the dissolved solids (salts) from the pretreated produced water using desalination membranes. Produced water with up to 45,000 ppm total dissolved solids (TDS) can be treated to agricultural water quality water standards having less than 500 ppm TDS. The Report also discusses the results of field testing of various process trains to measure performance of the desalination process. Economic analysis based on field testing, including capital and operational costs, was done to predict the water treatment costs. Cost of treating produced water containing 15,000 ppm total dissolved solids and 200 ppm hydrocarbons to obtain agricultural water quality with less than 200 ppm TDS and 2 ppm hydrocarbons range between $0.5-1.5 /bbl. The contribution of fresh water resource from produced water will contribute enormously to the sustainable development of the communities where oil and gas is produced and fresh water is a scarce resource. This water can be used for many beneficial purposes such as agriculture, horticulture, rangeland and ecological restorations, and other environmental and industrial application.

  20. Dissolved inorganic nutrients and chlorophyll on the narrow continental shelf of Eastern Brazil

    Directory of Open Access Journals (Sweden)

    Gilmara Fernandes Eça

    2014-03-01

    Full Text Available The eastern Brazilian continental shelf is narrow and subject to the influence of a western boundary current system, presenting lower biological productivity than other regions. In this study, the distribution of water masses, dissolved inorganic nutrients, chlorophyll-a and total suspended solids (TSS on the inner shelf (< 35 m depth, between Itacaré and Canavieiras, eastern Brazil, is presented. Sampling surveys were carried out in March and August 2006 and March 2007. Tropical water (TW prevailed during March 2006 and August 2007 with the lower salinity waters (< 36 found in most samples taken in March 2007, reflecting the influence of continental outflow and rain in coastal waters. Low concentrations of dissolved inorganic nutrients and Chl-a found were typical of TW and results suggested that the inner shelf waters were depleted in dissolved inorganic nitrogen in August 2006 and March 2007, and in phosphate in March 2006, potentially affecting phytoplankton growth. Stratification of the water column was observed due to differences in dissolved nutrient concentrations, chlorophyll-a and TSS when comparing surface and bottom samples, possibly the result of a colder water intrusion and mixing on the bottom shelf and a deep chlorophyll maximum and/or sediment resuspension effect. Despite this stratification, oceanographic processes such as lateral mixing driven by the Brazil Current as well as a northward alongshore drift driven by winds and tides transporting Coastal Water can lead to an enhanced mixing of these waters promoting some heterogeneity in this oligotrophic environment.

  1. Uranium, radium and 40K isotopes in bottled mineral waters from Outer Carpathians, Poland

    International Nuclear Information System (INIS)

    Kozlowska, B.; Walencik, A.; Dorda, J.; Przylibski, T.A.

    2007-01-01

    Radioactivity content in commercially bottled mineral waters from Outer Carpathians was investigated on the basis of 28 samples. Activity concentration results for radium isotopes 226,228 Ra, uranium isotopes 234,238 U and isotopic ratios 234 U/ 238 U were determined. The correlations between investigated isotopes and calculated potassium 40 K ions dissolved in water were carried out. The results show a correlation between TDS (total dissolved solids) values and dissolved radionuclides. High correlation coefficients were observed between total radium content and 40 K. The isotopic ratio of 234 U/ 238 U varies in the range from 1.6 to 7 in all investigated waters which means that there is no radioactive equilibrium between the parent nuclide 238 U and its daughter 234 U. The effective radiation dose coming from studied radium and uranium radionuclides consumed with mineral water from the Outer Carpathians obtained by a statistical Pole is equal to 4.3μSv/year (58 l/year water consumption) and do not exceed the permissible limit equal to 100μSv/year. Assuming 0.5 l consumption per day, i.e. 182.5 l/year, the effective dose is equal to 13.4μSv/year, what is still below the unit

  2. Heavy metals content in acid mine drainage at abandoned and active mining area

    Science.gov (United States)

    Hatar, Hazirah; Rahim, Sahibin Abd; Razi, Wan Mohd; Sahrani, Fathul Karim

    2013-11-01

    This study was conducted at former Barite Mine, Tasik Chini and former iron mine Sungai Lembing in Pahang, and also active gold mine at Lubuk Mandi, Terengganu. This study was conducted to determine heavy metals content in acid mine drainage (AMD) at the study areas. Fourteen water sampling stations within the study area were chosen for this purpose. In situ water characteristic determinations were carried out for pH, electrical conductivity (EC), redox potential (ORP) and total dissolved solid (TDS) using multi parameter YSI 556. Water samples were collected and analysed in the laboratory for sulfate, total acidity and heavy metals which follow the standard methods of APHA (1999) and HACH (2003). Heavy metals in the water samples were determined directly using Inductive Coupled Plasma Mass Spectrometry (ICP-MS). Data obtained showed a highly acidic mean of pH values with pH ranged from 2.6 ± 0.3 to 3.2 ± 0.2. Mean of electrical conductivity ranged from 0.57 ± 0.25 to 1.01 ± 0.70 mS/cm. Redox potential mean ranged from 487.40 ± 13.68 to 579.9 ± 80.46 mV. Mean of total dissolved solids (TDS) in AMD ranged from 306.50 ± 125.16 to 608.14 ± 411.64 mg/L. Mean of sulfate concentration in AMD ranged from 32.33 ± 1.41 to 207.08 ± 85.06 mg/L, whereas the mean of total acidity ranged from 69.17 ± 5.89 to 205.12 ± 170.83 mgCaCO3/L. Heavy metals content in AMD is dominated by Fe, Cu, Mn and Zn with mean concentrations range from 2.16 ± 1.61 to 36.31 ± 41.02 mg/L, 0.17 ± 0.13 to 11.06 ± 2.85 mg/L, 1.12 ± 0.65 to 7.17 ± 6.05 mg/L and 0.62 ± 0.21 to 6.56 ± 4.11 mg/L, respectively. Mean concentrations of Ni, Co, As, Cd and Pb were less than 0.21, 0.51, 0.24, 0.05 and 0.45 mg/L, respectively. Significant correlation occurred between Fe and Mn, Cu, Zn, Co and Cd. Water pH correlated negatively with all the heavy metals, whereas total acidity, sulfate, total dissolved solid, and redox potential correlated positively. The concentration of heavy metals in the AMD

  3. Changes in the Treatment of Some Physico-Chemical Properties of Cassava Mill Effluents Using Saccharomyces cerevisiae.

    Science.gov (United States)

    Izah, Sylvester Chibueze; Bassey, Sunday Etim; Ohimain, Elijah Ige

    2017-10-16

    Cassava is majorly processed into gari by smallholders in Southern Nigeria. During processing, large volume of effluents are produced in the pressing stage of cassava tuber processing. The cassava mill effluents are discharged into the soil directly and it drain into nearby pits, surface water, and canals without treatment. Cassava mill effluents is known to alter the receiving soil and water characteristics and affects the biota in such environments, such as fishes (water), domestic animals, and vegetation (soil). This study investigated the potential of Saccharomyces cerevisiae to be used for the treatment of some physicochemical properties of cassava mill effluents. S. cerevisiae was isolated from palm wine and identified based on conventional microbiological techniques, viz. morphological, cultural, and physiological/biochemical characteristics. The S. cerevisiae was inoculated into sterile cassava mill effluents and incubated for 15 days. Triplicate samples were withdrawn from the setup after the fifth day of treatment. Portable equipment was used to analyze the in-situ parameters, viz. total dissolved solids (TDS), pH, dissolved oxygen (DO), conductivity, salinity, and turbidity. Anions (nitrate, sulphate, and phosphate) and chemical oxygen demand (COD) were analyzed using spectrophotometric and open reflux methods respectively. Results showed a decline of 37.62%, 22.96%, 29.63%, 20.49%, 21.44%, 1.70%, 53.48%, 68.00%, 100%, and 74.48% in pH, conductivity, DO, TDS, salinity, sulphate, nitrate, phosphate, and COD levels respectively, and elevation of 17.17% by turbidity. The study showed that S. cerevisiae could be used for the treatment of cassava mill effluents prior to being discharged into the environment so as to reduce the pollution or contamination and toxicity levels.

  4. Rotenone persistence model for montane streams

    Science.gov (United States)

    Brown, Peter J.; Zale, Alexander V.

    2012-01-01

    The efficient and effective use of rotenone is hindered by its unknown persistence in streams. Environmental conditions degrade rotenone, but current label instructions suggest fortifying the chemical along a stream based on linear distance or travel time rather than environmental conditions. Our objective was to develop models that use measurements of environmental conditions to predict rotenone persistence in streams. Detailed measurements of ultraviolet radiation, water temperature, dissolved oxygen, total dissolved solids (TDS), conductivity, pH, oxidation–reduction potential (ORP), substrate composition, amount of organic matter, channel slope, and travel time were made along stream segments located between rotenone treatment stations and cages containing bioassay fish in six streams. The amount of fine organic matter, biofilm, sand, gravel, cobble, rubble, small boulders, slope, pH, TDS, ORP, light reaching the stream, energy dissipated, discharge, and cumulative travel time were each significantly correlated with fish death. By using logistic regression, measurements of environmental conditions were paired with the responses of bioassay fish to develop a model that predicted the persistence of rotenone toxicity in streams. This model was validated with data from two additional stream treatment reaches. Rotenone persistence was predicted by a model that used travel time, rubble, and ORP. When this model predicts a probability of less than 0.95, those who apply rotenone can expect incomplete eradication and should plan on fortifying rotenone concentrations. The significance of travel time has been previously identified and is currently used to predict rotenone persistence. However, rubble substrate, which may be associated with the degradation of rotenone by adsorption and volatilization in turbulent environments, was not previously considered.

  5. Drought-induced recharge promotes long-term storage of porewater salinity beneath a prairie wetland

    Science.gov (United States)

    Levy, Zeno F.; Rosenberry, Donald O.; Moucha, Robert; Mushet, David M.; Goldhaber, Martin B.; LaBaugh, James W.; Fiorentino, Anthony J.; Siegel, Donald I.

    2018-02-01

    Subsurface storage of sulfate salts allows closed-basin wetlands in the semiarid Prairie Pothole Region (PPR) of North America to maintain moderate surface water salinity (total dissolved solids [TDS] from 1 to 10 g L-1), which provides critical habitat for communities of aquatic biota. However, it is unclear how the salinity of wetland ponds will respond to a recent shift in mid-continental climate to wetter conditions. To understand better the mechanisms that control surface-subsurface salinity exchanges during regional dry-wet climate cycles, we made a detailed geoelectrical study of a closed-basin prairie wetland (P1 in the Cottonwood Lake Study Area, North Dakota) that is currently experiencing record wet conditions. We found saline lenses of sulfate-rich porewater (TDS > 10 g L-1) contained in fine-grained wetland sediments 2-4 m beneath the bathymetric low of the wetland and within the currently ponded area along the shoreline of a prior pond stand (c. 1983). During the most recent drought (1988-1993), the wetland switched from a groundwater discharge to recharge function, allowing salts dissolved in surface runoff to move into wetland sediments beneath the bathymetric low of the basin. However, groundwater levels during this time did not decline to the elevation of the saline lenses, suggesting these features formed during more extended paleo-droughts and are stable in the subsurface on at least centennial timescales. We hypothesize a "drought-induced recharge" mechanism that allows wetland ponds to maintain moderate salinity under semiarid climate. Discharge of drought-derived saline groundwater has the potential to increase the salinity of wetland ponds during wet climate.

  6. Dissolvable layered double hydroxide as an efficient nanosorbent for centrifugeless air-agitated dispersive solid-phase extraction of potentially toxic metal ions from bio-fluid samples

    International Nuclear Information System (INIS)

    Rajabi, Maryam; Arghavani-Beydokhti, Somayeh; Barfi, Behruz; Asghari, Alireza

    2017-01-01

    In the present work, a novel nanosorbent namely layered double hydroxides with 4-amino-5-hydroxyl-2,7-naphthalendisulfonic acid monosodium salt interlayer anion (Mg-Al-AHNDA-LDH) was synthesized and applied as a dissolvable nanosorbent in a centrifugeless ultrasound-enhanced air-agitated dispersive solid-phase extraction (USE-AA-D-SPE) method. This method was used for the separation and preconcentration of some metal ions including Cd 2+ , Cr 6+ , Pb 2+ , Co 2+ , and Ni 2+ prior to their determination using the micro-sampling flame atomic absorption spectrometry (MS-FAAS) technique. The most interesting aspect of this nanosorbent is its immediate dissolvability at pH values lower than 4. This capability drastically eliminates the elution step, leading to a great improvement in the extraction efficiency and a decrease in the extraction time. Also in this method, the use of a syringe nanofilter eliminates the need for the centrifugation step, which is time-consuming and essentially causes the analysis to be off-line. Several effective parameters governing the extraction efficiency including the sample solution pH, amount of nanosorbent, eluent condition, number of air-agitation cycles, and sonication time were investigated and optimized. Under the optimized conditions, the good linear dynamic ranges of 2–70, 6–360, 7–725, 7–370, and 8–450 ng mL −1 for the Cd 2+ , Cr 6+ , Pb 2+ , Co 2+ and Ni 2+ ions, respectively, with the correlation of determinations (R 2 s) higher than 0.997 were obtained. The limits of detection (LODs) were found to be 0.6, 1.7, 2.0, 2.1, and 2.4 for the Cd 2+ , Cr 6+ , Pb 2+ , Co 2+ , and Ni 2+ ions, respectively. The intra-day and inter-day precisions (percent relative standard deviations (%RSDs) (n = 5)) were below 7.8%. The proposed method was also successfully applied for the extraction and determination of the target ions in different biological fluid and tap water samples. - Highlights: • A novel centrifugeless dispersive

  7. SUSTAINABLE ENVIRONMENTAL TECHNOLOGIES INCLUDING WATER RECOVERY FOR REUSE FROM TANNERY AND INDUSTRIAL WASTEWATER – INDIAN AND ASIAN SCENARIO

    Directory of Open Access Journals (Sweden)

    Dr. S. RAJAMANI

    2017-05-01

    Full Text Available World leather sector generates 600million m3 of wastewater per annum. The Asian tanneries contributes more than 350 million m3 of wastewater from the process of 8 to 10 millions tons of hides and skins. Environmental challenges due to depletion of quality water resources and increase in salinity, it has become necessary to control Total Dissolved Solids (TDS in the treated effluent with water recovery wherever feasible. Adoption of special membrane system has been engineered in many individual and Common Effluent Treatment Plants (CETPs in India, China and other leather producing countries. The sustainability of saline reject management is one of the major challenges. Conventional tannery wastewater treatment systems include physiochemical and biological treatment to reduce Chromium, BOD, COD and Suspended Solids. To tackle treated effluent with TDS in the rage of 10000 to 30000mg/l, multiple stage high pressure membrane units have been designed and implemented for recovery of water. To reduce the chemical usage and sludge generation in the tertiary treatment, Membrane Bio-Reactor (MBR has been adopted which replace secondary clarifier and sophisticated tertiary treatment units such as Reactive Clarifier, Ultra-filtration (UF, etc. Commercial scale high-tech membrane systems have been implemented in many locations for the capacities ranging from 500 to 10000m3/day. Recent applied R&D on the environmental protection techniques with focus on water-recovery for reuse, salt recovery, marine disposal of saline reject with proper bio-control system, etc. are dealt in this novel technical paper.

  8. Minimum energy requirements for desalination of brackish groundwater in the United States with comparison to international datasets

    Science.gov (United States)

    Ahdab, Yvana D.; Thiel, Gregory P.; Böhlke, John Karl; Stanton, Jennifer S.; Lienhard, John H.

    2018-01-01

    This paper uses chemical and physical data from a large 2017 U.S. Geological Surveygroundwater dataset with wells in the U.S. and three smaller international groundwater datasets with wells primarily in Australia and Spain to carry out a comprehensive investigation of brackish groundwater composition in relation to minimum desalinationenergy costs. First, we compute the site-specific least work required for groundwater desalination. Least work of separation represents a baseline for specific energy consumptionof desalination systems. We develop simplified equations based on the U.S. data for least work as a function of water recovery ratio and a proxy variable for composition, either total dissolved solids, specific conductance, molality or ionic strength. We show that the U.S. correlations for total dissolved solids and molality may be applied to the international datasets. We find that total molality can be used to calculate the least work of dilute solutions with very high accuracy. Then, we examine the effects of groundwater solute composition on minimum energy requirements, showing that separation requirements increase from calcium to sodium for cations and from sulfate to bicarbonate to chloride for anions, for any given TDS concentration. We study the geographic distribution of least work, total dissolved solids, and major ions concentration across the U.S. We determine areas with both low least work and high water stress in order to highlight regions holding potential for desalination to decrease the disparity between high water demand and low water supply. Finally, we discuss the implications of the USGS results on water resource planning, by comparing least work to the specific energy consumption of brackish water reverse osmosisplants and showing the scaling propensity of major electrolytes and silica in the U.S. groundwater samples.

  9. Removal of cyanotoxins from surface water resources using reusable molecularly imprinted polymer adsorbents.

    Science.gov (United States)

    Krupadam, Reddithota J; Patel, Govind P; Balasubramanian, Rajasekhar

    2012-06-01

    Microcystins (MCs; cyclic heptapeptides) are produced by freshwater cyanobacteria and cause public health concern in potable water supplies. There are more than 60 types of MCs identified to date, of which MC-LR is the most common found worldwide. For MC-LR, the WHO has established a threshold value of 1 μg L(-1) for drinking water. The present MCs removal methods such as coagulation, flocculation, adsorption, and filtration showed low efficiency for removing dissolved MC fraction from surface waters to the stipulated limit prescribed by WHO based on MC health impacts. The search for cost-effective and efficient removal method is still warranted for remediation of dissolved MC-LR-contaminated water resources. Molecularly imprinted polymer (MIP) adsorbent has been prepared using non-covalent imprinting approach. Using MC-LR as a template, itaconic acid as a functional monomer, and ethylene glycol dimethacrylate as a cross-linking monomer, a MIP has been synthesized. Computer simulations were used to design effective binding sites for MC-LR binding in aqueous solutions. Batch binding adsorption assay was followed to determine binding capacity of MIP under the influence of environmental parameters such as total dissolved solids and pH. The adsorptive removal of MC-LR from lake water has been investigated using MIPs. The MIP showed excellent adsorption potential toward MC-LR in aqueous solutions with a binding capacity of 3.64 μg mg(-1) which is about 60% and 70% more than the commercially used powdered activated carbon (PAC) and resin XAD, respectively. Environmental parameters such as total organic carbon (represented as chemical oxygen demand (COD)) and total dissolved solids (TDS) showed no significant interference up to 300 mg L(-1) for MC-LR removal from lake water samples. It was found that the binding sites on PAC and XAD have more affinity toward COD and TDS than the MC-LR. Further, the adsorption capacity of the MIP was evaluated rigorously by its repeated

  10. Heat capacity and solid solubility of iron in scandium

    International Nuclear Information System (INIS)

    Tsang, T.-W.E.

    1981-01-01

    The maximum solid solubility of iron in scandium was determined to be between 50 and 85 at.ppm in the as-cast condition. As the concentration of iron increases, it segregates along the grain boundary, as is evident from optical metallography and electron microprobe examinations. Annealing also causes the iron dissolved in scandium to separate out and cluster along the grain boundary. Heat capacity measurements show an anomaly in the C/T versus T 2 plots for iron concentrations of 19 at.ppm or greater. For iron dissolved in solid scandium the excess entropy due to the iron impurity is in agreement with the theoretical prediction of ck ln(2S + 1) for an impurity-conduction electron (Kondo) interaction, but is 4 - 8 times larger than the theoretical prediction when iron segregates along the grain boundary. Furthermore, our results suggest that most of the previously reported low temperature physical properties of scandium are probably in error because of either iron impurity-conduction electron interactions or Fe-Fe interactions in the precipitated second-phase Sc-Fe compound. (Auth.)

  11. Characterization (environmental Signature) and Function of the Main Instrumented (monitoring Water Quality Network in Real Time) Rivers Atoyac and Zahuapan in High Atoyac Basin; in Dry, Rain and Winter Season 2013-2014; Puebla-Tlaxcala Mexico

    Science.gov (United States)

    Tavera, E. M.; Rodriguez-Espinosa, P. F.; Morales-Garcia, S. S.; Muñoz-Sevilla, N. P.

    2014-12-01

    The Zahuapan and Atoyac rivers were characterized in the Upper Atoyac through the integration of physical and chemical parameters (environmental firm) determining the behavior and function of the basin as a tool for measuring and monitoring the quality and management of water resources of the water in one of the most polluted rivers in Mexico. For the determination of the environmental signature proceeded to characterize the water through 11 physicochemical parameters: temperature (T), potential hydrogen (pH), dissolved oxygen (DO), spectral absorption coefficient (SAC), the reduction of oxide potential (ORP), turbidity (Turb), conductivity (l), biochemical oxygen demand in 5 days (BOD5), chemical oxygen demand (COD), total suspended solids (TSS) and total dissolved solids (TDS ), which were evaluated in 49 sites in the dry season, 47 for the rainy season and 23 for the winter season in the basin and Atoyac Zahuapan Alto Atoyac, Puebla-Tlaxcala, Mexico river; finding a mathematical algorithm to assimilate and better represent the information obtained. The algorithm allows us to estimate correlation greater than 0.85. The results allow us to propose the algorithm used in the monitoring stations for purposes of processing information assimilated form.This measurement and monitoring of water quality supports the project, the monitoring network in real time and the actions to clean up Atoyac River, in the urban area of the city of Puebla.

  12. Environmental impact of municipal dumpsite leachate on ground-water quality in Jawaharnagar, Rangareddy, Telangana, India

    Science.gov (United States)

    Soujanya Kamble, B.; Saxena, Praveen Raj

    2017-10-01

    The aim of the present work was to study the impact of dumpsite leachate on ground-water quality of Jawaharnagar village. Leachate and ground-water samples were investigated for various physico-chemical parameters viz., pH, total dissolved solids (TDS), total hardness (TH), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), potassium (K+), chloride (Cl-), carbonates (CO3 2-), bicarbonates (HCO3 -), nitrates (NO3 -), and sulphates (SO4 2-) during dry and wet seasons in 2015 and were reported. The groundwater was hard to very hard in nature, and the concentrations of total dissolved solids, chlorides, and nitrates were found to be exceeding the permissible levels of WHO drinking water quality standards. Piper plots revealed that the dominant hydrochemical facies of the groundwater were of calcium chloride (CaCl2) type and alkaline earths (Ca2+ and Mg2+) exceed the alkali (Na+ and SO4 2-), while the strong acids (Cl- and SO4 2-) exceed the weak acids (CO3 2- and HCO3 -). According to USSL diagram, all the ground-water samples belong to high salinity and low-sodium type (C3S1). Overall, the ground-water samples collected around the dumpsite were found to be polluted and are unfit for human consumption but can be used for irrigation purpose with heavy drainage and irrigation patterns to control the salinity.

  13. Radionuclides in groundwater flow system understanding

    Science.gov (United States)

    Erőss, Anita; Csondor, Katalin; Horváth, Ákos; Mádl-Szőnyi, Judit; Surbeck, Heinz

    2017-04-01

    Using radionuclides is a novel approach to characterize fluids of groundwater flow systems and understand their mixing. Particularly, in regional discharge areas, where different order flow systems convey waters with different temperature, composition and redox-state to the discharge zone. Radium and uranium are redox-sensitive parameters, which causes fractionation along groundwater flow paths. Discharging waters of regional flow systems are characterized by elevated total dissolved solid content (TDS), temperature and by reducing conditions, and therefore with negligible uranium content, whereas local flow systems have lower TDS and temperature and represent oxidizing environments, and therefore their radium content is low. Due to the short transit time, radon may appear in local systems' discharge, where its source is the soil zone. However, our studies revealed the importance of FeOOH precipitates as local radon sources throughout the adsorption of radium transported by the thermal waters of regional flow systems. These precipitates can form either by direct oxidizing of thermal waters at discharge, or by mixing of waters with different redox state. Therefore elevated radon content often occurs in regional discharge areas as well. This study compares the results of geochemical studies in three thermal karst areas in Hungary, focusing on radionuclides as natural tracers. In the Buda Thermal Karst, the waters of the distinct discharge areas are characterized by different temperature and chemical composition. In the central discharge area both lukewarm (20-35°C, 770-980 mg/l TDS) and thermal waters (40-65°C, 800-1350 mg/l TDS), in the South only thermal water discharge (33-43°C, 1450-1700 mg/l TDS) occur. Radionuclides helped to identify mixing of fluids and to infer the temperature and chemical composition of the end members for the central discharge area. For the southern discharge zone mixing components could not be identified, which suggests different cave

  14. The release of dissolved nutrients and metals from coastal sediments due to resuspension

    Science.gov (United States)

    Kalnejais, Linda H.; Martin, William R.; Bothner, Michael H.

    2010-01-01

    quantity of solid phase metals to the more bioavailable and mobile dissolved phase. The relative importance of sediment resuspension as a source of dissolved metals to Boston Harbor is expected to increase as continuing pollutant control decreases the inputs from other sources. ?? 2010 Elsevier B.V.

  15. Cleaner processing: a sulphide-free approach for depilation of skins.

    Science.gov (United States)

    Ranjithkumar, Ammasi; Durga, Jayanthi; Ramesh, Ramakrishnan; Rose, Chellan; Muralidharan, Chellappa

    2017-01-01

    The conventional unhairing process in leather making utilises large amount of lime and sodium sulphide which is hazardous and poses serious waste disposal concerns. Under acidic conditions, sodium sulphide liberates significant quantities of hydrogen sulphide which causes frequent fatal accidents. Further, the conventional unhairing process involves destruction of the hair leading to increased levels of biological oxygen demand (BOD), chemical oxygen demand (COD), total dissolved solids (TDS) and total suspended solids (TSS) in the effluent. A safe approach is needed to overcome such environmental and health problems through an eco-benign process. The present study deals with a clean technology in which the keratinous body is detached from the dermis using enzymes produced from Bacillus crolab MTCC 5468 by solid state fermentation (SSF) as an alternative to noxious chemicals. Complete unhairing of skin could be achieved with an enzyme concentration of 1.2 % (w/w). The bio-chemical parameters of the spent liquor of the enzymatic process were environmentally favourable when compared with conventional method. The study indicates that the enzymatic unhairing is a safe process which could be used effectively in leather processing to alleviate pollution and health problems.

  16. The quantitative monitoring of mechanochemical reaction between solid L-tartaric acid and sodium carbonate monohydrate by terahertz spectroscopy

    Science.gov (United States)

    Liu, Xiaohong; Liu, Guifeng; Zhao, Hongwei; Zhang, Zengyang; Wei, Yongbo; Liu, Min; Wen, Wen; Zhou, Xingtai

    2011-11-01

    The solid-state reaction of chiral tartaric acid and alkali carbonate was studied by terahertz time-domain spectroscopy (THz-TDS). The sodium tartrate dihydrate was synthesized with high efficiency by mechanical grinding in the solid-state without waste that is particularly sustainable and environmentally benign. Distinct THz absorptions were observed for reactants and products. It indicates that THz spectroscopy is sensitive to different materials and crystal structures. The characteristic THz absorption peak at 1.09 THz of L (+)-Tartaric acid was selected for quantitative analysis. The reaction kinetics could be expressed by the Second-order equation and the Jander equation, which is consistent with a three-dimensional diffusion mechanism. The combination of multi-techniques including synchrotron radiation X-ray powder diffraction (SRXRPD), Fourier transform infrared (FT-IR) and scanning electron microscopy (SEM) was used to investigate the grinding process and presented supporting evidences. The results demonstrate that THz spectroscopy technique has great potential applications in process monitoring and analysis in pharmaceutical and chemical synthesis industry.

  17. Turbulent solutal convection and surface patterning in solid dissolution

    International Nuclear Information System (INIS)

    Sullivan, T.S.; Liu, Y.; Ecke, R.E.

    1996-01-01

    We describe experiments in which crystals of NaCl, KBr, and KCl are dissolved from below by aqueous solutions containing concentrations of the respective salts from zero concentration to near saturation. The solution near the solid-liquid interface is gravitationally unstable, producing turbulent hydrodynamic motion similar to thermal convection from a single surface cooled from above. The coupling of the fluid flow with the solid dissolution produces irregular patterns at the solid-liquid interface with a distribution of horizontal length scales. The dissolution mass flux and the pattern length scales are compared with a turbulent boundary layer model. Remarkable agreement is found, showing that the fluid motion controls both the dissolution rate and the interface patterning. copyright 1996 The American Physical Society

  18. Solid dispersions in oncology: a solution to solubility-limited oral drug absorption

    NARCIS (Netherlands)

    Sawicki, Emilia

    2017-01-01

    This thesis discusses the formulation method solid dispersion and how it works to resolve solubility-limited absorption of orally dosed anticancer drugs. Dissolution in water is essential for drug absorption because only dissolved drug molecules are absorbed. The problem is that half of the arsenal

  19. Fingerprinting groundwater salinity sources in the Gulf Coast Aquifer System, USA

    Science.gov (United States)

    Chowdhury, Ali H.; Scanlon, Bridget R.; Reedy, Robert C.; Young, Steve

    2018-02-01

    Understanding groundwater salinity sources in the Gulf Coast Aquifer System (GCAS) is a critical issue due to depletion of fresh groundwater and concerns for potential seawater intrusion. The study objective was to assess sources of groundwater salinity in the GCAS using ˜1,400 chemical analyses and ˜90 isotopic analyses along nine well transects in the Texas Gulf Coast, USA. Salinity increases from northeast (median total dissolved solids (TDS) 340 mg/L) to southwest (median TDS 1,160 mg/L), which inversely correlates with the precipitation distribution pattern (1,370- 600 mm/yr, respectively). Molar Cl/Br ratios (median 540-600), depleted δ2H and δ18O (-24.7‰, -4.5‰) relative to seawater (Cl/Br ˜655 and δ2H, δ18O 0‰, 0‰, respectively), and elevated 36Cl/Cl ratios (˜100), suggest precipitation enriched with marine aerosols as the dominant salinity source. Mass balance estimates suggest that marine aerosols could adequately explain salt loading over the large expanse of the GCAS. Evapotranspiration enrichment to the southwest is supported by elevated chloride concentrations in soil profiles and higher δ18O. Secondary salinity sources include dissolution of salt domes or upwelling brines from geopressured zones along growth faults, mainly near the coast in the northeast. The regional extent and large quantities of brackish water have the potential to support moderate-sized desalination plants in this location. These results have important implications for groundwater management, suggesting a current lack of regional seawater intrusion and a suitable source of relatively low TDS water for desalination.

  20. A review and assessment of variable density ground water flow effects on plume formation at UMTRA project sites

    International Nuclear Information System (INIS)

    1995-01-01

    A standard assumption when evaluating the migration of plumes in ground water is that the impacted ground water has the same density as the native ground water. Thus density is assumed to be constant, and does not influence plume migration. This assumption is valid only for water with relatively low total dissolved solids (TDS) or a low difference in TDS between water introduced from milling processes and native ground water. Analyses in the literature suggest that relatively minor density differences can significantly affect plume migration. Density differences as small as 0.3 percent are known to cause noticeable effects on the plume migration path. The primary effect of density on plume migration is deeper migration than would be expected in the arid environments typically present at Uranium Mill Tailings Remedial Action (UMTRA) Project sites, where little or no natural recharge is available to drive the plume into the aquifer. It is also possible that at some UMTRA Project sites, a synergistic affect occurred during milling operations, where the mounding created by tailings drainage (which created a downward vertical gradient) and the density contrast between the process water and native ground water acted together, driving constituents deeper into the aquifer than either process would alone. Numerical experiments were performed with the U.S. Geological Survey saturated unsaturated transport (SUTRA) model. This is a finite-element model capable of simulating the effects of variable fluid density on ground water flow and solute transport. The simulated aquifer parameters generally are representative of the Shiprock, New Mexico, UMTRA Project site where some of the highest TDS water from processing has been observed

  1. HB-Line Dissolver Dilution Flows and Dissolution Capability with Dissolver Charge Chute Cover Off

    International Nuclear Information System (INIS)

    Hallman, D.F.

    2003-01-01

    A flow test was performed in Scrap Recovery of HB-Line to document the flow available for hydrogen dilution in the dissolvers when the charge chute covers are removed. Air flow through the dissolver charge chutes, with the covers off, was measured. A conservative estimate of experimental uncertainty was subtracted from the results. After subtraction, the test showed that there is 20 cubic feet per minute (cfm) air flow through the dissolvers during dissolution with a glovebox exhaust fan operating, even with the scrubber not operating. This test also showed there is 6.6 cfm air flow through the dissolvers, after subtraction of experimental uncertainty if the scrubber and the glovebox exhaust fans are not operating. Three H-Canyon exhaust fans provide sufficient motive force to give this 6.6 cfm flow. Material charged to the dissolver will be limited to chemical hydrogen generation rates that will be greater than or equal to 25 percent of the Lower Flammability Limit (LFL) during normal operations. The H-Canyon fans will maintain hydrogen below LFL if electrical power is lost. No modifications are needed in HB-Line Scrap Recovery to ensure hydrogen is maintained less that LFL if the scrubber and glovebox exhaust fans are not operating

  2. Nanocellular foam with solid flame retardant

    Science.gov (United States)

    Chen, Liang; Kelly-Rowley, Anne M.; Bunker, Shana P.; Costeux, Stephane

    2017-11-21

    Prepare nanofoam by (a) providing an aqueous solution of a flame retardant dissolved in an aqueous solvent, wherein the flame retardant is a solid at 23.degree. C. and 101 kiloPascals pressure when in neat form; (b) providing a fluid polymer composition selected from a solution of polymer dissolved in a water-miscible solvent or a latex of polymer particles in a continuous aqueous phase; (c) mixing the aqueous solution of flame retardant with the fluid polymer composition to form a mixture; (d) removing water and, if present, solvent from the mixture to produce a polymeric composition having less than 74 weight-percent flame retardant based on total polymeric composition weight; (e) compound the polymeric composition with a matrix polymer to form a matrix polymer composition; and (f) foam the matrix polymer composition into nanofoam having a porosity of at least 60 percent.

  3. Using disposable solid-phase microextraction (SPME) to determine the freely dissolved concentration of polybrominated diphenyl ethers (PBDEs) in sediments

    International Nuclear Information System (INIS)

    Jia Fang; Cui Xinyi; Wang Wei; Delgado-Moreno, Laura; Gan, Jay

    2012-01-01

    Polybrominated diphenyl ethers (PBDEs) are brominated flame retardants (BFRs). The ubiquity and persistence of PBDEs in sediment have raised concerns over their environmental fate and ecological risks. Due to strong affinity for sediment organic matter, environmental fate and bioavailability of PBDEs closely depend on their phase distribution. In this study, disposable polydimethylsiloxane (PDMS) fiber was used to derive the freely dissolved concentration (C free ) of PBDEs in sediment porewater as a measurement of bioavailability. The PDMS-to-water partition coefficient (log K PDMS ) was 5.46–5.83 for BDE 47, 99, and 153. In sediments, PBDEs were predominantly sorbed to the sediment phase, with C free accounting for free of PBDEs decreased as their bromination or sediment organic carbon content increased. The strong association with dissolved organic matter (DOM) implies a potential for facilitated offsite transport and dispersion in the environment that depends closely on the stability of sediment aggregates. - Highlights: ► A disposable SPME method was developed for measuring C free of PBDEs in sediment. ► C free decreased with increasing congener bromination or sediment OC content. ► C free of PBDEs accounted for DOC values suggest a high probability for DOM-facilitated offsite transport. - A SPME method based on disposable PDMS fibers was developed for measuring the freely dissolved concentration of PBDEs (C free ) in sediment porewater.

  4. Modeling Spatial Distribution of Some Contamination within the Lower Reaches of Diyala River Using IDW Interpolation

    Directory of Open Access Journals (Sweden)

    Huda M. Madhloom

    2017-12-01

    Full Text Available The aim of this research was to simulate the water quality along the lower course of the Diyala River using Geographic Information Systems (GIS techniques. For this purpose, the samples were taken at 24 sites along the study area. The parameters: total dissolved solids (T.D.S, total suspended solids (T.S.S, iron (Fe, copper (Cu, chromium (Cr, and manganese (Mn were considered. Water samples were collected on a monthly basis for a duration of five years. The adopted analyzing approach was tested by calculating the mean absolute error (MAE and the correlation coefficient (R between observed water samples and predicted results. The result showed a percentage error less than 10% and significant correlation at R > 89% for all pollutant indicators. It was concluded that the accuracy of the applied model to simulate the river pollutants can decrease the number of monitoring station to 50%. Additionally, a distribution map for the concentrations’ results indicated that many of the major pollution indicators did not satisfy the river water quality standards.

  5. The effect of feed salinity on the biofouling dynamics of seawater desalination.

    Science.gov (United States)

    Yang, Hui-Ling; Pan, Jill R; Huang, Chihpin; Lin, Justin Chun-Te

    2011-05-01

    A persistent cell labeling dye and a novel microbial counting method were used to explore the effects of salinity on a microbial population in a reverse osmosis (RO) desalination system, and these clearly distinguished microbial cell multiplication from cell adherence. The results indicated that microbial multiplication is more active at the front of a seawater RO pressure vessel, while adhesion dominates the back of the vessel. A severe reduction in RO permeate flux and total dissolved solid (TDS) rejection were detected at low salinity, attributed to marked cell multiplication and release of extracellular polymeric substances, whilst a relatively stable flux was observed at medium and high salinity. The results from PCR-DGGE revealed the variation in microbial species distribution on the membrane with salinity. The results imply the critical role of membrane modification in biofouling mitigation in the desalination process.

  6. CORRELATION STUDY AMONG WATER QUALITY PARAMETERS OF GROUNDWATER OF VALSAD DISTRICT OF SOUTH GUJARAT(INDIA

    Directory of Open Access Journals (Sweden)

    R. T. Vashi

    2015-09-01

    Full Text Available Groundwater samples were collected from five talukas of Valsad district for one year (from August 2008 to July 2009 and were analyzed for their physicochemical characteristics.  The present investigation is focused on  determination of parameters like pH, Colour, Electrical Conductivity (EC, Total Hardness (TH, Calcium (Ca, Magnesium (Mg, Total Alkalinity (TA, Total Dissolved Solids (TDS, Silica, Chloride, Sulphate, Fluoride, Sodium, Chemical Oxygen Demand (COD and metals like Copper (Cu and Manganese (Mn.  Correlation coefficients were determined to identify the highly correlated parameters and interrelated water quality parameters. Correlation matrix of Valsad district suggests that EC of groundwater is found to be significantly correlated with eight out of seventeen water quality parameters studied.  It may be suggested that the quality of Valsad district can be checked very effectively by controlling EC of water.

  7. Enhanced Indirect Somatic Embryogenesis of Date Palm Using Low Levels of Seawater.

    Science.gov (United States)

    Taha, Rania A

    2017-01-01

    Date palm tolerates salinity, drought, and high temperatures. Arid and semiarid zones, especially the Middle East region, need a huge number of date palms for cultivation. To meet this demand, tissue culture techniques have great potential for mass production of plantlets, especially using the indirect embryogenesis technique; any improvement of these techniques is a worthy objective. Low levels of salinity can enhance growth and development of tolerant plants. A low level of seawater, a natural source of salinity, reduces the time required for micropropagation processes of date palm cv. Malkaby when added to MS medium. Medium containing seawater at 500 ppm total dissolved solid (TDS) (12.2 mL/L) improves callus proliferation, whereas 1500 ppm (36.59 mL/L) enhances plant regeneration including multiplication of secondary embryos, embryo germination, and rooting.

  8. Sampling method of water sources at study site Taiping, Perak and Pulau Burung, Penang for research on pollutant movement in underground water

    International Nuclear Information System (INIS)

    Mohd Rifaie Mohd Murtadza; Mohd Tadza Abdul Rahman; Kamarudin Samuding; Roslanzairi Mostapa

    2005-01-01

    This paperwork explain the method of water sampling being used to take the water samples from the study sites in Taiping, Perak and Pulau Burung, Pulau Pinang. The sampling involve collecting of water samples for groundwater from boreholes and surface water from canal, river, pond, and ex-mining pond from several locations at the study sites. This study also elaborates the instruments and chemical used. The main purpose of this sampling are to obtain the important water quality parameters such as pH, conductivity, Total Dissolved Solid (TDS), heavy metals, anions, cations, and environmental isotopes delta values (d) for 18O, Deuterium dan Tritium. A correct sampling method according to standard is very important to ensure an accurate and precise results. With this, the data from the laboratory tests result can be fully utilized to make the interpretation of the pollutants movement. (Author)

  9. CADDIS Volume 2. Sources, Stressors and Responses: Dissolved Oxygen

    Science.gov (United States)

    Introduction to the dissolved oxygen module, when to list dissolved oxygen as a candidate cause, ways to measure dissolved oxygen, simple and detailed conceptual model diagrams for dissolved oxygen, references for the dissolved oxygen module.

  10. Comparison of dialysis and solid-phase extraction for isolation and concentration of dissolved organic matter prior to Fourier transform ion cyclotron resonance mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tfaily, Malak M.; Cooper, William T. [Florida State University, Department of Chemistry and Biochemistry, Tallahassee, FL (United States); Hodgkins, Suzanne; Chanton, Jeffrey P. [Florida State University, Department of Earth, Ocean and Atmospheric Science, Tallahassee, FL (United States); Podgorski, David C. [Florida State University, Department of Chemistry and Biochemistry, Tallahassee, FL (United States); Florida State University, National High Magnetic Field Laboratory, Tallahassee, FL (United States)

    2012-08-15

    We compare two methods, solid-phase extraction (SPE) and dialysis, commonly used for extraction and concentration of dissolved organic matter (DOM) prior to molecular characterization by electrospray ionization (ESI) and ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry. Spectra of DOM samples from Minnesota and Sweden peatlands that were extracted with styrene divinyl benzene polymer SPE sorbents included ions with formulas that had higher oxygen to carbon (O/C) ratios than spectra of DOM from the same samples after de-salting by dialysis. The SPE method was not very effective in extracting several major classes of DOM compounds that had high ESI efficiencies, including carboxylic acids and organo-sulfur compounds, and that out-competed other less-functionalized compounds (e.g., carbohydrates) for charge in the ESI source. The large abundance of carboxylic acids in the dialysisextracted DOM, likely the result of in situ microbial production, makes it difficult to see other (mainly hydrophilic) compounds with high O/C ratios. Our results indicate that, while dialysis is generally preferable for the isolation of DOM, for samples with high microbial inputs, the use of both isolation methods is recommended for a more accurate molecular representation. (orig.)

  11. Dissolvable layered double hydroxide as an efficient nanosorbent for centrifugeless air-agitated dispersive solid-phase extraction of potentially toxic metal ions from bio-fluid samples

    Energy Technology Data Exchange (ETDEWEB)

    Rajabi, Maryam, E-mail: mrajabi@semnan.ac.ir; Arghavani-Beydokhti, Somayeh; Barfi, Behruz; Asghari, Alireza

    2017-03-08

    In the present work, a novel nanosorbent namely layered double hydroxides with 4-amino-5-hydroxyl-2,7-naphthalendisulfonic acid monosodium salt interlayer anion (Mg-Al-AHNDA-LDH) was synthesized and applied as a dissolvable nanosorbent in a centrifugeless ultrasound-enhanced air-agitated dispersive solid-phase extraction (USE-AA-D-SPE) method. This method was used for the separation and preconcentration of some metal ions including Cd{sup 2+}, Cr{sup 6+}, Pb{sup 2+}, Co{sup 2+}, and Ni{sup 2+} prior to their determination using the micro-sampling flame atomic absorption spectrometry (MS-FAAS) technique. The most interesting aspect of this nanosorbent is its immediate dissolvability at pH values lower than 4. This capability drastically eliminates the elution step, leading to a great improvement in the extraction efficiency and a decrease in the extraction time. Also in this method, the use of a syringe nanofilter eliminates the need for the centrifugation step, which is time-consuming and essentially causes the analysis to be off-line. Several effective parameters governing the extraction efficiency including the sample solution pH, amount of nanosorbent, eluent condition, number of air-agitation cycles, and sonication time were investigated and optimized. Under the optimized conditions, the good linear dynamic ranges of 2–70, 6–360, 7–725, 7–370, and 8–450 ng mL{sup −1} for the Cd{sup 2+}, Cr{sup 6+}, Pb{sup 2+}, Co{sup 2+}and Ni{sup 2+} ions, respectively, with the correlation of determinations (R{sup 2}s) higher than 0.997 were obtained. The limits of detection (LODs) were found to be 0.6, 1.7, 2.0, 2.1, and 2.4 for the Cd{sup 2+}, Cr{sup 6+}, Pb{sup 2+}, Co{sup 2+}, and Ni{sup 2+} ions, respectively. The intra-day and inter-day precisions (percent relative standard deviations (%RSDs) (n = 5)) were below 7.8%. The proposed method was also successfully applied for the extraction and determination of the target ions in different biological fluid

  12. In vivo evaluation and in-depth pharmaceutical characterization of a rapidly dissolving solid ocular matrix for the topical delivery of timolol maleate in the rabbit eye model.

    Science.gov (United States)

    Moosa, Raeesa M; Choonara, Yahya E; du Toit, Lisa C; Tomar, Lomas K; Tyagi, Charu; Kumar, Pradeep; Carmichael, Trevor R; Pillay, Viness

    2014-05-15

    The purpose of this study was to investigate the in-depth pharmaceutical properties and in vivo behavior of a novel lyophilized rapidly dissolving solid ocular matrix (RD-SOM) as a 'solid eye drop' formulation comprising timolol maleate as the model drug. Thermal and molecular transition analysis displayed similar findings with no incompatibility between formulation components. Porositometric studies confirmed the presence of interconnecting pores across the matrix surface. The HETCAM test indicated an irritation score of 0 with the inference of good tolerability for the RD-SOM in the New Zealand White albino rabbit eye model. Ex vivo permeation across excised rabbit cornea showed an improved steady state drug flux (0.00052 mg cm(-2)min(-1)) and permeability co-efficient (1.7 × 10(-4)cmmin(-1)) for the RD-SOM compared to pure drug and a marketed eye drop preparation. UPLC analysis quantitatively separated timolol maleate and the internal standard (diclofenac sodium) and gamma irradiation was used as a terminal sterilization procedure. In vivo results revealed a peak concentration of timolol was reached at 104.9 min. In the case of a typical eye drop formulation a lower Cmax was obtained (1.97 ug/mL). Level A point-to-point IVIVC plots via the Wagner-Nelson method revealed a satisfactory R(2) value of 0.84. In addition, the biodegradability and ocular compatibility of the RD-SOM was confirmed by histopathological toxicity studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Effect of Dissolved Air Flotation Process on Thickening of Activated Sludge

    Directory of Open Access Journals (Sweden)

    Atamaleki A.

    2016-12-01

    Full Text Available Abstract Aims: Sludge is an inescapable component of all wastewaters that originated from their treatment. dissolved air flotation (DAF process as an alternative clarifier is used in treatment of drinking water, pretreatment of wastewater, and as a phase separator in sludge activation processes. This study aimed to calibrated the usage of DAF process in a laboratory scale and under various conditions, to achieve the optimum efficiency in recycling the activated sludge. Instrument & Methods: In this experimental study, of Kashan's Shahid Beheshti hospital and immediately transported to the laboratory. The optimal dose of polyaluminum chloride coagulant and pH was determined and then applied in DAF process. Finally turbidity, electrical conductivity (EC and total solids (TS parameters were measured and compared with control sample. Findings: The optimal pH and optimal dose of coagulant were 6.5 and 25mg/l, respectively. Also Optimal process efficiency to reduce EC, TS and turbidity parameters were 23.4, 44.5 and 88%, respectively. Conclusion: Dissolved air flotation process removes the turbidity, EC and TS effectively; however, it has minimal impact on EC and TS.

  14. Treatment of acid mine drainage with anaerobic solid-substrate reactors

    Energy Technology Data Exchange (ETDEWEB)

    Drury, W.J.

    1999-10-01

    Anaerobic solid-substrate reactors were used in a laboratory study of acid mine drainage treatment. Parallel systems were run continuously for 23 months, both containing a solid substrate of 2:1 (weight) cow manure and sawdust. One system had cheese whey added with the mine drainage to provide an additional electron donor source to simulate sulfate-reducing bacteria activity. Effluent pH from the reactor with whey addition was relatively constant at 6.5. Effluent pH from the reactor without whey addition dropped over time from 6.7 to approximately 5.5. Whey addition increased effluent alkalinity [550 to 700 mg/L as calcium carbonate (CaCO{sub 3}) versus 50 to 300 mg/L as CaCO{sub 3}] and sulfate removal (98 to 80% versus 60 to 40%). Sulfate removal rate with whey addition decreased over time from 250 to 120 mmol/m{sup 3}{center{underscore}dot}d, whereas it decreased from 250 to 40 mmol/m{sup 3}{center{underscore}dot}d without whey addition. Whey addition increased removal of dissolved iron, dissolved manganese, and dissolved zinc in the second part of the experiment. Copper and cadmium removals were greater than 99%, and arsenic removal was 84% without whey addition and 89% with whey addition. Effluent sulfide concentrations were approximately 1 order of magnitude greater with whey addition. A 63-day period of excessive loading permanently decreased treatment efficiency without whey addition.

  15. Reducing emissions from uranium dissolving

    International Nuclear Information System (INIS)

    Griffith, W.L.; Compere, A.L.; Huxtable, W.P.; Googin, J.M.

    1992-10-01

    This study was designed to assess the feasibility of decreasing NO x emissions from the current uranium alloy scrap tray dissolving facility. In the current process, uranium scrap is dissolved in boiling nitric acid in shallow stainless-steel trays. As scrap dissolves, more metal and more nitric acid are added to the tray by operating personnel. Safe geometry is assured by keeping liquid level at or below 5 cm, the depth of a safe infinite slab. The accountability batch control system provides additional protection against criticality. Both uranium and uranium alloys are dissolved. Nitric acid is recovered from the vapors for reuse. Metal nitrates are sent to uranium recovery. Brown NO x fumes evolved during dissolving have occasionally resulted in a visible plume from the trays. The fuming is most noticeable during startup and after addition of fresh acid to a tray. Present environmental regulations are expected to require control of brown NO x emissions. A detailed review of the literature, indicated the feasibility of slightly altering process chemistry to favor the production of NO 2 which can be scrubbed and recycled as nitric acid. Methods for controlling the process to manage offgas product distribution and to minimize chemical reaction hazards were also considered

  16. Morphology, Geology and Water Quality Assessment of Former Tin Mining Catchment

    Science.gov (United States)

    Ashraf, Muhammad Aqeel; Maah, Mohd. Jamil; Yusoff, Ismail

    2012-01-01

    Bestari Jaya, former tin mining catchment covers an area of 2656.31 hectares comprised of four hundred and forty-two different-size lakes and ponds. The present study area comprise of 92 hectares of the catchment that include four large size lakes. Arc GIS version 9.2 used to develop bathymetric map, Global Positioning System (GPS) for hydrographical survey and flow meter was utilized for water discharge analysis (flow routing) of the catchment. The water quality parameters (pH, temperature, electric conductivity, dissolved oxygen DO, total dissolved solids TDS, chlorides, ammonium, nitrates) were analyzed by using Hydrolab. Quality assurance (QA) and quality control (QC) procedures were strictly followed throughout the field work and data analysis. Different procedures were employed to evaluate the analytical data and to check for possible transcription or dilution errors, changes during analysis, or unusual or unlikely values. The results obtained are compared with interim national water quality standards for Malaysia indicates that water quality of area is highly degraded. It is concluded that Bestri Jaya ex-mining catchment has a high pollution potential due to mining activities and River Ayer Hitam, recipient of catchment water, is a highly polluted river. PMID:22761549

  17. Petrographic study of the Korean anthracite for utilization (VII)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hong Soo; Lee, Choon Oh; Park, Suk Whan [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    This research was initiated for the development of filtering materials those can be used in waste water treatment sites. The selected Jangseong coal for filtering material has low Hardgrove Grindability Index(HGI:38.38). For feasibility study, the small scale of filtration tester was built on the waste water treatment plant of Samdu dye Co. to use the precipitated water during filtration test processed by purifying system. Measurement items are filtration rate, temperature of waste water, Electric Conductivity(EC), pH, Turbidity, Dissolved Oxygen(DO), Chemical Oxygen Demand (COD), Bio-chemical Oxygen Demand(BOD), Salinity, Total Dissolved solids(TDS) and trace elements content(Zn, Si, Fe, Mg, K, Cu, Sr, Mn, Ca, Na, SO{sub 4}, Ni, Pb, Cd) of the supplied water and filtered water were carried out to find the filtration capacity of coal. The results indicated decreasing degree in turbidity (15.1%), COD(22.1%), BOD(56.8%), color(7.4%) and increasing degree in DO(10.5%). Trace elements removal degree of filtered waste water were about 17.1% for Fe and 10.7% for Zn. (author). 40 refs., 22 tabs., 26 figs.

  18. Impact of waste dump on surface water quality and aquatic insect diversity of Deepor Beel (Ramsar site), Assam, North-east India.

    Science.gov (United States)

    Choudhury, Dharitri; Gupta, Susmita

    2017-10-06

    Water and aquatic insects were collected seasonally from site 1, the low-lying area of the dump near Deepor Beel, and from sites 2 and 3 of the main wetland and analysed. While dissolved oxygen (DO) increased from site 1 to site 3 in each season, electrical conductivity (EC), total dissolved solid (TDS), total alkalinity (TA) and free CO 2 (F-CO 2 ) decreased. Pb and Cd were found to exceed the limits set for drinking water in all the sites and seasons. Species richness (SpR) was found highest (23) at site 2 and lowest (14) at site 1. Sensitive species was absent. The Shannon (H') values at site 1 were  1 in most of the seasons. Biological monitoring scores (Biological Monitoring Working Party and Stream Invertebrate Grade Number-Average Level) in different sites and seasons inferred severely poor to moderate water quality. At site 1, significant negative correlations were seen for Pb and Cr with SpR while Ni and Cu with insect density (ID). At site 2, TA had highly significant positive correlations with SpR and ID while Cu showed negative correlation with SpR. At site 3, ID had significant negative relationships with air temperature, water temperature, depth, TA, F-CO 2 , PO 4 3- and Cr. Canonical correspondence analysis triplot has clearly separated site 1 associated with tolerant species and highly influenced by TA, TDS, EC, F-CO 2, Cr, Ni, Cd and Zn confirming high anthropogenic activities on that site. Tolerant and semitolerant species were present at site 2 (influenced by depth and transparency) and site 3 (influenced by Pb and WT) both. Results of this study discerned that the dump site is the point source of pollution.

  19. Impacts of petroleum production on ground and surface waters: Results from the Osage-Skiatook Petroleum Environmental Research A site, Osage County Oklahoma

    Science.gov (United States)

    Kharaka, Y.K.; Thordsen, J.J.; Kakouros, E.; Herkelrath, W.N.

    2005-01-01

    As part of a multidisciplinary group of about 20 scientists, we are investigating the transport, fate, natural attenuation, and ecosystem impacts of inorganic salts and organic compounds present in releases of produced water and associated hydrocarbons at the Osage-Skiatook Petroleum Environmental Research (OSPER) sites, located in Osage County, Oklahoma. Geochemical data collected from nearby oil wells show that the produced water source is a Na-Ca-Cl brine (???150,000 mg/L total dissolved solids [TDS]), with relatively high concentrations of Mg, Sr, and NH4, but low SO4 and H2S. Results from the depleted OSPER A site show that the salts continue to be removed from the soil and surficial rocks, but degraded oil persists on the contaminated surface. Eventually, the bulk of inorganic salts and dissolved organics in the brine will reach the adjacent Skiatook Lake, a 4250-ha (10,501-ac) potable water reservoir. Repeated sampling of 44 wells show a plume of high-salinity water (2000-30,000 mg/L TDS) at intermediate depths that intersects Skiatook Lake and extends beyond the visibly impacted areas. No liquid petroleum was observed in this plume, but organic acid anions, benzene, toluene, ethylbenzene, and xylene (BTEX), and other volatile organic carbon (VOC) are present. The chemical composition of released brine is modified by sorption, mineral precipitation and dissolution, evapotranspiration, volatilization, and bacterially mediated oxidation-reduction reactions, in addition to mixing with percolating precipitation water, lake water, and pristine groundwater. Results show that only minor amounts of salt are removed by runoff, supporting the conclusion that significant amounts of salts from produced water and petroleum releases still remain in the soils and rocks of the impacted area after more than 65 yr of natural attenuation. Copyright ?? 2005. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  20. Performance of the constructed wetland system for the treatment of water from the corumbataí river

    Directory of Open Access Journals (Sweden)

    Ana Kleiber Pessoa Borges

    2008-12-01

    Full Text Available The aim of this work was to study the constructed wetland system for the treatment of water from the Corumbataí river simulated on a laboratory scale. The parameters analyzed at different points of the system were ammonia, biochemical demand for oxygen (BDO, chemical demand for oxygen (CDO, chlorides, apparent color, conductivity, dissolved oxygen, magnesium (Mg, sodium (Na, potassium (K, silicon (Si, total phosphorous, total coliforms and Escherichia coli, total dissolved solids (TDS, turbidity, and macrophyte biomass. The results demonstrated that this alternative water treatment system was effective in removing the microorganisms (total coliforms and E. coli, among other parameters analyzed, for varying periods of the treatment, promoting notable improvement in the quality of the water treated from the Corumbataí River.Na intenção de reduzir nutrientes e microrganismos das águas de rio, foi estudado um processo alternativo de tratamento, como o sistema construído de áreas alagadas (CWs, em escala de laboratório. Os parâmetros analisados em diferentes pontos do sistema utilizado foram amônia, demanda bioquímica de oxigênio (DBO, demanda química de oxigênio (DQO, cloretos, cor aparente, condutividade, oxigênio dissolvido, magnesium (Mg, sodium (Na, potassium (K, silicium (Si, fósforo total, coliformes totais e Escherichia coli, sólidos totais dissolvidos (TDS, turbidez e biomassa da macrófita. Os resultados demonstraram que este sistema alternativo de tratamento de água do rio Corumbataí foi eficiente na remoção dos microrganismos: coliformes totais e Escherichia coli dentre outros parâmetros analisados, em diferentes tempos de tratamento, promovendo melhoria acentuada na qualidade da água tratada.

  1. Geochemical and isotopic variations in shallow groundwater in areas of the Fayetteville Shale development, north-central Arkansas

    International Nuclear Information System (INIS)

    Warner, Nathaniel R.; Kresse, Timothy M.; Hays, Phillip D.; Down, Adrian; Karr, Jonathan D.; Jackson, Robert B.; Vengosh, Avner

    2013-01-01

    these values are distinct from the reported thermogenic composition of the Fayetteville Shale gas (δ 13 C CH4 = −35.4‰ to −41.9‰). Based on major element chemistry, four shallow groundwater types were identified: (1) low (<100 mg/L) total dissolved solids (TDS), (2) TDS > 100 mg/L and Ca–HCO 3 dominated, (3) TDS > 100 mg/L and Na–HCO 3 dominated, and (4) slightly saline groundwater with TDS > 100 mg/L and Cl > 20 mg/L with elevated Br/Cl ratios (>0.001). The Sr ( 87 Sr/ 86 Sr = 0.7097–0.7166), C (δ 13 C DIC = −21.3‰ to −4.7‰), and B (δ 11 B = 3.9–32.9‰) isotopes clearly reflect water–rock interactions within the aquifer rocks, while the stable O and H isotopic composition mimics the local meteoric water composition. Overall, there was a geochemical gradient from low-mineralized recharge water to more evolved Ca–HCO 3 , and higher-mineralized Na–HCO 3 composition generated by a combination of carbonate dissolution, silicate weathering, and reverse base-exchange reactions. The chemical and isotopic compositions of the bulk shallow groundwater samples were distinct from the Na–Cl type Fayetteville flowback/produced waters (TDS ∼10,000–20,000 mg/L). Yet, the high Br/Cl variations in a small subset of saline shallow groundwater suggest that they were derived from dilution of saline water similar to the brine in the Fayetteville Shale. Nonetheless, no spatial relationship was found between CH 4 and salinity occurrences in shallow drinking water wells with proximity to shale-gas drilling sites. The integration of multiple geochemical and isotopic proxies shows no direct evidence of contamination in shallow drinking-water aquifers associated with natural gas extraction from the Fayetteville Shale

  2. Solid-phase radioimmunoassay of immunoglobulins G, A and M: applicability in analysis of sucrose gradients

    Energy Technology Data Exchange (ETDEWEB)

    Eriksen, E F; Danielsen, H [Aarhus Kommunehospital (Denmark). Medical Department C; Johansen, A S [Aarhus Univ. (Denmark). Institute of Medical Biochemistry; Larsson, L I [Unit of Histochemistry, University Institute of Pathology, Copenhagen, Denmark

    1984-01-01

    A simple and sensitive solid-phase radioimmunoassay for the detection of immunoglobulins G, A and M in sucrose gradients is described. The solid-phase consisted of immunoglobulins adsorbed to polystyrene tubes. Using buffers without detergent and /sup 125/I-labeled sheep anti-rabbit IgA as radioligand, the assay was able to detect 0.8 ng per tube in the IgG assay and 1.6 ng per tube in the IgA and IgM assays. Standard curves with antigen dissolved in 10% and 32% sucrose were superimposable and did not deviate from standard curves with antigen dissolved in buffer without sucrose. Using these techniques on ultracentrifugation samples from patients with systemic lupus erythematosus, Schoenlein-Henoch nephritis and IgA glorulonephritis is was possible to detect both immunoglobulin fragments and immunoglobulin aggregates at the same time without prior dialysis of the samples.

  3. Method of dissolving metal ruthenium

    International Nuclear Information System (INIS)

    Tsuno, Masao; Soda, Yasuhiko; Kuroda, Sadaomi; Koga, Tadaaki.

    1988-01-01

    Purpose: To dissolve and clean metal ruthenium deposited to the inner surface of a dissolving vessel for spent fuel rods. Method: Metal ruthenium is dissolved in a solution of an alkali metal hydroxide to which potassium permanganate is added. As the alkali metal hydroxide used herein there can be mentioned potassium hydroxide, sodium hydroxide and lithium hydroxide can be mentioned, which is used as an aqueous solution from 5 to 20 % concentration in view of the solubility of metal ruthenium and economical merit. Further, potassium permanganate is used by adding to the solution of alkali metal hydroxide at a concentration of 1 to 5 %. (Yoshihara, H.)

  4. Microbiological and Chemical Findings of Water Used for Various Industrial Processes in Babol Car Factory, Iran, in 2013 A Case Study

    Directory of Open Access Journals (Sweden)

    Saeid Mahdavi Omran

    2015-03-01

    Full Text Available Abstract Background and purpose: According to the reported problems in area of the inappropriateness of water quality which used for washing and staining of car apparatuses in a car factory, this research was carried out for identification of physical, chemical, and microbiological characteristics of the consumed water in Babol car factory, Iran. Materials and Methods: Physical and chemical parameters of water such as total solids, total dissolved solids (TDS, turbidity, pH, electrical conductivity, total alkalinity, total hardness (TH, cations (Ca2+, Mg2+, Fe2+, Mn2+, Zn2+, and anions (SO42−, Cl−, NO3− were analyzed based on standard methods for examination of water and wastewater. The samples were taken from five units and were precipitated and plated on Sabouraud dextrose agar supplemented with chloramphenicol and blood agar and eosin methylene blue media. Results: TDS, turbidity, pH, TH and ammonium ion were 402 mg/L, 10 NTU, 7.8, 208 mg/L and 0.04 mg/L, respectively. Ten genera of fungal colonies were isolated from these units, which from them yeast Penicillium and Cladosporium were the most prevalent. Five genera of bacteria were isolated from these samples. Entrobacteriaceae, Pseudomonas, and Bacillus were the most prevalent bacteria in water. Water quality in the activation and fixation units were the most contaminated with fungi and bacteria, respectively. Some of these units were without fungal and bacterial contaminations. Conclusion: The fungal and bacterial contaminations can be changed the quality of consumed water in the different processes such as color and turbidity. Thus, we need to use some water

  5. The Development of a Renewable-Energy-Driven Reverse Osmosis System for Water Desalination and Aquaculture Production

    Institute of Scientific and Technical Information of China (English)

    Clark C K Liu

    2013-01-01

    Water and energy are closely linked natural resources-the transportation, treatment, and distribution of water depends on low-cost energy;while power generation requires large volumes of water. Seawater desalination is a mature technology for increasing freshwater supply, but it is essentially a trade of energy for freshwater and is not a viable solution for regions where both water and energy are in short supply. This paper discusses the development and application of a renewable-energy-driven reverse osmosis (RO) system for water desalination and the treatment and reuse of aquaculture wastewater. The system consists of (1) a wind-driven pumping subsystem, (2) a pressure-driven RO membrane desalination subsystem, and (3) a solar-driven feedback control module. The results of the pilot experiments indicated that the system, operated under wind speeds of 3 m s-1 or higher, can be used for brackish water desalination by reducing the salinity of feedwater with total dissolved solids (TDS) of over 3 000 mg L-1 to product water or permeate with a TDS of 200 mg L-1 or less. Results of the pilot experiments also indicated that the system can remove up to 97%of the nitrogenous wastes from the fish pond effluent and can recover and reuse up to 56%of the freshwater supply for fish pond operation.

  6. Pharmaceutical wastewater treatment: a physicochemical study

    International Nuclear Information System (INIS)

    Saleem, M.

    2007-01-01

    A physicochemical study for the treatment of pharmaceutical wastewater was performed. Objective of the laboratory investigation was to study the removal of color, Total Dissolved Solids (TDS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), turbidity and phenol and bring them up to the allowable limits for reuse purposes. Efficiency of coagulation, flocculation, sedimentation, sand filtration followed by activated carbon adsorption was determined. It was found that tested coagulants (alum, ferric chloride, and ferrous sulphate) are not much effective and required high dosage for the removal; of TSS, BOD, COD and turbidity. Alum was found to be more effective among tested coagulants and reduce TSS, BOD, COD and turbidity 79.6%, 34.8, 48.6% and 69.2% respectively. Sand filtration further reduced the studied parameters 97.7%, 95.7%, 93.9% and 76.9% respectively. As the concentration of phenol in the studied pharmaceutical wastewater was 100 mg/l, granular activated carbon was used to remove phenol up to the allowable limit for reuse purpose. Activated carbon adsorption further reduces phenol, TDS, TSS, BOD, and COD up to 99.9%, 99.1%, 21.4%, 81.3% and 71.1% respectively. High removal of color observed after activated carbon adsorption. It was concluded that the suggested treatment scheme is suitable to bring the effluent quality up to the water quality standards. (author)

  7. Hydrogeochemical investigation of groundwater in shallow coastal aquifer of Khulna District, Bangladesh

    Science.gov (United States)

    Islam, S. M. Didar-Ul; Bhuiyan, Mohammad Amir Hossain; Rume, Tanjena; Azam, Gausul

    2017-12-01

    Groundwater acts as a lifeline in the coastal regions to meet out the domestic, drinking, irrigational and industrial needs. To investigate the hydrogeochemical characteristics of groundwater and its suitability, twenty samples were collected from the shallow tubewells of study area having screen depth 21-54 m. The water quality assessment has been carried out by evaluating the physicochemical parameters such as temperature, pH, EC, TDS and major ions i.e., Na+, K+, Ca2+, Mg2+, Cl-, SO4 2-, NO3 -, HCO3 -. Results found that, the water is slightly alkaline and brackish in nature. The trends of cations and anions are Na+ > Ca2+ > Mg2+ > K+ and Cl- > HCO3 - > SO4 2- > NO3 -, respectively and Na-Cl-HCO3 is the dominant groundwater type. The analyzed samples were also characterized with different indices, diagram and permissible limit i.e., electric conductivity (EC), total dissolved solids (TDS), chloride content (Cl), soluble sodium percentage (SSP), sodium adsorption ratio (SAR), residual sodium carbonate (RSC), magnesium adsorption ratio (MAR), Kelley's ratio (KR), Wilcox diagram and USSL diagram, and results showed that groundwater are not suitable for drinking and irrigational use. The factors responsible for the geochemical characterization were also attempted by using standard plot and it was found that mixing of seawater with entrapped water plays a significant role in the study area.

  8. The evolution of 17O-excess in surface water of the arid environment during recharge and evaporation.

    Science.gov (United States)

    Surma, J; Assonov, S; Herwartz, D; Voigt, C; Staubwasser, M

    2018-03-21

    This study demonstrates the potential of triple O-isotopes to quantify evaporation with recharge on a salt lake from the Atacama Desert, Chile. An evaporative gradient was found in shallow ponds along a subsurface flow-path from a groundwater source. Total dissolved solids (TDS) increased by 177 g/l along with an increase in δ 18 O by 16.2‰ and in δD by 65‰. 17 O-excess decreased by 79 per meg, d-excess by 55‰. Relative humidity (h), evaporation over inflow (E/I), the isotopic composition of vapor ( * R V ) and of inflowing water ( * R WI ) determine the isotope distribution in 17 O-excess over δ 18 O along a well-defined evaporation curve as the classic Craig-Gordon model predicts. A complementary on-site simple (pan) evaporation experiment over a change in TDS, δ 18 O, and 17 O-excess by 392 g/l, 25.0‰, and -130 per meg, respectively, was used to determine the effects of sluggish brine evaporation and of wind turbulence. These effects translate to uncertainty in E/I rather than h. The local composition of * R V relative to * R WI pre-determines the general ability to resolve changes in h. The triple O-isotope system is useful for quantitative hydrological balancing of lakes and for paleo-humidity reconstruction, particularly if complemented by D/H analysis.

  9. ANALISIS KUALITAS AIR SUMUR GALI DI KAWASAN PARIWISATA SANUR

    Directory of Open Access Journals (Sweden)

    I.A.M. Trisnawulan

    2012-11-01

    Full Text Available parts of sampling areas: Sanur Kaja 5-6 meter (SA2 and 7-8 meter (SA3, Kelurahan Sanur 3-4 meter(SB1 and 5-6 meter (SB2, Sanur Kauh 3-4 meter (SC1 and 5-6 meter (SC2, using Cluster RandomSampling method.The result in April showed that from 14 parameters examined only 5 parameters have highconcentration than the acceptable drinking water standard (PPRI no.82, 2001. Those parameters areDissolved Oxygen (DO, Biochemical Oxygen Demand (BOD5, Nitrate (NO3, Phosphate (PO4, and TotalColi form. While the result of the analyses in June showed that 9 from 14 parameters have highconcentration than the acceptable drinking water standard ( PPRI no 82, 2001 they are Total DissolvedSolid (TDS, Dissolved Oxygen (DO, Biochemical Oxygen Demand (BOD5, Nitrate (NO3, Nitrite (NO2,Ammonia (NH3, Phosphate (PO4, E. coli and Total Coli form.The increasing concentrations indicate some pollution has occurred in these sampling areas. Theobservation has shown that most of the people in Sanur dump their waste water into the ground, which easilyabsorb through the porous soil then contaminate the ground water aquifer. Based on the water quality status using the pollution index, almost all the sampling areas have low pollution index, except the one at SanurKaja 7-8 m (SA3 has moderate pollution index.

  10. Energy Harvesting, Electrode Processes and the Partitioning and Speciation of Solid Phase Iron and Sulfur in Marine Sediments

    National Research Council Canada - National Science Library

    Reimers, Clare

    2003-01-01

    .... Sediment, pore water and electrode surface analyses indicated that electricity product ion is coupled to the oxidation of dissolved and solid-phase forms of reduced sulfur supplied from the sediments...

  11. Partitioning of organic matter and heavy metals in a sandy soil: Effects of extracting solution, solid to liquid ratio and pH

    NARCIS (Netherlands)

    Fest, P.M.J.; Temminghoff, E.J.M.; Comans, R.N.J.; Riemsdijk, van W.H.

    2008-01-01

    In sandy soils the behavior of heavy metals is largely controlled by soil organic matter (solid and dissolved organic matter; SOC and DOC). Therefore, knowledge of the partitioning of organic matter between the solid phase and soil solution is essential for adequate predictions of the total

  12. Krypton retention on solid adsorbents

    International Nuclear Information System (INIS)

    Monson, P.R. Jr.

    1981-08-01

    Over a dozen prospective adsorbents for krypton were studied and evaluated with respect to adsorption capacity and cost for dissolver off-gas streams from nuclear reprocessing plants. Results show that, at subambient temperature (-40 0 to -80 0 C), the commercially available hydrogen mordenite has sufficient adsorptive capacity to be the most cost-effective material studied. Silver mordenite has a higher capacity for krypton retention, but is 50 times more expensive than hydrogen mordenite. The results indicate that a solid adsorbent system is feasible and competitive with other developing systems whih utilize fluorocarbon absorption and cryogenic distillation

  13. Use of a dissolved-gas measurement system for reducing the dissolved oxygen at St. Lucie Unit 2

    International Nuclear Information System (INIS)

    Snyder, D.T.; Coit, R.L.

    1993-02-01

    When the dissolved oxygen in the condensate at St. Lucie Unit 2 could not be reduced below the administrative limit of 10 ppB, EPRI cooperated with Florida Power and Light to find the cause and develop remedies. Two problems were identified with the assistance of a dissolved gas measurement system (DGMS) that can detect leaks into condensate when used with argon blanketing. Drain piping from the air ejection system had flooded which decreased its performance, and leaks were found at a strainer flange and a couple expansion joints. Initially the dissolved oxygen content was reduced to about 9 ppB; owever, the dissolved oxygen from Condenser A was consistently higher than that from condenser B. Injection of about 0.4 cubic per minute (CFM) of argon above the hotwell considerably improved the ventilation of Condenser A, reducing the dissolved oxygen about 30% to about 6 ppB. The use of nitrogen was equally effective. While inert gas injection is helpful, it may be better to have separate air ejectors for each condenser. Several recommendations for improving oxygen removal are given

  14. Development of clinical dosage forms for a poorly water-soluble drug II: formulation and characterization of a novel solid microemulsion preconcentrate system for oral delivery of a poorly water-soluble drug.

    Science.gov (United States)

    Li, Ping; Hynes, Sara R; Haefele, Thomas F; Pudipeddi, Madhu; Royce, Alan E; Serajuddin, Abu T M

    2009-05-01

    The solution of a poorly water-soluble drug in a liquid lipid-surfactant mixture, which served as a microemulsion preconcentrate, was converted into a solid form by incorporating it in a solid polyethylene glycol (PEG) matrix. The solid microemulsion preconcentrates thus formed consisted of Capmul PG8 (propylene glycol monocaprylate) as oil, Cremophor EL (polyoxyl 35 castor oil) as surfactant, and hydrophilic polymer PEG 3350 as solid matrix. The drug (aqueous solubility: 0.17 microg/mL at pH 1-8 and 25 degrees C) was dissolved in a melt of the mixture at 65-70 degrees C and then the hot solution was filled into hard gelatin capsules; the liquid gradually solidified upon cooling below 55 degrees C. The solid system was characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), confocal Raman microscopy (CRM), and the dispersion testing in water. It was confirmed that a solid microemulsion preconcentrate is a two-phase system, where clusters of crystalline PEG 3350 formed the solid structure (m.p. 55-60 degrees C) and the liquid microemulsion preconcentrate dispersed in between PEG 3350 crystals as a separate phase. The drug remained dissolved in the liquid phase. In vitro release testing showed that the preconcentrate dispersed readily in water forming a microemulsion with the drug dissolved in the oil particles (PEG 3350 did not interfere with the process of self-microemulsification.

  15. Accumulation of dissolved gases at hydrophobic surfaces in water and sodium chloride solutions: Implications for coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Hampton, M.A.; Nguyen, A.V. [University of Queensland, Brisbane, Qld. (Australia). Division of Chemical Engineering

    2009-08-15

    Dissolved gases can preferentially accumulate at the hydrophobic solid-water interface as revealed by neutron reflectivity measurements. In this paper, atomic force microscopy (AFM) was used to examine accumulation of dissolved gases at a hydrophobic surface in water and sodium chloride solutions. The solvent-exchange method was used to artificially form gaseous domains accumulated at the interface suitable for AFM imaging. Smooth graphite surfaces were used as model surfaces to minimize the secondary effect of surface roughness on the imaging. The concentration of NaCl up to 1 M was found to have a negligible influence on the geometry and population of pre-existing nanobubbles, nanopancakes and nanobubble-nanopancake composites. The implications of the findings on coal flotation in saline water are discussed in terms of attraction between hydrophobic surfaces in water, bubble-particle attachment and hydrophobic coagulation between particles.

  16. K Basin Sludge Conditioning Process Testing Partitioning of PCBs in Dissolver Solution After Neutralization/Precipitation (Caustic Adjustment)

    International Nuclear Information System (INIS)

    Schmidt, A.J.; Thornton, B.M.; Hoppe, E.W.; Mong, G.M.; Silvers, K.L.; Slate, S.O.

    1999-01-01

    The purpose of the work described in this report was to gain a better understanding of how PCB congeners present in a simulated K Basin sludge dissolver solution will partition upon neutralization and precipitation (i.e., caustic adjustment). In a previous study (Mong et al. 1998),the entire series of sludge conditioning steps (acid dissolution, filtration, and caustic adjustment) were examined during integrated testing. In the work described here, the caustic adjustment step was isolated to examine the fate of PCBs in more detail within this processing step. For this testing, solutions of dissolver simulant (containing no solids) with a known initial concentration of PCB congeners were neutralized with caustic to generate a clarified supernatant and a settled sludge phase. PCBs were quantified in each phase (including the PCBs associated with the test vessel rinsates), and material balance information was collected

  17. Doping profile measurements in silicon using terahertz time domain spectroscopy (THz-TDS) via electrochemical anodic oxidation

    Science.gov (United States)

    Tulsyan, Gaurav

    Doping profiles are engineered to manipulate device properties and to determine electrical performances of microelectronic devices frequently. To support engineering studies afterward, essential information is usually required from physically characterized doping profiles. Secondary Ion Mass Spectrometry (SIMS), Spreading Resistance Profiling (SRP) and Electrochemical Capacitance Voltage (ECV) profiling are standard techniques for now to map profile. SIMS yields a chemical doping profile via ion sputtering process and owns a better resolution, whereas ECV and SRP produce an electrical doping profile detecting free carriers in microelectronic devices. The major difference between electrical and chemical doping profiles is at heavily doped regions greater than 1020 atoms/cm3. At the profile region over the solubility limit, inactive dopants induce a flat plateau and detected by electrical measurements only. Destructive techniques are usually designed as stand-alone systems to study impurities. For an in-situ process control purpose, non-contact methods, such as ellipsometry and non-contact capacitance voltage (CV) techniques are current under development. In this theses work, terahertz time domain spectroscopy (THz-TDS) is utilized to achieve electrical doping profile in both destructive and non-contact manners. In recent years the Terahertz group at Rochester Institute Technology developed several techniques that use terahertz pulses to non-destructively map doping profiles. In this thesis, we study a destructive but potentially higher resolution version of the terahertz based approach to map the profile of activated dopants and augment the non-destructive approaches already developed. The basic idea of the profile mapping approach developed in this MS thesis is to anodize, and thus oxidize to silicon dioxide, thin layers (down to below 10 nm) of the wafer with the doping profile to be mapped. Since the dopants atoms and any free carriers in the silicon oxide thin

  18. DEVELOPMENT OF SUSTAINED RELEASE TABLETS CONTAINING SOLID DISPERSIONS OF BACLOFEN

    Directory of Open Access Journals (Sweden)

    K. H. Janardhana

    2015-07-01

    Full Text Available Sustained release tablets containing solid dispersions granules of a poorly water soluble drug were prepared to investigate the controlled release of the drug. Baclofen was chosen because of its poor water solubility and short elimination half-life. Poloxamer 188 and PEG 6000 were used as solid dispersion carrier. Free flowing solid dispersion granules were prepared by adsorbing the melt of the drug and carriers onto the surface of an adsorbent, Carbopol 934P followed by direct compression with HPMC K4M and HPMC K100 to obtain an solid dispersion loaded sustained release tablets. FTIR studies confirmed that the compatibility of drug and carriers. Differential scanning calorimetry (DSC and X-ray diffraction (XRD revealed partially amorphous structures of the drug in solid dispersion granules. The solid dispersion granules dissolved completely within 30 min, which was much faster than that of pure drug baclofen. The sustained release of baclofen from the solid dispersion containing tablet was achieved for 2 h in gastric fluid (pH 1.2 and for up to 10 h in intestinal fluid (pH 6.8. A combination of solid dispersion techniques using adsorption and sustained release concepts is a promising approach to control the release rate of poorly water-soluble drugs.

  19. DEVELOPMENT OF SUSTAINED RELEASE TABLETS CONTAINING SOLID DISPERSIONS OF BACLOFEN

    Directory of Open Access Journals (Sweden)

    K. H. Janardhana

    2013-12-01

    Full Text Available Sustained release tablets containing solid dispersions granules of a poorly water soluble drug were prepared to investigate the controlled release of the drug. Baclofen was chosen because of its poor water solubility and short elimination half-life. Poloxamer 188 and PEG 6000 were used as solid dispersion carrier. Free flowing solid dispersion granules were prepared by adsorbing the melt of the drug and carriers onto the surface of an adsorbent, Carbopol 934P followed by direct compression with HPMC K4M and HPMC K100 to obtain an solid dispersion loaded sustained release tablets. FTIR studies confirmed that the compatibility of drug and carriers. Differential scanning calorimetry (DSC and X-ray diffraction (XRD revealed partially amorphous structures of the drug in solid dispersion granules. The solid dispersion granules dissolved completely within 30 min, which was much faster than that of pure drug baclofen. The sustained release of baclofen from the solid dispersion containing tablet was achieved for 2 h in gastric fluid (pH 1.2 and for up to 10 h in intestinal fluid (pH 6.8. A combination of solid dispersion techniques using adsorption and sustained release concepts is a promising approach to control the release rate of poorly water-soluble drugs.

  20. Effectiveness of vegetation on phosphorus removal from reclaimed water by a subsurface flow wetland in a coastal area

    Institute of Scientific and Technical Information of China (English)

    Baoqing Shan; Liang Ao; Chunming Hu; Jiayu Song

    2011-01-01

    This work was conducted to evaluate the effectiveness and influence factors of vegetation on phosphorus (P) removal from reclaimed water in constructed wetlands.Comparisons were conducted between one pilot scale subsurface flow wetland (P-SSFW) and two demonstration subsurface flow wetlands,which were series-wound and named as first subsurface flow wetland (F-SSFW),and second subsurface flow wetland (S-SSFW),respectively.The three wetlands had the same vegetation and substrate,but different pH values,total dissolved solids (TDS) and P loads.Results showed that the P content in the vegetation shoots of the F-SSFW was 2.16 mg/g,while 2.31 mg/g in the S-SSFW and 2.69 mg/g in the P-SSFW.These differences were likely caused by the higher pH and TDS in the reclaimed water.The P content also differed among the tissues of the plant,which were 5.94-6.44 mg/g,2.20-2.77 mg/g,1.31-1.46mg/g and 1.53-1.88 mg/g in the flowers,leaves,stems,and roots,respectively.The greatest discrepancy was observed in the leaves,indicating that the environment of the wetlands had the greatest influence on the leaves.When the total phosphorus (TP) load was lower,the proportion of P removed by vegetation assimilation was 16.17% in the P-SSFW,12.90% in the F-SSFW and 13.29% in the S-SSFW.However,the relative removal efficiency by vegetation among the three wetlands did not vary greatly from that observed in other studies.Moreover,the influence of pH,TDS and TP load was not as great as the influence of the vegetation species,type of substrate,influent style or climate.

  1. Dissolvable layered double hydroxide as an efficient nanosorbent for centrifugeless air-agitated dispersive solid-phase extraction of potentially toxic metal ions from bio-fluid samples.

    Science.gov (United States)

    Rajabi, Maryam; Arghavani-Beydokhti, Somayeh; Barfi, Behruz; Asghari, Alireza

    2017-03-08

    In the present work, a novel nanosorbent namely layered double hydroxides with 4-amino-5-hydroxyl-2,7-naphthalendisulfonic acid monosodium salt interlayer anion (Mg-Al-AHNDA-LDH) was synthesized and applied as a dissolvable nanosorbent in a centrifugeless ultrasound-enhanced air-agitated dispersive solid-phase extraction (USE-AA-D-SPE) method. This method was used for the separation and preconcentration of some metal ions including Cd 2+ , Cr 6+ , Pb 2+ , Co 2+ , and Ni 2+ prior to their determination using the micro-sampling flame atomic absorption spectrometry (MS-FAAS) technique. The most interesting aspect of this nanosorbent is its immediate dissolvability at pH values lower than 4. This capability drastically eliminates the elution step, leading to a great improvement in the extraction efficiency and a decrease in the extraction time. Also in this method, the use of a syringe nanofilter eliminates the need for the centrifugation step, which is time-consuming and essentially causes the analysis to be off-line. Several effective parameters governing the extraction efficiency including the sample solution pH, amount of nanosorbent, eluent condition, number of air-agitation cycles, and sonication time were investigated and optimized. Under the optimized conditions, the good linear dynamic ranges of 2-70, 6-360, 7-725, 7-370, and 8-450 ng mL -1 for the Cd 2+ , Cr 6+ , Pb 2+ , Co 2+ and Ni 2+ ions, respectively, with the correlation of determinations (R 2 s) higher than 0.997 were obtained. The limits of detection (LODs) were found to be 0.6, 1.7, 2.0, 2.1, and 2.4 for the Cd 2+ , Cr 6+ , Pb 2+ , Co 2+ , and Ni 2+ ions, respectively. The intra-day and inter-day precisions (percent relative standard deviations (%RSDs) (n = 5)) were below 7.8%. The proposed method was also successfully applied for the extraction and determination of the target ions in different biological fluid and tap water samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Electrodialysis-ion exchange for the separation of dissolved salts

    International Nuclear Information System (INIS)

    Baroch, C.J.; Grant, P.J.

    1995-01-01

    The Department of Energy generates and stores a significant quantity of low level, high level, and mixed wastes. As some of the DOE facilities are decontaminated and decommissioned, additional and possibly different forms of wastes will be generated. A significant portion of these wastes are aqueous streams containing acids, bases, and salts, or are wet solids containing inorganic salts. Some of these wastes are quite dilute solutions, whereas others contain large quantities of nitrates either in the form of dissolved salts or acids. Many of the wastes are also contaminated with heavy metals, radioactive products, or organics. Some of these wastes are in storage because a satisfactory treatment and disposal processes have not been developed. This report describes the process of electrodialysis-ion exchange (EDIX) for treating aqueous wastes streams consisting of nitrates, sodium, organics, heavy metals, and radioactive species

  3. Predicting consumer preferences for mineral composition of bottled and tap water.

    Science.gov (United States)

    Platikanov, Stefan; Hernández, Alejandra; González, Susana; Luis Cortina, Jose; Tauler, Roma; Devesa, Ricard

    2017-01-01

    The overall liking for taste of water was correlated with the mineral composition of selected bottled and tap waters. Sixty-nine untrained volunteers assessed and rated twenty-five different commercial bottled and tap waters from. Water samples were physicochemical characterised by analysing conductivity, pH, total dissolved solids (TDS) and major anions and cations: HCO 3 - , SO 4 2- , Cl - , NO 3 - , Ca 2+ , Mg 2+ , Na + , and K + . Residual chlorine levels were also analysed in the tap water samples. Globally, volunteers preferred waters rich in calcium bicarbonate and sulfate, rather than in sodium chloride. This study also demonstrated that it was possible to accurately predict the overall liking by a Partial Least Squares regression using either all measured physicochemical parameters or a reduced number of them. These results were in agreement with previously published results using trained panellists. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Performance of indigenously fabricated pyramid type solar desalination unit at Nawabshah

    International Nuclear Information System (INIS)

    Memon, A.H.; Rajpar, A.H.; Memon, N.A.

    2010-01-01

    The performance of locally fabricated pyramid type solar desalination unit was studied and compared with the conventional basin type solar still. Both stills were initially filled with same quantity of brackish water. Their performance was studied in terms of the quality of water produced, quantity of water desalinated per hour and total quantity of water desalinated per day during the time under study. The experiments were conducted and various parameters were recorded from 9-15 hours daily. These results showed that pyramid solar still produced 20% higher desalinated water as compared to the conventional double slope basin type solar still. This study showed that the productivity rate of soar still is dependent upon geometrical configuration of solar still. It was observed that the units can highly reduce the salinity, TDS (Total Dissolved Solids) and EC (Electrical Conductivity) of the saline ground water providing the availability of safe drinking water. (author)

  5. Chemical composition of meat (kernel) and nut water of major coconut (cocos nucifera l.) cultivars at coastal area of Pakistan

    International Nuclear Information System (INIS)

    Wahid, A.; Ahmad, S.S.; Butt, Z.

    2011-01-01

    Three varieties of the coconut (Tall, Dwarf and Hybrid) were subjected to analyse for physicochemical properties of meat and nut water, Sodium (Na), Moisture %, Ash %, Calcium (Ca), Iron (Fe), Magnesium (Mg), Cobalt (Co), Potassium (K), pH, Volatile matters, Caloric value (CV) and Total dissolved solids (TDS). The chemical analysis of Meat (mature and immature stage) showed high percentage of Mg and Na in study varieties. However, it was apparent that major portion of stored Ca, Mg, and Na were lodged in the nut water. The nutrients Na, K and Ca were high or less evenly distributed in the Kernel and Water, whereas there was nutrient a comparatively greater concentration of P and Mg in the Water. The K (56% to 81%) was higher in nut water as compared to other ones. The results showed Mg 45% to 70% and Na 1% to 53% in mature and immature meat, respectively. (author)

  6. Characterization of naproxen-loaded solid SMEDDSs prepared by spray drying: the effect of the polysaccharide carrier and naproxen concentration.

    Science.gov (United States)

    Čerpnjak, Katja; Zvonar, Alenka; Vrečer, Franc; Gašperlin, Mirjana

    2015-05-15

    The purpose of this study was to prepare solid SMEDDS (sSMEDDS) particles produced by spray-drying using maltodextrin (MD), hypromellose (HPMC), and a combination of the two as a solid carrier. Naproxen (NPX) as the model drug was dissolved (at 6% concentration) or partially suspended (at 18% concentration) in a liquid SMEDDS composed of Miglyol(®) 812, Peceol™, Gelucire(®) 44/14, and Solutol(®) HS 15. Among the sSMEDDSs tested, the MD-based sSMEDDSs (with a granular, smooth-surfaced, microspherical appearance) preserved the self-microemulsifying properties of liquid SMEDDSs and exhibited dissolution profiles similar to those of liquid SMEDDSs, irrespective of the concentration of NPX. In contrast, HPMC-based sSMEDDSs (irregular-shaped microparticles) exhibited slightly prolonged release times due to the polymeric nature of the carrier. Differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), and Raman mapping analysis confirmed molecularly dissolved NPX (at 6% of drug loading), whereas at 18% NPX loading drug is partially molecularly dissolved and partially in the crystalline state. Copyright © 2015. Published by Elsevier B.V.

  7. Numerical simulations of crystal growth in a transdermal drug delivery system

    Science.gov (United States)

    Zeng, Jianming; Jacob, Karl I.; Tikare, Veena

    2004-02-01

    Grain growth by precipitation and Ostwald ripening in an unstressed matrix of a dissolved crystallizable component was simulated using a kinetic Monte Carlo model. This model was used previously to study Ostwald ripening in the high crystallizable component regime and was shown to correctly simulate solution, diffusion and precipitation. In this study, the same model with modifications was applied to the low crystallizable regime of interest to the transdermal drug delivery system (TDS) community. We demonstrate the model's utility by simulating precipitation and grain growth during isothermal storage at different supersaturation conditions. The simulation results provide a first approximation for the crystallization occurring in TDS. It has been reported that for relatively higher temperature growth of drug crystals in TDS occurs only in the middle third of the polymer layer. The results from the simulations support these findings that crystal growth is limited to the middle third of the region, where the availability of crystallizable components is the highest, for cluster growth at relatively high temperature.

  8. Ternary and quaternary solid solutions in rare earth alloy phases with the CaCu5-type structure

    International Nuclear Information System (INIS)

    Malani, G.K.; Raman, A.; Mohanty, R.C.

    1992-01-01

    Crystal structural data were analyzed in seleced CaCu 5 -type ternary and quaternary solid solutions to assess the crystal chemical characteristics and stability features of the CaCu 5 -type structure in rare earth containing alloy phases. LaNi 5 was found to dissolve 100 mol% LaCu 5 , 100 mol% ErNi 5 , about 50 mol% LaIr 5 , 40 mol% 'LaMn 5 ', 20 mol% 'LaFe 5 ', and 25 mol% ErRh 5 . In contrast, LaCo 5 did not dissolve any Mn or any of the other elements other than Al - it dissolved about 20 mol% 'LaAl 5 '. LaCu 5 behaves similar to LaNi 5 in solid solutions. From the lack of solubility of any other element in LaFe 5 , LaCo 5 , LaRh 5 , and LaIr 5 and their great instability, these are inferred to be borderline cases in the realm of the CaCu 5 -type structure. In the CaCu 5 and related crystal structures, Ir is compatible with Ni, but not with Co or Rh, and Rh is not compatible with either Ni or Ir. (orig.) [de

  9. Millstone 3 condensate dissolved gas monitoring

    International Nuclear Information System (INIS)

    Burns, T.F.; Grondahl, E.E.; Snyder, D.T.

    1988-01-01

    Condensate dissolved oxygen problems at Millstone Point Unit 3 (MP3) were investigated using the Dissolved Gas Monitoring System developed by Radiological and Chemical Technology, Inc. under EPRI sponsorship. Argon was injected into the turbine exhaust basket tips to perform a dissolved gas transport analysis and determine steam jet air ejector gas removal efficiency. The operating configuration of the steam jet air ejector system was varied to determine the effect on gas removal efficiency. Following circulating water chlorination, the gas removal efficiency was determined to evaluate the effect of condenser tube fouling on steam jet air ejector performance

  10. Dissolved oxygen detection by galvanic displacement-induced

    Indian Academy of Sciences (India)

    Dissolved oxygen detection by galvanic displacement-induced graphene/silver nanocomposite ... dissolved oxygen (DO) detection based on a galvanic displacement synthesized reduced graphene oxide–silver nanoparticles ... Current Issue

  11. Mathematical modeling of dissolved oxygen in fish ponds ...

    African Journals Online (AJOL)

    Mathematical modeling of dissolved oxygen in fish ponds. WJS Mwegoha, ME Kaseva, SMM Sabai. Abstract. A mathematical model was developed to predict the effects of wind speed, light, pH, Temperature, dissolved carbon dioxide and chemical oxygen demand (COD) on Dissolved Oxygen (DO) in fish ponds. The effects ...

  12. Retrofitting and operation solid radwaste system Dresden Station, Units 2 and 3

    International Nuclear Information System (INIS)

    Testa, J.; Homer, J.C.

    1982-01-01

    Units 2 and 3 at Dresden Station are twin 794 MW (net) BWR units that became operational in 1970 and 1971. The waste streams are typical of BWR stations, namely, bead resin and filter sludge (powdered resins and diatomaceous earth), evaporator concentrate containing approximately 25% dissolved solids and dry active waste. The original solid radwaste system utilized cement for solidification in open top 55 gallon drums. Remote handling was provided by means of a monorail with moving platforms supporting the drums. A relatively light-weight compactor was used to compact DAW into 55 gallon drums. Difficulties were experienced with this system

  13. Role of natural dissolved organic compounds in determining the concentrations of americium in natural waters

    International Nuclear Information System (INIS)

    Nelson, D.M.; Orlandini, K.A.

    1985-01-01

    Concentrations of 241 Am, both in solution and bound to suspended particulate matter, have been measured in several North American lakes. Dissolved concentrations vary from 0.4 μBq/L to 85 μBq/L. The 241 Am in these lakes originated solely from global fallout and hence entered all lakes in the same physiocochemical form. The observed differences in solubility behavior must, therefore, be attributable to chemical and/or hydrological differences among the lakes. Concentrations of dissolved 241 Am are highly correlated with the corresponding concentrations of /sup 239, 240/Pu(III,IV), suggesting that a common factor is responsible for maintaining both in solution. The K/sub D/ values for 241 Am and /sup 239, 240/Pu(III,IV) are highly correlated with the concentrations of dissolved organic carbon (DOC) in the waters, suggesting that the common factor is the formation of soluble complexes with natural DOC for both elements. This hypothesis was tested in a series of laboratory experiments in which the DOC from several of the lakes was isolated by ultrafiltration. Plots of K/sub D/, as a function of DOC concentration, show K/sub D/ to be very high (approx.10 6 ) at low DOC concentrations. Above critical concentrations (a few mg/L DOC) the K/sub D/ values begin a progressive decrease with increasing DOC. We conclude that in most surface waters, the dissolved 241 Am concentration is regulated by an adsorption/desorption equilibrium with the sediments (and suspended solids) and the value of K/sub D/ that characterizes this equilibrium is largely determined by the concentration of natural DOC in the water. 11 refs., 3 figs., 2 tabs

  14. Bulk metal concentrations versus total suspended solids in rivers: Time-invariant & catchment-specific relationships.

    Science.gov (United States)

    Nasrabadi, Touraj; Ruegner, Hermann; Schwientek, Marc; Bennett, Jeremy; Fazel Valipour, Shahin; Grathwohl, Peter

    2018-01-01

    Suspended particles in rivers can act as carriers of potentially bioavailable metal species and are thus an emerging area of interest in river system monitoring. The delineation of bulk metals concentrations in river water into dissolved and particulate components is also important for risk assessment. Linear relationships between bulk metal concentrations in water (CW,tot) and total suspended solids (TSS) in water can be used to easily evaluate dissolved (CW, intercept) and particle-bound metal fluxes (CSUS, slope) in streams (CW,tot = CW + CSUS TSS). In this study, we apply this principle to catchments in Iran (Haraz) and Germany (Ammer, Goldersbach, and Steinlach) that show differences in geology, geochemistry, land use and hydrological characteristics. For each catchment, particle-bound and dissolved concentrations for a suite of metals in water were calculated based on linear regressions of total suspended solids and total metal concentrations. Results were replicable across sampling campaigns in different years and seasons (between 2013 and 2016) and could be reproduced in a laboratory sedimentation experiment. CSUS values generally showed little variability in different catchments and agree well with soil background values for some metals (e.g. lead and nickel) while other metals (e.g. copper) indicate anthropogenic influences. CW was elevated in the Haraz (Iran) catchment, indicating higher bioavailability and potential human and ecological health concerns (where higher values of CSUS/CW are considered as a risk indicator).

  15. The Role of the Dynamic Sensory Perception in the Reformulation of Shakes: Use of TDS for Studying the Effect of Milk, Fiber, and Flavor Addition.

    Science.gov (United States)

    Tomadoni, Barbara; Fiszman, Susana; Moreira, María R; Tarrega, Amparo

    2018-01-01

    Various factors need to be taken into account when reformulating a food or beverage. The food components, not only macronutrients but also minor ingredients such as flavoring agents, could affect the perception of the sensory sensations, importantly their dynamic aspects, as rising and duration, which are not normally considered. The novelty of this approach is the study of the effects of the addition of several ingredients (fiber, extra milk powder, and strawberry flavoring) on the dynamic perception of a food item (strawberry shakes) using the temporal dominance of sensations (TDS) technique. The occurrence and duration of the key sensory sensations (acid, natural strawberry flavor, thick, sweet, candy strawberry flavor, and milk flavor) extracted from the TDS curves were analyzed and linked to the composition factors and liking and expectations of satiety scores. For example, the addition of flavoring increased the liking scores (increments ranging from 0.3 to 1.1) that was linked to the attenuation of acid sensation; and the addition of extra milk powder increased the expectation of satiety scores (increments ranging from 0.5 to 0.7) that was linked to the perception of early thick sensation in the mouth. In general, the more complex sensory profiles the higher liking and expectations of satiety. This work is a case study on how temporal sensory methods can contribute important information on the actual perception of food during consumption. Depending on the ingredients added these sensory properties appear at different times and with different dominance during evaluation affecting liking or fullness expectations. In consequence, the temporal sensory properties should be taken into account when designing or reformulating food. © 2017 Institute of Food Technologists®.

  16. Physico-chemical studies of effluents and emission of ghee/edible oil industries in Pakistan

    International Nuclear Information System (INIS)

    Ahmed, I.; Ali, S.; Jan, M.R.

    1999-01-01

    Samples of the effluents from various Ghee/Edible Oil Industries were collected on fortnightly basis from July 1993 to June 1994 and the emissions from January to April 1994. Parameters such as temperature, pH, conductivity, total dissolved solids (TDS), total suspended solids (TSS), total alkalinity total acidity, total hardness, chemical oxygen demand (COD). chlorides, sulphates, phosphates, silica, calcium magnesium, sodium, and iron were determined in the effluents, Trace metals like copper, manganese, nickel, and zinc were determined by atomic absorption spectroscopy, whereas SO/sub 2/, CO CO/sub 2/, hydrocarbons, hydrogen, nitrogen, oxygen and argon were examined in the flue gases by Gas Chromatography and other standard techniques such as Orsat Gas Analyzer and Dragger Detection Tubes. Remedial measures were suggested for the pollutants exceeding the National Environmental Quality Standards, (NEQS). Parameters like chlorine, ammonia, sulphides, arsenic, cadmium, chromium, cobalt, lead and tin were also analyzed in the effluents and were found to be nil or below the detection limit, while particulate matters, HCl, chlorine, HF, H/sub 2/S, mercaptans and NH/sub 3/ were found to be nil in the flue gases. (author)

  17. Relation between the amount of dissolved water and metals dissolved from stainless steel or aluminum plate in safflower oil

    Energy Technology Data Exchange (ETDEWEB)

    Takasago, Masahisa; Takaoka, Kyo

    1986-12-01

    The amount of water dissolved in safflower oil at the frying temperature (180 deg C) was 518 -- 1012 ppM, allowing water to drop continuously (0.035 g/2 min) into the oil for 1 -- 3 h. When the oil was heated with metal plates under the same conditions, the amount of dissolved water in the oil increased more than in the absence of the metal plates. In case of stainless steel, the amount was 1.26 to 1.33 times, and with aluminum plates, 1.06 to 1.13 times the amount without plates. When these metal plates were heated with the oil under the above conditions, the water dissolved the metal of the plates into the oil. In case of stainless steel, iron dissolved from 0.17 to 0.77 ppM, nickel, 0.04 ppM and chromium, from 0.02 to 0.03 ppM. Similarly, the amount of aluminum dissolved from the aluminum plate was from 0.10 to 0.45 ppM.

  18. Particle count monitoring of reverse osmosis water treatment for removal of low-level radionuclides

    International Nuclear Information System (INIS)

    Moritz, E.J.; Hoffman, C.R.; Hergert, T.R.

    1995-01-01

    Laser diode particle counting technology and analytical measurements were used to evaluate a pilot-scale reverse osmosis (RO) water treatment system for removal of particulate matter and sub-picocurie low-level radionuclides. Stormwater mixed with Waste Water Treatment Plant (WWTP) effluent from the Rocky Flats Environmental Technology Site (RFETS), formerly a Department of Energy (DOE) nuclear weapons production facility, were treated. No chemical pretreatment of the water was utilized during this study. The treatment system was staged as follows: multimedia filtration, granular activated carbon adsorption, hollow tube ultrafiltration, and reverse osmosis membrane filtration. Various recovery rates and two RO membrane models were tested. Analytical measurements included total suspended solids (TSS), total dissolved solids (TDS), gross alpha (α) and gross beta (β) activity, uranium isotopes 233/234 U and 238 U, plutonium 239/240 Pu, and americium 241 Am. Particle measurement between 1--150 microns (μ) included differential particle counts (DPC), and total particle counts (TPC) before and after treatment at various sampling points throughout the test. Performance testing showed this treatment system produced a high quality effluent in clarity and purity. Compared to raw water levels, TSS was reduced to below detection of 5 milligrams per liter (mg/L) and TDS reduced by 98%. Gross α was essentially removed 100%, and gross β was reduced an average of 94%. Uranium activity was reduced by 99%. TPC between 1-150μ were reduced by an average 99.8% to less than 1,000 counts per milliliter (mL), similar in purity to a good drinking water treatment plant. Raw water levels of 239/240 Pu and 241 Am were below reliable quantitation limits and thus no removal efficiencies could be determined for these species

  19. Dissolved air flotation for treating wastewater of the nuclear industry. Preliminary results

    International Nuclear Information System (INIS)

    Ortiz-Oliveros, H.B.; Jimenez-Moleon, M.C.; Cruz-Gonzalez, D.

    2012-01-01

    Preliminary testing of dissolved air flotation (DAF) for wastewater treatment is presented. A combined coagulation-flocculation/DAF column system is used to remove oil and 60 Co from nuclear industry wastewater. In this work, operational conditions and coagulant/flocculant concentrations are optimized by varying pH. Determinations of air-solids ratio (G/S), retention time (θ), pressure (P), volume of depressurized air-water mixture (V), turbidity and 60 Co concentrations are reported. The effect of the treatment on the efficiency of separation of oily residues is also discussed. The results establish that the coagulant/flocculant system, formed by a modified polyamine (25 mgL -1 ) and a slightly cationic polyacrylamide (1.5 mgL -1 ), under specific operational conditions (pH = 7, mixing intensity Im 1 = 300 s -1 and Im 2 = 30 s -1 ), allowed the destabilization of colloidal matter, resulting in resistant flocs. It was concluded that by using G/S = 0.3, θ = 15 min, P = 620 kPa and V = 0.0012 m 3 , the greatest percentage removals of oil, turbidity, total cobalt and 60 Co were obtained. These preliminary results then show that dissolved air flotation represents a good alternative for treatment of nuclear industry wastewater contaminated with radionuclides. (author)

  20. ICPP custom dissolver explosion recovery

    International Nuclear Information System (INIS)

    Demmer, R.; Hawk, R.

    1992-01-01

    This paper discusses the recovery from the February 9, 1991, small scale explosion in a custom processing dissolver at the Idaho Chemical Processing Plant (ICPP) a Department of Energy facility at the Idaho National Engineering Laboratory. The custom processing facility is a limited production area designed to recover unirradiated uranium fuel. A small amount of the nuclear material received and stored at the ICPP is unique and incompatible with the major head end dissolution processes. Custom processing is a small scale dissolution facility for processing these materials in an economical fashion in the CPP-627 hot chemistry laboratory. Two glass dissolvers were contained in a large walk in hood area. Utilities for dissolution and connections to the major ICPP uranium separation facility were provided. The fuel processing operations during this campaign involved dissolving uranium metal, uranium oxides, and uranium/fissium alloy in nitric acid

  1. Dissolving Microneedle Patches for Dermal Vaccination.

    Science.gov (United States)

    Leone, M; Mönkäre, J; Bouwstra, J A; Kersten, G

    2017-11-01

    The dermal route is an attractive route for vaccine delivery due to the easy skin accessibility and a dense network of immune cells in the skin. The development of microneedles is crucial to take advantage of the skin immunization and simultaneously to overcome problems related to vaccination by conventional needles (e.g. pain, needle-stick injuries or needle re-use). This review focuses on dissolving microneedles that after penetration into the skin dissolve releasing the encapsulated antigen. The microneedle patch fabrication techniques and their challenges are discussed as well as the microneedle characterization methods and antigen stability aspects. The immunogenicity of antigens formulated in dissolving microneedles are addressed. Finally, the early clinical development is discussed.

  2. The relation between the amount of dissolved water and metals dissolved from stainless steel or aluminum plate in safflower oil

    International Nuclear Information System (INIS)

    Takasago, Masahisa; Takaoka, Kyo

    1986-01-01

    The amount of water dissolved in safflower oil at the frying temperature (180 deg C) was 518 ∼ 1012 ppm, allowing water to drop continuously (0.035 g/2 min) into the oil for 1 ∼ 3 h. When the oil was heated with metal plates under the same conditions, the amount of dissolved water in the oil increased more than in the absence of the metal plates. In case of stainless steel, the amount was 1.26 to 1.33 times, and with aluminum plates, 1.06 to 1.13 times the amount without plates. When these metal plates were heated with the oil under the above conditions, the water dissolved the metal of the plates into the oil. In case of stainless steel, iron dissolved from 0.17 to 0.77 ppm, nickel, 0.04 ppm and chromium, from 0.02 to 0.03 ppm. Similarly, the amount of aluminum dissolved from the aluminum plate was from 0.10 to 0.45 ppm. (author)

  3. Characteristics and seasonal variation of hydrochemistry in the Tangra Yumco basin, central Tibetan Plateau, and its response to Indian summer monsoon

    Science.gov (United States)

    Wang, Junbo; Qiao, Baojin; Huang, Lei; Zhu, Liping

    2016-04-01

    Lake Tangra Yumco, located in central Tibetan Plateau, is the deepest lake recorded on the Plateau with a maximum water depth of 230m. Several studies have been conducted focused on paleoenvironmental changes utilizing lake sediemts cores and high lake terraces. The results revealed a significant lake level decreasing up to 180m from early Holocene and Tangra Yumco was separated from two other adjacent lakes since then. A high resolution continuous lake sediment record covering the past 17.4 cal ka has been established. However, compared with the high lake level and paleoenvironmental studies, modern investigations on the water in this basin are still lack. A comprehensive investigation of hydrochemistry is helpful to understand the modern environment and its response to climate change. This study focuses on the characteristics, seasonal variation and controlling mechanism of hydrochemistry in Tangra Yumco basin, including lake water, river water and rainfall water. Lake water, river water and rainfall water were collected for analyzing major ionic composition in Tangra Yumco basin during 2013-2014. The results showed that Na+ is the major cation of lake water; Ca2+ is the major cation of river and rainfall water, whereas the major anion of all samples is HCO3-. Comparison of the concentration of calcium in river water, lake water and surface sediments reveals a significant carbonate precipitation process within the lake. The chemical composition of lake is mainly controlled by evaporation and crystallization, whereas river water and rainfall water are mainly controlled by carbonate weathering. Among all rivers, DR10 and DR1 locate in the north and west part of Tangra Yumco where dense local populations live nearby show the highest and second highest total dissolved solid (TDS) with a small catchment and a high content of SO42-, indicating that anthropogenic input and planting have likely a strong influence on chemical compositions of both rivers. The TDS of lake

  4. Effects of dissolved organic matter from a eutrophic lake on the freely dissolved concentrations of emerging organic contaminants.

    Science.gov (United States)

    Xiao, Yi-Hua; Huang, Qing-Hui; Vähätalo, Anssi V; Li, Fei-Peng; Chen, Ling

    2014-08-01

    The authors studied the effects of dissolved organic matter (DOM) on the bioavailability of bisphenol A (BPA) and chloramphenicol by measuring the freely dissolved concentrations of the contaminants in solutions containing DOM that had been isolated from a mesocosm in a eutrophic lake. The abundance and aromaticity of the chromophoric DOM increased over the 25-d mesocosm experiment. The BPA freely dissolved concentration was 72.3% lower and the chloramphenicol freely dissolved concentration was 56.2% lower using DOM collected on day 25 than using DOM collected on day 1 of the mesocosm experiment. The freely dissolved concentrations negatively correlated with the ultraviolent absorption coefficient at 254 nm and positively correlated with the spectral slope of chromophoric DOM, suggesting that the bioavailability of these emerging organic contaminants depends on the characteristics of the DOM present. The DOM-water partition coefficients (log KOC ) for the emerging organic contaminants positively correlated with the aromaticity of the DOM, measured as humic acid-like fluorescent components C1 (excitation/emission=250[313]/412 nm) and C2 (excitation/emission=268[379]/456 nm). The authors conclude that the bioavailability of emerging organic contaminants in eutrophic lakes can be affected by changes in the DOM. © 2014 SETAC.

  5. Production and Composition of Pyrogenic Dissolved Organic Matter From a Logical Series of Laboratory-Generated Chars

    Directory of Open Access Journals (Sweden)

    Kyle W. Bostick

    2018-04-01

    Full Text Available Though pyrogenic carbon (pyC has been assumed to be predominantly stable, degradation and transfers of pyC between various pools have been found to influence its cycling and longevity in the environment. Dissolution via leaching may be the main control on loss processes such as microbial or abiotic oxidation, mineral sorption, or export to aquatic systems. Yet, little is known about the controls on pyrogenic dissolved organic matter (pyDOM generation or composition. Here, the yield and composition of pyDOM generated through batch leaching of a thermal series of oak and grass biochars, as well as several non-pyrogenic reference materials, was compared to that of their parent solids. Over 17 daily leaching cycles, biochars made from oak at 250–650°C released decreasing amounts of C on both a weight (16.9–0.3%, respectively and C yield basis (7.4–0.2% C, respectively. Aryl-C represented an estimated 32–82% of C in the parent solids (identified by 13C-NMR, but only 7–38% in the leachates (identified by 1H-NMR, though both increased with pyrolysis temperature. PyC, often operationally defined as condensed aromatic carbon (ConAC, was quantified using the benzenepolycarboxylic acid (BPCA method. Tri- and tetra-carboxylated BPCAs were formed from non-pyrogenic reference materials, thus, only penta- and hexa-carboxylated BPCAs were used to derive a BPCA-C to ConAC conversion factor of 7.04. ConAC made up 24–57% of the pyrogenic solid C (excluding the 250°C biochar, but only about 9–23% of their respective leachates' DOC, though both proportions generally increased with pyrolysis temperature. Weighted BPCA compound distributions, or the BPCA Aromatic Condensation (BACon Index, indicate that ConAC cluster size increased in pyrogenic solids but not in leachates. Additional evidence presented suggests that both aromatic cluster size and O-containing functional group contents in the pyrogenic solid control pyC solubility. Overall, pyDOM was

  6. Study on quality of effluent discharge by the Tiruppur textile dyeing units and its impact on river Noyyal, Tamil Nadu (India).

    Science.gov (United States)

    Rajkumar, A Samuel; Nagan, S

    2010-10-01

    In Tiruppur, 729 textile dyeing units are under operation and these units generate 96.1 MLD of wastewater. The untreated effluent was discharged into the Noyyal River till 1997. After the issuance of directions by Tamil Nadu Pollution Control Board (TNPCB) in 1997, these units have installed 8 common effluent treatment plants (CETP) consisting of physical, chemical and biological treatment units. Some of the units have installed individual ETP (IETP). The treated effluent was finally discharged into the river. The dyeing units use sodium chloride in the dyeing process for efficient fixing of dye in the fabric efficiently. This contributes high total dissolved solids (TDS) and chlorides in the effluent. CETPs and IETPs failed to meet discharge standards of TDS and chlorides and thereby significantly affected the river water quality. TDS level in the river water was in the range of 900 - 6600 mg/L, and chloride was in the range of 230 - 2700 mg/L. Orathupalayam dam is located across Noyyal river at 32 km down stream of Tiruppur. The pollutants carried by the river were accumulated in the dam. TDS in the dam water was in the range of 4250 - 7900 mg/L and chloride was in the range of 1600 - 2700 mg/L. The dam sediments contain heavy metals of chromium, copper, zinc and lead. In 2006, the High Court has directed the dyeing units to install zero liquid discharge (ZLD) plant and to stop discharging of effluent into the river. Accordingly, the industries have installed and commissioned the ZLD plant consisting of RO plant and reject management system in 2010. The effluent after secondary treatment from the CETP is further treated in RO plant. The RO permeate is reused by the member units. The RO reject is concentrated in multiple effect evaporator (MEE)/ mechanical vacuum re-compressor (MVR). The concentrate is crystallized and centrifuged to recover salt. The salt recovered is reused. The liquid separated from the centrifuge is sent to solar evaporation pan. The salt

  7. METHOD OF DISSOLVING URANIUM METAL

    Science.gov (United States)

    Slotin, L.A.

    1958-02-18

    This patent relates to an economicai means of dissolving metallic uranium. It has been found that the addition of a small amount of perchloric acid to the concentrated nitric acid in which the uranium is being dissolved greatly shortens the time necessary for dissolution of the metal. Thus the use of about 1 or 2 percent of perchioric acid based on the weight of the nitric acid used, reduces the time of dissolution of uranium by a factor of about 100.

  8. Efficiency of a constructed wetland for wastewaters treatment

    Directory of Open Access Journals (Sweden)

    Fernanda Travaini-Lima

    Full Text Available AIM: The limnological characteristics of three different inlets water of the constructed wetland were compared in terms of concentration data and loading rate data and evaluated the removal efficiencies of nutrients, solids, BOD5, chlorophyll-a and thermotolerant coliforms (TC by the treatment system; METHODS: The constructed wetland, measuring 82.8 m² and with detention time of 1 hour and 58 minutes in the rainy season and 2 hours and 42 minutes in the dry one, was provided with four species, Cyperus giganteus Vahl, Typha domingensis Pers., Pontederia cordata L. e Eichhornia crassipes (Mart. Solms. The sampling sites evaluated in the dry (D and rainy (R seasons were: inlet water from aquaculture farm = IA; inlet channel of rainwater runoff = IR; inlet from UASB wastewater = IB; outlet wetland = OUT. The conductivity, pH, temperature, dissolved oxygen, alkalinity, BOD5, total soluble and dissolved solids, nitrogen, phosphorus, chlorophyll-a and TC were analyzed. Multivariate analyses, such as Cluster and Principal Components Analysis (PCA, were carried out to group sampling sites with similar limnological characteristics; RESULTS: In the PCA with the concentration data was retained 90.52% variability of data, correlating the inlet IB with high concentrations of conductivity, alkalinity, pH, TC, nutrients and solids. Regarding loading rate data, the PCA was retained 80.9% of the data's total variability and correlated the sampling sites IA D, IA R and OUT R with higher BOD5, chlorophyll-a, TDS, nitrate, nitrite, total-P, temperature, oxygen and water flow. The highest removal efficiencies rates occurred in the dry season, mainly in concentration, with 78% of ammonia, 95.5% of SRP, 94.9% of TSS and 99.9% of TC; CONCLUSIONS: The wetland was highly efficacious in the removal of nutrients, solids, BOD5, chlorophyll-a and TC, mainly during the dry season. The system restructuring to increase the detention time during the rainy season and a pre

  9. Biotransformation of Domestic Wastewater Treatment Plant Sludge by Two-Stage Integrated Processes -Lsb & Ssb

    Directory of Open Access Journals (Sweden)

    Md. Zahangir Alam, A. H. Molla and A. Fakhru’l-Razi

    2012-10-01

    Full Text Available The study of biotransformation of domestic wastewater treatment plant (DWTP sludge was conducted in laboratory-scale by two-stage integrated process i.e. liquid state bioconversion (LSB and solid state bioconversion (SSB processes. The liquid wastewater sludge [4% w/w of total suspended solids (TSS] was treated by mixed filamentous fungi Penicillium corylophilum and Aspergillus niger, isolated, screened and mixed cultured in terms of their higher biodegradation potential to wastewater sludge. The biosolids was increased to about 10% w/w. Conversely, the soluble [i.e. Total dissolve solid (TDS] and insoluble substances (TSS in treated supernatant were decreased effectively in the LSB process. In the developed LSB process, 93.8 g kg-1of biosolids were enriched with fungal biomass protein and nutrients (NPK, and 98.8% of TSS, 98.2% of TDS, 97.3% of turbidity, 80.2% of soluble protein, 98.8% of reducing sugar and 92.7% of chemical oxygen demand (COD in treated sludge supernatant were removed after 8 days of treatment. Specific resistance to filtration (1.39x1012 m/kg was decreased tremendously by the microbial treatment of DWTP sludge after 6 days of fermentation. The treated biosolids in DWTP sludge was considered as pretreated resource materials for composting and converted into compost by SSB process. The SSB process was evaluated for composting by monitoring the microbial growth and its subsequent roles in biodegradation in composting bin (CB. The process was conducted using two mixed fungal cultures, Trichoderma harzianum with Phanerochaete chrysosporium 2094 and (T/P and T. harzianum and Mucor hiemalis (T/M; and two bulking materials, sawdust (SD and rice straw (RS. The most encouraging results of microbial growth and subsequent solid state bioconversion were exhibited in the RS than the SD. Significant decrease of the C/N ratio and germination index (GI were attained as well as the higher value of glucosamine was exhibited in compost; which

  10. Influences of groundwater extraction on flow dynamics and arsenic levels in the western Hetao Basin, Inner Mongolia, China

    Science.gov (United States)

    Zhang, Zhuo; Guo, Huaming; Zhao, Weiguang; Liu, Shuai; Cao, Yongsheng; Jia, Yongfeng

    2018-04-01

    Data on spatiotemporal variations in groundwater levels are crucial for understanding arsenic (As) behavior and dynamics in groundwater systems. Little is known about the influences of groundwater extraction on the transport and mobilization of As in the Hetao Basin, Inner Mongolia (China), so groundwater levels were recorded in five monitoring wells from 2011 to 2016 and in 57 irrigation wells and two multilevel wells in 2016. Results showed that groundwater level in the groundwater irrigation area had two troughs each year, induced by extensive groundwater extraction, while groundwater levels in the river-diverted (Yellow River) water irrigation area had two peaks each year, resulting from surface-water irrigation. From 2011 to 2016, groundwater levels in the groundwater irrigation area presented a decreasing trend due to the overextraction. Groundwater samples were taken for geochemical analysis each year in July from 2011 to 2016. Increasing trends were observed in groundwater total dissolved solids (TDS) and As. Owing to the reverse groundwater flow direction, the Shahai Lake acts as a new groundwater recharge source. Lake water had flushed the near-surface sediments, which contain abundant soluble components, and increased groundwater salinity. In addition, groundwater extraction induced strong downward hydraulic gradients, which led to leakage recharge from shallow high-TDS groundwater to the deep semiconfined aquifer. The most plausible explanation for similar variations among As, Fe(II) and total organic carbon (TOC) concentrations is the expected dissimilatory reduction of Fe(III) oxyhydroxides.

  11. Studi Kelayakan Pengolahan Air Laut Menjadi Air Bersih di Kawasan Wisata dan Pelabuhan Perikanan Nusantara (PPN Pantai Prigi, Trenggalek

    Directory of Open Access Journals (Sweden)

    Agista Ayuningtyas Puspita Dwijayani

    2013-09-01

    Full Text Available Ketersediaan air bersih diperlukan pula dalam bidang kepariwisataan. Salah satunya ialah kawasan wisata alam Pantai Prigi, Trenggalek. Namun kondisi air saat ini masih memiliki kandungan TDS (Total Dissolved Solid dan salinitas yang cukup tinggi sehingga dibutuhkan suatu teknologi untuk mengolah air asin menjadi air tawar agar memenuhi standar baku mutu air bersih. Salah satu teknologi yang dapat diterapkan untuk mengolah air asin atau payau menjadi air tawar adalah dengan sistem Reverse Osmosis (RO. Penentuan kapasitas SWRO ditentukan dengan memproyeksikan jumlah pengunjung kawasan wisata Pantai Prigi dan kebutuhan air kolam apung hingga tahun 2023. Hasil proyeksi diperoleh kebutuhan air sebesar 729,40 m3/hari pada penggunaan maksimum. Dengan desain SWRO yaitu menggunakan pretreatment rapid sand filter dan filter karbon aktif untuk meremoval kandungan TDS, kesadahan total, khlorida, sulfat, dan bilangan KMnO4 (zat organik. Biaya yang dibutuhkan untuk membuat sistem pengolahan air laut dengan SWRO sebesar Rp 5.077.307.500,00.Perencanaan sistem pengolahan air laut menjadi layak jika air reject dari SWRO sebesar 1463,28 m3/hari dimanfaatkan menjadi wisata kolam apung, garam, dan air nigari dengan investasi total sebesar Rp 7.326.095.500,00. Dengan analisa kelayakan secara ekonomi  menggunakan prinsip ekonomi teknik, pada alternatif ini diperoleh nilai NPV sebesar Rp 25.024.360.250,24 ; IRR sebesar 23,7% ; dan Payback periode pada tahun ke-3 dengan keuntungan yang diperoleh Rp 3.915.665.044,80 per tahun.

  12. Evaluation of water quality by chlorophyll and dissolved oxygen

    International Nuclear Information System (INIS)

    Latif, Z.; Tasneem, M.A.; Javed, T.; Butt, S.; Fazil, M.; Ali, M.; Sajjad, M.I.

    2002-01-01

    This paper focuses on the impact of Chlorophyll and dissolved Oxygen on water quality. Kalar Kahar and Rawal lakes were selected for this research. A Spectrophotometer was used for determination of Chlorophyll a, Chlorophyll b, Chlorophyll c and Pheophytin pigment. Dissolved Oxygen was measured in situ, using dissolved oxygen meter. The gamma O/sup 18/ of dissolved Oxygen, like concentration, is affected primarily by three processes: air water gas exchange, respiration and photosynthesis; gamma O/sup 18/ is analyzed on isotopic ratio mass spectrometer, after extraction of dissolved Oxygen from water samples, followed by purification and conversion into CO/sub 2/. Rawal lake receives most of the water from precipitation during monsoon period and supplemented by light rains in December and January. This water is used throughout the year for drinking purposes in Rawalpindi city. The water samples were collected from 5, 7.5, and 10 meters of depth for seasonal studies of physiochemical and isotopic parameters of water and dissolved Oxygen. Optimum experimental conditions for delta O/sup 18/ analysis of dissolved Oxygen from aqueous samples were determined. Stratification of dissolved Oxygen was observed in Rawal Lake before rainy season in summer. The water quality deteriorates with depth, because the respiration exceeds the photosynthesis and gas exchange. The concentration and delta O/sup 18/ of dissolved Oxygen show no variation with depth in 1998 winter sampling. Kalar Kahar lake gets water from springs, which are recharged by local rains on the nearby mountains. It is a big lake, with shallow and uniform depth of nearly 1.5 meters. A lot of vegetation can be seen on the periphery of the lake. Algae have grown on the floor of the lake Water samples were collected from the corner with large amount of vegetation and from the center of the lake for dissolved Oxygen and Chlorophyll measurements. Chlorophyll result shows that Kalar Kahar Lake falls in Eutrophic category

  13. Quality assessment and artificial neural networks modeling for characterization of chemical and physical parameters of potable water.

    Science.gov (United States)

    Salari, Marjan; Salami Shahid, Esmaeel; Afzali, Seied Hosein; Ehteshami, Majid; Conti, Gea Oliveri; Derakhshan, Zahra; Sheibani, Solmaz Nikbakht

    2018-04-22

    Today, due to the increase in the population, the growth of industry and the variety of chemical compounds, the quality of drinking water has decreased. Five important river water quality properties such as: dissolved oxygen (DO), total dissolved solids (TDS), total hardness (TH), alkalinity (ALK) and turbidity (TU) were estimated by parameters such as: electric conductivity (EC), temperature (T), and pH that could be measured easily with almost no costs. Simulate water quality parameters were examined with two methods of modeling include mathematical and Artificial Neural Networks (ANN). Mathematical methods are based on polynomial fitting with least square method and ANN modeling algorithms are feed-forward networks. All conditions/circumstances covered by neural network modeling were tested for all parameters in this study, except for Alkalinity. All optimum ANN models developed to simulate water quality parameters had precision value as R-value close to 0.99. The ANN model extended to simulate alkalinity with R-value equals to 0.82. Moreover, Surface fitting techniques were used to refine data sets. Presented models and equations are reliable/useable tools for studying water quality parameters at similar rivers, as a proper replacement for traditional water quality measuring equipment's. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Application of liquid metals for the extraction of solid metals

    International Nuclear Information System (INIS)

    Borgstedt, H.U.

    1996-01-01

    Liquid metals dissolve several solid metals in considerable amounts at moderate temperatures. The dissolution processes may be based upon simple physical solubility, formation of intermetallic phases. Even chemical reactions are often observed in which non-metallic elements might be involved. Thus, the capacity to dissolve metals and chemical properties of the liquid metals play a role in these processes. Besides the solubility also chemical properties and thermochemical data are of importance. The dissolution of metals in liquid metals can be applied to separate the solutes from other metals or non-metallic phases. Relatively noble metals can be chemically reduced by the liquid phases. Such solution processes can be applied in the extractive metallurgy, for instance to extract metals from metallic waste. The recycling of metals is of high economical and ecological importance. Examples of possible processes are discussed. (author)

  15. KOMBINASI ULTRAFILTRASI DAN DISSOLVED AIR FLOTATION UNTUK PEMEKATAN MIKROALGA

    Directory of Open Access Journals (Sweden)

    I Nyoman Widiasa

    2014-05-01

    study is aimed to investigate the potential of combination of ultrafiltration (UF and dissolved air flotation  (DAF for concentration of microalgae in laboratory scale. The experimental results showed that fluxes of the UF membrane decreased sharply due to deposition of microalgae biomass during first 20 minutes of filtration. Periodically backwash using the UF permeate (backwash  interval = 20 minutes;  backwash duration = 10 seconds;  backwash pressure = 1 bar gave an effective fouling control to maintain reasonable stable fluxes. In addition,  the UF membrane gave separation of microalgae biomass ~ 100%. Permeate quality is strongly stable in which turbidity < 0.5 NTU, organic content < 10 mg/L, and color < 10 PCU.  Moreover, concentration of the UF retentate by DAF under saturation pressure of 6 bars was able to produced microalgae feedstock having 20 g/L dry microalgae. PAC is required for DAF feed with dosage of 1.3–1.6 mg PAC/mg suspended solids.

  16. Application of molecularly imprinted polymers to selective removal of clofibric acid from water.

    Science.gov (United States)

    Dai, Chaomeng; Zhang, Juan; Zhang, Yalei; Zhou, Xuefei; Liu, Shuguang

    2013-01-01

    A new molecularly imprinted polymer (MIP) adsorbent for clofibric acid (CA) was prepared by a non-covalent protocol. Characterization of the obtained MIP was achieved by scanning electron microscopy (SEM) and nitrogen sorption. Sorption experimental results showed that the MIP had excellent binding affinity for CA and the adsorption of CA by MIP was well described by pseudo-second-order model. Scatchard plot analysis revealed that two classes of binding sites were formed in the MIP with dissociation constants of 7.52 ± 0.46 mg L(-1) and 114 ± 4.2 mg L(-1), respectively. The selectivity of MIP demonstrated higher affinity for CA over competitive compound than that of non-imprinted polymers (NIP). The MIP synthesized was used to remove CA from spiked surface water and exhibited significant binding affinity towards CA in the presence of total dissolved solids (TDS). In addition, MIP reusability was demonstrated for at least 12 repeated cycles without significant loss in performance.

  17. Application of molecularly imprinted polymers to selective removal of clofibric acid from water.

    Directory of Open Access Journals (Sweden)

    Chaomeng Dai

    Full Text Available A new molecularly imprinted polymer (MIP adsorbent for clofibric acid (CA was prepared by a non-covalent protocol. Characterization of the obtained MIP was achieved by scanning electron microscopy (SEM and nitrogen sorption. Sorption experimental results showed that the MIP had excellent binding affinity for CA and the adsorption of CA by MIP was well described by pseudo-second-order model. Scatchard plot analysis revealed that two classes of binding sites were formed in the MIP with dissociation constants of 7.52 ± 0.46 mg L(-1 and 114 ± 4.2 mg L(-1, respectively. The selectivity of MIP demonstrated higher affinity for CA over competitive compound than that of non-imprinted polymers (NIP. The MIP synthesized was used to remove CA from spiked surface water and exhibited significant binding affinity towards CA in the presence of total dissolved solids (TDS. In addition, MIP reusability was demonstrated for at least 12 repeated cycles without significant loss in performance.

  18. SEDIMENTS POLLUTION WITH HEAVY METALS. CASE STUDY: BAIA MARE MINING AREA.

    Directory of Open Access Journals (Sweden)

    PIŞTEA IOANA

    2015-03-01

    Full Text Available The purpose of this research was to assess the degree of sediments contamination with heavy metals. In December 2013, 8 sediments samples were collected from several areas from Baia Mare. Each of the collected sediment samples was analyzed for pH, redox potential (ORP, electrical conductivity (EC, total dissolved solids (TDS and salinity with a portable multiparameter (WTW 3210i. In laboratory, using an ICP-OES, all the sediment samples were analyzed for iron (Fe, nickel (Ni, chromium (Cr, cobalt (Co, copper (Cu, zinc (Zn, cadmium (Cd, lead (Pb, and manganese (Mn.According to Romanian legislation the level of Cd, Cu, Pb and Zn exceeded the maximum permissible limit (0.8 mg/kg, 40 mg/kg, 85 mg/kg and 150 mg/kg.Heavy metals are not removed from aquatic ecosystem by self purification and they can accumulate in suspanded particulates and sediments, as a consequence they are a real threath for the human health and ecosystem via food chain accumulation.

  19. Phytoremediation of industrial mines wastewater using water hyacinth.

    Science.gov (United States)

    Saha, Priyanka; Shinde, Omkar; Sarkar, Supriya

    2017-01-02

    The wastewater at Sukinda chromite mines (SCM) area of Orissa (India) showed high levels of toxic hexavalent chromium (Cr VI). Wastewater from chromium-contaminated mines exhibit potential threats for biotic community in the vicinity. The aim of the present investigation is to develop a suitable phytoremediation technology for the effective removal of toxic hexavalent chromium from mines wastewater. A water hyacinth species Eichhornia crassipes was chosen to remediate the problem of Cr (VI) pollution from wastewater. It has been observed that this plant was able to remove 99.5% Cr (VI) of the processed water of SCM in 15 days. This aquatic plant not only removed hexavalent Cr, but is also capable of reducing total dissolved solids (TDS), biological oxygen demand (BOD), chemical oxygen demand (COD), and other elements of water also. Large-scale experiment was also performed using 100 L of water from SCM and the same removal efficiency was achieved.

  20. Using Spatial Clustering in Forecasting Groundwater Quality Parameters by ANFIS

    Directory of Open Access Journals (Sweden)

    MohammadTaghi Alami

    2016-07-01

    Full Text Available Groundwater is a major source of water supply for domestic, agricultural, and industrial uses; hence, its quality modeling is an important task in hydro-environmental studies. While many data-based models have been developed for this purpose, the performance of such data-based models can be drastically enhanced if they are based on temporal and spatial pre-processing. In this study, geostatistics tools (e.g., Co-Kriging, as spatial estimators, and self-organizing map (SOM, as a clustering technique, were employed in conjunction with Adaptive Neuro-Fuzzy Inference System (ANFIS for the temporal forecasting of such quality parameters as electrical conductivity (EC and total dissolved solids (TDS of the groundwater in Ardabil Plain. Using the results thus obtained, the impact of spatial data clustering was also investigated on the same parameters. The results showed that, if propoer input data are selected, the proposed spatial clustering technique is capable of imporving groundwater quality forecasts made by ANFIS.

  1. Hydraulic and Groundwater Chemical Parameters of the Aquifer in Malakasari, Bandung

    Directory of Open Access Journals (Sweden)

    Ahnaf Jemi S.

    2018-01-01

    Full Text Available In order to reveal the physical condition of the aquifer, the pumping test using Cooper-Jacob (1946 principle has conducted at well SM5. The observation data of the test then processed to generate various value of hydraulic properties i.e. 3.241x10-4 cm2/sec for transmissivity (T, 8.103x10-6 cm/sec for conductivity (K, 0.05055 for storativity (S, and 3.852x10-3 ft-1 for specific storage (Ss. These data show that the aquifer composed of unconsolidated sedimentary rocks ranged from coarse sand to silt. In addition, also performed the feasibility test of groundwater by using Multimeter which produces chemical parameter data. The chemical parameter of eight well samples have average values of 6.62, 766.25 μs/cm and 376.25 mg/L for pH, electric conductivity (EC, and total dissolved solid (TDS respectively, while physical observation shows no turbidity and odor.

  2. Organic and weed control in water supply reservoirs of power plants

    International Nuclear Information System (INIS)

    Eswaran, M.S.

    2000-01-01

    Aquatic weeds and algal control in water supply reservoirs used for multipurpose use need specific attention, since they pose a lot of problem for the operating plants by affecting (a) the water quality of boiler and feed waters, (b) the performance of DM plants by reducing the efficiency of Anion beds, (c) the performance of Activated Carbon Filters (ACF) and (d) fouling induced corrosion problems in cooling water systems (Heat Exchangers and Piping materials) causing plant outages leading to production losses. The photosynthetic activity of planktonic plants which are growing abundantly in the open reservoir, sustained by the relatively high inorganic phosphate levels shoots up the pH of the reservoir water to very high levels. High pH, Total Dissolved Solids (TDS) and depleted plants can increase corrosion problems affecting plant performance. This paper focuses on the type of weeds prominent in the water supply reservoir at Kalpakkam and the associated problems in the Nuclear Power Plants (NPPs). (author)

  3. Groundwater Monitoring and Tritium-Tracking Plan for the 200 Area State-Approved Land Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D. Brent

    2000-08-31

    The 200 Area State-Approved Land Disposal Site (SALDS) is a drainfield which receives treated wastewater, occasionally containing high levels of tritium from treatment of Hanford Site liquid wastes. Only the SALDS proximal wells (699-48-77A, 699-48-77C, and 699-48-77D) have been affected by tritium from the facility thus far; the highest activity observed (2.1E+6 pCi/L) occurred in well 699-48-77D in February 1998. Analytical results of groundwater geochemistry since groundwater monitoring began at the SALDS indicate that all constituents with permit enforcement limits have been below those limits with the exception of one measurement of total dissolved solids (TDS) in 1996. The revised groundwater monitoring sampling and analysis plan eliminates chloroform, acetone, tetrahydrofuran, benzene, and ammonia as constituents. Replicate field measurements will replace laboratory measurements of pH for compliance purposes. A deep companion well to well 699-51-75 will be monitored for tritium deeper in the uppermost aquifer.

  4. Phytoremediation of industrial mines wastewater using water hyacinth

    Science.gov (United States)

    Saha, Priyanka; Shinde, Omkar; Sarkar, Supriya

    2017-01-01

    ABSTRACT The wastewater at Sukinda chromite mines (SCM) area of Orissa (India) showed high levels of toxic hexavalent chromium (Cr VI). Wastewater from chromium-contaminated mines exhibit potential threats for biotic community in the vicinity. The aim of the present investigation is to develop a suitable phytoremediation technology for the effective removal of toxic hexavalent chromium from mines wastewater. A water hyacinth species Eichhornia crassipes was chosen to remediate the problem of Cr (VI) pollution from wastewater. It has been observed that this plant was able to remove 99.5% Cr (VI) of the processed water of SCM in 15 days. This aquatic plant not only removed hexavalent Cr, but is also capable of reducing total dissolved solids (TDS), biological oxygen demand (BOD), chemical oxygen demand (COD), and other elements of water also. Large-scale experiment was also performed using 100 L of water from SCM and the same removal efficiency was achieved. PMID:27551860

  5. Preparation and X-ray diffraction characterization of Th1-xBixO2-0.5x (where x= 0 to 0.5) solid solutions

    International Nuclear Information System (INIS)

    Kanrar, Buddhadev; Misra, N.L.

    2015-01-01

    Solid solutions of ThO 2 and Bi 2 O 3 were prepared by solid state reactions of these oxides. X-ray diffraction studies indicated that Bi +3 up to 50 at% can be dissolved in ThO 2 lattice. Rietveld refinement of the XRD patterns indicated single phase solid solutions up to 50 atom% of Bi +3 in ThO 2 lattice. The cell parameters of the solid solutions were found to decrease with increasing amount of Bi +3 in the lattice. (author)

  6. Electrodialysis-ion exchange for the separation of dissolved salts

    Energy Technology Data Exchange (ETDEWEB)

    Baroch, C.J. [Wastren, Inc., Westminster, CO (United States); Grant, P.J. [Wastren, Inc., Hummelstown, PA (United States)

    1995-10-01

    The Department of Energy generates and stores a significant quantity of low level, high level, and mixed wastes. As some of the DOE facilities are decontaminated and decommissioned, additional and possibly different forms of wastes will be generated. A significant portion of these wastes are aqueous streams containing acids, bases, and salts, or are wet solids containing inorganic salts. Some of these wastes are quite dilute solutions, whereas others contain large quantities of nitrates either in the form of dissolved salts or acids. Many of the wastes are also contaminated with heavy metals, radioactive products, or organics. Some of these wastes are in storage because a satisfactory treatment and disposal processes have not been developed. There is considerable interest in developing processes that remove or destroy the nitrate wastes. Electrodialysis-Ion Exchange (EDIX) is a possible process that should be more cost effective in treating aqueous waste steams. This report describes the EDIX process.

  7. Quantitative Identification of the Annealing Degree of Apatite Fission Tracks Using Terahertz Time Domain Spectroscopy (THz-TDS).

    Science.gov (United States)

    Wu, Hang; Wu, Shixiang; Qiu, Nansheng; Chang, Jian; Bao, Rima; Zhang, Xin; Liu, Nian; Liu, Shuai

    2018-01-01

    Apatite fission-track (AFT) analysis, a widely used low-temperature thermochronology method, can provide details of the hydrocarbon generation history of source rocks for use in hydrocarbon exploration. The AFT method is based on the annealing behavior of fission tracks generated by 238 U fission in apatite particles during geological history. Due to the cumbersome experimental steps and high expense, it is imperative to find an efficient and inexpensive technique to determinate the annealing degree of AFT. In this study, on the basis of the ellipsoid configuration of tracks, the track volume fraction model (TVFM) is established and the fission-track volume index is proposed. Furthermore, terahertz time domain spectroscopy (THz-TDS) is used for the first time to identify the variation of the AFT annealing degree of Durango apatite particles heated at 20, 275, 300, 325, 450, and 500 ℃ for 10 h. The THz absorbance of the sample increases with the degree of annealing. In addition, the THz absorption index is exponentially related to annealing temperature and can be used to characterize the fission-track volume index. Terahertz time domain spectroscopy can be an ancillary technique for AFT thermochronological research. More work is urgently needed to extrapolate experimental data to geological conditions.

  8. Groundwater quality and its suitability for drinking and irrigational use in the Southern Tiruchirappalli district, Tamil Nadu, India

    Science.gov (United States)

    Selvakumar, S.; Ramkumar, K.; Chandrasekar, N.; Magesh, N. S.; Kaliraj, S.

    2017-03-01

    A total of 20 groundwater samples were collected from both dug and bore wells of southern Tiruchirappalli district and analyzed for various hydrogeochemical parameters. The analyzed physicochemical parameters such as pH, electrical conductivity, total dissolved solids, calcium, magnesium, sodium, potassium, bicarbonate, carbonate, sulfate, chloride, nitrate, and fluoride are used to characterize the groundwater quality and its suitability for drinking and irrigational uses. The results of the chemical analysis indicates that the groundwater in the study area is slightly alkaline and mainly contains Na+, Ca2+, and Mg2+ cations as well as HCO3 2-, Cl-, SO4 2-and NO3 - anions. The total dissolved solids mainly depend on the concentration of major ions such as Ca, Mg, Na, K, HCO3, Cl, and SO4. Based on TDS, 55 % of the samples are suitable for drinking and rest of the samples are unsuitable for drinking. The total hardness indicates that majority of the groundwater samples are found within the permissible limit of WHO. The dominant hydrochemical facies for groundwater are Ca-Mg-Cl, Ca-HCO3, and Ca-Cl type. The USSL graphical geochemical representation of groundwater quality suggests that majority of the water samples belongs to high medium salinity with low alkali hazards. The Gibb's plot indicates that the groundwater chemistry of the study area is mainly controlled by evaporation and rock-water interaction. Spearman's correlation and factor analysis were used to distinguish the statistical relation between different ions and contamination source in the study area.

  9. Solid formation in piperazine rate-based simulation

    DEFF Research Database (Denmark)

    Gaspar, Jozsef; Thomsen, Kaj; von Solms, Nicolas

    2014-01-01

    of view but also from a modeling perspective. The present work develops a rate-based model for CO2 absorption and desorption modeling for gas-liquid-solid systems and it is demonstrated for the piperazine CO2 capture process. This model is an extension of the DTU CAPCO2 model to precipitating systems....... It uses the extended UNIQUAC thermodynamic model for phase equilibria and thermal properties estimation. The mass and heat transfer phenomena is implemented in a film model approach, based on second order reactions kinetics. The transfer fluxes are calculated using the concentration of the dissolved...

  10. Changing fluxes of carbon and other solutes from the Mekong River.

    Science.gov (United States)

    Li, Siyue; Bush, Richard T

    2015-11-02

    Rivers are an important aquatic conduit that connects terrestrial sources of dissolved inorganic carbon (DIC) and other elements with oceanic reservoirs. The Mekong River, one of the world's largest rivers, is firstly examined to explore inter-annual fluxes of dissolved and particulate constituents during 1923-2011 and their associated natural or anthropogenic controls. Over this period, inter-annual fluxes of dissolved and particulate constituents decrease, while anthropogenic activities have doubled the relative abundance of SO4(2-), Cl(-) and Na(+). The estimated fluxes of solutes from the Mekong decrease as follows (Mt/y): TDS (40.4) > HCO3(-) (23.4) > Ca(2+) (6.4) > SO4(2-) (3.8) > Cl(-) (1.74)~Na(+) (1.7) ~ Si (1.67) > Mg(2+) (1.2) > K(+ 0.5). The runoff, land cover and lithological composition significantly contribute to dissolved and particulate yields globally. HCO3(-) and TDS yields are readily predicted by runoff and percent of carbonate, while TSS yield by runoff and population density. The Himalayan Rivers, including the Mekong, are a disproportionally high contributor to global riverine carbon and other solute budgets, and are of course underlined. The estimated global riverine HCO3(-) flux (Himalayan Rivers included) is 34,014 × 10(9) mol/y (0.41 Pg C/y), 3915 Mt/y for solute load, including HCO3(-), and 13,553 Mt/y for TSS. Thereby this study illustrates the importance of riverine solute delivery in global carbon cycling.

  11. Effect of dissolved organic matter derived from waste amendments on the mobility of inorganic arsenic (III) in the Egyptian alluvial soil

    Energy Technology Data Exchange (ETDEWEB)

    Rashad, Mohamed [Land and Water Technologies Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, 21934 Alexandria (Egypt); Assaad, Faiz F. [Soils and Water Use Department, National Research Centre, Dokki, Cairo (Egypt); Shalaby, Elsayed A. [Environmental Studies Department, Institute of Graduate Studies and Research, Alexandria University (Egypt)

    2013-07-01

    Dissolved organic matter (DOM) is one of the decisive factors affecting pollutants mobility in soils receiving waste amendments. The aim of this study was to investigate the effects of DOM1 derived from agricultural solid waste (ASW) and DOM2 derived from municipal solid waste (MSW) on the mobility of inorganic arsenic (As) in two alluvial soils from the Nile River Delta. In column experiments, addition of DOM solutions significantly increased As concentration in the effluents. There was no significant difference between the two soils, the obtained results from soil2 columns revealed that DOM2 has stronger capability than DOM1 to facilitate As mobility. The pH of the studied soils is alkaline (8.1) which promoted the dissociation as well as deprotonation of DOM and as a consequence, humic substances in DOM become negatively charged organic anions, leading to their substantial competition with As for the adsorption sites on both soil surfaces. The results emphasized that in alkaline soils there is a risk of groundwater pollution in the long run by arsenic either naturally found in soil or originated at high soil pH when dissolved organic carbon (DOC) released from various organic amendments ASW and/or MSW and leached through soil profile.

  12. CADDIS Volume 2. Sources, Stressors and Responses: Dissolved Oxygen - Detailed Conceptual Diagram

    Science.gov (United States)

    Introduction to the dissolved oxygen module, when to list dissolved oxygen as a candidate cause, ways to measure dissolved oxygen, simple and detailed conceptual model diagrams for dissolved oxygen, references for the dissolved oxygen module.

  13. CADDIS Volume 2. Sources, Stressors and Responses: Dissolved Oxygen - Simple Conceptual Diagram

    Science.gov (United States)

    Introduction to the dissolved oxygen module, when to list dissolved oxygen as a candidate cause, ways to measure dissolved oxygen, simple and detailed conceptual model diagrams for dissolved oxygen, references for the dissolved oxygen module.

  14. Cycling downwards - dissolved organic matter in soils

    NARCIS (Netherlands)

    Kaiser, K.; Kalbitz, K.

    2012-01-01

    Dissolved organic matter has been recognized as mobile, thus crucial to translocation of metals, pollutants but also of nutrients in soil. We present a conceptual model of the vertical movement of dissolved organic matter with soil water, which deviates from the view of a chromatographic stripping

  15. Subcooled boiling effect on dissolved gases behaviour

    International Nuclear Information System (INIS)

    Zmitko, M.; Sinkule, J.; Linek, V.

    1999-01-01

    A model describing dissolved gasses (hydrogen, nitrogen) and ammonia behaviour in subcooled boiling conditions of WWERs was developed. Main objective of the study was to analyse conditions and mechanisms leading to formation of a zone with different concentration of dissolved gases, eg. a zone depleted in dissolved hydrogen in relation to the bulk of coolant. Both, an equilibrium and dynamic approaches were used to describe a depletion of the liquid surrounding a steam bubble in the gas components. The obtained results show that locally different water chemistry conditions can be met in the subcooled boiling conditions, especially, in the developed subcooled boiling regime. For example, a 70% hydrogen depletion in relation to the bulk of coolant takes about 1 ms and concerns a liquid layer of 1 μn surrounding the steam bubble. The locally different concentration of dissolved gases can influence physic-chemical and radiolytic processes in the reactor system, eg. Zr cladding corrosion, radioactivity transport and determination of the critical hydrogen concentration. (author)

  16. The size distribution of dissolved uranium in natural waters

    International Nuclear Information System (INIS)

    Mann, D.K.; Wong, G.T.F.

    1987-01-01

    The size distribution of dissolved uranium in natural waters is poorly known. Some fraction of dissolved uranium is known to associate with organic matter which had a wide range of molecular weights. The presence of inorganic colloidal uranium has not been reported. Ultrafiltration has been used to quantify the size distribution of a number of elements, such as dissolved organic carbon, selenium, and some trace metals, in both the organic and/or the inorganic forms. The authors have applied this technique to dissolved uranium and the data are reported here

  17. Effects of dissolved organic matter (DOM) sources and nature of solid extraction sorbent on recoverable DOM composition: Implication into potential lability of different compound groups.

    Science.gov (United States)

    Chen, Meilian; Kim, Sunghwan; Park, Jae-Eun; Kim, Hyun Sik; Hur, Jin

    2016-07-01

    Noting the source-dependent properties of dissolved organic matter (DOM), this study explored the recoverable compounds by solid phase extraction (SPE) of two common sorbents (C18 and PPL) eluted with methanol solvent for contrasting DOM sources via fluorescence excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Fresh algae and leaf litter extracts DOM, one riverine DOM, and one upstream lacustrine DOM were selected for the comparison. C18 sorbent was generally found to extract more diverse molecular formula, relatively higher molecular weight, and more heteroatomic DOM compounds within the studied mass range than PPL sorbent except for the leaf litter extract. Even with the same sorbent, the main molecular features of the two end member DOM were distributed on different sides of the axes of a multivariate ordination, indicating the source-dependent characteristics of the recoverable compounds by the sorbents. In addition, further examination of the molecular formula uniquely present in the two end members and the upstream lake DOM suggested that proteinaceous, tannin-like, and heteroatomic DOM constituents might be potential compound groups which are labile and easily degraded during their mobilization into downstream watershed. This study provides new insights into the sorbent selectivity of DOM from diverse sources and potential lability of various compound groups.

  18. Method to Estimate the Dissolved Air Content in Hydraulic Fluid

    Science.gov (United States)

    Hauser, Daniel M.

    2011-01-01

    In order to verify the air content in hydraulic fluid, an instrument was needed to measure the dissolved air content before the fluid was loaded into the system. The instrument also needed to measure the dissolved air content in situ and in real time during the de-aeration process. The current methods used to measure the dissolved air content require the fluid to be drawn from the hydraulic system, and additional offline laboratory processing time is involved. During laboratory processing, there is a potential for contamination to occur, especially when subsaturated fluid is to be analyzed. A new method measures the amount of dissolved air in hydraulic fluid through the use of a dissolved oxygen meter. The device measures the dissolved air content through an in situ, real-time process that requires no additional offline laboratory processing time. The method utilizes an instrument that measures the partial pressure of oxygen in the hydraulic fluid. By using a standardized calculation procedure that relates the oxygen partial pressure to the volume of dissolved air in solution, the dissolved air content is estimated. The technique employs luminescent quenching technology to determine the partial pressure of oxygen in the hydraulic fluid. An estimated Henry s law coefficient for oxygen and nitrogen in hydraulic fluid is calculated using a standard method to estimate the solubility of gases in lubricants. The amount of dissolved oxygen in the hydraulic fluid is estimated using the Henry s solubility coefficient and the measured partial pressure of oxygen in solution. The amount of dissolved nitrogen that is in solution is estimated by assuming that the ratio of dissolved nitrogen to dissolved oxygen is equal to the ratio of the gas solubility of nitrogen to oxygen at atmospheric pressure and temperature. The technique was performed at atmospheric pressure and room temperature. The technique could be theoretically carried out at higher pressures and elevated

  19. Influence of dissolved organic carbon on the efficiency of P sequestration by a lanthanum modified clay

    DEFF Research Database (Denmark)

    Dithmer, Line; Nielsen, Ulla Gro; Lundberg, Daniel

    2016-01-01

    A laboratory scale experiment was set up to test the effect of dissolved organic carbon (DOC) as well as ageing of the La–P complex formed during phosphorus (P) sequestration by a La modified clay (Phoslock®). Short term (7 days) P adsorption studies revealed a significant negative effect of added...... DOC on the P sequestration of Phoslock®, whereas a long-term P adsorption experiment revealed that the negative effect of added DOC was reduced with time. The reduced P binding efficiency is kinetic, as evident from solid-state 31P magic-angle spinning (MAS) NMR spectroscopy, who showed that the P...

  20. Method for reactivating solid catalysts used in alkylation reactions

    Science.gov (United States)

    Ginosar, Daniel M.; Thompson, David N.; Coates, Kyle; Zalewski, David J.; Fox, Robert V.

    2003-06-17

    A method for reactivating a solid alkylation catalyst is provided which can be performed within a reactor that contains the alkylation catalyst or outside the reactor. Effective catalyst reactivation is achieved whether the catalyst is completely deactivated or partially deactivated. A fluid reactivating agent is employed to dissolve catalyst fouling agents and also to react with such agents and carry away the reaction products. The deactivated catalyst is contacted with the fluid reactivating agent under pressure and temperature conditions such that the fluid reactivating agent is dense enough to effectively dissolve the fouling agents and any reaction products of the fouling agents and the reactivating agent. Useful pressures and temperatures for reactivation include near-critical, critical, and supercritical pressures and temperatures for the reactivating agent. The fluid reactivating agent can include, for example, a branched paraffin containing at least one tertiary carbon atom, or a compound that can be isomerized to a molecule containing at least one tertiary carbon atom.

  1. Contribution to the study of the structure of silver krypton solid solutions

    International Nuclear Information System (INIS)

    Levy, V.; Tullairet, J.; Delaplace, J.; Antolin-Baudier, J.; Adda, Y.

    1964-01-01

    The silver-krypton solid solutions formed by electrical discharge have been studied by X-rays, electrical resistivity and electronic transmission microscopy. The crystalline parameter and residual resistivity measurements have shown that the krypton atom behaves very differently to those of other elements of the periodic classification when dissolved in silver. The recovery of the crystalline parameter and of the electrical resistivity has been studied as a function of temperature. (authors) [fr

  2. Vapor-Liquid-Solid Etch of Semiconductor Surface Channels by Running Gold Nanodroplets.

    Science.gov (United States)

    Nikoobakht, Babak; Herzing, Andrew; Muramoto, Shin; Tersoff, Jerry

    2015-12-09

    We show that Au nanoparticles spontaneously move across the (001) surface of InP, InAs, and GaP when heated in the presence of water vapor. As they move, the particles etch crystallographically aligned grooves into the surface. We show that this process is a negative analogue of the vapor-liquid-solid (VLS) growth of semiconductor nanowires: the semiconductor dissolves into the catalyst and reacts with water vapor at the catalyst surface to create volatile oxides, depleting the dissolved cations and anions and thus sustaining the dissolution process. This VLS etching process provides a new tool for directed assembly of structures with sublithographic dimensions, as small as a few nanometers in diameter. Au particles above 100 nm in size do not exhibit this process but remain stationary, with oxide accumulating around the particles.

  3. Evaluation of leachate dissolved organic nitrogen discharge effect on wastewater effluent quality.

    Science.gov (United States)

    Bolyard, Stephanie C; Reinhart, Debra R

    2017-07-01

    Nitrogen is limited more and more frequently in wastewater treatment plant (WWTP) effluents because of the concern of causing eutrophication in discharge waters. Twelve leachates from eight landfills in Florida and California were characterized for total nitrogen (TN) and dissolved organic nitrogen (DON). The average concentration of TN and DON in leachate was approximately 1146mg/L and 40mg/L, respectively. Solid-phase extraction was used to fractionate the DON based on hydrophobic (recalcitrant fraction) and hydrophilic (bioavailable fraction) chemical properties. The average leachate concentrations of bioavailable (bDON) and recalcitrant (rDON) DON were 16.5mg/L and 18.4mg/L, respectively. The rDON fraction was positively correlated, but with a low R 2 , with total leachate apparent color dissolved UV 254 , chemical oxygen demand (COD), and humic acid (R 2 equals 0.38, 0.49, and 0.40, respectively). The hydrophobic fraction of DON (rDON) was highly colored. This fraction was also associated with over 60% of the total leachate COD. Multiple leachate and wastewater co-treatment simulations were carried out to assess the effects of leachate on total nitrogen wastewater effluent quality using removals for four WWTPs under different scenarios. The calculated pass through of DON suggests that leachate could contribute to significant amounts of nitrogen discharged to aquatic systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. ICPP custom dissolver explosion recovery

    International Nuclear Information System (INIS)

    Demmer, R.; Hawk, R.

    1992-01-01

    This report discusses the recovery from the February 9, 1991 small scale explosion in a custom processing dissolver at the Idaho Chemical Processing Plant. Custom processing is a small scale dissolution facility which processes nuclear material in an economical fashion. The material dissolved in this facility was uranium metal, uranium oxides, and uranium/fissium alloy in nitric acid. The paper explained the release of fission material, and the decontamination and recovery of the fuel material. The safety and protection procedures were also discussed. Also described was the chemical analysis which was used to speculate the most probable cause of the explosion. (MB)

  5. Highway-runoff quality, and treatment efficiencies of a hydrodynamic-settling device and a stormwater-filtration device in Milwaukee, Wisconsin

    Science.gov (United States)

    Horwatich, Judy A.; Bannerman, Roger T.; Pearson, Robert

    2011-01-01

    The treatment efficiencies of two prefabricated stormwater-treatment devices were tested at a freeway site in a high-density urban part of Milwaukee, Wisconsin. One treatment device is categorized as a hydrodynamic-settling device (HSD), which removes pollutants by sedimentation and flotation. The other treatment device is categorized as a stormwater-filtration device (SFD), which removes pollutants by filtration and sedimentation. During runoff events, flow measurements were recorded and water-quality samples were collected at the inlet and outlet of each device. Efficiency-ratio and summation-of-load (SOL) calculations were used to estimate the treatment efficiency of each device. Event-mean concentrations and loads that were decreased by passing through the HSD include total suspended solids (TSS), suspended sediment (SS), total phosphorus (TP), total copper (TCu), and total zinc (TZn). The efficiency ratios for these constituents were 42, 57, 17, 33, and 23 percent, respectively. The SOL removal rates for these constituents were 25, 49, 10, 27, and 16 percent, respectively. Event-mean concentrations and loads that increased by passing through the HSD include chloride (Cl), total dissolved solids (TDS), and dissolved zinc (DZn). The efficiency ratios for these constituents were -347, -177, and 20 percent, respectively. Four constituents—dissolved phosphorus (DP), chemical oxygen demand (COD), total polycyclic aromatic hydrocarbon (PAH), and dissolved copper (DCu)—are not included in the list of computed efficiency ratio and SOL because the variability between sampled inlet and outlet pairs were not significantly different. Event-mean concentrations and loads that decreased by passing through the SFD include TSS, SS, TP, DCu, TCu, DZn, TZn, and COD. The efficiency ratios for these constituents were 59, 90, 40, 21, 66, 23, 66, and 18, respectively. The SOLs for these constituents were 50, 89, 37, 19, 60, 20, 65, and 21, respectively. Two constituents—DP and

  6. Degradation of the solid electrolyte interphase induced by the deposition of manganese ions

    Science.gov (United States)

    Shin, Hosop; Park, Jonghyun; Sastry, Ann Marie; Lu, Wei

    2015-06-01

    The deposition of manganese ions dissolved from the cathode onto the interface between the solid electrolyte interphase (SEI) and graphite causes severe capacity fading in manganese oxide-based cells. The evolution of the SEI layer containing these Mn compounds and the corresponding instability of the layer are thoroughly investigated by artificially introducing soluble Mn ions into a 1 mol L-1 LiPF6 electrolyte solution. Deposition of dissolved Mn ions induces an oxygen-rich SEI layer that results from increased electrolyte decomposition, accelerating SEI growth. The spatial distribution of Mn shows that dissolved Mn ions diffuse through the porous layer and are deposited mostly at the inorganic layer/graphite interface. The Mn compound deposited on the anode, identified as MnF2, originates from a metathesis reaction between LiF and dissolved Mn ion. It is confirmed that ion-exchange reaction occurs in the inorganic layer, converting SEI species to Mn compounds. Some of the Mn is observed inside the graphite; this may cause surface structural disordering in the graphite, limiting lithium-ion intercalation. The continuous reaction that occurs at the inorganic layer/graphite interfacial regions and the modification of the original SEI layer in the presence of Mn ions are critically related to capacity fade and impedance rise currently plaguing Li-ion cells.

  7. Effect of dissolved oxygen on SCC of LP turbine steel

    International Nuclear Information System (INIS)

    Maeng, W. Y.; Lee, J. H.; Kim, W. C.

    2002-01-01

    Slow Strain Rate Tests (SSRT) were carried out to investigate the effect of dissolved oxygen on Stress Corrosion Cracking (SCC) susceptibility of 3.5NiCrMoV steels used in discs of Low-Pressure (LP) steam turbines in electric power generating plants. The influence of dissolved oxygen on cracking in water was studied; for this purpose, specimens were strained to fracture at 150 .deg. C in water environments with various amounts of dissolved oxygen. The maximum elongation of the turbine steel decreased with increasing dissolved oxygen. Dissolved oxygen significantly affected the SCC susceptibility of turbine steel in water. The increase of the SCC susceptibility of the turbine steel in a higher dissolved oxygen environment is due to the non protectiveness of the oxide layer of the turbine steel surface and the increase of corrosion current

  8. Dissolution of two NWCF calcines: Extent of dissolution and characterization of undissolved solids

    International Nuclear Information System (INIS)

    Brewer, K.N.; Herbst, R.S.; Tranter, T.J.

    1995-01-01

    A study was undertaken to determine the dissolution characteristics of two NWCF calcine types. A two-way blended calcine made from 4 parts nonradioactive aluminum nitrate and one part WM-102 was studied to determine the extent of dissolution for aluminum-type calcines. A two-way blend of 3.5 parts fluorinel waste from WM-187 and 1 part sodium waste from WM-185 was used to determine the extent of dissolution for zirconium-type calcines. This study was necessary to develop suitable aqueous separation flowsheets for the partitioning of actinides and fission products from ICPP calcines and to determine the disposition of the resulting undissolved solids (UDS). The dissolution flowsheet developed by Herbst was used to dissolve these two NWCF calcine types. Results show that greater than 95 wt% of aluminum and zirconium calcine types were dissolved after a single batch contact with 5 M HNO 3 . A characterization of the UDS indicates that the weight percent of TRU elements in the UDS resulting from both calcine type dissolutions increases by approximately an order of magnitude from their concentrations prior to dissolution. Substantial activities of cesium and strontium are also present in the UDS resulting from the dissolution of both calcine types. Multiple TRU, Cs, and Sr analyses of both UDS types show that these solids are relatively homogeneous. From this study, it is estimated that between 63.5 and 635 cubic meters of UDS will be generated from the dissolution of 3800 M 3 of calcine. The significant actinide and fission product activities in these UDS will preclude their disposal as low-level waste. If the actinide and fission activity resulting from the UDS is the only considered source in the dissolved calcine solutions, an estimated 99.9 to 99.99 percent of the solids must be removed from this solution for it to meet non-TRU Class A low-level waste

  9. A new technology for separation and recovery of materials from waste printed circuit boards by dissolving bromine epoxy resins using ionic liquid

    International Nuclear Information System (INIS)

    Zhu, P.; Chen, Y.; Wang, L.Y.; Qian, G.Y.; Zhou, M.; Zhou, J.

    2012-01-01

    Highlights: ► WPCBs were heated in [EMIM + ][BF 4 − ] for recovering solider at 240 °C. ► The bromine epoxy resins in WPCBs were all dissolved in [EMIM + ][BF 4 − ] at 260 °C. ► Used [EMIM + ][BF 4 − ] is treated by water to obtain regeneration. - Abstract: Recovery of valuable materials from waste printed circuit boards (WPCBs) is quite difficult because WPCBs is a heterogeneous mixture of polymer materials, glass fibers, and metals. In this study, WPCBs was treated using ionic liquid (1-ethyl-3-methylimizadolium tetrafluoroborate [EMIM + ][BF 4 − ]). Experimental results showed that the separation of the solders went to completion, and electronic components (ECs) were removed in WPCBs when [EMIM + ][BF 4 − ] solution containing WPCBs was heated to 240 °C. Meanwhile, metallographic observations verified that the WPCBs had an initial delamination. When the temperature increased to 260 °C, the separation of the WPCBs went to completion, and coppers and glass fibers were obtained. The used [EMIM + ][BF 4 − ] was treated by water to generate a solid–liquid suspension, which was separated completely to obtain solid residues by filtration. Thermal analyses combined with infrared ray spectra (IR) observed that the solid residues were bromine epoxy resins. NMR (nuclear magnetic resonance) showed that hydrogen bond played an important role for [EMIM + ][BF 4 − ] dissolving bromine epoxy resins. This clean and non-polluting technology offers a new way to recycle valuable materials from WPCBs and prevent environmental pollution from WPCBs effectively.

  10. Natural radioactivity levels in different mineral waters from Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Kamenova-Totzeva, R.; Kotova, R.; Tenev, J.; Ivanova, G.; Badulin, V. [Public Exposure Monitoring Laboratory, National Centre of Radiobiology and Radiation Protection, Sofia (Bulgaria)

    2013-07-01

    The total radioactivity content of 76 mineral waters from different districts in Bulgaria was determined. Natural radioactivity levels resulting from uranium, radium-226, gross alpha and gross beta activity were measured. The results show that the specific activity range from < 0.02 Bq/l to 1.34 (12) Bq/l and from 0.068 (23) Bq/l to 2.60 (50) Bq/l for gross alpha and gross beta activity respectively. For natural Uranium the results vary between 0.020 (5) μg/l and 180(50) μg/l. Radium-226 content is between < 0.03 Bq/l to 0.296 (75) Bq/l. Due to differences in the geological structure of the aquifer, a large difference in values of the radioactive content was mSv/year. Excluding one value, TID do not exceed the permissible limit of 0.10 mSv/year. The correlations between investigated isotopes and Total Dissolved observed. The estimated Total Indicative Dose (TID) ranged from 0.0113 (57) mSv/year to 0.1713 (481) Solvents (TDS) in water were carried out. The results do not show a strong correlation between TDS values and dissolved radionuclides. (author)

  11. Molecular characterization of dissolved organic matter in freshwater wetlands of the Florida Everglades.

    Science.gov (United States)

    Lu, X Q; Maie, N; Hanna, J V; Childers, D L; Jaffé, R

    2003-06-01

    In this study, the molecular composition of dissolved organic matter (DOM), collected from wetlands of the Southern Everglades, was examined using a variety of analytical techniques in order to characterize its sources and transformation in the environment. The methods applied for the characterization of DOM included fluorescence spectroscopy, solid state 13C CPMAS NMR spectroscopy, and pyrolysis-GC/MS. The relative abundance of protein-like components and carbohydrates increased from the canal site to more remote freshwater marsh sites suggesting that significant amounts of non-humic DOM are autochthonously produced within the freshwater marshes, and are not exclusively introduced through canal inputs. Such in situ DOM production is important when considering how DOM from canals is processed and transported to downstream estuaries of Florida Bay.

  12. Release of dissolved 85Kr by standing

    International Nuclear Information System (INIS)

    Ootsuka, Norikatsu; Yamamoto, Tadatoshi; Tsukui, Kohei

    1986-01-01

    The experiments on the release of dissolved 85 Kr by standing at room temperature were carried out to examine the influence of liquid level in a sampler and properties of solvent on the release efficiency. Six kinds of organic solvents as well as water were taken as solvents. The half-life period in case of the decrease in concentration of the dissolved 85 Kr which was used as an index of release efficiency, was proportional to the liquid level in the sampler and was inversely proportional to the diffusion coefficient of Kr gas in solvent. For organic solvents belonging to homologous series, the half-life period became longer with increasing the carbon number of solvent molecule. From the relationship between the half-life period and the carbon number, the release efficiency in the dissolved 85 Kr can be predicted for any commonly used solvent as a practical application. This method was found to be an effective means of removing the dissolved 85 Kr of low level though it takes rather long time. (author)

  13. Use of Iron (II Salts and Complexes for the Production of Soil Amendments from Organic Solid Wastes

    Directory of Open Access Journals (Sweden)

    Amerigo Beneduci

    2012-01-01

    Full Text Available A method to obtain rapidly stabilized composts for crops from solid organic wastes is evaluated. Here we used a laboratory scale reaction chamber where solid waste treatment was performed under strictly controlled temperature and pressure conditions. The row organic waste was mixed with acid solutions containing iron (II ions either in the fully hydrated form or in the form of complexes with the diethylentriaminopentaacetic acid. Data from elemental analysis distribution and GC/MS analysis of the polar and non polar dissolved organic matter, clearly showed that Fe(II ions significantly enhance organic substrate oxidation of the initial solid waste, compared to a material obtained without the addition of the Fe(II ions to the raw organic matrix. These results suggest that Fe(II ions might be involved in a catalytic oxidation pathway that would be activated under the experimental conditions used. The extent of the oxidation process was evaluated by the value of the C/N ratio and, qualitatively, by the molecular composition of the dissolved organic matter. After about 6 hours of incubation, dark-brown and dry organic matrices were obtained with C/N ratio as low as 12 and a high degree of oxidative decomposition into low-molecular-weight compounds at high oxidation state.

  14. MODIFIED REVERSE OSMOSIS SYSTEM FOR TREATMENT OF PRODUCED WATERS

    Energy Technology Data Exchange (ETDEWEB)

    Robert L. Lee; Junghan Dong

    2004-06-03

    This final report of ''Modified Reverse Osmosis System for Treatment of Produced Water,'' DOE project No. DE-FC26-00BC15326 describes work performed in the third year of the project. Several good results were obtained, which are documented in this report. The compacted bentonite membranes were replaced by supported bentonite membranes, which exhibited the same salt rejection capability. Unfortunately, it also inherited the clay expansion problem due to water invasion into the interlayer spaces of the compacted bentonite membranes. We noted that the supported bentonite membrane developed in the project was the first of its kind reported in the literature. An {alpha}-alumina-supported MFI-type zeolite membrane synthesized by in-situ crystallization was fabricated and tested. Unlike the bentonite clay membranes, the zeolite membranes maintained stability and high salt rejection rate even for a highly saline solution. Actual produced brines from gas and oil fields were then tested. For gas fields producing brine, the 18,300 ppm TDS (total dissolved solids) in the produced brine was reduced to 3060 ppm, an 83.3% rejection rate of 15,240 ppm salt rejection. For oilfield brine, while the TDS was reduced from 181,600 ppm to 148,900 ppm, an 18% rejection rate of 32,700 ppm reduction, the zeolite membrane was stable. Preliminary results show the dissolved organics, mainly hydrocarbons, did not affect the salt rejection. However, the rejection of organics was inconclusive at this point. Finally, the by-product of this project, the {alpha}-alumina-supported Pt-Co/Na Y catalytic zeolite membrane was developed and demonstrated for overcoming the two-step limitation of nonoxidation methane (CH{sub 4}) conversion to higher hydrocarbons (C{sub 2+}) and hydrogen (H{sub 2}). Detailed experiments to obtain quantitative results of H{sub 2} generation for various conditions are now being conducted. Technology transfer efforts included five manuscripts submitted to

  15. Dissolving microneedle patches for dermal vaccination

    OpenAIRE

    Leone, M.; Monkare, J.T.; Bouwstra, J.A.; Kersten, G.F.A.

    2017-01-01

    The dermal route is an attractive route for vaccine delivery due to the easy skin accessibility and a dense network of immune cells in the skin. The development of microneedles is crucial to take advantage of the skin immunization and simultaneously to overcome problems related to vaccination by conventional needles (e.g. pain, needle-stick injuries or needle re-use). This review focuses on dissolving microneedles that after penetration into the skin dissolve releasing the encapsulated antige...

  16. Dissolved Vanillin as Tracer for Estuarine Lignin Conversion

    Science.gov (United States)

    Edelkraut, F.

    1996-12-01

    Lignin is produced only by vascular plants and therefore can be used as a tracer for terrestrial organic carbon input to the estuarine and marine environments. Lignin measurements have been done by analyses of the oxidation products such as vanillin or 4-hydroxybenzaldehyde. In the Elbe Estuary, free dissolved vanillin was analysed in order to test whether such measurements yield information on terrestrial carbon inputs into the Estuary and on the vanillin derived from lignin oxidation. In the period 1990-1992, concentrations of dissolved vanillin in the Elbe ranged from 0 to 60 μ g l -1(mean: 8 μg l -1). Higher values were found in areas of increased microbial activity such as the turbidity zone and the river mouth where the water chemistry is influenced by large tidal flats. No correlation was found between dissolved vanillin and suspended matter concentrations, although lignin is normally associated with suspended particulate matter, nor was a covariance seen between dissolved vanillin and the terrestrial carbon inputs into the Estuary. Apparently, biological conversion of lignin was faster than the transport processes, and local sources were more dominant for the vanillin concentration than riverine sources. The dissolved vanillin turnover was fast and, consequently, a significant amount of lignin may be converted within an estuary. In sediments from the Estuary, the concentrations of dissolved vanillin were similar to those found in the water phase and showed no clear vertical profile. The sediment is unlikely to be the source for vanillin.

  17. An investigation of desalination by nanofiltration, reverse osmosis and integrated (hybrid NF/RO) membranes employed in brackish water treatment.

    Science.gov (United States)

    Talaeipour, M; Nouri, J; Hassani, A H; Mahvi, A H

    2017-01-01

    As an appropriate tool, membrane process is used for desalination of brackish water, in the production of drinking water. The present study aims to investigate desalination processes of brackish water of Qom Province in Iran. This study was carried out at the central laboratory of Water and Wastewater Company of the studied area. To this aim, membrane processes, including nanofiltration (NF) and reverse osmosis (RO), separately and also their hybrid process were applied. Moreover, water physical and chemical parameters, including salinity, total dissolved solids (TDS), electric conductivity (EC), Na +1 and Cl -1 were also measured. Afterward, the rejection percent of each parameter was investigated and compared using nanofiltration and reverse osmosis separately and also by their hybrid process. The treatment process was performed by Luna domestic desalination device, which its membrane was replaced by two NF90 and TW30 membranes for nanofiltration and reverse osmosis processes, respectively. All collected brackish water samples were fed through membranes NF90-2540, TW30-1821-100(RO) and Hybrid (NF/RO) which were installed on desalination household scale pilot (Luna water 100GPD). Then, to study the effects of pressure on permeable quality of membranes, the simulation software model ROSA was applied. Results showed that percent of the salinity rejection was recorded as 50.21%; 72.82 and 78.56% in NF, RO and hybrid processes, respectively. During the study, in order to simulate the performance of nanofiltartion, reverse osmosis and hybrid by pressure drive, reverse osmosis system analysis (ROSA) model was applied. The experiments were conducted at performance three methods of desalination to remove physic-chemical parameters as percentage of rejections in the pilot plant are: in the NF system the salinity 50.21, TDS 43.41, EC 43.62, Cl 21.1, Na 36.15, and in the RO membrane the salinity 72.02, TDS 60.26, EC 60.33, Cl 43.08, Na 54.41. Also in case of the rejection in

  18. Solid-phase microextraction for bioconcentration studies according to OECD TG 305

    Energy Technology Data Exchange (ETDEWEB)

    Duering, Rolf-Alexander; Boehm, Leonard [Land Use and Nutrition (IFZ) Justus Liebig University Giessen, Institute of Soil Science and Soil Conservation, Research Centre for BioSystems, Giessen (Germany); Schlechtriem, Christian [Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Schmallenberg (Germany)

    2012-12-15

    An important aim of the European Community Regulation on chemicals and their safe use is the identification of (very) persistent, (very) bioaccumulative, and toxic substances. In other regulatory chemical safety assessments (pharmaceuticals, biocides, pesticides), the identification of such (very) persistent, (very) bioaccumulative, and toxic substances is of increasing importance. Solid-phase microextraction is especially capable of extracting total water concentrations as well as the freely dissolved fraction of analytes in the water phase, which is available for bioconcentration in fish. However, although already well established in environmental analyses to determine and quantify analytes mainly in aqueous matrices, solid-phase microextraction is still a rather unusual method in regulatory ecotoxicological research. Here, the potential benefits and drawbacks of solid-phase microextraction are discussed as an analytical routine approach for aquatic bioconcentration studies according to OECD TG 305, with a special focus on the testing of hydrophobic organic compounds characterized by log K{sub OW}> 5. (orig.)

  19. Distribution of dissolved carbohydrates and uronic acids in a tropical estuary, India

    Digital Repository Service at National Institute of Oceanography (India)

    Khodse, V.B.; Bhosle, N.B.; Matondkar, S.G.P.

    , concentrations of total dissolved carbohydrate (TCHO), dissolved polysaccharide (PCHO), dissolved monosaccharide (MCHO), and dissolved uronic acid (URA) were measured in the Mandovi estuary, west coast of India during the monsoon and premonsoon seasons...

  20. Chemical and thermal stability of core-shelled magnetite nanoparticles and solid silica

    Science.gov (United States)

    Cendrowski, Krzysztof; Sikora, Pawel; Zielinska, Beata; Horszczaruk, Elzbieta; Mijowska, Ewa

    2017-06-01

    Pristine nanoparticles of magnetite were coated by solid silica shell forming core/shell structure. 20 nm thick silica coating significantly enhanced the chemical and thermal stability of the iron oxide. Chemical and thermal stability of this structure has been compared to the magnetite coated by mesoporous shell and pristine magnetite nanoparticles. It is assumed that six-membered silica rings in a solid silica shell limit the rate of oxygen diffusion during thermal treatment in air and prevent the access of HCl molecules to the core during chemical etching. Therefore, the core/shell structure with a solid shell requires a longer time to induce the oxidation of iron oxide to a higher oxidation state and, basically, even strong concentrated acid such as HCl is not able to dissolve it totally in one month. This leads to the desired performance of the material in potential applications such as catalysis and environmental protection.

  1. Method for dissolving ceramic beryllia

    International Nuclear Information System (INIS)

    Sands, A.E.

    1975-01-01

    A process is described for dissolving a nuclear fuel composition consisting of a sintered mass containing beryllia, a nuclear fuel selected from uranium and plutonium and a stabilizing agent, sintered at a temperature of at least 1500 0 C to a density of about 2.7 gs/cc. The process comprises contacting said sintered mass with a stoichiometric excess of lithium oxide dissolved or dispersed in a carrier selected from lithium hydroxide, sodium hydroxide or sodium nitrate at a temperature in the range 750--850 0 C to convert the beryllia to lithium beryllate and thereafter recovering the nuclear fuel content of said mass. (U.S.)

  2. Statistically optimized fast dissolving microneedle transdermal patch of meloxicam: A patient friendly approach to manage arthritis.

    Science.gov (United States)

    Amodwala, Sejal; Kumar, Praveen; Thakkar, Hetal P

    2017-06-15

    The long term administration of Meloxicam for the management of arthritis, a chronic disorder, results in gastrointestinal disturbances leading to poor patient compliance. Considering the favorable molecular weight, therapeutic dose, biological half-life and log P value of meloxicam for transdermal delivery, its fast dissolving microneedle patch, with an ability to breach the stratum corneum and efficiently deliver the cargo to deeper skin layers, were developed. Microneedle patch of low molecular weight polyvinyl alcohol and polyvinylpyrrolidone was prepared using Polydimethylsiloxane micromolds. The ratio of polyvinyl alcohol to polyvinyl pyrrolidone and solid content of matrix solution was optimized to achieve maximum needle strength. The optimized batch was extensively evaluated for in vitro dissolution, drug release, stability, ex vivo skin permeation/deposition, histopathology and in vivo pharmacodynamic study. The patch containing 9:1 polyvinyl alcohol to polyvinylpyrrolidone ratio with 50% solid content had shown maximum axial needle fracture force (0.9N) suitable for penetrating the skin. The optimized batch was found to be fast dissolving and released almost 100% drug in 60min following dissolution controlled kinetics. The formulation showed a significant drug deposition within skin (63.37%) and an improved transdermal flux (1.60μg/cm 2 /h) with a 2.58 fold enhancement in permeation as compared to plain drug solution. The formulation showed a comparable anti-inflammatory activity in rats when compared to its existing approved marketed oral tablet. Histopathology and stability evaluations demonstrated acceptable safety and shelf-life of the developed formulation. The successful verification of safety, efficacy and stability of microneedle patch advocated the suitability of the formulation for transdermal use. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Novel salicylazo polymers for colon drug delivery: dissolving polymers by means of bacterial degradation.

    Science.gov (United States)

    Saphier, Sigal; Karton, Yishai

    2010-02-01

    Novel azo polymers were prepared for colonic drug delivery with a release mechanism based on structural features of azo derivatives designed for rapid bacterial degradation leading to soluble polymers. Two Salicylazo derivatives were prepared and conjugated as side chains at different ratios to methacrylic acid-methyl methacrylate copolymers (Eudragits). The azo compounds were designed to have a hydrophilic and a hydrophobic part on opposite sides of the azo bond. Upon reduction of the azo bonds, the hydrophobic part is released, resulting in a more water soluble polymer. The solubility of the polymeric films was studied relative to Eudragit S known to dissolve toward the end of the small intestine. One of the two azo derivatives prepared gave rise to polymers, which showed reduced solubility relative to Eudragit S. These polymers were subjected to reduction tests in anaerobic rat cecal suspensions by following the release of the hydrophobic product. Reduction rate was found to be rapid, comparable to that of Sulfasalazine. Studies on the azopolymeric films in anaerobic rat cecal suspensions, showed that these polymers dissolve faster than in sterilized suspensions. Solid dosage forms may be coated with these polymers to provide an efficient delivery system to the colon with a rapid release mechanism. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association.

  4. Biowaiver Monograph for Immediate-Release Solid Oral Dosage Forms: Amoxicillin Trihydrate.

    Science.gov (United States)

    Thambavita, Dhanusha; Galappatthy, Priyadarshani; Mannapperuma, Uthpali; Jayakody, Lal; Cristofoletti, Rodrigo; Abrahamsson, Bertil; Groot, Dirk W; Langguth, Peter; Mehta, Mehul; Parr, Alan; Polli, James E; Shah, Vinod P; Dressman, Jennifer

    2017-10-01

    Literature and experimental data relevant to waiver of in vivo bioequivalence (BE) testing for the approval of immediate-release solid oral dosage forms containing amoxicillin trihydrate are reviewed. Solubility and permeability characteristics according to the Biopharmaceutics Classification System (BCS), therapeutic uses, therapeutic index, excipient interactions, as well as dissolution and BE and bioavailability studies were taken into consideration. Solubility and permeability studies indicate that amoxicillin doses up to 875 mg belong to BCS class I, whereas 1000 mg belongs to BCS class II and doses of more than 1000 mg belong to BCS class IV. Considering all aspects, the biowaiver procedure can be recommended for solid oral products of amoxicillin trihydrate immediate-release preparations containing amoxicillin as the single active pharmaceutical ingredient at dose strengths of 875 mg or less, provided (a) only the excipients listed in this monograph are used, and only in their usual amounts, (b) the biowaiver study is performed according to the World Health Organization-, U.S. Food and Drug Administration-, or European Medicines Agency-recommended method using the innovator as the comparator, and (c) results comply with criteria for "very rapidly dissolving" or "similarly rapidly dissolving." Products containing other excipients and those containing more than 875 mg amoxicillin per unit should be subjected to an in vivo BE study. Copyright © 2017 American Pharmacists Association®. All rights reserved.

  5. Competition for spectral irradiance between epilimnetic optically active dissolved and suspended matter and phytoplankton in the metalimnion. Consequences for limnology and chemistry.

    Science.gov (United States)

    Bracchini, Luca; Dattilo, Arduino Massimo; Falcucci, Margherita; Hull, Vincent; Tognazzi, Antonio; Rossi, Claudio; Loiselle, Steven Arthur

    2011-06-01

    In deep lakes, water column stratification isolates the surface water from the deeper bottom layers, creating a three dimensional differentiation of the chemical, physical, biological and optical characteristics of the waters. Chromophoric dissolved organic matter (CDOM) and total suspended solids (TSS) play an important role in the attenuation of ultraviolet and photosynthetically active radiation. In the present analysis of spectral irradiance, we show that the wavelength composition of the metalimnetic visible irradiance was influenced by epilimnetic spatial distribution of CDOM. We found a low occurrence of blue-green photons in the metalimnion where epilimnetic concentrations of CDOM are high. In this field study, the spatial variation of the spectral irradiance in the metalimnion correlates with the observed metalimnetic concentrations of chlorophyll a as well as chlorophyll a : chlorophyll b/c ratios. Dissolved oxygen, pH, and nutrients trends suggest that chlorophyll a concentrations were representative of the phytoplankton biomass and primary production. Thus, metalimnetic changes of spectral irradiance may have a direct impact on primary production and an indirect effect on the spatial trends of pH, dissolved oxygen, and inorganic nutrients in the metalimnion.

  6. The dependence on temperature and salinity of dissolved

    NARCIS (Netherlands)

    Bakker, Dorothee C.E.; Baar, Hein J.W. de; Jong, Edwin de

    1999-01-01

    Recurring latitudinal patterns of the dissolved inorganic carbon (DIC) content and the fugacity of CO2 (fCO2) were observed in East Atlantic surface waters with strong gradients at hydrographic fronts. The dissolved inorganic carbon chemistry clearly displayed the effects of oceanic circulation and

  7. Radiation-chemical disinfection of dissolved impurities and environmental protection

    International Nuclear Information System (INIS)

    Petrukhin, N.V.; Putilov, A.V.

    1986-01-01

    Radiation-chemical neutralization of dissolved toxic impurities formed in the production processes of different materials, while modern plants being in use, is considered. For the first time the processes of deep industrial waste detoxication and due to this peculiarities of practically thorough neutralization of dissolved toxic impurities are considered. Attention is paid to devices and economic factors of neutralization of dissolved toxic impurities. The role of radiation-chemical detoxication for environment protection is considered

  8. The measurement of dissolved and gaseous carbon dioxide concentration

    Science.gov (United States)

    Zosel, J.; Oelßner, W.; Decker, M.; Gerlach, G.; Guth, U.

    2011-07-01

    In this review the basic principles of carbon dioxide sensors and their manifold applications in environmental control, biotechnology, biology, medicine and food industry are reported. Electrochemical CO2 sensors based on the Severinghaus principle and solid electrolyte sensors operating at high temperatures have been manufactured and widely applied already for a long time. Besides these, nowadays infrared, non-dispersive infrared and acoustic CO2 sensors, which use physical measuring methods, are being increasingly used in some fields of application. The advantages and drawbacks of the different sensor technologies are outlined. Electrochemical sensors for the CO2 measurement in aqueous media are pointed out in more detail because of their simple setup and the resulting low costs. A detailed knowledge of the basic detection principles and the windows for their applications is necessary to find an appropriate decision on the technology to be applied for measuring dissolved CO2. In particular the pH value and the composition of the analyte matrix exert important influence on the results of the measurements.

  9. The measurement of dissolved and gaseous carbon dioxide concentration

    International Nuclear Information System (INIS)

    Zosel, J; Oelßner, W; Decker, M; Gerlach, G; Guth, U

    2011-01-01

    In this review the basic principles of carbon dioxide sensors and their manifold applications in environmental control, biotechnology, biology, medicine and food industry are reported. Electrochemical CO 2 sensors based on the Severinghaus principle and solid electrolyte sensors operating at high temperatures have been manufactured and widely applied already for a long time. Besides these, nowadays infrared, non-dispersive infrared and acoustic CO 2 sensors, which use physical measuring methods, are being increasingly used in some fields of application. The advantages and drawbacks of the different sensor technologies are outlined. Electrochemical sensors for the CO 2 measurement in aqueous media are pointed out in more detail because of their simple setup and the resulting low costs. A detailed knowledge of the basic detection principles and the windows for their applications is necessary to find an appropriate decision on the technology to be applied for measuring dissolved CO 2 . In particular the pH value and the composition of the analyte matrix exert important influence on the results of the measurements. (topical review)

  10. Dissolved air flotation of polishing wastewater from semiconductor manufacturer.

    Science.gov (United States)

    Liu, J C; Lien, C Y

    2006-01-01

    The feasibility of the dissolved air flotation (DAF) process in treating chemical mechanical polishing (CMP) wastewater was evaluated in this study. Wastewater from a local semiconductor manufacturer was sampled and characterised. Nano-sized silica (77.6 nm) with turbidity of 130 +/- 3 NTU was found in the slightly alkaline wastewater with traces of other pollutants. Experimental results indicated removal efficiency of particles, measured as suspended particle or turbidity, increased with increasing concentration of cationic collector cetyltrimethyl ammonium bromide (CTAB). When CTAB concentration was 30 mg/L, pH of 6.5 +/- 0.1 and recycle ratio of 30%, very effective removal of particles (> 98%) was observed in saturation pressure range of 4 to 6 kg/cm2, and the reaction proceeded faster under higher pressure. Similarly, the reaction was faster under the higher recycle ratio, while final removal efficiency improved slightly as the recycle ratio increased from 20 to 40%. An insignificant effect of pH on treatment efficiency was found as pH varied from 4.5 to 8.5. The presence of activator, Al3+ and Fe3+, enhanced the system performance. It is proposed that CTAB adsorbs on silica particles in polishing wastewater through electrostatic interaction and makes particles more hydrophobic. The increase in hydrophobicity results in more effective bubble-particle collisions. In addition, flocculation of silica particles through bridging effect of collector was found; it is believed that flocculation of particles also contributed to flotation. Better attachment between gas bubble and solid, higher buoyancy and higher air to solid ratio all lead to effective flotation.

  11. Physical hydrogeology and environmental isotopes to constrain the age, origins, and stability of a low-salinity groundwater lens formed by periodic river recharge: Murray Basin, Australia

    Science.gov (United States)

    Cartwright, Ian; Weaver, Tamie R.; Simmons, Craig T.; Fifield, L. Keith; Lawrence, Charles R.; Chisari, Robert; Varley, Simon

    2010-01-01

    SummaryA low-salinity (total dissolved solids, TDS, Australia. Hydraulic heads, surface water elevations, δ 18O values, major ion geochemistry, 14C activities, and 3H concentrations show that the lens is recharged from the Murray River largely through the riverbank with limited recharge through the floodplain. Recharge of the lens occurs mainly at high river levels and the low-salinity groundwater forms baseflow to some river reaches during times of low river levels. Within the lens, flow through the shallow Channel Sands and deeper Parilla Sands aquifers is sub-horizontal. While the Blanchetown Clay locally separates the Channel Sands and the Parilla Sands, the occurrence of recently recharged low-salinity groundwater below the Blanchetown Clay suggests that there is considerable leakage through this unit, implying that it is not an efficient aquitard. The lateral margin of the lens with the regional groundwater (TDS >25,000 mg/L) is marked by a hectometer to kilometer scale transition in TDS concentrations that is not stratigraphically controlled. Rather this boundary represents a mixing zone with the regional groundwater, the position of which is controlled by the rate of recharge from the river. The lens is part of an active and dynamic hydrogeological system that responds over years to decades to changes in river levels. The lens has shrunk during the drought of the late 1990s to the mid 2000s, and it will continue to shrink unless regular high flows in the Murray River are re-established. Over longer timescales, the rise of the regional water table due to land clearing will increase the hydraulic gradient between the regional groundwater and the groundwater in the lens, which will also cause it to degrade. Replacement of low-salinity groundwater in the lens with saline groundwater will ultimately increase the salinity of the Murray River reducing its utility for water supply and impacting riverine ecosystems.

  12. Septic tanks as larval habitats for the mosquitoes Aedes aegypti and Culex quinquefasciatus in Playa-Playita, Puerto Rico.

    Science.gov (United States)

    Burke, R; Barrera, R; Lewis, M; Kluchinsky, T; Claborn, D

    2010-06-01

    Adult Aedes aegypti (Linnaeus) (Diptera: Culicidae) were previously recovered from emergence traps on septic tanks in southeastern Puerto Rico. In this study we quantified immature mosquito abundance and its relationship with structural variables of the septic tanks and chemical properties of the water containing raw sewage. A miniaturized floating funnel trap was used to sample 89 septic tanks for larvae in the Puerto Rican community of Playa-Playita. Aedes aegypti larvae were recovered from 18% of the sampled tanks (10.3 larvae per septic tank per day). Larval presence was positively associated with cracking of the septic tank walls and uncovered access ports. Larval abundance was positively associated with cracking of the septic tank walls and larger tank surface areas, and inversely associated with the total dissolved solids (TDS). Culex quinquefasciatus (Say) larvae were also recovered from 74% of the septic tanks (129.6 larvae per septic tank per day). Larval presence was negatively associated with TDS in the water and larval abundance was positively associated with cracking of the septic tank walls. A screened, plastic emergence trap was used to sample 93 septic tanks within the community for Ae. aegypti and Cx. quinquefasciatus adults. Aedes aegypti adults were recovered from 49% of the sampled tanks (8.7 adults per septic tank per day) and Cx. quinquefasciatus adults were recovered from 97% of the sampled tanks (155.5 adults per septic tank per day). Aedes aegypti adult presence was positively associated with cracking, uncapped openings and septic water pH. The Ae. aegypti adult counts were positively associated with cracking and inversely associated with TDS and conductivity. This study marks the first published record of the recovery of Ae. aegypti larvae from holding tanks containing raw sewage in the Caribbean region. Our study indicates that Ae. aegypti larvae are present in sewage water and that septic tanks have at least the potential to maintain

  13. A Comprehensive evaluation of groundwater vulnerability to saltwater up-coning and sea water intrusion in a coastal aquifer (case study: Ghaemshahr-juybar aquifer)

    Science.gov (United States)

    Motevalli, Alireza; Moradi, Hamid Reza; Javadi, Saman

    2018-02-01

    Aquifer salinization has recently increased significantly due to human activity and has caused irreparable environmental and economic effects. In this research, a new method is proposed for modeling the vulnerability to salinity for the Ghaemshahr-juybar aquifer. Specifically, the GALDIT (Sea water intrusion) and TAWLBIC (Saltwater up-coning) indices were combined to produce a map of vulnerability (Comprehensive Salinity Index or CSI) to seawater intrusion of a region near the coast and saltwater up-coning away from the coast, respectively. Single parameter and removal layer sensitivity analysis were performed in order to identify the sensitive parameters and achieve optimal weights (through the single-parameter method) of contributing factors in all three methods. The three optimized methods produced were GALDIT-Opt, TAWLBIC-Opt and CSI-Opt. To assess the accuracy of the original maps and optimal ones, the Pearson correlation was used. Results indicated that the Pearson correlation of the optimized GALDIT, TAWLBIC and CSI model was better than GALDIT, TAWLBIC and CSI. The results show that the increase in correlation between EC (Electrical Conductivity), TDS (Total Dissolved Solids) and SAR (Sodium Adsorption Ratio) from the GALDIT model to the CSI-Opt model from values of 0.64, 0.56 and 0.68 has improved to values of 0.81, 0.88 and 0.91, respectively. The highest concentration of EC, with a value of 7050 μs/cm, is sampled in the areas of the east and northwest of the Ghaemshahr-juybar aquifer, which are classified in the CSI-Opt model as high and very high vulnerability levels. The highest concentration of TDS and SAR has been found in the east, northwest and northeast of the Ghaemshahr-juybar aquifer with a value of 4724 ppm for TDS and 14 mg/l for SAR that have been modeled in the CSI-Opt index as highly vulnerable areas. Eventually, CSI mapping can be used as an efficient tool in prioritizing in terms of the vulnerability to aquifer salinity, carrying out

  14. Formulation of Fast-Dissolving Tablets of Promethazine Theoclate ...

    African Journals Online (AJOL)

    Purpose: To optimize and formulate promethazine theoclate fast-dissolving tablets that offer a suitable approach to the treatment of nausea and vomiting. Method: The solubility of promethazine theoclate was increased by formulating it as a fast-dissolving tablet containing β-cyclodextrin, crospovidone, and camphor, using ...

  15. Remote repair of the dissolvers in Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Otani, Yosikuni

    1985-01-01

    In the Tokai fuel reprocessing plant, there occurred failures (pinholes) in two dissolver tanks successively in 1982 and 1983. These dissolvers are set under high radiation field, not permitting access of the personnel. So, repair works were carried out after development of the remotely operated repair system. For repair of the failed dissolver tanks, after tests and studies, the means was employed of grinding off the wall surface to small depth and then forming over it a corrosion resistant sealing layer by padding welding. The repair system which enabled the repair and the inspection in the cell by remote operation consisted of six devices including polishing, welding, dye penetration test, etc. Repair works on the dissolvers took two months and a half from September 1983. (Mori, K.)

  16. Occurrence and behaviour of dissolved, nano-particulate and micro-particulate iron in waste waters and treatment systems: new insights from electrochemical analysis.

    Science.gov (United States)

    Matthies, R; Aplin, A C; Horrocks, B R; Mudashiru, L K

    2012-04-01

    Cyclic-, Differential Pulse- and Steady-state Microdisc Voltammetry (CV, DPV, SMV) techniques have been used to quantify the occurrence and fate of dissolved Fe(ii)/Fe(iii), nano-particulate and micro-particulate iron over a 12 month period in a series of net-acidic and net-alkaline coal mine drainages and passive treatment systems. Total iron in the mine waters is typically 10-100 mg L(-1), with values up to 2100 mg L(-1). Between 30 and 80% of the total iron occurs as solid phase, of which 20 to 80% is nano-particulate. Nano-particulate iron comprises 20 to 70% of the nominally "dissolved" (i.e. sedimentation are the only processes required to remove solid phase iron, these data have important implications for the generation or consumption of acidity during water treatment. In most waters, the majority of truly dissolved iron occurs as Fe(ii) (average 64 ± 22%). Activities of Fe(ii) do not correlate with pH and geochemical modelling shows that no Fe(ii) mineral is supersaturated. Removal of Fe(ii) must proceed via oxidation and hydrolysis. Except in waters with pH waters are generally supersaturated with respect to ferrihydrite and schwertmannite, and are not at redox equilibrium, indicating the key role of oxidation and hydrolysis kinetics on water treatment. Typically 70-100% of iron is retained in the treatment systems. Oxidation, hydrolysis, precipitation, coagulation and sedimentation occur in all treatment systems and - independent of water chemistry and the type of treatment system - hydroxides and oxyhydroxysulfates are the main iron sinks. The electrochemical data thus reveal the rationale for incomplete iron retention in individual systems and can thus inform future design criteria. The successful application of this low cost and rapid electrochemical method demonstrates its significant potential for real-time, on-site monitoring of iron-enriched waters and may in future substitute traditional analytical methods.

  17. Geophysical, geochemical and hydrological analyses of water-resource vulnerability to salinization: case of the Uburu-Okposi salt lakes and environs, southeast Nigeria

    Science.gov (United States)

    Ukpai, S. N.; Okogbue, C. O.

    2017-11-01

    Until this study, the location and depth of the saline units in Uburu-Okposi salt lake areas and environs have been unknown. This study aimed at delineating the saline lithofacies and dispersal configurations to water bodies, using electrical geophysical methods such as constant separation traversing (CST) and vertical electrical sounding (VES). Results showed weathered zones that represent aquifers mostly at the fourth geoelectric layer: between upper layered aquitards and underlying aquitards at depths 30-140 m. Lateral distribution of resistivity variance was defined by the CST, whereas the VES tool, targeted at low-resistivity zones, detected isolated saline units with less than 10 ohm-m at depths generally >78 m. The saline lithofacies were suspected to link freshwater zones via shear zones, which steer saline water towards the salt lakes and influence the vulnerability of groundwater to salinization. The level of salinization was verified by water sampling and analysis, and results showed general alkaline water type with a mean pH of 7.66. Water pollution was indicated: mean total dissolved solids (TDS) 550 mg/l, electrical conductivity (EC) 510 μS/cm, salinity 1.1‰, Cl- 200 mg/l, N03 -35.5 mg/l, Na+ 19.6 mg/l and Ca2+ 79.3 mg/l. The salinity is controlled by NaCl salt, as deduced from correlation analysis using the software package Statistical Product for Service Solutions (SPSS). Generally, concentrations of dissolved ions in the water of the area are enhanced via mechanisms such as evaporation, dissociation of salts, precipitation run off and leaching of dissolved rock minerals.

  18. Impact of sludge properties on solid-liquid separation of activated sludge

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard

    2016-01-01

    Solid-liquid separation of activated sludge is important both directly after the biological treatment of wastewater and for sludge dewatering. The separation of solid from the treated wastewater can be done by clarifiers (conventional plants) or membrane (MBR). Further, part of the sludge is taken...... out from the proces and usually dewatered before further handling. The separation process is costly. Moreover, the separation process depends on the composition and the properties of the sludge. The best separation is obtained for sludge that contains strong, compact flocs without single cells...... and dissolved extracellular polymeric substances (EPS). Polyvalent ions improve the floc strangth and improve the separation whereas monovalent ions (e.g. from road salt, sea water intrusion and industry) reduces impair the separation. Further high pH impairs the separation process due to floc disintegration...

  19. Fertirrigation with sugarcane vinasse: Foreseeing potential impacts on soil and water resources through vinasse characterization.

    Science.gov (United States)

    Fuess, Lucas T; Rodrigues, Isabella J; Garcia, Marcelo L

    2017-09-19

    This paper reports the characterization of the polluting potential of sugarcane vinasse, the main wastewater from ethanol production. Compositional data from vinasse samples collected from sugarcane biorefineries were used to predict negative effects on the soil, water resources and crops potentially associated with fertirrigation, the primary final destination of vinasse in Brazil. High risks of soil salinization were associated with the land disposal of vinasse, as evidenced by the high levels of total dissolved solids (TDS; >4,000 mg L -1 ) and electrical conductivity (>6.7 dS m -1 ). The high TDS levels coupled with the high biodegradable organic content of vinasse (>14 g L -1 ) also favor organic overloading events, leading to local anaerobiosis conditions. Conversely, soil sodification should not be observed in areas fertirrigated with sugarcane vinasse, given the low Na concentrations (145.1 mg L -1 ) and Ca (>458.4 mg L -1 ) levels. Priority pollutants (Cu, Cr, Ni, Pb and Zn) and phytotoxic elements (Al and Fe) were also found in the analyzed samples; however, relevant environmental impacts should not be associated with these particular constituents. Overall, the relatively simple methodology used herein could efficiently replace massive field data collection to provide a basic understanding of the fate of vinasse in the environment in order to highlight the priority points to be considered in the management of this effluent. In summary, the prompt implementation of treatment plants in distilleries, in addition to a continuous and broad compositional characterization of vinasse, is essential to guarantee its adequate reuse.

  20. Groundwater Quality Assessment Based on Improved Water Quality Index in Pengyang County, Ningxia, Northwest China

    Directory of Open Access Journals (Sweden)

    Li Pei-Yue

    2010-01-01

    Full Text Available The aim of this work is to assess the groundwater quality in Pengyang County based on an improved water quality index. An information entropy method was introduced to assign weight to each parameter. For calculating WQI and assess the groundwater quality, total 74 groundwater samples were collected and all these samples subjected to comprehensive physicochemical analysis. Each of the groundwater samples was analyzed for 26 parameters and for computing WQI 14 parameters were chosen including chloride, sulphate, pH, chemical oxygen demand (COD, total dissolved solid (TDS, total hardness (TH, nitrate, ammonia nitrogen, fluoride, total iron (Tfe, arsenic, iodine, aluminum, nitrite, metasilicic acid and free carbon dioxide. At last a zoning map of different water quality was drawn. Information entropy weight makes WQI perfect and makes the assessment results more reasonable. The WQI for 74 samples ranges from 12.40 to 205.24 and over 90% of the samples are below 100. The excellent quality water area covers nearly 90% of the whole region. The high value of WQI has been found to be closely related with the high values of TDS, fluoride, sulphate, nitrite and TH. In the medium quality water area and poor quality water area, groundwater needs some degree of pretreated before consumption. From the groundwater conservation view of point, the groundwater still need protection and long term monitoring in case of future rapid industrial development. At the same time, preventive actions on the agricultural non point pollution sources in the plain area are also need to be in consideration.

  1. Assessment of typical natural processes and human activities' impact on the quality of drinking water.

    Science.gov (United States)

    Kurilić, Sanja Mrazovac; Ulniković, Vladanka Presburger; Marić, Nenad; Vasiljević, Milenko

    2015-11-01

    This paper provides insight into the quality of groundwater used for public water supply on the territory of Temerin municipality (Vojvodina, Serbia). The following parameters were measured: color, turbidity, pH, KMnO4 consumption, total dissolved solids (TDS), EC, NH4+, Cl-, NO2-, NO3-, Fe, Mn, As, Ca2+, Mg2+, SO4(2-), HCO3-, K+, and Na+. The correlations and ratios among parameters that define the chemical composition were determined aiming to identify main processes that control the formation of the chemical composition of the analyzed waters. Groundwater from three analyzed sources is Na-HCO3 type. Elevated organic matter content, ammonium ion content, and arsene content are characteristic for these waters. The importance of organic matter decay is assumed by positive correlation between organic matter content and TDS, and HCO3- content. There is no evidence that groundwater chemistry is determined by the depth of captured aquifer interval. The main natural processes that control the chemistry of all analyzed water are cation exchange and feldspar weathering. The dominant cause of As concentration in groundwater is the use of mineral fertilizers and of KMnO4 in urban area. The concentration of As and KMnO4 in the observed sources is inversely proportional to the distance from agricultural land and urban area. 2D model of distribution of As and KMnO4 is done, and it is applicable in detecting sources of pollution. By using this model, we can quantify the impact of certain pollutants on unfavorable content of some parameters in groundwater.

  2. Concentration of ions in selected bottled water samples sold in Malaysia

    Science.gov (United States)

    Aris, Ahmad Zaharin; Kam, Ryan Chuan Yang; Lim, Ai Phing; Praveena, Sarva Mangala

    2013-03-01

    Many consumers around the world, including Malaysians, have turned to bottled water as their main source of drinking water. The aim of this study is to determine the physical and chemical properties of bottled water samples sold in Selangor, Malaysia. A total of 20 bottled water brands consisting of `natural mineral (NM)' and `packaged drinking (PD)' types were randomly collected and analyzed for their physical-chemical characteristics: hydrogen ion concentration (pH), electrical conductivity (EC) and total dissolved solids (TDS), selected major ions: calcium (Ca), potassium (K), magnesium (Mg) and sodium (Na), and minor trace constituents: copper (Cu) and zinc (Zn) to ascertain their suitability for human consumption. The results obtained were compared with guideline values recommended by World Health Organization (WHO) and Malaysian Ministry of Health (MMOH), respectively. It was found that all bottled water samples were in accordance with the guidelines set by WHO and MMOH except for one sample (D3) which was below the pH limit of 6.5. Both NM and PD bottled water were dominated by Na + K > Ca > Mg. Low values for EC and TDS in the bottled water samples showed that water was deficient in essential elements, likely an indication that these were removed by water treatment. Minerals like major ions were present in very low concentrations which could pose a risk to individuals who consume this water on a regular basis. Generally, the overall quality of the supplied bottled water was in accordance to standards and guidelines set by WHO and MMOH and safe for consumption.

  3. PREDICTION OF BOD AND COD OF A REFINERY WASTEWATER USING MULTILAYER ARTIFICIAL NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Eldon Raj Rene

    2008-06-01

    Full Text Available In the recent past, artificial neural networks (ANNs have shown the ability to learn and capture non-linear static or dynamic behaviour among variables based on the given set of data. Since the knowledge of internal procedure is not necessary, the modelling can take place with minimum previous knowledge about the process through proper training of the network. In the present study, 12 ANN based models were proposed to predict the Biochemical Oxygen Demand (BOD5 and Chemical Oxygen Demand (COD concentrations of wastewater generated from the effluent treatment plant of a petrochemical industry. By employing the standard back error propagation (BEP algorithm, the network was trained with 103 data points for water quality indices such as Total Suspended Solids (TSS, Total Dissolved Solids (TDS, Phenol concentration, Ammoniacal Nitrogen (AMN, Total Organic Carbon (TOC and Kjeldahl’s Nitrogen (KJN to predict BOD and COD. After appropriate training, the network was tested with a separate test data and the best model was chosen based on the sum square error (training and percentage average relative error (% ARE for testing. The results from this study reveal that ANNs can be accurate and efficacious in predicting unknown concentrations of water quality parameters through its versatile training process.

  4. Orally-dissolving film for sublingual and buccal delivery of ropinirole.

    Science.gov (United States)

    Lai, Ka Lun; Fang, Yuan; Han, Hao; Li, Qingqing; Zhang, Shuai; Li, Ho Yin; Chow, Shing Fung; Lam, Tai Ning; Lee, Wai Yip Thomas

    2018-03-01

    Ropinirole is a very important treatment option for Parkinson's disease (PD), a major threat to the aging population. However, this drug undergoes extensive first-pass metabolism, resulting in a low oral bioavailability. Moreover, the necessity of frequent administration due to the short half-life of ropinirole may jeopardize patient compliance. Indeed, taking this drug in solid oral dosage forms (e.g. Tablet) can be a challenge because of the tremor, rigidity, limited mobility, and impaired drug absorption experienced by PD patients. In light of these, there is a pressing need to devise formulations for the delivery of ropinirole that allow simple and easy administration and fast drug action, as well as avoidance of first-pass metabolism and overcoming the challenge of impaired absorption due to gastrointestinal dysfunctions, etc. Herein, we seek to overcome all these challenges via sublingual or buccal delivery of orally-dissolving films. Accordingly, we aimed to fabricate and characterize orally-dissolving films of ropinirole and assess their in vivo pharmacokinetics after sublingual and buccal administration. The ropinirole oral film was non-toxic and exhibited fast disintegration and dissolution and was physically stable for at least 28 days. Upon buccal/sublingual administration of the oral films, ropinirole reached the systemic circulation within 15 min and bioavailability was significantly improved, which may be attributable to avoidance of first-pass metabolism via absorption through the oral cavity. In conclusion, our ropinirole oral film improved bioavailability after sublingual or buccal administration. This formulation potentially overcomes biopharmaceutical challenges and provide a convenient means of administration of ropinirole or other anti-PD drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Evaluation and validation of criticality codes for fuel dissolver calculations

    International Nuclear Information System (INIS)

    Santamarina, A.; Smith, H.J.; Whitesides, G.E.

    1991-01-01

    During the past ten years an OECD/NEA Criticality Working Group has examined the validity of criticality safety computational methods. International calculation tools which were shown to be valid in systems for which experimental data existed were demonstrated to be inadequate when extrapolated to fuel dissolver media. The spread of the results in the international calculation amounted to ± 12,000 pcm in the realistic fuel dissolver exercise n degrees 19 proposed by BNFL, and to ± 25,000 pcm in the benchmark n degrees 20 in which fissile material in solid form is surrounded by fissile material in solution. A theoretical study of the main physical parameters involved in fuel dissolution calculations was performed, i.e. range of moderation, variation of pellet size and the fuel double heterogeneity effect. The APOLLO/P IC method developed to treat latter effect, permits us to supply the actual reactivity variation with pellet dissolution and to propose international reference values. The disagreement among contributors' calculations was analyzed through a neutron balance breakdown, based on three-group microscopic reaction rates solicited from the participants. The results pointed out that fast and resonance nuclear data in criticality codes are not sufficiently reliable. Moreover the neutron balance analysis emphasized the inadequacy of the standard self-shielding formalism (NITAWL in the international SCALE package) to account for 238 U resonance mutual self-shielding in the pellet-fissile liquor interaction. Improvements in the up-dated 1990 contributions, as do recent complementary reference calculations (MCNP, VIM, ultrafine slowing-down CGM calculation), confirm the need to use rigorous self-shielding methods in criticality design-oriented codes. 6 refs., 11 figs., 3 tabs

  6. Characterization of isolated fractions of dissolved organic matter derived from municipal solid waste compost.

    Science.gov (United States)

    Yu, Minda; He, Xiaosong; Liu, Jiaomei; Wang, Yuefeng; Xi, Beidou; Li, Dan; Zhang, Hui; Yang, Chao

    2018-04-14

    Understanding the heterogeneous evolution characteristics of dissolved organic matter fractions derived from compost is crucial to exploring the composting biodegradation process and the possible applications of compost products. Herein, two-dimensional correlation spectroscopy integrated with reversed-phase high performance liquid chromatography and size exclusion chromatography were utilized to obtain the molecular weight (MW) and polarity evolution characteristics of humic acid (HA), fulvic acid (FA), and the hydrophilic (HyI) fractions during composting. The high-MW humic substances and building blocks in the HA fraction degraded faster during composting than polymers, proteins, and organic colloids. Similarly, the low MW acid FA factions transformed faster than the low weight neutral fractions, followed by building blocks, and finally polymers, proteins, and organic colloids. The evolutions of HyI fractions during composting occurred first for building blocks, followed by low MW acids, and finally low weight neutrals. With the progress of composting, the hydrophobic properties of the HA and FA fractions were enhanced. The degradation/humification process of the hydrophilic and transphilic components was faster than that of the hydrophobic component. Compared with the FA and HyI fractions, the HA fraction exhibited a higher MW and increased hydrophobicity. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Influence of leachate recirculation on aerobic and anaerobic decomposition of solid wastes

    International Nuclear Information System (INIS)

    Bilgili, M. Sinan; Demir, Ahmet; Ozkaya, Bestamin

    2007-01-01

    In this study, the effect of leachate recirculation on aerobic and anaerobic degradation of municipal solid wastes is determined by four laboratory-scale landfill reactors. The options studied and compared with the traditional anaerobic landfill are: leachate recirculation, landfill aeration, and aeration with leachate recirculation. Leachate quality is regularly monitored by the means of pH, alkalinity, total dissolved solids, conductivity, oxidation-reduction potential, chloride, chemical oxygen demand, ammonia, and total Kjeldahl nitrogen, in addition to generated leachate quantity. Aerobic leachate recirculated landfill appears to be the most effective option in the removal of organic matter and ammonia. The main difference between aerobic recirculated and non-recirculated landfill options is determined at leachate quantity. Recirculation is more effective on anaerobic degradation of solid waste than aerobic degradation. Further studies are going on to determine the optimum operational conditions for aeration and leachate recirculation rates, also with the operational costs of aeration and recirculation

  8. Strontium concentrations and isotope ratios in a forest-river system in the South Qinling Mts., China.

    Science.gov (United States)

    Bu, Hongmei; Song, Xianfang; Zhang, Quanfa; Burford, Michele A

    2016-04-15

    The concentrations of dissolved strontium (Sr) and isotope ratios ((87)Sr/(86)Sr) in rainwater, river water, and water from forest soil are measured to investigate the contributions of these sources to a river during base flow conditions in the relatively pristine South Qinling Mountains, China. Dissolved Sr concentrations and (87)Sr/(86)Sr ratios vary significantly between different water types (p water samples including Ca(2+), Mg(2+), EC, and TDS (p water chemistry in the river water. Using the three-source mixing model, atmospheric inputs, carbonate, and silicate weathering contribute 74%, 20%, and 6% respectively to the dissolved Sr in the river water. This research has provided new insights into the contribution of sources of Sr to a river system in a mountainous catchment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Observation of an Aligned Gas - Solid "Eutectic" during Controlled Directional Solidification Aboard the International Space Station - Comparison with Ground-based Studies

    Science.gov (United States)

    Grugel, R. N.; Anilkumar, A.

    2005-01-01

    Direct observation of the controlled melting and solidification of succinonitrile was conducted in the glovebox facility of the International Space Station (ISS). The experimental samples were prepared on ground by filling glass tubes, 1 cm ID and approximately 30 cm in length, with pure succinonitrile (SCN) in an atmosphere of nitrogen at 450 millibar pressure for eventual processing in the Pore Formation and Mobility Investigation (PFMI) apparatus in the glovebox facility (GBX) on board the ISS. Real time visualization during controlled directional melt back of the sample showed nitrogen bubbles emerging from the interface and moving through the liquid up the imposed temperature gradient. Over a period of time these bubbles disappear by dissolving into the melt. Translation is stopped after melting back of about 9 cm of the sample, with an equilibrium solid-liquid interface established. During controlled re-solidification, aligned tubes of gas were seen growing perpendicular to the planar solid/liquid interface, inferring that the nitrogen previously dissolved into the liquid SCN was now coming out at the solid/liquid interface and forming the little studied liquid = solid + gas eutectic-type reaction. The observed structure is evaluated in terms of spacing dimensions, interface undercooling, and mechanisms for spacing adjustments. Finally, the significance of processing in a microgravity environment is ascertained in view of ground-based results.

  10. Physicochemical Assessment of Surface and Groundwater Quality of the Greater Chittagong Region of Bangladesh

    Directory of Open Access Journals (Sweden)

    M. J. Ahmed

    2010-12-01

    Full Text Available The study was carried out to assess surface and groundwater quality of the greater Chittagong (Chittagong and Cox’s Bazar districts and Chittagong Hill Tracts (Rangamati, Khagrachhari and Bandarban districts of Bangladesh. To study the various physicochemical and microbiological parameters, surface water samples from the Karnafuli, Halda, Sangu, Matamuhuri, Bakkhali, Naf, Kasalong, Chingri and Mayani Rivers, Kaptai Lake and groundwater samples from almost every Upazilas, smaller administrative unit of Bangladesh, were collected and analyzed. The statistical methods of sampling were used for collecting samples. Samples were preserved using suitable preservation methods. Water samples from the freshwater resources were collected from different points and tide conditions and at different seasons for continuous monitoring during the hydrological years 2008-2009. The collected samples were analyzed for the following parameters: pH, electrical conductivity (EC, total dissolved solids (TDS, total suspended solids (TSS, total solids (TS, dissolved oxygen (DO, transparency, acidity, dissolved carbon dioxide, total alkalinity, total hardness, chloride, ammonia-N, hydrogen sulfide, sulphate-S, o-phosphate-P, biochemical oxygen demand (BOD, chemical oxygen demand (COD, nitrate-N, nitrite-N, total nitrite and nitrate-N, arsenic, iron, manganese, copper, nickel, chromium, cadmium, lead, calcium, magnesium, sodium and potassium using the procedure outlined in the standard methods. Average values of maximum physicochemical and microbiological parameters studied for the Karnafuli River were found higher than the World Health Organization (WHO guideline. The maximum water quality parameters of Kaptai Lake and other Rivers of Chittagong region were existed within the permissible limits of WHO guideline. The data showed the water quality slightly differs in pre-monsoon and post-monsoon than monsoon season. The concentration of different constituents of most of

  11. Impact of fertilizer plant effluent on water quality

    International Nuclear Information System (INIS)

    Obire, O.; Ogan, A.; Okigbo, R. N.

    2008-01-01

    The impact of National Fertilizer Company of Nigeria out fall effluent on the physico chemistry and bacteriology of Okrika creek was investigated during the sampling period from May to December, 1998. The National Fertilizer Company of Nigeria out fall effluent, the Okrika creek water and the lkpukulubie creek (control) water samples were collected. The physico-chemical parameters analyzed for all the samples included temperature, p H, total chloride, total dissolved solids, dissolved oxygen, conductivity, free ammonia, total phosphate, urea, zinc and iron, while the bacteriological determinations were total culturable aerobic heterotrophic bacteria count and identification of representative isolates. The Okrika creek recorded higher concentrations for all the physicochemical parameters and bacteria load than the control creek. The higher values of p H, Free NH 3 , urea, TDS and the conductivity of the National Fertilizer Company of Nigeria out fall effluent above the FEPA standards reflect the poor effluent quality generated by National Fertilizer Company of Nigeria. The bacteria species isolated from the samples include Aerococcus viridans, Alcaligenes faecalis, Bacillus cereus, Citrobacter freundii, Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa, Serratia marcescens and Staphylococcus aureus. In general, the investigation revealed that there was an extremely adverse impact on the physico-chemical and bacteriological water quality characteristics of the Okrika creek as a result of the discharge of poor quality effluent from National Fertilizer Company of Nigeria operations

  12. Feasibility model study for Blumbangreksa product model based on lean startup method

    Science.gov (United States)

    Pakpahan, A. K.; Dewobroto, W. S.; Pratama, R. Y.

    2017-12-01

    Based on the data from Ministry of Maritime Affairs and Fisheries in 2015, the productivity of shrimp farmers in Indonesia is still below China, India and Thailand, because of the low survival rate of shrimp seeds were planted in Indonesia. Water quality factors become a significant factor that increasesthe survival rate of shrimp seeds plantation, therefore team of PT. Atnic EkoteknoWicaksana create a tool called Blumbangreksa that able to monitor water quality of shrimp farms, measure temperature, salinity, pH, DO (dissolved oxygen), TDS (total dissolve solid) in water and moist air over the surface of the water and GSM -based and Internet of things. Based on the research results, unique value proposition of Blumbangreksa products is the measurement result of water quality are accurate, real-time measurements, based on Internet of things and have the ability measurements at once. Based on the feasibility study using the opportunity assessment of Marty Cagan, it can be seen that the product has fulfilled ten elements of assessment opportunity, so Blumbangreksa products are considered feasible. Initial investment fund of Blumbangreksa products is Rp 1,369,856,574, with profitability index of 1:51 and average breakeven products each year as many as 18 products are sold, and the payback period for 4 years and 2 months, therefore the business of Blumbangreksa product is feasible.

  13. Relationships between colored dissolved organic matter and dissolved organic carbon in different coastal gradients of the Baltic Sea

    OpenAIRE

    Harvey, E. Therese; Kratzer, Susanne; Andersson, Agneta

    2015-01-01

    Due to high terrestrial runoff, the Baltic Sea is rich in dissolved organic carbon (DOC), the light-absorbing fraction of which is referred to as colored dissolved organic matter (CDOM). Inputs of DOC and CDOM are predicted to increase with climate change, affecting coastal ecosystems. We found that the relationships between DOC, CDOM, salinity, and Secchi depth all differed between the two coastal areas studied; the W Gulf of Bothnia with high terrestrial input and the NW Baltic Proper with ...

  14. Colored dissolved organic matter in Tampa Bay, Florida

    Science.gov (United States)

    Chen, Z.; Hu, C.; Conmy, R.N.; Muller-Karger, F.; Swarzenski, P.

    2007-01-01

    Absorption and fluorescence of colored dissolved organic matter (CDOM) and concentrations of dissolved organic carbon (DOC), chlorophyll and total suspended solids in Tampa Bay and its adjacent rivers were examined in June and October of 2004. Except in Old Tampa Bay (OTB), the spatial distribution of CDOM showed a conservative relationship with salinity in June, 2004 (aCDOM(400) = − 0.19 × salinity + 6.78, R2 = 0.98, n = 17, salinity range = 1.1–32.5) with little variations in absorption spectral slope and fluorescence efficiency. This indicates that CDOM distribution was dominated by mixing. In October, 2004, CDOM distribution was nonconservative with an average absorption coefficient (aCDOM(400), ∼ 7.76 m-1) about seven times higher than that in June (∼ 1.11 m-1). The nonconservative behavior was caused largely by CDOM removal at intermediate salinities (e.g., aCDOM(400) removal > 15% at salinity ∼ 13.0), which likely resulted from photobleaching due to stronger stratification. The spatial and seasonal distributions of CDOM in Tampa Bay showed that the two largest rivers, the Alafia River (AR) and Hillsborough River (HR) were dominant CDOM sources to most of the bay. In OTB, however, CDOM showed distinctive differences: lower absorption coefficient, higher absorption spectral slopes, and lower ratios of CDOM absorption to DOC and higher fluorescence efficiency. These differences may have stemmed from (1) changes in CDOM composition by more intensive photobleaching due to the longer residence time of water mass in OTB; (2) other sources of CDOM than the HR/AR inputs, such as local creeks, streams, groundwater, and/or bottom re-suspension. Average CDOM absorption in Tampa Bay at 443 nm, aCDOM(443), was about five times higher in June and about ten times higher in October than phytoplankton pigment absorption, aph(443), indicating that blue light attenuation in the water column was dominated by CDOM rather than by phytoplankton absorption throughout the

  15. [Sources of dissolved organic carbon and the bioavailability of dissolved carbohydrates in the tributaries of Lake Taihu].

    Science.gov (United States)

    Ye, Lin-Lin; Wu, Xiao-Dong; Kong, Fan-Xiang; Liu, Bo; Yan, De-Zhi

    2015-03-01

    Surface water samples of Yincungang and Chendonggang Rivers were collected from September 2012 to August 2013 in Lake Taihu. Water temperature, Chlorophyll a and bacterial abundance were analyzed, as well as dissolved organic carbon (DOC) concentrations, stable carbon isotope of DOC (Δ13C(DOC)), specific UV absorbance (SUVA254 ) and dissolved carbohydrates concentrations. Δ13C(DOC) ranged from -27.03% per thousand ± 0.30% per thousand to -23.38%per thousand ± 0.20% per thousand, indicating a terrestrial source. Both the autochthonous and allochthonous sources contributed to the carbohydrates pool in the tributaries. Significant differences in PCHO (polysaccharides) and MCHO (monosaccharides) concentrations were observed between spring-summer and autumn-winter (P carbohydrates. PCHO contributed a major fraction to TCHO (total dissolved carbohydrates) in autumn and winter, which could be explained by the accumulation of undegradable PCHO limited by the low water temperature; MCHO contributed a major fraction to TCHO in spring and summer, which might be caused by the transformation from PCHO by microbes at high water temperature.

  16. FAST DISSOLVING THIN STRIPS: AN EMERGING WAY FOR ORAL DRUG DELIVERY

    OpenAIRE

    Anjali Joshi* and Ganesh Kumar

    2018-01-01

    Various pharmaceutical dosage form are present in the market but all of the dosage forms possess some drawback most common is patient incompliance which is seen in all age groups. So from last few years focus is done on developing such dosage form which enhances safety, efficacy and patient compliance. In this manner, in late 1970 fast-dissolving drug delivery system came in existence which includes Fast dissolving tablets and fast dissolving thin strips means those dosage form which dissolve...

  17. Characterization of Beauty Salon Wastewater from Kwame Nkrumah University of Science and Technology, Kumasi, Ghana, and Its Surrounding Communities.

    Science.gov (United States)

    Nkansah, Marian A; Opoku, Francis; Ephraim, James H; Wemegah, David D; Tetteh, Luke P M

    2016-01-01

    Due to the increase in students' population over the years, the Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana, and its surrounding communities have seen an increase in the number of beauty salons. The assessment of the quality of salon wastewater has received little attention, as a potential source of environmental and public health hazard, due to the lack of literature on this issue. The main aim of this study is to assess wastewater effluent characteristics in KNUST and its surrounding areas, in relation to its physicochemical and microbial parameters. A total of 48 wastewater samples were collected monthly in 250 L polystyrene bottles, over a two-month period from the KNUST and Ayigya, Ayeduase, and Bomso communities. Standard methods of American Public Health Association (APHA, 19th edition) were employed in the determination of the physicochemical parameters and microbial content of the wastewater samples. The results showed that all the sampling towns had mean chemical oxygen demand (COD; 60.04 ± 1.82 mg/L), biological oxygen demand (BOD; 30.03 ± 9.11 mg/L), dissolved oxygen (DO; 3.00 ± 0.53 mg/L), pH (9.55 ± 0.42), nitrate (5.42 ± 0.36 mg/L), phosphate (23.61 ± 0.16 mg/L), acidity (1.70 ± 0.01 mg/L), alkalinity (70.88 ± 2.59 mg/L), turbidity (20.29 ± 3.86 NTU), electrical conductivity (EC; 1404.89 ± 114.11 μm/S), and total dissolved solids (TDS; 1150.25 ± 262.10 mg/L) in the salon waste. In the case of bacterial levels, pathogenic bacteria such as fecal coliforms, Escherichia coli, Shigella dysenteriae, and Salmonella enterica were absent, while the levels of Staphylococcus aureus and Pseudomonas aeruginosa did not pose any health risk. The correlation matrix showed a significant positive correlation between and among pH, alkalinity, TDS, and turbidity (P < 0.05). The results revealed that the wastewater collected from the salon effluents contain pollution indicator parameters such as EC, pH, PO4 (3-), BOD, and

  18. Contribution to the study of the structure of silver krypton solid solutions; Contribution a l'etude de la structure des solutions solides argent-krypton

    Energy Technology Data Exchange (ETDEWEB)

    Levy, V; Tullairet, J; Delaplace, J; Antolin-Baudier, J; Adda, Y [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The silver-krypton solid solutions formed by electrical discharge have been studied by X-rays, electrical resistivity and electronic transmission microscopy. The crystalline parameter and residual resistivity measurements have shown that the krypton atom behaves very differently to those of other elements of the periodic classification when dissolved in silver. The recovery of the crystalline parameter and of the electrical resistivity has been studied as a function of temperature. (authors) [French] Les solutions solides argent, krypton, realisees par decharges electrique ont ete etudiees par Rayons X, resistivite electrique et microscopie electronique en transmission. Les mesures de parametre cristallin et de resistivite residuelle ont montre que le comportement de l'atome de krypton est tres different de celui des autres elements de la classification periodique en solution dans l'argent. La restauration du parametre cristallin et de la resistivite electrique en fonction de la temperature a ete etudiee. (auteurs)

  19. Comparison of dissolved and particulate arsenic distributions in shallow aquifers of Chakdaha, India, and Araihazar, Bangladesh

    Directory of Open Access Journals (Sweden)

    Ahmed Kazi M

    2008-01-01

    Full Text Available Abstract Background The origin of the spatial variability of dissolved As concentrations in shallow aquifers of the Bengal Basin remains poorly understood. To address this, we compare here transects of simultaneously-collected groundwater and aquifer solids perpendicular to the banks of the Hooghly River in Chakdaha, India, and the Old Brahmaputra River in Araihazar, Bangladesh. Results Variations in surface geomorphology mapped by electromagnetic conductivity indicate that permeable sandy soils are associated with underlying aquifers that are moderately reducing to a depth of 10–30 m, as indicated by acid-leachable Fe(II/Fe ratios 5 mg L-1. More reducing aquifers are typically capped with finer-grained soils. The patterns suggest that vertical recharge through permeable soils is associated with a flux of oxidants on the banks of the Hooghly River and, further inland, in both Chakdaha and Araihazar. Moderately reducing conditions maintained by local recharge are generally associated with low As concentrations in Araihazar, but not systematically so in Chakdaha. Unlike Araihazar, there is also little correspondence in Chakdaha between dissolved As concentrations in groundwater and the P-extractable As content of aquifer particles, averaging 191 ± 122 ug As/L, 1.1 ± 1.5 mg As kg-1 (n = 43 and 108 ± 31 ug As/L, 3.1 ± 6.5 mg As kg-1 (n = 60, respectively. We tentatively attribute these differences to a combination of younger floodplain sediments, and therefore possibly more than one mechanism of As release, as well as less reducing conditions in Chakdaha compared to Araihazar. Conclusion Systematic dating of groundwater and sediment, combined with detailed mapping of the composition of aquifer solids and groundwater, will be needed to identify the various mechanisms underlying the complex distribution of As in aquifers of the Bengal Basin.

  20. Characteristics of suspended solids affect bifenthrin toxicity to the calanoid copepods Eurytemora affinis and Pseudodiaptomus forbesi.

    Science.gov (United States)

    Parry, Emily; Lesmeister, Sarah; Teh, Swee; Young, Thomas M

    2015-10-01

    Bifenthrin is a pyrethroid pesticide that is highly toxic to aquatic invertebrates. The dissolved concentration is generally thought to be the best predictor of acute toxicity. However, for the filter-feeding calanoid copepods Eurytemora affinis and Pseudodiaptomus forbesi, ingestion of pesticide-bound particles could prove to be another route of exposure. The present study investigated bifenthrin toxicity to E. affinis and P. forbesi in the presence of suspended solids from municipal wastewater effluent and surface water of the San Francisco (CA, USA) Estuary. Suspended solids mitigated the toxicity of total bifenthrin to E. affinis and P. forbesi, but mortality was higher than what would be predicted from dissolved concentrations alone. The results indicate that the toxicity and bioavailability of particle-associated bifenthrin was significantly correlated with counts of 0.5-µm to 2-µm particle sizes. Potential explanations could include direct ingestion of bifenthrin-bound particles, changes in food consumption and feeding behavior, and physical contact with small particles. The complex interactions between pesticides and particles of different types and sizes demonstrate a need for future ecotoxicological studies to investigate the role of particle sizes on aquatic organisms. © 2015 SETAC.

  1. Criticality safety analysis for plutonium dissolver using silver mediated electrolytic oxidation method

    International Nuclear Information System (INIS)

    Umeda, Miki; Sugikawa, Susumu; Nakamura, Kazuhito; Egashira, Tetsurou

    1998-08-01

    Design and construction of a plutonium dissolver using silver mediated electrolytic oxidation method are promoted in NUCEF. Criticality safety analysis for the plutonium dissolver is described in this report. The electrolytic plutonium dissolver consists of connection pipes and three pots for MOX powder supply, circulation and electrolysis. The criticality control for the dissolver is made by geometrically safe shape with mass limitation. Monte Carlo code KENO-IV using MGCL-137 library based on ENDF/B-IV was used for the criticality safety analysis for the plutonium dissolver. Considering the required size for construction and criticality safety, diameter of pot and distance between two pots were determined. On this condition, the criticality safety analysis for the plutonium dissolver with connection pipes was carried out. As the result of the criticality safety analysis, an effective neutron multiplication factor keff of 0.91 was obtained and the criticality safety of the plutonium dissolver was confirmed on the basis of criteria of ≤0.95. (author)

  2. Peak distortion in the column liquid chromatographic determination of omeprazole dissolved in borax buffer.

    Science.gov (United States)

    Arvidsson, T; Collijn, E; Tivert, A M; Rosén, L

    1991-11-22

    Injection of a sample containing omeprazole dissolved in borax buffer (pH 9.2) into a reversed-phase liquid chromatographic system consisting of a mixture of acetonitrile and phosphate buffer (pH 7.6) as the mobile phase and a C18 surface-modified silica as the solid phase resulted under special conditions in split peaks of omeprazole. The degree of peak split and the retention time of omeprazole varied with the concentration of borax in the sample solution and the ionic strength of the mobile phase buffer as well as with the column used. Borax is eluted from the column in a broad zone starting from the void volume of the column. The retention is probably due to the presence of polyborate ions. The size of the zone varies with the concentration of borax in the sample injected. In the borax zone the pH is increased compared with the pH of the mobile phase, and when omeprazole (a weak acid) is co-eluting in the borax zone its retention is affected. In the front part and in the back part of the borax zone, pH gradients are formed, and these gradients can induce the peak splitting. When the dissolving medium is changed to a phosphate buffer or an ammonium buffer at pH 9 no peak distortion of omeprazole is observed.

  3. Risks of using membrane filtration for trace metal analysis and assessing the dissolved metal fraction of aqueous media - A study on zinc, copper and nickel

    International Nuclear Information System (INIS)

    Hedberg, Yolanda; Herting, Gunilla; Wallinder, Inger Odnevall

    2011-01-01

    Membrane filtration is commonly performed for solid-liquid separation of aqueous solutions prior to trace metal analysis and when assessing 'dissolved' metal fractions. Potential artifacts induced by filtration such as contamination and/or adsorption of metals within the membrane have been investigated for different membrane materials, metals, applied pressures and pre-cleaning steps. Measurements have been conducted on aqueous solutions including well-defined metal standards, ultrapure water, and on runoff water from corroded samples. Filtration using both non-cleaned and pre-cleaned filters revealed contamination and adsorption effects, in particular pronounced for zinc, evident for copper but non-significant for nickel. The results clearly show these artifacts to be non-systematic both for non-cleaned and pre-cleaned membranes. The applied pressure was of minor importance. Measurements of the labile fraction by means of stripping voltammetry clearly elucidate that membrane filtration followed by total metal analysis cannot accurately assess the labile or the dissolved metal fraction. - Highlights: → Membrane filtration for trace metal analysis can introduce significant artifacts. → The dissolved metal fraction cannot be assessed by membrane filtration. → Non-specified filtration procedures are inadequate for scientific studies. → Artifacts caused by membrane filtration need to be addressed by regulators. - Membrane filtration cannot be used to assess the dissolved metal fraction of aqueous media and needs to be defined in detail in standard tests.

  4. Interfering removal in samples with high amounts of dissolved solids for the determination of arsenic and selenium by TXRF; Remocao de interferentes em amostras com altos teores de solidos dissolvidos para a determinacao de arsenio e selenio por TXRF

    Energy Technology Data Exchange (ETDEWEB)

    Menegario, Amauri A.; Gomes, Ana Carla F.; Pellegrinotti, Daniel C.; Gine, Maria F.; Krug, Francisco J.; Nascimento Filho, Virgilio F. [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil)

    2002-07-01

    A matrix separation flow system coupled with total reflection X-ray fluorescence (TXRF) is proposed to remove Ca{sup ++}, Mg{sup ++}, Na{sup +} and K{sup +} major cations from samples containing high amounts of totally dissolved solids, using solid-liquid phases in flow system. This system is assembled with a 1.25 mL column of AG50W-X8 resin (in protonated form) and manual commutator, allowed the separation, addition of internal standard and subsequently a 40 {mu}L aliquot of the eluate was deposited in the reflector support, dried in a furnace for 12 hours at 60 {+-} 5 deg C and analysed by TXRF. All the procedure is carried out in about 90 s and 0.5 mL of sample are required. The proposed approach was applied for determination of As and Se in plant material and sea water samples. When comparing with direct analysis (without separation), a reduction of 2 to 6 times on the limits of detection for these elements was attained. The accuracy of this methodology was satisfactory for As and Se in sea water and Se in rice certified samples. This procedure could be also used for Pb interference removal in the determination of As by X-ray fluorescence. (author)

  5. Laboratory studies of dissolved radiolabelled microcystin-LR in lake water

    DEFF Research Database (Denmark)

    Hyenstrand, Per; Rohrlack, Thomas; Beattie, Kenneth A

    2003-01-01

    The fate of dissolved microcystin-LR was studied in laboratory experiments using surface water taken from a eutrophic lake. Based on initial range finding, a concentration of 50 microg l(-1) dissolved 14C-microcystin-LR was selected for subsequent time-course experiments. The first was performed ...... fractions. The study demonstrated that biodegradation of dissolved microcystin-LR occurred in water collected at a lake surface with carbon dioxide as a major end-product....

  6. Compositions and constituents of freshwater dissolved organic matter isolated by reverse osmosis

    International Nuclear Information System (INIS)

    Zhang, Yulong; Huang, Wen; Ran, Yong; Mao, Jingdong

    2014-01-01

    Highlights: • Concentration factor controls sorption of DOM and thus yields of reverse osmosis. • Solid-state 13 C NMR was used to characterize RO-isolated DOM from freshwater. • C distribution of freshwater RO-DOM differs from that of reported marine DOM. • The compositions of DOM were transformed during transport from rivers to oceans. - Abstract: Dissolved organic matter (DOM) from riverine and lacustrine water was isolated using a reverse osmosis (RO) system. Solid-state 13 C nuclear magnetic resonance ( 13 C NMR) was used to quantitatively evaluate the compositions and constituents of DOM, which are compared with previous investigations on marine DOM. Results indicated that concentration factor (CF) was a key metric controlling yield and sorption of DOM on the RO system. The sorption was likely non-selective, based on the 13 C NMR and δ 13 C analyses. Carbohydrates and lipids accounted for 25.0–41.5% and 30.2–46.3% of the identifiable DOM, followed by proteins (18.2–19.8%) and lignin (7.17–12.8%). The freshwater DOM contained much higher alkyl and aromatic C but lower alkoxyl and carboxyl C than marine DOM. The structural difference was not completely accounted for by using structure of high molecular weight (HMW) DOM, suggesting a size change involved in transformations of DOM during the transport from rivers to oceans

  7. An empirical model for salt removal percentage in water under the effect of different current intensities of current carrying coil at different flow rates

    Directory of Open Access Journals (Sweden)

    Rameen S. AbdelHady

    2011-10-01

    Full Text Available The magnetic treatment of hard water is an alternative, simple approach by which the hard water that needs to be treated flows through a magnetic field. This field is created by inducing current in a coil wrapped around a pipe. Consequently some of its properties, such as total dissolved salts (TDS, conductivity (Ec and PH change. The primary purpose of hard water treatment is to decrease TDS in the incoming liquid stream. Using performance data from the application of different magnetic field densities on the different flow levels of water, empirical mathematical models were developed relating the salt removal percentage (SRP to operating flow rate and current of the coil. The obtained experimental results showed that the SRP increased with increasing the current at low flow rates (up to 0.75 ml/s.

  8. TDS Broiler

    African Journals Online (AJOL)

    Dr Ahmed Sayed

    2016-11-21

    Nov 21, 2016 ... reference Asian local chicken population, especially local Chinese and ... There were significant variations in certain productive and physiological ... in genetic diversity in chicken populations worldwide (Granevitze et al.,.

  9. Absorption features of chromophoric dissolved organic matter (CDOM) and tracing implication for dissolved organic carbon (DOC) in Changjiang Estuary, China

    OpenAIRE

    Zhang, X. Y.; Chen, X.; Deng, H.; Du, Y.; Jin, H. Y.

    2013-01-01

    Chromophoric dissolved organic matter (CDOM) represents the light absorbing fraction of dissolved organic carbon (DOC). Studies have shown that the optical properties of CDOM can be used to infer the distribution and diffusion characteristics of DOC in the estuary and coastal zone. The inversion of DOC concentrations from remote sensing has been implemented in certain regions. In this study we investigate the potential of tracing DOC from CDOM by the measure...

  10. Photocatalytic and electrochemical combined treatment of textile wash water

    International Nuclear Information System (INIS)

    Neelavannan, M.G.; Revathi, M.; Ahmed Basha, C.

    2007-01-01

    Various chemical and physical processes for treatment of textile effluent are not destructive but they only transfer the contaminants from one form to another. The presence of high concentration of organic dye and total dissolved solids (TDS) in the effluent that are not removed by biological treatment must be eliminated by an alternative method to the conventional ones is the advanced oxidation process (AOP). A procion blue dye effluent was treated by photo and electrochemical oxidation process as well as by combining photocatalytic degradation using TiO 2 suspensions. Chemical oxygen demand (COD) and colour removal can be used to follow the degradation of the organic pollutant. The effects of pH, current density, flow rate of effluent that passes into the reactor and supporting electrolyte were studied. Comparative studies were carried out on photocatalytic and electrochemical process to degrade the procion blue. The maximum COD reduction and colour removal were 96 and 100%, respectively. Photodegradation efficiency of dye was high when photolysis was carried out in the presence of 40 mg/l of TiO 2

  11. An eco-friendly approach for sodium chloride free cotton dyeing

    International Nuclear Information System (INIS)

    Umer, T.

    2014-01-01

    Present study was conducted with an aim to develop an environmental friendly method of dyeing cotton as an alternative to standard reactive dyeing process that requires high level of salt. When dyeing was carried out in the absence of sodium chloride (NaCl), an extremely lighter depth of shade was experienced, and hence this particular research was focused on the reduction of the total colour difference (AE) to a minimum level. Instead of adding any other chemical or any additional process like cationization, salt-free reactive dyeing was carried out by varying three common process parameters (dyes, alkali, and process time) to achieve required depth of shade. The results obtained were compared with those of conventionally dyed fabrics in terms of depth of shade (AL), total colour difference (AE), washing fastness, and rubbing fastness. The results were found to be promising and comparable to those dyed with using NaCl. Moreover, the investigated method showed a significant reduction of Total Dissolved Solids (TDS) and Electrical Conductivity (EC) in the wastewater, and thus proved to be an environment friendly process. (author)

  12. WATER QUALITY INDEX FOR ASSESSMENT OF DRINKING WATER SOURCES FROM MEDIAŞ TOWN, SIBIU COUNTY

    Directory of Open Access Journals (Sweden)

    ROŞU CRISTINA

    2014-03-01

    Full Text Available The purpose of this study was to evaluate the drinking water sources quality from Mediaş Town, Sibiu County. In November 2013, 6 water samples were taken from different drinking water sources and each water sample was analysed to determinate physico-chemical parameters (using a portable multiparameter WTW 320i major ions (using DIONEX ICS1500 ion chromatograph and heavy metals (using Atomic Absorption Spectrophotometer model ZENIT 700 Analytik Jena. The investigated physico-chemical parameters were: temperature, salinity, electrical conductivity (EC, pH, total dissolved solids (TDS and redox potential (ORP. The analysed major ions were: lithium (Li+, sodium (Na+, potassium (K+, magnesium (Mg2+, calcium (Ca2+, fluoride( F-, chloride (Cl-, bromide (Br-, nitrite (NO2-, nitrate (NO3-, phosphate (PO43- and sulphate (SO42-. The investigated heavy metals were: lead (Pb, zinc (Zn, cooper (Cu, iron (Fe, cadmium (Cd, nickel (Ni, chromium (Cr and arsenic (As. The Water Quality Index (WQI was calculated using the analysed water quality parameters and it ranged from 76 (very poor water quality to 375 (unsuitable for drinking.

  13. Determination of self absorption correction factor (SAF) for gross alpha measurement in water samples by BIS method

    International Nuclear Information System (INIS)

    Raveendran, Nanda; Baburajan, A.; Ravi, P.M.

    2018-01-01

    The laboratories accredited by AERB undertake the measurement of gross alpha and gross beta in packaged drinking water from manufactures across the country and analyze as per the procedure of Bureau of Indian standards. The accurate measurements of gross alpha in the drinking water sample is a challenge due to the self absorption of alpha particle from varying precipitate (Fe(OH) 3 +BaSO 4 ) thickness and total dissolved solids (TDS). This paper deals with a study on tracer recovery generation and self absorption correction factor (SAF). ESL, Tarapur has participated in an inter-laboratory comparison exercise conducted by IDS, RSSD, BARC as per the recommendation of AERB for the accredited laboratories. The thickness of the precipitate is an important aspect which affected the counting process. The activity was reported after conducting multiple experiments with uranium tracer recovery and precipitate thickness. Later on to make our efforts simplified, an average tracer recovery and Self Absorption correction Factor (SAF) was derived by the present experiment and the same was used for the re-calculation of activity from the count rate reported earlier

  14. Effects of sea-level rise on salt water intrusion near a coastal well field in southeastern Florida

    Science.gov (United States)

    Langevin, Christian D.; Zygnerski, Michael

    2013-01-01

    A variable-density groundwater flow and dispersive solute transport model was developed for the shallow coastal aquifer system near a municipal supply well field in southeastern Florida. The model was calibrated for a 105-year period (1900 to 2005). An analysis with the model suggests that well-field withdrawals were the dominant cause of salt water intrusion near the well field, and that historical sea-level rise, which is similar to lower-bound projections of future sea-level rise, exacerbated the extent of salt water intrusion. Average 2005 hydrologic conditions were used for 100-year sensitivity simulations aimed at quantifying the effect of projected rises in sea level on fresh coastal groundwater resources near the well field. Use of average 2005 hydrologic conditions and a constant sea level result in total dissolved solids (TDS) concentration of the well field exceeding drinking water standards after 70 years. When sea-level rise is included in the simulations, drinking water standards are exceeded 10 to 21 years earlier, depending on the specified rate of sea-level rise.

  15. Assessment and mapping of water pollution indices in zone-III of municipal corporation of hyderabad using remote sensing and geographic information system.

    Science.gov (United States)

    Asadi, S S; Vuppala, Padmaja; Reddy, M Anji

    2005-01-01

    A preliminary survey of area under Zone-III of MCH was undertaken to assess the ground water quality, demonstrate its spatial distribution and correlate with the land use patterns using advance techniques of remote sensing and geographical information system (GIS). Twenty-seven ground water samples were collected and their chemical analysis was done to form the attribute database. Water quality index was calculated from the measured parameters, based on which the study area was classified into five groups with respect to suitability of water for drinking purpose. Thematic maps viz., base map, road network, drainage and land use/land cover were prepared from IRS ID PAN + LISS III merged satellite imagery forming the spatial database. Attribute database was integrated with spatial sampling locations map in Arc/Info and maps showing spatial distribution of water quality parameters were prepared in Arc View. Results indicated that high concentrations of total dissolved solids (TDS), nitrates, fluorides and total hardness were observed in few industrial and densely populated areas indicating deteriorated water quality while the other areas exhibited moderate to good water quality.

  16. Using of pH as a tool to predict salinity of groundwater for irrigation purpose using artificial neural network

    Directory of Open Access Journals (Sweden)

    Mahmoud Nasr

    2014-01-01

    Full Text Available Monitoring of groundwater quality is one of the important tools to provide adequate information about water management. In the present study, artificial neural network (ANN with a feed-forward back-propagation was designed to predict groundwater salinity, expressed by total dissolved solids (TDS, using pH as an input parameter. Groundwater samples were collected from a 36 m depth well located in the experimental farm of the City of Scientific Researches and Technological Applications (SRTA City, New Borg El-Arab City, Alexandria, Egypt. The network structure was 1–5–3–1 and used the default Levenberg–Marquardt algorithm for training. It was observed that, the best validation performance, based on the mean square error, was 14819 at epoch 0, and no major problems or over-fitting occurred with the training step. The simulated output tracked the measured data with a correlation coefficient (R-value of 0.64, 0.67 and 0.90 for training, validation and test, respectively. In this case, the network response was acceptable, and simulation could be used for entering new inputs.

  17. Comparative study of economic competitive for nuclear seawater desalination

    International Nuclear Information System (INIS)

    Tian Li; Wang Yongqing

    2001-01-01

    The method of levelized discounted production water cost and the new desalination economic evaluation program (DEEP1.1) are used. Many cases of seawater desalination by nuclear energy or fossil energy combined with reverse osmosis (RO), Multi-effect distillation (MED) or multi-stage flash (MSF) technology in south-east Asia is performed and their economic competitive is analyzed. Their results indicate, the nuclear desalination plants have stronger economic competitive comparing to the fossil in the RO, MED and MSF technology. The desalination water cost is very changeable depending on the difference of desalination technology and water plant size. Its range is 0.56 dollar · m -3 - 1.89 dollar · m -3 , the lowest desalination water cost is product by RO and the highest is by MSF. The sensitive factors of the economic competitive are orderly the discounted rate, desalination plant size, seawater temperature and total dissolved solids (TDS), fossil fuel price and specific power plant investment. The highest rate of water cost is about 19.3% comparing to base case

  18. Radiation-chemical sanitation of dissolved pollutants and environmental protection

    International Nuclear Information System (INIS)

    Petrukhin, N.V.; Putilov, A.V.

    1986-01-01

    Radiation-chemical sanitation of dissolved toxic pollutants resulted from the production processes of different substances and modern equipment operation is considered. The processes of fundamental industrial sewage processing and, as a result, features of practically total disposal of dissolved toxic agents are considered for the first time

  19. Dissolving Microneedle Patch for Transdermal Delivery of Human Growth Hormone

    Science.gov (United States)

    Lee, Jeong Woo; Choi, Seong-O; Felner, Eric I.

    2014-01-01

    Clinical impact of biotechnology has been constrained by the limitations of traditional hypodermic injection of biopharmaceuticals. Microneedle patches have been proposed as a minimally invasive alternative. In this study, we assess the translation of a dissolving microneedle patch designed for simple, painless self-administration of biopharmacetucials that generates no sharp biohazardous waste. To study pharmacokinetics and safety of this approach, human growth hormone (hGH) was encapsulated in 600 μm long dissolving microneedles composed of carboxymethylcellulose and trehalose using an aqueous, moderate-temperature process that maintained complete hGH activity after encapsulation and retained most activity after storage for up to 15 months at room temperature and humidity. After manual insertion into the skin of hairless rats, hGH pharmacokinetics were similar to conventional subcutaneous injection. After patch removal, the microneedles had almost completely dissolved, leaving behind only blunt stubs. The dissolving microneedle patch was well tolerated, causing only slight, transient erythema. This study suggests that a dissolving microneedle patch can deliver hGH and other biopharmaceuticals in a manner suitable for self-administration without sharp biohazardous waste. PMID:21360810

  20. Sample Results from MCU Solids Outage

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T.; Washington, A.; Oji, L.; Coleman, C.; Poirier, M.

    2014-09-22

    additional details are provided below as recommendations. From this point on, IC-Anions analyses of the DSSHT should be part of the monthly routine analysis in order to spot negative trends in the oxalate leaving the MCU system. Care must be taken to monitor the oxalate content to watch for sudden precipitation of oxalate salts in the system; Conduct a study to optimize the cleaning strategy at ARP-MCU through decreasing the concentration or entirely eliminating the oxalic acid; The contents of the SSFT should remain unagitated. Routine visual observation should be maintained to ensure there is not a large buildup of solids. As water with agitation provided sufficient removal of the solids in the feed tank, it should be considered as a good means for dissolving oxalate solids if they are found in the future; Conduct a study to improve prediction of oxalate solubility in salt batch feed materials. As titanium and mercury have been found in various solids in this report, evaluate if either element plays a role in oxalate solubility during processing; Salt batch characterization focuses primarily on characterization and testing of unaltered Tank 21H material; however, non-typical feeds are developed through cleaning, washing, and/or sump transfers. As these solutions are processed through MCU, they may precipitate solids or reduce performance. Salt batch characterization and testing should be expanded to encompass a broader range of feeds that may be processed through ARPMCU.

  1. Production and Composition of Dissolved Black Carbon from Various Biochars and Environmentally-aged Charcoals

    Science.gov (United States)

    Bostick, K. W.; Zimmerman, A. R.; Hatcher, P.; Mitra, S.; Wozniak, A. S.

    2016-12-01

    Pyrogenic organic matter, or black carbon (BC), is the solid carbonaceous product of biomass pyrolysis. While solid BC represents a long-lived portion of the C cycle, it releases pyrogenic dissolved organic matter (py-DOM) which may be more susceptible to mineralization and transformation. This py-DOM may impact environmental and public health and likely controls exchange between terrestrial and aquatic BC pools. Benzene polycarboxylic acids (BPCAs), produced by acid digestion of samples, are used as molecular markers for pyrogenic organic matter. Yet, we currently have a poor understanding of the controls on the production of py-DOM and its yield of BPCA compounds. In response, aqueous leaching time series experiments were carried out using a series of laboratory-made biochars and environmentally-aged charcoals. While non-charred oak biomass released 31.8 mg C/g (45% C loss), oak biochars prepared at low temperatures (250 and 400ºC), produced 9.9 and 2.6 mg C/g (11 and 2.3% C loss), respectively. Oak chars prepared at a higher temperatures (650ºC) leached only 1.85 mg C/g (1.5% C loss). In contrast, an environmentally-aged charcoal (30 y old cypress charcoal) leached 10.9% of its C. On average, 59% (ranging 38-80%) of oak pyrogenic DOC was converted into BPCAs, suggesting that oak py-DOM has a variably condensed aromatic proportion. However, much less BPCAs were generated by BC parent solids. In addition, trace amounts of BPCA were generated from non-pyrolyzed grass, oak wood, and compost leachates; these lend concern to the use of BPCAs as exclusive pyrogenic molecular markers. As expected, BPCA molecular distribution showed that condensation increased with pyrolysis temperature of solid biochars and their corresponding leachates. The comparison of these findings to 13C and 1H NMR spectra of charcoal parent solids and their leachates will further elucidate the chemistry and production mechanisms of py-DOM.

  2. Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA

    Science.gov (United States)

    Spencer, Robert G. M.; Butler, Kenna D.; Aiken, George R.

    2012-09-01

    Dissolved organic carbon (DOC) concentration and chromophoric dissolved organic matter (CDOM) parameters were measured over a range of discharge in 30 U.S. rivers, covering a diverse assortment of fluvial ecosystems in terms of watershed size and landscape drained. Relationships between CDOM absorption at a range of wavelengths (a254, a350, a440) and DOC in the 30 watersheds were found to correlate strongly and positively for the majority of U.S. rivers. However, four rivers (Colorado, Colombia, Rio Grande and St. Lawrence) exhibited statistically weak relationships between CDOM absorption and DOC. These four rivers are atypical, as they either drain from the Great Lakes or experience significant impoundment of water within their watersheds, and they exhibited values for dissolved organic matter (DOM) parameters indicative of autochthonous or anthropogenic sources or photochemically degraded allochthonous DOM and thus a decoupling between CDOM and DOC. CDOM quality parameters in the 30 rivers were found to be strongly correlated to DOM compositional metrics derived via XAD fractionation, highlighting the potential for examining DOM biochemical quality from CDOM measurements. This study establishes the ability to derive DOC concentration from CDOM absorption for the majority of U.S. rivers, describes characteristics of riverine systems where such an approach is not valid, and emphasizes the possibility of examining DOM composition and thus biogeochemical function via CDOM parameters. Therefore, the usefulness of CDOM measurements, both laboratory-based analyses and in situ instrumentation, for improving spatial and temporal resolution of DOC fluxes and DOM dynamics in future studies is considerable in a range of biogeochemical studies.

  3. Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA

    Science.gov (United States)

    Spencer, Robert G.M.; Butler, Kenna D.; Aiken, George R.

    2012-01-01

    Dissolved organic carbon (DOC) concentration and chromophoric dissolved organic matter (CDOM) parameters were measured over a range of discharge in 30 U.S. rivers, covering a diverse assortment of fluvial ecosystems in terms of watershed size and landscape drained. Relationships between CDOM absorption at a range of wavelengths (a254, a350, a440) and DOC in the 30 watersheds were found to correlate strongly and positively for the majority of U.S. rivers. However, four rivers (Colorado, Colombia, Rio Grande and St. Lawrence) exhibited statistically weak relationships between CDOM absorption and DOC. These four rivers are atypical, as they either drain from the Great Lakes or experience significant impoundment of water within their watersheds, and they exhibited values for dissolved organic matter (DOM) parameters indicative of autochthonous or anthropogenic sources or photochemically degraded allochthonous DOM and thus a decoupling between CDOM and DOC. CDOM quality parameters in the 30 rivers were found to be strongly correlated to DOM compositional metrics derived via XAD fractionation, highlighting the potential for examining DOM biochemical quality from CDOM measurements. This study establishes the ability to derive DOC concentration from CDOM absorption for the majority of U.S. rivers, describes characteristics of riverine systems where such an approach is not valid, and emphasizes the possibility of examining DOM composition and thus biogeochemical function via CDOM parameters. Therefore, the usefulness of CDOM measurements, both laboratory-based analyses and in situ instrumentation, for improving spatial and temporal resolution of DOC fluxes and DOM dynamics in future studies is considerable in a range of biogeochemical studies.

  4. Laser Calorimetry Spectroscopy for ppm-level Dissolved Gas Detection and Analysis.

    Science.gov (United States)

    K S, Nagapriya; Sinha, Shashank; R, Prashanth; Poonacha, Samhitha; Chaudhry, Gunaranjan; Bhattacharya, Anandaroop; Choudhury, Niloy; Mahalik, Saroj; Maity, Sandip

    2017-02-20

    In this paper we report a newly developed technique - laser calorimetry spectroscopy (LCS), which is a combination of laser absorption spectroscopy and calorimetry - for the detection of gases dissolved in liquids. The technique involves determination of concentration of a dissolved gas by irradiating the liquid with light of a wavelength where the gas absorbs, and measuring the temperature change caused by the absorbance. Conventionally, detection of dissolved gases with sufficient sensitivity and specificity was done by first extracting the gases from the liquid and then analyzing the gases using techniques such as gas chromatography. Using LCS, we have been able to detect ppm levels of dissolved gases without extracting them from the liquid. In this paper, we show the detection of dissolved acetylene in transformer oil in the mid infrared (MIR) wavelength (3021 nm) region.

  5. On the losses of dissolved CO(2) during champagne serving.

    Science.gov (United States)

    Liger-Belair, Gérard; Bourget, Marielle; Villaume, Sandra; Jeandet, Philippe; Pron, Hervé; Polidori, Guillaume

    2010-08-11

    Pouring champagne into a glass is far from being consequenceless with regard to its dissolved CO(2) concentration. Measurements of losses of dissolved CO(2) during champagne serving were done from a bottled Champagne wine initially holding 11.4 +/- 0.1 g L(-1) of dissolved CO(2). Measurements were done at three champagne temperatures (i.e., 4, 12, and 18 degrees C) and for two different ways of serving (i.e., a champagne-like and a beer-like way of serving). The beer-like way of serving champagne was found to impact its concentration of dissolved CO(2) significantly less. Moreover, the higher the champagne temperature is, the higher its loss of dissolved CO(2) during the pouring process, which finally constitutes the first analytical proof that low temperatures prolong the drink's chill and helps it to retain its effervescence during the pouring process. The diffusion coefficient of CO(2) molecules in champagne and champagne viscosity (both strongly temperature-dependent) are suspected to be the two main parameters responsible for such differences. Besides, a recently developed dynamic-tracking technique using IR thermography was also used in order to visualize the cloud of gaseous CO(2) which flows down from champagne during the pouring process, thus visually confirming the strong influence of champagne temperature on its loss of dissolved CO(2).

  6. Photochemical Reactivity of Dissolved Organic Matter in Boreal Lakes

    Science.gov (United States)

    Gu, Y.; Vuorio, K.; Tiirola, M.; Perämäki, S.; Vahatalo, A.

    2016-12-01

    Boreal lakes are rich in dissolved organic matter (DOM) that terrestrially derived from forest soil and wetland, yet little is known about potential for photochemical transformation of aquatic DOM in boreal lakes. Transformation of chromophoric dissolved organic matter (CDOM) can decrease water color and enhance microbial mineralization, affecting primary production and respiration, which both affect the CO2 balance of the lakes. We used laboratory solar radiation exposure experiments with lake water samples collected from 54 lakes located in Finland and Sweden, representing different catchment composition and watershed location to assess photochemical reactivity of DOM. The pH of water samples ranged from 5.4 to 8.3, and the concentrations of dissolved iron (Fe) were between samples received simulated solar radiation corresponding to a daily dose of sunlight, and photomineralization of dissolved organic carbon (DOC) to dissolved inorganic carbon (DIC) was measured for determination of spectral apparent quantum yields (AQY). During irradiation, photobleaching decreased the absorption coefficients of CDOM at 330 nm between 4.9 and 79 m-1 by 0.5 to 11 m-1. Irradiation generated DIC from 2.8 to 79 μmol C L-1. The AQY at 330 nm ranged between 31 and 273 ×10-6 mol C mol photons-1 h-1, which was correlated positively with concentration of dissolved Fe, and negatively with pH. Further statistical analyze indicated that the interaction between pH and Fe may explain much of the photochemical reactivity of DOM in the examined lakes, and land cover concerns main catchment areas also can have impact on the photoreaction process. This study may suggest how environmental conditions regulate DOM photomineralization in boreal lakes.

  7. Characterizing Dissolved Gases in Cryogenic Liquid Fuels

    Science.gov (United States)

    Richardson, Ian A.

    Pressure-Density-Temperature-Composition (PrhoT-x) measurements of cryogenic fuel mixtures are a historical challenge due to the difficulties of maintaining cryogenic temperatures and precision isolation of a mixture sample. For decades NASA has used helium to pressurize liquid hydrogen propellant tanks to maintain tank pressure and reduce boil off. This process causes helium gas to dissolve into liquid hydrogen creating a cryogenic mixture with thermodynamic properties that vary from pure liquid hydrogen. This can lead to inefficiencies in fuel storage and instabilities in fluid flow. As NASA plans for longer missions to Mars and beyond, small inefficiencies such as dissolved helium in liquid propellant become significant. Traditional NASA models are unable to account for dissolved helium due to a lack of fundamental property measurements necessary for the development of a mixture Equation Of State (EOS). The first PrhoT-x measurements of helium-hydrogen mixtures using a retrofitted single-sinker densimeter, magnetic suspension microbalance, and calibrated gas chromatograph are presented in this research. These measurements were used to develop the first multi-phase EOS for helium-hydrogen mixtures which was implemented into NASA's Generalized Fluid System Simulation Program (GFSSP) to determine the significance of mixture non-idealities. It was revealed that having dissolved helium in the propellant does not have a significant effect on the tank pressurization rate but does affect the rate at which the propellant temperature rises. PrhoT-x measurements are conducted on methane-ethane mixtures with dissolved nitrogen gas to simulate the conditions of the hydrocarbon seas of Saturn's moon Titan. Titan is the only known celestial body in the solar system besides Earth with stable liquid seas accessible on the surface. The PrhoT-x measurements are used to develop solubility models to aid in the design of the Titan Submarine. NASA is currently designing the submarine

  8. The determination of solubility and diffusion coefficient for solids in liquids by an inverse measurement technique using cylinders of amorphous glucose as a model compound

    International Nuclear Information System (INIS)

    Hu, Chengyao; Huang, Pei

    2011-01-01

    The importance of sugar and sugar-containing materials is well recognized nowadays, owing to their application in industrial processes, particularly in the food, pharmaceutical and cosmetic industries. Because of the large numbers of those compounds involved and the relatively small number of solubility and/or diffusion coefficient data for each compound available, it is highly desirable to measure the solubility and/or diffusion coefficient as efficiently as possible and to be able to improve the accuracy of the methods used. In this work, a new technique was developed for the measurement of the diffusion coefficient of a stationary solid solute in a stagnant solvent which simultaneously measures solubility based on an inverse measurement problem algorithm with the real-time dissolved amount profile as a function of time. This study differs from established techniques in both the experimental method and the data analysis. The experimental method was developed in which the dissolved amount of solid solute in quiescent solvent was investigated using a continuous weighing technique. In the data analysis, the hybrid genetic algorithm is used to minimize an objective function containing a calculated and a measured dissolved amount with time. This is measured on a cylindrical sample of amorphous glucose in methanol or ethanol. The calculated dissolved amount, that is a function of the unknown physical properties of the solid solute in the solvent, is calculated by the solution of the two-dimensional nonlinear inverse natural convection problem. The estimated values of the solubility of amorphous glucose in methanol and ethanol at 293 K were respectively 32.1 g/100 g methanol and 1.48 g/100 g ethanol, in agreement with the literature values, and support the validity of the simultaneously measured diffusion coefficient. These results show the efficiency and the stability of the developed technique to simultaneously estimate the solubility and diffusion coefficient. Also

  9. Leaching of dissolved phosphorus from tile-drained agricultural areas.

    Science.gov (United States)

    Andersen, H E; Windolf, J; Kronvang, B

    2016-01-01

    We investigated leaching of dissolved phosphorus (P) from 45 tile-drains representing animal husbandry farms in all regions of Denmark. Leaching of P via tile-drains exhibits a high degree of spatial heterogeneity with a low concentration in the majority of tile-drains and few tile-drains (15% in our investigation) having high to very high concentration of dissolved P. The share of dissolved organic P (DOP) was high (up to 96%). Leaching of DOP has hitherto been a somewhat overlooked P loss pathway in Danish soils and the mechanisms of mobilization and transport of DOP needs more investigation. We found a high correlation between Olsen-P and water extractable P. Water extractable P is regarded as an indicator of risk of loss of dissolved P. Our findings indicate that Olsen-P, which is measured routinely in Danish agricultural soils, may be a useful proxy for the P leaching potential of soils. However, we found no straight-forward correlation between leaching potential of the top soil layer (expressed as either degree of P saturation, Olsen-P or water extractable P) and the measured concentration of dissolved P in the tile-drain. This underlines that not only the source of P but also the P loss pathway must be taken into account when evaluating the risk of P loss.

  10. Dissolved gases

    International Nuclear Information System (INIS)

    Heaton, T.H.E.

    1981-01-01

    The concentrations of gaseous nitrogen, argon, oxygen and helium dissolved in groundwater are often different from their concentrations in rain and surface waters. These differences reflect changes in the gas content occurring after rain or surface water, having infiltrated into the ground, become isolated from equilibrium contact with the atmosphere. A study of these changes can give insight into the origin and subsequent subsurface history of groundwater. Nitrogen and argon concentrations for many groundwaters in southern Africa indicate that excess air is added to water during infiltration. The amount of excess air is believed to reflect the physical structure of the unsaturated zone and the climate of the recharge area. Since nitrogen and argon are essentially conservative in many aquifer environments in South Africa, their concentrations can be used in distinguishing grondwaters of different recharge origins. In some areas the high helium content of the groundwater suggests that much of the helium is derived through migration from a source outside (e.g. below) the aquifer itself. Radiogenic helium concentrations nevertheless show, in two artesian aquifers, a close linear relationship to the radiocarbon age of the groundwater. This indicates a uniformity in the factors responsible for the accumulation of helium, and suggests that in these circumstances helium data can be used to give information on the age of very old groundwater. In some groundwater dissolved oxygen concentrations are found to decrease with increasing groundwater age. Whilst the rate of decrease may be very different for different aquifers, the field measurement of oxygen may be useful in preliminary surveys directed toward the location of recharge areas

  11. The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumes

    Science.gov (United States)

    Bennett, Sarah A.; Achterberg, Eric P.; Connelly, Douglas P.; Statham, Peter J.; Fones, Gary R.; German, Christopher R.

    2008-06-01

    We have conducted a study of hydrothermal plumes overlying the Mid-Atlantic Ridge near 5° S to investigate whether there is a significant export flux of dissolved Fe from hydrothermal venting to the oceans. Our study combined measurements of plume-height Fe concentrations from a series of 6 CTD stations together with studies of dissolved Fe speciation in a subset of those samples. At 2.5 km down plume from the nearest known vent site dissolved Fe concentrations were ˜ 20 nM. This is much higher than would be predicted from a combination of plume dilution and dissolved Fe(II) oxidation rates, but consistent with stabilisation due to the presence of organic Fe complexes and Fe colloids. Using Competitive Ligand Exchange-Cathodic Stripping Voltammetry (CLE-CSV), stabilised dissolved Fe complexes were detected within the dissolved Fe fraction on the edges of one non-buoyant hydrothermal plume with observed ligand concentrations high enough to account for stabilisation of ˜ 4% of the total Fe emitted from the 5° S vent sites. If these results were representative of all hydrothermal systems, submarine venting could provide 12-22% of the global deep-ocean dissolved Fe budget.

  12. The influence of forestry activity on the structure of dissolved organic matter in lakes: Implications for mercury photoreactions

    International Nuclear Information System (INIS)

    O'Driscoll, N.J.; Siciliano, S.D.; Peak, D.; Carignan, R.; Lean, D.R.S.

    2006-01-01

    It is well known that dissolved organic matter (DOM) increases in lakes associated with forestry activity but characterization of the DOM structure is incomplete. Twenty-three lakes with a wide range of forestry activities located in central Quebec, Canada were sampled and analyzed for dissolved organic carbon (DOC) concentration, DOC fluorescence, and ultra violet-visible (UV-VIS) absorption spectra. The results show that DOC increases (as does the associated DOC fluorescence) with increased logging (slope = 0.122, r 2 = 0.581, p 2 = 0.308, p -2 , r 2 = 0.331, p 13 C solid-state nuclear magnetic resonance ( 13 C NMR) analysis. XANES analysis of functional groups in the four concentrated samples shows that there are significant differences in reduced sulphur between the samples, however there was no clear relationship with forestry activity in the associated catchment. XRD data showed the presence of amorphous sulphide minerals associated with the DOM concentrate that may be important sites for mercury binding. The 13 C NMR spectra of these samples show that the percentage of carbon present in carboxylic functional groups increases with increasing logging. Such structures are important for binding photo-reducible mercury and their presence may limit mercury photo-reduction and volatilization. We propose a mechanism by which increased logging leads to increased carboxylic groups in DOM and thereby increased weak binding of photo-reducible mercury. These results, in part, explain the decrease in dissolved gaseous mercury (DGM) production rates with increased logging found in our previous work

  13. Treatment of plutonium contamined solid wastes by electrogenerated Ag(II)

    International Nuclear Information System (INIS)

    Saulze, J.L.

    1990-01-01

    A process for the treatment of plutonium contaminated solid wastes is designed. Two types of wastes have been studied; incineration ashes (COGEMA UP1) and sludges produced in the cryotreatment facility in Cadarache Center (France). The principle of the process is based on the rapid dissolution of PuO 2 (contained in the wastes) under the action of aggressive Ag(II) species, regenerated electrochemically. In the case of the treatment of incinerator ashes an electrochemical pretreatment is necessary if the chloride ion content of the ashes is high. The feasibility of the decontamination process has been proved for the two types of plutonium contaminated solid wastes at a pilot level; for example 1 Kg of ashes (or 0.75 Kg of sludges) has been treated in one experiment, and 97% (or 95%) of the total plutonium was dissolved at the end of the experiment. Industrial applications of this new process are underway [fr

  14. Dissolved gas concentrations of the geothermal fluids in Taiwan

    Science.gov (United States)

    Chen, Ai-Ti; Yang, Tsanyao Frank

    2010-05-01

    Taiwan, a geologically active island, is located on the boundary of the Philippine Sea Plate and the Eurasian Plate. High heat flow and geothermal gradient generated by the complex collision and orogeny, warm up the meteoric water and/or the ground water. The heated water becomes geothermal fluids. In previous studies, researchers tried to categorize hot springs based on the appearance, chemical compositions and lithological areas. Because of the chemical inertness, the concentrations and isotopic composition of dissolved noble gases are good indicators of the mantle degassing, geothermal conditions, and so on. In this study, 55 hot springs were collected from different tectonic units. It is the first time to systematically study the hot springs in Taiwan in terms of dissolved gases. Hot spring water is sampled and stored in pre-evacuated glass bottles for analyzing gas compositions. The abundances of noble gases were determined by a quadrupole mass spectrometer based on the isotope dilution technique. Samples with glass vials are introduced to RAD 7 and GC for dissolved Rn and major dissolved gases analyses. Furthermore, helium isotopic ratios and helium-neon ratios are measured on a conventional noble gas mass spectrometer. For hydrochemistry analysis, water samples are analyzed by IC, ICP-MS and titration. We can classify the hot springs samples into three major groups from main anion concentration data; and then, subdivide them into nine minor groups by cation concentration data. Moreover, according to major dissolved gases compositions, three major gas components: CH4, N2 and CO2, are identified. Dissolved noble gases provided more detailed clues about hot springs sources in Taiwan, such as the degree of mixing between meteoric water and deep-source water, which will be further discussed in this study.

  15. Evaluation of ultrasound-assisted in situ sorbent formation solid-phase extraction method for determination of arsenic in water, food and biological samples.

    Science.gov (United States)

    Ezoddin, Maryam; Majidi, Behrooz; Abdi, Khosrou

    2015-01-01

    A simple and rapid ultrasound-assisted in situ sorbent formation solid-phase extraction (UAISFSPE) coupled with electrothermal atomic absorption spectrometry detection (ET-AAS) was developed for preconcentration and determination of arsenic (As) in various samples. A small amount of cationic surfactant is dissolved in the aqueous sample containing As ions, which were complexed by ammonium pyrrolidinedithiocarbamate After shaking, a little volume of hexafluorophosphate (NaPF6) as an ion-pairing agent was added into the solution by a microsyringe. Due to the interaction between surfactant and ion-pairing agent, solid particles are formed. The alkyl groups of the surfactant in the solid particles strongly interact with the hydrophobic groups of analytes and become bound. Sonication aids the dispersion of the sorbent into the sample solution and mass transfer of the analyte into the sorbent, thus reducing the extraction time. The solid particles are centrifuged, and the sedimented particles can be dissolved in an appropriate solvent to recover the absorbed analyte. After separation, total arsenic (As(III) and As(V)) was determined by ET-AAS. Several experimental parameters were investigated and optimized. A detection limit of 7 ng L(-1) with preconcentration factor of 100 and relative standard deviation for 10 replicate determinations of 0.1 µg L(-1) As(III) were 4.5% achieved. Consequently, the method was applied to the determination of arsenic in certified reference materials, water, food and biological samples with satisfactory results.

  16. A miniaturized solid contact test with Arthrobacter globiformis for the assessment of the environmental impact of silver nanoparticles.

    Science.gov (United States)

    Engelke, Maria; Köser, Jan; Hackmann, Stephan; Zhang, Huanjun; Mädler, Lutz; Filser, Juliane

    2014-05-01

    Silver nanoparticles (AgNPs) are widely applied for their antibacterial activity. Their increasing use in consumer products implies that they will find their way into the environment via wastewater-treatment plants. The aim of the present study was to compare the ecotoxicological impact of 2 differently designed AgNPs using the solid contact test for the bacterial strain Arthrobacter globiformis. In addition, a miniaturized version of this test system was established, which requires only small-sized samples because AgNPs are produced in small quantities during the design level. The results demonstrate that the solid contact test can be performed in 24-well microplates and that the miniaturized test system fulfills the validity criterion. Soils spiked with AgNPs showed a concentration-dependent reduction of Arthrobacter dehydrogenase activity for both AgNPs and Ag ions (Ag(+)). The toxic effect of the investigated AgNPs on the bacterial viability differed by 1 order of magnitude and can be related to the release of dissolved Ag(+). The release of dissolved Ag(+) can be attributed to particle size and surface area or to the fact that AgNPs are in either metallic or oxide form. Environ © 2014 SETAC.

  17. Predicting dissolved lignin phenol concentrations in the coastal ocean from chromophoric dissolved organic matter (CDOM absorption coefficients

    Directory of Open Access Journals (Sweden)

    Cédric G. Fichot

    2016-02-01

    Full Text Available Dissolved lignin is a well-established biomarker of terrigenous dissolved organic matter (DOM in the ocean, and a chromophoric component of DOM. Although evidence suggests there is a strong linkage between lignin concentrations and chromophoric DOM (CDOM absorption coefficients in coastal waters, the characteristics of this linkage and the existence of a relationship that is applicable across coastal oceans remain unclear. Here, 421 paired measurements of dissolved lignin concentrations (sum of 9 lignin phenols and CDOM absorption coefficients (ag(λ were used to examine their relationship along the river-ocean continuum (0-37 salinity and across contrasting coastal oceans (sub-tropical, temperate, high-latitude. Overall, lignin concentrations spanned four orders of magnitude and revealed a strong, non-linear relationship with ag(λ. The characteristics of the relationship (shape, wavelength dependency, lignin-composition dependency and evidence from degradation indicators were all consistent with lignin being an important driver of CDOM variability in coastal oceans, and suggested physical mixing and long-term photodegradation were important in shaping the relationship. These observations were used to develop two simple empirical models for estimating lignin concentrations from ag(λ with a +/- 20% error relative to measured values. The models are expected to be applicable in most coastal oceans influenced by terrigenous inputs.

  18. A passive collection system for whole size fractions in river suspended solids

    International Nuclear Information System (INIS)

    Takeshi Matsunaga; Takahiro Nakanishi; Mariko Atarashi-Andoh; Erina Takeuchi; Katsunori Tsuduki; Syusaku Nishimura; Jun Koarashi; Shigeyoshi Otosaka; Tsutomu Sato; Seiya Nagao

    2015-01-01

    In order to solve difficulties in collection of river suspended solids (SS) such as frequent observations during stochastic rainfall events, a simple passive collection system of SS has been developed. It is composed of sequentially connected two large-scale filter vessels. A portion of river water flows down into the filter vessels utilizing a natural drop of streambed. The system enable us to carry out long-term, unmanned SS collection. It is also compatible with dissolved component collection. Its performance was validated in a forested catchment by applying to radiocesium and stable carbon transport. (author)

  19. Carbon-free Solid Dispersion LiCoO2 Redox Couple Characterization and Electrochemical Evaluation for All Solid Dispersion Redox Flow Batteries

    International Nuclear Information System (INIS)

    Qi, Zhaoxiang; Liu, Aaron L.; Koenig, Gary M.

    2017-01-01

    Highlights: • LiCoO 2 particles can be cycled in carbon-free and binder-free coin cells. • A carbon-free LiCoO 2 suspension is electrochemically oxidized and reduced. • Comparable size LiCoO 2 and Li 4 Ti 5 O 12 suspensions have similar rheological properties. • First demonstration of redox couples with solid suspensions for both electrodes. - Abstract: Semi-solid flow batteries have been reported to have among the highest energy densities for redox flow batteries, however, they rely on percolated carbon networks which increase the electrolyte viscosity significantly. We report the first demonstration of carbon-free redox flow couples comprised of dispersed lithium-ion battery active material suspensions, with sub-micrometer LiCoO 2 (LCO) particles at the cathode and Li 4 Ti 5 O 12 (LTO) particles at the anode. Both electrochemical and rheological properties of the LCO suspensions are reported and compared to previous reports for LTO dispersed electrochemical redox couples. An LTO anode and LCO cathode full cell was constructed and reversible electrochemical redox reaction of the dispersed particles was successfully demonstrated. This carbon-free dispersed lithium-ion active material full cell provides a proof-of-concept for a system that lies between the relatively high viscosity semi-solid flow cells with percolated carbon networks and the relatively low energy density conventional flow cells comprised of dissolved transition metals, providing a system for future study of the trade-off between energy density and viscosity for electrochemical flow cells that rely on solid active materials.

  20. Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange

    Science.gov (United States)

    Fitzsimmons, Jessica N.; John, Seth G.; Marsay, Christopher M.; Hoffman, Colleen L.; Nicholas, Sarah L.; Toner, Brandy M.; German, Christopher R.; Sherrell, Robert M.

    2017-02-01

    Hydrothermally sourced dissolved metals have been recorded in all ocean basins. In the oceans' largest known hydrothermal plume, extending westwards across the Pacific from the Southern East Pacific Rise, dissolved iron and manganese were shown by the GEOTRACES program to be transported halfway across the Pacific. Here, we report that particulate iron and manganese in the same plume also exceed background concentrations, even 4,000 km from the vent source. Both dissolved and particulate iron deepen by more than 350 m relative to 3He--a non-reactive tracer of hydrothermal input--crossing isopycnals. Manganese shows no similar descent. Individual plume particle analyses indicate that particulate iron occurs within low-density organic matrices, consistent with its slow sinking rate of 5-10 m yr-1. Chemical speciation and isotopic composition analyses reveal that particulate iron consists of Fe(III) oxyhydroxides, whereas dissolved iron consists of nanoparticulate Fe(III) oxyhydroxides and an organically complexed iron phase. The descent of plume-dissolved iron is best explained by reversible exchange onto slowly sinking particles, probably mediated by organic compounds binding iron. We suggest that in ocean regimes with high particulate iron loadings, dissolved iron fluxes may depend on the balance between stabilization in the dissolved phase and the reversibility of exchange onto sinking particles.